
Neural Networks,

Pattern Recognition,

and
Fingerprint Hallucination

Thesis by

Eric Mjolsness

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

5198:TR:85

California Institute of Technology

Pasadena, California

1986

(Submitted September 2, 1985)

ii

@1985

Eric Mjolsness

All Rights Reserved

w

to my parents
Patricia and Raymond Mjolsness

lV

Acknowledgments

I would like to acknowledge the great influence of my advisor, John Hopfield, on
the direction of this thesis and of my interests. I wish to thank Carver Mead for many
discussions on vision and for adopting me into his wide-ranging research group. I thank
Richard Feynman for providing a stimulating intellectual environment at the intersection of
physics and computation. Geoffrey Fox provided support for my early explorations of neural
networks, and my collaboration with Dave Sharp and Alan Lapedes helped a great deal in the
early phase of the present work. John Wawrzynek provided much selfless computer assistance
over a long time. John Platt's enthusiasm. insights and proofreading are greatly appreciated. I
have benefitted from discussions with Jack Cowan, Mike Douglas, David Feinstein, and Misha
Mahowald. Geny Sussman asked awkward questions. Shelley Mjolsness has been enormously
helpful in all aspects of my life during the years of graduate study.

Tiris work was supported by the System Development Foundation and by the Los Alamos
National Laboratory.

v

Abstract

Many interesting and globally ordered patterns of behavior, such as solidification, arise
in statistical physics and are generally referred to as collective phenomena. The obvious analo
gies to parallel computation can be extended quite far, so that simple computations may be
endowed with the most desirable properties of collective phenomena: robustness against circuit
defects, extreme parallelism, asynchronous operation and efficient implementation in silicon.
To obtain these advantages for more complicated and useful computations, the relatively sim
ple pattern recognition task of fingerprint identification has been selected. Simulations show
that an intuitively understandable neural network can generate fingerprint-like patterns within
a framework which should allow control of wire length and scale invariance. The purpose of
generating such patterns is to create a network whose stable states are noiseless fingerprint
patterns, so that noisy fingerprint patterns used as input to the network will evoke the corre
sponding noiseless patterns as outpuL There is a developing theory for predicting the behavior
of such networks and thereby reducing the amount of simulation that must be done to design
them.

Vl

Table of Contents

Acknowledgments . iv

Abstract... v

Chapter 1. Introduction. 1
1.1 The Potential Virtues of Collective Computation. 3
1.2 General Methods for Network Design . 4
1.3 The Fingerprint Identification Task and Subtasks. 7

Chapter 2. Stripe Hallucination. 11
2.1 The Content Addressable Memory . 11
2.2 A Fixed-Width Stripe Network..... 12
2.3 A Hallucinating Network . 18

1. A Continuous Hierarchy . 18
2. Necessary Refinements of the Hierarchy.. 21
3. The Synapse Formula . 25
4. Results . 27

1. Bottom-up Network Behavior . 27
2. Hierarchically Balanced Behavior. 27

2.4 Conclusions.. 33
2.4 Appendix I . 34
2.4 Appendix II. 35

Chapter 3. A One-Dimensional Scale-Invariant Network . 39
3.1 Stripe Stability Equation 40
3.2 Scaling . 43
3.3 Guess forT 44
3.4 Results .. 46
3.5 Summary and Conclusions . 62

Chapter 4. Testing Networks with Fingerprint Images. 66
4.1 New Input Method . 66
4.2 Minor Improvements . 69
4.3 Fingerprint Image Results. 71
4.4 Conclusions. 76

Bibliography . 77

1

I Introduction

It is natural, when imagining very large computers and their construction, to compare present
artificial computing machinery with the much less well-understood brains of animals such as
ourselves. The comparison is biased in favor of hardware considerations, since neurobiologists
have understandably found it easier and more direct to investigate neurons and their connections
than algorithms or other programming principles that may be present in biological computation.
(In the case of artificial computers, of course, we have the illusion of complete understanding
of both hardware and software.) Nevertheless, such a comparison is striking.

Brains and computers differ first in size, there being 10 10 -1011 neurons and 103 - 104

connections from one neuron to others, as against- 107 - 108 transistors with a fanout of 1-10,
usually, for computers. There is no guarantee that these are the right numbers to compare,
but the size difference appears to be immense: perhaps six orders of magnitude. On the
other hand, computers are faster by 3-4 orders of magnitude depending on what speeds are
compared. Brains apparently make extensive use of analog signals and analog computation
unlike present general-purpose computers. Brains are capable of surprising feats of self-repair
[Merzenich et al. 84] and learning, whereas present-day computers are vulnerable to even
the smallest hardware malfunctions and must be quite tediously programmed. Until recently
artificial computers could be distinguished from brains on the basis of inefficiencies associated
with purely serial computation, but advances in parallel computation have largely removed
this problem. All of these comparisons are well known, even cliches, and have been used
to bolster many mutually inconsistent but optimistic-sounding recommendations for computer
design [Brown 84; Conrad 85; Hillis 82a and 82b].

One of the most interesting normative models of biological computation is the content
addressable memory (CAM) of Hopfield [Hopfield 82]. It used large fanout "neurons" to
retrieve one of a number of stored bit strings, choosing one very similar to an input bit string -
the computation implemented is an "inexact match" which tolerates many independent one-bit
errors in the input. The neural network may be programmed (memories may be stored) by
a simple formula or by an equally simple learning mechanism. Numerous hardware defects
can occur before the network is broken, so that the CAM may be appropriate for use in
Wafer Scale Integration where, for present technology, some hardware failures are inevitable
and must be tolerated [Leighton and Leiserson 85]. This possibility leads to one of the
more tantalizing similarities between the CAM and biological computation: that the CAM, by
tolerating hardware errors, may be easily implemented in error-prone technologies and thus on
a much larger scale than conventional circuits; this would decrease the size disparity between
natural and artificial computing machinery. Finally, the CAM may use either discrete or analog
neurons [Hopfield 84].

In the case of discrete neurons, the behavior of Hopfield's network is as follows. Each
neuron has one of two possible values, for example +1 or -1, and when it is updated a neuron

with value si changes that value to

where

and

2

N

s~ = sgn(L:: Ti;s; - hi)
j::l

sgn(x)= {
+1
-1

if%~ 0;
otherwise,

Ti; = a numeric "synapse strength" from j to i

~ = a numeric "threshold" for neuron i .

(1)

A variety of update schemes are acceptable. One standard scheme is to choose a
random permutation of the neuron indices { 1, ... , N} and repeatedly update the neurons in
that standard order. If Tii = 0 and Ti; = T;i, then each time a neuron is updated the energy
function

E = 2: TijBiBj
ij

(2)

decreases. This time behavior corresponds to that commonly used for Monte Carlo simula
tions of thermal Ising models with temperature approaching zero, or being quenched to zero
[Kirkpatrick 85].

In the case of analog neurons, one replaces the "sgn" transfer function with a continuous
sigmoidal function g and one uses a more continuous updating scheme, such as simultaneous
differential equations with a time constant r for equilibration; an example is

TBi + Bi = g(L Ti;s; -hi)·
i

The discrete neurons are much less expensive to simulate on general-purpose computers.
Needless to say, any resemblance between the dynamical system just defined, with its neural
terminology, and the real dynamics of neurons and synapses is a historical coincidence. The
two systems may or may not have similar behavior, each is interesting independently.

The CAM model has a number of the properties associated with biological compu
tations, and it can be efficiently implemented in silicon electronic technology [Sivilotti et al.
85]. Its principal drawback is the relatively uninteresting computation which it performs. Gen
erally, attempts to use a "Hamming distance minimizer'' as the heart of a practical computation
fail due to the rigid assignment of meanings to bits in the stored and input bit strings; there
is no natural mechanism for movement of information such as shifting. Still, the Hamming
distance minimization computation is suggestive of pattern recognition problems and it may
be possible to use some of Hopfield's ideas to design pattern recognition networks. Certainly,
pattern recognition could use the kind of increased computational power which a large, robust,
analog, parallel special-purpose computer (or one incorporating just some of these features)
might provide. Visual pattern recognition, in particular, is widely thought to be in need of
several orders of magnitude more computational power than is available now.

The retrieval of a memory in the CAM model involves all the neurons in the network,
being an essentially collective behavior. The model is in fact related to collective models

3

from statistical physics known as spin-glasses, and works best in the limit of large numbers of
neurons. Consequently, the behaviors of the CAM and of similar networks are often referred
to (collectively, of course) as "collective computation."

The main problems with extending the CAM model to create a new paradigm for
computing are how to find connection matrices T,; that do more interesting computations, and
how to minimize the physical cost of implementing 7i; in present-day technologies: silicon
electronic, optical, or the poorly understood neural technology that occurs in nature. Usually
the physical cost of a network is related to the total wire length or wire volume needed, and to
the time required to finish a computation. In perception problems it is particularly tempting to
introduce designs which are profiigate in their use of wire length. The present work introduces
methods of some (unknown) generality for solving both problems.

Several methods for "programming" networks, i.e., finding Ts; which produce a desired
behavior, will be used. One is the method introduced by Hopfield with the CAM [Hopfield
82]. A second, the use of a few fixed points to control large basins of attraction, is introduced
in Chapter III. Also novel is a geometrical network organization which minimizes wirelength
by enforcing locality of most connections (most T1; matrix elements are zero) while efficiently
implementing nonlocal pattern recognition algorithms such as "multiple scales of resolution"
methods. These network programming techniques will be introduced entirely through a set of
simple computational tasks related to fingerprint recognition.

1.1. The Potential Virtues of Collective Computation
The neural CAM has a number of properties which make it worthy of imitation, each possibly
contributing a factor of 10 in computing power. In addition, it is extremely parallel.

About 20% of the simulated network could be eliminated, and the rest would still
work. This is a stronger form of robustness against hardware errors than would be required to
solve an important technological problem: using Wafer Scale Integration despite the extreme
difficulty of obtaining any error-free samples of such large circuits. Certainly, the network's
large fanout helps here, but it is not yet clear that spatially local implementations of large fanout
networks can share this robustness. There was also a form of robustness against errors in the
relative timing of signals: the network operated asynchronously. This is good for networks so
large that synchronization is difficult to achieve. Another form of robustness simply makes it
easier to simulate collective circuits on a general-purpose machine: insensitivity to the exact
dynamics of the elementary computing units allows one to simulate the cheapest reasonable
dynamics rather than, for example, the full analog electrical equations.

A second potentially important virtue of collective computation is its compatibility with
analog computation: Hopfield has simulated an analog CAM [Hopfield 84]. It's reasonable to
encode eight bits per neuron, rather than one. The present work will not much explore this
direction due to the higher expense of simulation.

The CAM and other networks to be introduced later tend to converge to fixed points
(outputs) quite quickly unless there is an information-theoretic reason not to. This means they
are efficient in their use of time, at least for tasks which needn' t take much time.

A crucial property is efficient implementation in silicon. Sivilotti et al. have fabricated
a VLSI CAM [Sivilotti et al. 85], and analog networks can be implemented with very low
overhead indeed. 1be neurons can be implemented with just a few transistors [Platt 85]. The
summation of inputs can be done by the simple intersection of wires if neural inputs are

4

represented by currents rather than voltages. This efficiency of implementation means that
neural network theory is directly relevant to special-purpose VLSI design. This fact permits
the simultaneous treatment of an algorithm and its implementation. Usually, in computer
science these two are separated for ease of thinking and understanding, but if one can think
about both in the same framework there is a significant advantage: a greater appreciation of
cost issues. Quick appraisal of the wirelength cost of an algorithm encourages algorithms that
are efficient in their use of long wires.

In all this, the extreme parallelism inherent in talking about very simple elementary
units working simultaneously is taken for granted; the properties of fault-tolerance, analog
signals and special-purpose design are good for computational power over and above that
expected from a general-purpose parallel machine.

1.2. General Methods for Network Design
To obtain any of the desirable properties listed above for a new computation it is necessary
somehow to specify the connections T;; between the neurons in a network. This "program
ming" or "network design" problem occurs for each new computation so that general network
design methods are desperately needed. Fortunately, several are available.

The first method is a way to compose simple networks to get a complicated one. The
choice ofT;; for the CAM network and for the equally interesting Travelling Salesman Problem
network of [Hopfield and Tank 85] are both of the form

A

T.·· = ~ waT!": ,, ~ ,,
a=l

where T;j is a more easily understood network and wa is a real weight. This method of
composing networks is very unusual in computer science but common in physics, where the
corresponding addition of energy functions

A

E = L T;;s;s; + L ~8; = L wa ~
ij i a=l

is very common for A = several to several dozen terms, and the wa are called coupling
constants. The resulting physical systems are often simply understandable in terms of the
elementary Ea - and often not. A is the number of stored memories. In the CAM network
A can be proportional to the number of neurons in the network, and the nonlocal connections
T;; are

A A

T;; = L T1j = L sfsj,
a=l a=l

which is the sum of the outer products of A memory vectors sa with themselves. This kind
of network will be discussed funher in Chapter n.

Another general method for finding desirable T;; matrices consists of controlling a
relatively small number of fixed-point configurations (configurations which are fixed under
the neural update rule). Often a few fixed points can be used to control the entire behavior
of the network in the high-dimensional space of possible configurations. In a CAM network,
for example, one can try to arrange that the desired fixed points' basins of attraction cover

5

the space and have roughly equal volume. In local image processing networks, it may be
sufficient that a neural configuration be always locally similar to one of the controlled fixed
points, though which of the controlled fixed points it looks like may vary across the image.

The stability of each neuron within a configuration sa may be expressed as an inequality

sf= sgn(L: Tiisj- hi)~
i"#i

0 ~ {sf)2= sgn(l:Tiisfsj- hisf)
i"#i

l:Tiisfsj- hisf ~ 0.
#i

{3)

Satisfying a number of such linear inequalities in Tii, together with locality constraints and
minimum wirelength constraints, is often a computationally tractable problem. If it isn't, one
can decrease the number of fixed-point constraints and decrease the number of free parameters
in Tii by assuming a special form for the connection matrix; that way a large network can
be specified with a few parameters. An example is a one-dimensional special form Tii =
T(li - jl), which reduces N 2 parameters to N while retaining the linearity of the inequality
constraints (4). The control of fixed points through special forms and inequalities is practiced
in Chapter ill, where it is modified somewhat, and in Platt's work on simulating Petri nets
[Platt 85].

An interesting and somewhat unusual network design technique is the expression of a
network as the discretization of a continuous medium. For very large and strictly local analog
networks one obtains partial differential equations this way; the analog network is a spatial
discretization of the differential equation and the discrete-neurons network severely discretizes
the time derivative as well.

However, it is not necessary to use strictly local connections, which correspond to
low-order differential operators, and in vision one often wants to calculate quickly and use
global information. Global information can be calculated and disseminated slowly by iterated
local interactions, or quickly by long-range interactions which, in the electrical terminology,
require expensive long wires. The usual compromise was suggested to the present author by
the renormalization group formalism [Wilson _74] but is in fact standard in vision research: by
connecting several local networks whose lattice spacings differ by a constant factor, one obtains
a relatively few long wires (the local connections in the low-resolution networks) which appear
to the high-resolution networks as global interactions. This idea is called "multiple levels of
resolution" or simply the "multiresolution" method.

In Chapters II and especially m we will see how to express such a network as the
discretization of an unusual continuous medium by the addition of a third "hierarchy" axis
and a neural density function. The cost of this addition is a constant factor in wirelength.
There is no reason that other, more complicated, neural architectures could not be expressed
as continuous media with other new axes, such as measured object size.

The continuous medium treatment has a number of advantages. It makes the network
look homogeneous, each neuron being surrounded by the same medium in its neighborhood.
This encourages scale- and translation-invariant behavior (scale invariance being the relevant

6

invariance along the hierarchy axis). A neighborhood looks exactly the same after being trans
lated or scaled. This fact has beneficial effects: first, the image processing is invariant. Trans
lation invariance is obviously desirable, and in many images scale encodes depth so that scale
invariance is also desirable. Also, network homogeneity means that the network connectivity
is described by very few parameters (those adequate for describing just one neighborhood) so
that linear constraint satisfaction and other programming techniques become computationally
tractable. These advantages come at a price. The continuous medium approximation requires
a high density of neurons, compared (perhaps) to the information density. Thus some constant
efficiency factor in neuron number and total wirelength is sacrificed. In a hierarchical organi
zation. one makes highly variable and nonuniform connectivity neighborhoods look uniform
by sprinkling in extra neurons. An obvious corrective measure, not pursued here, would be
to start with the contilUlous (infinite density) approximation and correct it by some sort of
1/density perturbation theory. The lowest order of such a theory would be a contilUlous homo
geneous medium with infinitely many neurons per unit area, and higher orders would allow
one to treat finite densities. The idea is to derive corrections to the idealized Tii matrix which
compensate for local density variations; such corrections would no longer be translation- and
scale-invariant, but would exist for the purpose of preserving invariant behavior after a non
invariant network discretization. As the information/neuron is increased, interesting packing
and tessellation problems arise; Misha Mahowald has done intriguing work on such problems.
These considerations, however, are secondary for the present purposes.

Thus we have a contilUlous, geometric approach to multiresolution methods. One of
the most interesting such methods is the work of Terzopoulos [Terzopoulos 84] in shape
deduction. In this case a two-dimensional relaxation medium (a thin plate) is to be more
quickly relaxed by coupling to coarser-grain versions of itself. The interplate coupling is done
through interpolation and averaging interactions. The present method differs slightly: the
design of the interpolation and smoothing interactions are unified with that of the intralevel
interactions. Both are accomplished through the optimization of an invariant neighborhood
connectivity function. Also, the coupling occurs here without doubling the number of degrees
of freedom as in [Terzopoulos 84]. It remains to be seen whether the extra simplicity can
be used to any good effect It is to be hoped that the simple and general methods discussed
here will prove useful for other computations, after having been developed and refined through
experience with fingerprint recognition tasks.

In vision there are many computations for which a continuous, homogeneous hierarchy
may be useful (see [Rosenfeld 84] for multiresolution examples). Since interesting shape
producing processes operate at all scales in nature, any general shape recognizer would need
to work equally well for large and small objects, and would need to allow different sizes to
interact to keep track of object parts and subparts. The automatic description of frequently
encountered shapes may be a task well modelled by the much simpler problem of scale
invariant fingerprint recognition. There are also non-homogeneous hierarchies in known vision
algorithms, where the nature of the computation changes with the level in the hierarchy. It
is possible that the change could be made gradual, so that continuous computational media
could again be useful.

