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ABSTRACT

The response of a dynamical system modelled by differential
equations with white noise as the forcing term may be represented by
a Markov process with incremental moments simply related to the differ-
ential equation. The structure of such Markov processes is completely
characterized by a transition probability density function which
satisties a partial differential equation known as the Fokker-Planck
equation. Sufficient conditions for the uniqueness and convergence of
the transition probability density function to the steady-state are

established.

Exact solutions for the transition probability density function
are known only for linear stochastic differential equations and certain
special tirst order nonlinear systems. Exact solutions for the steady-
state density are known for special nonlinear systems. Eigenfunction
expansions are shown to provide a convenient vehicle for obtaining
approximate solutions for first order systems and for self-excited
oscillators. The first term in an asymptotic expansion of the

transition probability density function is found for self-excited

oscillators.

A class of first passage problems for oscillators, which includes

the zero crossing problem, is formulated.
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PART 1

THE MARKOVIAN NATURE OF STOCHASTIC PROCESSES DEFINED
BY DIFFERENTTAL EQUATIONS INVOLVING WHITE NOISE

Ordinary differential equations serve as mathematical models for
many dynamical systems. One is often concerned with the response of
these dynamical systems to external disturbances. The responsé is then
represented by the solution of an ordinary differential equation, for

example

2
(1.1) 4% ¢

dt

dx
X 3t

& 4 gt = ulo),

where u(t) represents the external disturbance.

In some applications, the external disturbance cannot be success—
fully modelled by a single time function, for only the statistical
nature of the disturbance is known. One possible approach for the
determination of the response in this circumstance is to find the
solutions of the differential equations with many of the possible time
functions which might represent the disturbance. It is clear, even
from this suggestioﬁ, that the response of the system can no longer be
thought of as a single solution of an ourdinary differential equation.
The response would be better thought of as, for example, the average

solution, in some sense.

In this way, one is led to consider the problem of determining

the statistical nature of the solutions of differential equatiomns in
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which the time functions representing the external disturbance are
only know statistically. Of course, for a specific choice of u(t),
there will be but one solution x(t). Such specific realizations are
called sample functions since they are samples from a large collection
of disturbing functions and corresponding solutions. The entire
collection of possible disturbing functions and solutions are called

stochastic processes.

In this thesis, we shall be concerned with stochastic differential
equations involving a special type of stochastic disturbing function.
The stochastic processes representing the external disturbance will be
taken to be white noise, which, formally, has the properties of the

derivative of a Wiener process.

There are several reasons for this choice. In many systems, the
disturbing forces change much more rapidly than do the system variables.
White noise is a mathematical limiting case in which the characteristic
time for a change in the disturbing force as compared to the character-
istic time for a change in the system wvariables tends to zero. As
compared to a real disturbing force of this type, white noise differs
in its effect only‘in the changes of the system variables for very
short periods of time, so that after a period of time comparable to the
characteristic time associated with a real disturbing force, the effects
of the real and idealized, i.e., white noise, disturbing forces afe

very nearly the same.



The reason for adopting the idealized model for the disturbing
force is, of course, that computations are much easier for white noise.
In fact, choosing white noise allows a rather complete theory as we

shall see in the discussions which follow.

In other applications, the disturbing force itself can not
justifiably be modelled as white noise, but can be represented as the
response of a secondary system to white noise. That is, the stochastic
process representing the disturbance in a given dynamical system can
often itself be represented as a stochastic process related to white

noise by a differential equation. For example, u(t) as defined by

(1.2) f}%+ 8u = n(t)

with n(t) white noise, may serve as the disturbance for a dynamical
system represented by equation (1.1). We can then think of the desired
response as the‘response represented by an enlarged system of differ-
ential equations, for example, equations (1.1) and (1.2) together,

with the disturbing force being white noise. u(t) is now thought of as
an additional system variable. This procedure of enlarging the set of
differential equations expands the possibility of applications to a

wide range of problems.

Wiener Process

A Wiener process, w(t), is characterized by the following prop-

erties:

i) if t1<...<tn, the differences



w(t,) = wity),..,w(t ) - wit )
are mutually independent;
ii) w(t) - w(s) is normally distributed (Gaussian), withl
E[w(t) - w(s)] =0
E[ (w(t) - w(s))z] = czlt—s| .
Formally, one can express these properties in terms of differentials:
i) dw(ti), i=1,...,n, are mutually independent
ii) E[dw(t)] = 0O
E[(dw(t))2] = olde.

It is also useful to note that formal differentiation leads to

E[dw(t) du(s)] = 028(t-s) dt ds
where §(t-s) is the dirac delta function. The formal properties of
white noise, defined by
- dw

are then

i) n(ti), i=1,...,n, are mutually independent;

ii) n(t) is normally distributed (Gaussian) with

E[n(t)] =0

E[n(t) n(s)] = o26(t-s)

1

E[-] denotes au expectation.



. . . ; th .
Any ordinary differential equation of n order can be written
as a system of n first order differential equations. For the problems
considered in this thesis, the reduction to a system of first order

differential equations will be of the form

dw, (t)
dx . _ k k
dL 1= aj (ést) + bj (Est) dt
al™l
where X = (Xl""’xn)’ Xj = dtj‘l , and the wk(t) are independent

Wiener processes. For simplicity in the following discussion, an
equation of first order involving only one dependent variable will be
considered. An alternate expression for a first order differential

equation is a relation between differentials:
(1.3) dx = a(x,t) dt + b(x,t) dw(t).

At this point, we require an interpretation of this relation
between (stochastic) differentials which accords with the physical
phenomena being studied. If b(x,t) is a constant, there is general
agreement on an interpretation. First, if there were no stochastic
disturbances, b = 0, the system would evolve deterministically, and

in this case

.

lim ———Al [x(t+At) - x(t)& = alx(t),t) .
t

At~0 J

Often, the effect of the stochastic disturbance is to cause the system

to wander randomly away from the deterministic path in such a way that
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the average behavior is the deterministic path. We can represent this

by the statement

)
(1.4) lim E Z%‘[x(t+At) - x(t){} = a(x(t),t)
At>0

differing from the previous statement concerning the deterministic
behavior only in that an expected value has been introduced. The
effect of the stochastic disturbance can be seen by considering higher
order incremental moments — — — equation (1.4) expresses the first
incremental moment. Using the properties of the Wienmer process dis-

cussed above, we see that

1

(1.5) lim E{ 77

[x(t+AL) - X(t)]2\= b(x(t),t)
At>0 j
if we take E[(dw(t))z] = dt. Due to the Gaussian nature of the Wiener

process, we can also see that

1

L fx(erar) - x(©)1%9= 0

(1.6) lim E
At~0

for k>2. Equation (1.5) has the interpretation that in a small inter-
val of time At, the sample paths will spread out around the determin-

istic path by an amount characteristically about bAt.

When b(x,t) depends on x, there is some question as to whether
the sole effect of the stochastic disturbance is to cause the spreading
out; the stochastic disturbance may also affect the average behavior
as expressed by the first incremental moment. The resolution of this

point depends ultimately upon a consideration of the physical phenomena

being studied. A discussion of this point has been taken up by



Caughey and Gray [1]. Ito [2] has chosen the interpretation expressed
by equations (1.4)-(1.6) when b(x,t) depends on x. Stratonovich [3]
has offered an alternate interpretation in which the stochastic dis-

turbance does affect the first incremental moment.

We shall not have to distinguish between the two in the appli-
cations in this thesis since we shall always start with a system in
which b is constant. In this case, the stochastic disturbance does
not affect the first incremental moment, even in the interpretation

adopted by Stratonovich. We shall proceed, however, by using Ito's

interpretation, for this approach has certain technical advantages.

Problems of existence and uniqueness of solutions are basic to
the study of systems of ordinary differential equations. 1In the study
of stochastic differential equations (or equations relating stochastic
differentials) there is the analogous problem of establishing the
existence and uniqueness of a stochastic process with specified incre-
mental moments. Ito [2] designed a stochastic calculus which allows
one, with appropriate conditions on the incremental moments, to do

just that.

We shall only summarize the results. (This material is also
available in Doob [4, pp. 273-291].) First, the relation between

stochastic differentials, equation (1.3), is converted to an integral

equation
£ t

(1.7) x(t) - x(to) =f a[x(s),slds +f b{x(s),s]dw(s)
t t

o o]



In fact, Ito regards the relation between stochastic differentials as

a shorthand notation for the integral equation. His stochastic calcu-
lus is based on a definition of the stochastic integrals which appear
in this integral equation which leads to the incremental moment proper-
tiés expressed by equations (1.4)-(1.6). If we make the following

2
hypotheses:

ip) There is a constant K for which

lace,8) | < R+ L2

0 < b(t,8) < kD2

2) a(*,*) and b(*,*) satisfy a uniform Lipschitz condition in £

late,g) - a(t,az)l < Kl'c;z—ezll

[b(t,e)) = b(tyE) | < Klg,-¢, |
where K is independent of t and £; then there is a stochastic process,

x(t), with the following properties:

1) The x(t) sample functions are almost all3 continuous.

There is the further technical requirement that a, b are Baire functions
of the pair (t,£) for t < t < T, - < g < =, This is obviously no
restriction in applications.

3"almost all" means with probability 1. The mathematically rigorous
definition of a stochastic process requires the use of an underlying
sample space with probabilities defined on certain subsets of this
space. It is with respect to this space to which "with probability 1"
refers. A discussion of the definition of a stochastic process can be
found in Doob [4, pp. 46-50]. Since reservations such as "with prob-
ability 1" in no way affect any statistics with which we will be

concerned in our applications, they will be omitted in the remainder of
this thesis.



2) For each ts(to,T), x(t) - x(to) is independent of the aggre-

gate of differences {y(T) - y(s), s>t}.
3) For each te(to,T), equation (1.4) is true.

From the proof of these facts, which proceeds by the method of
successive approximations familiar in the theory of ordinary differ-
ential equations, it is obvious that x(t) is a Markov process. (The
explicit mathematical expression of the Markov property will be
discussed in Part II.) This latter fact is the most important feature
of the development. The generalization to systems of stochastic
differential equations is iﬁmediate and implies that nth order differ-
ential equations with disturbing functions represented as white noise
are n-component Markov processes, provided the incremental moments

have the required properties.

The Markovian property of these systems has the interpretation
that the statistics of the future states of the system depend only on
the present state and the stochastic procees, w(t), in the intervening
time interval. This is analogous to the situation for ordinary differ-

ential equations.

The difficulties in extending the method employed by Ito to
establish existence and uniqueness for other than these quasi-linear
systems are related to the distinction between establishing local and
global existence for ordinary differential equations. In the theory

of ordinary differential equations the method of successive approxi-
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‘mations will establish local or globai existence according to whether
one can impose a global Lipschitz condition or one has only a local
Lipechitz condition. It is inherent in the nature of the stochastic
processes we are considering that the system variables have finite
probability of exceeding any fixed bound so that we must always
concern ourselves with a global-type existence when dealing with sto-
chastic differential equations with white noise disturbance. It is
because quasi-linear stochastic differential equations admit a global
Lipschitz condition that one is able to establish existence and

uniqueness.

For the most part, this thesis deals with systems whose incre-
mental moments do not satisfy the requirements for the development
above, so that we are not assured that a Markov process exists with
the given incremental moments. On the other hand, i1f there is a
solution of the integral equation (1.7), it will be a Markov process
with the proper incremental moments since the Markov property depends
only on the independence of increments of the Wiener process. Further-
more, the strong analogy between these Markov processes and solutions
of ordinary differenfial equations provides intuitive ground for
adopting a Markov process as a representation for the response of the

system.

To sum up, the response of a dynamical system which is modelled
as a set of ordinary differential equations with white noise disturb-

ance (as, for example, equation (1.3)) shall be represented by a
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Markov process whose incremental time behavior is directly related to
the differential equations (as (1.4)-(1.6) are related to equation
(1.3)). We shall show in Parts II and III how this representation can

be used to obtain a statistical description, that is, the response, of

the dynamical system. In Part IV, we will solve some specific problems

and present some general methods of solution.



12

PART TII

THE STATISTICAL DESCRIPTION OF A
CONTINUOUS PARAMETER MARKOV FPROCESS

Stochastic Processes

We have seen that the response of a dynamical system to sto~
chéstic excitation cannot be represented as a single time function as
iec the cace for systems modelled hy a set of ordinary differential
equations with deterministic inputs. In this section we shall take up

a discussion of how the response may be represented.

As we have noted, for cach samplec function representing the
disturbance there is a corresponding sample function representing the
response of the system. For a specified collection of disturbance
sample functions there is a corresponding collection of response sample
functions. We might ask ourselves what we would like to know about

such a collection of response sample functions.

One type of question involves statements about the values of the
sample functions over a time interval, e.g., how many sample functions
have values exceeding a certain bound? Such a question would be

appropriate in the analysis of the failure of vibrating structures.

A second type of question involves values of the sample functions
at discrete instants, e.g., what is the expected value (average) of the

sample functions at some specific time?

We desire, then, a statistical description of the response stoch-
astic process which will provide answers to these two general types of

questions.
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First, we shall introduce the notation to be used. An n-com-
pbnent Markov process takes on values in an n~dimensional space which
we shall call the phase space, and we shall write x = (xl,...,xn)eR.
For our purposes, this usually will be n-dimensional Euclidian space.
Sets in phase space shall be denoted by I'. Then the conditional prob-
ability of the system occupying sets Pl""’rm at successive time
instants tl,...,tm, given that the system occupied the states 51,...,

s shall be denoted by

gp, at successive time instants Sl""’
P

P(rl,tl;...;rm,tm|_gl,s1;...;gp,sp) .
If P has a density so that

P(I‘l,tl;. .- ;I‘m,tmlgl,sl;. -.;_;_p,sp) =

;
o . . . .
J dgi... Jr dgmp(gl,tl,...,gm,tmlgi,sl,...,Ep,sp)

Pl I‘111

p shall be termed the probability density function. We shall almost
always assume that P has a density and shall work with the probability

density function, p. Distribution functions, P, and their densities,

p, without conditions shall be written as

P(Fl,tl;...;rm,tm)

and

p(g_l,tl;.. . ;}_{m,tm) .
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It is evident that if we could specify a consistent set of joint

distribution functions

P(T ,tl), P(T t ),...

1’ 1’ 2’
called the first distribution, second joint distribution, etc., we
would be able to answer any question of the second general type

mentioned above. Kolmogorov [5, p. 29] has shown that the consistency

conditions

P(P ,tm) = P(ri ,ti $...3T7, Lt

"..’
1 1 1 m m

P(rl, 1,...,rk,tk,R tk+ ;...;R,tm) = P(Pl,tl;...;rk,tk)

for an aribtrary permutation (il,...,im), and any finite m, are
necessary and sufficient to determine a valid distribution function.
Furthermore, he has shown by means of his Extension Theorem [5, p. 17]
that this distribution function can be extended uniquely to assign
probabilities to events such as |x(t)|<M, 0 < t < T, that is, the
distribution function can be used to answer questions of the first

general type mentioned above.

Transition Probability Density Function

Thus we see that a stochastic process can be completely charac-
terized by a collection of consistent, finite joint distribution
functions.

Our discussion of stochastic differential equations with white

noise inputs has shown that their "golutions" may be regarded as
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continuous parameter Markov processes. At that time we gave only a
rough statement of the Markov property. To be precise, a stochastic

process 1s Markovian if for t.<...<t <...<t
1 m m+n

P(El,tm+1;...;Fn,tm+n|xl,tl;...;xm,tm) = P(Pl,tm+1;...;Fn,tm+nlxm,tm) .

Actually, this is but one possible formulation of the Markov property.
Doob [4, p. B80] presents several equivalent forms; we have merely

chosen one that is convenient for our work.

Now it is generally true that

PG sty esX ot ) = P(Egatysen sk ot |X5t,) P(RLE))

Plrgstasee s Lt X, 5x0E))

P(§2’t2|3{-1’t1) P(_)E_lstl)

p(zn,tnlgi,tl;...;gn_l,tn_l) ves
P&yt |z, .t)) PG E)) -
When we take tl<t2<.,.<tn, the Markovian property allows considerable
simplification:
p(zi,tl;...;gn,tn) = p(zn’tnlzﬁ—l’tn—l)"'p(§2’t2|5-’tl) P(&i,tl) .

The conditional probability density function, p(gjtlg,r), is, for
Markov processes, called the transition probability density functiom

because of the way the joint probability demsity function of order n
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can be built up from it and an initial distribution. The transition
probability demsity function gives the density of probability of
transitions from a point in phase space, £, at time T to a point in

phase space, x, at time t.

Chapman-Kolmogorov Equation

Using the Markov property, we also have
P(§2’t2;§3,t3l§1;t1) = P(£3’t31§. :tz) p(}—{'Z’tle{‘l’tl)’ tl<t2<t3 ,

Integrating over X9 this becomes

P(£3’t3|§_1’t1) =fp(§3,t3‘§ atz) p(EZ’tZI-&l’tl) d_X_2 ]
R

the reduction on the left hand side being a consequence of the
necessity of Kolmogorov's consistency condition. This equation is

known as the Chapman-Kolmogorov or Smoluchowski equation.
Further simplification results if the system is stationary so
that
Pyatylayaty) = PGty ty 2,500

In this case, we would simply write p(§2,t|§1) for the transition prob-
ability density function. For example, the Chapman-Kolomogorov

equation becomes

(2.1) P(&Bst‘ﬂ: 13{..1) =fp(.}.{.3’t ‘.}5.2) P(]_‘I.Q:Tl_}..{.l) diz .
R.



