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Abstract

The motion of a single Brownian particle of arbitrary size a through a dilute colloidal dispersion

of neutrally buoyant “bath” spheres of another characteristic size b ≡ λa in a Newtonian solvent

is examined in two contexts. First, the particle in question, the “probe” particle, is subject to a

constant applied external force drawing it through the suspension as a simple model for active and

nonlinear microrheology. The strength of the applied external force, normalized by the restoring

forces of Brownian motion, is the Péclet number Pe. This dimensionless quantity describes how

strongly the probe is upsetting the equilibrium distribution of the bath particles. The mean motion

and fluctuations in the probe position are related to interpreted quantities of an effective viscosity of

the suspension. These interpreted quantities are calculated to first order in the volume fraction φb of

bath particles and are intimately tied to the spatial distribution, or microstructure, of bath particles

relative to the probe. For weak Pe, the disturbance to the equilibrium microstructure is dipolar in

nature, with accumulation and depletion regions on the front and rear faces of the probe, respectively.

With increasing applied force, the accumulation region compresses to form a thin boundary layer

whose thickness scales with the inverse of Pe. The depletion region lengthens to form a trailing wake.

The magnitude of the microstructural disturbance is found to grow with increasing bath particle

size – small bath particles in the solvent resemble a continuum with effective microviscosity given by

Einstein’s viscosity correction for a dilute dispersion of spheres. Large bath particles readily advect

toward the minimum approach distance possible between the probe and bath particle, and the probe

and bath particle pair rotating as a doublet is the primary mechanism by which the probe particle

is able to move past; this is a process that slows the motion of the probe by a factor of λ−1. The

intrinsic microviscosity is found to force thin at low Péclet number due to decreasing contributions

from Brownian motion, and force thicken at high Péclet number due to the increasing influence of

the configuration-averaged reduction in the probe’s hydrodynamic self mobility. Nonmonotonicity at

finite sizes is evident in the limiting high-Pe intrinsic microviscosity plateau as a function of bath-to-

probe particle size ratio. The intrinsic microviscosity is found to grow as λ for very small probes even

at large-but-finite Péclet numbers, but even a small repulsive interparticle potential, that excludes

lubrication interactions, can reduce this intrinsic microviscosity from O (λ) to O (1). The results

of this active microrheology study are compared to previous theoretical studies of falling-ball and
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towed-ball rheometry and sedimentation and diffusion in polydisperse suspensions, and discrepancies

in the problem statements and their implications are noted.

Second, the probe particle in question is no longer subject to a constant applied external force.

Rather, the particle is considered to be a catalytically-active “motor”, consuming the bath reactant

particles on its reactive face while passively colliding with reactant particles on its inert face. By

creating an asymmetric distribution of reactant about its surface, the motor is able to diffusiophoret-

ically propel itself with some mean velocity. The effects of finite size of the solute are examined on

the leading order diffusive microstructure of reactant about the motor. Brownian and interparti-

cle contributions to the motor velocity are computed for several interparticle interaction potential

lengths and finite reactant-to-motor particle size ratios, with the dimensionless motor velocity in-

creasing with decreasing motor size. A discussion on Brownian rotation frames the context in which

these results could be applicable, and future directions are proposed which properly incorporate

reactant advection at high motor velocities.
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Chapter 1

Introduction

Complex fluids have microstructural features of various length scales that can be used to achieve

certain effects. The glittery finish of some nail polishes and lacquers, and the iridescent look of

certain automotive paints are the results of colloidal particles of nanometer to micrometer size.

The yield stress of shaving cream allows for a layer on the order of millimeters to stay put on the

skin when shaving. Hydrogels create a volume-spanning network of structure up to macroscopic

lengths. Suppose you have a tool to interrogate one of these complex materials, and the tool itself

has a certain length scale. For example, the company RheoSense offers a Viscometer/Rheometer

on a Chip (VROC) comprising pressure sensors along a microfluidic channel of a width of a few

millimeters and a depth on the order of 10-100 microns. It is important to understand how certain

microstructural features within the sample of complex fluid can interact with an interrogating device

and change the resulting measurement. A biological solution of 100kbp DNA fragments, and paint

with suspended micron-sized particulates both have microstructural features that could affect the

readout of the VROC. In this thesis, one objective is to present a careful analysis of one measurement

technique, active and nonlinear microrheology, and the implications that come with microstructural

features of a wide range of sizes.

This work examines the motion of a single “probe” particle through a colloidal dispersion when

that particle is of some arbitrary size compared to the particles of the suspension. First, in Chapter

2, the probe particle is driven by an externally imposed force that is independent from the forces

arising from solvent-particle and particle-particle interactions. One can interpret the mean motion

and fluctuations of this colloidal probe in terms of a perceived microviscosity and effective diffusivity.

Initially, this external force is analyzed when it is much weaker than the restoring forces of Brownian

motion. This is termed the “linear response” regime because the leading-order disturbance to the

equilibrium microstructure will be linear in the strength of the applied external force. Owing to

the first nonlinear perturbation, the microviscosity force thins proportional to the square of the

Péclet number, a dimensionless quantity relating the strength of the applied external force to the

restoring forces of Brownian motion. The extent of force thinning is due to a competition between
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hydrodynamic and Brownian forces, which exhibit some interesting nonmonotonicity with respect

to both the length of the range of interparticle interactions and the bath-to-probe particle size ratio.

Next, the strength of the applied external force is no longer constrained to be small. When

thermal motion of the dispersed particles is weak or even absent, at high Péclet number, force

thickening behavior may be observed depending on how long-ranged the interparticle interactions

between the probe and bath particles are, and the limiting value for the intrinsic microviscosity

is found to vary nonmonotonically with the bath-to-probe particle size ratio. This high-Péclet

microviscosity is strictly hydrodynamic, and not Brownian, in nature. Lubrication interactions

are most important for determining the high-Péclet microviscosity for small probe particles, while

long-ranged hydrodynamic interactions shape the microviscosity for large probes. A boundary-

layer analysis yields consistent findings with the falling-ball theory developed by Davis and Hill

[16] and Almog and Brenner [1]. Comparisons are made to the quintessential works of Batchelor

[5, 7, 6], and Batchelor & Wen [8], on sedimentation and diffusion in a polydisperse suspension.

The distinctions between the way the active microrheology and sedimentation problems have been

posed are highlighted. A discussion of physical mechanisms for probe-bath collision resolution is

also presented.

Lastly, in Chapter 3, particle size is discussed through the lens of autonomous motion. Hydro-

dynamic interactions between a catalytic nanomotor particle and the reactant species are added to

the osmotic propulsion model employed by Córdova-Figueroa and Brady [13, 14]. In these works,

solute reactant molecules are treated as colloidal species dispersed throughout a Newtonian, viscous,

constant property solvent. Some concerns, from a continuum-level analysis, arose over whether mo-

tion can arise from local solute gradients [26, 27], but the colloidal-level treatment of solute matches

the continuum-level analysis in the appropriate limits as shown by Brady [10]. The purpose of

this chapter is to explore concepts proposed in the autonomous motion section of Brady’s work on

particle motion driven by solute gradients. In particular, if the reactant and product species are

thought of as colloidal particles dispersed throughout a continuum solvent, the velocity field created

by the motion of the motor should alter the trajectories of reactant and product past the motor.

We start by highlighting key features of the autonomous motion problem statement in section 3.2

for colloidal solute reactant particles that interact hydrodynamically with the motor particle. For a

detailed introduction to the problem at hand, the curious reader is referred to sections 4 and 5 of

the work of Brady [10].
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Chapter 2

Active and Nonlinear Microrheology

in Polydisperse Systems

2.1 Introduction

Fluids behaving in an unexpected manner are bound to pique the curiosity of a rheologist. For

example, finger-like structures appear to crawl from a cornstarch and water mixture vibrated on a

speaker cone. Also, non-Newtonian fluids climb up a spinning rod due to normal stress differences

and the Weissenberg effect. The rheology community has several methods at its disposal to interro-

gate complex fluids in a systematic manner to recover quantitative measures of the matter’s response

to deformation. Traditional rheometric techniques may apply a bulk viscometric flow to the material,

i.e. a deformation that is a superposition of rigid-body motion and simple shearing motion. The

relationships between stress and strain can be interpreted as viscous and elastic moduli: quantities

that describe how energy is dissipated and stored, respectively, by the material. Small amplitude

oscillatory shear tests may be used to determine the linear viscoelastic response of matter, but these

alone may not be sufficient to describe the behavior of the complex fluid for all processing scenarios.

In fact, two fluids that behave identically in the linear response regime may exhibit very different

nonlinear behavior. Large amplitude oscillatory shear (LAOS) allows for the nonlinear regime to

be tested on the scale of macroscopic deformations and systematically determine the responses of

matter to varying amplitude and frequency. Although nonlinear ‘macro’rheological techniques are

not the focus of this work, the reader is referred to the review by Hyun et al [23] for the state of the

art on LAOS.

Scenarios abound in which macrorheological techniques may not be a viable option. These sce-

narios include quantifying the viscoelastic response of microscopically confined systems like the cell

cytoplasm, measuring samples of a scarce volume, probing the local character of a heterogeneous sam-

ple, and designing high-throughput measurement techniques. For these purposes, ‘micro’rheological

techniques, in which one or more tracer or ‘probe’ particles are embedded in a sample and then
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observed, are proving to be effective methods to solve the aforementioned concerns. Probes move

about due to thermal fluctuations and Brownian motion arising from collisions between the probe

and its surrounding environment. When thermal motion drives the probes, the technique is known

as passive microrheology. The positions of the tracer particles are observed and recorded using

one of many established techniques: video particle-tracking microscopy, diffusing wave spectroscopy,

dynamic light scattering, etc. Once the probes’ trajectories are known, the mean-squared displace-

ments can be related by the fluctuation-dissipation theorem to the hydrodynamic resistance of the

local environment. The local resistance can be interpreted as an effective material property, such

as a local storage or loss modulus or an effective ‘micro’viscosity. For a walkthrough of the steps

from observing colloidal probes to interpreting local and bulk rheological properties, the review by

Squires and Mason [50] is particularly lucid and detailed.

Passive microrheology has several applications where it may be particularly utile. One of the

proposed advantages is that the sample size required to characterize the viscoelastic properties is

much smaller than with traditional bulk rheological techniques. High-throughput microrheology,

using multiple particle tracking in a series of droplets, is feasible in microfluidic devices due to the

minimal sample volumes required and the rapid screening time [47]. Additionally, the number of

rheological measurements of a scarce complex fluid, such as certain biomaterials, can be maximized

by conducting measurements on milligram quantities of sample [46]. The notion that microrheology

can probe multiple microstructural features at equilibrium across different length scales has been

employed by experimentalists. Liu et al [35] probed the mechanical properties of entangled solutions

of F-actin over two decades of length scales. They conducted their experiments with F-actin fila-

ments ranging from 1 to 100 µm in average contour length, using both one and two-particle passive

microrheology techniques over 5 decades of frequency. From bulk rheological measurements, F-actin

solutions exhibit a transition regime at intermediate frequencies that microrheology was also able

to successfully investigate. Two-particle microrheology, or two-point microrheology, involves cross-

correlation of the motion of multiple tracer or probe particles, and avoids some of the problems

that befall single-probe passive microrheology experiments, such as the probe exhibiting a height-

ened mobility by inhabiting a cavity within a porous medium or creating its own cavity via steric

hindrance [15].

The aforementioned passive microrheology experiments rely on thermal energy, causing collisions

between the probe and its environment, to disturb the probes. With these experiments the mea-

surement of linear viscoelastic moduli is possible, but as we mentioned before for bulk rheological

techniques, this only allows for an equilibrium view of the material. In order to interrogate the

non-equilibrium behavior of a material, active and nonlinear microrheology has been proposed. By

applying an external force to the probe whose strength is independent of the thermal energy of the

material, one can drive the microstructure of the complex fluid out of equilibrium, and a nonlinear
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response is probed. One example of active and nonlinear microrheology that may come to mind is

falling-ball rheometry; although it is a technique often practiced on length scales much larger than

the micron-size environments proposed for microrheology. Theoretical and experimental concerns

for falling-ball rheometry in colloidal dispersions have included the finite size of the background

colloidal elements, the bounded versus unbounded nature of the sedimentation environment e.g.

how cylindrical walls affect falling-ball rheometry [11], and constant-force versus constant-velocity

rheometry achieved by sedimentation and “towing”, respectively [44]. Another method of applying

an external force to one or more colloidal probe particles include focusing lasers to create an optical

trap for a particle situated in a dispersion where all other colloidal species are index matched to the

suspending solvent [52, 51].

These experimental and theoretical studies lead us to discuss a common system used in the

analysis of active and nonlinear microrheology: colloidal dispersions. Colloidal dispersions are a

quintessential model for a complex fluid. Hard-sphere colloidal dispersions exhibit rheopectic and

thixotropic behavior; on the macroscale, hard-sphere suspensions are known to initially shear thin

with increasing strength of applied stress; this is owed to a decreasing Brownian stress [9]. Under

even stronger applied stresses, colloidal dispersions exhibit rheopectic behavior that can arise due

to hydroclusters forming a percolating network and jamming [36]. Theoretical and computational

studies of active or nonlinear microrheology have used the model system of one or more colloidal

probe particles situated amongst background bath particles; Brownian dynamics simulations allow

for probe particles to be forced through a collection of hard-sphere colloids either at a fixed force or

fixed velocity, and the mean motion and fluctuations can be interpreted as a microviscosity and effec-

tive diffusivity [12, 60, 61]. Time dependent microstructural features have been examined, whether

from an oscillatory applied force [28], or from startup or cessation of probe particle motion through

a quiescent dispersion [62]. Dilute theory analyses allow for analytical considerations of the steady

bath microstructure about the probe particle with full hydrodynamic interactions [29]; however, some

questions remain. As mentioned earlier in the discussion of experiments probing F-actin solutions,

passive microrheology allows for the equilibrium mechanical response to be observed over decades of

length scale. Is the same possible for active microrheology? If so, the non-equilibrium mechanical

response can be probed over a range of microstructural feature sizes. Certainly probes of all sizes,

great and small, can be embedded in a sample. Dragging each of these probes through a suspension

merits a careful analysis of how their sizes influence the disturbances created to the surrounding

complex fluid. How much larger does a probe need to be than the surrounding bath particles be-

fore the entire suspension resembles a continuum? In such a limit, we expect to recover Einstein’s

viscosity correction ηeff/η0 = 1+ 5
2φ. For what probe sizes do lubrication effects contribute most to

the perceived microviscosity? What about probe sizes affected most by long-ranged hydrodynamic

interactions? For probes identical in size to the suspension constituents, force-thinning at low Péclet
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numbers and force-thickening at high Péclet numbers are predicted, in line with the shear-thinning

and shear-thickening behavior exhibited in macroscopically sheared colloidal dispersions. Is this

feature of force thinning followed by force thickening with increasing Péclet number universal for all

probe sizes? What connections can be made between active microrheology of arbitrary probe sizes

and sedimentation studies of polydisperse dispersions?

The remainder of the chapter attempts to answer some of these questions, and is laid out as

follows: in Section 2.2 the model system for constant force active microrheology in dilute colloidal

systems is established. This requires a brief review of two-body hydrodynamic interactions, and

we attempt to adhere to notation conventions from the sedimentation literature. In Section 2.3,

the constant force applied to the probe particle is considered when it is much weaker than the

thermal energy of the solvent, corresponding to a small Péclet number. In the limit where the

Péclet number approaches zero, we should recover the linear viscoelastic properties as one would for

passive microrheology experiments. The contributions to the intrinsic microviscosity and effective

diffusivity shift from purely hydrodynamic in nature for large probes, to Brownian contributions

dependent on lubrication interactions for small probes. In Section 2.4, the O
�
Pe2

�
disturbance

to the equilibrium microstructure and its impact on the intrinsic hydrodynamic microviscosity are

discussed. Nonmonotonic behavior, with respect to the bath-to-probe particle size ratio and with

respect to the interparticle interaction potential, are noted.

Section 2.5 covers the numerical techniques necessary to compute the suspension microstructure

at arbitrary Péclet numbers. When the Péclet number is not too large, a finite series of angular

moments of the microstructure weighted by radial functions are used to approximate the proba-

bility distribution of bath particles about the probe. This Legendre polynomial solution method

is motivated as an extension of the low-Pe perturbation expansions of the previous section. For

larger Péclet numbers, many moments are required to capture the complex microstructural features

of a thin accumulation region on the anterior face of the probe and a wake of probability deficit

coalescing behind the probe. It is more computationally tractable to solve for the microstructure at

larger Péclet number using a second-order finite difference scheme that concentrates grid points in

the boundary layer to capture the large microstructural gradients present.

Analytic techniques for computing the infinite-Péclet suspension microstructure are presented in

section 2.6. The purely advective solution to the microstructure for non-Brownian systems is shown

to be spherically symmetric. Techniques are presented that were originally proposed by Almog

and Brenner [1] to write the pair distribution function in terms of the far-field multipole expansion

coefficients of the hydrodynamic mobility functions given by Jeffrey and Onishi [25]. The advection

solution for the microstructure does not satisfy the condition of no relative flux through the surface

of the probe particle, and so a singular perturbation expansion is needed, which matches the outer

advective problem to a boundary-layer solution, in which radial diffusion is comparable in magnitude
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to advection. The applicability of the boundary-layer solution for finite size ratios is put into question

by examining the boundary layer thickness as a function of angular distance from the line of forcing,

and for small probes, this boundary layer thickness diverges at the midpoint between the anterior and

posterior probe faces, long before the coalescence region of probability density in the trailing wake

opposite the direction of forcing. Lastly, the suspension microstructures and intrinsic microviscosity

results for the range of Pe and λ are shown in Section 2.7. Methods to interpret microstructures

across different size ratios and different Péclet numbers require consideration of what quantities stay

fixed at constant Pe versus at constant Pe/λ, and these considerations are addressed. A continuation

of this study, to determine the nonlinear effects on the effective diffusivity, is proposed.

2.2 Model system

Consider a collection of (N − 1) rigid, spherical, neutrally-buoyant particles of radii b dispersed ho-

mogeneously throughout a Newtonian, viscous solvent of density ρ and dynamic viscosity η. Another

rigid, spherical particle of radius a, which we will refer to as the “probe” particle, is situated among

these “bath” particles. An external force Fext

1 , which may arise from a solvent-probe particle density

difference or from optical/magnetic tweezers, drags the probe particle through the suspension. In

this analysis, the applied external force is presumed constant. This is in contrast to constant-velocity

microrheology where the probe velocity is prescribed, and fluctuations of the position are disallowed.

The crux of the fixed force microrheology problem is to determine the mean translational motion

of the probe particle in response to the applied force. In addition, the modified diffusivity of the

probe particle in response to the applied force can be determined by analyzing the fluctuations in

the probe particle position. Both of these quantities, the mean motion and fluctuations of the probe,

are intimately tied to the spatiotemporal arrangement of the bath particles about the probe. We

begin by determining the probability fluxes of probe and bath particles. These fluxes will ultimately

provide insight into the likelihood of each configuration. Once the probability of each configuration

is known, weighted averages of the probe flux over all possible configurations will yield expressions

for the mean motion and diffusivity. The particles are small enough and the probe translates slowly

enough, with some characteristic velocity U , such that the Reynolds number characterizing the ratio

of inertial to viscous effects, Re ≡ ρUa/η is much less than unity. The Stokes equations of motion

accurately capture the fluid physics. In this regime, the velocity of any one particle is linear in

the forces acting on each particle in the suspension. In addition to the constant external force,

the probe and bath particles may interact with one another via some interparticle interactive force

FP . For micron-sized and smaller particles, the collisions between solvent molecules and particles

are significant enough that the Brownian force FB is non-negligible. Following previously set-forth

methodology in several works ([39], [49], [29], and [60]), diluteness of the dispersion is assumed in
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order to investigate the probe behavior in the presence of a single bath particle. The probe-and-bath

geometry in one realization is visualized in Figure 2.1. The velocity of the probe or bath particle is

given by:

Uα = MUF
α1 ·

�
Fext

1 + FP
1 + FB

1

�
+MUF

α2 ·
�
FP

2 + FB
2

�
, (2.1)

where MUF
αβ is the two-sphere translational mobility tensor coupling the forces acting on particle β

with the resulting velocity of particle α. The indices α and β can each take on the values 1 or 2

to signify the probe or bath particle, respectively. For a two-sphere geometry, it is useful to change

to a frame of reference moving with the probe particle. Let x1 and x2 denote the centers of the

probe and bath particles, respectively. The preferred coordinates moving with the probe particle

are z ≡ x1 and r ≡ x2 − x1. The scalar separation distance between the probe and bath particle

centers is r, defined as the magnitude of the center-to-center separation vector r. In a two-sphere

geometry, the mobility tensors take on the form:

MUF
αβ (r) ≡ 1

3πη (aα + aβ)

�
xA
αβ (s, λ)nn+ yAαβ (s, λ) (I− nn)

�
. (2.2)

(1 +∆a) a

(1 +∆b) b

Fext
1

r

a
θ

n

θ b

z

y

Figure 2.1: Geometry for analysis of the dilute microrheology problem.

