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Abstract 

Penetration of solvents into polymers is sometimes characterized by steep concen

tration gradients that move into the polymer and last for long times. The behavior 

of these fronts cannot be explained by standard diffusion equations, even with con

centration dependent diffusion coefficients. The addition of stress terms to the 

diffusive flux can produce such progressive fronts. Model equations are proposed 

that include solvent flux due to stress gradients in addition to the Fickian flu.,x. 

The stress in turn obeys an concentration dependent evolution equation. 

The model equations are analyzed in the limit of small diffusivity for the problem 

of penetration into a semi-infinite medium. Provided that the coefficient functions 

obey certain monotonicity conditions, the solvent concentration profile is shown 

to have a steep front that progresses into the the medium. A formula governing 

the progression of the front is developed. After the front decays away, the long 

time behavior of the solution is shown to be a similarity solution. Two techniques 

for approximating the solvent concentration and the front position are presented. 

The first approximation method is a series expansion; formulas are given for the 

initial speed and deceleration of the front. The second approximation method uses 

a portion of the long time similarity solution to represent the short time solution 

behind the front . 

The addition of a convective term to the solvent flux is shown to raise the possibility 

of a traveling wave solution. The existence of the traveling wave solution is shown 

for certain types of coefficient functions. The way the initial front speed evolves 

onto the traveling wave speed is sketched out. 
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Chapter 1 

Prolegomenon 

TRANSPORT OF A SOLVENT in a polymer is sometimes characterized by a sharp 

diffusion front which moves with near-constant speed. As a result, the amount of 
I 

solvent taken up is nearly proportional to time. In the polymer science literature, 

this behavior is called Case II diffusion - the term Case I diffusion (or Fickian 

diffusion) is reserved for systems that are adequately modeled by a standard diffu-

sion equation. In Case I diffusion, the amount of solvent taken up by the medium 

is proportional to (time )112
. Some nice experimental results illustrating the Case II 

phenomenon are given by Thomas and 'Windle [11]. 

One proposed explanation for Case II diffusion is that the Fickian flux of solvent 

must be supplemented by a flux due to pressure gradients. In this model, the 

polymer is deformed by the intrusion of the solvent, and so stress builds up in the 

polymer. This stress in turn reacts back on the penetrant, tending to squeeze it 

from regions of high stress to regions of low stress. 

Let J{ and 'E denote the solvent concentration and polymer stress; let ~ and T be 

the space and time coordinates. Define the chemical potential of the solvent by J.L = 

;~ , where U is the internal energy of the system at a given point(~, r ). Then near

equilibrium transport theory (see [7, Chapter III] or [10], for example) says that the 

flux J of solvent is given by J = -D*K~, where D* is the transport coefficient 

for solvent molecules in the polymer medium and ~ is the spatial coordinate. For 

ideal thermodynamic behavior, and ignoring stress effects, J.L( K) oc log J(, and the 
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()J( 
Fickian flux results: J ex - 0~ . Non-ideal thermodynamic behavior is certainly 

possible, but as long as J.L = J.L(K), all that results is having the diffusion coefficient 

depend on K: that is to say, nonlinear diffusion, but still just Case I. 

Pressure on the solvent from the material stress will increase the system's internal 

energy and so its chemical potential. This is the basis for the theory of Case II 

diffusion of Thomas and Windle [12): J.L = J.Lo(K) + a.E, where a is some constant. 

Then the flux is given by J = -D(K) ~; - F(K) ~~, where F (K ) =aD* ·](. In 

what follows, I will allow F(K) to depend almost arbitrarily on K. 

A much more elaborate and thermodynamically based justification of stress-aided 

:iffusion is given by Stanley (10]. Another author that has used the idea of stress 

as a driving force for Case II diffusion is Durning (5]. 

The addition of :E as a dependent variable means that an equation for its evolution 

is needed. A general model for this is 

~~ + B (K ):E = B (K )G(K, ~~); 

here, B ( K ) and G( K, 0::) depend on the properties of the solvent and the polymer. 

This general model is an amalgamation of the Maxwell viscoelastic model and the 

Kelvin-Voigt elastic model (see (3, Chapter 1], for example). In (5], Durning takes 

G to be a linear function of a;: only. 'With this choice, he fails to get true Case II 

behavior. In this thesis, I will take the opposite extreme and assume that G depends 

only on K and not on ~~. This model means that the medium must be such as 

to support stresses at equilibrium. The functions B( K) and G( K ) will be allowed 

to be almost arbitrary. 
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Thus, the model equations that this thesis revolves around are 

where 

8K 
8r 
o'E 
or 

a [ aK a'E] ae D(K )&[ + F (K ) ae 
= B(K )[G(K ) - 'E], 

e - spatial coordinate, 

r time coordinate, 

K solvent concentration, 

'E material stress, 

D diffusion coefficient, 

1/ B stress relaxation time, and 

F , G non-negative functions of K. 

(1.1) 

(1.2) 

In a more abstract sense, it is not necessary to interpret 'E literally as "material 
~ 

stress." It is just a mechanism for allowing past values of K to influence the 

diffusion process. Since Eq.(1.2) is really just an or dinary differential equation for 

'E at each point C it quite easily can be solved in terms of](. Assuming the initial 

condition 'E(e, 0) = 0, then 

This result can then be substituted back into Eq.(1.1) to eliminate all reference 

to "stress." Of course, the result is an integra-differential equation, but it does 

explicitly show the dependence on past values of K: 

This is the straightforward nonlinear generalization of Eq.(27) of Aifantis [1), who 

considers various model equations for stress-assisted diffusion. 

In Chapters 2-4, I will analyze a penetration problem based on Eqs.(l.1,1.2) where: 
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• D(K), F(K), B(K), and G(K) are smooth functions of ]{ which will be 

required to satisfy two inequality constraints; and 

h d nl D(Ko)Ko . ll h }( . . l 
• t e imensio ess constant c = F(Ko)G(Ko) 1s sma , w ere 0 1s a typ1ca 

solvent concentration value. 

Chapter 2 will present the basic initial-boundary value problem and scale it to a 

dimensionless form (thus bringing in c). The assumption that c ~ 1 'means that 

the stress controls the penetration of the solvent - thus the term "stress-driven 

diffusion." 

Chapter 3 will show that the solution to this problem has a steep front which pro-

gresses into the medium. A series method for calculating the position of this front 

and the solvent concentration behind the front will be developed in Section 3.2. 

The transition layer at the front is studied in Section 3.3. The role of the first 

inequality constraint on the coefficient functions will be illuminated there. 'What 

happens when this condition is violated is the subject of Section 3.4. In Section 3.5, 

the initial behavior of the solution (before the front develops) is remarked upon. 

The asymptotic nature of the solution as T - oo (after the front decays away) is 

the subject of Chapter 4. In Sections 4.1 and 4.2, K (e, r) is shown to asymptote 

to a Uvr type of similarity solution. Section 4.3 discusses what happens when 

the second inequality constraint on the coefficient functions is violated. Section 4.4 

presents an interesting method of using the long time similarity solution to approx-

imate the short time behavior, including the front. 

In Chapter 5, I will modify Eq.(1.1) by adding a convective term ( -[A(K)KJ{) to 

the right hand side. This effect might arise if the penetrant can actually flow inside 

the medium - as it would, for example, if microscopic channels (crazes) open up 



-5-

due to stress. Frisch, Wang, and Kwei [6] propose the use of such a convective 

term to explain Case II diffusion. This new term can lead to the existence of 

traveling wave solutions, which will stabilize the front for all times- the traveling 

wave replaces the similarity solution as the long time behavior. Section 5.1 shows 

the existence and uniqueness of the traveling wave under some assumptions on 

the coefficient functions (especially on A( K) ). The modifications necessary to the 
I 

analysis of Chapter 3 for the short time behavior are presented in Section 5.2. 

Finally, Section 5.3 discusses the interesting things that can happen to K ( ~, r) 

when A is allowed to depend on L: as well as on K. 

The main tools used in this thesis are standard mathematical appliances. They 

include singular perturbation analysis with "inner" and "outer" regions, power 

series expansions, transformation to similarity variables, and numerical solutions 

of ordinary and partial differential equations. Throughout, various figures present 

the results of the computations. Since the numerical methods are fairly standard 

and do not in themselves constitute the main line of research, I have relegated their 

discussion to Appendix A. 
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Chapter 2 

Setting Up the Problem 

THE MODEL EQUATIONS under consideration in Chapters 2- 4 are 

[D(K)K€ + F(K)L:€]€ 

B(K) [G(K)- L:] . 

(2.1) 

(2.2) 

In this chapter, these equations will be scaled to dimensionless form. The initial

boundary value problem that is the focus of this work will be presented, and several 

restrictions on the coefficient functions will be imposed. 

The flux of solvent is denoted by J; it is given by J = -D(K)K€- F(K)L:€. Then 

Eq.(2.1) can also be written asK.,.= -J€. This is the usual law of conservation of 

solvent, saying that the solvent only piles up in places where the flux in and the 

flux out aren't balanced. 

A number of restrictions are put on the coefficient functions D(K), F(K), B(K), 

and G(K). They are required to be smooth- at least twice continuously differ

entiable. D(K) and B(K) must be positive for all K 2: 0. For the most part I will 

assume that F(O) = 0. I will always assume that G(O) = 0. If L: is interpreted as 

stress, then F (O) = 0 is like saying "you can't squeeze water from a dry sponge" -

that is, no stress gradient L:€, however large, can cause a flux of solvent where there 

is no solvent. If F (O) > 0, then K(~, r ) might become negative at some point when 

a previously established stress gradient continues to force solvent out of a region 

even after all the solvent is gone (I have observed this in numerical solutions). The 

condition G(O) = 0 says that if there is no solvent present, the medium just relaxes 
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back to an unstressed state. H there never was any solvent at a particular location, 

then the stress there is zero. 

Monotonicity Requirements 

Two additional conditions are put on the coefficient functions. The first is 

__!!__ (F(K)G(K)B(K)) > . 
d]( J{ - 0 l (2.3) 

in other words, F(I<)G(K)B(K)/ K is non-decreasing. The role of this condition 

and what happens when it is violated will be discussed in detail in Sections 3.3 

and 3.4. For now I will just mention that it is necessary for the solution to develop 

a steep front. 

The second monotonicity condition is 

D(K) + F(K)G'(K) > 0. (2.4) 

I call this a "monotonicity condition" because it will imply that the auxiliary func-

tion h (introduced in Eq.( 4.4) , far below) is increasing. This condition arises in 

the analysis of the long time behavior of the solution, as will be seen in Chapter 4. 

·when this condition is violated, the analysis of the asymptotic nature of the solu-

tion is made much more complicated. The difficulties that arise are sketched out 

in Section 4.3. 

Initial Conditions and Boundary Values 

The initial-boundary value problem to be analyzed comprises Eqs.(2.1,2.2) and the 

conditions 

K(e, o) = ~c~, o) = o 

K(O,r) = Ko 

fore> 0 

forT> 0. 

(2.5) 

(2.6) 
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Thus, at time T = 0 there is no solvent or stress in the material and the left edge 

of the material is suddenly exposed to an infinite reservoir of the solvent. 

I will usually assume the material to be semi-infinite in extent. The case of a 

fini te medium will be considered briefly in Section 4.3. In that case, a right edge 

boundary condit ion is needed: 

K (L,T) = 0 forT> 0 , 

where L is the thickness of the medium. This boundary condition says that the 

right edge of the medium is a perfect sink for the solvent. 

A different plausible boundary condition at ~ = L is J (L , T) = 0. This says that 

no solvent can pass through the right edge. It would be appropriate if the right 

edge is an impermeable membrane or if the true problem occurs in a domain of 

length 2L and is symmetric about the center. This alternat ive is not studied in 

this thesis. 

Scaling 

There are four quantities which can be scaled in Eqs.(2.1- 2.6): K , E, ~~ and T. 

There are five constants present in the equations: D(Ko), B (K 0 ), K 0 , F (K 0 ), 

and G(K 0 ) . Thus, the non-dimensional form of the equations will contain one 

parameter - two if the thickness Lis finite. For various reasons, I have chosen to 

put this parameter in the position occupied by "D(K )" in Eq. (2.1). 

Let K 

E 

~ 

T 

K 0 · C (so that C(O, t ) = 1), 

G(K 0 ) · u (so that u(O, t )--+ 1 as t --+ oo ), 

c.p · x ( c.p a constant), and 

t j B (K 0 ) (natural scaling of time); 
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here, C and a are the dimensionless concentration and stress; x and t are the 

dimensionless space and time variables. Then Eqs. (2.1,2.2) become 

ac 
at 

a a 

at 

~ [ D(Ko ) . D(K 0C) . ac + F(K 0 )G(Ko ) . F(KoC) . aal 
ax B(I<o)r.p 2 D(Ko) ax B (K 0 )K 0 r.p2 F(Ko) ax 

B (K 0C) . [G(K 0C) _ l 
B(Ko) G(Ko) a 

Define the following constants and functions: 

(
F (Ko)G(Ko) ) 

112 

r.p B (Ko)Ko 

d(C) 

g(C) 

D(K0C) 
D(Ko ) 

G(K0C) 
G(Ko) 

f (C) 

(3(C) 

D(Ko)Ko 
F (Ko)G(Ko) 

F(KoC) 
F(Ko) 

B (K 0C) 
B (Ko) 

Then the non-dimensional system corresponding to Eqs. (2.1-2.6) is: 

[Ed( C)Cx + f ( C)a x]x 

(3(C) [g(C)- a] , 

with the initial and boundary conditions 

C(x,O) = a(x,O) = 0 for 0 <X< e 

C(O, t) = 1 and C(f, t) = 0 fort > 0, 

where e = L jr.p; except in Section 4.3, e = oo. 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

The coefficient functions have been scaled so that d(1) = /(1) = (3(1) = g(1) = 1. 

I am assuming that d( C) and (3( C) are positive for all C. I will usually be assuming 

that f (O) = 0. The condition g(O) = 0 must always hold. The first monotonicity 

condition Eq.(2.3) now becomes 

!!:.__ ( ! ( C)g( C)(3( C)) > 0 . 
dC c - ' (2.11) 
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in other words, f(C)g(C)f3(C)/C is non-decreasing. Because this function appears 

so frequently in the analysis below, I have given it a name of its own: 

k( C) = !( C)g~)f3( C) . (2.12) 

The second monotonicity condition Eq.(2.4) is scaled to become 

Ed( C)+ f(C)g'(C) > 0. (2.13) 

If € is taken to be small (see below), this condition effectively means that g'(C ) ~ 0, 

or that g( C) is non-decreasing in C. On the other hand, in the places where I apply 

Eq.(2.13), I usually don't need to have € « 1. In those cases, a large enough E can 

compensate for g'( C) < 0. 