17

The joint probhahility density functions are then functions only of the

time differences,
p(ﬁl’tl;”';én’tn) = P(?_{_I_’tl;_)izytz"tl;"';_?_(_n,tn"tn_l) .a
and fixed initial time, since then,
n
p(il:tl;"‘;znstn) = P(zsl’tl) jgz P(E(_j ’tj_tj‘"ll?sj"l)
If the limit
Lim p(x,t]8) = p, @
£

exists, independent of £, p (x) is termed the steady-state distribution.
P e

Construction of a Markov Process

Suppose we are given a stationary transition probability
density function, p(g,rlg), which satisfies the Chapman-Kolmogorov-

equation, and an initial probability density, £(£). Then

(2.2) ff(zl)dglfd_igz p(gz,rzl_x_l)...[dgm p(zm’TmI)—;m—l)

A
m

defines a probability on m—dimensional sets Am in the space of points

(_}S_l’u-o,?_(.ﬂl). If

(2.3) e = Tj, t, > 0, =1l,...,m,
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so t <...<tm, then the random variables x(tl),...,x(tm), are assigned

1
a joint distribution determined by equation (2.2).

The first condition of Kolmogorov consistency is satisfied
trivially, since for any permutation, the mth jodint distribution is

given by expression (2.2), where we assume t to be defined by

k
equation (2.3). The second condition holds because the transition

probability density function satisfies the Chapman-Kolmogorov equation.
It is easy to see that 'this sequence of random variables is a .
Markov process, if we set
p(r,tl_g_l,tl;...;gm,tm) = p(r,t|g .t )

when t._<...<t <t.
1 m

Moments, Autocorrelation Function, Spectral Demnsity Function

It is clear that the set of joint distribution functions gener-
ated by a tramsition probability and an initial distribution suffice
to answer any questions which can be described in termé of values taken
by the stochastic process at discrete instants of time. We shall now

consider a few statistics of this type which are of some importance.

Of obvious interest are the moments of the transition probability

density function, defined by

j1 jn
mj» ,-oogj (tlg) =fxl "'xn p(.E’tl.g.) d-}-(-
1 n R
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with the first order moments

m, (£]£) =ka pG,t]8) dx
R

being of special interest. Moments of the nth joint distribution

function can be similarly defined, but only certain moments are

usually considered.

For a dynamical system governed by a set of linear stochastic
differential equations with white noise input, the transition prob-
ability density function is Gaussian. This derives from the fact that
the Wiener process is Gaussian and a linear transformation of a

. 4
Gaussian stochastic process is also a Gaussian stochastic process .

The transition probability density function of a Gaussian
process is completely characterized by its first and second moments.

The first moments, mj(tlE), as defined above, are the components of the

mean vector; and the second (central) moment matrix, with elements

K e10 = [ bym GO om0 pantlD) @
‘R
is called the correlation matrix.

We have, in facts, for x = (xl,...,xn),

4]?arzen, E, [6, p. 90].

5Parzen, E. [6, p. 88].
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1 1 1 ¢ _ ik,
px,t]8) = T zj’Zkﬂ Gy, (2[R0 Gy mmy (££)

where |K| is the determinant of the correlation matrix with elements

Kjk(t|§) and Kjk are the elements of the inverse of the correlation

matrix.

Also of particular interest for linear equations is the matrix

of second order moments for the second joint probability density

funcrion,

Rjk(t,t+t|_§_) a ff [xj-mj(tl_g)] [y, m, (|81 pGe,t,y,t+1|E) dx dy

= jf [x,-m, €01, m (t]D] P12 pG,t]|8) dx dy,

where, in obtaining the last line, we have used the Markov property and

stationarity. To be more precise, we are interested in
(2.4) R, (1) = 1im R, (t,t+1|£)

jk oo kT
when this limit exists, independent of £. Usually, one has

Lim m, (t|g) = o,

t-oo
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and then one has simply

Ro (1) = f!xjyk PQLT|®) p () dx dy,

when the steady-state probability demnsity function exists, independent
of £.

Rll(r) is commonly termed the autocorrelation function. The
spectral density function, ¢(w), is related to the autocorrelation by
the Wiener-Khintchine relations:

o

(2.5) d(w) = %:[.Rll(T) cos wt dt ,
¢ .

R, () =f 0(w) cos wr du .
0

These functions are important in Harmonic analysis and prediction

theory faor linear systemsG.

For nonlinear stochastic differential equations, the structure
of the transition probability density function is not so simple, nor
can the spectral density function play the important role that it does
in Harmonic analysis and prediction theory for linear systems. None-
theless, interest in these statistics persists due to the [amiliarity
of those in applications with properties of these statistics for

linear systems.

6See, for example, Davenport and Root [7].
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Even in such cases as it is possible to determine the tramsition
probability density function, the first and second order statistics
discussed here express the response of a nonlinear system in terms
which allow more direct interpretation. Higher order moments could

also be defined, but they are of little interest.

First Passage Time Problems

As we have suggested, in applications one is often interested
in determining the first time a system variable, such as a displace-
ment in a mechanical system, exceeds a specified value. This problem,

and related ones, are termed first'passage time problems.

The distribution of first passage times can be related to the
transition probability density function. For this purpose, let
f(P,g,t|§)dg dt denote the probability that a system, initially at
state £, enters the closed region I' through the element of surface
g dg for the first time in the time interval t to t+dt. If the system
occupies a state xel at time t, it must have entered I' through some
element of the surface, say at g, at some time s, 0 < s < t for the

first time. This can be expressed by

t

(2.6) P(zi__,tl.g_) = ff f(T,P_,SlQ p(}i,t-SI_g) dg_ ds,
ar o

where 3I' denotes the boundary of T'. This formulation only makes sense

if we restrict E£¢r' and require T to be connected.
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For one-dimensional Markov processes, we can reduce the integral

equation to

. t
(277) P(X,tlg) ’ff(Ystig) P(X:t‘s’y) ds,
0

where either £ <y < x or x <y < &, for in this case we can take T

to be a semi-infinite interval of the real line and the boundary

reduces to a single point.

Summary

The discussions of the first two parts have led us to the
following. The response of a dynamical system governed by stochastic
differential equations with white noise disturbance functions is to
be represented by a continuous parameter Markov process with incre-
mental moments simply related to the stochastic differential equations.
In turn, a continuous parameter Markov process is characterized by a
transition probability demsity function in that all questions concerning
these processes can be expressed in terms of the transition probability

density function.

The third part of this thesis is concerned with the partial
differential equations satisfied by the transition probability denmsity
function. It will be seen that these partial differential equations

are simply related to the incremental moments of the Markov process.
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PART IIT
THE FOKKER-PLANCK EQUATION

The Backward and Forward (Fokker-Planck) Egquations

If we are given a set of n first order stochastic differential

equations of the form

dxi(t) = ai(gﬁt) + ci(&,t) dwa(t), i=l,...,n,j = 1,...,m ,

in which x = (xl,...,xn) and the wj(t) are independent Wiener processes
with unit incremental variances, the incremental moments of x are

easlly seen to be7

. 1 _
(3.1 zlsﬂo E{—E [x; (e+At) =x, (t) lz:_(t)]. = a; (x(t),t)

(3.2) ¢

lin © {@—1{ [, (£+88) =%, ()] [x, Ceba) =x, (0)] 1&(1:)} - c:l;(_)g(t),t)c?(g(t),t)

by a straightforward generalization of our discussion of the one-dimen-

sional equation in Part L. For convenience, we define

k

j(§,t)

k
bij (x,t) = ci(g,t)c

from which it is obvious that {bi } is a non-negative definite matrix.

3

7 . . . , . s
We are employing the summation convention in which repeated indices
are summed over the appropriate range.
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It is well'known8 that the transition probability density function,
p(gjtlng), for the Markov process with incremental moments specified

by equations (3.1) and (3.2) satisfies the pair of partial differential

equations
2
3 . 3 1 9
L = _ 4 (£,T) T p - = b, (£,T) =D ,
3t i BEi 2 7ij BEiaij
and
(3.3) L opl 2 =5 b 0]
' at ox, i X, t/P 2 3xiaxj 13 2RI -

These equations are termed the backward and forward equations, respect-
ively, since in the backward equation derivatives are taken with respect
to the backward variables, (£,7), and in the forward equation deriv-
atives are taken with respect to the forward variables, (x,t). The

forward equation is commonly called the Fokker-Planck equation.

If we denote the spatial operator of the forward equation by

Lx’ the backward and forward equations can be written as

ap _ _ *
a.l. LEP b
p

Where L* is the formal adjoint of L.

N

See, for example, Caughey [8] for a derivation of equation (3.3).
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If the incremental moments are independent of time, the trans-
ition probability density function is stationary, and then the back-

ward and forward equations‘”for p(g;tlg) are

3p _ ;¥
(3.4) 5t - LeP o
(3.5) op _

ot pr '

A solution, p(x,t|£), must satisfy both equations (3.4) and
(3.5) and, in order to be a transition probability density function,

the following conditions:

(3.6) pz0, all x,& R ,
3.7) fp(g_,tl_g) dx = 1, £>0 ,
' R
and
(3.8) lim | p(x,t|8) £(§) dg = £(x)
0 %

for any initial probability demsity, f(§). On occasion, by a solution

we shall mean a function, q(x,t), satisfying (3.5)-(3.7) and

lim q(x,t) = £(x) .
t->0

In terms of the transition probability density function,
q(x,t) =[P(5,t1_€) £(2) dg .

R

The distinction should always. be clear from the context.
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Existence of Solutions

We have demonstrated the existence of a Markov process with
specified incremental moments when these moments are essentially
1ipear9. It follows that a solution of thc Fokker-Planck equation
exists for this case. In more general circumstances, no existence

theory is available.

As we have taken a Markov process wilh incremental moments
associated with a given set of stochastic differential equations as
the representation of the response, it is necessary to demonstrate that
a solution of the Fokker-Planck equation can be used to define a
Markov process. A solution will certainly have the correct incremental
moments. We have seen in Part II that a transition probability
density function which satisfies the Chapman-Kolmogorov equation can
be used to define a Markov process. All that remains then is to
establish that a solution of the Fokker-Planck equation does satisfy

the Chapman-Kolmogorov equation. This, in turn, depends on establishing

the uniqueness of solutions.

Uniqueness of Solutions

Gray [8, appendix] has provided a uniqueness theorem involving
conditions which are essentially those required for the derivation of
the Fokker-Planck equation. The result is that we can say, quite

generally, that solutions of the Fokker-Planck equation are unique.

Ynr . . . s .
"Essentially linear" refers to the conditions specified in Part I.
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. Actually, Gray has shown that if ql(ggt) and qz(th) both satisfy the
same Fokker-Planck equation, both satisfy conditions (3.6) and (3.7)

and for some t ql(zjto) = qui,to), then ql(ggt) = qz(ggt) for £t .

It follows that the transition probability density function
nust also be unique. For suppose there were two transition probability
density functions. That is, suppose pl(x,tlg) and p2(§3t|§) are
solutions to the Fokker-Planck equation as defined earlier. Then, if

f(£) is any initial probability demnsity function

q; (,t) Efpl(é,tlﬁ) £(8) dg
R

qz(i,t) Efpz(z,tlg) £(g) dg
R

satisfy the conditions for Gray's uniqueness theorem, so that

ql(_}s,t) = qZ(?S,at)a tio .

This means

4[f(§)ip1(§,tl§) - py(x,t]g) dg = 0
R

for any initial probability density function, £(§). It follows that

P& t|8) =p,(xt|8), 0.

Having a rather gemneral uniqueness theorem, we shall now show
that a unique transition probability density function satisfies the

Chapman-Kolmogorov equation. Introducing the notation



29

Et[f(z_)] = fp(z_c_,tl_é_) £(g) d¢ ,
R

the Chapman-Kolmogorov equation (equation (2.1)) implies that

(3.9) B, [£G)] = B [E [£(2)] ()]

for any initial probability density, f(£). Now, each side of equation
(3.9) satisfies the Fokker-Planck equation and conditions (3.6) and
(3.7). Furthermore, at t=0, both equal ET[E(Q)]. By the uniqueness
theorem, they must be equal for all t>0. This establishes equation
(3.9) for arbitrary initial probability densities and thus implies

the validity of the Chapman-Kolmogorov equation for the transition
probability density function by the same argument as was used to

establish the uniqueness of the transition probability demsity function.

Convergence to the Steady—State10

Any solution of the steady-state Fokker-Planck equation

Lp,®) =0

is termed a steady-state solution and will be denoted as ps(g). We
have seen that solutions of the Fokker-Planck equation are unique.
The same proof shows that steady—state solutions are unique. One has
the inclination to regard such a solution as the large time limit of
solutions to the\Fékker-Planck equation. We shall now examine this

proposition and determine sufficient conditions for its validity.

10

The material of this section has been accepted for publication [9].
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Conservation of Probability

If the system variables can take on values in a phase space R,

that p(gﬁt|§JT) is a probability density in X requires

[p(».}iatlé_,l') d_)£= 1.

R
The requirement that the total probability remain normalized to unity

implies that

af )
dt | P(ﬁatié"f) dx = o .
R

By integrating the Fokker-Planck equation, expressed by equation (3.3),

over R, this is seen to require

R I R
BXi i 2 23X, -
R ,
i
—_
[,F' 2b
i . P
_ 1_ij"
o 2P T T, |y dE
3R i

where the n; are the components of the outward nmormal vector to the
surface 3R bounding the region R. To conserve probability, it is
sufficient to require

r al

(3.10) ap—%—ij— n, =0, =xe3dR ,

¢
|2
i
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" which can be interpreted as a requirement that the flux of probability
through 3R vanish at any point on 9R. When R is an infinite domain,

equation (3.10) should be taken in a limiting sense.

Definition: A well-behaved solution of the time-dependent Fokker-

Planck equation, (3.3), is one which satisfies the boundary conditions
p=0

(3.11) . oa.p - R ‘n, =0, xe 3R

(3.12)

for all t>0, with the convergence being uniform in t if the region R

ig dinfinite.

It is easily shown that a linear combination of two well-behaved
solutions is also well-behaved. Note that ps(g) itself is well-behaved

if it satisfies condition (3.11) (which we shall assume).

Let Py and Py be any two well-behaved solutions. Define u by

(3.13) o Py = Py + P, U
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0f central importance in establishing conditions for convergence to the

steady~-state is the following:

Lemma: If 1 and p, are well-behaved solutions of the Fokker-Planck

equation, (3.3), then

d 2 - du du
(3.14) at | Pt xS fpsbij ox; o, d .

R R

Using equation (3.3), u satisfies

' u _
(3.15) P og = Lx(uPs) = pSA(u) .

Introduce the inner product

(3.16) (u,v) = j'psuv dx .
R

with the corresponding norm

G 1/2
o= @ut/? o,
Then
(Au,v) = j’VL (up ) dx .
b4 s
R

Integrating by parts, the surface integrals arising are seen to vanish

because of the boundary conditions imposed, so that
o

(Au,v) = (u,A*v),
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‘where

2,
9 1 ]
A* = 3, —— S b..
i axi 2 7ij axiBX.
Then
(Au,u) = (u,A*u)
(3.17) = pSuA*u dx
R
__1 {" qu _ou o
2 | Pg Pij oxy 9y =
R
Using equation (3.15),
‘ du oL d 2 -
(3.18) '] up oy dx = > Tt ’[psu dx = (Au,u),
R R

so that the desired result follows.

The interchange of order of integration and differentiation
involved in equation (3.18) is justified by the integral conditions
(3.12) dincluded in the definition of well-behaved solutions. It is

interesting to note that these integral conditions imply that

lu]l <=, | Au]| <e, T

for each t>0. Thus we are limiting the discussion to that domain of

the linear operator A such that the range of A is in the Hilbert space

defined by the inner product (3.16).
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Uniqueness

Uniqueness of well-behaved solutions follows easily from this
lemma. Suppose Py and PZ, are well-behaved solutions of equation (3.3),
and u is defined by equation (3.13). 1f p, and p, are identical at
some time»to, u is identically zero at t. Then the statement of the

lemma reduces to

for all tt . As {|uli > 0 it follows that uz0, all t2t 5 i.e.,
pl = pza t'_>.to'
The result applies equally well if 3p/ot = 0, i.e., in the

steady-state case, for here equation (3.14) says

_ du _Jdu
0 jrpsbij %, 9x, dx
R v

which requires u to be a constant since {bij} is positive definite.
(Actually, {bij} is necessarily only non-negative definite. When
{bij} is not positive definite, considerations such as those pursued
in latef discussioné of convergence to the steady-state lead to the
desired result.) On the other hand, integrating equation (3.1§2<over

R, we find

so thatwe must have uz=0, i.e., plEpzsz.
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We can summarize this discussion briefly in the

Theorem: (Uniqueness)

A well-behaved solution of the Fokker-Planck equation is

unique.
Convergence to the Steady-State

Suppose in the definition of u, equation (3.13), we set

P,=P and P1=P» SO that we have
(3.19) P =P + psu'.

If we can show that u*0 as t—wv, we will have proved that PP the

time-dependent solution converges to the steady-state solution.

The statement of the lemma, equation (3.14), can be written

as
(3.20) 55 lulf = W .

If we can bound the right hand side of equation (3.20) by

(3.21) (Au,u) < -k ”u|F , k>0
we_wiil have
1 d 2 112
?E;Hul -k \uli >
so that

luce) | < ute )| expl-k(e-t )1, t >t .
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Thus we would have [|ul]| »0 at t-~. Note that from equation (3.19)

1/2

-
!

4 r, ‘
J[lp—psldz = 'lpguldx < | [ dx jpu dx = lull
R R R R

so that ||ul|| ~0 implies that PP in Ll (exponentially).

