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Abstract

Many interesting and globally ordered patterns of behavior, such as solidification, arise
in statistical physics and are generally referred to as collective phenomena. The obvious analo-
gies to parallel computation can be extended quite far, so that simple computations may be
endowed with the most desirable properties of collective phenomena: robustness against circuit
defects, extreme parallelism, asynchronous operation and efficient implementation in silicon.
To obtain these advantages for more complicated and useful computations, the relatively sim-
ple pattern recognition task of fingerprint identification has been selected. Simulations show
that an intuitively understandable neural network can generate fingerprint-like patterns within
a framework which should allow control of wire length and scale invariance. The purpose of
generating such patterns is to create a network whose stable states are noiseless fingerprint
patterns, so that noisy fingerprint patterns used as input to the network will evoke the corre-
sponding noiseless patterns as output. There is a developing theory for predicting the behavior
of such networks and thereby reducing the amount of simulation that must be done to design
them.
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I Introduction

It is natural, when imagining very large computers and their construction, to compare present
artificial computing machinery with the much less well-understood brains of animals such as
ourselves. The comparison is biased in favor of hardware considerations, since neurobiologists
have understandably found it easier and more direct to investigate neurons and their connections
than algorithms or other programming principles that may be present in biological computation.
(In the case of artificial computers, of course, we have the illusion of complete understanding
of both hardware and software.) Nevertheless, such a comparison is striking.

Brains and computers differ first in size, there being 10— 10! neurons and 10° — 10*
connections from one neuron to others, as against ~ 107 - 108 transistors with a fanout of 1-10,
usually, for computers. There is no guarantee that these are the right numbers to compare,
but the size difference appears to be immense: perhaps six orders of magnitude. On the
other hand, computers are faster by 3-4 orders of magnitude depending on what speeds are
compared. Brains apparently make extensive use of analog signals and analog computation
unlike present general-purpose computers. Brains are capable of surprising feats of self-repair
[Merzenich et al. 84] and leaming, whereas present-day computers are vulnerable to even
the smallest hardware malfunctions and must be quite tediously programmed. Until recently
artificial computers could be distinguished from brains on the basis of inefficiencies associated
with purely serial computation, but advances in parallel computation have largely removed
this problem. All of these comparisons are well known, even cliches, and have been used
to bolster many mutually inconsistent but optimistic-sounding recommendations for computer
design [Brown 84; Conrad 85; Hillis 82a and 82b].

One of the most interesting normative models of biological computation is the content
addressable memory (CAM) of Hopfield [Hopfield 82]. It used large fanout “neurons” to
retrieve one of a number of stored bit strings, choosing one very similar to an input bit string —
the computation implemented is an “inexact match” which tolerates many independent one-bit
errors in the input. The neural network may be programmed (memories may be stored) by
a simple formula or by an equally simple learning mechanism. Numerous hardware defects
can occur before the network is broken, so that the CAM may be appropriate for use in
Wafer Scale Integration where, for present technology, some hardware failures are inevitable
and must be tolerated [Leighton and Leiserson 85]. This possibility leads to one of the
more tantalizing similarities between the CAM and biological computation: that the CAM, by
tolerating hardware errors, may be easily implemented in error-prone technologies and thus on
a much larger scale than conventional circuits; this would decrease the size disparity between
natural and artificial computing machinery. Finally, the CAM may use either discrete or analog
neurons [Hopfield 84].

In the case of discrete neurons, the behavior of Hopfield’s network is as follows. Each

neuron has one of two possible values, for example +1 or -1, and when it is updated a neuron
with value s; changes that value to



N
s; =sgn(})_ Tijs; — hy) (1)
j:l
i 1§ 0
_J+1 ifz>0;
sgn(z)= { —1 otherwise,
and

T:; = a numeric “synapse strength” from j to ¢
h; = a numeric “threshold” for neuron s.

A variety of update schemes are acceptable. One standard scheme is to choose a
random permutation of the neuron indices {1,..., N} and repeatedly update the neurons in
that standard order. If T;; = 0 and T;; = T;, then each time a neuron is updated the energy

function
E =3 Tiss; (2)
i

decreases. This time behavior corresponds to that commonly used for Monte Carlo simula-
tions of thermal Ising models with temperature approaching zero, or being quenched to zero
[Kirkpatrick 85].

In the case of analog neurons, one replaces the “sgn” transfer function with a continuous
sigmoidal function g and one uses a more continuous updating scheme, such as simultaneous
differential equations with a time constant 7 for equilibration; an example is

ré;+ 8 = g(D_ Tijsj — hi).
J

The discrete neurons are much less expensive to simulate on general-purpose computers.
Needless to say, any resemblance between the dynamical system just defined, with its neural
terminology, and the real dynamics of neurons and synapses is a historical coincidence. The
two systems may or may not have similar behavior; each is interesting independently.

The CAM model has a number of the properties associated with biological compu-
tations, and it can be efficiently implemented in silicon electronic technology [Sivilotti et al.
85]. Its principal drawback is the relatively uninteresting computation which it performs. Gen-
erally, attempts to use a “Hamming distance minimizer” as the heart of a practical computation
fail due to the rigid assignment of meanings to bits in the stored and input bit strings; there
is no natural mechanism for movement of information such as shifting. Still, the Hamming
distance minimization computation is suggestive of pattern recognition problems and it may
be possible to use some of Hopfield’s ideas to design pattern recognition networks. Certainly,
pattern recognition could use the kind of increased computational power which a large, robust,
analog, parallel special-purpose computer (or one incorporating just some of these features)
might provide. Visual pattern recognition, in particular, is widely thought to be in need of
several orders of magnitude more computational power than is available now.

The retrieval of a memory in the CAM model involves all the neurons in the network,
being an essentially collective behavior. The model is in fact related to collective models
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from statistical physics known as spin-glasses, and works best in the limit of large numbers of
neurons. Consequently, the behaviors of the CAM and of similar networks are often referred
to (collectively, of course) as “collective computation.”

The main problems with extending the CAM model to create a new paradigm for
computing are how to find connection matrices T;; that do more interesting computations, and
how to minimize the physical cost of implementing T;; in present-day technologies: silicon
electronic, optical, or the poorly understood neural technology that occurs in nature. Usually
the physical cost of a network is related to the total wire length or wire volume needed, and to
the time required to finish a computation. In perception problems it is particularly tempting to
introduce designs which are profligate in their use of wire length. The present work introduces
methods of some (unknown) generality for solving both problems.

Several methods for “programming” networks, i.e., finding T;; which produce a desired
behavior, will be used. One is the method introduced by Hopfield with the CAM [Hopfield
82]. A second, the use of a few fixed points to control large basins of attraction, is introduced
in Chapter III. Also novel is a geometrical network organization which minimizes wirelength
by enforcing locality of most connections (most T;; matrix elements are zero) while efficiently
implementing nonlocal pattern recognition algorithms such as “multiple scales of resolution”
methods. These network programming techniques will be introduced entirely through a set of
simple computational tasks related to fingerprint recognition.

1.1. The Potential Virtues of Collective Computation

The neural CAM has a number of properties which make it worthy of imitation, each possibly
contributing a factor of 10 in computing power. In addition, it is extremely parallel.

About 20% of the simulated network could be eliminated, and the rest would still
work. This is a stronger form of robustness against hardware errors than would be required to
solve an important technological problem: using Wafer Scale Integration despite the extreme
difficulty of obtaining any error-free samples of such large circuits. Certainly, the network’s
large fanout helps here, but it is not yet clear that spatially local implementations of large fanout
networks can share this robustness. There was also a form of robustness against errors in the
relative timing of signals: the network operated asynchronously. This is good for networks so
large that synchronization is difficult to achieve. Another form of robustness simply makes it
easier to simulate collective circuits on a general-purpose machine: insensitivity to the exact
dynamics of the elementary computing units allows one to simulate the cheapest reasonable
dynamics rather than, for example, the full analog electrical equations.

A second potentially important virtue of collective computation is its compatibility with
analog computation: Hopfield has simulated an analog CAM [Hopfield 84]. It’s reasonable to
encode eight bits per neuron, rather than one. The present work will not much explore this
direction due to the higher expense of simulation.

The CAM and other networks to be introduced later tend to converge to fixed points
(outputs) quite quickly unless there is an information-theoretic reason not to. This means they
are efficient in their use of time, at least for tasks which needn’t take much time.

A crucial property is efficient implementation in silicon. Sivilotti et al. have fabricated
a VLSI CAM [Sivilotti et al. 85], and analog networks can be implemented with very low
overhead indeed. The neurons can be implemented with just a few transistors [Platt 85]. The
summation of inputs can be done by the simple intersection of wires if neural inputs are
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represented by currents rather than voltages. This efficiency of implementation means that
neural network theory is directly relevant to special-purpose VLSI design. This fact permits
the simultaneous treatment of an algorithm and its implementation. Usually, in computer
science these two are separated for ease of thinking and understanding, but if one can think
about both in the same framework there is a significant advantage: a greater appreciation of
cost issues. Quick appraisal of the wirelength cost of an algorithm encourages algorithms that
are efficient in their use of long wires.