Here, the vector n ≡ r/r is the unit normal pointing outward from the probe particle parallel

to the line-of-centers, and I is the second-order identity tensor. In Equation 2.2, we have followed
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the lead of Batchelor [5] and introduced two dimensionless quantities which fully characterize the

geometry of the two-sphere system: first, the dimensionless center-to-center separation distance

s ≡ 2r/ (a+ b) based on the hydrodynamic radii of the particles, and second, the bath-to-probe

particle radii size ratio λ ≡ b/a. The scalar mobility functions xA
αβ and yAαβ denote how readily

particle α will translate in response to a force on particle β parallel to and perpendicular to the

line-of-centers, respectively. In the literature, particularly for work discussing hydrodynamics in

systems that are free of external torques and other higher moments of force, the functions xA
αβ and

yAαβ are sometimes more compactly referred to as Aαβ and Bαβ . Note that the mobility tensor has

no dependence on the absolute location z of the configuration in space, only the relative separation

vector r of the probe and bath particle is relevant.

The interparticle force FP
α is derivable from a scalar potential field Φ and is made dimensionless by

the thermal energy kT . The choice of interparticle potential in this analysis is the excluded annulus,

frequently applied in theoretical models [45] as simple short-ranged repulsions beyond hard-sphere

interactions. This potential fixes a minimum approach distance rmin between the probe and bath

particle centers:

Φ (z, r ; t) ≡






∞, r < rmin,

0, r > rmin.
(2.3)

Note that the minimum approach distance rmin for rigid, spherical particles is at least as large as

the sum of the hydrodynamic radii of the probe and the bath particle a + b. The value of rmin

can be adjusted to “tune” the strength of the hydrodynamic interactions in the model, approaching

full incorporation of hydrodynamic interactions as rmin approaches a+ b. The interparticle force on

particle α, resulting from Φ, may thus be written as the gradient of the interparticle potential

FP
α ≡ −kT∇αΦ (z, r ; t) . (2.4)

The operator ∇α represents a gradient with respect to the absolute spatial coordinate xα, i.e.

(∂/∂xα).

As shown by Batchelor [4], the Brownian force may be interpreted as if a steady force equal and

opposite to the interparticle force acts on each particle. That is to say, for a configuration of N

particles, the relative diffusive flux of particle α due to Brownian motion is as if the steady force

FB
α ≡ −kT∇α lnPN (x1, · · · , xN ; t) (2.5)

were acting on particle α. Note that PN (x1, · · · , xN ; t) is the joint probability distribution of

the position vectors of all N particle centers at time t. For dilute systems, we integrate out the

positions of N −2 of the bath particle centers. This leaves only the pair probability density function
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P (x1,x2 ; t), which describes the likelihood of a configuration with the probe particle centered at

x1 and a bath particle centered at x2 simultaneously at time t. In terms of the relative coordinates,

the probability density function P2 (z, r ; t) describes the likelihood of the probe particle residing

at z while a bath particle is situated at some location r from the probe.

Solving in a frame of reference translating with the probe necessitates the conversion of gradients

in terms of the absolute coordinates x1 and x2 into gradients in terms of the relative coordinates z

and r. Thus ∇1 = +∇z − ∇r and ∇2 = +∇r. Applying the expressions for the interparticle and

Brownian force from Equations 2.4 and 2.5 into Equation 2.1, the velocity of particle β = 1, 2, in a

given configuration {z, r} of probe and bath particle is given by the expression

Uβ = MUF
β1 · Fext

1 + kT
�
MUF

β1 −MUF
β2

�
· ∇r lnP2 (z, r ; t)− kTMUF

β1 · ∇z lnP2 (z, r ; t) . (2.6)

Gradients of the excluded-annulus potential Φ as defined in equation 2.3 are identically zero for all

accessible configurations, and hence ∇rΦ does not explicitly appear in equation 2.6. This velocity

expression is valid only for configurations in which r > rmin; assemblages with smaller radial separa-

tions than rmin are disallowed by the excluded-annulus potential. The probability flux jβ of particle

β is the product of the configuration-dependent particle velocity with the pair-probability density

of that configuration

jβ ≡ UβP2 (z, r ; t)

= MUF
β1 · Fext

1 P2 (z, r ; t)

+kT
�
MUF

β1 −MUF
β2

�
· ∇rP2 (z, r ; t)

−kTMUF
β1 · ∇zP2 (z, r ; t) . (2.7)

The volume of the dispersion is presumed to be so large that the confinement effects arising from

any boundaries are negligible and the suspension is essentially unbounded. As described by Zia

and Brady [60], Fourier space is well-suited for such an infinite domain, and will allow for the

determination of the long-time self-diffusivity of the probe. The Fourier transform, denoted by the

hat symbol ,̂ is performed with respect to the location of the probe particle center z

f̂ (k, r) ≡
ˆ

all z
f (z, r) exp (−ik · z) dz. (2.8)

The Fourier-transformed probability flux may be written as

ĵβ = MUF
β1 ·Fext

1 P̂2 (k, r ; t)+kT
�
MUF

β1 −MUF
β2

�
·∇rP̂2 (k, r ; t)− i kTMUF

β1 ·kP̂2 (k, r ; t) , (2.9)

where k is the wavevector from the Fourier transform and P̂2 is the Fourier-transformed pair-
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probability density. Note that in the limit of neglected hydrodynamic interactions (rmin � a + b),

the hydrodynamic mobility tensors MUF
11 , MUF

22 , and MUF
12 approach (6πηa)−1 I, (6πηb)−1 I and 0,

respectively, resulting in the simple forms for the Fourier-transformed probability fluxes of the probe

and bath particles

ĵ1, No HI = (Ua − i Dak) P̂2 +Da∇rP̂2, (2.10)

and

ĵ2, No HI = −Db∇rP̂2. (2.11)

The term Ua = Fext

1 / (6πηa) represents the translational velocity of the probe particle through the

solvent due to the applied external force in the absence of probe-bath interactions. The terms Da

and Db represent the self-diffusivities of the probe and bath particle in pure solvent, kT/6πηa and

kT/6πηb, respectively. When assessing the problem with hydrodynamic interactions, though, it is

useful to introduce certain combinations of the dimensionless scalar mobility functions. Batchelor

introduced combinations of these functions for analyzing sedimentation in polydisperse systems [5].

First, we use two combinations L and M that describe relative motion between the probe and bath

particle. The motion described by L and M arises from an applied external force. Relative motion

along the line-of-centers is given by L while relative motion perpendicular to the line-of-centers is

given by M . These functions are

L (s, λ) ≡ xA
11 (s, λ)−

2

1 + λ
xA
12 (s, λ) , (2.12)

and

M (s, λ) ≡ yA11 (s, λ)−
2

1 + λ
yA12 (s, λ) . (2.13)

The dimensionless hydrodynamic functions xA
αβ and yAαβ were introduced in Equation 2.2. Next,

we use the two scalar combinations G and H that arise in the Brownian diffusivity tensor Dr ≡

D22 − D21 − D12 + D11. These functions describe the hydrodynamics of diffusive motion parallel

and perpendicular to the line-of-centers, respectively:

G (s, λ) ≡ λxA
11 (s, λ) + xA

22 (s, λ)

1 + λ
− 4λ

(1 + λ)2
xA
12 (s, λ) , (2.14)

H (s, λ) ≡ λyA11 (s, λ) + yA22 (s, λ)

1 + λ
− 4λ

(1 + λ)2
yA12 (s, λ) . (2.15)

Note that for same-sized particles (λ = 1), the functions L and G are equivalent, as are the quan-

tities M and H. All four of these hydrodynamic functions approach unity at infinite separations,

and are monotonically increasing functions of the dimensionless particle center-to-center separation

distance s. For the sake of compactness in the ensuing derivation, we define the following dimen-
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sionless tensors: the configuration-dependent probe particle self-mobility tensor M̂11, the relative

mobility tensor M̂r arising from an applied external force on the probe, and the relative Brownian

diffusivity tensor D̂r:

M̂11 ≡ MUF
11 /

�
1

6πηa

�
= xA

11nn+ yA11 (I− nn) , (2.16)

M̂r ≡
�
MUF

11 −MUF
12

�
/

�
1

6πηa

�
= Lnn+M (I− nn) , (2.17)

D̂r ≡ Dr/ (Da +Db) = Gnn+H (I− nn) . (2.18)

It would behoove the reader to note that the hats in Equations 2.16, 2.17, and 2.18 do not represent

Fourier-transformed quantities but rather dimensionless tensors. The quantitative and qualitative

variance in suspension microstructures about probes of variable sizes can be attributed to the afore-

mentioned hydrodynamic functions: how readily bath particles compress into a thin boundary layer

on the anterior face of the probe (L) or slide past the probe (M) in response to the external force;

how easily concentration gradients normal to the probe surface are dissipated (G), or how bath

particles that are pushed aside by the probe migrate to fill in the trailing wake (H).

2.2.1 Ensemble-Averaged Fluxes and Interpretation as Intrinsic Micro-

viscosity and Intrinsic Microdiffusivity

The Fourier-space representations of the probability flux of the probe particle ĵ1 and the of relative

probability flux ĵ2 − ĵ1 in terms of these combinations of hydrodynamic functions are

ĵ1 = M̂11 · (Ua − ikDa) P̂2 +DaM̂r · ∇rP̂2, (2.19)

and

ĵ2 − ĵ1 = −M̂r · (Ua − ikDa) P̂2 − (Da +Db) D̂r · ∇rP̂2. (2.20)

These expressions for the probe and bath particle probability fluxes will be used in the Smoluchowski

equation, which describes the spatiotemporal evolution of the suspension microstructure. Detailed

knowledge of the suspension microstructure allows for the determination of ensemble-averaged quan-

tities such as the effective translational velocity and effective diffusivity of the probe particle. As was

done for the probability flux, the positions of N − 2 of the bath particles are averaged out to arrive

at the two-particle form of the Smoluchowski equation; which we express in terms of the relative

coordinate system in Fourier space:

∂P̂2

∂t
+∇r ·

�
ĵ2 − ĵ1

�
+ ik · ĵ1 = 0. (2.21)
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As in the work of Zia and Brady [60], this equation is averaged over all accessible bath particle

configurations, i.e. for all r ≥ rmin, by integrating out the r-dependence. This averaging determines

the effective motion of the probe particle. The divergence theorem is applied to the relative prob-

ability flux term when Equation 2.21 is integrated over all r-space. The relative flux approaches

a constant value for infinitely far values of r, and by choice of the excluded-annulus potential, the

relative probability flux is zero at rmin. Thus the second term vanishes, leaving

∂P̂1

∂t
+ ik ·

�
ĵ1
�
= 0, (2.22)

where the average probe flux is defined as
�
ĵ1
�

≡
´
all r ĵ1 dr. Note that P̂1 (k ; t) is the single-

particle probability density for finding the probe in Fourier space with wave vector k at time t. The

average probe flux may be written as the sum of the probe particle flux in isolation with deviations

that are hydrodynamic
�
ĵH1

�
, interparticle

�
ĵP1

�
, and Brownian

�
ĵB1

�
in nature:

�
ĵ1
�
= (Ua − ikDa) P̂1 +

�
ĵH1

�
+

�
ĵP1

�
+
�
ĵB1

�
. (2.23)

The expressions for these contributions to the average probe flux shall be parsed apart into velocity

and diffusivity corrections later; for now, it suffices to note that all three deviations scale with the

bath particle volume fraction φb. That is to say,
�
ĵH1

�
,
�
ĵP1

�
, and

�
ĵB1

�
are all O (φb) small.

The structure function g (k, r ; t) describes the real-space microstructure of bath particles about

the probe particle. It may be thought of as a conditional likelihood of finding, at time t, a bath

particle center located in real space some distance r from the probe particle center, given that the

probe particle is described by the wave vector k in Fourier space. The pair-probability density P̂2 is

defined in terms of this structure function g, along with the background number density nb of bath

particles and the single-particle probability density P̂1:

P̂2 (k, r ; t) = nbg (k, r ; t) P̂1 (k ; t) . (2.24)

For a dilute dispersion in the absence of applied external forces and interparticle interactions, the

probability density of finding a bath particle anywhere in the suspension is uniform and equal to the

background number density. Thus, the equilibrium form of the structure function geq (k, r ; t) = 1

for all radial separations greater than the excluded-annulus interaction distance rmin. For the long-

time self-diffusion of the probe particle undergoing steady forcing, i.e. the suspension microstructure

has developed to a steady-state configuration, the structure function is expressed as an expansion

for small values of k:

g (k, r) = g0 (r) + ik · d (r) + · · · (2.25)
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Note that g0 (r) is the steady-state microstructure of bath particles in real-space about the probe

particle, and d (r) is the probability-weighted displacement from a fluctuation. This expansion allows

us to write the average probe flux from Equation 2.23 through O (k):

�
ĵ1
�
=

��
Ua +

�
UH

1

�
+
�
UP

1

�
+
�
UB

1

��
− ik ·

�
DaI+

�
DH

1

�
+
�
DP

1

�
+

�
DB

1

���
P̂1 +O

�
|k|2

�
.

(2.26)

The same three forces (hydrodynamic, interparticle, and Brownian) disturb both the mean O (1) and

fluctuating O (k) behavior of the probe particle from its translational motion Ua and diffusivity DaI

in pure solvent. All the leading-order deviations of the probe particle from the pure solvent behavior

are proportional to the background volume fraction φb of bath particles. The average velocity
�
UH

1

�
and diffusivity

�
DH

1

�
due to hydrodynamic interactions simply describe how the motion of

the probe in the presence of the suspension microstructure differs from that in isolated solvent. The

hydrodynamic velocity correction has one component weighted by the suspension microstructure g0

�
UH

1

�
= nb

ˆ
all r

�
M̂11 − I

�
· (Ua) g0 (r) dr, (2.27)

while the hydrodynamic diffusivity correction has two components, one weighted by the steady-state

microstructure g0 while the other is weighted by the deflection field d.

�
DH

1

�
= nb

�
Da

ˆ
all r

�
M̂11 − I

�
g0 (r) dr−

ˆ
all r

d (r)
�
M̂11 − I

�
·Ua dr

�
. (2.28)

As expected, since the hydrodynamic velocity correction, as with the interparticle and Brownian

velocity corrections, is presumed to be parallel to the applied external force, the integral in Equation

2.27 when projected onto the direction of the applied external force is equivalent to the component of

the first integral in Equation 2.28, describing a contribution to the effective diffusivity for fluctuations

parallel to the applied external force.

Gradients in the interparticle potential Φ are nonzero only at radial separations of rmin. The

interparticle contributions to the average velocity and diffusivity are thus given by surface integrals at

the excluded-annulus boundary. For the interparticle velocity correction, we have a surface integral

of the suspension microstructure at contact,

�
UP

1

�
= −Danb

˛
r=rmin

g0 n · M̂r dS, (2.29)

and for the interparticle diffusivity correction, we have a surface integral of the deflection field at

contact,
�
DP

1

�
= Danb

˛
r=rmin

d n · M̂r dS. (2.30)

In the limit where the excluded-annulus potential is coincident with the hydrodynamic radii of the
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particles, i.e. rmin → (a+ b), due to lubrication interactions, there is no relative mobility of the

probe and bath particle along the line of centers in response to a force exerted on the probe. Thus,

these interparticle corrections vanish for full hydrodynamics.

Brownian motion contributes to the effective velocity and diffusivity because the probe and bath

particles are unlikely to drift apart from configurations with hindered relative mobility but are likely

to drift from regions of greater mobility. To compensate for the resulting probability gradient from

this drift behavior, the Brownian probability flux is directed away from regions of lesser mobility

as given by the divergence of the relative translational mobility tensor. The Brownian velocity

correction is
�
UB

1

�
= −Danb

ˆ
all r

g0 ∇r · M̂r dr, (2.31)

and the average Brownian diffusivity correction is

�
DB

1

�
= Danb

ˆ
all r

d ∇r · M̂r dr. (2.32)

These ensemble-averaged velocity corrections are consistent with the results presented by Khair and

Brady for monodisperse suspensions [29] and in the limit of no hydrodynamic interactions (∆ → ∞)

the interparticle velocity and diffusivity corrections agree with the results presented by Squires and

Brady [49] and Zia and Brady [60].

The choices of scales to render the applied external force and the radial center-to-center separation

vector dimensionless are as follows:

u ≡ Fext

1

F0
=

6πηaUa

F0
; s ≡ 2r

rmin

=
2r

(a+ b) (1 + ∆)
, (2.33)

where F0 is the magnitude of the applied external force �Fext

1 �, and the quantity ∆ is the excluded-

annulus parameter, which describes the difference between the interaction length of the interparticle

potential and the sum of the probe and bath particle hydrodynamic radii. It is critical to note that

the choice of dimensionless radial separation s presented in Equation 2.33 is not the same as the

definition of s used in the definitions of the hydrodynamic functions xA
αβ and yAαβ . Henceforth, s

will refer to the quantity defined in Equation 2.33. The excluded-annulus parameter ranges from

purely excluded volume behavior ∆ → ∞ to full hydrodynamic interactions ∆ → 0. Note that the

excluded-annulus behavior can be achieved and tuned in real systems by surface-bound polymers,

electrostatic repulsion, and the addition of salts to the suspending medium. Also note that the

excluded-annulus potential needs not be evenly distributed between the probe and bath particle. If

(1 + ∆a) a and (1 + ∆b) b are the excluded-annulus radii of the probe and bath particles, respectively,



16

then the excluded annulus parameter ∆, defined in terms of these quantities, is simply

∆ =
∆a + λ∆b

1 + λ
. (2.34)

The critical criterion for diluteness of the dispersion is that the volume fraction φb of bath particles

based on their excluded volume is much less than unity, so defining a separate excluded-annulus pa-

rameter for the bath particles is useful to this end. With these dimensionless groups and parameters

in mind, the average probability flux may be interpreted as:

�
ĵ1
�
=

�
Fext

1

6πηa
[1− ηiφ

∗
b ]− ikDa · [I+Diφ

∗
b ]

�
P̂1 +O

�
|k|2

�
(2.35)

where ηi is the intrinsic microviscosity and Di is the intrinsic microdiffusivity. There are several

parallels between these two intrinsic quantities. First, they represent the deviation of the mean

motion and diffusive behavior of the probe particle by an O (φ∗
b) correction, where φ∗

b is simply the

volume fraction of bath particles with radii based on the excluded-annulus parameter ∆:

φ∗
b ≡

�
1 + ∆

1 +∆b

�3

φb =
4π

3
(1 + ∆)3 b3nb. (2.36)

Second, drawing from the previous expression for the probability flux, Equation 2.26, we know that

both intrinsic quantities will have hydrodynamic, interparticle, and Brownian contributions, i.e.

ηi = ηHi +ηPi +ηBi and Di = DH
i +DP

i +DB
i . The intrinsic microviscosity ηi, as discussed by Khair

and Brady [29], is an interpretation of the O (φ∗
b) hindrance to the mean motion of the probe due to

the presence of bath particles in the suspension. The first term inside the parenthesis of Equation

2.35 is the mean motion �U� of the probe. Substituting this expression for the mean motion into

an effective Stokes drag law, e.g. Fext

1 = 6πηeffa �U�, and Taylor expanding the resulting expression

for ηeff/η for small φ∗
b shows that, to leading order, the apparent viscosity of the suspension is

ηeff = η (1 + ηiφ∗
b) . The three contributions to the intrinsic microviscosity are the hydrodynamic

contribution ηHi :

ηHi = − 3

4π

�
1 + λ−1

2

�3 ˆ
s≥2

g0 (s)
�
M̂11 − I

�
: uu ds, (2.37)

the interparticle contribution ηPi :

ηPi =
3

4π

�
1 + λ−1

2

�2
2

Pe

˛
s=2

g0 (s)
�
n · M̂r

�
· u dΩ, (2.38)
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and the Brownian contribution ηBi :

ηBi =
3

4π

�
1 + λ−1

2

�2
1

2Pe

ˆ
s≥2

g0 (s)
�
∇s · M̂r

�
· u ds, (2.39)

where one may recall the definition of the unit vector u from Equation 2.33. We have also introduced

the Péclet number

Pe ≡ F0 b (1 + ∆) /2kT, (2.40)

describing the relative strength of the external force F0 disturbing the equilibrium suspension mi-

crostructure to the strength of Brownian forces 2kT/b (1 + ∆) repairing the disruption caused by the

probe. The Péclet number is defined with respect to the excluded-volume size, and not the hydrody-

namic size, of the bath particles. Note that in the integrals over all space (equations 2.37 and 2.39),

the deviation of the dimensionless self-mobility of the probe particle from isotropy (M̂11 − I), and

the divergence of the relative mobility (∇s · M̂r), decay at large radial separations s as O
�
s−4

�
and

O
�
s−5

�
, respectively. Thus, these microviscosity integrals are convergent. Note that for the sake of

compactness, we introduce the scalar function W to represent the divergence of the relative mobility

tensor ∇s · M̂r. The function W may be expressed in terms of the relative mobility functions L and

M as follows:

∇s · M̂r =

�
2

s
(L−M) +

dL

ds

�
n ≡ Wn. (2.41)

The three contributions to the intrinsic microdiffusivity are analogous to the three microviscosity

contributions. First, the intrinsic microdiffusivity due to hydrodynamic interactions DH
i is defined

as

DH
i =

3

4π

��
1 + λ−1

2

�3 ˆ
s≥2

g0 (s)
�
M̂11 − I

�
ds− 2Pe

�
1 + λ−1

2

�4 ˆ
s≥2

d (s)
�
M̂11 − I

�
· u ds

�
.

