Citation
Li, Zongyi (2025) Neural Operator for Scientific Computing. Dissertation (Ph.D.), California Institute of Technology. doi:10.7907/fz9s-fq86. https://resolver.caltech.edu/CaltechTHESIS:06032025-033640769
Abstract
Scientific computing, which aims to accurately simulate complex physical phenomena, often requires substantial computational resources. By viewing data as continuous functions, we leverage the smoothness structures of function spaces to enable efficient large-scale simulations. We introduce the neural operator, a universal machine learning framework designed to approximate solution operators in infinite-dimensional spaces, achieving scalable physical simulations. The thesis begins with the introduction and definition of neural operators. Chapters 2-4 discuss architecture designs of neural operators including graph neural operator, multipole neural operator, and Fourier neural operator. Chapters 5-7 discuss physics-based learning techniques such as dissipative loss, physics-informed loss, and scale consistency loss. Chapters 8-10 discuss geometric neural operators with various boundary shapes, including latent space embedding, learned deformation, and optimal transport. Chapters 11-12 discuss further applications of neural operator in weather forecast and carbon capture storage.
Item Type: | Thesis (Dissertation (Ph.D.)) | ||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Subject Keywords: | Machine Learning, Scientific Computing, Partial Differential Equations | ||||||||||||||||||||||||||||||
Degree Grantor: | California Institute of Technology | ||||||||||||||||||||||||||||||
Division: | Engineering and Applied Science | ||||||||||||||||||||||||||||||
Major Option: | Computing and Mathematical Sciences | ||||||||||||||||||||||||||||||
Awards: | Milton and Francis Clauser Doctoral Prize, 2025. | ||||||||||||||||||||||||||||||
Thesis Availability: | Public (worldwide access) | ||||||||||||||||||||||||||||||
Research Advisor(s): |
| ||||||||||||||||||||||||||||||
Thesis Committee: |
| ||||||||||||||||||||||||||||||
Defense Date: | 9 May 2025 | ||||||||||||||||||||||||||||||
Funders: |
| ||||||||||||||||||||||||||||||
Record Number: | CaltechTHESIS:06032025-033640769 | ||||||||||||||||||||||||||||||
Persistent URL: | https://resolver.caltech.edu/CaltechTHESIS:06032025-033640769 | ||||||||||||||||||||||||||||||
DOI: | 10.7907/fz9s-fq86 | ||||||||||||||||||||||||||||||
Related URLs: |
| ||||||||||||||||||||||||||||||
ORCID: |
| ||||||||||||||||||||||||||||||
Default Usage Policy: | No commercial reproduction, distribution, display or performance rights in this work are provided. | ||||||||||||||||||||||||||||||
ID Code: | 17396 | ||||||||||||||||||||||||||||||
Collection: | CaltechTHESIS | ||||||||||||||||||||||||||||||
Deposited By: | Zongyi Li | ||||||||||||||||||||||||||||||
Deposited On: | 03 Jun 2025 23:42 | ||||||||||||||||||||||||||||||
Last Modified: | 17 Jun 2025 17:41 |
Thesis Files
![]() |
PDF
- Final Version
See Usage Policy. 92MB |
Repository Staff Only: item control page