In all this, the extreme parallelism inherent in talking about very simple elementary
units working simultaneously is taken for granted; the properties of fault-tolerance, analog
signals and special-purpose design are good for computational power over and above that
expected from a general-purpose parallel machine.

1.2. General Methods for Network Design

To obtain any of the desirable properties listed above for a new computation it is necessary
somehow to specify the connections T}; between the neurons in a network. This “program-
ming” or “network design” problem occurs for each new computation so that general network
design methods are desperately needed. Fortunately, several are available.

The first method is a way to compose simple networks to get a complicated one. The
choice of T;; for the CAM network and for the equally interesting Travelling Salesman Problem
network of [Hopfield and Tank 85] are both of the form

A
Tij =) wT§
a=1

where T is a more easily understood network and w® is a real weight. This method of
composing networks is very unusual in computer science but common in physics, where the
corresponding addition of energy functions

A
E= ZT{,‘B"G,‘ + Zh.-s,- = E w*E*
i i a=1

is very common for A = several to several dozen terms, and the w® are called coupling
constants. The resulting physical systems are often simply understandable in terms of the
elementary E* — and often not. A is the number of stored memories. In the CAM network
A can be proportional to the number of neurons in the network, and the nonlocal connections
Tij are

A A
— L Jo— x
Ty =) T5=D_ sief,
a=1 a=1

which is the sum of the outer products of A memory vectors s* with themselves. This kind
of network will be discussed further in Chapter IL

Another general method for finding desirable T;; matrices consists of controlling a
relatively small number of fixed-point configurations (configurations which are fixed under
the neural update rule). Often a few fixed points can be used to control the entire behavior
of the network in the high-dimensional space of possible configurations. In a CAM network,
for example, one can try to arrange that the desired fixed points’ basins of attraction cover



5

the space and have roughly equal volume. In local image processing networks, it may be
sufficient that a neural configuration be always locally similar to one of the controlled fixed
points, though which of the controlled fixed points it looks like may vary across the image.

The stability of each neuron within a configuration s* may be expressed as an inequality
in T,'J':
8:-' = sgn(z T,','ss-' = h,‘)$

i#]
0 < (s7)*=sgn(d_ Tijefsd — hisf)
i#5
Y Tijsfs] — hisd > 0. (3)

i#5

Satisfying a number of such linear inequalities in T};, together with locality constraints and
minimum wirelength constraints, is often a computationally tractable problem. If it isn’t, one
can decrease the number of fixed-point constraints and decrease the number of free parameters
in T;; by assuming a special form for the connection matrix; that way a large network can
be specified with a few parameters. An example is a one-dimensional special form T;; =
T(Ji — j|), which reduces N2 parameters to N while retaining the linearity of the inequality
constraints (4). The control of fixed points through special forms and inequalities is practiced
in Chapter III, where it is modified somewhat, and in Platt’s work on simulating Petri nets
[Platt 85].

An interesting and somewhat unusual network design technique is the expression of a
network as the discretization of a continuous medium. For very large and strictly local analog
networks one obtains partial differential equations this way; the analog network is a spatial
discretization of the differential equation and the discrete-neurons network severely discretizes
the time derivative as well.

However, it is not necessary to use strictly local connections, which correspond to
low-order differential operators, and in vision one often wants to calculate quickly and use
global information. Global information can be calculated and disseminated slowly by iterated
local interactions, or quickly by long-range interactions which, in the electrical terminology,
require expensive long wires. The usual compromise was suggested to the present author by
the renormalization group formalism [Wilson 74] but is in fact standard in vision research: by
connecting several local networks whose lattice spacings differ by a constant factor, one obtains
a relatively few long wires (the local connections in the low-resolution networks) which appear
to the high-resolution networks as global interactions. This idea is called “multiple levels of
resolution” or simply the “multiresolution” method.

In Chapters II and especially III we will see how to express such a network as the
discretization of an unusual continuous medium by the addition of a third “hierarchy” axis
and a neural density function. The cost of this addition is a constant factor in wirelength.
There is no reason that other, more complicated, neural architectures could not be expressed
as continuous media with other new axes, such as measured object size.

The continuous medium treatment has a number of advantages. It makes the network
look homogeneous, each neuron being surrounded by the same medium in its neighborhood.
This encourages scale- and translation-invariant behavior (scale invariance being the relevant
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invariance along the hierarchy axis). A neighborhood looks exactly the same after being trans-
lated or scaled. This fact has beneficial effects: first, the image processing is invariant. Trans-
lation invariance is obviously desirable, and in many images scale encodes depth so that scale
invariance is also desirable. Also, network homogeneity means that the network connectivity
is described by very few parameters (those adequate for describing just one neighborhood) so
that linear constraint satisfaction and other programming techniques become computationally
tractable. These advantages come at a price. The continuous medium approximation requires
a high density of neurons, compared (perhaps) to the information density. Thus some constant
efficiency factor in neuron number and total wirelength is sacrificed. In a hierarchical organi-
zation, one makes highly variable and nonuniform connectivity neighborhoods look uniform
by sprinkling in extra neurons. An obvious corrective measure, not pursued here, would be
to start with the continuous (infinite density) approximation and correct it by some sort of
1/density perturbation theory. The lowest order of such a theory would be a continuous homo-
geneous medium with infinitely many neurons per unit area, and higher orders would allow
one to treat finite densities. The idea is to derive corrections to the idealized T;; matrix which
compensate for local density variations; such corrections would no longer be translation- and
scale-invariant, but would exist for the purpose of preserving invariant behavior after a non-
invariant network discretization. As the information/neuron is increased, interesting packing
and tessellation problems arise; Misha Mahowald has done intriguing work on such problems.
These considerations, however, are secondary for the present purposes.

Thus we have a continuous, geometric approach to multiresolution methods. One of
the most interesting such methods is the work of Terzopoulos [Terzopoulos 84] in shape
deduction. In this case a two-dimensional relaxation medium (a thin plate) is to be more
quickly relaxed by coupling to coarser-grain versions of itself. The interplate coupling is done
through interpolation and averaging interactions. The present method differs slightly: the
design of the interpolation and smoothing interactions are unified with that of the intralevel
interactions. Both are accomplished through the optimization of an invariant neighborhood
connectivity function. Also, the coupling occurs here without doubling the number of degrees
of freedom as in [Terzopoulos 84]. It remains to be seen whether the extra simplicity can
be used to any good effect. It is to be hoped that the simple and general methods discussed
here will prove useful for other computations, after having been developed and refined through
experience with fingerprint recognition tasks.

In vision there are many computations for which a continuous, homogeneous hierarchy
may be useful (see [Rosenfeld 84] for multiresolution examples). Since interesting shape-
producing processes operate at all scales in nature, any general shape recognizer would need
to work equally well for large and small objects, and would need to allow different sizes to
interact to keep track of object parts and subparts. The automatic description of frequently
encountered shapes may be a task well modelled by the much simpler problem of scale-
invariant fingerprint recognition. There are also non-homogeneous hierarchies in known vision
algorithms, where the nature of the computation changes with the level in the hierarchy. It
is possible that the change could be made gradual, so that continuous computational media
could again be useful.

Recently, the relationship between a continuous one-dimensional medium and a finite
sequence of locally coupled analog circuits has been exploited by Platt and Mead [private
communication] to design a VLSI “cochlea” and related sound-processing devices.
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1.3 The Fingerprint Identification Task and Subtasks

One reason that people are drawn to work on vision is its apparent universality. There are
so many things a computer could do if only it could “see.” This is of course a comment
on the versatility of our own visual systems. Certainly, there is no specially evolved neural
mechanism for driving a car; the credit for this accomplishment must be divided between
learning and the generality of mechanisms designed for other tasks. It’s the generality that
we're after; any particular task will likely not be the one we’re “really” interested in, at least
not for long.

The alternative to universality is the specific, once-only solution which is useless
outside of its original context. In computing circles this is called a “kludge” or “hack,”
especially when more general alternatives are available. It is possible that a given vision task
is best done with many kludges, but that a collection of tasks are best done with fewer kludges
each and more sharing of methods. The chief danger of concentrating on a few example tasks
in vision, as is done in the present work, is the accumulation of kludges.

A new research idea cannot at the outset be tested on many real tasks, but it is possible
to use no real examples at all. For example, one can make up vision tasks which nobody needs
done such as solving idealized jigsaw puzzles. This seems unhealthy since the properties and
difficulties of real tasks are often surprising. It was therefore decided to try out the new neural
programming techniques on one of the simplest of real pattern recognition tasks.