(2.42)

The uu component of the first integral for the hydrodynamic intrinsic microdiffusivity is identical to

the expression for the hydrodynamic intrinsic microviscosity. The same hydrodynamic interactions

between the probe and bath particles, that retard the mean motion of the probe, also hinder diffusion

parallel to the direction of the applied external force. Also notable in this expression is the fact that

both the steady state microstructure and the deflection field contribute to the hydrodynamic intrinsic

microdiffusivity.

Both the interparticle and Brownian contributions to the intrinsic microdiffusivity resemble the

respective intrinsic microviscosity contributions. The interparticle contribution to the intrinsic mi-

crodiffusivity is a surface integral of the first moment of the deflection field, just as the interparticle

contribution to the intrinsic microviscosity is a surface integral of the first moment of the microstruc-

ture:
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DP
i =

3

4π

�
1 + λ−1

2

�3

4

˛
s=2

d (s) n · M̂r dΩ. (2.43)

Just as the Brownian contribution to the microviscosity is the divergence of the relative mobility

weighted by the suspension microstructure, the Brownian microdiffusivity is the divergence of the

relative mobility weighted by the deflection field:

DB
i =

3

4π

�
1 + λ−1

2

�3 ˆ
s≥2

d (s) ∇s · M̂r ds. (2.44)

Determining the steady-state suspension microstructure g0 and the deflection field d is the next step

toward evaluating these expressions for the microviscosity and microdiffusivity.

2.2.2 Microstructural Governing Equations

To obtain governing partial differential equations for the steady-state suspension microstructure g0

and the deflection field d, the Fourier-space expressions for the probe particle and relative probability

fluxes, ĵ1 and ĵ2− ĵ1 defined from Equations 2.19 and 2.20, respectively, are substituted into the two-

body Smoluchowski equation, Equation 2.21.The definition for the structure function g, Equation

2.24 is substituted into this expression. The bath-averaged probe flux terms, equations 2.22 and

2.23, are neglected in a dilute-theory approach, as those terms are O (φ∗
b) smaller than the rest.

The choices of scales for the length and velocity, Equation 2.33, render the remaining terms in the

Smoluchowski equation dimensionless as follows:

∂g

∂t
−∇s ·

�
M̂r ·

�
Pe u− ik

λ

1 + λ

�
g

�
−∇s · D̂r · ∇sg

+ik ·
��

M̂11 − I
�
·
�

Pe u− ik
λ

1 + λ

�
g +

λ

1 + λ
M̂r · ∇sg

�
= 0. (2.45)

The disturbance caused by the translating probe must decay away at large distances from the probe:

g (k, s ; t) → 1 as s → ∞. (2.46)

Said differently, this boundary condition indicates that there is no long-ranged order in the dispersion

caused by the probe particle disturbance.

The excluded-annulus potential prevents any relative flux of probability along the line-of-centers

at the minimum approach distance rmin, or in terms of the dimensionless coordinates:

n ·
�
−M̂r ·

�
Pe u− ik

λ

1 + λ

�
g − D̂r · ∇sg

�
= 0 at s = 2. (2.47)
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The small-k expansion for the structure function g, Equation 2.25, and the assumption of steady

state to determine the fully-developed microstructure about the probe, result in two leading order

equations of O (1) for the microstructure g0 and O (k) for the deflection field d. From the choice of

interparticle potential as the excluded-annulus model, Equation 2.3, one can show that the equilib-

rium microstructure is simply geq

0 = 1 for all radial separations s ≥2. With this in mind, it is useful

to define the structural deformation function f (s) in terms of the equilibrium microstructure:

g0 (s) = geq

0 (1 + f (s)) . (2.48)

The governing partial differential equations for the microstructural deformation function f and the

deflection field d are

Pe ∇s ·
�
M̂r · u f

�
+∇s · D̂r · ∇sf = −Pe ∇s ·

�
M̂r · u

�
, (2.49)

Pe ∇s ·
�
M̂r · u d

�
+∇s · D̂r · ∇sd = Pe

�
M̂11 − I

�
· u g0

+
λ

1 + λ

�
∇s ·

�
M̂r g0

�
+ M̂r · ∇sg0

�
. (2.50)

The corresponding boundary conditions for the microstructural deformation function f are

f → 0 as s → ∞, (2.51)

Pe n · M̂r · u f + n · D̂r · ∇sf = −Pe n · M̂r · u at s = 2. (2.52)

The corresponding boundary conditions for the deflection field d are

d → 0 as s → ∞ (2.53)

Pe n · M̂r · u d+ n · D̂r · ∇sd =
λ

1 + λ
g0 n · M̂r at s = 2. (2.54)

The governing equations are scalar and vector inhomogeneous partial differential equations for the

spatial evolution of the structural deformation function and the deflection field, respectively. For

the structural deformation, the inhomogeneity in the PDE arises from a nonzero divergence of the

relative mobility. For the deflection field, a nonzero divergence of the relative mobility, gradients

in the suspension microstructure, and deviation of the dimensionless self mobility from isotropy all

contribute to the inhomogeneity. The boundary conditions are also inhomogeneous at the minimum

approach distance, owing to an inability of the equilibrium probability flux to penetrate the surface

due to the imposition of the excluded-annulus potential. The coupled nature of the PDEs is evi-

dent; the solution for the steady-state microstructure is the driving inhomogeneity for the governing

equations of the deflection field.
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2.3 Linear Response Microstructure

When the restoring forces of Brownian motion are much stronger than the applied external force

acting on the probe particle, the Péclet number is much less than unity. The leading-order dis-

turbance from the equilibrium microstructure will be linear in the Péclet number, hence the name

“linear response” is used in reference to this regime of a gentle disturbance easily repaired by random

thermal fluctuations. In this limit, the deviation from the equilibrium microstructure f is expressed

as a perturbation expansion in the small parameter Pe, as follows:

f (s; Pe → 0) = Pe uini f1 (s) + Pe2 uiuj [ninj f2 (s) + δij f3 (s)] +O
�
Pe3

�
(2.55)

Likewise, the deflection field d may also be expressed as a perturbation expansion in the small

parameter Pe:

d (s; Pe → 0) = ni d1 (s) + Pe uj [ninj d2 (s) + δij d3 (s)] +O
�
Pe2

�
(2.56)

These forms for the departure from the equilibrium microstructure and the deflection field can be

substituted into equations 2.49 and 2.50 to obtain a system of coupled ordinary differential equations.

The details for these ODEs governing the perturbations to the microstructure and deflection field may

be found in Appendix A. The perturbation to the suspension microstructure will be regular through

terms of order O
�
Pe2

�
while the perturbation to the deflection field is regular through O (Pe).

In the limit where the Péclet number approaches zero, the intrinsic microviscosity contributions

each approach a value independent of the Péclet number. The values of these O (1) microviscosity

contributions are as follows:

ηHi,0 = −
�
1 + λ−1

2

�3 ˆ ∞

2
s2

�
xA
11 + 2yA11 − 3

�
ds, (2.57)

ηPi,0 = 2

�
1 + λ−1

2

�2

L (∆) f1 (s = 2) , (2.58)

ηBi,0 =
1

2

�
1 + λ−1

2

�2 ˆ ∞

2
f1 (s) s2W ds. (2.59)

From Equations 2.57-2.59, one can see that only the equilibrium suspension microstructure con-

tributes to the leading linear-response hydrodynamic term of the intrinsic microviscosity, while the

first perturbation to the microstructure is necessary to determine the leading linear-response inter-

particle and Brownian pieces of the intrinsic microviscosity. Note that L (∆) denotes the value of

the relative mobility function L evaluated at the minimum allowed separation between the probe

and a bath particle r = rmin, or in terms of the dimensionless coordinates s = 2 (1 + ∆). Also note
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that W is the divergence of the relative mobility as introduced in Equation 2.41.

The O
�
Pe0

�
hydrodynamic contribution to the intrinsic microviscosity in the linear response

regime ηHi,0 is plotted in Figure 2.2 for various size ratios as a function of the excluded annulus

parameter ∆. Recall that ηHi,0 describes the hindrance of the probe due to a reduced self-mobility

from the equilibrium distribution of bath particles. The hydrodynamic contribution to the intrinsic

microviscosity is a monotonically decreasing function of the excluded annulus parameter, eventually

becoming negligible for all size ratios once the excluded annulus parameter ∆ is � O (1). For a given

excluded annulus parameter, ηHi,0 is a monotonically decreasing function of the particle size ratio λ.

A probe particle that is much smaller than the bath particles does not get to sample as much of the

equilibrium distribution within a few radii of its center, while large probes are affected by a much

larger sample of the bath equilibrium distribution. As the size ratio λ approaches zero indicating

that the bath particles are infinitesimally small, the result is that the suspended bath particles

in solvent resembles a continuum to the large probe particle and Einstein’s viscosity correction of

ηHi,0 → 5/2 is recovered for small excluded annuli. For small probes, the deviation of the probe’s self

mobility from isotropy M̂11− I is O (1) in a region of thickness O
�
λ−1

�
about the probe, indicating

that the hydrodynamic contribution to the intrinsic microviscosity is O
�
λ−1

�
.

The O
�
Pe0

�
Brownian contribution to the intrinsic microviscosity in the linear response regime

ηBi,0 is plotted in Figure 2.3 for various size ratios as a function of the excluded annulus parameter ∆.

With no excluded volume interactions (∆ → 0), the function ηBi,0 is a monotonically increasing

function of the particle size ratio λ, eventually reaching a maximum value of ηBi,0 (λ → ∞,∆ = 0) =

1/2 denoted by the dashed line in Figure 2.3. This limiting value of 1/2 holds for small probe

particles so long as the excluded annulus interaction distance ∆(a+ b) is much smaller than the

probe’s hydrodynamic radius a, indicating that the Brownian contribution arises from lubrication

hydrodynamic interactions. Note that for certain excluded annulus parameters ∆ around O (1), the

Brownian contribution ηBi,0 exhibits nonmonotonicity in the size ratio λ.

The O
�
Pe0

�
interparticle contribution to the intrinsic microviscosity in the linear response regime

ηPi,0 is plotted in Figure 2.4 for various size ratios as a function of the excluded annulus parame-

ter ∆. Note that the curve for each size ratio is normalized by the limiting value ηPi,0 (λ,∆ → ∞) =
�
1 + λ−1

�2
/2. In terms of the parameter β ≡ 2/

�
1 + λ−1

�
, used by Zia and Brady [60], this lim-

iting interparticle contribution to the intrinsic microviscosity is ηPi,0 (λ,∆ → ∞) = 2β−2. From this

series of curves one can infer that for small probes, corresponding with large λ, once the lubrication

interactions are excluded, bath particles can easily reach the minimum approach distance without

hydrodynamic hindrance and collide with the probe. For large probes, which corresponds with small

λ, long-ranged hydrodynamic effects continue to stall the trajectories of bath particles from reaching

the probe; collisions are hence less frequent even with moderate values of ∆. These collisions at the

minimum approach distance are what contribute to ηPi,0, and so we see that as λ decreases from 8
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Figure 2.2: Intrinsic hydrodynamic microviscosity contribution ηHi,0 in the limit Pe → 0 as a function
of the excluded-annulus parameter ∆ for multiple bath-to-probe particle size ratios λ ≡ b/a. Colors
brighten with decreasing probe particle size.

to 1/8, larger and larger excluded annulus parameters are necessary to reach the limiting value of

the interparticle contribution.

The leading-order perturbations to the suspension microstructure f1 (s) and the deflection field

d1 (s) for a given size ratio and excluded annulus parameter are a scalar multiple of one another:

d1 (s) = −λf1 (s) / (1 + λ). The values of the O (1) effective diffusivity contributions are isotropic

and are thus directly related to their respective linear-response intrinsic microviscosity contributions

as follows:

DH
i,0 = −ηHi,0I, (2.60)

DP
i,0 = −ηPi,0I, (2.61)

DB
i,0 = −ηBi,0I. (2.62)

Without directed motion of the probe, i.e. when the Péclet number is identically zero, there is noth-

ing driving the probe to preferentially diffuse in a specific direction, and it diffuses with an effective

long-time self diffusivity, which can be interpreted as the leading order intrinsic microviscosity. The

corrections to these O (1) intrinsic quantities depend on higher-order terms in the perturbation ex-
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Figure 2.3: Intrinsic Brownian microviscosity contribution ηBi,0 in the limit Pe → 0 as a function of
the excluded-annulus parameter ∆ for multiple bath-to-probe particle size ratios λ ≡ b/a. Colors
brighten with decreasing probe particle size. A discussion of the limiting value of ηBi,0 → 1/2 for
small probes, denoted by the dashed line, can be found in section 2.3.2.

pansion, for whose consideration we should address the singular nature of the perturbation expansion

in powers of Péclet number.

2.3.1 Outer Problem

As discussed by Khair and Brady [29], the higher-order perturbations to the equilibrium microstruc-

ture will not all decay to zero as s → ∞ to satisfy the far-field boundary condition of no long-ranged

suspension order. The key feature to this perturbation expansion is that the advective motion of a

given term in the expansion drives the next smallest term, in terms of powers of Pe, from equilibrium.

This assumes that the advective term is always O (Pe) small compared to the diffusive term. At ra-

dial separations of O
�
Pe−1�, this is no longer the case. At these distances, advection of the probe is

comparable in magnitude to diffusion. We define an outer radial coordinate ρ ≡ Pe s ∼ O (1) which

will be used to determine the outer solution F (ρ). To leading order, for the structural deformation

we find

u · ∇ρF (ρ) +∇2
ρF = 0. (2.63)
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Figure 2.4: Intrinsic interparticle microviscosity contribution ηPi,0 normalized by the no-
hydrodynamics value of the intrinsic microviscosity

�
1 + λ−1

�2
/2. Values are expressed in the limit

Pe → 0 as a function of the excluded-annulus parameter ∆ for the bath-to-probe particle size ratios
λ ≡ b/a of 8, 4, 2, 1, 1/2, 1/4, and 1/8. Colors brighten with decreasing probe particle size.

Note that the hydrodynamic functions L, M, G, and H are all absent from the leading-order gov-

erning equation for the outer problem, as each of these hydrodynamic functions may be written in

a far-field expansion as 1 +O
�
Pe ρ−1

�
. Likewise, the divergence of the relative mobility W decays

like O
�
Pe5ρ−5

�
in the outer region and is thus neglected from the leading order governing equation.

The solution F (ρ) to this outer problem must match the functional form of the perturbation f

given in Equation 2.55 as the outer coordinate ρ approaches zero. The far-field behavior of the

leading-order structural deformation Pef1 (s), which is a dipole in character, is O
�
Pe s−2

�
which

scales as O
�
Pe3ρ−2

�
in terms of the outer coordinate. Thus, the outer solution F is predicted to be

O
�
Pe3

�
to leading order

F (ρ; Pe → 0) = Pe3F1 (ρ) +O
�
Pe4

�
.

The advection and diffusion terms are identical for the governing equations for the suspension mi-

crostructure and the deflection field. Thus, the perturbation to the deflection field is also singular,

and the transition to the outer solution D (ρ) occurs at the same length scale ρ = Pe s as for the

outer solution for the steady microstructure. Similarly, the far-field behavior of the leading-order
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perturbation to the deflection field d1 (s), which is also a dipole in character, is O
�
s−2

�
which be-

haves as O
�
Pe2ρ−2

�
in terms of the outer coordinate. The outer solution D is thus predicted to be

O
�
Pe2

�
to leading order

D (ρ; Pe → 0) = Pe2D1 (ρ) +O
�
Pe3

�
.

The governing equation for the leading-order outer solution for the deflection field requires the

gradient of the leading-order outer solution for the steady microstructure

u · ∇ρD1 +∇2
ρD1 =

2λ

1 + λ
∇ρF1 (ρ) .

The detailed outer solutions are not necessary for determining the leading-order contributions in Pe

to the intrinsic microviscosity or the effective diffusivity. Recall that the integrand of the hydrody-

namic contribution to the intrinsic microviscosity is ∼ f (s)
�
M̂11 − I

�
: uu. For large separations,

the departure of the dimensionless self-mobility M̂11 from isotropy is O
�
s−4

�
or O

�
Pe4ρ−4

�
in

terms of the outer coordinate. Similarly, recall that the integrand of the Brownian contribution to

the intrinsic microviscosity is ∼ Pe−1 f ∇s ·M̂r. For large separations, the divergence of the relative

mobility ∇s ·M̂r is O
�
s−5

�
or O

�
Pe5ρ−5

�
in terms of the outer coordinate. Thus, the leading order

hydrodynamic and Brownian contributions to the intrinsic microviscosity from the outer solution

are O
�
Pe4

�
small.

In the next section, specific microstructural considerations will be addressed for very small and

large probes.

2.3.2 Small Probe Limit λ � 1

As was seen in Figure 2.3, the Brownian contribution to the intrinsic microviscosity becomes larger

with decreasing probe size, and is shown to approach an asymptotic limit of ηBi,0 (λ → ∞,∆ = 0) of

1/2. In this section, this asymptotic result is verified. This analysis incorporates full hydrodynamic

interactions, so the excluded volume radii of the probe and bath particles are coincident with the

hydrodynamic radii. When the probe particle is much smaller compared to the other bath particles

in the dispersion, it is the inverse of the particle size ratio λ−1 = a/b that is much less than unity.

Lubrication interactions between the probe and bath particle become important in this regime when

the gap spacing r − (a+ b) is less than the smaller of the two particle radii, in this case the probe

radius a. In terms of the dimensionless gap spacing ξ = s − 2, this lubrication criterion is simply

ξ � λ−1. Outside the lubrication region, the relative diffusivity D∗
r and relative mobility M∗

r both

simplify to the isotropic identity tensor I plus corrections of order O
�
λ−1

�
, while the divergence

of the relative mobility scales as λ−1 to leading order. These limiting forms simplify the governing
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PDE for the microstructure outside of the lubrication region as follows:

Pe u · ∇sg0 +∇2
sg0 +O

�
λ−1

�
= 0. (2.64)

Note that the leading order PDE outside of the lubrication region is identical to the governing equa-

tion in the absence of hydrodynamic interactions, i.e. for an infinite excluded-annulus parameter ∆.

Inside the lubrication region, when ξ � λ−1 � 1, we use the results presented in section 2 of Batch-

elor’s work on sedimentation in polydisperse suspensions [5] to show that the relative diffusivity and

relative mobility take on the following forms:

D̂r

�
λ−1 � 1, ξ � λ−1

�
∼ (1 + λ)2

2λ
ξ nn+

�
h0 +

h1

ln ξ−1

�
(I− nn) , (2.65)

M̂r

�
λ−1 � 1, ξ � λ−1

�
∼ (1 + λ)3

2λ2
ξ nn+

�
m0 +

m1

ln ξ−1

�
(I− nn) . (2.66)

In equations 2.65 and 2.66, hα and mα are constants that are no greater than O
�
λ0

�
. With these

forms in mind, the leading order governing PDE for the microstructure inside the lubrication region

is simply a radial flux balance

λ

2
n · [Pe ug0 +∇sg0] +O

�
λ0

�
= 0

�
ξ � λ−1

�
. (2.67)

Note that microstructural gradients with respect to s (and not with respect to ξ) are O (1) in the

linear response regime. This form of the governing equation is identical to the boundary condition

at the surface. In fact, the same perturbation expansion for the microstructure in the absence of

hydrodynamic interactions satisfies the governing equation in the lubrication region to leading order

in λ

g0
�
Pe � 1; λ−1 � 1

�
= 1 + Pe u · n

��
2

s

�2

+O
�
λ−1

�
�

+Pe2uu : nn

��
2

s

�3

− 2

s
+O

�
λ−1

�
�

−Pe2uu : I

�
1

3

�
2

s

�3

− 2

s
+O

�
λ−1

�
�
+O

�
Pe3

�
. (2.68)

The Brownian piece of the intrinsic microviscosity is represented by the integral in equation 2.39.

