Citation
Payne, Harold James (1967) Response of Nonlinear Systems to Stochastic Excitation. Dissertation (Ph.D.), California Institute of Technology. doi:10.7907/H3WE-RD54. https://resolver.caltech.edu/CaltechETD:etd-10022002-114156
Abstract
The response of a dynamical system modelled by differential equations with white noise as the forcing term may be represented by a Markov process with incremental moments simply related to the differential equation. The structure of such Markov processes is completely characterized by a transition probability density function which satisfies a partial differential equation known as the Fokker-Planck equation. Sufficient conditions for the uniqueness and convergence of the transition probability density function to the steady-state are established. Exact solutions for the transition probability density function are known only for linear stochastic differential equations and certain special first order nonlinear systems. Exact solutions for the steady-state density are known for special nonlinear systems. Eigenfunction expansions are shown to provide a convenient vehicle for obtaining approximate solutions for first order systems and for self-excited oscillators. The first term in an asymptotic expansion of the transition probability density function is found for self-excited oscillators. A class of first passage problems for oscillators, which includes the zero crossing problem, is formulated.
Item Type: | Thesis (Dissertation (Ph.D.)) |
---|---|
Subject Keywords: | (Applied Mathematics) |
Degree Grantor: | California Institute of Technology |
Division: | Physics, Mathematics and Astronomy |
Major Option: | Applied Mathematics |
Thesis Availability: | Public (worldwide access) |
Research Advisor(s): |
|
Thesis Committee: |
|
Defense Date: | 3 May 1967 |
Record Number: | CaltechETD:etd-10022002-114156 |
Persistent URL: | https://resolver.caltech.edu/CaltechETD:etd-10022002-114156 |
DOI: | 10.7907/H3WE-RD54 |
Default Usage Policy: | No commercial reproduction, distribution, display or performance rights in this work are provided. |
ID Code: | 3864 |
Collection: | CaltechTHESIS |
Deposited By: | Imported from ETD-db |
Deposited On: | 03 Oct 2002 |
Last Modified: | 19 Mar 2024 21:54 |
Thesis Files
|
PDF (Payne_hj_1967.pdf)
- Final Version
See Usage Policy. 4MB |
Repository Staff Only: item control page