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ABSTRACT

Scientific computing, which aims to accurately simulate complex physical phe-
nomena, often requires substantial computational resources. By viewing data as
continuous functions, we leverage the smoothness structures of function spaces to
enable efficient large-scale simulations. We introduce the neural operator, a uni-
versal machine learning framework designed to approximate solution operators in
infinite-dimensional spaces, achieving scalable physical simulations. The thesis be-
gins with the introduction and definition of neural operators. Chapters 2-4 discuss
architecture designs of neural operators including graph neural operator, multipole
neural operator, and Fourier neural operator. Chapters 5-7 discuss physics-based
learning techniques such as dissipative loss, physics-informed loss, and scale consis-
tency loss. Chapters 8-10 discuss geometric neural operators with various boundary
shapes, including latent space embedding, learned deformation, and optimal trans-
port. Chapters 11-12 discuss further applications of neural operator in weather
forecast and carbon capture & storage.
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C h a p t e r 1

INTRODUCTION

1.1 Machine Learning for Scientific Computing
Advancements in machine learning (ML) are driving paradigm shifts in the field of
scientific computing. Traditionally, many scientific applications rely on brute-force
numerical methods using high-performance computing (HPC). Despite increasing
computational power, these traditional approaches face significant speed and scala-
bility limitations for complex systems. For instance, simulations of turbulent flows
or climate systems can take weeks on supercomputers, hindering scientific progress.
This thesis aims to address these challenges by leveraging ML to accelerate and
improve complex scientific simulations.

To address these limitations, researchers have been exploring data-driven surrogate
models, particularly neural networks. However, standard neural networks, such as
convolutional neural networks and transformers, were initially designed for machine
learning tasks with image data and language tokens. The challenge lies in adapting
these AI methods for scientific computing, where data typically consists of functions
which are high-resolution, multi-scale, with complex geometries, and must adhere
to physical principles. Direct use of standard deep learning models without care-
ful adaptation or physical constraints may lead to ill-definedness and inconsistency
(Kovachki et al., 2021). This raises key questions: How can AI augment or replace
traditional brute-force calculations? What is the most general yet mathematically
well-defined model architecture for physical systems? And can we eventually ex-
trapolate beyond the training data to find unique designs and discover new science?
Answering these questions has the potential to lead to paradigm shifts in scientific
research.

Continuum Mechanics. Physical phenomena can be classified by scale: quantum,
microscopic, mesoscopic, and macroscopic. In recent years, massive progress
has been made in microscale simulation, especially molecular dynamics for drug
discovery (Jumper et al., 2021; Baek et al., 2021). This progress is largely enabled by
machine learning models that can learn and predict complex molecular interactions
or force fields with high accuracy, significantly accelerating the simulation process.
While architectures like the transformer (Vaswani et al., 2017) have proven powerful
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in related biomolecular tasks like protein structure prediction, the challenge of
accurately and efficiently simulating the dynamics of large numbers of atoms at
scale remains.

However, larger scale physics and mechanics, such as fluid mechanics, solid mechan-
ics, and climate science, present significant computational and modeling challenges.
For macroscopic or mesoscopic scale problems, the domain is so large that explic-
itly modeling every discrete particle is computationally prohibitive. Instead, the
continuum assumption is made, treating the material as continuous where nearby
particles are similar. Therefore, instead of studying particle-based representations,
function-based representations are used. For continuum mechanics, the physical
interactions can often be described by partial differential equations (PDEs).

Partial Differential Equations Consider a leading example: the Poisson-type
second order elliptic equation (Darcy Flow) that describes steady state diffusion of
heat or pressure:

−∇ · (𝑎∇𝑢) = 𝑓 Ω

𝑢 = 𝑔 𝜕Ω
(1.1)

Here, a is the diffusion coefficient or heat conductivity; u is the pressure field or
the temperature field; f is the forcing function; and g is the boundary condition. A
standard forward problem is to find the corresponding solution function u, given the
coefficient function a, forcing f, and boundary g. Conversely, the inverse problem
is to find a or f given u.

In the past fifty years, massive progress has been made on numerical solvers for par-
tial differential equations, such as finite difference methods, finite element methods,
and spectral methods. These methods discretize the domains or function spaces
and then solve discrete linear or non-linear problems. Researchers have devel-
oped numerical methods with excellent convergence rates and stability guarantees.
However, two significant challenges remain, particularly for complex, large-scale
systems.

First, standard numerical simulations rely on mathematical models in the form of
partial differential equations, which inherently introduce aspects of simplification
and approximation. For example, while PDEs like the Navier-Stokes equation are
powerful models, they are not always a perfect representation of all aspects of real-
world fluid motions under all conditions. Mathematically, fundamental questions
remain, such as the existence of smooth solutions for the 3D incompressible Navier-
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Figure 1.1: Neural operator: mapping between function spaces

Stokes equations, with some evidence regarding related equations like the Euler
equation suggesting potential blowups (Chen and Hou, 2022). Physically, viscous
dissipation in the Navier-Stokes equation inherently involves energy transformation,
often resulting in thermal effects. For accurate modeling of many complex real-world
flows, particularly those with significant temperature variations or compressibility,
a coupled set of equations, including an energy equation, is necessary to capture all
relevant physics.

Furthermore, standard numerical simulations can be computationally prohibitive for
large-scale problems. Numerical methods require a sufficiently fine discretization
that can resolve the differential operators and relevant physical scales. While meth-
ods relying on convergence (ℎ ↦→ 0) work very well for smaller scale and lower
dimensional problems, Direct Numerical Simulation (DNS) of large-scale, high-
Reynolds number flows is usually computationally unaffordable. To address this,
researchers have studied sub-grid models such as the Reynolds Averaged Navier
Stokes Equation (RANS) or Large Eddy Simulation (LES) with turbulence models.
Such models usually introduce further approximations with empirical parameters
often found in experiments. There has been ongoing debate on the universal validity
and accuracy of these subgrid models for all flow regimes (Pope, 2004). The com-
putational cost associated with fine discretization has been an obstacle for larger
scale, high-resolution numerical simulations such as weather forecasting and 3D
aerodynamics design. Machine learning models offer the hope to complement or
go beyond traditional numerical simulations, potentially by learning directly from
or being constrained by real-world observational data.
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1.2 Neural Operator: Mapping Between Function Spaces
This research focuses on developing machine learning approaches that effectively
handle the complex, smooth structures inherent in scientific computing data. A cen-
tral theme of this work is the development of operator learning methods, particularly
neural operators, for solving partial differential equations (PDEs). For the example
of Equation 1.1, the neural operator aim to approximation the solution operator
mapping from the space of coefficient A = L∞ to the space of solution U = H1,
as shown in Figure 1.1.

G : 𝑎 ↦→ 𝑢

Neural operators are a generalization of neural networks designed to learn mappings
between infinite-dimensional function spaces, from input coefficients (or initial con-
ditions) to output solutions. The neural operator is formulated as a composition
of linear integral operators K with nonlinear functions 𝑓 (channel mixing), aug-
mented with lifting (encoder) P and projection (decoder) Q. Neural operators are
discretization-convergent, i.e., they share the same model parameters across different
discretizations and converge to the target continuum operator as the discretization
refines.

G = Q ◦ ( 𝑓𝑙 ◦ K𝑙) ◦ . . . ◦ ( 𝑓1 ◦ K1) ◦ P

Earlier works implemented the integral operators as message passing on the graph,
leading to Graph Neural Operator (GNO) (Z. Li, Kovachki, Azizzadenesheli, Liu,
Bhattacharya, et al., 2020) and its enhancement based on the Multi-pole method
(MGNO) (Z. Li, Kovachki, Azizzadenesheli, Liu, A. Stuart, et al., 2020). These
methods are highly flexible and they showed promising results on smaller-scale
PDEs; however, the graph implementation is relatively slow due to its local connec-
tions. To efficiently capture long-range interactions, the Fourier Neural Operator
(FNO), which has been a key contribution in this field, was proposed.

(K𝑣) (𝑥) :
∫

𝜅(𝑥, 𝑦)𝑣(𝑦)d𝑦

Fourier Neural Operator. Building on the concept of neural operators, the
Fourier Neural Operator (FNO) was introduced (Z. Li, Kovachki, Azizzadenesheli,
Liu, Bhattacharya, et al., 2021). FNO parameterizes the integral kernel directly in
Fourier space while keeping nonlinear activations in the spatial domain. Utilizing
the Fast Fourier Transform (𝐹), FNO scales quasi-linearly with the resolution, which
offers higher efficiency compared to previous graph-based implementations.
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(K𝑣) (𝑥) : 𝐹−1(𝜅 · 𝐹𝑣)

Since operations that are local in spectral or spatial space are global in the other
space, this approach enables FNO to effectively perform global operations in both
domains. FNO achieves state-of-the-art performance on several benchmark prob-
lems, including Burgers’ equation, Darcy Flow, and the Navier-Stokes equations.
Notably, it is the first machine learning-based method to successfully model turbu-
lent flows with zero-shot super-resolution capabilities. This approach demonstrates
up to three orders of magnitude speedup compared to traditional PDE solvers while
maintaining superior accuracy. Furthermore, FNO’s discretization-invariance al-
lows it to generalize across different grid resolutions and geometries, which yields a
substantial advantage over existing deep learning methods for PDEs. Several exten-
sions based on FNO are further investigated such as the Physics-Informed Neural
Operator (PINO) (Z. Li, Zheng, et al., 2024b), which employs equation loss, and the
Adaptive Fourier Neural Operator (AFNO) (Guibas et al., 2021), which does not
truncate to a specific Fourier mode but uses thresholding. These models have been
successfully applied to various domains (Azizzadenesheli et al., 2024; Pathak et al.,
2022; Liu et al., 2021).

Physics Informed Learning. While the FNO demonstrated significant improve-
ments in solving PDEs, the need to incorporate physical constraints and address
limitations in data availability was recognized. This led to the development of
Physics-Informed Neural Operators (PINO) (Z. Li, Zheng, et al., 2024a), a novel
approach that bridges the gap between physics-informed optimization and data-
driven neural operator learning for solving PDEs. PINO addresses key limitations
of existing methods: (1) Physics-Informed Neural Networks (PINNs) often struggle
with optimization challenges and fail to solve complex multi-scale dynamic sys-
tems. (2) Purely data-driven approaches like FNOs are limited by the availability
and resolution of training data. To overcome these drawbacks, PINO combines
training data with PDE constraints at different resolutions, allowing for high-fidelity
reconstruction of the ground-truth operator. This hybrid approach enables PINO
to learn accurate solution operators even with limited or low-resolution data, while
also improving optimization stability. By incorporating PDE constraints at higher
resolutions, PINO overcomes both the limitations of purely data-driven methods
and the optimization challenges faced by PINNs.
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Complex Geometry. One of the major challenges in scientific computing is han-
dling complex 3D geometries, an area where standard FNO does not excel. While
finite difference and pseudo-spectral methods work well on simple regular domains,
meshing on complex geometries is extremely tedious, often requiring iterative mesh
refinement. The goal was to develop a flexible method capable of handling arbitrary
geometries through decomposition and deformation. To address this challenge, the
Geometry-aware FNO (Geo-FNO) (Z. Li, Huang, et al., 2022), a novel framework
for solving PDEs on arbitrary geometries, was developed. The core innovation lies
in learning a deformation that maps the irregular physical domain to a uniform
latent space where the FFT can be efficiently applied. The deformation induces
generalized harmonic series on the manifold, which provides both efficiency and
flexibility. For example, the cosine transform induces Chebyshev polynomials. This
approach combines the computational efficiency of the FFT with the flexibility of
learned deformations, resulting in a model that is as fast as FNO but more versatile
and accurate for complex geometries. Geo-FNO’s effectiveness was demonstrated
on a variety of PDEs, including elasticity, plasticity, Euler’s equation, and the
Navier-Stokes equation, for both forward modeling and inverse design problems.
Experiments yielded impressive results: Geo-FNO achieved up to 105 times accel-
eration compared to standard numerical solvers and halved the error rate relative to
previous interpolation-based methods.

Attention Mechanism and Transformer Operator Interdisciplinary efforts of-
ten foster meaningful progress, which connect diverse fields and opening new path-
ways to address complex challenges. Building on neural operator approaches,
concepts from other areas of machine learning, particularly the attention mecha-
nism widely used in natural language processing, were explored. In (Guibas et al.,
2021), Adaptive FNO (AFNO) was introduced, a novel approach to efficient token
mixing in vision transformers. AFNO leverages the geometric structure of images
to frame token mixing as a continuous global convolution, which enable high-
resolution image processing without the quadratic complexity of self-attention. To
adapt FNO for visual tasks, key modifications were made: a block-diagonal struc-
ture was imposed on channel mixing weights, adaptive weight sharing across tokens
was implemented, and frequency modes were sparsified through soft-thresholding.
AFNO achieves quasi-linear complexity in sequence length while maintaining high
expressiveness. Experiments demonstrate AFNO’s effectiveness across various
tasks, including few-shot segmentation, high-resolution image segmentation, and
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Figure 1.2: Applications of neural operators: (a) FourCastNet on the ERA5
weather prediction, (b) Multi-level FNO on 3D-time multi-phase flow, (c) Geometry-
informed FNO on vehicle aerodynamics, (d) FNO on camera data of MAST reactor.

fluid dynamics simulations, where it outperforms self-attention in both efficiency
and accuracy. as it outperforms self-attention in efficiency and accuracy for few-shot
segmentation, high-resolution image segmentation, and fluid dynamics simulations.

Universal Approximation Theorem. As neural operator architectures became
more sophisticated and demonstrated impressive empirical results, it is important
to understand their theoretical foundations. This led to an investigation into the
universal approximation capabilities of these neural operators. In (Kovachki et al.,
2021), techniques from linear approximation are used to show that neural operators,
in general, can approximate any continuous solution operators, including nonlinear
ones, between pairs of arbitrary Sobolev spaces. Further, in (Lanthaler, Z. Li, and
A. M. Stuart, 2023) the minimum necessary components for universal approxima-
tion are identified. It is demonstrated that combining nonlocality and nonlinearity in
a simple way is sufficient to approximate any arbitrary continuous operator. A key
contribution is the introduction of the Averaging Neural Operator (ANO), which re-
duces FNO to its core essence. It is proven that even this minimal ANO architecture,
which utilizes only a spatial average as its nonlocal component, exhibits universal
approximation capabilities. This finding challenges the prevailing view that an in-
creasing number of Fourier modes is necessary for improved accuracy. This analysis
unifies and extends universal approximation results across a wide range of neural
operator architectures, including FNO, DeepONet, and other common models.

1.3 Applications in Science and Engineering
Research on neural operators has led to significant advancements in various scien-
tific fields. By applying these techniques to real-world problems, the power and
versatility of these approaches have been demonstrated:
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Weather Forecast. Accurate and efficient weather forecasting is important for
mitigating the impacts of extreme weather events, optimizing agricultural practices,
and planning renewable energy resources. In collaboration with climate scientists
and the Nvidia Earth-2 team, FNO’s ability to handle complex, multi-scale phe-
nomena was leveraged to develop FourCastNet (Pathak et al., 2022). This global
data-driven weather forecasting model provides accurate short to medium-range
global predictions at 0.25° resolution. FourCastNet excels in forecasting high-
resolution, fast-timescale variables such as surface wind speed, precipitation, and
atmospheric water vapor. Its performance matches or exceeds the standard ECMWF
Integrated Forecasting System (IFS), particularly in small-scale features and pre-
cipitation. Remarkably, FourCastNet generates week-long forecasts in less than 2
seconds, approximately 45,000 times faster than traditional Numerical Weather Pre-
diction (NWP) models. This speed facilitates the rapid creation of large-ensemble
forecasts for improved probabilistic forecasting and uncertainty qualification. The
model demonstrates exceptional performance in forecasting extreme events such
as hurricanes and atmospheric rivers. It shows excellent capability in predicting
near-surface wind speeds over land and coastal areas, which are critical for planning
wind energy resource and managing extreme weather events. FourCastNet’s impact
on weather prediction mirrors AlexNet’s revolutionary role in image classification.
After validating this methodology, other leading tech companies like DeepMind and
Microsoft built upon this work, helping establish a vibrant research field of weather
forecast.

Carbon Capture and Storage. As global efforts to combat climate change grow,
carbon capture and storage (CCS) in underground reservoirs has emerged as a crit-
ical technology for reducing atmospheric CO2 levels. Accurate simulation of CO2
migration is essential for ensuring the safety and efficiency of these storage systems.
Extending the neural operator approach to multi-phase flow problems, innovative
machine learning frameworks for high-resolution modeling of CO2 geological stor-
age were developed (Wen, Z. Li, Azizzadenesheli, et al., 2022). The U-FNO model
accurately predicts gas saturation and pressure buildup in complex CO2-water multi-
phase flow scenarios, outperforming traditional CNN-based approaches in accuracy
and data efficiency. Building on this, Nested FNO was introduced, which enables
real-time, high-resolution 3D modeling at basin scale (Wen, Z. Li, Long, et al.,
2023). Nested FNO produces forecasts nearly 700,000 times faster than existing
methods, facilitating rapid probabilistic simulations that are crucial for scaling up



9

global CCS deployment. These models demonstrate superior performance in het-
erogeneous geological formations and critical applications such as determining gas
saturation and pressure buildup fronts. By dramatically reducing computation time
while maintaining high accuracy, these models provide invaluable tools for CCS
project planning, risk assessment, and decision-making, enabling more compre-
hensive scenario analyses and risk evaluations crucial for accelerating global CCS
deployment.

Computational Fluid Dynamics. Aerodynamic simulation plays an important
role in optimizing the performance and efficiency of vehicles, aircraft, and other
engineering systems, but traditional methods often struggle with high computa-
tional costs and complexity. For aerodynamic simulation on complex shapes, the
Geometry-Informed Neural Operator (GINO) (Z. Li, Kovachki, Choy, et al., 2023)
is introduced. GINO combines the strengths of GNO and FNO to handle irregu-
lar grids and capture global interactions efficiently. GINO was validated on two
large-scale 3D computational fluid dynamics datasets, including industry-standard
Ahmed’s body geometries. Each dataset consists of 7M mesh points in the volume
and 100k points on the surface. Results demonstrated that GINO achieves superior
accuracy compared to existing methods, with error rates reduced by up to 25%.
Moreover, GINO exhibited remarkable computational efficiency, accelerating drag
coefficient calculations by a factor of 26,000 compared to the optimized GPU-based
CFD simulators. This breakthrough in accuracy and speed positions GINO as a
promising tool for rapid simulation and design optimization in complex engineering
applications.

Nuclear Fusion. Nuclear Fusion, as the ultimate energy source, has been studied
for more than 50 years. Controlling nuclear fusion requires accurate and efficient
plasma modeling to avoid blow-up events. Collaborating with scientists from the
UK Atomic Energy Authority, FNO was applied for modeling plasma evolution in
both simulations and experiments (Gopakumar et al., 2024). The FNO model ac-
curately solved the Magneto-Hydrodynamic (MHD) equations that describe plasma
dynamics, achieving speeds 6 orders of magnitude faster than traditional numeri-
cal solvers while maintaining high accuracy. This approach was further extended
to model plasma evolution observed by cameras in the MAST spherical tokamak,
successfully forecasting filament formation and heat deposits. The camera-based
FNO model could predict the full length of a plasma shot in half the actual shot
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time. This work represents a significant advancement in real-time plasma model-
ing and prediction, with potential applications in plasma control and fusion reactor
optimization.

1.4 Foundation Models
The long term goal of neural operator is to go beyond merely accelerating numer-
ical solvers and focus on developing machine-learning models that can generalize
outside their training data. While previous supervised machine learning approaches
have shown success in scientific domains, generating the necessary training data of-
ten requires substantial computing resources for thousands of simulations, severely
limiting its applicability. The diverse physical behaviors associated with different
PDEs make it challenging to create a single universal model. Existing models focus
on subsets of inputs, such as specific PDEs, but are often restricted to simple cases
with one or two dimensions. This constraint leads to limited generalization, with
models typically targeting only a single input variable while keeping other parame-
ters fixed—unlike the flexibility of traditional numerical solvers. To address these
limitations and amortize costs, the development of foundation models for scientific
computing, trained on diverse datasets to capture a wide range of conditions, is
proposed.

Multi-Scale Learning. Capturing multi-scale phenomena in scientific and engi-
neering simulations remains one of the biggest challenges in computational model-
ing, particularly for complex systems like turbulence and lithography. Large-scale
simulations in turbulence or lithography can involve billions of mesh points, reach-
ing resolution of 10, 0002 or 1, 0003. Such multi-scale phenomena are difficult to
capture accurately with single-scale models. To address this, the aim is to develop
a multi-scale foundation model that can effectively handle a wide range of scales
in PDEs. This approach is rooted in the principle of scale-consistency, a prop-
erty inherent in many PDEs where solutions on larger domains, when restricted to
subdomains, match solutions directly computed on those subdomains. To lever-
age this property, work is underway on a novel data augmentation scheme using
sub-sampling and super-sampling techniques to bridge multi scales. This method
creates virtual instances at various scales, potentially enhancing model generaliza-
tion without requiring additional simulation data. This research has the potential to
significantly improve the efficiency and generalizability of data-driven PDE solvers.
Once generalization across different scales is achieved, the key question arises: Can
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emergent behavior be found beyond the training scale? Specifically, if training data
is available at the micro scale, can consistency be used to scale up and discover
distinct behaviors at the macro scale such as hurricanes and blow-ups? By reducing
the need for extensive training data and enabling more flexible, foundational mod-
els, this work could have far-reaching implications for a wide range of scientific and
engineering applications, from fluid dynamics to electromagnetic simulations.

Multi-Fidelity Data. In scientific computing, high-quality data are often scarce.
How can learning occur from a wide variety of data including low- and high-fidelity
physical simulations, sparse observational and experimental data, graphics data, and
existing physics knowledge? Current computational fluid dynamics (CFD) datasets
for 3D simulations are especially resource-intensive to generate. Consequently,
existing CFD datasets are limited to the order of thousands of cases, which is
way lower than standard ML setting. To overcome this limitation, leveraging the
abundance and accessibility of large-scale graphics datasets such as ShapeNet and
Objverse is proposed. The approach involves pretraining a foundation model on
diverse complex geometries from these graphics datasets, incorporating various
representations, including Signed Distance Functions (SDFs) and solutions to the
Poisson equation with both Dirichlet and Neumann boundary conditions. This
strategy aims to create a versatile foundation capable of handling a wide array
of geometric challenges. This model will then be fine-tuned by integrating fluid
dynamics data from coarse simulations like RANS, LES, progressing to DNS and
real experimental data. The resulting foundation model has the potential to not only
accelerate simulations but also enable more efficient shape design and optimization
in fields requiring both intricate geometries and sophisticated physics simulations,
effectively bridging the gap between graphics and CFD.

AI-Aided Design. It is believed that machine learning methods will revolutionize
the way design problems are approached. Design optimization problems require
searching through a parameter space, which typically requires a large number of
trials and runs. Due to excessive computational cost, traditional methods based on
Bayesian methods and numerical solvers are usually limited to a low-dimensional pa-
rameter space. Especially in computational fluid dynamics, the standard industrial-
level solvers based on RANS and LES omit all small-scale behaviors, designed in
a highly empirical manner. In contrast, machine learning methods are fast, dif-
ferentiable, and capable of handling high dimensional design space. The research
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question is: Can AI discover novel designs and materials with unique geometry and
structure? Initial works have shown neural operator can solve 2D inverse problem
(Z. Li, Kovachki, Azizzadenesheli, Liu, Bhattacharya, et al., 2021), enhanced with
physics constraint (Z. Li, Zheng, et al., 2024b) which show application in 2D airfoil
(Z. Li, Kovachki, Choy, et al., 2023) and biomedical catheter design (Zhou et al.,
2024). Combined with geometric methods, the aim is to further push design to 3D
vehicle shapes and drone propellers. To go beyond numerical simulation used as
training data, real-world experimental data can be used to augment the model (Renn
et al., 2023). The goal is to discover new design shapes with less drag, and less
noise, but higher resilience. In five to ten years, AI-based methods are expected to
be as prevalent as standard methods such as RANS.

More is Different. While classical science based on reductionism attempts to
break systems down into simpler parts and identify basic rules such as PDEs, this
approach aims to develop machine learning-based models that capture complex
global behaviors. AI-driven models have achieved several order of speedups in
forecasting weather and simulating carbon storage (Pathak et al., 2022; Wen, Z. Li,
Long, et al., 2023; Ye et al., 2024; Z. Li, Kovachki, Choy, et al., 2023). In near-
term future, there has an ongoing progress towards a universal foundation model
to handle a wide range of inputs such as initial conditions, coefficient conditions,
domain sizes, geometries, and even multiple families of PDEs. As the model scales
up to sufficient complexity, it will also reach unprecedented generalization. In
long term, AI-driven methods are expected to find emergent behaviors in unseen
scales and discover novel shapes and geometries for engineering design. Realizing
such capabilities could lead to significant advancements in computational methods,
greatly improving efficiency and accuracy in fields like rocket design and nuclear
fusion. The realization of such a model would enable unprecedented efficiency and
accuracy in computational methods, with far-reaching implications across multiple
domains such as rocket design and nuclear fusion.

Future research directions converge towards addressing the fundamental challenges
in applying neural operators to scientific computing: large scales, complex geome-
tries, and extrapolation beyond the training regime. By developing increasingly
flexible and compositional models, the aim is to progress towards a universal foun-
dation model capable of solving a wide range of simulations with different initial
condition, boundary condition, coefficient function, forcing function, domain size,
geometry, and even multiple families of PDEs. The realization of such a model
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would enable unprecedented efficiency and accuracy in computational methods,
with far-reaching implications across multiple domains. For instance, it could ac-
celerate climate modeling to enhance our understanding and mitigation of climate
change, optimize spacecraft design for interplanetary exploration, and improve con-
trol systems for nuclear fusion reactors. Ultimately, this research seeks to push
the boundaries of scientific computing, creating tools capable of tackling some of
humanity’s most challenging engineering problems and discovering new science.

1.5 Outline of the Thesis.
Chapters 2-4 discuss architecture designs of neural operators including graph neural
operator, multipole neural operator, and Fourier neural operator. Chapters 5-7 dis-
cuss physics-based learning techniques such as dissipative loss, physics-informed
loss, and scale consistency loss. Chapters 8-10 discuss geometric neural operators
with various boundary shapes, including latent space embedding, learned deforma-
tion, and optimal transport. Chapters 11-12 discuss further applications of neural
operator in weather forecast, carbon capture & storage.
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C h a p t e r 2

MODEL: GRAPH NEURAL OPERATOR

The classical development of neural networks has been primarily for mappings
between a finite-dimensional Euclidean space and a set of classes, or between
two finite-dimensional Euclidean spaces. The purpose of this work is to general-
ize neural networks so that they can learn mappings between infinite-dimensional
spaces (operators). The key innovation in our work is that a single set of net-
work parameters, within a carefully designed network architecture, may be used
to describe mappings between infinite-dimensional spaces and between different
finite-dimensional approximations of those spaces. We formulate approximation of
the infinite-dimensional mapping by composing nonlinear activation functions and a
class of integral operators. The kernel integration is computed by message passing
on graph networks. This approach has substantial practical consequences which
we will illustrate in the context of mappings between input data to partial differen-
tial equations (PDEs) and their solutions. In this context, such learned networks
can generalize among different approximation methods for the PDE (such as finite
difference or finite element methods) and among approximations corresponding to
different underlying levels of resolution and discretization. Experiments confirm
that the proposed graph kernel network does have the desired properties and show
competitive performance compared to the state of the art solvers.

2.1 Introduction
There are numerous applications in which it is desirable to learn a mapping between
Banach spaces. In particular, either the input or the output space, or both, may
be infinite-dimensional. The possibility of learning such mappings opens up a
new class of problems in the design of neural networks, with widespread potential
applicability. New ideas are required to build on traditional neural networks which
are mappings from finite-dimensional Euclidean spaces into classes, or into another
finite-dimensional Euclidean space. We study the development of neural networks
in the setting in which the input and output spaces comprise real-valued functions
defined on subsets in R𝑑 .
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Related Work
We formulate a new class of neural networks, which are defined to map between
spaces of functions on a bounded open set 𝐷 in R𝑑 . Such neural networks, once
trained, have the important property that they are discretization invariant, sharing
the same network parameters between different discretizations. In contrast, standard
neural network architectures depend heavily on the discretization and have difficulty
in generalizing between different grid representations. Our methodology has an un-
derlying Nyström approximation formulation (Nyström, 1930) which links different
grids to a single set of network parameters. We illustrate the new conceptual class of
neural networks within the context of partial differential equations, and the mapping
between input data (in the form of a function) and output data (the function which
solves the PDE). Both supervised and semisupervised settings are considered.

In PDE applications, the defining equations are often local, whilst the solution
operator has non-local effects which, nonetheless, decay. Such non-local effects
can be described by integral operators with graph approximations of Nyström type
(Belongie et al., 2002) providing a consistent way of connecting different grid or data
structures arising in computational methods. For this reason, graph networks hold
great potential for the solution operators of PDEs, which is the point of departure
for our work.

Partial differential equations (PDEs). A wide range of important engineering
and physical problems are governed by PDEs. Over the past few decades, signifi-
cant progress has been made on formulating (Gurtin, 1982) and solving (Johnson,
2012) the governing PDEs in many scientific fields from micro-scale problems (e.g.,
quantum and molecular dynamics) to macro-scale applications (e.g., civil and ma-
rine engineering). Despite the success in the application of PDEs to solve real-life
problems, two significant challenges remain. First, identifying/formulating the un-
derlying PDEs appropriate for the modeling of a specific problem usually requires
extensive prior knowledge in the corresponding field which is then combined with
universal conservation laws to design a predictive model; for example, modeling
the deformation and fracture of solid structures requires detailed knowledge on the
relationship between stress and strain in the constituent material. For complicated
systems such as living cells, acquiring such knowledge is often elusive and formu-
lating the governing PDE for these systems remains prohibitive; the possibility of
learning such knowledge from data may revolutionize such fields. Second, solving
complicated non-linear PDE systems (such as those arising in turbulence and plas-
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ticity) is computationally demanding; again the possibility of using instances of data
from such computations to design fast approximate solvers holds great potential. In
both these challenges, if neural networks are to play a role in exploiting the increas-
ing volume of available data, then there is a need to formulate them so that they are
well-adapted to mappings between function spaces.

We first outline two major neural network based approaches for PDEs. We consider
PDEs of the form

(L𝑎𝑢) (𝑥) = 𝑓 (𝑥), 𝑥 ∈ 𝐷
𝑢(𝑥) = 0, 𝑥 ∈ 𝜕𝐷,

(2.1)

with solution 𝑢 : 𝐷 → R, and parameter 𝑎 : 𝐷 → R entering the definition of
L𝑎. The domain 𝐷 is discretized into 𝐾 points (see Section 2.2) and 𝑁 training
pairs of coefficient functions and (approximate) solution functions {𝑎 𝑗 , 𝑢 𝑗 }𝑁𝑗=1 are
used to design a neural network. The first approach parametrizes the solution
operator as a deep convolutional neural network between finite Euclidean space
G : R𝐾 × Θ → R𝐾 (Guo, Li, and Iorio, 2016; Zhu and Zabaras, 2018; Adler and
Oktem, 2017; Bhatnagar et al., 2019). Such an approach is, by definition, not mesh
independent and will need modifications to the architecture for different resolution
and discretization of 𝐾 in order to achieve consistent error (if at all possible). We
demonstrate this issue in section 4.4 using the architecture of (Zhu and Zabaras,
2018) which was designed for the solution of (2.3) on a uniform 64 × 64 mesh.
Furthermore, this approach is limited to the discretization size and geometry of
the training data hence it is not possible to query solutions at new points in the
domain. In contrast we show, for our method, both invariance of the error to grid
resolution, and the ability to transfer the solution between meshes in section 4.4.
Especially, (Ummenhofer et al., 2020) purposed continuous convolution network
for fluid problems, where they sample points off grid and do linear interpolation on
the grid, which may the convolution continuous compared to common CNN based
method. However continuous convolution is still constrained by the underlying grid
and preventing generalization of resolutions.

The second approach directly parameterizes the solution 𝑢 as a neural network
G : 𝐷 × Θ → R (E and Yu, 2018; Raissi, Perdikaris, and Karniadakis, 2019;
Bar and Sochen, 2019). This approach is, of course, mesh independent since the
solution is defined on the physical domain. However, the parametric dependence is
accounted for in a mesh-dependent fashion. Indeed, for any given new equation with
new coefficient function 𝑎, one would need to train a new neural networkG𝑎. Such an
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approach closely resembles classical methods such as finite elements, replacing the
linear span of a finite set of local basis functions with the space of neural networks.
This approach suffers from the same computational issue as the classical methods:
one needs to solve an optimization problem for every new parameter. Furthermore,
the approach is limited to a setting in which the underlying PDE is known; purely
data-driven learning of a map between spaces of functions is not possible. The
methodology we introduce circumvents these issues.

Our methodology most closely resembles the classical reduced basis method (R. A.
DeVore, 2014) or the method of (Cohen and R. DeVore, 2015). Along with the
contemporaneous work (Bhattacharya, Kovachki, and Stuart, 2020), our method, to
the best of our knowledge, is the first practical deep learning method that is designed
to learn maps between infinite-dimensional spaces. It remedies the mesh-dependent
nature of the approach in (Guo, Li, and Iorio, 2016; Zhu and Zabaras, 2018; Adler
and Oktem, 2017; Bhatnagar et al., 2019) by producing a quality of approximation
that is invariant to the resolution of the function and it has the ability to transfer
solutions between meshes. Moreover it need only be trained once on the equations
set {𝑎 𝑗 , 𝑢 𝑗 }𝑁𝑗=1; then, obtaining a solution for a new 𝑎 ∼ 𝜇, only requires a forward
pass of the network, alleviating the major computational issues incurred in (E and
Yu, 2018; Raissi, Perdikaris, and Karniadakis, 2019; Herrmann, Schwab, and Zech,
2020; Bar and Sochen, 2019). Lastly, our method requires no knowledge of the
underlying PDE; the true map G† can be treated as a black-box, perhaps trained on
experimental data or on the output of a costly computer simulation, not necessarily
a PDE.

Graph neural networks. Graph neural network (GNNs), a class of neural net-
works that apply on graph-structured data, have recently been developed and seen
a variety of applications. Graph networks incorporate an array of techniques such
as graph convolution, edge convolution, attention, and graph pooling (Kipf and
Welling, 2016; Hamilton, Ying, and Leskovec, 2017; Gilmer et al., 2017; Veličković
et al., 2017; Murphy et al., 2018). GNNs have also been applied to the modeling of
physical phenomena such as molecules (Chen et al., 2019) and rigid body systems
(Battaglia et al., 2018), as these problems exhibit a natural graph interpretation: the
particles are the nodes and the interactions are the edges.

The work (Alet et al., 2019) performed an initial study that employs graph networks
on the problem of learning solutions to Poisson’s equation among other physical
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Graph kernel network for the solution of (2.3). It can be trained on a small resolution and
will generalize to a large one. The Error is point-wise absolute squared error.

Figure 2.1: Graph Neural Operator trained on 16 × 16 and test on 241 × 241

applications. They propose an encoder-decoder setting, constructing graphs in
the latent space and utilizing message passing between the encoder and decoder.
However, their model uses a nearest neighbor structure that is unable to capture non-
local dependencies as the mesh size is increased. In contrast, we directly construct
a graph in which the nodes are located on the spatial domain of the output function.
Through message passing, we are then able to directly learn the kernel of the network
which approximates the PDE solution. When querying a new location, we simply
add a new node to our spatial graph and connect it to the existing nodes, avoiding
interpolation error by leveraging the power of the Nyström extension for integral
operators.

Continuous neural networks. The concept of defining neural networks in infinite-
dimensional spaces is a central problem that long been studied (Williams, 1996;
Neal, 1996; Roux and Bengio, 2007; Globerson and Livni, 2016; Guss, 2016). The
general idea is to take the infinite-width limit which yields a non-parametric method
and has connections to Gaussian Process Regression (Neal, 1996; Matthews et al.,
2018; Garriga-Alonso, Rasmussen, and Aitchison, 2018), leading to the introduction
of deep Gaussian processes (aretha; Damianou and Lawrence, 2013). Thus far,
such methods have not yielded efficient numerical algorithms that can parallel the
success of convolutional or recurrent neural networks in finite dimensions in the
setting of mappings between function spaces. Another idea is to simply define a
sequence of compositions where each layer is a map between infinite-dimensional
spaces with a finite-dimensional parametric dependence. This is the approach we
take in this work, going a step further by sharing parameters between each layer.
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Contributions
We introduce the concept of Neural Operator and instantiate it through graph kernel
networks, a novel deep neural network method to learn the mapping between infinite-
dimensional spaces of functions defined on bounded open subsets of R𝑑 .

• Unlike existing methods, our approach is demonstrably able to learn the
mapping between function spaces, and is invariant to different approximations
and grids. It can do zero-shot super-resolution as demonstrated in Figure 2.1.

• By composing nonlinear activation functions and nonlocal integral operators,
the learn operators can approximate complex nonlinear nonlocal solution
operator raised in various PDEs.

• The standard integral operation requires quadratic time complexity in terms
of the number of points, which is usually intractable. We study four efficient
approximation schemes that have tractable complexity.

• Numerical results show that the Neural Operator has state-of-the-art accuracy
comparing to previous data-driven finite-dimensional operators in the fixed-
discretization setting. Meanwhile, it is also up to three order of magnitude
faster than the conventional numerical solvers.

These concepts are illustrated in the context of a family of elliptic PDEs prototypical
of a number of problems arising throughout the sciences and engineering.

2.2 Problem Setting
Our goal is to learn a mapping between two infinite dimensional spaces by using
a finite collection of observations of input-output pairs from this mapping. Let A
andU be separable Banach spaces and G† : A → U a (typically) non-linear map.
Suppose we have observations {𝑎 𝑗 , 𝑢 𝑗 }𝑁𝑗=1 where 𝑎 𝑗 ∼ 𝜇 is an i.i.d. sequence from
the probability measure 𝜇 supported on A and 𝑢 𝑗 = G†(𝑎 𝑗 ) is possibly corrupted
with noise. We aim to build an approximation of G† by constructing a parametric
map

G : A × Θ→U (2.2)

for some finite-dimensional parameter space Θ and then choosing 𝜃† ∈ Θ so that
G(·, 𝜃†) ≈ G†.
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This is a natural framework for learning in infinite-dimensions as one could define
a cost functional 𝐶 : U ×U → R and seek a minimizer of the problem

min
𝜃∈Θ

E𝑎∼𝜇 [𝐶 (G(𝑎, 𝜃),G†(𝑎))]

which directly parallels the classical finite-dimensional setting (Vapnik, 1998).
Showing the existence of minimizers, in the infinite-dimensional setting, remains
a challenging open problem. We will approach this problem in the test-train set-
ting in which empirical approximations to the cost are used. We conceptualize
our methodology in the infinite-dimensional setting. This means that all finite-
dimensional approximations can share a common set of network parameters which
are defined in the (approximation-free) infinite-dimensional setting. To be concrete
we will consider infinite-dimensional spaces which are Banach spaces of real-valued
functions defined on a bounded open set in R𝑑 . We then consider mappings G†

which take input functions to a PDE and map them to solutions of the PDE, both
input and solutions being real-valued functions on R𝑑 .

A common instantiation of the preceding problem is the approximation of the second
order elliptic PDE

−∇ · (𝑎(𝑥)∇𝑢(𝑥)) = 𝑓 (𝑥), 𝑥 ∈ 𝐷
𝑢(𝑥) = 0, 𝑥 ∈ 𝜕𝐷

(2.3)

for some bounded, open set 𝐷 ⊂ R𝑑 and a fixed function 𝑓 ∈ 𝐿2(𝐷;R). This
equation is prototypical of PDEs arising in numerous applications including hy-
drology (Bear and Corapcioglu, 2012) and elasticity (Antman, 2005). For a given
𝑎 ∈ A = 𝐿∞(𝐷;R+) ∩ 𝐿2(𝐷;R+), equation (2.3) has a unique weak solution
𝑢 ∈ U = 𝐻1

0 (𝐷;R) (Evans, 2010) and therefore we can define the solution operator
G† as the map 𝑎 ↦→ 𝑢. Note that while the PDE (2.3) is linear, the solution operator
G† is not.

