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ABSTRACT

A theoretical investigation of the effect of intramoleenlar
interactions on the configurational statistics of a polymer molecule
is presented. This problem has been studied by many authors and is
known as the "excluded volume problem" in the literature. A statisti-
cal mechanical approach is used. Many of the similarities between the
- theory of "classical fluids" and the excluded volume problem are ex=-
ploited.

The configurational statistiﬁs of 2 and 3 segment chains are
computed exactly for the "hard sphere potential”. The integrations
were performed by introducing bipolar and tripolar coordinate systems.
It was found that the mean square end—to-eﬁd distance for these cases
was nl'33 where n is the number of segments. These results are of no
practical use in predicting the properties of real polymer chains which
are much longer. It is instructive, however, to compare these exact
results with approximate theories in the limit of short chain length.

A "cluster expansion" is written for the partition function of
a polymer chain with the ends of the chain fixed. This is analogous
to the cluster expansion for the partition function of an imperfect gas,
The first-order term in this exﬁansion is evaluated for the hard core
potential. In the limit of small hard core diameters, the first-order
term leads to the well~known first—-order perturbation theory for the
mean square end-to-end distance. The exact results of this first-order

correction term are used to éonstruct higher-order terms of a specified
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"isolated topology'. If only these terms are used in the cluste?
expansion, incorrect results are obtained for the mean square end-to-
end distance, This indicates that higher-order terms of complicated
topology are significant for longer chain length,

Various approximate‘integral equations for the restricted
partition function of a polymer chain are presented. The most prom-
ising of these equations is the analog of the well-known Percus—
Yevick equation in the theory of liquids. In deriving this equation
two topologically:distinect types of graphs are defined., These are the
"nodal and elementary" graphs. Aﬁ exact equation relating these types
of graphs is presented. The analog of the Percus-Yevick approximation
is made which leads to an integro-difference equation. This equation
is solved exactly using the hard core potential er the special case
of the hard core diameter equal to the polymer segment length, Results
of numerical calculations are given for other intermediate values of

this diameter ranging from zero to the segment length (the "pearl neck-
‘lace" model), This leads to values of Y ranging correspondingly from
1,0 to 2.0 where <r?qy> « M’ with <r?;y> the mean square end-to-end
distance and M the molecular weight, The numerical results for <r21N>
as a function of chain length are in good agreement with the second-

order perturbation theory of Fixman for small hard core diameters.
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1. INTRODUCTION

The field of polymer physics has expanded greatly since 1940,
The motivation for the study of polymers has come from two sources.

With the advent of industrially important synthetic polymers came the
need for a basic understanding of polymer structure and behavior, Bio-
chemistsialso realized that many of the biologically important compounds
such as proteins and nuclelc acids are polymeric in nature., Thus the
study of polymer physics 1is important to both the engineer and the bi-
ologist.

Theoretical polymer physics can be divided into phenomenologi-
cal and molecular theories. In phenomenological theory one attempts to
describe the physical behavior of polymers in terms of a minimum number
of experimentally determinable parameters, Examples of this approach
are the fields of thermodynamics, fluid mechanies and elasticity, In
molecular theory, on the other hand, one attempts to describe the be-
havior of polymers in terms of molecular parameters, These molecular
parameters are in principle calculable from quantum mechanics. Practi-
cally this is often not possible, and some rigor is necessarily sacri~
ficed in finding these molecular parameters,

Many of the unique physical properties of polymers are due t§
the fact that the polymer chains are capable of assuming a very large
number of configurations. Molecular theories to deduce these properties
necessarily involve the use of statistical mechanical methods. The

configurational statistics of a polymer chain are the starting points



for theories on polymer elasticity, viscoelasticity, polymer solutions
and molecular weight determination. A simplified model of a non~inter-
acting polymer chain has been solved exactly and has been successful in
approximating the actual behavior of polywmeric chains, In order to re-
fine this simplified theory, the interactions of the polymer molecule
with itself and with other molecules must be incorporated into the theory,
The effect of intramolecular interactions or the interaction of a poly-
mer chain with itself has been a subject of considerable interest., The
effect of intramolecular interactions on the configurational statistics
of the chain is commonly known as the "excluded voluma" effect., This
problem has been studied by many polymer'physiciété in the past with
very limited success (1-13).

The excluded volume problem has many similarities to many-body
problems in other areas of physics. The equations from the theory of
imperfect gases and liqUids,‘in.particular, are similar in form to the
polymer chain equations. In this thesis, the excluded volume problem
will be investigated in detail and some mathematical techniques used

in liquid state theory will be épplied to this problem.



2, SUMMARY OF PREVIOUS WORK

In this chapter I will give a brief summary of some previous
work on the problem of computing the configurational statistics of a
freely-jointed polymer chain with intramolecular interactions,

The excluded volume effect in polymers was first treated by
Flory (1). Flory assumed that the distribution of segments about the
center of mass énd the end-to-end distance of the chain was Gaussian,
although the width of these Gaussian distributions is enlarged by the
excluded volume effect. In order to find the amount of enlargement,
the influence of intramolecular interactions is treated as a swelling
phenomenon for which thermodynamic formulas for solvent-polymer systems

exist., Flory found the result,
ad = o3 = Cn 2 (2.1)

for a chain of 2n segments. o is the ratio of the root mean square
end-to-end distance of the chain to the corresponding end=-to-end dis=-
tance in the absence of intramolecular effe;ts (random walk problem).
Thus for large n, Flofy's theory predicts that'the mean square end-to=-
end distance 1is proportional to ns/%. The physical significance of
Flory's method is somewhat vague, and his assumption that the distri- -
bution remains Gaussian is certainly questionable.

Hermans, Klamkin and Ullman (2) derived a generalized Fokker=
Planck type of equation for the distribution function of 'a chain with

a

excluded volume, This entailed the assumption of a specific form for



the conﬂitional probability of the nth segment being at ?n, giveﬂ that
the first n-1 segments'are held fixed. fheée authors found that the
mean square end-to-end distance differed.by only a constant from the
corresponding value fur a non-interacting chain (i.e, a = constant).
Rubin (3) hés given evidence that the Herman, Klamkin, Ullman choice
of the conditional probability is not correct. In another paper Rubin
(4) presented arguments that the mean square end-to-end distance is
proportional to n raised to a power which has an upper bound of 3/2.
Zimm, Stockmayer, and Fixman (5) derived an integral equation
of the Markoff form for the pair distribution function of a polymer
chain. The kernel of this integral equation is the conditional proba-
bility. This function is an extremely complicated multiple integral
which involves the pair potential between any two points on the chain,
A first-order appioximation to this conditional probability was obtained
using the so-called "single contact™ approximation, which considers
nniy those configurations in thch_a single pair of segments is inter-
aéting¢ Since the potential between nonadjacent segments V(rij)

is short range, Zimm, Stockmayer, and-Fixman approximated this potential

by
h(rij) =1 = exp [-V(Tij)/kT] = XS(rij) (2.2)
where 6(r1j) is a thfeewdimeneional delta function ond

X = f[1 = exp(=v(ryy) /kT)] dEyy.



With tHis form for the potential these authors found that the mean

square end-to~end distance <riN> was a function of the parameter,
z = X(3/27a2) ¥ 2nV2° (2.3)

where a is a segment length in the chain. Zimm, Stockmayer and Fixman
found the first term in the expansion of <riN> in terms of =z.
<ri >

a? = <riN>o= L+ 4/3z+, . .] (2.4)

<riN>o is the corresponding mean square end-to—-end distance for a chain
with no excluded wvolume., This equat‘ion was also obtained by Yamamoto (6)
and Grimely (7). The next higher—ofder term in this expansion was ob-

tained by Fixman (8)
o2 = [1 + 42/3 - (16/3 = 28n/27)22 + . , .]. (2.5)

In deriving this eduation Fixmaﬁ also approximated the potential by
Eq. (2.2).

Notable progress was made recently by Edwards (9) and Reiss (10),
who decoupled the many-body problem by a self-consistent field technique
similar to the Hartree Fock (11) method for many electron atoms;

Edwards solved his equations asymptotically and found that <r{y> « n6/s
Edwards' treatment, although original, is very difficult to read and, as
Reiss points out in his paper, is somewhat incomplete. In his treatment,

. . )‘:
Reiss replaced the sum over pair interactions 1/zi£j Vi by i¢i where

the ¢; are chosen to satisfy a variational principle. That the ¢4



rigorodsly satisfy the variational principle is questionable (11).

Reiss was able to obtain a zeroth-order approximation to o4 from his
equations. This was used to obtain an integral equation of the Markoff
type for the probability distribution. He then passed to a differential
equation which he was able to solve in one limit. Reiss found that
<cfy> « nt3,

Yamakawa (12) has shown that Reiss left out a term in deriving
the integral equation. Yamakawa used Reiss' self-consistent potential
with a somewhat different integral equation to obtain <r§N> « 0% as o,
This treatment also entailed the appfoximation of the potential as in
Eq. (2.2).

One of the drawbacks to using a self-consistent fleld is that it
is not known how good the approximation is. Since the ¢; are chosen
to satisfy the vafiational prinéiple they'represent the best set (there

may be more than one set) of functions ¢; under the restriction 1/2

i%j Vij = §¢i' The variationai principle says nothing about the error
involved in the original approximation however. It should also be pointed
out that only a zeroth-order‘approximation to the ¢ which satisfies
the variational principle is actually used in the treatments of Reiss,
Edwards and Yamakawa.

Naghizadeh (13) derived.a Born~-Green~Kirkwood (14, 15) type of
integral equation for the distribution function. The Born-Green and
Kirkwood équations were originally derived for the radial distribution

function in liquids, WNaghizadeh's equation for the n element distribution

function contains the (n+l) element distribution function., .In order to



truncate this hierarchy of equations, Naghizadeh made the analog of the
"Kirkwood Superposition" approximation. The resulting equations are
very similar in form to Reiss' equations. This is not very surprising
since the Kirkwood Superposition principle involves the averaging of
forces, which is esséntially what the self-consistent central field

does.



3. GENERAL THEORY

In this chapter the basic equations for the distribution
function of a freely~jointed polymer chain with intramolecular inter-
actions 1s derived. The methods used in the literature are usually
based on random walk theory, however, I will use a statistical me—
chanical argument to derive an equation for the probability distribution
function for the ends of the chain. The concept of an ordering poten=
tial between adjacent chain elements is introduced., Thig enables one
to proceed in a manner analogous to .the statistical mechanics of real
gases (17).

Choose as a model a chain of N-1 (N subsystems) "freely-

jointed" segments which are allowed to interact (see Fig. 3.1).

Fig. (3.1)

One chaln in an ensemble of chains.



The term “frecely—-jointed" implies that there is no fixed bond angle or
hindered rotation between segments. In effect the segments behave as
if they were connected by universal joints. Assume further that the
temperature and masses are large enough so that quantum effects can he
neglected and the problem can be handled classically. From statisti-
cal mechanics the probability of observing the system in a particular

energy state is given by,

e

> + -> > > >
P[plooogN)QloooDN] dpl...dele...dDN (301)

-l - 3N e 5> > - -+ 5> -

= Qy h eXP[-BH(plf--pN»pl---pN)]dpl.--dedploo-de
g = 1/kT and Ej is the momentum of the jth subsystem. 33 is the posi=
tion of the jth particle, which for convenience has been scaled by the
segment length a (i.e. Ej = ;j/a). H is the classical Hamiltonian de-

fined by the sum of a kinetic and configurational energies

H(glnocgN,gloc.;N) = E_P%/Zm + V(glooogN)- (3.2)

V is the configurational or potential energy of the system, QN is the

canonical partition function.

