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ABSTRACT 

A theoretical investigation of the effect of intramoler.nl;i.r 

interactions on the configurational statistics of a polymer molecule 

is presented. This problem has been studied by many authors and is 

known as the "excluded volume problem" in the literature. A statisti­

cal mechanical approach is used. Many of the sfmilarities between the 

· theory of "classical fluids" and the excluded volume problem are ex­

ploited. 

The configurational statistics of 2 and 3 segment chains are 

computed exactly for the "hard sphere potential". The integrations 

were performed by introducing bipolar and tripolar coordinate systems. 

It was found that the mean square end•to-end distance for these cases 

was n1•33 where n is the number of segments. These results are of no 

practical use in predicting the properties of real polymer chains which 

are much longer. It is instructive, however, to compare these exact 

results with approximate theories in the limit of short chain length. 

A "cluster expansion" is written for the partition function of 

a polymer chain with the ends of the chain fixed. This is analogous 

to the cluster expansion for the partition function of an imperfect gas. 

The first-order term in this expansion is evaluated for the hard core 

potential. In the limit of small hard core diameters, the first-order 

term leads to the well-known first-order perturbation theory for the 

mean square end-to-end distance. The exact results of this first-order 

correction term are used to construct higher-order terms of a specified 
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"isolat:ed topology". If only these terms are used in the cluster 

expansion, incorrect results are obtained for the mean square end-to­

end distance. This indicates that higher-order terms of complicated 

topology are significant for longer chain length. 

Various approximate integral equations for the restricted 

partition function of a polymer chain are presented. The most prom­

ising of these equations is the analog of the well-known Percus­

Yevick equation in the theory of liquids. In deriving this equation 

two topologically· distinct types of graphs are defined. These are the 

"nodal and elementary" graphs. An exact equation relating these types 

of graphs is presented. The analog of the Percus-Yevick approximation 

is made which leads to an integro-dif f erence equation. This equation 

is solved exactly using the hard core potential for the special case 

of the hard core diameter equal to the polymer segment length. Results 

of numerical calculations are given for other intermediate values of 

this diameter ranging from zero to the segment length (the "pearl neck­

lace" model) • This leads to values of y ranging correspondingly from. 

1.0 to 2.0 where <r2 1N> « MY with <r2 1N> the mean square end-to-end 

distance and M the molecular weight. The numerical results for <r2
1N> 

as a function of chain length are in good agreement with the second­

order perturbation theory of Fixman for small hard core diameters. 
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1. INTRODUCTION 

The field of polymer physics has expanded greatly since 1940. 

The motivation for the study of polymers has come from two sources. 

With the advent of industrially important synthetic polymers came the 

need for a basic understanding of polymer structure and behavior. Bio­

chemists also realized that many of the biologically important compounds 

such as proteins and nucleic acids are ~olymeric in nature. Thus the 

study of polymer physics is important to both the engineer and the bi-

ologist. 

Theoretical polymer physics can be divided into phenomenologi-

cal and molecular theories.. In phenomenological theocy one attempts to 

describe the physical behavior of polymers in terms of a minimum number 

of experimentally determinable parameters. Examples of this approach 

are the fields of thermodynamics, fluid mechanics and elasticity. In 

molecular theory, on the other hand, one attempts to describe the be­

havior of polymers in terms of molecular parameters. These molecular 

parameters are..!!!.. principle calculable from quantum mechanics. Practi­

cally this is often not possible, and some rigor is necessarily sacri­

ficed in finding these molecular parameters. 

Many of the unique physical properties of polymers are due to 

the fact that the polymer chains are capable of assuming a very large 

number of configurations. Molecular theories to deduce these properties 

necessarily involve the use of statistical mechanical methods. The 

configurational statistics of a polymer chain are the starting points 
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for theories on polymer elasticity, viscoelasticity, polymer solutions 

and molecular weight determination. A sirnplif ied model of a non-inter­

acting polymer chain has been solved exactly and has been successful in 

approximating the actual behavior of polymeric chains. In order to re­

fine this simplified theory, the interactions of the polymer molecule 

with itself and with other molecules must be incorporated into the theory. 

The effect of intromolccular interactions or the interaction of a poly­

mer chain with itself has been a subject of considerable interest. The 

effect of intramolecular interactions on the configurational statistics 

of the chain is commonly known as. the "excluded volume11 effect. This 

problem has been studied by many polymer physicists in the past with 

very limited success (1-13). 

The excluded volume problem has many similarities to many-body 

problems in other areas of physics. The equations from the theory of 

imperfect gases and liquids, in particular, are similar in form to the 

polymer chain equations. In this thesis, the excluded volume problem 

will be investigated in detail and some mathematical techniques used 

in liquid state theory will be applied to this problem. 
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2. SUMMARY OF PREVIOUS WORK 

In this chapter I will give a brief summary of Rome previous 

work on the problem of computing the configurational statistics of a 

freely-jointed polymer chain with intramolecular interactions. 

The excluded volume effect in polymers was first treated by 

Flory (1). Flory assumed that the distribution of segments about the 

center of mass and the end-to-end distance of the chain was Gaussian, 

although the width of these Gaussian distributions is enlarged by the 

excluded volume effect. In order to. find the amount of enlargement, 

the influence of intramolecular interactions is treated as a swelling 

phenomenon for which thermodynamic formulas for solvent-polymer systems 

exist. Flory found the result, 

as - a3 = cnl/'2 (2.1) 

for a chain of 2n segments. a is the ratio of the root mean square 

end-to-end distance of the chain to the corresponding end-to-end dis­

tance in the absence of intramolecular effects (random walk problem). 

Thus for large n, Flory's theory predicts that'the mean square end-to­

end distance is proportional to n6./5 • The physical significance of 

Flory's method is somewhat vague, and his assumption that the distri­

bution remains Gaussian is certainly questionable. 

Hermans, Klamkin and Ullman (2) derived a generalized Fokker­

Planck type of equation for the distribution function of ·a chain with 

excluded volume. This entailed the assumption of a specific form for 
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the conditional probability of the nth segment being at rn, given that 

the first n-1 segments are held fixed. These authors found that the 

mean square end-to-end distance differed by only a constant from the 

corresponding value !or a non-interacting chain (i.e. a"" constant). 

Rubin (3) has given evidence that the Herman, Klamkin, Ullman choice 

of the conditional probability is not correct. In another paper Rubin 

(4) presented arguments that the mean square end-to-end distance is 

proportional to n raised to a power which has an upper bound of 3/2. 

Zimm, Stockmayer, and Fixman (5) derived an integral equation 

of the Mnrkof f form for the pair distribution function of a polymer 

chain. The kernel of this integral equation is the conditional proba-

bility. This function is an extremely complicated multiple integral 

which involves the pair potential between any two points on the chain. 

A first-order approximation to this conditional probability was obtained 

using the so-called "single contact" approximation, which considers 

only those confi.gurations in which a single pair .of segments is inter-

acting. Since the potential between nonadjacent segments v(r1j) 

is short range, Zimm, Stockmayer, and·Fixman approximated this potential 

by 

(2.2) 

where o(rij) is a three-dimensional delta function and 

-+ 
X • /[l - exp(-v(r1j)/kT)] drij• 
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With this form for the potential these authors found that the mean 

square end-to-end distance <ryN> was a function of the parameter, 

z = X(3/2ira2) 3/2nV2 · (2.3) 

where a is a segment length in the chain. Zimm, Stockmayer and Fixman 

found the first term in the expansion of <rtN> in terms pf z. 

<rlN> 
a2 = 2 = [l + 4/3z + •. ~1 

<r1N>o 
(2. 4) 

<rtN>o is the corresponding mean square end-to-end distance for a chain 

with no excluded volume. This equation was also obtained by Yamamoto (6) 

and Grimely (7). The next higher-order term in this expansion was ob-

tained by Fixman (8) 

a2 • [1 + 4z/3 - (16/3 - 28n/27)z2 + ••• ]. (2 .S) 

In deriving this equation Fixman also approximated the potential by 

Eq. (2 .2). 

Notable progress was made recently by Edwards (9) and Reiss (10), 

who decoupled the many-body problem by a self-consistent field technique 

similar to the Hartree Fock (11) method for many electron atoms~ 

Edwards solved his equations asymptotically and found that <r!N> « n6/s 

Edwards' treatment, although original, is very difficult to read and, as 

Reiss points out in his paper, is somewhat incomplete. In his treatment, 

Reiss replaced the sum over pair interactions l/2i~j vij by ~~i where 

the ~i are chosen to satisfy a variational principle. That the ~i 
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rigorously satisfy the variational principle is questionable (11). 

Reiss was able to obtain .a zeroth-order approximation to ~i from his 

equations. This was used to obtain an integral equation of the Markoff 

type for the probability distribution. He then passed to a differential 

equation which he was able to solve in one limit. Reiss found that 

Yamakawa (12) has shown that Reiss left out a term in deriving 

the integral equation. Yamakawa used Reiss' self-consistent potential 

with a somewhat different integral equation to obtain <ryN> ~ n° 15 as n+co. 

This treatment also entailed the approximation of the potential as in 

Eq. (2.2). 

One of the drawbacks to using a self-consistent field is that it 

is not known how good the approximation is. Since the $i are chosen 

to satisfy the variational principle they represent the best set (there 

may be more than one set) of_ functions ~i under the restriction 1/2 

i¥j vij = f9i• The variational principle says nothing about the error 

involved in the original approximation however. It should also be pointed 

out that only a zeroth-order ?Pproximation to the $i which satisfies 

the variational principle is actually used in the treatments of ·Reiss, 

Edwards and Yamakawa. 

Nagh1zadeh (13) derived a Born-Green-Kirkwood (14, 15) type of 

integral equation for the distribution function. The Born-Green and 

Kirkwood equations were originally derived for the radial distribution 

function in liquids. Naghizadeh's equation for the n element distribution 

function contains the (n+l) element distribution function. , In order to 
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truncate this hierarchy of equations, Naghizadeh made the analog of the 

"Kirkwood Superposition11 approximation. The resulting equations are 

very similar in form to Reiss' equations. This is not very surprising 

since t:he Kirkwood Superposit:i.on principle involves the averaging of 

forces, which is essentially what the self-consistent central field 

does. 
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3. GENERAL THEORY 

In this chapter the basic equations for the distribution 

function of a freely-jointed polymer chain with intramolecular inter-

actions is derived. The methods used in the literature are usually 

based on random walk theory, however, I will use a statistical me-

chanical argument to derive an equation for the probability distribution 

function for the ends of the chain. The concept of an ordering paten-

tial between adjacent chain elements is introduced. This enables one 

to proceed in a manner analogous to.the statistical mechanics of real 

gases (17). 

Choose as a model a chain of N-1 (N subsystems) "freely-

jointed" segments which are allowed to interact (see Fig. 3.1). 

N 

N-1 

• 

Fig. (3.1) 

One chain in an ensemble of chains. 



-9-

The term "freely-jointed" implies that there is no fixed bond angle or 

hindered rotation between segments. In effect the segments behave as 

if they were connected by universal joints. Assume further that the 

temperature and masses are large enough so that quantum effects can be 

neglected and the problem can be handled classically, From statisti-

cal mechanics the probability of observing the system in a particular 

energy state is given by, 

(3.1) 

+ + 
S ~ l/kT and pj is the momentum of the jth subsystem. P j is the posi-

tion of the jth particle, which for convenience has been scaled.by the 

1 h ( . + +I ) segment engt a i.e. pj = rj a • H is the classical Hamiltonian de-

fined by the sum of a kinetic and conf igurational energies 

(3.2) 

V is the configurational or potential energy of the system. QN is the 

canonical partition function. 

(3.3) 

If the Hamiltonian in Eq. (3.2) is substituted into Eq. (3.3), the 

momentum integrations are f actorable and are easily performed to give 

a factor which depends on temperature. 

(3.4) 
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z is the configuration integral. 

(3. 5) 

The probability that two subsystems i and j h~ve positions n1 and nj 
respectively is obtained by integrating Eq.· (3,1) over all variables 

-+ -+ 
except pi and pj. 

Zij can be considered to be a restricted configuration integral in 

which subsystems i and j are held fixed in configuration space. 

(3.6) 

(3. 7) 

-+ -+ 
Integration over pi and Pj in Eq. (3.7) yields the unrestricted con-

figuration integral Z defined by Eq. (3.5) 

-+ -+ 
The probability that the ends of the chain have positions pl and pN 

is, 

(3. 8) 

Assuming pairwise additivit~ of forces, the potential V can be 

regarded as the sum of pair potentials between adjacent subsystems and 

nonadjacent subsystems. 

(3.9) 
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pij is the distance between ~oints i and j (i.e.pij = ltj-pij ). 

Choose the potential between adjacent subsystems wii+l so that the 

segments are connected, thereby forming a chain. This condition is 

satisfied by choosing 

(3.10) 

Thia potential is essentially an !n.Cinite potential well since, 

wii+l + +.. for Pii+l + 1 

wii+l ~ -~ for Pii+l = 1 

Thus the configuration of the system is constrained so that the dis-

tance between adjacent subsystems i and i+l is always Pii+l = 1 (or 

rii+l •a). The potential wii+l is effectively a~ "ordering" potential 

which ensures that a chain of subsystems is generated in the order 1, 

2 ••• N (see Fig. 3.1). The potential between nonadjacent subsystems 

vij is short range. vij becomes infinitely large for small Pij and 

approaches zero rapidly for Pij of the order of unity or larger. Using 

Eqs. (3.9) and (3.10), the restricted configuration integral can be 

written as» 

(3.11) 

Note that the potential V does not depend on the choice of the origin, 

hence the origin is arbitraryo As a result, the argument of Zij can be 

taken to be pij" In other words z1j depends only on the scalar distances 

between fixed points i and j. For the ends of the chain fixed, we have 
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It is convenient to define a set of functions, similar to the 

Mayer functions used in the theory of imperfect gases. 

(3.13) 

Pij " 0 

Eq. (3.12) can be rewritten in tcrma of thcac functions. 

(3.14) 

Eq. (3.14) represents the configuration integral for a freely-jointed 

chain with excluded volume. The factor involving o- functions is due 

to the ordering of the chain segments (i.e. adjacent segments are con-

nec.ted). The fac.torA involving hij ariAe. from the. exclndeul volurne effe.ct. 

This configuration integral is of prime importance, since the end-to-end 

' distribution functions can be obtained from it using Eq. (l.8). 

Because the product of o- functions appears frequently in this work, 

it is convenient to define 

!\'-1 
rN = i~16 <Pii+1-1>· (3.15) 

The symbol rN will be used in this thesis where no ambiguity can arise. 

Eq. (3.14) can then be written as 

(3.16) 
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4. SOME SPECIAL CASES 

The general equation, Eq. (3.14), will now be.solved for some 

special cases of interest. The simplest postulate one can make is that 

there is no interaction between segments of the chain (no excluded 

volume), This model is equivalent to the random walk problem in three 

dimensions and has been used extensively in the theory of rubber elas-

ticity and polymers in solution. Eq. (3.14) will then be solved for 

very short chains (2 and 3 links) exactly for the hard sphere paten-

tiale Although these short chain solutions are of no practical value 

in predicting the behavior of real polymer chains, these solutions 

have been worked out because they are the only cases in which Eq. 

(3.14) can be solved exactly with our present knowledge of many-body 

problems. Later on it will be interesting to compare the results of 

our more general theory with thes·e exact solutions in the limit of 

short chain length. 

A. Non - Excluded Volume Problem 

If the effect of intramolecular interactions is neglected 

(i.e. vij • O), Eq. (3.14) becomes, 

N-1 
ZlN = f ••• f TI 

k==l 
(4.1) 

These integrations can be simplified by introducing the Fourier trans-

form of the o- function. Define the transform pair, 

,+ ~ ~ 

f (k) = /o(p-1) exp(-ik•p)dp (4.2a) 
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(4.2b) 

This representation for o(p -l)is introduced into Eq. (4.1) and the 
l\J-lN 

order of integration interchanged to give, 

(4.3) 

+ + 
Since PN-2 is fixed in the PN-l integration, we have from Eq. (4.2a) 

that 

(4. 4) 

Substitution of Eq. (4.4) into Eq. (4.3) leads to 

If this procedure is repeated (N-1) times, the multiple integral of 

Eq. (4.l) is reduced to a single integration. 

( 4. 5) 

Inserting spherical coordinates into Eq. (4.2a) enables us to evaluate 

f(k). Substitution of this result into Eq. (4.5) and integration over 

the angular variables (see Appendix I for details) leads to the result 

This procedure for the reduction of the multiple integral in Eq. (4.1) 

to a single integral is a special case of the technique used by 

Montroll (18) for evaluating certain types of cluster integrals. 
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Eq. (4.6) is the same (within a normalization constant) as the 

probability distribution for a random walk in three dimensions, first 

derived by Rayleigh (19). A simplified random walk theory was applied 

to polymer chains by James and Guth (20). The more general theory is 

due to Wang and Guth (21), who obtained various representations for the 

inversion of the Fourier integral. Following Wang and Guth, the function 

(sin k/k)N-l in Eq. (4.6) can be expanded as, 

~l 2 (sin k/k) = exp[-(N-l)k2/6][1-(N-l)k /180 + ••. ]. (4. 7) 

Substituting this expansion into Eq. (4.6) and integrating term by 

term yields, 

(4. 8) 

Eq~ (4.8) is a Gaussian approximation to the distribution function 

Eq. (4.6). It is applicable when plN<<N and N>>l. Other approximations 

for the inversion of the Fourier integral which apply to other ranges of 

PlN and N are derived by Wang and Guth• The exact distribution function 

for a three dimensional random walk haa bee·n obtained in the form of a 

series by Irwin and Hall (22). For practical calculations the simple 

Gaussian form is usually adequate. 

Mean square end-to-end distance 

The mean square @nd-to-end distance of a noninteracting chain can 

now be computed using the configurational integral we have just evaluated. 

From Eq. (3.8) we have 
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(4.9) 

Substitution of the Gaussian form for z1N into Eq, (4.9) leads to 

(4.10) 

where the upper limit of the integration has been approximated by infi-

nity. The integrals in Eq. (4.10) are simple gamma functions and can 

be performed to give, 

= n 

(4. 1 l) 

This same result is obtained if one calculates the mean square end-to-

end distance using the more general expression Eq. (4.6) (see Appendix 

II for details). 