Since our data 𝑎 𝑗 and 𝑢 𝑗 are , in general, functions, to work with them numerically,
we assume access only to point-wise evaluations. To illustrate this, we will continue
with the example of the preceding paragraph. To this end let 𝑃𝐾 = {𝑥1, . . . , 𝑥𝐾} ⊂ 𝐷
be a 𝐾-point discretization of the domain 𝐷 and assume we have observations
𝑎 𝑗 |𝑃𝐾 , 𝑢 𝑗 |𝑃𝐾 ∈ R𝐾 , for a finite collection of input-output pairs indexed by 𝑗 . In the
next section, we propose a kernel inspired graph neural network architecture which,
while trained on the discretized data, can produce an answer 𝑢(𝑥) for any 𝑥 ∈ 𝐷
given a new input 𝑎 ∼ 𝜇. That is to say that our approach is independent of the
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discretization 𝑃𝐾 and therefore a true function space method; we verify this claim
numerically by showing invariance of the error as 𝐾 → ∞. Such a property is
highly desirable as it allows a transfer of solutions between different grid geometries
and discretization sizes.

We note that, while the application of our methodology is based on having point-wise
evaluations of the function, it is not limited by it. One may, for example, represent a
function numerically as a finite set of truncated basis coefficients. Invariance of the
representation would then be with respect to the size of this set. Our methodology
can, in principle, be modified to accommodate this scenario through a suitably
chosen architecture. We do not pursue this direction in the current work.

2.3 Graph Neural Operator
We propose the graph neural operator (graph kernel neural network) for the solution
of the problem outlined in section 2.2. As a guiding principle for our architecture,
we take the following example. Let L𝑎 be a differential operator depending on a
parameter 𝑎 ∈ A and consider the PDE

(L𝑎𝑢) (𝑥) = 𝑓 (𝑥), 𝑥 ∈ 𝐷
𝑢(𝑥) = 0, 𝑥 ∈ 𝜕𝐷

(2.4)

for a bounded, open set 𝐷 ⊂ R𝑑 and some fixed function 𝑓 living in an appropriate
function space determined by the structure of L𝑎. The elliptic operator L𝑎 · =
−div(𝑎∇·) from equation (2.3) is an example. Under fairly general conditions on
L𝑎 (Evans, 2010), we may define the Green’s function 𝐺 : 𝐷 × 𝐷 → R as the
unique solution to the problem

L𝑎𝐺 (𝑥, ·) = 𝛿𝑥

where 𝛿𝑥 is the delta measure on R𝑑 centered at 𝑥. Note that 𝐺 will depend on the
parameter 𝑎 thus we will henceforth denote it as 𝐺𝑎. The solution to (2.4) can then
be represented as

𝑢(𝑥) =
∫
𝐷

𝐺𝑎 (𝑥, 𝑦) 𝑓 (𝑦) 𝑑𝑦. (2.5)

This is easily seen via the formal computation

(L𝑎𝑢) (𝑥) =
∫
𝐷

(L𝑎𝐺 (𝑥, ·)) (𝑦) 𝑓 (𝑦) 𝑑𝑦

=

∫
𝐷

𝛿𝑥 (𝑦) 𝑓 (𝑦) 𝑑𝑦

= 𝑓 (𝑥)
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Generally the Green’s function is continuous at points 𝑥 ≠ 𝑦, for example, when L𝑎
is uniformly elliptic (Gilbarg and Trudinger, 2015), hence it is natural to model it
via a neural network. Guided by the representation (3.1), we propose the following
iterative architecture for 𝑡 = 0, . . . , 𝑇 − 1.

𝑣𝑡+1(𝑥) = 𝜎
(
𝑊𝑣𝑡 (𝑥)+

∫
𝐷

𝜅𝜙 (𝑥, 𝑦, 𝑎(𝑥), 𝑎(𝑦))𝑣𝑡 (𝑦) 𝜈𝑥 (𝑑𝑦)
)

(2.6)

where 𝜎 : R → R is a fixed function applied element-wise, 𝜈𝑥 is a fixed Borel
measure for each 𝑥 ∈ 𝐷. The matrix 𝑊 ∈ R𝑛×𝑛, together with the parameters 𝜙
entering kernel 𝜅𝜙 : R2(𝑑+1) → R𝑛×𝑛, are to be learned from data. We model 𝜅𝜙 as
a neural network mapping R2(𝑑+1) to R𝑛×𝑛.

Discretization of the continuum picture may be viewed as replacing Borel measure
𝜈𝑥 by an empirical approximation based on the 𝐾 grid points being used. In this
setting we may view 𝜅𝜙 as a 𝐾 × 𝐾 kernel block matrix, where each entry 𝜅𝜙 (𝑥, 𝑦)
is itself a 𝑛 × 𝑛 matrix. Each block shares the same set of network parameters. This
is the key to making a method that shares common parameters independent of the
discretization used.

Finally, we observe that, although we have focussed on neural networks mapping
𝑎 to 𝑢, generalizations are possible, such as mapping 𝑓 to 𝑢, or having non-zero
boundary data 𝑔 on 𝜕𝐷 and mapping 𝑔 to 𝑢. More generally one can consider the
mapping from (𝑎, 𝑓 , 𝑔) into 𝑢 and use similar ideas. Indeed to illustrate ideas we
will consider the mapping from 𝑓 to 𝑢 below (which is linear and for which an
analytic solution is known) before moving on to study the (nonlinear) mapping from
𝑎 to 𝑢.

Example 1: Poisson equation. We consider a simplification of the foregoing in
which we study the map from 𝑓 to 𝑢. To this end we set 𝑣0(𝑥) = 𝑓 (𝑥), 𝑇 = 1, 𝑛 = 1,
𝜎(𝑥) = 𝑥, 𝑊 = 𝑤 = 0, and 𝜈𝑥 (𝑑𝑦) = 𝑑𝑦 (the Lebesgue measure) in (2.6). We then
obtain the representation (3.1) with the Green’s function 𝐺𝑎 parameterized by the
neural network 𝜅𝜙 with explicit dependence on 𝑎(𝑥), 𝑎(𝑦). Now consider the setting
where 𝐷 = [0, 1] and 𝑎(𝑥) ≡ 1, so that (2.3) reduces to the 1-dimensional Poisson
equation with explicitly computable Green’s function. Indeed,

𝐺 (𝑥, 𝑦) = 1
2
(𝑥 + 𝑦 − |𝑦 − 𝑥 |) − 𝑥𝑦.

Note that although the map 𝑓 ↦→ 𝑢 is, in function space, linear, the Green’s function
itself is not linear in either argument. Figure 2.2 shows 𝜅𝜙 after training with
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Proof of concept: graph kernel network on 1 dimensional Poisson equation; comparison of
learned and truth kernel.

Figure 2.2: Kernel for one-dimensional Green’s function

𝑁 = 2048 samples 𝑓 𝑗 ∼ 𝜇 = N(0, (−Δ + 𝐼)−1) with periodic boundary conditions
on the operator −Δ + 𝐼. (samples from this measure can be easily implemented
by means of a random Fourier series – Karhunen-Loeve – see (Lord, Powell, and
Shardlow, 2014)).

Example 2: 2D Poisson equation. We further demonstrate the power of the
graph kernel network by extending the Poisson equation studied in example 1 to the
two dimensional (2D) case, where we approximate the map 𝑓 (𝑥) ↦→ 𝑢(𝑥) where
𝑥 ∈ 𝐷 = [0, 1] × [0, 1]. We consider two approaches: (𝑖) graph kernel network to
approximate the 2D Green’s function 𝐺 (𝑥, 𝑦) and (𝑖𝑖) dense neural network with
𝑓 (𝑥) as input and 𝑢(𝑥) as output such that the mapping 𝑓 (𝑥) ↦→ 𝑢(𝑥) is directly
approximated.

The two neural networks are trained with the same training sets of different sizes
ranging from 1 to 100 samples and tested with 1000 test samples. We observe that
the Graph kernel network approximates the map with a minimum (≈ 5) number
of training samples while still possessing a smaller test error comparing to that
of a dense neural network trained with 100 samples. Therefore, the Graph kernel
network potentially significantly reduces the number of required training samples
to approximate the mapping. This property is especially important in practice as
obtaining a huge number of training data for certain engineering/physics problems
is always prohibitive.

The reason for the Graph kernel network to have such strong approximation power
is because that it is able to learn the truth Green’s function for the Poisson equation,
as already demonstrated in the 1D case.
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Figure 2.3: Comparison between the performance of graph kernel network and
the dense neural network on the approximation of (2.3). Plots of relative 𝑙2 test
approximation errors versus the number of training samples for the Graph kernel
network and dense neural networks when approximating the problem (2.3).

Algorithmic framework. The initialization 𝑣0(𝑥) to our network (2.6) can be
viewed as the initial guess we make for the solution 𝑢(𝑥) as well as any other
dependence we want to make explicit. A natural choice is to start with the coefficient
𝑎(𝑥) itself as well as the position in physical space 𝑥. This (𝑑 + 1)-dimensional
vector field is then lifted to a 𝑛-dimensional vector field, an operation which we
may view as the first layer of the overarching neural network. This is then used
as an initialization to the kernel neural network, which is iterated 𝑇 times. In the
final layer, we project back to the scalar field of interest with another neural network
layer.

Due to the smoothing effect of the inverse elliptic operator in (2.3) with respect to
the input data 𝑎 (and indeed 𝑓 when we consider this as input), we augment the
initialization (𝑥, 𝑎(𝑥)) with a Gaussian smoothed version of the coefficients 𝑎𝜖 (𝑥),
together with their gradient ∇𝑎𝜖 (𝑥). Thus we initialize with a 2(𝑑 + 1)-dimensional
vector field. Throughout this paper the Gaussian smoothing is performed with a
centred isotropic Gaussian with variance 5. The Borel measure 𝜈𝑥 is chosen to be
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the Lebesgue measure supported on a ball at 𝑥 of radius 𝑟. Thus we have

𝑣0(𝑥) = 𝑃(𝑥, 𝑎(𝑥), 𝑎𝜖 (𝑥),∇𝑎𝜖 (𝑥)) + 𝑝

𝑣𝑡+1(𝑥) = 𝜎
(
𝑊𝑣𝑡 (𝑥) +

∫
𝐵(𝑥,𝑟)

𝜅𝜙
(
𝑥, 𝑦, 𝑎(𝑥), 𝑎(𝑦)

)
𝑣𝑡 (𝑦) d𝑦

)
𝑢(𝑥) = 𝑄𝑣𝑇 (𝑥) + 𝑞

(2.7)

(2.8)

(2.9)

where 𝑃 ∈ R𝑛×2(𝑑+1) , 𝑝 ∈ R𝑛, 𝑣𝑡 (𝑥) ∈ R𝑛 and 𝑄 ∈ R1×𝑛, 𝑞 ∈ R. The integration in
(2.8) is approximated by a Monte Carlo sum via a message passing graph network
with edge weights (𝑥, 𝑦, 𝑎(𝑥), 𝑎(𝑦)). The choice of measure 𝜈𝑥 (d𝑦) = 1𝐵(𝑥,𝑟)d𝑦 is
two-fold: 1) it allows for more efficient computation and 2) it exploits the decay
property of the Green’s function. Note that if more information is known about the
true kernel, it can be added into this measure. For example, if we know the true
kernel has a Gaussian structure, we can define 𝜈𝑥 (d𝑦) = 1𝐵(𝑥,𝑟)𝜌𝑥 (𝑦)d𝑦 where 𝜌𝑥 (𝑦)
is a Gaussian density. Then 𝜅𝜙 will need to learn a much less complicated function.
We however do not pursue this direction in the current line of work.

Message passing graph networks. Message passing graph networks comprise a
standard architecture employing edge features (Gilmer et al., 2017). If we properly
construct the graph on the spatial domain 𝐷 of the PDE, the kernel integration can
be viewed as an aggregation of messages. Given node features 𝑣𝑡 (𝑥) ∈ R𝑛, edge
features 𝑒(𝑥, 𝑦) ∈ R𝑛𝑒 , and a graph 𝐺, the message passing neural network with
averaging aggregation is

𝑣𝑡+1(𝑥) = 𝜎
(
𝑊𝑣𝑡 (𝑥) +

1
|𝑁 (𝑥) |

∑︁
𝑦∈𝑁 (𝑥)

𝜅𝜙
(
𝑒(𝑥, 𝑦)

)
𝑣𝑡 (𝑦)

)
(2.10)

where𝑊∈R𝑛×𝑛, 𝑁 (𝑥) is the neighborhood of 𝑥 according to the graph, 𝜅𝜙
(
𝑒(𝑥, 𝑦)

)
is a neural network taking as input edge features and as output a matrix in R𝑛×𝑛.
Relating to (2.8), 𝑒(𝑥, 𝑦)= (𝑥, 𝑦, 𝑎(𝑥), 𝑎(𝑦)) ∈R2(𝑑+1) .

Graph construction. To use the message passing framework (3.4), we need to
design a graph that connects the physical domain 𝐷 of the PDE. The nodes are
chosen to be the𝐾 discretized spatial locations. Here we work on a standard uniform
mesh, but there are many other possibilities such as finite-element triangulations
and random points at which data is acquired. The edge connectivity is then chosen
according to the integration measure in (2.8), namely Lebesgue restricted to a
ball. Each node 𝑥 ∈ R𝑑 is connected to nodes which lie within 𝐵(𝑥, 𝑟), defining the
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neighborhood set 𝑁 (𝑥). Then for each neighbor 𝑦 ∈ 𝑁 (𝑥), we assign the edge weight
𝑒(𝑥, 𝑦) = (𝑥, 𝑦, 𝑎(𝑥), 𝑎(𝑦)). Equation (3.4) can then be viewed as a Monte Carlo
approximation of (2.8). This local structure allows for more efficient computation
while remaining invariant to mesh-refinement. Indeed, since the radius parameter 𝑟
is chosen in physical space, the size of the set 𝑁 (𝑥) grows as the discretization size
𝐾 grows. This is a key feature that makes our methodology mesh-independent.

Nyström approximation of the kernel. While the aforementioned graph structure
severely reduces the computational overhead of integrating over the entire domain
𝐷 (corresponding to a fully-connected graph), the number of edges still scales like
O(𝐾2). To overcome this, we employ a random Nyström-type approximation of the
kernel. In particular, we uniformly sample 𝑚 ≪ 𝐾 nodes from the original graph,
constructing a new random sub-graph. This process is repeated 𝑙 ∈ N times, yielding
𝑙 random sub-graphs each with𝑚 nodes. This can be thought of as a way of reducing
the variance in the estimator. We use these sub-graphs when evaluating (3.4) during
training, leading to the more favorable scaling O(𝑙𝑚2). Indeed, numerically we
find that 𝑙 = 4 and 𝑚 = 200 is sufficient even when 𝐾 = 4212 = 177, 241. In
the evaluation phase, when we want the solution on a particular mesh geometry,
we simply partition the mesh into sub-graphs each with 𝑚 nodes and evaluate each
separately.

We will now highlight the quality of this kernel approximation in a RHKS setting. A
real Reproducing Kernel Hilbert Space (RKHS) (H , ⟨·, ·⟩, ∥ · ∥) is a Hilbert space of
functions 𝑓 : 𝐷 → R where point-wise evaluation is a continuous linear functional,
i.e. | 𝑓 (𝑥) | ≤ 𝐶∥ 𝑓 ∥ for some constant 𝐶 ≥ 0, independent of 𝑥. For every RHKS,
there exists a unique, symmetric, positive definite kernel 𝜅 : 𝐷 × 𝐷 → R, which
gives the representation 𝑓 (𝑥) = ⟨ 𝑓 , 𝜅(·, 𝑥)⟩. Let 𝑇 : H → H be a linear operator
onH acting via the kernel

𝑇 𝑓 =

∫
𝐵(·,𝑟)

𝜅(·, 𝑦) 𝑓 (𝑦)𝜈(𝑑𝑦).

Let 𝑇𝑚 : H → H be its 𝑚-point empirical approximation

𝑇𝑚 =

∫
𝐵(·,𝑟)

𝜅(·, 𝑦) 𝑓 (𝑦)𝜈𝑚 (𝑑𝑦),

𝜈𝑚 (𝑑𝑦) =
1
𝑚

𝑚∑︁
𝑘=1

𝛿𝑦𝑘 (𝑑𝑦),
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so that

𝑇𝑚 𝑓 =
1
𝑚

𝑚∑︁
𝑘=1

𝜅(·, 𝑦𝑘 ) 𝑓 (𝑦𝑘 ).

The error of this approximation achieves the Monte Carlo rate 𝑂 (𝑚−1/2):

Proposition 2.3.1 Suppose E𝑦∼𝜈 [𝜅(·, 𝑦)4] < ∞ then there exists a constant 𝐶 ≥ 0
such that

E∥𝑇 − 𝑇𝑚 ∥𝐻𝑆 ≤
𝐶
√
𝑚

where ∥ · ∥𝐻𝑆 denotes the Hilbert-Schmidt norm on operators acting onH .

With stricter assumptions similar results can also be proven with high probability
(Rosasco, Belkin, and Vito, 2010).

Lemma 2.3.1 (Rosasco, Belkin, and Vito, 2010) 𝑇 and 𝑇𝐾 are Hilbert-Schmidt.
Furthermore, with probability greater than 1 − 2𝑒𝜏

∥𝑇 − 𝑇𝐾 ∥𝐻𝑆 ≤
2
√

2𝑘
√
𝜏

√
𝐾

where 𝑘 = sup𝑥∈𝐷 𝜅(𝑥, 𝑥).

We note that, in our algorithm, 𝜅 : 𝐷 ×𝐷 → R𝑛×𝑛 whereas the preceding results are
proven only in the setting 𝑛 = 1; nonetheless they provide useful intuition regarding
the approximations used in our methodology.

2.4 Experiments
In this section we illustrate the claimed properties of our methodology, and compare
it to existing approaches in the literature. All experimental results concern the
mapping 𝑎 ↦→ 𝑢 defined by (2.3) with 𝐷 = [0, 1]2. Coefficients are generated
according to 𝑎 ∼ 𝜇 where 𝜇 = 𝜓#N(0, (−Δ + 9𝐼)−2) with a Neumann boundry
condition on the operator −Δ + 9𝐼. The mapping 𝜓 : R → R takes the value 12
on the positive part of the real line and 3 on the negative. Hence the coefficients
are piecewise constant with random geometry and a fixed contrast of 4. Such
constructions are prototypical of physical properties such as permeability in sub-
surface flows and material microstructures in elasticity. Solutions 𝑢 are obtained
by using a second-order finite difference scheme on a 241 × 241 grid. Different
resolutions are downsampled from this dataset.
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Resolutions 𝑠′ = 16 𝑠′ = 31 𝑠′ = 61
𝑠 = 16 0.0525 0.0591 0.0585
𝑠 = 31 0.0787 0.0538 0.0588

𝑟 = 0.10, 𝑁 = 100, relative 𝑙2 test error

Table 2.1: Comparing resolutions on full grids

To be concrete we set the dimension of representation 𝑛 (i.e. the width of graph
network) to be 64, the number of iterations 𝑇 to be 6, 𝜎 to be the ReLU function,
and the inner kernel network 𝜅 to be a 3−layer feed-forward network with widths
(6, 512, 1024, 𝑛2) and ReLU activation. We use the Adam optimizer with a learning
rate 1𝑒 − 4 and train for 200 epochs with respect to the absolute mean squared error
on the normalized data unless otherwise stated. These chosen hyperparameters
are not optimized and could be adapted to improve performance. We employ the
message passing network from the standard Pytorch graph network library Torch-
geometric (Fey and Lenssen, 2019). All the test errors are relative 𝐿2(𝐷) errors
on the original data. The code and data can be found at https://github.com/
wumming/graph-pde.

Supervised Setting
First we consider the supervised scenario that we are given𝑁 training pairs {𝑎 𝑗 , 𝑢 𝑗 }𝑁1 ,
where each 𝑎 𝑗 and 𝑢 𝑗 are provided on a 𝑠 × 𝑠 grid (𝐾 = 𝑠2).

Generalization of resolutions on full grids. To examine the generalization prop-
erty, we train the graph kernel network on resolution 𝑠 × 𝑠 and test on another
resolution 𝑠′ × 𝑠′. We fix the radius to be 𝑟 = 0.10, train on 𝑁 = 100 equation pairs
and test on 40 equation pairs.

As shown in Table 2.1, for each row, the test errors at different resolutions remain
on the same scale, illustrating the desired design feature that graph kernel networks
can train on one resolution and generalize to another resolution. The test errors
on the diagonal (𝑠 = 𝑠′ = 16 and 𝑠 = 𝑠′ = 31) are the smallest, which means the
network has the best performance when the training grid and the test grid are the
same. Interestingly, for the second row, when training on 𝑠 = 31, it is easier to
general to 𝑠′ = 61 than to 𝑠′ = 16. This is because when generalizing to a larger
grid, the support of the kernel becomes large which does not hurt the performance.
But when generalizing to a smaller grid, part of the support of the kernel is lost,
which causes the kernel to be inaccurate.
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Training Size Training Error Test Error
𝑁 = 10 0.0089 0.0931
𝑁 = 100 0.0183 0.0478
𝑁 = 1000 0.0255 0.0345

2000, 500, 100 epochs, respectively.

Table 2.2: Comparing number of training pairs

Expressiveness and overfitting. We compare the training error and test error
with a different number of training pairs 𝑁 to see if the kernel network can learn the
kernel structure even with a small amount of data. We study the expressiveness of
the kernel network, examining how it overfits. We fix 𝑟 = 0.10 on the 𝑠 = 𝑠′ = 31
grid and train with 𝑁 = 10, 100, 1000 whilst employing 2000, 500, 100 epochs
respectively.

We see from Table 2.2 that the kernel network already achieves a reasonable result
when 𝑁 = 10, and the accuracy is competitive when 𝑁 = 100. In all three cases,
the test error is larger than the training error suggesting that the kernel network has
enough expressiveness to overfit the training set. This overfitting is not severe as
the training error will not be pushed to zero even for 𝑁 = 10, after 2000 epochs.

Semi-Supervised Setting
In the semi-supervised setting, we are only given 𝑚 nodes sampled from a 𝑠 × 𝑠
grid for each training pair, and want to evaluate on 𝑚′ nodes sampled from an
𝑠′ × 𝑠′ grid for each test pair. To be concrete, we set the number of sampled nodes
𝑚 = 𝑚′ = 200. For each training pair, we sample twice 𝑙 = 2; for each test pair, we
sample once 𝑙′ = 1. We train on 𝑁 = 100 pairs and test on 𝑁′ = 100 pairs. The
radius for both training and testing is set to 𝑟 = 𝑟′ = 0.25.

Generalization of resolutions on sampled grids. Similar to the first experiments,
we train the graph kernel network with nodes sampled from the 𝑠 × 𝑠 resolution and
test on nodes sampled from the 𝑠′ × 𝑠′ resolution. As shown in Table 2.3, for each
row, the test errors on different resolutions are about the same, which means the
graph kernel network can also generalize in the semi-supervised setting. Comparing
the rows, large training resolutions 𝑠 tend to have a smaller error. When sampled
from a finer grid, there are more edges because the support of the kernel is larger on
the finer grid. Still, the performance is best when 𝑠 = 𝑠′.
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Resolutions 𝑠′ = 61 𝑠′ = 121 𝑠′ = 241
𝑠 = 16 0.0717 0.0768 0.0724
𝑠 = 31 0.0726 0.0710 0.0722
𝑠 = 61 0.0687 0.0728 0.0723
𝑠 = 121 0.0687 0.0664 0.0685
𝑠 = 241 0.0649 0.0658 0.0649

𝑁 = 100, 𝑚 = 𝑚′ = 200, 𝑟 = 𝑟 ′ = 0.25, 𝑙 = 2

Table 2.3: Generalization of resolutions on sampled Grids

The number of examples vs the times of sampling. Increasing the number
of times we sample, 𝑙, reduces the error from the Nyström approximation. By
comparing different 𝑙 we determine which value will be sufficient. When we sample
𝑙 times for each equation, we get a total of 𝑁𝑙 sampled training pairs, Table 2.4.

𝑙 = 1 𝑙 = 2 𝑙 = 4 𝑙 = 8
𝑁 = 10 0.1259 0.1069 0.0967 0.1026
𝑁 = 100 0.0786 0.0687 0.0690 0.0621
𝑁 = 1000 0.0604 0.0579 0.0540 0.0483

𝑠 = 241, 𝑚 = 𝑚′ = 200, 𝑟 = 𝑟 ′ = 0.25

Table 2.4: Number of training pairs and sampling

Table 2.4 indicates that the larger 𝑙 the better, but 𝑙 = 2 already gives a reasonable
performance. Moreover, the same order of sampled training pairs, (𝑁 = 100, 𝑙 = 8),
and (𝑁 = 1000, 𝑙 = 1), result in a similar performance. It implies that in a low
training data regime, increasing 𝑙 improves the performance.

Different number of nodes in training and testing. To further examine the
Nyström approximation, we compare different numbers of node samples 𝑚, 𝑚′ for
both training and testing.

𝑚′ = 100 𝑚′ = 200 𝑚′ = 400 𝑚′ = 800
𝑚 = 100 0.0871 0.0716 0.0662 0.0609
𝑚 = 200 0.0972 0.0734 0.0606 0.0562
𝑚 = 400 0.0991 0.0699 0.0560 0.0506
𝑚 = 800 0.1084 0.0751 0.0573 0.0478

𝑠 = 121, 𝑟 = 𝑟 ′ = 0.15, 𝑙 = 5

Table 2.5: Number of nodes in the training and testing
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As can be seen from Table 2.5, in general the larger 𝑚 and 𝑚′ the better. For
each row, fixing 𝑚, the larger 𝑚′ the better. But for each column, when fixing 𝑚′,
increasing 𝑚 may not lead to better performance. This is again due to the fact
that when learning on a larger grid, the kernel network learns a kernel with larger
support. When evaluating on a smaller grid, the learned kernel will be truncated to
have small support, leading to an increased error. In general, 𝑚 = 𝑚′ will be the
best choice.

The radius and the number of nodes. The computation and storage of graph
networks directly scale with the number of edges. In this experiment, we want to
study the trade-off between the number of nodes 𝑚 and the radius 𝑟 when fixing the
number of edges.

𝑚 = 100 𝑚 = 200 𝑚 = 400
𝑟 = 0.05 0.110(176) 0.109(666) 0.099(3354)
𝑟 = 0.15 0.086(512) 0.070(2770) 0.053(14086)
𝑟 = 0.40 0.064(1596) 0.051(9728) 0.040(55919)
𝑟 = 1.00 0.059(9756) 0.048(38690) −

Error (Edges), 𝑠 = 121, 𝑙 = 5, 𝑚′ = 𝑚

Table 2.6: The radius and the number of nodes

Table 2.6 shows the test error with the number of edges for different 𝑟 and 𝑚. In
general, the more edges, the better. For a fixed number of edges, the performance
depends more on the radius 𝑟 than on the number of nodes 𝑚. In other words,
the error of truncating the kernel locally is larger than the error from the Nyström
approximation. It would be better to use larger 𝑟 with smaller 𝑚.

Inner Kernel Network 𝜅. To find the best network structure of 𝜅, we compare
different combinations of width and depth. We consider three cases of 𝜅: 1. a
2−layer feed-forward network with widths (6, 𝑤𝑖𝑑𝑡ℎ, 𝑛2), 2. a 3−layer feed-forward
network with widths (6, 𝑤𝑖𝑑𝑡ℎ/2, 𝑤𝑖𝑑𝑡ℎ, 𝑛2), and 3. a 5−layer feed-forward network
with widths (6, 𝑤𝑖𝑑𝑡ℎ/4, 𝑤𝑖𝑑𝑡ℎ/2, 𝑤𝑖𝑑𝑡ℎ, 𝑤𝑖𝑑𝑡ℎ, 𝑛2), all with ReLU activation and
learning rate 1𝑒 − 4.

As shown in Table 2.7, have wider and deeper network increase the expensiveness
of the kernel network. The diagonal combinations 𝑤𝑖𝑑𝑡ℎ = 256, 𝑑𝑒𝑝𝑡ℎ = 2,
𝑤𝑖𝑑𝑡ℎ = 1024, 𝑑𝑒𝑝𝑡ℎ = 3, and 𝑤𝑖𝑑𝑡ℎ = 4096, 𝑑𝑒𝑝𝑡ℎ = 5 have better test error.
Notice the wide but shallow network 𝑤𝑖𝑑𝑡ℎ = 4096, 𝑑𝑒𝑝𝑡ℎ = 2 has very bad
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depth = 2 depth = 3 depth = 5
width = 64 0.0685 0.0695 0.0770
width = 128 0.0630 0.0633 0.0702
width = 256 0.0617 0.0610 0.0688
width = 1024 0.0641 0.0591 0.0608
width = 4096 0.2934 0.0690 0.0638

𝑠 = 241, 𝑚 = 200, 𝑟 = 0.25

Table 2.7: Comparing the width and depth for the inner kernel network 𝜅

performance. Both its training and testing error once decreased to 0.09 around 10th
epochs, but then blow off. The 1𝑒 − 4 learning rate is probably too high for this
combination. In general, depth of 3 with with of 256 is a good combination of Dracy
Equation dataset.

Comparison with Different Benchmarks
In the following section, we compare the Graph Kernel Network with different
benchmarks on a larger dataset of 𝑁 = 1024 training pairs computed on a 421× 421
grid. The network is trained and evaluated on the same full grid. The results are
presented in Table 2.8.

• NN is a simple point-wise feedforward neural network. It is mesh-free, but
performs badly due to lack of neighbor information.

• FCN is the state of the art neural network method based on Fully Convolution
Network (Zhu and Zabaras, 2018). It has a dominating performance for
small grids 𝑠 = 61. But fully convolution networks are mesh-dependent and
therefore their error grows when moving to a larger grid.

• PCA+NN is an instantiation of the methodology proposed in (Bhattacharya,
Kovachki, and Stuart, 2020): using PCA as an autoencoder on both the input
and output data and interpolating the latent spaces with a neural network. The
method provably obtains mesh-independent error and can learn purely from
data, however the solution can only be evaluated on the same mesh as the
training data.

• RBM is the classical Reduced Basis Method (using a PCA basis), which
is widely used in applications and provably obtains mesh-independent error
(R. A. DeVore, 2014). It has the best performance but the solutions can only
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be evaluated on the same mesh as the training data and one needs knowledge
of the PDE to employ it.

• GKN stands for our graph kernel network with 𝑟 = 0.25 and 𝑚 = 300. It
enjoys competitive performance against all other methods while being able to
generalize to different mesh geometries.

Networks 𝑠 = 85 𝑠 = 141 𝑠 = 211 𝑠 = 421
NN 0.1716 0.1716 0.1716 0.1716
FCN 0.0253 0.0493 0.0727 0.1097
PCA+NN 0.0299 0.0298 0.0298 0.0299
RBM 0.0244 0.0251 0.0255 0.0259
GKN 0.0346 0.0332 0.0342 0.0369

Table 2.8: Error of different methods

2.5 Discussion and Conclusion
We have introduced the concept of Neural Operator and instantiated it through graph
kernel networks designed to approximate mappings between function spaces. They
are constructed to be mesh-free and our numerical experiments demonstrate that they
have the desired property of being able to train and generalize on different meshes.
This is because the networks learn the mapping between infinite-dimensional func-
tion spaces, which can then be shared with approximations at various levels of
discretization. A further advantage is that data may be incorporated on unstruc-
tured grids, using the Nyström approximation. We demonstrate that our method can
achieve competitive performance with other mesh-free approaches developed in the
numerical analysis community, and beats state-of-the-art neural network approaches
on large grids, which are mesh-dependent. The methods developed in the numerical
analysis community are less flexible than the approach we introduce here, relying
heavily on the variational structure of divergence form elliptic PDEs. Our new
mesh-free method has many applications. It has the potential to be a faster solver
that learns from only sparse observations in physical space. It is the only method
that can work in the semi-supervised scenario when we only have measurements
on some parts of the grid. It is also the only method that can transfer between
different geometries. For example, when computing the flow dynamic of many dif-
ferent airfoils, we can construct different graphs and train together. When learning
from irregular grids and querying new locations, our method does not require any
interpolation, avoid subsequently interpolation error.
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Disadvantage. Graph kernel network’s runtime and storage scale with the number
of edges 𝐸 = 𝑂 (𝐾2). While other mesh-dependent methods such as PCA+NN
and RBM require only 𝑂 (𝐾). This is somewhat inevitable, because to learn the
continuous function or the kernel, we need to capture pairwise information between
every two nodes, which is 𝑂 (𝐾2); when the discretization is fixed, one just needs
to capture the point-wise information, which is 𝑂 (𝐾). Therefore training and
evaluating the whole grid is costly when the grid is large. On the other hand,
subsampling to ameliorate cost loses information in the data, and causes errors
which make our method less competitive than PCA+NN and RBM.

Future works. To deal with the above problem, we propose that ideas such as
multi-grid and fast multipole methods (Gholami et al., 2016) may be combined
with our approach to reduce complexity. In particular, a multi-grid approach will
construct multi-graphs corresponding to different resolutions so that, within each
graph, nodes only connect to their nearest neighbors. The number of edges then
scale as 𝑂 (𝐾) instead of 𝑂 (𝐾2). The error terms from Nyström approximation and
local truncation can be avoided. Another direction is to extend the framework for
time-dependent PDEs. Since the graph kernel network is itself an iterative solver
with the time step 𝑡, it is natural to frame it as an RNN that each time step corresponds
to a time step of the PDEs.

References

Adler, Jonas and Ozan Oktem (Nov. 2017). “Solving ill-posed inverse problems
using iterative deep neural networks”. In: Inverse Problems. doi: 10.1088/1361-
6420/aa9581. url: https://doi.org/10.1088%2F1361-6420%2Faa9581.

Alet, Ferran et al. (2019). “Graph Element Networks: adaptive, structured compu-
tation and memory”. In: 36th International Conference on Machine Learning.
PMLR. url: http://proceedings.mlr.press/v97/alet19a.html.

Antman, Stuart S (2005). Problems In Nonlinear Elasticity. Springer.

Bar, Leah and Nir Sochen (2019). “Unsupervised deep learning algorithm for PDE-
based forward and inverse problems”. In: arXiv preprint arXiv:1904.05417.

Battaglia, Peter W et al. (2018). “Relational inductive biases, deep learning, and
graph networks”. In: arXiv preprint arXiv:1806.01261.

Bear, Jacob and M Yavuz Corapcioglu (2012). Fundamentals of transport phenom-
ena in porous media. Springer Science & Business Media.

Belongie, Serge et al. (2002). “Spectral partitioning with indefinite kernels using
the Nyström extension”. In: European conference on computer vision. Springer.



37

Bhatnagar, Saakaar et al. (2019). “Prediction of aerodynamic flow fields using
convolutional neural networks”. In: Computational Mechanics, pp. 1–21.

Bhattacharya, Kaushik, Nikola B. Kovachki, and Andrew M. Stuart (2020). “Model
Reduction and Neural Networks for Parametric PDE(s)”. In: arXiv preprint
arXiv:2005.03180.

Chen, Chi et al. (2019). “Graph networks as a universal machine learning framework
for molecules and crystals”. In: Chemistry of Materials 31.9, pp. 3564–3572.

Cohen, Albert and Ronald DeVore (2015). “Approximation of high-dimensional
parametric PDEs”. In: Acta Numerica. doi: 10.1017/S0962492915000033.

Damianou, Andreas and Neil Lawrence (2013). “Deep gaussian processes”. In:
Artificial Intelligence and Statistics, pp. 207–215.

DeVore, Ronald A. (2014). “Chapter 3: The Theoretical Foundation of Reduced
Basis Methods”. In: Model Reduction and Approximation. doi: 10.1137/1.
9781611974829.ch3. eprint: https://epubs.siam.org/doi/pdf/10.
1137/1.9781611974829.ch3. url: https://epubs.siam.org/doi/abs/
10.1137/1.9781611974829.ch3.

E, Weinan and Bing Yu (Mar. 2018). “The Deep Ritz Method: A Deep Learning-
Based Numerical Algorithm for Solving Variational Problems”. English (US). In:
Communications in Mathematics and Statistics. issn: 2194-6701. doi: 10.1007/
s40304-018-0127-z.

Evans, Lawrence C (2010). Partial Differential Equations. Vol. 19. American Math-
ematical Soc.

Fey, Matthias and Jan E. Lenssen (2019). “Fast Graph Representation Learning with
PyTorch Geometric”. In: ICLR Workshop on Representation Learning.

Garriga-Alonso, Adrià, Carl Edward Rasmussen, and Laurence Aitchison (Aug.
2018). “Deep Convolutional Networks as shallow Gaussian Processes”. In: arXiv
e-prints, arXiv:1808.05587, arXiv:1808.05587. arXiv: 1808.05587 [stat.ML].

Gholami, Amir et al. (2016). “FFT, FMM, or multigrid? A comparative study of
state-of-the-art Poisson solvers for uniform and nonuniform grids in the unit
cube”. In: SIAM Journal on Scientific Computing.

Gilbarg, David and Neil S Trudinger (2015). Elliptic partial differential equations
of second order. springer.

Gilmer, Justin et al. (2017). “Neural message passing for quantum chemistry”. In:
Proceedings of the 34th International Conference on Machine Learning.

Globerson, Amir and Roi Livni (2016). “Learning Infinite-Layer Networks: Beyond
the Kernel Trick”. In: CoRR abs/1606.05316. arXiv: 1606.05316. url: http:
//arxiv.org/abs/1606.05316.



38

Guo, Xiaoxiao, Wei Li, and Francesco Iorio (2016). “Convolutional neural networks
for steady flow approximation”. In: Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining.

Gurtin, Morton E (1982). An introduction to continuum mechanics. Academic press.

Guss, William H. (Dec. 2016). “Deep Function Machines: Generalized Neural Net-
works for Topological Layer Expression”. In: arXiv e-prints, arXiv:1612.04799,
arXiv:1612.04799. arXiv: 1612.04799 [stat.ML].

Hamilton, Will, Zhitao Ying, and Jure Leskovec (2017). “Inductive representation
learning on large graphs”. In: Advances in neural information processing systems,
pp. 1024–1034.

Herrmann, L, Ch Schwab, and J Zech (2020). “Deep ReLU Neural Network Ex-
pression Rates for Data-to-QoI Maps in Bayesian PDE Inversion”. In.

Johnson, Claes (2012). Numerical solution of partial differential equations by the
finite element method. Courier Corporation.

Kipf, Thomas N and Max Welling (2016). “Semi-supervised classification with
graph convolutional networks”. In: arXiv preprint arXiv:1609.02907.

Lord, Gabriel J, Catherine E Powell, and Tony Shardlow (2014). An introduction to
computational stochastic PDEs. Vol. 50. Cambridge University Press.

Matthews, Alexander G. de G. et al. (Apr. 2018). “Gaussian Process Behaviour in
Wide Deep Neural Networks”. In.

Murphy, Ryan L et al. (2018). “Janossy pooling: Learning deep permutation-
invariant functions for variable-size inputs”. In: arXiv preprint arXiv:1811.01900.

Neal, Radford M. (1996). Bayesian Learning for Neural Networks. Springer-Verlag.
isbn: 0387947248.

Nyström, Evert J (1930). “Über die praktische Auflösung von Integralgleichungen
mit Anwendungen auf Randwertaufgaben”. In: Acta Mathematica.