Fingerprints do not represent a missing third dimension as scenes do, and they may
be recognized even after each pixel is forced to take one of two values (black or white).
Previous work by Megdal [Megdal 83] made the problem a local favorite at Caltech. The
idea is to locate the minutiae (mostly branch points and ridge endings) despite the presence
of a much greater number of spurious branch points and ridge endings due to characteristic
fingerprint noise such as holes in ridges caused by sweat pores and bridges across valleys or
across ridges. For more information on the nature of fingerprints, see [L.S. Penrose and Ohara
73a; L.S. Penrose 73b; R. Penrose 79]. Figure 1 shows a fingerprint obtained by Megdal after
being filtered through a 3x3 pixel Gaussian filter and thresholded to black and white. Notice
that branchings and endings are dual under interchange of black and white.

The first thing to do in analyzing a fingerprint is to get rid of the characteristic noise,
leaving only clean ridges, valleys and isolated minutiae. Minutiae should be isolated because
sufficiently close pairs of minutiae are easily confused with bridges and holes. This processing
greatly simplifies minutia detection by making that operation local on the scale of the prevailing
ridge width. Also, simplifying the ridges and valleys allows simple algorithms for counting
the number of ridges between nearby minutia to succeed. Then, from the cleaned up image
one can calculate the minutiae locations and orientations. A complete print has 50 to 150
minutiae, of which about twelve are needed to establish a match with another print. So
there ought to be considerable redundancy in the minutiae information. It is then possible to
find relationships (such as ridge count and relative direction) between nearby minutiae; the
relationships between distant minutiae are much less dependable. Finally, one can compare the
deduced sparse information with the same representation of many other fingerprints to match
a print with a library of prints.

A number of efforts fit this general description, including Megdal’s and a successful
commercial system by NEC. The $2.6 million NEC system is operating in San Francisco and
has identified prints in 20 per cent of the cases where police recovered fingerprint evidence
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[Johnston 85]. A larger ($22.5 million) version of the NEC system is also being purchased
for the California Department of Justice’s CAL-ID project. There are several competing
commercial systems from other companies.

In the NEC machine, as described in [NEC, CG&A], a skeleton ridge pattern is detected
and cleaned up first. Then the minutiae are detected, and for each minutia a local coordinate
system is specified so that one axis travels along the local ridge direction and the other axis
is perpendicular to the first. In each quadrant of the resulting coordinate system the nearest
minutia is found and the number of intervening ridges is counted. This produces a sparse
labelled graph which compactly summarizes the minutiae information, and may be matched
against many stored graphs to produce matching scores. A list of the best candidate fingerprints
and their matching scores is the output.

The matching procedure is assisted by a special-purpose chip which can compare 40
search minutiae with 100 file minutiae in 1.3 ms. 18 such chips [CG&A] are in the CAL-
ID system. The matching algorithm involves scoring and ordering the possible file minutiae
corresponding to a search minutia by using the local ridge count, position and orientation
information. On this basis a global translation and rotation of one image with respect to the
other is calculated to optimize the matching between them, and this step is followed by a
recalculation of the pairing (or lack of it) between search and file minutiae. The proposed
match is then assigned a score depending on the plausibility of the proposed minutiae matches
and the number of minutiae not matched. More detail (but not much more) is available in
[NEC,CG&A].

If such a system encounters N fingerprint images over its lifetime and matches each
with every other then there are N fingerprint analyses and N? matchings, so transferring work
from the matching to the analysis phase may be a very good idea. It would not be nearly
so useful for repetitive identity verification for a small population P <« N; there would only
be PN matches performed. By looking for unusual “features” during the analysis phase, it
may be possible to reduce the matching phase to a comparison of two bit strings, one for
each fingerprint. Each bit in a string would record the presence or absence of one type of
unusual feature. Retrieval of a stored fingerprint image would consist of finding the stored
string whose unusual features coincided in type, as much as possible, with those of the input
image. This is just a Hamming distance minimization of the sort performed by the Content
Addressable Memory. If such a scheme were possible it would be an improvement over the
present NEC machine.

If one looks at the amount of information involved in any of these fingerprint recog-
nition schemes, there is a lot of image information which is mostly removed to leave a small
description of the minutiae graph. This description is then compared with an enormous data
base of stored fingerprint information. So there is a severe bottleneck between the image and
the data base which naturally divides the recognition task into image processing and labelled
graph matching tasks. It makes sense to try the first (image processing) task first since the
statistical properties of fingerprint minutiae may be necessary to design the most efficient
matcher.

Among the various image-processing operations needed (removal of fingerprint noise,
branch detection, ridge counting, etc.) the one involving the most information is the removal
of fingerprint noise since this operation works best on the original image data rather than on
a simpler skeleton. So this computation is most in need of special-purpose hardware, and



9

we shall try to design a neural network which removes characteristic fingerprint noise and the
false minutiae signals associated with such noise. It will be argued that branch and ridge end
detection, at least, is then a straightforward local computation (see Chapter II).

One of the difficulties with noise removal is that ridges and valleys vary in width even
within one fingerprint by a factor of 2.5. This fact, and the general interest in scale-invariant
pattern recognition mentioned previously, suggested that the network be required to behave
in a scale-invariant way. This constraint is stronger than what is strictly necessary for the
fingerprint task but it may increase the applicability of the present results to other problems.

Finally, the approach used will be first to obtain a network which produces plausible
clean fingerprint-like patterns from random input, and then modify it so that real fingerprint
patterns as input produce “nearby” but clean (noiseless) fingerprint patterns as output. The idea
is first to require the network to have the right “vocabulary” of outputs, and then to refine it to
obtain an acceptable input-output map. The first stage, the production of clean fingerprint-like
patterns from random input, is referred to as “hallucination.”

In Chapter II we present a hierarchical fingerprint hallucinating network which produces
stripes of various widths. In Chapter III the relationship between neural network and continuous
medium is clarified, and an acceptable input/output map is obtained between idealized one-
dimensional slices of fingerprint images. The map is correct for a wide range of ridge widths
so that the network appears to be genuinely scale-invariant. This success is restricted to the
easier one-dimensional case. Chapter IV reverses the perilous decline in dimensionality; the 2-
d network of Chapter II is here tried out on windows from real fingerprint images and modified
to perform part of the required computation. The satisfactory 2-d network is not achieved, but
much is learned about neural programming and design methods along the way.
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IT Stripe Hallucination

In general, then, to control the behavior of a network of threshold elements we have at our dis-
posal the connection weights T;; and the thresholds h;. There are several techniques of some
considerable but unknown generality for “programming” networks to behave as desired ro-
bustly. These techniques include the synapse-by-synapse summation of previously understood
networks, the control of a relatively few fixed points, and the use of appropriate continuous
geometries as an approximation to the actual discrete network. A simple example of one of
these techniques is the use of summation to construct a content addressable memory, or CAM.

II.1. The Content Addressable Memory

In the content addressable memory network as explained by Hopfield [82], one i«
presented with an input bit string s{!"), 1 < i < N, and asked to retrieve that one of M stored
bit strings s'(.'”) which is closest to the input string in Hamming distance. If the individual
bits are represented by +1 or —1 instead of the traditional 0 or 1, then the following energy

function suffices for the easy case M = 1, in that it is minimal if and only if the current
network configuration s; is a'.l) or its negation, —ssl):

E(s)= [i s.-s,(-l)] 2.

=1
The connection matrix is o
T = o).
Thus, starting this network off in the input state ,.(in) will result in the network’s reaching

the desired final state a‘(-l). the “closest” and only stored memory. It is at first surprising that
a network with M such memories, chosen at random, can be generated by adding up the M
corresponding single-memory networks. The resulting matrix of connection weights is

M
Tii= 3 ofa™ (1)
m=1

and its efficiency, robustness and other properties are introduced in [Hopfield 82].

The production of a complicated network by synapse-by-synapse summation of a set
of more thoroughly understood and simpler networks may be expressed as

Tij = z T3 (2)

and is very different from conventional composition of circuits to produce new ones. The
principal difference is that no new active (threshold) elements are introduced; these elements
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are shared by all of the simpler networks. The more conventional approach would be to collect
a set of sub-networks with distinct threshold elements s, connected only to other elements
within the the same subnet «, and then try to sparsely interconnect s* and s?.

I1.2. A Fixed-Width Stripe Network

A simple image-processing problem may also be solved using the summation technique, to-
gether with some geometric ideas. We would like to construct a two-dimensional network
whose stable states include the striped patterns of constant width. We would like to have two
sets of neurons distributed about the plane: one, which contains just a pattern of black and
white pixels, and a second set of neurons which in addition contains information about the lo-
cal direction along a stripe. The second set of neurons is included to allow further constraints,
which must be expressed in terms of the local stripe direction, to be imposed later on. An
example of such a constraint would be that branch points should be separated by many stripe
widths. Note that by introducing direction-sensitive neurons we diverge from other efforts, like
those of [Hinton and Sejnowski 83] and the Perceptron research of the 1950’s, which attempt
to find some simple dynamics for changing the network’s connections and thereby discovering
the necessary network organization.