This integrand is O
�
λ−1

�
small outside of the lubrication region, where the divergence of the rel-

ative mobility scales as λ−1. Thus, we can use the divergence theorem to re-write the Brownian
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contribution to the intrinsic microviscosity as

ηBi =
3

4π

�
1 + λ−1

2

�2
1

2Pe

�
−
˛
s=2

g0 (s) n ·M∗
r · u dΩ+

˛
s=2+�

g0 (s) n ·M∗
r · u dΩ

�
, (2.69)

where a radial center-to-center separation of 2 + � lies just outside of the lubrication region, and so

� � λ−1. The surface integral at s = 2 is zero owing to the zero relative mobility of particles in

hydrodynamic contact with one another. Outside the lubrication layer, the relative mobility tensor

is simply the identity tensor. We thus see that the Brownian contribution to the intrinsic microvis-

cosity for small probe particles takes on the form of a surface integral much like the interparticle

contribution to the intrinsic microviscosity, displaced just outside the lubrication region. The value

of the Brownian contribution to the microviscosity in this limit is

ηBi
�
Pe � 1, λ−1 � 1

�
=

1

2
+O

�
λ−1, Pe2

�
. (2.70)

Note that this value is identical the interparticle contribution to the intrinsic microviscosity for

small probes with an excluded annulus parameter ∆ � λ−1. Thus, we predict that the sum of

the interparticle and Brownian contributions to the intrinsic microviscosity for infinitesimally small

probe particles will uniformly approach 1/2. When the excluded annulus parameter ∆ is greater

than O
�
λ−1

�
, the contribution is strictly a result of the excluded annulus interparticle potential.

Lastly, we can consider the hydrodynamic contribution to the intrinsic microviscosity ηHi,0 for

infinitesimally small probes. Recall that the O (1) hydrodynamic piece is given by the equilibrium

microstructure and so for small probes is equal to:

ηHi,0 =
3

8

ˆ 2+�

2
s2 ds+O

�
λ−1

�
,

where � (λ) ∼ O
�
λ−1

�
so that the integral captures only the lubrication region. This integral is

O
�
λ−1

�
and so we expect the hydrodynamic contribution to the intrinsic microviscosity to vanish

for small probes in the linear-response regime.

2.3.3 Large Probe Limit λ � 1

When we consider small bath particles and small excluded annulus parameters, care must be taken

in the order of these limits approaching zero. As long as the bath particles are smaller in size than

the excluded annulus thickness, i.e. a � ∆a > b, then nearly-touching configurations of the probe

and bath particle, in which lubrication interactions are important, are prohibited by the excluded-

annulus potential. Thus, the two-body hydrodynamic functions take on simple forms. The relative

diffusivity tensor D̂r to leading order in λ is isotropic and unchanged from the value neglecting

hydrodynamic interactions; in other words, G and H are equal to unity. The functions L and M
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appearing in the relative mobility tensor M̂r take on the following forms:

L (s, λ � 1) = 1− 3

(1 + ∆)
s−1 +

4

(1 + ∆)3
s−3 +O (λ) , (2.71)

M (s, λ � 1) = 1− 3

2 (1 + ∆)
s−1 − 2

(1 + ∆)3
s−3 +O (λ) . (2.72)

Equations 2.71 and 2.72 are simply expressions for the fluid velocity outside of a translating sphere,

indicating that bath particles simply are carried along with the fluid. The contact value of the

mobility function L (s = 2) is important because it describes the strength of the advective flux

evaluated at the minimum radial separation of the probe and bath particle, i.e. how easy is it for

bath particles to be compressed toward the surface of the probe particle. We define this parameter

as L (∆)

L (∆) =
3

2
∆2

�
1 + 2∆/3

(1 + ∆)3

�
. (2.73)

Note that L (∆) scales with the square of the excluded annulus parameter. The equivalent contact

value of the mobility function governing sliding motion past the probe M (∆) is linear in the excluded

annulus parameter to leading order. This means small bath particles will more readily move around

the oncoming probe particle than advect toward its surface. Thus, we expect there to be great

difficulty in accumulating bath particle probability density on the anterior face of the large probe.

This fact manifests itself in the the pair-distribution function g0 for large probes,

g0 (Pe � 1; λ � 1) = 1 + Pe u · n f1 (s; λ � 1)

+Pe2 uu : nn f2 (s; λ � 1)

+Pe2 uu : I f3 (s; λ � 1) +O
�
Pe3

�
, (2.74)

where the scaling of the microstructural disturbance as L (∆) is evident in each of the perturbations

f1, f2, and f3 to the equilibrium microstructure:

f1 (s; λ � 1) = 4L (∆) s−2 +O (λ) , (2.75)

f2 (s; λ � 1) = L (∆)

�
−2

s
+

15

2γs2
+

�
8− 18

γ

�
s−3 +

4

γ3s4
+O (λ)

�
, (2.76)

f3 (s; λ � 1) = L (∆)

�
2

s
− 9

2γs2
−

�
8

3
− 6

γ

�
s−3 +O (λ)

�
. (2.77)

Here, γ = 1+∆. When the probe is much larger than the bath particles, the Brownian contribution

to the intrinsic microviscosity vanishes even for very small excluded annulus parameters. This is

because the divergence of the relative mobility ∇ · M̂r = Wn, which appears in the integrand

for the Brownian contribution, is O
�
λ3

�
small. The hydrodynamic contribution to the intrinsic
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microviscosity results from a reduction in the probe’s self mobility due to the equilibrium distribution

of bath particles about the probe. As long as the bath particles are smaller in size than the excluded

annulus thickness, i.e. ∆a > b, then the hydrodynamic contribution to the intrinsic microviscosity

has the following functional form:

ηHi,0 (∆, λ � 1) =
5

2

�
3

2γ4
− 1

γ6
+

1

2γ8

�
+O (λ) . (2.78)

In the limit where the minimum approach distance between the probe and bath particle is coincident

with the hydrodynamic radius, ∆ → 0, ηHi,0 approaches the value 5/2 consistent with the O (φ)

Einstein viscosity correction. As the excluded annulus parameter is increased, the hydrodynamic

contribution ηHi,0 decreases monotonically with ∆ eventually reaching zero once the interactions

between the probe and bath particle are strictly via collisions at the excluded annulus.

2.4 Weakly Nonlinear Trends

The intrinsic microviscosity and effective diffusivity at low Péclet number are O
�
Pe0

�
quantities,

as was seen in Section 2.3. The next largest contribution to each of these quantities is O
�
Pe2

�

and results from the first nonlinear perturbation to the suspension microstructure, namely f2 (s)

and f3 (s). The perturbations f2 (s) and f3 (s) are monopolar and quadrupolar in nature, and

hence they only contribute to the hydrodynamic intrinsic microviscosity and effective diffusivity.

Dipolar disturbances to the microstructure affect the interparticle and Brownian contributions to

the microviscosity and effective diffusivity, but the next dipolar perturbation comes in at O
�
Pe3

�
for

the suspension microstructure and at O
�
Pe2

�
for the deflection field. The O

�
Pe2

�
hydrodynamic

contribution to the intrinsic microviscosity is as follows:

ηHi (Pe � 1)− ηHi,0
Pe2

= −
�
1 + λ−1

2

�3 ˆ ∞

2

s2

5
f2

�
3xA

11 + 2yA11 − 5
�
+s2f3

�
xA
11 + 2yA11 − 3

�
ds. (2.79)

The results of Equation 2.79 are plotted in Figure 2.5. This contribution is positive for all size

ratios and excluded annulus parameters, indicating that the hydrodynamic contribution always

has a force-thickening effect on the perceived viscosity of a translating probe. Interestingly, the

O
�
Pe2

�
contribution exhibits nonmonotonicity in both the excluded annulus parameter for certain

size ratios and in the particle size ratio λ for certain excluded annulus parameters. In the limit

where the excluded annulus coincides with the hydrodynamic radii of the probe and bath particle,

i.e. ∆ → 0, the O
�
Pe2

�
force-thickening due to hydrodynamic interactions attains a maximum value

between λ = 2 and λ = 8. Beyond size ratios of λ = 8, as the probe gets smaller, the hydrodynamic

contribution will continue to decrease. Again, the deviation of the probe particle’s self mobility from

isotropy M̂11 − I is O (1) only in a region of thickness O
�
λ−1

�
, and so the Pe2 force thickening for
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Figure 2.5: The O
�
Pe2

�
contribution to the hydrodynamic microviscosity ηHi in the limit Pe → 0

as a function of the excluded-annulus parameter ∆ for multiple bath-to-probe particle size ratios
λ ≡ b/a. Colors brighten with decreasing probe particle size.

small probes is O
�
λ−1

�
.

For small bath particles, recall that the perturbations to the equilibrium microstructure, and con-

sequently the contributions to the intrinsic microviscosity, are proportional to the small parameter

L (∆) ∼ ∆2, so it appears there is some value of ∆ at which the competing effects of a disturbance

from the equilibrium microstructure and the deviation of the self-mobility from isotropy can maxi-

mize the force-thickening due to hydrodynamic interactions. This is evidenced in the λ = 1/8 curve

in Figure 2.5. As was discussed in Section 2.3, the outer region of the suspension microstructure

results in leading order O
�
Pe4

�
contributions to the intrinsic microviscosity, so it makes sense that

these O
�
Pe2

�
contributions decay to zero with increasing ∆. Lastly, it is important to note that

although the hydrodynamic contribution to the intrinsic microviscosity results in force-thickening,

we will see when we examine the Brownian and interparticle contributions for finite Péclet numbers

that the total intrinsic microviscosity actually force-thins with increasing Péclet number at low Pe,

indicating that initially the Brownian contribution to the intrinsic microviscosity decays faster than

the hydrodynamic contribution grows. In order to see this from the perturbation expansion, we

would need to continue the expansion of the microstructure to the next power of Péclet number,
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namely to O
�
Pe3

�
.

2.5 Numerical Methods for Finite Péclet Number

The perturbation methods in Section 2.3 rely on the Péclet number being small enough that only

the leading order terms in the perturbation expansions are significant, namely the dipole in the

suspension microstructure and the deflection field. As the Péclet number increases, the simple dipolar

field develops into a more complex structure; on the upstream face of the probe the accumulation

region compresses toward the surface and the probability density grows with the Péclet number. On

the downstream face, the depletion region lengthens into a trailing wake because the probe can make

more and more forward progress before bath particles can anneal the disturbance. In order to solve

for these features in the spatial distribution of the suspension microstructure g0 and the deflection

field d once the Péclet number is ∼ O (1) or larger, different numerical techniques are required.

In this section, two numerical techniques are discussed. The first method, a Legendre polynomial

expansion, is a natural extension of the small-Péclet perturbation expansion, and it works well

for low-to-moderate Péclet numbers. The second method, a second-order finite difference scheme,

concentrates grid points in the compression boundary layer to capture the large microstructural

gradients present near the surface at high Péclet number. In this work, the Legendre polynomial

solution method is used for Péclet from 10−3 up to 101, while the finite difference method solves the

Smoluchowski equation up through Péclet numbers of 104. The microstructure is axially symmetric

about the direction of probe forcing. Hence, both of these schemes solve for the microstructure in

terms of two coordinates: the center-to-center separation of the probe and bath particle s, and the

polar angle θ as measured from the direction of the constant applied external force. These numerical

methods worked well for same-sized probe and bath particles in the work of Khair and Brady [29]

and are extended here to arbitrary size ratios.

2.5.1 Orthogonal Polynomial Expansion

In order to motivate the solution method via orthogonal polynomials, we return our attention to the

perturbation expansions from Section 2.3. At low Péclet number, the pair-distribution function can

be solved for using a perturbation expansion in powers of Pe. We know that the Péclet number is

linear in the applied external force, so each occurrence of the Péclet number is accompanied by one

applied external force vector u:

f (s) = Pe u · n f1 (r) + Pe2uu : (nn f2 (r) + I f3 (r)) +O
�
Pe3

�
. (2.80)
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Note that for the Legendre polynomial method, the coordinate system is as follows: θ = 0 corre-

sponds to the compressional region in front of the probe and θ = π corresponds to the extensional

region behind the probe, and so u · n = cos θ. The largest term in the perturbation expansion,

proportional to Pe, has angular dependence cos θ. In terms of Legendre polynomials, this is sim-

ply cos θ = P1 (cos θ) . Similarly, we may write the double-dot product uu : nn = cos2 θ using the

Legendre Polynomials P2 and P0

cos2 θ =
2

3
P2 (cos θ) +

1

3
P0 (cos θ) . (2.81)

If we approximate the function f (s, θ) as an expansion of the first three Legendre polynomials:

f (s, θ) ≈ q0 (r)P0 (cos θ) + q1 (r)P1 (cos θ) + q2 (r)P2 (cos θ) , (2.82)

we can replicate the functional form of the perturbation expansion of f , Equation 2.80, up to

order Pe3. Thus, when the Péclet number is small, namely < O (1), one only needs the first few

terms in a Legendre polynomial expansion to faithfully capture the salient features of the pair-

distribution function. For moderate Péclet numbers (∼ O (1)−O (10)), a longer series of terms can

still approximate the microstructure successfully.

The detailed method is as follows: we approximate the pair-distribution function as a finite series

of as-yet unknown radial functions qm (s). Each radial function qm (s) multiplies the corresponding

Legendre polynomial Pm. It is useful to transform the angular variable θ to the natural argument

for Legendre Polynomials, µ ≡ cos θ. The series truncates at some index mmax

f (s, µ) =
mmax�

m=0

qm (s)Pm (µ) . (2.83)

This series is substituted into the governing equation for the microstructure expressed in terms of s

and µ, and a system of coupled radial ODEs is recovered;

Pe
�
Wαm (s) + Lβm (s) +

M

s
γm (s)

�
+ Dm [qm (s)] = 0, (2.84)

where the diffusion operator Dm is defined as

Dm [qm (s)] = Gq��m (s) +

�
2

s
G+

dG

ds

�
q�m (s)−m (m+ 1)

H

s2
qm (s) , (2.85)

and the radial advection operators αm, βm, and γm are defined as follows:

αm (s) = δ1m +
m

2m− 1
· qm−1 (s) +

m+ 1

2m+ 3
· qm+1 (s) , (2.86)



33

βm (s) =
m

2m− 1
· q�m−1 (s) +

m+ 1

2m+ 3
· q�m+1 (s) , (2.87)

γm (s) =
m · (1−m)

2m− 1
· qm−1 (s) +

(m+ 1) · (m+ 2)

2m+ 3
· qm+1 (s) . (2.88)

The equations for q0 (s) and qmmax (s) are special cases, as they are at the boundaries of our finite

series. The no flux and no long-ranged order boundary conditions in terms of the functions qm are

Pe L

�
δ1m +

m

2m− 1
qm−1 (s) +

m+ 1

2m+ 3
qm+1 (s)

�
+G q�m (s) = 0 at s = 2, (2.89)

and

qm → 0 as s → ∞. (2.90)

The computational solution method, described previously in Khair and Brady [29], is as follows:

the initial guess for the microstructure f (s; Pei) at the smallest value of Pe is guided by the linear-

response analysis of Section 2.3. With this initial guess for f , the system of ODEs for qm (s; Pei) is

solved using the boundary-value problem solver bvp4c in MATLAB. The truncation value of the series

mmax is initially set to 2 and is incremented until the solutions for each microviscosity contribution

ηHi , ηBi and ηPi change by less than 0.1% between mmax and mmax+1. The solutions for qm (s; Pei)

are then used as the initial guess for the system qm (s, Pei+1) at the next largest Péclet number.

The efficiency of the computational method hinges on the quality of the initial guess, making this

bootstrapping technique critical when a large number mmax of terms are required for convergence

of the microviscosity contributions.

Lastly, it should be noted that bvp4c solves boundary value problems on a finite domain. Thus,

the far-field boundary condition, Equation 2.90, is set at some finite but large value of the radial

separation smax. From the linear response analysis section, it was shown that, even at small Péclet

numbers, the disturbance of the probe influences a region that is O
�
Pe−1� far from the probe itself,

indicating that smax should be at least O
�
Pe−1� for small Péclet numbers to capture the outer

region of the microstructural disturbance. For large Péclet numbers, the depletion of probability

density behind the probe forms a trailing wake of characteristic length O (Pe), hence it is important

for smax to be at least this large.

2.5.2 Finite Difference Methods

For Péclet number ∼ O (10) and larger, so many terms are required in the Legendre polynomial

expansion, that it becomes computationally intractable to simultaneously solve all coupled radial

ODEs. Also, the magnitude of the pair distribution function changes most rapidly in a small

boundary layer of thickness δ ∼ O
�
Pe−1� on the anterior face of the probe. In this regime, it is useful

to solve the Smoluchowski equation numerically via finite difference methods that concentrate grid
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points in this region of most rapid change. We use the method detailed in Appendix B of the work

of Khair and Brady [29]. The method is summarized as follows: beginning with the Smoluchowski

equation in terms of the coordinates s and θ, we stretch the radial coordinate by the boundary

layer thickness using the transform y ≡ (s− 2) /δ = Pe (s− 2). With this transformation, the radial

domain is now y ∈ [0,∞), which is mapped to the finite domain t ∈ [0, 1] using the coordinate

transform

t = exp

�
−
�
ω +

1− ω

1 + y

�
y

�
. (2.91)

For a fixed discretization in the coordinate t, the parameter ω can be adjusted to set the maximum

value of y in the interior domain of the grid, which is important to capture the trailing wake, a

microstructural feature ∼ O (Pe) in length behind the probe. In terms of the coordinates t and θ,

the Smoluchowski equation now reads

C1
∂f

∂t
+ C2

∂2f

∂t2
+ C3

∂f

∂θ
+ C4

∂2f

∂θ2
+ C5f = C6, (2.92)

where the coefficients Cα are as follows:

C1 = L cos θ
dt

dy
+G

d2t

dy2
+ Pe−1

�
2G

s
+

dG
ds

�
dt
dy

,

C2 = G

�
dt
dy

�2

,

C3 = −Pe−1M sin θ

s
+ Pe−2H cot θ

s2
,

C4 = Pe−2H

s2
,

C5 = Pe−1W cos θ,

C6 = −Pe−1W cos θ.

The Smoluchowski equation is then discretized using a non-uniform grid spacing in t and in θ to

concentrate grid points in regions where the most rapid change of the pair-distribution function

is anticipated, namely near the boundary layer. Symmetry boundary conditions are employed at

θ = 0 and π while the radial boundary conditions of no long-ranged order and no flux are used

at t = 0 and 1, respectively. By writing out the derivatives in Equation 2.92, which is discretized

using second-order central differences, the resulting equation is of the form Af = B, where A is a

pentadiagonal sparse matrix. This system of equations is solved in MATLAB using a LAPACK iterative

banded solver. This solution method proves most useful for Pe ≥ 10.
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2.6 Large Péclet Number

For very large Péclet number, the sharp microstructural gradients in the boundary layer on the

anterior face of the probe and the long trailing wake behind the probe pose a challenge for discrete

numerical methods. An analytical solution, for infinitely large Péclet numbers, and a boundary

layer solution using matched asymptotic expansions are alternatives to the numerical approaches

from Section 2.5. First, we will discuss the suspension microstructure when there is no Brownian

motion at all, in which case the interesting result of a spherically symmetric microstructure is noted.