To establish conditions for the validity of the inequality

(3.21), consider minimizing the Rayleigh quotient

(3.22) A = —(Au,u)

(u,u)

subject to

(3'23) ‘ HUH <o,

and

(3.24) fpsu dx = 0 .
R

Condition (3.23) arises naturally from the requirement that p be well-
behaved; A will be bounded for the same reason. Condition (3.24)

arises upon integrating equation (3.19).

The following Euler equation is a necessary condition

for an extremum:
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3| - _du o
9x, Psbij o0x, + 2>\uPs =0

J _ 1
To proceed, it will be assumed that {bij} is a constant matrix.

Let

(3.25) u = vp..l/2

s

to obtain the equation for v:

2
v _ =
g F Y@@ =0,
1773
with
| 1 -2, ®g®; 1 4 2%p
1@ = - 4 pg by, a o bys B, O

Since {bij} is symmetric and non-negative definite, it can be assumed

that principal coordinates have been chosen so that

{bij}= IN s

that is, the identity matrix of order N, when {bij} is positive

definite; or

" I l 0
. m
(3.26) b ‘
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with m<N when {bij} is non-negative definite, In the following, the
vector x is to be replaced by (£,n), where &i correspond to 1l's in the
matrix {bij} according to (3.26), and ny correspond to O's. The

Euler equation reduces to

2
(3.27) 9—‘£+ v(2A-q(E,n) = 0
9k,
i
where
2 2
ap 3 p
1 -2 (%P 1 -1°Ps
a(G.n) = - 3 P 3. | T2 Ps 2
i of

Note that the requirement that (u,u)<» corresponds to veL2 because of
(3.25). A sufficient condition for the eigenvalue problem (3.27) to
have a discrete spectrum is that q(&,m)-> as ||&]] = gi >, and that

q(&,n) be piecewise continuous Tt

If P has the exponential form

Ps(ﬁ_,_ll) = ¢ expl-q(&.n)1 ,

then‘
2 2
1 [8q 13 ¢q
vq(_g_’ﬂ) =Z /ag \ __2' 2 .
- Y R
11

Titchmarsh, E. C. [10, p. 150].
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It is clear from (3.22) and (3.17) that A>0. Consider A=0. Employing
the (£,n) variables,
’ 2

(Au,u) =—%‘j’ps 5%9‘ dg dn .

. R i

Then A=0 implies that 8u/3§i=0, i=l,...,m. If {bij} were positive
definite so that m=N, this would require that u be a constant for
fixed t. However, this would violate condition (3.24), unless the
constant is chosen to be zero. If'{bij} is only non-negative definite,
it is possible to have u=u(n,t) and still have A=0. In this case, the

Fokker-Planck equation reduces to

ou N ou
(3.28) = 2 a .
t i=m+1 + arli—m

If (3.28) has only the solution u = constant, condition (3.24) is

again violated if the constant is nonzero.

Having ruled out the possibility that A=0, it follows that
(auyw) < -2 Julf

where xmin is the first nonzero eigenvalue of (3.27). The discreteness
of the spectrum guarantees that kmin is positive. We need only identify
k in the inequality (3.21) as kmin to obtain the desired result. 1In

Summafy, we have ﬁhe following.
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Theorem: (Convergence to the Steady-State)

Suppose there exists a solution P, to the steady-state TFokker-—

Planck equation,

3b,.p
- -2 _1 _dijts | _
LPS - Bxi aips 2 an 0, xe R, {bij} constant.

Further, suppose there exists a well-behaved solution of the time

dependent Fokker-Planck equation,

p

E Lp, x¢ R .
If Py is such that
2
ap_ 9p 3 p
- _1 =2 s _s, 1 -1 5
.29 - - N - R~ R S N -
(3.29) 1(x) 4 Ps Pij 9%, 3%, | 2 Ps Pij Bx.ox,
i7j i3
N
2 . . : .
as ||x|| = z: X, and is piecewise continuous, then
=1

lim pggutlx t)=rp x)
e R R} 5

in the sense of convergence in‘Ll.

If the matrix {bij} is only non-negative definite, there is-a

further requirement that the only solution of

Q2
Q2

Ju u .
ryalie z: a, _ s Y 0, i=l,...,m
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is a constant, where gi are the only variables with respect to which
second derivatives are taken in the operator L. In this case P must

be such that

2
G =-Lp? (B}t 1 11k
44,0, 4 Pg agi 2 Pg 9E 2
i

as ]EL = £i+w for any fixed n.

18
e

For an important class of problems, the last condition required
in the case of'{bij} non-negative definite is readily seen to hold.
For Fokker-Planck equations corresponding to systems of second order
differential equations, the coefficients aivturn out to be just gi.

That u a constant is the only solution of

du < du
At Y&, » 3¢, -0 i=l,....m
i=1 i

is obvious.

Transformation of Coordinates

We have seen that the system of stochastic differential

equations

: ‘ , . -
(3.30) dxi(t) =:ai(§5t) de + ci(gjt) dwz(t), i=1l,...,n,

where the w, are independent Wiener processes with
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CELGw, () = w, ()] = le-s|
' £
and

c:]{z:(i,t) » 0, b,. = ¢

are to be associated with the backward and forward equations

5 I o
37 PGtlET) = e, (BT) 3P - 3 by (BT gr P
i 1]
—a—;p(zc_,tl_éﬂ) = -5 2; &) P +5——"axiaxj bij(li_,t) P.

One often finds that a transformation to a new set of coordin-

ates is of interest. Consider a one-to-one transformation as defined

by
(3.31) y, = £,G0LE)
(3.32) x, = £7 (@t i=1,...,n.

It is easy to show that {xﬁt)}bis also an n-component Markov process

It seems reasonable that if we- set

a(g,t|n, ™) = p(x,t|E,T)
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with (y,t) related to (x,t), and (n,t) related to (£,7) by the trans-
formation (3.31), the bhackward and forward equations for q(z,t|g,T)

may be obtained by direct substitution:

39 3 1 82
e Wt = - A @0 F—a -7 BT e
i 1]
3q ) 1 82
st @tlnn = - 5= A (rt) a5 o5 B Gt 4,
i 171
where one easily finds that
‘ of, of, azf.
(3.33) A.(got) = —=+ —=a +=-—2-p
i~? at Ix, "k 2 3x,ax, jk '’
k ik
' afi of,
(3.34) BijQXJt) = 3;; ggi'bkg .

In these, fi’ as bkl are to be expressed, finally, in terms of y

variables by means of the inverse transformation (3.32).

Ito [11] has provided a formula connecting the stochastic

differentials of y to those of x which verifies the suggestion of the

previous paragraph. For our purposes, we can summarize Ito's result

to say that if x is an n-component Markov process defined by the system

of stochastic differentials, (3.30), and y is obtained from x by the
one-to-one transformation, (3.31), then y is an n-component Markov

process defined\by the following system of stochastic differentials:
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| )
dy, (£) = A, (y,t) dt + C/(y,t) dw, (t)
where AinJt) is defined by (3.33) and

of , )

L _ i
¢; .t = 7%, Cp

Tt follows easily that Bij (y,t) = Ci(l,t) C?(X,t) is given by (3.34).

As we have noted, a different interpretation of the system of
stochastic differentials is possible and may lead to a different set
of incremental moments. Even with his interpretation, Stratonovich [3]
has shown that the correct backward and forward equations may be
obtéined by direct transformation of these equations, if one takes note
of his version of the formula connecting stochastic differentials and

uses a consistent interpretation of the stochastic differential system.

Moments from the Fokker-Planck Equation

Once we have determined the transition probability density function,
Various statistics can be derived from it, as we saw in Part II. It is
important to note thét many statistics can be found directly by means
of the Fokker-Planck equation without a need for determining the

transition probability density function.

Suppose f(x) is any function of the n variables which are the

components of the Markov Process. Then
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a—%Et[f}_é] = -5% £(x) plx,t|®) d_:g=jf(§> %Pg (z,t]g) dx
R . R

and using the Fokker-Planck equation,

E%Et[flél =ff(§_) pr(ﬁ,tl_g_)‘d_?g:jp(&’tl;) L:f@ dx
R R

- *
(3.35) = E [Lf |£1

Using the backward equation

2 1521 = ff(gg Lep(e,ele) dx = 1 ff@ Pl &
R R

(3.36)

*
Ly Et[f|_§]

Equation (3.35) is an ordinary differential equation for Et[f|§J with

the initial condition
lim E_[£]g] = £(8).
t>0
For a linear stochastic differential equation of order n with

white noise, if we choose

(3.37 : fi(ﬁ) = Xy
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we obtain a closed set of ordinary differential equations for these

. 12 X . .

first moments™ . In fact, if a set of functions fi(z) is chosen to
represent all moments of order m, then a closed set of ordinary
differential equations for these mth moments, which also involve only

lower order moments, will be found.

Unfortunately, when the stochastic differential equation is non-
linear, this simple situation does not arise. Typically, one finds
that»by choosing fi(§) as in (3.37) a set of ordinary differential

equations arises which also involves higher order moments.

Equation (3.36) may be useful in these latter cases. This is a
pértial differential equation, clearly of the same form as the back-

ward equation.

12 | :
Caughey, T.K., and Dienes, J.K. [12, pp. 304-~306], or Bogdanoff, J.L.,
and Kozin, F. [13]. :
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PART IV

SOLUTIONS OF THE FOKKER-PLANCK EQUATION
ASSOCTATED WITH FIRST AND SECOND ORDER
STOCHASTIC DIFFERENTTAL EQUATIONS

Exact Solutions

In the first three sections we have developed a theory of
stochastic differential equations which has led us to the Fokker-
Planck equation satisfied by the transition probability density
function. In the remainder of this thesis we shall be concerned with

the application of this theory to first and second order stochastic

differential equations.

Exact solutions of the Fokker-Planck equation for the transition
probability density function have been found for two types of stochastic
differential equations: 1) linear equations, and 2) certain first
order nonlinear equations. The steady-state density can always be
obtained by quadratures for a first order system, and has also been

found for a certain class of nonlinear oscillators.

As we have previously remarked, the transition probability
density function for a linear system is Gaussian due to the Gaussian
nature of the Wiener process, so that the transition probability
density function is completely characterized by the means and second
moments, Eveﬁ without using this fact, the Fokker-Planck equation is

easily solved by means of the Fourier transform13.

13Wang and Uhlenbeck [14] solved the Fokker-Planck equation for a system

of linear oscillators by this method.
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The transition probability density function is also known for
certain one-dimensional systems. Dienes [15] found it for the

stochastic differential equation

dy ; - dw
it + k sign (y) T

where w(t) is a Wiener process. Atkinson [16] has studied piecewise
linear, one~dimensional systems. Wong [17] found eigenfunction expan-

sions for the transition probability density functions satisfying

Fokker-Planck equations of the form

B . A ) oo+ =2 (ex?
Pyl (axtb) p + 7~ (ex" + dx + &) p .

Exact solutions for the steady-state density for any one-dimen-
sional system can be determined by direct integration.. The general

steady-state Fokker-Planck equation for a one-dimensional system is

0=-2 | a® p-35 G p) | -

One integration yields

a@®) p - 532 (b pl = k

and another gives
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b(&) b(x) P

O\\N“

X
p(X) = b((:x) exp 2 a(g) a | - 2k zj_a:_gL) de
- 0

f exp | -2 ?(2) at

©

where k is arbitrary. Usually, the conditions p>0, and j-p(x) dx = 1

=00

require that k=0 so that we are left with

X
p(x) = b((:x) exp | 2 I a(g) - dg
: 0

with C chosen to normalize p(x).

Exact solutions for nonlinear systems of second order have been

found only for the steady-state density for oscillators of the form
X+ £(H) x + glx) =

where

X

H=%x2+fg(n) dn .
A ;

Caughey [18] found that the steady-state density, which satisfies the

steady-state Fokker-Planck equation
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(4.1) 0=| gy - 52 |4 2 @) ip+D R
C¥x ax X | ox

is éiven by14
. 1
p(x,x) = A exp| -3 F(H)
where
. H ‘
F(H) =f £(n) dn
0

and A is chosen to normalize p(x,x).

The solutions for these nonlinear systemé’are found by noting

the fortunate ciicumstance that‘separating equation (4.1) as

0 = g(x) p_;
X

9x

0=-2| £u) xp + D&
Ix ox

yields the unique solution., This pair of equations can easily be

15

solved by Lagrange's method™™ to yield the solution above.

14In-Appendix I;kthe uniqueness of this solution and the uniqueness and
convergence of well-behaved time-dependent solutions, as t+« to this
solution are established under appropriate conditions on F(H) and g(x).

15Piaggio, H. [19].
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The exact steady-state probability demsity for the set of

coupled, nonlinear oscillators

L L W@ dw(e)
xi + Bix + = i=1l,...,0,

i X, dt :
L

E[dwi(t) dw, (£)] = 2D, sij dt

b
By
can be found by the same method, provided 3" constant, to be
i
. Bi noo,
P(x,®) = Aexp| - 55T z: x; + V(») .
v il i=1 ‘

Unfortunately, this trick does not appear to work for other

types of nonlinear systems, e.g., the van der Pol oscillator.

Approximation Methods

The paucity of exact solutions for nonlinear systems, particularly
in the case of’secoﬁd order systems, suggests the need for approximate
methods.i One appro;ch is to replace the original nonlinear system by
an "equivalent" linear systemlG; A second approach is to use a
perturbation procéduré directly on the stochastic differential equation17

These techniques depend in an essential way on an ability to reduce

16See Caughey, T. K. [20] for a review of this method.

17Cranda11, s. [21].
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the nonlinear system to one or a succession of linear systems, for
which, as we have seen, complete solutions are available. In so doing,

the Fokker-Planck equation is really ignored.

In the table below, the appropriate method or methods for
obtaining approximate solutions are indicated for the various types of
first and second order, nonlinear stochastic differential equations.
Among the methods indicated are two new ones which are based on the
Fokker-Planck equation: perturbation (or approximation) of eigen-

values and asymptotic expansions.

First Order:’ . Equivalent linearization

Perturbation method on the
stochastic differential equation

Perturbation of eigenvalues
'Approximation of Eigenvalues
Second Order (oscillators):
‘ Passive Equivalent linearization

Perturbation method on the
stochastic differential equation

»

Self-excited. Approximation of eigenvalues

. Asymptotic expansions
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Firsthrder Stochastic Differéntial Equations

Method of Equivalent Linearization

First, we shalllillustrate the two methods which deal directly
witﬁ the stochastic differential equation. The idea of the method of
equivalent linearization is to replace the nonlinear system by a
linear system which is equivalent in some sense. Consider, as an

example, the first order stochastic differential equation

dx .3 ' dw
—— = e— >
at + X + €x FT £>0

with w(t) a Wiener process and E[dw(t)Z] = 2D dt. We wish to replace

this equation by

dx dw
ac 4+ Bx = at

with R chosen to minimize the equation deficiency term,

e(x) = x + ex3 - Bx,

in some sense. A convenient choice for purposes of computation is to
minimize E[ez(x)] in the steady-state. The steady-state Fokker-Planck
equation,

aps

3 -
(x+exr) Py +D = | = 0,

,:ﬂil
ox

has the unique solution
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— ) 4]
X X
exp - 20 "¢ %
P (X)) = ~
2 4
X X
f exp | -~ 55 "€ 7p dx
Then
o0 3 2 2 4
f X + ex’ -~ BX exp —%-e% dx
2 - - L -
Ele"(x)] = — %
X2 4
f exp 2D "¢ %D dx

To determine the extrema of E[ez(x)], we set -ﬁ E[ez(x)] = 0:

So
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-

[ (x2 + ex ) e z—-— zﬁ- | dx
*P 2D ~° 4D |
- OO

L

B=
® 2 4
x2 ex - i X dx
P 2D ¢ 4D
Since
p ) 2 4 |
X X
fx exp =20 "¢ 4p dx
2 .
=gt (1 = — - = o,
dR ' . 2 4
exp -2 X dx
2D 4D

the extremum so determined is actually a minimum, as desired. B can be

computed to be

8 =1+ 3De + 0(e2) .

The transition probability density function of the equivalent linear
system is Gaussian, and therefore characterized by the mean and variance.

By operating with the formal properties of the differentials of the

Wiener process, these can be determined directly from the convolution

form of the solution of the linear stochastic differential equation.
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We‘shall, however, show here how the desired moments are obtained from

the appropriate Fokker-Planck equation.

The Fokker-Planck equation associated with the equivalent

linear stochastic differential equations is

2
P2 - _9_
5t + ™ [Bxp] + D ax2 P .

Moment equations are obtained in the manner suggested in Part III.

we found

d *
T B, [ElE] = E (L f]€]

with the initial condition

E L£]€] = £8) .
We identify, in this case,
2
* 0 2
Lx = - Bx % +D 3
X

Then the equation for the first moment is

E%-Et[xlxo]'= Et[—Bxlxo] =~ B Et[xlxo] s

which has the solution

There,
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The equation for the second moment is

d 2 _ 2 - _ 2
It Et[x lxo] = Et[—ZBX + ZDIXO] 28 Et[x |Xo] + 2D,

which has the solution

2, . _ D, .-28t 2 -28t
Et[x [xo] =3 (1-e ) + x_ e .

The variance is then

E, [[xﬁEh(xlx_)]zl xl =D (.28t
(= L t [o] o/ B
| ) |
It follows that the transition probability density function of the

equivalent linear system is

' : : Bt 2
T Bx~x e ")
Pelcﬂ 8 =

= — exp — .
\IZnD(l~e 28t) 2Bt

) 2D(1-e )

i

Note that the variance in the steady-state is

D__D
B

~ 2
- l+3De.+ 0(e)

= D[1-3D¢] + 0(ed)

and coincides with the exact steady-state variance to this order.
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An approximate autocorrelation function can now be computed.