We imagine that the neurons are spread uniformly over the plane with great density, at
first infinite. Instead of being indexed by a single index 1, the neurons come in two types (as
mentioned above) which are indexed differently. The first type are called Pjz, for pixel, where
Z is a spatial index. The second are called stripe detectors Sz 4 . where ¢ is the local angle of
stripe orientation and c is the local color, —1 for white and +1 for black. At a given spatial
index Z all but one Sz should be turned off.

The condition for the use of the sum of outer products formula
Ty =) o™
m

is that the desired fixed points s]* be approximately orthogonal. Given that most of the S-type
neurons at any point are turned off, this assumption cannot hold if the “off” value of a neuron
is —1. The assumption stands a much better chance if “off” neurons do not contribute to
inner products so that their value is 0, and Appendix I to this chapter shows that in the limit
where A, the number of different values of ¢, is large the orthogonality of our desired striped
fixed points is maximized when P neurons have the two possible states +1 and —1, as in
the content addressable memory, and the S neurons can assume the values O or 1. These two
cases are already standard so we will not bother to improve the large A approximation.

A particularly interesting aspect of this network is the synaptic weights from P-type
neurons to S-type neurons, as these determine which pictures a given stripe-detector responds
to. The § — S and S — P connections may then be thought of as consistency checks. The
P — S connections receive contributions only from stripe patterns which turn on the given
stripe-detector, since the other patterns in P are multiplied by an S = 0 neuron value in the
outer product synapse formula. Thus

Taosas= 2. SheePi= -2 P
configs m valid configs m

and obtaining the desired synapse weights is simply a matter of superimposing all the stripe
configurations which should turn on a given stripe detector. Since these configurations are of
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infinite extent, one will eventually want to truncate the stripe detector’s innervation pattern
by removing all connections between very distant points. The infinite-range case will provide
some guidance as to how far away two neurons may get before their connection may be safely
truncated to zero.

The desired fixed point configurations are all stripes and may be characterized by an
angle of deviation, ¢, from the stripe detectors’ ideal angle, and by the phase 8, by which a
stripe pattern is shifted in the direction perpendicular to the stripe direction. The conditions
for the stripe detector to respond are

—AY <y <Ay

and
1 1
e ST
x o< 2 (3)
where the phases # are normalized so that the stripe period is 2, rather than 2x. On this scale
the stripe width is 1. Arranging our coordinates so that the stripe detector is at the origin, its
innervation pattern is

Ay 1/2
7(@)= [ v [ o suipe(y,s,2)
-Ay -1/2
where
Stripe(y, 6, £)= Stripe(0, 0, 7)

and
=0+ zcosy+ ysing

Yy =0 —zsiny + ycosy

j=o0
Smpe(O, 03 (:') V'))= E (—l)jBit(:l:', ) — %,J — %)
j=—00

) 1, ifzp<z<zy
Bit(z, 20, 21)= {0 otherwise.

So Stripe(0,0, (z',y")) is a square wave in z', and the general Stripe is a two-dimensional
rotation and translation of this pattern.

A discretization of the integral expression for T'(Z) is shown in Figure 1, with Ay = %
and each integral approximated by a Riemann sum with 30 summands. Figure 2 is a close-
up, showing the region of large T'. The contour intervals are .1 and .2, respectively, and in
both figures the very long contours are all at zero. The hills alternate in sign. The isolated
points show the z,y grid used to sample the function, and the contour-plotting procedure of a
standard statistical package [Ref: S] was used to interpolate smooth contours.

The principal features to notice about T'(Z) are the alternating series of positive and
negative vertically elongated bumps along the z-axis, and their spreading out starting at z =
+6.

We may check that this T is a reasonable innervation pattern for a stripe detector by
asking for its response to stripe patterns of various phases and angles, both those that should
turn on the given stripe detector and those that shouldn’t. In other words the possible stripe
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patterns are characterized by two parameters, ¢ and @, and a given stripe detector S; should
have large net input R; = 3°; T;; P; only for configurations P; characterized by the parameter
range in Equation (3).

In Figure 3, the response function R is computed as a discretized integral with T'(Z)
truncated to zero outside the region —6 < z,y < 6, so

R(¥,0)= [ dz [ dyTirunc(@) Stipe(y,,2). @

Once again, and in all future contour plots, the isolated points represent the sampling grid.
The integrals were each approximated by 30 summands.

The response function R is nearly perfect; thresholding it slightly above zero leaves a
positive response for almost exactly the stripe parameter range desired.

The special pattern of T'(Z) encourages us to save wiring costs by removing all connec-
tions with relatively low weights; most connections will be so removed due to T"’s alternating
concentrations of weight along the horizontal axis. Figure 4 shows T' with all values within .4
of zero removed, and Figure 5 shows the corresponding response function. The network stll
works very well.



15

0.0
Theta

Figure 3

Finally, the success of the network shown in Figure 4 suggests a further wirelength-
saving trick: the collection of partial input sums, one from each hill in Figure 4, which are
then summed to produce the total input to a stripe-detecting neuron. The advantage of this
is that if, for example, the hills are made of uniform shape (though not necessarily uniform
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height), different S neurons separated by integral z can share most of the partial sums; the
only difference between neurons would be which partial sums to add with what strengths. (If
the hills in Figure 4 had been Gaussians or similarly uniform and circular, this trick would
just amount to using lower resolution, i.e., sampling the image at no more than one pixel per
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unit square.) Each partial sum could be gathered by a linear (non-thresholding) interneuron.
(Interneurons are intermediate neurons which do not participate in input or output.) The
possibility of a wirelength explanation for a new cell type was also found by Misha Mahowald
[private communication]. Such functional explanations of structure would be of great interest
in biology.

It should be recorded that very similar experiments with branch-point or ridge-end
detectors, using eq(1) and a set of single-branch stripe configurations parameterized by a stripe
angle and the z and y coordinates of the branch point, failed to give a satisfactory response
function. The problem again has to do with configuration orthogonality. For example, a
defect in a stripe pattern can migrate a great distance perpendicular to the stripe direction
while changing only a small fraction of the pixels making up the pattern (a matter of distance
vs. area). To design a branch detector, then, would require a more direct approach to the
stabilization of the desired set of fixed points. It should not be difficult to compute a satisfactory
neighborhood function T'(Z — Zp), but the resulting network will no longer be an example of
the method of summing up simple networks to construct more complicated ones.
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I1.3 A. Hallucinating Network

As discussed in Chapter I, one way to approach the image-processing portion of the
fingerprint identification problem is to create a network which turns random input into a stable
fingerprint-like pattern. The demand for scale-invariant processing (so that there is no preferred
ridge width) and the need to minimize total wirelength jointly encourage hierarchical designs.
How can such designs be integrated into neural network theory?

A hierarchical design may be thought of as a severe restriction on the synaptic matrix
T;j, forcing all but a few connections to be zero. The few nonzero connections are between
an element of a hierarchy and its immediate neighbors: parents, children, and siblings, or
bosses, subordinates, and coworkers, to use two social analogies. In practice, hierarchical
designs often also allow next-nearest neighbor connections (e.g., aunts) out to some distance.
The existence of a small number of allowed neighbors encourages one to try to specify the set
of allowed connections geometrically, and to think of a hierarchy as a local network in some
peculiar geometry. In sum, I propose to elevate the continuous and geometrical approach used
in the stripe detector example to a general principle of network design, and in particular to
design hierarchies this way.

I1.3.1 A Continuous Hierarchy

The constraint that our network be robust appears at first to conflict with the scale
invariance and wirelength minimization constraints: scale invariance and wirelength mini-
mization draw us towards hierarchical designs but the neurons and synapses near the top of
the hierarchy are not expendable; the network is especially vulnerable to defects affecting these
neurons and synapses. A plausible solution to this difficulty, which also introduces geometric
continuity and controllable fanout in a simple form, will be illustrated first for the case of
a network with one-dimensional visual input and statistical properties similar to those of a
binary tree with neurons at its nodes and synaptic connections at its links.

The standard technique for controlling wiring costs is to enforce some kind of locality
on the connections in a network, i.e., to use short wires much more than long ones. In a
d-dimensional medium (for integral d), the total cost of the wires of length between ! and
I + dl is roughly [the number of wires in the interval (I,{ + dl)] x [the cost of a wire of length
I]. Here the cost of a wire is taken to be its volume, proportional to [ ¢ to produce logarithmic,
or nearly constant, time delays as a function of /. The reasons for this scaling are set forth
in [Mead and Rem 82; Mead 83] and are related to the use of exponential amplifier horns to
drive long wires. For sufficiently short metal wires on present-day chips the wire resistance
does not much limit the signal delays so that the wire volume required to produce constant
delays is just proportional to the wire length, [.