Mean square radius of gyration 

Another parameter of interest in describing the average configu-

ration of a polymer chain is the mean square radius of gyration. This 

value can be determined absolutely (independent of any model) from 

light scattering measurements. The center of mass t of a chain of 
m 

(n • N-1) segments of equal mass is defined to be 

where ti is measured from an arbitrary origin 0 (see Fig. 3.1). 

square of the radius of gyration RG for such a chain is, 

(4.12) 

The 
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R2 = N- 1 E S2 
G i i 

(4.13) 

$1 is the distance from the center of mass to point i on the chain. 

s21 "' Ci .-"l ) • (7l1-t ) 
i m m 

(4.14) 

Substitution of Eq. (4.12) into Eq. (4.14) yields, 

N-~i:E 
-+ -+ 

- 2N- 1E 
-+ -+ 

S2 .. r2 + rk•rj ri•rr i i kj j 

Since. 

r2 ... r2 r2. -+ -+ 
+ - 2r1 •rj lj i J 

we have, 

2 - N S = r2 - (1/2N2) EE (r2 .-r2 -r2.) + N 1 z: (r2 -r2 -r2.). 
i i kj kJ k J j=l ij i J 

Substitution of this result into Eq. (4.13) gives the radius of gyration 

as 

The mean square r~dius of gyration is thus 

(4.15) 

The mean square radiu.s of gyration can now be computed for the noninter-

acting chain. Since the chain is noninteracting, the mean square dis-

tance between two points i and j on the chain depends only on that part 

of the chain between points i and j. In other words, the ends of the 
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chain (1 +i, j +N) do not affect the distribution between the points i 

and j. Thus <r2ij> for a noninteracting chain of N-1 segments is the 

same as <r2ij> computed for a noninteracting chain of lj-il segments. 

From Eq. (4.11) we have, 

(4.16) 

The mean square radius of gyration of a noninteracting chain of n = N-1 

segments is 

These summations can be performed easily to give the following result 

for large N: 

(4.17) 

This result was obtained by Zimm and Stockmayer (23) and Debye (24). 

B. Short Chains 

For a nonzero potential function, it becomes very difficult to 

compute the configuration integral Eq. (3.12). I will now compute the 

integrals for 2 and 3 link chains using the "hard sphere" potential. 

Three interacting spheres 

The shortest chain in which there is an excluded volume effect 

is a 2-link chain or N = 3 subsystems. For this case, Eq. (3.12) reduces 

to 

(4.18) 
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Note that the term involving the excluded volume potential v13 can be 

removed from under the integral sign in this case. The integral in 

Eq. (4.18) could be done by inverting the Fourier transform of Eq. (4.6) 

with N = 3. I will u:se a. tllfferent method which consists of intro-

ducing bipolar coordinates into Eq. (4.18). The Jacobian for bipolar 

coordinates is obtained in Appendix III. Introducing this into Eq. 

(4.18) leads to, 

Note that in using bipolar coordinates there are restrictions which 

have to be placed on the limits of integration. The first integral 

gives either zero or unity depending on whether or not the variable of 

integration passes through the zero of the 0-function's argument. Thus, 

Performing the last integration gives finally, 

PlJzlJ = 2'1l'e.xp(-13vl~) for 0~ plJ ~ 2 

= O' for p 13 > 2. 

If we introduce the hard sphere potential, 

We obtain, 

vij • ~ for Pij < b 

v ij • O for p ij > b • 

(4.19) 
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z
13 

= 2n/p
13 

for b.:;_ p
13 
~ 2 (4.20) 

= 0 for p 13 < b, p 13 > 2. 

Using Eq. (4.20) to compute the value of <p 2
13> leads easily to the 

result, 

(4.21) 

Note that when there is no excluded volume (b a 0), Eq. (4.21) becomes 

which agrees with the result obtained for a chain with no excluded vol-

ume , Eq • ( 4. 11) • 

Four interacting spheres (25) 

As the chain length increases, the difficulties in computing the 

configurational integral increase greatly. This is exemplified in the 

problem of four interacting hard spheres (or equivalently, a 1-link chain). 

This is very much more difficult than the 3-sphere case discussed in 

the last section. In order to do this calculation, I will introduce a 

"tripolar" coordinate system. To my knowledge this coordinate system 

has not been used before, and it might be useful in other problems such 

as computing virial coefficients. The configuration integral for a 

system of four spheres (subsystems) is found by putting Na 4 in Eq. (3.12). 

z ... 
14 

(4.22) 

exp(-sv14)fo(p 34-1)exp(-av13)dp3Jo(p 12-l)o(p 23-l)exp(-av24)dp2 
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Note that the term involving v14 can be removed from under the integral 

sign since subsystem 1 and 4 are held fixed in the integrations. No 

appreciable simplification of Eq. (4.22) can be achieved by introducing 

Fourier transforms. The multiple integrals do not collapse by this 

technique as was found in the non-excluded volume case discussed earlier. 

This is due to the presence of the excluded volume terms. Since the 

kernel of the interior integral of Eq. (4.22) depends on P12' P23, P24, 

it seems natural to use these coordinates in the integration. This 

tripolar coordinate system is shown in Fig. (4.1). 

x 

z 

Fig. (4.1) 

Tripolar Coordinate System 

In order to compute the Jacobian for this coordinate system 

we have to express Pl2• P23 and P24 in terms of the cartesian coordi-
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nates xyz. From geometrical considerations (see Appendix IV for de-

tails), the following relations can be obtained: 

(4.23) 

Pz3 • (x2 + y 2 + z2 - 2p13 x cos S - 2plJY sin 8 + p2
13) 1f 2 

p = (x2 + y2 + z2 _ 2p x + p2 )1/2 
24 14 14 

cos S = (p214 + p213 - P~4)/2pl4pl3• 

Let the Jacobian for this transformation be given by JT. In this case 

it is easier to compute Ji 1 than JT directly. 

(4.24) 

This determinant can be worked out using the relations in Eq. (4.23). 

These details are presented in Appendix IV. ,The final result is 

(4. 25) 

where z2sin28 = (4.26) 

Note that JT is singular at the zeros of p13 , p14 , p34 and z. This 

causes no concern however. since the hard ~P~"'re int"'ractions will 

preclude the possibility of integrating through any of these singulari-

ties. 

The kernel of the outer integral in Eq. (4.22) will depend nn 

P
13

, P
34 

and P
14

• Since P
14 

is to be held fixed, the natural coordinate 
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system for this integration is the bipolar coordinate system (see 

Fig. (4.2). 

4 

x 

z 

I 
I 

' I ,, 
'1-

Fig. (4.2) 

3 

Bipolar coordinate system. 

The Jacobian for this coordinate system JB is computed in Appendix III. 

( 4. 27) 

Using tripolar coordinates for the interior integration and bipolar 

coordinates for the outer integration, Eq. (4.22) can be written as, 

2~exp(~$v14)Jf o(p
34

-l)exp(-$v
13

)p
34

dp
13

dp
34 

x///exp(-Sv24)o(p12-l)o(p23-l)p12P23P24(z sin S)-ldp12dP12dp12· 

(4.28) 
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Let us now introduce the hard core potential given by Eq. (4.19) 

into Eq. (4.28)e In order to simplify the calculation, take the diame-

ter of the hard core to be exactly equal to the link length of the chain, 

* In other words, take b = 1 • Thus the exponential terms become step 

functions. 

or equivalently 

exp(-Bvij) • 0 for Pij < 1 

• 1 for Pij > 1 

where H(X) is the Heaviside step function. 

(4.29) 

It would appear that the integrals in Eq. (4.28) are rather 

simple since the p
12

, 0
23 

and p
34 

integrations involve a-functions. 

Replacing p12 , p23 and p34 by unity in Eq. (4.28) implies certain re­

strictions on the limits of the remaining integrations to insure that 

we integrate through the zero of the arguments of the o-functions. 

These limits can be found by restricting ~ 14 , p
24 

and p
13 

so that 

adjacently numbered spheres are always in contact. Furthermore, it 

is possible to replace exp(-sv
24

) and exp(-ev
13

) by unity in accordance 

with Eq. (4.29), provided p
14

, p
13 

and p
24 

are constrained in such a 

way that the spheres cannot penetrate each other. The problem of finding 

w + + 
In chapter 2 we scaled all the distances by the link length a(p • r/a.). 
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all these restrictions is clearly nontrivial. In effect we have cast 

the problem in a form where most of the difficulty lies in finding the 

restrictions on the limits of integration. These restrictions will 

have to be found by a detailed geometrical analysis of the problem. 

Let us now attempt to find the restrictions on p 14 , p 24 and p 13 

when we require that the adjacently numbered spheres be in contact and 

nonadjacent spheres cannot penetrate each other. Clearly the maximum 

value that p14 can take is p14 = 3, for then the spheres lie along a 

straight line. Also the minimum value of p 14 is p14 • 1, since spheres 

1 and 4 cannot pen@trgtP-. 

Consider first the case when 2~ p14 ~ 3. What are the restric-

tions placed on p 24 and p 13 when p 14 is in this range? The maximum and 

minimum values that P13 can take are 2 and P14~l respectively. This can 

be seen easily in Fig. (4.3). 

(a) ( b) 

Fig. (4.3) 
Maximum (a) and minimum (b) values 

of Pi3 when 2~ P14 ~ 3 
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For fixed n
14 

and 0
13

, the maximum and minimum ~aluea that P
24 

can 

be found from the two po~sible positions of sphere 2 when it lies in 

the plane defined by spheres 1, 3, and 4 (see Fig. 4.4). 

{a) 

Maximum (a) and 
fixed p 13 

{ b} 

Fig. (4.4) 
minimum (b) values of P24 
and p 14 when 2 ~ P14 ~ 3 

for 

If P14 is in the range 3Jft ~ p 14 ,;. 2, the situation is dif-

ferent. p 13 can take on values 1 ~ p 13 ~ 2, however, depending on 

where p13 is in this range, sphere 2 can bump into sphere 1. This 

bumping or "libration" when it occurs, causes the minimum to be one. 

Thus p13 must be broken up into three different ranges within 

33/.2 ~ p13 ~· 2. These three cases are shown in Fig. (4.5) 

When the end-to-end di ~tance p 14 is in the range 1 ,:;;. p 14 ,:;;. 31/2, 

then the maximum value that p13 can take is something less than two. 

This is because spheres 1, 2, and 3 cannot be placed with their cen-

ters in a straight line. without sphere ?. penetrating sphere 4 (see Fig. 

4.6). Bumping of spheres 2 and 4 occurs for all possible fixed values 
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(a) (c) 
no libration 

(b) 
lib ration no libration 

Fig. (4.5) 
The maximum and minimum values of P24 for fixed 

Pl4 and three different'values of Pl3• 

Fig, (4,6) 
The maximum value of p 13 when Pl4 is 

fixed in the range 1 .:;,. p 14 ~ 13. 

of p13 in this range of p14 ; consequently the minimum p24 is one. 

All the restrictions on p13 for fixed P14 and on P24 for fixed 

P14 and P13 have been calculated from geometry; These restrictions are 

sunnnarized in Table 4.1. 

We now can perform the integrations over 0 12 , P23 and p34 in 



Range of P14 

2 ~ p14 ~ 3 

31/2< < 2 
~14 = 

" 
II 

B = ± 

1 ~ P14 ~ 3 1/2 

Table 4.1 
A summary of the restrictions on P13for fixed 

p14 and on p24for fixed p14 and p 13 , 

2A± = 2 + PI4 ±[3(4-pi4>ll/1>14 

<3 -p i3 +p j4> 12 + {(4 - p2 )[1 - (p2 + 1 - p2 ) 2 /4p2 111/2 
- 13 13 14 13 

(p 13 >~ax (P13 )~n CP24 )~ax 

4 CP14 - 1)2 B+ 

A 1 ti 

A A II 

+ 
4 A+ " 
A+ 1 " 

(p24 )~lin 

B 
I 

N - co 
I 

II 

1 

B 

1 



Eq. (4.28) by simply replacing these variables by one. Also the terms 

that in order to make these simplifications, the variables p13 , p 14 and 

p24 must be restricted according to Table 4.1. Eq. (4.28) becomes, 

(4.29) 

where z s1n e is given by Eq. (4,26). In order to simplify Eq, (4.29) 

make the substitutions, 

Eq. (4.29) now becomes, 

w = (1 + p214 - P2z4)/2pl4 

u = (1 + P213 - P214)/2p13 

v - (p213 + P214 -l)/2P14• 

(4.30) 

(4.31) 

The interior integration can be performed by completing the square of 

the denominator giving, 

(4.32) 

The limits of the integration can be found from Table 4.1 and are 

shown in Table 4.2. 

In the range 2 ,:;. p14 ~ 3, Eq. (4.32) can be integrated directly 



r 

Table 4. 2 
Limits of integration to be used in Eq. (4.32) 

2Ai_ = 2 + Pi4±014[3(4 -Pt4)]1/2 

2p14c± = PI4- 1 + P13u ± [(4 -Pl3)(l - u2)]1/2 

Range of Pl4 (pl3 )fuax (p13 )~in wl w2 

2 < P14 <3 4 (pl4 - 1)2 c+ c - I 

31/2< pl4 < 2 
l.,..J 

A_ 1 It " 0 

' 
" A+ A " P14/2 

" 4 A tf c 
+ 

1 ~ P14 < 31/2 A+ 1 n P14/2 = 
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to give the simple result, 

(4.33) 

When 31/2 < p < 2 the integration can be broken into three integrals, 
=a .l.4 .... ' 

two of which can be done analytically. 

P14Z14 • 11'
2 [2 + (P13>max - (P13)minJ (4.34) 

(pl3)max 
+ 2n I sin-l[(p14 - v)/2(v2/4 + 1 - v2/p13 -p213/4)1/2]dpl3 

(P13)min 

1/2 
In the range 1 !. p 14 !. 3 we have, 

P14Z1N = (4.35) 

(PJJ)max - I 211' { . {sin 1 [(p14 - v)/2(v2/4 + 1 - v2/p13 - py3/4) 1 2]+'1T/2}dp
13 

1/2 
forl.;;,.p14!,3 • 

The integrals in Eqs. (4.34) and (4.35) were performed numerically 

using Simpson's rule on an IBM 7094 digital computer. The.results were 

fitted to polynomials using a least square subroutine. 

Z14 "' 
5 i-1 

i~l aip 14 for 1 ~ 0 1 4 ~ 3 
1/2 ( 4. 36) 

3 i-1 3l'2 < p < 2 214 = I: b ·P14 for 
i=l 1 - 14 -

The coefficients a1 and bi are shown in Table 4.3. 

The configurational partition function z14 is discontinuous 

at p14 • 1 and piecewise smooth in the range 1 ~ p14 ~ 3. A plot of 
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this function is shown in Fig. (4.7). 

Table 4.3 
Coefficients in Eqs. (4.36) 

i ai bi 

1 15.024 -12.037 

2 -27.794 17 .036 

3 34.548 -3.0f+l 

'~ -18.767 

5 39.236 

The probability that the end-to-end distance p14 is in the 

range Pl4 ~ Pl4 + dp14 is found by normalizing Z14 according to Eq. 

(3.8). 

This normalized probability density P[P14] is shown in Fig. (4.8). 

0 
The configurational integral z14 for a 3-link chain neglect-

ing the interactions can be found by inverting the Fourier transform 

in Eq. (4.5) for N = 4. 

Z~4 = 81T2 for 0 ~ p 14 ~ 1 ( 4. 37) 

= 41T 2 (3 - Pi4)/p14 for 1 ~ P14 ~ 3 

These results can be normalized to give 
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Po[P14l = P214/2 for 0,;:;. P14 ~ 1 

= (3 - p 14)p 14/4 for 1 ,:;;,, p14 ,:;;,, 3, 

This function is also plotted in Fig. (4.8). 

It can be seen from Fig. (4.8) that the excluded volume effect 

tends to shift the peak of the distribution to the right. In other 

words, the chain is expanded. This is because many of the otherwise 

available configurations of the chain are eliminated because of the 

excluded volume. This will be true for longer chains as well. 

The mean square end-to-end distance <p214> can now be computed 

using Eqs. (4.33) and (4.36). 

3 112 5 2 3 
= I ( I: a.Pi-l)P 4dp + 1 ( !: b

1
pi-l)p4dp 

1 i=l J. 31/2 i=l 

(4.38) 

A is a normalization constant and is given by 

3l/Z5 2 3 
A.= I ( E a

1
pi-l)p2dp + J / ( E b

1
p1- 1)p2dp 

l i=l 31 2 i=l 

3 
+ 2ir2~(3-p)pdp. (4.39) 

These definite integrals can be performed in a straightforward manner 

to give the result, 

4.31 = 1.33 
n (4.40) 

When the excluded volume effect is neglected, the corresponding mean 

square end-to-end distance <p 2
14>

0 
is given by Eq. (4.11). 
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(4.41) 

Thus the mean square end-to-end distance is expanded by a factor of 

n• 33 for a 3-link chain (N = 4). 

The possibility of extending this procedure to longer chains 

does not seem feasible. For a 3-link chain, tripolar coordinates 

were the natural coordinates since the kernel of the configuration 

integral contained functions of the three distances Piz• p23 , P24 • For 

longer chains the configurational integral will contain additional 

functions. The problem of deducing the restrictions on the variables 

was tedious in the 3-link chain. For longer chains this problem be-

comes very much more complicated. In order to attack longer chains 

some approximations must be made. Since the 3-link chain calculation 

is exact, it will. be interesting to compare approximate theories with 

the exact result when N • 4. 
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5. CLUSTER EXPANSION 

A. Ccneral Formulas 

It does not seem feasible to use the methods of chapter 4 for 

long chains. In fact an exact solution for the configuration integral, 

Eq. (3.14) for a nontrivial potential, may indeed he impossible. 

There is a striking similarity between the configuration integral for 

a polymer chain 

and the configuration integral of a classical fluid (17). Although 

this similarity has been observed by many authors, the analogy has not 

yet been fully exploited. The methods that have been used in the phy-

sics of liquids and gases can be roughly divided into cluster expansions 

and integral equations. I will discuss the cluster expansion of Eq. 