Recently, the relationship between a continuous one-dimensional medium and a finite
sequence of locally coupled analog circuits has been exploited by Platt and Mead [private
communication] to design a VLSI "cochlea" and related sound-processing devices.

7

1.3 The Fingerprint Identification Task and Subtasks
One reason that people are drawn to work on vision is its apparent universality. There are
so many things a computer could do if only it could "see." This is of course a comment
on the versatility of our own visual systems. Certainly, there is no specially evolved neural
mechanism for driving a car; the credit for this accomplishment must be divided between
learning and the generality of mechanisms designed for other tasks. It's the generality that
we're after; any particular task will likely not be the one we're "really" interested in, at least
not for long.

The alternative to universality is the specific, once-only solution which is useless
outside of its original context In computing circles this is called a "kludge" or "hack,"
especially when more general alternatives are available. It is possible that a given vision task
is best done with many kludges, but that a collection of tasks are best done with fewer kludges
each and more sharing of methods. The chief danger of concentrating on a few example tasks
in vision, as is done in the present work, is the accumulation of kludges.

A new research idea cannot at the outset be tested on many real tasks, but it is possible
to use no real examples at all. For example, one can make up vision tasks which nobody needs
done such as solving idealized jigsaw puzzles. This seems unhealthy since the properties and
difficulties of real tasks are often surprising. It was therefore decided to try out the new neural
programming techniques on one of the simplest of real pattern recognition tasks.

Fingerprints do not represent a missing third dimension as scenes do, and they may
be recognized even after each pixel is forced to take one of two values (black or white).
Previous work by Megdal [Megdal 83] made the problem a local favorite at Caltech. The
idea is to locate the minutiae (mostly branch points and ridge endings) despite the presence
of a much greater number of spurious branch points and ridge endings due to characteristic
fingerprint noise such as holes in ridges caused by sweat pores and bridges across valleys or
across ridges. For more information on the nature of fingerprints, see [L.S. Penrose and Ohara
73a; L.S. Penrose 73b; R. Penrose 79]. Figure 1 shows a fingerprint obtained by Megdal after
being filtered through a 3x3 pixel Gaussian filter and thresholded to black and white. Notice
that branchings and endings are dual under interchange of black and white.

The first thing to do in analyzing a fingerprint is to get rid of the characteristic noise,
leaving only clean ridges, valleys and isolated minutiae. Minutiae should be isolated because
sufficiently close pairs of minutiae are easily confused with bridges and holes. This processing
greatly simplifies mirutia detection by making that operation local on the scale of the prevailing
ridge width. Also, simplifying the ridges and valleys allows simple algorithms for counting
the number of ridges between nearby mirutia to succeed. Then, from the cleaned up image
one can calculate the minutiae locations and orientations. A complete print has 50 to 150
minutiae, of which about twelve are needed to establish a match with another print So
there ought to be considerable redundancy in the minutiae information. It is then possible to
find relationships (such as ridge count and relative direction) between nearby minutiae; the
relationships between distant minutiae are much less dependable. Finally, one can compare the
deduced sparse information with the same representation of many other fingerprints to match
a print with a library of prints.

A number of efforts fit this general description, including Megdal's and a successful
commercial system by NEC. The $2.6 million NEC system is operating in San Francisco and
has identified prints in 20 per cent of the cases where police recovered fingerprint evidence

8

[Johnston 85]. A larger ($22.5 million) version of the NEC system is also being purchased
for_ the California Department of Justice' s CAL-ID project. There are several competing
commercial systems from other companies.

In the NEC machine, as described in [NEC, CG&A], a skeleton ridge pattern is detected
and cleaned up first. Then the minutiae are detected, and for each minutia a local coordinate
system is specified so that one axis travels along the local ridge direction and the other axis

is perpendicular to the first. In each quadrant of the resulting coordinate system the nearest
minutia is found and the number of intervening ridges is counted. This produces a sparse
labelled graph which compactly summarizes the milUltiae information, and may be matched
against many stored graphs to produce matching scores. A list of the best candidate fingerprints
and their matching scores is the output

The matching procedure is assisted by a special-purpose chip which can compare 40
search minutiae with 100 file minutiae in 1.3 ms. 18 such chips [CG&A] are in the CAL
ID system. The matching algorithm involves scoring and ordering the possible file minutiae

corresponding to a search minutia by using the local ridge count, position and orientation
information. On this basis a global translation and rotation of one image with respect to the
other is calculated to optimize the matching between them, and this step is followed by a
recalculation of the pairing (or lack of it) between search and file minutiae. The proposed
match is then assigned a score depending on the plausibility of the proposed minutiae matches
and the number of miootiae not matched. More detail (but not much more) is available in
[NEC,CG&A].

If such a system encounters N fingerprint images over its lifetime and matches each
with every other then there are N fingerprint analyses and N 2 matchings, so transferring work
from the matching to the analysis phase may be a very good idea. It would not be nearly
so useful for repetitive identity verification for a small population P « N; there would only
be P N matches performed. By looking for unusual "features" during the analysis phase, it
may be possible to reduce the matching phase to a comparison of two bit strings, one for
each fingerprint. Each bit in a string would record the presence or absence of one type of
unusual feature. Retrieval of a stored fingerprint image would consist of finding the stored
string whose unusual features coincided in type, as much as possible, with those of the input
image. This is just a Hamming distance minimization of the son performed by the Content
Addressable Memory. If such a scheme were possible it would be an improvement over the
present NEC machine.

If one looks at the amount of information involved in any of these fingerprint recog
nition schemes, there is a lot of image information which is mostly removed to leave a small
description of the minutiae graph. This description is then compared with an enormous data
base of stored fingerprint information. So there is a severe bottleneck between the image and
the data base which naturally divides the recognition task into image processing and labelled
graph matching tasks. It makes sense to try the first (image processing) task first since the
statistical properties of fingerprint minutiae may be necessary to design the most efficient
matcher.

Among the various image-processing operations needed (removal of fingerprint noise,
branch detection, ridge counting, etc.) the one involving the most information is the removal
of fingerprint noise since this operation works best on the original image data rather than on
a simpler skeleton. So this computation is most in need of special-purpose hardware, and

9

we shall try to design a neural network which removes characteristic fingerprint noise and the
false minutiae signals associated with such noise. It will be argued that branch and ridge end
detection. at least, is then a straightforward local computation (see Chapter ll).

One of the difficulties with noise removal is that ridges and valleys vary in width even
within one fingerprint by a factor of 2.5. This fact, and the general interest in scale-invariant
pattern recognition mentioned previously, suggested that the network be required to behave
in a scale-invariant way. This constraint is stronger than what is strictly necessary for the
fingerprint task but it may increase the applicability of the present results to other problems.

Finally, the approach used will be first to obtain a network which produces plausible
clean fingerprint-like patterns from random input, and then modify it so that real fingerprint
patterns as input produce "nearby" but clean (noiseless) fingerprint patterns as output The idea
is first to require the network to have the right "vocabulary" of outputs, and then to refine it to
obtain an acceptable input-output map. The first stage, the production of clean fingerprint-like
patterns from random input, is referred to as "hallucination."

In Chapter ll we present a hierarchical fingerprint hallucinating network which produces
stripes of various widths. In Chapter Ill the relationship between neural network and continuous
medium is clarified, and an acceptable input/output map is obtained between idealized one
dimensional slices of fingerprint images. The map is correct for a wide range of ridge widths
so that the network appears to be genuinely scale-invariant. This success is restricted to the
easier one-dimensional case. Chapter IV reverses the perilous decline in dimensionality; the 2-
d network of Chapter ll is here tried out on windows from real fingerprint images and modified
to perform part of the required computation. The satisfactory 2-d network is not achieved, but
much is learned about neural programming and design methods along the way.

11

II Stripe Hallucination

In general, then, to control the behavior of a network of threshold elements we have at our dis
posal the connection weights Tij and the thresholds ~. There are several techniques of some
considerable but unknown generality for "programming" networks to behave as desired ro
bustly. These techniques include the synapse-by-synapse summation of previously understood
networks, the control of a relatively few fixed points, and the use of appropriate continuous
geometries as an approximation to the actual discrete network. A simple example of one of
these techniques is the use of summation to construct a content addressable memory, or CAM.

ILL The Content Addressable Memory
In the content addressable memory network as explained by Hopfield [82], one j .;

presented with an input bit string s~in), 1 ~ i ~ N, and asked to retrieve that one of M stored

bit strings s~"") which is closest to the input string in Hamming distance. If the individual
bits are represented by + 1 or -1 instead of the traditional 0 or 1, then the following energy
function suffices for the easy case M = 1, in that it is minimal if and only if the current
network configuration si is s~ 1) or its negation, -8~1):

The connection matrix is
Tij = 8~1) 8~1).

Thus, starting this network off in the input state 8~in) will result in the network's reaching

the desired final state 8~1), the "closest" and only stored memory. It is at first surprising that
a network with M such memories, chosen at random, can be generated by adding up the M
corresponding single-memory networks. The resulting matrix of connection weights is

M
Tij = L 8~m) 8~m) (1)

m=1

and its efficiency, robustness and other properties are introduced in [Hopfield 82].

The production of a complicated network by synapse-by-synapse summation of a set
of more thoroughly understood and simpler networks may be expressed as

T.·· = ~T.lX: ., L.i .,
a

(2)

and is very different from conventional composition of circuits to produce new ones. The
principal difference is that no new active (threshold) elements are introduced; these elements

12

are shared by all of the simpler networks. The more conventional approach would be to collect
a set of sub-networks with distinct threshold elements sf, connected only to other elements
within the the same subnet a, and then try to sparsely interconnect sa and sf3.

11.2. A Fixed-Width Stripe Network
A simple image-processing problem may also be solved using the summation technique, to
gether with some geometric ideas. We would like to construct a two-dimensional network
whose stable states include the striped patterns of constant width. We would like to have two
sets of neurons distributed about the plane: one, which contains just a pattern of black and
white pixels, and a second set of neurons which in addition contains information about the lo
cal direction along a stripe. The second set of neurons is included to allow further constraints,
which must be expressed in terms of the local stripe direction, to be imposed later on. An
example of such a constraint would be that branch points should be separated by many stripe
widths. Note that by introducing direction-sensitive neurons we diverge from other efforts, like
those of [Hinton and Sejnowski 83] and the Perceptron research of the 1950's, which attempt
to find some simple dynamics for changing the network' s connections and thereby discovering
the necessary network organization.

We imagine that the neurons are spread uniformly over the plane with great density, at
first infinite. Instead of being indexed by a single index i, the neurons come in two types (as
mentioned above) which are indexed differently. The first type are called Pz, for pixel, where
x is a spatial index. The second are called stripe detectors Si,~,c where 4> is the local angle of
stripe orientation and c is the local color, -1 for white and + 1 for black. At a given spatial
index x all but one Sz, ... should be turned off.

The condition for the use of the sum of outer products formula

Tii = LB~m)s~m)
m

is that the desired fixed points sf' be approximately orthogonal. Given that most of the S -type
neurons at any point are turned off, this assumption cannot hold if the "off" value of a neuron
is -1. The assumption stands a much better chance if "off" neurons do not contribute to
inner products so that their value is 0, and Appendix I to this chapter shows that in the limit
where A, the number of different values of q,, is large the orthogonality of our desired striped
fixed points is maximized when P neurons have the two possible states + 1 and -1, as in
the content addressable memory, and the S neurons can assume the values 0 or 1. These two
cases are already standard so we will not bother to improve the large A approximation.

A particularly interesting aspect of this network is the synaptic weights from P-type
neurons to S-type neurons, as these determine which pictures a given stripe-detector responds
to. The S - S and S - P connections may then be thought of as consistency checks. The
P - S connections receive contributions only from stripe patterns which tum on the given
stripe-detector, since the other patterns in P are multiplied by an S = 0 neuron value in the
outer product synapse formula. Thus

T, - "" sm pm - "" pm (zo .~.c) ,z - ~ z0.~,c i - ~ i
configs m valid configs m

and obtaining the desired synapse weights is simply a matter of superimposing all the stripe
configurations which should turn on a given stripe detector. Since these configurations are of

13

infinite extent, one will eventually want to truncate the stripe detector's innervation pattern
by removing all connections between very distant points. The infinite-range case will provide
some guidance as to how far away two neurons may get before their connection may be safely
truncated to zero.

The desired fixed point configurations are all stripes and may be characterized by an
angle of deviation, 1/J, from the stripe detectors' ideal angle, and by the phase 8, by which a
stripe pattern is shifted in the direction perpendicular to the stripe direction. The conditions
for the stripe detector to respond are

and
1 1

-- < 8 <-2- - 2 (3)

where the phases 8 are normalized so that the stripe period is 2, rather than 2 "". On this scale
the stripe width is 1. Arranging our coordinates so that the stripe detector is at the origin, its
innervation pattern is

where

and

! flop /1/2
T(i)= d,P dO Stripe(,P, 8, i)

-flop -1/2

Stripe(,P,O,i)= Stripe(O, O,%'*)

x' = 8 + x cos 1/J + y sin 1/J

y' = 8 - x sin 1/J + y cos 1/J

i=oo
Stripe(O,O,(x',y'))= .2: (-1)iBit(x',i-~,i+~)

1=-oo

B. ()- { 1, if XO $ X $ X1;
tt x,xo,x1 -

0
th .

, o erwtse.

So Stripe(O, 0, (x', y')) is a square wave in z', and the general Stripe is a two-dimensional
rotation and translation of this pattern.

A discretization of the integral expression for T(i) is shown in Figure 1, with l::J.,P = ~
and each integral approximated by a Riemann sum with 30 summands. Figure 2 is a close
up, showing the region of large T. The contour intervals are .1 and .2, respectively, and in
both figures the very long contours are all at zero. The hills alternate in sign. The isolated
points show the x, y grid used to sample the function, and the contour-plotting procedure of a
standard statistical package [Ref: S] was used to interpolate smooth contours.

The principal features to notice about T(i) are the alternating series of positive and
negative vertically elongated bumps along the x-axis, and their spreading out starting at x =

±6.
We may check that this T is a reasonable innervation pattern for a stripe detector by

asking for its response to stripe patterns of various phases and angles, both those that should
tum on the given stripe detector and those that shouldn't In other words the possible stripe

14

15 .---~

10

5

y 0

-5

-10

-15
-15 -10 -5 0 5 10 15

X

Figure 1

patterns are characterized by two parameters, 1/J and 8, and a given stripe detector S; should
have large net input Rt = E; T;; P; only for configurations P; characterized by the parameter
range in Equation (3).

In Figure 3, the response function R is computed as a discretized integral with T(i)
truncated to zero outside the region -6 $ z, y $ 6, so

R(,P,8)= I dx I dyTtrundi) Stripe(1/;,8,i). (4)

Once again, and in all future contour plots, the isolated points represent the sampling grid.
The integrals were each approximated by 30 summands.

The response function R is nearly perfect; thresholding it slightly above zero leaves a
positive response for almost exactly the stripe parameter range desired.

The special pattern ofT(i) encourages us to save wiring costs by removing all connec
tions with relatively low weights; most connections will be so removed due toT's alternating
concentrations of weight along the horizontal axis. Figure 4 shows T with all values within .4
of zero removed, and Figure 5 shows the corresponding response function. The network still
works very well.

y

15

X

Figure 2

1.6~------------------------------------~

-1. 0 -0. 5 0.0
Theta

Figure 3

0.5 1. 0

Finally, the success of the network shown in Figure 4 suggests a further wirelength
saving trick: the collection of partial input sums, one from each hill in Figure 4, which are
then summed to produce the total input to a stripe-detecting neuron. 1be advantage of this
is that if, for example, the hills are made of uniform shape (though not necessarily uniform

16

6.-------------------------------------~

4:::: ::: :::::::::::::: : :: ::::::::: :::::: :

2 :o :: :::::::::::::: : :: : : : :::::: : :: ::: :: ::

y _: ~1»~~-~o~~.~~ •
.

-4 :

-6 :
-6 -4 -2 0 2 4 6

X

Figure 4

1.6.--

-1.0 0.0
Theta

Figure 5

1. 0

height), different S neurons separated by integral x can share most of the partial sums; the
only difference between neurons would be which partial sums to add with what strengths. (If
the hills in Figure 4 had been Gaussians or similarly uniform and circular, this trick would
just amount to using lower resolution, i.e., sampling the image at no more than one pixel per

17

unit square.) Each partial sum could be gathered by a linear (non-thresholding) interneuron.
(Interneurons are intermediate neurons which do not participate in input or output.) The
possibility of a wirelength explanation for a new cell type was also found by Misha Mahowald
[private communication]. Such functional explanations of structure would be of great interest
in biology.

It should be recorded that very similar experiments with branch-point or ridge-end
detectors, using eq(l) and a set of single-branch stripe configurations parameterized by a stripe
angle and the x and y coordinates of the branch point, failed to give a satisfactory response
function. Tile problem again has to do with configuration orthogonality. For example, a
defect in a stripe pattern can migrate a great distance perpendicular to the stripe direction
while changing only a small fraction of the pixels making up the pattern (a matter of distance
vs. area). To design a branch detector, then, would require a more direct approach to the
stabilization of the desired set of fixed points. It should not be difficult to compute a satisfactory

neighborhood function T(i- io). but the resulting network will no longer be an example of
the method of summing up simple networks to construct more complicated ones.

18

11.3 A. Hallucinating Network
As discussed in Chapter I, one way to approach the image-processing portion of the

fingerprint identification problem is to create a network which turns random input into a stable
fingerprint-like pattern. The demand for scale-invariant processing (so that there is no preferred
ridge width) and the need to minimize total wirelength jointly encourage hierarchical designs.
How can such designs be integrated into neural network theory?

A hierarchical design may be thought of as a severe restriction on the synaptic matrix
Tii, forcing all but a few connections to be zero. The few nonzero connections are between
an element of a hierarchy and its immediate neighbors: parents, children, and siblings, or
bosses, subordinates, and coworkers, to use two social analogies. In practice, hierarchical
designs often also allow next-nearest neighbor connections (e.g., aunts) out to some distance.
The existence of a small number of allowed neighbors encourages one to try to specify the set
of allowed connections geometrically, and to think of a hierarchy as a local network in some
peculiar geometry. In sum, I propose to elevate the continuous and geometrical approach used
in the stripe detector example to a general principle of network design, and in particular to
design hierarchies this way.

ll.3.1 A Continuous Hierarchy

The constraint that our network be robust appears at first to conflict with the scale
invariance and wirelength minimization constraints: scale invariance and wirelength mini
mization draw us towards hierarchical designs but the neurons and synapses near the top of
the hierarchy are not expendable; the network is especially vulnerable to defects affecting these
neurons and synapses. A plausible solution to this difficulty, which also introduces geometric
continuity and controllable fanout in a simple form, will be illustrated first for the case of
a network with one-dimensional visual input and statistical properties similar to those of a
binary tree with neurons at its nodes and synaptic connections at its links.