Raissi, Maziar, Paris Perdikaris, and George E Karniadakis (2019). “Physics-informed
neural networks: A deep learning framework for solving forward and inverse
problems involving nonlinear partial differential equations”. In: Journal of Com-
putational Physics 378, pp. 686–707.

Rosasco, Lorenzo, Mikhail Belkin, and Ernesto De Vito (Mar. 2010). “On Learning
with Integral Operators”. In: J. Mach. Learn. Res. 11, pp. 905–934. issn: 1532-
4435.

Roux, Nicolas Le and Yoshua Bengio (2007). “Continuous Neural Networks”. In:
Proceedings of the Eleventh International Conference on Artificial Intelligence
and Statistics. Ed. by Marina Meila and Xiaotong Shen.

Ummenhofer, Benjamin et al. (2020). “Lagrangian fluid simulation with continuous
convolutions”. In: International Conference on Learning Representations.



39

Vapnik, Vladimir N. (1998). Statistical Learning Theory. Wiley-Interscience.

Veličković, Petar et al. (2017). “Graph attention networks”. In.

Williams, Christopher K. I. (1996). “Computing with Infinite Networks”. In: Pro-
ceedings of the 9th International Conference on Neural Information Processing
Systems. Cambridge, MA, USA: MIT Press.

Zhu, Yinhao and Nicholas Zabaras (2018). “Bayesian deep convolutional encoder–decoder
networks for surrogate modeling and uncertainty quantification”. In: Journal of
Computational Physics. issn: 0021-9991. doi: https://doi.org/10.1016/
j.jcp.2018.04.018. url: http://www.sciencedirect.com/science/
article/pii/S0021999118302341.



40

C h a p t e r 3

MODEL: MULTIPOLE NEURAL OPERATOR

One of the main challenges in using deep learning-based methods for simulating
physical systems and solving partial differential equations (PDEs) is formulating
physics-based data in the desired structure for neural networks. Graph neural net-
works (GNNs) have gained popularity in this area since graphs offer a natural way
of modeling particle interactions and provide a clear way of discretizing the contin-
uum models. However, the graphs constructed for approximating such tasks usually
ignore long-range interactions due to unfavorable scaling of the computational com-
plexity with respect to the number of nodes. The errors due to these approximations
scale with the discretization of the system, thereby not allowing for generalization
under mesh-refinement. Inspired by the classical multipole methods, we propose
a novel multi-level graph neural network framework that captures interaction at
all ranges with only linear complexity. Our multi-level formulation is equivalent
to recursively adding inducing points to the kernel matrix, unifying GNNs with
multi-resolution matrix factorization of the kernel. Experiments confirm our multi-
graph network learns discretization-invariant solution operators to PDEs and can be
evaluated in linear time.

3.1 Introduction
A wide class of important scientific applications involve numerical approximation
of parametric PDEs. There has been immense research efforts in formulating and
solving the governing PDEs for a variety of physical and biological phenomena
ranging from the quantum to the cosmic scale. While this endeavor has been
successful in producing solutions to real-life problems, major challenges remain.
Solving complex PDE systems such as those arising in climate modeling, turbulent
flow of fluids, and plastic deformation of solid materials requires considerable time,
computational resources, and domain expertise. Producing accurate, efficient, and
automated data-driven approximation schemes has the potential to significantly
accelerate the rate of innovation in these fields. Machine learning based methods
enable this since they are much faster to evaluate and require only observational data
to train, in stark contrast to traditional Galerkin methods (Zienkiewicz et al., 1977)
and classical reduced order models (Rozza, Huynh, and Patera, 2007).
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While deep learning approaches such as convolutional neural networks can be fast
and powerful, they are usually restricted to a specific format or discretization. On
the other hand, many problems can be naturally formulated on graphs. An emerging
class of neural network architectures designed to operate on graph-structured data,
Graph neural networks (GNNs), have gained popularity in this area. GNNs have
seen numerous applications on tasks in imaging, natural language modeling, and
the simulation of physical systems (Wu et al., 2020). In the latter case, graphs
are typically used to model particles systems (the nodes) and the their interactions
(the edges). Recently, GNNs have been directly used to learn solutions to PDEs
by constructing graphs on the physical domain (Alet et al., 2019), and it is was
further shown that GNNs can learn mesh-invariant solution operators (Z. Li et al.,
2020). Since GNNs offer great flexibility in accurately representing solutions on
any unstructured mesh, finding efficient algorithms is an important open problem.

The computational complexity of GNNs depends on the sparsity structure of the
underlying graph, scaling with the number of edges which may grow quadratically
with the number of nodes in fully connected regions (Wu et al., 2020). Therefore,
to make computations feasible, GNNs make approximations using nearest neighbor
connection graphs which ignore long-range correlations. Such approximations
are not suitable in the context of approximating solution operators of parametric
PDEs since they will not generalize under refinement of the discretization, as we
demonstrate in Section 8.5. However, using fully connected graphs quickly becomes
computationally infeasible. Indeed evaluation of the kernel matrices outlined in
Section 3.3 is only possible for coarse discretizations due to both memory and
computational constraints. Throughout this work, we aim to develop approximation
techniques that help alleviate this issue.

To efficiently capture long-range interaction, multi-scale methods such as the clas-
sical fast multipole methods (FMM) have been developed (Greengard and Rokhlin,
1997). Based on the insight that long-range interaction are smooth, FMM decom-
poses the kernel matrix into different ranges and hierarchically imposes low-rank
structures to the long-range components (hierarchical matrices)(Börm, Grasedyck,
and Hackbusch, 2003). This decomposition can be viewed as a specific form of the
multi-resolution matrix factorization of the kernel (Kondor, Teneva, and Garg, 2014;
Börm, Grasedyck, and Hackbusch, 2003). However, the classical FMM requires
nested grids as well as the explicit form of the PDEs. We generalize this idea to
arbitrary graphs in the data-driven setting, so that the corresponding graph neural
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networks can learn discretization-invariant solution operators.

Main contributions. Inspired by the fast multi-pole method (FMM), we propose
a novel hierarchical, and multi-scale graph structure which, when deployed with
GNNs, captures global properties of the PDE solution operator with a linear time-
complexity (Greengard and Rokhlin, 1997; L. Ying, Biros, and Zorin, 2004). As
shown in Figure 3.1, starting with a nearest neighbor graph, instead of directly
adding edges to connect every pair of nodes, we add inducing points which help
facilitate long-range communication. The inducing points may be thought of as
forming a new subgraph which models long-range correlations. By adding a small
amount of inducing nodes to the original graph, we make computation more efficient.
Repeating this process yields a hierarchy of new subgraphs, modeling correlations
at different length scales.

We show that message passing through the inducing points is equivalent to imposing
a low-rank structure on the corresponding kernel matrix, and recursively adding
inducing points leads to multi-resolution matrix factorization of the kernel (Kondor,
Teneva, and Garg, 2014; Börm, Grasedyck, and Hackbusch, 2003). We propose the
graph V-cycle algorithm (Figure 3.1) inspired by FMM, so that message passing
through the V-cycle directly computes the multi-resolution matrix factorization.
We show that the computational complexity of our construction is linear in the
number of nodes, achieving the desired efficiency, and we demonstrate the linear
complexity and competitive performance through experiments on Darcy flow (Tek
et al., 1957), a linear second-order elliptic equation, and Burgers’ equation(Su and
Gardner, 1969), which considered a stepping stone to Naiver-Stokes, is nonlinear,
long-range correlated and more challenging. Our primary contributions are listed
below.

• We develop the multipole graph kernel neural network (MGKN) that can cap-
ture long-range correlations in graph-based data with a linear time complexity
in the nodes of the graph.

• We unify GNNs with multi-resolution matrix factorization through the V-cycle
algorithm.

• We verify, analytically and numerically, the linear time complexity of our
proposed methodology.
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Left: the multi-level graph. Right: one V-cycle iteration for the multipole graph
kernel network.

Figure 3.1: V-Cycle Algorithm on Graph

• We demonstrate numerically our method’s ability to capture global infor-
mation by learning mesh-invariant solution operators to the Darcy flow and
Burgers’ equations.

3.2 Related Works
Deep learning approaches for PDEs: There have been two primary approaches
in the application of deep learning for the solution of PDEs. The first parametrizes
the solution operator as a deep convolutional neural network (CNN) between finite-
dimensional Euclidean spaces G𝜃 : R𝑛 → R𝑛 (Guo, W. Li, and Iorio, 2016; Zhu and
Zabaras, 2018; Adler and Oktem, 2017; Bhatnagar et al., 2019; Ummenhofer et al.,
2020). As demonstrated in Figure 3.4, such approaches are tied to a discritezation
and cannot generalize. The second approach directly parameterizes the solution 𝑢
as a neural network G𝜃 : 𝐷 → R (E and Yu, 2018; Raissi, Perdikaris, and George
E Karniadakis, 2019; Bar and Sochen, 2019; Smith, Azizzadenesheli, and Ross,
2020; Jiang et al., 2020). This approach is close to classical Galerkin methods and
therefore suffers from the same issues w.r.t. the parametric dependence in the PDE.
For any new parameter, an optimization problem must be solved which requires
backpropagating through the differential operator L𝑎 many times, making it too
slow for many practical application. Only very few recent works have attempted to
capture the infinite-dimensional solution operator of the PDE (Alet et al., 2019; Lu,
Jin, and George Em Karniadakis, 2019; Z. Li et al., 2020; Bhattacharya, Kovachki,
and Andrew M. Stuart, 2020; Nelsen and Andrew M Stuart, 2020). The current
work advances this direction.

GNN and non-sparse graphs: A multitude of techniques such as graph convo-
lution, edge convolution, attention, and graph pooling, have been developed for
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improving GNNs (Kipf and Welling, 2016; Hamilton, Z. Ying, and Leskovec, 2017;
Gilmer et al., 2017; Veličković et al., 2017; Murphy et al., 2018). Most, however,
have been designed for sparse graphs and become computationally infeasible as the
number of edges grow. The work (Alfke and Stoll, 2019) proposes using a low-rank
decomposition to address this issue. Works on multi-resolution graphs with a U-
net like structure have also recently began to emerge and seen success in imaging,
classification, and semi-supervised learning (Ronneberger, Fischer, and Brox, 2015;
Abu-El-Haija, Kapoor, et al., 2018; Abu-El-Haija, Perozzi, et al., 2019; Gao and Ji,
2019; M. Li et al., 2020). Our work ties together many of these ideas and provides
a principled way of designing multi-scale GNNs(Gao and Ji, 2019; Abu-El-Haija,
Kapoor, et al., 2018; Abu-El-Haija, Perozzi, et al., 2019; M. Li et al., 2020). All of
these works focus on build multi-scale structure on a given graph. Our method, on
the other hand, studies how to construct randomized graphs on the spatial domain
for physics and applied math problems. We carefully craft the multi-level graph that
corresponds to multi-resolution decomposition of the kernel matrix.

Multipole and multi-resolution methods: The works (Fan, Lin, et al., 2019;
Fan, Feliu-Faba, et al., 2019) propose a similar multi-pole expansion for solving
parametric PDEs on structured grids. Our work generalizes on this idea by allowing
for arbitrary discretizations through the use of GNNs. Multi-resolution matrix
factorizations have been proposed in (Kondor, Teneva, and Garg, 2014; Ithapu et
al., 2017). We employ such ideas to build our approximation architecture.

3.3 Preliminaries
Graph Kernel Network (GKN)
Suppose thatL𝑎 in (2.4) is uniformly elliptic then the Green’s representation formula
implies

𝑢(𝑥) =
∫
𝐷

𝐺𝑎 (𝑥, 𝑦) [ 𝑓 (𝑦) + (Γ𝑎𝑢) (𝑦)] 𝑑𝑦. (3.1)

where 𝐺𝑎 is a Newtonian potential and Γ𝑎 is an operator defined by appropriate
sums and compositions of the modified trace and co-normal derivative operators
(Sauter and Schwab, 2010). We have turned the PDE (2.4) into the integral equation
(3.1) which lends itself to an iterative approximation architecture.

Kernel operator. Since 𝐺𝑎 is continuous for all points 𝑥 ≠ 𝑦, it is sensible to
model the action of the integral operator in (3.1) by a neural network 𝜅𝜙 with
parameters 𝜙. To that end, define the operator K𝑎 : U → U as the action of the
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kernel 𝜅𝜙 on 𝑢:

(K𝑎𝑢) (𝑥) =
∫
𝐷

𝜅𝜙 (𝑎(𝑥), 𝑎(𝑦), 𝑥, 𝑦)𝑢(𝑦) 𝑑𝑦 (3.2)

where the kernel neural network 𝜅𝜙 takes as inputs spatial locations 𝑥, 𝑦 as well as
the values of the parameter 𝑎(𝑥), 𝑎(𝑦). Since Γ𝑎 is itself an operator, its action
cannot be fully accounted for by the kernel 𝜅𝜙, we therefore add local parameters
𝑊 = 𝑤𝐼 toK𝑎 and apply a non-linear activation 𝜎, defining the iterative architecture
𝑢(𝑡) = 𝜎((𝑊 + K𝑎)𝑢(𝑡−1)) for 𝑡 = 1, . . . 𝑇 with 𝑢(0) = 𝑎. Since Γ𝑎 is local w.r.t 𝑢,
we only need local parameters to capture its effect, while we expect its non-locality
w.r.t. 𝑎 to manifest via the initial condition (Sauter and Schwab, 2010). To increase
expressivity, we lift 𝑢(𝑥) ∈ R to a higher dimensional representation 𝑣(𝑥) ∈ R𝑑𝑣 by
a point-wise linear transformation 𝑣0 = 𝑃𝑢0, and update the representation

𝑣 (𝑡) = 𝜎
(
(𝑊 + K𝑎)𝑣 (𝑡−1) ) , 𝑡 = 1, . . . , 𝑇 (3.3)

projecting it back 𝑢(𝑇) = 𝑄𝑣 (𝑇) at the last step. Hence the kernel is a mapping
𝜅𝜙 : R2(𝑑+1) → R𝑑𝑣×𝑑𝑣 and𝑊 ∈ R𝑑𝑣×𝑑𝑣 . Note that, since our goal is to approximate
the mapping 𝑎 ↦→ 𝑢 with 𝑓 in (2.4) fixed, we do not need explicit dependence on 𝑓

in our architecture as it will remain constant for any new 𝑎 ∈ A.

For a specific discretization 𝐷 𝑗 , 𝑎 𝑗 |𝐷 𝑗
, 𝑢 𝑗 |𝐷 𝑗

∈ R𝑛 are 𝑛-dimensional vectors, and
the evaluation of the kernel network can be viewed as a 𝑛 × 𝑛 matrix 𝐾 , with its
𝑥, 𝑦 entry (𝐾)𝑥𝑦 = 𝜅𝜙 (𝑎(𝑥), 𝑎(𝑦), 𝑥, 𝑦). Then the action of K𝑎 becomes the matrix-
vector multiplication 𝐾𝑢. For the lifted representation (3.3), for each 𝑥 ∈ 𝐷 𝑗 ,
𝑣 (𝑡) (𝑥) ∈ R𝑑𝑣 and the output of the kernel (𝐾)𝑥𝑦 = 𝜅𝜙 (𝑎(𝑥), 𝑎(𝑦), 𝑥, 𝑦) is a 𝑑𝑣 × 𝑑𝑣
matrix. Therefore 𝐾 becomes a fourth order tensor with shape 𝑛 × 𝑛 × 𝑑𝑣 × 𝑑𝑣.

Kernel convolution on graphs. Since we assume a non-uniform discretization of
𝐷 that can differ for each data pair, computing with (3.3) cannot be implemented
in a standard way. Graph neural networks offer a natural solution since message
passing on graphs can be viewed as the integration (3.2). Since the message passing
is computed locally, it avoids storing the full kernel matrix 𝐾 . Given a discretization
𝐷 𝑗 , we can adaptively construct graphs on the domain𝐷. The structure of the graph’s
adjacency matrix transfers to the kernel matrix 𝐾 . We define the edge attributes
𝑒(𝑥, 𝑦) = (𝑎(𝑥), 𝑎(𝑦), 𝑥, 𝑦) ∈ R2(𝑑+1) and update the graph nodes following (3.3)
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which mimics the message passing neural network (Gilmer et al., 2017):

𝑣 (𝑡+1) (𝑥) = (𝜎(𝑊 + K𝑎)𝑣 (𝑡)) (𝑥) ≈ 𝜎
(
𝑊𝑣 (𝑡) + 1

|𝑁 (𝑥) |
∑︁
𝑦∈𝑁 (𝑥)

𝜅𝜙
(
𝑒(𝑥, 𝑦)

)
𝑣 (𝑡) (𝑦)

)
(3.4)

where 𝑁 (𝑥) is the neighborhood of 𝑥, in this case, the entire discritized domain 𝐷 𝑗 .

Domain of Integration. Construction of fully connected graphs is memory inten-
sive and can become computationally infeasible for fine discretizations, i.e., when
|𝐷 𝑗 | is large. To partially alleviate this, we can ignore the longest range kernel
interactions as they have decayed the most and change the integration domain in
(3.2) from 𝐷 to 𝐵(𝑥, 𝑟) for some fixed radius 𝑟 > 0. This is equivalent to imposing
a sparse structure on the kernel matrix 𝐾 so that only entries around the diagonal
are non-zero and results in the complexity 𝑂 (𝑛2𝑟𝑑).

Nyström approximation. To further relieve computational complexity, we use
Nyström approximation or the inducing points method by uniformly sampling𝑚 < 𝑛

nodes from the 𝑛 nodes discretization, which is to approximate the kernel matrix by
a low-rank decomposition

𝐾𝑛𝑛 ≈ 𝐾𝑛𝑚𝐾𝑚𝑚𝐾𝑚𝑛 (3.5)

where 𝐾𝑛𝑛 = 𝐾 is the original 𝑛×𝑛 kernel matrix and 𝐾𝑚𝑚 is the𝑚×𝑚 kernel matrix
corresponding to the 𝑚 inducing points. 𝐾𝑛𝑚 and 𝐾𝑚𝑛 are transition matrices which
could include restriction, prolongation, and interpolation. Nyström approximation
further reduces the complexity to 𝑂 (𝑚2𝑟𝑑).

3.4 Multipole Graph Kernel Network
The fast multipole method (FMM) is a systematic approach of combining the afore-
mentioned sparse and low-rank approximations while achieving linear complexity.
The kernel matrix is decomposed into different ranges and a hierarchy of low-rank
structures is imposed on the long-range components. We employ this idea to con-
struct hierarchical, multi-scale graphs, without being constraint to particular forms
of the kernel (L. Ying, Biros, and Zorin, 2004). We elucidate the workings of the
FMM through matrix factorization.

The key to the fast multipole method’s linear complexity lies in the subdivision of
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the kernel matrix according to the range of interaction, as shown in Figure 3.2:

𝐾 = 𝐾1 + 𝐾2 + . . . + 𝐾𝐿 (3.6)

where 𝐾1 corresponds to the shortest-range interaction, and 𝐾𝐿 corresponds to the
longest-range interaction. While the uniform grids depicted in Figure 3.2 produce
an orthogonal decomposition of the kernel, the decomposition may be generalized
to arbitrary graphs by allowing slight overlap.

The kernel matrix 𝐾 is decomposed respect to ranges. 𝐾1 corresponds to short-range
interaction; it is sparse but high-rank. 𝐾3 corresponds to long-range interaction; it is dense
but low-rank.

Figure 3.2: Hierarchical matrix decomposition

Multi-scale graphs
We construct 𝐿 graph levels, where the finest graph corresponds to the shortest-range
interaction 𝐾1, and the coarsest graph corresponds to the longest-range interaction
𝐾𝐿 . In what follows, we will drop the time dependence from (3.3) and use the
subscript 𝑣𝑙 to denote the representation at each level of the graph. Assuming
the underlying graph is a uniform grid with resolution 𝑠 such that 𝑠𝑑 = 𝑛, the 𝐿
multi-level graphs will be grids with resolution 𝑠𝑙 = 𝑠/2𝑙−1, and consequentially
𝑛𝑙 = 𝑠

𝑑
𝑙
= (𝑠/2𝑙−1)𝑑 for 𝑙 = 1, . . . , 𝐿. In general, the underlying discretization can

be arbitrary and we produce a hierarchy of 𝐿 graphs with a decreasing number of
nodes 𝑛1, . . . , 𝑛𝐿 .

The coarse graph representation can be understood as recursively applying an in-
ducing points approximation: starting from a graph with 𝑛1 = 𝑛 nodes, we impose
inducing points of size 𝑛2, 𝑛3, . . . which all admit a low-rank kernel matrix decom-
position of the form (3.5). The original 𝑛 × 𝑛 kernel matrix 𝐾𝑙 is represented by
a much smaller 𝑛𝑙 × 𝑛𝑙 kernel matrix, denoted by 𝐾𝑙,𝑙 . As shown in Figure (3.2),
𝐾1 is full-rank but very sparse while 𝐾𝐿 is dense but low-rank. Such structure can
be achieved by applying equation (3.5) recursively to equation (3.6), leading to the
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multi-resolution matrix factorization (Kondor, Teneva, and Garg, 2014):

𝐾 ≈ 𝐾1,1 + 𝐾1,2𝐾2,2𝐾2,1 + 𝐾1,2𝐾2,3𝐾3,3𝐾3,2𝐾2,1 + · · · (3.7)

where 𝐾1,1 = 𝐾1 represents the shortest range, 𝐾1,2𝐾2,2𝐾2,1 ≈ 𝐾2, represents
the second shortest range, etc. The center matrix 𝐾𝑙,𝑙 is a 𝑛𝑙 × 𝑛𝑙 kernel matrix
corresponding to the 𝑙-level of the graph described above. The long matrices
𝐾𝑙+1,𝑙 , 𝐾𝑙,𝑙+1 are 𝑛𝑙+1 × 𝑛𝑙 and 𝑛𝑙+1 × 𝑛𝑙 transition matrices. We define them as
moving the representation 𝑣𝑙 between different levels of the graph via an integral
kernel that we learn. In general, 𝑣 (𝑡) (𝑥) ∈ R𝑑𝑣 and the output of the kernel (𝐾𝑙,𝑙′)𝑥𝑦 =
𝜅𝜙 (𝑎(𝑥), 𝑎(𝑦), 𝑥, 𝑦) is itself a 𝑑𝑣 × 𝑑𝑣 matrix, so all these matrices are again fourth-
order tensors.

𝐾𝑙,𝑙 : 𝑣𝑙 ↦→ 𝑣𝑙 =

∫
𝐵(𝑥,𝑟𝑙,𝑙)

𝜅𝜙𝑙,𝑙 (𝑎(𝑥), 𝑎(𝑦), 𝑥, 𝑦)𝑣𝑙 (𝑦) 𝑑𝑦

𝐾𝑙+1,𝑙 : 𝑣𝑙 ↦→ 𝑣𝑙+1 =

∫
𝐵(𝑥,𝑟𝑙+1,𝑙)

𝜅𝜙𝑙+1,𝑙 (𝑎(𝑥), 𝑎(𝑦), 𝑥, 𝑦)𝑣𝑙 (𝑦) 𝑑𝑦

𝐾𝑙,𝑙+1 : 𝑣𝑙+1 ↦→ 𝑣𝑙 =

∫
𝐵(𝑥,𝑟𝑙,𝑙+1)

𝜅𝜙𝑙,𝑙+1 (𝑎(𝑥), 𝑎(𝑦), 𝑥, 𝑦)𝑣𝑙+1(𝑦) 𝑑𝑦

(3.8)

(3.9)

(3.10)

Linear complexity. Each matrix in the decomposition (3.6) is represented by the
kernel matrix 𝐾𝑙,𝑙 corresponding to the appropriate sub-graph. Since the number of
non-zero entries of each row in these matrices is constant, we obtain that the com-
putational complexity is

∑
𝑙 𝑂 (𝑛𝑙). By designing the sub-graphs so that 𝑛𝑙 decays

fast enough, we can obtain linear complexity. For example, choose 𝑛𝑙 = 𝑂 (𝑛/2𝑙)
then

∑
𝑙 𝑂 (𝑛𝑙) =

∑
𝑙 𝑛/2𝑙 = 𝑂 (𝑛). Combined with a Nyström approximation, we

obtain 𝑂 (𝑚) complexity.

V-cycle Algorithm
We present a V-cycle algorithm, see Figure 3.1, for efficiently computing (3.7). It
consists of two steps: the downward pass and the upward pass. Denote the
representation in downward pass and upward pass by 𝑣̌ and 𝑣̂, respectively. In
the downward step, the algorithm starts from the fine graph representation 𝑣̌1 and
updates it by applying a downward transition 𝑣̌𝑙+1 = 𝐾𝑙+1,𝑙 𝑣̌𝑙 . In the upward step,
the algorithm starts from the coarse presentation 𝑣̂𝐿 and updates it by applying an
upward transition and the center kernel matrix 𝑣̂𝑙 = 𝐾𝑙,𝑙−1𝑣̂𝑙−1 + 𝐾𝑙,𝑙 𝑣̌𝑙 . Notice that
the one level downward and upward exactly computes 𝐾1,1 +𝐾1,2𝐾2,2𝐾2,1, and a full
𝐿-level v-cycle leads to the multi-resolution decomposition (3.7).
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Multipole graph kernel network
Employing (3.8)-(3.10), we use 𝐿 neural networks 𝜅𝜙1,1 , . . . , 𝜅𝜙𝐿,𝐿 to approximate
the kernel 𝐾𝑙,𝑙 , and 2(𝐿 − 1) neural networks 𝜅𝜙1,2 , 𝜅𝜙2,1 , . . . to approximate the
transitions 𝐾𝑙+1,𝑙 , 𝐾𝑙,𝑙+1. Following the iterative architecture (3.3), we also introduce
the linear operator𝑊 , denoting it by𝑊𝑙 for each corresponding resolution. Since it
acts on a fixed resolution, we employ it only along with the kernel 𝐾𝑙,𝑙 and not the
transitions. At each time step 𝑡 = 0, . . . , 𝑇 − 1, we perform a full V-cycle:

Downward Pass:

For 𝑙 = 1, . . . , 𝐿 : 𝑣̌
(𝑡+1)
𝑙+1 = 𝜎(𝑣̂ (𝑡)

𝑙+1 + 𝐾𝑙+1,𝑙 𝑣̌
(𝑡+1)
𝑙
)

(3.11)

Upward Pass:

For 𝑙 = 𝐿, . . . , 1 : 𝑣̂
(𝑡+1)
𝑙

= 𝜎((𝑊𝑙 + 𝐾𝑙,𝑙)𝑣̌ (𝑡+1)𝑙
+ 𝐾𝑙,𝑙−1𝑣̂

(𝑡+1)
𝑙−1 ).

(3.12)

We initialize as 𝑣 (0)1 = 𝑃𝑢(0) = 𝑃𝑎 and output 𝑢(𝑇) = 𝑄𝑣 (𝑇) = 𝑄𝑣̂ (𝑇)1 . The algorithm
unifies multi-resolution matrix decomposition with iterative graph kernel networks.
Combined with a Nyström approximation it leads to𝑂 (𝑚) computational complexity
that can be implemented with message passing neural networks. Notice GKN is a
specific case of V-cycle when 𝐿 = 1.

3.5 Experiments
Properties of the multipole graph kernel network
In this section, we show that MGKN has linear complexity and learns discretization
invariant solutions by solving the steady-state of Darcy flow. In particular, we
consider the 2-d PDE

−∇ · (𝑎(𝑥)∇𝑢(𝑥)) = 𝑓 (𝑥) 𝑥 ∈ (0, 1)2

𝑢(𝑥) = 0 𝑥 ∈ 𝜕 (0, 1)2
(3.13)

and approximate the mapping 𝑎 ↦→ 𝑢 which is non-linear despite the fact that (3.13)
is a linear PDE. We model the coefficients 𝑎 as random piece-wise constant functions
and generate data by solving (3.13) using a second-order finite difference scheme on
a fine grid. Data of coarser resolutions are sub-sampled. See the supplements for
further details. The code depends on Pytorch Geometric(Fey and Lenssen, 2019),
also included in the supplements.
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Left: compared to GKN whose complexity scales quadratically with the number of nodes,
MGKN has a linear complexity; Mid: Adding more levels reduces test error; Right:
MGKN can be trained on a coarse resolution and perform well when tested on a fine
resolution, showing invariance to discretization.

Figure 3.3: Properties of multipole graph kernel network (MGKN) on Darcy flow

We use Nyström approximation by sampling𝑚1, . . . , 𝑚𝐿 nodes for each level. When
changing the number of levels, we fix coarsest level 𝑚𝐿 = 25, 𝑟𝐿,𝐿 = 2−1, and let
𝑚𝑙 = 25 · 4𝐿−𝑙 , 𝑟𝑙,𝑙 = 2−(𝐿−𝑙) , and 𝑟𝑙,𝑙+1 = 𝑟𝑙+1,𝑙 = 2−(𝐿−𝑙)+1/2. This set-up is
one example that can obtain linear complexity. In general, any choice satisfying∑
𝑙 𝑚

2
𝑙
𝑟2
𝑙,𝑙

= 𝑂 (𝑚1) also works. We set width 𝑑𝑣 = 64, iteration 𝑇 = 5 and kernel
network 𝜅𝜙𝑙,𝑙 as a three-layer neural network with width 256/2(𝑙−1) , so that coarser
grids will have smaller kernel networks.

1. Linear complexity: The left most plot in Figure 3.3 shows that MGKN (blue
line) achieves linear time complexity (the time to evaluate one equation) w.r.t. the
number of nodes, while GKN (red line) has quadratic complexity (the solid line
is interpolated; the dash line is extrapolated). Since the GPU memory used for
backpropagation also scales with the number of edges, GKN is limited to 𝑚 ≤ 800
on a single 11G-GPU while MGKN can scale to much higher resolutions . In other
words, MGKN can be applicable for larger settings where GKN cannot.

2. Comparing with single-graph: As shown in Figure 3.3 (mid), adding multi-
leveled graphs helps decrease the error. The MGKN depicted in blue bars starts from
a fine sampling 𝐿 = 1;𝑚 = [1600], and adding subgraphs, 𝐿 = 2;𝑚 = [400, 1600],
𝐿 = 3;𝑚 = [100, 400, 1600], up to, 𝐿 = 4;𝑚 = [25, 100, 400, 1600]. When 𝐿 = 1,
MGKN and GKN are equivalent. This experiment shows using multi-level graphs
helps improve accuracy without increasing much of time-complexity.
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3. Generalization to resolution: The MGKN is discretization invariant, and
therefore capable of super-resolution. We train with nodes sampled from a 𝑠 × 𝑠
resolution mesh and test on nodes sampled from a 𝑠′×𝑠′ resolution mesh. As shown in
on the right of Figure 3.3, MGKN achieves similar testing error on 𝑠′ = 61, 121, 241,
independently of the training discretization.

Comparison with benchmarks
We compare the accuracy of our methodology with other deep learning methods as
well as reduced order modeling techniques that are commonly used in practice. As
a test bed, we use Darcy flow (3.13) and the 1-d viscous Burger’s equations:

𝜕𝑡𝑢(𝑥, 𝑡) + 𝜕𝑥 (𝑢2(𝑥, 𝑡)/2) = 𝜈𝜕𝑥𝑥𝑢(𝑥, 𝑡), 𝑥 ∈ (0, 2𝜋), 𝑡 ∈ (0, 1]
𝑢(𝑥, 0) = 𝑢0(𝑥), 𝑥 ∈ (0, 2𝜋)

(3.14)

with periodic boundary conditions. We consider mapping the initial condition to
the solution at time one 𝑢0 ↦→ 𝑢(·, 1). Burger’s equation re-arranges low to mid
range energies resulting in steep discontinuities that are dampened proportionately
to the size of the viscosity 𝜈. It acts as a simplified model for the Navier-Stokes
equation. We sample initial conditions as Gaussian random fields and solve (6.18)
via a split-step method on a fine mesh, sub-sampling other data as needed; two
examples of 𝑢0 and 𝑢(·, 1) are shown in the middle and right of Figure 3.4.

Figure 3.4 shows the relative test errors for a variety of methods on Burger’s (6.18)
(left) as a function of the grid resolution. First notice that MGKN achieves a
constant steady state test error, demonstrating that it has learned the true infinite-
dimensional solution operator irrespective of the discretization. This is in contrast
to the state-of-the-art fully convolution network ( FCN) proposed in (Zhu and
Zabaras, 2018) which has the property that what it learns is tied to a specific
discretization. Indeed, we see that, in both cases, the error increases with the
resolution since standard convolution layer are parametrized locally and therefore
cannot capture the long-range correlations of the solution operator. Using linear
spaces, the ( PCA+NN) method proposed in (Bhattacharya, Kovachki, and Andrew
M. Stuart, 2020) utilizes deep learning to produce a fast, fully data-driven reduced
order model. The graph convolution network ( GCN) method follows (Alet et
al., 2019)’s architecture, with naive nearest neighbor connection. It shows simple
nearest-neighbor graph structures are insufficient. The graph kernel network ( GKN)
employs an architecture similar to (3.3) but, without the multi-level graph extension,
it can be slow due the quadratic time complexity. For Burger’s equation, when
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1-d Burgers equation with viscosity 𝜈 = 0.1. Left: performance of different methods.
MGKN has competitive performance. Mid: input functions (𝑢0) of two examples. Right:
corresponding outputs from MGKN of the two examples, and their ground truth (dash line).
The error is minimal on both examples.

Figure 3.4: Comparsion with benchmarks on Burgers equation, with examples of
inputs and outputs.

linear spaces are no longer near-optimal, MGKN is the best performing method.
This is a very encouraging result since many challenging applied problem are not
well approximated by linear spaces and can therefore greatly benefit from non-linear
approximation methods such as MGKN. For details on the other methods, see the
supplements.

3.6 Discussion and Conclusion
We introduced the multipole graph kernel network (MGKN), a graph-based algo-
rithm able to capture correlations in data at any length scale with a linear time
complexity. Our work ties together ideas from graph neural networks, multi-scale
modeling, and matrix factorization. Using a kernel integration architecture, we
validate our methodology by showing that it can learn mesh-invariant solutions
operators to parametric PDEs. Ideas in this work are not tied to our particular
applications and can be used provide significant speed-up for processing densely
connected graph data.
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C h a p t e r 4

MODEL: FOURIER NEURAL OPERATOR

The classical development of neural networks has primarily focused on learning
mappings between finite-dimensional Euclidean spaces. Recently, this has been
generalized to neural operators that learn mappings between function spaces. For
partial differential equations (PDEs), neural operators directly learn the mapping
from any functional parametric dependence to the solution. Thus, they learn an
entire family of PDEs, in contrast to classical methods which solve one instance of
the equation. In this work, we formulate a new neural operator by parameterizing
the integral kernel directly in Fourier space, allowing for an expressive and efficient
architecture. We perform experiments on Burgers’ equation, Darcy flow, and Navier-
Stokes equation. Experiments shows that Fourier Neural Operator achieves superior
accuracy compared to previous learning-based solvers under fixed resolution.

4.1 Introduction
Many problems in science and engineering involve solving complex partial differ-
ential equation (PDE) systems repeatedly for different values of some parameters.
Examples arise in molecular dynamics, micro-mechanics, and turbulent flows. Of-
ten such systems require fine discretization in order to capture the phenomenon being
modeled. As a consequence, traditional numerical solvers are slow and sometimes
inefficient. For example, when designing materials such as airfoils, one needs to
solve the associated inverse problem where thousands of evaluations of the forward
model are needed. A fast method can make such problems feasible.

Conventional solvers vs. Data-driven methods. Traditional solvers such as finite
element methods (FEM) and finite difference methods (FDM) solve the equation by
discretizing the space. Therefore, they impose a trade-off on the resolution: coarse
grids are fast but less accurate; fine grids are accurate but slow. Complex PDE
systems, as described above, usually require a very fine discretization, and therefore
very challenging and time-consuming for traditional solvers. On the other hand,
data-driven methods can directly learn the trajectory of the family of equations from
the data. As a result, the learning-based method can be orders of magnitude faster
than the conventional solvers.
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Machine learning methods may hold the key to revolutionizing scientific disci-
plines by providing fast solvers that approximate or enhance traditional ones (Raissi,
Perdikaris, and George E Karniadakis, 2019; C. M. Jiang et al., 2020; Greenfeld
et al., 2019; Kochkov et al., 2021). However, classical neural networks map between
finite-dimensional spaces and can therefore only learn solutions tied to a specific
discretization. This is often a limitation for practical applications and therefore
the development of mesh-invariant neural networks is required. We first outline
two mainstream neural network-based approaches for PDEs: the finite-dimensional
operators and physics-informed neural network.

Finite-dimensional operators. These approaches parameterize the solution op-
erator as a deep convolutional neural network between finite-dimensional Euclidean
spaces Guo, W. Li, and Iorio, 2016; Zhu and Zabaras, 2018; Adler and Oktem,
2017; Bhatnagar et al., 2019; Khoo, J. Lu, and Ying, 2017. Such approaches are,
by definition, mesh-dependent and will need modifications and tuning for different
resolutions and discretizations in order to achieve consistent error (if at all possible).
Furthermore, these approaches are limited to the discretization size and geometry
of the training data and hence, it is not possible to query solutions at new points in
the domain. In contrast, we show, for our method, both invariance of the error to
grid resolution, and the ability to transfer the solution between meshes.

Physics-Informed Neural Network. The second approach directly parameterizes
the solution function as a neural network (E and Yu, 2018; Raissi, Perdikaris, and
George E Karniadakis, 2019; Bar and Sochen, 2019; Smith, Azizzadenesheli, and
Ross, 2020; Pan and Duraisamy, 2020). This approach is designed to model one
specific instance of the PDE, not the solution operator. It is mesh-independent and
accurate, but for any given new instance of the functional parameter/coefficient, it
requires training a new neural network. The approach closely resembles classical
methods such as finite elements, replacing the linear span of a finite set of local basis
functions with the space of neural networks. The Neural-FEM approach suffers from
the same computational issue as classical methods: the optimization problem needs
to be solved for every new instance. Furthermore, the approach is limited to a setting
in which the underlying PDE is known.

Neural Operators. Recently, a new line of work proposed learning mesh-free,
infinite-dimensional operators with neural networks (L. Lu, Jin, and George Em
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Zero-shot super-resolution: Navier-Stokes Equation with viscosity 𝜈 = 1e−4; Ground truth
on top and prediction on bottom; trained on 64×64×20 dataset; evaluated on 256×256×80
(see Section 4.4).

Figure 4.1: Zero-shot super-resolution on Navier-Stokes.

Karniadakis, 2019; Bhattacharya, Kovachki, and Andrew M. Stuart, 2020; Nelsen
and A. Stuart, 2020; Z. Li et al., 2020b; Z. Li et al., 2020a; Patel et al., 2021).
The neural operator remedies the mesh-dependent nature of the finite-dimensional
operator methods discussed above by producing a single set of network parameters
that may be used with different discretizations. It has the ability to transfer solutions
between meshes. Furthermore, the neural operator needs to be trained only once.
Obtaining a solution for a new instance of the parameter requires only a forward pass
of the network, alleviating the major computational issues incurred in Neural-FEM
methods. Lastly, the neural operator requires no knowledge of the underlying PDE,
only data. Thus far, neural operators have not yielded efficient numerical algorithms
that can parallel the success of convolutional or recurrent neural networks in the
finite-dimensional setting due to the cost of evaluating integral operators. Through
the fast Fourier transform, our work alleviates this issue.

Fourier Transform. The Fourier transform is frequently used in spectral methods
for solving differential equations, since differentiation is equivalent to multiplication
in the Fourier domain. Fourier transforms have also played an important role in the
development of deep learning. In theory, they appear in the proof of the universal
approximation theorem (Hornik, Stinchcombe, White, et al., 1989) and, empirically,
they have been used to speed up convolutional neural networks (Mathieu, Henaff,
and LeCun, 2013). Neural network architectures involving the Fourier transform
or the use of sinusoidal activation functions have also been proposed and studied
(mingo2004Fourier; Bengio, LeCun, et al., 2007; Sitzmann et al., 2020). Recently,
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some spectral methods for PDEs have been extended to neural networks (Fan,
Bohorquez, and Ying, 2019; Fan, Lin, et al., 2019; Kashinath, Marcus, et al.,
2020). We build on these works by proposing a neural operator architecture defined
directly in Fourier space with quasi-linear time complexity and state-of-the-art
approximation capabilities.

