A Caltech Library Service

Discharge Plasma Processes of Ring-Cusp Ion Thrusters


Wirz, Richard Edward (2005) Discharge Plasma Processes of Ring-Cusp Ion Thrusters. Dissertation (Ph.D.), California Institute of Technology. doi:10.7907/VKKE-PC20.


This study has increased the viability of miniature ion thruster technology, advanced state-of-the-art discharge modeling, and revealed important aspects of discharge plasma processes. These extensions of existing ion thruster technology and understanding are necessary to fulfill the needs of future space missions. Experimental comparisons of the discharge performance of an array of miniature (3cm diameter) ion thruster discharge configurations were conducted and showed that a 3-ring configuration with length-to-diameter of 1.0 exhibited the best performance. A compact and lightweight version of this configuration, using small accelerator grid holes, exhibited discharge losses of 250-550eV/ion and propellant efficiency of as much as 87%. This performance represents a significant advancement in miniature (less than 5cm diameter) ion thruster technology and demonstrates that a miniature ion thruster of low magnet and thruster weight can yield desirable performance.

A multi-component hybrid 2-D computational Discharge Model was developed to help identify important ion thruster discharge processes and investigate miniaturization issues. Combining experimental and computational results reveals that magnetic field optimization for a miniature ion thruster is bracketed by considerations of primary electron utilization and discharge stability. Discharge Model analysis of the larger (30cm diameter) NSTAR thruster revealed that the peak observed in the NSTAR beam profile is due to double ions that are created by over-confinement of primary electrons on the thruster axis. Design sensitivity results show that, at the NSTAR thruster scale, efficient confinement of primary electrons is relatively easy to achieve; therefore, efforts to improve thruster performance should focus on effectively utilizing the primary electrons to minimize double ion production and maximize the number of single ions extracted to the beam.

The observations from this study have furthered the understanding of discharge processes and should improve future ion thruster design and modeling efforts. The Discharge Model advances state-of-the-art ion thruster modeling and provides a framework for a complete thruster model that can be used for long-life performance assessment and life validation.

Item Type:Thesis (Dissertation (Ph.D.))
Subject Keywords:Boris particle pushing; IC Cathode; Internal Conduction; ion optics; JIMO; MiXI; NSTAR; NSTAR optimization; primary electron; small diameter beam; terrestrial planet finder; TPF
Degree Grantor:California Institute of Technology
Division:Engineering and Applied Science
Major Option:Aeronautics
Minor Option:Electrical Engineering
Thesis Availability:Public (worldwide access)
Research Advisor(s):
  • Culick, Fred E. C. (advisor)
  • Polk, James E. (co-advisor)
Thesis Committee:
  • Culick, Fred E. C. (chair)
  • Leonard, Anthony
  • Polk, James E.
  • Bruno, Oscar P.
  • Bellan, Paul Murray
Defense Date:13 April 2005
Non-Caltech Author Email:wirz (AT)
Record Number:CaltechETD:etd-05232005-162628
Persistent URL:
Wirz, Richard Edward0000-0001-5309-3659
Default Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:1974
Deposited By: Imported from ETD-db
Deposited On:24 May 2005
Last Modified:16 Dec 2020 23:24

Thesis Files

PDF (Wirz_Thesis.pdf) - Final Version
See Usage Policy.


Repository Staff Only: item control page