The standard technique for controlling wiring costs is to enforce some kind of locality
on the connections in a network, i.e., to use short wires much more than long ones. In a
d-dimensional medium (for integral d), the total cost of the wires of length between I and
I + dl is roughly [the mnnber of wires in the interval (I, I + dl)] x [the cost of a wire of length
1]. Here the cost of a wire is taken to be its volume, proportional to I 4 to produce logarithmic,
or nearly constant, time delays as a function of I. The reasons for this scaling are set forth
in [Mead and Rem 82; Mead 83] and are related to the use of exponential amplifier horns to

drive long wires. For sufficiently short metal wires on present-day chips the wire resistance
does not much limit the signal delays so that the wire volume required to produce constant
delays is just proportional to the wire length, I.

To determine the number of wires N(l)dl in the interval (d, d + dl), we guess that
each order of magnitude (1, 101) should have about the same wire volume spent on it. This
assumption is reasonable since it multiplies the total wiring cost by the logarithm of the
system size, by comparison with a purely locally interconnected network. The logarithm is
the minimum factor required to accommodate the wiring costs of a binary tree.

Introducing x = log I, the equal-cost-per-decade condition means that for constant Ax
(as a function of x) one has

r+.ll.z
lz N(1)14dl = constant(x)

19

d 1z+ll.z d 1z+ll.z
0 = - N(l)lddl = dx N(l)ld+ldx

dx z z

l
z+dz

0 = N(l)ld+ 1
z

which implies that N(l)cx I-(d+l). In VLSI d=3 for wire physics and the result is N,.., I-4.

For short wires this expression is modified to N,.., l-2• The effect of this modification is to
favor the longest wires whose resistance is still negligible.

Thus, if we have many short wires we can afford some long wires, and vice versa; the
costs of short and long wires are balanced when the number of wires of length l is 1-(d+ 1).

Long wires are important since few computations can be continuously mapped onto the d
dimensional medium (d=2 or 3) available to us while preserving spatial locality in that medium.
Hierarchical designs such as the binary tree are examples of local organizations with a few
long wires; one can map a binary tree into a d-dimensional medium so that the number of
wires of length l is proportional to 1-d 4f [Mead 83]. Literal hierarchies such as the binary tree
have the drawback, however, that, although they use long and short wires in a balanced way,
they do not use them well except for d s:::;j 1 . The tree is equally mappable into any dimension
d > 1; it does not make use of the increasing connectivity of higher dimensions. In a tree,

every connection is a bottleneck. Quantitatively, if we take a patch of a d-dimensionallocal
network whose shape has been arranged to minimize the number of external connections W

for a given number of internal neurons N (in this case the patch will be a sphere), we get

(5)

(W = surface= Ld-l; N = volume= Ld).

For a similar patch of binary tree the answer depends on the binary expansion of N but if we
average over a factor of 2 or more of possible N values, we get

W = logN, or

dtree- 1(= "1 + E") .

This definition of a network's "bottleneck dimension" as limN-oo 1/(1-logWflogN) does
not refer to a network's spatial embedding; it is an intrinsic dimension. This definition has
the consequence that for two graphs of equal N, the one with larger dimension cannot be
embedded in the other because there are not enough wires available.

If d is the integer dimensionality of an image then the bottleneck dimension of an
image-processing network may be reduced to that of a tree over d dimensions, d + E, by
the following geometric construction, illustrated for d = 1. The binary tree in Fig. 6 has
the following scaling behavior: that when Xmax is doubled and lmax is increased by one,
the resulting network is nearly isomorphic to the original one, differing in having higher
"resolution" (an extra layer of neurons at the bottom). In the case lmax - oo, the isomorphism
would be complete. The few special long wires near l = lmax appear to preclude any local
geometric interpretation of Fig. 6, but setting z = 21 (Fig. 7) reveals a geometric interpretation:
neurons may be connected only when they lie within a z-dependent neighborhood size. Tile
size changes with z to maintain constant fanout The fact that each neuron has two possible

20

z-2 a change of variable

1-le'lel

A Binary Tree

32

X

X

Figure 6 Figure 7

neighborhood radii, differing by a factor of two, is awkward and will be further discussed in
the next section where non-spherical neighborhoods will be introduced.

Of course, these neighborhoods could also be drawn on Figure 6, where they would
appear as highly squashed ellipses. In Figure 7 they are circular and are determined by just
one number: the radius. This radius is roughly the mean spacing of neurons as a function of
z, so that the neighborhood sizes can be specified by a density of neurons p(z), with radius
= R(z)~ p-112(z) . For a binary tree, p(z)= z-2• The scaling law is also convenient to state:
under a change of coordinates x -+ >.x, z -+ >.z one gets "approximately" the same network,
with extra resolution near z = 0. This means that we have the approximately scale-invariant
quantities

and

() (xo- xi)
= arctan~--~

(zo- zi)

V (ll.x)2+ (ll.z)2
; = r/ R(z)= R(z)

to describe the neighborhood of a neuron. Thus we have some useful parameters out of which
to construct approximately scale-invariant networks. In Fig. 7, once it has been decided
that two neurons have ; < 1 and can thus be connected, their connection strength may be
determined by complicated rules having to do with binary numbers. We make this second
decision based on simpler rules involving ; and 9. Thus Ti; will be a function of; and (),
and a function of xo, x1, zo and z1 only through these quantities. Also, rather than relying on
a highly patterned grid of neuron locations, we will allow any set of locations which produces
the density function p with sufficient accuracy.

This description of a binary tree is interesting because it also covers several other
networks. By taking p(z)= constant we get a two-dimensional local network, which does not
suffer the robustness problem associated with top-level neurons but does suffer long commu
nication delays due to its lack of long wires. It is also very much more expensive than the tree.
By considering p(z)ex z- a, 0 < a < 2, one may hope to get both long wires and behavior
contim.rity. The proposal, then, is for local rules in a space with fractional dimension 1 + E

(1 ~ 1 + E ~ 2), where E is now a real number rather than an infinitesimal and depends on a

21

in a calculable way. Clearly, wirelength minimization requires that£ be minimized.

The image-processing version of these ideas involves a 2+ £-dimensional network with
ordinary dimensions x and y and a third hierarchy coordinate z. There is a density function

(6)

where
1

0 ~a~ 3, K ~ z ~ 1, 0 ~ x, y ~ 1

and K is a constant which determines the resolution of the network, being roughly the number
of neurons along one side of the image.

The scaling behavior is as follows: under a coordinate change

we use

to deduce

x' =).z, y' =).y, z' =).z

p(z)dxdydz = p'(z')dx'dy'dz'

p'(z')=).-3p(z)

= (K/).)3-ar(:_)-or
).

= (K/).)3-ar(z')-ar

so that the network can be self-similar if its behavior is independent of its granularity, K. There
are similar local statistical systems in condensed matter physics which have this property at
phase transitions (i.e., after the careful adjustment of one parameter) and we would like to
find a corresponding behavior in this case to obtain scale-invariant pattern recognition. For
the connection between neural networks and statistical systems see [Hopfield 82].

In Appendix II the (intrinsic) bottleneck dimension and an embedding dimension are
calculated as a function of a; they are

and

{

3 if a< 1
dbotlleneck = ~ if 1 < a < ~

2 if~< a

demedding = max{2, 3 - a, 3 - 2a/3).

(7a)

(7b)

These are compared in Fig. 8, and agree for a > l In the simulations reported in the rest of
this chapter, a was set to 2.1.

ll.3.2 Necessary Refinements of the Hierarchy

Experience shows that the foregoing construction of a fractional-dimension network
must be refined in several ways if the networks are to be computationally reasonable. First,
it is not sufficient to distribute all the neurons randomly and independently with density p(z) .
Severe percolation and bottleneck problems arise from the variance associated with such a
distribution. unless the number of neurons so distributed, and hence the wirelength cost, is

22

d

2 3

Figure 8

unreasonably high. A more unifonn distribution scheme for neurons, still consistent with p(z),
is to divide (x, y, z) space into cubes whose size depends on z and place a neuron or a clump
of neurons at the center of each cube, as in Fig. 9. lbis divides the (x, y, z) space into
layers of generally incommensurate width. The relative x and y positions of cubes in different
layers are detennined by pseudorandom rumbers. Many other regular placement schemes for
neurons are possible, but we will use this one. For simplicity, periodic boundary conditions
are used. The cube sizes were altered slightly so that an integral rumber of identical cubes
would fit in a layer.

z

. . .

I · I · . I . I
· I · I . . I .

II • I • I • 1·1 · I · I • I • I •
0 X

0 1
Figure 9

Another necessary refinement has to do with maintaining reasonable fanout and fanin.
For a = 0, where we have a 3-dimensional network, neurons can be connected if they lie
within a sphere of radius Rex p- 113(z). 'This is not always a good estimate of the interneuron
distance, due to the presence of a singularity in p(z) at z = 0. The problem is that the
interneuron distance may change significantly over tu ~ the interneuron distance, so that
within a sphere at zo there are many more neurons with z < zo than with z > zo, and the
fanin depends drastically on 9, the polar coordinate. 'This undermines buildability since the
minimal fanin required to prevent bottlenecks will be associated with an unacceptably large

23

maximal fanin from another direction. It is necessary to alter the shape of the neighborhood
from a sphere to some kind of egg so that fanin will be independent of 0. More precisely, we
want a region described by a radius R(z, 0) which varies so that the number of neurons within
a narrow cone depends only on the solid angle subtended by that cone. Fig. lOa illustrates
the situation, and we may deduce the region shape as follows:

z z

X

Figure lOa Figure lOb

f p(z')dV = cdO
lcone(B,; ,do)

(8)

(where 0 represents solid angle) and

f p(z')dV = F = constant total fanin
Jegg volume

so that

!dO f p(z') = cfdo = F
lcooe(l,;,tlfl

(9)

F F
=> c = I dO = 4"'.

Now rotational symmetry of images implies that R should be independent of 4> so we
can integrate (6) over 4> to obtain the solid annulus in Fig. lOb. Then

f p(z')dV = .!_ f dO= -
2

1
FsinOdO

lannulus(B,dl) 41r lanrulus

Introducing r through z' = z+ rcosO and recalling that p(z')= K 3-a(z1)-a, we can compute

yielding

24

o summand neuron

c target neuron

• summation node

Figure 11

1 113-a 112-a 111-a lv=•+Rcosl
= --[-- - 2z-- + z2

--]
cos3 8 1 - Q 2 - Q 1 - Q v=•

F Ka-3 cos3 8 3_a (1 2 1)
-----+z -----+--=

4K 3 - Q 2 - Q 1 - Q

(z + Rcos8)3-a
2

(z+Rcos8)2-a 2 (z+Rcos8) 1-a _,__ ___:....___ - z + z ...;.._ ___ ____;. __
3-a 2-a 1-a

(10)

as an implicit equation for R(z, 8, K, F), to be solved by Newton' s method. In simulations,
this equation was solved for several values of 8 per z value and linear interpolation used for
other 8 values.

In particular, for a -+ 0,

F K-3 {R(.-,1) 1
4;--- = lo r2dr = 3R

3
(z,8)

F 3
so-4-- = K = p
~KR3

and R is independent of z and 8 in this, the three-dimensional case.

As has been mentioned in connection with Figures 4 and 5, there is another absolutely
necessary refinement of our networks: the use of branching wires to save wirelength. The
summation of a neuron' s many inputs can be done in several stages, since addition is associa
tive: sums of sums are sums. Then each summand requires a short wire instead of a long one,
as in the tree design in Figure 11 . There are a few long wires as overhead: several long wires
per neuron + one short wire per synapse, vs. one long wire per synapse in the more straight
forward implementation where each Tii corresponds to a wire. Tills wirelength-conserving
measure requires a new network element, beyond synapses and neurons: the summation node.
A summation node acts like a neuron without the threshold and the nonlinear transfer function;
i.e., it is a linear neuron. In biological and electronic technology, branching wires may serve
well enough if one is summing currents; for voltages one may get an average rather than a
sum. Tills may also be acceptable if the input tree is balanced. There are similar prospects
for the use of output trees.

25

Given these refinements of the contiruous hierarchy idea, we have a geometric approach
to network design that provides the connection sparseness information, necessary on wirelength
cost grounds, but which is not provided by the other methods of network design which we
have discussed: network summation and control of fixed points. Nevertheless, these methods
are still useful for providing the values of the sparse nonzero synaptic weights. In this chapter
we will combine the continuous hierarchy with the summation of more easily understood
networks expressed algebraically as a formula with adjustable parameters for Tii. In Chapter
III we will stabilize selected fixed point configurations by again expressing the synaptic matrix
as a function of scale- and translation- invariant variables, and optimizing the function.

11.3.3 The Synapse Formula

To create a fingerprint-hallucinating network we choose a representation in which each
neuron has not only an image position {z, y) and a hierarchy position z but also a "color" c
= 0 or 1 (black or white) and an orientation <P E [0 , "')· The orientation is supposed to be a
distributed representation of the local ridge or valley orientation. Since ridges do not have a
signed direction, the orientation is only defined up to multiples of "'. Since the argument in
Appendix I was not known at the time this network was designed, its neurons will take the
values ±1. The network' s local representation for a north-running valley, then, is all neurons
having value -1 (off) save the color- 0, orientation= "'/2 neurons that have value + 1. This
amounts to a unary representation of angle and, indeed, of each of the five indices, though in
the case of the z index it is more like a unary representation of log(z).

To specify the network it suffices to give the w = (x, y, z, ,P, c) coordinates of the
neurons, and the connections as a function of wi and w1. As in Figure 6, (x, y, z) space
was divided into cubes whose size depended only on z so as to produce the desired density
function p(z). At the center of each cube was placed one neuron for each combination of two
colors and m angles of the form i"' jm, i = 0, ... , m - 1 and m = 4 or 6. Thus, there were
2m neurons in each cube.

It remains to specify the synapse and threshold values for a neuron at wi, and a

representative input-supplying neuron at w1, as a function of IJ,; , f/>o , ?1, co, CI, and t/1 =
arctan{y/z) (also a scale-invariant quantity). 1be synapse value Tii was

Tii = f(IJ)g(;) {-I6(;)+a [~ - sin2(?i - tPi)l + u~~ [1 - 2c; sin2 1J sin2
(t/1- tPi)]} {11)

where
ci _ { + 1 if Ci = Cj

O"c·-
1 - 1 otherwise

and the threshold was H(z)= H x [total input to a neuron if all its neighbors were on]. Be
cause the color and angle terms each average to 0, the total synaptic input to a neuron comes
from 16(;) and is just the sum of the synaptic weights from other neurons within its cube, or
"clump." This sum in tum is dominated by the /6{;) term in the present networks (since I is
relatively large) and it may be best to simply let h(z)= - {2m- 1)H I f(~)g(O) . The parame
ters c, a, I and H are adjustable constants and f and g are adjustable functions. Although not
a sum of outer products, this connection matrix is a sum of intuitively understandable terms.
The meanings of the various terms are:

g(;): g =0 for; > 1 cuts off synapses outside the neighborhood. Otherwise, we took

g = 1.

26

/(9) : A function 2: 0 which if peaked at 0,! or~ would favor top-down organization,
independent two-dimensional networks, or bottom-up organization, respectively.

-18(1): 6(1)= 1 for;= 0, 0 otherwise. 6 doesn' t have to be so discontinuous. Tills
term is a mutual inhibition term which allows us to control the number of + 1 neurons in a
cube; we want one on out of every 2m. In the networks which work, I6(;) is numerically the
largest of the terms in T ; the others are corrections to it The effect of this term is to convert
the 2m neurons in a cube into a 2m-way "flip-flop", or mutually inhibiting neuron clump.
The entire network may be thought of as interacting 2m-flops, instead of interacting neurons.
If 6 (;) were more spread out spatially, one could still control the average number of neurons
turned on in a region of the network but not the number turned on in one 2m-flop.

H(average input) : H determines how many winners there can be in the competition
caused by the mutual inhibition term -I6(1) . H ~ 1.05 forces one winner; H ~ 1.2 forces
zero for the parameter values used in this work. In detail, the threshold h for a neuron is
computed by multiplying H by what would be the total input to a neuron if all its neighbors
were on. If the network consisted of uncoupled clumps, which is a good first approximation
due to the large values of I used, then H scales with I and H = 0 forces half of the ± 1
neurons in each clump to be on. Clearly, for large I we can consider just the synapse I terms
in computing neural thresholds, so that thresholds become a property of a clump rather than
of the entire network. Then H and I are the clump internal parameters, just as h is the neural
internal parameter.

a[!- sin2 (<Pi - <P;)] : encourages conformity of internal angles. Both angular terms
involve squares of trigonometric functions and can be rewritten as trigonometric functions of
double angles. Hence, angles are only used modulo ~, as promised.

u:; = {+1 if ci = c;; -1 otherwise} favors color conformity among neighbors.

-2u:;;sin2 (9)sin2("'- tPi): favors color contrast among neighbors of similar z, sep
arated by a vector perpendicular to what wi thinks is the local ridge axis, i.e., favors color
contrast when "' and <Pi differ by ! · This encourages side-by-side ridges of alternating color.
Tills term is the sole ridge-making term, and the only term which can allow represented and
actual angles to interact It also influenced the choice of representation: in this term two colors
and one angle all interact, so that if separate color and angle neurons were used (2 + m instead
of 2m neurons per site), this would be an illegal three-neuron interaction.

With this network it proved possible to hallucinate stripe patterns whose stripe width
was roughly the size of the smallest spacing between neurons, but no larger. To get larger
stripe widths two changes to Equation (11) were necessary, the first change innocuous and the
second serious. These changes involved the parameters s0 ff and d, respectively, in the new
version of the color conformity term:

(12)

The Boff term confines the ridge-making interaction to pairs of neurons of roughly the same
scale. Unfortunately, the d z term spoils the algebraic scale invariance of the synapse formula.
but it was necessary to compensate for the observed network preference for small stripe widths.
One probable consequence of this difficulty is that c and d will have to be readjusted when
the total number of neurons, or the resolution parameter K, changes.

