A Caltech Library Service

Neural Networks, Pattern Recognition, and Fingerprint Hallucination


Mjolsness, Eric Daniel (1986) Neural Networks, Pattern Recognition, and Fingerprint Hallucination. Dissertation (Ph.D.), California Institute of Technology. doi:10.7907/M0VQ-DJ43.


Many interesting and globally ordered patterns of behavior, such as solidification, arise in statistical physics and are generally referred to as collective phenomena. The obvious analogies to parallel computation can be extended quite far, so that simple computations may be endowed with the most desirable properties of collective phenomena: robustness against circuit defects, extreme parallelism, asynchronous operation and efficient implementation in silicon. To obtain these advantages for more complicated and useful computations, the relatively simple pattern recognition task of fingerprint identification has been selected. Simulations show that an intuitively understandable neural network can generate fingerprint-like patterns within a framework which should allow control of wire length and scale invariance. The purpose of generating such patterns is to create a network whose stable states are noiseless fingerprint patterns, so that noisy fingerprint patterns used as input to the network will evoke the corresponding noiseless patterns as output. There is a developing theory for predicting the behavior of such networks and thereby reducing the amount of simulation that must be done to design them.

Item Type:Thesis (Dissertation (Ph.D.))
Subject Keywords:Neural networks, pattern recognition, fingerprint recognition, pattern formation, image analysis, hierarchical networks, continuous networks
Degree Grantor:California Institute of Technology
Division:Physics, Mathematics and Astronomy
Major Option:Physics
Minor Option:Computer Science
Thesis Availability:Public (worldwide access)
Research Advisor(s):
  • Hopfield, John J.
Thesis Committee:
  • Hopfield, John J. (chair)
  • Feynman, Richard Phillips
  • Fox, Geoffrey C.
  • Mead, Carver
  • Pine, Jerome
  • Kavanagh, Ralph William
Defense Date:2 September 1985
Non-Caltech Author Email:emj (AT)
Funding AgencyGrant Number
System Development FoundationUNSPECIFIED
Los Alamos National Laboratory (LANL)UNSPECIFIED
Record Number:CaltechTHESIS:03202012-162849140
Persistent URL:
Default Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:6858
Deposited By: Benjamin Perez
Deposited On:21 Mar 2012 14:29
Last Modified:21 Dec 2019 02:50

Thesis Files

PDF - Final Version
See Usage Policy.


Repository Staff Only: item control page