These two monotonicity conditions are independent of each other in the sense that 

it is perfectly possible to have coefficient functions that satisfy just one condition, 

both conditions, or neither condition. 

Size of € 

Since I chose to name the parameter in Eq.(2.7) "E," it is clear that I intend to con

sider it small. The reason for this is that large € makes the system Eqs. (2.7-2.10) be 

a weakly perturbed diffusion equation and nothing interesting happens. For small 

E, steep fronts develop in C and propagate with (initially) near-constant speed. 

This is the type of behavior which I call "interesting" and seek to explain below. 

Most of the results in Chapter 4 do not depend on E being small. They actually 

only require that Eq.(2.13) hold. 
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Chapter 3 

Short Time Behavior 

I N THIS RATHER LENGTHY CHAPTER, I will discuss the short time behavior of 

the nonlinear system given by Eqs.(2. 7-2.10). By "short time," I mean for times 

t ~ 0(1). On such a time scale, the solution C(x, t) has a steep front which pro

gresses into the medium. A power series method for approximating the solution 

behind the front will be developed and compared with numerical solutions. Stretch

ing and matching will be used to derive the equations which govern the structure 

of the front. The crucial role of Eq.(2.11) in the formation of the front will be 

seen in these equations. (Eq.(2.13) does not come into this chapter at all.) For 

some special cases of the coefficient functions, the layer equations can be solved in 

closed form, but even for general coefficients satisfying Eq.(2.11), the structure of 

the front can be analyzed. 

3.1 Numerical Solutions 

Most of the numerical solutions presented herein have been run with d( C) = 
f3(C) = 1, and with g(C) = C. Only f(C) has been varied. T he software 

used to generate the plots (described in Appendix A) does allow for general co

efficients. As will become apparent in the analysis, the crucial function is k( C) = 
f(C)g(C)f3(C)/C. With the restrictions given earlier, k(C) = f(C), and so only 

varying f( C) will not terribly restrict the range of solutions that can be obtained. 

Figure 3.1 shows a numerical solution of Eqs.(2.7-2.10) with f (C) =C. Successive 

curves represent C and u at progressively later times. The most prominent feature 
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is the propagation of a shock-like front at near-constant speed. Note also that 

e7 goes to zero just at the front location. This indicates that behind the front , 

solvent transport is "stress-driven" (the flux is dominated by - f ( C)e7 x rather than 

by -Ed( C )Cx) and in the front is a layer where diffusive and stress effects balance. 

Other choices for the coefficient functions f( C), g( C), and {3( C) that satisfy the 

strict inequality in Eq.(2.11) give very similar results. When Eq.(2.11 ) is an equal-

ity, then f (C )g(C)f3(C)- Cor k(C) = 1; the linear problem with f (C) = 1 is an 

example. Figure 3.2 shows a numerical solution of this linear problem. The major 

difference from Fig. 3.1 is that the front "slumps down" much more. Part of the 

the explanation for this is that when k( C) = 1, the front thickness is 0 ( E112 ); oth

erwise, it is O(E). When Eq.(2.11) fails to hold altogether, then no front develops 

at all. These conclusions will be drawn later in Section 3.3, where the equations 

which determine the structure of the front are derived and analyzed. 

3.2 Solution A way from the Front 

The numerical results suggest that the zero-th order in f. "outer" solution (not 

considering the details inside the front ) of the system Eqs.(2.7- 2.10) has the form 

Cauter { Co(x,t) 0 <X< X(t) 

0 X> X(t) 

uo.,~ = { 
e7o(x, t) 0 <X < X (t) 

0 X > X (t) 

where X ( t) is the location of the front. The ansatz of this section is that Co is 

discontinuous at x = X (t), C7Q is continuous there, and Oe7o/8x is discontinuous 
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at the front . These conditions were arrived at by considering Fig. 3.1. 

To zero order in € , the "outer" equations are thus 

a co 
at 

aao 
at 

~ [t(Co) aaol 
ax ax 

= ,B(Co) [g(Co ) - ao], 

with the initial and boundary conditions 

Co(x, 0) = ao(x, 0) = 0 

Co(O, t ) = 1 

ao (X (t), t ) = 0 

X (O) = 0. 

Equation for Evolut ion o f X 

for x > 0 

fort> 0 

fort> 0 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

An equation is also needed for the evolution of X( t ). This can be provided in 

two equivalent ways. The more intuit ive is by flux balance: whatever the flux J 

is at x = X (t) - 0, as the solvent "pours over the edge," the front will extend in 

proportion to J. That is, in a small time step dt, the amount of solvent that "pours 

over the edge" is J (X, t) dt; this must be balanced by the new solvent that appears 

by motion of the front, Co( X , t)X dt. Thus conservation of solvent gives, recalling 

the definition of J , 

· aao 
Co (X (t), t ) X (t) = - f (Co (X(t), t)) ax (X (t), t) . (3.7) 

Note that there is no consumpt ion of the solvent in order to advance the front -

if C were temperature, I would say that there is no latent heat. This need not 

always be the case; for an example where advancing the front consumes solvent, 

see Cohen and Goodhart [4]. 
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The more mathematical way to derive Eq.(3.7) is to integrate Eq.(3.1) with respect 

to x from X( to)- o to X(to) + o, where t0 is some fixed time and o is small: 

{) X(to)+S [ {)qo]X(to)H 
8t 1 Co(x, t) dx = f(C0 )-

0 
. 

X(to)-6 X X(to)-6 

Evaluating this for small o and recalling that Co and qo are identically zero ahead 

of the front gives Eq.(3.7) again. 

Equation (3.7) is the necessary equation for the evolution of X(t), hue it is more 

useful when cast into a different form. Differentiate Eq.(3.5) with respect to t: 

0 - ! [qo(X(t), t)] 

. {)q 0 {)q 0 
X ox (X, t) + at(X, t) 

. O(Jo 
- X ax (X, t) + ,B(Co(X, t))[g(Co(X, t)- q0 (X, t)]. 

Recalling again that q 0 (X, t) = 0 gives 

{)qo (X t) = _g(Co(X, t)_),B(Co(X, t)). (3.S) 
ox ' X(t) 

Plugging this into Eq.(3.7) gives the key result: 

~~ = [!(Co( X, t))g~~~,tti)P( Co( X, t))r = jk(Co(X, t)). (3.9) 

Here is the first indication of the role that the function k( C) plays in this problem. 

The condition in Eq.(2.11) says that as C(X, t) drops down, so does the speed of 

the front. Apparently, by reversing Eq.(2.11 ), the front could be made to accelerate 

instead. This does not happen; instead, the effect of reversing the inequality in 

Eq.(2.11) is to destroy the existence of the front. This subject is discussed in 

Section 3.4. 

Equations (3.1-3.6,3.9) are the outer equations to be solved. Of particular interest 

is the location of the front, X(t). Observe that k(C) = 1 seems to be a special 
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case, as promised earlier, since then X(t) = t. More interesting facts about this 

special case will come up later. 

How Long Is "Short Time?" 

A closed form solution of the outer equations seems unlikely even for simple cases 

such as f(C) = g(C) = C, d(C) = f3(C) _ 1. (For the linear case J(C) = 1, 

g(C) = C, d(C) = f3(C) = 1, the closed form outer solution will be given in 

Section 3.3.) Nevertheless, qualitative information about the outer solution can 

be derived. In particular, its short time behavior will be given below. The outer 

solution can only be valid for a finite time, since when Co( X, t) shrinks to zero, 

Eq.(3.9) predicts that X = 0 (at least for k(C) = o(C) as C ~ 0). This would 

indicate that a steady-state situation develops, but in fact that is not what happens. 

The diffusive term ( <:.d( C)Cx)x prevents this when .e = oo - this will be shown in 

Chapter 4. Numerical solutions of the full system Eqs.(2.7-2.10) indicate that 

when Co( X, t ) ~ 0, the character of the solution changes but no steady state is 

reached unless f < oo. The long time behavior of Eqs.(2.7-2.10) will be discussed 

in Chapter 4. 

Initial Speed and Acceleration 

Evaluation of Eq.(3.9) at t = 0 and at the left edge, with C0 (o+, o+) = 1, implies 

X (O) = 1; that is, the front starts off with speed 1. The initial acceleration (or 

deceleration) can also be calculated: 

·· k'(Co(X,t)) [ · aGo aGo l 
X(t) = 2k(Co(X, t))l/2 X(t)a;-(X, t) +at( X, t) (3.10) 

At t = 0, X = 0, so Co = 1, and thus 

X(O) = ~k'(1) a~o (0, 0) = ~ [!'(1) + g'(1) + [3'(1) - 1) a~o (0, 0). (3.11) 
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This is fine, except that a~o (0, 0) is as unknown as X(O). All is not lost, however: 

I shall derive two new equations that include this new unknown, another new 

unknown, and then solve for all three unknowns at once. 

To get Eq.(3.9), I differentiated Eq.(3.5) with respect to t. Differentiate it twice 

this time: 

0 

d [ · aao l dt X ax (X,t)+.8(Co(X,t))g(Co(X,t))-.8(C0 (X,t))a0 (X,t) 

.. aao . 2a2ao . a 2ao 
X ax (X,t)+X ax2 (X,t)+X axat(X,t) (3.12) 

+ (.B(Co(X, t))g'(Co(X, t)) + .B'(Co(X, t))g(Co(X, t))] 

x [xa~o (X, t) + a~o (X, t)] 
To evaluate this at the origin, several simple calculations need to be made: 

Eq.(3.8) at t = 0 ==} a;:(O,O) = -1 

Eq.(3.2) at x = t = 0 ==} 
aao 
at(O,O) = 1 

a 
ax of Eq.(3.2) at X = t = 0 ==} ~:~(o,o) = [.8'(1) + g'(1)]a~0 (o,o) + 1 

a~o (0, 0) = 0. C(O, t) = 1 ==} 

Evaluation of Eq.(3.12) at t = 0 now gives 

.. a2ao aGo 
0 = -X(O) + axz (0, 0) + 2[.8'(1) + g'(1)] ax (0, 0) + 1. (3.13) 

This equation has introduced another unknown, viz., a;:~ (0, 0). The third equa

tion necessary to close the system comes from evaluating Eq.(3.1) at the origin: 

0 = J'(Co)a~0 (0,0)a;:(O,O) + j(Co)a;:~(O,O) 
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a;;~ (o, o)- f'(1) a~o (O, o). 

Putting Eqs.(3.11,3.13,3.14) into matrix-vector form gives 

1 0 -! (!'(1) + g'(1) + {3'(1)- 1] 
X(O) 

82ao (0 0) 
-1 1 2[g'(1) + {3'(1 )] 

0 1 -!'(1) 

Solving this system gives 

X(O) 

a2ao (0 0) -
8x 2 ' 

a~o(O,O) 

8x2 ' 

a~o (0, 0) 

!'(1) + g'(1) + {3'( 1)- 1 
1 + !'(1) + 3g'(1) + 3{3'(1) 

2J'(1) 
1 + !'(1) + 3g'(1) + 3{3'(1) 

2 

1 + !'(1) + 3g'(1) + 3{3'(1). 

(3.14) 

0 

-1 (3.15) 

0 

(3.16) 

(3.17) 

(3.18) 

The condition in Eq.(2.11) ensures that J'(1) + g'(1) + {3'(1)- 1 = k'(1) is non

negative, so X(O) is non-positive if the denominator 1 + J'(l) + 3g'(l) + 3{3'(1) 

is positive. I will assume that this is so - it does not follow from any previous 

assumptions. This new condition is equivalent to assuming that g'(l)+f3'(1) > -1. 

Thus the front slows down as it moves into the medium if k'(1) > 0. Below, 

I will show that if any derivative of k( C) is non-zero at C = 1 and if k( C) is 

non-decreasing (as assumed) , then the front slows down even if k'(1) = 0. 

Series Expansion 

It is clearly possible to continue in this vein, but the algebra becomes quite tedious 

and confusing. A better way is to look for a power series solution: 

00 p 

Co(x, t) = 1 + L L ApnXntp-n 
p=l n=l 
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ao(x,t) 
p=l n=O 

00 

X (t) = L EptP 0 

p=l 

Observe that Apa = 0 for all p > 0. This is because Co(O, t) = 1 Vt, so putting 

x = 0 into the series for Co must give a series in t only that is just = 1; thus, all 

the x0 tP terms must be zero for p > 0. Note also that a(O, t ) = 1 - e-t. The same 

reasoning now implies that Epa= ( -1)P- 1jp!. 

In terms of what has already been done, the following identifications can be made: 

An 8~o(O,O) 2 

1 + !'(1) + 3g'(1) + 3,8'(1) 

B10 8~o(O,O) +1 

Bn -
8;:co,o) -1 

B2o ~ fJ2ao (0 0) 1 
-2 f)t2 ' 2 

B21 
fJ2ao (0 0) 1 + ! '( 1) + g'(1) + ,8'(1) 
ax&t ' 1 + ! '(1) + 3g'(1) + 3,8'(1) 

B22 
182ao !'(1) 
2 fJx2 (0, 0) 1 + !'(1) + 3g'(1) + 3,8'(1) 

Et X(O) +1 

E2 ~X(O) 1 !'(1) + g'( 1) + ,8'(1) - 1 
- 2 1 + ! '(1) + 3g'(1) + 3,8'(1) 

0 

Plugging the series expansions into Eqs.(3.1,3.2,3.5,3.9) yields a set of equations 

for the coefficients { Apn, Bpn, Ep} which can be solved in succession. This set of 

equations is nonlinear since the underlying problem is nonlinear. However, correctly 

ordering them enables their solution to be accomplished by solving a sequence of 
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linear equations. This is exactly analogous to the fact that solving for X (O) only 

involved solving the linear system Eq.(3.15). For each P = 2, 3, ... , the next set 

of coefficients {Apn ,BP+I,n, EP+d is determined once {Ap-l,n, Bpn,E,} is k-nown 

for p = 1, 2, ... , P . 