27

II.3.4 Results

The network described by the synapse equations (11) and (12) was repeatedly run
starting from random initial configurations. For efficiency's sake a nonrandom update order
was used: the hierarchy levels were updated in order, and within one hierarchy level the
clumps were updated in a scanned order, and within a clump the color and angle neurons were
updated in a fixed order. Occasional comparisons with a random update order failed to reveal
any systematic behavior differences between the two update methods; apparently, the random
starting configuration was enough to eliminate any waves or other update-related phenomena.
The visual appearance of the fixed-point configurations obtained for each run was used to
manually adjust the free network parameters for the next run, with the purpose of producing
scale-invariant stripelike patterns. The results are presented here.

II.3.4.1 Bottom-up Network Behavior

Various final configurations resulting from random initial conditions are shown in Fig
ures 12-13, together with the values of the parameters a 1 a1 c,l1 H 1 ml lo 1 /1 1 /2 1 /3 1 l4 1 ls 1 K,
and F which produced them. In Figure 12 we see all four levels of a K = 13 network
displayed, with color ± 1 neurons displayed separately for clarity. The bottom level is clearly
a stripe pattern. Higher levels suffer from having more than one neuron on per 12-flop.

Note the small values of the top-down strengths lo and !I in these figures. Here
1(8) has been linearly interpolated between the points (0° 1 lo), (80° 1 fi), (85°, h), (105° 1 /3),
(110°, 14), and (180° 1 Is). For efficiency, IJ itself was interpolated between stored arctangent
values. Each parameter (save m) can be varied to some extent without affecting the results.
The figures display only the bottom level of each configuration; for the present value of I (IJ) the
network is largely driven from the bottom up so that higher layers (those of lower resolution)
look similar. Bottom-up behavior is encouraged by large f(IJ) near IJ = ""; independent layer
behavior would be encouraged by IJ near ! ; top-down behavior would be encouraged by a
large weight near IJ = 0.

To adjust the parameters to produce figures 12-13 it is necessary first to get just one
neuron out of each clump of 2m to be on at a time by setting the intraclump competition
parameter, I, to an arbitrary positive value and adjusting the relative threshold H. This is best
done in a network with uncoupled layers so that I(IJ)= 0 except near IJ = !· Then, angular
conformity should be turned on with a. This produces domains of aligned internal angle. I
must be large compared to a to maintain the integrity of a clump and prevent several neurons
from turning on in one clump, but if it is too large then the network will "freeze" and fall
into angularly disordered stable states. Finally, turning on c will stretch the domains in the
direction of their internal angle and compress them in the perpendicular direction.

II.3.4.2 Hierarchically Balanced Behavior

Figures 12-13 are produced by networks with very weak top-down connections, and
consequently the displayed configurations have narrow stripes, two or three lattice spacings
wide. It proved sufficiently difficult to obtain wide stripes that extra terms were added to the
synapse formula (Equation 12) to do so, as explained in Section 11.3.3. With the extra terms,
one of which eliminates the algebraic scale invariance of the synapse formula (Equation 11),
one may also obtain wide stripes as shown in figure 14. In figure 15 we see a more subtle
behavior, which appears to have a variety of stripe widths within one stable configuration

28

\ ' ' ----- _, -- ,---- _,
- \ -- _, --- \ \

-- - \ \ \ \ \
\ \ \ _, _, \ \ \

.... -- \ \ ,- \ \ I \

\ \ \ \ I
- _ \ \ I ...

........ \ \ \ \ \ \ \ \ \

\ \ \ \ \ I ... \ \ \ \ ...
\ \ \ \ \ .. \ \ \ \ \ \

\ \ \ I \ \ \ \ \ \

\ \ \ --- \ \ \

Figure 12a level 0 color 1 Figure 12e level 0 color -1

' ' '
_

' '
~

_,
\

"' '
....., \

' ' \ \ \ \ \ \ '
\ \ \ \ \ \ \ \ \ \

\ \ \ "'
\ \ \ \ ~ \

\ \ \ ' ' '
\ \

Figure 12b level 1 color 1 Figure 12f level 1 color -1

~ 'J

~ 'J

~ 'J

\ ~ 'J

Figure 12c level 2 color 1 Figure 12g level 2 color -1

\

Figure 12d level 3 color 1 Figure 12h level 3 color -1

Figure 12: a = 4 c = 3 i = 30 K = 13 m = 6 H = 1.05

---~--------~--- ----

'
~----------

- '
\ --- , \ ---- ------

\ .. ,--,.. ---- ,_- \

\ -\
\' ' • ••' I \ \ \'

----------- ~ ~ ':, :
\ \ -------- ----- \ \ \ ,. -

Figure 13a level 0

- -......-......-......-......
!'-......-

-......-......-......-......
..... -......

-......-...... "' \

..... \ "' -......-...... "' \

-......-......-....

Figure 13c level 2

Figure 13e level 4

29

---- '

-------------------------....-- ___ ,
' ' --- \ ...
\ - - \ ... " \
',___ I ""

\ .. \ "_____ \ \ \ \ ...

\ " \ ----- "-
Figure 13b level 1

'
---....... ~---.......

"" ---.......- '

Figure 13d level 3

,-
Figure 13f level 5

Figure 13: color=O a= 4 c = 3.5 i = 42 nbrs = 12 K = 23 m = 6 H = 1.05
1 = (5,5,10, 10,10, 80)

although none of the stripes is very long. Further, it appears that the scale invariance was
obtained by creating small stripes inside of larger stripes of the opposite color. This is
unfortunate, since one of the principal types of fingerprint noise which we would like to

30

eliminate is opposite-color holes in a stripe. In Chapter III we will examine networks at the
scale of one stripe width and demonstrate simultaneous scale-invariance and hole suppression.
The networks will, however, involve several new ideas.

-------- ... ---- ... ' ' ,-... .. -.. ..
-- ..

..... --- ,,,,,, ' ' ' - ' ' ' ' ' ' \ ,,
' I ' .. ' ' ' ' ' ' \ \ \ \

' ' ' ' ' ' ' ' ' '
' ' ' '

,,, .. ,, ... \ \ \ \ \ \ '
' ' ' ' ' ' ' ' ' ' ..

\ \ \ \ ' ' ' ' ,,,,,,,
'

........... ,_ ,,,,,, ... ,, ' \ \ ' \ ' ' ' ' ' ' 1- .. ,,, .. ,,,, .. - --
........ \ \ - ' ' ' ' ' ' ' ' ,-
''''
'''' ' ' ' .. ,

'
..., ' ' ' '

Figure 14a level 0 Figure 14b level 1

' '
- - ' ' ' ' ' ' '

:..._. \ ' ' ' ' '
' ' ' ' '

' '
' ~

Figure 14c level 2 Figure 14d level 3

Figure 14: a = 4 c = 4 d
1 = (30, 30, 10, 10, 20, 20)

6 1 = 75 K = 23 m = 6 B0 1f .5 H = 1.05

It happens that a slight modification of the network of figure 18 produces another
interesting behavior (figure 16): simultaneous presence of color=O, color=1 and uncolored (all
neurons off) regions. Tills could be useful in tasks such as optical character recognition which
require widely separated curves in an unoriented background.

The figures show that a variety of fingerprint-like images can be created, and therefore
suggest that the most difficult constraint on our networks, that of doing a useful network

._... \ I I I I I I I I I I \,·:,••
' \ IIIII I Ill 11\\\\\\\

\ \\I I I 11111,,1111\
''••-'' 111111 I 1111\\\\1111
'••-''' \l\1 I 1111\\\\\\l\\

' .,., '' • IIIII ,,,,,,,,
''' \\ II II II I \\\\1\\

~ ,, ... ~:' :: ,:·: :1: '::::~:
; ''' :: .. ·•. ·: :: :, :''!::'
\\ \\ \I I I I I I I I I I ' ' \

~~: ', ':,:::::~:: =~~:::, ~
\ ,, ,, ,,,,,,,, 1111111\\
,,,, ,, ,,,,,,,, 1111111\
,,,,,, ,,,,,,,,,, 1111111\\ ..
,.,.,.,.,,, ,,,,,,,,, ,,,,,, \1\ ''
,, .. ,,, .. ,,,,,,,,, \ll\1\ '' ' ,,, , .. ,,,,,,,,I ',,,,,,, '
.... ''::!:::::::::: ''::::~::,, ' '
............ :::::::~! :: :,:::::, : ------- , --~· ',,,,,,, __ , ''' ' '' ,, ,,,, ,,, ,,,,,,,,,, ,, ____ ,,,, ,,,,,,,,,,,.,.

' I I t I\ I I I I I I\''''

, ____ ---- ,: :··: :::::~!:!!:'
:::::::••:•,: i 1: \::I:~::::--.:

Figure 15a level 0

' I ' ' I I ' ' ' I I I ' ' \

' I I I I \ \

' ' I I
\ ' I I \ \

\ \ ' ' I I ' I \ ' ' ' ' ' \ \ \ \

.... ' ' \ \ ' ' _,
' \ \ ' \ ' I \ '

- - I I \
- - - - I I I -

Figure 15c level 2

31

\

\

-- .. • ' '., --
\ I I I \ \ \ .. -- \ I I \ \ \ I \

.... I I I \ \ \ \ \ .. \ \ I I I \ \ \ \
\ I I I \ \ \ \ .. \ I I I I I \ ,,

\ \ I I I I I I I \ .. \

\ \ \ I I I I I I I\ I
\ \ \ \ \ \ I I I I I I \ \ ,,, \ \ \ I \ \ I \ \ I I \ \ ,, \ ,,,,, \ \ \ \ \ \ \ \ I \ \ \ \

t\'''' \ \ \ \ I \ \ I \ I \ ,,, \ \ \ I I I \ \ \
.... ,,,,, \ \ \ I \ \ \ \

~ .. '''' -_, I \ \ \ \ \ ,,,, \ I \ I I I \ ,, - I \ \ I I \ ,,,, .. ------ I \ I I \ ,,,, ---- _, I I I \ ,, _,

Figure 15b level 1

.... I \ \

.... \ I I \

\ I \
\ \ I I I \

\ \ I I I \

.... \ \ \ \

.... \ \ \

.... \ I I

..... I I

Figure 15d level 3

Figure 15e level 4

computation, can be met within a framework that has plausible solutions to the problems of

.. \ \ \ \ '\ '' \ \ \ \ ..
\ \ \ \ '

\ \ \ '
\ \

\ \ \ \

\ \ \ \ \
\ \ \ \ \ \ \
\ \ \ \ \ \ \ I ' \ \ \ \ \ \ \ I ' \ \ \ \ \ \ I \ \
\\\\\\1 \ \ \ \

I I I I \ \\\\\\\\
II \\\\\\\\\\\1

I 1\\11\\\\\11
\\\\\\\ \ \ \ \ I I I

\ \ \ \ \\\\\ .. l\\1 \ \ \ \ \ \ \ \ \ \ \ \ \ ,, ,,,,,,,,,,, ,,,,,,, \ \ \ \ \ '
\

\ \

''~''''

Figure 16a color 0 level 0

\
\
\
\ \

\

\

\

\

\

\

\

Figure 16c color 1 level 0

32

... \ \ ... \ \ \

\ \

\ \ \

\ \ \ \ \

\ \ \ \ \ \

\ \ \ \ \ \

I I ... I \ \

\ \ \ \ \ ... \

\ ... \ \ \ \ \ \ \ \ \ \ ...
\

Figure 16b color 0 level 1

\

Figure 16d color 1 level 1

Figure 16: a = 4 c = 3 c1 = 10 i = 75 K = 23 m = 6 s011

1 = (30, 30, 10, 10, 20, 20)

.5 H = 1.05

scale invariance, wirelength economy, and robustness built in.

It is also possible to evaluate stripe-generating networks numerically, for example, by
starting with a perfect stripe configuration and seeing how far it evolves before stopping, or
seeing to what extent various kinds of imperfect stripe configurations correct their defects and
approach a perfect stripe pattem So far these tests have been about as reliable as visual
observation of the fixed-point configuration; they gain in precision what they lose by failing to
anticipate new defect types, such as compact regions where all neurons are off, or decoupled
stripe patterns on different levels. In Chapter ill we will use such tests more extensively on a
somewhat different hierarchical network.

33

The configurations shown here typically took about 10 update sweeps through the
network to converge, and were simulated on a VAX 11-750. One convergence took about 1
hr forK= 13, 2 hours forK= 23, and 6 hours forK= 35.

II.4. Conclusions

Two network programming techniques were discussed: synapse-by-synapse summation
of networks, and the use of a continuous geometry to determine the "neighborhood structure",
i.e., the set of synapses which are allowed to be nonzero. Hopfield's content addressable
memory network was given as a simple example of the first technique, and the design of fixed
width stripe detectors introduced the combination of the two methods. Finally, the methods
were applied to the design of a scale-invariant fingerprint-hallucinating network. The resulting
network certainly can generate stripes whose widths are controlled by a network parameter,
and is also capable of a limited form of scale invariance for a fixed setting of the network
parameters.

These results were obtained at some cost: the algebraic scale invariance of the synapse
formula is spoiled by the width-controlling parameter. This, and the increasing computational
difficulty of effectively searching the parameter space involved, lead to the need for the more
extensive theoretical treatment of the network given in Chapter m.

To see that our networks should be able to solve the original problem of detecting
fingerprint branch mirrutia requires not only that Figures 12-13 convince one that the networks
can eliminate fingerprint noise, but that there be some mechanism for finding branches in the
artificially simple and stereotyped fingerprint pattern produced by removing the noise from a
real fingerprint. Once again the hierarchical organization serves. At a height z s::::s the local ridge
width, branch detection is a local operation which could be done by special branch-detecting
neurons which fit into the framework of local rules in a fractional dimensional space; therefore,
the wirelength, robustness, and scale invariance constraints can still be met. What is done with
the branch detection signals depends on the further fingerprint processing required, but at this
point we would have an explicit representation of the answer to the pattern-recognition problem
posed at the outset.

The idea of local dynamics in a space of fractional dimension appears to be a fairly
general principle for efficient network organization, and is conducive to the use of analogies
and techniques from well-studied (local) systems of integral dimension.

34

Appendix I

There is a set of stripe patterns which define the configurations of S and P neurons
which we would like to be fixed points. For a stripe configuration of angle ,P and phase 0, we
may define

Stri (·1• 0 i)= { + 1, if posi~on i is black in the given stripe field;
pe "' ' ' - 1, otherw1se.

We are to control the two possible values of P neurons, amin and tlm4z, and the two possible
values of S neurons, bmin and bmaz• in order to make the various stripe configurations as
orthogonal as possible.

If we call the entire configuration C{ ,P, 0)= (P(,P, 0), S(t/J, 0)) , then "maximizing the
orthogonality" of these configurations certainly involves the inner products C{ ,P, 0) ·C(O, 0) in
some combination. The maximum inner product is C(O, O)·C(O, 0). Adopting the notation
(X)~ ,, to represent averaging X over all allowed t/J and 0, we will be able with our four
parameters to set

and to minimize

(C(t/J , O)·C{O, 0))~ ,, = O
C{O, O) ·C(O, 0)

([C(,P, O)·C(O, 0)] 2)~ ,,
(C(O,O)·C(0,0))2 .

The stripe configuration has

Pz(t/J, O)= 4maz ; 4min + amaz ; amin Stripe(t/J, O
1
i)

=a++ a- Stripe(,P,O,i)

and similarly

where

where

s: = { 1,
0,

Q { 1,
O'h = -1 ,

Then

if a = b;
otherwise,

if a= b;
otherwise.

P(,P, O)·P(O, 0)= (a+)2+ a+ a- (Stripe(O, 0, i))z + a+ a- (Stripe(t/J, 0, i)) z

+ (a-)2(Stripe(,P, 0, i) Stripe(O, 0, i))z

= (a+)2+ (a-)2S! I(O)

{

1 - 29, if 0 ~ 9 ~ 1;
1(0)= 1 +28, if -1 ~ 8 ~ 0;

determined by periodicity, otherwise.

35

Likewise,

S(,P,9)·S(O,O)= L:[<b+)2+b+b-(6t -1 +6~- 1)+{b-)2{6t- 1)(6~- 1)+(b-)26t6~6t I(9)]
c ,~

= 2A [(b+)2+2b+b-(~- 1)+{b-f{1 - ~ + st)] + 2(6-)2 I(9)St

where A is the number of distinct angles.

We then compute that

where

since (1(9))•·' = 0.

1

2c(1/1, 9)·C(O, 0)= t1 + st [t2 + t3J{8)]

t2 = {b-)2

1
t3 = 2(a-)2+{b-)2.

Introducing the scaled variables a = a+ jb-, b = b+ jb-, a = a- jb-, the first require
ment that (C ·C) = 0 reduces to

1 2 - 2 -2 1 -a +(A- 1){b- 1) +b = 1- -
2 A

which, as A .- oo, can only be satisfied if 6· .- 1. This in tum implies that a .- 0. Only a
remains undetermined, and it is determined by the second requirement that we minimize

which implies a2 = 2. Any finite a :1 0, ±oo can be absorbed into the relative values of
weights between neurons of different types, and we are interested in doing this to set a = 1

and thereby obtain the standard types of neurons, amcu: = 1, amin = -1, bmaz = 1, bmin = 0.

Appendix II
There are many plausible definitions of dimension for a network; one intrinsic di

mension is the bottleneck dimension, which we will compute. This dimension is defined by

36

Equation (5) in the text Instead of minimizing the number of wires poking through an ar
bitrary surface, we will use a less general surface: a prism with height ~z = h and sides
~x =~!I= w. The number of neurons inside such a prism is

(AI)

and the number of wires cleaved by its sides is

W = fs p(z)p-113(z)dS (A2)

r·+A w = w2p213(z)9(z- x-1)+w2p213(z+h)9(1- z- h)+4w 1. p213 (z)dz9(1- w) (w ~ 1)

(A3)
where 9 is a step function (9(x)= 1 if x > 0, otherwise 0) and accounts for the possible
absence of various sides when w, z or h adopt extreme values. W is to be minimized while
N is held fixed; then their asymptotic relationship (as N-+ oo) is to be extracted. Since (for
a ~ 0) the greatest concentration of wires is at the bottom surface of the prism, we do well
in minimizing W to eliminate this term at the outset by taking z = x-1• Then if we set

we find

a= wK and b = hK

[(1 + b)l-a-1]
N = a2....,_--'-----!.