-3N >
Qg = h  Ju..Sexp(-BH)dP;...dDydp...dBy (3.3)

&

If the Hamiltonian in Eq. (3.2) is substituted into Eq. (3.3), the
momentum integrations are factorable and are easily performed to give

a factor which depends on temperature.

3lez

Qq = (2mmkT/h?) (3.4)
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7 is the configuration integral,
Z = f:o uf exp(—BV)dglc oodgNw (3.5)

The probability that two subsystems i and j have positions 31 and 35
respectively is obtained by integrating Eq. (3.1) over all variables

> >
except Py and pj.

P[;isgj]dgidgj = (Zij(gizj,N)/Z)dgidgj (3.6)

zij can be considered to be a restricted configuration integral in

which subsystems 1 and j are held fixed in configuration space,

-+ - -+
zij(pi,pj,N) = f...(exp(-sv)kgijdpk (3.7

> >
Integration over Py and Ps in Eq. (3.7) yields the unrestricted con-

figuration integral Z defined by Eq. (3.5)
+ - > >
Z = ffzij(oi,pj,h)dpidpj.
The probability that the ends of the chain have positions 31 and Zﬁ

is,
R e > > -+ -+
Plpipyldeydoy = (Z)ySp1oy) /2)dp dpy - (3.8)

Assuming pairwise additivity of forces, the potential V can be
regarded as the sum of pair potentials between adjacent subsystems and

nonadjacent subsystems,

V= E Vi1 (3.9)

LE
+ 1/2:”:j Vij
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5|
Choose the potential between adjacent subsystems Wity 8O that the

pij is the distance between points i and j (1.e.pij = '35"

segments are connected, thereby forming a chain., This condition is

satisfied by choosing

exXp (”ﬁwii‘i‘l) - a(pii“l‘l-l)' (3.10)

This potential is essentially an infinite potential well since,

Wigey >t for pygug F 1

Wil * - for pyy4g = 1

Thus the configuration of the system 1is conétrained so that the dis-
tance between adjacent subsystems i1 and i+l is always pj34] = 1 (or
rij+1 = a@). The potential w;y;q is effectively‘aq "ordering" potential
which ensures that a chain of subsystems is generated in the order 1,

2 ., . ¢ N (see Fig. 3.1)., The potential between nonadjacent subsystems
vij is short range. vij becomes infinitely large for small pij and
approaches zero rapidly for pij of the order of unity or larger. Using
Eqs. (3.9) and (3.10), the restricted configuration integral can be

written as,

Note that the potential V does not depend on the choice of the origin,
hence the origin is arbitrary. As a result, the argument of Zij can be
taken to be pij' In other words Zij depends only on the scalar distances

between fixed points'i and j. For the ends of the chain fixed, we have
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. (3.12)

3 ->
Zyn(o1w) = JeesS 8(Py4q=1) }g exp(-Bvij)doz...dON_l

It is convenient to define a set of functions, similar to the

Mayer functions used in the theory of imperfect gases.

hij =1 -~ exp(-ﬁvij) (3.13)
ashij+l pij+0

as hij +0 Py4 +

Eq. (3.12) can be rewritten in terms of these funections.

Eq. (3.14) represents the configuration integral for a freely-jointed
chain with excluded volume. The factor.involving 8§~ functions is due

to the ordering of the chain segmentsA(i.e. adjacent segments are con=-
nected). The factors invelving hij arise from the excluded volume effect.
This configuration integral is of prime importance, since the end-E?-end
distribution functions can be obtained from it using Eq. (3.8).

Because the product of &« functions appears frequently in this work,

it is convenient to define

N-1

The symbol Iy willl be used in this thesis where no ambiguity can arise.

Eq. (3.14) can then be written as

Zyg = feeolTy gg(l—hij)db*z...db*N_l. © (3.16)
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4, SOME SPECTAL CASES

The general equation, Eq. (3.,14), will now be solved for some
special cases of interest. The simplest postulate one can make is that
there is no interaction between segments of the chain (no excluded
volume), This model is equivalent to the random walk problem in three
dinmensions and has been used extensively in the theory of rubber elas-
ticity and polymers in solution. Eq. (3.14) will then be solved for
very short chains (2 and 3 links) exactly for the hard sphere poten~
tial., Although these short chain solutions are of no practical value
in predicting the behavior of real polymer chains, these solutions
have been worked out because they are the only cases in which Eq.
(3.14) can be solved exactly with our present knowledge of many-body
problems. Later on it will be interesting to éompare the results of

our more general theory with these exact solutions in the limit of

short chain length.
A, Non - Execluded Volume Problem

If the effect of intramolecular interactions is neglected

(i.e. vij = 0), Eq. (3.14) becomes,

N
ZlN = f"‘f 1Hl d(pkk—}-l-l)dgzb.odgN_l. (4.1)
e

These integrations can be simplified by introducing the Fourier trans-

form of the 6~ function., Define the transform pair,

£(k) = f6(p-1) exp(~ik+3)dp (4,2a)



14

3
8736 (py449-1) = SECK) exp(ikep, ., )dk, (4.2b)

This representation for (s(pN 1Nél)is introduced into Eq. (4.1) and the

order of integration interchanged to give,
> > > >

Since 3&_2 is fixed in the ;ﬁ-l integration, we have from Eq. (4.2a)

that

P d - ) - -
Substitution of Eq., (4.4) into Eq. (4.3) leads to
8ndz1y = SE2(k) exp(ikep)dkS.. /T sexp(=ikeBy_,)dPp...dby 5+

I1f this procedure is repeated (N-1l) times, the multiple integral of

Eq. (4.1) is reduced to a single integratiom.
g3 F) T Texp(iken. )k 4.5
72y = JHEM T exp(ikep, ) (4.5)

Inserting spherical coordinates into Eq. (4.2a) enables us to evaluate
f(k). Substitution of this result into Eq. (4.5) and integration over

the angular variables (see Appendix I for details) leads to the result
Nele N=-1
anle = (47) g(sin‘k/k) k2 (sin kpyy/keqy)dk . | (4.6)

This procedure for the reduction of the multiple integral in Eq. (4.1)
to a single integral is a special case of the technique used by

Montroll (18) for evaluating certain types of cluster integrals.
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Eq. (4.6) is the same (within a normalization constant) as the
probability distribution for a random walk in three dimensions, first
derived by Rayleigh (19). A simplified random walk theory was applied
to polymer chains by James and Guth (20). The more general theory is
due to Wang and Guth (21), who obtained various representations for the
inversion of the Fourier integral, Following Wang and Guth, the function

(sin k/k)N"'l in Zq. (4.6) can be expanded as,
(sin k/lc)N"l = exp[~(N=-1)k2/6][1~-(N-1)k2/180 + ,..]. (4.7)

Substituting this expansion into Eq. (4.6) and integrating term by

term yields,

Z 4wV 3/2n(-1) 1 Y2exp[-3 b2, /20811, (4.8)

Eq. (4.8) is a Gaussian approximation to the distribution functiom
Eq. (4.6). It is applicable when plN<<N and N>>1, Other approximations
for the inversion of the Fourier integral which apply to other ranges of
pyy @and N are derived by Wang and Guth., The exact distribution function
for avthree dimensional random walk has been obtained in the form of a

series by Irwin and Hall (22)., For practical calculations the simple

Gaussian form is usually adequate.

Mean square end-to-~end distance

The mean square end-to-end distance of a noninteracting chain can
now be computed using the configurational integral we have just evaluated.

From Eq. (3.8) we have
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<piN> = [027 dp. /IZ (4.9)

d—)~
NP’ P

Substitution of the Gaussian form for Ziy into Eq. (4.9) leads to
<p§N> = Zo“exp[-3g3@(N~l)]dp/szexp[-3p2/2(N-l)]do. (4,10)

where the upper limit of the integration has been approximated by infi=-
nity. The integrals in Eq. (4.10) are simple gamma functions and can

be performed to give,

<p2m> = (N-l) = n
(4.11)
<r21N> = naz.
This same result is obtained if one calculates the mean square end-to-
end distance using the more general expression Eq. (4.6) (see Appendix

I1 for details).

Mean square radius of gyration

Another parameter of interest in describing the average configu-
ration of a polymer chain is the mean square radius of gyration. This
value éan be determined absolutely (independent of any model) from
light scattering measurements. The center of mass ?ﬁ of a chain of
(n = N-1) segments of equal mass is defined to be

= -1 -»
r, =N E r oy (4.12)

where ?1 is measured from an arbitrary origin 0 (see Fig, 3,1), The

square of the radius of gyration ﬁb for such a chain is,
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R2 = N1 1 s2, (4.13)
§i is the distance from the center of mass to point i on the chain,
$2y = (?i—?m)- <¥i-?ﬁ) (4.14)

Substitution of Eq. (4.12) into Eq. (4.14) yields,

= r<, + N r,*r. — 2N T,°T.4
i i k3 k "j P i 7]
Since,
2 o .2 2 ', >
r 1 re, + r 3 2ri rj
we have,

! N
2 £ 2 - 2 2 eyl —p2 =1 2 wmp2 eyl
S ;= T4y (1/2N82) i% (r ki r2 -r j) + N jEl(r 13 r2 -r j).

Substitution of this result into Eq. (4.13) gives the radius of gyration

as

R2, = 2 2,
= (1/28%) Iz r?y

The mean square radius of gyration is thus
<R2p> = (a?/2N2) §§<p§j>. (4.15)

The mean square radius of gyration can now be computed for the noninter-
acting chain. Since the chain is noninteracting, the mean square dis-
tance between two points i and j on the chain depends only on that part

of the chain between points i and j. In other words, the ends of the
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chain (1 +i, j »N) do not affect the distribution between the points i

and j. Thus <r21j> for a noninteracting chain of N~1 segments is the

same as <rzij> computed for a noninteracting chain of |j-i| segments.

From Eq. (4.11) we have,
<r?y > o= a?|j-if. (4.16)

The mean square radius of gyration of a noninteracting chain of n = N-1

segments is
2 = 2 -
<R G> (a/W) §§ (3-1).

These summations can be performed easily to give the following result

for large N:
<R%> = (N-1)a2/6 = <r?, >/6. (4.17)
This result was obtained by Zimm and Stockmayer (23) and Debye (24).
B. Short Chains

For a nonzero potential function, it becomes very difficult to
compute the configuration integral Eq. (3.12). I will now compute the

integrals for 2 and 3 link chains using the "hard sphere" potential.