(3.14) in this chapter and reserve the derivation of integral equations 

for later. 

A cluster expansion of Eq. (3.14) can be obtained by expanding 

the double product. 

~2 N ~2 N 
J TI (1 - h 1J.) = 1 - t t h 1J. + ••• 
i~l jsi+2 i~l jei+2 

(5.1) 

Substitution of this expansion into Eq. (3.14) and interchanging the 

orders of summation and integration leads to, 

(Nzl) 
l: (-1) 1z~) 
0 

(5.2) 
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where: 

(o) -+ -+ 
ZIN = f ••• frN dpz···dPN-1 

(1) -+ -+ 
ZIN - ~ ~ ! ••. ! rN hk~dPz···dPN-1 

k i . 

Z
(2) -+ -+ 

lN - ~ f ~ ~ 1••• 1 rN hkihmndPz•••dPN-1 

etc. 

This type of expansinn was suggested by Rubin (4). Inclusion of the 

first two terms in Eq. (5.2) is equivalent to the "single contact ap-

proximationn of Zimm, Stockmayer and Fixman (5) and leads to the well-

known first-order perturbation theory for the mean sq.uare end-to-end 

distance after some further approximation (5-7). Fixman's second-

order perturbation theory is equivalent to keeping the first three 

terms of Eq. (5.2). These perturbation theories are the only applica-

tions of the cluster expansion technique in the literature. 

It is convenient to express Eq. (5.2) in terms of graphs or 

diagrams. This technique is used in the theory of imperfect gases (17). 

0-C-0··· o-0 L~··· o-o (5.3) 
pairs 

+ L~···o-0 + ••• 
fours 

Each diagram represents an integral in Eq. (5.2). Each circle can be 

identified with a ouboystcm of the chain. The straight line or 6-bond 

joining circles i and i+l represents the a-function ordering potential 
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6(Pii+1-l) between subsystems i and i+l. A curved line or h-bond be­

tween circles i and j represents an h 1j-function. The restriction is 

made that there can be only one bond between any two circles. In addi-

tion, only 0-bonds can exist between adjacent circles i, l+l am.1 h-bonds 

between nonadjacent circles i,j. If we consider the N circles with 

(n = N-1) a-bonds as a "skeleton", then Eq. (5.3) is represented by 

the sum of.all possible combinations of h-bonds on the skeleton. For 

a chain of N subsystems, the number of graphs in Eq. (5.3) can be shown 

to be (see Appendix V) 

b f h . zlN -- 2(N-l)(N-2)/2. (5.4) Num er o grap s in 

For long chains the number of graphs in the expansion of Z is approxi­
lN 

mately given by 2N
212 • 

In actual practice, the experimentally observed quantity of 

interest is not the configuration integral itself hut some quantity 

averaged with respect to the weighting function Z1N• It is possible to 

express the moments of ZlN in terms of the coefficients in the power 

series expansion of the Fourier transform of ZiN• In particular the 

mean square end-to-end distance <p 2 1N> can be found from the first two 

coefficients in the expansion of z1N(k) (see Appendix II for details). 

coeff. (-k2/6) in ZlN(k) 
<p2 > = lN 

coeff. (1) in Z1N(k) 

where ZlN(k) is the Fourier transform of Z1N(P ur>. 
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(5.5) 

Because the coefficients in the expansion of the Fourier transform 

ZlN(k) determine the moments (in particular <piN> ), it is frequently 

more useful to work with the Fourier transform rather than the config-

urational integral itself. In anticipation of this, let us define the 

Fourier transform pairs for the terms in the cluster expansion Eq. (5.2). 

(5.6) 

(N-1) 
where i=O, 1, • • • 2 

If f(r) is an arbitrary function of the scalar r, then the 

Fourier transform of f (r) defined by 

- ~ ....... 
f (k) = /f(r) exp(-iK.r)dr, 

can be written in the form (see Appendix I)_ 

0() 

f(k) = 4w/f(r)r2(sin kr/kr)dr. 
0 

Since (sin kr/kr) is an even function of k, then f(k) must be even. 

The configuration integral z1Nand the terms in the cluster expansion 

zll(~) are function~ of the scalar p • Hence their respective Fourier 
~ lN 

transforms must be even functions of k Let us write Z and Z(i) 
• lN lN 

as power series with coefficients z (N) and z (N). 
j ij 
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ZlN(k) = r z.(N)k2j (5. 7) 
j J 

-(i) 
(k) = E zj 

ZIN j 
zijk 

Becauge of Eq. (5.2), an obvious relation exists between zj and zij. 

(5.8) 

The mean square end-to-end distance can now be written as 

For large N there is a great multitude of terms in Eq. (5.9). If all 

but the zero-order terms (i = O) are neglected, the mean square end-to­

end distance <p 2 >reduces ton= (N-1). This is the result for the 
lN 

freely jointed chain with no excluded volume which was discussed in 

chapter 4. Let us now examine the terms in Eq. (5.9) for i = l, This 

represents a first-order correction to the idealized, noninteracting 

chain. If this correction is small compared to.the zero-order term, 

a good approximation might be achieved by including only a small number 

of terms in Eq. (5.9). 

B. First-Order Correction 

The first-order correction term to the configurational parti-

tion function for noninteracting chains is given by 

(5.10) 
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This can be represented by a summation of graphs of the type 

~···o-0 

Integrals represented by. this type of graph can be factored at the 

points i and j to give 

Z
(l) 
lN (5.11) 

This factorization can be achieved because the graph can be cut into 

two parts at the points i or j. These points are called "articulation 

points" or "nodes" in graph theorie~ of the liquid state (26, 27). 

The function z(O) appeari~g in Eq. (5.11) is the configuration 
ij 

integral for a chain with no excluded volume. This function is known 

and was found in chapter 4, Eq. (4.6). The Fourier transform of 
(0) 

z
1
N (p lN) reduces to 

(5.12) 

The Fourier integral representation of hij can be written in the form 

- 7 ~ ,-i-
h(k) = I hijexp(-iK•p)dP (5 .13) 

Using the properties of convolution integrals, the Fourier transform 

of zf~) in Eq. (5.11) reduces to 

-(0) 
2 1N 

-(0) -(0) 
(k) - IE z11 (k)Y1j(k)ZjN (k), 

i j 
(5.14) 
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where 

(0) 
If the Fuur.ier representation of Zij is introduced into Yij(k) and 

the order of integration is interchanged, Yij(k) can be written in 

the form 

(5 .15) 

Eq. (5.15) is valid for any choice of the potential as long as the 

Fourier transform of hij 9Xists. I will now spP-c:i ;::il{ze th:i.s equation 

by introducing the hard core potential defined in Eq. (4.19). This 

potential implies that 

hij = 1 for Pij < b (5.16) 

hij = 0 for Pij > b. 

Introduction of this representation for hij into Eq. (5.13) leads to 

the result (see Appendix VI) 

h(~) = 4~(sin bk - bk cos bk)/k3. (5.17) 

Eq. (S.15) now becomes, 

~ where x is the absolute value of the difference of the two vectors k 

-+ and R. making an angle with each other of Y• 
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-+ -+ l /2 
x = !k - ti = (k2 + t2 - 2kt cos y) 

If. d! is written in spherical coordinates, the angular integrations 

in Eq. (5.18) can be performed (see Appendix VI). The final result for 

yij(kl for the hard core potential is, 

K1 (k, t, b) = sin(k - t)b/(k - t) - sin(k + t)b/(k + t). 

The Fourier transform of the first correction term Z(l) in the cluster lN 

expansion of z1N becomes 

'!TkZlN(k) = 

N-1 N-2 N N-i+j-1 «) j-i 
(4'!T) L t (sin k/k) I (sin t/1) 1K1(k, t, b)dt. i=l j=i+2 0 

It is possible to replace the sum over i and j in this equation by a 

single summation over m = j-i, provided we multiply by an appropriate 

combinatorial coefficient C(m). This factor represents the nunilier 

of combinations of j and i (consistent with the summation) which lead 

to the same value for m = j-i. This combinatorial coefficient is found 

to be (ace Appendix VII) C(m) • N - m. Thus Z~)(k) can finally be 

written as 

'!TkZ1N(k) = 

N-1 N-l N-1-m co m 
(4'!T) m~2 (N-m)(sin k/k) b (sin 1/i) tK1(k, 1, b)dt (5.19) 
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Let us now extract the first two coefficients in the power 

series of zi~)(k) in Eq. (5.19). K1 (k, it b) is an analytic function 

of k for all k, hence this function can be expanded in a Taylor series 

about k • O, It can be verified by direct differentiation that, 

K1(k, t, b) = 2(sin tb/t2 - b cos.tb/i)k 

-2(b2 sin ib/2t2 + b cos ib/t 3 - sin tb/t4 - b3 cos ib/6t)k3 + ••• 

Substitution of this series into Eq. (5.19) and the interchange of the 

order of integration and summation enables us to identify the coeffi-

cienta 

N-1 o:> m 
wz10 = 2(4w) t (N - m) /(sin ~/~) Kz(k, ~. b)di 

m o 
(5. 200.) 

(S.20b) 

00 00 

- ~(N - m)((N-1-m)/6 ~(sin i/t)mK2(k, i, b)di- ~(sin t/t)lllt.<3(k, t, b)di] 

where the functions K2 and R3 are defined by 

(5.21a) 

(5.2lb) 

b3 c9s ib/6 - b2 sin ib/2i - b cos ib/i2 + sin ib/t3. 

Solution for small b 

The particular choice of the hard core potential function to 

represent the potential between elements on the polymer chain involves 

the parameter b. This parameter represents the qiameter of the hard core 
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which has been scaled by the segment length a. An illustration ot 

this situation is depicted in Fig. (5.1). bis essentially a measure 

of the amount of excluded volume. When b 0 all terms in the cluster 

expansion become zero except the zero-order or non-excluded volume term. 

The maximum allowable value of b corresponds to the si~uation when the 

hard core diameters are exactly equal to the segment lengths of the 

cltain~ The mean i::quare enil-to-emd distance of our model chain can be 

estimated in the limit of small excluded volume by expanding the inte-

grands in power series in b followed by term-by-term integration. 

The following expansions can be easily verified: 

K (1, 0 b) = 0(b5). 3 "• ~- .. 

Substitution of these results into F.qs. (5.20a) and (5.20b) yields 

2(4ir)N-l E (N - m) j (sin ~/i)m[£2b3/3 + O(b5))dt. 
m o 

00 m N-1 
-2'1r(4ir) E (N - m)(N - l - m) J (sin i/i) [t2b3/3 + O(b5)]d£. 

m o 

(5.22a) 

(S.22b) 

Let us now make use of the Gaussian approximation discussed in 

chapter 4, Eq. (4.7). The integral in Eqs. (5.22a) and (5~22b) reduces 

co a simple gamma function. 
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Fig. (5.1) 
A portion of the model polymeric chain with a 

hard core potential between elements of the 
chain (the "pearl necklace" model). 

Eqs. (5.20a) and (5.20b) can now be written as 

It will be shown later that terms of higher order are of order b6 or 

less. The mean square end-to-end distance Eq. (5.9) becomes 

From chapter 4 it is known that 

-6[zo1 - z11 + O(b6)] 

zoo - z10 + O(b ) 

zo1 • -(N - 1)/6. 

• 
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Thus for small values of b, the mean square end-to-end distance has 

the form 

(N-1) - (6/rr) 112b3 E (N - m)(N- 1- m)/m 312 
<p\N> • _________ m __________ _ 

1 - (6/rr) l/
2
b 3 E (N - m)/m

3
/

2 
m 

(5. 23) 

If b is chosen sufficiently small, then the second term in the denomi-

nator of Eq. (5.23) is less than one. Therefore for sufficiently small 

b, the denominator in Eq. (5.23) can be expanded as a geometric series. 

This procedure leads to 

<p2 >"' (N - 1) + (6/7r) l/Zb3 1: (N - m)/m 1/ 2 + O(b5). (5.24) 
lN m 

The summation in Eq~ (5.24) can be estimated using the Euler-Maclaurin 

Summation Formula (28). 

~l l~ ~l l~ 
E2 (N - m)/m "' I (N - x)/x dx - (N - 1)/2 m= x=l 

+ (l/l2)f(N - 1)/2 + 1 - N-l] - ••• 

The integration can be performed easily to give 

N~l {N - m)/ml/2 ... 2(N - 1) l/2N - (2/3)(N - 1) ?./ 2+ O(N). 
m•2 

For large N this becomes 

N-1 I I 
l: (N - m) /m 1 2 .;. (4/3)(N - 1) 3 2

• 
m=2 

The mean square end-to-end distance Eq. (5.24) simplifies to 

(5.25) 
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1/2 3 
<p 2 lN> • (N - 1)(1 + {6/rr) 4b /3 + ••• ] • 

In the literature the parameter z defined in Eq. (2.3) is frequently 

ref erred to. 

2 3/2 1/2 z = X(3/2va ) n 

n is the number of links in the chain (i.e. n = N-1) and X is the 

"binary cluster integral" defined by 

For the hard core potential in Eq. (4.19), Xis simply the volume 

excluded to one sphere by the presence of another. 

x = ·c 4/3h (ab) 3 

The parameter 2 in Eq. (2.3) then becomes 

for the hard core potential. Thus we obtain the result 

<p21N> = n(l + 4z/3 + .•• ) 

in the limit of small hard core diameter h. 

(2.3) 

(5.26) 

The above· equation for the mean square end-to-end distance has 

been obtained by many authors (5-7) by making use of the approximation 
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where c(tij) is a three dimensional o-fuhction. This approximation 

assumes that hij is so short range that the only contributions to inte­

-t-
grations involving hij occur at rij = O. Since the true shape of the 

potential function is not known, Eq.(2.7) can be regarded as the defini-

tion of the potential. It approaches the hard core potential as the 

hard core diameter b becomes small. It is not surprising then that the 

mean square end-to-end distance of a hard core model chain reduces to 

the result obtained using Eq. (2. 7) .as b becomes small. 

If Eq. (2.7) is taken as the definition of the potential function, 

then it is possible to show that the mean square end-to-end distance 

<p 2
1

N> is solely a function of the parameter z. Eq. (5.26) can then be 

regarded as a power series in z. The coefficient of the z2 term has been 

obtained by Fixman (8) by considering zi~) (P 1N) in Eq. (5.2), and using 

Eq. (2.7) for the potential. Fixman obtained 

<p 2
1N> = n[l + 4z/3 - (16/3 - 28n/27)z2 + ••• ]. (5.27) 

It is obvious that <p 2
1

N> cannot be solely a function of the parameter 

z for the exact hard core potential. Since z is directly proportional 

to b3 , a power series in z is equivalent to a power series in b3• 

Eqs. (5.2la) and (5.2lb) indicate that the terms in the expansion of the 

coefficients z10 and z11 increase as b 3, b 5 , b7, etc. Only when the 

potential is sufficiently short range so that terms of higher order 

than b3 can be neglected, can <p2 1N> be viewed solely as a function of z. 
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Solution by numerical integration 

It will be shown later that some of the higher order graphs in 

the expansion of <p2lN> can be expressed in terms of the first-order 

correction term. In view of this fact it would be desirable to obtain 

an accurate representation of the coefficients z10 and z11 in Eqs. (5.20a) 

and (5.20b) for 0 < b < 1. 
- =-

The integrals in Eqs. (5.20a) and (5.20b) are uniformly conver-

gent with respect to m for m > 1. The finite summations can be taken ... 
under the integral sign to give 

(5. 28a) 

nzll. 2(4n)N-l j[(l/6)~1(N,i)Kz(k, t, b) - ijJO(N,t)K3(k, i, b)]d1 (5.28b) 
0 

where Kz and K3 are defined by Eqs. (5.19). The functions ~o and ¢1 are 

given by N-1 
ijJ

0
(N,1) = Z (N - m)(sin 1/t)m 

m=2 

N-1 
ijJl (N,1) == Z 

m 
(N - m)(N - 1 - m)(sin !/1) . 

m=2 

(5. 29a) 

(5.29b) 

These two series can be summed by using the· properties of the geometric 

series. The details of the summation procedure are outlined in Appen-

dix VIII. The results are 

{5.30) 

N-2 N-1 -1 -1 
+ L2 {2 - L - NL + (N - l)L ] [2(1 - L) - 2N + l]}{l - L) 
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where 

L = (sin 9../9..). 

In the limit as 9. + O, L + 1, Using L'Hospital's rule, the 

limit of ~o and ~las i + 0 can be found (see Appendix VIII), 

tim •
0

(N,1) = (N - l)(N - 2)/2 
R,4-Q 

9.im •1(N, 9..) = (N - l)(N - 2)(N - 3)/3 
R.-+-0 

(5.3la) 

(5. 3lb) 

Using Eqs. (5.30) and (5.31), the integrals in Eq. (5.28) were performed 

numerically on an IBM 7094 digital computer. The program made use of a 

Simpson rule subroutine. The value of b was arbitrarily fixed at 0.25 

in this calculatione The upper limit of these infinite integrals was 

chosen large enough so that the maximum estimated error is less than 

one percent. The results from these calculations are shown in Figs. 

(5.2) and (5,3). 

It is difficult to achieve a high degree of accuracy in the 

numerical integrations of Eqs. (5.28a) and (5.28b). For computational 

purposes the upper limit of infinity must be replaced by a large finite 

number. It can be seen from Eqs, (5,28) and (5.30) that the integrands 

of the two integrations are of order 1-2 for large values of the inte-

gration ~arameter t. This rather slow convergence of the integrals 
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b = 0.25 

0 NUMERICAL SOLUTION OF Eq. (5.28a) 

- NUMERICAL SOLUTION OF Eq. (5.320) 

0.1 "-----"----"---~--L..---i.----'-----"---'--....... _.... 

I 10 100 
n 

Fig. (5.2) 

First-order correction term. 
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b = 0.25 

0 NUMERICAL RESULTS OF Eq. ( 5.28b) 

NUMERICAL RESULTS OF Eq. { 5. 32b) 

10 
n 

Fig. (5.3) 

First-order correction term. 