RX(T) =.j! X %, pel(xz,Tlxl) ps(xl) dx1 dx,

i
.00

= D[1-3eD] e-Bt + 0(22) .

Through the Wiener-Khintchine relation, (2.5), we have the spectral

density

6 (w) = 1D(1-3eD) 1

X B w2+82

+ 0% .

The significant features of this method are; 1) the nonlinear equation
is replaced by a linear equation for which the transition probability
density function is known, and 2) the method is limited by the fact

that one can not iterate to reduce the equation deficiency any further.

Perturbation Method on the Stochastic Differential Equation

The second method which involves operations on the stochastic
differential equation overcomes the one significant drawback of the
method of equivalent linearization, but does have its own disadvantages.

Again we consider the first order stochastic differential equation

dx 3 dw
at + X + ex” = ac ?

with w(t) as before. We seek a solution in the form

2
X = xo + exl + € x2 + ...
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Substituting into the stochastic differential equation and forming
successive equations by equating groups of terms of like powers of €

to zero, we obtain as the first two

o dw
dt+xo de °?

This method is most useful for determining the autocorrelation

function directly. For a zero mean process,

R (1) = lim E[x(t) x(t+1)]

>

v : 2
= 1im {E[x (t)x _(t+1)] + EE[xo(t)xl(t+r)] + eE[xo(t+T)xl(t)] +0(e7)}
) ° °

The 0(1) term in this expression is just the autocorrclation function

of a linear system. We found this in employing the method of equivalent

linearization to be

lim E[x_(£)x (t+0)] = De © .

t>eo
The succeeding expectations are found by expressing xl(t), ete., in
convolution form, e.g.,

t

xl(t) = f‘[ e_t+s xg(s) ds
0
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and using the Gaussian property of xb(s). Now

t

E[xo(t+T)xl(t)] = —Jf e—t+s E[xo(t+r) xg(s)] ds

0

The interchange of order of integration and expectation is justified

by. the fact that xo(t+T)x2(s) has finite mean squarels.

Due to the Markovian nature of xo(t), we have for s<t+t,

Elx_(t+1)x0(s) |a] = Elx)(s) Elx (t+0) [x_(s)]]al ,

where we have taken the initial condition,,xo(O) = a, xj(O) = 0,j>0.
In employing the method of equivalent linearization, we found the

conditional mean and mean square

E[x(t) |a] = ae " ,

-2t 2 -2t

E[x*(t) |a] = D(1-e 2%) + a% e X

Then it follows that

E[Xo(t+T) xi(s)|a] = E[xz(s)xo(s)e_t—T+s|a]

We have identically that

lgParzen, E. [6,p. 79].
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/

Etxg(s)] = E([x_(s) - ae 51% + bae®[x_(s) - ae” 513

+ EwazenzS [XO(S) - ae—s]Z

-

+ 4a3e_3S [xo(s) - ae_s]

+ 34e—4s

If Yis Yos Y35 Vs are jointly normally distributed with zero means,

then19

Ely,v,¥55,] = Ely,v,] Elysy,] + Ely;v,1 Ely,y,] + Elyyy,] Ely,y,l

Also,
E[Y1Y2Y3] =0 .

. -8
Since xo(s) - ae has zero mean, we then have

4 ~4s

2y12 2 E[XO(S) - ae—s]2+ ae

3[E([x () - ae °1%)]% + 6ale 25

Elx} ()]

2s.2

3D2 [1-e “71° + 6.512e"2

-2s

4 —4g

S p(1-e “%) + a'e

Substituting into the integral, and performing the integrations, we

obtain

2

:
=2t-1 ) 2 %.(e 1y -2t - %'(e -1

E[xo(t+T)x1(t)] = -e

1 4(e—2

+ 6a2D[t + %-(e_Zt—l)] -2 £_1)

19Parzen, E. [6, p. 93]
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Then

2
Lin E[x_(t+7) x (£)] = - 3D T

2
to0
The computation of E[xo(t)xl(t+1)] proceeds in a similar way.

t
Elx () x;(t+1) = -j ot E[xo(t)xg(s)] ds
0

t+T

—‘j— e_t-T+SE[x0(t) xg(s)] ds.
t

Each of these integrals can be handled as was dome above. The net
result is that

2
Lim Elx_ (1) x (L+0)] = - 3D 7T gp2ieT

o 2

Then we have for the autocorrelation function
R (1) = De™" [1-3eD-3eDr] + 0(e2) .

It is interesting to note that this is precisely the expression we

get, to 0(e), by expanding the result obtained by the method of
equivalent linearization if we use the expangion of B in powers of

£ alse found Lhere,

The advantage, in principle, of this perturbation method is

that higher order corrections may be found. Actually calculating the
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the higher order corrections, however, is quite tedious as the amount
of work required grows enormously with each succeeding power of €.
The result found here illustrates the gignificant disadvantage of this
perturbation method, specifically, that one obtains a nonuniform
expansion of the autocorrelation function with respect to the correla-
tion time T, that is, the 0(¢) correction is not uniformly small for

all T as compared to the 0(1) term.

FEigenfunction Expansions; Approximation of Eigenvalues

The third method which we present here overcomes the disadvapt—
ages inherent in both the method of equivalent linearization and the
perturbation method on the stochastic differential equation. In
order to make the benefits of this method evident, we shall first
consider the development and consequences of obtaining an eigenfunction

expansion for the transition probability density function.

A system described by the first-order stochastic differential

equation

d=z = du
'_" f(x) dt ?

where w(t) is a Wiener process with E[dw(;)z] = 2Ddt, has a transition

probability density function which satisfies the Fokker-Planck equation

2 peele) = 22 (eopl + 0 L2
se PUGTIE) = 50 Ltk 2l
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The steady-state solution, denoted by ps(x), is easily found to be

_F(x)

ps(x) = C exp > ,

where C is the normalization constant and

X
F(x) = f£(n) dn.
"

The only condition required of f(x) is that ps(x) be integrable over

the infinitc real line. For cxample, when f(x) = Bx, we find

2'7

_ 1 Bx ]

p () = ——— exp [; I .
s V 2nD/8 2D

If we make the substitution

(4.2) P =7 + pu

in the Fokker-Planck equation we obtain

du _
Y Au
with.
2
R A S L
Au = - ax=[f(x) psu] b, axz [psu]

n
L]
-~
b
~r

|
=]
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Introducing the inner product

oo

(4.3) (u,v) = fps(x) ax) vix) dx,

O

we define A% by
(Au,v) = (u,A*v) .

It is easily secen that A = A%,

Now, if we set
=it
ulx,t|g) = e vix) C(£)

we obtain the elgenvalue problem

(4.4) Av — Av =0 .

Suppose that we have solved the eigenvalue problem and have
obtained a complete set of eigenfunctions, ¢j(x), orthonormal in the

inner product specified by (4.3). Then we can expand u as

' © -}t
ulx,t|g) = n};l e " oc (&) ¥, x) .

where

oo on

c, (&) = (u(x,0|&),. wn(x)) =fp(x,0l5)¢n(}§) dx - fPS(X) wn(x) dx.

-0 . -l
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Note that X=0 is an eigenvalue corresponding to the eigenfunction
wo(x) = 1. We have explicitly removed this term in the representaticn

(4.2) so that the second integral vanishes.

Applying the initial condition for the transition probability

density function we find

Cn(E) = ¢n(€)
sco that

@ -A t
ux,tle) = § e w0 v ),
n=1

and then

(4.5)

o ~At
Py () 320 e T 9 (8) ¥ (),

pGe,t]E) = p () [l+ulx,t]E)]
where we have taken Ao = 3 and lbo(x) = 1.

Autocorrelation Function

Assuming that E[x(t)] = 0, the autocorrelation function as given

by equation (2.4) is

- 1im [ ' ( dx, d X
RX(T) 1im L[ﬁwtxt+T p(xt,tlg) p(xt+¢’TlYt) X A%
—_—0

T
troo .



67

Using the series expansion, equation (4.5), we have

v - -At
= 14 { n
R = lin D | gt % e ™y ) ¥ 0
[‘ i —}\mt .
1 P (Xt % © UGy Bplep) podeg dxp -
L

bl

8

1
>

T

- ' 'y m .
R (D) G e P (x) P ) 5 € U ) V(XD dxp dx o
o -AT
(46.6) = ; e m uz
m=0 mn
with
4.7) o =_I‘XPS(X) mm(x) dx = (x,¢m(x))

—o

From equation (4.6), we easily obtain the spectral density
function by means of ome of the Wiener-Khintchine relations, equation

(2.5),

= o

¢X(w) = IRX(T) cos wr dT
0
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2
2 :—o Otm}\m
¢_(w) == .
® T mEO hi+m2

Example 1l: f(x) = x (linear case)

The eigenvalue problem, equation (4.4), can be wrillten as

2
d’v dav _
-D 2 + £(x) = v =0
dx
and in this particular case, we have
2
iv v _ =
- D=5+ Bx oo - v = 0.
dx

to obtain

2
dv _ gy 4v 20
2 TS +

=0
BY ©

dE2

which is Hermite's equation. Thus

PS(E) =\/—%ekp (-Ez) s

and the orthonormal eigenfunctions, wn(g); are essentially the Hermite

polynomials, Hn(E):
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H_(£)

N »
n

v, (6) = Nl‘.l - 2??% @nt

with corresponding eigenvalues

An = fn, n=20,1, 2,

The o~ are easily computed:

4
3 Hn(g) = (_l)

H (8)
_ 12D m
o = .9 (x)) = J“’B £,

-2 (1 L
=5 |7 8®, 3 = (0

The autocorrelation function and spectral density are then, respectively,

and

Perturbation Procedure for Nearly Linear Systems

Systems which are nearly linear will have eigenfunctions and

eigenvalues which are nearly those of the linear system.

this idea, suppose that

To exploit
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f(x) = Bﬁ + eg(x)

where ¢ is supposed to be a small parameter. The eigenvalue problem,

equation (4.4), then becomes

dzvn d n nn
-D 2+(sx+e,g(x)-)--‘i—-xv =0
dx dx

where we shall employ superscripts to denote separate eigenfunctions

and their corresponding eigenvalues. Again, introduce the trans-

formation
= |8
E'\fzn %
to obtain
‘211 |y I An \_I 4.0 P
a v FA L L av F4.N Il
- + e [=—= == + =
w2 | EJBDgNB EJ g T\l v
Defining
o _ A"
H 8
Ry
we have
2 n n n
(4.8) v 2 dzé + 20" = eh(E)gz—E )

dg
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We will obtain an asymptotic expansion for v“(g) by assuming

expansions of the form

p n _ .n n 2 =n
(4.9 v (&) = Vo + evy + ¢ \Z + ...,

n

n n 2 n
=+ +
H My eul £

pz + . . .
Substituting into equation (4.8), we obtain a set of equations by

equating each coefficient of a power ot € to zero. We show the firsc

three explicitly:

dzvz dvz a1
- 2& +2u v =0,

d£2 dg oo
dzv; dvo _— dvz nn

2 n n n

dv dv dv

2 2 nn _ 1 ,nn_,nn

dgz - 2£ "EE'+ ZuOV2 = h(£) _EE 2u2v0 2plvl .

The differential operator appearing on the left hand side in each
equation is the Hermite differential operator. The terms arising

from the small non-linearity are viewed as forcing terms.

The relationships needed to obtain V? and u? arc developed in
Appendix B. The results are stated here. We assume an expansion in

terms of the unperturbed eigenfunctions. Specifically
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a. v,
nj

<
=
[
i
8 e 1
o

v, = b, -
2 120 nj o

where the unperturbed eigenfunctions are chosen to be orthonormal,

i.e.,
n_ & »
_[ Psvo vo dg = Gnﬂ
—T

where pS(E) is the steady-state solution when £=0. (See Example 1.)
The steady-state solution for nonzero e, designated here as ;;IE),

is expanded as

(4.10) P = p () [1+ ca (5) + c2op(®) + -un 1 .

We then define further expansion ccefficients

nl

3 n_=&
d = j pshvD v, dg ,

v

=]~
Q=

oo
“ne ~ j Pgf1Y a5
-0

- n f
fnl B d[ Ps%2%% dt .
—e0
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First order approximation:

1/2
n_ {n d
M1 (2) n,n-1 °’

1/2
n
- (5‘ dﬂ,,n—l

&ne, n-% . nEL
where we have noted that uz = n. And
= - l e
nn 2 mn
Second order approximations:
© 1/2
“ﬂ = z (%) / E{nkdn k-1 °
k=0 " ?
b o= | M 4 Si k|!? a_ d
nt  n-% ¥1%ne & 12 nk®e, k-1
1 & I
b =-2 95 (a)°-2 e.a_ -
nn 2 i0 nj =0 nj nj nn

From equation (4.7), we see that we need to compute

[ . i \2
o= f P ) v (&) dE) ’

-—O
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where E;IE) and vn(E) are the perturbed steady-state solution and
perturbed eigenfunctions, respectively. Substituting the expansions

(4.9) and (4.10), we obtain

o = j EpSvI;dE&e: IEPSVIESldE + f €pS }: a .vidi

Then
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a2 = %‘6 + eé

' 21 1 2
m n m By T e g legy

+ alm)

- 3
+ 8y (Eyy F jgo a5 1y + D) {0 (D)

Using the expressions for ajq and bll‘above, this reduces to

2 < 2 3
(elm + alm) - jZ% (alj) + 0 (7).,

Example 2:

As an example of the application of this method, we shall again
consider the first—-order stochastic differential equation treated
earlier by the methods of equivalent linearization and direct pertur-

bation on the stochastic differential equation. That is, we take

f(x) = Bx + ax3

In this case

he) =2 ¢ WD &) = an® .

5;(5) is easily found to be

Po(E) = A exp [-£% - eDE"]
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Expanding

2
p (&) = Ae”s 1 - engl‘ + L 22

8
s 5 E o+ ..

Infegrating we find

4]

1= IP_S(E) dg = A ﬁ—3—zn\f5+%sznz\/'r‘r+...

-

so that
_ 1 3 p o 87 22
A-—\r_ 1+ % eD 37 e D+ ...
T
Then
4
— o\ ‘ 4 3 22| 87 1.8 3 4
PS(E) = PS(E) 1 - €D (E =G +¢D 1— 32 + 2 £ 4 £ f +

We identify

3 4
-sl(E) - (Z'— 3 ) D

_ |81 _ 3.4 1.8 2
Ez(g) = (- 32 - 4 E + 2 E D .

2
The quantities alj? ajl’ and elj’ which are needed to obtain a_ up to

0(22), are easily computed and are listed below:
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3y = %D & = -3
a,, = 0 &9 = 0
a13='%D e13=-%\[6-D
a1j = 0, j»3 e14 = 0

ayy T 0 &5 = -—\[-1—_2-_D
ay = 3vée D | elj = 0, j»0
3, = 0

agy < %‘ 30 D.

aj1 = 0, j»5

From these, we find

uJ? = 0, j even

d - -3 - 3 2% + o(e?
2 = 2 M+ 03

m§ = 0(e3), iz5

3
To obtain the auteccorrelation function to 0(52), we need ul and u-,

which we shall also compute to'O(Ez). Now
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ul =1+ eul + 52 ul + 0(63)
1 2
.u3 =3 + sui + 82 “3 + 0(33)

The expressions for ui, u;, and ug reduce to

1 _ 1 3

Hy =42 257 35 + 5 8953 dyy
3.3

My =% dy

3_ 11 3 3
Hy = \/; a3 dgg +\/-; a33 dg, *‘\/; 235 dqy -

The quantities appearing here are computed to be

3V2 D

910 =
dyy = 2V3 D
dy, = 9V6 D
dy, = 26V2 D
333-—-%0
g5 = 43.JE-Q

From these, we find
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wPe143 -840 )
a =3+ 27 en-%eznz+0(e3) )

~ The uniformly valid asymptotic expansion of the autocorrelation up to

0(32) is then

2

RR(T) =D 1-3¢b - 3£2D + 0(63)

exp | —t(143eD - 2 ¢%? 4 0(e) |+] 2 B% + 0D

531 2.2

exp| =-1(3+27eD - 7 € D+ 0(33)) >

.

/

If only 0(¢) terms are retained, this result coincides with that
cbtained bf the method of equivalent linearizatiqn, and'alsd, if
expandedkcompletely ;n powers of g, witﬁ that of the method of direct
perturbation on the stochastic differential equation. It is clear,
however, that the method of equivalent linearization could not produce

' 2
a result accurate to 0(c7).,
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Eiample 3: Piecewise linear

Consider a symmetric piecewise linear system described by

f(x) = Bx + e(|x| ~ xo) H(ix| - xo) sign (xX)

(H(x) is the unit step function). The steady-state solution is then

— B 2 c
ps(x) =C expl - 22

2
70~ 2D x| - %)) B(|x| - %)

In terms of the variable § = J%%—x, with EO = ,B

P = Cexp| -5 =L (el - g)? nllel - g

Normalizing E;(E), one finds

-1/2
L. erf(go) + (1 +%)
[rc

exp| S+ %)'1 2 lerfe| 1+ %)1/2 3

where we use the definition of erf(x)

2
-t

erf(x) = e dt

i

Vo

|
ob—
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and

erfe(x) =

i

™

°° 2
j-e‘t dt = 1 - erf(x) .
p.4

Expénding E;(E) in powers of £, we find

2
3 = = o6
PS(E) "‘\/:r e [1+ 551(5) + 500l
with
~ C
1 1 2 2
s 8y = 5| |3+ ¢ erfc(ao)-;f% e - (lg] - e H(JE| - &)

In this case, we identify
=2 _ - i
hee) =5 (gl - g) H(lg] - £) sign (£)

The expansion coefficients required for 0(e) corrections are easily

computed:

_ 1.2 - _ 1
€1 = j( P S1 [VO] dg = g erfc(ED)

-0

w0 2 .
. - Vr
i Loy .22 o, V2
le _]rpshvo v dg = VT Eo c + B crfc(EO) .