Three interacting spheres

The shortest chain in which there is an excluded volume effect
is a 2=-link chain or N = 3 subsystems. For this case, Eq. (3.12) reduces
to

Zyg = exp(=BV;y) S 8(p1p=1)6(py3=1)dp,. (4.18)
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Notevthét the term involving the excluded volume potential vy3 can be
removed from under the integral sign in this case. The integral in

Eq. (4.18) could be done by inverting the Fourier transform of Eq. (4.6)
with N = 3. I will use a different method which consists of intro-
ducing bipolar coordinates into Eq, (4.18). The Jacobian for bipolar
coordinates is obtained in Appendix III., Introducing this into Eq.
(4,18) leads to,

p 12+1

= 2nexp(—8v13) J 6(012~1)p §p,.~1)p

de S do. ..
12%12,. 7117237 P 23% 23

Z
13713
Mote that in using bipolar coordinates there are restrictions which
have to be placed on the limits of integration. The first integral
gives either zero or unity depending on whether or not the variable of
integration passes through the zero of the g~function's argument. Thus,
‘.‘)13'1'1
A = ) - -1 d .
Prafay T Amep (TR ) T Sleghepden,
1913 l

Performing the last integration gives finally,

2

L4
13 =

pl3?l3 = 2wexp(-svl3) for Og p

= 0. for p13 > 20

If we introduce the hard sphere potential,
Vig = for Pij < b (4.19)

vij = (0 for Prq > b.

We obtain,
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213 = 211/p13 for bg Pi3 < 2 (4.20)

= Q0 for‘p13 < b, P13 > 2.

Using Eq. (4.20) to compute the value of <p213> leads easily to the

resdlt,
24> = (16-b")/2(4-b"). (4.21)
Note that when there is no excluded volume (b = 0), Eq. (4.21) becomes
<9213> = 2 =7,

which agrees with the result obtained for a chain with no excluded vol-

ume , Eq. (4.11).

Four interacting spheres (25)

As the chain length increases, the difficulties in computing the
configurational integral increase greatly. This is exemplified in the
problem of four interacting hard spheres (or equivalently, a 3-1ink chain).
This is very much more difficult than the 3-sphere case discussed in
the last section. In order to do this calculation, I will introduce a
"tripolar" coordinate system, To my knowledge this coordinate system
has not been used before, and it might be useful in other problems such
as computing virial coefficients., The configuration integral for a

system of four spheres (subsystems) is found by putting N = &4 in Eq. (3.12).

Z =
" | (4.22)
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Note that the term involving vy, can be removed from under the integral
sign since subsystem 1 and 4 are held fixed in the integrations., Yo
appreciable simplification of Eq. (4.22) can be achieved by introducing
Fourier transforms., The multiple integrals do not collapse by this
technique as was found in the non-excluded volume case discussed earlier.
This is due to the presence of the excluded volume terms., Since the
kernel of the interior integral of Eq. (4.22) depends on pjy3, P93, P24s
it‘seems patural to use these coordinates in the integration. This

tripolar coordinate system is shown in Fig. (4.1).

Z
2
|
y
o
4 B
3.
X
Fig. (4.1)

Tripolar Coordinate System

In order to compute the Jacoblan for this coordinate system

we have to express pjs, pp3 and pyy in terms of the cartesian coordi-
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nates kyz. From geometrical considerations (see Appendix IV for de-~

tails), the following relations can be obtained:

p1p = (2 + y2 22)1/2 (4.23)
Pyg = (x2 + y2 + 22 - 2p;4 % cOS B - 2p;4y sin B + p213)1/2
924 = (Xz + Y2 o+ 22 - 2p14x + 0214)1/2

a2 2 .2
cos 8 = (p%y, *+ p%13 = P50/ 204013,

Let the Jacobian for this transformation be given by JT' In this case

it is easier to compute J}l than J,, directly.

J;:l = 3(1912023924)/3(}(373) (4.24)

This determinant can be worked out using the relations in Eq. (4.23).

These details are presented in Appendix IV, The final result is

Jp = =nyanp30 2472 sin Bojspq, (4.25)

where Z2s5in?g = (4.26)

2 (lwprpa2R) - (02 2 a2 Y274 m2 o (a2 2 o a2 N274 a2
Py (LmeosB) = (p%15 + 0%y = 0750 /4 0%y (PTp + 0%y5m #7590 % 4 0%y
4+ 2(p%y9 + P?

- el 2 -l 2
137 P 230 (P%1p — 0%y, 0% )cos B4 g0,

Note that JT is singular at the zeros of 013 P14° P34 and z. This |
causes no concern however, since the hard sphere 1interactions will
preclude the possibility of integrating through any of these singulari-
ties, ‘ |

The kernel of the outer integral in Eq. (4.22) will depend on

P, P and p . Since p is to be held fixed, the natural coordinate
137 34 14 14
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system for this integration is the bipolar coordinate system (see

Fig.(4.2).

Fig. (4.2)

Bipolar coordinate system.

The Jacobian for this coordinate system JB is computed in Appendix III.

T = P13P34/P14 | (4.27)

Using tripolar coordinates for the interior integration and bipolar

coordinates for the outer integration, Eq. (4.22) can be written as,

2 -
o 14214 (4.28)

Zwexp(-,va) II 8(p 34-1) exp(-BVlB)p 34dp 13dp34
- - _ . -
xJJlexp( BV24)5(012 1)6(p23 1p (z sin g)™1d

12°23°24 STRITRPE
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A Let us now introduce the hard core potential given by Eq. (4.19)
into Eq, (4.28). 1In order to simplify the calculation, take the diame- |
ter of the hard core to be exactly equal to the link length of the chain,
In other words, take b = 1*, Thus the exponential terms become step

functions.

exp(-svij) = () for pij <1 (4.29)

= ] for Pij > 1
or equivalently
exp (-Bvij) = H(D ij-l)

where H(X) is the Heaviside step function.
It would appear that the integrals in Eq. (4,28) are rather

simple since the P1o and Pay integrations involve §~functions.

> P23
Replacing p1ps Poy and 034 by unity in Eq. (4.28) implies certain re=-
strictions on the limits of the remaining integrations to insure that
we integrate through the zero of the arguments of the §-functions.
Th 1i be f b icti ' h

ese limits can be found by restricting 14° Poy and pqy3 SO that
adjacently numbered spheres are always in contact. Furthermore, it
is possible to replace exp(—3v24) and exp(-3v13) by unity in accordance

with Eq. (4.29), provided P14 P13 and Py, are constrained in such a

way that the spheres cannot penetrate each other. The problem of finding

*In chapter 2 we scaled all the distances by the link length a(; l=ﬂxy‘/a.).
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all these restrictions is clearly nontrivial, In effect we have cast
the problem in a form where most of the difficulty lies in finding the
restrictions on the limits of integration. These restrictions will
have to be found by a detailed geometrical analysis of the problem.

Let us now attempt to find the restrictions on P14 Poy and P13
when we require that the adjacently numbered spheres be in contact and
nonadjacent spheres cannot penetrate each other, Clearly the maximum
value tﬂ;t p4 Can take is P14 = 3, for then the spheres lie along a
straight line. Also the minimum value of p14 18 py4 = 1, since spheres
1 and 4 cannot penetrate.

Consider first the case when 2< P14 é‘3. What are the restric~

tions placed on pgys and pi4 when p,, is in this range? The maximum and

ninimum values that P13 can take are 2 and plhfl respectively, This can

be seen easily in Fig. (4.3).

Fig. (4.3)
Maximum (a) and minimum (b) values
of py3 when 28 074 < 3



For fixed p and p the maximum and miniﬁum values that 024 can

14 13’
be found from the two possible positions of sphere 2 when it lies in

the plane defined by spheres 1, 3, and 4 (see Fig, 4.4).

(a) (b)

Fig. (4.4)
Maximum (a) and minimum (b) values of p 4 for
fixed p;4 and p,, when 2 < 04, ;%

1f py, 1s in the range 3yé S Py, £ 2, the situation is dif-
ferent. pqy3 can take on values 1 SPq3 < 2, however, depending on
where 013 is in this range, sphére 2 can bump into sphere 1. This
bumping or "libration" when it occurs, causes the minimum to be one.
Thus p13 ﬁust be brokén up into three different ranges within.

342 2013 < 2. These three cases are shown in Fig. (4.5)

When the end-to~end distance M4 is in the range 1 <P1y 5:31/3,
then the maximum value that Py can take is something less than two.
This is because spheres 1, 2, and 3 cannot be placed with their cen~-
ters in a straight line without sphere 2 penetrating sphere 4 (see Fig.

4,6), Bumping of spheres 2 and 4 occurs for all possible fixed values
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(a) (b) (c)
no libration libration no libration
Fig. (4.5)

The maximum and minimum values of 024 for fixed
' p14 and three different values of py3.

Fig. (4.6)
The maximum value of P13 when p1, is
fixed in the range 1 < pq, < Y3,

of P13 in this range of py,; consequently the minimum p,, is one.
All the restrictions on Pi3 for fixed P14 and on Poy for fixed

P14 and p, have been calculated from geometry. These restrictions are
summarized in Table 4,1,

We now can perform the integrations over D195 Ppj3 and P3q in



Table 4.1 o
A summary of the restrictions on pjjfor fixed
P14 and on p24for fixed P14 and P13

= 2 2 y11/2
24, = 2+ pyy +[3(4-p2 )] /QM

2 2 - - X
(3 -py3 *e74) /2 £ (G4 = pfd I = gyt L

B, =
Range of (p13 )? (p13 )3 (poy )3 (pas )2
P14 P13 ‘max 13 /min 24 'max 24 Jmin
< ' _ 132
2 = 014 = 3 4 (914 1) A B+ B...
31i2§}14 ; 2 A_ 1 1" 11
" A+ A b 1
" 4 A+ " B_
< 31/2 A, 1 L 1

ngz-u



-29—

Eq. (4.28) by simply replacing these variables by one. Also the terms
exp(-gvyy,), exp(-gvi3), and exp(-gvy,) can be replaced by one. Note
that in order to make these simplifications, the variables P132 P14 and

pgy Must be restricted according to Table 4.1. Eq. (4.28) becomes,

= -1

where z sin 8 1s given by Eq. (4.26). 1In order to simplify Eq, (4.29)

make the substitutions,

- 2 . a2
w= (1+p 14 =P 24)/2011+ (4.30)
u = (1+p233 - 0214 /2073

v = (p213 + o214 -1)/2034-

Eq. (4.29) now becomes,
p 21,2 2 2,~1/2
- Y r - - -
014214 vadpl3.£i(l ve /o 13~ ° 13/4) + wv - wo] dw. (4.31)

The interior integration can be performed by completing the square of

the denominator giving,

P14214 = (4.32)
(p13) L ' ~-1/2%1
27 f13 max sin Li(w ~ v/2)(v2/4_+ 1- v2/p13 -pi3/4) _2] doyge
(p13)min w2

The limits of the integration can be found from Table 4.1 and are

shown in Table 4.2.

In the range 2 Py 5% 3, Eq. (4.32) can be integrated directly



Table 4.2
Limits of integration to be used in Eq. (4.32)

- 2 02 y11/2
28, = 2 4 pJ,%04,[3(4 -p7 )]

_ 2 —p2 _ .2yql/2
2914Ci = 914 i+ p13u + [(4 913) (1 u )]

Range of py4 (013 Mfax (P13 din ¥ W
22P1483 ¢ 4 (pyy — D2 c, c_
31!2; 914 z 2 A_ 1 } ft "

n n

A, A_ p14/2
" o4 A " C

10, < 32 A 1 ‘ " p14/2

.-OE-



to givé the simple result,
= 2 -~
Z14 2n<(3 014)/p1! for 2 < P14 S 3. (4.33)

When 31/2 =P 2, the integration can be brouken into three integrals,

.Lli"‘

two of which can be done analytically,

p14214 = T[2 + (P13 max = (P13)min] (4.36)
' (013)max ) /
+2n f sin" [ (py, = VI/2(v2/4 + 1 = v¥/p 4 =p%14/4) 1/ 2]dp 4
(P13)min

1/2 '
In the range 1 < p34 < 3 / we have,

P14Z21N = : (4.35)
p
21r([] 3_)max

[ {sin'll(pm'- v)/2(v2/4 + 1 = v2/p 5 - p%3/4) 1/2]+1r/2}dc>'13

172
forlé914é3/.