100 
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requires that the upper limit of the integrations be chosen to be 

very large in order to obtain accuracy. 

Numerical solution using the Gaussian approximation 

An alternative method of evaluating z10 and z11 in Eqs. (5.20a) 

and (5.20b) consista of integrating first analytically and then suIIIlll1ng 

the resulting finite series numerically. Eqs. (5.20) for z10 and z11 

can be written as 

N-1 
1TZlQ = 2(41T) 

H-1 

N-1 
m~2 (N - m)n0 (b, rn) (5.32a) 

m~2 (N - m)[(N - 1 - m)n
0

(b, m)/6 - n
1

(b,m)]. 

0
0 

and n1 are integrals defined by 

n1 (b, m) "' 
co 

I (sin 9./R.)1\3 (k, R., b)dR., 
0 

(S.32b) 

(5. 33a) 

(5.33b) 

where K2 and K3 are defined by Eqs. (5.19). These integrals can be 

evaluated analytically provided the Gaussian approximation is made for 

(sin ~/t)m. With this representation for (sin t/.t)m, n
0 

and n
1 

become 

co 

n0 (b, m) m ! exp(-mt2 /6)(1-~4m/180 + ••• )Kz(k, t, b)dt (S.34a) 
0 

co 

n1 (b, m) - {, exp(-mt2 /6) (l-£. 4 m/160 -r ••• )K3(k, .t, b)d.t. (5.J4b) 

n in Eq. (5.34a) is the difference between a Fourier sine transform 
0 

and Fourier cosine transform. The result obtained by integrating 
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Eq. (S.34a) is found to be (see Appendix IX). 

(5.35) 

n1 can also be put in the form of Fourier sine and cosine transforms 

(see Appendix IX), which leads to 

(5.36) 

- (nm/12)erf[(3b~/2m) 1 /2 ] + 0(1). 

Eqs. (5.35) and (5.36) are accurate only for large m. This 

difficulty can be circumvented by finding the first few n
0

(b, m) and 

n1(b, m) exactly and then using Eqs.(5.35) and (5.36) thereafter. 

For m m 2 and 3 we have 

n
0

(b, 2) = nb2/8 

n
0

(b, 3) = nb 3 /12 

n1(b, 2) - -~b4 /96 

n1Cb, 3) = -~b 5 /120 • 

Eqs. (5.32a) and (5.32b) can now be written as 

(5.37a) 
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-(N-1) 
-6(4~) z11 ~ (5.37b) 

(N - 2)(N - 3)b 2 /4 + (N - 3)(N - 4)b 3 /6 + (N - 2)b 4 /8 + (N - 3)b 5 /10 

The summations in Eqs. (5.37a) and (5.37b) were performed numerically 

using an IBM 7094 computer for the special choice of b = .25. The re-

sults are shown in Figs. (S.2) and (5.3) and can be seen to agree quite 

well with the results from the previous section. 

The mean square end-to-end distance can now be written including 

the first-order correction terms. From Eq. (5.9) we have 

6(N - 1) + 6z11 
(5.38) 

Using the numerical values of z10 and z11 exhibited in Figs. (5.2) and 

(5.3) for b = .25, <p2lN> was computed as a function of the chain length 

n. These results appear in Fig. (5.4) along with Eq. (5.27), obtained 

by Fixman. The portion of the curve shown is for small enough n so that 

Eq. (5.27) converges rapidly. It can be seen from Fig. (5.4) that the 

numerical results of log ~p2 1N> start to deviate sharply from lineari-

ty as a function of log n for n > 15. It is known from experiment and 

from computer generated chains on a lattice that <p 2 1N> « ny where y is 

a constant. Since z10 and z11 were computed very accurately by several 

methods, it appears that higher order interaction terms in the cluster 

expansion Eq. (5.2) must be contributing to <p2lN> for large N. 
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b = 0.25 

10 
n 

0 

0 

...-..-- FIXMAN Eq. 
Eq. (5.27) 

Fig. (5.4)- (p1~) vs. n CALC. FROM Eq. (5.41) 

100 
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c. Higher-Order Terms 

From the preceding sectlon it appears as if higher-order 

terms in the cluster expansion of <piN > contribute significantly for 

longer chain lengthse To evaluate all the integrals in the cluster 

expansion for large N is out of the question. It was shown earlier thot 

N2 /2 there are approximately 2 terms in the cluster expansion for large 

N. For a chain of 100 links the number of integrals to evaluate is 

approximately 10 1500 • Furthermore, the difficulty encountered in 

evaluating integrals representing mqny interactions will be much greater 

than the relatively simple first-order terms discussed in the last 

section. In developing an approximation to the exact solution it would 

be useful to know the relative sizes of some of the higher-order terms 

as a function of chain length. In this section ! will present a method 

for determining certain classes of higher-order graphs in terms of sim~ 

pler lower-order graphs. I will also give the results of some numeri-

cal computations for the contribution of higher-order graphs of a spe-

cific topological type. 

Cu-r-rent analogy 

Many of the higher-order graphs may be simplified by transforming 

these integrals into Fourier space. As was seen in the previous section 

the first-order graphs were greatly simplified by this technique. By 

transforming various higher-order integrals into Fourier space, as was 

done in part 2 of this chapter, it was noticed that a convenient 

pnemonic device existed which allows the Fourier transform of an inte-
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gral to be written down immediately by examining the topology of the 

corresponding graph. We have called this procedure the "current analo-

gy." This technique consists of representing the graph as an electric-

al circuit with current flowing from left to right. An example using 

the first-order graph is shown below • 

.,.,-e 

'T} ~ 'T} 
c ... .. • 

N 

The Fourier transform of the circuit can be written following a 

set of rules. 

1. All currents flow from left to right and obey Kirc.hcf f's 

first law: the sum of the currents entering and leaving a 

circuit point is zero. 

z. The contribution of the straight portions of the graph to 

the 
-(0) 

Fourier transform is Zij (n). i and j are circuit points 

with ~ and n-~ the currents flowing through this section. 

3. The contribution of the looped portion to the Fourier trans-

form is a convolution integral of h (loop current) with the 

contribution of the straight sections of the loop; e.g. 

4. The total contribution to the Fourier transform is the pro-
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duct of the respective contributions from the straight and 

looped sections. 

As an example, consider the first-order graph. The contribu-

-(0) -(0) 
tion of the straight section is z1i (n) ZjN (n). The looped section 

contributes 

The total Fourier transform of this graph is the product of these con-

tributions. 

This agrees with the result obtained earlier in this chapter by the 

direct method. 

Now consider the more complicated terms represented by graphs 

of the form 

The circuit for this graph is 

7]_, ,_{3 

7] CLiL:\ 7] 
• .... .... 0 

k L, N 
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with the currents represented by the Greek letters and the circuit 

points represented by i, j, k, t. 

Following the rules established, the contributions of the 

-(0) 
straight sections to the Fourier transform of the graph are z11 (?) 

-(0) 
and zjN (ri). 

The total Fourier transform of this graph becomes 

(5.39) 

Using this technique the Fourier transform of any graph, no 

matter how complex the topology, can be written down. 

Second-order term 

The second-order term in the cluster expansion, Eq. (5.2), is 

of the form 

This can be represented by sums of graphs of three topologically dis-

tinct types 

where 

W(2) -lN 

(2) (2) (2) (2) 
zlN (Prn) = W1N + X1N + Yrn ' 

j m n 

(5.41) 

N 
(isolated) 



x(2) .. 
· lN 

y(2) "" 
lN 
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(nested) 

(overlapped) 

The inte.grals ?"!=!presented by the graphs above are of three different 

types: isolated, nested, and overlapped. Each type must be treated 

separately. 

The isolated graphs are the simplest to evaluate. t/ 2) is de­lN 

fined to be 

[sum over 1 ,;;. i ~ (j - 2), j ,;;. m ~ (n - 2), n ~ N] 

Choose a point s in the range j ,:;. s ~ m. 

give 

w< 2> can then be factored to 
lN 

(5.42) 

This expression can be simplified further by use of.Fourier transforms. 

Define the Fourier transform pair 
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(S.43) 

(1) 
Introduction of the Fourier transform representation of z1N into 

Eq. (5.42) and interchange of the order of integration leads to the re-

sult 

(5.44) 

It can be seen that the "isolatedn graphs of the second-order 

term in the cluster expansion can be expressed in terms of the first-

order term. This will also be true of the "nested11 graphs. The cur­

rent analogy diagram for the type of graphs in xi~) is 

7J ... • m n j N 

(2) 
The Fourier transform of XlN becomes 

x(Z)(n) • E z<?>(n)z~O)(n) ! h(ln - !j)z(O)(~)Z(O)dt 
lN li JN in nj 

- + + -(0) + 
x ! h(!~ - Si)Zmn (S)dl3 (5.45) 

[sum over 1 ~ i ~ m ~ (n - 2) , n ~ j ~ N] • 

Observe. that 
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[sum over i :;._ m ~ (n - 2), n ~ jJ. 

Thua xi~) can be written as 

(5.46) 

[sum over 1 < i < (j - 2), j < N]. - - -
-(2) 

This expression for x1N is more complicated to evaluate than the 

corresponding relation for wi~) in E.q. (5.44), since Eq. (5.46) in-

volves an integration. 

-(2) 
It is not possible to simplify Y1N • the overlapping graph 

-(2) 
contribution to ZlN , in terms of the lower-order graphs as was done 

for w~) and xi~). This is due to the overlapping topology of the 

graphs. 
-(2) 

The Fourier transform of Y1N was obtained in the previous 

section as an illustration of the current analogy. In order to evalu-

ate this term it is necessary to evaluate a difficult three-center 

integral. 

Third and higher-order terms 

It is obvious that higher-order terms with greater numbers of 

interact1ona (h-bonds) entail many more graphs of varying topology. 

Some of these graphs will be able to be expressed in terms of lower-

order graphs (i.e. they are reducible}. As an example, consider graphs 

of the 11isolated11 type. 
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~ ... (i-3) 
• • • ~ ... ~ 

I a b loops k L m n N 

The number of loops or h-bonds represents the order of the graph. 

These "isolated" graphs will make a contribution to terms of all orders 

in the cluster expansion. 
(i) 

Let us denote this contribution by w1N where 

i is the order of the term. 
i terms 

(i) I .+ .+ 
WL~ = ~ J ••• J rN habhcd 111hkthmn dp2•••d PN-1 (5. 47) 

[sum over 1 ~a~ (b - 2), ••• , t ~ m.;;. (n - 2), n ~ N] 

From the current analogy, the Fourier transform of Eq. (5.47) can be 

written, 
i terms 

-(i) -(0)-(0) -(0)-(0) 
wlN (k) • E zla Zbc ... z~m znN 

Choose a point: s in th~ r::mge .t ,;,,,_ s ~ m the.n 

w~) can then be factored into two parts which can be identified with 

-(i-1) -(1) 
W15 (n) and Z

5
N (n) to give the simple relation 

N-2 . 
wl(Nir')(n) = E wl(is-l)(n)Z(l)(n). (5.48) 

s=2i-l sN 
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The nested graphs x£t> will also contribute to each term in 

the cluster expansiona 

(i -3) 

loops 

From the current analogy, it is possible to generalize Eq. (5.46) to 

give a difference equation for the nested graphs of ith-order 

-(i) -(0) -(0) - + + -(i-1) + 
XlN (n) a E z11 (n)ZjN (n) I h(ln - ~!)Zij (~)d~ 

[sum over 1 ~ i ~ (j - 2), j ~ N] 

(5.49) 

(i) 
It is obvious that the general terms z1N in the cluster ex-

pansion will contain an enormous number of graphs of various topology. 

The isolated and nested graphs discussed are only two of many different 

types of graphs present. It does not seem practical or possible to 

classify and evaluate all the possible graphs. This will not be at-

tempted here. Instead I will successively evaluate the isolated graphs 

only. This will demonstrate the behavior of the higher-order graphs 

W(i) as a function of chain length. lN 
(i) -(i) 

Rather than evaluating w1N or W1N directly, it is more con-

venient to compute the first two coefficients in the power series ex­

pansion of wi~) (k). The expansion of zi;) (k) was given by Eq. (5.7) 
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w1th coefficients z1j(N). Let the coefficients 1n the expansion of 

W~~)(k) be denoted by wij(N). 

wf~)(k) = r w1j(N)k2
j 

j 

Obviously zij(N) and wij(N) are related by 

z1j(N) • w1j(N) +[terms of other topology]. 

We now substitute Eqs, (5.50) and (5.7) into Eq. (5.48) to obtain 

(5.50) 

{S.51) 

(5.52) 

Comparison of the coefficients of k2
j in Eqs. (5.50) and (5.52) leads 

to the difference equations, 

N-2 
w10 CN) = z w1_1&s)z10(N - s), (5.53a) 

s=21-l 
.N-2 

w11(N) = s=~i-l [w1-1o(s)z11(N - s) + w1-11(s)z10 (N - s)], (5.53b) 

These difference equations were solved successively starting with i = 2 

on an IBM 7094 computer. The initial conditions z10 (N) and z11 CN) were 

taken from Figs. (5.2) and (5.3) of this chapter, The hard core para­

meter b, was taken to be 0.25 and the calculation of wio(N) and wi1 (N) 

were performed as a function of chain length N. The results of these 

numerical computations are shown in Figs. (5.5) and (5.6). 

These results can now be used to compute the mean square end-to-
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b = 0.25 
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Fig. (5.5)- CONTRIBUTIONS DUE TO NON-OVERLAPPING TOPOLOGIES 
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b = 0.25 

o-----------....._ ____________________________ _ 
1.0 I. 2 1.4 1.6 1.8 2.0 

log n 

Fig. (5.6) - CONTRIBUTIONS DUE TO NON -OVERLAPPING TOPOLOGIES 
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end distance <p 2
1
N>' assuming t.hat all graphs ot.her t.han "isolated 

graphs" are negligible. Make the· very crude assumption that 

for 1 ~ i !. [(N - 1)/2], 

for [(N - 1)/2] < i ~ (N - 1)/2. 
zil (N) l!l: 0 

In words this means that all graphs except the "isolated" graphs are 

omitted. For a given chain length N, the maximum number of "isolated" 

h loops that is possible is [(N - 1)/2] where the bracket denotes the 

smallest integer less than or equal to (N - 1)/2. With this approxima-

tion, Eq. (5.9) becomes 

(5.54) 

The mean square end-to-end distance was calculated from Eq. (5.54) using 

the numerical results obtained from Eqs. (5.53). The results are shown 

in Fig. (5.7). The erratic behavior of the mean square end-to-end dis-

tance for n > 40 indicates that inclusion of "isolated" graphs only, 

results in incorrect weighting of the terms z 1i and z1o for large n. 
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b = 0.25 

FIXMAN Eq. 
Eq. (5.27) 

100 n· 
Fig. (5.7) -<p1~) vs. n CALC. FROM NON - OVERLAPPING TOPOLOGIES 
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6. SELF-CONSISTENT CENTRAL FIEW APPROACH 

It was seen in the previous chapter that contributions of 

higher-order graphs to the conf igurational partition function become 

important for long chain lengths. Since long chains are of interest 

£rom a practical standpoint, it is clcnr thnt some appronch other than 

the cluster expansion is needed. 

In this chapter I will describe the self-consistent field theory 

approach to the excluded volume probJam. The major contributors to this 

theory are Edwards (9), Reiss (10) &nd Yamakawa (12). Edwards was the 

first to approximate the pair interactions by a central field. Reiss 

later attempted to show that this field satisfies a variational princi-

ple. The present author (30) has pointed out an error in Reiss' treat-

ment, which indicates that Reiss' field does not satisfy that variation-

al principle. 

Reiss (10) has presented a method for finding the best central 

field approximation. The method consists of using those functions ~ '+'S 

which minimize the Helmholtz free energy. In chapter 3 it was shown that 

the probability of observing a polymer chain in a particular configura-

tional state for a canonical ensemble of chains was 

+ + -1 ->- ->-
PdP 1 • • • dpN = Z exp(-i3V)dp 1 ••• dpN, .. (6.1) 

where 

V • E uii+l + (1/2) E vij' 
i i1j 
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and 

N-1 
exp(-8 E uii+l) = Tio (Pii+1-l) - fN• 

i i=l 

Note that it makes no difference if adjacent interactions vii+l are 

included in the second sum because of the o-function ordering poten-

tials. Z is the unrestricted partition function defined by Eq. (3.5). 

The term rN involving the &-functions is of course due to the ordering 

of the adjacent segments. From statistical thermodynamics we can write 

the entropy of the polymer chain as 

( 6.2) 

The macroscopic internal energy of the system is 

..... ..... 
E = r ... r v p dP 1 ••• dpN. (6.3) 

The Helmholtz free energy is defined to be 

A = E - TS. (6.4) 

Thus for a_ polymer chain we have 

(6. 5) 

We now make the central field approximation\ which decouples the many-

body problem. 

(1/2) I vmn ~ E ~s 
m=i'n s 

{ 6. 6) 
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.. 
This leads to an approximate probability distribution P 

and ~a~tition function z. 

(6.7a) 

where 

(6.7b) 

Let us now introduce a convenient notation for certain inte-

grals that will arise. Let 

X> Z ... -il f x ( ) d+ < 1 • ••• f rN exp -s ~ $8 k~i Pkt (6.8) 

with 

The subscripts refer to the segments that are held fixed in the integra-

tions. The approximate Helmholtz free energy resulting from Eq. (6.6) 

is thus 

A= <V + kT in~>. (6.9) 

It remains to determine the best possible set of $s• The criterion that 

Rehs used was minimization of the Helmholtz free energy in F.q I (6.9). 

Using Eqs. (6. 7a) and ( 6.1), Eq. (6.9) can be written as 

.. 
<(1/2) L 

-1 ... 
(6 .10) A .. vij ... l: cps .... s R.n z>. 

i:fj s 
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Since Z is not a function of the coordinates, e-1~n Z can be removed from 

under the integral signs in Eq. (6.10). Furthermore, since Pis normal-

ized, these integrations give unity • 

.. 
A= <(1/2) i~j Vij - (6.11) 

We now take the variation of A by allowing each of the ~k to vary inde­

pendently. 

k • 1, •• • N 

This expression can be rewritten in the form 

(6, 12) 

k = l~ ••• N "'· 

.. 
Since an extremal of A is desired, we set 

.. 
cA = O. 