2 1  _= 2
Then ay =5 - 28 erfc(ao) + 0(e ),
2
-g
1_ 2 o 1
uy = —= £ e + erfc(EO)

NI B
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The autocorrelation function is then found to be

D 2
RX(T) = E- {-l - %—erfc(go) _]exp -B1-¢ ;ﬁ: EO

i
. i
- —_

and the spectral density 1s then

2
_go 2
e + erfc(Eo) + 0(e™)

2D |1 - £ erfe(z )
2
bo(w) = —° + 0(e")
' 2 2¢ _Eo
wow + B+ ——-go e + ¢ erfc(go)

Vi

Power Law Nonlinearity

‘We will now consider the case of a power law nonlinearity, i.e.,

f(x) = (2p + 2) x

for which the steady-state solution is

+ 1
ps(X) = - 1
2p + 2

2p+l

exp (”XZp + 2

) .

The eigenvalue problem in this case becomes (taking D=1)

2u 2p + 1 du
2 d

4.11) 448 (2p +2) x Lt ru=0.

dx

We note that we are assured from a general argument that the eigen-

values of this equation are discrete. As we are no longer in the

nearly linear case and a perturbation procedure is not appropriatc,
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we resort to the Ritz variational method. This is satisfactory if we
are primarily interested in an expression for the autocorrelation
function, since only the first non-zero eigenvalue and its corresponding

eigenfunction make a significant contribution.

It is well known that the first non-zero eigenvalue of

equation (4.11) has the property

(4.12) A, = min <L)

1 (u,u)

where we have again chosen the inner product

(u,v) = j puv dx
" and L is the differential operator
d2u 2p+14d
“—2-(2p+2)xp e
dx
dx
One can readily show that
[s2] f ‘2
- du i
{(Lu,u) —'[.ps k XJ dx .

pee]

The minimum in (4.12) is then taken over non-constant functions, and

the function which achieves the minimum is the corresponding eigen-

function.
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Succeeding eigenvalues and eigenfunctions can be found, after

A{» uy are found, by minimizing the Rayleigh quotient, (Lu,u)/(u,u),

1

for all functions orthogonal to the eigenfunctions previously found.
Equation (4.11) is seen to be invariant with respect to a

reflection in the x-axis. Thus the eigenfunctions will be.even and

odd functions - - being even for AD. Az,..., and odd for Al, k3,... .

In particular, the eigenfunction corresponding to Kl is odd. Thus

it is reasonable to use only odd functions to approximate the

Rayleigh quotient,

One possible approach, then, is to approximate uy by a finite
odd polynomial with some of the coefficients as parameters. After
calculating the Rayleigh quotient, we then choose the parameters to

minimize the Rayleigh quotient.

We illustrate this with the simplest case:

: _ .3

Example 4: f(x} = X
The steady-state solution is given by

p (x) = “fgi—' exp (—x4) .
ik

For the trial function u = x, we find Al = 2,959,

For u = x + ax’; a = —.209, A, = 2.757

1
x + ax® 4+ bx"; a = -.117, b = -.042, A = 2.714 .

For u
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Normalizing the last approximation, we find the approximate eigen-

function

L\

_ 3 5
1 =1 27258 [x - .117 x~ - .042 x°] .

. 2 s .
From this, we can calculate o, appearing in the expansion for the auto-
correlation function:

[+ 4]

2 2
ey = -[‘xps vy dx = .32610,

-—C0
go that the first term appearing into the autocorrelation function is

approximately

.32610 exp [-2.7147] .

Contributions from the succeeding eigenvalues can be significant
only near the T origin. WNow, we have exactly

( r %]

R_(0) = fxzps(x) dx = = .33799.

A (3]

Comparing this with the approximate autocorrelation function deter-

£

F{

mined above, the exact value of RX(O) is seen to be only 3.65 percent

higher than is found from the approximation,.

Second Order Stochastic Differential Equations

. We have seen that all the approximation methods find application

in the study of first order stochastic differential equations, with
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thg method of apprdxiﬁating eigenvalues providing the most complete
déscription. In the case of second order stochastic differential
equations, the methods of equivalent linearization and perturbation
directly on the stochastic differentiel equation appear to be most
useful in the study of passive type osciliators, while the methods of
approximating eigenvalues and asymptotic expansions.are most appro-—
priate in the study of self-excited oscillators. We might point out,
howéver, that it is possible to use, for example, the method of
equivalent linearization in modified form in the study of self-
excited oscillatorszo. The indications of which methods are most
appropriate are intended to point out which methods provide the better

approximations by means of tractable computations.

The methods of equivalent linearization and perturbation directly
on the stochastic'differential equétion proceed in the same spirit as
explained in some detail for first order stochastic differential
equations, though, of course, the details certainly differ. For
example, in the method of equivalent linearization for second order
slochastic Jdifferential equations, the equivalent lincar system which
is used to represent the original nonlinear system is taken to be

in the form

as

. dw
X + — ——
BX + wx = ]

with B and w taken to minimize the mean square of the corresponding

equation deficiency in the steady-state.

2OCaughey, T. K. [22].
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We shall nﬁw try to indicate why one qannot successfully extend
the application of the method of equivalent linearization in a straight-—
forward way to the study of self-excited oscillators. For this purpose
consider the van der Pol equation with white noise disturbance:

X - e(l - xz) X+x=—

Replacing this equation by the equivalent linear eguation suggested

above leads to the equation deficiency

x[ - B - ¢+ exz] + x(1 - w)

Since the steady-state solution for the van der Pul uscillator is not
known, the expectations in the steady-state will be calculated by
using the steady-state of the equivalent linear system. Now
Ele(x,5)] = (8+e)2 E[%2] + 2¢E [%2x2] + 2B [%°x"] - 2(p+e) (1-u) E[xx]

+ 2e(1-w) E[%XB] + (1—w)2 E[Xz]

To determine the extrema, we set

|o>

E[e? (x,%) ]

1]
=]
0

2(p+e) E[%%] - 2(1-w) E[xx]

[e5]
w

Ele?(x,%)] =

2o
i
o
]

2(p+e) E[xk] - 2eE[#x°] - 2(1-w) E[x°] .
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Since

2
== Ble?(x, ) = 2m[]
38
2 |
2 gre?(x,%)] = 2E[x°]
2
Jw
2
8 2 - .
EYEYS Ele"(x,x)] = 2E[xx]

and since for any second order system in the steady-state, E[x x] = 0,
one can see that these conditions actually determine a minimum. We

can solvé for B and w to find

B = -g,

.3 )
w = 14+ Eiéa—l .
E[x"]

For the equivalent linear system in the steady-state,

2 D
E[X]=_, )

sz

E[ix3] = 0,

Then we take w = 1.

There are several things wrong with this result, but one need
only point out the most obvious feature. For £>0, as is the case for

a van der Pol oscillater, B<0 and therefore implies an unstable
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.nscillator. In fact, an "equivalent linear' steady-state does not
even exist though the formal caleculations above can still be made.

A van der Pol oscillator is, however, certainly stable.

Difficulties also arise when attempting to extend the method of
perturbation directly on the stochastic differential equation to the

study of self-excited oscillators.

Since the methods of equivalent linearization and perturbation
directly on the stochastic differential equation appeared to be
inadequate for the study of self-excited oscillators, it was necessary

to develop new methods which we will now discuss.

Eigenfunction Expansion for Self-Excited Oscillator

The eigenfunction expansion approach in conjunction with a
modified method of averaging can also be used to study self-excited

oscillators. We shall be concerned with oscillators described by

. . dw
+ ef(x,x) x +x = at

¥

(4.13)

which exhibit limit cycle behavior in the absence of stochastic
excitation, where w(t) is a Wiener process with E[dw(t)Z} = 2DE2 dt

and ¢ is a small parameter.

In order to obtain a Fokker-Planck equation for which approxi-

mate eigenvalues and eigenfunctions can be found, we shall employ a

modified method of averaging. For ¢ small, it is clear from equation
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(4.13) that the limit cycle will be nearly circular. The addition of
stochastic excitation of 0(e) will introduce 0(g) pertubations in
this nearly circular limit cycle. Thus we seek a solution of (4.13)

in the form

(4.14) r(t)

p(t) + eol(o,tp,t) + ezp?_ (p,9,t) +, ...

(4.15) e(t) t + ¢t} + a¢1(p,¢,t) + 52¢2(p,¢,t) T 4.

where we set

(4.16) ' x =71 cos 8

(4.17) x = ¢ sin € .,

Differentiating (4.16), this is seen to require

-rsin8=r¢c0os 8 -1 8 s8in & ,

and equation (4.13) gives

-

X = - i sin Q - r 8 cos 8
. dw
= egf(r cos 8, -~ r sin 8) r sin & -~ r cos & + at
Soiving for f,-é
.+ . , 2 dw |
(4.18) r = -cf(r cos 8, — r sin @) r sin” @ - & sin e,
(4.19) 8 = —ef{(r cos 8, - r sin 6) r sin B cos B + ¢ - gy cos 9 .,

dt
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It will be convenient in what follows to express the terms appearing

in (4.18), (4.19) in Fourier series:

. .2 _ -
rfF;cosB,~rsin851n 8 = ao(r) + L_an(r) cos né + z:bn(r) sin ne

rf(rcosd,-rsing) sin @ cos 8 = co(r) + l_un(r) cos nd + Z.dn(r) sin nb

From equations (4.14) and (4.15)

dp ap 3p
dr _ do 1do , P1as %P1 2
dt ~ae ¥ | o at T e i T Toe + 0(e™)
¢ o¢ ad
a8 d¢ 1 dp 1 d¢ 1 2
ac - ta t S\ Soac T e ar T e | T O

so (4.18), (4.19) become

(4.20)

4
o
|-v'||-—J

= - Ffao(r) - Ezan(r) cos né

- E):bn(r) sin n@

dw . 2
It sin 6 + 0(e™)
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(4.21)

9¢ 3 a4
Lde . (P1sp %% g 1
(p+s:p1) l+d+a_apat+ B¢Bt+

= (p + Epl) = Eco(r) - cn(r) cos né

- € Zdn(r) sin no - g—::i cos 8 + 0(92) .

The basic idea of the mefﬁod of averaging is that p, ¢ should
include all the persistent changes in r and 8, while the correction
term.s, Pys ¢1,. etc., shou.ld be pefiodic in t for fixé'd py, ¢. With
this in mind, the terms %‘f sin O, -(-1% cos @, appearing in equations

(4.20) and (4.21) produce persistent changes in the variances in t and

8 so that we choose

%%= - eao(r) - %{- gin 8 + 0(;:2)

(p+epl)‘é'%=-ec {(r) —(—Ecose+0(s)

2 .
Futthermore, to 0(g") we can substitute for r, ©

4220 e ) - Wi ¢+ )+ 06D,

dt t
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(4.23) e 4o ce (o) - Ecos (£ + ) + 0(ed).

No attempt will be made to calculate pl and ¢1.

From equations (4.22) and (4.23) we can form a Fokker-Planck
equation from terms up to 0(¢)
o 2 2 2
' 3 p 3°b . p b .p
%—E#——a—ap-iap+l"—-m—+—-‘&'+l—ﬂ—

ap o o 9 2 sz dpad 2 3¢2.

In what follows we shall assume that co(p) = 0. Now

. t+AL .
‘a = 1im E %% = - ca (p) - lim E E—i—[ sin(t + ¢) dw(z)
At=+0 . ° At=>0 A '

Oné should refrain from concluding that E[sin (7 + ¢) dw] = 0 from
the fact that E[dw] = 0 as ¢ is a random variable and in geﬁeral-is
correlated with w(t). Howevér, in this case, ¢ is slowly varying so
that ¢(t)} can be replaced by ¢(t) (inirial point in the integratiom)
with error 0{eAt). It follows that Ef[sin (v + ¢) dw] is 0(52) 80 can

be neglected. Thus, to lowest orders in €

jri]
]

*an(p)

a. = 0
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bpp = 2D sinz(F + ¢) €2
1 - . 2
b = = 2D sin (t + ¢) cos(t + @) €
pe P
b = 2D c032 {t + ¢ 52
L2 p2

and the corresponding Fokker-Planck equation is

2
(4.268) 3p _ _ B 2 2 3°p
_ 5t € 3 [aop] + De” sin” (t + ¢) ap2
2 3% | 1L
+ 2De 5089 3-61n (t + ¢) cos(t + ¢) p
2 2
+QE—2' “8—2 [cos2 (t + ¢) pl .
0 ad : .

We seek the positive solution of equation (4.24), normalized by

00

(4.25) f fp(p’¢’tlp0’¢o) dp d¢ = 1.

—_—C

Nofe that ¢ is not restricted to an interval of 2w. We.cannot'solve
equation (4.24) as it stands. However, since p, ¢ are slowly varying
it seems reasonable to conclude that p(p,¢,t) is slowly varying.
Suppose we average equation (4.24) by

t+2n

C )= 5 f( ) dr .
t
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Now

_ t2m 27

cos 2{t+¢)p = 3%- -j-cos 2(t+¢) plp,9,T) dT = E%'E-_/’ cos 2(T+$) drt
t t

+ 0(e) = 0(e)

so this can be neglected in comparison to other terms appearing, as

can sin 2{t+¢)p. Thus we obtain

' 2= 2—
3
(4.26) "P'-'E-"“'[ap]+lD52—‘E'a +1)2--—]2’——-|H2 .
Bp ' g
The steady-state solutlon must satisfy
225 325
3 o~ 1.2 s , 1 2 1 s
. = g - + = D’ = FS —_ .
(4.27) 0=c¢ 7 [ap,] > De 5+ 5 D" 5
ap p 39

33
A solution of (4.27) can be got by setting —3§-= 0 and then

ap
0= . -2 Dg °° s
€ e aops + 2 3

80

(4.28)

|
I

Y
2
c=Cexpf - o7 jﬁ ao(E) QE
o
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where we will take C so that

[
(4.29) %=jexp —é[ a () d | dp.

Note that we do not satisfy the full normalization conditien, equation
(4.23); nonetheless, ps(p) as given by (4.28) and (4.29) is a useful

quantity. We take P, SO that

a (o) = 0, o, 0 .

We are guaranteed this possibility by the assumption that the unforced
oscillator exhibits limit cycle behavior.

We can now proceed to solve eguation (4.26) by obtaining an

eigenfunction expansion. Consider solutions of the form

— t s
p= e)L R(p) el“¢.
Then
2 22
Lp2dBR, 4 g fn+LiDeu ) g,
2 dpz dp o 2 p2

2 2 2
1 2du__ du= De u
(4.30) 5 De ﬂ—z sao EE' A+ > u .,
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This equation is self-adjoint, with the inner product

-]

(u,v) = f Es uv dp .
0

If we make the change of wvariable

c
Ik

p
1
voexp| 5o ‘[. ao(ﬁ) dg
P

o
we obtain the equation
! 2
1] eao. ao 2)\ Jﬁ
(4.31) v+ v - - " ;;E-— 2 | = 0

If ad(p)—>°° as p»», the eigenvalues, A, for (4.31) form a discrete

spectrum. We shall assume this to be the case.

Consider the consequences of obtaining the transition probability

density function in the form
| [« - iug knut
pleststle »9.) = f % ty (P) P (P) e e cnu(po,'fbo)' du

As t_)'os P(Ds¢,t|90,¢°)+ 6(0_00) 6(¢_¢0) .SO
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-iwg
km(p) e G(p-po) 6(¢—¢0) d$ dp

[

i¢ (u-w)

) -2% f Upy (Puy, (P) ;S(D) e €y (Pordo) du dé do .
0

ékh‘ﬂ 8
%Mh“ﬁ 8

By integrating first over ¢, then n and p we find

-1iwg

(p ,¢)— km(p)e

as unu can be chosen to form an orthonormal set for fixed p. Thus

(4.32)

_ T _ g dulme) Ot
P (padatlogs8) = [ L w0 v (o)) b (o) Fre e ™ au.

n
Autocorrelation Function
The autocorrelation function is defined by
R (T) lim E[x(t) =(t+1)] .
£

Now as x(t) = r(t) cos 8(t), from equations (4.14) and (4.15)

x(t) = p, cos (t+p.) + 0(e)

where p,_ = p(t), ete. Thus
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Eiz{(t)x(t+i)] = E{ptpt+ cos(t+¢t) cos (t+T+¢t+T)] + 0(g) .

The expectation shown here should be calculated using the solution of
equétion (4.24). As we do not have this, but rather a time averaged
sulution, ;, to equation (4.26), to be consistent we must ask for the
time averaged correlation function, E[E?ESEIEI?T}, the averaging

being with respect to t. It is easily seen that this time averaging

has the effeet of discarding that part which is oseiilatory in t.