To determine the number of wires N(I)d! in the interval (d,d + dl), we guess that
each order of magnitude (I, 10!) should have about the same wire volume spent on it. This
assumption is reasonable since it multiplies the total wiring cost by the logarithm of the
system size, by comparison with a purely locally interconnected network. The logarithm is
the minimum factor required to accommodate the wiring costs of a binary tree.

Introducing z = log/, the equal-cost-per-decade condition means that for constant Az
(as a function of z) one has

z+Az
[ N(1)i%dl = constant(z)
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o= 2 [ TN = 2 f N()I#+dz

0 = N(I)id+! e

which implies that N(I)oc [=(4+1). In VLSI d=3 for wire physics and the result is N ~ [~4.
For short wires this expression is modified to N ~ [~2. The effect of this modification is to
favor the longest wires whose resistance is still negligible.

Thus, if we have many short wires we can afford some long wires, and vice versa; the
costs of short and long wires are balanced when the number of wires of length [ is [=(d+1)
Long wires are important since few computations can be continuously mapped onto the d-
dimensional medium (d=2 or 3) available to us while preserving spatial locality in that medium.
Hierarchical designs such as the binary tree are examples of local organizations with a few
long wires; one can map a binary tree into a d-dimensional medium so that the number of
wires of length [ is proportional to l“"-’f [Mead 83]. Literal hierarchies such as the binary tree
have the drawback, however, that, although they use long and short wires in a balanced way,
they do not use them well except for d s 1 . The tree is equally mappable into any dimension
d > 1; it does not make use of the increasing connectivity of higher dimensions. In a tree,
every connection is a bottleneck. Quantitatively, if we take a patch of a d-dimensional local
network whose shape has been arranged to minimize the number of external connections W
for a given number of internal neurons N (in this case the patch will be a sphere), we get

W = N-1/4, (5)

(W = surface = L?~!; N = volume = L%).

For a similar patch of binary tree the answer depends on the binary expansion of N but if we
average over a factor of 2 or more of possible N values, we get

W =logN, or

diee — 1(= "1+ ¢€7).

This definition of a network’s “bottleneck dimension™ as limy o 1/(1 — log W/log N) does
not refer to a network’s spatial embedding; it is an intrinsic dimension. This definition has
the consequence that for two graphs of equal N, the one with larger dimension cannot be
embedded in the other because there are not enough wires available.

If d is the integer dimensionality of an image then the bottleneck dimension of an
image-processing network may be reduced to that of a tree over d dimensions, d + €, by
the following geometric construction, illustrated for d = 1. The binary tree in Fig. 6 has
the following scaling behavior: that when zmax is doubled and Imax is increased by one,
the resulting network is nearly isomorphic to the original one, differing in having higher
“resolution” (an extra layer of neurons at the bottom). In the case Imax — o0, the isomorphism
would be complete. The few special long wires near | = Imax appear to preclude any local
geometric interpretation of Fig. 6, but setting z = 2! (Fig. 7) reveals a geometric interpretation:
neurons may be connected only when they lie within a z-dependent neighborhood size. The
size changes with z to maintain constant fanout. The fact that each neuron has two possible
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neighborhood radii, differing by a factor of two, is awkward and will be further discussed in
the next section where non-spherical neighborhoods will be introduced.

Of course, these neighborhoods could also be drawn on Figure 6, where they would
appear as highly squashed ellipses. In Figure 7 they are circular and are determined by just
one number: the radius. This radius is roughly the mean spacing of neurons as a function of
z, so that the neighborhood sizes can be specified by a density of neurons p(z), with radius
= R(z)~ p~'/2(2). For a binary tree, p(z)= z~2. The scaling law is also convenient to state:
under a change of coordinates z — Az, z — Az one gets “approximately” the same network,
with extra resolution near z = 0. This means that we have the approximately scale-invariant
quantities

L (zo — 1)
@ = arctan e 21)
and
z)? z)?
v= /R VT 220

to describe the neighborhood of a neuron. Thus we have some useful parameters out of which
to construct approximately scale-invariant networks. In Fig. 7, once it has been decided
that two neurons have 4 < 1 and can thus be connected, their connection strength may be
determined by complicated rules having to do with binary numbers. We make this second
decision based on simpler rules involving v and #. Thus T;; will be a function of 4 and 6,
and a function of zp, z1, 20 and 21 only through these quantities. Also, rather than relying on
a highly patterned grid of neuron locations, we will allow any set of locations which produces
the density function p with sufficient accuracy.

This description of a binary tree is interesting because it also covers several other
networks. By taking p(z)= constant we get a two-dimensional local network, which does not
suffer the robustness problem associated with top-level neurons but does suffer long commu-
nication delays due to its lack of long wires. It is also very much more expensive than the tree.
By considering p(z)x 27%,0 < a < 2, one may hope to get both long wires and behavior
continuity. The proposal, then, is for local rules in a space with fractional dimension 1 + ¢
(1 € 1+ € < 2), where ¢ is now a real number rather than an infinitesimal and depends on
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in a calculable way. Clearly, wirelength minimization requires that ¢ be minimized.

The image-processing version of these ideas involves a 2+ e-dimensional network with
ordinary dimensions z and y and a third hierarchy coordinate z. There is a density function

p(z)= K*-22® (6)

where :
05053: ES‘SI,OS-‘B,]{SI

and K is a constant which determines the resolution of the network, being roughly the number
of neurons along one side of the image.

The scaling behavior is as follows: under a coordinate change
=z, =y, = Az

we use
p(z)dzdydz = p'(2")dz'dy'd2'

to deduce
()= 21" p(2)

= (K/N**(3)™
= (EfAP ()"

so that the network can be self-similar if its behavior is independent of its granularity, K. There
are similar local statistical systems in condensed matter physics which have this property at
phase transitions (i.e., after the careful adjustment of one parameter) and we would like to
find a corresponding behavior in this case to obtain scale-invariant pattern recognition. For
the connection between neural networks and statistical systems see [Hopfield 82].

In Appendix II the (intrinsic) bottleneck dimension and an embedding dimension are
calculated as a function of a; they are

3 ifa<l
2 ifj<a
and
denbedding = max(2, 3- a, 3 - 20/3) (76)

These are compared in Fig. 8, and agree for a > % In the simulations reported in the rest of
this chapter, a was set to 2.1.

I1.3.2 Necessary Refinements of the Hierarchy

Experience shows that the foregoing construction of a fractional-dimension network
must be refined in several ways if the networks are to be computationally reasonable. First,
it is not sufficient to distribute all the neurons randomly and independently with density p(z).
Severe percolation and bottleneck problems arise from the variance associated with such a
distribution, unless the number of neurons so distributed, and hence the wirelength cost, is



22

Figure 8

unreasonably high. A more uniform distribution scheme for neurons, still consistent with p(z),
is to divide (z, y, z) space into cubes whose size depends on z and place a neuron or a clump
of neurons at the center of each cube, as in Fig. 9. This divides the (z,y,z) space into
layers of generally incommensurate width. The relative z and y positions of cubes in different
layers are determined by pseudorandom mumbers. Many other regular placement schemes for
neurons are possible, but we will use this one. For simplicity, periodic boundary conditions
are used. The cube sizes were altered slightly so that an integral number of identical cubes
would fit in a layer.

|.l.|.|.|.J.I.[. p

oD oDoCoDooooooon

0 1
Figure 9

Another necessary refinement has to do with maintaining reasonable fanout and fanin.
For @ = 0, where we have a 3-dimensional network, neurons can be connected if they lie
within a sphere of radius R o« p~!/3(z). This is not always a good estimate of the interneuron
distance, due to the presence of a singularity in p(z) at z = 0. The problem is that the
interneuron distance may change significantly over Az = the interneuron distance, so that
within a sphere at zg there are many more neurons with z < zo than with z > zp, and the
fanin depends drastically on @, the polar coordinate. This undermines buildability since the
minimal fanin required to prevent bottlenecks will be associated with an unacceptably large
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maximal fanin from another direction. It is necessary to alter the shape of the neighborhood
from a sphere to some kind of egg so that fanin will be independent of §. More precisely, we
want a region described by a radius R(z,#) which varies so that the number of neurons within
a narrow cone depends only on the solid angle subtended by that cone. Fig. 10a illustrates
the situation, and we may deduce the region shape as follows:

r

(¢}
i

©

Y2
DU

Figure 10a Figure 10b

fm(u,m) p(2)dV = cdQ (8)

(where (2 represents solid angle) and

f p(2')dV = F = constant total fanin
egg volume

o f dn fm(“m o) =c [ dn=F )
F F
=>c= r‘n— = E

Now rotational symmetry of images implies that R should be independent of ¢ so we
can integrate (6) over ¢ to obtain the solid annulus in Fig. 10b. Then

F 1
’ = —F'si
p(2)dV = i / dl = > Fsinfdf

[ annulus(4,dé) annulus

Introducing r through 2’ = z+ r cos 8 and recalling that p(z')= K>~*(z')~%, we can compute
1 R 6+-dé
SF sinddd = K2 [ r2dr [ sinf'(z + r cos §')~*d’
0 o

FKa—3
4x -

R(#)
[ ( r?(z + rcos )" %dr
0



24

° summand neuron
O target neuron
* summation node

Figure 11
1 v‘.'o—n pi-a pl—a |v=2+Rcosé
= —= -2z +22
cos’f'l —a 2-a 1 -a'ly=¢
yielding
FK*3cos3 9 2o 1 2 1 )=
4z : 3-a 2-a l-a

(z+ Rcosf)*—= 2 (z + Rcos§)*—= - (2 + Rcosg)!-= (10)
J-a 2—-a l-«a
as an implicit equation for R(z,0, K, F), to be solved by Newton’s method. In simulations,
this equation was solved for several values of # per z value and linear interpolation used for
other # values.