Even with the power series formalism, t he algebra involved in calculating the next 

set of coefficients {A21 , A22, B311 B 32, B33, E3} is lengthy, although completely un-

ambiguous. I have carried out this process with the use of muMath, a symbolic 

computation program [13]. The general answer for the next six coefficients, ex-

pressed in terms of f'(1 ), g'(1), (3'(1), !"(1), g"(1), and (3"(1), is a very compli-

cated expression which is quite uninformative. A more useful way to present the 

result is to give the linear system which results. For any given set of coefficient 

functions, the solution can easily be evaluated numerically. T his is the next order 

analog to Eq.(3.15) : 

-1 -2!'(1) 0 0 6 0 A21 -4AnB2d'(1) + Aitf"(1) 

- !'(1) 0 0 2 0 0 A 22 - AuB2d'(1) 

0 - .-\'(1) 0 1 0 0 B31 -B22 + Auf3'(1 ) + ~Ai1 >."( 1 ) 

->.'(1) 0 2 0 0 0 B 32 -B21 - Auf3'(1) 

0 0 1 1 1 -1 B 33 -[B21 + 2B22JE2- i 
- k'(1) -k'(1) 0 0 0 6 E3 lA2 k"(1) 2 11 

where I have temporarily defined >.(C) _ (3(C)g(C) (to save space!). The first two 

equations above come from enforcing Eq.(3.1) to 0( x) and 0 ( t). The next two 

are derived by enforcing Eq.(3.2) to O(x 2
) and O(xt) . The fifth equation is the 

result of enforcing Eq.(3.5) to O(t3
) and the sixth equation comes from enforcing 

Eq. (3.9) to O(t2 ) . The value obtained for E3 by solving this system agrees with 

the numerical value of the O (t2
) term in Eq.(3.19) below. 
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When !'(1) + g'(1) + ,8'(1) = 1 (or k'(1) = 0), then X(O) = 2E2 = 0. In this special 

case, the general formula for E3 simplifies to 

This is just the last row of the above 6 x 6 system when k'(1) = 0. An alternative 

derivation is obtained by considering X2 = k( Co( X, t) ). Expanding both sides in a 
I 

Taylor series to O(t 2
) gives the result above- which also agrees with the numerical 

value for the O(t2
) term in Eq.(3.20) below. 

If k'(1) = 0, then the monotonicity of k(C) requires k"(1) ~ 0. If k"(1) < 0, then 

X (0) < 0, and so the front slows down as it moves into the medium. If k"(1) = 0, 

then a similar argument with higher derivatives leads to the same conclusion: the 

front always slows down if k( C) ¢ 1 and k'( C) 2:: 0. 

Specific Examples and Comparison with Numerical Results 

It turns out to be straightforward to carry out the power series expansion for any 

given f( C), g( C), and ,8( C). The reason is that at each step, numerical values are 

obtained for the coefficients. Proceeding to the next stage (higher order coefficients) 

merely involves manipulating numbers rather than increasingly unwieldy formulas. 

I have carried out the calculation of the power series for the case of Fig. 3.1, where 

f(C) = g(C) = C, and d(C)- ,B(C) = 1. The result for the frontal speed is 

X(t) = 1 19 2 121 3 337811 4 
1 - 5 t + 650 t - 33150 t + 767091000 t (3.19) 

17241361 5 8950276343963 6 

343715775000 t + 180711662148225000 t + .... 

The reason that I calculated so many terms was to make Eq.(3.19) a good approx-

imation for as long a time as possible. The calculations for the t 3 and higher terms 
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were carried out with the use of muMath (I certainly couldn't have done them by 

hand!). 

Figure 3.3 shows a plot of X (t) vs. t from the numerical calculations which lead 

to Fig. 3.1, as well as showing plots of the 2nd through 6th order Taylor series from 

Eq.(3.19). This figure displays the general agreement of the series expansions from 

with the numerical X(t). Notice that the range of time in Fig. 3.3 corresponds 

to that in Fig. 3.1, so that the approximation for X(t ) is holding almost up the 

the point where the whole idea of a front breaks down. (See Appendix A for a 

description of how X(t) is calculated from the finite-difference solution.) 

If /'(1) + g'(1) + ,8'(1) = 1, Eq.(3.16) implies that X (O) = 0. In this case, the front 

should not slow down as quickly. To test this, I ran the numerical simulation for 

f(C) = C (2-C), g(C) = C, and d(C) = ,B(C) = 1, and also carried out the series 

expansion calculations (with muMath, as before). The results of the latter are: 

X(t) = 
1 2 3 3 91 4 69 5 2153 6 

1 - 8 t + 32 t - 1536 t + 2048 t - 147456 t (3.20) 

39 7 5823701 8 7379077 9 

+ 65536 t + 660602880 t 528482304 t + .... 

Observe that the coefficients here are simpler than their analogs in Eq.(3.19). The 

reason for this is that in carrying out the process for calculating the series coef-

ficients, the fact that !'( 1) = 0 causes many terms to vanish, making both the 

algebra and the results simpler. 

Figure 3.4 shows the numerical X(t) vs. t, along with the 5th and 6th order Taylor 

series and three Pade approximants. These approximants are derived by fitting 

rational functions to (X (t) - 1)/t2 in such a way that as many derivatives match 
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at the origin as possible. For example, the (2,1) Pade approximation is 

15 
1 + - t 

. 68 2 
X(t)~ 1 - 132 829 ·t. 

8+ - t+ - t 2 

17 408 
Because there are four coefficients to be determined in this (2,1) Pade fraction, 

this approximation contains the same information as the 5th order Taylor series 

from Eq.(3.20) . See [2, Chapter 8] for more information on Pade approximants, 

including an algorithm for calculating their coefficients from the Taylor series. 

In this case, it appears that the Taylor series diverges around t = 1. The higher 

order series (up to ninth order) do not improve matters for larger t, although they 

do help for small t. Here is where the Pade approximants really shine. Apparently 

X (t) has a singularity near t = -1 and this ruins convergence of the Taylor series; 

however, the denominator of the Pade approximant can allow for this. 

Figure 3.5 shows the two cases off( C) together. The case f ( C) = C(2- C) does 

decelerate more slowly than f (C) = C. The effect is not as pronounced as one 

might expect from the fact that the former case has X (O) = 0 and the latter has 

X(O) = -~. The reason for this is that the higher order terms in Eq.(3.20) are more 

important than in Eq.(3.19) due to the fact that the former series has a smaller 

radius of convergence. 

Besides the speed of the front, another interest ing quantity is the rate at which 

solvent is taken up by the medium. This rate is defined as R = ~ laoo C(x, t) dx. 

Because solvent is conserved, this can also be expressed as R = J(O, t) = (flux in 

at left edge]. In the lowest order (in c) approximation, J(O, t) = -ax(O, t), so that 

the power series gives 
00 

R =- L Bpltp-l. 

p=l 
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Figure 3.6 shows the plots of R vs. t for the two cases of Fig. 3.5. The numerically 

calculated values of Rare displayed, along with the 5th order Taylor series expan

sions and t he (2,2) Pade approximants. The Pade approximants show excellent 

agreement with the values from the numerical solut ions to the partial differential 

equations . 

In Section 4.4, I will develop another scheme for approximat ing the out~r solution 

Ca(x, t) for short times. The method there uses numerical solutions of ordinary 

differential equations, and so is less analytically oriented than the series method 

developed here. Further comparisons of these two approximation methods will be 

deferred to that section. 

3.3 Solution Near the Front 

A shock or transition layer is clearly needed near x = X (t) in the full system 

Eqs.(2.7-2.10). The correct scaling of this is a little tricky, so I will build up to it 

in steps. 

The Linear System 

The first step is to tackle the linear system with f(C) = d(C) = {3(C) = 1 and 

g( C) = C. This can be done in two ways: (a) eliminate u to get a higher order 

system for C alone, or (b) use the system Eqs. (2. 7 ,2.8) directly. Method (a) will 

not apply to the nonlinear system, but will help in using method (b) correctly. 

The linear partial differential equations are 

c- (7. 

(3.21) 

(3.22) 
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Differentiate Eq.(3.21) with respect tot and Eq.(3.22) twice with respect to x, and 

eliminate U:r::r:t and u= between them. The result is 

(3.23) 

The outer ( e = 0) solution for this equation satisfies 

(3.24) 

Solving Eqs.(3.24,2.9,2.10) using the Laplace transform yields 

{ 

e-:r:/2 +X rt Ilc:r2- x2/2) dr 0 <X< t 
Co = l :r: r2 - x2 /2 

0 X> t 
(3.25) 

Thus, X (t) = t. This is not surprising in light of Eq.(3.9), which predicts just that, 

or Eq. (3.24), which is a wave equation with speed_ 1. 

Linear System Layer v ia Meth od (a) 

Stretching and matching, as in Kevorkian and Cole (9], are used to find the tran-

sition layer near x = t. Introduce t he new coordinates 

X- t 
(= -

eP TJ=t 
a a - = €-p_ 

ax ac 
a _ a -p a 
at - ary - e ac ' 

where the correct scaling power p is to be found. These relationships imply that 

Eq.(3.23) transforms to 

The C 2
PC(( terms cancel, leaving the only possible dominant balance as -p = 1-3p 

or p = ~· Thus the layer thickness is O(e112
). The leading order layer equation is 

(with CL being the leading order Layer solution) 
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Since lim CL((, 17) = 0 (in order to the match the outer solution Co), integrating 
(-++oo 

this equation once from ( to +oo yields 

(3.27) 

The initial condition for this equation comes from Eqs.(2.9,2.10). It is just the 

statement that CL starts at time 7J = 0 as a step function: 

0 for ( > 0 
(3.28) 

CL((, O) - lfor(<O . 

The solution to Eqs.(3.27,3.28) is 

(3.29) 

in (x, t) coordinates, the layer solution is 

(3.30) 

Equation (3.30) has no free parameters, so it is fortunate that it matches the 

outer solut ion to the left ((--+ -oo). The combination of Eqs. (3.25,3.30) give the 

solution to the linear system to leading order. Notice that the boundary layer width 

is actually 0 ( .../d), indicating that the front will slump down as time progresses. 

Figure 3.2 shows this quite clearly. 

Linear System Layer via Method (b) 

The next step is to use method (b) and try to get the same results as above. The 

same outer solution, Eq.(3.25), applies, with uo calculated by 
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Clearly, ao(x , t) = 0 for x > t and ao is continuous at x = t. Since a is thus small 

near the transition layer, it should be scaled as well. Define ( and 1] as before, and 

let a= c.qp, where pis 0 (1) and q is to be found. Then Eqs.(3.21 ,3.22) transform to 

(3.31) 

(3.32) 

Equation (3.32) clearly requires q = p for a balance to work. The dominant balance 

in Eq. (3.31) is then apparently -p = 1- 2p or p = 1. The layer equations become, 

to leading order in c., 

0 

0. 

Differentiate the latter with respect to ( and subtract from the former to get 

This equation has no solution which matches to Co = e-'112 as ( - - ex:> and to 

Co = 0 as ( - +ex:>. And the layer width is wrong: 0 ( c) instead of 0( c.112
) . 'What 

went wrong? 

vVhat happened was that some of terms used in defining the dominant balance 

from Eq.(3.31) canceled out. In method (a), recall that the c.- 2PCcc terms canceled 

in Eq.(3.26). If those had been left in, the apparent dominant balance would have 

been 1 - 3p = - 2p, giving p = 1 erroneously again. In Eq.(3.26), it would have 

been absurd to keep terms which obviously cancel, but the cancellation isn't so 

obvious in Eqs.(3.31,3.32). 

' 
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vVhat needs to be done is to solve Eq.(3.32) for Pc. and substitute that result into 

Eq.(3.31) without dropping any terms as being subdominant. This procedure gives 

Pc. = EP(p + P!7) - c' 

(p = q is still valid) , and then 

or 

(3.33) 

Equation (3.33) has the balance p = ~' which is correct. Furthermore, Eq.(3.32) 

says that to lowest order, Pc. = -C. Substituting that into Eq.(3.33) gives the 

lowest order layer equation as 

(3.34) 

Equations (3.27) and (3.34) are identical. Being careful with method (b) leads to 

the same answer as method (a). 

Method (b) Applied to the Nonlinear System 

Define 

(=X - X (t) 
f.P 

TJ=t 
a a - = €-p _ 

ax ac 
a a . a 
- = -- CPX-at a1J ac 

and let 0' = EP p (note that p = q still holds ). Then the nonlinear partial differential 

equations Eqs.(2.7,2.8) transform to 

(3.35) 
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As before, solve for Pc, not dropping any "lower order terms": 

t'P(p + pfj) - {3( C)g( C) 
Pc= X(TJ) , 

and substitute this into Eq.(3.35) to get 

c,- c•Xc< = [•'-'•d(C)C< + •; f(C)(•'(p + p,)- ,B(C)g(C))l < 

1 C'P I 
c1

-
2

'P [d(C)Cc], +X [f(C)(p + pfJ)J,- X [f(C)g(C)f3(C)],. 

Rearranging, the result is 

Cf) = c1 - 2
p [d(C)Cc], + 2- [j(C)(p + pf))J, + c-p [xc- f(C)g(C!)f3(C) l . (3.36) 

X X c 

Now, if f(C)g(C)f3(C) = C (that is, k(C) = 1), then Eq.(3.9) implies that X= 1. 

Then the last term in Eq.(3.36) is zero and the only balance possible is p = !, as in 

Eq.(3.33). But if f(C)g(C)f3(C) ¢. C, then the dominant balance is 1- 2p = - p, 

or p = 1. Thus the frontal layer thickness is either O(c112) or O(c), as claimed 

much earlier. 

Layer Solution When k(C) ¢. 1 

In this case, the leading order layer equation becomes 

~[dec )8cL xc _ f(CL)g(G_L)f3(CL)] = 0. 8( L 8( + L X 

Recalling that X is a function ofT} only and that CL ---t 0 as ( ---t +oo (to match to 

the outer solution), integrate this equation once (and rearrange it slightly) to get 

8cL . cL [x2 _ J(CL)g(CL)f3(CL)] = 0 . 
8( + Xd(CL) CL 

(3.37) 

= K(CL,X) 
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For example, if d(C) = 1 and j(C)g(C)f3(C) = cr, with r > 1 to satisfy Eq.(2.11), 

the solution to Eq.(3.37) is 

(3.38) 

Thus, lim CL( (, 17) = X( 17 )2/(r-l). This exactly matches the outer solution at the 
(--= 

front, where Eq.(3.9) gives Co(X, t) = X(t) 2f(r-I)_ This is pleasant, since Eq.(3.38) 

has no parameters to adjust for matching. 