1-a

W = a2 (1 + b)-2al3e(K- b)+4a [(l + b)l-2a/
3

_ 1] e(K- a).
1- 2a/3

Since we are taking the limit N -+ oo, we may generally consider b » 1 to simplify the
algebra. However, there is a subdelty which prevents us from actually allowing a = K as a
possible prism: we must first take the limit K-+ oo, and then N-+ oo rather than vice versa.
a= K implies

so that we cannot look at any finite N to extract the desired dimension. For a > 1, however,

N ~ a 2 j(a- 1) (since b » 1)

and there is no such exclusion of b = K.

Forb» 1 there are three cases, according to whether a < 1, 1 < a < ~.or~ < a .

Case a< 1: (1 + 6) 1-a~ b1-a » 1 and (1 + b) 1 -2a/3~ bl-2a/3 » 1 so

N = a2b1-a /(1 - a)

a= b=lp V(1- a)N

W = (1 - a)NbJ-t + 4V(1- a)Nb!- f

37

W =(I- a)Nc2 + 4)(1- a)Nc- 1 where c = b~-i
and one can compute

aw
- = 0 => W ex N 213

ac
and I- I/ d = 2/ 3 (from Equation 5) which implies d = 3; that is, the bottleneck dimension
is 3.

Case a> 3/2: (I+ b) 1 -a~ bl-a « 1 and (1 + b) 1 -2a/3~ b1-2a/3 « I

a2
N = -- (does not determine b)

a- I

W = a2b- 2af3e(K- b)+ 4
a

2a/ 3- I

W = (a- 1)Nb-2af3e(K- b)+ 4v'(a- 1)N
2a/ 3- 1

b is free so we may set b = K to get rid of the 0 (N) term.

which implies
d= 2.

Case 1 < a< 3/ 2: We can ignore (1 + b)1- a but not (1 + b) 1-2a/3~ b1-2a/3.

a2 .----
N = a_ 1 =>a= ,j(a- 1)N

4abl- 2a/3
W = a2b-2af3e(K- b)+----,--

1- 2a/ 3

Here setting b = K would result in a disastrously large second term in W, so

W = (a- l)Nb-2a/3 + 4 J(a- 1)N bl-2a/3
1 - 2a/ 3

and minimizing with respect to b results in W = O(N1-af3) and

3
d=

a

which smoothly interpolates between d = 3 and d = 2. Thus, we have Equation (7a).

(A4)

(AS)

There is a second, embedded dimension which is easier to compute and depends on
the wire lengths as well as their number. (The bottleneck dimension does not depend on wire
length, though our approximate calculation of it used such information due to the replacement
of a general subnet with a prism.)

Divide z, y, z into cubes of side ~, and ask how many cubes are occupied by 0-
dimensional neurons or I -dimensional wires. Where p > K 3, all cubes are occupied by

38

at least one neuron; elsewhere neurons are sparse and a fraction pK-3 of the cubes have
neurons. Also, in the sparse neuron region the number of cubes containing wires is (total wire
length)/(cell side). The total number of occupied cells is approximately

1 /1 x-l fr dzp(z)(fanout)(wirelength between nearby neurons)

C = K3 !
1
ft dz + {

1

d:z: {
1

dy 1: p(z)dz + ~ 1: dzp(z)p-113(z)
X Jo Jo 7r K X

(A6)

2
xJ-a _ K2 K3-2a/3 _ K221-2a/3

C = K + 1 - a + F 1 - 2a/3

so
d = lim logxC

K-+oo

(by analogy with integral dimension local networks) implies

d = max(2, 3 -a, 3 - 2a/3) .

Thus, we have Equation (7b).

In practice we are interested in controlling total wire + neuron volume when the
network has been embedded in a 2- or 3- dimensional medium, so this dimension is probably
more relevant for measuring costs than the intrinsic one. The intrinsic bottleneck dimension,
however, is the proper one for avoiding bottlenecks, i.e., for ensuring network functionality.
Both of these dimensions may be too high since a neural network can be first mapped into
a network some of whose nodes are neurons and some of whose nodes are linear summation
nodes as in Fig. 11. This mapping results in wire sharing and possibly in a lower dimension.
The best way to insert such summation nodes may depend on the embedding medium.

39

ill A One-Dimensional Scale-Invariant Network

The stripe-generating network of Chapter II was intriguing and had interesting scaling behavior
but did not solve the problem of generating realistic fingerprint patterns at all scales. An
acceptable network was hard to find. possibly indicating that the assumed synapse function was
of the wrong form. There is in principal no reason to assume any particular form for the synapse
function, aside from a locality constraint. Within a neighborhood of nonzero connections one
could adjust each synaptic weight independently, trying all the while to optimize some measure
of network performance and cost. Starting from this point of view, we will develop a new and
more effective form for the synapse function and test it

The first problem with this approach is that there are many synaptic weights Ti;,
many more independently controllable quantities than would seem necessary to get the simple
behaviors desired. One would like to impose rotation, translation and scale invariance on Tii,
for example, by adopting a special form such as

where u: is defined following Equation (ll. ll). Then locality implies that each ofT's argu
ments is zero outside of a region whose size is independent of the system size. Of course,
since the grid of x positions is irregular we will need T' to be defined on a much finer grid;
we will in fact define it as a continuous function. To insure that there are enough independent
T' variables to control the network's fixed points in detail, we will start out with a neural
x grid which has a great many points per minimal stripe width. An additional effect of the
small x grain size is to eliminate the percolation problems that result from a large variance
in the number of grid points per stripe. Thus, in the continuous limit the network is very
homogeneous, and we hope to get close to that limit with a minimal number of neurons by
optimizing the synaptic weights.

So the ranges of T''s arguments are limited by the locality ofT, but each argument
ofT' and of s(x) has a very small grain size. To make up for the extra computation that
simulating such a fine-grained network requires, we will examine networks which are only
a few stripe-widths wide, using periodic boundary conditions. In short, we will look at T
microscopically. Eventually we will guess a special form for T' with many fewer independent
parameters but the same small grid spacing, making the network optimization tractable.

The next logical question is, what behavior to optimize? We will measure the stability
of various desired fixed points by computing the distance between the desired fixed point and
the actual fixed point which the network lands on when it starts from the desired fixed-point
configuration. This distance is to be minimized for stripe configurations. Also, we will examine
some special configurations which are to be destabilized, and measure the distance between
the actual fixed point reached from such a configuration and a desired stripe configuration
which "should have" been reached instead.

40

Finally, various severe limitations will be imposed on this network to get at the impor
tant scaling questions with a minimum of computation. We will revert to 1 + £-dimensional
networks, rather than 2 + £; our "images" will be !-dimensional. This corresponds to taking a
vertical slice through the 2+£-dimensional network in a plane transverse to the prevailing stripe
direction. We will keep only color, not angular internal indices. As previously mentioned, we
will examine network configurations containing only a few stripes, using periodic boundary
conditions. In return for accepting these limitations, we will get a much clearer view of what
is going on in a local patch of our network.

III.l. Stripe Stability Equation
Since the vertical slice network no longer has an internal angle index, each "clump" of

competing neurons is just an antagonistic pair responding to opposite colors: a black-detecting
and a white-detecting neuron. In anticipation of the day when an angle index should return,
and in consideration of the arguments in Chapter II's Appendix I, each neuron takes the values
0 or 1. The desired fixed-point configurations involve the (s, 8) pairs alternating between (l,Q)
and {0,1) below some z = w =stripe width, and (s, 8) above that z, as in Figure 1.

z

(0,0) (0,0)

·.

(1,0) (0.1} (1 0) (0,1) (1 ,0)

X

Figure 1

This amounts to the introduction of 3-state neurons with values ± 1 and 0. If the

network is designed so that

TicJc' = u~TiJ

(in this equation the indices i and c are packaged up into i) and

then the neural update rule is

8~c = e [2::: TicJc'Bic' + hsc]
ic'

where

41

9(x)={+1 ifx~?;
-1 otheiWlse.

This rule is the version of Equation (1.1) appropriate for 0/ 1 neurons and is equivalent to

8i = 8i,c= l - 8i,c=-1 = ±1 Or 0

and

Introducing the "input to a clump"

the update rule is

Pi = L u~Tij8jc
jc

8~, 1 = e(p, +hi - I8i,-d

{-1 = 9[-Pi + ~- I8i,d

where I "' the inhibition between neurons in a pair. In the limit I-+ oo, (8, s)= (1, 1) can
never be stable, nor can it be the result of a transition from the other three states; if in addition
hi < 0 so that (0,0) can be stable sometimes, then

But

and

imply

8~ = e(~ + Pi)-e(hi- Pi)·

Pi = L u~Tij8jc
jc

8~ = e[~+ l:Tiisi] - e[~- l:T,isi] ·
i i

(1)

Thus the neural update rule for 3-state neurons can be written entirely in terms of the states
of the other 3-state neurons in the network, without having to refer to the states of the pairs
of mutually inhibiting 0/1 neurons which make up the composite neurons.

We will have occasion to determine a common h =~by minimizing the number, D,
of unstable neurons in a given configuration 8i, e.g., the stripe configuration in Figure 1.

D(h)= I: e(IP•I +h)+ I: e(- p, - h)+ I: e(p,- h)

= L 9(IPil +h)+ L lsil + L 9(h + Pi8i)
i l•i=O i il•i~O

42

z

T =0 outside box

Stripe=O ·-·-·-·~ (XO,ZO)

(since a(-x)= 1 - a(x))

where

r·-·-·
i
!

1 -1 ·-·-r

Figure 2

D(h)= const+ 2:(1- 2lsil)9(h- ""•)
i

if Bi = 0,
otherwise.

Permute the indices so that the ""' occur in increasing order. Then if Do= 0 and

1:

D~: = L(1- 2ls,l),
i=1

the smallest D~: indicates

This determines h.

X

With ± 1, 0 neurons as above, and a scale- and translation-invariant synaptic function

T(x- xo,z/zo),

pure stripe configuration are given by

{
""i=oo (1)iB · (/ · 1 · 1) Stripe(x, z, w)= t,i=-oo - It X w,;- -,_,; + 1. ' if z $ w;

otherwise,

(2)

(as in Figure 2) and the input Pi to a clump (a 3-state neuron) in a pure stripe configuration is

If . X- XO Z
P(xo,zo,w)= dxdzp(z) Stnpe(x,z,w)T(,-)

zo zo

as illustrated in Figure 2 for a T which is 0 outside a box in x, z and for a coordinate system
centered on the stripe of width w.

43

Since Stripe(x, z, w)= Stripe(x/w, zjw, 1), and introducing v = vj w for all spatial
variables v, we have

1
00 laoo x - xo z P(xo,zo,w)= dx dzp(z) Stripe(x,z,1)T(A ,7) -oo 0 ZQ ZO

(3)

so that for p(z)= z-2 the result is scale-invariant and

P(xo, zo, w)= P(xo, .io, 1).

Thus, if p(z)= z-2, all stripes are stable or unstable together and this network behavior is
scale-invariant. This conclusion requires that the limits of integration are as given, and not
finite. In the actual network with finite limits of integration, the scale invariance must be
checked by experiment

III.2. Scaling
In Chapter II, p(z) was z-a with a= 2.1, rather than the tree-like a= 3, which is

the solution adopted here (but for a one-dimensional image, so a = 2). A lower a had the
advantage of placing more neurons near the top of the hierarchy, where the network is most
vulnerable to defects such as missing neurons. Why are we removing this desirable feature?

First, notice the effect of a ::/= 2 in Equation (3):

P(xo, zo, w)= w2
-a P(xo, zo, 1).

This P(xo,zo,w) is then to be compared with h(xo,zo) in Equation [update rule] to determine
the new configuration and how much it differs from Stripe(x, z, 1). Then translation invari
ance requires h(xo, zo)= h(zo), and behavior scale invariance requires that h scale with P,
i.e., h(zo)= w2- ah(.io), which implies h(zo)= h(l)z~-a . A varying threshold, however, is
equivalent to a constant threshold together with an inversely varying T; the substitution

h(zo)-+ h(zo)z0-2 = h(1)

T(... ...) a- 2T(... ...) xo,x-+ z0 xo,x

changes no behavior. Under this substitution the form of Tii is changed, but not so severely
as one might believe:

a-2T(x- xo z)= a-2T'(x- xo z) zo A ' • z A , A zo zo zo zo
so

p(z)T(io,i)= z-2T'(xo,i)

and the general scale-invariant network is behaviorally equivalent to one with h(z)= constant,
a= 2, and T(io, x) of the form T((x- xo)/.io, z/zo).

The use of the special form h =constant, a = 2 is further encouraged by the fact that
contour plots of P(xo, .io, 1) are especially meaningful: contours of height h separate regions
of s' = ± 1 form s' = 0. One can choose the contour (and hence the h) which makes the
separated regions look most like Figure 1. We have already described an automatic procedure
for choosing h, but it is nice to be able to do it visually as well.

44

It is possible to get the higher redundancy that would result from choosing an a < 2
by letting T(xo, x) shrink with increasing x, since

() (- _) -2T(x-xo z) -a[a-2T(x-xo z)] _()- __ p z T xo,x = z - A- , -:-= z z A , -:- =p z T(x0 ,x).
zo zo zo zo

The penalty one pays is a larger dynamic range for possible T values: very small synaptic
weights must be accurately built into the circuit implementing the network. To what extent
this is allowed is a technological question. Such a tradeoff is equivalent to the replacement
of every neuron by some multiplicity m(z) of neurons, each receiving the same input as the
original and putting out 1/ m(z) of the original neuron' s output strength. The model neurons
are connected to each other with nearly uniform strength. This redundancy strategy is the
most simple-minded, and much better ones are possible. They involve extra cell types to
carry "parity bits," by analogy with well-known error-correcting codes. The simple redundant
network is very similar to the tree-of-meshes network sometimes discussed in connection with
fault-tolerance in Wafer Scale Integration [Leighton and Leiserson 85].

One major difference between this type of a < 2 network and that used in Chapter II
is in fanout: the number of neighbors to one neuron grows with z in this network but not in the
older network of Chapter II. In this subtle way, the older network is not scale-invariant. This

is most evident in the a = 0 limit, where the hierarchy axis becomes a full extra dimension
and there is translation invariance in the z direction but no scale invariance.

III. 3. Guess for T

Now we need T((x- zo)/zo, z/Zo). It is tempting to consider all the desired fixed
point stripe configurations sf' and solve the linear fixed-point Equations

sf'= LTi;s'J'.
i

(4)

The solution can be translation-invariant because the set of allowed sf' is translation-invariant,
and it can be made scale-invariant by adopting a scale-invariant measure on the stripe widths
or, in the case of finitely many configurations, by sampling the set of allowed configurations
uniformly in log w instead of w.

There are a number of objections to this approach, however. The solution to the linear
algebra problem will not in general be a local Tii. It will be more constrained than it needs

to be, since all we need is that

sf' = g [LTi;s'J']
i

where g is the nonlinear transfer function and has range {0, ± 1 }. In addition, we are using the
stabilization of stripe patterns as a stand-in for a more complicated set of behavior requirements.
We actually want both more complicated fixed points (such as stripes with slowly varying
width) and some control over basins of attraction (e.g., ambiguous stripe width configurations
evolve towards the larger stripe width). For these purposes we require only an approximate
solution to (4), preferably local and simply parameterized for use in satisfying further behavior
constraints. In short, we need a cartoon solution to Equation (4).

45

z

0

X
Figure 3

Such a solution is suggested by the sum of outer products of the stable configurations,

T(io, i)= L sm(io)s"'(i).
m

Since the stripe configurations are indexed by their size w and their offsets in the x direction,
this expression for T equals

!
112

dt/> roo dw Stripe(xo- tj>w,zo, width= w =height) Stripe(x- t/>w,z,w).
-1/2 lo w

Let z+ = max(z, zo) and z_ = min(z, zo) , and let x+ and x_ be the corresponding x values.
Then because of Stripe's periodicity,

T(io,i)= f 112
dt/> roo dw Stripe(-t/>w,z_,w) Stripe(x+- x_- tj>w,z+,w)

-1/2 1.+ w

= /
112

dt/> r10

dw Stripe(x+ - x_ - t/>w) Stripe(-t/>w)
-1/2 it W Z+

= F(fx+- x- 1)
Z+

after the divergent integral has been cut off. Here F is a complicated function, but it has only
one argumenL So

.... !x- xo!
T(xo, x)= F(()).

max z,zo

When we allow for an unknown varying h(z) to be absorbed into T (by the arguments which
lead to Equation (4)), making h(z) constant by introducing the compensating function f, we
get

T(x -:- zo, ~)= F(lx+- x_ l)f(z/zo)
Z0 Z0 Z+

(5)

whose chief feature is its kinked T = 0 contours, as in Figure 3.

46

Figure 3 is the cartoon we sought; the actual T used in the experiments agrees with it
and with Equation (5).

In the experiments, /(d= 1 +a(~- 1) so that the relative weight of top-down and
bottom-up connections is controlled by a. Also Figure 3 was summarized by introducing a
few parameters b to specify F:

{
bo if lei < c/2,

F(e)= ~~ ~f c/2 < lei < 3cj2,

and locality was enforced with a box:

X- XO X- XO
T(--.~)= 0 if~> d or 1/~ > d or 1--1 >e.

~ ~

F is nearly periodic with period c, which controls the height/width ratio of the stable stripes.
Empirically, to get height = width, c = 1.3 was about right. Also d = e = 2 was used
throughouL Two other important parameters affect the distribution of neurons, p(z)= cz-2 :

C determines the base of the exponential used to distribute neurons, and was controlled through
the ratio 6.z/ z , a constant. Here 6.z is the spacing between adjacent neuron levels at height
z . This "relative resolution" (abbreviated as "relres" in the figure captions) was 7 for most
of the experiments reported below, although 5 also worked. 3 did not work and may require
more adjustable parameters than we have used here. For a binary tree (base 2 exponential)
6.z/ z ~ 1. The minimal z is also important and was generally 0.15 . Zm4z is much less
important and was 2.5 unless otherwise specified. These values are appropriate for examining
stripes of width .5 - 1.

The guess in Equation (5) for how to mix color and scale indices in Ti; probably
applies also to the mixture of angles and relative heights, and for much the same reasons.
Both forms differ substantially in their z-dependence from the color and angle interactions
assumed in Chapter II. As we shall see, in the case of color at least the results are much better
for the new network.