Our Contributions. We introduce the Fourier neural operator, a novel deep learn-
ing architecture able to learn mappings between infinite-dimensional spaces of func-
tions; the integral operator is restricted to a convolution, and instantiated through a
linear transformation in the Fourier domain.

• The Fourier neural operator learns the resolution-invariant solution opera-
tor for the family of Navier-Stokes equation in the turbulent regime, where
previous graph-based neural operators do not converge.

• By construction, the method shares the same learned network parameters
irrespective of the discretization used on the input and output spaces. It can
do zero-shot super-resolution: trained on a lower resolution directly evaluated
on a higher resolution, as shown in Figure 4.1.

• The proposed method consistently outperforms all existing deep learning
methods even when fixing the resolution to be 64× 64. It achieves error rates
that are 30% lower on Burgers’ Equation, 60% lower on Darcy Flow, and 30%
lower on Navier Stokes (turbulent regime with viscosity 𝜈 = 1e−4). When
learning the mapping for the entire time series, the method achieves < 1%
error with viscosity 𝜈 = 1e−3 and 8% error with viscosity 𝜈 = 1e−4.

• On a 256 × 256 grid, the Fourier neural operator has an inference time of
only 0.005s compared to the 2.2𝑠 of the pseudo-spectral method used to solve
Navier-Stokes. Despite its tremendous speed advantage, the method does not
suffer from accuracy degradation when used in downstream applications such
as solving the Bayesian inverse problem, as shown in Figure 4.4.

We observed that the proposed framework can approximate complex operators rais-
ing in PDEs that are highly non-linear, with high frequency modes and slow energy
decay. The power of neural operators comes from combining linear, global integral
operators (via the Fourier transform) and non-linear, local activation functions. Sim-
ilar to the way standard neural networks approximate highly non-linear functions by
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(a) The full architecture of neural operator: start from input 𝑎. 1. Lift to a higher
dimension channel space by a neural network 𝑃. 2. Apply four layers of integral operators
and activation functions. 3. Project back to the target dimension by a neural network 𝑄.
Output 𝑢. (b) Fourier layers: Start from input 𝑣. On top: apply the Fourier transform G; a
linear transform 𝑅 on the lower Fourier modes and filters out the higher modes; then apply
the inverse Fourier transform G−1. On the bottom: apply a local linear transform𝑊 .

Figure 4.2: The architecture of the neural operators and Fourier layer

combining linear multiplications with non-linear activations, the proposed neural
operators can approximate highly non-linear operators.

4.2 Neural Operator
The neural operator, proposed in (Z. Li et al., 2020b), is formulated as an iterative
architecture 𝑣0 ↦→ 𝑣1 ↦→ . . . ↦→ 𝑣𝑇 where 𝑣 𝑗 for 𝑗 = 0, 1, . . . , 𝑇 − 1 is a sequence of
functions each taking values in R𝑑𝑣 . As shown in Figure 4.2 (a), the input 𝑎 ∈ A
is first lifted to a higher dimensional representation 𝑣0(𝑥) = 𝑃(𝑎(𝑥)) by the local
transformation 𝑃which is usually parameterized by a shallow fully-connected neural
network. Then we apply several iterations of updates 𝑣𝑡 ↦→ 𝑣𝑡+1 (defined below).
The output 𝑢(𝑥) = 𝑄(𝑣𝑇 (𝑥)) is the projection of 𝑣𝑇 by the local transformation
𝑄 : R𝑑𝑣 → R𝑑𝑢 . In each iteration, the update 𝑣𝑡 ↦→ 𝑣𝑡+1 is defined as the composition
of a non-local integral operator K and a local, nonlinear activation function 𝜎.

Definition 4.2.1 (Iterative updates) Define the update to the representation 𝑣𝑡 ↦→
𝑣𝑡+1 by

𝑣𝑡+1(𝑥) := 𝜎
(
𝑊𝑣𝑡 (𝑥) +

(
K(𝑎; 𝜙)𝑣𝑡

)
(𝑥)

)
, ∀𝑥 ∈ 𝐷 (4.1)

where K : A × ΘK → L(U(𝐷;R𝑑𝑣 ),U(𝐷;R𝑑𝑣 )) maps to bounded linear oper-
ators on U(𝐷;R𝑑𝑣 ) and is parameterized by 𝜙 ∈ ΘK , 𝑊 : R𝑑𝑣 → R𝑑𝑣 is a linear
transformation, and 𝜎 : R→ R is a non-linear activation function whose action is
defined component-wise.



61

We chooseK(𝑎; 𝜙) to be a kernel integral transformation parameterized by a neural
network.

Definition 4.2.2 (Kernel integral operator K) Define the kernel integral operator
mapping in (4.1) by(

K(𝑎; 𝜙)𝑣𝑡
)
(𝑥) :=

∫
𝐷

𝜅
(
𝑥, 𝑦, 𝑎(𝑥), 𝑎(𝑦); 𝜙

)
𝑣𝑡 (𝑦)d𝑦, ∀𝑥 ∈ 𝐷 (4.2)

where 𝜅𝜙 : R2(𝑑+𝑑𝑎) → R𝑑𝑣×𝑑𝑣 is a neural network parameterized by 𝜙 ∈ ΘK .

Here 𝜅𝜙 plays the role of a kernel function which we learn from data. Together defi-
nitions 1 and 2 constitute a generalization of neural networks to infinite-dimensional
spaces as first proposed in Z. Li et al., 2020b. Notice even the integral operator
is linear, the neural operator can learn highly non-linear operators by composing
linear integral operators with non-linear activation functions, analogous to standard
neural networks.

If we remove the dependence on the function 𝑎 and impose 𝜅𝜙 (𝑥, 𝑦) = 𝜅𝜙 (𝑥 − 𝑦),
we obtain that (4.2) is a convolution operator, which is a natural choice from the
perspective of fundamental solutions. We exploit this fact in the following section
by parameterizing 𝜅𝜙 directly in Fourier space and using the Fast Fourier Transform
(FFT) to efficiently compute (4.2). This leads to a fast architecture that obtains
state-of-the-art results for PDE problems.

4.3 Fourier Neural Operator
We propose replacing the kernel integral operator in (4.2), by a convolution operator
defined in Fourier space. Let G denote the Fourier transform of a function 𝑓 : 𝐷 →
R𝑑𝑣 and G−1 its inverse then

(G 𝑓 ) 𝑗 (𝑘) =
∫
𝐷

𝑓 𝑗 (𝑥)𝑒−2𝑖𝜋⟨𝑥,𝑘⟩d𝑥, (G−1 𝑓 ) 𝑗 (𝑥) =
∫
𝐷

𝑓 𝑗 (𝑘)𝑒2𝑖𝜋⟨𝑥,𝑘⟩d𝑘

for 𝑗 = 1, . . . , 𝑑𝑣 where 𝑖 =
√
−1 is the imaginary unit. By letting 𝜅𝜙 (𝑥, 𝑦, 𝑎(𝑥), 𝑎(𝑦)) =

𝜅𝜙 (𝑥 − 𝑦) in (4.2) and applying the convolution theorem, we find that(
K(𝑎; 𝜙)𝑣𝑡

)
(𝑥) = G−1 (G(𝜅𝜙) · G(𝑣𝑡)) (𝑥), ∀𝑥 ∈ 𝐷.

We, therefore, propose to directly parameterize 𝜅𝜙 in Fourier space.
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Definition 4.3.1 (Fourier integral operator K) Define the Fourier integral oper-
ator (

K(𝜙)𝑣𝑡
)
(𝑥) = G−1

(
𝑅𝜙 · (G𝑣𝑡)

)
(𝑥) ∀𝑥 ∈ 𝐷 (4.3)

where 𝑅𝜙 is the Fourier transform of a periodic function 𝜅 : 𝐷̄ → R𝑑𝑣×𝑑𝑣 parame-
terized by 𝜙 ∈ ΘK . An illustration is given in Figure 4.2 (b).

For frequency mode 𝑘 ∈ 𝐷, we have (G𝑣𝑡) (𝑘) ∈ C𝑑𝑣 and 𝑅𝜙 (𝑘) ∈ C𝑑𝑣×𝑑𝑣 . Notice
that since we assume 𝜅 is periodic, it admits a Fourier series expansion, so we may
work with the discrete modes 𝑘 ∈ Z𝑑 . We pick a finite-dimensional parameterization
by truncating the Fourier series at a maximal number of modes 𝑘max = |𝑍𝑘max | =
|{𝑘 ∈ Z𝑑 : |𝑘 𝑗 | ≤ 𝑘max, 𝑗 , for 𝑗 = 1, . . . , 𝑑}|. We thus parameterize 𝑅𝜙 directly as
complex-valued (𝑘max×𝑑𝑣×𝑑𝑣)-tensor comprising a collection of truncated Fourier
modes and therefore drop 𝜙 from our notation. Since 𝜅 is real-valued, we impose
conjugate symmetry. We note that the set 𝑍𝑘max is not the canonical choice for the
low frequency modes of 𝑣𝑡 . Indeed, the low frequency modes are usually defined by
placing an upper-bound on the ℓ1-norm of 𝑘 ∈ Z𝑑 . We choose 𝑍𝑘max as above since
it allows for an efficient implementation.

The discrete case and the FFT. Assuming the domain 𝐷 is discretized with
𝑛 ∈ N points, we have that 𝑣𝑡 ∈ R𝑛×𝑑𝑣 and G(𝑣𝑡) ∈ C𝑛×𝑑𝑣 . Since we convolve
𝑣𝑡 with a function which only has 𝑘max Fourier modes, we may simply truncate
the higher modes to obtain G(𝑣𝑡) ∈ C𝑘max×𝑑𝑣 . Multiplication by the weight tensor
𝑅 ∈ C𝑘max×𝑑𝑣×𝑑𝑣 is then(

𝑅 · (G𝑣𝑡)
)
𝑘,𝑙

=

𝑑𝑣∑︁
𝑗=1

𝑅𝑘,𝑙, 𝑗 (G𝑣𝑡)𝑘, 𝑗 , 𝑘 = 1, . . . , 𝑘max, 𝑗 = 1, . . . , 𝑑𝑣 . (4.4)

When the discretization is uniform with resolution 𝑠1×· · ·×𝑠𝑑 = 𝑛,G can be replaced
by the Fast Fourier Transform. For 𝑓 ∈ R𝑛×𝑑𝑣 , 𝑘 = (𝑘1, . . . , 𝑘𝑑) ∈ Z𝑠1 × · · · × Z𝑠𝑑 ,
and 𝑥 = (𝑥1, . . . , 𝑥𝑑) ∈ 𝐷, the FFT Ĝ and its inverse Ĝ−1 are defined as

(Ĝ 𝑓 )𝑙 (𝑘) =
𝑠1−1∑︁
𝑥1=0
· · ·

𝑠𝑑−1∑︁
𝑥𝑑=0

𝑓𝑙 (𝑥1, . . . , 𝑥𝑑)𝑒
−2𝑖𝜋

∑𝑑
𝑗=1

𝑥 𝑗 𝑘 𝑗

𝑠 𝑗 ,

(Ĝ−1 𝑓 )𝑙 (𝑥) =
𝑠1−1∑︁
𝑘1=0
· · ·

𝑠𝑑−1∑︁
𝑘𝑑=0

𝑓𝑙 (𝑘1, . . . , 𝑘𝑑)𝑒
2𝑖𝜋

∑𝑑
𝑗=1

𝑥 𝑗 𝑘 𝑗

𝑠 𝑗

for 𝑙 = 1, . . . , 𝑑𝑣. In this case, the set of truncated modes becomes

𝑍𝑘max = {(𝑘1, . . . , 𝑘𝑑) ∈ Z𝑠1×· · ·×Z𝑠𝑑 | 𝑘 𝑗 ≤ 𝑘max, 𝑗 or 𝑠 𝑗−𝑘 𝑗 ≤ 𝑘max, 𝑗 , for 𝑗 = 1, . . . , 𝑑}.
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When implemented, 𝑅 is treated as a (𝑠1 × · · · × 𝑠𝑑 × 𝑑𝑣 × 𝑑𝑣)-tensor and the
above definition of 𝑍𝑘max corresponds to the “corners” of 𝑅, which allows for a
straight-forward parallel implementation of (4.4) via matrix-vector multiplication.
In practice, we have found that choosing 𝑘max, 𝑗 = 12 which yields 𝑘max = 12𝑑

parameters per channel to be sufficient for all the tasks that we consider.

Parameterizations of 𝑅. In general, 𝑅 can be defined to depend on (G𝑎) to
parallel (4.2). Indeed, we can define 𝑅𝜙 : Z𝑑 × R𝑑𝑣 → R𝑑𝑣×𝑑𝑣 as a parametric
function that maps

(
𝑘, (G𝑎) (𝑘)) to the values of the appropriate Fourier modes. We

have experimented with linear as well as neural network parameterizations of 𝑅𝜙.
We find that the linear parameterization has a similar performance to the previously
described direct parameterization, while neural networks have worse performance.
This is likely due to the discrete structure of the space Z𝑑 . Our experiments in this
work focus on the direct parameterization presented above.

Invariance to discretization. The Fourier layers are discretization-invariant be-
cause they can learn from and evaluate functions which are discretized in an arbitrary
way. Since parameters are learned directly in Fourier space, resolving the functions
in physical space simply amounts to projecting on the basis 𝑒2𝜋𝑖⟨𝑥,𝑘⟩ which are well-
defined everywhere on R𝑑 . This allows us to achieve zero-shot super-resolution as
shown in Section 4.4. Furthermore, our architecture has a consistent error at any
resolution of the inputs and outputs. On the other hand, notice that, in Figure 4.3,
the standard CNN methods we compare against have an error that grows with the
resolution.

Quasi-linear complexity. The weight tensor 𝑅 contains 𝑘max < 𝑛 modes, so
the inner multiplication has complexity 𝑂 (𝑘max). Therefore, the majority of the
computational cost lies in computing the Fourier transform G(𝑣𝑡) and its inverse.
General Fourier transforms have complexity 𝑂 (𝑛2), however, since we truncate the
series the complexity is in fact𝑂 (𝑛𝑘max), while the FFT has complexity𝑂 (𝑛 log 𝑛).
Generally, we have found using FFTs to be very efficient. However a uniform
discretization is required.

4.4 Numerical Experiments
In this section, we compare the proposed Fourier neural operator with multiple
finite-dimensional architectures as well as operator-based approximation methods
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on the 1-d Burgers’ equation, the 2-d Darcy Flow problem, and 2-d Navier-Stokes
equation. We do not compare against traditional solvers (FEM/FDM) or neural-
FEM type methods since our goal is to produce an efficient operator approximation
that can be used for downstream applications. We demonstrate one such application
to the Bayesian inverse problem in Section 4.4.

We construct our Fourier neural operator by stacking four Fourier integral operator
layers as specified in (4.1) and (9.5) with the ReLU activation as well as batch
normalization. Unless otherwise specified, we use 𝑁 = 1000 training instances and
200 testing instances. We use Adam optimizer to train for 500 epochs with an initial
learning rate of 0.001 that is halved every 100 epochs. We set 𝑘max, 𝑗 = 16, 𝑑𝑣 = 64
for the 1-d problem and 𝑘max, 𝑗 = 12, 𝑑𝑣 = 32 for the 2-d problems. Lower resolution
data are downsampled from higher resolution. All the computation is carried on a
single Nvidia V100 GPU with 16GB memory.

Remark on Resolution. Traditional PDE solvers such as FEM and FDM approx-
imate a single function and therefore their error to the continuum decreases as the
resolution is increased. On the other hand, operator approximation is independent
of the ways its data is discretized as long as all relevant information is resolved.
Resolution-invariant operators have consistent error rates among different resolu-
tions as shown in Figure 4.3. Further, resolution-invariant operators can do zero-shot
super-resolution, as shown in Section 4.4.

Benchmarks for time-independent problems (Burgers and Darcy): NN: a
simple point-wise feedforward neural network. RBM: the classical Reduced
Basis Method (using a POD basis) (DeVore, 2014). FCN: a the-state-of-the-art
neural network architecture based on Fully Convolution Networks (Zhu and Zabaras,
2018). PCANN: an operator method using PCA as an autoencoder on both the
input and output data and interpolating the latent spaces with a neural network
(Bhattacharya, Kovachki, and Andrew M. Stuart, 2020). GNO: the original graph
neural operator (Z. Li et al., 2020b). MGNO: the multipole graph neural operator
(Z. Li et al., 2020a). LNO: a neural operator method based on the low-rank
decomposition of the kernel 𝜅(𝑥, 𝑦) :=

∑𝑟
𝑗=1 𝜙 𝑗 (𝑥)𝜓 𝑗 (𝑦), similar to the unstacked

DeepONet proposed in (L. Lu, Jin, and George Em Karniadakis, 2019). FNO: the
newly purposed Fourier neural operator.
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Left: benchmarks on Burgers equation; Mid: benchmarks on Darcy Flow for different res-
olutions; Right: the learning curves on Navier-Stokes 𝜈 = 1e−3 with different benchmarks.
Train and test on the same resolution.

Figure 4.3: Benchmark on Burger’s equation, Darcy Flow, and Navier-Stokes

Benchmarks for time-dependent problems (Navier-Stokes): ResNet: 18 lay-
ers of 2-d convolution with residual connections (He et al., 2016). U-Net: A
popular choice for image-to-image regression tasks consisting of four blocks with
2-d convolutions and deconvolutions (Ronneberger, Fischer, and Brox, 2015). TF-
Net: A network designed for learning turbulent flows based on a combination of
spatial and temporal convolutions (Wang et al., 2020). FNO-2d: 2-d Fourier neural
operator with a RNN structure in time. FNO-3d: 3-d Fourier neural operator that
directly convolves in space-time.

Burgers’ Equation
The 1-d Burgers’ equation is a non-linear PDE with various applications including
modeling the one dimensional flow of a viscous fluid. It takes the form

𝜕𝑡𝑢(𝑥, 𝑡) + 𝜕𝑥 (𝑢2(𝑥, 𝑡)/2) = 𝜈𝜕𝑥𝑥𝑢(𝑥, 𝑡), 𝑥 ∈ (0, 1), 𝑡 ∈ (0, 1]
𝑢(𝑥, 0) = 𝑢0(𝑥), 𝑥 ∈ (0, 1)

(4.5)

with periodic boundary conditions where 𝑢0 ∈ 𝐿2
per((0, 1);R) is the initial condition

and 𝜈 ∈ R+ is the viscosity coefficient. We aim to learn the operator mapping the
initial condition to the solution at time one, G† : 𝐿2

per((0, 1);R) → 𝐻𝑟per((0, 1);R)
defined by 𝑢0 ↦→ 𝑢(·, 1) for any 𝑟 > 0.

The results of our experiments are shown in Figure 4.3 (a) and Table 4.1. Our pro-
posed method obtains the lowest relative error compared to any of the benchmarks.
Further, the error is invariant with the resolution, while the error of convolution
neural network based methods (FCN) grows with the resolution. Compared to
other neural operator methods such as GNO and MGNO that use Nyström sam-
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pling in physical space, the Fourier neural operator is both more accurate and more
computationally efficient.

Networks 𝑠 = 256 𝑠 = 512 𝑠 = 1024 𝑠 = 2048 𝑠 = 4096 𝑠 = 8192
NN 0.4714 0.4561 0.4803 0.4645 0.4779 0.4452
GCN 0.3999 0.4138 0.4176 0.4157 0.4191 0.4198
FCN 0.0958 0.1407 0.1877 0.2313 0.2855 0.3238
PCANN 0.0398 0.0395 0.0391 0.0383 0.0392 0.0393
GNO 0.0555 0.0594 0.0651 0.0663 0.0666 0.0699
LNO 0.0212 0.0221 0.0217 0.0219 0.0200 0.0189
MGNO 0.0243 0.0355 0.0374 0.0360 0.0364 0.0364
FNO 0.0149 0.0158 0.0160 0.0146 0.0142 0.0139

Table 4.1: Benchmarks on 1-d Burgers’ equation

Networks 𝑠 = 85 𝑠 = 141 𝑠 = 211 𝑠 = 421
NN 0.1716 0.1716 0.1716 0.1716
FCN 0.0253 0.0493 0.0727 0.1097
PCANN 0.0299 0.0298 0.0298 0.0299
RBM 0.0244 0.0251 0.0255 0.0259
GNO 0.0346 0.0332 0.0342 0.0369
LNO 0.0520 0.0461 0.0445 −
MGNO 0.0416 0.0428 0.0428 0.0420
FNO 0.0108 0.0109 0.0109 0.0098

Table 4.2: Benchmarks on 2-d Darcy Flow

Darcy Flow
We consider the steady-state of the 2-d Darcy Flow equation on the unit box which
is the second order, linear, elliptic PDE

−∇ · (𝑎(𝑥)∇𝑢(𝑥)) = 𝑓 (𝑥) 𝑥 ∈ (0, 1)2

𝑢(𝑥) = 0 𝑥 ∈ 𝜕 (0, 1)2
(4.6)

with a Dirichlet boundary where 𝑎 ∈ 𝐿∞((0, 1)2;R+) is the diffusion coefficient and
𝑓 ∈ 𝐿2((0, 1)2;R) is the forcing function. This PDE has numerous applications
including modeling the pressure of subsurface flow, the deformation of linearly
elastic materials, and the electric potential in conductive materials. We are interested
in learning the operator mapping the diffusion coefficient to the solution, G† :
𝐿∞((0, 1)2;R+) → 𝐻1

0 ((0, 1)
2;R+) defined by 𝑎 ↦→ 𝑢. Note that although the PDE

is linear, the operator G† is not.
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The results of our experiments are shown in Figure 4.3 (b) and Table 4.2. The pro-
posed Fourier neural operator obtains nearly one order of magnitude lower relative
error compared to any benchmarks. We again observe the invariance of the error
with respect to the resolution.

2D and 3D Convolutions. FNO-2D, U-Net, TF-Net, and ResNet all do 2D-
convolution in the spatial domain and recurrently propagate in the time domain
(2D+RNN). The operator maps the solution at the previous 10 time steps to the next
time step (2D functions to 2D functions). On the other hand, FNO-3D performs
convolution in space-time. It maps the initial time steps directly to the full trajectory
(3D functions to 3D functions). The 2D+RNN structure can propagate the solution
to any arbitrary time 𝑇 in increments of a fixed interval length Δ𝑡, while the Conv3D
structure is fixed to the interval [0, 𝑇] but can transfer the solution to an arbitrary
time-discretization. We find the 3-d method to be more expressive and easier to
train compared to its RNN-structured counterpart.

Zero-shot super-resolution.
The neural operator is mesh-invariant, so it can be trained on a lower resolution and
evaluated at a higher resolution, without seeing any higher resolution data (zero-shot
super-resolution). Figure 4.1 shows an example where we train the FNO-3D model
on 64×64×20 resolution data in the setting above with (𝜈 = 1e−4, 𝑁 = 10000) and
transfer to 256× 256× 80 resolution, demonstrating super-resolution in space-time.
Fourier neural operator is the only model among the benchmarks (FNO-2D, U-Net,
TF-Net, and ResNet) that can do zero-shot super-resolution. And surprisingly, it can
do super-resolution not only in the spatial domain but also in the temporal domain.

Bayesian Inverse Problem
In this experiment, we use a function space Markov chain Monte Carlo (MCMC)
method (Cotter et al., 2013) to draw samples from the posterior distribution of the
initial vorticity in Navier-Stokes given sparse, noisy observations at time𝑇 = 50. We
compare the Fourier neural operator acting as a surrogate model with the traditional
solvers used to generate our train-test data (both run on GPU). We generate 25,000
samples from the posterior (with a 5,000 sample burn-in period), requiring 30,000
evaluations of the forward operator.

As shown in Figure 4.4, FNO and the traditional solver recover almost the same
posterior mean which, when pushed forward, recovers well the late-time dynamic
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The top left panel shows the true initial vorticity while bottom left panel shows the true
observed vorticity at 𝑇 = 50 with black dots indicating the locations of the observation
points placed on a 7 × 7 grid. The top middle panel shows the posterior mean of the initial
vorticity given the noisy observations estimated with MCMC using the traditional solver,
while the top right panel shows the same thing but using FNO as a surrogate model. The
bottom middle and right panels show the vorticity at𝑇 = 50 when the respective approximate
posterior means are used as initial conditions.

Figure 4.4: Results of the Bayesian inverse problem for the Navier-Stokes equation.

of Navier Stokes. In sharp contrast, FNO takes 0.005𝑠 to evaluate a single instance
while the traditional solver, after being optimized to use the largest possible internal
time-step which does not lead to blow-up, takes 2.2𝑠. This amounts to 2.5 minutes
for the MCMC using FNO and over 18 hours for the traditional solver. Even if we
account for data generation and training time (offline steps) which take 12 hours,
using FNO is still faster! Once trained, FNO can be used to quickly perform
multiple MCMC runs for different initial conditions and observations, while the
traditional solver will take 18 hours for every instance. Furthermore, since FNO is
differentiable, it can easily be applied to PDE-constrained optimization problems
without the need for the adjoint method.

Spectral analysis. Due to the way we parameterize 𝑅𝜙, the function output by
(9.5) has at most 𝑘max, 𝑗 Fourier modes per channel. This, however, does not mean
that the Fourier neural operator can only approximate functions up to 𝑘max, 𝑗 modes.
Indeed, the activation functions which occur between integral operators and the final
decoder network 𝑄 recover the high frequency modes. As an example, consider
a solution to the Navier-Stokes equation with viscosity 𝜈 = 1e−3. Truncating this
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function at 20 Fourier modes yields an error around 2% while our Fourier neural
operator learns the parametric dependence and produces approximations to an error
of ≤ 1% with only 𝑘max, 𝑗 = 12 parameterized modes.

Non-periodic boundary condition. Traditional Fourier methods work only with
periodic boundary conditions. However, the Fourier neural operator does not have
this limitation. This is due to the linear transform 𝑊 (the bias term) which keeps
the track of non-periodic boundary. As an example, the Darcy Flow and the time
domain of Navier-Stokes have non-periodic boundary conditions, and the Fourier
neural operator still learns the solution operator with excellent accuracy.

4.5 Discussion and Conclusion
Requirements on Data. Data-driven methods rely on the quality and quantity of
data. To learn Navier-Stokes equation with viscosity 𝜈 = 1e−4, we need to generate
𝑁 = 10000 training pairs {𝑎 𝑗 , 𝑢 𝑗 } with the numerical solver. However, for more
challenging PDEs, generating a few training samples can be already very expensive.
A future direction is to combine neural operators with numerical solvers to levitate
the requirements on data. Recurrent structure. The neural operator has an iterative
structure that can naturally be formulated as a recurrent network where all layers
share the same parameters without sacrificing performance. (We did not impose
this restriction in the experiments.) Computer vision. Operator learning is not
restricted to PDEs. Images can naturally be viewed as real-valued functions on 2-d
domains and videos simply add a temporal structure. Our approach is therefore a
natural choice for problems in computer vision where invariance to discretization
crucial is important (Chi, B. Jiang, and Mu, 2020).
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C h a p t e r 5

LEARNING: DISSIPATIVE LOSS FOR OPERATOR LEARNING

Chaotic systems are notoriously challenging to predict because of their sensitivity
to perturbations. Small changes in the initialization or errors during time-stepping
accumulate and lead to vastly diverging trajectories. Despite this unpredictable
behavior, in dissipative chaotic systems, the long term trajectories converge to a low
dimensional set, known as the global attractor. Furthermore this set supports an
invariant measure which determines the statistical properties of long-term trajecto-
ries. In this work, we propose a machine learning framework for dissipative chaotic
systems guided by the goal of accurate statistical prediction. The global attractor,
and its invariant measure, are determined by the Markov operator that maps the
evolution of the system during infinitesimal time steps. By learning the Markov
operator, we can predict the statistical behavior of dissipative chaotic systems, even
if we cannot predict exact trajectories. We learn the operator with only the local
one-step evolution information and then compose the learned operator to obtain the
global attractor and its invariant measure. We further develop a data augmentation
technique to impose dissipativity on the learned model, enforcing the desirable prop-
erty that the composition does not lead to blow ups. Experiments show improved
prediction of statistics associated with chaotic dynamical systems, in comparison
with previous methods; our experiments are conducted on the Lorenz-63 system,
the Kuramoto-Sivashinsky equation and the Navier-Stokes equation with Reynolds
number up to 5000.

5.1 Introduction
Machine learning methods for chaotic systems. Chaotic systems are character-
ized by strong instabilities. A tiny perturbation in the initial condition leads to a
completely different trajectory. Such instability makes chaotic systems challenging,
both for mathematical analysis and numerical simulation. Because of its intrinsic
instability, it is infeasible for any method to capture the exact trajectory of a chaotic
system for long periods. Therefore, prior works either fit RNNs on extremely short
trajectories or only learn a step-wise projection from a randomly generated evolution
using reservoir computing (RC) (Vlachas, Byeon, et al., 2018; Pathak et al., 2018;
Vlachas, Pathak, et al., 2020; Fan et al., 2020). These previous attempts are able to
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push the limits of faithful prediction to moderate periods on low dimension systems
such as ordinary differential equations (ODEs), e.g. the Lorenz ’63 system or one-
dimensional partial differential equations (PDEs), e.g. the Kuramoto-Sivashinsky
(KS) equation. However, they are less effective at modeling more complicated
turbulent systems such as the Navier-Stokes equation (NS). Indeed, predicting long
trajectories of such chaotic systems is an ill-posed problem and we cannot expect
such attempts to be successful. Instead, we take a new perspective: we aim to
capture statistical properties of long trajectories, even if we cannot precisely predict
them.

Invariants in chaos. Despite the instability, many chaotic systems exhibit certain
reproducible statistical properties, such as the auto-correlation and, for PDEs, the
energy spectrum. Such properties remain the same in different realizations of the
initial condition (Gleick, 2011). This is provably the case for the Lorenz ’63 model
Tucker, 1999; Holland and Melbourne, 2007 and empirically holds for numerous
dissipative PDEs, such as the KS equation and the two-dimensional NS equation
(Kolmogorov flows) (Temam, 2012). Mathematically, this behavior is characterized
by the existence of invariant measures. Furthermore there exists an attractor which
is a set towards which the system tends to evolve. For dissipative systems there is a
compact set which any given trajectory will enter in a finite time, depending on the
initial condition, and thereafter remain inside. The attractor is defined by mapping all
initial conditions from this compact set, forward in time (technically it is the𝜔−limit
set of the compact set A. Stuart and A.R. Humphries, 1998). While learning infinite
time-horizon trajectories is intractable, it is possible to approximate the attractor,
and statistics of trajectories on it, using the Markov operator. The dissipativity
property helps to make this problem tractable (A. Stuart and A.R. Humphries, 1998;
Humphries and Stuart, 1994). For Markovian systems, samples from this measure
can be obtained through access to a Markov operator, a memoryless deterministic
operator that captures the evolution of the dynamics along an infinitesimal time
step. In this case, the Markov operator forms a discrete semigroup, defined by
the compositions of Markov operators (A. Stuart and A.R. Humphries, 1998). By
learning the Markov operator, we are able to generate the attractor and estimate
the invariant measure for a variety of chaotic systems that are of interest to the
physics and applied mathematics communities (Fukami, Fukagata, and Taira, 2021;
Cardesa, Vela-Martín, and Jiménez, 2017; Chandler and Kerswell, 2013; Koltai and
Weiss, 2020; Bramburger, Kutz, and Brunton, 2021; Page, Brenner, and Kerswell,
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The flow map extrapolated on a larger domain without (left) and with (right) the enforced
dissipativity. The red points are training points on the attractor. The dissipativity is imposed
by augmenting the data on the blue shell.

Figure 5.1: Enforcing dissipativity on the Lorenz 63 system.

2021).

Neural operators. To learn the Markov operators for PDEs, we need to model the
time-evolution of functions in infinite-dimensional function spaces. This is espe-
cially challenging when we need to generate long trajectories. Since even a small
error will accumulate over multiple compositions of the learned operator, poten-
tially causing exponential build up or collapse. Because we study the evolution of
functions time, we propose to use the recently developed operator learning method
known as the neural operator (Li et al., 2020b; Kovachki et al., n.d.). The neural
operator remedies the mesh-dependent nature of finite-dimensional operator meth-
ods such as RNNs, CNNs, and RC. Neural operators are guaranteed to universally
approximate any operator in a mesh independent manner, and hence, can capture
the Markov operator of chaotic systems. This local guarantee plus the absorption of
trajectories by the global attractor makes it possible to accurately follow the it over
long time horizons, allowing us to capture the invariant measure of chaotic systems.

Our contributions. In this work, we formulate a machine learning framework
for chaotic systems exploiting their ergodicity and Markovian property. We learn a
Markov neural operator (MNO) given only one-step evolution data and compose it
over a long horizons to obtain the global attractor of the chaotic system, as shown
in Figure 5.2. The MNO forms a discrete semigroup defined by the composition
of operators, allowing us to reach any state further in the future (Sviridyuk, 1994).
The goal is to predict the global attractor which does not collapse or blow up over
a long or infinite time horizon, and shares the same distribution and statistics as the
true function space trajectories.
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• We formulate a machine learning framework to learn the Markov neural
operator with only local time evolution training data. At test time, we compose
it over a long horizon to obtain the global attractor.

• We study the ability to learn statistical invariant measures, since predicting
exact trajectories is generally intractable.

• We impose dissipativity by augmenting the data on an outer shell to enforce
that the dynamic evolution stays close to the attractor. The resulting system
is stable against large perturbations.

• We study the choice of time steps d𝑡 used for training the MNO and investigate
various Sobolev losses in operator learning. Experiments show the Sobolev
norm significantly outperforms standard loss functions in preserving invariant
statistics such as the spectrum.

Invariant statistics. We study the invariant statistics proposed in the literature
such as the Fourier spectrum, the proper orthogonal decomposition (POD), the
point-wise distribution, the auto-correlation, and other domain-specific statistics
such as turbulence kinetic energy and dissipation rate. These invariant statistics are
usually a combination of different orders of derivatives and moments. By using a
standard mean square error (MSE) for training, the models often fail to capture the
higher frequency information induced from the derivatives. Therefore, we use the
Sobolev norm to address higher-order derivatives and moments (Czarnecki et al.,
2017; Beatson et al., 2020). This is similar in spirit to pre-multiplying the spectrum
by the wavenumber, an approach commonly used in fluid analysis (Smits, McKeon,
and Marusic, 2011). When used for training, the Sobolev norm yields a significant
improvement in capturing high frequency details compared to the standard MSE or
𝐿2 loss, and therefore we obtain an approximation of the Markov operator that is
able to better characterize the invariant measure.

5.2 Problem Setting
We consider potentially infinitely dimensional dynamical systems where the phase
space U is a Banach space and, in particular, a function space on a Lipschitz
domain 𝐷 ⊂ R𝑑 (for finite dimensional systems,U will be a Euclidian space). We
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Figure 5.2: Markov neural operator (MNO): learn global dynamics from local data.
(a) Learn the MNO from the local time-evolution data. (b) Compose MNO to
evaluate the long-time dynamic. (c) Architecture of the MNO.

are interested in the initial-value problem

𝑑𝑢

𝑑𝑡
(𝑡) = 𝐹 (𝑢(𝑡)), 𝑡 ∈ (0,∞),

𝑢(0) = 𝑢0,

(5.1)

for initial conditions 𝑢0 ∈ U where 𝐹 is usually a non-linear operator. We will
assume, given some appropriate boundary conditions on 𝜕𝐷 when applicable, that
the solution 𝑢(𝑡) ∈ U exists and is unique for all times 𝑡 ∈ (0,∞). When making
the spatial dependence explicit, if it is present, we will write 𝑢(𝑥, 𝑡) to indicate the
evaluation 𝑢(𝑡) |𝑥 for any 𝑥 ∈ 𝐷. We adopt the viewpoint of casting time-dependent
PDEs into function space ODEs (5.1), as this leads to the semigroup approach to
evolutionary PDEs which underlies our learning methodology.

Dissipativity. Systems for which there exists some bounded, positively-invariant
set 𝐸 such that for any bounded 𝐵 ⊂ U, there is some time 𝑡∗ = 𝑡∗(𝐸, 𝐵) beyond
which the dynamics of any trajectory starting in 𝐵 enters and remains in 𝐸 are
known as dissipative systems (A. Stuart and A.R. Humphries, 1998). The set 𝐸 is
known as the absorbing set of the system. For such systems, the global attractor 𝐴,
defined subsequently, is characterized as the 𝜔-limit set of 𝐸 . In particular, for any
initial condition 𝑢0 ∈ U, the trajectory 𝑢(𝑡) approaches 𝐴 as 𝑡 →∞.

In this work, we consider dissipative dynamical systems where there exist some
𝛼 ≥ 0 and 𝛽 > 0 such that

1
2
𝑑

𝑑𝑡
| |𝑢 | |2 ≤ 𝛼 − 𝛽 | |𝑢 | |2 (5.2)

for all 𝑢 ∈ U. It can be shown that systems which satisfy this inequality are
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dissipative (A. Stuart and A.R. Humphries, 1998) with the absorbing set

𝐸 = 𝐵

(
0,

√︂
𝛼

𝛽
+ 𝜀

)
, (5.3)

for any 𝜀 > 0, where 𝐵(𝑢, 𝑟) is the open ball centered at 𝑢 ∈ U with radius 𝑟.

There are several well-known examples of dynamical systems that satisfy the above
inequality. In this paper we consider the finite-dimensional Lorenz-63 system and
the infinite-dimensional cases of the Kuramoto-Sivashinsky and 2D incompressible
Navier-Stokes equations (Temam, 2012).

Global Attractors. The long time behavior of the solution to (5.1) is characterized
by the set 𝑈 = 𝑈 (𝑢0) ⊂ U which is invariant under the dynamic i.e. 𝑆𝑡 (𝑈) = 𝑈
for all 𝑡 ≥ 0, and the orbit 𝑢(𝑡) converges

inf
𝑣∈𝑈
∥𝑢(𝑡) − 𝑣∥U → 0 as 𝑡 →∞.

When it exists, 𝑈 is often identified as the 𝜔-limit set of 𝑢0. The chaotic nature of
certain dynamical systems arises due to the complex structure of this set because
𝑢(𝑡) follows𝑈 and𝑈 can be, for example, a fractal set. A compact, invariant set 𝐴 is
called a global attractor if, for any bounded set 𝐵 ⊂ U and any 𝜖 > 0 there exists
a time 𝑡∗ = 𝑡∗(𝜖, 𝐴, 𝐵) such that 𝑆𝑡 (𝐵) is contained within an 𝜖-neighborhood of 𝐴
for all 𝑡 ≥ 𝑡∗. Many PDEs arising in physics such as reaction-diffusion equations
describing chemical dynamics or the Navier-Stokes equation describing the flow
of fluids are dissipative and possess a global attractor which is often times finite-
dimensional (Temam, 2012). Therefore, numerically characterizing the attractor is
an important problem in scientific computing with many potential applications.