Because the variation o~k is arbitrary, the kernel of the integral in 

" Eq. (6.12) must vanish. The restricted partition function Zk in general 

does not vanish, thus we are led to the set of equations, 
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(6.13) 

k = 1,. 2, ••• N. 

A A-1 
If Eq. (6.13) is multiplied through by the factor tkz the 

equation can be rewritten in the form, 

The method used in obtaining Eq. (6.14) ia baaed on Reiss' paper 

(10). Eq. (6.14) is identical to Eq. (25) of Reiss' paper, only it is 

written in our notation. Observe that if the second bracketed term is 

integrated over the coordinates of k, the first term results. 

If one chooses> 

Qi• (1/2)j~1 <v1j>i, (6.16) 

i fixed 

then the first bracketed term in Eq. (6.14) is made equal to zero. 

This can easily be proven by direct substitution. 
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Therefore, 

* Reis.s contends that since Eq. (6.16) makes the first bracketed term of 

Eq. (6.14) vanish, and since the integral of the second bracketed term 

is precisely the first bracketed term, then Eq. (6.16) is a solution 

to Eq. (6.14). This of course is not necessarily true as I have point-

ed out in (30). The fact that the integral 

vanishes does not imply that the integrand necessarily vanishes iden-

tically. Thus the second bracketed term of Eq. (6.14) is not necessari-

ly zero when Eq. (6.16) is substituted for 9i• Direct substitution of 

Eq. (6.16) into Eq. (6.14) leads to the condition 

(6.17) 

Proceeding as before, it is possible to show that 

Thus unless it can be shown that the sum of non-zero terms in Eq. (6.17) 

* Actually, Reiss erroneously omitted the factor of 1/2 in Eq. (6.16). 
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add up to zero, then Reiss' solution in Eq, (6,16) does not satisfy 

this particular variational principle. 

This does not mean that Reiss 1 solution for ~i in Eq. (6.16) 

is not useful. It possesses the same form as the Hartree-Fock poten-

tial used in multi-electron atoms. Furthermore, it is a physically 

reasonable approximation to make since it effectively averages over 

all the interactions of a given segment of the chain. 

Eq, (6.16) is an integral equation for ~i' Reiss used the 

method of successive approximations to approximate the solution. A 
(1) . 

f1rst-order approxlmation lj!i can be obtained by substituting an 

"'i(O) approximate~ in the right hand side of Eq. (6,16). This procedure 

could presumably be repeated to obtain higher-order approximations, al-

though nothing is said about convergence in Reiss' paper. Reiss made 

(O) 
the logical choice of <Pi = 0 which represents the non-excluded volume 

problem discussed in chapter 4. 

(1) (O) 
<l>i (pi)= (l/2)j~i <Vij>i 

i fixed 

= c112> / [ l: v ij 
j,ti 
i fixed 

By making the Gaussian approximation for Z~~) and ziO), replacing the 

summation by an integration, and integrating over the angular parts of 

Pj above, it is possible to show that, 

(1) 00 

Pi<l>i m 3 I v(r)dr 
0 

r+pi 
! (r + x)exp{-(3/2i)[(x + r) 2-piJ}dx, 

lr-p1J 
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which can be simplified to 

(1) "' 
Pi_ cf>:r. ~ i f v(x){l - exp(-6x{x + P1)/iJ}dx. ( 6 .18) 

0 

Eq. (6.18) cannot be simplified any further without specifying the 

nature of the potential v(r). It should be noted that because v(r) 

appears as a factor in the integrand of Eqv {6.18), difficulty arises 

when the hard sphere potential is used for v(r). This is because the 

zero-order approximation ~as taken to be the noninteracting chain prob-

ability distribution. To avoid this difficulty, Reiss used a finite 

repulsive potential 

v(p) • e: for 0 ~ o ,;:s .>. (6.19) 

.. 0 for p > .>.. 

Eqo (6.18) was then integrated to give 

(6. 20) 

Yamakawa in a later paper (12) used a potential similar to that used 

by Fixman ( 8) 

~ 
v(p) = kT X IS (p) • ( 6. 21) 

~ where x is the binary cluster integral and o(o) is a three dimensional 

o-function. Inserting this potential into Eq, (6.18), Yamakawa obtained 

the result 
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+1 (p) • (2'1T/3) 112
E;[(a2p) - (3p/1a4)] 

t; • (3/2'1T)3/2x. 

(6.22) 

Now that the central field has been obtained, the probability 

distribution Pin Eq. (6.7a) can be written as 

P • z-1 ~Ui [o(pii+l-l)exp(-B•1)]. 

The singlet distribution function 

can be written in Markoffian form. 

(6.23) 

~(pjpj+l) is the conditional probability. The details of these calcu­

lations can be found in the papers by Reiss and Yamakawa. Both authors 

found an equation of the form of Eq. (6.23), although they differ on the 

form of ~· Both authors passed to a differential equation of the 

Fokker-Planck type. The probability distributions were obtained and 

Reiss found the result, 

2 4/3 
<p lN>c:i:· n 

(6.24) 

whereas Yamakawa found 

2 6/5 
<p lN>« n . • (6.25) 

It should be noted that Reiss' solution was obtained in the limit as the 

magnitude of the repulsive potential approaches zero. Yamakawa's solu-

tion was derived from the three dimensional 6-function potential of 

Eq. (6.21) in the limit of large n. In both cases the parameter describ-

ing the strength of the interactions has been suppressed. 
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7. INTEGRAL EQUATIONS FOR ZlN 

Various integral equations for the radial distribution function 

have been derived in the theory of liquids. These equations give results 

that agree reasonably well with experiment. there are two general me­

thods by which these integral equations have been tle~ivetl; 

l. The Yvon-Born-Green-Kirkwood type of equation (14,15) is 

obtained by differentiating the phase integral representa­

tion of the radial distribution function for a fluid. Thia 

leads to an equation for the pair distribution function in 

terms of the triplet distribution function. The Kirkwood 

superposition approximation (16), which relates the triplet 

and pair distribution functions, is usually made. These 

two relations lead to an integro-dif f erential equation for 

the pair distribution function. 

2. Other types of integral equations for the radial distribu­

tion function have been obtained for fluids by use of graph 

theory. The Percus-Yevick (31,32) and Hypernetted Chain 

(26t27) equations are familiar examples. 

The excluded volume problem is very similar to the problem of the 

classical fluid. The form of the restricted partition function in Eq. 

(3.12) for a polymer chain is very similar in form to the phase integral 

representation for the radial distribution function of liquids. The 

essential difference between the two is the constraint that the adjacent 

subsystems in the polymer system be fixed relative to each other. This 
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gives rise to the o-function ordering potentials discussed in chapter 3. 

In this chapter I will derive several integral equations for the restric-

ted partition function z
1

N of a polymer chain. This approach has not 

been used by anyone on the excluded volume problem until now, with the 

exception of Naghizadeh (13). who recently derived a Kirkwood type of 

equation. 

A. Yvon-Born-Green Type Equation 

An integral equation can be obtained for z1N by following a 

procedure analogous to that used by.Yvon, Born and Green (14) for liquids. 

In chapter 3 we found 

(3.12) 

We .now take the gradient VN with respect to the coordinates of the Nth 

subsystem, 

(7 .1) 

This equation can be rewritten in terms of the restricted partition 

function ZliN, where l, i, and N are held fixed. 

(7 .2) 

[ZlN-lN/o(pN-lN-1)] simply means that 6(PN-lN-l) is to be omitted in 
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Z1N-lN• In order to solve for the function z1N, the triply restricted 

z11N must be determined. This can be accomplished by making the analog 

of the Kirkwood Superposition approximation, which is well-known in the 

theory of the liquid state (16). In our case this becomes. 

(7 .3) 

Eq. (7.2) then can be written as 

(7. 4) 

In taking the gradient, VN' all subsystems except the Nth aybaystcm arc 

to be considered fixed. As a consequence, we can write, 

(7 .5) 

where ~lN signifies the gradient with respect to a coordinate system_ 

with the origin at subsystem i. Eq. (7.5) is now dQtted with a unit 

vector in the PlN direction to give, 

(7. 6) 

-+ -+ 
where e1 is the angle between the vectors plN and piN" From the law of 

cosines, cos ei can be written as 
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(7. 7) 

Using Eq. (7.7) and introducing bipolar coordinates into Eq. (7.6), we 

are led finally to, 

(7. 8) 

+ lhr 
N-2 

I: I 
' P1N+x 

v (x)Z (x)dx I 
iN 

yZ (y)(p2 +x2-y2)dy. 
li lN 

i=2 IP11rx\ 

Eq. (7.8) is a nonlinear, integro-differential equation for the 

restricted partition function z1N • It is analogous to the Yvon-Born-

Green equation for the radial distribution function of a liquid. Eq. 

(7.8) is an approximate equation because of the utilization of the 

Kirkwood superposition approximation. 

B. Kirkwood Type Equation 

Kirkwood (15) used a method somewhat similar to that of Yvon, 

Born and Green. I will extend Kirkwood's method to obtain an equation 

Define a coupling parameter by 

N-1 N-2 N"-3 N-1 
v = E Ui·i.·+1 + n I: viN + E I Vi·j i=l i=l 1 i=l j=i+2 

(7.9) 

The coupling parameter n can vary between zero and one. It effectively 

"turns on" the interaction potential between subsystem N and the rest of 

the system. With this notation.the restricted partition function z1N 

becomes 
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Now differentiate Eq. (7.10) with respect to the parameter n • 

.+ 
Integration over all variables except p

1 
leads to 

(7. ll) 

We again apply the Kirkwood superposition approximation in nrder ta 

express the triply restricted partition function ZliN in terms of the 

doubly restricted functions. Using Eq. (7.3) in Eq. (7.11), we obtain 

(7 .12) 

Eq. (7.12) is another nonlinear, approximate integro-differential equation 

for ZlN• 

Let us employ the method of successive approximations used by 

Reiss (chapter 6). Assume a zero-order solution of z1N(plN;n) is given 

(O) 
by ZlN (p l'N), the result obtained from the non-excluded volume problem .. 

If this.zero-order solution is inserted in the right hand side of Eq. 

(7.12), then the equation can be integrated immediately. 

n is now put equal to one since this corresponds to "turning on" the 

potential between subsystem N and the remaining system. The result is 

(7.14) 
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where, 

The appropriate initial condition is 

(7 .15) 

Eq. (7.14) now becomes 

(7.16) 

which is a difference equation for z1N. 

This result is analogous to the central field approach of 

Reiss discussed in chapter 6. Reiss used an equivalent field poten-

tial ~i which essentially is an average over all interactions viN (see 

Eq. (6.16)). In this treatment we found a veff which is essentially 

the same as Reiss' central field. 

Naghizadeh (13) used a similar approach to obtain a different 

integro-dif f erential equation. Naghizadeh solved this equation for the 

case of ring polymers. 

c. Percus-Yevick Approach (33) 

The Percus-Yevick (PY) equation for the radial distrib.ution 

function of fluids was originally derived by Percus and Yevick by 

using a method based on "collective coordinates" (31). A much simpler 

derivation based on graph theory was presented by Stell (32). Recently, 

Percus (41) has shown that the PY equation can be obtained from a function-
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al Taylor expansion by keeping only first-order terms, provided the 

proper functionals arf> chosE>n. '!'ht'! PY f'quat:fon is generally considered 

to give results which agree with experiment better than any of the 

other integral equations available at the present time. 

In this chapter I will derive the,analog of the Percus-Yevick 

equation for a polymer chain (33). The method which I will employ will 

be analogous to that used by Stell. 

In chapter 5 a cluster expansion for z1N was given in Eq. (5.Z). 

A graph representation of this equation was presented in Eq. (5.3). It 

is convenient to introduce a parameter A by 

{ N-1) 
·~ ( ' ) 2 ' i z ( i ) ( ) 
.... lN "rn;A = t A lN P1N • 

i=o 

This equation can be written in terms of graphs to give 

AL~ ... 0-0 (7.18) 

pairs 

+ "2.2: ~ ... 0-0 + ••• 

fours 

(i) 
These graphs represent the integrals ZlN as discussed in chapter 5. 

A is merely a convenient expansion parameter whose exponent corres-

ponds to the number of loops or h-bonds appearing in the graphs of its 

coefficient. When A is set equal to -1, Z1N<P1N;A) reduces to the con-

· ventional restricted partition function z1N(PlN) previously used. 
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furthermore, Eqs. (7.17) and (7.18) reduce to Eqs. (5.2) and (5,3) 

respectively when A = -1. 

In the restricted partition function Z1N<P1N;A) subsystems 

with coordinates 1 and N are held fixed in the integration. This is 
(i) 

also true of the terms ZlN (PiN) in the cluster expansion. As a result, 

the bond hlN can be factored out of some of the graphs appearing in 

F.qs. (7.17) or (7.18). Eq. (7.17) can then be written as 

(7.19) 

where ~i(plN) is the sum of all graphs of i loops or h-bonds, except 

those with an hlN bond, in a chain of N subsystems. Eq. (7.19) is ana­

logous to the density expansion of the radial distribution function of 

a fluid. The parameter A is analogous to the fluid density. We saw 

in chapter 5 that the integrals ~i' for i ~ 3, become extremely diffi­

cult to evaluate and that the cluster expansion does not converge rapid-

ly (i.e. higher-order graphs are important). Complete summation of the 

cluster expansion in Eq. (7.19) can in principle be achieved if certain 

classes of graphs are omitted, This can be accomplished by expressing 

Z in an integral equation by using some topological arguments. 
lN 

I am now going to make a distinction between two different types 

of graphs in z1N(P 1N;A.). Nodal graphs are defined as those graphs which 

contain 11 field point through which all pachs from one end ot the graph 

to the other must pass. These points are called nodes (see Fig. 7.1). 

Alternatively, a node is a point which cuts the graph into two parts. 
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Fig. (7 .1) 
Examples of nodal and elementary graphs 

Nodes are marked by arrows. 
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Graphs which are not nodal are defined to be elementary. 

The function z1N(P 1N;A) is the sum of the nodal graphs N1N(P 1N;A.) 

and the elementary graphs Eur(P 1N;A.). 

(7.20) 

The nodal and elementary graphs are given by the expansions 

NlN(P lN;A) 
(N2l) 

i = E vi (P lN)>. 
i=O 

(7. 21a) 

ElN(P lN;A) = 
(Nil) i 

l: ei (p lN)A. (7. 2lb) 
i=O 

where v1 (p 1N) and E1 (p 1N) are the sums of nodal graphs and elementary 

graphs respectively with i h-bonds or loops in a chain of N subsystems. 

Nodal graphs have the property that they can be synthesized 

from other graphs. In effect, two graphs can be joined at a point which 

becomes a node of the new graph. For example, the graphs f 1 (p 13) and 

1 4 

can be jointed to form a new nodal graph f3(P16)• 

1 6 

This property of nodal graphs is very useful. In fact, all the nodal 
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graphs in N1N<Pu~;,\) can be constructed from simpler graphs. Consider 

the graphs in N1N(P1N;A) which possess a node at point i, but which have 

no nodes to the left of point i. Then all graphs with this property 

are .given by 

In word~. the elementary graphs of chain length i are joined with both 

nodal and elementary graphs of chain length N + 1 - i, to give a nodal 

graph of length N whose left-most node is at point i. By summing over 

(7.22) 

Since E12 CP 12 :>.) and ~-lN(pN-lN;I..) arP_ simply &-functions~ these terms 

will be removed from the summation in Eq. (7.22). 

+ 
NlN(PlN;I..) • f ElN-1 (Prn'-l;l..)o(pN-lN-l)dPN-1 (7.23) 

N-2 
+ 

Eq. (7.23) is the relation between the nodal and elementary graphs in 

ZlN. It is analogous to the well-known Ornstein-Zernike equation (26,27) 

in the theory of fluids. 

If it were possible to obtain another independent relation be-

tween the nodal and elementary graphs, then this relation together with 

Eqs. (7.20) and (7.23) would uniquely determine z1N(p 1N;;>.). In order to 

obtain this second relation I will employ an approximation analogous to 
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the Percus-Yevick approximation given by Stell (32) in the theory of 

fluids. For the excluded volume problem this approximation is 

(7.24) 

By definition we have 

(7 .25) 

For N • 3, approximation Eq. (7.24) is exact. For N • 4, all graphs are 

accounted for except the graph ~ (see Appendix X). 

In general, this approximation fails to account for those elementary 

graphs which do not contain an h1N-bond. If it is used successively 

(starting from N = 3), only those elementary graphs which are formed by 

adding an h-bond to nodal graphs are counted. 

Eq. (7.24) can be put in a more useful form by multiplying both 

sides by Ai and then summing on i. 

(7. 26) 

Using Eqs. (7.19) and (7.2lb), Eq. (7.26) becomes, 

(7.27) 

Ir I. is put equal to -1, we obtain 

(7.28) 
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where HlN • 1 - hlN • Substitution of Eq. (7. 28) into Eq. (7. 23), 

putting X = -1 leads to, 

zlN • H!N[/ o(p12-l)Z2NdP2 - I (h1N-1/H1N-1)Z1N-1o(pN-lN-l)dpN-l 

N-2 -+ 
... E r (hu/H1N)ZliZiN<lP1l' (7.29) 

i=3 

Eq. (7.29) is analogous to the Percus-Yevick equation for fluids. The 

PY equation is an integral equation only, but Eq. (7.29) is an (N - l)th-

order integro-dif ference equation. This additional complication arises 

because we are dealing with a chain rather than a uniform fluid. 
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8, SOLUTION OF THE PERCUS-YEVICK TYPE OF EQUATION (33) 

In chapter 7, three different approximate integral equations 

were derived for the restricted partition function Z1N<Prn), The 

Yvon~Born-Green and Kirk.wood types were obtained by invoking the ana­

log of the Kirkwood superposition approximation. The Percus-Yevick 

type employed another type of approximation. It is known from the 

theory of liquids that the Kirkwood superposition approximation is a 

rather crude assumption. Furthermore, the Percus-Yevick approximation 

is known to give much better results than the Kirkwood superposition 

approximation. In fact, the Percus-Yevick equation is considered to 

be the best available integral equation for the radial distribution 

function. For this reason it is hoped that the Percus-Yevick t~pe of 

equation presented in chapter 7 will provide a satisfactory solution 

to the excluded volume problem. This equation will now be solved for 

the case of a hard core potential. 

