A Caltech Library Service

Theoretical Investigation of the Effect of Intramolecular Interactions on the Configuration of Polymeric Chains


Curro, John Gillette (1969) Theoretical Investigation of the Effect of Intramolecular Interactions on the Configuration of Polymeric Chains. Dissertation (Ph.D.), California Institute of Technology. doi:10.7907/8KEP-R512.


A theoretical investigation of the effect of intramolecular interactions on the configurational statistics of a polymer molecule is presented. This problem has been studied by many authors and is known as the "excluded volume problem" in the literature. A statistical mechanical approach is used. Many of the similarities between the theory of "classical fluids" and the excluded volume problem are exploited.

The configurational statistics of 2 and 3 segment chains are computed exactly for the "hard sphere potential". The integrations were performed by introducing bipolar and tripolar coordinate systems. It was found that the mean square end-to-end distance for these cases was n1.33 where n is the number of segments. These results are of no practical use in predicting the properties of real polymer chains which are much longer. It is instructive, however, to compare these exact results with approximate theories in the limit of short chain length.

A "cluster expansion" is written for the partition function of a polymer chain with the ends of the chain fixed. This is analogous to the cluster expansion for the partition function of an imperfect gas. The first-order term in this expansion is evaluated for the hard core potential. In the limit of small hard core diameters, the first-order term leads to the wellknown first-order perturbation theory for the mean square end-to-end distance. The exact results of this first-order correction term are used to construct higher-order terms of a specified "isolated topology". If only these terms are used in the cluster expansion, incorrect results are obtained for the mean square end-to-end distance. This indicates that higher-order terms of complicated topology are significant for longer chain length.

Various approximate integral equations for the restricted partition function of a polymer chain are presented. The most promising of these equations is the analog of the well-known Percus-Yevick equation in the theory of liquids. In deriving this equation two topologically distinct types of graphs are defined. These are the "nodal and elementary" graphs. An exact equation relating these types of graphs is presented. The analog of the Percus-Yevick approximation is made which leads to an integro-difference equation. This equation is solved exactly using the hard core potential for the special case of the hard core diameter equal to the polymer segment length. Results of numerical calculations are given for other intermediate values of this diameter ranging from zero to the segment length (the "pearl necklace" model). This leads to values of γ ranging correspondingly from 1.0 to 2.0 where <r21N ∝ Mγ> with <r21N the mean square end-to-end distance and M the molecular weight. The numerical results for <r21N as a function of chain length are in good agreement with the second-order perturbation theory of Fixman for small hard core diameters.

Item Type:Thesis (Dissertation (Ph.D.))
Subject Keywords:(Materials Science and Chemical Engineering) ; Polymeric Chains
Degree Grantor:California Institute of Technology
Division:Engineering and Applied Science
Major Option:Materials Science
Minor Option:Chemical Engineering
Thesis Availability:Public (worldwide access)
Research Advisor(s):
  • Pings, Cornelius J.
Thesis Committee:
  • Unknown, Unknown
Defense Date:27 April 1969
Record Number:CaltechETD:etd-10072002-145049
Persistent URL:
Default Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:3958
Deposited By: Imported from ETD-db
Deposited On:07 Oct 2002
Last Modified:26 Apr 2024 20:49

Thesis Files

PDF (JG Curro) - Final Version
See Usage Policy.


Repository Staff Only: item control page