Data distribution. For many applications, an exact form for the possible initial
conditions to (5.1) is not available; it is therefore convenient to use a stochastic
model to describe the initial states. To that end, let 𝜇0 be a probability measure
onU and assume that all possible initial conditions to (5.1) come as samples from
𝜇0 i.e. 𝑢0 ∼ 𝜇0. Then any possible state of the dynamic (5.1) after some time
𝑡 > 0 can be thought of as being distributed according to the pushforward measure
𝜇𝑡 := 𝑆

♯
𝑡 𝜇0 i.e. 𝑢(𝑡) ∼ 𝜇𝑡 . Therefore as the dynamic evolves, so does the type

of likely functions that result. This further complicates the problem of long time
predictions since training data may only be obtained up to finite time horizons hence
the model will need the ability to predict not only on data that is out-of-sample but
also out-of-distribution.
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Ergodic systems. To alleviate some of the previously presented challenges, we
consider ergodic systems. Roughly speaking, a system is ergodic if there exists an
invariant measure 𝜇 such that after some time 𝑡∗ > 0, we have 𝜇𝑡 ≈ 𝜇 for any
𝑡 ≥ 𝑡∗ (in fact, 𝜇 can be defined without any reference to 𝜇0 or its pushforwards, see
(Pavliotis and Andrew Stuart, 2008) for details). That is, after some large enough
time, the distribution of possible states that the system can be in is fixed for any
time further into the future. Indeed, 𝜇 charges the global attractor 𝐴. Notice that
ergodicity is a much more general property than having stationary states which
means that the system has a fixed period in time, or having steady states which
means the system is unchanged in time.

Ergodicity mitigates learning a model that is able to predict out-of-distribution since
both the input and the output of 𝑆ℎ will approximately be distributed according to 𝜇.
Furthermore, we may use 𝑆ℎ to learn about 𝜇 since sampling it simply corresponds
to running the dynamic forward. Indeed, we need only generate data on a finite
time horizon in order to learn 𝑆ℎ, and, once learned, we may use it to sample 𝜇
indefinitely by simply repeatedly composing 𝑆ℎ with itself. Having samples of 𝜇
then allows us to compute statistics which characterize the long term behavior of the
system and therefore the global attractor 𝐴. Note further that this strategy avoids the
issue of accumulating errors in long term trajectory predictions since we are only
interested in the property that 𝑆ℎ (𝑢(𝑡)) ∼ 𝜇.

Notably, the existence of a global attractor does not imply the existence of an
invariant measure. Indeed, the only deterministic and chaotic systems that are
proven to possess an invariant measure are certain ODEs such as the Lorenz-63
system (Holland and Melbourne, 2007). On the other hand, proving the existence
of an invariant measure for deterministic and chaotic PDEs such as the KS or
NS equations are still open problems, despite ergodic behavior being observed
empirically.

5.3 Learning the Markov neural operator in Chaotic Dynamics
We propose the Markov neural operator, a method for learning the underlying
Markov operators of chaotic dynamical systems. In particular, we approximate the
operator mapping the solution from the current step to the next step 𝑆ℎ : 𝑢(𝑡) ↦→
𝑢(𝑡 + ℎ). The architecture of the Markov neural operator is detailed in Figure 5.2.
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Markov operators and the semigroup
Since the system (5.1) is autonomous, that is, 𝐹 does not explicitly depend on time,
under the well-posedness assumption, we may define, for any 𝑡 ∈ [0,∞), a Markov
operator 𝑆𝑡 : U →U such that 𝑢(𝑡) = 𝑆𝑡𝑢(0). This map satisfies the properties

1. 𝑆0 = 𝐼,

2. 𝑆𝑡 (𝑢0) = 𝑢(𝑡),

3. 𝑆𝑡 (𝑆𝑠 (𝑢0)) = 𝑢(𝑡 + 𝑠),

for any 𝑠, 𝑡 ∈ [0,∞) and any 𝑢0 ∈ U where 𝐼 denotes the identity operator on U.
In particular, the family {𝑆𝑡 : 𝑡 ∈ [0,∞)} defines a semigroup of operators acting
onU. Our goal is to approximate a particular element of this semigroup associated
to some fixed time step ℎ > 0 given observations of the trajectory from (5.1). We
build an approximation 𝑆ℎ : U →U such that

𝑆ℎ ≈ 𝑆ℎ. (5.4)

Long-term predictions. Note that having access to the map 𝑆ℎ from (5.4) allows
for approximating long time trajectories of (5.1) by repeatedly composing 𝑆ℎ with
its own output. Indeed, by (5.4) and the semigroup property, we can approximate
the evolution by composing the local Markov operators

𝑢(𝑛 · ℎ) ≈ 𝑆𝑛ℎ (𝑢0) := (𝑆ℎ ◦ · · · ◦ 𝑆ℎ)︸            ︷︷            ︸
𝑛 times

(𝑢0) (5.5)

for any 𝑛 ∈ N . This fact is formalized in Theorem 5.3.1 which is stated subsequently.

Invariant statistics. A useful application of the Markov operators is to estimate
statistics of the invariant measure of a chaotic system. Assume the target system
is ergodic and there exists an invariant measure 𝜇 such that 𝑢(𝑡) ∼ 𝜇 for any 𝑡 as
discussed in Section 5.2. An invariant statistic is defined as

𝑇𝐺 :=
∫
U
G(𝑢) d𝜇(𝑢) = lim

𝑇→∞

1
𝑇

∫ 𝑇

0
G(𝑢(𝑡)) d𝑡 (5.6)

for any functional G : U → R𝑑 . Examples include the 𝐿2 norm, any spectral
coefficients, and the spatial correlation, as well as problem-specific statistics such
as the turbulence kinetic energy and dissipation rates in fluid flow problems. Given
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the property (5.5) and using the ergodicity from (5.6), the approximate model 𝑆ℎ
can be used to estimate any invariant statistic simply by computing

𝑇𝐺 ≈
1
𝑛

𝑛∑︁
𝑘=1

𝐺 (𝑆𝑘ℎ𝑢0)

for some 𝑛 = 𝑇/ℎ and 𝑇 > 0 large enough. Examples of fast approximation 𝑆ℎ
which accurately predict invariant statics are given in Section 8.5.

Enforcing dissipativity. In practice, training data for dynamical systems is typi-
cally drawn from trajectories that lie close to the global attractor of the system, so
a priori there is no guarantee of a learned model’s behavior far from the attractor.
Thus, if we seek to learn the global attractor and invariant statistics of a dynamical
system, it is crucial that we place contraints on the model to enforce that it learns a
dissipative dynamical system.

In particular, given some Markov operator mapping between time-steps 𝑆ℎ : 𝑢(𝑡) ↦→
𝑢(𝑡 + ℎ) and cost functional 𝐶𝐷 : U × U → R, we supplement the loss function
with the additional term

E𝑢∼𝜈
[
𝐶𝐷

(
𝑆ℎ (𝑢), 𝑢

)]
=

∫
U

��𝑆ℎ (𝑢) − 𝜆𝑢��2 d𝜈(𝑢), (5.7)

up to some scaling constant with respect to the other terms in the loss function, where
0 < 𝜆 < 1 is some constant factor for scaling down (i.e., enforcing dissipativity)
inputs 𝑢 drawn from probability measure 𝜈. We choose 𝜈 to be a uniform probability
distribution supported on some shell with a fixed inner and outer radii from the origin
inU. Our choice of cost functional 𝐶𝐷 as given in eq. 5.7 scales down 𝑢 by some
constant factor 𝜆, but in principle alternative dissipative cost functionals can be
used. The norm | · | used in our 𝐶𝐷 is task-specific (e.g., Euclidean norm in the case
of the Lorenz-63 system).

We find that enforcing this dissipativity constraint on a shell at a sufficiently large
radius encourages the learned Markov operator to produce dissipative predictions
arbitrarily far away from the shell. In Section 8.5 we demonstrate that the con-
straint in eq. 5.7 prevents blow-up of a Markov operator trained on the turbulent
Kolmogorov flow system.

Backbone model for 𝑆ℎ
The above semigroup formulation can be applied with various choices of the back-
bone model 𝑆ℎ. In general, we prefer models that can be evaluated quickly and have
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approximation guarantees so the per-step error can be controlled. Therefore, we
choose the standard feed-forward neural network Park and Sandberg, 1991 for ODE
systems, and the Fourier neural operator Li et al., 2020a for infinite dimensional
PDE systems.

For the the neural operator parametric class, we prove the following theorem re-
garding the Markov neural operator. The result states that our construction can
approximate trajectories of infinite-dimensional dynamical systems arbitrary well.
The proof is given in the Appendix.

Theorem 5.3.1 Let 𝐾 ⊂ U be a compact set and assume that, for some ℎ > 0, the
Markov operator 𝑆ℎ : U → U associated to the dynamic (5.1) is locally Lipschitz.
Then, for any 𝑛 ∈ N and 𝜖 > 0 there exists a neural operator 𝑆ℎ : U → U such
that

sup
𝑢0∈𝐾

sup
𝑘∈{1,...,𝑛}

∥𝑢(𝑘ℎ) − 𝑆𝑘ℎ (𝑢0)∥U < 𝜖.

Theorem 5.3.1 indicates that of choice of backbone model is rich enough to ap-
proximate many chaotic dynamical systems for a arbitrarily long period. For finite-
dimensional systems, the same theorem holds with feed-forward neural networks
instead of neural operators. We note that standard neural network such as RNNs
and CNNs do not possess such approximation theorems in the infinite-dimensional
setting. Furthermore we expect that it is possible to show that the global attractor
can be approximated arbitrarily well by adapting ideas from the standard theory of
numerical integrators such as (A. R. Humphries and A. M. Stuart, 1994).

5.4 Experiments
In this section, we motivate our proposed approach for enforcing dissipativity de-
scribed in Section 5.3 by applying it to learn a dissipative neural network model
for the Lorenz-63 system. We also present the experiment for the Kuramoto-
Sivashinsky equation and the Kolmogorov flow raising from the 2-d Navier-Stokes
equation. Both PDEs exhibit chaotic behavior.

Lorenz-63 system
To motivate and justify our framework for learning chaotic systems in the infinite-
dimensional setting (e.g., Navier-Stokes equations), we first apply our framework
(e.g., enforcing model dissipativity and evaluating invariant statistics) on the rela-
tively simple Lorenz-63 ODE system.
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Lorenz-63 (Lorenz, 1963) is a system of coupled ordinary differential equations, and
it is typically considered to be the simplest dynamical system that exhibits chaotic
properties. The Lorenz-63 system is given by

¤𝑢𝑥 = 𝛼(𝑢𝑦 − 𝑢𝑥),
¤𝑢𝑦 = −𝛼𝑢𝑥 − 𝑢𝑦 − 𝑢𝑥𝑢𝑧,
¤𝑢𝑧 = 𝑢𝑥𝑢𝑦 − 𝑏𝑢𝑧 − 𝑏(𝑟 + 𝛼)

(5.8)

In this paper, we use the canonical parameters of (𝛼, 𝑏, 𝑟) = (10, 8/3, 28).

Learning the Markov operator. Since the Markov operator of the Lorenz-63
system is finite-dimensional, we learn the Markov operator by training a simple
feedforward neural network on a single trajectory on the Lorenz attractor. Specif-
ically, we use a neural network with 6 hidden layers and 150 neurons per layer.
We discretize the training trajectory into time-steps of 0.05 seconds. We train two
networks: one with dissipativity enforced and one without.

Enforcing dissipativity. We enforce dissipativity during training with the criterion
described in eq. 5.7, with 𝜆 = 0.5 and 𝜈 being a uniform probability distribution
supported on a shell around the origin with inner radius 90 and outer radius 130. As
shown in figure 5.1, enforcing dissipativity produces predictions that isotropically
point towards the attractor, implying that the attractive properties of the Lorenz
attractor are learned in the process. Observe that the dissipative network is also
dissipative outside the shell in which dissipativity was enforced during training.
We believe this property of ReLU networks prevents model blow-up even in more
difficult learning problems .

Results. We find that enforcing dissipativity does not reduce the relative L2 error
compared to the baseline neural network. Further, the invariant statistics of the
dissipative model aligns well with the ground-truth data distribution. Our results
suggest that dissipativity can be enforced without significantly affecting the model’s
step-wise error and the learned statistsical properties of the attractor.

In the setting of learning Markovian operator, we consider the following one-
dimensional Kuramoto-Sivashinsky equation,

𝜕𝑢

𝜕𝑡
= −𝑢 𝜕𝑢

𝜕𝑥
− 𝜕

2𝑢

𝜕𝑥2 −
𝜕4𝑢

𝜕𝑥4 , on [0, 𝐿] × (0,∞)

𝑢(·, 0) = 𝑢0, on [0, 𝐿]
(5.9)
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(a) 𝑥𝑦-plane at 𝑧 = 0 (b) 𝑥𝑧-plane at 𝑦 = 0 (c) 𝑦𝑧-plane at 𝑥 = 0

(d) 𝑥𝑦-plane at 𝑧 = 0 (e) 𝑥𝑧-plane at 𝑦 = 0 (f) 𝑦𝑧-plane at 𝑥 = 0

Figure 5.3: Predicted flow field of dissipative network on Lorenz-63. The red points
are training points on the attractor. Dissipativity is enforced uniformly within the
blue shell.

where 𝐿 = 32𝜋 or 64𝜋 and the spatial domain [0, 𝐿] is equipped with periodic
boundary conditions. We assume the initial condition 𝑢0 ∈ ¤𝐿2

per( [0, 𝐿];R), where
¤𝐿2

per( [0, 𝐿];R) is the space of all mean zero 𝐿2-functions that are periodic on [0, 𝐿].
Existence of the semigroup 𝑆𝑡 : ¤𝐿2

per( [0, 𝐿];R) → ¤𝐿2
per( [0, 𝐿];R) is established in

Temam, 2012, Theorem 3.1. Data is obtained by solving the equation using the
exponential time-differencing fourth-order Runge-Kutta method from (Kassam and
Trefethen, 2005). Random initial conditions are generated according to a mean zero
Gaussian measure with covariance 𝐿−2/𝛼𝜏

1
2 (2𝛼−1) (−Δ + (𝜏2/𝐿2)𝐼)−𝛼 where 𝛼 = 2,

𝜏 = 7, and periodic boundary conditions on [0, 𝐿]; for details see (Lord, Powell,
and Shardlow, 2014).

Invariant statistics for the KS equations As shown in Figure 5.5, we present
enormous invariant statistics for the KS equation. We use 150000 snapshots to train
the MNO, LSTM, and GRU to model the evolution operator of the KS equation with
ℎ = 1𝑠. We compose each model for 𝑇 = 1000 time steps to obtain a long trajectory
(attractor), and estimate various invariant statistics from them.
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The x-axis is the spatial domain; the y-axis is the temporal domain. The figure shows that
LSTM and GRU start to diverge at 𝑡 = 20𝑠 while MNO is able to keep up with the exact
trajectory until 𝑡 = 50𝑠.

Figure 5.4: Trajectory and error on the KS equation

Choice of time discretization. We further study the choice of time steps ℎ. As
shown in Figure 5.6, when the time steps are too large, the correlation is chaotic
and hard to capture. But counter-intuitively, when the time steps are too small, the
evolution is also hard to capture. In this case, the input and output of the network
will be very close, and the identity map will be a local minimum. An easy fix is
to use MNO to learn the time-derivative or residual. This is shown in the figure,
where the residual model (blue line) has a better per-step error and accumulated
error at smaller ℎ. When the time step is large, there is no difference in modeling
the residual. This idea can generalize to other integrators as an extension of Neural
ODEs to PDEs (Chen et al., 2018).

Navier-Stokes equation
We also consider the two-dimensional Navier-Stokes equation for a viscous, incom-
pressible fluid,

𝜕𝑢

𝜕𝑡
= −𝑢 · ∇𝑢 − ∇𝑝 + 1

𝑅𝑒
Δ𝑢 + sin(𝑛𝑦)𝑥, on [0, 2𝜋]2 × (0,∞)

∇ · 𝑢 = 0 on [0, 2𝜋]2 × [0,∞)
𝑢(·, 0) = 𝑢0 on [0, 2𝜋]2

(5.10)

where 𝑢 denotes the velocity, 𝑝 the pressure, and 𝑅𝑒 > 0 is the Reynolds number.
The domain [0, 2𝜋]2 is equipped with periodic boundary conditions. The specific
choice of forcing sin(𝑛𝑦)𝑥 constitutes a Kolmogorov flow; we choose 𝑛 = 4 in
all experiments. We define U to be the closed subspace of 𝐿2( [0, 2𝜋]2;R2),
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Figure 5.5: Invariant statistics for the KS equation
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Figure 5.6: Choice of time step

U =
{
𝑢 ∈ ¤𝐿2

per( [0, 2𝜋]2;R2) : ∇ · 𝑢 = 0
}

and assume 𝑢0 ∈ U. We define the
vorticity 𝑤 = (∇ × 𝑢)𝑧 and the stream function 𝑓 as the solution to the Poisson
equation −Δ 𝑓 = 𝑤. Existence of the semigroup 𝑆𝑡 : U → U is established in
Temam, 2012, Theorem 2.1. We denote turbulence kinetic energy (TKE) ⟨(𝑢− 𝑢̄)2⟩,
and dissipation 𝜖 = ⟨𝑤2⟩/𝑅𝑒. Data is obtained by solving the equation in vorticity
form using the pseudo-spectral split step method from (Chandler and Kerswell,
2013). Random initial conditions are generated according to a mean zero Gaussian
measure with covariance 73/2(−Δ + 49𝐼)−2.5 with periodic boundary conditions on
[0, 2𝜋]2.

Benchmarks for 2d Navier-Stokes. We compare MNO with common standard
two-dimensional dynamic models including U-Net(Ronneberger, Fischer, and Brox,
2015) and LSTM-CNN(Shi et al., 2015) on modeling the vorticity 𝑤. We choose the
discretization ℎ = 1𝑠. The training dataset consists of 180 realizations of trajectories
on time interval 𝑡 ∈ [100, 500] (the first 100 seconds are discarded) which adds up
to 180× 400 = 72, 000 snapshots in total. Another 20 realizations are generated for
testing. Each single snapshot has resolution 64 × 64. We use the Adam optimizer
to minimize the relative 𝐿2 loss with learning rate = 0.0005, and step learning rate
scheduler that decays by half every 10 epochs for 50 epochs in total. U-Net:
we use five layers of convolution and deconvolution with width from 64 to 1024.
LSTM-CNN: we use one layer of LSTM with width = 64. MNO: we parameterize
the 2-d Fourier neural operator consists of four Fourier layers with 20 frequencies
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The 10000 time steps trajectory generated by MNO projected onto the first two
components of PCA. Each point corresponds to an snapshot on the attractor. Two
points are selected for further visualization of vorticity field.

Figure 5.7: The learned attractor of the Kolmogorov flow.

Model training loss L2 error H1 error H2 error TKE error 𝜖𝜖𝜖 error
MNO 𝐿2 loss 0.0166 0.0187 0.0474 0.1729 0.0136 0.0303

𝐻1 loss 0.0184 0.0151 0.0264 0.0656 0.0256 0.0017
𝐻2 loss 0.0202 0.0143 0.0206 0.0361 0.0226 0.0193

U-Net 𝐿2 loss 0.0269 0.0549 0.1023 0.3055 0.0958 0.0934
𝐻1 loss 0.0377 0.0570 0.0901 0.2164 0.1688 0.1127
𝐻2 loss 0.0565 0.0676 0.0936 0.1749 0.0482 0.0841

ConvLSTM 𝐿2 loss 0.2436 0.2537 0.3854 1.0130 0.0140 24.1119
𝐻1 loss 0.2855 0.2577 0.3308 0.5336 0.6977 6.9167
𝐻2 loss 0.3367 0.2727 0.3311 0.4352 0.8594 4.0976

Table 5.1: Benchmark on vorticity for the Kolmogorov flow with Re= 40

per channel and width = 64.

Enforcing dissipativity. We enforce dissipativity during training with the criterion
described in eq. 5.7, with 𝜆 = 0.5 and 𝜈 being a uniform probability distribution
supported on a shell around the origin.

Accuracy with respect to various norms. MNO shows near one order of mag-
nitude better accuracy compared to U-Net and LSTM-CNN. As shown in Table
5.1, we train each model using the balanced 𝐿2(= 𝐻0), 𝐻1, and 𝐻2 losses, defined
as the sum of the relative 𝐿2 loss grouped by each order of derivative. And we
measure the error with respect to the standard (unbalanced) norms. The MNO with
𝐻2 loss consistently achieves the smallest error on vorticity on all of the 𝐿2, 𝐻1, and
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Figure 5.8: Visualization of the NS equation, Re40

𝐻2 norms. However, 𝐿2 loss achieves the smallest error on the turbulence kinetic
energy (TKE); 𝐻1 loss achieves the smallest error on the dissipation 𝜖 .

The NS equation with Re40 is shown in Figure 5.8. (a) show the ground truth data of
vorticity field, each column represents a snapshot at 𝑡 = 100𝑠 with a different initial
condition. (b), (c), (d) show the predicted trajectory of MNO on vorticity, using 𝐿2,
𝐻1, and 𝐻2 losses respectively. We are able to generate a long trajectory with the
MNO model. The five columns represent 𝑡 = 1000𝑠, 2000𝑠, 3000𝑠, 4000𝑠, 5000𝑠
respectively. As shown in the figure, the predicted trajectories (b) (c) (d) share the
same behaviors as in the ground truth (a). It indicates the MNO model is stable.

Estimate the attractor and invariant statistics. We compose MNO 10000 times
to obtain the global attractor, and we compute the PCA (POD) basis of these 10000
snapshots and project them onto the first two components. As shown in Figure
(a), we obtain a cycle-shaped attractor. The true attractor has a degree of freedom
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Figure 5.9: Invariant statistics for the NS equation
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around 𝑂 (100) (Temam, 2012). If the attractor is a high-dimensional sphere, then
most of the mass concentrates around its equator. Therefore, when projected to
low-dimension, the attractor will have the shape of a ring. Most of the points are
located on the ring, while a few other points are located in the center. The points in
the center have high dissipation, implying they are intermittent states. In Figure (b)
we add the time axis. While the trajectory jumps around the cycle, we observe there
is a rough period of 2000s. We perform the same PCA analysis on the training data,
which shows the same behavior. Similarly, we present enormous invariant statistics
for the NS equation (Re40), as shown in Figure 5.9,. We use 72000 snapshots to
train the MNO, UNet, and ConvLSTM to model the evolution operator of the KS
equation with ℎ = 1𝑠. We compose each model for 𝑇 = 10000 time steps to obtain
a long trajectory (attractor), and estimate various invariant statistics from them.

Order of derivatives. Roughly speaking, vorticity is the derivative of velocity;
velocity is the derivative of the stream function. Therefore we can denote the order
of derivative of vorticity, velocity, and stream function as 2, 1, and 0 respectively.
Combining vorticity, velocity, and stream function, with 𝐿2, 𝐻1, and 𝐻2 loss, we
have in total the order of derivatives ranging from 0 to 4. We observe, in general,
it is best practice to keep the order of derivatives in the model at a number slightly
higher than that of the target quantity. For example, as shown in Figure 5.10, when
querying the velocity (first-order quantity), it is best to use second-order (modeling
velocity plus𝐻1 loss or modeling vorticity plus 𝐿2 loss). This is further illustrated in
Table 5.2. In general, using a higher order of derivatives as the loss will increase the
power of the model and capture the invariant statistics more accurately. However,
a higher-order of derivative means higher irregularity. It in turn requires a higher
resolution for the model to resolve and for computing the discrete Fourier transform.
This trade-off again suggests it is best to pick a Sobolev norm not too low or too
high.

5.5 Discussion and Conclusion
In this work, we propose a machine learning framework that trains from local
data and predict the global attractor and invariant statistic of chaotic systems. The
Markov operator forms a discrete semigroup defined by the composition of operators
that empirically does not collapse or blow up over a long or infinite time horizon.
Experiments also show MNO predicts the attractor that shares the same distribution
and statistics as the true function space trajectories. The Markov operator and
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Figure 5.10: Error on velocity with respect to the order of derivative.

Model training loss (order) error on 𝑓 error on 𝑢 error on 𝑤
𝑓 𝐿2 loss 0.0379 (0𝑡ℎ order) 0.0383 0.2057 2.0154
𝑓 𝐻1 loss 0.0512 (1𝑠𝑡 order) 0.0268 0.0769 0.3656
𝑓 𝐻2 loss 0.0973 (2𝑛𝑑 order) 0.0198 0.0522 0.2227
𝑢 𝐿2 loss 0.0688 (1𝑠𝑡 order) 0.0217 0.0691 0.3217
𝑢 𝐻1 loss 0.1246 (2𝑛𝑑 order) 0.0170 0.0467 0.1972
𝑢 𝐻2 loss 0.2662 (3𝑟𝑑 order) 0.0178 0.0482 0.1852
𝑤 𝐿2 loss 0.1710 (2𝑛𝑑 order) 0.0219 0.0415 0.1736
𝑤 𝐻1 loss 0.3383 (3𝑟𝑑 order) 0.0268 0.0463 0.1694
𝑤 𝐻2 loss 0.4590 (4𝑡ℎ order) 0.0312 0.0536 0.1854

Table 5.2: Vorticity 𝑤, velocity 𝑢, and stream function 𝑓 for the Kolmogorov flow
with 𝑅𝑒 = 500

chaotic systems are mathematically interesting and physically relevant. MNO shows
potential for application studying the bifurcation of complicated system, for example,
in the modeling of chemical reactions and the flow of turbulent fluids.

This work provides a method for fast computation in many scientific computing
problems. These methods have two main long-term impacts beyond the immediate
interests of scientific computing communities. Since our methods are orders of mag-
nitude faster than traditional solvers that are prominently used in supercomputers,
edge devices, and servers, the deployment of our methods significantly reduces the
carbon footprints caused by scientific studies. Furthermore, the proposed methods
are extremely flexible. The off the shelf usage of our methods allows scientists from
a variety of disciplines, from chemistry, biology, ecology, epidemiology, to physics
and applied mathematics to deploy our methods to their complex PDE of interest
(or any other problem that involves learning maps between function spaces).
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MNO has two major limitations. First, it assumes the target system is approximately
Markovian. If the system is heavily path-dependent, then the MNO framework does
not directly apply. Second, although we develop an approximation theorem for finite
period, it does not hold for infinite time horizon.

As discussed previously, it is infeasible to track the exact trajectory of chaotic
systems on an infinite time horizon. Even very small errors will accumulate in
each step, and eventually cause the simulation to diverge from the true trajectory.
However, it is possible to track the attractor of the system. An attractor is absorbing.
If the simulated trajectory only makes a small error, the attractor will absorb it back,
so that the simulated trajectory will never diverge from the true attractor. Therefore,
it is possible to have the simulated trajectory capture the true attractor.

To obtain an infinite-time approximation error bound is non-trivial. Previously, (A.
Stuart and A.R. Humphries, 1998; Humphries and Stuart, 1994) (cf. Theorem 3.12)
show a result for (finite-dimensional) ODE systems. If the system is Lipschitz then
there exists a numerical simulation that forms a dissipative dynamical system that
does not blow up or collapse. And the the simulated attractor Aℎ approximates the
true attractor A with the time step ℎ

𝑑𝑖𝑠𝑡 (Aℎ,A) → 0, as ℎ→ 0

To generalize such theorem to Markov neural operator (MNO), we need to over-
come two difficulties (1) generalize the formulation from (finite-dimensional) ODE
systems to (infinite-dimensional) PDE systems, and (2) show MNO can obtain a
sufficient error rate with respect to the time step ℎ.

The first aspect requires extending the theory from finite dimension to infinite
dimension, which is non-trivial since the operator 𝐹 in (5.1) is not compact or
bounded. This makes it hard to bound the error with respect to the attractor (Andrew
Stuart, 1995). The second aspect requires to formulate MNO slightly differently.
In the current formulation, the evolution operator is chosen for a fixed time step ℎ.
To achieve 𝑂 (ℎ) error we need to formulate the evolution operator continuously for
infinitesimal ℎ. Especially, for a semi-linear PDE system

𝑑𝑢

𝑑𝑡
+ 𝐴𝑢 = 𝐹 (𝑢)

where 𝐴 is a linear, self-adjoint operator and 𝐹 is a continuous but nonlinear operator
(This formulation includes the KS and NS equations). The evolution can be written
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as

𝑢(𝑡 + ℎ) = 𝑒−𝐴ℎ𝑢(𝑡) +
∫ ℎ

0
𝑒−𝐴(ℎ−𝑠)𝐹 (𝑢(𝑡 + 𝑠))𝑑𝑠

Where Φ(𝑢(𝑡), 𝐴, 𝑡) :=
∫ ℎ

0 𝑒−𝐴(ℎ−𝑠)𝐹 (𝑢(𝑠))𝑑𝑠 is bounded despite 𝐹 is not. If one
can approximate Φ(𝑢(𝑡), 𝐴, ℎ) by a neural operator, then MNO can potentially
achieve the needed error rate. This shows hope to obtain an approximation error
bound for infinite time zero. We leave this as a promising future direction.
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C h a p t e r 6

LEARNING: PHYSICS INFORMED LEARNING FOR NEURAL
OPERATOR

In this paper, we propose physics-informed neural operators (PINO) that combine
training data and physics constraints to learn the solution operator of a given family
of parametric Partial Differential Equations (PDE). PINO is the first hybrid approach
incorporating data and PDE constraints at different resolutions to learn the operator.
Specifically, in PINO, we combine coarse-resolution training data with PDE con-
straints imposed at a higher resolution. The resulting PINO model can accurately
approximate the ground-truth solution operator for many popular PDE families and
shows no degradation in accuracy even under zero-shot super-resolution, i.e., being
able to predict beyond the resolution of training data. PINO uses the Fourier neural
operator (FNO) framework that is guaranteed to be a universal approximator for any
continuous operator and discretization convergent in the limit of mesh refinement.
By adding PDE constraints to FNO at a higher resolution, we obtain a high-fidelity
reconstruction of the ground-truth operator. Moreover, PINO succeeds in settings
where no training data is available and only PDE constraints are imposed, while pre-
vious approaches, such as the Physics-Informed Neural Network (PINN), fail due to
optimization challenges, e.g., in multi-scale dynamic systems such as Kolmogorov
flows.

6.1 Introduction
Machine learning methods have recently shown promise in solving partial differen-
tial equations (PDEs) (Kovachki et al., n.d.; Z. Li, Kovachki, et al., 2021a; Z. Li,
Kovachki, et al., 2021b; L. Lu, P. Jin, and George Em Karniadakis, 2021; Brunton,
Noack, and Koumoutsakos, 2020). A recent breakthrough is the paradigm of op-
erator learning for solving PDEs. Unlike standard neural networks that learn using
inputs and outputs of fixed dimensions, neural operators learn operators, which are
mappings between function spaces (Kovachki et al., n.d.; Z. Li, Kovachki, et al.,
2021a; Z. Li, Kovachki, et al., 2021b). The class of neural operators is guaranteed
to be a universal approximator for any continuous operator (Kovachki et al., n.d.)
and hence, has the capacity to approximate any operator including any solution
operator of a given family of parametric PDEs. Note that the solution operator is
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PINO uses both training data and PDE loss function and perfectly extrapolates to unseen fre-
quencies in Kolmogorov Flows. FNO uses only training data and does not have further infor-
mation on higher frequencies, but still follows the general trend of the ground-truth spectrum.
On the other hand, using a trained UNet with trilinear interpolation (NN+Interpolation) has
severe distortions at higher frequencies.

Figure 6.1: Physics-Informed Neural Operator (PINO) extrapolates to unseen higher
frequencies.

the mapping from the input function (initial and boundary conditions) to the output
solution function. Previous works show that neural operators can capture complex
multi-scale dynamic processes and are significantly faster than numerical solvers (B.
Liu et al., 2022; H. Yang et al., 2022; Pathak, Subramanian, et al., 2023; Z. Li, D. Z.
Huang, et al., n.d.; Wen et al., 2023b; Bonev et al., 2023; Wen et al., 2023a).

Neural operators are proven to be discretization convergent in the limit of mesh
refinement (Kovachki et al., n.d.), meaning they converge to a continuum operator
in the limit as the discretization is refined. Consequently, they can be evaluated at
any data discretization or resolution at inference time without the need for retraining.
For example, neural operators such as Fourier neural operator (FNO) can extrapolate
to frequencies that are not seen during training in Kolmogorov Flows, as shown in
Figure 6.1, while standard approaches such as training a UNet and adding trilinear
interpolation leads to significantly worse results at higher resolutions.

Even though FNO follows the general trend of the Kolmogorov flow in Figure
6.1, it cannot perfectly match it in the regime of super-resolution, i.e., beyond the
frequencies seen during training. More generally, neural operators cannot perfectly
approximate the ground-truth operator when only coarse-resolution training data is
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provided. This is a fundamental limitation of data-driven operator learning methods
which depend on the availability of training data, which can come either from
existing numerical solvers or direct observations of the physical phenomena. In
many scenarios, such data can be expensive to generate, unavailable, or available
only as low-resolution observations (Hersbach et al., 2020). This limits the ability
of neural operators to learn high-fidelity models. Moreover, the generalization of
the learned neural operators to unseen scenarios and conditions that are different
from training data is challenging.

Our Approach and Contributions
In this paper, we remedy the above shortcomings of data-driven operator learning
methods through the framework of physics-informed neural operators (PINO). Here,
we take a hybrid approach of combining training data (when available) with a PDE
loss function at a higher resolution. This allows us to approximate the solution
operator of many PDE families nearly perfectly. While there have been many
physics-informed approaches proposed previously (discussed in 6.1), ours is the
first to incorporate PDE constraints at a higher resolution as a remedy for low
resolution training data. We show that this results in high-fidelity solution operator
approximations. As shown in Figure 6.1, PINO extrapolates to unseen frequencies
in Kolmogorov Flows. Thus, we show that the PINO model learned from such multi-
resolution hybrid loss functions has almost no degradation in accuracy even on high-
resolution test instances when only low-resolution training data is available. Further,
our PINO approach also overcomes the optimization challenges in approaches such
as Physics-Informed Neural Network (PINN) (Raissi, Perdikaris, and George E
Karniadakis, 2019) that are purely based on PDE loss functions and do not use
training data, and thus, PINO can solve more challenging problems such as time-
dependent PDEs.

PINO utilizes both the data and equation loss functions (whichever are available)
for operator learning. To further improve accuracy at test time, we fine-tune the
learned operator on the given PDE instance using only the equation loss function.
This allows us to provide a nearly-zero error for the given PDE instance at all
resolutions. A schematic of PINO is shown in Figure 8.1, where the neural operator
architecture is based on Fourier neural operator (FNO) (Z. Li, Kovachki, et al.,
2021a). The derivatives needed for the equation loss in PINO are computed explicitly
through the operator layers in function spaces. In particular, we efficiently compute
the explicit gradients on function space through Fourier-space computations. In
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PINO trains neural operator with both training data and PDE loss function. The figure
shows the neural operator architecture with the lifting point-wise operator that receives
input function 𝑎 and outputs function 𝑣0 with a larger co-dimension. This operation is
followed by 𝐿 blocks that compute linear integral operators followed by non-linearity, and
the last layer of which outputs the function 𝑣𝐿 . The pointwise projection operator projects
𝑣𝐿 to output function 𝑢. Both 𝑣𝐿 and 𝑢 are functions and all their derivatives (D𝑣L, D𝑢) can
be computed in their exact forms at any query points 𝑥.

Figure 6.2: Architecture of Physics-Informed Neural Operator

contrast, previous auto-differentiation methods must compute the derivatives at
sampling locations.

The PDE loss function added to PINO vastly improves generalization and physical
validity in operator learning compared to purely data-driven methods. PINO re-
quires fewer to no training data and generalizes better compared to the data-driven
FNO (Z. Li, Kovachki, et al., n.d.), especially on high-resolution test instances. On
average, the relative error is 7% lower on both transient and Kolmogorov flows,
while matching the speedup of data-trained FNO architecture (400x) compared to
the GPU-based pseudo-spectral solver (He and W. Sun, 2007). Further, the PINO
model on the Navier-Stokes equation can be easily transferred to different Reynolds
numbers ranging from 100 to 500 using instance-wise fine-tuning.

We also use PINO for solving inverse problems by either: (1) learning the forward
solution operator and using gradient-based optimization to obtain the inverse solu-
tion, or (2) learning the inverse solution operator directly. Imposing the PDE loss
guarantees the inverse solution is physically valid in both approaches. We find that
of these two approaches, the latter is more accurate for recovering the coefficient
function in Darcy flow. We show this approach is 3000x faster than the conventional
solvers using accelerated Markov Chain Monte-Carlo (MCMC) (Cotter et al., 2013).
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Related Work
Learning solution to PDEs has been proposed under two paradigms: (i) data-driven
learning and (ii) physics-informed optimization. The former utilizes data from
existing solvers or experiments, while the latter is purely based on PDE constraints.
An example of data-driven methods is the class of neural operators for learning the
solution operator of a given family of parametric PDEs. An example of the physics-
based approach is the Physics-Informed Neural Network (PINN) for optimizing the
PDE constraints to obtain the solution function of a given PDE instance. Both
these approaches have shortcomings. Neural operators require data, and when that
is limited or not available, they are unable to learn the solution operator faithfully.
PINN, on the other hand, does not require data but is prone to failure, especially
on multi-scale dynamic systems due to optimization challenges. Previous work by
(Yingzhou Li, J. Lu, and A. Mao, 2020) has shown promise in learning discretized
solution map with variational loss. In this work we generalize it to operator learning.

Neural operators learn the solution operator of a family of PDEs, defined by the map
from the input–initial conditions and boundary conditions, to the output–solution
functions. In this case, usually, a dataset of input-output pairs from an existing
solver or real-world observation is given. There are two main aspects to consider
(a) models: the design of models for learning highly complicated PDE solution
operators, and (b) data: minimizing data requirements and improving generaliza-
tion. Recent advances in operator learning replace traditional convolutional neural
networks and U-Nets from computer vision with operator-based models tailored to
PDEs with greatly improved model expressiveness (Z. Li, Kovachki, et al., n.d.; L.
Lu, P. Jin, and George Em Karniadakis, 2021; Patel et al., 2021; Rui Wang et al.,
2020; Duvall, Duraisamy, and Pan, 2021). Specifically, the neural operator gener-
alizes the neural network to the operator setting where the input and output spaces
are infinite-dimensional. The framework has successfully approximated solution
operators for highly non-linear problems such as turbulence flow (Z. Li, Kovachki,
et al., 2021b; Z. Li, Kovachki, et al., 2021a). However, the data challenges re-
main. In particular, (1) training data from an existing solver or an experimental
setup is costly to obtain, (2) models struggle in generalizing away from the training
distribution, and (3) constructing the most efficient approximation for given data
remains elusive. Moreover, it is also evident that in many real-world applications,
observational data often is available at only low resolutions (Hersbach et al., 2020),
limiting the model’s ability to generalize.
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Alternatives to data-driven approaches for solving PDEs are physics-based ap-
proaches that require no training data. A popular framework known as Physics-
Informed Neural Network (PINN) (Raissi, Perdikaris, and George E Karniadakis,
2019) uses optimization to find the solution function of a given PDE instance. PINN
uses a neural network as the ansatz of the solution function and optimizes a loss
function to minimize the violation of the given equation by taking advantage of
auto-differentiation to compute the exact derivatives. PINN overcomes the need
to choose a discretization grid that most numerical solvers require, e.g., finite dif-
ference methods (FDM) and finite element methods (FEM). It has shown promise
in solving PDEs for a wide range of applications, including higher dimensional
problems. (L. Lu, Meng, Z. Mao, et al., 2021; J. Han, Jentzen, and Weinan, 2018;
Hennigh et al., 2021; Kashinath et al., 2021). Recently, researchers have developed
many variations of PINN with promising results for solving inverse problems and
partially observed tasks (D. Lu et al., 2021; Zhu et al., 2019; Smith et al., 2021).