The exact solution to the Percus-Yevick integral equation for 

fluids has been obtained for hard spheres by Wertheim (34) and Thiele 

(35). Since Eq. (6.29) is an (N - l)th-order difference equation as 

well as an integral equation, an analytical solution for the polymer 

chain problem is much more difficult to obtain than with the Percus­

Yevick equation. Even if it were possible to solve this nonlinear 

equation, a large number of conditions would be necessary to determine 

the resulting arbitrary constants. Fortunately, for a hard core poten­

tial and the special case when the hard core diameter is equal to the 
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segment length of the chain (i.e. b ""' 1), this (N - 1) th-order dif-

ference equation reduces to a second-order difference equation. 

A. Analytical Result When b • 1 

Introduce the variable tij(Pij) defined by 

(8.1) 

In terms of tij' Eqe (7.29) becomes 

(8. 2) 

We now introduce the hard core potential. 

hij = 1 for Pij < b (8.3) 

hij = 0 for Pij > b 

The parameter b is the radio of the hard core diameter to the segment 

length (a). hence oul" model ii:; a 11 pei:i.rl neckla.c2" model. Coni;ider now 

the special case of b = 1. After introducing bipolar coordinates into 

Eq. (8.2) and simplifying, we obtain a set of two equations. 
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(8.4a) 

when 0 < p < 2 and, 
""" lN = 

Pl~l 
ulN(PlN) ... r UzN(PzN)dPzN 

Prn-1 

N-2 plN+l 1 

-i~3 £1 uiN(piN)dpiN I I juli(pli)dpli 
P1N P1N-piN 

(8.4b) 

when 2 !, P1N < m. 

(8.5) 

By starting with u12 = o(Piz-1) it is possible to successively calculate 

the ulN for small N using Eqs. (8.4). u12 through u15 are shown in Table 

8.1. 

Three observations can be made from Table 8.1: 

1. u1N is a piecewise analytic function, 

analytic between integer values of plN" 

2. u1N is continuous at integer values of plN' 

~. u1N = 0 in the region Q ~ plN ~ 1, N = 4. 5. 

If we assume that condition (3) holds for u (4 < k < N - 1), then - -
Eqs. (8.4) simplify to linear, second-order difference equations. 
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Table 8.1 

ulN calculated from Eqs. (8.4) 

N Range of plN 

2 

3 l 0 < p < 2 - i:r-
0 2 < p < CCI 

- 13 

4 0 0 ~14 ~ l 

p 14 - 1 1 ~14 ~ 2 

3 - p 
14 

2 ~ < 3 14 ..... 

0 3 ~ 14 < 00 

5 0 0 .!:.015 ~ 1 

(1/2) (plS - 1) 2 1 !1>15 ~ 2 

(1/2)(1op 15 - 2pis - 11) 2 !1>15 ~ 3 

(1/2)(4 - p 15)2 3 .:;.pl5 ~ 4 

0 4~ <QI) 
15 
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when 0 ~ p lN ~ 2 (8.6a) 

o uff::l l-lil lN 
ulN(plN) • I u2N(p2N)dp2N - ! u3NCP3N) [l - IPlN - P3NI Jdp3N 

P1~l P1~l 

when 2 ~ p lN ~"" (8.6b) 

The solution to these equations 1s piecewise analytic. After some 

manipulation. this solution is found to be (see Appendix XI) 

(j) j-1 s(N-2) N-3 
ulN (P1N) "" s~O (-1) s . (plN - a - l) /(N - 3) l (8.7) 

for b • 1, j ~ .P lN ~ j + 1, j ~ 1. 

Using Eq. (8.7) it can be shown by induction that condition (3) 

(0) 
(u1N • 0) holds for all N ~ 4. Thus Eq. (8.7) is also a solution to 

Eqs. (8~ 4). 

Let us now compute the mean square end-to-end distance <p21N>. 

Using Eqs. (8.5) and (8,7) we obtain, 

We now expand p 31N • [ (p lN - s - 1) + (s + 1)] 3 in powers of (p lN - s - 1) 

and integrate. After interchanging the jth and the sth summation opera-

tions and summing on j we obtain 
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<o21N> • {$(N + 1)(1/(N + 1) -3/N + 3/(N - 1) -1/{N-- 2)] 

+ 3$(N)((N - l)/(N - 2) - 2 + (N - l)/N] (8.9) 

+ 3$(N - l)[N - 1 - (N - 1)2/(N - 2)) + $(N - 2)(N - 1)3/(N - 2)} 

x {~(N - 1)(1/(N - 1) -J/(N - 2)] + $(N - 2)(N - l)/(N - 2)}-l 

where 

After considerable manipulation. it is possible to perform 

the summations in Eqo (8.9) (see Appendix XII). The final result 

reduces to the simple form, 

<p 21N> = (N - l)(N + 2)/4. (8.10) 

This result can also be obtained by examining the coefficients in the 

power series of the Fourier transform of tlN(PlN)• This will be shown 

later in this chapter. 

Eq. (8.10) represents the mean square end-to-end distance when 

the diameter of the hard core potential is exactly equal to the segment 

length (i.e. b = 1). For long chains (large N) it can be seen that the 

mean square end-to-end distance is proportional to n2(n = N - 1). i~1en 

there is no excluded volume effect (i.e. b = 0), we know that the mean 

square end-to-end distance is proportional to n. It would be extremely 

interesting to examine the solutions to Eq. (8.2) for intermediate values 

of b. Unfortunately the equation does not simplify as before. and an 
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analytical result has not been obtained. We have computed the mean 

square end-to-end distances numerically for some intermediate values of 

b; this is discussed in a later section. 

B. The Transformed Equation 

For numerical computations it is convenient to transform 

Eq. (8.2) into Fourier space. Whereas t 1N is piecewise analytic, the 

Fourier transform t1N(k) is analytic for all k; furthermore, the mo­

ments of t 1N can be found by examining the coefficients in the power 

series for tlN(k). Define the following transform pairs: 

(8.11) 

00 - ..... ..... ..... 
f tlN(k)exp(ik•P1N)dk 

(8.12) 

oo_ -++ + 
f FlN(k)exp(ik•plN)dk 

-QO 

(8.13) 

00 

8TI 3h(P 1N) = f h(k)exp(ik•PlN)dk. 
-oo 

.......... 
If we multiply Eq. (8.2) through by exp(-ik•plN) and integrate over 

+ dP lN using the properties of convolution integrals, we obtain, 

tlN(k) • 4rrk-lsin k[t2N(k) - 2F2N(k)] 

N-2 
+ l: [Fli(k)FiN(k) - Fli(k)tiN(k)J. 

i•3 

(8.14) 
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-
For the hard core potential Eq. (6.3), h(k) becomes, 

~(k) ~ 4w[sin(bk) - bk coa(bk)]/k3· (B.15) 

The function FlN(k) can be expressed in terms of t 1N(k). Substitution 

of the Fourier integral representation of tlN(plN) into Eq. (8.12) for 

-FlN(k) leads to the relation 

(8.16) 

If Eq. (8.15) is now usecl for h(!~ - ![), the angular integrations in 

Eq. (8.16) can be performed using the technique discussed in Appendix I. 

00 -
7rkF1N(k) = f l!.t1N(l!.)sin[(k - t)b)/(k - t)bdt (8.17) 

Eqs. (8.14) and (8.17) now provide an integro difference equation for 

the analytic function t 1N(k). The mean square end-to-end distance can 

be found from the first two coefficients in z1N(k). From Eqs. (8.1). 

(8.11) and (8.12) it can easily be shown that 

- - -
Z1N(k) = t1N(k) - F1N(k). (8.18) 

From Appendix II we find that the mean square end-to-end distance is 

given by 

coeff(-k2 /6)in[t1N(k) - F1~(k)] 
<p21N> =~~~~~~~~~~------~ 

coeff(l)in [tlN(k) - rlN(k)J 
• (8.19) 

~qs. (B.14), (8,17) and (8.19) thus provide a method of calculating the 

mean square end-to-end distance for any hard core diameter 0 :;,. b ~ 1. 
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When b = 1 the above methuu shoulu give tht! same mean square 

end-to-end distance as was obtained in the previous section by calcu-

lating z1N(p 1N) directly. This would provide a valuable consistency 

check on both procedures. From the previous section we know that when 

b • 1 

(8.20) 

From Eq. (8.12) it can be seen that 

-FlN(k) = 0 for N ~ 4, b • 1 (8.21) 

k 2F1N(k) = 81T 2 (1 - cos kb) for N = 3, b "" 1, 

Thus Eq. (8.14) can be greatly simplified. The result for N ~ 6 is 

(8.22) 

when N ~ 6, b • 1. 

The results for 2 ~ N ~ 5 are given in Table 8.2. 

Since we are mainly interested in the coefficients in the power 

-
series of t1N(k), let us introduce 

(I() 2i 
l TiKk 

i=O 
(8.23) 

If Eq. (8.23) is introduced into Eq. (8.22) and the sum of the coeffi-

cients of like powers of k set equal to zero, the following two difference 

equations are obtained, 



r 

N 

2 

3 

4 

5 

6 

7 

Table 8.2 

Results of Eq. (8.14) when b = 1 

t (k) 
lN 

47T (sin k/k) 

47T (sin k/k) r
12 

4n (sin k/k) [t13- 16n2 (1 - cos k) /k2] 

4 (sin k/k) t
14 8rr2 

- - (1 - cos k) [t - 87T2 (1 - cos k) /k2 1 
k.2 35 

Eq. (8.22) 

Eq. (8.22) 

TON TL.~ 

1 -1/6 

1 -1/3 

I ..... 
0 
w 

1/2 -3/8 I 

5/16 -35/96 

3/16 -5/16 

7/64 -65/256 
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(8.24a) 

(8.24b) 

lihich are valid for N ~ 6. The coefficients for 2 .;;;, N ~ S can be found, 

starting with t12CP12) = 6(P12 - 1) and successively calculating the 

higher-order terms. These are also shown in Table 8.2. The toN and 

TlN when N a 6, 7 will serve as initial conditions for the difference 

equations (8.24). Let Ei represent the operator which converts iON-1 

Eq. (8.24a) becomes 

This linear, homogeneous equation has a solution, 

(8.25) 

The initial conditions ro6 and ro7 of Table 8.2 determine the constants 

c1 and Cz. The final result which satisfies the initial conditions is, 

toN • 2N(l/2)N for N > 6 • .. (8.26) 

If Eq. (8.26) is substituted into Eq. (8.24b), a nonhomogeneous difference 

equation for llN results 

(8.27) 



-105-

where E2 is the operator defined by~ 

The solution to this nonhornogeneous equation (8.27) is given by 

(p) 
where t1N_2 is a particular solution to Eq. (8.27). A particular solu-

tion can be found by an operator method discussed in Appendix XIII. 

This particular solution is 

. - (l/2)NN(N - l)(N - 4)/3. (8.29) 

The general solution for TlN-2 is finally 

TlN-2 = (1/2)NfC3 + c4 N - N(N - l)(N - 4)/3]. (8.30) 

Using the initial conditions t
16 

and t
17 

of Table 8.2 leads to the 

results 

TlN • - (l/2)N+2 N(N - l)(N + 2)/3, (8.31) 

From Eq. (8.19) the mean square end-to-end distance is given by 

(8.10) 

s (N - l)(N + 2)/4 

which agrees with previously obtained results of Eq. (8.10) for b = 1. 
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c. Intermediate Values of b 

An analytical solution to Eq. (8.14) has not been found when the 

hard core diameter b is intermediate between zero and one, The system 

of equations (8.14) and (8.17) are suitable, however, for numerical 

solution. Fortunately the right hand side of the difference equation 

(8.14) involves the functions t
11

(k) which are of lower-order than tlN 

on the left hand side. Starting with the initial condition 

higher-order tlN were successively calculated numerically using Eqs. 

(8.14) and (8.17). These computationR were donP- an an IRM 70Q4 digital 

computer. The integrations involved in Eq, (8.17) were performed using 

a Simpson rule subroutine. The calculations were done as a function 

of the variable k with b as a parameter. For practical reasons the num-

her of iterations was not allowed to exceed 64. The results were used 

to find the first two coefficients in the power series expansion of 

[t1N(k) - Flt~(k)]. These coefficients were found by curve fitting 

numerically using a least-square procedure. The mean square end-to-end 

distance was then computed using Eq. (8.19). The results of these nu-

merical computations are shown for four intermediate values of b in Fig. 

(8.1). 

It can be seen from the log-log plot in Fig. (8, l) that for long 

chains, 
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Numerical results for intermediate b, 
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<p2 > • C(b)nY(b) 
lN 

where n is the number of segments in the chain (i.e. n = N - 1). The 

exponent y was computed from the slopes of the curves in Fig. (8.1). 

These are sho~m plotted against bin Fig. (8.2). Unfortunately, the 

error in solving the system of equations (8.14) and (8.17) is cumula-

tive. The points in Fig. (8.2) are drawn to depict the maximum esti-

mated uncertainty. The coefficient C was determined from Fig. (8.1) 

auu is plotted ln Flg. (8.3) as a function of the hard core diameter b. 

D. Mean Square Radius of Gyration 

The maan square radius 0£ gyration <Ra> is a useful measure of 

the size of a polymer chain and can be found experimentally from light 

scattering measurement. In chapter 4 it was shown that the mean square 

radius of gyration was given by 

(4.15) 

Thus, in order to find the mean square radius of gyration, it is neces­

sary to know the mean square distance <p 2
1j> between any two points ij 

of the chain. Unfortunately, the equations developed in this chapter 

from the PY approximation are for the function z1N(P 1N), which leads 

naturally to the mean square end-to-end distance <p 2
1N>• In order to 

calculat~ <o 2ij>, it is necessary to deal with the function Zij(P 1j)• 

the restricted partition function for a chain of N subsystems with sub-

systems i and j held fixed. It is possible to generalize our previous 
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as a function of b. 
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as a function of b. 
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equations to this case. The generalizations of Eqs. (7.19), (7.2la) nnd 

(7 .2lb) are 

i 
Zij(N;~) = (1 + Ahij) ~ ~1(Pij'N)A 

i 
Nij(N;:\) • r v1 (pij'N):\ 

i 

The symbols have the same meaning as before except that arbitrary sub-

systems i and j rather than 1 and N are held fixed. The equivalent of 

Eq. (7. 23) co.n be written and the py' approximation Eq. (7. 24) can be made. 

This leads finally to an integro-difference equation for z1j(N) of the 

same form as Eq. (7.29) for ZlN(P 1N). Making the substitutio~ 

(8.32) 

leads to the generalization of Eq. (8.2) 

j-2 + 
- E I hikt .. (k) tk. {N - k + l)Hkjdpk. (8 •. 33) 

k=i+2 J.J J 

When i • 1 and j = N, Eq. (8.33) reduces to Eq. (8.2). Eq. (8.33) is a 

partial integro-difference equation in the variables i, j, and N. Its 

solution will not be attempted here. 

If the assumption is made that the ends of the chain (1 - i, 

j - N), do not interact with each other or the middle of the chain 
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(j ""'. i), then the solution to Eq. (8.33) can be found by taking the 

solution to Eq. (8.2) and replacing N by lj - lj. The accuracy of this 

approximation obviously depends on the magnitude of jj - ij, becoming 

exact as I j - i I approaches N. With this assumption, <p2 ij > can be 

written approximately as 

(8.34) 

where C(b) and y(b) are plotted in Figs. (8.2) and (8.3) respectively. 

From Eq. {4.15), the mean square radius of gyration becomes, 

(8.35) 

The summations are now approximated by integrals 

N N 
<R2> •(Ca2 /N2) f f (y - x)Ydxdy. 

G i j+l 

The integrations are easily performed to give 

(8.36) 

When b. • O, then C • Y = 1 and the mean square radius of gyration becomes 

which agrees with the result obtained in chapter 4 for the non-excluded 

volume chain. It is interesting to note that with the assumption made 

here, the mean square end-to-end distance and radius of gyration are both 

proportional to the chain length raised to the same power. 
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E. Graphs in the Percus-Yevick Type Approximation 

In Appendix V it was shown that the number.of graphs ~ in 

the restricted partition function z
1
N(plN) is given by 

c = 2(N-l)(N-2)/2
0 (8.37) 

The analog of the Percus-Yevick approximation Eq. (7.24), if used 

successively, accounts for all nodal graphs NIN and those elementary 

graphs E
1
N which are formed by adding an h

1
N-bond to the nodal graphs 

of chain length N. In order to obtain some measure of the error in-

valved when the Percus-Yevick type of approximation is applied to a 

polymer chain, it would be useful to determine the number of graphs 

PN that are not accounted for. Let aN and bN be the number of nodal 

and elementary graphs respectively for a chain of N subsystems. The 

number of graphs that are not accounted for is then 

(8.38) 

Because of the property of nodal graphs discussed in chapter 7, 

it is possible to synthesize the nodal graphs from simpler graphs. Fol-

lowing a procedure analogous to that used in chapter 7 for writing nodal 

graphs in terms of elementary graphs, it is possible to show that 

N-2 
~ = CN-l + bN-l + t bi CN+l-i for N;;. 3. (8.39) 

i•3 
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This relation can be verified for small N by direct counting of graphs 

(see Table 8.3). Since the sum of the nodal and elementary graphs is 

the total number of graphs CN, 

we can rewrite Eq. (8.39) in terms of the number of elementary graphs 

(8.40) 

for N ,;;:.. 3 

Table 8.3 

Numbers of graphs for small N by direct counting. 