The integrals in Eqs. (4.34) and (4.35) were perfarmed numerically
using Simpson's rule on an IBM 7094 digital computer. The. results were

fitted to polynomials using a least square subroutine.

2 1/2

Zyy = ): aip14 i-1 for 1 < Pyg S 3 (4.36)
3 1/2
214 :LE b, pla for 3 <P S 2

The coefficients a; and hi are shown in Table 4.3.
The configurational partition function Z]_4 is discontinuous

at p;, = 1 and piecewise smooth in the range 1 < P14 S 3. A plot of
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this function is shown in Fig. (4.7).

Table 4.3
Coefficients in Egs. (4_.36)

i 21 L
1 15,024 -12,037
2 -27.794 17.036
3 34,548 -3,041
A -18,767 -
5 39.236 —

The probability that the end-to-end distance P14 is in the
range p34 > p14 T dpys is found by normalizing Zy4 according to Eq.
(3.8). |

3
Ploy,1deg, = 02,,2,,d0,,//0%2) ,do
This normalized probability density P[p14] is shown in Fig. (4.8).

The configurational integral Zia for a 3-link chain neglect—

ing the interactions can be found by inverting the Fourier transform

in Eq. (4.5) for N = 4,

i

214 8n2 for 0 £ py4 &1 (4.37)

4m2(3 - p14)/p14 for 1 < py4 3

These results can be normalized to give
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~34=

Po[pl‘_,'] = p?-lalz for O P14 S 1

This function is also plotted in Fig. (4.8).

It can be seen from Fig, (4.8) that the excluded volume effect
tends to shift the peak of the distribution to the right. 1In other
words, the chain is expanded. This is because many of the otherwise
available configurations of the chain are eliminated because of the
excluded volume. This will be true for longer chains as well,

The mean square end-to-end distance <p214> can now be computed

using Eqs. (4.33) and (4.36).

3l/2 5 _ 2 3 -
a02,> =7 (I apthetae + 7 (I bl hokdp
1 i=1 * 31/2 ya1
3
+ 242 £ (3 = p)p3dp. (4.38)

A 1s a normalization constant and is given by

3 V25 . 2 3
A=/, (% ap ”l)pzdp +/7  (z b pi-l)pzdo
1 i=1 i ‘ 31/2 i=]1 i
3
+ 2m2{(3-p)pdo. (4.39)

These definite integrals can be performed in a straightforward manner

to give the result,

2y,> = 431 = o0, (4.40)

When the excluded volume effect is neglected, the corresponding mean

square end-~to—-end distance <p214>0 is given by Eq. (4.11).



<p?-14>0 = 3 = n, (4.41)

Thus the mean square end~to-end distance is expanded by a factor of
n*33 for a 3-link chain (N = 4).

vThe possibility of extending this procedure to longer chains
does not seem feasible, For a 3-link chain, tripolar coordinates
were the natural coordinates since the kernel of the configuration
integral contained functions of the three distances P19s Pogs Poye For
longer chains the configurational integral will contain additional
functions. The problem of deducing the restrictions on the variables
was tedious in the 3-link chain.'For longer chains this problem be-
comes very much more compliéated. In order to attack longer chains
some approximations must be made. Since the 3-~link chain calculation

is exact, it will be interesting to compare approximate theories with

the exact result when N = 4.
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5, CLUSTER EXPANSION
A, Ceneral Formulas

It does not seem feasible to use the methods of chapter 4 for
long chains. 1In fact an exact solution for the configuration integral,
Eq. (3.14) for a nontrivial potential, may indeed be impossible,

There is a striking similarity between the configuration integral for

a polymer chain

ZlN = fno.erlJ(l "" hij)dpz.'.de’l. (3014)

and the configuration integral of a classical fluid (17). Although

this similarity has been observed by many authors, the analogy has not
vet been fully exploited; The methods that have been used in the phy-
sics of liquids and gases can be roughly divided into cluster expansions
and integral equations. I will discuss the cluster expansion of Eq.
(3.14) in this chapter and reserve the derivation of integral equations

for later.

A cluster expansion of Eq. (3.14) can be obtained by expanding

the double product.

N-2 N N-2 XN
N 1 ~n,. = l - 2: 2 h,. + "o 5.1
ill j=¥+2 ¢ iJ} i=1 j=i+2 ii (5.1

Substitution of this expansion into Eq. (3.14) and interchanging the

orders of summation and integration leads to,

N~-1
' ( Z ) i (1)
ZlN = f:) (-1) Z].N (5.2)
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where:

(o) i -5 e
ZlN hael f.ooer dpzcocde_l
(1) > >
le = ﬁ i Jeoof PN hkdeZ"'dON-l

-> >
BEEE r
2y = EEIIEJ STy by hodeyeeedoy
etc.

This type of expansion was suggested by Rubin (4), Inclusion of the
first two terms in Eq. (5.2) is equivalent to the "single contact ap~-
proximation" of Zimm, Stockmayer and Fixman (5) and leads to the wellw
known first~order perturbation theorv for the mean square end-towend
dist#nce after some further approximation (5-7). Fixman's second-
order perturbation theory is equivalent to keeping the first three
terms of Eq. (5.2). These perturbation theories are the only applica-
tions of the cluster expansion technique in the literature.

It is convenient to express Eq. (5.2) in terms of graphs or

diagrams. This technique is used in the theory of imperfect gases (17).

00000 - 5 006004 00 (5.

pairs

N > 00064850 v 00 4

fours

Each diagram represents an integral in Eq. (5.2). Each circle can be

Zinpin) =

4P 4

identified with a subsystem of the chain. The'atraight line or g-bond

joining circles 1 and i+l represents the é-function ordering potential
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'5(pii+l~1)vbetwéen subsystems i and i+l. A curved line or h-bond be~
tween circles {1 and j represents an hijmfunction. AThe restriction is
made that there can be only one hond between any two circles, In addi-
tion, only §-bonds can exist between adjacent circles 1, i+l amd h-bonds
between nonadjacent circles i,j. If we consider the N ecircles with

(n = N-1) §-bonds as a '"skeleton", then Eq. (5.3) is represented by

the sum of all possible combinations of h~bonds on the skeleton. For

a chain of N subsystems, the number of graphs in Eq. (5.3) can be shown

to be (see Appendix V)

Number of graphs in Ziy = 2(N—1)(N-2)/2. (5.4)

For long chains the number of graphs in the expansion of Z1N is approxi=-
mately given by 2N2/2.

In actual practice, the experimentally observed quantity of
interest is not the configuration integral itself but some quantity
averaged with respect to the weighting function Zjy. It is possible to

express the moments of Zjy in terms of the coefficients in the power

series expansion of the Fourier transform of Zjyx. In particular the

mean square end-to—-end distance <921N> can be found from the first two
coefficients in the expansion ofiilN(k) (see Appendix II for details).

coeff, (=k2/6) in Zyy(k)

2
P = —
coeff. (1) in Zyy(k)

where ElN(k) is the Fourier transform of Zyy(p1p).
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Zin(k) = fZ1y(p) exp(-ik-B)dd
(5.5)

BTTSZlN(plN) = [ -le(k) exp(iﬁ'gm)d_lz

Because the coefficients in the expansion of the Fourier transform
ElN(k) determine the moments (in particular <piN> ), it is frequently
more useful to work with the Fourier transform rather than the config-
urational integral itself., In anticipation of this, let us define the
Fourier transform pairs for the terms in the cluster expansion Eq. (5.2).
Zi;zk) = fziizp) exp(-1K.p)dp
- (5.6)

3 (i - "(i .-r‘-)- g
8% ZlszlN) leNzk) exp(ik+p ) dk
&
where i=0, 1, ... 2

If £(r) is an arbitrary function of the scalar r, then the

Fourier transform of f(r) defined by
£(k) = sE(r) exp(-iK.?)d¥,
can be writtén in the ﬁorm (see Appendix I)
(k) = 4“Zf(r)r2(siﬁ kr/kr)dr.

Since (sin kr/kr) is an even function of k, then f(k) must be even.

The configuration integral ZlNand the terms in the cluster expansion

Z§§) are functions of the scalar plN' Hence their respective Fourier

transforms must be even functions of k. Let us write le and Ei;)

as power series with coefficients z (N) and zi.(N).
J J
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Em(k) = 3: zj(N)kzj (5.7)
=(i) 23
Z1n (k) = § zijk

Because of Eq.(5.2), an obvious relation existe between aj and zij'

3
2 1

The mean square end-to—-end distance can now be written as
w2y > = =6 I (-1)Tz;1 (/2 (<172 (5.9)
e7IN r 113 % e 10° .

For large N there is a great multitude of terms in Eq. (5.9). If all
but the zero~order terms (i = 0) are neglected, the mean square end-to=-
end distance <p21N> reduces to n = (N-1). This is the result for the
freely jointed chain with no excluded volume which was discussed in
chapter 4. Let us now examine the terms in Eq. (5.9) for i = 1, This
represents a first—order correction to the idealized, noninteracting
chain, If this correction is small compared to the zero—order term,

a good approximation might be achieved by including only a small number

of terms in Eq. (5.9).
B, First-Order Correction

The first=-order correction term to the configurational parti-~

tion function for noninteracting chains is given by

(1) - - -+
ZlN i':' § f.l.frlq hijdpz.‘.de-l‘ (5'10)
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This cah be represented by a summation of graphs of the type

Mo--'o-o

Integrals represented by this type of graph can be factored at the

points 1 and j to give

v = 20 e gl id . (5.11)

This factorization can be achieved because the graph can be cut into
two parts at the points i or j. These points are called "articulation
points" or "nodes" in graph theories of the liquid state (26, 27).

The function Zi?) appearing in Eq. (5.11) is the configuration
integral for a chain with no excluded volume, This function is known

and was found in chapter 4, Eq. (4.6). The Fourier transform of

(V)

Zin @1y

) reduces to
29 ) = (4 sia w0V (5.12)
The Fourier integral representation of hij can be written in the form
h(k) = / hyjexp(-1k3)dd (5.13)
3 - - - -
g hij =/ h(k)exp(ikﬁpij)dk.