111.4. Results
For the previously quoted values of d = 2, e = 2, only bo and bt affect regions of the

T(e.~) function inside the T # 0 box. The simplest experiment tried was to let a= 0, bo = 2,
b1 = 1 and start the network in a pure stripe configuration of unit width such as that shown
in Figure 4a. Here the x-axis runs from -3 to 3 and the z axis runs from 0 to 3, as will be
the case in other configuration displays unless noted otherwise. The constant threshold h is
set by the algorithm given in Section ill.1, whose purpose is to maximize the stability of the
given configuration. The Figure also shows the distribution of neurons in (x, z) space. The
three neural values -1,0,1 are shown as-, dot and+ respectively. The fixed point reached after
4 update sweeps is shown in Figure 4b; it is a distance .0641 from the initial configuration,
meaning that that fraction of neurons has different values in the two configurations.

The untruncated total input to a neuron P(x, z) is more informative and continuous.
It is shown in Figure 5 for the configuration of 4b. The contours P = ±h are candidates
for separating the possible s = -1, 0, 1 values from each other in the truncation phase of the
update rule, Equation (1). The P = 0 contour would clearly be unacceptable as a dividing

47

r- · . -

r. - - - + + + + + + + - - - - - - - + + + + + + - - - - - - - + + + + + + + - - - • ----········--------········--------········------- --·········---------··········---------·········--- -------···· ·······-----------···········-----------···········--------·--··········· ··------------··· ··········------------·············-----... -................... --... .. ·-------· ---.---··--··· -· -- -------.....................................
~-.:;:.:.~;::.:.~~:":1i,~~:.@,t:::":::=="i:.:g;.:~¥i:i!fi,i!~,:{.~ii(:i~\::::.::.c~;:;.:::,:=.:~-;,g~?·:~f.:,~;":!;,:.:ifr:::·~===:

I

Figure 4a Input

I T

- - . . + + + + . - - - - . . + + + + . . - - - - . + + + + . . - -
--- · ++++++ · ------ · ······ · ------ · ++++++ · ----- -- ········------- ---- ---········--- ----- ·········· ·-------- ··········-------- ·········· ·--------- ···· ······· ·----- -----· ··········------ ----· ·········· ·----------- ··············-----------············ ·--- ---- -----············ ·-----······ ············ ·· ··············· ······ ········ ·--·--······--- ············ ·········
~;~:~b~~~:;,:,~£:~:.ct~F{·:;.===·'·:====--·=: =.::'':il1f:~~::.~m::=;:~li;::::::===::.··:==:::··:=:=.::-;:::.:;.i£:;:,:.:~,:~~~:f;:-:=====.:=

I

Figure 4b Output

Figure 4: Input and output

line for s = ± 1 neurons, showing that we ~eed h < 0. The next higher contour shown,
P = 100, looks good as such a dividing line since it allows z > 1 to fall in between ±h,
thereby producing s = 0 in that region. The actual h used was 42. The most awkward feature
of Figure 5 is the rapid decrease of P near z = Zmin since this prevents the use of larger h
values, which would decrease the network's sensitivity to accidental bumps in P for z > 1 in
more complicated configurations.

The T(e, ~) function used in these experiments is shown in Figure 6, and is a more
detailed version of Figure 3. T = 0 outside the area plotted. Note the artificially bumpy
co~tours produced by the contour-plotting package [S] and the distribution of sample points,
which is that used in the network computation.

Figure 7, the first evidence of scale-invariant behavior for the present network, shows
a stable configuration with width=-.5 . The constant h was changed from -89 (as will be
explained momentarily) to -103 to optimize the stability of this configuration, but both width

48

25~--------------------------------

20

1.5

z

00~----~----~--~~--~~--~----~
-3 -2 -1 0 1 2 3

X

Figure 5.a Contour plot

Figure 5.b Perspective plot

Figure 5 Function P(xo, zo), the total input to a neuron

= 1 and width - .5 stripes are stable at the intermediate h = -96. The intermediate value
is used in evolving furure configurations to give both small and large stripes a reasonably
equal chance at stability, but it may be that the difference between the two cases is due to the
relatively large Zmin = .15 and would decrease if Zmin were decreased.

P(x, z), being an integral or at least well approximated by one, is a continuous func
tion and it must pass through zero between stripes of opposite sign. Thus in all the stable
corifigurations we see a gap between the regions of 8 = 1 and 8 = - 1, even when the initial
configuration had no such gap. It is significant that, although the first update sweep introduces

49

25r-------------------------------~

20

z1.5

1.0

: :SJ . ·. ·. : : ·. ·.
as ·::.-... ·.::::.'.'.'.:::

-2 -1 0
X

Figure 6 T(e, ~)

. ·<1.
Q: :: .. .'.'. ·. : : : ·. :

1 2

1-- •• • ..•.......••.•••••.••••.•••..••.•.•.. -

•.. 0----... 0 .. -----. 0 ••••• . 0----- .. 0 •••• . 0 0---- . 0 .••••• .. 0---- . 0 .•
• • • • • • • • • • • • •• • • - ----- 0 ············•
:: .. :;,;;:==~;;:;;;.:~;;;:::.;__::.:=;E-*l:;~;.:~::=.:;:~;.:.';;,;;;,,;;,"f:=:==:;.:}!.·::;~,l~;.:.=-.=:..:..::;;,:;.:.:;;,.iii.ii.=:====-~~i.i:li

Figure 7: Also stable

a gap, subsequent sweeps do not widen it much. If it kept on widening the network could
converge to the stable state having all neurons turned off, or to some other distant and inappro

priate configuration. Introducing such a gap into the initial configuration as is done in Figure
8 reduces the total distance between initial and final configurations, making that distance a
more sensitive measurement of the quality of network behavior (small distances are good).
The ratio of gap width to stripe width was coarsely optimized for every setting of the network
parameters, being usually about .1 . For the optimum gap of the (bo, a)= (2, 0) network, the
optimal h is -89 rather than -42, and the distance travelled for a pure stripe configuration is
reduced from .0641 to .0238. All later stripy initial configurations use the same value of gap
width/stripe width.

It is also of importance that the stable stripes have a constant ratio of height to width,

50

- - . + + + + + + . - - - - - - . + + + + + + . - - - - - - . + + + + + + . - ----········--------········--------········------ ········· · ·-------- ········· ·-------- · ········· ·-------············--------- · ··········· ·--------- ···········-----··· ·· ··· ·· ···· ··· ·-- -- -- ----·••.•... . ·---------- · ············· ·---
·:. :::: ::.·.-.:::: ••••• • 0 ••••••• ---- • ••

Figure 8a Input

I

~ -

-- ·· ++++ · ---- ·· ++++ ·· ---- · ++++ ·· --
~ - - . + • • • • • . - - - - - - . + + • • • • . - - - - - - . + + • • + + . - - -----········-- ------········--------········------- -· ········· ·-------- ········· ·-------- ·········· ·---------··········· ·----------···········---------- ··········· ·-----------·············------------ ·········· ·· ·------------············ ·----------- ··--------------···············------...... -.. -........ -.-.... --·--..................... -................... -------
~;;=~k~~:::g~§i:~m::~~::.:.::::::-~::::.,,-::lif:ii:.!l;.~;.:::i=-~~:::,:-:.ilii::.:.::::::-.:::::.-?:1~-~ii:n,:,~{:::.:.::;;::.:.::::::::

I

Figure 8b Output

Figure 8: Input and output

so that detecting a stripe of width w can be reduced to a local operation at z ~ w. It is
possible for this condition to be violated, for example if both stripe boundaries and stripe
interiors were locally stable so that the boundaries could be separated by great lengths. Then
the initial condition of Figure 9a would be stable; in fact the short stripes grow up to become
properly shaped stripes. Similarly in Figure 10 overly tall stripes are cut down to size. Figure
9 suggests an image input mechanism: A thin layer (e.g., l:iz = zm~n) of neurons at the bottom
of the hierarchy are set to ± 1 depending on the color of the image at the corresponding :z:,
and the stripes are allowed to grow up to their natural height

The first "bug" in the (bo, a)= (2, 0) network shows up in Figure 11, where the input
configuration has ambiguous stripe width and is unfortunately nearly stable. The parameter a

was first introduced in order to more heavily weight the top-down connections, allowing the

51

I

r- · ·-

r- 0 -

Figure 9a Input

I

1- " ·-

r-- 0 0 0 •••• 0 0 0---- 0 0 0 •••• 0 0 0 ----0 0 0 •••• 0 0 0 ----- ------ ---- -- -------·•... . ·-------· ··•·•·•·• · ·------- · ·-------- ··········· ··--------- ··········· · ·---------··········· · ·------- ·· ··········· · ·---------- ·· ············ ·-·-------- · ············ ··----:.-:-::::: .=.~-:!·:::.=.~!:*: ::.:.~: :'::-: .. _::::.~-::::::_.: -:~·:: :.:.~:tt::.=.~ :t; :-:-.::::·::-::: ===-~-~:': : :.=.~! t:: :.:.~:t:::.:. :::::-:.:.
~~~::-::.;;::.;;;,;::::;,:~:: i;:=-:::::=::::.!::::.:.·,;.;:i;:":'":,'.'i:":::~:;;;,~::;_:;-':~.::.::;:=::.·~;:.;-::,;;.:_:;;,~~:::;;.:::ii!"'== 

Figure 9b Output 

Figure 9: Input and output 

larger of the two stripe widths to win. This ambiguity bug occurs as the fixed point reached 
from a random starting configuration. as seen in Figure 12. It also occurs in the more important 
case of a "hole" in a stripe making three smaller stripes, in analogy to the sweat pores in a 
fingerprint. This siruation and its unfortunate result are shown in Figure 13. The starting point 
in Figure 13a is a pair of equal and opposite width discontinuities very close together. A single 
isolated width discontim.llty is also troublesome but less important, not having an analog in 
typical fingerprint images. 

The T(€,~) function obtained by optimizing the new parameter a, so that for networks 
with relative resolution Az/ z = 7 the T parameters are (bo, b1, a)= (2, -1, 1), is displayed in 
Figure 14. In direct correspondence with Figure 5, Figure 15 shows contour and perspective 
plots of the total input P( z, z) to a neuron at ( z, z) in a stable stripe configuration. There are 



r- " 

+ + + + 
- - . + + + 

52 

+ + + 
- - - - . + + + . - - - -

+ + + + 
+ + + . - -

- - . + + + + . - - - - - + + + + + - - - - - . + + + + . - -
- - - + + + + + + - - - - - - + + + + + + - - - - - - + + + + + + - - -
--- · ++++++ · ------ · ++++++ · ------ · ++++++ · -------········--------········--------········-------- ········· · ·-------- ········· ·-------- · ········· ·--------··········· ·--------- · .••..•...•. ·--------- ··········· ·-------· ············· ·· ---------- · ············ ·· ---------- ·· ··········· · ·----....... ................ ------------ ................. ----····· --- ................. -------- .. ....................... -..... -........ .......... ........................................... ................. .. ....... .. .. 
~~=-~~J:;;:.:.~~:·=-~:.::~~.fr;:.~;::·;;:~!!::~:~:.~;:-;~·::~.~~!-::::;!~~i~::~~:::;~·=::f::::7:=:..:~;:·:;.;~t:i:::~:.v:..;.:-=:~:.;:~;)~~==: 

I 

Figure lOa Input 

·-

~- . . . ++++ ... ---- . .. ++++ . . . ---- ... ++++ ... -
- - - · · ++++++ · · ------ · . •••••• . · ------ · . •••••• . · ------- · ·····•·•· ·------- · ........• . · ------- · ....•.•• . · --------........... .. ---------............. --------- .. ........... -·-------............. .. ---------- .............. ........... ----- .............. .......... ... 
::: .. :: :: ::::.::::::. ~!:: :: .. :::::: .. • ... ::::: : ... ~ :: :::.·.! ::::.·. ·. :::::: ... :::::: .. ·. ·.: :: ::.~! :::::. ~ :: ::: .. :: 
~-;!.==1-~~~':!if.~f:!!~~if;;:.::.:::;=:::::-:::::.:~;:~:}.~#~:l~i:~ii;';;,~~::,-,;:.;.~===:~";!lf!:i~11:':~~;i~~:i~;:::.:=:. 

Figure lOb Output 

Figure 10: Input and output 

only minor differences between the P functions for the two networks. 

The fixed point reached from a configuration of ambiguous stripe width is shown in 
Figure 16. The improvement over Figure 11 is very large. Similar results are obtained when 
the ratio of widths is three instead of two. Likewise, the discontiiUJity problem is cleared 
up, as shown in the fixed-point configuration of Figure 17 (c.f. Figure 13). If there are five 
instead of three small stripes substituted for the big one, the network still suppresses them and 
converges to the desired fixed point. 

One may quantify a network's performance for pure stripes and for the ambiguity and 
discontinuity test cases by measuring the distance between the actual and desired fixed points. 
For a pure stripe input, the desired output is the same as the input. For the ambiguous and 
discontinuous stripe width input cases it is desired that the largest reasonable stripe width 



53 

. -

~ - - . + + + + + + . - - - - - - . + + + + + + . - - - - - - • + + + + + + . - - • ----········------- -··· ·····--------········-------- ········· · ·-------- ··········-------- · ········· ·--------- ··········· ·--------- · .•......... ·---------············-----···· ·· ··········· ·· · -- -- -----· .••..•.....• . ·---------- ·· ··········· · ··---.•. ------0 •••.•..........•...•• ........•••..... ------ ........ ------............ ---- .. . ....................................................................................................... 
~)~~i~·:l;,::~:.E;;;:=-=~r .. ;..:,;;i;.·:;,-,::"-:,:=~~::;_:;~;H .. ~~~~fjj.liif·;;t::.=::-::::::::,~:::.:,~f~:.::::.-.::::f.f~~ 

Figure lla Input 

I 

~ -

~- ·. · ++++ ·. · ---- · .. ••••. . ·----·. · ++++ ·. · -· --- .. ...... .. ------ .. ...... .. ------ .. ...... .. ------ -·· ·······. ·-------- · ........ · -------- · .. .....• . ·---· --·-- .. ........ .. ···------ ........... .. --------- .. ........ .. ----
.......... ·· •·•··•• ·. ··--------·-· · · ····· ··· ·· ----- -- ----·· ··· ··· ···· ·· ·· ·--· .. ......... .............. -- .. . ---.-............. . --------.. -.------.. ............ -. ---· .. . . . .......... ... . . ... . . ..... ... ... ..... .. ... .. ..... .... ..... .. ... . . ................ -------.......... .. ................. . . 
~~~:ifi::.i;Mf.lli[,§_~i;i~flj.£i;;;~;~;Y:.~i~i:~i.§::¥.;[~;1b:,:;·;:~~~;~,ilii;i~~;;:.:.; 

Figure llb Output

Figure 11: Input and output - ambiguous stripe width

win, to suppress holes in ridges or valleys. (In the two-dimensional network, which size wins
should depend on more complicated two-dimensional geometry.) The goal configuration is a
pure stripe configuration with the larger stripe width.

In the contour plots of Figure 18, the axes are bo (horizontal) and a (vertical). The
evolution was stopped after eight sweeps to save computing time. A few networks and con
figurations were evolved to their fixed points to roughly check the correlation between the
measured distance after eight sweeps and the ultimate distance between goal and output con
figurations. The three test configurations have been tried out on the Az/ z = 7 networks used
to produce all previous figures (18a,b,c), and also on Az/ z = 5 networks which use fewer
neurons and less total wire length (18d,e,f). We would, of course, like to get the same behavior
while spending less.

+ +

+ + + .
+ - - - + + .
++++-- · .

+
+

54

+ + +
+ . + -

+ + -
- + - + --

+ + + + - - - +
. + . - + - - + . - - - - - + . + . +

. . • + + . - + + + . . - . +
. - . - - + . + . + + - + + . + + . + - + . - - - - -

• · • · --· · ····-- · ---- - · -- · ·- · · +--+ · -- · ++++-•
- .. . - - ·· . -·- . ··- . -- • . ·- . • . ····-- · · . -· . + . --- - ... • ··--· ·-·--· ·-·-· --· ·-· ·--• · ·•• ·------ --· .. ··-···· -· · •- · ·· · ·-···- · ·-· ·· ·-----·-···· ·. ·· ·· ·· ··· ··· ·· ·----··-·· ·-· ·-·-···- · ··· ·--· ··- ·-· -----· ··- ·-·· ·-· ·-·-·-·- ··- ·-· ·-- ·-·· ····--· ·-·-·•·•• · ·-· ·-·-
£ZfiJ.#0~!~~~{f:ii~~J::;~i,f~t~&E{;~~~~~~~~ili;~~~~;~~t::~¥.~f;2i~i~}~f:~;f:~~!:~~t1.~,~~i~~~.~~.~ff;;~~

Figure 12a Input

+ + + + +
+ + + + + + + + + +

- - - - - - - + + + + + + + + .
- - - - - - - - - - - + . + + + + + + + + + +

. - - - - - - - - - - - - - . + + + + + + + • + + + + . .
- - - - - - - - - - - - - - . . . + + + + + + + + + + + + + + + . . . -

- - - - - - - - - - - - - - - - - . . + . 0 • + • + • + + • + • • • + • + • • -
------------------- · · + · +++++++ · . • • ••••••••• -·------------------- ·-- ··· · ··· · . . · - ·••• ...• . · -. ---- .. ------------- .-....... -....
----- ·-·-·-·------- ·-·-·-·------· ······· ··· ----- ·· ······ ··· ···· ······ . • -- - - - -- ••• • • 0. -- - ------ 0 0 . 0 0 0 0 0 --·- -· •• ••••• ····· - 0 0 0 0 •••••• • •• 0 0 -- . 0

0 --- - - · --- • • • • • • • - 0 0 ••••• 0 0 0 0 0 0

==:-=~=.::,~;.:.::.-:.-:::.:.~;::::.~i'':;::i::'!f:;::.::Jf:.::;~=:::.~.,.,.~~~;:::.l~i~r.;,;:·:.:=:5-=..: :.;:;~===~:.·:,-:::~.:.:.:~k::::.-.::::.~;;~~:·,

I

Figure 12b Output fixed point - 20 sweeps

Figure 11: Input and output

Figure 18a shows that bo < 1.5 does not support pure stripes. Figure 18b shows that
a ~ 1.5 is favored, regardless of b0 , for removing ambiguity. By looking at the fixed-point
configurations one may check that the .3 distance contour is acceptable, but no higher ones are.
Figure 18c provides a more complicated constraint favoring 1.5 < bo < 3.5 and a ~ 1. The
acceptable distances are actually .1 or less, more stringent than for Figure 18b. {bo, a)= (2, I)
works well, as seen in Figures 16 and 17.