2.6.1 Infinite Péclet Number and Non-Brownian Systems

For non-Brownian suspensions, the governing equation for the suspension microstructure is strictly

advective:

µ

�
Wg0 + L

∂g0
∂s

�
− M

s

�
µ2 − 1

� ∂g0
∂µ

= 0. (2.93)

In this limit, the suspended particles are unable to diffuse to dissipate gradients in the suspension

microstructure. It is interesting to note that the order of the governing partial differential equation

reduces by one for non-Brownian systems. Only one boundary condition, that of no long-ranged

order in the dispersion, may be satisfied. The condition of no relative probability flux through the

excluded-annulus separation cannot be met for the purely advective problem and hence a boundary

layer is needed here in order to satisfy the condition of no flux. For now, we proceed with the

solution outside of the boundary layer. Batchelor [5] had noted that the microstructure in this limit

is spherically symmetric and depends only on the radial separation of probe and bath particles. The

solution to Equation 2.93 is:

g0 (s) = exp

�ˆ ∞

s

W (z)

L (z)
dz

�
=

1

L (s)
exp

�ˆ ∞

s

2

z

�
1− M (z)

L (z)

�
dz

�
. (2.94)

At large separations , i.e. s � 2, Almog and Brenner [1] recognized that the twin multipole

expansions of Jeffrey and Onishi are sufficient to determine the leading-order behavior of the mi-

crostructure;

g0 (s � 2) = 1 +
30λ3

(1 + ∆)4 (1 + λ)4
s−4 +O

�
s−5

�
. (2.95)

The far-field deviation from the equilibrium microstructure, i.e. the first term beyond unity in

Equation 2.95, decays like s−4 and is proportional to λ3 for very large probes and proportional to

λ−1 for very small probes. For closer separations, e.g. 0.5 < s−2 � O (1), additional terms from the

twin multipole expansions are required to obtain an accurate estimate for the integral in Equation

2.94. The analytic method of Almog and Brenner to evaluate g0 at these moderate separations is as
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follows: the quantity g0L is expanded in powers of (2/s)

g0L ≡
∞�

n=0

pn (λ)

�
2

γs

�n

, (2.96)

then, a recursive relation for each pn can be obtained from Equation 2.94 using the coefficients of

the twin multipole expansions of L =
�

Ln (λ) (2/s)
n and M =

�
Mn (λ) (2/s)

n

pn (λ) = − 2

n

n�

k=1

pn−k (λ) gk (λ) , (2.97)

where

gn (λ) = Mn (λ)−
n�

k=1

gn−k (λ)Lk (λ) . (2.98)

The initial terms must be defined for the recursion relations: g0 is equal to unity because of the

limiting values of the hydrodynamic functions L and M at infinite separations, and p0 = 1 in order

for the microstructure to approach unity at infinite probe and bath particle separations to satisfy

the condition of no long-ranged order.

For separations that are closer still, the lubrication forms of the mobility functions are required

to assess the functional form of the microstructure. Recall that the functional forms for L and M

for nearly-touching spheres, in which the radial coordinate ξ ≡ s− 2 � 1, are as follows:

L (ξ � 1, λ) = L1 (λ) ξ + L2 (λ) ξ
2 ln ξ + L3 (λ) ξ

2 +O
�
ξ3 ln ξ

�
, (2.99)

M (ξ � 1, λ) = M0 (λ) +
M1 (λ)

ln ξ−1 − z1 (λ)
+

M2 (λ)

ln ξ−1 − z2 (λ)
+O (ξ ln ξ) . (2.100)

Substituting these forms of the mobility functions into equation 2.94, the limiting behavior of the

suspension microstructure near hydrodynamic contact can be obtained:

g0 (ξ � 1, λ) ∼ A0 (λ) ξ
(M0−L1)/L1

�
ln ξ−1 − z1

�−M1/L1
�
ln ξ−1 − z2

�−M2/L1 . (2.101)

The value of the prefactor A0 (λ) can be obtained for a specific size ratio λ by numerically integrating

Equation 2.94 from infinity to a radial separation very close to hydrodynamic contact; Almog and

Brenner [1] recommend this approach to obtain the pair-distribution function for ξ < 10−6. For

intermediate radial separations, 10−6 < ξ < 0.5, in which the hydrodynamic functions L and M

transition from being best approximated by the lubrication forms given in Equations 2.99 and 2.100

to the series expansions in powers of (2/s), it is appropriate to instead expand the following function

in powers of (2/s),

g0Lξ̃
−M0/L1

�
ln ξ̃−1 − z1

�−M1/L1
�
ln ξ̃−1 − z2

�−M2/L1

, (2.102)
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Figure 2.6: The value of the prefactor A0 (λ) appearing in the expression for the near-field (ξ � 1)
asymptotic form of the steady microstructure function g0. The asymptote A0 (λ) ∼ 2/λ applies to
large bath particles.

where the choice of ξ̃ = ξ/ (1 + c ξ) remains analytic even as s → ∞.

Alternatively, one may avoid the power series approximations of Almog and Brenner by numer-

ically evaluating Equation 2.94 at any radial separation using adaptive Gauss-Kronrod quadrature,

the function quadgk in MATLAB, which can handle both the semi-infinite domain of integration and

the moderate singularity as s → 2. This entirely numeric approach can yield values of the prefactor

A0 (λ) from Equation 2.101, as shown in Figure 2.6. To obtain the values of A0 (λ), Equation 2.94

was integrated using quadgk from ξ = 10−6 to infinity. To approximate the hydrodynamic functions

L and M in this expression, twin-multipole expansions of Jeffrey and Onishi are used through powers

of 2/s up to 300 for separations s ≥ 2.01, while the lubrication forms of Kim and Karrila are used

for values of s < 2.01. The resulting value of g0 is then substituted into Equation 2.101 along with

the value of ξ and the coefficients from the near-field approximations for L and M to obtain A0 (λ).

The termination at ξ = 10−6 gives a sufficiently accurate approximation for A0 for all values of λ

tested, and further decreasing the lower bound for the integration as small as ξ=10−9 changed the

approximations for A0 (λ) by no more than 0.001%.

The values of A0 (λ) exhibit nonmonotonicity in λ over the range of finite size ratios from λ = 1/8
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to λ = 8. Beyond this finite range, for large λ, the coefficient A0 (λ) approaches 2/λ owing strictly

to the near-field form of the radial relative mobility function L. Note that for large λ, the first

coefficient L1 in the lubrication expansion for L is given by (λ+ 1)3 /2λ2, which approaches λ/2 for

small probes. Knowing this coefficient is important for calculating the hydrodynamic contribution

to the intrinsic microviscosity for small probes for large Péclet numbers. For large probes, recall that

we are unable to disturb the equilibrium microstructure and hence g0 = 1 at all radial separations,

indicating that A0 → 1 as λ → 0.

2.6.2 Finite Péclet Number - Boundary Layer Solution

In real colloidal systems, arresting all thermal motion to arrive at an infinite Péclet number scenario

is impossible. At best, the Péclet number will be large but still finite. Because the Péclet number

is finite, there should be some small nondimensional distance δ ∼ Pe−1 near the surface of the

probe particle over which gradients in the spherical microstructure can be dissipated by thermal

motion. We rescale the dimensionless surface separation ξ ≡ s−2 by Pe−1 to arrive at the boundary

layer coordinate y ≡ Pe−1 (s− 2). Outside of the boundary layer, the purely advective solution for

the microstructure from Section 2.6.1 still holds. Near the surface of the probe, radial diffusion of

probability density, away from the probe, balances the advection of probability density toward the

surface. This boundary-layer solution is discussed in detail in Appendix B for finite size ratios. The

final form that we arrive at for the microstructure inside the boundary layer is

g0 (y, µ) = A0 (λ) Γ

�
M0

L1

� �
Pe

Y (µ)

�W0/L1

M

�
W0

L1
, 1, − y

Y (µ)

�
, (2.103)

where Γ is the gamma function; L1, G1, M0 and W0 are the leading-order coefficients in the lubri-

cation expansions of the respective hydrodynamic mobility functions, Y (µ) is the boundary layer

thickness as a function of angular position µ = cos θ as measured from the direction of mean motion,

and M here is the Kummer function, a confluent hypergeometric function which decreases mono-

tonically in y from unity at y = 0. This boundary-layer expression for g0 matches the asymptotic

behavior of the outer solution (equation 2.101) as y → ∞. The boundary-layer thickness is a mono-

tonically increasing function of µ, increasing from Y = G1/L1 at µ = 1. The expression for Y as a

function of µ is

Y (µ) =
2G1

M0

�
1− µ2

�−L1/M0

ˆ 1

µ

�
1− ξ2

�W0/M0 dξ. (2.104)

Note that the maximum value of the pair-distribution function g0,max occurs at y = 0 and µ = 1, in

the compression boundary layer along the line of applied force. So we can predict the microstructural
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scaling behavior with large Pe:

g0,max = A0 (λ) Γ

�
M0

L1

��
Pe

G1/L1

�W0/L1

. (2.105)

The values of g0,max, as found by the finite difference solutions of Section 2.5.2, are plotted in

Figure 2.7 as a function of Pe. The slight variations in the slopes of the curves for different λ

are a result of the different scaling exponents with different size ratio from Equation 2.105. The

maximum value of g0 appears to grow with decreasing probe particle size, indicating that more and

more probability density accumulates on the front face of a small probe. An explanation for this

feature is that advection lateral to the surface of a very large probe particle happens much more

readily than advection toward the probe face. Thus, when a small bath particle diffuses out of this

boundary layer region back into the advection-dominated outer region, that bath particle will more

easily advect past the probe than reenter the boundary layer region where its relative mobility is

most hindered. However, once a large bath particle diffuses outside of this boundary layer region of

hindered mobility, if it is on the anterior face of the probe, it will readily advect right back into the

boundary layer as the radial relative mobility for large bath particles is unhindered.

In order to collapse the small-probe curves in Figure 2.7, the limiting behavior of the prefactor

A0Γ (M0/L1) as a function of λ should be considered. In the limit of small probe particles, λ → ∞,

the ease of relative motion of the probe past a large bath particle, i.e. M0, scales like λ−1, but

the coefficient L1 multiplying the ξ term in the lubrication expansion for the relative mobility along

the line of centers is proportional to λ. The ratio of the two functions thus is O
�
λ−2

�
small. The

gamma function of a small argument goes like the inverse of the argument, so Γ (M0/L1) ∼ λ2. As

was shown in Figure 2.6, the coefficient A0 is equal to 2/λ for small probes, and so the prefactor in

Equation 2.105 is proportional to λ. By normalizing the g0,max versus Pe curves by λ, they collapse

onto a single curve as seen in Figure 2.8, with slight variations in the slope owing to differences in

the divergence of the relative mobility near contact W0.

The applicability of the form of the boundary layer solution, Equation 2.103, for small probes is

brought into question when visualizing the boundary layer thickness function Y (µ) for successively

smaller probes as seen in Figure 2.9. Khair and Brady [29] recognized that the boundary layer

solution fails on the rear face of the probe when the boundary layer thickness function Y (µ) diverges.

A second boundary layer with respect to the angular coordinate µ defines the coalescence region of

probability density behind the probe. In this angular boundary layer of thickness 1/Pe about µ = −1,

relative diffusion laterally along the probe face balances advective motion. However, the divergence

of Y on the posterior face of the probe, for negative µ, appears to happen more and more rapidly

with decreasing probe size, increasing λ, until eventually, when the probe is infinitesimally small,

the boundary layer thickness diverges at µ = 0. In this limit of small probe particle, W0 ≈ L1 = λ/2
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Figure 2.7: The maximum value of the steady microstructure at contact g0 (s = 2) as a function of
Péclet number for various bath-to-probe particle size ratios. This maximum value occurs parallel
to the applied external force on the anterior face of the probe. These values were computed for an
excluded annulus parameter ∆ = 10−5.

and Kummer’s function M (1, 1,−y/Y (µ)) = exp (−y/Y ), which no longer matches with the outer

solution in Equation 2.101 for large y. A separate matched asymptotic solution for small probes is

presented in Appendix C, where the results are applicable for the boundary layer on only the anterior

face of the probe. In this appendix, we do find a leading-order exponentially-decaying boundary

layer,

g0 (y, µ; Pe � 1, λ � 1) = Peλ
�
4

3
µ exp (−µy)

�
+O (Pe) . (2.106)

Matching to the outer solution happens at O
�
Peλ−1

�
in the perturbation expansion. This boundary

layer solution leads to the hydrodynamic piece of the intrinsic microviscosity ηi being equal to λ,

which is exactly 1/2 the perceived viscosity predicted by Davis and Hill [16] at infinite Péclet numbers

for small sedimenting spheres. The reason for this 1/2 discrepancy is resolved when considering the

truly infinite Péclet versus large-but-finite Péclet problems. When the Péclet number is infinite, as

was explained earlier the microstructure about the probe particle becomes spherically symmetric and

the boundary layer does not diverge at µ = 0. However, for the large but finite Péclet number, once

all the bath particle probability density reaches the rear face of the probe, should a bath particle
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Figure 2.8: The maximum value of the steady microstructure at contact g0 normalized by the bath-
to-probe particle size ratio λ as a function of Péclet number. These values were computed for an
excluded annulus parameter ∆ = 10−5.

diffuse outside of the lubrication boundary layer, advection will never return it to the surface and it

advects away from the probe instantaneously along a trajectory parallel to u, the vector along the line

of constant applied external force. Thus, the rear face of the probe thus a depletion region and only

the compressional/pushing piece of the intrinsic microviscosity is present; the extensional/dragging

piece would contribute the other half of the intrinsic microviscosity as predicted by Davis and Hill.

This leads us to the following question: how large would the Péclet number need to be in order

to achieve a spherically symmetric microstructure about a small probe? Even for probes of the same

size as the bath particles, Khair and Brady showed that the force thickening of the hydrodynamic

contribution of the intrinsic microviscosity is very slow to reach the high-Péclet limiting value. From

the outer region, there is an O
�
Pe0

�
contribution to ηHi owing to the long-ranged hydrodynamic

interactions. Inside the boundary layer of thickness O
�
Pe−1�, we see from Equation 2.105 that

the magnitude of the microstructure scales as O
�
PeW0/L1

�
. The product of the boundary layer

thickness and the magnitude of the microstructure in side the boundary layer indicates that there

is an O
�
PeW0/L1−1

�
contribution to ηHi , where W0/L1 − 1 is equal to −M0/L1. Recall that for

small probe particles, M0 ∼ λ−1 and L1 ∼ λ, so the inner region contributes O
�
Pe−1/λ2

�
. Khair
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Figure 2.9: Boundary layer thickness Y (µ) normalized by its value at the leading edge of the probe
Y (µ = 1) = −αG1/L1 for several size ratios λ

and Brady [29] found the approach toward a limiting microviscosity to go like ηHi ∼ α− βPe−M0/L1

. Thus we can expect the second term to vanish for small probes when Pe � exp
�
λ2

�
, emphasizing

how strong the external force must be to achieve a spherically symmetric microstructure.

2.7 Results and Discussion

The suspension microstructure g0 is visualized in Figure 2.10. The Péclet number increases down the

figure from the linear response regime in the top row down to the highly nonlinear microstructures

in the bottom row. The relative radii of the bath particles are 1/8, 1, and 8 times that of the

probe in the first three columns, respectively. Each microstructure figure is normalized such that

the maximum value of the steady microstructure g0 corresponds to red, the equilibrium value g0 = 1

corresponds to green, and the minimum value corresponds to blue. The hydrodynamic size of the

probe particle is depicted with the blue circle, and the volume excluded to the bath particle centers

is denoted by the white annulus about the probe. In the fourth column, the excluded annulus

parameter is infinite, indicating that the bath and probe particles interact only by collisions at the

excluded-volume radius. Each microstructure plot has a side length of 5rmin = 5 (a+ b) (1 + ∆)
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Figure 2.10: The microstructure function g0 (r) visualized for various Péclet numbers and particle
size ratios. The side length of each visualized microstructure is 5rmin = 5 (a+ b) (1 + ∆). For the
three leftmost columns, the excluded annulus parameter is 10−5 to represent full hydrodynamics,
while in the rightmost column the excluded annulus parameter approaches infinity. The color values
for each microstructure are normalized according to the same color bar. The solid blue circle in the
center of each microstructure represents the hydrodynamic radius of the probe particle while the
white annulus represents the volume excluded to the bath particles. On the right, the dashed blue
line represents the fact that all probe-bath interactions are excluded-volume in nature.
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Some interesting features of the microstructures are the fore-aft symmetry in the low Péclet

microstructures across all size ratios. The two symmetric accumulation and depletion lobes are

characteristic of a diffusive dipole. With increasing Péclet number, the accumulation region in front

of the probe compresses toward the minimum approach distance while the depletion region behind

the probe coalesces and lengthens into a wake. Eventually, when the Péclet number is large, an

O
�
Pe−1� thick boundary layer on the leading edge of the probe houses nearly all the probability

density. The magnitude of the maximum value in the boundary layer grows with λ as was shown

in Figure 2.7. By normalizing each microstructure plot to the same colorbar as described above,

the boundary layers for smaller probes appear thinner at the same value of the Péclet number, even

though the thickness is O
�
Pe−1� regardless of the probe to bath particle size ratio.

The most notable qualitative change with increasing size ratio is the broadening of the trailing

wake with increasing bath particle size. This should make intuitive sense - the change in the relative

mobility is small from that when hydrodynamic interactions are neglected due to an applied external

force on a small probe, so once a bath particle diffuses out from the boundary layer on the surface of

the probe particle, it will advect away parallel to the applied external force. However, when a small

bath particle diffuses out of the accumulation boundary region into the purely advective region, its

relative mobility along the line of centers is still O (∆) small compared with its relative mobility

transverse to the line of centers; advective effects outside of the boundary layer contribute to the

pinching off of the trailing wake for small bath particles.

Comparisons of microstructures between different particle size ratios λ and different Péclet num-

bers Pe can be difficult. The Péclet number Pe ≡ F0b (1 + ∆) /2kT contains the excluded-annulus

bath particle size as its characteristic length scale. Thus, if one were to conduct active microrheology

experiments at a fixed temperature T where the size of the bath particles and the strength of the

applied external force acting on the probe were held constant while the size of the probe particle

is varied, plots of constant Pe can be compared. However, if the size of the probe particle and the

strength of the applied external force are held constant, and the bath particle sizes are varied, plots

of constant Pe/λ = F0a (1 + ∆) /2kT should guide the expectations. It is this second case that

corresponds with falling-ball rheometry; the gravitational potential energy and the size and relative

density of the falling ball dictate the ratio Pe/λ. Looking at Figure 2.10 along a downward-sloping

diagonal of constant Pe/λ, it can be seen that decreasing the bath particle size for a given probe will

always shift the behavior toward the linear-response regime, in which we recover Einstein’s viscosity

correction for infinitesimally small bath particles. At the same time, we observe that by increasing

the size of the bath particles for a fixed probe size, the trailing wake lengthens and broadens, in-

dicating that the microstructure will not converge on a spherically symmetric form for falling-ball

rheometry with a fixed probe size.

We now turn our attention to the microviscosity results as computed from these suspension
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Figure 2.11: The hydrodynamic contribution ηHi to the intrinsic microviscosity as a function of
Péclet number Pe for finite size ratios λ ranging from 1/8 to 8. For Péclet numbers up to 10, the
microstructures were computed using the Legendre polynomial method of Section 2.5.1, while for
Péclet numbers greater than 10 the finite-difference methods of Section 2.5.2 were employed. These
results are for a small excluded annulus parameter ∆ = 10−5.

microstructures. In Figure 2.11, the hydrodynamic contribution to the intrinsic microviscosity is

plotted as a function of Péclet number for an excluded annulus parameter ∆ = 10−5 meant to

approximate full hydrodynamic interactions. We see that force thickening with increasing Péclet

number is a universal phenomenon; the hydrodynamic contribution grows with increasing applied

external force for all finite size ratios. The extent of force-thickening increases with decreasing probe

particle size, and this leads to interesting nonmonotonicity in ηHi at large Pe as a function of λ, for

example the crossing of the ηHi curves of λ = 4 and λ = 8 when the Péclet number is O
�
103

�
. The

increasingly slow approach toward a limiting value of ηHi for larger and larger λ as mentioned in the

boundary layer discussion of Section 2.6.2 is also seen in these ηHi curves.