Using the properties of convolution integrals, the Fourier transform

of Zgé) in Eq. (5.11) reduces to

-(0) - =(0) -(0)
Ziy (& = g ? 214 (k)yij(k)sz (k), (5.14)
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where
yo1 ) = 0,280 o, Yexp(-1R3, )3
1 131§ P13/ e*P P13/%P13°

0
If the Fourler representation of Zij) is introduced into yij(k) and
the order of integration is interchanged, Yij(k> can be written in

the form
8rdyy (0 = 7 R(|E - TDZgy (L. (5.15)

Eq. (5.15) is valid for any choice of the potential as long as the
Fourier transform of hij exists, T will now speecialize this equation -
by introducing the hard core potential defined in Eq. (4.19)., This

potential implies that
hij = 1 for pij <b (5-16)
hij = 0 for pij > b,

Introduction of this representation for hij into Eq. (5.13) leads to

the result (see Appen@ix VI)
R(x) = 4n(sin bk - bk cos bk)/k3. (5.17)
Eq. (5.15) now becomes,
22y, (k) = n 3™ resin 27207 (sin bx - bx cos bx)x~3d. (5.18)

where x is the absolute value of the difference of the two vectors k

and E making an angle with each other of y.
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x = [K - EI = (k2 + 22 - 2kg cos 7)1/2
If‘dI is written in spherical coordinates, the angular integrations

in Eq. (5.18) can be performed (see Appendix VI). The final result for

yij(kI for the hard core potential is,

j-

wkyij(k) = (47) 1 é 2{sin Q/Q)j-iKl(k,ﬁ,b)dﬁ,

where

Ki(k, 2, b) = sin(k - b/ (k - &) = sin(k + )b/ (k + ).

1

N in the cluster

The Fourier transform of the first corrcction term Zi

expansion of ZlN becomes

nkZpy (k) =

N-1 N~2 N o

. 7 . i+j-1
121 5214 (sin k/k)

(47) Z (sin :L/z)rlzl{l(k, %, b)ds.

It is possible to replace the sum over i and j in this equation by a
single summation over m = j=-i, provided we multiply by an appropriate
combinatorial coefficient C(m), This factor represents the nuwber

of combinations of j and i (consistent with the summation) which lead
to the same value for m = j=i, This combinatorial coefficient is found
tao bc.(sce Appendix VII) C(m) = N - m, Thus Egé)(k) can finally be

written as

‘nkle (k) =

(o) Z, (W) (sin k/k) "“.‘Z (sin 2/2) 2K;(k, %, b)ds (5.19)
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Let us now extract the first two coefficients in the power

series of ﬁii)(k) in Eq. (5.19). K, (k, g, b) is an analytic function

of k for all k, hence this function can be expanded in a Taylor series
about k = 0, It can be verified by direct differentiation that,

Kl(k’ 2, b) = 2(sin 4b/82 - b cos 4b/L)k
~2(b? sin b/222 + b cos 2b/23 - gin zb/z” - b3 cos 2b/62)k3 + aee

Substitution of this series into Eq. (5.19) and the interchange of the
order of integration and summation enables us to identify the coeffi~-

cients
N1 o m
’nzlo = 2(471‘) 1% (N -— m) é(sin ﬂ./ﬂ,) Kz(k, Z, b)dﬂ: (5.20&)
xzqq (2¢am =131 o (5.20b)
oo 0
- LW = m) [(N-1-m) /6 [ (sin 2/2)™R, (ky £, b)de- [(sin 2/2)"K4(k, 2, b)da]
where the functions K, and K3 are defined by
K,(k, %, b) = sin &b/% - b cos &b (5.21a)
Kq(k, 2, b) = (5.21b)

b3 cos 2b/6 - b2 sin &b/20L - b cos 2b/22 + sin 2b/23

Solution for small b

The particular choice of the hard core potential function to
represent the potential between elements on the polymer chain involves

the parameter b. Thié parameter represents the diameter of the hard core
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which ﬁas been scaied by the segment length a, An illustration of

this situation is depicted in Fig. (5.1). b is essentiall& a measure
of the amount of excluded volume, When b = 0 all terms in the cluster
expansion become zero except the zero-order or non-excluded volume term.
The maximum allowable value of b corresponds to the situation when the
hard core diameters are exactly equal to the segment lengths of the
chain. The mean square end-to-end distance of our model chain can be
estimated in the limit of small excluded volume by expanding the inte-
grands in power series in b followed by term~by~term integration,

The following expansions canibe easily verified:
Ky(k, 2, b) = 22b3/3 + 0(b5)
Kalk, &, b) = 0(b3).
Substitution of these results into Fqgs. (5.20a) and (5.20b) yields -
TZ10
N=-1 ca m
2 (4m) T (N~=m) s (sin 2/2) [22b3/3 + 0(bS)]lds, (5.22a)
nm [o]
'n'le =
N-1 B m
-27 (47) I (N=m(N=~1=m) f (sin 2/2) [22b3/3 + 0(bS)lde. (5.22b)
m o

Let us now make use of the Gaussian approximation discussed in

chapter 4, Eq. (4.7). The integral in Egqs. (5.22a) and (5.22b) reduces

to a simple gamma function.



Fig., (5.1)
A portion of the model polymeric chain with a
hard core potential between elements of the
chain (the "pearl necklace" model).

(63/3) } exp(-m2/6)i2ar = (6n/nd) /*p3/2

Eqs. (5.20a) and (5.20b) can now be written as

1

: N- .
Z10. 7 6/m 2T 5, (8 - wim 2,

N~1
2y, = =(6/m)" /2 (4m)"1p3 RCERTLILE mu /2,
m=

It will be shown later that terms of higher order are of order b® or

less., The mean square end-to-end distance Eq. (5.9) becomes

-6[201 - 211 + 0(b6>]

2 =
<P71n
200 z10 " D(bs)

From chapter 4 it is known that
Zgg = 1

zp1 = -(N - 1)/6.
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Thus for small values of b, the mean square end~to-end distance has

the form

(N=~1) - (6/n)1/2b3 TN -m(N~-1~ m)/mslz
m

. (5.23)
1/2

<p21N> -

1- (6/m /%% 5 (v - m) /m >/ 2

If b is chosen sufficiently small, then the second term in the denomi-
nator of Eq. (5.23) is less than one. Therefore for sufficiently small
b, the denominator in Eq. (5.23) can be expanded as a geometfic series.

This procedure leads to

1/ 2

<ple> = (N - 1) + (6/7) bag (N - In)/rnh(2 + 0. (5.24)

The summation in Eq. (5.24) can be estimated using the Euler-Maclaurin

Summation Formula (28).

N-1 N~1
m-‘}EZ (W - m)/ml/2 = xj;l (N « x)/xl/zdx - (N -~ 1)/2

+ (1/12)[(N - D/2 +1 =N1] - ...
The integration can be performed easily to give
i:é - my/m¥ 2 - o -1 Vag - i - ¥ % oy,
For large N this becomes
N-1

EEANCE m /Y2 (3w - 1) Y2 (5.25)

The mean square end~to-end distance Eq. (5.24) simplifies to
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/

w2y = (N = DL+ (6/m 24’13 + L.

In the literature the parameter z defined in Eq. (2.3) is frequently

referred to.
z = )((3/2“&2)3/2111-/2 (2.3)

n 1s the number of links in the chain (i.e. n = N=1) and X is the

"binary cluster integral" defined by
3 -
X=a"/ [1-~ exp(-Bvij)]dOij
= 83 fhijdgijo

For the hard core potential in Eq, (4,19), X is simply the volume

excluded to one sphere by the presence of another,
X = (4/3)m(ab)*
The parameter z in Eq. (2.3) then becomes
z = (6/1)/%%1/2
for the hard core potential. Thus we obtain thae result
cp2qy> = n(l + 42/3 + ...) (5.26)

in the limit of small hard core diameter h.
The above equation for the mean square end-to-end distance has

been obtained by many authors (5-7) by making use of the approximation
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hyy = X6(Tij), (2.7)

where 6(;ij) is a three dimensional §-fuhction. This approximation
assumes that hij is so short range that the only contributions to inte~
grations involving hij occur at ;ij = 0, Since the true shape of the
potential function is not known, Eq.{(2.7) can be regarded as the defini-
tion of the potential, It approaches the hard core potential as the
hard core diameter b becomes small., It is not surprising then that the
mean square end-to-end distance of a hard core model chain reduces to
the result obtained using Eq. (2.7) as b becomes small.,

If Eq. (2.7) is taken as the definition of the potential function,
then it is possible to show that the mean square end-to-end distance
<p21N> is solely a function of the parameter z., Eq. (5.26) can then be

regarded as a power series in z, The coefficient of the z2

obtained by Fixman (8) by considefing Zié) (plN) in Eq. (5.2), and using

term has been

Eq. (2.7) for the potential. Fixman obtained
<p?1> = n[l + 4z/3 - (16/3 - 281/27)z% + ...], (5.27)

It is bbvious that <p21N> cannot be solely a function of the parameter

z for the exact hard core potential, Since 2z is directly proportional
to b3, a power series in z is equivalent to a power series in b3,

Egs. (5.21a) and (5.21b) indicate that the terms in the expansion of the
coefficients z10 and z4 increase as b3, b5, b7, etc. Only when the
potential is sufficiently short range so that terms of higher order

than b3 can be neglected, can <p21N> be viewed solely as a function of z.
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Solution by numerical integration

It will be shown later that some of the higher order graphs in
the expansion of <p21N> can be expressed in terms of the first-order
correction term. In view of this fact it would be desirable to obtain
an accurate representation of the coefficients zjy and 211 in Egs. (5.20a)
and (5.20b) for 0 <b < 1. |

The integrals in Eqs. (5.20a) and (5.20b) are uniformly conver-
gent with respect to m' for m > 1. The finite summations can be taken

under the integral sign to give

nzyg = 2(4n)N—l é wo(N,g)Kz(k, 2, b)dg (5.28a)

LE 26myNt ?[(1/6)w1(N,z)K2(k, 2, b) =  (N,8)K;(k, 2, b)]1d2 (5.28b)
0 |

where Ko and Kg are defined by Egqs. (5.19). The functions wo and wl are

given by -1

N

Y (N,8) = I (N = m)(sin £/8)™ (5.29a)
m=2
N-1 m

bi(N,R) = 22 (N - m)(N=-1-m(sin &/2) . (5.29b)
m:

These two series can be summed by'using the properties of the geometric
series. The details of the summation procedure are outlined in Appen-

dix VIII. The results are

(L = L2y (N,0) = 12N - 2 - L(1 - L D2 - »7, ¥5.30)

(1-1L) $y(N,8) = N(O¥ = 1)(1? =~ Ny +p2ion - 20 % v - 21V %n

N=-2

) N-1 -1 -1
+L2[2-L~=N. + (N=-1L J[2(1=1) =~2N+ 1]} - 1L)



where
L = (sin 2/%).

In the limit as £ - 0, L + 1, Using L'Hospital's rule, the

limit of wo and ¢1 as 2 -+ 0 can be found (see Appendix VIII).

gim g (N,2) = (N = D)(N - 2)/2 (5.31a)
20
2im Py (N, R) = (N = 1)(N = 2)(N - 3)/3 (5.31b)

-0

Using Eqs. (5.30) and (5.31), the integrals in Eq. (5.28) were performed
numerically on an IBM 7094 digital computer. The program made use of a
Simpson rule subroutine. The value of b was arbitrarily fixed at 0,25
in this calculation. The upper limit of these infinite integrals was
chosen large enough so that the maximum estimated error is less than
one percent. The results from these calculations are shown in Figs.
(5.2) and (5.3).

It is difficult to achieve a high degree of accuracy in the
numerical integrations of Eqs. (5.28a) and (5.28b). For computational
purposes the upper limit of infinity must be replaced by a large finite
number. It can be seen from Egs. (5,28) and (5.30) that the integrands

of the two integrations are of order 2 for large values of the inte-

gration parameter L. This rather slow convergence of the integrals
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requires that the upper limit of the integraﬁions be chosen to be

very large in oxder to cobtain accuracy.