Note that the width of the shock layer in this special case is actually 0 (-.-€-), 
X(t) 

as can be seen by inspecting Eq.(3.38). This is a general feature of the solution to 

Eq.(3.37), as can be seen by changing variables from (to (defined by ( = X(TJ) · (. 

Thus the shock layer becomes thicker as the front slows down, but does not tend 

to slump down as much as the linear case did, where the thickness was 0( Vfi'J. 

In general, the solution of Eq.(3.37) should go to zero as ( --+ +oo and to a value 

which satisfies Eq.(3.9) as ( --+ -oo. This latter condition is just equivalent to set

ting the factor JC in Eq.(3.37) to zero. Furthermore, JC will be positive for ( > -oo 

since J( C)g( C)f3( C)/C is increasing in C -this implies for C < CL( - oo, 77) that 

J(C)g(C)f3(C)/C < X2 . Thus the second term in Eq.(3.37) is positive, so aC£/8( 

is negative. This means that CL decreases monotonically (as it should on physical 

grounds) and it can only stop decreasing when the second term of Eq.(3.37) goes 

to zero. This will only occur when CL--+ 0 since JC is positive for CL < Co(X,t). 

Thus there will be a solution to Eq.(3.37) which connects the two regions of the 

outer solution in a distance 0 (X~ t)) . 
The fact that Eq.(3.37) seems to give X= Jk(C0 (X, t)) independently of the 

derivation of Eq.(3.9) is worthy of note. Actually, it effectively is the same deriva-
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tion, since Eq.(3.37) is just the expression of flux balance in the layer. Eq.(3.9) was 

derived as a consequence of flux balance, so when looked at in the correct light, it 

is not surprising that the results should agree. 

If d( C) is positive for all C E [0, 1], then the layer connection will range over 

all ( E ( -oo, +oo) since the endpoints are smooth critical points for Eq.(3.37). 

Simple linearization shows that CL( (, 17) undergoes exponential decay onto its limits 

as 1(1-t oo. 

If d(C) = O(Ca) as C -t 0, for some a> 0, then CL(CTJ) -t 0 for some ( < +oo. 

This is because for small CL, Eq.(3.37) becomes 

where a is some positive function of 17 only. The general solution of this equation is 

where s( 17) is an arbitrary function of 17. This solution can only be valid for ( < s( 17 ). 

In this case, the front becomes infinitely sharp. Since changing s(TJ) by 0(1) can 

only change the actual position of the front by 0( c) , to the order of accuracy carried 

thus far it is valid to take s( T]) = 0. I have not carried the possibility of an actual 

sharp front any farther. It seems possible that the results of Kath [8] could be 

extended to this problem. 

Section 3.4 discusses the problems which arise when k( C) is not increasing in C. 

Peculiar things can happen to C(x, t). 

Layer Solution When k( C) = 1 

In this case, the leading order layer equation is more complicated than Eq.(3.37). 
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Recalling that X ( 17) = 1 in this special case, the pair of leading order layer equations 

lS: 

- :, [d( CL) 
8~L + f( CL) (PL + ~17L) l (3.39) 

= -f3(CL)g(CL). (3.40) 

These equations are considerably messier than Eq.(3.37), since they a{e coupled 

partial differential equations while Eq.(3.37) is a single ordinary differential equa-

tion with 17 only appearing as a parameter. Accordingly, less can be said about the 

solution to Eqs.(3.39,3.40). 

Motivated by the linear layer solution Eq.(3.29), change variables to: 

8 1 8 
8( = -;; 8JL 

1 8 JL 8 
-;; 8v - v 2 8JL · 

The crucial step is the definition of JL. This will allow the infinitely steep initial 

conditions at the left edge to be represented. Observe that JL is the similarity 

variable for a pure diffusion equation. The 2's in definitions of JL and v are for 

algebraic convenience. Defining v as proportional to .Jii will also be convenient 

later. 

Equations (3.39,3.40) transform to 

8CL 8CL 
v--- JL--

8v 8JL 

8pL 
8JL 

Some tedious manipulation of these equations leads to 

(3.42) 

(3.43) 

0. 
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When d(C) = f(C) = {3(C) = 1 and g(C) = C, it is easy to verify that the linear 

layer solution Eq.(3.29) solves Eq.(3.43). 

To further analyze Eqs.(3.42,3.43) , expand the solutions in a power series in v: 

CLo(J.L) + CLI(J.L)v + CL2(J.L)v2 + · · · 

PLl(J.L)V + PLz(J.L)V2 + · · · · 

(3.44) 

(3.45) 

(If the transformation had been v = Tf, the expansion would have been in powers 

of v112.) The first term of the PL series is zero because of Eq.(3.42) and because of 

the initial condition a-( x, 0) = 0. 

The lowest order in v, leading order in e, layer equations are now 

0 (3.46) 

0' (3.4 7) 

with the boundary conditions 

CLO(+oo) = 0 PLl( +oo) = 0. 

Equation (3.47) plus the fact that {3(1)g(1) = 1 says that PLl(!-l) "'-J.L as 1-l--+ -oo. 

This translates to ~:(X- 0 ( y'€), t] = - 1 for small t, which corresponds to the 

series results in Section 3.2. 

These results indicate that for short times, the frontal thickness goes as 0( Vd), as 

in the linear case. The higher order terms in the series expansions Eqs.(3.44,3.45) 

can modify this rule as t (or v) grows, however. Numerical results for f (C) = cr, 
g(C) = C 1-r, d(C) = {3(C) _ 1 for r E (0, 1) show that as r -t 1, the front slumps 

down progressively faster. This can be understood by noting that for r = 1, 



-39-

Eq.(2.8) says that a(x, t) = 1- e-t and so there is no stress term at all in Eq.(2.7). 

Only the diffusive term survives and there is no front. Thus for r ~ 1 the front 

should disappear more quickly since a(x, t) will be more nearly "flat" in x . This is 

exactly what the numerical simulations show. 

3.4 When k(C) Is NOT Increasing 

Suppose that the factor JC( CL, X) in Eq.(3.37) is positive for values of C a little bit 

less than C0 (X- 0, t) but for some positive C* that K(C*, X) goes to zero. Then 

Equation (3.37) will not have a solution which matches the left outer solution to 

zero at the right. Instead, the layer solution CL will connect C0 (X- O(e), t) to C"' 

as (goes from -oo to +oo. vVhat then? How can lim C(x, t) = 0 be enforced? 
:z:-++oo 

The only possible answer is that another non-zero outer solution is needed to 

take up the slack from x = X+ O(e) to x = +oo. There is no other scaling 

of the layer equations which will give a "better" equation than Eq.(3.37). What 

is more, it is perfectly possible for a new front to develop in this outer solution. 

Thus it is possible to have a multiple front solution, with each front moving at 

different speeds. (If this happens, only the last front has its speed given by Eq.(3.9), 

since that result was derived assuming that the outer solution was zero ahead of 

the front. ) 

Figure 3. 7 shows the results of a numerical simulation with the coefficient functions 

f(C) = g(C) = JC 512 + .27 C sin(21rC), d(C) = {3(C) - 1. In this totally artificial 

example, K[C, X(t)] is initially positive definite, when X(t) ~ 1, so that initially 

there is only one front. But as X(t) decreases, K[C, X(t)] is no longer positive 

definite and a second front splits off from the first , with the two fronts connected 
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by a smooth (outer) type of solution region. The inset in Fig. 3.7 shows the graphs 

of f(C) and of k(C). Observe that f(C) is monotonic increasing; the peculiar 

behavior results from a nearly flat region in the graph of J( C). 

'When k(C) is decreasing over the whole domain C E [0, 1], then all solutions to 

Eq.(3.37) are increasing since the factor K- is negative definite. This means that 

there is no layer solution CL and that no fronts develop. This is borne out by 

numerical computations. Thus the case k( C) = 1 is sort of a dividing line between 

solutions C(x, t) with steep fronts and solutions C(x, t) that are smooth. 

3.5 Very Short Times 

In the case k( C) - 1, the layer solution is valid all the way back to t = 0. The 

frontal thickness goes as 0( Vfi) for small t (fort= 0(1) in the linear case) and so 

as t --+ 0, the front becomes infinitely sharp, as required by the initial conditions. 

In contrast, when k(C) ~ 1, the layer solution is not valid back to t = 0. The 

reason for this is that the frontal thickness is O(f./X(t)) , which doesn't become 

infinitely sharp as t --+ 0. This indicates the need for a very short time expansion, 

during which interval the front will establish itself. The purpose of this section is 

to establish the duration of this initial period. 

As in the analysis of the k(C) = 1 layer system, Eqs.(3.39,3.40), the key step 

is transforming the space variable to a similarity variable for the pure diffusion 

equation. Define 

X 

( = .j2t 71 = 2t 
8 1 8 
ox= .fo 8( 

8 8 ( 8 
- =2----. 
8t 871 778( 
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Notice that, unlike the previous analysis, the time variable is not scaled by a 

square-root. The reason for this will be given a little later. 

Equations (2.7,2.8) transform to 

e [d( C)CcJ, + (C, + [!( C)crcJ,- 277C11 0 

2TJcr11 - (cr( + 17f3(C) [cr- TJg(C)J 0. 

The next step is to scale for very short times and distances. Let ( = ePJ.L and 

17 = eqv, where p and q are to be found. Since cr = O(t) for small t, also scale 

cr = eq p. Then the equations are 

e1
-

2v [d(C)C~']~' + J.LC~' + eq-2v [f(C)p~']~'- 2vCv 0 

2eqvpv- eqJ.LP~' + e2qvf3(C)p- eqvf3(C)g(C) - 0. 

The dominant balance in the former equation is 1 - 2p = q - 2p = 0 or p = ~ and 

q = 1. Since x = er>+q/2 J.LVV and t = eqv /2, the effective region being analyzed here 

is 0( €) in both space and time. 

Define Cv and pv as the leading order (in e) very short time solutions. Then the 

equations for them are 

As before, expand the solutions in a power series in v. Since cr(x, 0) = 0, the v 0 

term is zero for the p expansion: 

Cv(J.L, v) 

pv(J.L, v) 

Cvo(J.L) + Cvl(J.L)v + Cv2(J.L)v2 + · · · 

PVI(J.L)V + PV2(J.L)V2 + .... 
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At this point, I'll observe that in the analysis of Eqs.(3.39,3.40), the v variable 

went as Vt, but that here it goes as t. In the earlier problem, defining v ex: t would 

have lead to a series in v112 , but in this problem, all of the v 112 terms cancel out. 

Thus v ex: t is appropriate for this problem but not for the earlier one. 

Getting back to the main track, the lowest order in v, leading order in c equation 

is simply 

_:!__ [d( Cvo) dCvo] + J.L dCvo = 0. 
dJ.L dJ.L dJ.L 

(3.48) 

The boundary conditions are Cv0(0) = 1 and Cvo( +oo) = 0. 

Equation (3.48) is just what one gets iff( C ) = 0 in Eq.(2. 7) and the transformation 

to similari ty variables is made. Thus, for very short times, diffusion is all that 

counts. It takes until v = 0 ( 1) or t = 0 ( c) for the stress effects to match the 
~ 

diffusive effects. 

By defining the function .A( C )= foe d(C ) dC, Eq.(3.48) can be recast to the form 

.A( Cvo)ILJL + J.L d~;o = 0. This is exactly the problem that is analyzed in Sec

tion 4.2, except for the name of the dependent and independent variables. Given 

that d( C) > 0 for all C E [0, 1], it is proven there that Cvo(J.L) exists and is unique. 

Higher order (in v) terms such as Cv 1 and pv1 could be calculated by solving linear 

ordinary differential equations. There is li ttle reward for such effort, however , since 

the details of the x = 0 ( c), t = 0( c) region aren't of interest . The main result of 

this section is determining how long it takes the stress effects on C to catch up to 

diffusion - until t 2:: 0 ( c). 

Figure 3.8 shows the very short time stages of the same case as in Fig. 3.1. In these 

calculations, f (C) = g(C) = C, d(C) = f3(C) = 1, and c = 0.01. Fifteen successive 



-44-

C(x, t) curves are plotted over the domain x E [0,15€] at time interval ~ · The first 

2 or 3 curves look more like the results of standard diffusion. By the time the last 

few curves are reached, the solution has clearly formed the front, which is moving 

off into the medium. This figure confirms that the front does not actually form 

until t 2:: 0( €). 
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Chapter 4 

Long Time Behavior 

W HEN THE FRONT DECAYS AWAY, numerical solutions indicate that the solvent 

profile C(x, t) continues to propagate into the medium at an ever slower rate. 
I 

Figure 4.1 shows the long time evolution of the same case as in Fig. 3.1, where 

f(C) = C. After the step in C at the front has disappeared, the whole graph of 

C(x, t) continues to stretch out to the right. This suggests a similarity solution; this 

chapter will show that C(x, t) is asymptotic to a .Jt type of similarity solution 

as t ~ oo. The ordinary differential equation for the similarity solution will be 

derived and the existence of a unique solution will be demonstrated in the first 
~ 

two sections. The necessity for assuming Eq.(2.13) will become apparent in these 

sections; Section 4.3 will discuss the problems that arise when Eq.(2.13) does not 

hold true. In Section 4.4, the similarity solution will be used to approximate the 

short time behavior. 

Note: The results of the first two sections of this chapter do not rely on € being 

small. They only require that € be positive. The asymptotic analysis in these 

sections is concerned with t ~ oo, not with € ~ o+. 

4.1 Asymptotic Similarity Solution 

As has happened twice before, change the space variable x to a similarity variable 

for the pure diffusion equation by defining ( = ~. Also define 77 = ~ - this 
v2t v2t 
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will be appropriate for long times. Then partial derivatives transform by the rules 

a a 
-=7]-ax a( and 

Then Eqs.(2.7,2.8) transform to 

a 3 a 2 a - = -7] -- (7] -. at a77 a( 

0 ( 4.1) 

(4.2) 

Long time t --+ oo is the same as 7J --+ o+. Therefore, expand the solutions to these 

equations as 

C((,7J) - Cs(0+7JC1(()+7J2C2(()+ .. . 

a((,7J) as(() +1Ja1(() +772a2(() + ... . 