Note that when calculating E[x(t)x{(t+T)], pt,¢t, etc., are not
con_sidered functions of t but rather are independent variables appearing

in p(p,¢,t). Now

|

cos{t+¢ )

cos(t+qbt) cos(t+1+¢t+_[) = et

1
~4,) + 5 cos (Rt bb

s0 we clearly only retain the first term, i.e., we consider

L 1T+i¢ —-i¢  —it-i¢,, +1d
E[x(0)x(t+1)] = jj fjﬂ"{} oy e e the e
670

iU(q)t—q)o)eAnu

bt
g

Y 1
unp(oL) unu(oo) p (o) 5 e

iwld, , =¢ ) A T
- 1 t+T 'L kw
X. % P Vi Pe) Plopy ) 77 e ¢

du dw dp, dop .. dép dop, -
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Integrate first over ¢t:

” 1 - dug_-iwd ib,  ipé -iwé
fdd:t[Aete t LyBe te ° t]

)

= 21 A §(p~w-1) + 27 B §(u—uwt+l)
Now integrate over ¢t+’r:

o0

j’d¢t+T[2“ A' ${u~uw—~l) e

e OO

—i¢
+ 27 B' S(n-utl) e

1¢t+1' t+T w t+1

] e
= M2 A" S(ueu-1) 6(utl) + 2m)7 B' 8(u-wtl) 6(w-1).

Now we can easily perform the integrations over w, then u to obtain

l t
Zu ) u () p o) e

A tt+'r

o

E[x(t)x(t+1) ] =]
0

it A T

— k,-1
X{e ?& uk,-l(pt+T) uk,—l(pt) ps(p ) e

+e )3 u (P ) v e) Es(p

Y +T dpt dpt+'r

t+T

Noting that equation (4.31) is not affected by the sign of u, it follows

that uk,—l(o) = ukl(o), A = Akl’ so that

k,-1
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L, _ Mook
2

Elx(6)x(t+1)] f PePrpy €08 TL u (0) u (o) P (o) e
0 n |

0%8

_ Ale
X % ukl(pt+'r) uk'l _('pt) 1:).c;(p1:+'r) & dpt dpt+T *

Now take t+», Recalling the steady-state solution, it is seen that

A = ( but A_ <0, n>0 and also u_ =1. Then
00 no : 00
B (1) = lim E{x(t)x(t+t)]
X o0
o . T2
A LT
I k1l -
pees Lo fpscp) ua ) do |

0.

the the similarity of.this result to that for one-dimensional systems,
equation (4.6). All'that is needed to ComputE'ij(T) are the eigen~
functions and eigenvalues of equation (4.31) with p=1l. This we propose
to do approximately by means of the Rayieigh—Ritz variational principle.
Because of the self-adjointness of the differential operator, L,
appearing in equatiom (4.31)

d2 2ao(p) d
De do

1
e “E s
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we have

_ 2o L (ula)
De_2 S udl (u,u)
2) ' '
__ml _ o _ (u,Lu)
3
D€2 ulu (u,u)

orUpr ooty g

where u are the eigenfunctions corresponding to Anl'

Approximate Eigenvalues
Because of the %-factor in ;;(p), matters can be significantly

simpiified. Noting that fo is chosen 80 that_ao(p0)=0, we have

a (&) = (&-p ) aé(po) S

sa
P
' 1 2 1
fao(E) dg =5 (E=p.) a lp))+ ..
Po
Because of the %-factor, one term in the expansion should suffice.

Thus, we have approximately

1
ao(p)_
DE

P (o) =Cexp | - (z-p,)”
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and to this order of approximation

-, 1/2
c- a (po)
mDe
Now
y 2 2a
N = = _4dwu,_odu _u
(u,Lu) fps(p) u 5t e clp+ > dp
0 dp ¢

It is noted that u must vanish at p=0 in order that (u,Lu) be finite.
On the other hand, ;;(p) is exponentially small at the origin so that
a minor change in any trial function will meet this condition without
changing the value of (u,Lu) to any order of € in which we will be

interested. So we shall ignore this point and consider that contri-
butions to the integral from the region near p=0 are negligible. 1In

fact, we shall approximate

2(p=p ) 3(p-po)2
l"’ + +--o -
Po 2
p0

L.
2
P

©
o tof
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Consider the trial functien u=1. Then

where we have extended the lower limit on the integration to -« in

view of the negligible error committed thereby. Then

feo

—2E— 4 0ehH

2a°(po)

(u,Lu) = +

©
o roLA
o &

[«

and we have the approximate eigenvalue

\ _ _ De 1 + ?DE + 0(22)
01 2 2 2672 (o )
Po Po?otPo

It is easily seen that any other choice of a trial function does not

improve the 0(32) term in lUl sa that we have

2

_  De 3

Aﬂl——22+0(8) ]
pO

and also that u0-1+0(£). To obtain lll’ which is as far as we will

go, we must use trial functione orthogonal to 1 (to 0(e)). <Comsider

u-p—po. Then
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De

(uyu) = -
ZaD(pD)
1 De 3 Dez 3
(u,Lu)-l-i-—E ——t= + 0(e™)
2a'(p ) - 2a'(p)
pO o ja) 0 0 0
50
A,, = - ca' (p) 1+ De + O(EZ)
11 o o0 2 Zar( )
pODpO

Again, it is readily seen that any other choice of trial function which

is orthogonal to 1 does not improve upon the first term in the

approximation, so that

1 2
All = - an(po) + 0(e™) .

In summary, we have

=De 3
u°=1+0(e), "01'22 + 0(e™} ,
P
i (o]
2a' (p)
g o - _ " 2
u =R ) +0GE), Ay = - a (e ) + 0CeT) .

We are now in a position to obtain an approximate autocorrelation

function and from this an approximate spectral demsity. Now



o

j p;s (p) uyy

03

-]

j._ o;S(p) Uiy

—

So we have

(4.34)

= L 2
RX(T) =5 cos T Py

The 0(e) term in the
probably in error as

have produced errors
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De
dp = [
2a_(p )
D 2 )] '
exp | - =L |+ = exp {-ca (p ) T} |+ 0(e)
2 2 2 |( ) oo
°o RN

autocorrelation function as explicitly showmn is
we have made numerous approximations which could

of C(e). However we will carry it along in the

hope that it indicates, at least qualitatively, the nature of the

0(e) term.

The spectral density, related to rhe autocorrelation function

through the Wiener-Khintchine relations, is easily computed:

2
2 2 .
De De + 1+m2
2p2 2p2
p2 0 o}
= .2
¢x(m) oo 2 2
: D€2 2 Dez 2
5 + (1-w) -5 + (14w)
2pg 2po
t 2 2
+ Dez [an(po)] + 14w
2 .
T [(eal o 1% + (-w)?I(eal 0 )% + ()]
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This expression can be simplified by neglecting certain small contri-

butions of 0(82) without changing the validity of the expression to

0(e):
D32 ].+m2 1
¢ (W) = To0 ) 2
' {(1+w) 'DSZ 9
20 + (1-w)
{4.35)
pe? 14w 1

27 2
(o) [ (eal (o, )% + (1-m)2:|

Asymptotic Expansion for the Transition Probability Demsity Function

for Self-Excited Oscillggg;SZl

We shall again take up a consideration of the time~dependent
statistics of self-excited oscillators.. The method used here combines
the time-averaging tecﬁnique used previously in obtaining an eigen-
function expansion of the transition probability demsity function and

the idea of a perturbation expansion.

21The material of this section has been accepted for publication [9].
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Again, we shall be concerned with oscillators described by the

equation

(4.36) b E(x,¥) % 4+ x = %‘ti

which exhibit limit cycle behavior in the absence of stochastic
2 2
excitation, where w(t) is a Wiener process with E{dw(t)"] = 2De dt

and € is small parameter. The associated Fokker-Planck equation is

2
R kR T PR (ORI o+ en B

ox 3x ox 3*2

We have seen that if f(x,x) is of the special form

£(x,x) = £(H),

where

the exact steady-state solution is

_E®

PS(X,K) = C exp De s

in which
H
F{H) =-[ f(n) dn
0

and C is chosen to normalize ps(x,i). This limit cycle oscillator is

characterized by a nonlinear damping coefficient, f(H), such that
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f(H) = 0, H >0
Q Q

and

t
£ (Ho)>0.

The steady-state solution clearly has its maximum when H=Ho and is
exponentially small except for a small neighborhood about this value,

Now

1

F(B) = F(H)) +3 £'(H) (H—Ho)z Fae o

So we have approximately

p LK) = G exp | - g D@ |,

for H near Hb' Thus, ps(x,i) is exponentially small unless H—HOBO(U:).

For oscillators the spectral density function, and therefore
the autocorrelation function, is always of special iaterest, The auto-

correlation function, being given by

kv =]
Rx(T) = -[ILIx1x2ps(xl,il) p(xz,iz,Tle,il) dxld:'{ldxzdfc2

is primarily determined by values of the tramsition probability density
function for x and % near the 1limit cycle, since, as we have seen,
ps(x,i) is exponentiglly small elsewhere. We should expect that this

situation would exist for other types of self-excited oscillators.
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Therefore, we shall seek an asymptotic expansion of the transition

probability density function in the neighborhood of the limit cycle.

Now, the lowest order terms in the Fokker-Planck equation

dascribe the maotion of a linear, undamped oscillator, so we introduce

rotating coordinates

x=aces (0 +¢t),
(4.37) X=-asin(@+1) ,
with 0<@<21, a»0, and

q(a,8,t) = p(x,y,t) .

Then these terms reduce to 3q 80 we now have

at ?
g _ 5 , 1 2
=g | sin(é+t) + = cog{@+t) — | f(a cos(6+t), —a sin(et))a sin(6+t)g
at 3a a 20
4.38) 2 3%q .1 2 ag . 1 a%q
+ €7D {sin" (8+t) aa2 +-;-cos {(B+t) 5a +-;-s1n 2(8+t) PEY:

| 2
_§_i.n_iz(&l %%+—é—co$2 (9+t)a—§ .
. a BGJ

Note specifically that %ﬂ-= 0¢{e). This suggests the introduction of a

second, slow time variable

(4.39) T = et,
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and we now consider q to be a function of two independent time variables,

q = q (a’G,t,T)-

We will require that g be periodic in t. There may be some
question about the possibility of demanding periodicity in the fast
time variable without introducing correction terms. Some comments are
in order. TFor Hamiltomian type oscillators, it can be shown that the
expected frequency is exactly the deterministic frequency, independent
of the noise level. Anc for other self-excited oscillators with small
damping, on a deterministic basis, frequency corrections are known to
be 0(82). So it appears that if corrections to the fast time variable
are required in order to obtain periodicity they will be 0(82) - — and

we won't be concerned with corrections of this high order.

With the introduction of the second time varilable 5%-13 replaced

d
by 3¢ * © 3% -

To examine solutions near the 1limit cycle, we introduce

stretched coordinates (£,y) by

(4.40) a=a_ +et,
0 =0+,

taking.a0 to be the limift cycle amplitude and 90 to be the inirial
phase. The choice of stretching for the amplitude, which has the
interpretation‘that we are looking at the QE neighborhood of the limit

cycle amplitude, is suggested by the nature of the steady-state
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solution, as discussed befere. The choice of stretching for the angle
variable is then dictated by the requirement that q be a probability
density Iuo £ and ¢. Specifically, when the partial differential
equation for q, is determined, it must involve both £ and y, since
otherwise 9, would be independent of one of these variables, a result
which would be incompatible with thé fact that these varlables can

take on values over infinite intervals.

Finally, the following form of solution 1s assumed:

(4.41) q= qo(i.w,t,'t) +JE.:. ql(g,lp,t,'f) + €q2(5,¢!,t,‘f) + ... .

First Term of the Asymptotic Expansion

Using equations (4.39)-(4.41), all terms appearing in equation
.
{4.38) are expanded in ascending powers of Ve; the successive groups
of terms forming the coefficients of the successive powers of J: yield

the equations

(4.42) & =0
: at ?
s 29,
(4,43) v E’Sin 29 f(aocos¢,—aosin¢) _SE
°q

2 ,
+ aoain $ f(aocoa¢,ha031n¢) -2,

3k
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3q2 aq 1 aql
(4.44) 3t + e - 0 sin2¢ f(aocos¢,—aosin¢) -B_IF
2 4
+ aosin h f(aocos¢,—aosin¢) —Eﬁ;

2 ]
+ sin"¢ 5F [aoEfl(aocos¢,-aosin¢) q,

+ Ef(aocos¢{-aosin¢) qO]

1 3

0
5 sin2¢ fl(aocos¢,-aosin¢)£

+ 5

+‘% sin2¢ sﬁ-ff(aocos¢,—aosin¢) qo]

2
+ cos”d f{aocos¢,—aosin¢) q,

1 X 32“0 %q,
+-:2-D “"—2+—§' 2'-—-(:0524)——74-
AE a 3 8E
a
a2
+ 25in2¢ 95 + cos2 4,
a aEay g sz

In these, ¢=G+t+-yﬁﬂb and f(acos$,-asind) has been expanded as
f(acos¢,-asing) = f(aocos¢,—aosin¢) +JE% fl(aocos¢,—aosin¢)

+ c€2f2(a0c05¢,—aosin¢) + ...

Equation (4.42) says that qowqo(£,¢,r), independent of t.



114

We shall proceed to solve these equations successively by using
the requirement of periodicity in t and time-averaging. To facilitate

this procedure, we define the following time-averaged quantities:

27
("")z-é-,l-rf( ) a
0
kl(ao) = f(ao sin 4, -a_ cos )
Kz(ao) = sin 2¢ f(aO sin ¢, —a_ cos Py

h3(ao) -  cos 29 f(aosin $s a8 cos. ¢)
(4£.45)
Aﬁ(ao) = :El(ao gin ¢, -a  cos Y B

B

Aj(ao) sin 24 fl(ao gin ¢, ~a, cos $) .

Aﬁ(ao) cos 24 fl(aD sin ¢, ~a_ cos $) .

Time-averaging equation (4.43), we obtain

1 qu 1 aqo
(h.486) 0= E-Az(ao) HEE- + 7 2, [ll(ao) - 13(30)] _SE

Tn typical cases, the nonlinear damping coefficient is such that
Az(aO}ED. This is the case, for example, whenever f(x,x) is an even

function of x and x. We can then satisfy equation (4.46) by setting

Ala) = (@)
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which is, in fact, the equation which determines the amplitude of the

limit cycle to lowest order in 522.

To continue, define time-varying quantities uj(ao,¢) by

f(aosin¢,—aocos¢) - kl(ao) + ul(ao,¢)
etc., corresponding to the definitions of Aj(ao), (4.45). Then the

time-averaged equation (4.46) reduces the original equation (4.43) to

Bg 3q : 3q
1_1 —e ,1 - —2
St = o uz(a0,¢) 59 + 2 ao(ul(ao,¢) u3(ao,¢)) Y

which determines the t dependence of - In fact,

L

aq
ql(E!wstsT) = gl(ﬁ”\[’s’f) +% Iu2(aoy¢) dt —-3%
0
L f 84,
+5 f [ul(ao,¢) - u3(ao,¢)] dt 5e -
0

where gl(ﬁ,w,T) is yet to he determined.

Now consider equation (4.44). Again, we time-average and use

the equation determining a to obtain

22See, for example, Minorsky, N. [23, pp. 200-201]. The function f there

is to be identified with our quantity xf. Alsc note there that

kz(ao)EO implies that the frequency i1s not affected by the amplitude
of oscillations.
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844 1 3 1 8,
(4.47) —= = s a, () - Aga))) 3 8 T2 rgla) & 3¢
32qo 1 32q0
*3D 2t 2 T2
g a a3y
0
di,(a)
Noting that ls(a) =i ! it follows that ks(a) = 0 also. For
convenience, define
1
(4.48) B=Fa, [hla) - Aga)] .

Then equation (4.47) becomes

9q qu qu
-0 __32 1 —_—o 1 __ o
(4.49) iy (82q) +5 D 352 + = 3$2 .
Q

In terms of the original variables, the solution desired must

satisfy the initial condition

p(x,x,OIxO,io) = §(x-x ) G(X*XQ)

and the normalization condition

f f p(x,x,t|xo,x°) dx dx = 1.
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Using (4.37), the initial coordinates X and :'co define initial coordin-

ates LA and 90, and the initial condition becomes
p(a,8,0]r ,8 ) = & s(a-r ) £(8-0)
27 o’ o a o o
The normalization condition becomes
© 2

f J' p(a,@,tiro,go) ad ad 8 = 1
Po - -]

Now using the definition of the stretched coordinates, equation (4.39),

the initial and normalization conditions in terms of the £, ¢ variables

are obtained:

1 1
(4.50) p(E,4,0l8 40 ) = = 8(e-£) 8
o’’o £ a0+\fe.£ 0

where

r —a

Q o

% e

and

21:/,/5 o
(4.51) f f D(E.w,t,'flﬁo,wo)(ao+ eg) dg dy = 1 .

-Qolﬁ -a_ AfE i
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Only the lowest order terms in these two conditions will be
taken, so that the initlal and normalization conditions to be

associated with equation (4.49) are

] = —l T —
(4.52) 1, (859,08 59 ) s S5 S
and
. » 1
(4.53) Jf J[ q (.0, T{E 0 ) dE d¢ = s

The solution of equation (4.49) is most readily obtained by

noting that the system of stochastic differential equations

dw
a8 | 1
dt BE + dr °
a2
dt dr °?

where Wl(T) and wz(t) are two independent Wiener processes with zero
means and Eldw ()2} = Ddt, Eldw,(1)’] = —2 dr, has equation (4.49)
as the corresponding Fokker—Planck equatiog. As this system of
stochastic differential equations is linear and Wiener processes

are Gaussian, q, must be Gaussian.

The first and second moments required to define q, can be

obtained from the Fokker-Planck in the manner suggested in Part IIT,
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As an 1llustration of the use of the formal properties of differentials
of Wiener processes, we shall, however, obtain these directly from the
stochastic differential equations. Since these equations are linear,

the solutions can be represented as

-6t p =B(3-s)
g(t) = g8 +[ e dwl(s) .
0

p(1) = wy(1) .
From these and the fact that E[dwl(s)] = E[dwz(s)] = 0, we have the

means

~-B1
E[E(T)] = Eoe s

E[w(t)] =0 .