N a~ bN CN 

0 0 0 0 

1 0 1 1 

2 0 1 1 

3 l 1 2 

4 3 5 8 

3 15 49 64 

Using the values of b0 • b1 and b2 from Table 8.3. it is possible to re­

write ~q. (8.40) in the form 
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N 

E b1CN+l-l= 2C'N for N ~ 2 
i=O 

... 1 for N = 1 

= 0 for N = 0 • 

(8.41) 

Eq. (8.41) is a (N - l)th-order difference equation for the number of 

elementary graphs bN • The left hand side of Eq. (8.41) is in the form 

of a convolution. For this reason a generating function approach or the 

Mikusinski calculus (36) approach might provide a solution for this 

difference equation. A solution ha~ been obtained by this method, how-

ever it does not satisfy the required initial conditions. 

An alternative approach is to view Eq. (8.41) as a system of N 

linear equations for the N unknowns bi • From the theory of linear 

equations the solution bN to Eq. (8.41) is given by 

(8.42) 

~ is an infinite triangular determinant 

Cp o, o, o, ••• 

C2, Cp o, o, ... 
b. = N C3, c2'.cl, o, ... 

c 
' 

c • u •• 

N+l N 

and b.' is given by 
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cl' o, o, ... 1 

c2, cl, o, ••• 2c1 6' = N 
C3, c2, cl, ••• 2c2 

CN+l' CN' ••• 

The triangular determinant 6N collapses to the very simple form 

(8.43) 

The (N + l)st row of AN can be shifted to the first row by the standard 

rules for determinants. The number of elementary graphs bN con finally 

be written as the infinite determinant 

bN = 6 'N 

1, . cv o, o, ••• 

= (-l)N 
2C1' Cz, Cp o, ••• 

• (8.44) 
2C2, C3, C2, c1, ••• 

: 

2CN, CN+l• ••• 

It does not appear that the infinite determinant of Eq. (8.44) 

can be evaluated easily. We can, however, obtain an approximate 

solucion co Eq. (8.41) using a method of successive approxima~ions. If 

Eq. (8.41) is solved for bN in terms of the lower-order bi we obtain 

N-1 
bN • CN - CN-1 - CN-2 - iE4 biCN+l-i' (8.45) 

where some of the values from Table 8.3 have been substituted. In order 
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to guess at the general form of the solution, it is instructive to 

successively calculate the bN in terms of the Ci for small N. It can 

be demonstrated from the structure of Eq. (8.45) that in general bN 

will be of the form 

(8.46) 

We will use these leading terms as a zero-order solution to Eq. (8.45). 

(8.47) 

(k) . 
Define a sequence of functions bN , k = 1, 2, ••• by the equation 

(k) N-l (k-1) 
bN • CN - CN-1 - CN-2 - E bi CN+l-i • 

i=4 
{8.48) 

It ~'7ill be assumed that the sequence b~k) converges to bN' as N + m. No 

proof of this will be given here. The first-order approximation is 

then given by 

(8.49) 

The values of bN' b~O) and b~l) were calculated from Eqs. {8.45), (8.47) 

and (8.49) respectively for N • 1 to 8. These results appear in Table 8.4. 

It can be seen from the Table that b~l) is an excellent approximation to 

bN and N becomes large. In fact, as N ~ ~, bN' b~O) and b~l) all ap­

proach CN. 

The number of graphs PN that are not counted when the Percus­

Yevick approximation is applied successively can now be computed. 
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, Table 8.4 

A comparison of approximations to bN. 

N CN bN 
b (O) 

N 
b (1) 

N 

0 0 0 0 0 

1 1 1 1 1 

2 1 l 1 

3 2 1 1 

4 8 5 4 5 

5 64 49 48 50 

6 1,024 843 896 896 

7 32,768 30,649 30 '720 30,656 

8 2,097,152 2,030,213 2 ,031,616 2,030,216 

From Eqs. (8.38) and (8.49) we obtain 

N-1 

PN • ~ - 2~-1 - 2~-2 - 2 i:4 (Ci - 2Ci-l)CN+l-i· (8.50) 

The fraccion of graphs ~ that are not counted is thus 

(8.51) 

For large N this becomes 

Using the definition of CN in Eq. (8.37} in the above equation leads to 

(8. 52} 
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Thus as the chain length N increases to infinity, the fraction of 

graphs not counted in the theory approaches unity. If all graphs con­

tributed equally to ZlN, then the Percus-Yevick type theory would not 

be valid as the polymer chain length approaches infinity. It is known 

from chapter 5 that all graphs do not contribute equally to z1N. In the 

theory of liquids the Percus-Yevick approx:l.mation appears to count the 

"right combination" of graphs. If attempts are made to improve the PY 

approximation by including more graphs, agreement with experiment be­

comes less satisfactory. It is probable that a similar situation 

exists when the Percus-Yevick approximation is applied to a polymer. 
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9. DISCUSSION 

In the preceding chapters I have investigated various theore­

tical approaches for the calculation of the configurational statistics 

of a model, self-interacting polymer chain. I will now briefly discuss 

some experimental methods for studying the configuration of polymer 

chains • I will then discuss the theoretical results in more detail. 

A. Experimental Techniques 

Unfortunately, it is not pos~ible to isolate a single polymer 

chain in order to measure its size. We can obtain information about 

the size of polymers by measuring th6 properties of dilute polymer 

solutions. In dilute solution intermolecular effects are usually small, 

but solvent-polymer interactions are important. The average dimensions 

of a polymer chain are markedly dependent on the particular solvent that 

is used. The solvent interactions tend to compress the size of the 

chain and the intramolecular (excluded volume) interactions tend to ex­

p<:1.m.l Lhe chain. A solvent in which these opposing tendencies exactly 

balance each other is called a theta-solvent. More precisely, a theta­

solvent for a particular polymer at a given temperature is one in which 

the polymer solute is governed by random ~alk (non-excluded volume) sta­

tistics. Some of the measurements on polymer solutions which lead to 

information about the average size of the polymer solute are osmotic 

pressure, intrinsic viscosity and light scattering measurements. For a 

thorough discussion of this topic the reader is referred to Tanford (37). 
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Osmotic pressure 

Osmotic pressure is the most sensitive measurement available 

for determination of the chemical potential change of the solvent due 

to the solute. The osmotic pressure can be expressed as a virial ex-

pans ion 

(9.1) 

where Il is the osmotic pressure, c1 the concentration of solvent, and 

Mz the molecular weight and Cz the concentration respectively of the 

solute. The second virial coefficient B is due to intermolecular 

effects. This second virial coefficient has been theoretically related 

to the average size of the polymer chains. The expansion coefficient 

a, is given by 

aZ • <pz >/<pz > 
lN lN 0' 

where <p 21N>O is the mean square end-to-end distance for a polymer 

in a theta-solvent. a can be obtained by measuring the second virial 

coefficient. Measurements of this type show that a • CMiOS-.lO depend­

ing on the solvent. 

Intrinsic viscosity 

The specific viscosity is defined by 

(9. 2) 

where n is the viscosity of the solution and n1, the viscosity of the 
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pure solvent. The intrinsic v~scosity [n] is an important quantity 

of interest in macromolecular solutions. It is defined by 

[n] • Qim (n6 P/c2) 
c2-+o 

(9. 3) 

where c2 is the concentration of solute. From theoretical considera-

tions, the intrinsic viscosity can be related to the size of the polymer 

solute which depends on the expansion coefficient a, the molecular 

weight and the seement size (a). Intrinsic viscosity measurements on 

various polymers with different solvents give results similar to those 

obtained from osmotic pressure measurements. 

Light scattering 

In the light scattering technique the intensity of scattered 

radiation is measured as a function of the scattering angle e. By ex-

trapolation of the scattering function 

Scattering intensity 
P(e) = -----------------

Scattered intensity without interference 

to zero concentration and zero angle e, it is possible to obtain the 

mean square radius of gyration <Re> of the solute molecules. This 

measurement is useful because it gives an absolute value of <R8> inde­

pendent of any theoretical model. These measurementes show that for 

typical flexible polymers in solnti.on (37). 

where the exponent depends on the aolvent used. 
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Comeuter generated chains 

Many authors (38-49) have generated random walks on various 

lattices with the aid of computers. Walks that cross back over them-

selve.s are discarded. In these computer experiments, measurement of 

the intramolecular excluded volume effects, independent of interm.ole-

cular and solvent effects, can be achieved. There is some question, 

however, whether these lattice results can be applied to a chain in 

continuous space. Calculations on various lattices indicate that 

<~2 > « 1.2-1.33 
,... lN :n ' 

where n is the number of lattice steps. 

B. Discussion of Theoretical Results 

Short chains 

In chapter 4, the configuration of two and three segment chains 

was computed from Eq. (3.12) exactly, for the hard core potential. The 

integrations were accomplished by introduction of bipolar coordinates 

into z13 and tripolar coordinates into z14 ~ Although these calculations 

are of no value in predicting the configuration of real polymer chains 

which are much longer. these repreRent the only cases in which Eq~ (3Al2) 

has been solved exactly for a nontrivial potential. The mean: square 

end-to-end distances computed from z13 and z14 are 

<p 213>. (16 - b4)/2(4 - b2) 

- n 1• 32 for b • 1 

(9 .4a) 
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<p 2 > .. nl. 33 for b = 1 .. 
14 

(9.4b) 

These results provide a valuable check on approximate theories in the 

limit of short chains. 

Cluster expansion 

In chapter 5, a cluster expansion was developed for the res-

tricted partition function z1N(PlN). If terms higher than first-order 

in this expansion are neglected, the mean square end-to-end distance 

can be calculated analytically in the limit of small hard core diameter 

b. This result is identical to the well-known fir~t-order perturbation 

theory obtained by many authors. 

The first-order term in the cluster expansion was computed 

numerically by several methods. The results were used to build up 

higher-order terms of 11 isolated" topology. It was seen that for this 

particular topology, higher-order graphs become increasingly important 

for large chain lengths. If only these isolated graphs are included in 

the cluster expansion, it was seen that the resulting mean square end-to­

end distance deviated greatly from linearity when log<P 2
1N> was plotted 

versus log n. It is apparent then that graphs of more complicated topo-

logy are important in the higher-order terms of the cluster expansion 

for large N. It does not appear practical to insert integrals of more 

complicated topology into the cluster expansion of ZlN, because both the 

variety of topologies and dif ficultv in the calculation of the integrals 

increase tremendously for long chains. 
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Percus-Yevick analog 

In chapters 7 and 8, the analog of the Percus-Yevick equation 

was obtained for a polymer chain. An analytical solution was obtained 

for the hard core potential when b = 1 and numerical solutions were 

obtained for values of b intermediate between zero and one. 

Small N: The mean square end-to-end distance predicted by 

the Percus-Yevick approximation for b = 1 is given by Eq. (8.10). For 

the two and three segment chains this equation gives 

<p213> = 2.50 (PY approximation) 

<p 2
14> • 4.50 (PY approximation). 

These results compare very favorably with the exact results obtained 

in chapter 4. 

<p 2
13> = 2.50 (exact) 

~p 2 14> • 4.31 (exact) 

This agreement is not surprising since the Percus-Yevick approximation 

counts all graphs for N = 3, and all hut two when N = 4. 

Small b: If b is put equal to zero into the Percus-Yevick 

type integral Eq. (8.2), a piecewise analytic solution is obtained which 

corresponrls exactJy to the exact solution of the ranrlom walk prnhlPm 

given in Treloar (41). Thus the Pe~cus-Yevick solution correctly reduces 
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to the non-excluded volume solution when b = O. 

Many authors have obtained a so-called perturbation expansion 

for the mean square end-to-end distance, which is good for small values 

of the hard core potential (5-8). These expansions were discussed in 

chapters 2 and 5. Fixman's second-order theory gives 

<p 2
1N> • n[l + 4z/3 - (16/3 - 28~/3)z2 + .•• ] (5.27) 

where 

If n and b are small enough, this expansion converges rapidly so that 

terms of O(z 3) are negligible. Eq. (5.7) is plotted in Fig. (9.1) for 

b = .25 and .40 in the range of n where rapid conv~rg~nce e~lsts. Also 

plotted in this figure are the numerical results obtained by solving 

Eqs. (8.14) and (8.17) (see Fig. 8.1). It can be seen from Fig. (9~1) 

that there is excellent agreement between our results using the Percus-

Yevick method and previously obtained results for small b. 

Eq. {5.27) is exact in the limit as b ~ O. Evaluation of the 

derivative of <p 21N> with respect to b at b = 0 gives zero. This agrees 

with the observed zero slope y and C versus bin Figs. (8.2) and (8.3). 

Comparison with experiment: As was indicated in the first part 

of this chapter, experiments on polymer solutions and compute~ experi-

ments on lattices show that 

<p2 > = cnY lN 
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~::;,,__-- FI XMAN Eq • 
Eq. (?.27) 

20 50 
n 

Fig. (9 .1) 
Comparison of the PY theory to the second-order 

perturbation theory of Fixman in the 
limit of small b. 

~00 



-128-

where y ~ 1.2 to 1.3 and n is proportional to the molecular weight. 

Because our theory contains a parameter b, it is difficult to make 

an unambiguous comparison with experiment. By choosing our results 

from .the Percus-Yevick equation to give the correct value for y (see 

Fig. 8.2), one can see that b = .4. This means that the actual hard 

core diameter is .4 times the segment length a (see Fig. 9.2). 

--
Fig. (9.2) 

A portion of a chain with b m .40. 

This value of b seems quite reasonable sin!".e the hard core diameter is 

obviously an oversimplification of the true repulsive potential between 

segments. An elliptically symetric type of potential would probably be 

a more rQalistic choice. 

The results of the self-consistent field approach used by 

Edwards, Reiss and Yamakawa and discussed in chapter 6 gives 

2 4/3 
<p lN> « n (Reiss) 

2 6/5 
<p lN> « n (Edwards, Yamakawa) 

In these treatments the hard sphere parameter was suppressed by taking 

limits. Unfortunately, the self-consistent field approach ic not easily 

expressed in terms of graphs, so a comparison between our. theory and the 
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self-consistent field theory is not possible on this basis. 

C. Suggestions For Further Work 

The Percus-Yevick approach is a promising new method for 

treatment of the excluded volume problem. It is a desirable alternative 

for the cluster expansion and, unlike the self-consistent field approach. 

is a well-defined approximation in terms of graphs. I think the fol­

lowing suggestions are worthwhile topics for future research in this 

field. 

1. The Percus-Yevick integral equation (8.2) could possibly 

be simplified by passing to a Fokker-Planck type of differential 

equation. 

2. Improvements on the Percus-Yevick approximation should be 

sought. For fluids, Percus has shown (41) that by expanding the proper 

functionals in a functional Taylor expansion, the Percus-Yevick integral 

equation can be obtained by truncating the expansion at the first term. 

The logical next higher-order approximation is obtained by including the 

next term in the expansion. This procedure.could possibly be extended 

to the polymer problem. 

3. Experimental determination of the intramolecular potential 

of a polymer chain would be worthwhile. This might be achieved by ex­

perimentally determinimg the complete ZlN' rather than just the second 

mument <piN>. A possil.Jle method for this might: be to chemically "tag" 

the ends of polymer chains with heavy atoms such as Ag atoms. A scat-
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tering experiment on such a solution of polymer molecules would lead 

to a radial distribution function for the ends of the chains. This 

distribution function would be proportional to ZlN • Krigbaum (42) 

has suggested a variation of this method for measuring the sizes of 

polymer chains in bulk. 
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APPENDIX I 

SIMPLIFICATION OF EQ. (4.S) 

Eq. (4.2a) is the Fourier transform of the o-function. 

* -)" + 
f(k) = ! o(p - l)exp(-ik•p)dp (4.2a) 

)" 

Introduce spherical coordinates for dP and choose the z-axis to coin-

-+ 
cide with the k vector which is fixed in the integration (see Fig. A.l). 

z 

-

Fig. (A. l) 
Orientation of the spherical coordinate system. 

The scalar product in the equation can then.be written as 

-+ -+ 
exp(-ik•p) • exp(-ikP cos 0). (A.1) 

Making the substitution, 

x • ikp cos e 
(A.2) 

dx - -ikp sin a de, 
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Eq. (4.2a) now becomes, 

(I;) ikp 
kf(k) = 2~i ! o(p - l)pdp ! exp(-x)dx, (A.3) 

0 -ikp 

The integrations are easily performed to give 

f(k) = 4~(sin k/k). (A.4) 

This result is now substituted into Eq. (4.5). 

-+ 
A spherical coordinate system, oriented with the z-axis along k is in-

-+ 
tro<luc~<l for dk. By following a procedure similar to the above, it is 

possible to integrate over the angular variables. The result of this 

integration is, 

QI) 

2~2zlN = (4~)N-l ~ (sin k/k)N-1k2 (sin kplN /kplN)dk, (4.6) 
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APPENDIX II 

MEAN SQUARE END-TO-END DISTANCB PROM 

THE FOURIER TRANSFORM OF Z1N(P1N) 

From Eq. (3.8) we have for the mean square end-to-end distance 

Introducing spherical coordinates and integrating over angular variables 

gives, 

°" °" <p21N> = f p4ZlN(p)dP/ 1 P2ZlN(P) dP· 
0 0 

(A.5) 

The Fourier transform of z1N(plN) is defined to be, 

-+ 
If spherical coordinates are introduced for P, the angular integrations 

above can be performed (see Appendix I) to give, 

ZlN(k) • 4~ ! z1N(P)(sin kP/kp)p2dp. 
0 

(sin kp) in Eq. (A.6) is now expanded in a power series to yield 

- °" 

(A.6) 

Zrn(k) = 4~ J ZlN(p) [p2 - (kp)2/6 + ••• ]dp. (A.7) 
0 

If the function z1N(p) is such that integrals of the form 

co 
m 

! P ZlN(P)dP 
0 
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converge for all m, then the summation and Integration can be inter-

changed in Eq. (A.7). Thus, for this case 

00 a> 

z1N(k) "' 41r f P2Z1N(P)dP- 4rrk2 /6 f P 4Z1N(p)dp + ••• • 
0 0 

(A. 8) 

Comparison of Eqs. (A.8) and (A.5) indicates that 

coeff (-k2 /6) in z1N(k) 
<p 

2 
lN> = -----------

coef f (1) in z1N(k) 

for sufficiently well-behaved functions Z (P ). 
L~ lN 

As an example consider the case of no excluded volume (see 

chapter 4). From Eqs. (4.5) and (A.4), we have 

(A.9) 

This can be expanded in a Maclaurin series to give 

N-1 2 z1M(k) = (4'1T) [l - (N - l)k /6 + ••• ] • 

The mean square end-to-end distance can now be computed from the above 

to give 

This is the same result that was obtained in chapter 4 by direct integra-

tion using the Gaussian approximation to z1N(plN). 
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APPRNDTX TT1 

JACOBIAN FOR BIPOLAR COORDINATES 

'T'hP. hipnlar coordinate system is shown in Fig. (A.2). 

x 

z 

Fig. (A.2) 
Bipolar Coordinates 

Consider the spheres 1 and 3 to be fixed. Erect a cartesian coordinate 

system with its origin at sphere 1 and oriented with sphere 3 on the 

z-axis. We will permit Pl2' P2) and the angle of rotation $ to locate 

the position of sphere 2 in space. 