In Figure 2.12, the Brownian contribution to the intrinsic microviscosity ηBi is plotted as a

function of Pe at this same excluded annulus parameter of ∆ = 10−5. The Brownian contribution,

which is most significant for small probes at small Pe, exhibits force thinning from its maximum

value in the limit of purely diffusive probe motion. Recall in Section 2.3.2, it was found that the

maximum value of the Brownian contribution to the intrinsic microviscosity is 1/2 for λ → ∞
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Figure 2.12: The Brownian contribution ηBi to the intrinsic microviscosity as a function of Pé-
clet number Pe for finite size ratios λ ranging from 1/8 to 8. For Péclet numbers up to 10, the
microstructures were computed using the Legendre polynomial method of Section 2.5.1, while for
Péclet numbers greater than 10 the finite-difference methods of Section 2.5.2 were employed. These
results are for a small excluded annulus parameter ∆ = 10−5.

as long as lubrication interactions between the probe and bath particle are not excluded. The

extent of force thinning of ηBi at low to moderate Pe is initially greater than the force-thickening

phenomenon seen in the hydrodynamic contribution to the intrinsic microviscosity. However, for

moderate to large Pe the force thickening observed in the hydrodynamic contribution becomes the

dominant factor in shaping the microrheological response. We see the transition from force-thinning

to force thickening for the total intrinsic microviscosity occur around Pe ∼ O (1) in Figure 2.13. The

total intrinsic microviscosity ηi also includes the interparticle contribution ηPi which scales with the

excluded annulus parameter ∆ as shown in Appendix D. The nonmonotonicity of ηi becomes more

and more prominent for λ � 1. In the limiting case of λ → 0, the intrinsic microviscosity becomes

independent of Péclet number and is equal to 5/2 for any applied external force, consistent with the

Einstein viscosity correction for a dilute dispersion of spheres. For λ → ∞ and ∆ = 0, we expect

the low Pe limit of the total intrinsic microviscosity to be 1/2 , which it force thickens to a large

Pe microviscosity of λ as predicted in Appendix C. Additionally, the ∆-dependence of each of the

microviscosity contributions is shown in several figures in Appendix D.
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Figure 2.13: The total of the hydrodynamic, Brownian, and interparticle contributions ηi = ηHi +
ηBi + ηPi to the intrinsic microviscosity as a function of Péclet number Pe for finite size ratios λ
ranging from 1/8 to 8. For Péclet numbers up to 10, the microstructures were computed using the
Legendre polynomial method of Section 2.5.1, while for Péclet numbers greater than 10 the finite-
difference methods of Section 2.5.2 were employed. These results are for a small excluded annulus
parameter ∆ = 10−5.

The problem of active and nonlinear microrheology has been examined classically in the sedimen-

tation literature. Batchelor [5, 7, 6], together with Wen [8], studied sedimentation in polydisperse

systems of rigid spheres. In the work, gravity provides the driving external force for motion, and the

density ratio γ ≡ (ρj − ρ) / (ρi − ρ) characterizes the rate of sedimentation of the “probe” species

with density ρi through a collection of “bath” species with density ρj , both of which are dispersed

homogeneously throughout Newtonian solvent of density ρ and viscosity η. By examining their

analysis with a density ratio γ = 0, we have nearly a direct comparison to our problem of active mi-

crorheology through a neutrally buoyant suspension. A distinction may still be found in the choice of

boundary condition imposed due to the rigidity of the spheres. Batchelor observed that the advective

flux along the line of centers approaches zero as the radial separation between the test sphere and a

background sphere approaches the sum of their hydrodynamic radii. This makes intuitive sense: in

most introductory fluid mechanics classes, one learns that an infinite force is required to bring two

rigid spheres into contact with one another due to the strength of lubrication interactions, so with
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a finite constant applied force, two spheres may never be brought into contact with one another.

Consequently, the diffusive flux must also approach zero as the surface separation approaches zero.

In his work, Batchelor constrains the normal component of the diffusive particle flux to equal zero at

hydrodynamic contact. In the work presented in this thesis, we approach the limit of full hydrody-

namic interactions by making the excluded annulus parameter smaller and smaller, but still finite.

When the excluded annulus potential acts at a finite distance from the hydrodynamic radius, we

must impose a boundary condition of no net flux, comprising both advective and diffusive motion.

This underscores the singular nature of the limit of full hydrodynamic interactions: it is important

to consider the order in which limits are taken for the governing parameters ∆, λ, and Pe.

It is useful to consider the limits of particle size ratio for which the results of Batchelor’s sed-

imentation analysis best correspond with this study of microrheology. When the relative velocity

due to an applied external force approaches zero much more rapidly than the relative diffusivity, the

boundary conditions of no normal component of the diffusive flux and no normal component of total

flux resemble one another for finite ∆. Said differently, for values of the ratio L/G → 0, Batchelor’s

sedimentation problem and the microrheology problem for small-but-finite excluded annuli are iden-

tical. In Figure 2.14, the ratio L/G is plotted versus the surface separation for different size ratios λ.

We see that when the relative probe size is dominant (λ → 0) the ratio L/G approaches zero as the

surface separation distance approaches zero, and the sedimentation and microrheology problems are

most identical. Once the bath particles have finite size, however, the ratio L/G approaches a finite

value. The larger L/G becomes, the more of a discrepancy we can expect between the results of

the sedimentation and microrheology analyses. In fact, once the bath particles become larger than

the probe particle (λ > 1) relative motion parallel to the line-of-centers due to the applied external

force is hindered less than relative diffusion. The maximum value of L/G for nearly-touching spheres

occurs for a size ratio λ between 1 and 4. The ratio eventually approaches unity again when the

relative bath size is dominant (λ → ∞).

Batchelor and Wen present their findings in terms of a sedimentation coefficient Sij , defined as the

O (φj) correction to the mean velocity, or the negative of what we call the intrinsic microviscosity ηi.

In the limiting cases of asymptotically small (λ � 1) or large (λ � 1) probes, Batchelor predicted

that the sedimentation coefficient becomes independent of the relative strength of gravitational

potential energy versus the thermal energy (i.e. independent of the Péclet number) and behaves as

follows:

Sij (λ) =






− 5
2 − γ +O (λ) , λ � 1;

−γ
�
λ2 + 3λ+ 1

�
+O

�
λ−1

�
, λ � 1.

(2.107)

Einstein’s viscosity correction is evident in equation 2.107 for large probes. It is for large probes that

the bath particles and solvent together resemble a continuum to the probe particle with effective
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Figure 2.14: The ratio of the hydrodynamic functions L and G as a function of dimensionless radial
separation distance ξ ≡ s− 2 for several bath-to-probe particle size ratios λ. The relative probe size
decreases with increasing curve brightness. The curves of L/G for λ = 1 and λ → ∞ are coincident
and equal to unity for all radial separations.

viscosity η (1 + (5/2)φj). All other leading-order contributions to the sedimentation coefficient, for

small and large particles, are nonzero only when the bath particles are not neutrally buoyant. This

prediction of invariance in Pe is not seen for small probe particles in the limit where the finite

excluded annulus is made smaller and smaller. Even for neutrally-buoyant bath particles, with full

consideration of hydrodynamic interactions, the intrinsic microviscosity for large λ force-thickens

from a low Pe limiting value of ηi = 1/2 to a high Pe limiting value of ηi ∼ λ.

For this chapter, we first focused on the behavior for small perturbations from equilibrium.

That is to say, how would sedimenting particles behave when gravitational potential energy is weak

compared to thermal energy and the Péclet number is much less than unity? At small Péclet number,

Batchelor decomposes the sedimentation coefficient into a linear function of γ, i.e.

Sij (λ, γ; Pe � 1) = S�
ij (λ; Pe � 1) + γS��

ij (λ; Pe � 1) , (2.108)

as the system is a perturbation of an equilibrium system. The relevant coefficient to examine is S�
ij

as it corresponds with neutrally-buoyant background particles. In a corrigendum [6], Batchelor gives
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an empirical relation for S�
ij at small Pe (c.f. eq II. 5.5),

S�
ij (λ; Pe � 1) =

−2.5

1 + 0.16λ
, (2.109)

indicating that the sedimentation coefficient decays from Einstein’s viscosity correction for large

probes to zero for small probes. Again, this empirical model must be modified slightly for the

problem of active microrheology for a finite excluded annulus; small probes will still be hindered

slightly from their mean velocity in pure solvent even at low Pe. Lastly, it should be noted that the

intrinsic microdiffusivity contributions discussed in Section 2.2 could also be computed by similar

numerical schemes in order to understand how the applied external force changes the diffusive

behavior of a Brownian probe particle.
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Chapter 3

Hydrodynamic Interactions and the

Motion of Catalytic Nanomotors

3.1 Introduction

Contemplating the motion of microorganisms has intrigued fluid mechanicians for quite some time.

The self-propulsion of microorganisms is unique from most of the aquatic animal kingdom since

inertia is unreliable as a propulsion mechanism on micron and smaller length scales. Reversible

sequences of motion, such as oscillating caudal fin motion in fish, are effective in high-Reynolds

number environments, such as water. These motions would prove futile in viscous conditions, such

as in glycerol: the Navier-Stokes equations are linearized in the inertialess regime, causing reciprocal

movements to yield no net motion [21]. Breaking symmetry is the key to achieving net motion in an

inertialess environment, and asymmetry becomes a useful design principle when considering how to

construct a nanoscale “motor”. By deforming its shape in an irreversible sequence, a microswimmer

is capable of translating through its environment. Taylor [53] studied the self-propulsion, energy dis-

sipation, and the stress on undulating sheets due to purely viscous forces, in an effort to understand

how flagellating motion of spermatozoa can still provide net motion on the micron scale. Purcell

[43] incorporated a sequence of movements into his three-link swimmer that is not identical when

reversed and thus is one of the simplest toy models for a deforming body achieving self-propulsion.

Symmetry breaking to provide propulsion can be achieved not only by the body of the mi-

croswimmer itself deforming, but also through inducing a change in the local chemical environment.

It is to these “catalytic nanomotors” where we direct our attention in this chapter. Paxton et al [42]

observed the motion of nanorods comprising gold and platinum segments through aqueous solutions

of hydrogen peroxide. The gold ends are inert while the platinum ends catalyze the decomposition of

aqueous hydrogen peroxide to water and oxygen. A bubble propulsion mechanism where the ejection

of oxygen bubbles acts as thrust, successful in describing the motion of similar experiments on the

millimeter length scales [24], would indicate that the rods translate through the aqueous solution
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along their axis away from the catalytic platinum face. However, these nanorods travel through

the suspension toward the platinum segments. A diffusiophoretic model with a gradient of oxygen

molecules also predicts the reverse direction of motion away from the platinum segments, and so

Paxton et al explain the movement as driven by varying interfacial tension.

In other work from the group of Ayusman Sen, Pavlick et. al. [41] observed the motion of

gold-silica Janus particles onto which the Grubbs ring-opening metathesis polymerization (ROMP)

catalyst is grafted. Norbornene monomers are consumed and polymerized at the silica face, creating a

norbornene chemical potential gradient driving the motor toward the depletion region. These motors

were found to sense and move up externally-imposed gradients of norbornene, exhibiting chemotactic

behavior not normally seen in non-living systems. Motion via polymerization is witnessed in living

systems such as in the generation of new actin filaments at the leading edge of epithelial keratocytes to

transport the cytoskeleton backward toward the nucleus [54], or production of actin filament “comet

tails” in Listeria bacteria [55] whose mechanisms have been described in a force-dipole generating

hydrodynamic model [34].

Applications of catalytic nanomotors have been proposed with the towing of therapeutic payloads

in mind. Other “nanocars” have employed surface-initiated ROMP to drive and transport small cargo

along a substrate [20]. Over long times compared with the timescale τR for Brownian rotation, Janus

particles can exhibit a greater effective diffusivity Deff than that which is possible through Brownian

motion of inert particles alone. The motor follows a “run-and-tumble” trajectory where each “run”

segment happens over a time much shorter than the timescale for Brownian rotation of the colloidal

Janus particle, and the effective diffusivity resembles Deff = D0 + U2/6Drot where U is the motor

velocity and Drot is the rotary diffusivity of the particle [22]. This enhanced diffusivity could increase

the rate that therapeutic-towing nanoparticles disperse throughout an injection site. Further details

of synthetic self-propelling nanomotors may be found in the reviews by Ebbens and Howse [18],

Wang [58], and Mirkovic et al [38].

Some questions remain unanswered in the description of mechanisms of autonomous motion from

a colloidal-level description. When the motor interacts with the solute particles hydrodynamically,

what is the limiting velocity of the motor? How does the reactant sense a disturbance from a

translating motor? What is the optimal ratio of inert to active faces for a Janus particle motor when

the solute is infinitesimally small? What design considerations come into play for motors that are

not much larger than the reactant fuel species? A study by Sharifi-Mood et al [48] has examined

the motion of a colloidal motor particle interacting with reactive species for a variety of interparticle

interactions, including van der Waals and exponential reactions, when the reactant species has no

finite size. Solute of finite size has a different expression for relative diffusion, and a non-isotropic

relative diffusive flux changes the spatiotemporal evolution of the reactant microstructure about

translating motors.
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The model system that we choose to investigate is a colloidal-level analysis based on the osmotic

propulsion model employed by Córdova-Figueroa and Brady [13], [14]. In these works, solute reac-

tant molecules are treated as colloidal species dispersed throughout a Newtonian, viscous, constant

property solvent. Some concerns, from a continuum-level analysis, arose over whether motion can

arise from local solute gradients ([26], [27]), but the colloidal-level treatment of solute matches the

continuum-level analysis in the appropriate limits as shown by Brady [10]. The purpose of this chap-

ter is to explore, in more detail, concepts proposed in the autonomous motion section of Brady’s

work on particle motion driven by solute gradients. In particular, when the reactant and product

species are thought of as colloidal particles dispersed throughout a continuum solvent, the velocity

field created by the motion of the motor should alter the trajectories of reactant and product past

the motor. We start by highlighting key features of the autonomous motion problem statement in

Section 3.2. For a detailed introduction to the problem at hand, the curious reader is referred to

sections 4 and 5 of the work of Brady [10]. Future work in preparation by Brady will discuss the

proper treatment of advection in autonomous motion.

3.2 Problem Statement

Consider a collection of rigid, spherical, neutrally-buoyant colloidal reactant particles R of hydro-

dynamic radius b immersed in a Newtonian, viscous, constant property solvent of density ρ and

dynamic viscosity η. Among the reactant particles is situated a rigid, spherical catalytic “motor”

particle of hydrodynamic radius a. The size of the motor relative to the size of the reactant is

arbitrary and is set by the ratio λ ≡ b/a. The crux of the catalytic nanomotor problem is to deter-

mine how the motor induces a local chemical potential gradient about its surface and consequently

travels through the dispersion with some mean phoretic velocity �U� of magnitude U . The chemical

potential gradients are achieved by means of an asymmetric distribution of reactive and unreactive

surface area on the motor, i.e. the motor is a Janus particle with catalytic and inert faces. To

systematically tune the fraction of catalytically-active surface area, the polar angle θs or the “switch

angle” is introduced. For polar angles 0 ≤ θ ≤ θs as measured from the direction of mean motion,

the surface of the motor catalyzes the irreversible conversion of reactant R into product P with some

stoichiometric ratio ϑ,

R → ϑP. (3.1)

For polar angles θs < θ ≤ π, the surface of the osmotic motor is inert. For micron-sized colloidal

particles in a solvent comparable to water at room temperature, the Reynolds number Re ≡ ρUa/η

describing the relative magnitude of inertial to viscous forces is ∼ O
�
10−6

�
, setting our problem in

the regime of Stokes flow. We should note that in the Stokes flow regime, the hydrodynamic force

becomes infinite when bringing two rigid spheres into contact at their hydrodynamic radii. Thus, a
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surface-mediated reaction cannot occur between colloids without attractive interparticle interactions

if the particles are required to come into hydrodynamic contact. The excluded-annulus interparticle

potential alleviates this issue of infinite forces preventing contact, with the additional benefit of

introducing a parameter that can easily “tune” the strength of hydrodynamic interactions between

the reactant particles and the catalytic motor. This potential Φ (r) is spherically symmetric and

depends only on the relative separation r ≡ |r| of the catalyst and reactant particle centers. The

potential is a Heaviside step function preventing the particles from approaching any closer than rmin,

Φ (r) ≡






0, r ≥ rmin;

∞, r < rmin.
(3.2)

We define the minimum approach distance rmin ≡ (a+ b) (1 + ∆), where ∆ is the excluded-annulus

parameter. The limit of fully-screened hydrodynamic interactions corresponds with ∆ → ∞, while

full hydrodynamic interactions are modeled by setting ∆ = 0. Note that both motor and reactant

can have excluded annulus character on either of their surfaces, as depicted in figure 3.1. The

excluded annulus parameter for the system is related to the excluded volumes of the motor and

reactant by

∆ ≡ ∆aa+∆bb

a+ b
. (3.3)

Reactant and product particles can have different effective hydrodynamic radii and hence different

diffusivities. In order to simplify the system, we assume the following for the ratio of the diffusivity

of the product, DP , to the diffusivity of the reactant, DR

DP

ϑDR
→ ∞. (3.4)

If this ratio were finite, one would only need to add a factor of (1− ϑDR/DP ) to the resulting

diffusiophoretic force as shown by Córdova-Figueroa and Brady [14]. Because of the large discrepancy

in the diffusivities, product effectively disappears upon reaction, and the reaction may be thought of

as a “consumption” reaction. An alternative picture would be to think of the rigid reactant particles

as a collection of bound solvent monomers, and the catalytic reaction severs the bonds in the reactant

particle, hence dissolving it. Thus, the product particle does not need to be accounted for in this

model. The rate of consumption is given by rRhs (θ), where rR is the reactant consumption rate,

and the surface catalyst geometry is described by the function hs(θ), a Heaviside step function using

the switch angle θs
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Figure 3.1: The motor-reactant geometry for the catalytic nanomotor problem. Note that the
catalytic zone is symmetric about the azimuthal angle φ.

hs (θ) =






1, 0 ≤ θ ≤ θs;

0, θs < θ ≤ π.
(3.5)

The reaction is offset from the hydrodynamic radius of the motor to occur at the minimum approach

distance rmin used in the definition of the interparticle potential Φ. Unless explicitly noted, the switch

angle is taken to be at θs = π/2 so that the Janus particles have equal parts reactive and inert faces.

The net propulsive force on the motor is dependent on the microstructure, or configuration, of

the surrounding reactant. The reactant microstructure is quantified by the pair distribution function

g (r), describing the likelihood of finding a reactant particle at some spatial location r relative to

the motor. The pair distribution function is defined as the ratio g (r) ≡ P1|1 (r|x1) /n∞
b : the

conditional probability density P1|1 (r|x1) of finding a reactant particle at some position r relative

to the motor center given that the motor is centered about x1 over the number density n∞
b of

reactant molecules in the quiescent, undisturbed suspension. Correctly solving for this steady-

state pair distribution function, which is governed by the time-invariant Smoluchowski equation,

allows for the prediction the diffusiophoretic velocity. The derivation for the dilute Smoluchowski

equation with careful consideration of hydrodynamic interactions, becomes more complex when the
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advective motion requires solute-motor collisions; the dilute treatment used in the microrheology

problem derivation is insufficient. For a discussion of why three-body interactions are needed, and a

derivation of the Smoluchowski equation relevant for diffusiophoretic motion, the reader is referred

to recent work by Brady.

The advective term that appears in the steady Smoluchowski equation describing the motion of

the catalytic nanomotor is more complex than that which governs constant-force microrheology. Only

the coupling between the force monopole acting on the probe particle and the relative translational

motion needed consideration for microrheology. However, in diffusiophoretic motion the motor is

force free as one should expect for any type of phoretic motion. All higher moments, force dipole,

force quadrupole, etc. contribute to the advective motion of reactant past the motor. In addition,

the mobility functions appearing in the advection terms require averaging over three-body ensembles.

However, the leading order diffusive motion of the reactant is still described by the same relative

diffusivity tensor Drel ≡ kT
�
MUF

22 −MUF
21 −MUF

12 +MUF
11

�
as for microrheology. Thus, in the limit

of small Péclet number, the governing equation for the reactive bath particles is simply

∇r ·Drel ·∇rg = 0. (3.6)

The excluded-annulus interparticle potential prevents particles from approaching any closer than

their excluded-volume radius allows. The only probability flux normal to the surface is that defined

by the consumption reaction on the reactive face of the motor

−n ·Drel · ∇rg = rRhs (θ) at r = rmin. (3.7)

In Equation 3.7, n is the outward-facing unit normal oriented along the line of centers from the

motor to the reactant particle. Far from the motor, the concentration field should not sense the

presence of the motor; thus, the conditional probability density of finding a reactant particle far

from the motor should approach the ambient number density of reactant

g (r) → geq as r → ∞. (3.8)

Because of the excluded-annulus interparticle potential and the diluteness of the reactant solution,

the equilibrium value geq of the pair distribution function is equal to unity for all radial separations

r > rmin.

For our model of a surface-mediated reaction, a reaction that is first-order in the concentration

of reactant is the intuitive choice, indicating that motor-reactant collisions facilitate the production
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of product. We may thus define the reaction rate rR in terms of the pair-distribution function

rR ≡ −κn∞
b g (r) , (3.9)

where κ is the reaction velocity. Alternative scenarios, for example a surface-generation model,

in which therapeutic molecules diffuse from a hydrogel carrier particle, may be better suited to a

zero-order reaction rate.