Then, on plugging these expansions into Eqs.(4.1,4.2), the 0 (77°) equation becomes 

d [ dCs , dCs] dCs 
d( td(Cs)d( +f(Cs)g(Cs)d( +(d(=O. (4.3) 

I have distinguished the lowest order t erms Cs and as with a subscriptS to indicate 

that they are the surviving Similarity solution as t --+ oo. 

Next, define h( C) by 

h(C) =he td(C) + f(C)g'(C) dC. ( 4.4) 

Then Eq.( 4.3) takes the form 

(4.5) 

The boundary conditions are from Eq.(2.10): 

Cs(O) = 1 and Cs(oo) = 0 . (4.6) 
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The solution to the boundary value problem Eqs.( 4.5,4.6) provides the long time 

behavior of the solvent concentration. A numerical solution of this problem with 

f(C) = g(C) = C, d(C) = 1 and t: = 0.01, giving h(C) = t:C+~C2 , compares very 

well with the later curves in Fig. 4.1. 

It is not immediately obvious (at least to me) that a solution to the nonlinear 

boundary value problem Eqs.( 4.5,4.6) exists or that it must be unique. , The next 

section is devoted to the proof that C s( () does in fact exist and is unique. 

4.2 Similarity Equation Has a Solution 

At long last the requirement in Eq.(2.13) will be used! That equation simply states 

that h'( C) > 0 for all C E [0, 1]. Thus there are bounds P and Q such that 

1 
0 < Q :::; h'( C) :::; p < oo . (4.7) 

These bounds will be crucial in the analysis below. 

S hooting for the Solut ion 

Consider the initial value problem for C1 (where the I is a reminder for I nitial) 

given by 

that is, Cr satisfies the same ordinary differential equation as Cs but instead of 

the boundary condition at ( = oo, Cr has its first derivative equal to s at ( = 0. 

Here, s is any negative real number. I will show that there is a unique s such that 

C r( oo; s) = 0. This has some analogies with the "shooting,, method used in the 

numerical solution of boundary value problems. 
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The solution to Eq.(4.8) may not be defined for all(. The coefficients f (C), g(C), 

and d(C), are only defined for C E [0, 1], so h(C) is only defined in that same 

domain. Thus, strictly speaking, if C I((*; s) = 0 then C I( (; s) is undefined for 

( > (*. But for any finite s, CI will be defined over at least some interval. Of 

course, it is possible that CI never goes to 0, even as ( --+ oo, in which case there 

is no problem with its definition for all ( ~ 0. 

If s < 0, then CI must be monotonically decreasing. To see this, assume that 

at some point ( 0 , dd~I((o;s) = 0. Then the function CI((;s ) = CI((0 ;s) is a 

perfectly good solution to the differential equation which matches the function and 

its derivative at (0 . Since solutions to initial value problems are unique, this means 

that this is the only solution that passes through ( 0 with slope 0 and the value of 

CI((0 ; s) . But this contradicts the statement that s < 0. Thus dCJ/d( < 0 for 

s < 0. (When s = 0, then it is trivial that Cr((; 0) = 1.) 

Missing the Target - Shooting Too High 

Next consider the derivative of C1 with respect to s (the first variation of C1, as it 

is called). It satisfies the equation 

.!:___ [h'(C ) fJCI] r .!!_ [fJCI] = 0 
d( 2 I OS + '> d( OS . (4.9) 

Since CI is unknown for most values of s, solving this equation isn't particularly 

h h · · 1· · oCr B C . k .r: 0 d .t . . easy even t oug It IS mear In as . ut 1 ~s nown 10r s = an I IS JUst a 

N . h h .. ·a1 d. . oCr constant. I otmg t at t e miti con Itlons on as are 

fJfJ~I (0; s) = 0 and 
d oCr 
d( as (0; s) = 1, ( 4.10) 

the solution to Eqs( 4.9,4.10) for s = 0 is easily calculated to be 

oCr((; O) = J1rh'( l ) erf ( ( ) . 
OS 2 J2h'(l) 



-51-

The important thing to note is that aci ((; 0) is bounded. This means that even as 
as (--too, a small value of swill only produce a small change in CI((;s) from the 

identically 1 solution CI((; 0). 

T he desired solution has Cs(oo) = 0. T he above analysis shows that for small 

enough lsi (s < 0), then CI(oo; s) > 0. The final step in the proof that Cs(() exists 

is to show that when lsi is large enough (s < 0) then CI((; s) must go to 0 for some 

( < oo. If this is true, then continuity of CI((; s) with respect to s ensures that 

somes* exists such that CI((; s*) is indeed just Cs((), the solution to Eqs. (4.5,4.6). 

Missing the Target - Shooting Too Low 

Rewrite Eq.( 4.8) as 

' (C )d
2

CI "( ) (dC1)

2 

dC1 
h I d( 2 + h c1 d( + ( d( = o. 

Divide by h'( C I ) dd~I to get 

d2C1/ dCI h"(CI ) dC1 ( 
d(2 d( + h'(CI ) . d( = - h'(CI) . 

Recognizing that each term on the left is a logarithmic derivative, and recalling 

that dd~I < 0 and h'(CI) > 0 gives 

d ldC1 , I ( 
d( log d( h (CI) =- h'(CI ) 

Applying the bounds in Eq.( 4. 7) now yields the inequalities 

Integrate these inequalities from 0 to ( to get 
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· dC1 Thus, upper and lower bounds on - are obtained: 
d( 

lslh'(1) -Q(2 12 > ldC11 > lslh'(1) -'P(212 

h'(CI) e - d( - h'(CI) e 

Apply the bounds in Eq.( 4.7) again, and change the signs to get 

( 4.11) 

I have written s = -lsi to emphasize that the above bounds are negative. 

Now, integrate Eq.(4.11) from 0 to(. The results are upper and lower bounds for 

CI(() : 

1- /{;_ ;;,,h'(1)lsl erf ( (m 5_ CI((; s) 5_ 1- /{;_ p~/2 h'(1)lsl erf ((If) 
( 4.12) 

Since erf(x) --+ 1 as x --+ +oo, two conclusions can be drawn from Eq.( 4.12). When 

lsi > -/!; :;,:::), then the upper bound goes to zero for some ( < +oo, and so 

C I( (; s) must also go to zero somewhere. This completes the existence proof for 

C s( (), the solution to Eqs. ( 4.5,4.6). 

The other conclusion to be drawn from Eq.( 4.12) comes from the lower bound. 

When Is I < -/!; p ~::: )' then C 1( (; s) > 0 for all ( E ( 0, +oo). Thus the critical 

value of s* that gives C1( +oo; s*) = 0 can be bounded between two values. How 

useful these bounds on s* are depends on how close Q is toP. 

Unique ness o f Cs 

Consider again the variational function 
8

8~1 . Integrate Eq.( 4.9) from 0 to (to find 

( 4.13) 
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Now, suppose that 
0~I ((*; s) = 0 for some (* > 0 and th~t (*is the first such 

positive zero of f)~ I - thus, 
0~I ( (; s) > 0 for ( E (0, (*). Evaluating Eq.( 4.13) 

at(* gives 

h'(CT((*;s)) dd( 
0~l((";s) =foe* 0~I d(+h'(1). ( 4.14) 

The right hand side of Eq.( 4.14) is positive but the left hand side is non-positive 

since (* is the first zero of a~ I . This is a contradiction, and so a~ I ( (; s) > 0 for 

all ( > 0. 

This result implies that CI((; s) is monotonic increasing ins, at least for finite(. 

Thus, i~ there are two values s 1 and s 2 that have CI( oo; si) = 0, then all values 

s E (st, s 2] also satisfy this boundary condition. Therefore, if Cs is not unique, then 

lim a~I ((;s) = 0 for all s such that lim CT((;s) = 0. For all such s, Eq. (4.9) is 
(-oo us (-+oo 

asymptotically 

h'(o) ~ aci + ( ~ aci = 0 
d(2 OS d( OS 

so that a~ I ( (; s) 1'.; A erfc ( / ) + B as ( -+ oo, for some constants A and B. 
us 2h'(O) 

If B = 0, then °~I ((; s) goes to zero exponentially fast as ( -+ oo. But then 

evaluating Eq.( 4.13) as ( -+ oo gives zero on the left and a positive value on the 

right. Thus 
0~! ((; s) remains positive even as ( -+ oo and uniqueness of C5 (() 

1s proven. 

4.3 When h(C) Is N OT Increasing 

vVhat happens when h( C) is not monotonic increasing? The brief answer to this 

question is that the solution may become discontinuous! The problem becomes 
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difficult to analyze, and this section is made up mostly of conjectures and specula-

tions, guided by a little analysis. 

Finite Medium and Equilibrium 

The first case I will consider is a finite medium. To what state does the system go 

as t ~ +oo? An equilibrium solution (CE, a E) satisfies the equations 

.!}_ [ed(CE)dCE + f(CE)daE] 0 
dx dx dx 

g(CE)- U£ 0' 

together with the boundary conditions 

CE(O) = 1 and cE(e) = o. ( 4.15) 

The differential equation can be rewritten as 

d [ dCE I dCE] dx ed(CE)d;" + f(CE)g (CE) dx = 0, 

or more compactly as 
d2 

dx 2 h(CE) = 0, (4.16) 

where h( C) is the same function introduced in Eq.( 4.4) in Section 4.1. 

Assuming that h( C) is monotonic, then Eqs.( 4.16,4.15) are easily solved, at least 

implicitly. Clearly, h(CE(x)) = ax+ b for some constants a and b. The right 

boundary condition and the fact that h(O) = 0 imply that the solution can in fact 

be writ ten as h( c E( X)) = A( e - X)' where A is a constant. The left boundary 

condition now says that A = h(l)j£. Under the assumptions on h(C), there is 

no trouble about inverting the equation h( c E( X)) = A( e - X) to find a unique 

equilibrium solution C E( x ). 
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Observe that if .e --t oo, then A --t 0 but that Af remains finite (fixed, in fact ). 

The equilibrium solution is given by h( CE(x )) = Af- Ax, so that as .e --t oo, for 

any finite x, h(CE(x)) = Af or CE(x) = 1. Thus there is no equilibrium solution 

for .e = oo, as claimed earlier in Section 3.2. The closest thing there is to an 

equilibrium state for a semi-infinite medium is the asymptotic similarity solution 

discussed earlier. This state of affairs is analogous to what occurs for the pure 

diffusion equation. 

But what if h(C) is not monotonic? Then the equilibrium solution CE(x ) is ap-

parently multi-valued! This is not very reasonable. The usual suspicion would be 

a discontinuous solution. This is exactly what the numerical solutions show -

assuming that the numerical method has any validity when the solution is discon-

tinuous. 

Away from any discontinuity, the equilibrium solution must still satisfy h(CE(x) ) = 

Ax+ B , but it is not so clear that A and B must be the same on either side of the 

jump. Since the flux must be a constant at equilibrium, in fact A must be equal 

across any jump, but this argument does not apply to B . Thus the equilibrium 

solution can be written in the form 

{ 

h(l ) - Ax 
h(CE(x)) = 

A(e- x) 

for x < x* 

for x > x* 

where x* is the location of the jump. The problem is to find the two constants A 

and x,... For a reasonable solution, the condition that CE(x* - 0) > CE(x* + 0) can 

be imposed, but this is only a mild restriction on the variability of A and x*. 

The partial differential equations do not appear to give any guidance for selecting 

the solution. One idea is to linearize about the putative equilibrium state and see if 
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stability arguments can select the solution. This does not work: no discontinuous 

equilibrium solution is more stable than any other. Even imposing the ad hoc 

condition that B must be the same across the jump, implying that A = f./ h(1 ), 

still leaves a great deal of flexibility in choosing x*. 

The rest of this section is predicated on the assumption that the numerical results 
I 

have some validity even when the solution becomes discontinuous. The basis for 

this assumption is the conservative nature of numerical difference scheme used 

(see Appendix A). Eq. (2.7) for C(x, t ) is also a conservation law, and so it is 

not too unreasonable to hope that a discrete conservation law and a continuous 

conservation law might have some features in common. 

The position of the equilibrium discontinuity seems to depend on the previous 

history of C(x, t). Figure 4.2 shows the final state of two numerical calculations. 

Both runs had the same coefficient functions: f ( C) = C, g( C ) = C / {3( C) = 

[2- tanh(8C- 4)]· C , and td(C) = 0.03. The medium length is e = 1. The choice 

of g(C) was made to model a phase transition in the medium: when C > ~,then 

the medium suddenly becomes less able to support stress. This is intended to model 

the transition from glassy to rubbery that occurs in some polymers. The relaxation 

time 1/ {3( C) undergoes a corresponding decline across the phase transition. 

Curve ~ in Fig. 4.2 was calculated with C(O, t ) = 1 for all t > 0; that is, C is 

raised to 1 at x = 0 instantly. Curve@] had C (O, t) = ~ for 0 < t ~ 2 and then 

C(O, t ) = 1 for t > 2; that is, C is raised up to 1 in two stages. The resulting 

equilibrium states are different. This indicates that deciding the location of the 

jump cannot be done by linearizing about the equilibrium state, since in such an 

analysis the early t ime behavior of the solution does not come in at all. 
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Non-Equilibrium Discontinuities 

The solution need not get all the way to equilibrium for a discontinuity to develop. 

Figure 4.3 shows the results of a numerical solution with the same coefficients as 

in Fig. 4.2, but with a longer medium. The solution C( x, t ) still has a progressing 

front , but a discontinuity has developed behind the front. 

It would be very interesting to be able to make the discontinuity in the solution 

actually propagate. I have never seen this happen in any numerical run. In every 

case, once C(x, t) starts to steepen up towards the discontinuity, the location of 

the jump becomes frozen as if set in concrete. In fact , the initial motivation for 

introducing the convective term in Chapter 5 was to break the discontinuity free 

and make it move. This did not work, but it lead to other interesting results. 

4.4 Similarity and Short Time Outer Solutions 

Examining Fig. 4.1 , I was struck by the fact that the solutions to the left of t he 

fronts look quite a bit like pieces of the asymptotic similarity solut ion C5 . T his 

motivated me to try to fi t the short time outer solutions Co(x , t ) with an appro

priately stretched piece of Cs((). The goal of this section is to find a function S (t ) 

(short for S cale) such that 

Co(x , t ) ~ Cs(S (t)x ) for 0 < x < X ( t ) . ( 4.17) 

It was very easy to find such a S (t ) numerically that gave a very good fit for the 

case J(C) = C in Fig. 4.1. This suggests using Eq.(4.17) as the basis for a different 

kind of approximation to C0 (x, t ). 