However, PINN fails in many multi-scale dynamic PDE systems (S. Wang, X. Yu,
and Perdikaris, 2022; Fuks and Tchelepi, 2020; Raissi, Yazdani, and George Em
Karniadakis, 2020) due to two main reasons, viz., (1) the challenging optimization
landscape of the PDE constraints (S. Wang, Teng, and Perdikaris, 2021) and its
sensitivity to hyper-parameter selection (L. Sun et al., 2020), and (2) the difficulty in
propagating information from the initial or boundary conditions to unseen parts of
the interior or to future times (Dwivedi and Srinivasan, 2020). Moreover, PINN only
learns the solution function of a single PDE instance and cannot generalize to other
instances without re-optimization. Previous work on physics-informed DeepONet
that imposes PDE losses on DeepONet (S. Wang, H. Wang, and Perdikaris, 2021)
overcomes this limitation and can learn across multiple PDE instances. While the
PDE loss is computed at any query points, the input is limited to a fixed grid in
standard DeepONet (Kovachki et al., n.d.), and its architecture is a linear method
of approximation (Lanthaler et al., 2023). Our work overcomes all previously
mentioned limitations. Further, a unique feature that PINO enjoys over other hybrid
learning methods (Zhu et al., 2019; Zhang et al., 2022; X. Huang et al., 2022) is its
ability to incorporate data and PDE loss functions at different resolutions. This has
not been attempted before, and none of the previous works focus on extrapolation
to higher resolutions, beyond what is seen in training data.
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6.2 Problem Settings
In this section, we first define the stationary and dynamic PDE systems that we
consider. We give an overview of the physics-informed setting and operator-learning
setting. In the end, we define the Fourier neural operator as a specific model for
operator learning.

Problem settings
We consider two natural classes of PDEs. In the first, we consider the stationary
system

P(𝑢, 𝑎) = 0, in 𝐷 ⊂ R𝑑

𝑢 = 𝑔, in 𝜕𝐷
(6.1)

where 𝐷 is a bounded domain, 𝑎 ∈ A ⊆ V is a PDE coefficient/parameter, 𝑢 ∈ U
is the unknown, and P : U × A → F is a possibly non-linear partial differential
operator with (U,V, F ) a triplet of Banach spaces. Usually, the function 𝑔 is a fixed
boundary condition but can also potentially enter as a parameter. This formulation
gives rise to the solution operator G† : A → U defined by 𝑎 ↦→ 𝑢. A prototypical
example is the second-order elliptic equation P(𝑢, 𝑎) = −∇ · (𝑎∇𝑢) + 𝑓 .

In the second setting, we consider the dynamical system

𝑑𝑢

𝑑𝑡
= R(𝑢), in 𝐷 × (0,∞)

𝑢 = 𝑔, in 𝜕𝐷 × (0,∞)
𝑢 = 𝑎 in 𝐷̄ × {0}

(6.2)

where 𝑎 = 𝑢(0) ∈ A ⊆ V is the initial condition, 𝑢(𝑡) ∈ U for 𝑡 > 0 is the unknown,
and R is a possibly non-linear partial differential operator with U, and V Banach
spaces. As before, we take 𝑔 to be a known boundary condition. We assume that 𝑢
exists and is bounded for all time and for every 𝑢0 ∈ U. This formulation gives rise
to the solution operator G† : A → 𝐶

(
(0, 𝑇];U

)
defined by 𝑎 ↦→ 𝑢. Prototypical

examples include the Burgers’ equation and the Navier-Stokes equation.

Solving equation using the physics-informed neural networks
Given an instance 𝑎 and a solution operator G† defined by equations (6.1) or (9.1)
, we denote by 𝑢† = G†(𝑎) the unique ground truth. The equation-solving task is
to approximate 𝑢†. This setting consists of the ML-enhanced conventional solvers
such as learned finite element, finite difference, and multigrid solvers (Kochkov
et al., 2021; Pathak, Mustafa Mustafa, et al., 2021; Greenfeld et al., 2019), as well as
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purely neural network-based solvers such as the Physics-Informed Neural Networks
(PINNs), Deep Galerkin Method, and Deep Ritz Method (Raissi, Perdikaris, and
George E Karniadakis, 2019; Sirignano and Spiliopoulos, 2018; Weinan and B.
Yu, 2018). Especially, these PINN-type methods use a neural network 𝑢𝜃 with
parameters 𝜃 as the ansatz to approximate the solution function 𝑢†. The parameters 𝜃
are found by minimizing the physics-informed loss with exact derivatives computed
using automatic differentiation (autograd). In the stationary case, the physics-
informed loss is defined by minimizing the l.h.s. of equation (6.1) in the squared
norm of F . A typical choice is F = 𝐿2(𝐷), giving the loss function

Lpde(𝑎, 𝑢𝜃) =



P(𝑎, 𝑢𝜃)


2

𝐿2 (𝐷)
+ 𝛼




𝑢𝜃 |𝜕𝐷 − 𝑔


2

𝐿2 (𝜕𝐷)

=

∫
𝐷

|P(𝑢𝜃 (𝑥), 𝑎(𝑥)) |2d𝑥 + 𝛼
∫
𝜕𝐷

|𝑢𝜃 (𝑥) − 𝑔(𝑥) |2d𝑥
(6.3)

In the case of a dynamical system, one minimizes the residual of equation (9.1)
in some natural norm up to a fixed final time 𝑇 > 0. A typical choice is the
𝐿2 ((0, 𝑇]; 𝐿2(𝐷)

)
norm, yielding

Lpde(𝑎, 𝑢𝜃) =



𝑑𝑢𝜃
𝑑𝑡
− R(𝑢𝜃)




2

𝐿2 (𝑇 ;𝐷)
+ 𝛼




𝑢𝜃 |𝜕𝐷 − 𝑔


2

𝐿2 (𝑇 ;𝜕𝐷)
+ 𝛽




𝑢𝜃 |𝑡=0 − 𝑎



2

𝐿2 (𝐷)

=

∫ 𝑇

0

∫
𝐷

| 𝑑𝑢𝜃
𝑑𝑡
(𝑡, 𝑥) − R(𝑢𝜃) (𝑡, 𝑥) |2d𝑥d𝑡

+ 𝛼
∫ 𝑇

0

∫
𝜕𝐷

|𝑢𝜃 (𝑡, 𝑥) − 𝑔(𝑡, 𝑥) |2d𝑥d𝑡

+ 𝛽
∫
𝐷

|𝑢𝜃 (0, 𝑥) − 𝑎(𝑥) |2d𝑥

(6.4)

The PDE loss consists of the physics loss in the interior and the data loss on the
boundary and initial conditions, with hyper-parameters 𝛼, 𝛽 > 0. Alternatively, the
optimization can be formulated via the variational form (Weinan and B. Yu, 2018).

Challenges of PINN PINNs take advantage of the universal approximability of
neural networks, but, in return, suffer from the low-frequency induced bias. Em-
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pirically, PINNs often fail to solve challenging PDEs when the solution exhibits
high-frequency or multi-scale structure (S. Wang, Teng, and Perdikaris, 2021; S.
Wang, X. Yu, and Perdikaris, 2022; Fuks and Tchelepi, 2020; Raissi, Yazdani, and
George Em Karniadakis, 2020). Further, as an iterative solver, PINNs have diffi-
culty propagating information from the initial condition or boundary condition to
unseen parts of the interior or to future times (Dwivedi and Srinivasan, 2020). For
example, in challenging problems such as turbulence, PINNs are only able to solve
the PDE on a relatively small domain (X. Jin et al., 2021), or otherwise, require
extra observational data which is not always available in practice (Raissi, Yazdani,
and George Em Karniadakis, 2020; Cai et al., 2021). In this work, we propose
to overcome the challenges posed by optimization by integrating operator learning
with PINNs.

Learning the solution operator via neural operator
An alternative setting is to learn the solution operator G. Given a PDE as defined
in (6.1) or (9.1) and the corresponding solution operator G†, one can use a neural
operator G𝜃 with parameters 𝜃 as a surrogate model to approximate G†. Usually we
assume a dataset {𝑎 𝑗 , 𝑢 𝑗 }𝑁𝑗=1 is available, where G†(𝑎 𝑗 ) = 𝑢 𝑗 and 𝑎 𝑗 ∼ 𝜇 are i.i.d.
samples from some distribution 𝜇 supported on A. In this case, one can optimize
the solution operator by minimizing the empirical data loss on a given data pair

Ldata(𝑢,G𝜃 (𝑎)) = ∥𝑢 − G𝜃 (𝑎)∥2U =

∫
𝐷

|𝑢(𝑥) − G𝜃 (𝑎) (𝑥) |2d𝑥 (6.5)

where we assume the setting of (6.1) for simplicity of the exposition. The operator
data loss is defined as the average error across all possible inputs

Jdata(G𝜃) = ∥G† − G𝜃 ∥2𝐿2
𝜇 (A;U) = E𝑎∼𝜇 [Ldata(G†(𝑎),G𝜃 (𝑎))]

≈ 1
𝑁

𝑁∑︁
𝑗=1

∫
𝐷

|𝑢 𝑗 (𝑥) − G𝜃 (𝑎 𝑗 ) (𝑥) |2d𝑥.
(6.6)

Similarly, one can define the operator PDE loss as

Jpde(G𝜃) = E𝑎∼𝜇 [Lpde(𝑎,G𝜃 (𝑎))] . (6.7)

In general, it is non-trivial to compute the derivatives 𝑑G𝜃 (𝑎)/𝑑𝑥 and 𝑑G𝜃 (𝑎)/𝑑𝑡
for model G𝜃 . In the following section, we will discuss how to compute these
derivatives for Fourier neural operator.
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Neural operators
In this work, we will focus on the neural operator model designed for the operator
learning problem (Z. Li, Kovachki, et al., n.d.). The neural operator is formulated
as a generalization of standard deep neural networks to the operator setting. Neural
operator composes linear integral operator K with pointwise non-linear activation
function 𝜎 to approximate highly non-linear operators.

Definition 6.2.1 (Neural operator G𝜃) Define the neural operator

G𝜃 := Q ◦ (W𝐿 + K𝐿) ◦ · · · ◦ 𝜎(W1 + K1) ◦ P (6.8)

where P and Q are pointwise operators, parameterized with neural networks 𝑃 :
R𝑑𝑎 → R𝑑1 and 𝑄 : R𝑑𝐿 → R𝑑𝑢 , where 𝑑𝑎 is the co-dimension of an input function
𝑎 ∈ A and 𝑑𝑢 is the co-dimension of the output function 𝑢. P operator lifts the
lower dimension function into higher dimensional space andQ operator projects the
higher dimension function back to the lower dimensional space. The model stacks
𝐿 layers of 𝜎(W𝑙 + K𝑙) where W are pointwise linear operators parameterized
as matrices 𝑊𝑙 ∈ R𝑑𝑙+1×𝑑𝑙 , K𝑙 : {𝐷 → R𝑑𝑙 } → {𝐷 → R𝑑𝑙+1} are integral kernel
operators, and 𝜎 are fixed activation functions. The parameters 𝜃 consists of all the
parameters in P,Q,W𝑙 ,K𝑙 .

Definition 6.2.2 (Kernel Integral Operators) We define the kernel integral oper-
ator K used in (9.18). Let 𝜅 (𝑙) ∈ 𝐶 (𝐷 × 𝐷;R𝑑𝑙+1×𝑑𝑙 ) and let 𝜈 be a Borel measure
on 𝐷. Then we define K by

(K𝑣𝑙) (𝑥) =
∫
𝐷

𝜅 (𝑙) (𝑥, 𝑦)𝑣𝑙 (𝑦) d𝜈(𝑦) ∀𝑥 ∈ 𝐷. (6.9)

The kernel integral operator can be discretized and implemented with graph neural
networks as in graph neural operators (Z. Li, Kovachki, et al., n.d.).

(K𝑣𝑙) (𝑥) =
∑︁
𝐵(𝑥)

𝜅 (𝑙) (𝑥, 𝑦)𝑣𝑙 (𝑦) ∀𝑥 ∈ 𝐷. (6.10)

where 𝐵(𝑥) is a ball of center at 𝑥. As a generalization, the kernel function can also
take the form of (K𝑣𝑙) (𝑥) =

∑
𝐵(𝑥) 𝜅

(𝑙) (𝑥, 𝑦, 𝑣𝑙 (𝑦)).

Recently, (Z. Li, Kovachki, et al., 2021a) proposes the Fourier neural operator (FNO)
that restricts the integral operatorK to convolution. In this case, it can apply the Fast
Fourier Transform (FFT) to efficiently compute K. This leads to a fast architecture
that obtains state-of-the-art results for PDE problems.
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Definition 6.2.3 (Fourier convolution operator) One specific form of the kernel
integral operator is the Fourier convolution operator(

K𝑣𝑙
)
(𝑥) = F −1

(
𝑅 · (F 𝑣𝑙)

)
(𝑥) ∀𝑥 ∈ 𝐷 (6.11)

where F , F −1 are the Fast Fourier transform and its inverse; 𝑅 is part of the
parameter 𝜃 to be learn.

One can build a neural operator with mixed kernel integral layers and Fourier
convolution layers. If the input and output query points are sampled from non-
uniform mesh, we can use the graph kernel operator as the first and last layer for
continuous evaluation, while using the Fourier layers in the middle for efficient
computation, similar to (Z. Li, D. Z. Huang, et al., n.d.).

Challenges of operator learning. Operator learning is similar to supervised learn-
ing in computer vision and language where data play a very important role. One
needs to assume the training points and testing points follow the same problem set-
ting and the same distribution. Especially, the previous FNO model trained on one
coefficient (e.g. Reynolds number) or one geometry cannot be easily generalized
to another. Moreover, for more challenging PDEs where the solver is very slow or
the solver is even not existent, it is hard to gather a representative dataset. On the
other hand, since prior training methods for FNO do not use any knowledge of the
equation, the trained models cannot get arbitrarily close to the ground truth by using
the higher resolution as in conventional solvers, leaving a gap of generalization er-
ror. These challenges limit the applications of the prior works beyond accelerating
the solver and modeling real-world experiments. In the following section, we will
introduce the PINO framework to overcome these problems by using the equation
constraints.

Discretization convergent. Resolution and discretization convergence is defined
as obtaining a unique continuum operator in the limit of mesh refinement (Kovachki
et al., n.d.). The work (Bartolucci et al., 2023) recently introduced a new concept
of representation equivalence, which requires zero aliasing error at each layer,
which PINO does not fulfill. When all the Fourier modes in FNO are active,
an aliasing error is inevitably present. However, in many practical applications,
this is typically not an issue, and degraded performance due to aliasing is rarely
observed, since the maximum number of modes in an FNO is typically far fewer
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than the grid size. In fact, the non-linear transformations allow for re-capturing
the truncated high-frequency modes which allows for generalization beyond the
see training data. Requiring representation equivalence leads to linear methods of
approximation which are know to be sub-optimal in their representation capacity
(Lanthaler et al., 2023).

Related work. Many machine learning models have been explored for operator
learning (Bhattacharya et al., 2021; Nelsen and Stuart, 2021; Patel et al., 2021).
Besides the above line of work, the deep operator network (DeepONet) is one of the
most famous operator models that have shown enormous promise in applications
(L. Lu, P. Jin, and George Em Karniadakis, 2021). The work from (Kontolati et al.,
2023) compares the polynomial chaos expansion (PCE), DeepONet, and FNO, and
shows that DeepONet has a higher approximation accuracy over PCE. According
to Figure 5 in (Kontolati et al., 2023), standard DeepONet and FNO share a similar
convergence rate. A similar comparison study is reported by de Hoop et. al. (Hoop
et al., 2023) where FNO seems to converge faster. We choose FNO as our base
model for its scalability to large problems.

6.3 Physics-Informed Neural Operator
We propose the Physics-Informed Neural Operator (PINO) framework that uses one
neural operator model G𝜃 for solving both operator learning problems and equation
solving problems. It consists of two phases

• Operator learning: learn a neural operator G𝜃 to approximate the target
solution operator G† using either/both the data loss J𝑑𝑎𝑡𝑎 or/and the PDE loss
J𝑝𝑑𝑒.

• Instance-wise fine-tuning: use G𝜃 (𝑎) as the ansatz to approximate 𝑢† with
the pde loss L𝑝𝑑𝑒 and/or an additional operator loss L𝑜𝑝 obtained from the
operator learning phase.

Physics-informed operator learning
For operator learning, we use the physics constraints J𝑝𝑑𝑒 and supervision from
data to train the neural operator. Especially one can sample an unlimited amount
of virtual PDE instances by drawing additional initial conditions or coefficient
conditions 𝑎 𝑗 ∼ 𝜇 for training. In this sense, we have access to the unlimited
dataset by sampling new input 𝑎 𝑗 in each training iteration. This advantage of using
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PDE constraints removes the requirement on the dataset and makes the supervised
problem into a semi-supervised one.

While PINO can be trained with physics constraints J𝑝𝑑𝑒 only, the J𝑑𝑎𝑡𝑎 can provide
stronger supervision than physics constraints and thus make the optimization much
easier. PINO leverages the supervision from any available data to combine with
physics constraints for better optimization landscape and thus learning accurate
neural operators. A special case is to train a neural operator on low-resolution data
instances with high-resolution PDE constraint, which will be studied in section 6.4.

Instance-wise fine-tuning of trained operator ansatz
Given a learned operator G𝜃 , we use G𝜃 (𝑎) as the ansatz to solve for 𝑢†. The
optimization procedure is similar to PINNs where it computes the PDE loss L𝑝𝑑𝑒
on 𝑎, except that we propose to use a neural operator instead of a neural network.
Since the PDE loss is a soft constraint and challenging to optimize, we also add an
optional operator loss L𝑜𝑝 (anchor loss) to bound the further fine-tuned model from
the learned operator model

L𝑜𝑝
(
G𝜃𝑖 (𝑎),G𝜃0 (𝑎)

)
:= ∥G𝜃𝑖 (𝑎) − G𝜃0 (𝑎)∥2U

where G𝜃𝑖 (𝑎) is the model at 𝑖𝑡ℎ training epoch. We update the operator G𝜃 using
the loss L𝑝𝑑𝑒 + 𝛼L𝑜𝑝. It is possible to further apply optimization techniques to
fine-tune the last fewer layers of the neural operator and progressive training that
gradually increase the grid resolution and use finer resolution in test time.

Optimization landscape. Using the operator as the ansatz has two major advan-
tages: (1) PINN does point-wise optimization, while PINO does optimization in the
space of functions. In the linear integral operation K, the operator parameterizes
the solution function as a sum of the basis function. Optimization of the set of coef-
ficients and basis is easier than just optimizing a single function as in PINNs. (2) we
can learn these basis functions in the operator learning phase which makes the later
instance-wise fine-tuning even easier. In PINO, we do not need to propagate the
information from the initial condition and boundary condition to the interior. It just
requires fine-tuning the solution function parameterized by the solution operator.

Trade-off. (1) complexity and accuracy: instance-wise fine-tuning is an option
to spend more computation in exchange for better accuracy. The learned operator
is extremely fast since it is performing inference on the neural operator. On the
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other hand, instance-wise fine-tuning can improve accuracy while incurring more
computational costs. (2) resolution effects on optimization landscape and truncation
error (i.e. the error of the numerical differentiation): using a higher resolution and
finer grid will reduce the truncation error. However, it has a higher computational
complexity and memory consumption. A higher resolution may also potentially
make the optimization unstable. Using hard constraints such as the anchor loss L𝑜𝑝
relieves such a problem.

Derivatives of neural operators
In order to use the equation loss L𝑝𝑑𝑒, one of the major technical challenges is to
efficiently compute the derivatives 𝐷 (G𝜃𝑎) = 𝑑 (G𝜃𝑎)/𝑑𝑥 for neural operators. In
this section, we discuss three efficient methods to compute the derivatives of the
neural operator G𝜃 as defined in (9.18).

Numerical differentiation. A simple but efficient approach is to use conventional
numerical derivatives such as finite difference and Fourier differentiation (Zhu et al.,
2019; Gao, L. Sun, and J.-X. Wang, 2021). These numerical differentiation methods
are fast and memory-efficient: given a 𝑛-points grid, finite difference requires𝑂 (𝑛),
and the Fourier method requires 𝑂 (𝑛 log 𝑛). These differentiation methods are
agnostic to the underlying neural network architecture. It can be applied to the
neural operator with Graph layer 6.2.2 or Fourier layer 6.2.3 or neural networks
such as UNet.

However, the numerical differentiation methods face the same challenges as the
corresponding numerical solvers: finite difference methods require a fine-resolution
uniform grid; spectral methods require smoothness and uniform grids. Especially.
These numerical errors on the derivatives will be amplified on the output solution.

Pointwise differentiation with autograd. Similar to PINN (Raissi, Perdikaris,
and George E Karniadakis, 2019), the most general way to compute the exact
derivatives is to use the auto-differentiation library of neural networks (autograd).
To apply autograd, one needs to use a neural network to parameterize the solution
function 𝑢 : 𝑥 ↦→ 𝑢(𝑥). However, it is not straightforward to write out the solution
function in the neural operator which directly outputs the numerical solution 𝑢 =

G𝜃 (𝑎) on a grid, especially for FNO which uses FFT. To apply autograd, we design
a query function 𝑢 that input 𝑥 and output 𝑢(𝑥). Recall G𝜃 := Q ◦ (W𝐿 + K𝐿) ◦
· · · ◦ 𝜎(W1 + K1) ◦ P and 𝑢 = G𝜃𝑎 = Q𝑣𝐿 = Q(W𝐿 + K𝐿)𝑣𝐿−1 . . .. Since Q is



111

pointwise,

𝑢(𝑥) = Q(𝑣𝐿) (𝑥) = 𝑄(𝑣𝐿 (𝑥)) = 𝑄
(
(W𝐿𝑣𝐿−1) (𝑥) + K𝐿𝑣𝐿−1(𝑥)

)
(6.12)

For both the kernel operator and Fourier operator, we either remove the pointwise
residual term of the last layer (W𝐿𝑣𝐿−1) (𝑥) or define the query function as an
interpolation function onW𝐿 .

For kernel integral operator 6.2.2, the kernel function can directly take the query
points are input. So the query function

𝑢(𝑥) = 𝑄
(∑︁
𝐵(𝑥)

𝜅 (𝑙) (𝑥, 𝑦, 𝑣𝐿−1(𝑦))
)

where we omit the derivative of the support 𝐵(𝑥). We can apply auto-differentiation
to compute the derivatives

𝑢′(𝑥) = 𝑄′
(
𝑣𝐿 (𝑥)

)
·
∑︁
𝐵(𝑥)

𝜅 (𝑙)
′(𝑥, 𝑦, 𝑣𝐿−1(𝑦)) (6.13)

Similarly, for the Fourier convolution operator, we need to evaluate the Fourier
convolution K𝐿𝑣𝐿−1(𝑥) on the query points 𝑥. It can be done by writing out the
output function as Fourier series composing with 𝑄 :

𝑢(𝑥) = Q ◦ F −1
(
𝑅 · (F 𝑣𝐿−1))

)
(𝑥) = 𝑄

( 1
𝑘𝑚𝑎𝑥

𝑘𝑚𝑎𝑥∑︁
𝑘=0

(
𝑅𝑘 (F 𝑣𝐿−1)𝑘

)
exp

𝑖2𝜋𝑘
𝐷
(𝑥)

)
where F is the discrete Fourier transform. The inverse discrete Fourier transform
is the sum of 𝑘𝑚𝑎𝑥 Fourier series with the coefficients

(
𝑅𝑘 (F 𝑣𝐿−1)𝑘

)
coming from

the previous layer.

𝑢′(𝑥) = 𝑄′
(
𝑣𝐿 (𝑥)

)
· 1
𝑘𝑚𝑎𝑥

𝑘𝑚𝑎𝑥∑︁
𝑘=0

(
𝑅𝑘 (F 𝑣𝐿−1)𝑘

)
exp′

𝑖2𝜋𝑘
𝐷
(𝑥) (6.14)

Notice exp′ 𝑖2𝜋𝑘
𝐷
(𝑥) = 𝑖2𝜋𝑘

𝐷
exp 𝑖2𝜋𝑘

𝐷
(𝑥), just as the numerical Fourier method. If the

query points 𝑥 are a uniform grid, the derivative can be efficiently computed with
the Fast Fourier transform.

The autograd method is general and exact, however, it is less efficient. Since the
number of parameters |𝜃 | is usually much greater than the grid size 𝑛, the numerical
methods are indeed significantly faster. Empirically, the autograd method is usually
slower and memory-consuming.



112

Function-wise differentiation. While it is expensive to apply the auto differentia-
tion per query point, the derivative can be batched and computed in a function-wise
manner. We develop an efficient and exact derivatives method based on the archi-
tecture of the neural operator that can compute the full gradient field. The idea is
similar to the autograd, but we explicitly write out the derivatives on the Fourier
space and apply the chain rule. Given the explicit form (6.14), 𝑢′ can be directly
computed on the Fourier space.

𝑢′ = Q′
(
𝑣𝐿

)
· F −1

( 𝑖2𝜋
𝐷
𝐾 · (F 𝑣𝐿))

)
(6.15)

Therefore, to exactly compute the derivative of the Fourier neural operator, one just
needs to run the numerical Fourier differentiation. Especially the derivative and
be efficiently computed with the Fast Fourier transform when the query is uniform.
Similarly, if the kernel function 𝜅 (𝑙) in (6.13) has a structured form, we can also
write out its gradient field explicitly.

Next, we show how to compute higher orders derivatives in their exact form, without
evoking the autograd method. To this end, we can directly apply the chain rule
for the higher-order derivatives without calling autograd. For example, the first
order derivatives is 𝑢′ = (𝑄 ◦ 𝑣𝐿)′ = Q′(𝑣𝐿) · 𝑣′𝐿 and the 2nd-order derivatives is
𝑢′′ = (Q𝑣𝐿)′′ = 𝑣′2𝐿 · Q′′(𝑣𝐿) +Q′(𝑣𝐿) · 𝑣′′𝐿 . Higher-order derivatives can be similarly
computed using the chain rule. Furthermore, derivative-based quantities on 𝑣𝐿 ,
e.g., 𝑣′

𝐿
can be computed in its exact form in the Fourier domain. Similarly, we

can write out the higher-order derivatives of 𝑄 using the chain rule. Usually 𝑄 is
parameterized as a two layer neural networks 𝑄(𝑥) = (𝐴2𝜎(𝐴1𝑥 + 𝑏1) + 𝑏2). So
𝑄′(𝑥) = 𝐴2𝜎

′(𝐴1𝑥 + 𝑏1)𝐴1. In this manner, we have got the explicit formula of the
derivatives for all neural operators.

Fourier continuation. The Fourier method has its best performance when applied
to periodic problems. If the target function is non-periodic or non-smooth, the
Fourier differentiation is not accurate. To deal with this issue, we apply the Fourier
continuation method that embeds the problem domain into a larger and periodic
space. The extension can be simply done by padding zeros in the input. The loss
is computed at the original space during training. The Fourier neural operator will
automatically generate a smooth extension. The details are given in Appendix 6.3.
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Inverse problem
The physics-informed method can be used to solve the inverse problem, where given
the output function 𝑢, the goal is to recover (a distribution of) the input function
𝑎. By imposing the constraint P(𝑢, 𝑎) = 0, we can restrict 𝑎 to a physically
valid manifold. We propose two formulations to do the optimization-based inverse
problem with PINO: the forward operator model and the inverse operator model.

• Forward model: learn the forward operator G𝜃 : 𝑎 ↦→ 𝑢 with data. Initialize
𝑎̂ to approximate 𝑎†. Optimize 𝑎̂ using

J𝑓 𝑜𝑟𝑤𝑎𝑟𝑑 := L𝑝𝑑𝑒 (𝑎̂, 𝑢†) + L𝑑𝑎𝑡𝑎 (G𝜃 (𝑎̂)) + 𝑅(𝑎̂). (6.16)

• inverse model: learn the inverse operator F𝜃 : 𝑢 ↦→ 𝑎 with data. Use F𝜃 (𝑢†)
to approximate 𝑎†. Optimize F𝜃 using

J𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑 := L𝑝𝑑𝑒 (F𝜃 (𝑢†), 𝑢†) + L𝑜𝑝 (F𝜃 (𝑢†), F𝜃0 (𝑢†)) + 𝑅(F𝜃 (𝑢†) (6.17)

where L𝑝𝑑𝑒 is the PDE loss; L𝑜𝑝 is the operator loss from the learned operator;
𝑅(𝑎) is the regularization term. We use the PDE loss L𝑝𝑑𝑒 to deal with the small
error in G𝜃 and the ill-defining issue of F𝜃 . We provide a numerical study in section
6.4.

Fourier continuation
The Fourier neural operator can be applied to arbitrary geometry via Fourier con-
tinuations. Given any compact manifoldM, we can always embed it into a periodic
cube (torus),

𝑖 :M → T 𝑛

where we can do the regular FFT. Conventionally, people would define the em-
bedding 𝑖 as a continuous extension by fitting polynomials (Bruno, Y. Han, and
Pohlman, 2007). However, in Fourier neural operator, it can be simply done by
padding zeros in the input. The loss is computed at the original space during train-
ing. The Fourier neural operator will automatically generate a smooth extension to
do a padded domain in the output, as shown in Figure 6.3.

This technique is first used in the original Fourier neural operator paper (Z. Li,
Kovachki, et al., 2021a) to deal with the time dimension in the Navier-Stokes
equation. Similarly, (L. Lu, Meng, Cai, et al., 2022) apply FNO with extension
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Figure 6.3: Fourier Continuation by padding zeros. The x-axis is the spatial dimen-
sion; the y-axis is the temporal dimension. FNO extends the output smoothly on the
padded domain.

and interpolation on diverse geometries on the Darcy equation. In the work, we
use Fourier continuation widely for non-periodic boundary conditions (Darcy, time
dimension). We also added an example of lid-cavity to demonstrate that PINO can
work with non-periodic boundary conditions.

Furthermore, this Fourier continuation technique helps to take the derivatives of the
Fourier neural operator. Since the output of FNO is always on a periodic domain,
the numerical Fourier gradient is usually efficient and accurate, except if there is
shock (in this case, we will use the exact gradient method).

6.4 Experiments
In this section, we conduct empirical experiments to examine the efficacy of the
proposed PINO. We present the PDE settings, their domains, and function spaces.
In 6.4, we show using PDE constraint in operator learning results in neural operators
that (1) generalize to significantly high-resolution unseen data. (2) achieve smaller
generalization errors with fewer to no data. Then in 6.4, we investigate how PINO
uses the operator ansatz to solve harder equations with improved speed and accuracy.
We study three concrete cases of PDEs on Burgers’ Equation, Darcy’s Equation,
and Navier-Stokes equation. In 6.4 we study the inverse problems.

Burgers’ Equation. The 1-d Burgers’ equation is a non-linear PDE with periodic
boundary conditions where 𝑢0 ∈ 𝐿2

per((0, 1);R) is the initial condition and 𝜈 = 0.01
is the viscosity coefficient. We aim to learn the operator mapping the initial condition
to the solution, G† : 𝑢0 ↦→ 𝑢 | [0,1] .

𝜕𝑡𝑢(𝑥, 𝑡) + 𝜕𝑥 (𝑢2(𝑥, 𝑡)/2) = 𝜈𝜕𝑥𝑥𝑢(𝑥, 𝑡), 𝑥 ∈ (0, 1), 𝑡 ∈ (0, 1]
𝑢(𝑥, 0) = 𝑢0(𝑥), 𝑥 ∈ (0, 1)

(6.18)
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Darcy Flow. The 2-d steady-state Darcy Flow equation on the unit box which
is the second order linear elliptic PDE with a Dirichlet boundary where 𝑎 ∈
𝐿∞((0, 1)2;R+) is a piecewise constant diffusion coefficient and 𝑓 = 1 is a fixed
forcing function. We are interested in learning the operator mapping the diffusion
coefficient to the solution, G† : 𝑎 ↦→ 𝑢. Note that although the PDE is linear, the
operator G† is not.

−∇ · (𝑎(𝑥)∇𝑢(𝑥)) = 𝑓 (𝑥) 𝑥 ∈ (0, 1)2

𝑢(𝑥) = 0 𝑥 ∈ 𝜕 (0, 1)2
(6.19)

Since 𝑎 is in 𝐿𝑖𝑛 𝑓 , we considered both the strong form L𝑝𝑑𝑒 (𝑢) = ∇ · (𝑎∇𝑢) − 𝑓
and the weak form minimization loss L𝑝𝑑𝑒 (𝑢) = −1

2 (𝑎∇𝑢,∇𝑢) − (𝑢, 𝑓 ), 𝑢 ∈ 𝐻1.
Experiments show the strong form has a better performance.

Navier-Stokes Equation. We consider the 2-d Navier-Stokes equation for a vis-
cous, incompressible fluid in vorticity form on the unit torus, where𝑢 ∈ 𝐶 ( [0, 𝑇];𝐻𝑟per((0, 𝑙)2;R2))
for any 𝑟 > 0 is the velocity field, 𝑤 = ∇ × 𝑢 is the vorticity, 𝑤0 ∈ 𝐿2

per((0, 𝑙)2;R)
is the initial vorticity, 𝜈 ∈ R+ is the viscosity coefficient, and 𝑓 ∈ 𝐿2

per((0, 𝑙)2;R) is
the forcing function. We want to learn the operator mapping the vorticity from the
initial condition to the full solution G† : 𝑤0 ↦→ 𝑤 | [0,𝑇] .

𝜕𝑡𝑤(𝑥, 𝑡) + 𝑢(𝑥, 𝑡) · ∇𝑤(𝑥, 𝑡) = 𝜈Δ𝑤(𝑥, 𝑡) + 𝑓 (𝑥), 𝑥 ∈ (0, 𝑙)2, 𝑡 ∈ (0, 𝑇]
∇ · 𝑢(𝑥, 𝑡) = 0, 𝑥 ∈ (0, 𝑙)2, 𝑡 ∈ [0, 𝑇]
𝑤(𝑥, 0) = 𝑤0(𝑥), 𝑥 ∈ (0, 𝑙)2

(6.20)

Specially, we consider two problem settings:

• Long temporal transient flow: we study the build-up of the flow from the
initial condition 𝑢0 near-zero velocity to 𝑢𝑇 that reaches the ergodic state. We
choose 𝑡 ∈ [0, 50], 𝑙 = 1, 𝑅𝑒 = 20 as in (Z. Li, Kovachki, et al., 2021a). The
main challenge is to predict the long time interval.

• Chaotic Kolmogorov flow: In this case 𝑢 lies in the attractor where arbitrary
starting time 𝑡0. We choose 𝑡 ∈ [𝑡0, 𝑡0 + 0.5] or [𝑡0, 𝑡0 + 1], 𝑙 = 2𝜋, 𝑅𝑒 = 500
similar to (Z. Li, Kovachki, et al., 2023). The main challenge is to capture the
small details that evolve chaotically.
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Figure 6.4: PINO on Kolmogorov flow (left) and Lid-cavity flow (right)

(a) The long-temporal transient flow with 𝑅𝑒 ∼ 20, 𝑇 = 50. PINO outputs the full tra-
jectory in one step, which leads to a 400x speedup compared to the GPU solver. PINN
cannot converge to a reasonable error rate due to the long time window. (b) The chaotic
Kolmogorov flow with 𝑅𝑒 =∼ 500, 𝑇 = 0.5. PINO converges faster compared to PINN, but
their convergence rates with gradient descent are less effective compared to using higher
resolutions in the GPU solver.
Figure 6.5: The accuracy-complexity trade-off on PINO, PINN, and the GPU-based
pseudo-spectral solver.

• Lid cavity flow: In this case, we assume the no-slip boundary condition where
𝑢(𝑥, 𝑡) = (0, 0) at left, bottom, and right walls and 𝑢(𝑥, 𝑡) = (1, 0) on top,
similar to (Bruneau and Saad, 2006). We choose 𝑡 ∈ [5, 10], 𝑙 = 1, 𝑅𝑒 = 500.
The main challenge is to address the boundary using the velocity-pressure
formulation.
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Figure 6.6: Plot of test relative 𝐿2 error versus runtime step for the Kolmogorov flow
with Re500, T=0.5s. Left: resolution 64×64×65; right: resolution 128×128×129.
Averaged over 20 instances. LAAF-PINN: PINN with locally adaptive activation
functions. SA-PINN: self-adaptive PINN.

Operator learning with physics constraints
We show that we can utilize the equation constraints to improve neural operator
training. For this purpose, we train neural operators on fixed-resolution data in the
presence of physics loss, J𝑝𝑑𝑒, and test the performance of the trained operators on
high-resolution data. In particular, we test the performance of the trained model on
data with the same resolution of the training data, 1x, 2x, and 4x, of the training
data resolution Table 6.1. We observe that incorporating the J𝑝𝑑𝑒 in the training
results in operators that, with high accuracy, generalize across data resolution.
In this experiment, the training data for Burgers equation setting is in 32 × 25
(spatio-temporal), and the J𝑝𝑑𝑒 is imposed in 128 × 100 resolution. We use 800
low-resolution data and the same 800 PDE instances. The mean relative 𝐿2 error
and its standard deviation are reported over 200 test instances at resolution 32 × 25,
64 × 50, and 128 × 100.

Accordingly, the training data for the Darcy equation setting is at the spatial res-
olution of 11 × 11 and the J𝑝𝑑𝑒 is imposed in 61 × 61 resolution. We use 1000
low-resolution data and the same 1000 PDE instances. The mean and standard error
are reported over 500 test instances at resolution 11 × 11, 61 × 61, and 211 × 211.
Darcy flow is unresolved at the 11 × 11 resolution, training on such a coarse grid
causes higher errors. However, adding higher resolution PDE loss helps the operator
to resolve.

The training data for Kolmogorov flow is in 64× 64× 33 and the J𝑝𝑑𝑒 is imposed in
256×256×65 resolution for the time interval [0, 0.125]. We use 800 low-resolution
data and 2200 PDE instances. The mean and std of the relative 𝐿2 error are reported
over 200 test instances, at resolution 64×64×33, 128×128×33, and 256×256×65.
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PDE Training setting Error at low
data resolution

Error at 2×
data resolution

Error at 4×
data resolution

Burgers Data 0.32±0.01% 3.32±0.02% 3.76±0.02%
Data & PDE loss 0.17±0.01% 0.28±0.01% 0.38±0.01%

Darcy Data 5.41±0.12% 9.01±0.07% 9.46±0.07%
Data & PDE loss 5.23±0.12% 1.56±0.05% 1.58±0.06%

Kolm. flow Data 8.28%±0.15% 8.27%±0.15% 8.30%±0.15%
Data & PDE loss 6.04%±0.12% 6.02%±0.12% 6.01%±0.12%

Table 6.1: Operator-learning using fixed resolution data and PDE loss allows us to
train operators with high accuracy on higher resolution unseen data.

Burgers equation and Darcy equation. PINO can learn the solution operator
without any data on simpler problems such as Burgers and Darcy. Compared to
other PDE-constrained operators, PINO is more expressive and thereby achieves
better accuracy. On Burgers (6.18), PI-DeepONet achieves 1.38% (S. Wang, H.
Wang, and Perdikaris, 2021); PINO achieves 0.38%. Similarly, on Darcy flow (7.2),
PINO outperforms FNO by utilizing physics constraints, as shown in Table 6.2. For
these simpler equations, instance-wise fine-tuning may not be needed.

Method Solution error
DeepONet with data 6.97 ± 0.09%
PINO with data 1.22 ± 0.03%
PINO w/o data 1.50 ± 0.03%

Table 6.2: Operator learning on Darcy Flow equation. Incorporating physics con-
straints in operator learning improves the performance of neural operators.

# data samples # PDE instances Solution error
0 2200 6.22%±0.11%
800 2200 6.01%±0.12%
2200 2200 5.04%±0.11%

Table 6.3: Physics-informed neural operator learning on Kolmogorov flow 𝑅𝑒 =

500. PINO is effective and flexible in combining physics constraints and any amount
of available data. The mean and standard error of the relative 𝐿2 test error is reported
over 200 instances and evaluated on resolution 256 × 256 × 65.

Chaotic Kolmogorov flow. We conduct an empirical study on how PINO can
improve the generalization of neural operators by enforcing more physics. In the
first experiment, we consider the Kolmogorov flow with 𝑇 = 0.125. We train PINO
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with 2200 initial conditions and different amounts of low-resolution data. As shown
in Table 6.3, PINO achieves 6.22% error even without any data. We also observe
that adding more low-resolution data to training makes the optimization easier and
consistently improves the accuracy of the learned operator, showing that PINO is
effective and flexible in combining physics constraints and any amount of available
data.