In particular, for a — 0,

-3 R(z,8)
i Mt f r2dr = %33(49)
0

4

F
§1R3
and R is independent of z and # in this, the three-dimensional case.

As has been mentioned in connection with Figures 4 and 5, there is another absolutely
necessary refinement of our networks: the use of branching wires to save wirelength. The
summation of a neuron’s many inputs can be done in several stages, since addition is associa-
tive: sums of sums are sums. Then each summand requires a short wire instead of a long one,
as in the tree design in Figure 11. There are a few long wires as overhead: several long wires
per neuron + one short wire per synapse, vs. one long wire per synapse in the more straight-
forward implementation where each T;; corresponds to a wire. This wirelength-conserving
measure requires a new network element, beyond synapses and neurons: the summation node.
A summation node acts like a neuron without the threshold and the nonlinear transfer function;
i.e., it is a linear neuron. In biological and electronic technology, branching wires may serve
well enough if one is summing currents; for voltages one may get an average rather than a
sum. This may also be acceptable if the input tree is balanced. There are similar prospects
for the use of output trees.

S0 =K =p
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Given these refinements of the continuous hierarchy idea, we have a geometric approach
to network design that provides the connection sparseness information, necessary on wirelength
cost grounds, but which is not provided by the other methods of network design which we
have discussed: network summation and control of fixed points. Nevertheless, these methods
are still useful for providing the values of the sparse nonzero synaptic weights. In this chapter
we will combine the continuous hierarchy with the summation of more easily understood
networks expressed algebraically as a formula with adjustable parameters for T;. In Chapter
III we will stabilize selected fixed point configurations by again expressing the synaptic matrix
as a function of scale- and translation- invariant variables, and optimizing the function.

I1.3.3 The Synapse Formula

To create a fingerprint-hallucinating network we choose a representation in which each
neuron has not only an image position (z,y) and a hierarchy position z but also a “color” ¢
= 0 or 1 (black or white) and an orientation ¢ € [0, x). The orientation is supposed to be a
distributed representation of the local ridge or valley orientation. Since ridges do not have a
signed direction, the orientation is only defined up to multiples of x. Since the argument in
Appendix I was not known at the time this network was designed, its neurons will take the
values 1. The network’s local representation for a north-running valley, then, is all neurons
having value -1 (off) save the color=0, orientation= /2 neurons that have value +1. This
amounts to a unary representation of angle and, indeed, of each of the five indices, though in
the case of the z index it is more like a unary representation of log(z).

To specify the network it suffices to give the @ = (z,y, z,¢,c) coordinates of the
neurons, and the connections as a function of @; and @;. As in Figure 6, (z,y,z) space
was divided into cubes whose size depended only on z so as to produce the desired density
function p(z). At the center of each cube was placed one neuron for each combination of two
colors and m angles of the form sx/m, s =0,...,m — 1 and m = 4 or 6. Thus, there were
2m neurons in each cube.

It remains to specify the synapse and threshold values for a neuron at @;, and a
representative input-supplying neuron at w;, as a function of 8,7, ¢o,#1,c0,¢1, and ¢ =
arctan(y/z) (also a scale-invariant quantity). The synapse value T};; was

T = f(0)g('r){-15(7)+a[% — sin?(¢; — ¢;)] +oci[1 - 2eysin? Bsin’(y — 4)]} (1)
where

75 = 1 -1 otherwise

and the threshold was H(z)= H x [total input to a neuron if all its neighbors were on]. Be-
cause the color and angle terms each average to 0, the total synaptic input to a neuron comes
from I§(~) and is just the sum of the synaptic weights from other neurons within its cube, or
“clump.” This sum in turn is dominated by the I§(7) term in the present networks (since [ is
relatively large) and it may be best to simply let h(z)= —(2m — 1)HIf(%)g(0). The parame-
ters ¢,a, I and H are adjustable constants and f and g are adjustable functions. Although not
a sum of outer products, this connection matrix is a sum of intuitively understandable terms.
The meanings of the various terms are:

e,-_{+l if ¢; = ¢;

g(7): g =0 for 4 > 1 cuts off synapses outside the neighborhood. Otherwise, we took
g=1L
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f(8): A function > 0 which if peaked at 0, § or » would favor top-down organization,
independent two-dimensional networks, or bottom-up organization, respectively.

—I8(v): 8(y)=1for vy = 0, 0 otherwise. § doesn’t have to be so discontinuous. This
term is a mutual inhibition term which allows us to control the number of +1 neurons in a
cube; we want one on out of every 2m. In the networks which work, I§(+) is numerically the
largest of the terms in T'; the others are corrections to it. The effect of this term is to convert
the 2m neurons in a cube into a 2m-way “flip-flop”, or mutually inhibiting neuron clump.
The entire network may be thought of as interacting 2m-flops, instead of interacting neurons.
If §(~y) were more spread out spatially, one could still control the average number of neurons
turned on in a region of the network but not the number turned on in one 2m-flop.

H (average input): H determines how many winners there can be in the competition
caused by the mutual inhibition term —I§(vy). H = 1.05 forces one winner; H = 1.2 forces
zero for the parameter values used in this work. In detail, the threshold A for a neuron is
computed by multiplying H by what would be the total input to a neuron if all its neighbors
were on. If the network consisted of uncoupled clumps, which is a good first approximation
due to the large values of I used, then H scales with I and H = 0 forces half of the +1
neurons in each clump to be on. Clearly, for large I we can consider just the synapse I terms
in computing neural thresholds, so that thresholds become a property of a clump rather than
of the entire network. Then H and I are the clump internal parameters, just as h is the neural
internal parameter.

a[% — sin®(¢; — #;)]: encourages conformity of internal angles. Both angular terms
involve squares of trigonometric functions and can be rewritten as trigonometric functions of
double angles. Hence, angles are only used modulo =, as promised.

cr:; = {+1 if ¢; = ¢;; —1 otherwise} favors color conformity among neighbors.

—20:iysin’(8)sin’(¢ — ¢;): favors color contrast among neighbors of similar z, sep-
arated by a vector perpendicular to what @w; thinks is the local ridge axis, i.e., favors color
contrast when ¢ and ¢; differ by . This encourages side-by-side ridges of alternating color.
This term is the sole ridge-making term, and the only term which can allow represented and
actual angles to interact. It also influenced the choice of representation: in this term two colors
and one angle all interact, so that if separate color and angle neurons were used (2+ m instead
of 2m neurons per site), this would be an illegal three-neuron interaction.

With this network it proved possible to hallucinate stripe patterns whose stripe width
was roughly the size of the smallest spacing between neurons, but no larger. To get larger
stripe widths two changes to Equation (11) were necessary, the first change innocuous and the
second serious. These changes involved the parameters s, and ¢/, respectively, in the new
version of the color conformity term:

a:‘;'. [l — 2(c + ¢'2)y max(0, sin®(8) — s ¢5)sin? (¢ — ¢,~)]. (12)

The s,¢r term confines the ridge-making interaction to pairs of neurons of roughly the same
scale. Unfortunately, the ¢’z term spoils the algebraic scale invariance of the synapse formula,
but it was necessary to compensate for the observed network preference for small stripe widths.
One probable consequence of this difficulty is that ¢ and ¢’ will have to be readjusted when
the total number of neurons, or the resolution parameter K, changes.
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11.3.4 Results

The network described by the synapse equations (11) and (12) was repeatedly run
starting from random initial configurations. For efficiency’s sake a nonrandom update order
was used: the hierarchy levels were updated in order, and within one hierarchy level the
clumps were updated in a scanned order, and within a clump the color and angle neurons were
updated in a fixed order. Occasional comparisons with a random update order failed to reveal
any systematic behavior differences between the two update methods; apparently, the random
starting configuration was enough to eliminate any waves or other update-related phenomena.
The visual appearance of the fixed-point configurations obtained for each run was used to
manually adjust the free network parameters for the next run, with the purpose of producing
scale-invariant stripelike patterns. The results are presented here.