The only unknowns are three functions of one variable: Cs((), X (t ), and S (t ). 

Furthermore , Cs(() can be calculated from Eqs. (4.5,4.6) using a standard boundary 
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value code such as COLSYS. Equation (3.9) gives an equation for the evolution 

of X (t): 

( 4.18) 

where the Argument of Cs is A(t) = X(t)S(t), and the arguments of/, g, and {3 

are Cs(A). All that is needed to round out the system is some equation for the 

evolution of S (t). 

The partial differential equation Eq.(3.1) cannot be expected to hold exactly when 

the approximation in Eq.(4.17) is made, but clearly Eq.(3.1) must be imposed in 

some sense. My first thought was to require the PDE to hold 'in the mean; that is, 

reqwre 

{ X(t) (oCo -~[f(Co)oCo]) dx=O 
lo 8t ox ox for all t > 0. 

This, however, leads to a complicated integro-differential equation for S( t). 

It would be nice to get just an ordinary differential equation for S( t) . Requiring 

the PDE Eq.(3.1) to hold only at one point will give such a result . Pick this point 

to be x = X(t): at the front. This is the point where Eq.(4.18) applies. 

The condition that will yield the equation for S ( t) is thus 

loCo -!'(Co) oCo ouo - ! (Co) f)2u~l = 0. 
Ot OX OX OX x=X(t) 

( 4.19) 

Using Eq.( 4.17) gives 

8Col XSC~ 
ot x=X 

( 4.20) 

oCol = sc~. 
OX x=X 

( 4 .21) 

Here and below, the arguments of C 5 and C.S are both A = X S ; the arguments of 

the functions f , g, and {3 are C s( A ). 
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Equations (3.8,3.9) combine to give 

auo I = _ (Csf3g ) t . 
ax x=X f 

( 4.22) 

The only thing missing from Eq.(4.19) is a;:~ (X , t ). This can be evaluated from 

Eq.(3.12): 

a2
u 0 1 1 [(/3 )' (aCo x· aGo) a

2
uox· auox··] -- =--.- g - + - +-- + -

ax2 x=X X2 ax at axat ax x=X 
( 4.23) 

The only pieces of thiJ that are missing are X and ~:~ (X, t ). The first is supplied 

by different iating Eq.(4.18); this has already been done in Eq.(3.10). The second 

is supplied by differentiating Eq.(2.8) with respect to x: 

a
2
uo I = [(f3g)'aco - f3auo l . 

axCJt x=X ax ax x=X 
( 4.24) 

Equations (4.20-4.24) can now be plugged into Eq.(4.19). As can be imagined, t he. 

algebra is messy and so is the resulting ordinary differential equation for S(t ). The 

equation is simplified somewhat by presenting it as an equation for A(t) : 

f3Cs k'Cs A -- - ---. IC' I kJ/2 X 
A = 2 s ( /3' I !') . 

3+Cs -+~--
/3 g f 

( 4.25) 

I have written - C5 = ICsl as a: reminder that Cs is strictly decreasing. Also, recall 

that all functions are to be evaluated at the front: Cs and Cs at A ; /, g, /3, J', 

g', and /3' at Cs( A )- and k(C) is shorthand for f (C )g(C) f3( C )fC. 

Since Cs can be pre-computed without reference to X or A , Eqs.( 4.18,4.25) are a 

pair of first order ordinary differential equations for the position of the front (X ) 

and the argument of the similarity solution at the front (A ). 
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The initial conditions are just X (O) = 0 and A(O) = 0. These, however, are not 

quite enough to specify the solution of the ODEs. This is because : occurs in 

Eq.( 4.25), and lim XA = S(O) has not yet been provided. This difficulty is easily 
t- o 

overcome. Combining Eq. (3.18) and Eq.(4.21) gives the result 

. A 2 
¥-IIJ X = S(O) = IC5(0)I[1 + /'(1) + 3g'(1) + 3,8'(1)]. (

4
·
26

) 

This result can also be derived by using L'Hospital's rule on Eq.( 4.25). With this 

result in hand, all the information necessary to use a standard initial value ODE 

routine is now available. 

Results and Comparison with Pade Approximants 

I was planning to show a figure with plots of X(t) from the numerical solution 

of the PDEs and from this section's similarity approximation -this figure would 

have been a new version of Fig. 3.5. However , the similarity approximation to X(t) 

in both cases (!(C) = C and f(C) = C(2- C)) is so good that it plots directly 

on top of the curve from the numerical solution of the PDEs. Thus, the proposed 

figure would be rather boring. The same remarks apply to plots of the solvent 

uptake rate R(t) -an updated version of Fig. 3.6 would also be very dull, since 

the similarity approximation to R(t) is very good in both cases. 

Instead, Fig. 4.4 shows the relative errors in the front position X and the total 

solvent uptake j C dx. The case here is f (C) = C(2- C) (as usual, g(C) = C , 

d( C) = ,8( C) = 1 ). The similarity approximation is seen to give accurate results 

for t > 0.5 - better than 1%. 

Why does this work so well? After all, the solution Cs(() is supposed to be good 

for "long times" and the frontal behavior being modeled here is strictly a "short 

time" phenomenon. 
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Here is my answer to this question. If the front has passed x some time ago, 

then it has been a long time at that location. T hus to expect the solution to 

look like Cs well behind the front is not unreasonable. As for the region near the 

front , applying Eq.(4.19) forces C(x, t) to match up with Cs at x = X (t ). Thus, 

the natural evolution onto Cs behind the front and the forced fit to Cs at the 

front together mean that C s( S ( t )x) has a good chance to approximate C ( x, t ) well 

everywhere. 

The Taylor series and Pade approximant method for locating X (t ) and other quan

tities of interest involving Co( x, t) has the advantage that it is analytical in nature. 

Thus, the approximations can, in principle, be derived by hand. In practice, how

ever, to get the higher terms in the series (necessary for the (2,2) Pade fractions 

which worked so well) requires so much algebra that a computer is needed. 

The method presented in this section requires a computer from the start. The 

solutions Cs((), A(t), and X (t) to the ordinary differential equations must be 

calculated numerically. One advantage that this method has over the Taylor series 

and Pade fractions is that with a series expansion, you never quite know when 

to stop. For the case f (C ) = g(C) = C, {3(C) = d(C) = 1, the (1,1) Pade 

approximation to X (t ) is very good, but for the case f(C ) = C(2- C), g(C ) = C, 

{3( C) = d( C) = 1, it is necessary to go to the (2,2) Pade fraction to get good 

accuracy. With the method of this section, you have no choice! You solve three 

ODEs and you are done. Another advantage is that the series method only uses 

local information from f, g, and {3 near C = 1; that is, only the derivatives at C = 1 

are used. In contrast, the similarity approximation via ODEs uses the actual values 

of f (C), g(C), and {3(C) (and their derivatives) over the whole range C E [0, 1]. 
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In a problem of practical importance, the best procedure would be to calculate 

both approximations. With the correct software, the approximations could be 

calculated in a few minutes on a personal computer. The numerical solution of the 

PDEs (see Appendix A) is a much more time consuming task, requiring use of a 

faster computer or waiting on a PC for a few hours. Of course, the full numerical 

solution is more comforting. 

Difficult ies, Peculiarit ies, and Conjectures 

One disadvantage of the similarity approximation method is that it can fail. There 

. . . /3' g' f' 
1s nothmg to prevent the denommator (= 'D( A ) = 3 + Csfj + Csg- Csf) on 

the right hand side of Eq.( 4.25) from going to zero. Indeed, if J( C) = ca. and 

f3(C)g(C) = Cb, then 'D(A) = 3 + b- a. If a = 4 and b = 1 (say), then this 

is identically zero! In such a case, the derivation of Eq.( 4.25) breaks down. The 

similarity approximation becomes the statement that the numerator of the right 

hand side of Eq.( 4.25) is zero. This could be interpreted as a nonlinear equation 

for A given X - the system of two ODEs would be reduced to one ODE and a 

nonlinear equation. 

It would be an unusual problem that had 'D(A) vanish identically. A more likely 

difficulty is that 'D will have an isolated zero. This can be pre-determined (before 

any computation with the ODEs for Cs , A , and X) simply by plotting 'D as a 

function of Cover the range C E [0, 1]. 

In several numerical trials, I have computed the similarity approximation with 

f (C), g(C) and f3( C) chosen to give a 'D(A) that has a simple zero for some 

C E (0, 1) . In each case, the numerator in Eq.(4.25) seemed to vanish at the 

same time that the denominator did. I say "seemed to vanish" since the numerical 
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computations aren't exact and nuinerical integration of a differential equation with 

a singularity (or near-singularity) does have its difficulties. Despite this lead, I have 

been unable to prove that the numerator must vanish along with the denominator. 

It seems plausible, but that's all I can say. 

Another difficulty arises when 1) is negative definite. Near t = 0, Eq.( 4.25) 

' . A 
IS approximately of the form A = a- - b, where a = -2k'( l )/'D(O) and b = 

t 

2/(IC.S(O) I'D(O)]. The general solution to this linearized ordinary differential equa

tion for A is A (t) = bt f(a - 1) + crta, where a is an arbitrary constant. Now, if 

V(O) < 0, then a > 0 and b < 0. It is easy to make a > 1. If this is the case, the 

solution to Eq.( 4.25) has an arbitrary additive term that grows very quickly. This 

part will be excited by numerical errors and can easily swamp the linear growth 

part. Note that V (O) > 0 implies that a < 0 and so any small excitation of the ar

bitrary part decays away in time. Basically, for V (O) < 0, the ordinary differential 

equation Eq.( 4.25) is ill posed near t = 0. In practice, the above problems make 

the similarity approximation developed here useful only for 1) positive-definite. 

An intriguing possibility from Eq.(4.25) is that A (t ) may actually go to zero and 

even become negative at some time. If this happened, then C(X(t), t) would start 

increasing, and thus X(t) would also increase. The front would have "bounced" off 

of some support level. 

Define N( A, X ) to be the numerator of the right hand side of Eq.( 4.25): 

( 
/3 A k' ) 

N(A, X ) = Cs IC.SI - X p/2 . 

By hypothesis, k'( C) 2: 0; thus, the two terms in the brackets are both positive. 

It is easy to imagine that one term can dominate for a time, and then the other 

takes over and N (and so A) changes sign. 
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Suppose that at time t = t0 , A( to) = 0 (and so N[A(t0 ), X ( to)] = 0). Equa

tion ( 4.25) can be written as A = 2~. Notice that 1) depends only on A, and 

so 

.. [2 aN ·1 A(to) - X 
1) ax t=to 

[! k'csAI 
'D X2 t=to 

The only thing that may not be positive in this last expression in 'D. If in fact 

'D[A(to)] > 0, then A(t0 ) > 0 and so even if A does go to zero, it must immediately 

increase to positive values again. 

Thus, the only possibility for A < 0 is to have 'D < 0. In that case, if A goes to 

zero at t = t 0 , then A(t0 ) < 0, and so A will cross into negative values. Unfortu

nately, the case 'D < 0 is just the one that throws doubt on the whole similarity 

approximation scheme. 

I have tried to find evidence of such a "bounce" via numerical solution of t he PDEs 

with various coefficient functions. To create the conditions for such a situation, I 

chose coefficients that would keep 'D negative. Also, I would try to make k'( C., .. ) 

small for some C* < 1 on the reasoning that k'( C*) small should make N become 

positive for C ~ C*. On the other hand, N must star t out negative at t = 0. With 

'D negative, if N can be made positive, then A will become negative as well. 

The above paragraph has many "ifs" in it, with the biggest "if" being the validity 

of the similarity approximation when 'D is negative. I never saw a "bounce" in 

any numerical trial. When C(X, t ) approached the C* level, the solution behind 

the front usually ceased to resemble a piece of Cs((). Just behind the front, the 

solution would rise up and become "bumpy," but the front itself would continue 
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on and leave this behavior behind to smooth itself out. 

Based on these trials, I don't believe in the possibility of the "bouncing front ." This 

remains a conjecture, however, since I have been unable to show that Co(X (t) , t) 

must always decrease as t increases. 
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Chapter 5 

Convective Term and Traveling "Waves 

T HE RESULTS of Chapter 4 show that the long t ime behavior of the solvent con

centration is to become a similarity solution: C(x, t) = Cs(x/Vt). In t his chapter, 

I will show that adding a convective velocity term to the partial differential equa-

tion for C can result in the asymptotic nature of the solution being conver ted into 

a traveling wave: C(x, t ) = Cr(x - vt), where vis a constant speed. 

The New Equations 

With no further ado or fanfare: 

ac 
at 
a a 

at 

a [ ac aa ] 
ax f.d(C) ax+ f(C) ax -~ 

new term 

= ,8( C)[g( C)- a]. 

(5.1) 

(5.2) 

Recall that things are scaled so that d(l ) = f( 1) = ,8(1) = g(l ) = 1. Other 

conditions that I will enforce on these original four coefficient functions are: 

• They are all as smooth as needed - at least twice continuously differentiable; 

• d( C) and ,8( C) are bounded away from zero; 

• f (O) = g(O) = 0; thus J(C ) = O(C) and g(C) = O(C) as C-+ 0; 

• g'(C ) > 0 for all C E [0, 1]. 

I will assume that the convective velocity a( C) is positive and increasing in C; in 

particular, a'(1 ) > 0. I will also assume a( C) to be twice continuously differentiable. 

There is no scaling freedom left , so a(l) is arbitrary. 
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A convective term such as the one introduced in Eq.(5.1) could be the result of 

an applied pressure in the reservoir of solvent in the region x < 0. An alternative 

source for such a term is "crazing," in which microscopic faults form in the medium 

as it is deformed and stressed by the invading solvent. These faults then act as 

paths for more rapid infiltration of the solvent. By this reasoning, it might be 

reasonable to expect a to depend on u as well. I will consider the more general 

case of a( C, u) briefly at the end of this chapter. 

In Section 5.1 I will show that a traveling wave solut ion to Eqs.(5.1 ,5.2) exists on 

the doubly infinite interval x E ( -oo, +oo ). Following that, in Section 5.2 I will 

analyze the "short time" behavior of Eqs.(5.1,5.2) on the semi-infinite interval with 

the initial and boundary conditions as given before in Eqs.(2.9,2.10). 