Numerical solution using the Gaussian approximation

An alternative method of evaluating zjy and zj; in Eqs. (5.20a)
and (5.20b) consista of integrating first analytically and then summing
the resulting finite series numerically. Eqs. (5.20) for zjg and z1;
can be written as

N~1 N-1
LT 2(4m) mEZ(N - m)Q(b, m) (5.32a)
N-l N-1
nzq, = =2(4m) LN = m (¥ =1 -ma (b, m) /6 - Ql(b.m)]-

(5.32b)
Qo and Ql are integrals defined by
g (b, m) = / (sin ﬁ./z)mxz(k, %, b)de (5.33a)
) (o]
Q,(b, m) = / (sin 9./£)’“1<3(k, %, b)dse, (5.33b)
o]

where K2 and K3 are defined by Egqs, (5.19)., These integrals can be
evaluated analytically provided the Gaussian approximation is made for

(ein 2/2)™. With this representation for (sin 2/2)W, QO and nl become

(o]

ﬂl(b’ m) - Z exp(—m£9/6) (l-ﬂum/lﬁ() + on.)K.a(‘k, L, b)d%. (5.341))

Qo in Eq. (5.34a) is the difference between a Fourler sine transform

and Fourier cosine transform. The result obtained by integrating



Eq. (5.34a) is found to be (see Appendix IX).

8= (v/2)ere[(3v%/2m 12 (5.35)

- (3b2/2m) M 2exp(=3b2/2m) [1 + O(m~1)] .

91 can also be put in the form of Fourier sine and cosine transforms

(see Appendix IX), which leads to
2, = (0/6) (b + ) (37/2m) 2exp (=362 /2m) (5.36)
- (am/12)erf[(3b2/2m /2] + 0(1).

Egs. (5.35) and (5.36) are accurate only for large m, This
difficulty can be circumvented by finding the first few Qo(b, m) and
Q1(b, m) exactly and then using Eqs.(5.35) and (5.36) thereafter.

For m = 2 and 3 we have

]

Qg (b, 2) = Tb2/8

(b, 3) = mb3/12

Q,(b, 2) = -mb"*/96

-1b%/120 .

]

Qq(by 3)
Eqs. (5.32a) and (5.32b) can now be written as
279 = YL - 2)b2/4 + (N - 3)b/6 (5.37a)

N-1
+ T - m) [er£(3b2/2m) }/? = (6b2/mm) /P exp(-3b2/2m) ]}
m‘
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o =(N=1
6eam ™ Nz (5.37b)

(N = 2)(N = 3)b%/4 + (N = 3)(N ~ 4)b3/6 + (N ~ 2)b"/8 + (N = 3)b%/10

+ m§4 (N = m) [(N = 1)erf(3b2/2m) /2 - (6b%/mm) /2 (N = 1 + b2)exp(-3b?/2m)]
The summations in Egs. (5.37a) and (5.37b) were performed numerically
using an IBM 7094 computer for the special choice of b = ,25, The re~
sults are shown in Figs. (5.2) and (5.3) and can be seen to agree quite
well with the results from the previous section.

The mean square end-to-end distance can now be written including

the first-order correction terms. From Eq. (5.9) we have

6(N - 1) + 6277
R - (5.38)

1=z

Using the numerical values of Z10 and Z11 exhibited in Figs. (5.2) and
(5.3) for b = .25, <p21N> was computed as a function of the chain length
n. These results appear in Fig. (5.4) along with Eq. (5.27), obtained
by Fixman. The portion of the curve shown is for small enough n so that
Eq. (5.27) converges rapidly. It can be seén from Fig. (5.4) that the

numerical results of log <921N> start to deviate sharply from lineari-

ty as a function of log n for n > 15, It is known from experiment and
from computer generated chains on a lattice that <021N> « n' where Y is
a constant. Since 210 and z,q were computed very accurately by several

methods, it appears that higher order interaction terms in the cluster

expansion Eq. (5.2) must be contributing to <°21N> for large N.
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C. Higher~Order Terms

From the preceding section it appears as 1f higher-order
terms in the cluster expansion of <piN > contribute significantly for
longer chain lengths, To evaluate all the integrals in the cluster
expansion for large N is out of the question., It was shown earlier that
there are approximately ZNZ/Z terms in the cluster expansion for large
N. For a chain of 100 links the number of integrals to evaluate is
approximately 101500 . Furthermore, the difficulty encountered in
evaluating integrals representing many interactions will be much greater
than the relatively simple first~order terms discussed in the last
section. In developing an approximation to the exact solution it would
be useful to know the relative sizes of some of the higher-order terms
as a function of chain length. 1In this section I will present a method
for determining certain classes of higher-order graphs in terms of sim-
pler lower-order graphs., I will also give the results of some numeri-

cal computations for the contribution of higher~order graphs of a spe=-

cific topological type.

Current analoay

Many of the higher-order graphs may be siﬁplified by transforming
these integrals into Fourier space. As was seen in the previous section
the first-order graphs were greatly simplified by this technique. By
transforming various higher~order integrals into Fourier space, as was
done in part 2 of this chapter, it was noticed that a convenient

pnemonic device existed which allows the Fourier transform of an inte-
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gral to be written down immediately by examining the topoleogy of the
corresponding graph. We have called this procedure the "current analo-
gy." This technique consists of representing the graph as an electric-
al eircuit with current flowing from left to right. An example uging

the first-order graph is shown below,

n-§

3
Vm

/)
P
| i : j N

The Fourier transform of the circuit can be written following a
set of rules,

1. All currents flow from left to right and obey Kirchoff's
first law: the sum of the currents entering and leaving a
circuit point is zero.

2. The contribution of the straight portions of the graph to
the Fourier transform is Zig)(n). 1 and j are circuit points

- with £ and n;g the currents flowing through this section.

3. The contribution of the looped portion to the Fourier trans-

form is a convolution integral of h (loop current) with the

contribution of the straight sections of the loop; e.g.
-1 - > =0 >
(8r3) ~ J h(|n - sl)2§j)(a>d£

4, The total contribution to the Fourier transform is the pro-
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duct of the respective contributions from the straight and
looped sections.
As an example, consider the first—~order graph. The contribu~

(0) (0)

tion of the straight section is Z () Z (n). The looped section

contributes

(0)

vy~ 7 fclm - é:[)z (E)dE

The total Fourier transform of this graph is the product of these con-

tributions.

l (0)

(8n3) <n>z<0><n> /B -spz(o)cs)ds

This agrees with the result obtained earlier in this chapter by the
direct method.

Now consider the more complicated terms represented by graphs

of the form

The circuit for this graph is
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with the currents represented by the Greek létters and the circuit
points represented by i, i, k, L.

Following the rules established, the contributions of the
straight sections to the Fourier transform of the graph are Z1i (n)
and ZjN ().

The total Fourier transform of this graph becomes

(83" (0)

(n)Z (n) ;R - al)z (a)da
x £ (¢ - sl)z(o)(e)zw)(lt:- o+ Blhdb. (5.39)

Using this technique the Fourier transform of any graph, no

matter how complex the topology, c¢an be written down.

Second-order term

The second-order term in the cluster expansion, Eq. (5.2), is

of the form

206 )y =22 T T fud ry b .43

1N 1IN 2 N-1’ (5.40)
ijimn

This can be represented by sums of graphs of three topologically dis-

tinct types

(2) N (P = W:(nzq) + X%) + chr%), (5.41)

where

Wi = z ] c e (isolated)



) o

.Xj(_é) - Z O—o@—o .o 0=0—0O (nested)
| [ m n j N
(2) z O—o—o—m
Y = (overlapped)
1N I i m n N

The integrals represented by the graphs above are of three different

types: isolated, nested, and overlapped. Each type must be treated

separately.
The isolated graphs are the simplest to evaluate. Wiﬁ) ig de=-
fined to be
@ > >
WlN L X f ....f PN hijhmdpzobode_l,

[sumover 1 1 5 (1 -2), jEgmg (n~-2), n<N]

Choose a point s in the range j < s g m WI(I%I) can then be factored to

give

(2 _ %2 (), (1 > ‘
¥in 523 F 2157 (P1g)Zgy (Pgy)dog (5.42)

This expression can be simplified further by use of Fourier transforms,

Define the Fouricr transform pair
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»’Jiﬁ) (k) = (2) (0) exp(=ik*P)ddD (5.43)

(2)
81r3W1N (plN) = f WiN (k)exp(ik-plN)dk.

(1)

Introduction of the Fourier transform representation of Ziy into
Eq. (5.42) and interchange of the order of integration leads to the re~

sult
W2 () = % 232 (07 (. (5.44)
S=

It can be seen that the "isolated" graphs of the second-order
term in the cluster expansion can be expressed in terms of the first-
order term. This will also be true of the "nested" graphs. The cur-

rent analogy diagram for the type of graphs in Xié) is

n-&
'17
>0
N
The Fourier transform of Xgﬁ) becomes
%2 (n) = “”(n)z(‘”(n) r R - El)z(o)(ﬁ)z(?) at
- -(0
« I (T - B2 (pyad (5.45)

[sumover 1 i <m<(n=2),nx53 <N

Observe that



Y-

-(l) (O) (V)]

iy () =2 208 S R(E - BDEy ©Yerad

[sum over 1 < m < (n - 2}, n £ j].

=(2)

Thus XlN can b® written as

7(0)5(0) , h(]n - F!)Z(l)(E)dE (5.46)

=(2)
Xy (M) =T 2y, 24y

[sumoverl;i;(j-Z),jéN],

=(2)
This expression for Xj) 1s more complicated to evaluate than the

=(2)

corresponding relation for WlN

in Eq. (5.44), since Eq. (5.46) in-

volves an integration,

5(2)

It is not possible to simplify Y N the overlapping graph

5(2)

contribution to ZlN » 1n terms of the lower—order graphs as was done

for ﬁiN) and Xiw). This is due to the overlapping topology of the

()

graphs. The Fourier transform of Yy Wwas obtained in the previous

section as an illustration of the current analogy. In order to evalu-
ate this term it is necessary to evaluate a difficult three~center

integral.

Third and higher—order terms

It is obvious that higher—order terms with greater numbers of
interactions (h-bonds) entail many more graphs of varying topology.
Some of these graphs will be able to be expressed in terms of lower-

order graphs (i.e. they are reducible). As an example, consider graphs

of the "isolated" type.
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oo SR U P DN NP o W
K £ m n N

I a b loops

The number of loops or h~bonds represents the order of the graph.

These "isolated" graphs will make a contribution to terms of all orders
i

in the cluster expansion. Let us denote this contribution by ng) where

"1 is the order of the term.
1 terms

(1) _ h_ h h, h__ dg o 5.47
WlN z .raoof I'N hab cdot' kSL mon dpzou.d DN__l ( [y )

[sumover 1 £ a S (b =2), sesy 2 ZimS(n-2), nXN]

From the current analogy, the Fourier transform of Eq. (5.47) can be

written,
i terms
=(1i) =(0)=(0) =(0)=(0)
Wiy (k) = I Z1a %be *Zam Znn
- > (0 - -(0
x 15 - D2 @ydt...r wlm - 502V rds .
ab mn

Choose a point s in the range & < s < m then

=(0) -(0)  =(0)

Zom (M) = Zms (n)an

(.