The choice to non-dimensionalize the radial coordinate is based on the minimum approach dis-

tance rmin,

s̃ ≡ r

rmin
. (3.10)

The resulting velocity of the motor with a given distribution of reactant comprises both interparticle

and Brownian contributions,

�U1� =
�
UP

1

�
+
�
UB

1

�
. (3.11)

The interparticle contribution to the motor motion is a surface integral at the excluded annulus

contact distance,
�
UP

1

�
= −n∞

b Da (rmin)
2 L (r = rmin, λ)

˛
s̃=1

n g (s̃) dΩ. (3.12)

The Brownian contribution to the motor motion is the divergence of the relative mobility weighted

by the likelihood of the configuration averaged over all space,

�
UB

1

�
= −n∞

b Da (rmin)
2
ˆ
s̃≥1

g (s̃) ∇s̃ · M̂r ds̃. (3.13)

In Equation 3.12, the function L (r = rmin, λ) is simply the value of the relative mobility hydro-

dynamic function L evaluated at the minimum approach distance between the motor and reactant

molecule, rmin. The relative mobility functions depend on the reactant-to-motor particle size ratio

λ ≡ b/a. Recall that L describes the ease of relative motion along the line of centers between the

motor and reactant when a force acts solely on the motor, while M describes the facility of tangential

motion. That is to say, the relative mobility tensor M̂r may be written as,

M̂r ≡ 6πηa
�
MUF

11 −MUF
12

�
= Lnn+M (I− nn) , (3.14)

where n is the outward-facing unit vector along the line of centers between the motor and reactant

particles, and I is the identity tensor. The function L (rmin, λ) increases monotonically with ∆ for all

λ, from 0, when ∆ = 0, to 1, when ∆ → ∞. In the limiting case of very small reactant ,λ � 1, the

relative mobility functions L and M need not consider lubrication for a certain limit: if we examine

the limit where the size of the additional excluded annulus distance ∆a is greater than the size of
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the reactant particles b, the gap size between the reactant and motor particles will be large enough,

even at center-to-center separations of rmin, so that lubrication effects need not be considered, as

depicted on the left-hand side of Figure 3.2. It is in this regime that the relative mobility functions

L and M take on the following simple functional forms for all accessible motor and reactant particle

configurations,

z zz z

Figure 3.2: The possible limits of small reactant and small excluded annulus length scales. Left :
When the excluded annulus is larger than the radius of the reactant particle, the lubrication regime
in which the gap is the smallest length scale is inaccessible. Right : The excluded annulus is smaller
than the radius of the reactant and the simple functional forms of L and M proposed in this work
do not hold for all center-to-center separations.

L (s̃, λ � 1) = 1− 3

2 (1 + ∆)
s̃−1 +

1

2 (1 + ∆)3
s̃−3 +O (λ) (3.15)

M (s̃, λ � 1) = 1− 3

4 (1 + ∆)
s̃−1 − 1

4 (1 + ∆)3
s̃−3 +O (λ) . (3.16)

Note that the limit where the bath particle radius is the smallest length scale in the problem

corresponds to the ratio ∆/λ > 1. If the excluded annulus thickness were the smallest length scale

in the problem, as seen in the right-hand side of Figure 3.2, then Equations 3.15 and 3.16 would

not be valid approximations in the lubrication regime, defined by s̃− 1 � 1. It is important to note

that, for small reactant particles, the divergence of the relative mobility ∇ · M̂r scales as O
�
λ3

�
for

all radial separations, indicating that the Brownian contribution to the motor velocity, i.e. equation

3.13, is negligible.

When also considering advection effects, we arrive at the following partial differential equation
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and boundary conditions:

P̃e
�
Ûrel (g)

�
· ∇g (s̃) +∇ ·Drel · ∇g (s̃) = 0 (3.17)

g → 1 as s̃ → ∞ (3.18)

P̃e
�
Ûrel (g)

�
· n g (s̃) +

∂g

∂s̃
= D̃a hs (θ) g (s̃) at s̃ = 1 (3.19)

We use the same dimensionless groups to characterize the relative rates of advection, diffusion,

and reaction as defined in the problem posed by Brady [10]: the Péclet
�
P̃e

�
and Damköhler

�
D̃a

�

numbers. The timescale for advection of the catalytic nanomotor to occur on the order of its

excluded-volume size is τa ≡ a (1 + ∆) /U , the timescale for the reaction rate to occur at the surface

of the motor is τr ≡ a (1 + ∆) /κ, and the timescale for the bath particles to diffuse to fill in the

trailing wake behind the motor is is τd ≡ (a (1 + ∆)) 2/DR. The Péclet number may be interpreted

as the ratio of diffusive and advective timescales,

P̃e ≡ τd
τa

=
U a (1 + ∆)

DR
, (3.20)

while the Damköhler number may be thought of as the ratio of diffusive and reactive timescales,

D̃a ≡ τd
τr

=
κ a (1 + ∆)

DR
. (3.21)

We will assume that the reactant microstructure about the motor is at a steady state. In other

words, as the catalytic nanomotor constantly reacts with the particles around it, the microstructure

remains fully developed. If we were to include Brownian rotation, the result would be a random,

as opposed to a directed, walk. Brownian rotation would cause the long-time effective diffusivity of

the motor to be

Dmotor = Da +
1

6

U2

Drot

, (3.22)

where Da is the diffusivity of the motor in the absence of Brownian rotation, U is the velocity

of the motor, and Drot ∼ kT/8πηa3 is the rotary diffusivity. Brownian rotation can be ignored

when the time scale for the concentration profile to develop, τ ∼ a2/DR, is short compared to the

rotary diffusion time, τrot ∼ 1/Drot. Since τ/τrot ∼ b/a, Brownian rotation can be ignored in the

small-λ regime where λ = b/a � 1 as long as the time of observation of the motor is shorter than

the timescale for rotation. For finite size ratios, Brownian rotation happens rapidly enough that

a steady-state concentration profile may not have enough time to develop about the motor. To

consider steady motion that is still governed by Equations 3.17 through 3.19 in the limit of finite
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motor sizes, one can imagine a scenario where the rotational degrees of freedom are constrained.

For example a physically-tethered motor protein may be capable of translating along a surface but

may not be free to change its orientation. Motor particles with a dipole magnetic moment could

also align with an externally applied field while still not applying an external force.

For the remainder of this section, we examine Equations 3.17 through 3.19 in the linear-response

regime where the Péclet number is much less than unity. In this limit, ensemble-averaged three

body hydrodynamic interactions and the complicated dependence of the relative velocity
�
Ûrel (g)

�

on all moments of the microstructure function g are neglected, as only the leading-order diffusive

effects described by Drel change the character of the microstructure. We examine the Brownian

and interparticle velocity contributions for a half-reactive motor (θs = π/2) of various relative sizes

of reactant and motor. Future directions for this colloidal approach to understanding autonomous

motion, including proper consideration of advection, are highlighted.

3.3 Preliminary Results and Future Directions

The motor velocity comprises Brownian and interparticle contributions, which take on the forms in

Equations 3.12 and 3.13. The magnitude of the interparticle contribution to the translational velocity

is plotted as a function of the reactivity D̃a of the motor in figures 3.3, 3.4, and 3.5 for successively

smaller excluded annulus parameters of ∆ =1, 0.1, and 0.01 respectively. As we can see, the motor

velocity reaches a high D̃a limiting velocity, at which point the value of the reactant microstructure

is ∼ 0 on the reactive face of the motor and O (1) on the inert face. We see that decreasing the

excluded annulus parameter always has the effect of reducing the maximum attainable velocity of the

motor as a result of interparticle interactions, as the contribution
�
UP

1

�
is proportional to the value

of the relative translational mobility function L evaluated at the minimum approach distance. Since

L is a monotonically increasing function of ∆ for all size ratios, it is expected that the interparticle

velocity should decrease when the reactive zone moves closer and closer to the hydrodynamic radius

of the motor. The hydrodynamic function L scales as ∆2 for small ∆ and small reactant, indicating

that for very small λ it would be appropriate to scale the dimensionless value of
�
UP

1

�
by ∆2. For

larger reactant, namely λ ∼ O (1), the hydrodynamic function L scales as ∆.

The Brownian contribution to the motor velocity increases with decreasing excluded annulus pa-

rameter as seen by comparing Figures 3.6 and 3.7. This is because the magnitude of the divergence

of the relative mobility W grows with decreasing ∆, and the Brownian contribution is the dipolar

moment of the microstructure weighted by the divergence of the relative mobility. However, for

large motors (λ → 0) as discussed by Brady [10] the motor velocity will be strictly due to interpar-

ticle interactions at the excluded-annulus radius because the divergence of the relative mobility is

proportional to λ3 for large motors.
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This study of properly incorporating hydrodynamic interactions into the diffusiophoretic motion

of a catalytic particle from a colloidal perspective is still in a nascent stage. Future directions

include considerations of three-body hydrodynamic interactions to properly incorporate advective

effects into the reaction-diffusion Smoluchowski equation. Because the translational velocity of the

motor is the result of reactant-motor collisions, the Péclet number is not concentration-independent,

as it was in the case of active and nonlinear microrheology. Thus, conserving all terms of O (φb)

in the Smoluchowski equation requires consideration of a third reactant particle properly averaged

over all accessible configurations between the motor and the two reactant particles. Eventually, once

the motion of a single catalytic nanomotor, interacting hydrodynamically with the reactive solute,

is understood, these results can be extended to a study of the interaction of multiple catalytic

nanomotors with each other. This could yield insights into unique phenomena such as dynamic

clustering of reactive colloids, as seen in the work of Theurkauff et. al. [56]. Understanding the

motion of multiple nanomotors in concert with one another is critical when using motors as towing

mechanisms or drug delivery vehicles as it is unlikely that only a single microscopic motor will be

administered at a time.
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Figure 3.3: The interparticle contribution to the motor velocity normalized by the reactant number
density, the motor diffusivity, and the minimum approach distance for an excluded annulus parameter
of ∆ = 1 for various reactant to motor particle size ratios λ ≡ b/a as a function of Damköhler number.
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Figure 3.4: The interparticle contribution to the motor velocity normalized by the reactant number
density, the motor diffusivity, and the minimum approach distance for an excluded annulus parameter
of ∆ = 0.1 for various reactant to motor particle size ratios λ ≡ b/a as a function of Damköhler
number.
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Figure 3.5: The interparticle contribution to the motor velocity normalized by the reactant number
density, the motor diffusivity, and the minimum approach distance for an excluded annulus parameter
of ∆ = 0.01 for various reactant to motor particle size ratios λ ≡ b/a as a function of Damköhler
number.



65

10−3 10−2 10−1 100 101 102 103
0.00

0.02

0.04

0.06

0.08

Figure 3.6: The Brownian contribution to the motor velocity normalized by the reactant number
density, the motor diffusivity, and the minimum approach distance for an excluded annulus parameter
of ∆ = 0.1 for various reactant to motor particle size ratios λ ≡ b/a as a function of Damköhler
number.
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Figure 3.7: The Brownian contribution to the motor velocity normalized by the reactant number
density, the motor diffusivity, and the minimum approach distance for an excluded annulus parameter
of ∆ = 0.01 for various reactant to motor particle size ratios λ ≡ b/a as a function of Damköhler
number.
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Appendix A

Linear Response Equations for the

Microstructure and Deflection Field

For low Péclet number, the perturbation expansions proposed for the departure of the steady sus-

pension microstructure from equilibrium f = g0 − 1 and for the deflection field d are as follows:

f (s; Pe � 1) = Pe u · n f1 (s) + Pe2 uu : [nn f2 (s) + I f3 (s)] +O
�
Pe3

�
, (A.1)

d (s; Pe � 1) = n d1 (s) + Pe u · [nn d2 (s) + I d3 (s)] +O
�
Pe2

�
. (A.2)

These perturbation expansions are substituted into the steady Smoluchowski equation terms,

Pe ∇s ·
�
M̂r · u f

�
+∇s · D̂r · ∇sf = −Pe ∇s ·

�
M̂r · u

�
, (A.3)

Pe ∇s ·
�
M̂r · u d

�
+∇s · D̂r · ∇sd = · · ·

λ

1 + λ

�
∇s ·

�
M̂r g0

�
+ M̂r · ∇sg0

�
+ Pe

�
M̂11 − I

�
· u g0. (A.4)

The radial boundary conditions at the excluded annulus separation are statements of no relative

flux. Again, the perturbation expansions are substituted into the expressions for no relative flux,

Pe n · M̂r · u f + n · D̂r · ∇sf = −Pe n · M̂r · u at s = 2, (A.5)

Pe n · M̂r · u d+ n · D̂r · ∇sd =
λ

1 + λ
g0 n · M̂r at s = 2. (A.6)

The relative mobility associated with an applied external force acting on the probe is

M̂r = L (γs, λ)nn+M (γs, λ) (I− nn) , (A.7)
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where γ ≡ 1+∆ is the ratio of the minimum approach distance rmin to the sum of the hydrodynamic

radii a+ b. The relative diffusivity describing the Brownian motion of a pair of spheres is

D̂r = G (γs, λ)nn+H (γs, λ) (I− nn) . (A.8)

The divergence of the relative mobility tensor appears on the right-hand side of both the microstruc-

ture and deflection field PDEs, and is equal to

∇s · M̂r =

�
2

s
(L−M) +

dL

ds

�
n = W n. (A.9)

The perturbation expansion for the departure of the steady microstructure from equilibrium is

regular through O
�
Pe2

�
and the perturbation expansion for the deflection field is regular through

O (Pe). Thus, for as far as the perturbation expansions have been written in Equations A.1 and A.2,

each of the radial functions fα (s) and dα (s) will decay to zero as s → ∞ to satisfy the condition of

no long-ranged order in the suspension microstructure. Like terms are grouped together to assemble

a system of coupled ODEs. For the ODE governing the microstructure function f1 we find

1

s2
d

ds

�
s2G f �

1 (s)
�
− 2H

s2
f1 (s) = −W, (A.10)

f �
1 (s = 2) = −L

G
, (A.11)

f1 (s → ∞) → 0. (A.12)

For f2, we find

1

s2
d

ds

�
s2G f �

2 (s)
�
− 6H

s2
f2 (s) = −W f1 (s)− L f �

1 (s) +
M

s
f1 (s) , (A.13)

f �
2 (s = 2) = −L

G
f1, (A.14)

f2 (s → ∞) → 0. (A.15)

For f3, we find

1

s2
d

ds

�
s2G f �

3 (s)
�

= −2H

s2
f2 (s)−

M

s
f1 (s) , (A.16)

f �
3 (s = 2) = 0, (A.17)

f3 (s → ∞) → 0. (A.18)

To reduce the region of integration from the semi-infinite domain [2,∞), the functions fα are

estimated to be power series in s−1 at large separations and the far-field approximations for the
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hydrodynamic functions are used. For example, for f1, the far-field form is:

f1 (s � 2) ≈ f∞
1 (γs)−2+

�
3f∞

1 − 10λ2

(1 + λ)2

��
3λ

2 (1 + λ)2
(γs)−3 +

36λ2

5 (1 + λ)4
(γs)−4

�
+ · · · (A.19)

This expression was evaluated for a large value of the radial separation smax = 20 for some guess of

the constant f∞
1 and integrated backwards from s = smax to s = 2 using the initial value problem

solver ode45 in MATLAB. At s = 2, this solution is checked to see how accurately the no-flux

boundary condition, Equation A.11, is satisfied. The constant f∞
1 is adjusted iteratively until the

no-flux boundary condition is satisfied to within an absolute tolerance of 10−8. Similar expressions

to equation A.19 were found for f2 (s � 2) and f3 (s � 2), each with an adjustable constant like f∞
1

used to satisfy the no-flux boundary condition upon integrating backward from s = smax to s = 2.

The governing ODE for the leading-order perturbation to the deflection field is

1

s2
d

ds

�
s2G d�1 (s)

�
− 2H

s2
d1 (s) =

λ

λ+ 1
W, (A.20)

d�1 (s = 2) =
λ

λ+ 1

L

G
, (A.21)

d1 (s → ∞) → 0. (A.22)

By substituting d1 (s) = −λf1 (s) / (λ+ 1) into the system of equations for d1, the ODE and bound-

ary conditions for f1 are recovered, indicating that the leading order perturbation for the deflection

field is simply a scalar multiple of the leading order perturbation for the departure from equilibrium.

For d2 (s), we find

1

s2
d

ds

�
s2G d�2 (s)

�
− 6H

s2
d2 (s) =

3λ

λ+ 1

�
2

3
W f1 (s) + L f �

1 (s)−
M

s
f1 (s)

�
+ · · ·

�
xA
11 − yA11

�
, (A.23)

d�2 (s = 2) =
2λ

λ+ 1

L

G
f1 (s) (A.24)

d2 (s → ∞) → 0 (A.25)

For d3 (s), we find

1

s2
d

ds

�
s2G d�3 (s)

�
= −2H

s2
d2 (s) +

3λ

1 + λ

M

s
f1 (s) +

�
yA11 − 1

�
, (A.26)

d�3 (s = 2) = 0, (A.27)

d3 (s → ∞) → 0. (A.28)

The perturbations d2 and d3 to the deflection field can be calculated numerically using ode45 in the

same manner described above for the perturbations to the steady microstructure.
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Appendix B

Large Péclet Boundary-Layer

Analysis for Finite Size Ratios

This derivation follows from Appendix D of the work of Khair and Brady [29]. Here, we emphasize

the distinction between (1) the relative mobility functions L and M arising from the applied external

force, and (2) the relative diffusivity functions G and H arising from thermal motion. For identically-

sized probe and bath particles, L = G and M = H so no distinction was necessary in the case of

identical probe and bath particles. In this derivation, the excluded annulus parameter ∆ is identically

zero, resulting in hard-sphere interactions acting at a range coincident with the hydrodynamic radii

of the probe and bath particle.

Including hydrodynamic interactions, the governing equation for the spatial evolution of the

suspension microstructure is as follows:

1

s2
∂

∂s

�
s2G

∂g0
∂s

�
− H

s2
∂

∂µ

��
µ2 − 1

� ∂g0
∂µ

�
+ Pe

�
Wµg0 + Lµ

∂g0
∂s

−
M

�
µ2 − 1

�

s

∂g0
∂µ

�
= 0. (B.1)

The conditions of no flux due to the excluded annulus potential and no long-ranged order in the

suspension are, respectively

G
∂g0
∂s

+ Pe L µ g0 = 0 at s = 2, (B.2)

and

g0 → 1 as s → ∞. (B.3)

As was the case for the outer solution in the absence of hydrodynamic interactions, the microstructure

will be spherically symmetric aside from the thin boundary layer on the surface of the probe particle.

Batchelor [5] showed that the radial dependence of the microstructure outside the boundary layer is

as follows:

g0 (s) =
1

L
exp

�ˆ ∞

s

2

z

�
1− M

L

�
dz

�
. (B.4)

Equation B.4 is O (1) until lubrication effects are significant. In the limit where the radial separation
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between the probe and bath particle approaches hydrodynamic contact, the hydrodynamic relative

mobility functions L and M and the relative diffusivity functions G and H take on the following

functional forms, which are expansions in the dimensionless surface-separation distance ξ ≡ s− 2:

L (ξ, λ) = L1 (λ) ξ +O
�
ξ2 log ξ

�
, (B.5)

M (ξ, λ) = M0 (λ) +M1 (λ)
�
log

�
ξ−1

�
− z2 (λ)

�−1
+M2 (λ)

�
log

�
ξ−1

�
− z2 (λ)

�−1
+O (ξ log ξ) ,

(B.6)

G (ξ, λ) = G1 (λ) ξ +O
�
ξ2 log ξ

�
, (B.7)

H (ξ, λ) = H0 (λ)+H1 (λ)
�
log

�
ξ−1

�
− z2 (λ)

�−1
+H2 (λ)

�
log

�
ξ−1

�
− z2 (λ)

�−1
+O (ξ log ξ) . (B.8)

Here, we use the forms of the hydrodynamic functions M and H suggested by Almog and Brenner

[1] making the solution accurate to O (ξ). Substituting the expressions B.5 and B.6 into Equation

B.4, we can see that the leading-order behavior of the steady microstructure near contact is

g0 (ξ → 0) ∼ A0 (λ) ξ
(M0−L1)/L1

�
log ξ−1 − z1

�−M1/L1
�
log ξ−1 − z2

�−M2/L1 , (B.9)

which diverges as ξ → 0 and which does not satisfy the no-flux boundary condition at hydrodynamic

contact. Near the surface, advection and diffusion balance in a boundary layer of thickness δ ∼

O
�
Pe−1� as in the identical problem with hydrodynamic interactions neglected. The inner solution

must match to the outer solution given by Equation B.9 and it must satisfy the no-flux boundary

condition of probability density through hydrodynamic contact. The radial coordinate near the

surface is rescaled by the boundary layer thickness, i.e. y = ξ/δ = Pe ξ and is substituted back into

Equation B.1 to obtain the microstructure boundary-layer equation

Pe
�

∂

∂y

�
G1y

∂g0
∂y

�
+W0µg0 + L1 µ y

∂g0
∂y

− M0

2

�
µ2 − 1

� ∂g0
∂µ

�
+ · · · = 0. (B.10)

Only the leading order terms, those multiplied by Pe, are kept in the boundary-layer equation. The

first term represents radial diffusion of pair-probability density with a linearly-growing diffusivity

G1y. The second term is a source dipole of probability density weighted by the contact value of

the divergence of the relative mobility W0 ≡ L1 −M0. The third and fourth terms are the relative

advection of probability density normal to and along the surface of the probe particle, respectively.