The second experiment considers the Kolmogorov flow with 𝑇 = 0.5. The training
set consists of 4000 data points of the initial condition and corresponding solution.
For operator learning, we sample high-resolution initial conditions from a Gaussian
random field. Table 6.7 compare the generalization error of neural operators trained
by different schemes and different amounts of simulated data. The result shows that
training neural operator with additional PDE instances consistently improves the
generalization error on all three resolutions we are evaluating. Note that the relative
𝐿2 error in this setting is much higher than the first one because the time horizon is
4 times longer. Next, we show how to solve for specific instances by finetuning the
learned operator.

Solve equation using operator ansatz
We solve specific equation instances by fine-tuning the learned operator ansatz.

Long temporal transient flow. It is extremely challenging to propagate the in-
formation from the initial condition to future time steps over such a long interval
𝑇 = [0, 50] just using the soft physics constraint. Neither the PINN nor PINO (from
scratch) can handle this case (error > 50%), no matter solving the full interval at
once or solving per smaller steps. However, when the data is available for PINO, we
can use the learned neural operator ansatz and the anchor loss L𝑜𝑝. The anchor loss
is a hard constraint that makes the optimization much easier. Providing 𝑁 = 4800
training data, the PINO without instance-wise fine-tuning achieves 2.87% error,
lower than FNO 3.04% and it retains a 400x speedup compared to the GPU-based
pseudo-spectral solver (He and W. Sun, 2007), matching FNO. Further doing test
time optimization with the anchor loss and PDE loss, PINO reduces the error to
1.84%.

Chaotic Kolmogorov flow. Based on the solution operators learned in Section 6.4,
the second operator-learning setting, we continue to do instance-wise fine-tuning.
We compare our method against other physics-informed learning methods including
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PINN (Raissi, Perdikaris, and George E Karniadakis, 2019), LAAF-PINN (Jagtap,
Kawaguchi, and Em Karniadakis, 2020), and SA-PINN (McClenny and Braga-Neto,
2023), as shown in Figure 6.6 and Table 6.4. Overall, PINO outperforms PINN and
its improved variants by 20x smaller error and 25x speedup. Using a learned operator
model makes PINO converge faster.

Method # data samples # PDE instances Solution error (𝑤) Time cost
PINNs - - 18.7% 4577s
PINO 0 0 0.9% 608s
PINO 0.4k 0 0.9% 536s
PINO 0.4k 160k 0.9% 473s

Table 6.4: Instance-wise fine-tuning on Kolmogorov flow 𝑅𝑒 = 500,𝑇 = 0.5. Using
the learned operator as the initial condition helps fine-tuning converge faster.

Zero-shot super-resolution. The neural operator models are discretization-convergent,
meaning they can take the training dataset of variant resolutions and be evaluated at
higher resolution. As shown in Figure 6.1, we train the FNO, PINO, and UNet model
with 64 × 64 × 32 Kolmogorov Flows dataset and evaluate them at 256 × 256 × 65
resolution. Any frequencies higher than 64 are unseen during the training time.
Conventional models such as UNet are not capable of direct super-resolution. For
compassion, we equip it with tri-linear interpolation. For PINO, we also do test-time
optimization. As shown in Figure 6.1, the spectrums of the predictions are aver-
aged over 50 instances. PINO with the test-time optimization achieves a very high
accuracy rate, and its spectrum overlaps with the ground truth spectrum. However,
Conventional models such as UNet+Interpolation have noising prediction with oscil-
lating high frequencies. On the other hand, with the help of test-time optimization,
PINO can extrapolate to unseen frequencies with high accuracy.

Transfer Reynolds numbers. The extrapolation of different parameters and con-
ditions is one of the biggest challenges for ML-based methods. It poses a domain
shift problem. In this experiment, we train the source operator model on one
Reynolds number and then fine-tune the model to another Reynolds number, on the
Kolmogorov flow with 𝑇 = 1. As shown in Table 6.5 by doing instance-wise fine-
tuning, PINO can be easily transferred to different Reynolds numbers ranging from
100 to 500. This transferability shows PINO learned the dynamics shared across
different Reynolds numbers. Such property envisions broad applications including
transferring the learned operator to different boundary conditions or geometries.
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Transfer learning across Reynolds numbers
We study the instance-wise fine-tuning with different Reynolds numbers on the𝑇 = 1
Kolmogorov flow. For the higher Reynolds number problem 𝑅𝑒 = 500, 400, fine-
tuning the source operator shows better convergence accuracy than learning from
scratch. In all cases, the fine-tuning of the source operator shows better convergence
speed as demonstrated in Figure 6.7. The results are shown in Table 6.5 where the
error is averaged over 40 instances. Each row is a testing case, and each column is
a source operator.

Testing Re From scratch 100 200 250 300 350 400 500
500 4.93 3.83 3.93 3.15 4.77 4.46 4.34 4.36
400 2.96 2.43 2.45 2.44 3.00 2.71 2.73 2.40
350 1.92 2.10 2.11 2.13 2.33 2.22 2.22 2.12
300 1.68 1.61 1.64 1.51 1.77 1.73 1.70 1.60
250 1.51 1.50 1.53 1.51 1.60 1.56 1.60 1.51
200 0.921 0.913 0.921 0.915 0.985 0.945 0.923 0.892
100 0.234 0.235 0.236 0.235 0.239 0.239 0.237 0.237

Each row is a test set of PDEs with corresponding Reynolds number. Each column rep-
resents the operator ansatz we use as the starting point of instance-wise fine-tuning. For
example, column header “100” means the operator ansatz is trained over a set of PDEs
with Reynolds number 100. The relative 𝐿2 errors is averaged over 40 instances of the
corresponding test set.

Table 6.5: Reynolds number transfer learning.

Lid cavity flow. We demonstrate an additional example using PINO to solve for
lid-cavity flow on 𝑇 = [5, 10] with 𝑅𝑒 = 500. In this case, we do not have the
operator-learning phase and directly solve the equation (instance-wise fine-tuning).
We use PINO with the velocity-pressure formulation and resolution 65 × 65 × 50
plus the Fourier numerical gradient. It takes 2 minutes to achieve a relative error of
14.52%. Figure 6.4 shows the ground truth and prediction of the velocity field at
𝑡 = 10 where the PINO accurately predicts the ground truth. The experiment shows
that PINO can address non-periodic boundary conditions and multiple output fields.

Convergence of accuracy with respect to resolution. We study the convergence
rate of PINO in the instance-wise optimization setting, where we minimize the PDE
loss under different resolutions without any data. For PINO, using a higher resolution
is more effective compared to running gradient descent for longer iterations. We
test PINO on the Kolmogorov flow with Re = 500 and T = 0.125. We use the
Fourier method in the spatial dimension and the finite difference method in the
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The test error is averaged over 40 instances. We observe that all the operator ansatzs trained
over PDE instances with different Reynolds numbers can boost the instance-wise fine-tuning
accuracy and convergence speed compared to training from scratch.

Figure 6.7: Plot of relative 𝐿2 error versus update step for the Kolmogorov flow
with Reynolds number 500, 𝑇 = 1.

temporal dimension. As shown in Table 6.6, PINO shares the same convergence
rate of its differentiation methods with no obvious limitation from optimization.
It has an exponential convergence rate in space and a first-order convergence rate
in time 𝑒𝑟𝑟 = 𝑂 (𝑒𝑥𝑝(𝑑𝑥)) + 𝑂 (𝑑𝑡) . It implies the PDE constraint can achieve
high accuracy given a reasonable computational cost, and the virtual instances are
almost as good as the data instances generated by the solver. Since the PDE loss can
be computed on an unlimited amount of virtual instances in the operator learning
setting, it is possible to reduce the generalization error going to zero by sampling
virtual instances.

dx
dt 2−6 2−7 2−8 2−9 2−10

2−4 0.4081 0.3150 0.3149 0.3179 0.3196
2−5 0.1819 0.1817 0.1780 0.1773 0.1757
2−6 0.0730 0.0436 0.0398 0.0386 0.0382
2−7 0.0582 0.0234 0.0122 0.0066 0.0034

Table 6.6: relative L2 error of PINO (Finite-difference in time) on Kolmogorov
flow with 𝑅𝑒 = 500 and 𝑇 = 0.125. PINO inherits the convergence rate of its
differentiation method with no limitation of optimization.
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In the above figures, (6.8a) represents the ground truth input function 𝑎†, and (6.8d) demon-
strates the corresponding solution 𝑢†, i.e., the output function. Given the output 𝑢†, we aim
to recover what 𝑎 could have generated the output function 𝑢†. Using only data constraint,
(6.8b) shows that our method can find an 𝑎 that results in an output function very close to the
ground truth 𝑢† (6.8e). However, the recovered 𝑎 is far from satisfying the PDE equation.
Using both data and PDE constraints, (6.8c) shows that our physics-informed method can
find an 𝑎 that not only results in an output function very close to the ground truth 𝑢†(6.8f),
but also the recovered 𝑎 satisfies the PDE constraint and is close to the underlying 𝑎†.

Figure 6.8: Inverse Problem with Physics Informed Neural Operator

Inverse problem
One of the major advantages of the physics-informed method is to solve the inverse
problem. In the experiment, we investigate PINO on the inverse problem of the Darcy
equation to recover the coefficient function 𝑎† from the given solution function 𝑢†.
We assume a dataset {𝑎 𝑗 , 𝑢 𝑗 } is available to learn the operator. The coefficient
function 𝑎 is a piecewise constant (representing two types of media), so the inverse
problem can be viewed as a classification problem. We define 𝑅(𝑎) as the total
variance.

The PDE loss strongly improves the prediction of the inverse problem. The plain
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Figure 6.9: Darcy inverse problem: comparing PINO forward, inverse models with
numerical solver with MCMC.

neural operator model, while accurate in the forward problem, is vulnerable under
perturbation and shift of the input 𝑎, which is a common behavior of deep-learning
models. This domain-shift problem is critical for optimization-based inverse prob-
lems. During the optimization, 𝑎 is likely to go out of the training distribution,
which makes the neural operator model inaccurate. As shown in Figure 6.8 (b), the
prediction of 𝑎 is less accurate, while the model believes its output 6.8 (e) is the
same as the target. This issue is mitigated by adding the PDE constraints, which
restrict the prediction 𝑎 to the physically-valid manifold where P(𝑎, 𝑢) = 0. As
shown in Figure 6.8 (c), the initial condition recovered with PDE loss is very close
to the ground truth.

Comparing the PINO forward model with the inverse model, the inverse model
F𝜃 : 𝑢 ↦→ 𝑎 (6.17) has the best performance. As Shown in Figure 6.9, the inverse
model has 2.29% relative l2 error on the output 𝑢 and 97.10% classification accuracy
on the input 𝑎; the forward model has 6.43% error on the output and 95.38% accuracy
on the input. Both models converge with 200 iterations. The major advantage of
the PINO inverse model compared to the PINO forward model is that it uses a
neural operator F𝜃 (𝑢†) as the ansatz for the coefficient function, which is used as
regularization L𝑜𝑝. Similar to the forward problem, the operator ansatz has an
easier optimization landscape while being expressive.

As a reference, we compare the PINO inverse frameworks with PINN and the con-
ventional solvers using the accelerated MCMC method with 500,000 steps (Cotter
et al., 2013). The posterior mean of the MCMC has a 4.52% error and 90.30% re-
spectively ( Notice the Bayesian method outputs the posterior distribution, which is
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beyond obtaining a maximum a posteriori estimation). Meanwhile, PINO methods
are 3000x faster compared to MCMC PINN does not converge in this case.

Besides the speedup with respect to the online cost, the offline training of PINO
only takes around 1 hour on a single GPU on the Darcy problem. Once trained,
the model can be used without any further training cost. As a comparison, it takes
considerably longer to deploy a finite element solver and an MCMC solver compared
to a machine learning model. Generally speaking, numerical solvers usually have
a more complicated codebase and it is non-trivial to specify boundary conditions,
time schemes, and meshes. In the end, it can be easier to prepare a machine learning
model than a standard numerical solver. Flexibility and accessibility are some of
the major advantages of these machine learning methods.

# Data # PDE Resolution Solution error Equation error

400 0
128 × 128 × 65 33.32% 1.8779
64 × 64 × 65 33.31% 1.8830
32 × 32 × 33 30.61% 1.8421

400 40k
128 × 128 × 65 31.74% 1.8179
64 × 64 × 65 31.72% 1.8227
32 × 32 × 33 29.60% 1.8296

400 160k
128 × 128 × 65 31.32% 1.7840
64 × 64 × 65 31.29% 1.7864
32 × 32 × 33 29.28% 1.8524

4k 0
128 × 128 × 65 25.15% 1.8223
64 × 64 × 65 25.16% 1.8257
32 × 32 × 33 21.41% 1.8468

4k 100k
128 × 128 × 65 24.15% 1.6112
64 × 64 × 65 24.11% 1.6159
32 × 32 × 33 20.85% 1.8251

4k 400k
128 × 128 × 65 24.22% 1.4596
64 × 64 × 65 23.95% 1.4656
32 × 32 × 33 20.10% 1.9146

0 100k
128 × 128 × 65 74.36% 0.3741
64 × 64 × 65 74.38% 0.3899
32 × 32 × 33 74.14% 0.5226

Table 6.7: Each neural operator is trained with 400 or 4000 data points addition-
ally sampled free initial conditions. The Reynolds number is 500. The reported
generalization error is averaged over 300 instances. Training on additional initial
conditions boosts the generalization ability of the operator.
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6.5 Discussion and Conclusion
In this work, we develop the physics-informed neural operator (PINO) that bridges
the gap between physics-informed optimization and data-driven neural operator
learning. We introduce operator-learning and instance-wise fine-tuning schemes for
PINO to utilize both the data and physics constraints. In the operator learning phase,
PINO learns an operator ansatz over multiple instances of a parametric PDE family.
The instance-wise fine-tuning scheme allows us to take advantage of the learned
neural operator ansatz and solve for the solution function on the querying instance
faster and more accurately.

While PINO shows many promising applications, it also shares some limitations
as in the previous work. For example, since PINO is currently implemented with
the FNO backbone with the Fast-Fourier transform, it is hard to extend to higher
dimensional problems. Besides, as shown in Figure 6.5, finetuning PINO using
gradient descent methods does not converge as fast as using a finer grid as in Table
6.6. Further optimization techniques are to be developed.

There are many exciting future directions. Most of the techniques and analyses of
PINN can be transferred to PINO. It is also interesting to ask how to overcome the
hard trade-off of accuracy and complexity, and how the PINO model transfers across
different geometries. Furthermore, it is promising to develop a software library of
pre-trained models. PINO’s excellent extrapolation property allows it to be applied
on a broad set of conditions, as shown in Transfer Reynold’s number experiments.
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C h a p t e r 7

LEARNING: SCALE CONSISTENCY LEARNING FOR
NEURAL OPERATOR

Machine learning (ML) models have emerged as a promising approach for solving
partial differential equations (PDEs) in science and engineering. Previous ML
models typically cannot generalize outside the training data; for example, a trained
ML model for the Navier-Stokes equations only works for a fixed Reynolds number
(𝑅𝑒) on a pre-defined domain. To overcome these limitations, we propose a data
augmentation scheme based on scale-consistency properties of PDEs and design
a scale-informed neural operator that can model a wide range of scales. Our
formulation leverages the facts: (i) PDEs can be rescaled, or more concretely, a given
domain can be re-scaled to unit size, and the parameters and the boundary conditions
of the PDE can be appropriately adjusted to represent the original solution, and (ii)
the solution operators on a given domain are consistent on the sub-domains. We
leverage these facts to create a scale-consistency loss that encourages matching
the solutions evaluated on a given domain and the solution obtained on its sub-
domain from the rescaled PDE. Since neural operators can fit to multiple scales
and resolutions, they are the natural choice for incorporating scale-consistency loss
during training of neural PDE solvers. We experiment with scale-consistency loss
and the scale-informed neural operator model on the Burgers’ equation, Darcy
Flow, Helmholtz equation, and Navier-Stokes equations. With scale-consistency,
the model trained on 𝑅𝑒 of 1000 can generalize to 𝑅𝑒 ranging from 250 to 10000,
and reduces the error by 38% on average of all datasets compared to baselines.

7.1 Introduction
ML for PDEs. Data-driven methods have become increasingly popular in learning
Partial Differential Equations (PDEs) for scientific computing (Azizzadenesheli et
al., 2024), showing various applications ranging from weather forecasting (Pathak et
al., 2022) to nuclear fusion (Gopakumar et al., 2023). While conventional models are
typically parameterized for a fixed resolution at a predefined scale, neural operators
have recently been proposed to generalize across discretization by parameterizing
the model on function spaces (Li, N. Kovachki, et al., 2020b; Nikola B Kovachki
et al., 2023; Lu et al., 2021; Kissas et al., 2022; Raonic et al., 2023). Among these,
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Figure 7.1: Multi-scale PDE dataset: Continuum mechanics at different scales
(kilometer- or millimeter-scale) can be formulated to a unit-scaled domain with
corresponding scale parameters. Row 1: Darcy Flows, Row 2: Helmholtz Equation,
Row 3: Navier Stokes equation. In this work, we aim to design a learning framework
to capture the consistency across the scales.

the Fourier Neural Operator (FNO) (Li, N. Kovachki, et al., 2020a) stands out as one
of the most efficient models. It learns dynamics on the frequency domain, which
can be viewed as an efficient, resolution-invariant tokenization. Recent advances
further improve the model with shared kernel (Guibas et al., 2021) and U-shape
architectures (Rahman, Ross, and Azizzadenesheli, 2022). Given promising results,
one of the major challenges of scientific machine learning has been the lack of
high-quality training data.

Self-supervised learning for PDEs. To overcome the limitation of data, many
self-supervised learning techniques have been studied. Especially, the AI for Sci-
ence community has investigated building-in physics knowledge to the models via
equation loss (Li, Zheng, et al., 2021) and symmetry augmentation (R. Wang, Wal-
ters, and Yu, 2020; Brandstetter, Welling, and Worrall, 2022). For two-dimensional
PDEs, the symmetry groups include translation, rotation, Galilean boost, and scal-
ing. Among them, scale symmetry has been the least effective in improving per-
formance (Brandstetter, Welling, and Worrall, 2022; Mialon et al., 2023). Our
hypothesis is that previous formulations of scale-symmetry are defined as positional
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Figure 7.2: Scale-consistency loss via sub-domain sampling and re-scaling: given
data instance of input coefficient, boundary, scale parameter, and solution we restrict
them to a sub-domain to obtain new data instance, which is rescaled to unit length
according to the ratio of subdomain size. The scale-consistency loss is defined as
the discrepancy between the global and sub-domain prediction.

encoding, which does not incorporate scaling parameters and boundary conditions.

Multi-scale behavior in physics. Many natural phenomena exhibit multiscale
behavior, i.e., interact across a wide range of scales. This is especially the case with
solutions of partial differential equations (PDEs), which model various phenomena
in science and engineering. For instance, the Navier-Stokes equation, a classical
model describing fluid motion, applies to kilometer-scale problems such as weather
forecasting (Pathak et al., 2022), meter-scale problems such as airfoils (Li, Nikola
Borislavov Kovachki, et al., 2023), and millimeter-scale problems such as catheters
(Zhou et al., 2023).

PDEs can be rescaled. While the physics at the kilometer and millimeter scales
exhibit very different behaviors and frequency ranges, continuum mechanics can
be universally reformulated in PDEs using scale parameters, such as the Reynolds
number in the Navier-Stokes equation, as illustrated in figure 7.1.

Fact 1 (Rescaling of PDEs) In general, a PDE 𝑅 with coefficient function 𝑎 and
solution function 𝑢 on domain Ω

𝑅 (𝑎(𝑥), 𝑢(𝑥)) = 0, (𝑥 ∈ Ω) (7.1)
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can be rescaled to a new domain size Ω𝜆 with scaling 𝜆,

𝑅𝜆 (𝑎(𝜆𝑥), 𝑢(𝜆𝑥)) = 0, (𝑥 ∈ Ω𝜆)

For example, in the Darcy flow, 𝑅(𝑎, 𝑢) = ∇(𝑎∇𝑢).

Further, the solution operators on a given domain are consistent on the sub-domains.
Thus, given a domain, the values of the PDE solution in a subdomain can be
equivalently obtained by rescaling the subdomain to unit size but by choosing a
different set of appropriate parameters (known as scale parameters) and boundary
conditions in the PDE.

Our approach. Based on the above observation, we define the scale-consistency
loss as the overall difference between the original solution of the PDE limited to
the subdomain, and the one obtained from the modified PDE upon rescaling the
subdomain to unit size, as shown in Figure 7.2. The ground-truth solution has a
zero scale-consistency loss, or in other words, solution operators of PDEs are scale
consistent.

We apply scale-consistency loss as a data augmentation procedure during the training
of neural operators for solving PDEs. We address the challenging task of modeling
PDEs that exhibit dramatically different behaviors across scales. Our new dataset
consists of four PDEs at different scales: the Darcy flow with varying coefficients,
the Burgers’ equation with viscosity ranging from 1/100 to 1/1000, the Helmholtz
equation with wavenumbers spanning 1 to 100, and the Navier-Stokes equation with
Reynolds numbers from 250 to 10000, as shown in Figure 7.1. To evaluate gener-
alization capabilities, we train models at specific scales and test their performance
across different scales. In particularly challenging cases, such as the Helmholtz
equation, different wavenumbers result in entirely distinct frequency ranges, caus-
ing all baseline models to fail at generalization. However, by incorporating our
scale-consistency loss, the model successfully achieves zero-shot extrapolation to
previously unseen scales, i.e., PDEs with scale parameters not available during
training. Our main contributions are as follows.

• We propose a data augmentation scheme based on scale-consistency loss that
creates data instances with various scales via sub- and super-sampling. For
time-dependent problems, we sample in the space-time domain.
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• We show a theorem (7.3.1) for elliptic PDEs that, under mild assumptions,
low scale-consistency loss guarantees recovery of the underlying solution
operator.

• We design a scale-informed neural operator that takes the scale parameter as
input with weight-sharing parameterization and adaptive U-shape architecture
to capture a wide range of scales.

• We propose a challenging multiscale dataset including the Burgers’ equation,
Darcy Flow, Helmholtz equation, and Navier-Stokes equation. The results
show that the scale-consistency loss helps the scale-informed neural operator
extrapolate to wider scales with a 38% error reduction on average compared
to baseline FNO models at the cost of double runtime.

To capture a wide range of scales, we propose a new architecture named the scale-
informed neural operator, as shown in Figure 7.3. We use the Fourier neural
operator (FNO) (Li, N. Kovachki, et al., 2020a) as the backbone, as FNO naturally
handles varying resolution by mapping inputs to the Fourier basis of unit domain
size. We incorporate the scale parameter as an additional input and embed the scale
features in the frequency space, helping the model capture different frequencies
corresponding to different scale parameters. Inspired by (Guibas et al., 2021), we
use a weight-sharing parameterization, where a single weight network is shared
across all frequency modes. Additionally, it employs a multi-band U-shaped ar-
chitecture similar to (Rahman, Ross, and Azizzadenesheli, 2022) that optimizes
channel dimensions, using larger dimensions for lower frequency bands and smaller
dimensions for higher frequency bands.

7.2 Related Work
Neural operator and foundation models. Data-driven models have become a
common methodology to complement or augment numerical solvers for physical
simulation (H. Wang et al., 2023). However, existing data-driven models are typ-
ically targeted to a single input variable, such as the coefficient function or initial
condition, while other parameters remain fixed, including the domain size, boundary
condition, and forcing term (Takamoto et al., 2022). Recently, foundation models
have been proposed to capture various datasets under a wide range of conditions,
or even multiple families of PDEs (Subramanian et al., 2024; McCabe et al., 2023;
Hao et al., 2024; Shen, Marwah, and Talwalkar, 2024; Rahman, George, et al.,
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2024). However, they do not explicitly capture relationships across a wide range of
scales seen in physical systems. It is challenging for standard neural networks to
capture different scales. In general, separate neural network models are trained for
capturing each scale, making it cumbersome to couple them together and impose
constraints across scales.

Symmetry. Scaling symmetry has been explored as a data augmentation technique
in several works (R. Wang, Walters, and Yu, 2020; Brandstetter, Welling, and
Worrall, 2022; Mialon et al., 2023). In dynamical systems, this symmetry represents
a fundamental relationship between spatial coordinates, time evolution, and field
magnitudes. However, both (Brandstetter, Welling, and Worrall, 2022) and (Mialon
et al., 2023) reported limited effectiveness of this approach. This limitation may stem
from two key challenges: first, continuous scaling symmetry becomes ill-defined on
periodic domains without boundaries (Brandstetter, Welling, and Worrall, 2022),
and second, scaling velocity magnitudes disrupts the natural range of the input space.
This is particularly problematic in applications like weather forecasting, where
velocity fields typically maintain consistent magnitude ranges. To address these
limitations, we propose a generalized scaling consistenct framework that explicitly
incorporates scaling parameters and boundary condition.

7.3 Scale-Consistency
Many PDEs possess symmetries, which are reflected by the fact that the equations
remain invariant under transformations such as translation, rotation, or re-scaling.
An example is the Darcy flow problem on a domain Ω ∈ R𝑑 .{

−∇ · (𝑎(𝑥)∇𝑢(𝑥)) = 0, (𝑥 ∈ Ω),
𝑢(𝑥) = 𝑔(𝑥), (𝑥 ∈ 𝜕Ω).

(7.2a)

(7.2b)

The associated solution operator G is defined as a mapping

(𝑎(𝑥), 𝑔(𝑥)) ↦→ G(𝑎, 𝑔) (𝑥) := 𝑢(𝑥).

Scale symmetry and scale consistency
Re-scale symmetry. Let T𝜆 be the re-scaling operator with 𝜆 ∈ R+ defined by
(T𝜆𝑎) (𝑥) := 𝑎(𝜆𝑥) (or more generally with translation (T𝜆𝑎) (𝑥) = 𝑎(𝜆𝑥 + 𝑏) with
𝑏 ∈ R𝑑). In the absence of boundary conditions, the scale symmetry implies an
equivariance property of G:

G(T𝜆𝑎, . . .) = T𝜆G(𝑎, . . .).
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The boundary condition (or simply the fact that the PDE is defined on a bounded
domain Ω) breaks the scale symmetry; if 𝑢 : Ω → R is defined on the domain
Ω, then T𝜆𝑢 is defined on the rescaled domain Ω𝜆 = {𝜆−1𝑥 |𝑥 ∈ Ω}, and we are
generally lacking information about the boundary condition of the re-scaled domain
𝜕Ω𝜆. Thus, the presence of boundaries in most problems of practical interest makes
it difficult to leverage the underlying symmetry properties of the equations in a
straightforward way.

Nevertheless, under some conditions on the domain Ω (e.g. Ω = [0, 1]𝑑 is a cube),
the formal scale symmetry of the solution operator of (7.2) implies that if 𝑢(𝑥)
solves (7.2) with coefficient field 𝑎(𝑥) and with boundary condition 𝑔(𝑥), then the
rescaled function 𝑢𝜆 (𝑥) = T𝜆𝑢(𝑥) = 𝑢(𝜆𝑥), solves{

−∇ · (𝑎𝜆 (𝑥)∇𝑢𝜆 (𝑥)) = 0, (𝑥 ∈ Ω𝜆),
𝑢𝜆 (𝑥) = T𝜆𝑢(𝑥), (𝑥 ∈ 𝜕Ω𝜆).

i.e. 𝑢𝜆 (𝑥) is a solution of the Darcy flow problem on domainΩ𝜆, with coefficient field
𝑎𝜆 = T𝜆𝑎, and boundary condition (T𝜆𝑢) |𝜕Ω𝜆 . Another operation we can perform is
the restriction from Ω𝜆 to Ω when 𝜆 ≤ 1. Intuitively, this condition expresses the
fact that the solution operator of (7.2) is scale-consistent: The solution on a smaller
subdomain Ω ⊂ Ω𝜆 can either be obtained

leftmirgin=0.5cm by solving the PDE over the entire domain Ω𝜆 and then re-
stricting the solution 𝑢 to the smaller domain 𝑢 |Ω.

leftmiirgiin=0.5cm by solving the PDE directly on the subdomain Ω, and impos-
ing consistent boundary condition 𝑢 |𝜕Ω.

Combining the scale symmetry with restriction, we obtain a new equation (7.2)
corresponding to the sub-domain of the original equation (7.3).{

−∇ · (𝑎𝜆 (𝑥)∇𝑢𝜆 (𝑥)) = 0, (𝑥 ∈ Ω),
𝑢𝜆 (𝑥) = T𝜆𝑢(𝑥), (𝑥 ∈ 𝜕Ω).

(7.3a)

(7.3b)

By uniqueness of the equation, the solution of (7.3) must be consistent with the
original solution in (7.2).

Lemma 7.3.1 (Scale-consistency (solution function)) If a function𝑢 satisfies equa-
tion (7.2), then 𝑢𝜆 = T𝜆𝑢 is the unique solution of equation (7.3).
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Therefore, we obtain the following identity in terms of the solution operator G: let
𝜆 ≤ 1

[T𝜆G(𝑎, 𝑔)] |Ω = G([T𝜆𝑎] |Ω, [T𝜆𝑢] |𝜕Ω)
≡ G([T𝜆𝑎] |Ω, [T𝜆G(𝑎, 𝑔)] |𝜕Ω).

(7.4)

For the solution operator, this identity holds for arbitrary inputs 𝑎(𝑥) and 𝑔(𝑥). The
scale-consistency (7.4) can be used as a loss to train solution operators. Informally,
if an operator satisfies (7.4), then it must be the target solution operator.

Theorem 7.3.1 (Scale-consistency (solution operator)) If an operator Ψ satisfies
the scale-consistency (7.4) and it matches the ground truth solution operator G on
nearly constant coefficient functions, then Ψ ≡ G.

Scale-consistency loss. The first way to impose such a constraint is by introducing
a loss of the form

𝐿 (𝑎, 𝑔) = ∥T𝜆Ψ(𝑎, 𝑔) − Ψ(T𝜆𝑎,T𝜆Ψ(𝑎, 𝑔) |𝜕Ω)∥. (7.5)

Note that this is an self-supervised loss term that doesn’t require access to labeled
data 𝑢 = G(𝑎, 𝑔). It only requires producing input function samples (𝑎, 𝑔). When
solution data 𝑢 is available, the scale-consistency loss simplifies to

𝐿 (𝑎, 𝑔) = ∥T𝜆𝑢 − Ψ(T𝜆𝑎,T𝜆𝑢 |𝜕Ω))∥. (7.6)

Infinitesimal scale-consistency. Another way to impose this constraint is by taking
the 𝜆-derivative of (7.4), leading to:

𝜕𝜆T𝜆G(𝑎, 𝑔) = 𝜕𝜆 [G(T𝜆𝑎,T𝜆G(𝑎, 𝑔) |𝜕Ω)] .

We note that if 𝑎(𝑥) is a function, then the derivative 𝜕𝜆T𝜆𝑎 evaluated at 𝜆 = 1, is
given by

𝜕𝜆T𝜆𝑎 |𝜆=1 = [𝜕𝜆𝑎(𝜆𝑥)]𝜆=1 = 𝑥 · ∇𝑎(𝑥),

i.e., a radial spatial derivative of 𝑎. Substitution of this identity, and noting that
T𝜆=1𝑎 = 𝑎 and T𝜆=1G(𝑎, 𝑔) |𝜕Ω = 𝑔, implies that

𝑥 · ∇𝑥 [G(𝑎, 𝑔)] (𝑥)

=

〈
𝛿G(𝑎, 𝑔)
𝛿𝑎

, 𝑥 · ∇𝑥𝑎
〉
+

〈
𝛿G(𝑎, 𝑔)
𝛿𝑔

, 𝑥 · ∇𝑥 [G(𝑎, 𝑔)]
〉

We observe that while (7.4) is highly non-linear, the infinitesimal constraint is
quadratic in G.
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Scale-dependent problem: extension beyond scale symmetry

The scale-consistency constraint can be written in greater generality, even if the
underlying PDE has no scale symmetry. In this case, the domain could be an input
to the operator, and the relevant scale-consistency would be

G(𝑎, 𝑔;Ω) |Ω′ = G(𝑎 |Ω′ ,G(𝑎, 𝑔,Ω) |𝜕Ω′ ;Ω′), (Ω′ ⊂ Ω).

In some cases, this is equivalent to scaling certain parameters in the PDE, as
explained below.

Helmholtz equation. An example not satisfying scale symmetry is the Helmholtz
equation,

−∇ · (𝑎(𝑥)∇𝑢(𝑥)) + 𝑘2𝑢(𝑥) = 𝑓 (𝑥). (7.7)

In this case, a rescaling of the spatial variable corresponds to a rescaling of the
frequency 𝑘2, i.e. 𝑢𝜆 (𝑥) = 𝑢(𝜆𝑥) solves −∇ · (𝑎𝜆 (𝑥)∇𝑢𝜆 (𝑥)) + 𝜆−2𝑘2𝑢𝜆 (𝑥) =

𝜆−2 𝑓 (𝜆𝑥), or
−∇ · (𝑎𝜆 (𝑥)∇𝑢𝜆 (𝑥)) + 𝑘2

𝜆𝑢𝜆 (𝑥) = 𝑓𝜆 (𝑥),

with 𝑘𝜆 := 𝜆−1𝑘, 𝑓𝜆 (𝑥) := 𝜆−2 𝑓 (𝜆𝑥). Thus, the scale-consistency constraint involves
the whole family of PDEs, Δ𝑢+ 𝑘2𝑢 = 𝑓 , for 𝑘 > 0, with the transform on parameter
T𝜆 (𝑘) = 𝜆𝑘 .

Time-dependent problem: rescale in space-time domain

For time-dependent problems, in general, we could view the time dimension as
another spatial dimension, and rescale both the spatial and temporal dimensions.

Navier-Stokes equation. Another example is the two-dimensional incompressible
Navier-Stokes equation. In the velocity form, without forcing,

𝜕𝑡𝑢(𝑥, 𝑡) + 𝑢(𝑥, 𝑡) · ∇𝑢(𝑥, 𝑡) =
1
𝜌
∇𝑝(𝑥, 𝑡) + 𝜈Δ𝑢(𝑥, 𝑡),

The scaling is by 𝑢𝜆 (𝑥, 𝑡) = 𝑢(𝜆𝑥, 𝜆𝑡), 𝑝𝜆 (𝑥, 𝑡) = 𝑝(𝜆𝑥, 𝜆𝑡), and 𝜈𝜆 := 𝜆−1𝜈. In
the vorticity formulation where 𝜔 = curl(𝑢), we do not need to rescale the time.

𝜕𝑡𝜔(𝑥, 𝑡) + 𝑢(𝑥, 𝑡) · ∇𝜔(𝑥, 𝑡) = 𝜈Δ𝜔(𝑥, 𝑡), (7.8)

Rescaling the spatial variable 𝑥 corresponds to rescaling the viscosity 𝜈; 𝜔𝜆 (𝑥, 𝑡) =
𝜔(𝜆𝑥, 𝑡) and 𝑢𝜆 (𝑥, 𝑡) = 𝜆−1𝑢(𝜆𝑥, 𝑡) solves

𝜕𝑡𝜔𝜆 (𝑥, 𝑡) + 𝑢𝜆 (𝑥, 𝑡) · ∇𝜔𝜆 (𝑥, 𝑡) = 𝜈𝜆Δ𝜔𝜆 (𝑥, 𝑡),
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where 𝜈𝜆 := 𝜆−2𝜈, here the coefficient 𝜆 in front of the term (𝑢𝜆 (𝑥, 𝑡) · ∇𝜔𝜆 (𝑥, 𝑡)) is
absorbed by 𝑢𝜆.

Main Algorithms
Remark: neural operator automatically rescales input to unit length. For
standard neural networks such as convolution neural networks, re-scaling T needs
to be implemented as interpolation. However, in the design of neural operators such
as FNO, the domain size is implicitly re-scaled to unit length, where the Fourier
basis is defined with length [0, 1]. Given T𝜆 𝑓 defined on domain [0, 𝜆], Fourier
neural operator Ψ automatically rescales it to unit length,

Ψ(T𝜆 𝑓 , . . .) := Ψ(T1/𝜆T𝜆 𝑓 , . . .) = Ψ( 𝑓 , . . .).

where 𝑓 is defined on unit size [0, 1]. Therefore, the re-scaling T is omitted in the
algorithm.

Sub-domain sampling. The sub-domain sampling algorithm is based on equation
(7.6), where we use sub-sampling (i.e., restrict to sub-domain) to obtain instance
with smaller scale 𝜆𝑘 < 𝑘 . Given the input and output data {(𝑎, 𝑔, 𝑘), 𝑢} defined
on domain Ω, we truncate the domain into a smaller sub-domain Ω̂. The input and
output restriction to the sub-domain, along with the re-scaled parameter, become a
new data instance {(𝑎̂, 𝑔̂, 𝑘̂), 𝑢̂}. We compute the consistency loss as the difference
between the model evaluated on restricted input Ψ(𝑎̂, 𝑔̂, 𝑘̂) and the restricted output
𝑢̂.

Algorithm 1 Sub-domain sampling
1: Input: data tuple of coefficient, boundary, scale parameter, and solution
{(𝑎, 𝑔, 𝑘), 𝑢} on domain Ω = [0, 1]2, model Ψ, and sampling rate 𝜆 < 1.

2: Sample the sub-domain Ω̂ = [𝑤, 𝑤+𝜆]× [ℎ, ℎ+𝜆], where 𝑤, ℎ ∼ Unif[0, 1−𝜆].
3: Define new instance (𝑎̂ = 𝑎 |Ω̂, 𝑔̂ = 𝑢 |𝜕Ω̂, 𝑘̂ = 𝜆𝑘), 𝑢̂ = 𝑢 |Ω̂.
4: Output: scale-consistency loss ∥Ψ(𝑎̂, 𝑔̂, 𝑘̂) − 𝑢̂∥.

Super-domain sampling. The super-domain sampling algorithm is based on equa-
tion (7.5), where we sample new instances corresponding to larger scale 𝜆𝑘 > 𝑘 .
Given the distributions 𝜇 for 𝑎 and 𝜈 for 𝑔, we can sample new instance 𝑎, 𝑔 with
larger scale 𝜆𝑘 and apply Algorithm 1. Different from 1, we do not have the
ground truth output 𝑢 on the larger scale. Instead, we estimate using the model
𝑢 = Ψ(𝑎, 𝑔, 𝜆𝑘).
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Algorithm 2 Super-domain sampling
1: Input: distributions of inputs coefficient and boundary 𝜇, 𝜈, model Ψ, scale

parameter 𝑘 , and sampling rate 𝜆 > 1.
2: Sample new instances 𝑎 ∼ 𝜇, 𝑔 ∼ 𝜈.
3: Define new scale as 𝜆𝑘 .
4: Estimate the solution of new domain 𝑢 = Ψ(𝑎, 𝑔, 𝜆𝑘).
5: Call Algorithm 1 with input {(𝑎, 𝑔, 𝜆𝑘), 𝑢} and scale 1/𝜆.
6: Output: scale-consistency loss ∥Ψ(𝑎 |Ω̂,Ψ(𝑎, 𝑔, 𝜆𝑘) |𝜕Ω̂, 𝑘) − Ψ(𝑎, 𝑔, 𝜆𝑘) |Ω̂∥.

7.4 Scale-Informed Neural Operator
The scale-informed neural operator is based on the FNO Li, N. Kovachki, et al.,
2020a, where convolution is implemented as a pointwise multiplication in the
Fourier space. Since FNO automatically rescales its input to unit length, we design
a scale embedding in the Fourier space to inform the model of the scale parameter 𝑘 .
Furthermore, we design a U-shaped architecture to optimize the channel dimension.

