A Caltech Library Service

A model for stress-driven diffusion in polymers


Cox, Robert William (1988) A model for stress-driven diffusion in polymers. Dissertation (Ph.D.), California Institute of Technology.


Penetration of solvents into polymers is sometimes characterized by steep concentration gradients that move into the polymer and last for long times. The behavior of these fronts cannot be explained by standard diffusion equations, even with concentration dependent diffusion coefficients. The addition of stress terms to the diffusive flux can produce such progressive fronts. Model equations are proposed that include solvent flux due to stress gradients in addition to the Fickian flux. The stress in turn obeys an concentration dependent evolution equation.

The model equations are analyzed in the limit of small diffusivity for the problem of penetration into a semi-infinite medium. Provided that the coefficient functions obey certain monotonicity conditions, the solvent concentration profile is shown to have a steep front that progresses into the medium. A formula governing the progression of the front is developed. After the front decays away, the long time behavior of the solution is shown to be a similarity solution. Two techniques for approximating the solvent concentration and the front position are presented. The first approximation method is a series expansion; formulas are given for the initial speed and deceleration of the front. The second approximation method uses a portion of the long time similarity solution to represent the short time solution behind the front.

The addition of a convective term to the solvent flux is shown to raise the possibility of a traveling wave solution. The existence of the traveling wave solution is shown for certain types of coefficient functions. The way the initial front speed evolves onto the traveling wave speed is sketched out.

Item Type:Thesis (Dissertation (Ph.D.))
Subject Keywords:Applied Mathematics
Degree Grantor:California Institute of Technology
Division:Engineering and Applied Science
Major Option:Applied Mathematics
Thesis Availability:Restricted to Caltech community only
Research Advisor(s):
  • Cohen, Donald S.
Thesis Committee:
  • Unknown, Unknown
Defense Date:11 December 1987
Record Number:CaltechTHESIS:01232013-124105465
Persistent URL:
Default Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:7429
Deposited By: Dan Anguka
Deposited On:23 Jan 2013 21:16
Last Modified:23 Jan 2013 21:16

Thesis Files

[img] PDF - Final Version
Restricted to Caltech community only
See Usage Policy.


Repository Staff Only: item control page