The boundary conditions on the pair-distribution function are to leading order in Pe

G1y
∂g0
∂y

+ L1 y µ g0 = 0 at y = 0, (B.11)

g0 (y, µ) ∼ A0 PeW0/L1y−W0/L1 as y → ∞. (B.12)
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Matching the inner problem with the outer solution to the microstructure, given in Equation B.9,

we are unable to resolve the two weak multiplicative corrections in the leading-order boundary layer

solution of order (log (Pe/y)− zα)
−Mα/L1 . A similarity variable η ≡ y/Y (µ) describes the stretching

of the boundary layer radial coordinate y as a function of the angle µ from the applied external

force. The microstructure is proposed to have a similarity solution in this stretched boundary

layer coordinate η weighted by an angular function, i.e. g0 = h (µ) p (η). The governing ODE and

boundary conditions for the similarity solution are

η p�� (η) + [1− αη] p� (η)− βp (η) = 0, (B.13)

ηp� (η) = 0 at η = 0 (B.14)

p (η) ∼ A0
Y −W0/L1 (µ)

h (µ)
PeW0/L1η−W0/L1 as η → ∞. (B.15)

In order for the far-field boundary condition on p (η) to be strictly a function of the similarity

variable η, it is required that the function h (µ) = Y −W0/L1 . The constants α and β in Equation B.13

contain the µ-dependent function Y (µ) as well as the leading-order coefficients to the hydrodynamic

functions as follows:

α ≡ −L1

G1
µY (µ)− M0

2G1

�
µ2 − 1

�
Y � (µ) , (B.16)

β ≡ W0

L1

�
−L1

G1
µY (µ)− M0

2G1

�
µ2 − 1

�
Y � (µ)

�
=

W0

L1
α (B.17)

The ratio of the two constants is thus β/α = W0/L1. With η̃ = αη, the governing equation may be

expressed as

η̃ p�� (η̃) + [1− η̃] p� (η̃)− W0

L1
p (η̃) = 0, (B.18)

which is Kummer’s Equation (Abramowitz & Stegun 13.1.1)

z
d2w

dz2
+ (b− z)

dw

dz
− aw = 0, (B.19)

with a = W0/L1 and b = 1. Solutions to Kummer’s Equation are confluent hypergeometric functions

of the first and second kind, Kummer’s function M and the Tricomi function U respectively

p

�
W0

L1
, 1, αη

�
= c1M

�
W0

L1
, 1, αη

�
+ c2U

�
W0

L1
, 1, αη

�
. (B.20)

The Tricomi function U has a logarithmic singularity as η → 0 which would not satisfy the no-flux

boundary condition at hydrodynamic contact and is so neglected (c2 = 0). The limit of Kummer’s



73

Function for large argument, provided that α < 0, is

lim
|αη|→∞

M

�
W0

L1
, 1, αη

�
=

1

Γ (M0/L1)
(−αη)−W0/L1

�
1 +O

�
|αη|−1

��
. (B.21)

If α were greater than zero, Kummer’s function for large argument would behave to leading order

as ∼ exp (η) η−M0/L1 , which is not the correct asymptotic behavior to match with Equation B.15.

We may solve for the coefficient c1 in terms of the limiting behavior from Equation B.15,

c1 = A0 Γ

�
M0

L1

�
(−αPe)W0/L1 .

Thus, the expression for the microstructure within the boundary layer is

g0 (y, µ) = A0 Γ

�
M0

L1

� �
Pe

Y (µ)

�W0/L1

M

�
W0

L1
, 1, − y

Y (µ)

�
.

We have removed α by redefining the boundary layer thickness Y (µ). Kummer’s function is equal

to unity for an argument of zero, and thus we may obtain the contact value of the pair-distribution

function

g0 (y = 0, µ) = A0 Γ

�
M0

L1

� �
Pe

Y (µ)

�W0/L1

.

The important scaling behavior to extract from the contact value of the pair distribution function

is that it scales as g0 ∼ PeW0/L1 . If we assume that the the boundary layer thickness Y (µ) and the

rate-of-change of the boundary layer thickness Y � (µ) are finite at the leading edge of the boundary

layer (at µ = 1), we can show from Equation B.16 that Y (1) = G1/L1. The boundary layer thickness

for −1 < µ ≤ 1 is simply the solution to Equation B.16

Y (µ) =
2G1

M0

�
1− µ2

�−L1/M0

ˆ 1

µ

�
1− ξ2

�W0/M0 dξ.

The boundary layer thickness diverges opposite the direction of forcing as Y (µ → −1) ∼ (1 + µ)−L1/M0 .

Within the radial boundary layer near µ = −1 is an angular region of thickness � ∼ Pe−1 in which

the angular diffusion terms cannot be neglected from the leading-order governing PDE. Thus, if we

define a second boundary layer coordinate x ≡ (µ+ 1) /� = Pe (µ+ 1), the governing PDE for the

microstructure in this region where angular diffusion terms become important is

∂

∂y

�
G1y

∂g0
∂y

�
+

∂

∂x

�
H0

2
x
∂g0
∂x

�
−W0g0 − L1y

∂g0
∂y

+M0x
∂g0
∂x

= 0.

We see that within this coalescence region we have radial and angular diffusive terms whose diffu-

sivities, G1y and H0x/2 respectively, increase linearly. The advection terms push the probability

density in the direction of increasing y (toward y → ∞) and in the direction of decreasing x, toward
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x → 0. What was a source dipole in the original boundary-layer equation for y alone is now a sink

of probability density for the coalescence region boundary layer equation. Further analysis in this

region is unnecessary because the volume of the coalescence region ds = s2ds sin θdθ dφ ∼ O
�
Pe−2�,

which will not be the leading-order contribution to microviscosity integrals in the entire boundary

layer region, whose volume scales as O
�
Pe−1�.
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Appendix C

Large Péclet Boundary-Layer

Analysis for Small Probes (λ � 1)

As λ → ∞ the growth of the boundary layer thickness on the rear face of the probe particle

becomes more and more rapid, as was shown in Figure 2.9. In the limit of infinitesimally small

probe particles, the boundary layer thickness Y diverges at µ = 0, indicating the similarity solution

is no longer valid for both the anterior and posterior face of the probe. Physically, in the limit

λ → ∞, bath particles on the anterior face of the probe that diffuse radially outward will exit the

boundary layer to reenter the advection-dominated region. The streamlines from the infinite Péclet

outer solution will advect the bath particle right back inside the boundary layer; the relative velocity

along the line of centers owing to advective motion is O (1). Once we reach µ = 0 and pass into the

posterior face of the probe particle, any diffusive motion normal to the surface that takes the bath

particle outside of the thin boundary layer will cause it to advect away from the probe particle as

it no longer hydrodynamically “sees” the probe. In this appendix, we approach the boundary layer

solution for the equilibrium microstructure for infinitesimally small probe particles and find that a

boundary layer solution exists and is valid for only the anterior face of the probe particle, much like

what was the case for the boundary layer solution for the steady microstructure in the absence of

hydrodynamic interactions presented in Appendix D of the work by Khair and Brady [29].

We begin by recognizing that the outer solution for the advection-dominated suspension mi-

crostructure given in Equation B.9 takes on the limiting form as the radial separation between the

probe and bath particle approaches the lubrication regime

g0 = Cξ−1 as ξ →0 (C.1)

In order for lubrication interactions to be significant in the limit λ � 1, the dimensionless surface

separation ξ must be the smallest length scale in the problem, even more so than the probe radius,

and hence the product λξ should be less than unity. The matching condition for the boundary layer



76

problem, in which advection balances diffusion, as the rescaled radial boundary layer coordinate

y ≡ Peξ grows to infinity is thus

g0 = Pe Cy−1 as y → ∞ (C.2)

The constant C is size-ratio dependent, and is found to approach 2/λ for small probes as shown in

Figure 2.6. The governing differential equation inside the boundary layer expanded in powers of the

size ratio λ is

1

2
λ

�
∂

∂y

�
y

�
∂g

∂y
+ µg

���
+

1

2
λ0

�
∂

∂y

�
y

�
2
∂g

∂y
+ 3µg

���

+
1

2
λ−1

�
∂

∂y

�
y

�
∂g

∂y
+ 3µg

��
− 3

4

∂

∂µ

��
µ2 − 1

�
g
��

+ · · · = 0 (C.3)

The no-flux boundary condition, expanded in powers of the size ratio, is

1

2
λ

�
y

�
∂g

∂y
+ µg

��
+
1

2
λ0

�
y

�
2
∂g

∂y
+ 3µg

��
+
1

2
λ−1

�
y

�
∂g

∂y
+ 3µg

��
+· · · = 0 at y = 0. (C.4)

We expand the suspension microstructure inside the boundary layer in powers of Pe and λ,

g0 (y, µ; Pe, λ) = Pe
�
λg0 (y, µ) + λ0g1 (y, µ) + λ−1g2 (y, µ) + · · ·

�
+O

�
Pe0

�
. (C.5)

The choice of allowing the largest term in the perturbation expansion to be O (Peλ) is known with

some foresight: we will be unable to match to the outer solution until the term g2 – both g0 and g1

are found to decay exponentially with increasing y. Because the prefactor C = 2/λ, we know that

the prefactor for the function g2 should scale as Peλ−1. The governing equation for g0 is obtained by

substituting Equation C.5 into C.3 and keeping only the largest terms, i.e. those of order O
�
Peλ2

�
,

∂

∂y

�
y

�
∂g0
∂y

+ µg0

��
= 0. (C.6)

The general solution to Equation C.6 has the following functional form:

g0 = A0 (µ) exp (−µy) . (C.7)

This solution satisfies the no-flux boundary condition at y = 0 and decays to zero outside the

boundary layer as y → ∞ as it should with no terms of O (Peλ) in the outer solution. To determine

the coefficient A0 (µ), we must progress further in the perturbation expansion in λ. The governing



77

equation for g1 is obtained from terms of order O (Peλ) from equation C.3,

∂

∂y

�
y

�
∂g1
∂y

+ µg1 +A0 (µ)µ exp (−µy)

��
= 0. (C.8)

Knowing the general solution for g1 does not yet allow us to evaluate the functional form of A0 (µ),

as the tangential advection terms are another order of λ smaller. The general solution for g1 also

introduces another constant A1 (µ) that is yet to be determined,

g1 = (A1 (µ)− µyA0 (µ)) exp (−µy) . (C.9)

We see that, like g0, this solution decays to zero outside of the boundary layer to satisfy the matching

criterion. In solving the governing equation for g2, we will be able to determine the coefficient A0,

∂

∂y

�
y

�
∂g2
∂y

+ µg2 +
�
µA1 − µ2yA0

�
exp (−µy)

��
=

3

4

∂

∂µ

��
µ2 − 1

�
A0 (µ) exp (−µy)

�
. (C.10)

We can integrate this expression once with respect to y, introducing a third integration constant

A2 (µ),

y

�
∂g2
∂y

+ µg2 +
�
µA1 − µ2yA0

�
exp (−µy)

�
= −3

4

∂

∂µ

��
µ2 − 1

�
A0

µ
exp (−µy)

�
+A2 (µ) . (C.11)

In order to satisfy the no-flux boundary condition, the right-hand side of Equation C.11 must equal

zero at hydrodynamic contact (y = 0). Thus, we can relate A0 (µ) to the latest introduced integration

constant A2 (µ) and a constant α,

A0 (µ) =
µ

µ2 − 1

�ˆ
4

3
A2 (µ) dµ+ α

�
. (C.12)

To determine the coefficient A2 (µ), we must continue to solve for g2 and match to the outer solution.

Solving Equation C.11 for g2, we find,

g2 =
�
B∗

0 (µ) +B∗
1 (µ) ln y +B∗

2 (µ) y +B∗
3 (µ) y

2
�
exp (−µy) +A2 (µ)

Ei (µy)
exp (µy)

, (C.13)

where we have introduced the coefficients B∗
0 −B∗

3 for compactness. The coefficient B∗
0 is simply the

last integration constant, and the remaining coefficients are combinations of µ, A0 (µ), and A1 (µ):

B∗
1 (µ) = −3

4

d

dµ

�
µ2 − 1

µ
A0 (µ)

�
, (C.14)

B∗
2 (µ) =

3

4

µ2 − 1

µ
A0 (µ)− µA1 (µ) , (C.15)
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and

B∗
3 (µ) =

µ2

2
A0 (µ) , (C.16)

The function Ei (µy) is the exponential integral. For large argument, the ratio Ei (µy) / exp (µy)

approaches (µy)−1 + O
�
(µy)−2

�
. All other terms in g2 decay exponentially quickly with large y,

rather than algebraically. Thus, the limit of Peλ−1g2 (y, µ) for large y is

lim
y→∞

Peλ−1g2 (y, µ) ∼ Peλ−1A2 (µ) (µy)
−1 . (C.17)

In order to satisfy the matching criterion in Equation C.2 and knowing that C = 2/λ, we are able

to determine that the coefficient A2 (µ) must equal 2µ. We may now determine the function A0 (µ)

A0 (µ) =
µ

µ2 − 1

�
4

3
µ2 + α

�
. (C.18)

In order to prevent the boundary-layer solution from becoming singular along the line of forcing

(µ = 1), the constant of integration α must be equal to −4/3. The leading order boundary-layer

solution is thus

g0 (y, µ; Pe, λ) = Peλ
�
4

3
µ exp (−µy)

�
+O (Pe) . (C.19)

The Brownian contribution to the intrinsic microviscosity ηBi resulting from this boundary layer

solution scales like λ2Pe−1, with the two powers of λ arising from the magnitude of the leading

order boundary-layer solution and the magnitude of the divergence of the relative mobility near

hydrodynamic contact. However, in order for the hydrodynamic mobility functions perpendicular

to the line of centers, i.e. M and H, to adopt the asymptotic form of 3/4λ for the entirety of the

compression boundary layer, the Péclet number must be greater than λeλ. Thus, the magnitude of

the Brownian contribution to the intrinsic microviscosity is negligible even for small probes in the

limit of strong forcing.

Recall that the hydrodynamic contribution to the intrinsic microviscosity ηHi is

ηHi = − 3

4π

�
1 + λ−1

2

�3 ˆ
s≥2

g0 (s) (M∗
11 − I) : uu ds,

and that when the bath particle resides in the compression boundary layer, the probe particle’s self

mobility must be O
�
λ−1

�
as a force applied to itself must translate both the probe and the large bath

particle. The hydrodynamic contribution to the intrinsic microviscosity arising from the boundary

layer on the anterior face of the probe is simply ηHi = λ. Note that Davis and Hill predicted [16],

for a fore-aft symmetric microstructure at infinite Pe, i.e. no Brownian motion whatsoever, that

the intrinsic microviscosity for small probes with full consideration of hydrodynamic interactions

is ηi = 2λ, consistent with the answer derived in this appendix. Thus, we predict a small probe
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forced through a dispersion at a large-but-finite Péclet number will still have an O (λ) perceived

microviscosity. Interparticle interactions are necessary to explain how interpreted microviscosities

for small probes could drop to O (1).
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Appendix D

Microviscosity contributions for

various excluded annulus parameters

In this appendix, we compile the microviscosity contributions as a function of Péclet number for

fine bath-to-probe particle size ratios ranging from λ = 1/8 to λ = 8. Results for excluded annulus

parameters ranging from ∆ = 10−5 to ∆ = 1 are presented. Some features of note include the scaling

of the interparticle contribution with the excluded-annulus parameter ∆, a decreasing extent of force-

thickening from the hydrodynamic contribution once probe and bath particle configurations within

the lubrication limit are disallowed by the excluded annulus potential, and nonmonotonicity in the

Brownian contribution as a function of particle size ratio λ for O (1) excluded annulus parameters.

The same legend conventions apply to each plot, with hydrodynamic, Brownian, interparticle, and

total intrinsic microviscosity contributions denoted by red, blue, green, and black, respectively. Dark

symbols are results computed by the Legendre polynomial method and light symbols are calculated

from the discretized microstructure of the finite difference scheme. Both methods are detailed in

section 2.5. In the event where space did not permit inclusion of a legend, please refer to the

microviscosity contributions at a different excluded-annulus parameter.
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Figure D.1: Hydrodynamic contribution to the intrinsic microviscosity ηHi as a function of Pe for an
excluded annulus parameter ∆ of 10−5.

10− 1 100 101 102 103
0. 0

0. 5

1. 0

1. 5

2. 0

2. 5

Figure D.2: Hydrodynamic contribution to the intrinsic microviscosity ηHi as a function of Pe for an
excluded annulus parameter ∆ of 10−4.
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Figure D.3: Hydrodynamic contribution to the intrinsic microviscosity ηHi as a function of Pe for an
excluded annulus parameter ∆ of 10−3.
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Figure D.4: Hydrodynamic contribution to the intrinsic microviscosity ηHi as a function of Pe for an
excluded annulus parameter ∆ of 10−2.
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Figure D.5: Hydrodynamic contribution to the intrinsic microviscosity ηHi as a function of Pe for an
excluded annulus parameter ∆ of 10−1.
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Figure D.6: Hydrodynamic contribution to the intrinsic microviscosity ηHi as a function of Pe for an
excluded annulus parameter ∆ of 100.
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Figure D.7: Brownian contribution to the intrinsic microviscosity ηBi as a function of Pe for an
excluded annulus parameter ∆ of 10−5.
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Figure D.8: Brownian contribution to the intrinsic microviscosity ηBi as a function of Pe for an
excluded annulus parameter ∆ of 10−4.
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Figure D.9: Brownian contribution to the intrinsic microviscosity ηBi as a function of Pe for an
excluded annulus parameter ∆ of 10−3.
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Figure D.10: Brownian contribution to the intrinsic microviscosity ηBi as a function of Pe for an
excluded annulus parameter ∆ of 10−2.
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Figure D.11: Brownian contribution to the intrinsic microviscosity ηBi as a function of Pe for an
excluded annulus parameter ∆ of 10−1.
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Figure D.12: Brownian contribution to the intrinsic microviscosity ηBi as a function of Pe for an
excluded annulus parameter ∆ of 100.
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Figure D.13: Interparticle contribution to the intrinsic microviscosity normalized by the excluded-
annulus parameter ηPi /∆ as a function of Pe for ∆ of 10−5.
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Figure D.14: Interparticle contribution to the intrinsic microviscosity normalized by the excluded-
annulus parameter ηPi /∆ as a function of Pe for ∆ of 10−4.



88

10− 1 100 101 102 103
0. 0

2. 0

4. 0

6. 0

8. 0

10. 0

Figure D.15: Interparticle contribution to the intrinsic microviscosity normalized by the excluded-
annulus parameter ηPi /∆ as a function of Pe for ∆ of 10−3.
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Figure D.16: Interparticle contribution to the intrinsic microviscosity normalized by the excluded-
annulus parameter ηPi /∆ as a function of Pe for ∆ of 10−2.
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Figure D.17: Interparticle contribution to the intrinsic microviscosity normalized by the excluded-
annulus parameter ηPi /∆ as a function of Pe for ∆ of 10−1.
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Figure D.18: Interparticle contribution to the intrinsic microviscosity normalized by the excluded-
annulus parameter ηPi /∆ as a function of Pe for ∆ of 100.
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Figure D.19: Total intrinsic microviscosity as a function of Pe for an excluded annulus parameter ∆
of 10−5.
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Figure D.20: Total intrinsic microviscosity as a function of Pe for an excluded annulus parameter ∆
of 10−4.
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Figure D.21: Total intrinsic microviscosity as a function of Pe for an excluded annulus parameter ∆
of 10−3.
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Figure D.22: Total intrinsic microviscosity as a function of Pe for an excluded annulus parameter ∆
of 10−2.
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Figure D.23: Total intrinsic microviscosity as a function of Pe for an excluded annulus parameter ∆
of 10−1.
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Figure D.24: Total intrinsic microviscosity as a function of Pe for an excluded annulus parameter ∆
of 100.
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Figure D.25: Zoomed-in view of total intrinsic microviscosity for small probes as a function of Pe
for an excluded annulus parameter ∆ of 100.
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