5.1 Traveling Wave Solution 

The goal of this section is to demonstrate the existence of a unique solution of 

the form C(x,t) = CT(x- vt) and u(x ,t) = uT(x- vt) with CT(- oo) = 1, and 

CT( +oo) = 0 (these then imply that uT( -oo) = 1 and uT( +oo) = 0, given the 

conditions on g( C)). This analysis in this section in no way depends on e being 

small, just on its being positive. The speed v is to be found in the analysis (it 

won't be hard! ). 

A Phase P lane System 

Let 1J = x - vt. Then the par tial differential equations Eqs. (5.1 ,5.2) become the or

dinary differential equations below (primes denote differentiation with respect to "7): 

[Ed(CT)C~ + f(CT)u~ + (v - a(CT))CT]1 
0 

vu~ + ,8( CT )[g( CT) - uT] 0 . 
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Integrate the first equation from TJ to +oo and rearrange the results a little to get 

the ( Cr, <7T) phase plane system: 

c~ = f (Cr)f3(Cr) [(g(Cr) _ v(v - a(Cr))Cr) _ <7r] 
wd( Cr) ! ( Cr ){3( Cr) 

(5.3) 

= r(Cr) 

(5.4) 

Now, (Cr, <7T) = (0, 0) is a fixed point of this system since g(O) = 0. To have 

a traveling wave solution connect from ( Cr, <7T) = (1, 1) to (0, 0) over the range 

TJ E ( - oo, +oo ), then ( 1, 1) must also be a fixed point of this system. Equation ( 5.3) 

then implies that I v = a(1) I· With this choice, the desired traveling \vave is given 

by the ( Cr, <7T) phase plane connection between the two fixed points ( 1, 1) and 

(0, 0). To demonstrate the existence of this connection is my next task. 

Since a( C) has been assumed to be increasing, then v- a( C) is positive for C < 1. 

Thus r( C) < g( C) for C < 1. Furthermore, since f( C) = 0 ( C) as C -+ 0, it is 

easy to see that r( C) must go to zero for some C strictly between 0 and 1. 

Figure 5.1 displays the situation. There are two curves, the graphs of <7T = g( Cr) 

and <7T = r( Cr ), that separate the ( Cr, <7T) plane into four regions, quaintly labeled 

OJ , [ill , [ill , and~. Clearly, the only possibility for the desired connection must 

be entir ely confined to region ~, since an orbit that enters any other region· can 

never approach the origin or reenter region I IV 1. The key to finding the desired 

connecting orbit will be the analysis of the fixed points (0, 0) and (1, 1). 
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[] 

/ 

/ 
I 

In [] I q. < 0 and ufr > 0. In [!I]. Cr > 0 and u'T > 0. 

In [ill] I Cr > 0 and ufr < 0. In ITS] I Cr < 0 and ufr < 0. 

Figure 5.1: Layout of ( Cr, ar) Phase Plane 

Analysis of (0, 0) 

The linearization of Eqs. (5.3,5.4) about ( Cr, ar) = (0, 0) is the system 

CJ. - ed(O) 

( 

a(1) - a(O) 

( "~ ) = _ fl(O)g'(O) 
a(1) 

fl~O) ) ( ~: ) 
a(1) 

which clearly has one eigenvalue of each sign. Thus, (0, 0) is a saddle point. Only 

one orbit can enter this point as TJ -+ +oo: the orbit corresponding to the negative 

(stable) eigenvalue. T he unstable direction is just (~) and the stable direction is 

1 

g'(O) 
a(1) - a(O) 

1 + a(l) ed(O),B(O) 

The slope ( the second element) is positive and less than g'(O), so the stable orbit 

entering the origin comes from region ITS]. This is a hopeful sign, since that is 
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where the connection orbit must come from. 

Analysis of (1, 1) 

Linearize Eqs.(5.3,5.4) about (1, 1) by letting CT = 1 + c and f7T = 1 + p. The 

linearized system is then 

c' 1 - € -

( 

r'(1) 

( p' ) = a(l) - g'(l) 

Note that r'(1) > g'(1) since a'(l) > 0 (by hypothesis). It is easy to show that the 

eigenvalues of this linearization ar~ 

A± = 2a~ 1 ) [(r'(1)/t: + 1) ± j(r'(1)/F.- 1)2 + 4g'(l )/ t:] 

What is more, a little algebra shows that .A+ > ,A_ > 0. Thus, the point ( CT, f7T) = 

(1, 1) is an unstable node with unequal eigenvalues. Search for the eigenvectors in 

the form (y~); then the slopes Y± are given by 

Y± = ~ [(r'(1)/f. - 1) =F j(r'(1)/F.- 1)2 + 4g'(1)/f.] 

From this, it is clear that Y+ < 0. It is also true that g'(1) < Y- < r'(1)- this is 

not quite so obvious, but a little algebra will establish this. This means that the 

less unstable direction lies between the curves f7T = g( CT) and f7T = r( CT ) . 

Connecting Things Up 

vVith these facts about the singular points in hand, Figure 5.2 can be adduced. In 

this drawing, the local behaviors of the nonlinear system Eqs.(5.3,5.4) have been 

sketched in. 

These are the factors that went into Fig. 5.2: Consider the family of curves emanat

ing from (1, 1) into region~ - The less unstable direction points into this region 
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more 
unstable 
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I 
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I 

/ 
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I 
/ 

/ 

I 
I 

I , 

Figure 5.2: Local Behavior in ( CT, <7T) Phase Plane 

and the more unstable direction points into regions [l and [ill] (recall Y+ < 0, while. 

r'(l) > g'( l ) > 0). Locally, the flow must look as in ~ig. 5.2, with orbits "peeling 

off" from the less unstable direction to either side in order to be attracted to the 

more unstable direction. Since the more unstable direction lies in regions IIJand 

[ill] , these orbits that start near the less unstable direction must cross the dividing 

curves <7T = g( CT) and <7T = r( CT ). 

An orbit that crosses from region (!Y]into region [}crosses the curve <7T = g(CT), 

along which uT = 0. Since CT < 0 in these regions, the orbit must be concave 

upwards with a local minimum along <7T = g( CT ). Similarly, an orbit that crosses 

from region ~into region @!]must be concave rightwards and be locally vertical 

along <7T = r( CT ). 

Now consider any orbit that has a segment in region~ - Imagine tracking that 

orbit backward as 17 decreases to - oo. As long the the orbit stays in region lliJ, 
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it has Cr < 0 and u~ < 0, so that as 1J decreases, the orbit must move up and to 

the right. 

How could such an orbit leave region (!Y] as 1J decreases (or enter it as 1J increases, 

if you like)? It cannot pass through the bounding curve l7T = r ( CT) because to 

do so it must be vertical ( Cr = 0) at that point. That is geometrically impossible 

since the orbit is above the curve. Similarly, it cannot pass through the bounding 

curve l7T = g( CT) because to do so it must be horizontal ( ur = 0) at that point. 

That is geometrically impossible since the orbit is to the right of the curve (recall 

that g'( C) > 0 by assumption, so it is not possible for any point in region I IV Ito 

be directly to the left of any portion of the ur = g( Cr) bounding curve). 

Thus, any orbit in region [!Ylmust remain there as 1J -+ - oo. There is only one 

place that such an orbit can go to as 1J -+ -oo, and that is the singular point at 

(1, 1). Fortnnately, this singular point is attracting as 1J-+ - oo. 

In particular, the stable orbit that falls into (0, 0) as 1J -+ +oo must connect back 

to (1, 1) as 1J-+ -oo. Thi.<J iJ the de.<Jired connection and provides the traveling wave 

solution. It is clearly unique since there is only one orbit that falls into the origin 

as 1J-+ +oo. 

In fact , it is easy to see that the orbits that leave region [!Y]through the bounding 

curve ur = g( Cr) form a continuous family. They range from the ones that leave 

near (1, 1), as seen in the upper right of Fig. 5.2 to the ones that leave near (0, 0), 

as seen in the lower left of that figure. The ultimate member of that family is 

the one that connects to the origin. A similar argument can be made about the 

orbits that leave region I IV I through the bounding curve ur = r ( Cr) or through the 

portion of the CT ax.is to the left of the zero of r( Cr ). 
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With this argument, it is apparent that assuming a( C) to be increasing over the 

whole interval C E (0, 1] is not required. What is required is that a'(1) > 0 and 

that a( C ) < a(1) for all C < 1. With these restrictions, the above analyses still 

hold: a'(1) > 0 implies t hat r'(1) > g'(1), which was needed, and a(C) < a(1) for 

C < 1 implies that r(C) < g(C) for C < 1, which was also needed. 

Note that it is not necessary that the orbit that leaves (1, 1) directly along the 

less unstable direction be the one that connects to (0, Q). Since all orbits in region 

~go to (1, 1) as TJ -t -oo, none of the arguments above pick this orbit out as 

special. This should be contrasted to the case at (0, 0), where only one orbit enters 

the singular point and so it . must be the desiderated trajectory. 

Finally, the conditions used here are sufficient for the existence of the traveling 

wave solution, but they are not necessary. For example, it is possible to have a 

traveling wave solution even if g'( C) is not always positive. However, if g'( C) < 0 

anywhere, the problems discussed in Section 4.3 can arise: the solution C(x, t) may 

become discontinuous. 

Even if a( C) > a(1) for some C E (0, 1), a traveling wave solution can still exist

it's just that the demonstration above does not work. 

5.2 Early Time s 

The traveling wave solution is valid for the doubly infinite interval x E ( -oo, +oo ) . 

After sufficient time has passed, the left boundary x = 0 is effectively at TJ = 

-oo and so it is plausible that the traveling wave solution provides the long time 

behavior for Eqs. (5.1,5.2). But what about before "sufficient time" has passed? 
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How do the results of Chapter 3 (with a( C) = 0) go over to the new equations in 

this chapter? My goal now is to sketch out the answer to this question. 

Adopting the same paradigm as in Chapter 3, the first step is to derive an equation 

for the evolution of X (t). This is done exactly as in Section 3.2: conservation of 

solvent at the front gives 

Co(X,t )X J(X , t ) 

aao 
-f(Co(X , t)) ax (X,t)+a(Co(X,t))Co(X,t). (5.5) 

Equation (3.8) still holds good [a;: (X , t ) = -,Bg/ X l· Plugging this into Eq.(5.5) 

results in the quadratic equation X2
- aX- k = 0. Taking the posi tive root gives 

the nev.: version of Eq.(3.9): 

dX 1 
dt = 2a(Co(X, t)) + 

1 
4a(Co(X, t ))2 + k(C0 (X , t )). (5.6) 

In part icular, X (O) = ~a( 1 ) + J~a(1)2 + 1 , which is greater than 1 and greater 

than a(1) (the traveling wave speed). Since both k(C) and a(C) are presumed to 

be increasing, then X is an increasing function of Co( X , t ). Under the assumptions 

in this chapter, k(O) = 0, so that if Co(X, t ) drops to 0, then X = a(O) < a(1). 

This means that there must be some intermediate value Ctrav E (0, 1) such that 

X= a(1) when Co( X , t ) = Ctrav· 

Thus, I conjecture that the front will decay in magnitude only to the value Ctrav· 

As it approaches this height, the solvent profile should approach the traveling wave 

Cr(x - a(1)t-x 0 ), where x0 is some constant shift chosen to align the traveling wave. 

The layer equation for CL can be derived as in Section 3.3. Parallel machinations 
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lead to the updated version of Eq.(3.37) (recall that ( = (x - X )/t ): 

a:,.L + . CL [X2
- a(CL)X - k(CL)] = 0. 

v~ Xd(CL) 
(5.7) 

The same reasoning as before shows that this equation has a solution that matches 

to Co( X , t ) as ( --+ -oo and to 0 as (--+ +oo. 

Figure 5.3 shows an example of this behavior. In this case, f ( C) 1:::::: g( C) = 

a(C ) = C, d(C) = f3(C) = 1, and f.= 0.02. To calculate the final height of the 

front, set a( 1) = ~a( Ctrav)+J~a(Ctrav)2 + k(Ctrav), or 1 = ~Ctrav+J~C[rav + Ctrav, 

or Ctrav = ~· The initial speed should be (1 + ../5)/2 ~ 1.618. Figure 5.3 clearly 

shows the decay onto Ctrav = ~ and the inset clearly shows the front slowing down 

from its initial burst of enthusiasm to the more leisurely speed of the traveling 

wave. 

An interesting result from Eq.(5.7) is that k(C) no longer needs to be an in-

creasing function of C for t he layer solution to exist . What is required is that 

X 2 - a(CL)X- k(CL) be positive for all CL < C0 (X, t ). This forces 
0~L to be 

negative and so CL must decrease to 0 as ( --+ +oo. Define Co = Co(X, t ). Using 

Eq. (5.6) , this positivi ty constraint can be expressed as 

[a(C, )- a( CL)] [ ~a(C,) + ~a{C,)' + k(C,) l + [k(C, )- k(CL)] > 0 VCL < C, . 

(5.8) 

This inequality can be used to show that X must be an increasing function of C0 , 

even if k( Co) is not. Let CL--+ Co in Eq.(5.8). Then it becomes 

(5.9) 

~ow , X 2
- a( C0 )X- k( Co) = 0 for all C0 • Differentiating with respect to Co gives 

. . 
. dX . dX 

2X dC - a'(Co)X - a(Co) dC - k'(Co) = 0. 
0 0 
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Rearranging this result yields 

_dx_· _ a'(Co)X + k'(Co) 

2X- a(Co) 

Equation (5.6) shows that the denominator is positive and Eq.(5.9) shows that 

the numerator is non-negative. Thus :~o 2: 0, and so X must be an increasing 

function of Co(X, t) if the layer equation is to be able to connect to 0 <is ( -+ +oo 

-that is, if there is to be only one layer, not two as in Fig. 3.7. 

5.3 When a Depends on O" 

Replacing a( C) in Eq.(5.1) by a(C,u) is an easy generalization to make. The speed 

of the traveling wave must then become v = a(1, 1). The proof of the existence of 

the traveling wave orbit needs only a few modifications if a( C, u) is assumed to be 

an increasing function of both C and u: a(C1,u1 ) > a (C2, u2 ) when both C1 > C2 

and u1 > u 2 hold. The curve uT = r ( CT) is replaced with the locus of Cr = 0, and 

as long as this lies below the curve <7T = g( CT ), the proof can proceed virtually 

unfettered. 