Proceeding to the second moments
)

-BT 2
var [E(t) ={E [&(1) - g8 1
T

T -g(t-8) -g{t~0)
= R je dwl(s)fe dwl(a)
0

0

P ~28T1+fs+R0
= ffe E[dwl(s) dwl(u)]
00

Now we use the formal propercy

E[dwl(s) dwl(c)} = D§(s-g) ds do
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s0 that

P =28(r-s5} -2a7

var[g(1)] = DJ['e dw = 5%{1—e ] .
0

The variance of y(t) can be gotten immediately from the property of a

Wiener process:

var [y(1)] = 2%‘-
a
o]

The solution of equation (4.49) subject to the conditions of equations

(4.52) and (4.53) is then

5 -8T 2
{ f B(E-E e )
1 g 9 0
q (Enl‘”T‘E ,0) = exp = _
o o a_e 1D (1-e~2BT) V 27Dt D(1-e 281,

2 2
—aolp

2Dt

Example 5: Circular limit cycle.

Let f(x,x) = -1 + g(H)
where H ='% &+ x5 s
and assume that

_g(Ho) =0, H0>O .

'
g (H°)>0.
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The quantities kl(a), kz(a), A3(a) are easily computed:

2n -
1 1 2 _ 1 2
Al(a) = 5a Jr -1 +g 2 2 ) dp = -1 + g 5 @ ) s
0 b —
2T — -
1 1.2 -
Xz(a) = o f— -1+ g 5 a ) sin 2¢d¢ = 0 ,
¢ —
2T
= L - L2 =
A3(a) = o ‘[ l1+5 n & } cos 2¢d¢p = 0,
0 b
80 & is defined by
1.2} _
g (2 ac) =1,
di, (a) dx,(a)
Noting that Aa(a) = 4a Aﬁ(a) =g e find

B=l"a2 r L2

2 % 8 12 3]

The transition probability density function, to lowest order in ¢,
is then given by equation (4.54) with a_ s B defined above.

Example 6: wvan der Pol's oscillator.

The van der Pol oscillater is described by

f(x, x) = -1 + x2 .
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In this case

a_

J\l(a)-—'—-l— -l+a2cosz¢ d¢ = -1 + T

Zn
An,(a) = - -1+ a2 c052 ;T gin 2¢d¢ = 0
2 27 ]
0 el "
2n 2
Ap(a) = 3%' jr -1 + a cos’ $ | cos 2¢d¢ = EZ. ,
0

80 a_ is determined by

Thus a = 2, and then f = 1.

Higher Order Approximations

In the following paragraphs we will show how the procedure used
above may be iterated to obtain each of the functions qj in the expansion

of p successively.

First, the definitions of the stretched coordinates and the slow
time are used in the coefficients and differential operators of equation

(4.38), and the resulting operators are collected in groupe, each of
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which has a common power of \l&:— For definiteness, suppose equation

(4.38) is represented by
Mp = 0,
Then the substitutions mentioned result in the expansion
o
M= Y oo .
§=0 3

Second, equation (4.41) is used as the expansion of p. Sub-
stituting equation (4.41) into equation (4.38), we obtain the following

set of equations, each corresponding to a different power of \/;:

( (\re-)k equation)

r~1
RS
x|
s
s
(=]

The first few equations are writtenm out explicitly:

Moqo o ,

Mlqo + 'l.*'liot.].1 =0 ,

Mpdy + Mpqy + M3, =0
M3q0 + qul + Mlqz + M0q3 = 0
In our previous work, Mo was identified as - -a-i— . The other operators
can be separated into two terms so that Hj is written as
M, =M+ WP

3 ] 3
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The superscript 'd' is intended to Indicate that these terms are
independent of t, the 'p', that these terms are periodic in t with

zero time average.

From the first of these equations, we find

qo - qo (Es,T)

We proceed to solve the equations sequentially by separating each
equation into Lwo parts. One part is independent of t and is obtained
by time-averaging. The second part is the remainder of the equation
after the t independent part is removed. For examplé, the next

equation to be considered can be written as

P R R
(Mg * Ml) B "% N 0 .

The t independent part of this equation is
d = _
Ml q, = 0.

Setting Mg = 0 determines the amplitude of the limit cycle to lowest

order in €. The t dépendent part of this equation is then

and serves to determine the t dependence of Q- In fact
t
= P -
4y (Es¥,5t,7) = g, (E,%,1) +[ My (s) ds q (E,¥,7) .
0
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We proceed to the next equation and treat it in the same manner.

The t independent part is

Since the tlme average of H?_ 4 is zero, and Mg = 0, this equation

determines q,- The t dependent part of the equation is

" = uP p
ar d2 =M 4+ q

and determines the t dependence of 9yt

t t
1o (Esst,1) = &y (E54,1) +:[ ME q, ds +‘[ Hg ds q_ .
0 0

Continuing in thie fashion, all qj can be determined. The t
dependence of qj will be determined by the t dependent part of the
(vg)j equation and gj(£,¢,T) will be determined by the t independent

part of the (\/E-)J+2 equation.

There still remains the question of initial conditions and
normalization. For initial conditions, equation (4.50) is expanded
in ascending powers ode: with the successive terms providing initial
conditions for each qj in order. The normalization conditiom,
equation (4.51), is used successively with all the qj so far deter-

mined, each time satisfying equation (4.51) to one power ode.higher.
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While we have indicated a procedure which, iIn principle, allows
one to obtain the asymptotic expansion of the tramsition probability
density function to any order of VE desired, the calculations
required increase rapidly with each succeeding term in the expansion.
To indicate what calculations must be made for q(E,p,t,1), for
example, we shall consider the circular limit cycle case, since here

there are certain simplifications which make the discussion easler.

In example 5, we chose

f(x,x) = -1 + g

s
o

Clearly, then, all pi(a,¢)

32

M]I—'

S

ik

0, and the cperator Ml reduces to

1

d_1 2
In particular, M? = 0 so that
dq
—L W
5 =M 4 =0

i.e., g4 = ql(£.$.r). Following the general procedure described

above, one finds the equation for qq:

a4
My qp = - Y39, -
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The Green's function for the operator Mg is essentially s differing

only by a constant factor. Noting the initial condition on .

g
o
q, (E¥,0[5,00 = = =5 8(E-E) () ,

ea
0

the solution of the equation for q, can be written as

g
ql(E.w.TlEo.O) = - -;': qo(E.w.T|EO.0)

T -3 [
+f f Isao qo(&;,w,r-c|x,m)
0 =00 oo
d
M3(x,w)_qo(x.m,c|£o,0) dx du do .

It can Be verified that this solution is properly normalized.

Autocorrelation Function and Spectral Density

The autocorrelation function is defined by

(-]
R - + ‘ [ *
. (8) ]gim ,Uff xtxtﬁp(xt’xt’tlxo'xo) p(xt+s’xt+s’slxt’xt)
-—rX)

00 -
dxt dxt dxt+s dxt+s .

Expressing all quantities in terms of the £,) variables, this

becomes
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oo « 211'/“?

R (s) = lim [ f ff (a tyEE,) cos(fw +8_+t)
e -a /JE ~a0ﬁJE -9

(ad+JEEt+S) cosO/Ewt+S+9°+t+s)

[=-] [+

X j[o Uy Bt trTlE i) T @ CppgrbyygroiolEnty)

2 )
(aghvee, ) € 4t dE, dy dy

»

t+s

In these T = ¢t, ¢ = gs. Only the lowest order contributions are

considered as ounly q, was obtained above:

R (s8) = lim Bjja cos (\fw +8 +t) cos (\/-wt_'_ +8 +t+s)

[ ™
. L \[———B—-—‘ a_ exo -B(E,-E e )
aoe aD (1—2“28,[) VZ'ITDT ) (1"“‘3-81-)

2.2
_.aowt.
X exp 2Dt
2 -Bo, 2
aOE \j D(l - 280) VZTFDU D(l_e"'Bc)
2
a (wt+s V) 2

X exp - -—-—-*55?—*—' € dgtdEt+sdwtdwt+S+ 0(\/3)
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The integrations over Et’ Et+s leave only Gaussian distributions in

L wt+s‘ These integrals are also readily evaluated and result in

2
R (s) = lim { = a2 cos(s) _xs +L (a2 cos(ze + 2t +8)]
- m\3a ¢ §) exp 5 5 la, cos o t +s8
treo 2a
2 2
X exp _De's  2Det + O(J:} .
2 2
2a a
Taking the limit, we have
R (8) = i a2 cos(s) ex - DEZS + O(VE)
X 2 o P 2a2 *
o]

The spectral demsity, defined by

3 o

[ Rx(s) cos ws ds

O (w) = |

is then found to be, to lowest order,

2
- De 1 1
¢x(m) b 7 *
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If we take w positive, only the first term has a peak (at w=1) while
the second term contributes a quantity which is 0(54) smaller than
the first term. Note that the peak level is inversely proportional to
the noise parameter, EzD, and that the bandwidth is directly propor-

tional to the noise parameter.

As all second order oscillators behave“w—% for large u23, the
u
spectral density given above can be accurate only for moderate values

of w,

Possjible Extension of Fokker—Planck Methods

The eigenfunction expansion and asymptotic expansion methods
we have developed here provide quite satisfactory results for self-
excited oscillators. There are definite limitations on the appli-
cation of these methods, however. For one thing, we have always
limited ourselves to finding the first term in the expansions, inasmuch
as the practical difficulties involved in getting more terms were
considerable. And we have always considered so-called '"good™ oscilla-

tors, that is, oscillators with linear restoring forces.

In these good oscillators, setting £=0 leads to the conservative

system

23See Example 8 for "small time expansion of the autocorrelation

function."
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which has sines and cosines for solution. In the procedure used to

- obtain the asymptotic expansion of the transitiorn probability density
function, expansions in terms of these trigonometric functions,
followed by an averaging technique, were used. In coscillaters with
nonlinear restoring forces, setting e£=0 leads to the conservative
System

X +g(x) =0,

which, for polynomials for g(x), has elliptic functions for solutions.
It seems reasonable that the same procedure for obtaining an asymptotic
expansion might be successful if expansions in trigonometric functioms

were replaced by expansions in elliptic functions. So far, however,

investigations in this direction have not been successful.

We recall that these Fokker-FPlanck methods were developed
because other methods which were successful in treating passive systems
were inadequate for the study of self-excited oscillators. One might
ask now if these new methods might themselves be useful in the study
of passive systems. These methods can be used, at least for gooed
oscilliators, but they provide no practical advantage over the methods
of equivalent linearization and perturbation directly on the stochastic
differential equation. The first term in such an asymptoic expansion
merely describes a linear oscillator and higher order terms again
prove difficult to obtain, Since the other methods also describe the
response in terms of a linear oscillator and these other methods are
easier to employ, there seems to be no advantage in seeking an

asymptotic expansion.
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Small Time BExpansion of the Auntacorrelation Function

An expansion of the autocorrelation function for small time for
any component of a Markov process can be found by means of the Fokker-

Planck equation. The autocorrelation was defined earlier ag

R (1) = tﬂ: fj XY, p(zs.tlzeo) p(y,T|x) dx dy
R

or
Rx(r) = J,f X1¥q ps(z) p(y,tix) dx dy
R

Tkt T
t'm

written as
R (1) = j x, p (&) Ely;,t|x] dx
R
with

E[YI,TI_&] = Jf Yl P(Y_sTIZ(_) ay -
R
We have seen (equation (3.36)) that E[yl,rlzj satisfies the
backward equation

4

*
3¢ Ely,,tlxl = 1f Elyrixl
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Therefore

g a?
— Rx(r) = f Xy ps(z) 0 E[Yl,Tlil dx
dt R dt

f z, p (®) [Lgln Ely,,7ix] dx
R

Integrating by parts

n I
d“? R (1) = /f (L 1% [x) p @] Ely ,v|xl ax
R

Letting 10, and noting that 1lim E[yl,T[§] = X

T+0 L
dn j. n
;—; R_(1) = xl[l’zs_] [x, p ()] dx .
=0 K

Integrating by parts again

a” [ *n
— x(t} = X, ps{zi_) [LXI () dax
dt =

=0 R

Then, if Rx(T) is analytic at the origin, we have

-
S i
R (1) = i_o ;—l fxl p.® [L;]n (x,) dx |
n R ]
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Example 7:

For a tirst order system described by

X + Bx = %%- .

with E[dw(t)z] = 20 dt, the backward operator is
* _ -3 a_
L = - Bx o + D 3 -

ax

Then L*(x) = ~ fx,
and generally
[L*1® =) - 8" =.

Using the steady-state solution found earlier (Example 1) we easily

find
2 D
‘[ X ps(x) dx g
-
so
n
—‘1;1—11 (t) = pg™! D" .
X
dt

Here, we can actually sum the series to find

n

LDt

)n

L

R {t) = ;
X n=0 Il

the result we found in Example 1 by mcans of an eigenfunction expansion.
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Example 8: Oscillators
A general oscillator is described by

% + f£(x,x) X + g(x) = %%

where w(t) is a Wiener process with E[dw(t)z] = 2D dt. The associated

Fokker-Planck equation is

2
ooy pe-x 2y rRRe)] p 4D

at ax 9% -~
and the backward operator is
* . 3 . 32
L. =x 53-— [£(x,x)xtg(x)] 240 —- .
X x 2
x 3x

We can use this small T expansion of the autocorrelation function to
obtain a large frequency expansion of the spectral density function.
Using the definition of the spectral density function

oD

2
¢x(w) = ;’~[ RX(T) cos wr 4t ,
0

repeated integration by parts yields the following asymptotic expansion

for ¢X(m):
2n-1
b~2 ¥ AT e
X id 2n-1 2n
n=1 dt i
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Note particularly that ¢x(w) involves cnly odd order derivatives of

the autocorrelation function. Now

aR (1) | T - :
— i = JJ X ps(x,x) Lx (x) dx dx
£=0 =

= f! X ps(x,i)i dx dx = 0,

as one can easily verify directly from the steady-state Fokker-Planck

equation.

The implication of this result is that the first possibly

5 d3RX(T)i
non-zero term in the expansion of $_(w) is ., 1.e.,
X 4 3
Tw dt ™= 0
Conatant
¢x(m)‘* “EEEZEE* ,  Aas wiwo,

w
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PART V

FORMULATION OF A CLASS OF FIRST PASSAGE PROBLEMS

The term first passage problem refers to any one of a number of
problems whose solution involves the knowledge of the distribution of
times that certain events occur. In one dimensional systems, a
typical first passage problem is the determination of the distribution
of times that the system variable first takes on a value outside a
specified interval. For two dimensional systems (oscillators), typical
first passage problems are the determination of the distribution of
times that the amplitude of oscillation first exceeds a given bound
and the determination of the distribution of times between zero

crossings.

For nne dimensional systema, an elegant solution of the first
passage problem has been provided in two papers by Siegert [24] and
Darling and Siegert [25]. Their method involves the introduction of
Laplace transforms, since the integral equations they derive are all of

convolution type (cf. equation (2.7)).

For osciliators, represented as two dimensional Markov processes,
there has been no such progress, despite the attention given the
problem by many investigators. Indeed, even the formulation of many
examples of first passage problems have not even been achieved., Tn

particular, there is yet to be found a formulation of the problem of
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determining the distribution of times that the amplitude of an oscilla-

tor first exceeds a given bound.

At the end of Part II, the first passage density function was
related to thé transition probability density function by means of an
infegral equation, The principal purpose there was to indicate that a
connection was possible in order to further emphasize the importance
of the transition probability density function in describing a Markov
process. In the following paragraphs we shall make use of this
integral equation to fermulate the problem of determining the distri-

bution of times for zerc crossings.

In Part 1I, we found that the conditional probability density
of first passage times through an element of surface at g of a
connected region, I, denoted by f(P,gﬂtlg), satisfies the integral

equation
t
plx,t]8) = Jrff(F,g_,sl.E;) p(x,t-s|g) do ds
aT 0

where xel', £¢T and 3T denotes the boundary of T'. In Part III, we saw
that p(x.t|£) satisfies the backward equation, (3.4). This implies

that

t
0= {3% - Lg)j If(rsgsng) p(gc_,t—s|g) dc ds

aT 0

L
- j’f £(r,0,8{2) %‘E (x,6-s|0) - plx,t-s|a) L7E(T,0,8]L) dods
3T 0

g

+ lim _ ff(r,g,slg_) p(x,t-s|o) do.
€ 4T
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Noting that

'E% P(EJL'aiﬂ)

9p

ye (x,t=s]a) = =

and integrating by parts in the time integration, we find
t
f J *)
0= | p(x,t-s|a) 5e " LE} £(r,c,s|£) dg ds
ar o

+ lim+j plx,t-s|n) F(I,5,a]2) da
s>0 T

The second integral will vanisn if we require
(5.1) lim f(f,0,s]%) = 0
s+0
for any £¢f. This conditrion seems to be a reasonable one to impose,
since initially first passage could occur at g only if § = g, which is

ruled out since we have taken £¢I'. This leaves us with

g = j)r p(ﬁ,t—ﬂg) {'3_2" - L:_ f(T.g,S1£) dg ds
al' 0

from which 1t seems reasonable to conclude that

*
(5.2) ;2— £(r,g,sl8) = 1, £(I,0,5]0)

i.e., the density of first passage times also satisfies the backward

equation, a result which Siegert [24] found to be true for one
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dimensional Markov preorcesses. We have not heen able to prove that this

is necessarily so for higher dimensional Markov processes.