The less expensive networks used in Figures 18d,e, and f have quite similar constraints.
The ambiguity constraint is more difficult to satisfy, and a boundary at a ~ 2.2 has moved
down to a~ 1.8. (bo, a)= (2, 1.2) works well, satisfying all constraints in the long-time limit.
Both for relative resolution equal to 7 and to 5, all tested configurations converged to a fixed
point before about 40 update sweeps. In all of these plots, there is a boundary near a = 2

55

I

~ ·

r. - - - - - - + + + + + + + - - - - - - - + + + + + + + - - - - - - - 0 0 0 0 0 0 -

--------········--------········-------- · 0 •• • • •• ·-------- ········· ·-------- · ········· ·-------- ·
• --------- · ••••••••••• ---------- • ••••••••••• ---------- •• 0 ••••• • ••

··· --------- · ··········· ·· ----------- · ··········· · · ----------- · 0 •• 0 . 0 ••••• • : :.-:-::::::.=.:. ::: .. =.:. ~:·:::.:.~!t::·:·.~::~· .. :·::::::.~-: .. :::.=.:: :':: :.:.~ :t::·:.~ :: :.::·:-:::::.:.:.-.:::.=.=. ::·:: _: .:. :. : :': :-:-.:.: : ;'::-:-.:.
::::···:..········-=::;:·~:-:::;:.:~:.::::-:.--.:::t::·!;~E.=.·······-···:··-~..:{:':J:.::;::::.: ;;:::-!-!:::"·=·~.:.;:--·-····-···:-····::·.::::.~:.;:~-~~~t:::~~

Figure 13a Input

0 0 0 0 0 0 0 + + 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

----- · . •••••. - ----- · .••••• . · -----· · +++++•
· ------ · · ++++++ · · ------ · · ++++++ · · ------ · ·++++++ · ·-------· .•....•••. ·-------· ····••·•· ·------- · .•.•...... ·---------·•.•••. ·---------··········· ·--------- ··········· · . ·----------············ ··-··-···---············· · ·---------- · ..••••.....• . . . -. ·---. ·-· ----.--...... -................. -----------...............
f·::::;:.-.-.::;:.-;,:::.}::-,:::r::-,~.!,_;;:-,:-.!~;.i=.-.-.::::.-.-.::::.-.-.::.}::,::,,::::i,,~u,:·:~;;_ii'-';.::=.-.-.... ::==::9-:·'''::::~r · .. : .. ~~

Figure 13b Output after 18 sweeps

Figure 12: Input and output - discontinuous stripe width

which may be related to the fact that for this value of a and for our choice of Zmin = .5, some
bottom-up connections are just becoming negative since f(zmin)= 0.

One further adventure with these networks should be described. There is a configura
tion similar to the "discontinuous" stripe width configuration dealt with earlier in that both are
slices through patterns commonly occurring in fingerprints. The "discontinuous" configuration
was a slice through a sweat pore; the new one is a slice through an image imperfection, such
as a piece of dirt caught in a valley, which reverses the color of an entire stripe width. Thus,
alternating stripes of width w are interrupted by three consecutive stripes of width w having
the same color. Since this configuration arises from a "bridge" between neighboring ridges in
two dimensions, it is referred to as a bridge configuration. For the networks with Az/ z = 7
and (bo, a)= (2, 0) or (2, 1), the bridge configuration is unstable (as it should be) but evolves

56

to a wildly inappropriate fixed point which has stripes of width Zmaz. the largest stripes that
could be stable in the network. What is desired, of course, is that the network simply flip the
color of the offending middle stripe so that the colors once again alternate.

The clue that led to the solution of this problem may be seen in Figure 5. The variation
in P within the region z > w is so much less than that within z < w that our method of
choosing the cutoff P contour of height h is excessively conservative. Very small h' s result
from just demanding that IPI < h for z > w; then any deviation from a pure input stripe
will produce bumps in P which should be truncated to zero but which will actually exceed
the small chosen h and become amplified. The solution is to optimize h to do what we
want on a more challenging (bumpy) configuration than the pure stripe configuration. Figure
19a shows the bumpy P(zo,zo) function for (bo,a)= (1, 1). Soh was optimized to drive
the new "bridge" configuration towards a pure stripe configuration, using the same threshold
optimization algorithm as before. The resulting h was generally about 3/2 the old value.
Also (bo, a) were reoptimized in the same way as before and found to satisfy both old and
new constraints at (1, 1.5). Thus, one set of parameter values for h, bo and a simultaneously
satisfied all the imposed network constraints. All the constraints are plotted in Figure 20, with
the same conventions as in Figure 18.

25~------------------------------~

X

Figure 14

57

Figure 15a Contour plot

Figure 15b Perspective plot

Figure 15 FUnction P(:ro, zo), the total input to a neuron, a= 1 network

58

I

r--· . · ++++ + • + + ++++ ·. · -----0 . •••••• . . ------ .. •••••• .. ------ . . •••••• .. ---
---- ········· · ·-------- ·········--------- · ··· ······ ·--------- ············---------·••... . ·-- -- ----- ··········· ·------ --- ···············---------- ············ ·------------ ·············-----:.-:-: .. ::: .:.~ ~ :·::: .:. ~! t:: : .. :.: : :·::· :.:. :::.-:-: .. :: ::.:.-~ :":!:.:.~; t:: :.:. ~ :t: :-:::::: .. :-: .. ::: :.-:-::·:: : .:.~; t:: :.:. ~! t: :;_:_:: :·::-:-.. :
:::.~:::~":.:.::::~·;.:::.::::.:.~:;::.::_:.:?:-..::::-=:::::=::::F::.: :::::.:~::::.:::::;~-:.~:=::.::.:-===-: :.=.~:::~!:::.·.!!::::.~-.:.:.::.:~:::.;:.~

r----- ·.

Figure 16 Ambiguous stripe width output

+ + + + + + + +
+ + + + + + .
••••••• •

- - - - - + + + + + + ·------- -·······
.

-------- ··········---------- ·········· ·-------- ········ · ··------- · ··········· ·---------- ············ ·--------- ·•... . ---------- ···············-----------············· ·-- ---------- ··········· · -----.------.. -·. ----------.. -.. -... -----................
::.-.::;.::.-.:::~:..:.:}~i~~mi,;:z,;:,::::~~~~::.-.:=·.::::.-.-.:::,:~:.::;~~;:.,;::..JJ:,:.:-.;iii= ... :-,:::.-.-.-,:~==.-.::y,;;,:::,.~;:.;,~":.~;:.:;:::.~

Figure 17 DiscontiiUlous stripe width output

59

Figure 18a relres 7 pure stripe Figure 18d relres 5 pure stripe

Figure 18b relres 7 ambiguous Figure 18e relres 5 ambiguous

Figure 18c relres 7 discontinuous Figure 18f relres 5 discontinuous

Figure 18: Distance scores for three configurations and two neuron distributions

60

5~------------------------------------~

z

X

Figure 19a Contour plot

Figure 19b Perspective plot

Figure 19 FUnction P(xo, zo) for bridge configuration

Figure 20a Hole configuration

Figure 20c Ambiguous configuration

Figure 20 More constraints

61

Figure 20b Bridge configuration

Figure 20d Discontinuous configuration

62

III.5. Summary and Conclusions
To use a contilll.lous medium for understanding the organization of a neural network,

one needs to specify the nature of a local neighborhood in the medium as well as the manner in
which neighborhoods are connected together to form the medium. In Chapter II we discussed
the latter question. introducing a hierarchical organization for the fingerprint hallucination
network. In the present chapter we have discussed how to understand and control a single,
prototypica~ neighborhood in such detail that the desired global network behavior follows.

The required understanding was obtained by taking a "microscopic" view of a few
adjacent neighborhoods, with each neighborhood being allowed to approach the limit of con
tinuous behavior by containing sufficiently many neurons and wires. Such finely detailed
neighborhoods are expensive, of course. They may nevertheless earn their keep, either because
the elementary single-neighborhood behavior that the network requires is fairly complicated,
or because they can provide an especially simple and understandable solution to the simul
taneous constraints of network homogeneity, scale-invariance, and translation-invariance - a
solution which can then be approximated with less costly and less easily understood single
neighborhood networks. For example, the large number of neurons per neighborhood may
simply be reduced as much as possible. This approximation, or compaction. of a detailed
neighborhood may benefit from the use of analog neurons, and may involve the loss of the
simplifying property that all neighborhoods are equivalent.

We have been assuming that a neighborhood is allowed to be fully connected, so that
one neuron's dendritic tree (tree of input wires, as in Figure II.ll) covers one neighborhood.
Thus a neighborhood may be thought of as a few-parameter specification of all the synaptic
weights in a dendritic tree. Large trees are good for spatial averaging (which can produce
noise immunity in vision), for averaging out the effects of irregular neuron placement due (for
example) to scale-invariance, and for encoding relatively complicated neighborhood behaviors
with many parameters governing the synaptic weights.

Figure 21b illustrates the approach to network contilll.lity taken here, in contrast to
the minimal neighborhood size approach illustrated in Figure 21a and used in Chapter IT's
network. In Figure 21b the dendritic trees grow as the density of neurons increases, but the
neighborhood radius stays constant A second limit z -+ 0 decreases the radius and thus the
size of the smallest perceivable image feature. The z -+ 0 limit is for network performance,
and the dense neighborhood limit is for simplicity and theoretical tractability. Of course,
Figures 21a and 21b by no means exhaust the possibilities for approaching contilll.lity. But
Figure 2lb depicts a "microscope" which can probably be used to understand many networks
with regular but somewhat complicated geometric structure. In particular, we have used it
to determine the synaptic weights (up to a few free parameters, found experimentally) of the
one-dimensional scale-invariant stripe network.

For the one-dimensional stripe network, several methods were used to find the synaptic
weights within a finite radius neighborhood with infinite neuron density. First, the sum of
outer products formula (Tii = E sis;) was used to guess a parameterized form of the synapse
function. This involved summing all the stripe configurations which tum on a given neuron
Si at x = 0, z = zo; the relevant stripe patterns must all have width > zo and the proper phase
in x to avoid turning off neuron i (si = 0). The summation is depicted in Figure 22, where
one can see that the width > zo restriction on the allowed stripe patterns produces a kink, at
z = zo, in the synapse function's zero contours.

63

z z

Q;) 0
- ···

@ 0
0 •

X

Figure 21a Infinitesimal Neighborhoods

Figure 21 Two Approaches to Continuity

X

Figure 21b Finite Neighborhoods

From the sum in Figure 22 one can guess that the synapse function is consistent with
the cartoon in Figure 22c, but it is hard to get any more information from the sum and in fact
not much more is needed. Neighborhood locality was imposed and the synapse function was
parameterized by a very few parameters (one of which controls the relative strength of top
down and bottom-up interactions in the hierarchy). These parameters were chosen to be just
numerous and diverse enough to allow the simultaneous satisfaction of a handful of network
behavior constraints: that a pure stripe configuration be stable, that a stripe configuration with
a "bridge" in it revert to a pure stripe configuration, and so forth. Testing the satisfaction
of each of these constraints involved running the network until it found a fixed point, and
measuring the Hamming distance between the desired and the achieved fixed points. Tirus the
network's actual behavior determined the free parameters in the cartoon form for the synaptic
weights. The successful network is clearly seen to be a continuous medium in Figure 5, which
shows the untruncated input to the neurons in several adjacent neighborhoods of a pure stripe
fixed-point configuration.

T
IJ

+

T

T
IJ

0 0 0

1+1-lt l -1+ 1
\

0 0 0

64

0 0 0

0 0 0

+ 1 + 1 - 1 \~~1+ 1
I

+ ···]

Figure 22.a Configurations to sum in j-plane

ij

~·

' '·,

=

-

II:
\
\

'""' ' -.,.
+

I -I

\
\
\
\
\

·' · -

+I

+

\
\ +
\

f-

- I +\I
\

i
i

I
i

I
I

/
- /

-I

!
/

-
/

/

I
Figure 22.b Superimposed

z

-

//
+

-I

Figure 22.c Sum, depending on weights.

+ ...

+ ...

,/ ·".?

0

X

Figure 22 Guess Neighborhood Connections Using Ti; = E sis;

65

By defining the "neighborhood" as a scale of network organization between the single
neuron and the entire network, and taking a continuum limit with infinitely many neurons per
neighborhood and infinitely neighborhoods per network, we are able to get a "microscopic"
view of a continuous neural medium and thereby understand it much more deeply than was
possible with the coarse-grained view of Chapter II. As a result, we obtained genuinely scale
invariant stripe-generating behavior, albeit in a network with just one-dimensional image input.
A number of constraints on the network behavior were treated quantitatively, including con
straints on the fixed-point configurations, or allowed output vocabulary, and constraints on the
input/output mapping.

The microscope and neighborhood ideas have great promise for clearing up some dif
ficulties (which will be reported in the next chapter) in the two-dimensional scale-invariant
fingerprint analysis network. The microscope technique may be worth trying for other geo
metrically regular but somewhat complicated problems. No hierarchy need be involved, but
the technique may be too much work to be worth applying to the design of especially sim
ple neighborhood behaviors. The present network was not so straightforward because of its
hierarchical organization and the nontrivial geometry of the desired stripe patterns in the hier
archy. Also, further experience with fingerprint images may reveal new constraints which will
complicate neighborhood design.

66

IV Testing Networks with Fingerprint Images

It remains to test our networks with real fingerprint image data Because of its com
putational expense, the "microscopic" network of Chapter III was not used directly on two
dimensional images; further development is necessary to apply the lessons learned there to the
coarse- grained network of Chapter ll. Consequently, we tried only Chapter ll's network on
the fingerprint data.

The networks discussed in Chapter ll were defined by the synapse formula (Chapter
ll ' s Equations 11 and 12) and its associated adjustable parameters. They were evaluated by
starting them in a random state (each neuron independently assigned a random value of ± 1)
and examining the resulting fixed point for stable patterns of stripes, or by starting them in
a desirable stripe-like configuration and seeing how far away from the initial configuration
the networks wandered. The second method of testing sounds much closer to starting from a
fingerprint image than does the first, but there are some differences. An image comes with an
assignment of colors (black and white) to pixel locations, but not with any choice of angles
for pixel locations as was assumed in examining fixed-point configurations previously. So a
plausible input configuration may be obtained by turning on all neurons in a clump which have
the correct color for their spatial position, regardless of the neurons' angle index. This results
in 6 out of every 12 neurons' s being turned on (8 = + 1) in the input state, rather than one
out of every 12, in the usual case where the network has two possible colors and six possible
angles. The second difference concerns the hierarchy: it is desired that the stable states of the
network have stripe height proportional to stripe width, but it is unfair to start the network off
this way since the stripe width is one of the image properties which the network is supposed
to compute. So it was arbitrarily decided to let the image affect the starting configuration only
for the network's bottommost level; all other levels were started with all neurons in their off
state (8 = -1).

It appears, then, that to process a fingerprint image the network will have to be used in a
slightly different way than that previously reported. To explore this difference the network was
first tested on the fabricated images which are somewhat simpler than the real ones ultimately
used.

4.1. New Input Method
The artificial images used to test and develop the new input method are shown in

Figure 1; they may be compared with the real fingerprint image and its closeups, shown in
Figure 2. All of the latter images were collected by Megdal [Megdal 83]. The first logical
experiment to try is to combine the optimized parameter settings from Chapter ll (specifically
those of the hierarchically balanced network of Figure III.18) with the initial configuration
obtained from the smaller image in Figure 1a and run the network. It converges to the null
configuration (all neurons off) but if I is decreased slightly to compensate for the smaller
system size, then it converges to the configuration of Figure 3. The result is a stripe-like

67

configuration which. sadly, has nothing to do with the input image in Figure 1a. In Figure 3,
we have a= 4 c = 3.7 d = 8 i =50 K = 20 H = 1.05 f- = (30 30 10 10 20 20) (recall

~ , , , , ,
that f gives the relative weights of top-down,sideways, and bottom-up connections) a = 2.1
and 8 0 ff = .5.

- Figure 1a K-10 Figure 1 b K=20

I I I I
I

I
I

I I
I

I

I I I I
I I

I

I I I I
I I

I
I I

I I I I

I
I

I I

I
I I

I I I I

I I I I I
I

I I I I I

Figure 3

Thus, it is possible for a network to move from a stripy but overactive input state to

a stripy fixed configuration and "forget'' about the input along the way. This suggests that
the input image be used as a magnetic field term (altering the neural thresholds) as well as a
starting configuration, since such a term affects the evolution of the network at all times and
cannot be forgotten. This type of input is equivalent to a set of light-sensitive input neurons
which affect the rest of the network but are not affected by it, so that for a fixed image they
have fixed values. This term must be introduced with some adjustable weight similar to the
old threshold H, and in fact the new threshold Himo.gcBimo.gc (with Bimo.gc = ± 1 orO) is scaled
in the same way asH is: both are multiplied by the total input an average neuron of the given
level would have if all its neighbors were on.

r

-:z
&~

-~ ~
if,~
y0tr~

. ..··
,~

Figure 2a Complete fingerprint

Figure 2c "thin"

68

Figure 2b "elbow"

Figure 2d "bridge"

Figure 2. Fingerprint image and 20 x 20 input windows

One virtue of applying the input magnetic field to the bottom layer of the network,
rather than to any higher layers, is that it can compensate for the bottom-up connections whose
absence most strongly affects this layer. In fact, the input image may be thought of as the input
from hypothetical very high-resolution missing layers below the lowest layer in the network.

To find acceptable values for Him.age and the other parameters, it was first determined
that Him.age ~ -.15 is close to the smallest IHim.agel which allows no disagreement between
input and output color, and the other parameters were tuned to produce reasonably lined up
angles under the constraint that colors must agree with the inpuL The small artificial image
of Figure la was used for these tests. The resulting image and parameter values are shown
in Figure 4; note that a z-dependent I term I', analogous to c' in Equation (TI.l2}, has been
introduced to get reasonable behavior at several levels in the hierarchy simultaneously. Also,

69

the value of a (the angle conformity term) has been drastically decreased, and the relative
strength !h = Is = /6 of bottom-up connections has been increased.

For Figure 4, H image = - .15 a= .5 c = 4 d = 6 i = 20 i' = 15 a= 2.1 K = 10

m = 6 B0 1f = .5 H = 1.05 f = (30, 30, 10, 10, 100, 100) .

Thus, the new input method allows part of the desired computation to be done: the
change of representation from a binary image to a hierarchical array of color and angle values.
Further developments will improve this part of the computation and approach the next part:
the modification of the input image to eliminate all features save stereotypical stripes, branches
and ridge endings. Such an image would allow minutia detection to be a simple and local
operation.