The argument that leads to Eq.(5.6) is easily modified to give the generalized result 

dX 1 
dt = 2a(Co( X,t),O) + 

1 
4a(Co(X , t ), 0)2 + k(C0 (X , t)). (5.10) 

The convective velocity a( C, u) in this formula has u +-- 0 because it must be eval-

uated at the front, and at the front, u = 0 (to lowest order in c). 

Figure 5.4 shows an amusing result suggested by all of the above. In this figure, 

f(C) = g(C) = C, d(C) = {3(C) = 1, and a(C,u) = 1.1Cu2
. Since a(C,O) = 0, 

the result above gives X = Jk(C0 (X, t)) = Jco(X , t), as in Eq.(3.9). But the 
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solution should evolve to a traveling wave with speed v = 1.1, and so the front must 

accelerate at some point. Also, since the power on cr is greater than 1, it turns out 

that all of the analysis that leads to Eq.(3.16) still holds true. Thus for this case, 

X (O) = -i· Therefore the front must first weaken in magnitude and slow down, 

and then, as the effect of the convective term kicks in, the front must strengthen 

and accelerate. In addition, the final Co( X , t ) must be 1.21 to support the speed 

v = 1.1. The main body of Fig. 5.4 shows the behavior of C(x, t ) and the inset 

shows X ( t ). The above predictions are borne out by the numerical computations. 
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Appendix A 

Number Crunching 

THE NUMERICAL SCHEME US ED TO SOLVE the partial differential equations is 

relatively simple. A nonlinear Crank-Nicholson type of finite differenCing is used 

and the resulting nonlinear equations are iterated twice to advance to the next time 

step. The discussion in this section will focus on the system with the convective 

term, Eqs.(5.1,5.2) . By omitting all terms with a(C), the numerical method and 

code described below can easily be specialized to the system of Chapters 2-4. 

Put a uniform mesh down on the interval [O,R]. (Thus, no attempt is made to refine 

the mesh around the moving front.) Replacing spatial derivatives in Eq. (5 .1) with 

centered differences gives (for interior mesh points) 

where 

1 
+ 26.x 

6.x 

functionn 

"function" 

(uniform) mesh spacing in x, 
(must resolve the front of width ,...., E); 

C(n6.x, t ), u(n6.x, t ) (mesh values of C, u); 

function( Cn); 

function(! ( Cn+l + Cn)] 

(A.l ) 

[~function( Cn+t) + ~function( Cn) is also OK]; and 

d, J, {3, g , or a. 
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Note that n = 0 corresponds to the left boundary. The right boundary ( x = .f.) 

will be at n = N; that is, ~x = .f.jN. Thus, Eq.(A.1) is a set of N- 1 ordinary 

differential equations for the set { Cn( t ) : n = 1, 2, ... , N - 1}. All of these equa

tions have the initial condition Cn(O) = 0. There are no differential equations for 

C0(t) and CN(t) since those values are given by the boundary conditions on C(x, t ): 

C0(t ) = 1 and CN(t) = 0 for all t > 0. 

Equation (A.1 ) is discretized in time in an implicit way. Let k be the time index 

(as n is the space index), ~t be the time spacing, and define Cn,k = C(n~x , k~t) 

(similarly define O'n,k)· Then central differences are applied at to Eq.(A.1) about 

the timet= (k + ~)~t: 

Cn,k+t- Cn,k _ ~'R. ~'R. 
~t - 2 n,k + 2 n,k+l · (A.2) 

I have adapted the notation from Eq.(A.1) so that Rn,k here is the same as Rn(k~t) 

there. The fact that centered differences are used throughout ( including the average 

on the right hand side of Eq.(A.2)) means that this method has a truncation error 

Since 'R.n,k+l appears on the right hand side, Eq.(A.2) is a ferociously nonlinear 

system for the set {Cn,k+l: n = 1,2, ... ,N -1} , even assuming that {an,k+l: 

n = 0, 2, . .. , N} was known. My program (listing below) tackles this system 

by an iterative scheme. The diffusive part [(Ed( C)Cx)x] and the convective part 

[(a( C )C )x] are treated implicitly, as in the Crank-Nicholson method, but the stress 

part [(!( C )a x)x] is lumped entirely to the right hand side. Iterating in this fashion 

avoids the use of Newton's method, which would require supplying the derivatives 

of all the nonlinear coefficient functions. I wanted to develop a code that could have 

routines for the coefficient functions just "plugged in" without the user (me) having 
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any need to worry about their derivatives. The routine below fits this prescription. 

The effect of these decisions is to expand Eq.(A.2) as follows: 

Cn,k+l - Cn,k 

t::.t 

1 

+ fn+t,k · (an+l ,k- O"n,k) 

an+t,k · Cn+t ,k 

fn-!,k · ( O"n,k - O"n-I ,k)' 

an-t ,k · Cn-t,k 

fn-! ,k+t · (D-n,k+l - Un-l ,k+I) ] 

an-t,k+t · Cn-t,k+t ) . 

(A.3) 

In Eq.(A.3), the unknowns are the Cn,k+l values. A variable or function with a 

"hat" accent (as in c7 or ] ) is nominally at the k + 1 time level, but is evaluated 

with an a priori estimate of the values at t = (k + 1)t::.t. On the first iteration to go 

from level k to level k + 1, these a priori values Cn,k+l and Un,k+l are given just by 

copying the values at time level k. On subsequent iterations, they are the product 

of the last iteration. 

Putting all the unknown Cn,k+l values on the left side and all the known val

ues (including the values of D-n,k+d on the right side leads to a tridiagonal linear 

system for the unknowns. This is easily solved by Gaussian elimination without 

pivoting, which is stable because the tridiagonal matrix is diagonally dominant 

if ~t max lar < 1. 
2ux 

The second step in the iteration scheme is to solve for the new values in the set 

{an,k+t: n = 0, 1, ... , N}. Since Eq.(5.2) is just an ordinary differential equation 

at each grid point , this is easily done with a single step method. 
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The iteration scheme now loops back. Eq. (A.3) can be solved again for new values of 

Cn,k+l, using the previous iteration's output. Then Un,k+l can be re-computed, etc. 

In practice, two iterations are quite sufficient. This can be viewed as a predictor-

corrector scheme. 

The Code 

The following FORTRAN routine marches C(x , t) and u(x, t ) one time step into 

the future - from t to t + 6.t. The functions C and u are stored in the arrays 

C and Sin the COMMON block ICNI , along with various controlling parameters. 

The co'efficient functions fd(C), f (C), {3(C), g(C), and a( C) must be supplied by 

the user in F UNCTION subprograms named DO, FF, BETA, GG, and AA, respectively. 

Comments are in a small sans serif type face. 

c 

c 

SUBROUTINE CNITER 
IMPLICIT REAL*8 (A-H,O-Z) 

PARAMETER ( NPTMAX = 1021 ) 

COMMON I CN I DX,DT,TOTTIM, 
X CLEFT,CRIGHT, 

do everything in double precision 

maximum number of points in grid 

C!.x, C!.t , t 

X C(NPTMAX),S(NPTMAX), 
C(O, t + C!.t ), C( l, t + C!.t ) 
C(x , t) , u(x , t ) 

X NPTS,MAXITE 
c 
C The following are local and temporary arrays 

c 

mesh size, no. of iterations 

Note l = (NPTS- 1) *OX. 

REAL*8 C1(NPTMAX),S1(NPTMAX),C1NEW(NPTMAX), newC, u 
X SUBD (NPTMAX), DIAG (NPTMAX) , SUPD (NPTMAX) , matrix entries 

X RHS ( NPTMAX) linear system RHS 
c-----------------------------------------------------------------

DO 100 N=1, NPTS initial iteration has future values set to current values 

C1(N) = C(N) 
S1(N) = S(N) 

100 CONTINUE 
C 1 ( 1) = CLEFT set boundary conditions at t + C!.t 
C1(NPTS) = CRIGHT 
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c 
c Pre-compute some parts of the RHS of the equations 

c 
XLAM = 0.500 * DT I DX**2 
XMU = 0 . 2500 * DT I ox 

c 
EPHALF = FF( 0.5DO•(C(1) +C(2)) ) h 

2 

DPHALF = DO( 0.5DO* (C(1)+C (2)) ) { d .J. 
2 

AMID = AA ( C(1) ) ao 
APL = AA ( C(2) ) Ot 

c 
DO 200 N=2,NPTS- 1 FORTRAN I is math n + 1 due to indexing 

EMHALF = EPHALF fn-~ 
DMHALF = DPHALF ! dn_ .J. 

2 

AMIN = AMID On- 1 

AMID = APL an 

c 
EPHALF = FF ( 0.5DO*(C(N) +C(N+1)) ) fnH 
DPHALF = DO ( 0 . 5DO*(C (N) +C(N+1 )) ) ! dn+~ 
APL = AA ( C(N+1) ) On+l 

c 
RHS(N) = C(N) 

X + XLAM * ( DPHALF * ( C(N+1)-C(N) ) 
X - DMHALF * ( C(N) - C(N- 1) ) 
X + EPHALF * ( S(N+1)-S(N) ) 
X - EMHALF * ( S(N)-S(N-1) ) ) 
X 
X - XMU * ( APL*C (N+1 ) - AMIN•C (N-1 ) ) 

200 CONTINUE 
c--------------------------------------------------------------
c Loo p back point for iteration : 

C (a) using C1 , 51 (best guesses at new t ime values) , calculate 
C coefficients for the equations to update C1 

C (b) solve for C1, then upda te 51 

C (c) loop MAXITE times 

c 
NITER = 0 number of times through the loop 

500 CONTINUE 

c 

EPHALF = FF ( 0.5DO•(C1(1)+C1(2)) ) initialize coefficients 

DPHALF = DO( O.SDO•(C1(1)+C1(2) ) ) 
AMID = AA( C1(1) ) 
APL = AA( C1(2) ) 

DO 600 N=2 ,NPTS-1 
EMHALF = EPHALF 
DMHALF = DPHALF 

as in loop above, "age" the coefficients 
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AMIN = AMID 
AMID = APL 

c 
EPHALF = FF ( O.SDO• (C1 (N) +C1 (N+1 )) ) 
DPHALF = DD ( O. SDO• (C1 (N) +C1 (N+1 )) ) 

APL = AA ( C1 (N+1) ) 
C mat rix elements: 

SUBD (N) = -XLAM * DMHALF - XMU * AMIN subdiagonal 

SUPD (N) = -XLAM * DPHALF + XMU * APL superdiagonal 
DIAG (N) = 1. DO + XLAM * ( DMHALF + DPHALF ) diagonal 

C1NEW (N) = RHS (N) right hand side 

X + XLAM * ( EPHALF * (S1 (N+1) -S1 (N)) 
X - EMHALF * (S1 (N) -S1 (N-1 )) ) 

600 CONTINUE 
c 
C Adjust RHS of equations to force boundary conditions 

c 

c 

C1NEW (2) 
C1NEW (NPTS- 1) 

= C1NEW (2) - SUBD ( 2) • CLEFT 
= C1NEW (NPTS-1 ) - SUPD (NPTS-1)•CRIGHT 

C Solve tridiagonal system for C1NEW(2) . . . C1NEW(NPTS-1 ) 

c 
CALL TDSOLV ( NPTS-2 , SUBD (2) , DIAG (2) , SUPD(2) , C1NEW (2) ) 

c 
C 1NEW ( 1) = CLEFT slip in the boundary conditions 

C1NEW (NPTS) = CRIGHT 
c 
C Advance all Sl 's , s ince there is no BC for u 
c 

DO 700 N=1,NPTS 
C1 (N) = C1NEW (N) recycle ClNEW back into Cl 

CMEAN = O. SDO• (C(N) +C1 (N)) 
BMEAN = BETA ( CMEAN ) 
BFAC = EXP ( -DT•BMEAN ) 
S1 (N) = BFAC * S(N) + ( 1.00-BFAC) •GG ( CMEAN ) 

700 CONTINUE 
c 

NITER = NITER + 1 
IF ( NITER . GE. MAXITE ) GOTO 8000 loop back if needed 

GOTO 500 
c------------------------------------------------------------
8000 CONTI NUE 

DO 8100 N=1 , NPTS assign values at t + t1t to output 

C(N) = C1(N) 
S(N) = S1 (N) 

8100 CONTINUE 
RETURN 
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END 

SUBROUTINE TDSOLV( N , SUBD,D,SUPD , X ) 
c 
C Solve the tridiagonal system 
C SUBD; X;-1 + D; X; + SUPD; Xi+l = rhs; 
C where rhs; is stored in X(i) on entry. The method used is LU 
C decomposition without pivoting. D is altered (and X, of course). 
c 

REAL*8 SUBD ( N) , D(N) , SUPD(N) , X( N) , DL 

c-----------------------------------------------------------------
DO 100 I=2, N LU decompose and forward substitute loop 

DL = SUBD(I ) I D( I - 1) 
D( I) = D(I) - DL*SUPD ( I-1) 
X( I ) = X( I ) - DL*X ( I-1 ) 

100 CONTINUE 
c 

X( N) = X(N) I D(N) 
DO 200 I=N-1,1, - 1 back substitute loop 

X(I ) = ( X(I) - SUPD ( I ) *X ( I +1 ) ) / D( I ) 
200 CONTINUE 

RETURN 
END 

Computation of X 

Another minor point to be covered is the numerical determination of the location 

of the front, X (t ). Given a set of mesh values { Cn,k, n = 0, 1, .. . , N, k fixed}, the 

routine that finds X looks for the value n ... that maximizes IC'*+l ,k - Cn*,kl · Then 

a cubic polynomial in n (or X) is fit to the four points Cnrl,k, Cn*,k' c'*+l,kl and 

Cn,.+2,k · The steepest point on this polynomial is the location X. 

vVhen calculating an approximate X by xk ~ (Xk+l- xk_t)j(2~t), the result is a 

somewhat jagged function oft. This is what gives the figures showing numerical 

X(t) results their "fuzzy" look. The problem comes from the fact that only 2 or 3 

mesh points are in the layer at the front and so the actual position of the front is 

not resolved very finely. ·when the resulting values of X are differenced, they end 

up with a lot of numerical noise. 
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