Before discussing boundary conditions for the first passage
density function, we shall first consider properties of the boundaries
themselves., There are special features of boundaries for Markov
processes associated with second {(and higher) order stochastic differ-
ential equations which do not appear for one dimensional Markov
processes. In particular, consider the second order stochastic differ-

ential equation

2
g_§ + f
dt

dxl dx . dw
® qc | ar T8 =gy -

dx . . Z . ,
Introducing v = ac’ this can be written as a pair of eguations,

ox
dt y,
(5.3)
d d
E% = - f{x,y)y - g(x) +-E% .

If g(x) is a restoring force so that xg(x)>0 for |x|>0, and we consider
the autonomous system, %% = 0, we can assign a definite direction

at each point of the x~y or phase plane which indicates the incre-
mental change in the solution trajectory corresponding to a positive
increment of time. Then for any region ', we can specify at each

point of its boundary, &', whether or not trajectories are directed

into T, or out of I', except for the exceptional points where the

trajectories are tangent to aTl.
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For the two dimensional Markov process associlated with the pair
of stochastic differential equations above, the peints of the boundary
ar, of certain regions T can be similarly categorized. Here, of course,

we must speak in terms of probability, and it is appropriate to consider

(5.4) lim | p(x,t|g) dx
0 7

for various points £edl'. If this limit is 1, then all stochastic
trajectories which pass through the point £ enter the region I' in the
immediate future; if this limit is U, then no stochastic trajectory
which passes through the point £ enters the region I in the immediate
future. The latter statement also has the interpretation that no

-

stochastic trajectory enters the region O through the boundary point §.

For the linear second order oscillator, the 1imit can be calcu-—

~

lated explicitly for specified regions ' and boundary points g. Of
particular interest are those regions T for which the limit always
yields either 0 or 1. One finds that the only such regions are half-
spaces defined either by x>a or by x<a. We shall consider the calcu-

lation in detail for boundary points on the line x=a with I' defined

by x>a.
To be specific, the linear oscillator being considered is

2
d"x dx dw
—+B——+X"_ .
dtz dt dt
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where w(t) 1s a Wiener process with E[(dw(t))Z] = 2D dt. The trans-
ition probability density function, being Gaussian, is characterized

by the means and covariances24

-pt/2 -pt/2
m_ = E[x] = 32 e sin w,t +—2 e (w,cosu, t + £ sine t)
X ™ 1 wg 1 1 2 1 :
-8t /2 -Bt/2
m_ = Ely] = ZQ- e (w,cosw, t - sinw, t) - 2. sinw, E
v Wy 1 1 2 1 Wy i
-Bt .
=2 - 2, 1.2 .2 . .
var(x} = 8 1 mz (ul + 5 B sin wlt + Bulsinwltcosmlt) .
1
-Bt
cov(x,y) = —% e sinzwlt .
u!
1
-Bt

2.1

D 2 2
var(y) = ry 1 -';% e (ml + 5 87sin"w b - Bwlsinwltcoswlt) .
1

where we have again introduced y =-§% and have taken as initial
2

condicions, xX(0) = a, y(0) = Yoo Also, mi = 1 = g7/4.
In performing the integration over the region I, we can first
.
integrate over all y, leaving only a Gaussian distribution in x, which
is

(x-m )"

T 2 var(x)

1

V27 var(x)
24

Wang, M.C. and Uhlenbeck, G.E. [14].

P(X,tla:yo) = exp
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Now, integrating over X,

o0

fp(x,t|a,y0) dx = -12- erfe

a

a=Th

V2 var{x) ’

where the complementary error fumnction is defined by

, [t
erfec (x) = —= I e
Vr
. x
For small t,
= -yt +0@d
a-m, = -y,

var(x) = %-D,t3 -+ 0(t4) .

Then,

a~m

lim ——= = lim ———

=+oa’
t+0 2var(x) t+0-1/

with the upper sign holding if y0>0, the lower sign if yo<0. It follows

that

1, if y >0,

lim P(xiy’tlasyo) dx dy = %’ if yO =0,

0 X>a 0, if y0<0.
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It is clear, in fact, that if T ds any half-space of the sort indicated,
the limit above will be 0 or 1 according to whether the directions

assoclated with the autonomous system are out of or into the region.

From these last comments and the fact that the limit ultimately
depended only on the incremental mean and variance of x, it appears
that we should be able to deduce similar results for any second order
oscillator. For small t, the transition probability density function
depends only on the incremental means and covarlances and therefore is
approximately Gaussiaﬁ. If we once again take I' to be a half-space
defined either by x>a or by x<a, the integration over y again leaves
(approximately) a Gaussian distribution in x. We have only to deter-

mine the incremental mean and variance.

We shall again consider the region [ defined by x>a. It is

clear that once again

2
a-m = yot + 0(t™).

Consider now var(x) for small t for equations (5.3). Integrating each
equation once,

t
x(t) = a +Iy(s) ds
0

t

t
y(t) =Y, -_[-f(x,y) y ds —'[hg(x) ds + w(t).
0 0
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For small t, we can approximate the integrals in the second equation

to obtain
y(t) = Y, " tf(a,yo) ¥, - tgla) + w(t).
Then
l:2 t2 f
x(t)=a+yt-"3 f(a,yo)yo -3 g(a) +f w(s) ds.
0
We can then verify that
2
E[x] = a + vt + o).
var(x) can now be calculated:
var(s) = E[(x-E(x))°]
t t
- E jm(s) dsjun(T) dr |+ o(e®
0 0

Using the properties of the Wiener process presented in Part I, one

eagily computes

3
var(x) = g§£—-+ 0(t4).

Thus we see that the same results hold for any second order oscillator
insofar as the lowest order approximations to the mean and variance of
X are concerned, And then the same conclusions concerning the limit

(5.4} obtain.



146

We are now prepared to discuss boundary conditioms for the
first passage distribution. It is clear that if the limit (5.4) is
zero, first passage cannot occur through the specified boundary point.
Those points for which the limit 1s zeroc make up a portlon of the
boundary which we shall denote by BPO . Then we can write

ut

(5.5) £(T,0,e|8) = 0, oedT o -

Those paints for which the 1imit is 1, make up a portion of the boundary
which we shall denote by arin. Then (5.5) allows us tc reduce the

integral equation to

[ns

plx,t|g) = f If(l‘.g,SL&.) plx,t-s|g) ds do .

]
Fin 0

To complete the boundary conditions, we note that if the initial

peoint £ were g point on arin, then first passage would occur immediately.

That is,

£(T,0,8|E) = 6(g-5)&(s)

if gparin and gparin. This boundary condition is compatible with
the integral condition, since if we take gparin and substitute into
the integral equation, this boundary condition reduces the integral

equation to an identity.
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It should be borne in mind that we were ahle to set up these
boundary conditions only for the situations in which I is a half-space
defined either by x>a or by x<a. In any other case, the limit (5.4) is

not either ¢ or 1 and it is not clear what boundary conditioms apply.

The formulation of the problem of the determination of times
that the amplitude of an oscillator first exceeds a specified bound
as a boundary value problem seems to be precluded by the fact that

the region T in this case is not connected so that the integral

equation which has served as our starting point is not valid.

The first passage problem which we can formulate by choosing
a=0 in the discussions above is closely related to the zerc crossing
problem. In the following paragraphs, we shall formulate this first
passage problem and show its relation to the.prublem of determining

the distribution of the number of zero crossings for an oscillator.

We take T to be the half-space defined by x>0. The density
of first passage times into T, that is. the density of zero crossing
times with positive slope assuming that the displacement is initially

negative, denoted by f(y,t|£,n), satisfies the backward equation

of
vl L i
the injitlal condition

f(y,tig,n) = 0, £<0,
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and the boundary condition

£(y,t|0,n) = 8(y=n)&(r), y>0.

In the particular case of the linear oscillator, the backward equation

is
i of | 3%k
3;'- e (By+x) 3 T ayz .

For simplicity; we shall assume that the oscillator under
consideration possesses a symmetry property so that a reflection through
the origin leaves the backward equation invariant, This is the case,
for exaﬁple, for the linear oscillator. Then the problem of zeto
crossings with negative slope is the samé as the problem of zefo

crossings with positive slope, formulated above.

Starting with a negative displacement, £, and arbitrary slope,

G

gy ey )
B o L R )
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The probability that at least two zero crossings occur im the Line

interval (0,t)} is given by

T

CRS
o8
Oy 1t

Ly
I f(y2,12|0,—y,) £(yy,718,m) dridr,dy dy,
0 .

Note that we have taken advantage of the symmetry to express this
probability completely in terms of the density of zero crossing times
with positive slope. We can easily generalize this to obtain the
expression fer the probability of at least n zero crossings in the

time interval (0,t):
% t -1

[ ]]

On—fold 0

T "‘..-“‘Lz n

n t- n n
f [ i f('yj,rjIO,~yj_l)f{y1,T|£,n)E
0 0

dr,dy. .
j=2 . j=1 17

Finally, the probability of exactly n zero crossings Iin the time
interval (0,t) is the probability of at least n zero crossings minus

the probability of at least ntl zero creossings.
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APPENDIX A

UNIQUENESS AND CONVERGENCE TO THE STEADY-STATE
FOR A CLASS OF NONLINEAR OSCILLATORS

In the following paragraphs, we will show that under a proposed
set of conditions on the functions g(x) and f(H) which appear in the

nonlinear stochastic differential equation

ii+f(H):'c+g(x)*%‘£‘ ,

in which
X
H'%;fz +Is(n) dn
D

and w(t) is a Wiener process with
2
E[dw(t)"] = 2D dt,

a well-behaved solution of the corresponding Fokker-Planck equationm,

’\2_
.38, 2wy x4 g p+ L,
at X 3x a:'cz

is unique and converges, ag t+~, to the solution of the steady-state

Fokker~Planck equation
: 2
* 3PS 3 - a ps
0= «x——+—[f(H) x+g(x)}] p_+D .
X 53 8 Biz
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We have previously stated that the steady-state solution is

ps(x,i) = A exp [-F(H)/D] ,

where

H
F(H) -ff(n) dn
0

and A i1s chosen to normalize ps(x,i).
We proposed the following conditions:

1) df/dH is continuous and f(H) is a positive strictly inrcreasing

function.

X
ii) G(x) =‘[‘g(n) dn is a positive, strictly iIncreasing function
0

of ix|.

ii1) f”z(n) df/dH+0 as How.

Uniqueness

First, we shall establish that the steady-state sclution given
above is unique., According to the uniqueness theorem proved in
Part III, we need only establish that the solution is well-behaved

as defined by the conditions (particularized to this problem)

. . ap
(A-1) Ps(x;x)+0. - Xp, oy ¥ mz(f(H)x + g(x)) p, - Do, —;%- +0

X
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2 2 -
15 % such that al + 0y = I, and that

(A-2) ff ps(x,:‘c) dx dx = 1 .

By nating condition i), we see that the steady-state solution has

as |x[ + |§i+¢, for any a

finite integral sc that (A~2) is satisfied. TFurthermore, due to the
exponential nature >f ps(x,i), each term in the condition (A-1) vanishes

as |x| + |xi+~, so that ps(x,i) is indeed well-behaved and therefore

unique.

Convergence to the Steady-State

The function q(x,x), defined by (3.29) in the theorem on

convergence to the steady-state, is in this case

@5 = =i ffm) - — + de/dn - - £().
4D 2D
Multiplying by f-z(H), we have
-2 21 1 .2 _1 1 .-1
q(x,x) £ “(H) = ;5' 7" E'f df /dE I- o f#H) .

From the definition of H and condition ii) on G(x) it follows that H

*

X

is positive and strictly increasing with respect to Ix\ and . And

by 1), £(H) is positive and strietly increasing so that f—l(H) is
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bounded as |i|+M. Condition iii) can now be applied to see that
q(x.i)f-z(ﬂ)+m as |x|+=. Since f_l(H) is bounded as |x|+», we must
also have that q(x,ﬁ)*w as |i|+m.

In this case the matrix {bij} discussed in the theorem on

convergence to the steady-state is

o )

i.e., not positive definite, so that we have the further requirement

that the only solution of

du _ - 3u Ju
at ox °? V%

is a constant. That this is the case can be easily seen by differ-
entiating the first of the pair of these equations with respect to

x and noting the second equation to find 0 = sz-and then also 3 - 0.

du u
t
All the requirements of the theorem being met, we conclude that

any well-behaved solution of the time-dependent Fokker-Flanck converges,

as t+*, to the steady-state solution.
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APPENDIX B
PERTURBATION EXPANSIONS OF EIGENFUNCTIONS AND EIGENVALUES

ASSOCTATED WITH THE FOKKER-PLANCK EQUATION
FOR FIRST ORDER STOCHASTIC DIFFERENTIAL EQUATIONS

The material presented here is a straightforward application of

the perturbation procedure given in Courant-Hilbert {26, p. 343 f£.].

We shall obtaln an asymptotic expansion to 0(82) for the eigen-
functions and eigenvalues of the equation
dzvn av™ dv"

- 28 S 4 T = eb(g) T
dt

(B-1) 2 dg dg

by assuming expansions of the form

n
v o= vn + svn + 52 vn + ...
o 1 2

n n n 2 n
1 Lo + eul + % u2 + ...
Substituting the expansions into the differential equation, collecting

together terms with like powers of €, and equating each group to zero,

we obtain a sequence of equations, of which we display the first three:

Ly + 2un vn =0
0 o ©
n n n dvz n_n
{(B-2) Lv1 + 2u0 v, = h(g) EE; - Zul v,
n n n dvl n n n n
(B-3) va + 2uo v, = h(&) EE— - 2u2 v, 2ul vy
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where, In each

Lv = é—%-« 2 %% .
dg

Introduce the inner product

2]

(B-4) (u,v) = fps(a) a(e) V(o) dt ,

—o0

2

where p {(E) = —% e_g
s Jr

Planck equation in which £=0. One easily finds that

is the solution of the steady-state Fokker-

(Lu,v) = (u,Lv) ,

i.e., L is self-adjoint with respect tc this inner product. As we saw
in Example, 1, Part IV, for the linear first order stochastic differ-
ential equation, the eigenfunctions, [vz} , of equation (B-1) with

£=0 are the Hermite polynomials,

2
2 n ~g
H(g) = (-D" et 2.
dg
Taking
n _ 1 . o0/2 1/2
VG(E) = Nn Hn(g): Nn 2 (n!)
and
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{VE(E)} form a complete orthonormal set with the inner product (B-4).

We can then expand v? and vg as

vg = E: Vﬂ

§=0 °nj

Because of the orthonormality of {vi}, we have

sl
anj = (Vl, V'g) ]

n
bnj = (VZ’ vi) .

Multiplying equation (B-2} by psvi and integrating, we find

n
2 dv

L n n 2 n o n 2 n
(vo’ LVl) + 2110 (Vo’ vl) = Vo b ai - 2"‘l (vo’ 1"o)

Noting the self-adjointness of L, we can write the lefthand side as

£ n n , & n n )
(LVO’ vl) + 2“0 (vo, vl) = 2(110 - uo) ag -

Using the fact that the Hermite polynomials satisfy the relation

we see that

dH
EE' n = 2an_1 ’

—~2-='Vén v,

dg
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We can then write the right-hand side as

=V 4

2 ,/ n-1 n n
(vo’ h ¥2n Yo ) - zu1 6n£ 2,n-1 2'Jl Gnl ?
where we have defined
n L
d = (vo, hvo) .

nt

Thus we obtain

.o 2 - n _.n
('o uo) 4ht J; dR.,n—l H1 6n£'

Setting n=%, we find

n_ [
My = ¢E dn,n—l

and for n # 2,

fn
V2 %01 V24
ng n_ % a-8
un uo

To determine a_ s we apply the normalization condition
- n 2
(B-5) -[ p (&) v ] dg =1,

where'ﬁs(g) is the steady-state solution of the perturbed equation.

Expanding'ES(E) as
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B(8) = p_(B) [MHes (8) + c7s,(6) + ...] ,
we can write (B-3) as

o

-0

Noting that (vz, vg) = 1, we see that each coefficient of each power

of £ must vanish., For the ¢ terms, this means

o,ovy) =0,

n n.
{B-6) Z(VO, vl) +(slv o

and for Ez terms
n n n n n n n n, _
(B-7) (vo, v2) + (vl, vl) + 2(s1v0, vl) + (szvo, vo) = 0.

Defining

n
enj = (slvo, vg)

equation (B-6) becomes
a_=-Te
nn 2 nn '

Having determined the first approximation, we find the second

in a similar way by using equation (B-3):



159

£ n n|% = £ 1] _,n {2 nl_,n{t mn
lvo’ va) + 21-[0 lvoy V2) = Vosh dE 21-[2 (VO, VD) zul (Vos VI) ’

The left hand side reduces to

The second term on the right hand side is —Zugdi and the third is

—ZP?anE. Noting that

dv w i e
1 0 IVER
= a = (21} a
ds 3§0 nj 4d& j}=:l ny o

The first term on the right hand side becomes

i . 1/2 g -1 - 1/2
jgl @' e (vo. hv) ) . j};l et aa,

Thus, we have

b n—gaihllz d —n5 —na
nt Yo ~ Yo wog V2 k%, k-1 ~ M2%n H1%ng

Setting n = %, we obtain

and by taking n # &,
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d

1/2
l k% k-1

[«-]
1 n k
be="3 3 “Rodny T ) {2
U Ry k=0

bnn is found from the normalization condition by using equation (B-7):

o

15 2
Pn T T2 jgo (@) - j): 0% ~ fan

=0

where we define

_ n
f . = (szvo, vo) .

nj
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