ﬁi;) can then be factored into two parts which can be identified with
-] -
W§S l)(n) and 25;)(n) to give the simple relation
N-2

=), )
WlN (n) z

=(i-1) , (=(1) :
sm2i-1 WlS (n)ZSN ('ﬂ) ° (5.48)
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The nested graphs X{é) will also contribute to each term in

the cluster expansion.

(i—3)
Ioops‘

From the current analogy, it is possible to generalize Eq. (5.46) to

give a difference equation for the nested graphs of ith=order

Ry () =1 200 IR @ £ R - IS @@ (a9

[sum over 1 5 i < (j - 2), ] 5¥]

(1)

.It is obvious that the general terms le in the cluster ex—
pansion will contain an enormous number of graphs of various topology.
The isolated and nested graphs discussed are only two of many different
types of graphs present. It does not seem practical or possible to
classify and evaluate all the possible graﬁhs. This will not be at-
tempted here. Instead I will successively evaluate the isolated graphs
only. This will demonstrate the behavior of the higher~order graphs

wi;) as a function of chain length.

' (1) =(1)
Rather than evaluating Wiy or Wjy directly, it is more con-
venient to compute the first two coefficients in the power series ex-

-(i) -(i .
pansion of WéN (k). The expansion of z;N)(k) was given by Eq. (5.7)



with coefficients zij(N}' Let the coefficients in the expansion of

ﬁ(i)

1N (k) be dencted by wij(N).

- (1 23
Y 0 = 5 w0 (5.50)
Jd
Obviously zij(N) and Wij(N> are related by
zij(N) = wij(N) + [terms of other topology]. (5.51)

We now substitute Eqs. (5.50) and (5.7) into Eq. (5.48) to obtain

By () = (g (8)z (N - 8), (5.52)
5=2i=-1

+ [wio10(8)217(N = 8) +w,_ 1 (8)zo(N = )]k + ...},

Comparison of the coefficients of kzj_in Eqs. (5.50) and (5.52) leads

to the difference equations,

N-2
WigN) = sngiul Wi 180 219(N = 8), (5.53a)
N-2
wii(N) = s=§i—l [wi—10(8)z77(N = 8) + wy_11(8)z15(N -~ 8)], (5.53b)

These difference equatiohs were solved successively starting with i = 2
on an IBM 7094 computer. The initial conditions le(N) and zll(N) were
taken from Figs. (5.2) and (5.3) of this chapter., The hard core para=-
meter b, was taken to be 0.25 and the calculation of wig(N) and wy; (W)
were performed as a function of chain length N. The results of these
numerical computations are shown in Figs, (5.5) and (5.6).

These results can now be used to compute the mean square end-to=-
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b=0.25
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Fig.(5.5) - CONTRIBUTIONS DUE TO NON-OVERLAPPING TOPOLOGIES
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1.0 —

log n
Fig.(5.6) - CONTRIBUTIONS DUE TO NON-OVERLAPPING TOPOLOGIES
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end distance <021N>, assuming that all graphs other than "isolated

graphs" are negligible. Make the very crude assumption that

210N = w30
for 1 51 £ [(N - 1)/2],
zil(N) = Wil(N)
zio(N) = Q
for [(N - 1)/2] <1 5 (N - 1)/2,

zil(N) = (
In words this means that all graphs except the "isolated" graphs are
omitted. For a given chain length N, the maximum number of “isolated"
h loops that is possible is [(N - 1)/2] where the bracket denotes the
smallest integer less than or equal to (N - 1)/2. With this approxima~
tion, Eq. (5.9) becomes

=6 T (-1)Euy (M) |
2 > = i - . (5.54)
W ente ,m
1

The mean square end=-to-end distance was calculated from Eq, (5.54) using
the numerical results obtained from Eqs. (5.53). The results are shown
in Fig. (5.7). The erratic behavior of the mean square end-to-end dis-
tance for n > 40 indicates that inclusion of '"isolated" graphs only,

results in incorrect weighting of the terms zy; and zyg for large n.
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6., SELF~CONSISTENT CENTRAL FIELD APPROACH

It was seen in the previous chapter that contributions of
higher-order graphs to the configurational partition function become
important for long chain lengths. Since long chains are of interest
from a practical standpoint, it is clear that some approach other than
the cluster expansion is needed.

In this chapter T will describe the self-consistent field theory
approach to the excluded volume problem. The major econtributors to this
theory are Edwards (9), Reiss (10) and Yamakawa (12). FEdwards was the
first to approximate the pair interactions by a central field. Reiss
later attempted to show that this field satisfies a variational princiw-
ple. The present author (30) has pointed out an error in Reiss' treat-
ment, which indicates that Reiss' field does not satisfy that variation=-
al principle.

Reiss (10) has presented a method for finding the best central
field approximation. The method consists of using those functions ¢4
which minimize the Helwmholtz free energy. Ip chapter 3 it was shown that
the probabiiity of obsefving a polymer chain in a particular configura=-

tional state for a canonical ensemble of chains was
-> > -] -> >
Pdpj...dpy = Z exp(=BV)dpj...doy, (6.1)
where

V= i Uy t (1/2) iij Vige



] G

and
N-1
exp(-8 I Uii+l) = JI§ (pii+1—l) = FN.
i i=1

Note that it makes no difference if adjacent interactions vy, are
included in the second sum because of the S-function ordering pbten-
tials, Z is the unrestricted partition function defined by Eq. (3.5).
The term Iy involving the 8-functionc ie of course duc to the ordering

of the adjacent segments, From statistical thermodynamics we can write

the entropy of the polymer chain as
-> ->
S = -k -r...f Pin P dplncodec (6.2)
The macroscopic internal energy of the system is
N ] - > 4
E - f‘nof VP dplao-de¢ (6.3)
The Helmholtz free energy is defined to be
A=K - TS. (604)
Thus for a polymer chain we have
A= /.. [V+KT 20 PIP dBy...d By (6.5)

We now make the central ficld spproximation, which decouples the many-—

body problem.

(1/2) T vy, =T 4 (6.6)



T

>

This leads to an approximate probability distribution P

and partition function i.
P dpj...doy = 2-1 Iy exp(-B z 0g)dP .. By ,  (6.7a)
where
Z = f...f Ty exp(-8 I )R 1. edBy. (6.7b)

Let us now introduce a convenient notation for certain inte-

grals that will arise, Let

<X>y = Zzl feeof X Ty exp(-8 z ¢S)kgid3k, (6.8)

with

A ->
L, = Ia-n-f ¥ expi-ﬁ Z P ) nooap .
XL N s 8 k#i k

The subscripts refer to the segments that are held fiied in the integra-

tions. The approximate Helmholtz free energy resulting from Eq. (6.6)

1s thus
A= <V + KT n Bs. (6.9)

It remains to determine the best possible set of ¢g. The criterion that

Reiss used was minimization of the Helmholtz free energy in Eq. (6.9).

Using Eqs. (6.7a) and (6.1), Eq. (6.9) can be written as

o</ s v -1, =8 i 2, (6.10)

igg ¥ s 8
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Since Z is not a function of the coordinates, 6"1£n Z can be removed from
under the integral signs in Eq. (6.10). Furthermore, since P is normal-

ized, these integrations give unity.
A=<(1 vij - I 6>-p"1en 2 6.11
(1/2) i&j 3 L og>-B ( )

We now take the variation of A by allowing each of the ¢) to vary inde~

pendently.
5A = -B<L(1/2) 3, vig = T 45100
<D T vy -3 be7 <00
k=1, «..N
This expression can be rewritten in the form
6~Lek - (6.12)
s Eki"l[dl/z)ig:‘j TREEEERCTRAATES: b1 1801, 8B
k=1, «auN o
Since an extremal of A is desired, we set
A = 0.,

Because the variatioh §¢yx is arbitrary, the kernel of the integral in
Eq. (6.12) must vanish. The restricted partition function Z; in general

does not vanish, thus we are led to the set of equations,
J
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<(1/2)i;z:‘j viy - g ¢g> - <(~1/2)i_T§j vij - £¢S>k =0 (6.13)
k- = 1,, 2, ocoNc

a A=l
If Eq. (6.13) is multiplied through by the factor Z;Z the

equation can be rvewritten in the form,

~ h-l » A-l
2, 27 +[<(1/2) ¢ -2 ¢ > = [227<(1/2) L v, . =-I ¢_>71=0.(6.14)
k 1#1 Vi3 . 's Kk 14 Mg sk

The method used in obtaining Eq. (6.14) is based on Reiss' paper
(10). FEq. (6.14) is identical to Eq. (25) of Reiss' paper, only it is
written in our notation. Observe that if the second bracketed term is

integrated over the coordinates of k, the first term results,
~ -~ L
Z7l ; 2,<(1/2) T vis = T ¢g>pdpy = <(1/2) I vyy = Idg> (6.15)
k i#5 ij s $s>k9PK 1# ij s¢s
If one chaoses,

bg = (1/2):‘;1 <Vij>i' (6.16)
{ fixed
then the first bracketed term in Eq. (6.14) is made equal to zero.
This can easily be proven by direct substitution.
<(1/2) £ wys =L 6> = <(1/2) T (v;., = <v;.>,.)>
| 1% ij s 'S 1#4 ij ij i

= (1/2) £ (<v,.> = <<V, .>,>)
g 1374

= 9\__1 " A-l _ - -
<<vij>i> AR zi[zi Joodf viji‘N exp(-B Z ¢5)k£1 dpk]doi

<<‘.’ij>i> = <vij>



Therefore,

<‘1/2)i§j (Vij - <vij>i)> = ()

Reias contends that since Eq. (6.16)*makes the first bracketed term of
Eq. (6.14) vanish, and since the integral of the second bracketed term
is precisely the first bracketed term, then Eq. (6.16) is a solution

to Eq. (6.14). This of course is not necessarily true as I have point-

ed out in (30). The fact that the integral
/ zk<(1/2)i§j (vij,— <vij>i)>kdak =0

vanishes does not imply that the integrand necessarily vanishes iden-—
tically. Thus the second bracketed term of Eq. (6.14) is not necessari=-
ly zcro when Eqes (6.16) is substituted for ¢;. Direct substitution of

Eq. (6.16) into Eq. (6.14) leads to the condition

2
»~ l\-l .
(l/z)iﬁj ZkZ (<Vij>k - <<vij>i>k) = O . (6.17)
Proceeding as before, it is possible to show that
<<vij>i>k = 2§l f 211({2;.1 f....f vij FN exp(-B z ¢s)k£i d B‘k]dgi
s

<<vij>i>k # i3k for arbitrary Vige

Thus unless 1t can be shown that the sum of non-zero terms in Eq. (6.17)

*
Actually, Reiss erroneously omitted the factor of 1/2 in Eq. (6.16),
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add up to zero, then Reiss' solution in Eq. (6.,16) does not satisfy
this particular variational principlé.

This does not mean that Reiss' solution for ¢; in Eq. (6.16)
is not useful. It possesses the same form as the Hartree-Fock poten-
tial used in multi-electron atoms. Furthermore, it is a physically
reasonable approximation to make since it effectivély averages over
all the interactions of a given segment of the chain.
| Eq. (6.16) is an integral equation for $;. Reiss used the
method of successive approximations to approximate the solution. A
first=order approximation ¢§Ll) can be obtained by substituting an
approximate ¢§0) in the right hand side of Eq. (6.16)., This procedure
could presumably be repeated to obtain higher-order approximations, al=-
though nothing ie said about convergence in Reise' paper. Raiss made
the logical choilce .of ¢§0) = 0 which represents the non-excluded volume

problem discussed in chapter 4.

