CaltechTHESIS
  A Caltech Library Service

Effects of Particle Size Ratio on Single Particle Motion in Colloidal Dispersions

Citation

Hoh, Nicholas Jeffrey (2013) Effects of Particle Size Ratio on Single Particle Motion in Colloidal Dispersions. Dissertation (Ph.D.), California Institute of Technology. doi:10.7907/XN4G-TB33. https://resolver.caltech.edu/CaltechTHESIS:06072013-154128559

Abstract

The motion of a single Brownian particle of arbitrary size through a dilute colloidal dispersion of neutrally buoyant bath spheres of another characteristic size in a Newtonian solvent is examined in two contexts. First, the particle in question, the probe particle, is subject to a constant applied external force drawing it through the suspension as a simple model for active and nonlinear microrheology. The strength of the applied external force, normalized by the restoring forces of Brownian motion, is the Péclet number, Pe. This dimensionless quantity describes how strongly the probe is upsetting the equilibrium distribution of the bath particles. The mean motion and fluctuations in the probe position are related to interpreted quantities of an effective viscosity of the suspension. These interpreted quantities are calculated to first order in the volume fraction of bath particles and are intimately tied to the spatial distribution, or microstructure, of bath particles relative to the probe. For weak Pe, the disturbance to the equilibrium microstructure is dipolar in nature, with accumulation and depletion regions on the front and rear faces of the probe, respectively. With increasing applied force, the accumulation region compresses to form a thin boundary layer whose thickness scales with the inverse of Pe. The depletion region lengthens to form a trailing wake. The magnitude of the microstructural disturbance is found to grow with increasing bath particle size -- small bath particles in the solvent resemble a continuum with effective microviscosity given by Einstein's viscosity correction for a dilute dispersion of spheres. Large bath particles readily advect toward the minimum approach distance possible between the probe and bath particle, and the probe and bath particle pair rotating as a doublet is the primary mechanism by which the probe particle is able to move past; this is a process that slows the motion of the probe by a factor of the size ratio. The intrinsic microviscosity is found to force thin at low Péclet number due to decreasing contributions from Brownian motion, and force thicken at high Péclet number due to the increasing influence of the configuration-averaged reduction in the probe's hydrodynamic self mobility. Nonmonotonicity at finite sizes is evident in the limiting high-Pe intrinsic microviscosity plateau as a function of bath-to-probe particle size ratio. The intrinsic microviscosity is found to grow with the size ratio for very small probes even at large-but-finite Péclet numbers. However, even a small repulsive interparticle potential, that excludes lubrication interactions, can reduce this intrinsic microviscosity back to an order one quantity. The results of this active microrheology study are compared to previous theoretical studies of falling-ball and towed-ball rheometry and sedimentation and diffusion in polydisperse suspensions, and the singular limit of full hydrodynamic interactions is noted.

Second, the probe particle in question is no longer subject to a constant applied external force. Rather, the particle is considered to be a catalytically-active motor, consuming the bath reactant particles on its reactive face while passively colliding with reactant particles on its inert face. By creating an asymmetric distribution of reactant about its surface, the motor is able to diffusiophoretically propel itself with some mean velocity. The effects of finite size of the solute are examined on the leading order diffusive microstructure of reactant about the motor. Brownian and interparticle contributions to the motor velocity are computed for several interparticle interaction potential lengths and finite reactant-to-motor particle size ratios, with the dimensionless motor velocity increasing with decreasing motor size. A discussion on Brownian rotation frames the context in which these results could be applicable, and future directions are proposed which properly incorporate reactant advection at high motor velocities.

Item Type:Thesis (Dissertation (Ph.D.))
Subject Keywords:Complex fluids, colloids, suspensions, rheology, microrheology, diffusiophoresis, autonomous motion
Degree Grantor:California Institute of Technology
Division:Chemistry and Chemical Engineering
Major Option:Chemical Engineering
Thesis Availability:Public (worldwide access)
Research Advisor(s):
  • Brady, John F.
Thesis Committee:
  • Brady, John F. (chair)
  • Wang, Zhen-Gang
  • Kornfield, Julia A.
  • Andrade, Jose E.
Defense Date:31 May 2013
Record Number:CaltechTHESIS:06072013-154128559
Persistent URL:https://resolver.caltech.edu/CaltechTHESIS:06072013-154128559
DOI:10.7907/XN4G-TB33
Default Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:7871
Collection:CaltechTHESIS
Deposited By: Nicholas Hoh
Deposited On:24 Aug 2015 18:15
Last Modified:04 Oct 2019 00:02

Thesis Files

[img]
Preview
PDF - Final Version
See Usage Policy.

9MB

Repository Staff Only: item control page