(I I I

~ ~ " I

~ "' (" " I

~ ~
I " I

I "II;" - " I

I I I

~
I " I

\ "
I I " "" I

("' - " ~ (

Figure 4

Given the external field input mechanism and the drastic nature of the network' s re
sponse to the initial configuration, with n/2n active neurons dropping suddenly to 1/ 2n
neurons on in each clump, it is possible that the best input method would be to start with the
zero initial configuration (all neurons off) and rely on the image magnetic field term alone for
input Then the transient behavior would be much less violent This possibility has not been
explored for the present network.

4.2. Minor Improvements

In preparation for testing on real images it is desirable to use a larger image size, so
that both wide and narrow stripes can be tried out Also, the network of Figure 1a had periodic
boundary conditions and it must be checked that zero boundary conditions (all neurons off
outside the image) also work. Using the image of Figure 1b as input, with zero boundary con
ditions and a smaller Hsmage to encourage reasonable image modifications, the configuration
of Figure 5 results. Note that fh has been decreased somewhat to allow intermediate levels
to receive top-down input as well as bottom-up; a value of f-. = 50, however, fails to turn on
any neurons except those on the bottom level (level 0).

One of the phenomena encountered in these manual parameter searches is the networks'
sensitivity to H. Any major change of another parameter, or of network size, requires that

' ' \ I I \ I I • ' • I
\ I I ' I I ' I

I I \ \ \ I\ I \ ' • I
I I I \ I I • I I I } 1
I I I \ I I } \ I •• I

' I
1\\11 1}}1 .. ' I- • I \II\ I}'} I' •I

I • \ I • I I I J ' I ' I
I I I •• I I I I } I
I I I I' \ I I } } I

I I I \ I I } }
I I I I }}'

d1 I I I I I } .. } I
I I I I I • J ' I

I J I I I ,,, •J•I

} I I } I I .11}11
I I I I } I I 1'1}~1

I

Figure 5a level 0 color 1
1 r "' , I

\
I \ \
.. \ I ..)
~ I .. I I ') ' ' .. I) I))
I I .. I) I
I I I

I ') ~)) \ I

' ') I) I)) ..
) IJ) I))

Figure 5b level 1 color 1

I ~

I \) ~
N ~ I ~ ~
) I I)
~ I ~
~ I))

Figure 5c level 2 color 1

)
I
I

I

70

I \ I ' I I
\ '

I I I \ ~~I I I
I \ I \ ' ' I I '

I I ~. \ •• I I ' \ I
I ' I I I I I
I ' I \ I

' I
' I

, (I
I \ \

I ' I
I ' I \ I I (I

I ' \ I \ I (I

I I ' I \
I I , I I

' I ' \ I I I I I , I
I I I I I I I I

I (I I I \
I I I I

I I ' '
1 I I

I I 1 I
I (I ~ I

Figure 5e level 0 color -1
~I \

I I \ ~ I .. I

I I ..
.. I ' .. \ ' .. I \ I (

.. I I
.,

.. I I I
I _,

I
I ,(L

Figure Sf level 1 color -1
I

\

I

~

I
(
(

Figure 5g level 2 color -1

I

I
(
J J

Figure 5d level 3 color 1 Figure 5h level 3 color -1

Figure 5: a= .5 c = 4 d = 6 i = 20 i1 = 15 K = 20 H = 1.05 Him4gc = - .07

7 = (30, 30, 10, 10, 65, 65). 15 sweeps to converge

71

H be changed by an amount that is usually greater than the allowed range of H for the old
network. An excessive value of H results in too many neurons per clump being on, and
therefore less definite angle information. Too small a value for H results ultimately in all
neurons in a clump rurning off, but first a more subtle bug appears. A single neuron per
clump turns on, but it always has the same angular orientation. This is a result of the update
order used: when H favors just one neuron on per clump, and initially half the neurons are
on, during the first sweep neurons are indiscriminately turned off (always in the same angular
order) until just one (always pointing the same way) remains on. The resulting configuration
may be quite stable due to the angular conformity term. In short, the special configuration
which has all angles pointing in the favored direction and color agreeing with the input image
has an unfair advantage due to the updating order of the neurons within a sweep.

This update problem is solved by introducing a fixed random update order for all
sweeps in what follows. The fixed random update order is still not totally random, but
it is computationally inexpensive. The new update order uncovers an interesting region of
parameter space, allowing larger a (angular conformity) values and better alignment of local
orientation detectors with stripe direction. This region of parameter space was occupied by
networks afflicted with the constant-angle bug so long as the old scan-ordered update scheme
was used. The improvement under the new scheme is clearly a dynamic effect since changing
the update order would not affect the stability of a fixed-point configuration. In an electronic
or biological implementation the update problem would be better solved by the use of analog
neuron values and simultaneous update. Simultaneous update of analog neurons corresponds
to a very small time step in a digital simulation. The latter solution is too expensive to use
here. The resulting network is still very sensitive to H, which must be adjusted often during a
manual parameter search, but will show much better behavior when just one neuron per clump
is on.

4.3. Fingerprint Image Results

With these network improvements it is at last time to confront real fingerprint image
data. Interesting 20 x 20 windows have been taken from the fingerprint of Figure 2, obtained by
Megdal. The windows are outlined in Figure I.l, so that one may check that people would have
enough information in the 20 x 20 window to discriminate between real and noise minutiae.
The image has been filtered by convolution with a 3 x 3 pixel Gaussian and then globally
thresholded. The current best networks are disappointing; they do a good job of converting
the image to the hierarchical orientation representation, but do very little towards using this
representation to suppress fingerprint noise. The reason for this is not yet clear, and it could
be that further minor parameter changes could fix the problem.

In Figure 2 we see three interesting windows. Figure 2b contains a ridge end which
could be turned into a branch by an overzealous network, especially since the nearby "elbow"
suggests a missing connection. Figure 2c has thin and thick ridges in one neighborhood,
and Figure 2d contains a bridge of the sort which Chapter lll's one-dimensional network was
able to suppress based on ridge-width information. The present network fails to suppress it
using two-dimensional shape information. The final network parameters were obtained by
minimizing htm.Gge; any further decrease results in the introduction of more defects in the
bridge configuration, rather than their removal. t. could then be decreased a bit to encourage
information to fiow both up and down the hierarchy. 1be results for the three real fingerprint

72

windows, as well as for the artificial training image, are shown in Figures 6,7,8,9. (Beware of
the color reversal between Figures Sa and 8b, and between Figures 9a and 9b.) Some slight
simplification of the images is apparent, but not nearly enough to be of any help to a branch
or ridge end detector. The main effect of the network is to deduce the direction of stripe
flow everywhere and at all the relevant scales of image resolution. For the wider stripes, this
is definitely a nonlocal operation which makes use of the higher levels of the hierarchy: the
network must send color information up to the scale where orientation may be detected locally
and then ship angle information back down.

Figure 6a Input

' ' "" ' I "" "" I '
' I '"" \ \ I, I I

1'-
1
I I
I' \
I I \
I \ I

I I
\ I

I '
\ I
I \

' I ' ' \
I I I"" ' \ '

I"" I \ \ \ ,,,1 \\
Ill\ I'
\\1\\11 I

' ' ... '
\.... \ .. \

I '"" I
I I I \

\ I I I

I ' \ ' I"",
I \ ,
,,
I I

'..., I I I ,, ... ',.,
\ \ I I I , _,,_
I I -- ""\ I I ,,. ,,,,_, ,,,_

Ill Ill ,, ,_,

\- I'll I ,,,

' - I ' I"'

Figure 6b level 0 color 0

Figure 6: Network as in Figure 7. 11 sweeps to converge

The network of Figure 7 converges quite rapidly, usually in 10-20 sweeps. This is

consistent with experience with the CAM. For such a small window size (20 x 20), however,
we cannot tell what the asymptotic convergence time is as a function of system size: it could
be constant, or proportional to the system diameter, though not proportional to the network
area. An optimal algorithm would apparently require just time ,... log(diameter) due to the use
of a few long wires to obtain and use global ridge width information.

One possible explanation for the network's failure, aside from the simple possibility
that it will succeed if the parameter search is extended, is that changing to the orientation
representation and using that representation to modify the image are two different computations
which are best done with two different parameter settings. Then one could imagine doubling
the network to perform the two tasks or pe_rforming them in sequence with one network
by allowing an external command to switch each synapse's value between the two relevant
possibilities. This modification would make the computation somewhat sequential.

,,.. ... ,,,.,,.,,. ,,_,, ., __ ,,,.,.,.,
' 1 ---'1-\44}444
~•••-''-••Yt#t#
~···-, . .,,
~ ,,, 1 441
, ••• _ 1'1}}
1'-••• ... \11}}1
-·"'''''}}

\ \ ' I

4'
44,

'444-
144441

... ' ... 444441 _,, ,_, . .,.,-
,, ... ,,,,,., ... -,, ... -...... ,,,, ... I·---,, ••• ,,

~'-- -....
!--"'"'-' _ ...

Figure 7a level 0 color 1
,;

.... ~ ~

~· " ~

.... \

\ ...
\ ~
,; - ,;

,; ~ ~ ~ ~

., ... J .. ~ ~
) J
))
~ ~

\ ~

... ~ ,; ~

... ... ,;

Figure 7b level 1 color 1 ., I
\ ~

"" "'
.,

\ ~

"" - ~)
"' '4

""
7

..... 7 7 7 ., .,

Figure 7c level 2 color 1

I
\)

Figure 7d level 3 color 1

Figure 7: a = 1 c = 4 i = 20 i'
1 = (30,30, 10,10,50,50). 13 ~eps

73

_,,,,,

-- --

I
I I \

~~I I
l#lt#JIIt

~~~~~~ 

1/J>It#JI#JI#Il', 

1((~~~ ... 
( ( ( ~, 

I ~ ( # 

\ ( ' 
I I I 

__ ... 
,_ ... , 

'-····· ,_ ... ,,,_,, __ _ ,_,_,, ... _,,,,, ,,, -- _, ,,,, 

Figure 7e level 0 color -1 

I 

" ( 
" J; " " ( f •• 

( f " .... .... ( " 
I 

,; 

44 .. 

4 -'44-

.... "'lf"'lf444-' I 

Figure 7f level 1 color -1 

Figure 7g level 2 color -1 

I 

Figure 7h level 3 color -1 

15 K =20m= 6 H = 1.07 Him.D.ge - -.05 



74 

Figure Sa Input 

I I I I , I I I 1 ;·, 
I ,,.~, 

I I I } 1111'., 

I ' ' 

1- 1- .. .. 
-~' \ ' . ' 1- I , , I, 

~ : ~ .. .. _,., 
1- 1- "' ( ~ ~~~~ (( 

... ~~~ ~~~, 1- 1- I 
I~, _,,,., ~~~~ "' "' 1- 1- r , ,,,, ~~~~~ 

~I _, .. ,, "' 1- 1- 1- 1-
I I _,,,,, 

"' "' 1- 1- 1-
I I 

, •• 1/l., 
\ I ~~~~ I 

\ 1- 1- 1- "' ,,_,_,,,, I I 
1- I I ' 'I I , "'"I , I I \ "' -1 , , I ,,,_, 

~ "' "' "' I ,,,..,._ 1--'~ ..... 

Figure 8b level 0 Figure 8c level 1 

I 

~ 
/ " ~ / / 

" ( I 
I / " " I I 

/ " / 
/ / / 

- ~ I 

Figure 8d level 2 Figure 8e level 3 

Figure 8: As in Figure 7. 19 sweeps 



75 

Figure 9a Input 

I --'•••IJlii>IJiiJi•IJi""' 
,,.,. , •••• IJ>~t-11>, 

1(•1'•'···'1' 
I,,_~, •• _,,_, 
I I I I , -,I, 

• 
I , I 

_,,,,,, 
.., . - .... -, I,, 

_ ..... ........ , 
,,.II>,, 

I ---''~~' .. ,.,I 

Figure 9b level 0 

" " " 
\ "" " "" ,. 
( " "" "" 
I 

"" -,. 

Figure 9d level 2 

Figure 9: As in Figure 7. 10 sweeps 

r 1 ( 

1-1-1-( 

~ 1- I-I& I-~ 

\ ( I .. ~ .. 1- 1- 1- .. 
( t 1- ~ ~ ~ 1-

( 1- I 

I I .. .. .. .. .. 1- .£411. 

I 1- 1- .. 
Figure 9c level 1 

/ / 

Figure 9e level 3 



76 

4.4 Conclusions 

The collision with genuine fingerprint image data forced the 2 + £-dimensional neural 
network advertised in Chapter II to be modified in a number of important ways. First, the input 
method had to be altered to include the use of a magnetic field term as well as a starting con
figuration. Such a term is easy to implement electronically or biologically and was previously 
overlooked due to the use of "hallucination," or fingerprint output from random input, to find 
out what kinds of terms were needed in the synapse function. Second, the update method and 
boundary conditions had to be changed to more closely resemble what would be encountered 
in a biological or electronic version of the network. Third, the parameters appearing in the 
synapse formula had to be adjusted to the new circumstances with a manual search based 
on visual inspection of the frozen (fixed-point) configurations. Despite the extensive network 
modifications, the resulting network did only half of its job. It computed the hierarchical 
orientation representation for an input image, a nonlocal operation exercising communications 
both up and down the hierarchy, but failed to use the computed information to rid the image of 
spurious branches and ridge endings due to fingerprint noise such as bridges. Still, the partial 
results give hope that the techniques used to design the network may be improved to yield 
solutions to very interesting problems in vision and pattern recognition. 



[Brown 84] 

[CG&A 85] 

[Conrad 85] 

[Hillis 82a] 

[Hillis 82b] 

[Hinton 83] 

[Hopfield 82] 

[Hopfield 84] 

[Hopfield 85] 

77 

Bibliography 

Brown, C.M., 
Computer Vision and Natural Constraints, 
Science, Vol. 244 No. 4655, 22 June 1984, p. 1299. 

IEEE Computer Graphics and Applications, 
April 1985, p. 14. 

Conrad, M., 
On Design Principles for a Molecular Computer, 
Communications of the ACM, Vol 28 Number 5, May 1985. 

Hillis, W.D., 
New Computer Architectures and their Relationships to Physics 
or Why Computer Science is No Good, 
International Journal of Theoretical Physics, Vol.21, Nos 3/4, 1982 p. 255. 

Hillis, W.O., 
The Connection Machine: A Computer Architecture Based on Cellular 
Automata, 
Physica 100, 1984 p. 213. 

Hinton, G., and Sejnowski, T., 
Analysing Cooperative Computation, 
Proc. 5th Annual Conference of the Cognitive Science Society, 
Rochester, New York. May 1983. 

Hopfield, J.J., 
Neural Networks and Physical Systems with Emergent Collective Com
putational Abilities, 
Proceedings of the National Academy of Science USA 79, April 1982, pp. 
2554-2558. 

Hopfield, J.J., 
Neurons with Graded Response Have Collective Computational Proper
ties Like Those of Two-State Neurons, 
Proceedings of the National Academy of Science USA 81, May 1984, pp. 
3088-3092. 

Hopfield, J.J. and Tank, D., 
'Neural' Computation of Decisions in Optimization Problems, 
Biological Cybernetics, 52, p. 141-152, 1985. 



78 

[Johnston 85] Johnston, David. 
Computer Could Point Finger at Murderers, 
Los Angeles Times, Friday, June 28, 1985 Pan V p.l. 

[Kirkpatrick 85] Kirkpatrick, S., and Swendsen, R., 
Statistical Mechanics and Disordered Systems, 
Communications of the ACM, April 1985 p. 363. 

[Leighton 85] Leighton, T., and Leiserson, C.E., 
Wafer Scale Integration of Systolic Arrays, 
IEEE Transactions on Computers, Vol. C-34, No. 5, May 1985 p.448. 

[Mead 82] Mead, C.A. and Rem, M., 
Minimum Propagation Delays in VLSI, 
IEEE Journal of Solid-State Circuits, Vol SC-17 No. 4, August 1982 
pp.773-775. 

[Mead 83] Mead, C.A., 
VLSI and the Foundations of Computation, 
Information Processing 83, R.E.A. Mason, ed., Elsevier Science Publishers 
B.V., 1983. 

[Megdal 83] Megdal, Barry, 
VLSI Computational Structures Applied to Fingerprint Image Analysis, 
PhD Thesis, Computer Science Dept., California Institute of Technology, 
1983. 

[Merz.enich 84] Merzenich, M. M., Nelson, R.J., Stryker, M.P., Cyander, M.S., Schopp
mann, A., Zook, J.M., 
Somatosensory Cortical Map Changes Following Digit Amputation in 
Adult Monkeys, 
J. Comp. Neurol, 224, p. 591, 1984. 

[NEC] Nippon Electric Company, 
Automated Fingerprint Identification System, 
(Advertising Booklet). 

[Penrose 73a] Penrose, L.S., and Ohara, P.T. 
The Development of the Epidermal Ridges, 
Journal of Medical Genetics 10, 1973 p. 201. 

[Penrose 73b] Penrose, L.S., 
Fingerprints and Palmistry, 
The Lancet, 2 June 1973, p. 1239. 

[Penrose 79] Penrose, R. , 
The Topology of Ridge Systems, 
Ann. Hum. Genet., 42, 435, p. 28, 1979. 

[Platt 85] Platt, J., 
Sequential Threshold Circuits, 



79 

Technical Report Number 5197:TR:85, 
Masters Thesis, Computer Science Dept., California Institute of Technology, 
1985. 

[Rosenfeld 84] Rosenfeld, A., ed. 

[Sivilotti 85] 

Multiresolution Image Processing and Analysis 
Springer-Verlag 1984. 

Sivilotti, M., Emerling, M., and Mead, C.A., 
A Novel Associative Memory Implemented Using Collective Computation, 
Proceedings, 1985 Chapel Hill Conference on VLSI, ed. Henry Fuchs, p. 
329, 
Computer Science Press 1985. 

[Terzopoulos 84] Terzopoulos, D., 
Multilevel Reconstruction of Visual Surfaces: Variational Principles and 
Finite-Element Representations, 
Multiresolution Image Processing and Analysis, A. Rosenfeld, ed. 
Springer-Verlag 1984. 

[Wilson 74] Wilson, K., Kogut, J., 
The Renormalization Group and the E Expansion, 
Physics Reports Vol 12C Number 2, August 1974 .. 