I1.3.4.1 Bottom-up Network Behavior

Various final configurations resulting from random initial conditions are shown in Fig-
ures 12-13, together with the values of the parameters a,a,c,I, H,m, fo, f1, f2, f3, fs, [5, K,
and F which produced them. In Figure 12 we see all four levels of a K = 13 network
displayed, with color +1 neurons displayed separately for clarity. The bottom level is clearly
a stripe pattern. Higher levels suffer from having more than one neuron on per 12-flop.

Note the small values of the top-down strengths fo and f; in these figures. Here
f(0) has been linearly interpolated between the points (0°, fo), (80°, f1), (85°, f2), (105°, f3),
(110°, f4), and (180°, fs). For efficiency, 8 itself was interpolated between stored arctangent
values. Each parameter (save m) can be varied to some extent without affecting the results.
The figures display only the bottom level of each configuration; for the present value of f(8) the
network is largely driven from the bottom up so that higher layers (those of lower resolution)
look similar. Bottom-up behavior is encouraged by large f(#) near § = x; independent layer
behavior would be encouraged by # near %; top-down behavior would be encouraged by a
large weight near § = 0.

To adjust the parameters to produce figures 12-13 it is necessary first to get just one
neuron out of each clump of 2m to be on at a time by setting the intraclump competition
parameter, I, to an arbitrary positive value and adjusting the relative threshold H. This is best
done in a network with uncoupled layers so that f(#)= 0 except near # = ¥. Then, angular
conformity should be turned on with a. This produces domains of aligned internal angle. I
must be large compared to a to maintain the integrity of a clump and prevent several neurons
from turning on in one clump, but if it is too large then the network will “freeze” and fall
into angularly disordered stable states. Finally, turning on ¢ will stretch the domains in the
direction of their internal angle and compress them in the perpendicular direction.

I1.3.4.2 Hierarchically Balanced Behavior

Figures 12-13 are produced by networks with very weak top-down connections, and
consequently the displayed configurations have narrow stripes, two or three lattice spacings
wide. It proved sufficiently difficult to obtain wide stripes that extra terms were added to the
synapse formula (Equation 12) to do so, as explained in Section I1.3.3. With the extra terms,
one of which eliminates the algebraic scale invariance of the synapse formula (Equation 11),
one may also obtain wide stripes as shown in figure 14. In figure 15 we see a more subtle
behavior, which appears to have a variety of stripe widths within one stable configuration
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although none of the stripes is very long. Further, it appears that the scale invariance was
obtained by creating small stripes inside of larger stripes of the opposite color. This is
unfortunate, since one of the principal types of fingerprint noise which we would like to
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eliminate is opposite-color holes in a stripe. In Chapter III we will examine networks at the
scale of one stripe width and demonstrate simultaneous scale-invariance and hole suppression.
The networks will, however, involve several new ideas.
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It happens that a slight modification of the network of figure 18 produces another
interesting behavior (figure 16): simultaneous presence of color=0, color=1 and uncolored (all
neurons off) regions. This could be useful in tasks such as optical character recognition which
require widely separated curves in an unoriented background.

The figures show that a variety of fingerprint-like images can be created, and therefore
suggest that the most difficult constraint on our networks, that of doing a useful network
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computation, can be met within a framework that has plausible solutions
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scale invariance, wirelength economy, and robustness built in.

It is also possible to evaluate stripe-generating networks numerically, for example, by
starting with a perfect stripe configuration and seeing how far it evolves before stopping, or
seeing to what extent various kinds of imperfect stripe configurations correct their defects and
approach a perfect stripe pattern. So far these tests have been about as reliable as visual
observation of the fixed-point configuration; they gain in precision what they lose by failing to
anticipate new defect types, such as compact regions where all neurons are off, or decoupled
stripe patterns on different levels. In Chapter III we will use such tests more extensively on a
somewhat different hierarchical network.
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The configurations shown here typically took about 10 update sweeps through the
network to converge, and were simulated on a VAX 11-750. One convergence took about 1
hr for K = 13, 2 hours for K = 23, and 6 hours for K = 35.

1I.4. Conclusions

Two network programming techniques were discussed: synapse-by-synapse summation
of networks, and the use of a continuous geometry to determine the “neighborhood structure”,
i.e., the set of synapses which are allowed to be nonzero. Hopfield's content addressable
memory network was given as a simple example of the first technique, and the design of fixed-
width stripe detectors introduced the combination of the two methods. Finally, the methods
were applied to the design of a scale-invariant fingerprint-hallucinating network. The resulting
network certainly can generate stripes whose widths are controlled by a network parameter,
and is also capable of a limited form of scale invariance for a fixed setting of the network
parameters.

These results were obtained at some cost: the algebraic scale invariance of the synapse
formula is spoiled by the width-controlling parameter. This, and the increasing computational
difficulty of effectively searching the parameter space involved, lead to the need for the more
extensive theoretical treatment of the network given in Chapter III

To see that our networks should be able to solve the original problem of detecting
fingerprint branch minutia requires not only that Figures 12-13 convince one that the networks
can eliminate fingerprint noise, but that there be some mechanism for finding branches in the
artificially simple and stereotyped fingerprint pattern produced by removing the noise from a
real fingerprint. Once again the hierarchical organization serves. At a height z as the local ridge
width, branch detection is a local operation which could be done by special branch-detecting
neurons which fit into the framework of local rules in a fractional dimensional space; therefore,
the wirelength, robustness, and scale invariance constraints can still be met. What is done with
the branch detection signals depends on the further fingerprint processing required, but at this
point we would have an explicit representation of the answer to the pattern-recognition problem
posed at the outset.

The idea of local dynamics in a space of fractional dimension appears to be a fairly
general principle for efficient network organization, and is conducive to the use of analogies
and techniques from well-studied (local) systems of integral dimension.
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Appendix I

There is a set of stripe patterns which define the configurations of S and P neurons
which we would like to be fixed points. For a stripe configuration of angle ¢ and phase 8, we
may define

) = +1, if position Z is black in the given stripe field;
Stipe(y,0,2)= { T2 I Posieon sven P

We are to control the two possible values of P neurons, @i, and @mgz, and the two possible
values of S neurons, by, and b,,,., in order to make the various stripe configurations as
orthogonal as possible.

If we call the entire configuration C(vy, 8)= (P(¢,8),S(¢,8)), then “maximizing the
orthogonality” of these configurations certainly involves the inner products C(4,8)-C(0,0) in
some combination. The maximum inner product is C(0,0)-C(0,0). Adopting the notation
(X)y,s to represent averaging X over all allowed ¢ and 8, we will be able with our four

parameters to set
(C(¢,0)'C(0,0))¢,J =0
¢(0,0)-C(0,0)

and to minimize
([C(\ba B)C(O, 0)]2)*"
(€(0,0)-¢(0,0))>

The stripe configuration has

P;(v,0)= Gmaz ';: Bmin + Qmaz ; Amin Stripe(v, 8, £)

=a% + a~ Stripe(v, 4, )

and similarly
Sz,6,:(%,8)=b" +b7[63 — 1+ 8} 0§ Stripe(y, 8, )]
where
8 = { 1, ifa=b;
® = 10, otherwise,
" { 1, ifa=b
gy = .
—1, otherwise.
Then

P(¢,0)-P(0,0)= (a*)?+a*a( Stripe(0,0, %))z + a*a~( Stripe(¢, 8, %))z

+(a™)*(Stripe(+, 8, Z) Stripe(0,0, %))z
= (a*)*+(a")*83 1(9)

where
1-28, if0<8<1;
I(8)={1+20, if-1<8<0;
determined by periodicity, otherwise.
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Likewise,

S(v,6)-5(0,0)= Y [(b"’)2+b+b‘ (83 — 1465 — 1)+(57)* (87 — 1)(63 — 1)+(67)%63 6363 1(6)]
c¢

1 2
= 2A[(5* 42675 (5 — D+ (1 - 2+ 80)] +2067)*1(0)8
where A is the number of distinct angles.
We then compute that
1
5C(4,6)-C(0,0)=t1 + 83 [t2 + t31(6)]
where i
tr = 3(a*P+(4 - (b - b7+ (6%)*-(67)
ty=(b")*
e =
t3 = E(a )2+(b )2.

