Citation
Jacobi, Ian (2013) Structure of the Turbulent Boundary Layer under Static and Dynamic Impulsive Roughness Perturbation. Dissertation (Ph.D.), California Institute of Technology. doi:10.7907/H5WJ-RK31. https://resolver.caltech.edu/CaltechTHESIS:07102012-152431583
Abstract
The zero-pressure gradient turbulent boundary layer at Reynolds numbers (based on momentum thickness) ranging from 2700--4100 was perturbed using an impulsively short patch of two-dimensional, spanwise roughness elements. A spatial perturbation was considered in which the roughness patch was held statically on the flat-plate, and the flow downstream of the perturbation was measured by hotwire and particle-image velocimetry. A dynamic perturbation, in which the roughness patch was actuated periodically in time, was also studied, and additional measurements were taken by phase-locking to the dynamic actuation itself.
The static perturbation distorted the boundary layer through the generation of a `stress bore' which modified the mean streamwise velocity gradient. The effect of this stress bore was observed in a modification of statistical and spectral measures of the turbulence, as well as a redistribution of coherent structures in the boundary layer. The characterization of the statically perturbed boundary layer provided a base flow from which to consider the dynamically perturbed flow. The dynamically perturbed flow manifested both effects analogous to the static perturbation, as well as a coherent, periodic, large-scale velocity fluctuation. The extent to which these two features could be treated as linearly independent was studied by a variety of statistical and spectral means. Moreover, the very large scale motion synthesized by the dynamic perturbation was isolated by phase-locked measurement, and its behavior was predicted with reasonable success by employing a resolvent operator approach to a forced version of the Orr-Sommerfeld equation.
The relationship between large-scale motions and an envelope of small-scale motions in the turbulent boundary layer was studied in both the unperturbed and perturbed flows. A variety of correlation techniques were used to interpret the interaction between the different scale motions in the context of a phase-relationship between large and small scales. This phase relationship was shown to provide a physically-grounded perspective on the relationship between the synthetic very large scale motion produced by the dynamic perturbation and the smaller scales in the flow, and was able to provide a foundation for thinking about new approaches to controlling turbulence through large-scale forcing.
Item Type: | Thesis (Dissertation (Ph.D.)) | ||||||
---|---|---|---|---|---|---|---|
Subject Keywords: | Fluid Mechanics; Turbulent Boundary Layers; Roughness; Turbulence | ||||||
Degree Grantor: | California Institute of Technology | ||||||
Division: | Engineering and Applied Science | ||||||
Major Option: | Aeronautics | ||||||
Awards: | Charles D. Babcock Award, 2009. Richard Bruce Chapman Memorial Award, 2013. The Donald Coles Prize in Aeronautics, 2013. | ||||||
Thesis Availability: | Public (worldwide access) | ||||||
Research Advisor(s): |
| ||||||
Group: | GALCIT | ||||||
Thesis Committee: |
| ||||||
Defense Date: | 29 June 2012 | ||||||
Non-Caltech Author Email: | jacobi (AT) alum.mit.edu | ||||||
Funders: |
| ||||||
Record Number: | CaltechTHESIS:07102012-152431583 | ||||||
Persistent URL: | https://resolver.caltech.edu/CaltechTHESIS:07102012-152431583 | ||||||
DOI: | 10.7907/H5WJ-RK31 | ||||||
Default Usage Policy: | No commercial reproduction, distribution, display or performance rights in this work are provided. | ||||||
ID Code: | 7175 | ||||||
Collection: | CaltechTHESIS | ||||||
Deposited By: | Ian Jacobi | ||||||
Deposited On: | 19 Jul 2012 23:48 | ||||||
Last Modified: | 25 Oct 2023 21:15 |
Thesis Files
|
PDF
- Final Version
See Usage Policy. 32MB |
Repository Staff Only: item control page