Wy (0)
¢1 (31) = (1/2):];&‘1 <Vig>i
i fixed
- vy 28D @™ g,
i fixed
(0) (0)

By making the Gaussian approximation for zij and Z; 7, replacing the
summation by an integration, and integrating over the angular parts of
33 above, it is possible to show that,

(1) Y Tres 2_,2

p1¢y =3 i v(r)dr lr-{oil(r + x)exp{~(3/21) [(x + r)*~p{]1}dx,



which can be gimplified to

piq,i(l)u i ? v(x){l - ekp[-6x(x + Di)/i]}dx. (6.18)
[o]

Eq. (6,18) cannot be simplified any further without specifying the
nature of the potential v(r). It should be noted that because v(r)
appears as a factor in the integrand of Eq. (6.18), difficulty arises
when the hard sphere potential is used for v{(r). This is because the
zerc—-order approximation was taken to be the noninteracting chain prob-
ability distribution. To avoid this difficulty, Reiss used a finite

repulsive potential
vip) = for 0 5 o < A | (6.19)
= 0 for p > A,
Eq. (6.18) was then integrated_to give
psbil)(p) = 1e{r = (in/24) Y/ ?exp(3p?/24) (6.20)
x [erf[(x + 9/2)(6/1)1/2] - erf(602/4i).1./\2.i}-

Yamakawa in a later paper (12) used a potential similar to that used

by Fixman (8)
“v(p) = kT X 8(P). ' (6.21)

where X is the binary cluster integral and 6(3) is a three dimensional
§~function., Inserting this potéqcial iuto Eq, (6.18), Yamakawa obtained

the result
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)1/2

¢4 () = (2n/3 £[(a2p) - (3p/1a'")] (6.22)

with | £ = (3/2m)%%x.

Now that the central field has been obtained, the probability

distribution P in Eq. (6.7a) can be written as

” o=l N=1
The singlet distribution function

~ A 3>

can be written in Markoffian form.

~ - -

P1[°3+1] fPltoj] w(pjoj+1)daj (6.23)
w(pjpj+1) is the conditional probability. The details of these calcu-
lations can be found in the papers by Reiss and Yamakawa. Both authors

found an equation of the form of Eq. (6.23), although they differ on the

form of . Both authors passed to a differential equation of the

Fokker-Planck type. The probability distributions were obtained and

Reiss found the result,

‘921N’*‘ﬁ4/3 (6.24)

whereas Yamakawa found

[y

ol e 0o/, (6.25)

It should be noted that Reiss' solution was obtained in the limit as the
magnitude of the repulsive potential approaches zero. Yamakawa's solu-
tion was derived from the three dimensiohal 6-function potential of

Eq. (6.21) in the limit of large n. In both cases the parameter describ-

ing the strength of the interactions has been suppressed.
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7. INTEGRAL EQUATIONS FOR Zpy

Various integral equations for the radial distribution function
have been derived in the theory of liquids. These equations give results
that.agree reasonably well with experiment. There are two general me~
thods by which these integral equations have been derived:

1. The Yvon-Born-Green-Kirkwood type of equation (14,15) is
obtained by differentiating the phase integral representa-
tion of the radial distribution funetion for a fluid, Thie

" leads to an equation for the pair distribution function in
terms of the triplet distribution function. The Kirkwood
superposition approximation (16), which relates the triplet
and pair distribution functions, is usually made., These
two relations lead to an intggro-differential equation for
the pair distribution function.

2. Other tyﬁes of integral equations for the radial distribu=-
tion function have been obtained for fluids by use of graph
theory. The Percus-Yevick (31,32) and Hypernetted Chain
(26,27).equations are familiar examples.

The excluded volume problem is very similar to the problem of the
classical fluid, The form of the restricted partition function in Eq.
(3.12) for a polymer chain is very similar in form to the phase integral
representation for the radial distribution function of liquids. The
essential difference between the two is the constraint that the adjacent

subsystems in the polymer system be fixed relative to each other., This
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gives rise to the §~function ordering potentials discussed in chapter 3.
In this chapter I will derive several integral equations for the restric-
ted partition function Z1N of a polymer chain. This approach has not
been used by anyone on the excluded volume problem until now, with the
exceﬁtion of Naghizadeh (13), who recently derived a Kirkwood type of

equation,
A. Yvon-Born-~Green Type Equation

An integral equation can be obtained for Zm by following a
procedure analogous to that used by Yvon, Born and Green (14) for liquids.

In chapter 3 we found
> >
Zl‘N - f.oofPN exp(-*B gj Vij)deos-de.,l (3.12)

We now take the gradient VN with respect to the coordinates of the Nth
subsystemn,

N=-2 - .
UNZIN = =B SesoJTy 1 exp(~gviy) I VN Vindoae+-doy-1 (7.1

> e
+ fo . OII‘N-]‘ I}-j exp <-Svij)vN6 (pN"'lN_l) dpzo . ode_l

This equation can be rewritten in terms of the restricted partition
function Ziyy, where 1, i, and N are held fixed,

N-2
-8 I

iy = B2y B Z S ZianTvand By

N
+ J [Z1n-18/6 (P -1~ DIVx6 (o 1y=1) By (7.2)

[ZlN_lNlé(oN_lel)] simply means that §(py.yy-1) is to be omitted in
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Z1N-1N+ In order to solve for the function Zjy, the triply restricted
Z,yy must be determined. This can be accomplished by making the analog
of the Kirkwood Superposition approximation, which is well-known in the

theory of the liquid state (16). Im our case this becomes,

Z1anP 1P 4P = 2P N2y P2 (R (7.3)

Eq. (7.2) then can be written as

[
vnCen Zyy + BVIN) =/ ZiN-1INS (PN-in D don-g (7.4)

N=2
- I sz

A dg' .
{=2 Ii7iNNTINTY L

In taking the gradient, VN’ all subsystems except the Nth sybsystem arxc

to be considered fixed. As a consequence, we can write,

vn(en 2y + BVIN) = S Z1Ne1Vn-1n6 (on-1x1) doN-1 (7.5)
N2 N
-6 I, L Z13Zi0Vinvinde s
where VlN signifies the gradient with respect to a coordinate system
with the origin at subsystem i. Eq. (7.5) is now detted with a unit

vector in the 31N direction to give,

9
3;__ (&n ZlN + BVlN) = f le-lG'(pN-lN_l)cos eN_ldgN_l (7.6)
1N

N-2 ' R
-8 iﬁz S ZliZiNv {Ncos eidpi,

where 61 is the angle between the vectors BlN and 31N° From the law of

cosines, cos 84 can be written as
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= 2 - p2 -0l .
cos 65 = (p%y; = 0%py = 0%y /2041w (7.7

Using Eq. (7.7) and introducing bipolar coordinates into Eq. (7.6), we

are led finally to,

) Il—DlNl
71N g_._(zn Zin*t eV =T S Ze1(® ey + 3+ xH)dx (7.8)
P 1N flﬂlNl
N=-2 , p1ntx 5 ) )
_ d -
+ 8w : S v (x)ZiN(X)dx I yzli(y) G wtE y2)dy
i=2 lo1y=x|

Eq. (7.8) is a nonlinear, integro-differential equation for the
restricted partition function Z1n .I It is analogous to the Yvon=-Born-
Green equation for the radial distribution function of a liquid. Eq.
(7.8) is an approximate equation because of the utilization of the

Kirkwood superposition approximation.

B. Kirkwood Type Equation

Kirkwood (15) used a method somewhat similar to that of Yvonm,
Born and Green. I will extend Kirkwood's method to obtain an equation
for le'

Define a coupling parameter Dby

N-1 . N=2 N-~3 N-1

vV = iEl Yii+l +n iEl ViN + igl j£i+2 Vij (7.9)

The coupling parameter n can vary between zero and one. It effectively
"turns on" the interaction potential between subsystem N and the rest of
the systems With this notation the restricted partition function ZiN

becomes
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ZlN = [foodS PNEXP["'B(” g ViN + f' Vij)]dﬁ'z-..dﬁ)‘m,l . (7010)
J
Now differentiate Eq. (7.10) with respect to the parameter n.
B0 o foif \3ogvyy Tyexpl=8(n J Viy + F.viy) [d5ge e dd,
BT 1Z18V1N Tyexpl=8(n § viy + §,vi3) 1dp2. . don-1

Integration over all variables except 31 leads to
-1 N=2 >
-B7*9Z1y/3n = Zin(pinsn)viy + ir.z S 79 nvindoy- (7.11)

We again apply the Kirkwood superposition approximation in order ta

express the triply restricted partition function ZliN in terms of the

doubly restricted functions. Using Eq. (7.3) in Eq. (7.11), we obtain

N"Z >

~8=130n Z.4/0n = Vqiy +
1N N7 2,

Eq. (7.12) is another nonlinear, approximate integro-~differential equation
for ZiN.

Let us employ the method of successive approximations used by
Reiss (chapter 6). Assume a zero-order solution of ZlN(plN;n) is given
by Zig)(plN), the result obtained from the non-excluded volume problem.
If this.zero-order solution is inserted in the right hand side of Eq.

(7.12), then the equation can be integrated immediately.

N2
—g-1 . . - (0),(0) >
B in[ZIN(plN,n)/ZlN(plN,O)] -n[le + iiz J ANg e ViNdpi] (7.13)

n is now put equal to one since this corresponds to "turning on" the

potential between subsystem N and the remaining system, The result is

Zin(ry) = 21x(P1N30)exp(-Bv,ygg) | (7.14)
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where,

= N-2 (0),(0), o
- + Z Z »
Verr " Vi T B Paa aw Tn®s

The appropriate initial condition is

ZinP 130 = Z1y-1 0 18-1)8 P r—1~D) .« (7.15)

Eqe (7.14) now becomes

ZINC IV T 2y Pan-1) S Pyagn D exp(By ) (7.16)

which is a difference equation for ZiN'

This result is analogous to the central field approach of
Reiss discussed in chapter 6., Reiss used an equivalent field poten-
tial ¢; which essentially is an average over all interactions vy (see
Eq. (6.16)). In this treatment we found a Vofs which is essentially
the samé as Reiss' central field.

Naghizadeh (13) used a similar approach to obtain a different

integro~differential equation. Naghizadeh solved this equation for the

case of ring polymexrs.
C. Percus-Yevick Approach (33)

The Percus-Yevick (PY) equation for the radial distribution
function of fluids was originally derived by Percus and Yevick by
using a method based on "collective coordinates' (31). A much simpler
derivation based on graph theory was presented by Stell (32). Recently,

Percus (41) has shown that the PY equation can be obtained from a function=-
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al Taylbr expansion by keeping only first—order terms, provided the
proper functionals are chosen. The fY equation is generally considered
to give results which agree with experiment better than any of the
other integral equations avéilable at the present time,

In this chapter I will derive the analog of the Percus-Yevick
equation for a polymer chain (33)., The method which I will employ will
be analogous to that used by Stell.

In chapter 5 a cluster expansion for.Zm was given in Eq. (5.2).
A graph representatio