The interesting quantities are

1 1 1 1 1
(3C(%,6)-C(0,0))y,0 = 7 %: 3 f_ (405C(4,60)-C(0,0)=t1 + %n

1
EC(O’ 0)-C(0,0)=t; +t2 + t3

(1[0(1/: 8)-C(0,0)P) e =13 + L + l[t2+ ﬁ]
) ) ) v, = A 182 A 2 2

since (I(6))y,6 = 0.
Introducing the scaled variables & = a* /b, b= b /b~, 4 = a~ /b~ the first require-
ment that (C - C) = 0 reduces to

1., R T
58 +(A-1)(b-1)+b"=1 ~

which, as A — oo, can only be satisfied if 5 — 1. This in turn implies that @ — 0. Only &
remains undetermined, and it is determined by the second requirement that we minimize

(3¢ - CP?) 1 (a2 +2)*+8

R =110(0,0C0,0F ~ 24 @+ 4P

which implies 4> = 2. Any finite @ # 0,200 can be absorbed into the relative values of
weights between neurons of different types, and we are interested in doing this to seta = 1
and thereby obtain the standard types of neurons, @maz = 1,8min = —1,bmaz = 1,bmin = 0.

Appendix II

There are many plausible definitions of dimension for a network; one intrinsic di-
mension is the bottleneck dimension, which we will compute. This dimension is defined by
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Equation (5) in the text. Instead of minimizing the number of wires poking through an ar-
bitrary surface, we will use a less general surface: a prism with height Az = A and sides
Az = Ay = w. The number of neurons inside such a prism is

z+h 3

N = wzf p(z)dz where p(z)= K°~%z7¢ (A1)
and the number of wires cleaved by its sides is
W = [S pl2)p~'P(2)ds (42)
z+h

W = w?p?3(2)0(z - K~ )+wp?*(z + h)O(1 — 2 - h)+4w[ P (2)dz0(1-w) (w < 1)

z
(43)

where © is a step function (8(z)= 1 if z > 0, otherwise 0) and accounts for the possible
absence of various sides when w, z or A adopt extreme values. W is to be minimized while
N is held fixed; then their asymptotic relationship (as N — oo) is to be extracted. Since (for
a > 0) the greatest concentration of wires is at the bottom surface of the prism, we do well
in minimizing W to eliminate this term at the outset by taking z = K ~!. Then if we set

ea=wK and b= hK

we find
N=gllt b)' 1]
l-a
W = (1 +b)-2Pe(K — b +4alLED P lg

1-2a/3

Since we are taking the limit N — oo, we may generally consider b > 1 to simplify the
algebra. However, there is a subtlelty which prevents us from actually allowing a = K as a
possible prism: we must first take the limit K — oo, and then N — oo rather than vice versa.
a = K implies .
.
N= KZ&._'*'_b)___I_] > O(K?)
l-a
so that we cannot look at any finite N to extract the desired dimension. For a > 1, however,
N = a%/(a — 1) (since b>> 1)

and there is no such exclusion of b = K.
For b > 1 there are three cases, according to whethera < 1, 1<a<3,0r < a.
Case a < 1: (1+b6)'"%~ b~ > 1 and (1+b)'~2Bx =22/ > 1 50

N =a%'"%/(1 - a)

a=b"7%/(1-a)N
W =(1-a)Ns¥' +4/(1 - a)Nb2~ %
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W =(1-a)Nc?+4,/(1 —a)Nc~" where ¢ = p¥-1

and one can compute paan
e =02V« N2

and 1 - 1/d = 2/3 (from Equation 5) which implies d = 3; that is, the bottleneck dimension
is 3.

Case a > 3/2: (1+5)'"%m b1"% « 1 and (14 b)!~22/3 pl-22/3 « |

2

N= — (does not determine b)
4a
W = a?p=22/3 Y .
a O(K - b)+ 2a/3-1
4/(a—1)N
W = (a — 1)Nb~22Pg(K — b))+ —2—
(a-1) O(K - b)+ /31
b is free so we may set b = K to get rid of the O(N) term.
W =O(N'/?)
which implies
d=2. (44)

Case 1 < a < 3/2: We can ignore (1 + 4)'~2 but not (1 + b)!-22/3x p!-22/3,
2

N=aa_l=>a.=\/(a—l)N

4abl—2a/3
1-2a/3

Here setting b = K would result in a disastrously large second term in W, so

W =(a—1)Nb~2/ 4 43— ——— (@ — DN i-20/3
1-2a/3

W = a’b22e(K - b)+

and minimizing with respect to b results in W = O(N'~%/3) and

d= (45)

which smoothly interpolates between d = 3 and d = 2. Thus, we have Equation (7a).

There is a second, embedded dimension which is easier to compute and depends on
the wire lengths as well as their number. (The bottleneck dimension does not depend on wire
length, though our approximate calculation of it used such information due to the replacement
of a general subnet with a prism.)

Divide z,y,z into cubes of side #, and ask how many cubes are occupied by 0-
dimensional neurons or 1-dimensional wires. Where p > K>, all cubes are occupied by
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at least one neuron; elsewhere neurons are sparse and a fraction pK 3 of the cubes have
neurons. Also, in the sparse neuron region the number of cubes containing wires is (total wire
length)/(cell side). The total number of occupied cells is approximately

2 1
c=K [[a:+ LT L s(:)K>+
K z v F}l{

FIZT [ ﬁl’ dzp(z)(fanout) (wirelength between nearby neurons)

% 1 1 1 1
c=K? /17" dz +[ dx/ dy/z p(z)dz + $/‘2 dzp(z)p—ll‘.i(z) (A6)
)4 v ) 4 K'%K
K3e _ K2 K3-2a/3 _ g291-2a/3
— g2
e M g ey 5 1-2a/3

d= “!i_r.noo logg C
(by analogy with integral dimension local networks) implies
d =max(2,3 - a,3 - 2a/3).

Thus, we have Equation (7b).

In practice we are interested in controlling total wire + neuron volume when the
network has been embedded in a 2- or 3- dimensional medium, so this dimension is probably
more relevant for measuring costs than the intrinsic one. The intrinsic bottleneck dimension,
however, is the proper one for avoiding bottlenecks, i.e., for ensuring network functionality.
Both of these dimensions may be too high since a neural network can be first mapped into
a network some of whose nodes are neurons and some of whose nodes are linear summation
nodes as in Fig. 11. This mapping results in wire sharing and possibly in a lower dimension.
The best way to insert such summation nodes may depend on the embedding medium.
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IIT A One-Dimensional Scale-Invariant Network

The stripe-generating network of Chapter II was intriguing and had interesting scaling behavior
but did not solve the problem of generating realistic fingerprint patterns at all scales. An
acceptable network was hard to find, possibly indicating that the assumed synapse function was
of the wrong form. There is in principal no reason to assume any particular form for the synapse
function, aside from a locality constraint. Within a neighborhood of nonzero connections one
could adjust each synaptic weight independently, trying all the while to optimize some measure
of network performance and cost. Starting from this point of view, we will develop a new and
more effective form for the synapse function and test it.

The first problem with this approach is that there are many synaptic weights T};,
many more independently controllable quantities than would seem necessary to get the simple
behaviors desired. One would like to impose rotation, translation and scale invariance on Tj;,
for example, by adopting a special form such as

Tij = T'(=i — 2j, % — ¥j, %/2j, 0, 6 — $5),

where o} is defined following Equation (II.11). Then locality implies that each of T’s argu-
ments is zero outside of a region whose size is independent of the system size. Of course,
since the grid of Z positions is irregular we will need 7' to be defined on a much finer grid;
we will in fact define it as a continuous function. To insure that there are enough independent
T' variables to control the network’s fixed points in detail, we will start out with a neural
Z grid which has a great many points per minimal stripe width. An additional effect of the
small Z grain size is to eliminate the percolation problems that result from a large variance
in the number of grid points per stripe. Thus, in the continuous limit the network is very
homogeneous, and we hope to get close to that limit with a minimal number of neurons by
optimizing the synaptic weights.

So the ranges of T"’s arguments are limited by the locality of T', but each argument
of T' and of s(Z) has a very small grain size. To make up for the extra computation that
simulating such a fine-grained network requires, we will examine networks which are only
a few stripe-widths wide, using periodic boundary conditions. In short, we will look at T
microscopically. Eventually we will guess a special form for 7' with many fewer independent
parameters but the same small grid spacing, making the network optimization tractable.

The next logical question is, what behavior to optimize? We will measure the stability
of various desired fixed points by computing the distance between the desired fixed point and
the actual fixed point which the network lands on when it starts from the desired fixed-point
configuration. This distance is to be minimized for stripe configurations. Also, we will examine
some special configurations which are to be destabilized, and measure the distance between
the actual fixed point reached from such a configuration and a desired stripe configuration
which “should have” been reached instead.
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Finally, various severe limitations will be imposed on this network to get at the impor-
tant scaling questions with a minimum of computation. We will revert to 1 + e-dimensional
networks, rather than 2 + ¢; our “images” will be 1-dimensional. This corresponds to taking a
vertical slice through the 2+ e-dimensional