To find the Jacobian for the transformation it is convenient to 

introduce the cylindrical coordinates z, r, ~ (see Fig. A.2). The 

derivatives of the cartesian coordinates with respect to the bipolar 

coordinates form a matrix whose determinant is the desired Jacobian. 

Thus, 

3 
Ca~1/aej> = r <a~ 1/ank><ank/aaj> k•l 
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where: 

Since ~he determinant of the product of two matrices is given by the 

product of their determinants, 

(A.10) 

In order to find the derivatives ank/osj , let us express the 

cylindrical coordinates in terms of the bipolar coordinates. From 

Fig. (A.2) we have, 

(p _ z) 2 ,.. r2 + P 2 
13 23 

This pair of equations can be solved for z and r. 

The appropriate derivatives can be computed which leads to 
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(A.11) 

The cartesian coordinates can be easily expressed in terms of the cylin­

drical coordinates. 

x • r cos $ y = r sin $ z - z 

The other determinant then becomes, 

(A.12) 

The Jacobian for bipolar coordinates· can be found from Eqs. (A.10), 

(A.11) and (A.12). 

(A.13) 
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APPENDIX TV 

JACOBIAN FOR TRIPOLAR COORDINATES 

The tripolar coordinate system is shown in Fig. (4.2). Spheres 

1, 3, and 4 are to be held fixed. The location of sphere 2 is speci­

fied by P12 , P23 and P24 • A cartesian coordinate system is erected with 

sphere l at the o.rig!n, sphere 4 along the x-axis and sphere 3 in the xy 

plane. P12 is given by the obvious relation 

p 2 
12 

.,. x?- , + y2 + z2 • (A.14) 

From the law of cosines we can write, 

where Y is the angle between P12 and p13• Using spherical trigonometry, 

cos y can be written as, 

P12 cos Y • x cos $ - y sin S. 

Substitution of this result into the previous equation yields, 

2 2 2 2 2 Q Q() p 23 Ill p 13 + x + y + z - 2P13X cos p - 2P13 y sin p~ A.15 

The law of cosines can also be used to find P 24 , 

2 2 2 2 2 2 p 24 ... x + y + :t - p 14 x + p 14 (A.16) 

The Jacobian for tripolar coordinates is defined as 
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where the ~i are the cartesian components x, y, z and the 1. are the 
.J 

tripolar coordinates p12p24p23 • The form of Eqs. (A.14), (A.15) and 

(A.16) suggests that the algebra will be simpler if one computes (JT)-l 

inscead of JT direccly. 

The required derivatives can be computed from Eqs. (A.14), (A.15) and 

(A.16) .. 

z/pl2 

(x - p12 cos 8)/p 23 , (y - p13 sin 8)/p 23 , z/p 23 

-1 -ZP13P14 sin ~ 
JT =------- (A.17) 

It is possible to express sin$ in terms of the p's. Eqs. (A.15) and 

(A.16) can be solved for x and y. Substitution of these results into Eq. 

(A.14) leads to 
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( 2 2 2 )2/ 2 ( 2 2 2 )2/ 2 - p 12 - p 24 + p 14 4P 14 - p 12 + p 13 - p 23 4P 13 (A.18) 

cos B can be determined from the law of cosines. 

Eqs. (A.18) and (A.19) determine cos S in terms of the variables, The 

desired Jacobian is obtained from Eq .• (A.17). 

(A. 20) 
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APPENDIX V 

NUMBER OF GRAPHS IN ZlN 

The number of graphs in Eq. (5.3) for Z1N can easily be found 

in two steps. 

1. Given a skeleton of N circles and (N - 1) o-bonds, the 

number of available h-bonds M is given by the number of 

things taken two at a time minus the (N - 1) o-bonds. 

M = ( ~ )- (N - 1). = ( N - 1 ) ( N - 2 ) / 2 

2. Any of the available h-bonds M may either be present or 

absent in a graph. The number of graphs in Eq. (S.3) is 

the number of possible combinations of h-bonds. This num-

ber is the same as the number of possible outcomes when 

a coin is flipped n times. Thus, 

M (N-l)(N-2)/2 
Number of graphs in ZL.~ = 2 = 2 

This result can be verified easily for short chains by 

direct counting. 
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APPENDIX VI 

SIMPLIFICATION OF y .. (k) FOR THE HARD CORE POTENTIAL 
1J 

The hard core potential implies that the function h is 
ij 

hij = 0 for Pij > b. 

Introducing this into Eq. (5.13) gives 

b 
kh(k) = 4~ . J psin kpdp 

0 

where the angular integrations have been performed using the method 

of Appendix I. Integration by parts leads to the result 

h(k) ~ 4n(sin kb - kb cos kb)/k3. 

Using this result Yij(k) becomes, 

j-i j-i 
2~2Yij(k) = (4~) l (sin i/i) x-3(sin bx - bx cos bx)d! 

where 

x2 = k2 + t 2 - 2ki cos y 

with y the angle between k and t~ Introduction of spherical coordi-

nates into the above equation produces the result 
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1Tky ij (k) = 

m k+i 
(4'1T)j-i J (sin R./i.)j-itdR. J x-2 (sin bx - bx)dx. 

o I k-.e. I 
The integration over x can be done by parts to give 

where K1 is defined in chapter 5. 
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APPENDIX VII 

CONVERSION OF E E f(j - i) TO A SINGLE SUMMATION 
i j 

Consider a series of the form 

N-2 N 
F(N) = Z: Z: f (j - 1) • 

i•l j=i+2 
(A.21) 

Since the argument off depends only on the difference {m • j - i), 

it is possible to change the above double summation to a single sum-

mation over m, provided an appropriate coefficient C(m) is included. 

N-1 
F(N) = ~ C(m)f(m) 

m=2 

C(m) can be found easily from Eq. (A.21) by changing one of the sum-

ming indices to m • j - i. 

N-2 N-i 
F(N) = L L f (m) 

i•l m=2 

The order of the summation operations can be interchanged if the limits 

on the sums are adjusted to insure that m :; N - 1. This leads to 

N-1 N-m 
F(N) = E f (m) r 

m=2 i=l 

N-1 
= ~ (N - m)f(m). 

m=2 

Hence the prope~ choice for C(m) is 

C(m) • N - m 
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APPENDIX VIII 

SUMMATION OF THE SERIES IN EQS. (5.29) 

In chapter 5 the functions $0 (N,i) and w1(N,t) arose. 

N-1 
w

0 
(N ,R.) = I: (N - rn)Lm 

m=2 
N-1 m 

"11 (N,R.) - E (N - m)(N - 1 - m)L 
rn=2 

where 

L = (sin R./1). 

Eq. (5.29a) can be put in the form 

N-1 

N-1 
~o(N,i) = N E Lm - L(d/dL) 

rn=2 

N-1 
I: 

m=2 

m 
L • 

(5. 29a) 

(5.29b) 

The summation E Lm can be found easily from the geometric series. 
m=2 

N-1 
~ Lm = (L2 - LN)(l - L)-l (A. 22) 

m=2 

This relation can be verified by expanding the denominator on the right 

hand side for L < 1 and L > 1. Using L'Hospital's rule we have the limit 

N-1 
R.im[(L2 - LN)(l - L)-1] = N - 2 = R.im r Lm. 
L~l L~l m=2 

Thus Eq. (A.22) holds for all i. Eq. (5,29a) now becomes 

after performing the indicated differentiations. 
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Eq. (5.29b) can be summed in a similar manner. Expansion of the 

(N - l)(N - l - m) product in Eq. (S.29b) gives ~1 (N,t) in the form 

N-1 N-1 
~l(N,t) • N(N - 1) E Lm - 2(N - l)L(d/dL) E Lm 

m=2 mu2 

N-1 

m=2 

Calculation of the required derivatives gives the result in Eq. (5.30). 

The limit of $0(N,1) and $
1

(N,1) as L + 1 can be found by invoking 

L'Hospital's rule. 

iim ~o(N,t) = (l/2)(N - l)(N - 2) 
L+l 

tim ~l(N,i) • (1/3)(N - l)(N - 2)(N - 3) 
L+l 
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APPENDIX IX 

In chapter 5 it was found that the first order corrective 

term involved the functions no and nl defined by 

00 

n
0 

(b ,m) •I exp(-mt2 /6)(1 - mR. 4 /180 + ••• )K2(k, t, b)d.t 
0 

(5.34a) 

00 

n1 (b ,m) = / exp(-m.e,2/6)(1 - mR.4/180 + ••• )K3(k, R.' b)dR. 
0 

(5.34b) 

K
2 

and K
3 

are defined by Eq. (5.19) •. The integrals in n0 are Fourier 

sine and cosine transforms which are given by Bateman (29) as 

00 

I exp{-at2)(1 - m.e.4/180)R.-l sin R.bdR. = 
0 

(A. 23) 

1/2 1/2 -2 2 2 1/2 
(n/2)erf(b/2a ) + (m/180)(n/32) a exp(-b /4a)He3(b /2a) 

00 

l exp(-ai2 )(1 - mi4/180)cos R.bdi = 
0 

(A. 24) 

l /2 2 l /2 -5 2 2 1 /2 
(n/4a) exp(-b /4a) - (m/180)(n /8)a exp(-b /4a)He4(b /2a) , 

where Hen(x) are the Hermite polynomials defined by 

m 2 n n 2 
Hen(x) = (-1) exp(x /2)(d /dx )exp(-x /2). 

The first four Hermite polynomials can be computed to be 

He
1

(x) = x 
2 He (x) ar x - 1 

2 

3 
= x - 3x 

4 2 
He4(x) • x - 6x + 3. 
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n0 (b,m) can now be obtained from Eq. (5.34a) by using Eqs. (A.23) and 

(A.24). 

(3irb2 /2m) l/Z exp(-3b2 /2m). (1 + (20m)-l + O(m-2)] (A. 25) 

o1(b,m) can also be evaluated from Eq. (A.23) and (A.24), but we have 

the additional integral w(b,m) to evaluate. 

w(b,m) • (A. 26) 

ClO 

I exp(-m12/6)(1 - mR,4/180 + ••• )((sin ~b/t3) - (b cos ib/t2)]dt 
0 

This can be rewritten in the form 

b . ClO 1 
w(b,m) = f~d~ I exp(-mi.2 /6)(1 - mi4 /180)1- sin ~tdi. 

0 0 

The inner integral is of the same form as Eq. (A.23). Thus 

w(b ,m) c 

~ ;d;{(rr/2)erf(3~/2m) 112- (3rr;2/2m) 112exp(-3;2/2m)[(20m)-1+ O(m-2)]}, 
0 

w(b,m) can now be found through integration by parts. 

w(b,m)-= (mir/3) [erf(Jb2/2m) 1/ 2 ._ (2ir)_lf2 y(3/2,3b2 /2m)] 

where the incomplete gamma function is defined by, 
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x 
y(c + 1, x) = I yCexp(-y)dy. 

0 

There is a recurrence formula (28) which relates the incomplete ganuna 

functions y(c + 1, x) and Y(c, x). 

y(c + 1, x) • cy(c, x) - xCexp(-x) 

Using this recurrence formula, w(b,m) can be simplified. 

1/2 w(b,m) • (nm/3){[(3b2/4m) - (l/4)Jerf(Jb2/2m) 

Using Eqs. (A.23), (A.24) and (A.27) we obtain the result 

(A.27) 
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APPENDIX X 

DEMONSTRATION OF APPROXIMATION EQ. (7.24) 

FOR THE CASE N ~ 4. 

Using Eq. (7.19), we can write z14 cP 14 ;A) in the graph 

formalism. 

2 
E 

i=O 

Similarly from Eq. (7. 2lb), E14 (p14 ;·.A) can be expanded as 

3 i 
E14(p14; >i.) = I: E:i (p 14)). • 

i=l 

The. graphs of the coefficients l;i and Ei are given in Table A. l. The 

coefficients can now be calculated from approximation Eq. (7.24) by 

simply adding an hlN bond across the ~i-l(plN) graphs. These are also 

shown in Table A.l. It can be seen that all graphs except 

~- are accounted for when N = 4. If the approximation 

is applied successively starting with N = 3, the.graph ~ 
also will not be accounted for. 



i 

0 

1 

2 

3 

-151-

Table A. l 
The.coefficients obtained in the expansion of 
z14 (p 14 ;A) and E14 (p 14 ;A). The £f(p14) calcu­

lated from approximation Eq. (7.24) are also shown. 

'~ 
~ 

0 

0 

.~ 

£i (p 14) (approx. 
Eq. (7. 24)) 

0 
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APPENDIX XI 

METHOD OF EVALUATION OF THE SU:MMATIONS IN EQ. (8.9) 

~z(t) is defined by, 

Employing the binomial theorem, ~Z(t) may be expressed as, 

dR. 
~ (R.) (1 - Z)N-2• 
z • d(R.n Z)l 

(A, 28) 

By performing the differentiations in (A.28) one can generalize to, 

(A. 29) 

1, o, o, 0 ... 
1, 1, o, 0 

a.e,k • 

1, 3, 1, 0 

1, 7, 6, 1 

The a1k satisfy the difference equation, 

(A. 30) 

From Eq. (A.29) as z ~ l we have,. 
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N-2 
<b(N - 2) = (-1) (N - 2) ! 8N-2 N-2 (A. 31) 

HN - 1) 
N-2 = ( -1) (N - 2) ! ~-1 N-2 

<P(N) 
N-2 

• (-1) (N - 2)! ~ N-2 

N-2 
~(N + 1) • (-1) (N - 2)1 ~+1 N-2 , 

Using Eqs. (A.30) and (A.31), Eq. (8.9) can be shown to be 

<p 2 lN> - (N - l)(N + 2) I 4 • 
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APPENDIX XII 

PARTICULAR SOLUTION TO EQ. (8.27) 

(p) 
A particular solution TlN to the equation 

N 
f(E2)tlN-2 • (1/2) (1/3 - N/3), 

is desired where: 

From a theorem on difference equations (36), we can write 

-1 N N -1 
[f(E2)] a F(N) =a (f(aE2)) F(N). 

The particular solution is given by 

(p) -1 N 
tlN-2 = [f(E2)J (1/2) (1/3 - N/2) 

N -2 
• (1/2) 4(Ez - l) (l/3 - N/2). 

Now .assume th.at 

-2 
(E2 - 1) (1/3 - N/2) • A.a.~ 3 + BN2 + CN + D. 

Then we have 

(Ez - 1) 2 (AN3 + BN2 + CN + D) = 1/3 - N/2. 

Comparing coefficients of like powers of N leads to the result 
(p) N 

TlN-2 • -(1/2) N(N - l)(N - 4)/3. 
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NOMENCLATURE 

Number of nodal graphs in z1N 

Segment length of the model chain 

Number of elementary graphs in ZlN 

Hard core diameter scaled by the segment length a 

Coefficient defined on p. 112 

Total number of graphs in z1N 

Sum of the elementary graphs in ZlN 

Difference operators defined on pp. 104 and 105 

Fourier transform defined by Eq. (8.12) 

Fourier transform of the o-function Eq. (4.2a) 

Analog of the Mayer function defined by Eq. {3.13) 

1 - b 
ij 

Function defined in chapter 5 

Function defined by Eq. (5.19a) 

Function defined by Eq. (5.19b) 

Boltzmann's constant and Fourier transform variable 

Number of segments in the model chain (N - 1) 

Number of subsystems in the model chain 

Sum of the nodal graphs in Z 
lN 

Probability density 

Momentum of the ith subsystem 

Canonical partition function 

Position of the ith subsystem 
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Radius of gyration of the model chain 

Function defined by Eq. (8.1) 

Function defined by Eq. (8.5) 

Potential between subsystems i and j 

Total potential energy of the system 

Ordering potential between adjacent subsystems i 
and i + 1 defined by Eq. (3.10) 

(i) 
Terms in z1N due to graphs of "isolated" topology 

defined in Eq. (5.41) 

Terms in zi~) due to graphs of the "nested" topology 
defined in Eq. (5.41) 

Terms in zf~) due to graphs of the "overlapped" 
topology defined in Eq. (5.41) 

Fourier transform defined by Eq. (5.14) 

Restricted configuration integral or unnormalized 
probability distribution defined by Eq. (3.12) 

Unrestricted configuration integral defined by Eq. 
(3.5) 

Terms in the cluster expansion of z1N(plN) defined 
by Eq. (5.2) 

Cnp,ffic.i.~nt!-; in the power series expansion of z1N(k) defined by Eq. (5.7) 

Coe£ziyients in the power series expansion of 
Z~ (k) defined by Eq. (5.7) 

Function defined by Eq. (2.3) 

Expansion coefficient of the model chain 

l/kT 

Exponent defined on p. 112. 

Incomplet~ gamma function 



n 

ti (P lN) 

no, "1 

tPo, V>l 

<x> 

-F 

-160-

Dirac delta function 

Coefficients in the expansion of E1N(p1N) defined 
in Rq. (7, Zlb) 

Product of delta functions defined by Eq, (3.15) 

Expansion parameter in Eq. (7.17) 

Coupling parameter defined by Eq. (7.9) 

Coefficients in the expansion of N1N(P 1N) defined 
in Eq • ( 7 • 2 la) 

Coefficients in the expansion of ZlN(P 1N) defined 
in Eq. (7.17) 

Functions defined by Eqs. (5.33) 

Functions defined by Eqs. (5.29) 

Denotes the mean of X 

Denotes the Fourier transform of the function F 