Embed scale parameters in Fourier Space
In the previous FNO, the weight tensor 𝑅 is defined as a (𝑀1×· · ·×𝑀𝑑×𝐶𝑖𝑛×𝐶𝑜𝑢𝑡)-
tensor, which is sufficient for lower-dimensional problems with fewer total modes
𝑀 . For larger-scale problems, such as highly turbulent flows, the weight tensor 𝑅
becomes prohibitively large. Therefore, we propose an implicit representation of
the weight tensor similar to AFNO Guibas et al., 2021, where the complex weight
𝑅 with the shape (𝐶𝑖𝑛 × 𝐶𝑜𝑢𝑡) is shared across all modes (𝑀1 × · · · × 𝑀𝑑).

Different from AFNO, we further define the features of scale 𝑘 and mode index 𝜉 as
input, so that the transform 𝑅 can behave correspondingly with respect to different
scales 𝑘 and modes 𝜉. Let 𝐶 be the embedding channel dimension; we define scale
features as ℎ(𝑘)𝑖 = 𝑘 𝑖/(𝐶−1) for 𝑖 = 0, 1, . . . , 𝐶 − 1, which covers a wide range from
𝑘0/(𝐶−1) = 1 to 𝑘 (𝐶−1)/(𝐶−1) = 𝑘 . The input 𝑓𝑡 (𝜉) ∈ C𝐶𝑖𝑛 is first element-wise
multiplied with the features of the scale parameter and wavenumber ℎ(𝑘, 𝜉), and
then multiplied with 𝑅, followed by a group normalization and a complex activation
𝜎. The transform K can be viewed as a kernel function defined on the Fourier
space:

(K 𝑓𝑡+1) (𝜉) = 𝜎
(
𝑅( 𝑓𝑡 (𝜉) ⊙ ℎ(𝑘, 𝜉))

)
. (7.9)
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Figure 7.3: The scale-informed neural operator has a U-shape structure on the
Fourier space. The scale parameter (such as 𝑅𝑒) are embedded at each spectral
layer. In the down block, the input tensors are truncated and lifted by complex
layer 𝑅; in the up block, the tensors are projected and added to the inputs. Skip
connections are added across the blocks. 𝑃 is the encoder and 𝑄 is the decoder.

Multi-band Architecture
The Fourier signal usually follows an ordered structure, where the energy decays
as the wavenumber increases. Therefore, previous methods such as FNO Li, N.
Kovachki, et al., 2020a and SNO Fanaskov and Oseledets, 2022 choose to truncate
to a fixed number of frequencies by omitting higher frequencies. Similar to previous
works such as UNet Ronneberger, Fischer, and Brox, 2015 and UNO, we design a
multi-band structure to gradually shrink the frequency bands, as shown in Figure
7.3. Different from UNO, which applies spectral convolutions at each down and
up block, in this work, we define the U-shaped structure fully in the Fourier space.
Given the initial channel dimension 𝐶, maximum input modes 𝑀 , and a predefined
number of levels 𝐿, we define 𝐶𝑙 and 𝑀𝑙 as 𝐶𝑙 = 2𝑙𝐶 and 𝑀𝑙 = 2−𝑙𝑀 , where each
block has shape 𝐶2

𝑙
𝑀𝑑
𝑙
. For 𝑑 = 2, 𝐶2

𝑙
𝑀2
𝑙
= 𝐶2𝑀2, so each level has the same size.

We define the first level using the weight-sharing formulation, where 𝑅1 has the
shape (𝐶𝑖𝑛 ×𝐶𝑜𝑢𝑡), and higher levels in tensor formulation with (𝑀𝑑

𝑙
×𝐶𝑖𝑛 ×𝐶𝑜𝑢𝑡).
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Boundary condition
For boundary value problems, we take the boundary as an additional input. For a 1-
dimensional boundary on a 2-dimensional square domain, we extend the boundary
to 2D by repeating along the other dimension. For Dirichlet-type boundaries, it
is known that the boundary is the restriction of the solution, and their magnitudes
should be similar. Therefore, we define a normalization at the end of the model that
multiplies the output by the magnitude of the boundary.

Darcy Flow (Scale) 2 3 4 (training) 8 16

FNO 3.921 3.842 3.737 3.323 3.214 —
FNO+scale 1.990 1.932 1.990 2.130 2.300 —
UNet 6.638 6.981 6.011 5.527 6.361 —
UNet+scale 5.130 4.945 5.869 5.645 6.094 —
UNO 5.534 5.336 4.725 4.495 4.366 —
UNO+scale 3.009 2.753 3.087 4.602 4.600 —

Burgers’ Equation (𝜈) 1/100 1/200 1/400 (training) 1/1000

FNO 28.602 11.005 1.230 8.709 — —
FNO+scale 27.799 10.008 1.908 9.442 — —
SINO 24.914 10.027 1.174 8.363 — —
SINO+scale 5.926 1.720 0.957 4.575 — —
UNet 32.897 22.463 20.119 26.481 — —
UNet+scale 30.137 22.815 25.138 30.747 — —
UNO 28.581 10.963 1.235 8.624 — —
UNO+scale 28.716 11.009 1.387 8.720 — —

Helmholtz Equation (k) 1 2 5 (training) 10 (training) 25 (training) 50

FNO 136.847 131.200 4.285 12.575 21.060 107.186
FNO+scale 44.625 36.026 3.186 11.924 19.744 108.916
SINO-U 69.437 63.283 3.666 12.503 19.728 102.980
SINO-U+scale 8.960 6.960 3.081 12.490 19.001 112.940
UNet 164.945 156.775 48.341 51.028 21.189 112.914
UNet+scale 51.441 64.313 63.827 52.731 53.541 104.477
UNO 120.742 101.478 9.350 16.172 32.280 118.570
UNO+scale 125.742 91.541 10.821 19.605 36.017 117.776

Navier-Stokes, auto-reg. (Re) 250 500 1000 (training) 2000 4000 10000

FNO 0.447 0.750 1.015 3.108 7.374 18.295
FNO+scale 0.302 0.531 0.743 2.446 6.137 17.127
SINO-U 0.695 0.782 0.976 2.466 4.793 13.772
SINO-U + scale 0.357 0.514 0.953 2.186 4.289 11.483
UNet 4.156 2.706 0.809 2.096 10.027 22.284
UNet+scale 1.086 1.753 13.802 15.427 16.442 28.297
UNO 4.228 3.021 4.147 8.316 16.728 33.221
UNO+scale 4.005 2.661 3.458 6.941 14.785 30.663

Table 7.1: Comparison of FNO, UNet, UNO, and SINO with and without scale-
consistency. Models are trained at certain scale and zero-shot test across others.
Overall, scale-consistency helps each model extrapolate to unseen scales. Errors are
in relative-L2 (%). The Darcy Flow is scale-invariant so the SINO does not apply.



144

S=128 S=256 S=512 S=1024
resolution (training & testing)

0.00

0.02

0.04

0.06

0.08

0.10

re
la

tiv
e 

l2
 e

rro
r 0.063 0.062 0.060 0.061

0.069

0.046

0.036
0.030

Kolmogorov Flow with RE=10000
FNO
Ours

Figure 7.4: Ablation Studies of Scale Consistency. left: Cost-Accuracy: we train
and test each model at various sizes on Kolmogorov Flow with RE=5000. Our
model (u-shape) converges faster than baseline models. Further, the model (shared)
achieves comparative accuracy with 1/10 of the parameters. right: discretization
convergence: the proposed model does not truncate to a fixed bandwidth. As the
training resolution increases, the model’s error converges while the baseline FNO
remains the same.

7.5 Experiments
We generated datasets for the Darcy Flow, Helmholtz equation, and Navier-Stokes
equation, each spanning a wide range of scales. For each test case, we trained the
models on a narrow range of scales and compared the performance with and without
self-consistency augmentation. All experiments were run on Nvidia A100 (80GB,
40GB) or P100 (16GB) GPUs. The error metric is relative L2 error. The results
show that self-consistency augmentation helps the model generalize better to unseen
scales.

Self-consistency loss
In the first part, we compare FNO, UNet, and our models, with and without the self-
consistency loss. For Darcy and Helmholtz equations, where the input distribution is
given as a Gaussian random field, we apply both sub-sampling 1 and super-sampling
2. For the Navier-Stokes equation, the input distribution is unknown, so we only
apply sub-sampling.

Darcy Flow. We considered the Darcy Flow (7.2) with a non-zero Dirichlet bound-
ary. The input coefficient is sampled at different scale. The resolutions were
𝑠 = 64, 96, 128, 256, 512, respectively. We train 1024 instances for training and 128
for testing. We used 𝜎 = 1 for training. Since Darcy has no scale parameters, we
used FNO with and without scale-consistency. As shown in Table 7.1, FNO with
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scale-consistency reduced the error by half compared to the baseline.

Helmholtz Equation. We considered the Helmholtz equation (7.7) with a non-zero
Dirichlet boundary. The input coefficients 𝑎, 𝑔 were sampled from a fixed Gaussian
random field, with varying wavenumbers 𝑘 = 1, 2, 5, 10, 25, 50, 100. The resolu-
tions were 64, 64, 64, 128, 256, 512, 1024, respectively. We train 1024 instances for
training and 128 for testing. We used 𝑘 = 5, 10, 25 for training. The scale-informed
neural operator with scale-consistency reduced the error by half compared to the
baseline FNO on smaller wavenumbers 𝑘 = 1, 2, but neither model captured larger
scales 𝑘 = 50, 100, since Helmholtz equation has very different behaviors on larger
scales.

Burgers’ Equation. We considered the Burgers’ equation. Given the initial condi-
tion and time-dependent boundary condition as input, the model predicts the solution
over the next time interval. We train the FNO model and the multi-scale neural oper-
ator model (ours) with and without scale-consistency loss. The scale-consistent loss
is across both the spatial and temporal domain. The models are trained on viscosity
= 1/400 and tested on viscosities 𝜈 = 1/100, 1/200, 1/400, 1/1000. The multi-
scale neural operator with scale-consistency reduced the error up to 5x compared to
the baseline FNO on unseen viscosity.

Navier-Stokes Equation (autoregressive). We considered the Navier-Stokes equa-
tion (7.8) defined on sub-domain similar to applications in climate. The input is
the vorticity field of the previous ten time frames 𝜔0. We considered Reynolds
numbers ranging from 𝑅𝑒 = 250, 500, 1000, 2000, 4000, 10000. The resolutions
were 32, 64, 128, 128, 256, 512, respectively. We train 50 trajectories for training
and 5 (per each 𝑅𝑒) for testing, where each trajectory consists of 300 time steps,
with 𝑑𝑡 = 0.1. We used 𝑅𝑒 = 1000 for training. The multi-scale multi-band neural
operator with scale-consistency reduced the error by 1/4 compared to the baseline
UNet on unseen 𝑅𝑒 = 250, 500, 4000, 10000.

Navier-Stokes Equation (space-time, 2+1 dimensional). We also considered the
spatiotemporal modeling for the Navier Stokes equation, velocity formulation. Sim-
ilar to the autoregressive setting above, we considered Reynolds numbers ranging
from 𝑅𝑒 = 250, 500, 1000, 2000, 4000, 10000. For continuous-time modeling, we
use 𝑑𝑡 = 1/256 and are given input of the history, consisting of 24 frames, to predict
the next 24 frames. We observe significant improvements with scale embedding and
spatiotemporal cropping for out-of-distribution Reynolds numbers. Improvements
are highlighted in Table 7.1.
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Scale 2 3 4 8 16

No aug. 4.143 4.193 4.036 3.552 3.352
Rot. 3.101 2.944 2.953 2.797 2.872
Ref. 2.821 2.701 2.597 2.616 2.684
Rot.+Ref. 2.713 2.469 2.450 2.461 2.582

Scale (ours) 1.918 2.075 2.035 2.159 2.237
All (ours) 1.903 1.816 1.910 2.095 2.309

Table 7.2: Comparison of scale-consistency with existing symmetries for data
augmentation, in relative-L2 error (%). We train FNO on Darcy flow at 𝑠𝑐𝑎𝑙𝑒 = 4
and zero-shot test at other scales.

Comparison with symmetry-based augmentation. On the Darcy flow, we com-
pare the scale-consistency augmentation with existing symmetry-based augmenta-
tion as used in (R. Wang, Walters, and Yu, 2020; Brandstetter, Welling, and Worrall,
2022). As shown in Table 7.2, scale-consistency augmentation leads to better gener-
alization compared to rotation plus reflection. Furthermore, scale-consistency works
seamlessly with rotation and reflection. The best result is achieved by combining
the three augmentation methods together.

Ablation studies on the model architecture
Embed scale parameter in the frequency space. We conducted several ablation
studies on the proposed model architecture along with scale-consistency loss. We
test the scale embedding and positional embedding on the frequency space (7.9) with
Burgers’ equation, Helmholtz equation, and Navier-Stokes equation. As shown in
Table 7.3, the embedding in general improves the performance. We sometimes find
the scale parameter is unnecessary in the Navier-Stokes equation when it can be
inferred from the history of trajectory.

U-shape structure and shared kernel. We further conducted ablation studies on
the U-shape structure model in the standard supervised learning setting on periodic
Navier-Stokes equation with fixed scales 𝑅𝑒 = 5000 (with forcing) and 𝑅𝑒 = 10000
(zero forcing) as in (Li, Liu-Schiaffini, et al., 2022). For baselines, we consider
FNO (Li, N. Kovachki, et al., 2020a), UNet (Ronneberger, Fischer, and Brox,
2015), FNO-UNet (Gupta and Brandstetter, 2022), and UNO (Rahman, Ross, and
Azizzadenesheli, 2022). The results show that our model achieves a smaller error
rate with one-tenth of the parameters compared to the previous FNO at the cost of
longer runtime, as shown in Figure 7.4 (left). Since the model does not truncate
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Burgers’ equation

Scale Freq. Emb. 𝜈 = 1/100 𝜈 = 1/200 𝜈 = 1/400 𝜈 = 1/800

No No 28.531 10.756 1.087 8.889 — —
No Yes 28.660 10.832 0.916 8.725 — —
Yes No 10.731 2.540 1.055 5.477 — —
Yes Yes 6.334 1.887 1.042 4.636 — —

Helmholtz equation

Scale Freq. Emb. k = 1 k = 2 k = 5 k = 10 k = 25 k = 50

No No 17.914 5.963 3.537 11.042 16.338 106.597
No Yes 15.642 6.384 3.441 10.294 14.056 102.015
Yes No 16.741 4.822 2.914 10.631 12.989 103.151
Yes Yes 9.438 4.980 2.921 9.874 11.574 93.938

Table 7.3: Ablation for scale-informed neural operator on different equations in
relative-L2 error (%). For Burgers’ equation, we train on viscosity 𝜈 = 1/400 and
zero-shot test on other scales. For Helmholtz equation, we train on wavenumber
𝑘 = 5, 10, 25.

Model Scale Freq. Aug. size Re=250 Re=500 Re=1000 Re=2000 Re=4000 Re=10000
Informed Emb. min 256 256 512 512 1024 1024

2+1 dim FNO No No OFF N/A 2.040 2.901 4.460 8.573 12.081 19.554
No Yes OFF N/A 1.727 2.632 4.051 8.158 11.603 18.847
Yes No OFF N/A 1.937 2.779 4.194 8.319 11.889 19.588
Yes Yes OFF N/A 1.756 2.551 4.003 8.029 11.274 18.551

2+1 dim FNO Yes Yes ON 24 1.352 2.082 3.547 7.420 11.074 18.526
Yes Yes ON 32 1.342 2.016 3.382 7.285 10.876 18.469
Yes Yes ON 40 1.468 2.031 3.348 7.083 10.444 17.692
Yes Yes ON 48 1.756 2.515 3.869 7.732 11.194 18.408

2+1 dim SINO No No OFF N/A 3.945 5.430 6.768 11.215 14.987 21.862
No Yes OFF N/A 3.586 4.348 2.827 6.307 15.211 23.422
Yes No OFF N/A 4.032 5.580 6.803 11.358 16.708 23.437
Yes Yes OFF N/A 2.125 2.661 2.701 6.164 11.917 19.405

2+1 dim SINO No No ON 32 4.083 5.681 6.516 10.959 15.138 22.287
No Yes ON 32 1.419 2.157 2.917 6.323 9.880 17.095
Yes No ON 32 6.584 6.874 6.802 13.861 22.819 35.919
Yes Yes ON 32 1.750 2.457 2.863 6.271 13.394 23.217

Table 7.4: Navier-Stokes equation trained on RE1000, zero-shot test on various RE
(2+1 dimensional models). Values in percentage (%).

the maximum Fourier frequency, its accuracy improves as the resolution refines, as
shown in Figure 7.4 (bottom right).

7.6 Discussion and Conclusion
In this paper, we consider the scale consistency for learning solution operators on
PDEs across various scales. By leveraging the scale-consistency properties of PDEs
and designing a scale-informed neural operator, we demonstrated the ability to model
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a wide range of scales. Experimental results showed significant improvements
in generalization to unseen scales, with better generalization errors compared to
baseline models. This approach holds promise for improving the efficiency and
generalizability of data-driven PDE solvers, reducing the need for extensive training
data, and enabling the development of more flexible and foundational models for
scientific and engineering applications.

While sub-sampling (Algorithm 1) is generally helpful, super-sampling (Algorithm
2) requires input distribution known to sample new instances. While the super-
sampling works well for Darcy and Burgers, it is challenging to subsample from
the attractor for the Navier-Stokes equation. As a potential future direction, it could
be an interesting direction to combine with generative models (Lim et al., 2023) to
sample virtual inputs.
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C h a p t e r 8

GEOMETRY: NEURAL OPERATOR WITH LATENT SPACE

We propose the geometry-informed neural operator (GINO), a highly efficient ap-
proach for learning the solution operator of large-scale partial differential equations
with varying geometries. GINO uses a signed distance function (SDF) and point-
cloud representations of the input shape and neural operators based on graph and
Fourier architectures to learn the solution operator. The graph neural operator
handles irregular grids and transforms them into and from regular latent grids on
which Fourier neural operator can be efficiently applied. GINO is discretization-
convergent, meaning the trained model can be applied to arbitrary discretizations of
the continuous domain and it converges to the continuum operator as the discretiza-
tion is refined. To empirically validate the performance of our method on large-scale
simulation, we generate the industry-standard aerodynamics dataset of 3D vehicle
geometries with Reynolds numbers as high as five million. For this large-scale
3D fluid simulation, numerical methods are expensive to compute surface pressure.
We successfully trained GINO to predict the pressure on car surfaces using only
five hundred data points. The cost-accuracy experiments show a 26, 000× speed-up
compared to optimized GPU-based computational fluid dynamics (CFD) simulators
on computing the drag coefficient. When tested on new combinations of geometries
and boundary conditions (inlet velocities), GINO obtains a one-fourth reduction in
error rate compared to deep neural network approaches.

8.1 Introduction
Computational sciences aim to understand natural phenomena and develop compu-
tational models to study the physical world around us. Many natural phenomena
follow the first principles of physics and are often described as evolution on function
spaces, governed by partial differential equations (PDE). Various numerical meth-
ods, including finite difference and finite element methods, have been developed as
computational approaches for solving PDEs. However, these methods need to be
run at very high resolutions to capture detailed physics, which are time-consuming
and expensive, and often beyond the available computation capacity. For instance,
in computational fluid dynamics (CFD), given a shape design, the goal is to solve
the Navier-Stokes equation and estimate physical properties such as pressure and
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Input 
Samples GNO FNO GNO Prediction

discretize query

Operates on 
input geometry

Operates on (latent) 
regular geometry

Projects to 
output geometry 

-134. -48.3 37.2  123.  208.  

FNO layers

The input geometries are irregular and change for each sample. These are discretized
into point clouds and passed on to a GNO layer, which maps from the given geometry
to a latent regular grid. The output of this GNO layer is concatenated with the SDF
features and passed into an FNO model. The output from the FNO model is projected
back onto the domain of the input geometry for each query point using another GNO
layer. This is used to predict the target function (e.g., pressure), which is used to
compute the loss that is optimized end-to-end for training.

Figure 8.1: The architecture of GINO

velocity. Finding the optimal shape design often requires solving thousands of trial
shapes, each of which can take more than ten hours even with GPUs (Korzun et al.,
2022).

To overcome these computational challenges, recent works propose deep learning-
based methods, particularly neural operators (Zongyi Li, Kovachki, Azizzade-
nesheli, B. Liu, Bhattacharya, et al., 2020b), to speed up the simulation and inverse
design. Neural operators generalize neural networks and learn operators, which are
mappings between infinite-dimensional function spaces (Zongyi Li, Kovachki, Aziz-
zadenesheli, B. Liu, Bhattacharya, et al., 2020b). Neural operators are discretization
convergent and can approximate general operators (Kovachki et al., 2021). The input
function to neural operators can be presented at any discretization, grid, resolution,
or mesh, and the output function can be evaluated at any arbitrary point. Neural
operators have shown promise in learning solution operators in partial differential
equations (PDE) (Kovachki et al., 2021) with numerous applications in scientific
computing, including weather forecasting (Pathak et al., 2022), carbon dioxide stor-
age and reservoir engineering (Wen et al., 2023), with a tremendous speedup over
traditional methods. Prior works on neural operators developed a series of principled
neural operator architectures to tackle a variety of scientific computing applications.
Among the neural operators, graph neural operators (GNO) (Zongyi Li, Kovachki,
Azizzadenesheli, B. Liu, Bhattacharya, et al., 2020b), and Fourier neural operators
(FNO) (Zongyi Li, Kovachki, Azizzadenesheli, B. Liu, Bhattacharya, et al., 2020a)
have been popular in various applications.
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GNO implements kernel integration with graph structures and is applicable to com-
plex geometries and irregular grids. The kernel integration in GNO shares similari-
ties with the message-passing implementation of graph neural networks (GNN) (P.
Battaglia et al., 2016), which is also used in scientific computing (Sanchez-Gonzalez
et al., 2020; Pfaff et al., 2020; Allen et al., 2022). However, the main difference
is that GNO defines the graph connection in a ball defined on the physical space,
while GNN typically assumes a fixed set of neighbors, e.g., k-nearest neighbors,
see Figure 8.2. Such nearest-neighbor connectivity in GNN violates discretization
convergence, and it degenerates into a pointwise operator at high resolutions, lead-
ing to a poor approximation of the ground-truth operator using GNN. In contrast,
GNO adapts the graph based on points within a physical space, allowing for univer-
sal approximation of operators. However, one limitation of graph-based methods
is the computational complexity when applied to problems with long-range global
interactions. To overcome this, prior works propose using multi-pole methods or
multi-level graphs (Zongyi Li, Kovachki, Azizzadenesheli, B. Liu, Stuart, et al.,
2020; Lam et al., 2022) to help with global connectivity. However, they do not
fully alleviate the problem since they require many such levels to capture global
dependence, which still makes them expensive.

While GNO performs kernel integration in the physical space using graph operations,
FNO leverages Fourier transform to represent the kernel integration in the spectral
domain using Fourier modes. This architecture is applicable to general geometries
and domains since the (continuous) Fourier transform can be defined on any domain.
However, it becomes computationally efficient when applied to regular input grids
since the continuous Fourier transform can then be efficiently approximated using
discrete Fast Fourier transform (FFT) (Cooley and Tukey, 1965), giving FNO a
significant quasi-linear computational complexity. However, FFT limits FNO to
regular grids and cannot directly deal with complex geometries and irregular grids.
A recent model, termed GeoFNO, learns a deformation from a given geometry to
a latent regular grid (Zongyi Li, D. Z. Huang, et al., 2022) so that the FFT can be
applied in the latent space. In order to transform the latent regular grid back to the
irregular physical domain, discrete Fourier transform (DFT) on irregular grids is
employed. However, DFT on irregular grids is more expensive than FFT, quadratic
vs. quasi-linear, and does not approximate the Fourier transform in a discretization
convergent manner. This is because, unlike in the regular setting, the points are not
sampled at regular intervals, and therefore the integral does not take into account
the underlying measure. Other attempts share a similar computational barrier as
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shown in Table 8.1, which we discussed in Section 8.2.

In this paper, we consider learning the solution operator for large-scale PDEs,
in particular, 3D CFD simulations. We propose the geometry-informed neural
operator (GINO), a neural operator architecture for arbitrary geometries and mesh
discretizations. It uses a signed distance function (SDF) to represent the geometry
and composes GNO and FNO architectures together in a principled manner to exploit
the strengths of both frameworks.

The GNO by itself can handle irregular grids through graphs but is able to operate
only locally under a limited computational budget, while the FNO can capture global
interactions, but requires a regular grid. By using GNO to transform the irregular
grid into a regular one for the FNO block, we can get the best of both worlds, i.e.,
computational efficiency and accuracy of the approximation. Thus, this architecture
tackles the issue of expensive global integration operations that were unaddressed
in prior works, while maintaining discretization convergence.

Specifically, GINO has three main components, (𝑖) Geometry encoder: multiple
local kernel integration layers through GNO with graph operations, (𝑖𝑖) Global
model: a sequence of FNO layers for global kernel integration, and (𝑖𝑖𝑖) Geometry
decoder: the final kernel integral layers, as shown in Figure 8.1. The input to the
GINO is the input surface (as a point cloud) along with the SDF, representing the
distance of each 3D point to the surface. GINO is trained end-to-end to predict
output (e.g., car surface pressure in our experiments), a function defined on the
geometry surfaces.

Geometry encoder: the first component in the GINO architecture uses the surface
(i.e., point cloud) and SDF features as inputs. The irregular grid representation
of the surface is encoded through local kernel integration layers implemented with
GNOs, consisting of local graphs that can handle different geometries and irregular
grids. The encoded function is evaluated on a regular grid, which is concatenated
with the SDF input evaluated on the same grid. Global model: the output of
the first component is encoded on a regular grid, enabling efficient learning with an
FNO using FFT. Our second component consists of multiple FNO layers for efficient
global integration. In practice, we find that this step can be performed at a lower
resolution without significantly impacting accuracy, giving a further computational
advantage. Geometry decoder: the final component is composed of local GNO-
based layers with graph operations, that decode the output of the FNO and project
it back onto the desired geometry, making it possible to efficiently query the output



155

Model Range Complexity Irreg. grid Disc. conv.

GNN local 𝑂 (𝑁degree) Yes No
CNN local 𝑂 (𝑁) No No
UNet global 𝑂 (𝑁) No No
Transformer global 𝑂 (𝑁2) Yes Yes
GNO (kernel) radius 𝑟 𝑂 (𝑁degree) Yes Yes
FNO (FFT) global 𝑂 (𝑁 log 𝑁) No Yes
GINO [Ours] global 𝑂 (𝑁 log 𝑁 + 𝑁degree) Yes Yes
𝑁 is the number of mesh points; 𝑑 is the dimension of the domain and degree is
the maximum degree of the graph. Even though GNO and transformer both work
on irregular grids and are discretization convergent, they become too expensive on
large-scale problems.

Table 8.1: Computational complexity of standard deep learning models

function on irregular meshes. The GNO layers in our framework are accelerated
using our GPU-based hash-table implementation of neighborhood search for graph
connectivity of meshes.

We validate our findings on two large-scale 3D CFD datasets. We generate our own
large-scale industry-standard Ahmed’s body geometries using GPU-based Open-
FOAM (Jasak, Jemcov, Tukovic, et al., 2007), composed of 500+ car geometries
with 𝑂 (105) mesh points on the surface and 𝑂 (107) mesh points in space. Each
simulation takes 7-19 hours on 16 CPU cores and 2 Nvidia V100 GPUs. Further, we
also study a lower resolution dataset with more realistic car shapes, viz., Shape-Net
car geometries generated by Umetani and Bickel, 2018. GINO takes the point clouds
and SDF features as the input and predicts the pressure fields on the surfaces of the
vehicles. We perform a full cost-accuracy trade-off analysis. The result shows
GINO is 26, 000× faster at computing the drag coefficients over the GPU-based
OpenFOAM solver, while achieving 8.31% (Ahmed-body) and 7.29% (Shape-Net
car) error rates on the full pressure field. Further, GINO is capable of zero-shot
super-resolution, training with only one-eighth of the mesh points, and having a
good accuracy when evaluated on the full mesh that is not seen during training.

8.2 Related Work
The study of neural operators and their extended applications in learning solution
operators in PDE has been gaining momentum (Kovachki et al., 2021; Bhattacharya
et al., 2021; Kissas et al., 2022; Rahman, Ross, and Azizzadenesheli, 2022). A
method that stands out is FNO, which uses Fourier transform (Zongyi Li, Kovachki,
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Azizzadenesheli, B. Liu, Bhattacharya, et al., 2020a). The FNO and its variations
have proven to highly accelerate the simulations for large-scale flow problems,
including weather forecasting (Pathak et al., 2022), seismology (Yang et al., 2021;
Sun et al., 2022) and multi-phase flow (Wen et al., 2023). However, a challenge
with the FNO is that its computation superiority is gained when applied on a regular
grid, where the Fourier transform is approximated using FFT. Therefore, its reliance
on FFT limits its use with irregular grids or complex geometries. There have been
attempts to modify the FNO to work with these irregular structures, but scalability
to large-scale 3D PDEs remains an issue. One such attempt is GeoFNO, which
learns a coordinate transformation to map irregular inputs to a regular latent space
(Zongyi Li, D. Z. Huang, et al., 2022). This method, while innovative, requires a
geometric discrete Fourier transform, which is computationally demanding and lacks
discretization insurance. To circumvent this, GINO limits the Fourier transform to
a local GNO to improve efficiency. The locality is defined assuming the metrics of
the physical space.

Additionally, the Non-Equispaced Fourier neural solvers (NFS) merge the FNO with
non-equispaced interpolation layers, a method similar to global GNO (Lin et al.,
2022). However, at the architecture level, their method replaces the integration
of GNO with the summation of the nearest neighbor points on the graph. This
step transitions this method to a neural network, failing to deliver a discretization
convergent approach. The Domain-Agnostic Fourier Neural Operators (DAFNO)
represents another attempt at improvement, applying an FNO to inputs where the
geometry is represented as an indicator function (N. Liu, Jafarzadeh, and Yu, 2023).
However, this method lacks a strategy for handling irregular point clouds. Si-
multaneously, researchers are exploring the combination of FNO with the attention
mechanisms (Kovachki et al., 2021) for irregular meshes. This includes the Operator
Transformer (OFormer) (Zijie Li, Meidani, and Farimani, 2022), Mesh-Independent
Neural Operator (MINO) (Lee, n.d.), and the General Neural Operator Transformer
(GNOT) (Hao et al., 2023). Besides, the Clifford neural layers (Brandstetter et al.,
2022) use the Clifford algebra to compute multivectors, which provides Clifford-
FNO implementations as an extension of FNO. The work (Wandel, Weinmann, and
Klein, 2021) uses a physics-informed loss with U-Net for 3D channel flow simula-
tion with several shapes. The work (Balu et al., 2021) innovatively proposes the use
of multigrid training for neural networks that improves the convergence. Although
these methods incorporate attention layers, which are special types of kernel inte-
gration Kovachki et al., 2021 with quadratic complexity, they face challenges when
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scaling up for large-scale problems.

GNNs are incorporated in the prior attempts in physical simulations involving com-
plex geometry, primarily due to the inherent flexibility of graph structures. Early
research (P. Battaglia et al., 2016; Kipf and Welling, 2016; Hamilton, Ying, and
Leskovec, 2017; P. W. Battaglia et al., 2018) laid the foundation for GNNs, demon-
strating that physical entities, when represented as graph nodes, and their interac-
tions, as edges, could predict the dynamics of various systems. The introduction of
graph element networks (Alet et al., 2019) marked a significant development, being
the first to apply GNNs to PDEs by discretizing the domain into elements. The
similar idea has been explored in term of continuous 3D point cloud convolution
(Y. Li et al., 2018; Hermosilla et al., 2018; W. Wu, Qi, and Fuxin, 2019). Another
line of work, mesh graph networks (Sanchez-Gonzalez et al., 2020; Pfaff et al.,
2020; Allen et al., 2022), further explored PDEs in the context of fluid and solid
mechanics. Remelli et al., 2020; Durasov et al., 2021 train a Graph convolutional
neural works on the ShapeNet car dataset for inverse design. However, GNN archi-
tectures’ limitations hinder their use in operator learning for PDEs. GNNs connect
each node to its nearest neighbors according to the graph’s metrics, not the metrics
of the physical domain. As the input function’s discretization becomes finer, each
node’s nearest neighbors eventually converge to the same node, contradicting the
expectation of improved model performance with finer discretization. Furthermore,
GNNs’ model behavior at the continuous function limit lacks a unique definition,
failing the discretization convergence criterion. Consequently, as pointwise op-
erators in function spaces at the continuous limit, GNNs struggle to approximate
general operators between function spaces, Figure 8.2.

8.3 Problem setting
We are interested in learning the map from the geometry of a PDE to its solution.
We will first give a general framework and then discuss the Navier-Stokes equation
in CFD as an example. Let 𝐷 ⊂ R𝑑 be a Lipschitz domain and A a Banach space
of real-valued functions on 𝐷. We consider the set of distance functions T ⊂ A
so that, for each function 𝑇 ∈ T , its zero set 𝑆𝑇 = {𝑥 ∈ 𝐷 : 𝑇 (𝑥) = 0} defines
a (𝑑 − 1)-dimensional sub-manifold. We assume 𝑆𝑇 is simply connected, closed,
smooth, and that there exists 𝜖 > 0 such that 𝐵𝜖 (𝑥) ∩ 𝜕𝐷 = ∅ for every 𝑥 ∈ 𝑆𝑇 and
𝑇 ∈ T . We denote by 𝑄𝑇 ⊂ 𝐷, the open volume enclosed by the sub-manifold 𝑆𝑇
and assume that 𝑄𝑇 is a Lipschitz domain with 𝜕𝑄𝑇 = 𝑆𝑇 . We define the Lipschitz
domain Ω𝑇 := 𝐷 \ 𝑄̄𝑇 so that, 𝜕Ω𝑇 = 𝜕𝐷 ∪ 𝑆𝑇 . Let L denote a partial differential
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discretization …

Input geometries Discretized geometries at various fine to coarse levels of discretizations

(a) An input geometry (continuous function) is first discretized into a series of points by
subsampling it. Note that in practice, the discretization can be highly irregular. A key
challenge with several scientific computing applications is that we want a method that can
work on arbitrary geometries, but also that is discretization convergent, meaning that the
method converges to a desired solution operator as we make the discretization finer.

Finer
discretization

Target
Geometry

(b) GNN connects each point in the latent
subspace (red) to its nearest neighbors in the
original space (top). This is very discretiza-
tion dependent, and as we increase the res-
olution (sample points more densely), the
method becomes increasingly local and fails
to capture context. In addition, the operator
at the discretization limit is non-unique and
depends on how the discretization is done.

Finer
discretization

Target
Geometry

(c) GNO instead connects each point in the
latent subspace (red) to all its neighbors
within an epsilon ball in the original space
(top). This induces convergence to a contin-
uum solution operator as we increase the res-
olution (sample points more densely). This
means GNO converges to a unique opera-
tor as the discretization becomes finer and
scales to large problems.

Figure 8.2: Comparison of GNN and GNO as the discretization becomes finer.
GNN is discretization dependent, while GNO is discretization convergent.

operator and consider the problem

L(𝑢) = 𝑓 , in Ω𝑇 ,

𝑢 = 𝑔, in 𝜕Ω𝑇 ,
(8.1)

for some 𝑓 ∈ F , 𝑔 ∈ B where B, F denote Banach spaces of functions on R𝑑 with
the assumption that the evaluation functional is continuous in B. We assume that
L is such that, for any triplet (𝑇, 𝑓 , 𝑔), the PDE (8.1) has a unique solution 𝑢 ∈ U𝑇
where U𝑇 denotes a Banach space of functions on Ω𝑇 . Let U denote a Banach
space of functions on 𝐷 and let {𝐸𝑇 : U𝑇 → U : 𝑇 ∈ T } be a family of extension
operators which are linear and bounded. We define the mapping from the distance
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function to the solution function

Ψ : T × F × B → U (8.2)

by (𝑇, 𝑓 , 𝑔) ↦→ 𝐸𝑇 (𝑢) which is our operator of interest.

Navier-Stokes Equation. We illustrate the above abstract formulation with the
following example. Let 𝐷 = (0, 1)𝑑 be the unit cube and let A = 𝐶 (𝐷̄). We take
T ⊂ A to be some subset such that the zero level set of every element defines a
(𝑑−1)-dimensional closed surface which can be realized as the graph of a Lipschitz
function and that there exists 𝜖 > 0 such that each surface is at least distance 𝜖 away
from the boundary of 𝐷. We now consider the steady Naiver-Stokes equations,

−𝜈Δ𝑣 + (𝑣 · ∇)𝑣 + ∇𝑝 = 𝑓 , in Ω𝑇 ,

∇ · 𝑣 = 0, in Ω𝑇 ,

𝑣 = 𝑞, in 𝜕𝐷,

𝑣 = 0, in 𝑆𝑇 ,

(8.3)

where 𝑣 : Ω𝑇 → R𝑑 is the velocity, 𝑝 : Ω𝑇 → R is the pressure, 𝜈 is the viscosity,
and 𝑓 , 𝑞 : R𝑑 → R𝑑 are the forcing and boundary functions. The condition that
𝑣 = 0 in 𝑆𝑇 is commonly known as a no slip boundary and is prevalent in many
engineering applications. The function 𝑞, on the other hand, defines the inlet and
outlet boundary conditions for the flow. We assume that 𝑓 ∈ 𝐻−1(R𝑑;R𝑑) and
𝑞 ∈ 𝐶 (R𝑑;R𝑑). We can then define our boundary function 𝑔 ∈ 𝐶 (R𝑑;R𝑑) such
that 𝑔(𝑥) = 0 for any 𝑥 ∈ 𝐷 with dist(𝑥, 𝜕𝐷) ≥ 𝜖 and 𝑔(𝑥) = 𝑞(𝑥) for any
𝑥 ∈ 𝐷 with, dist(𝑥, 𝜕𝐷) > 𝜖/2 as well as any 𝑥 ∉ 𝐷. Continuity of 𝑔 can be
ensured by an appropriate extension for any 𝑥 ∈ 𝐷 such that dist(𝑥, 𝜕𝐷) < 𝜖 and
dist(𝑥, 𝜕𝐷) ≥ 𝜖/2 Whitney, 1934. We define 𝑢 : Ω𝑇 → R𝑑+1 by 𝑢 = (𝑣, 𝑝) as the
unique weak solution of (8.3) with U𝑇 = 𝐻1(Ω𝑇 ;R𝑑) × 𝐿2(Ω𝑇 )/R Temam, 1984.
We defineU = 𝐻1(𝐷;R𝑑) × 𝐿2(𝐷)/R and the family of extension operators {𝐸𝑇 :
U𝑇 → U} by 𝐸𝑇 (𝑢) =

(
𝐸𝑣
𝑇
(𝑣), 𝐸 𝑝

𝑇
(𝑝)

)
where 𝐸𝑣

𝑇
: 𝐻1(Ω𝑇 ;R𝑑) → 𝐻1(𝐷;R𝑑)

and 𝐸
𝑝

𝑇
: 𝐿2(Ω𝑇 )/R → 𝐿2(𝐷)/R are defined as the restriction onto 𝐷 of the

extension operators defined in Stein, 1970, Chapter 6, Theorem 5. This establishes
the existence of the operator Ψ : T × 𝐻−1(R𝑑;R𝑑) × 𝐶 (R𝑑;R𝑑) → 𝐻1(𝐷;R𝑑) ×
𝐿2(𝐷)/R mapping the geometry, forcing, and boundary condition to the (extended)
solution of the steady Navier-Stokes equation (8.3). Homomorphic extensions of
deformation-based operators have been shown in Cohen, Schwab, and Zech, 2018.
We leave for future work studying the regularity properties of the presently defined
operator.
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8.4 Geometric-Informed Neural Operator
We propose a geometry-informed neural operator (GINO), a neural operator archi-
tecture for varying geometries and mesh regularities. GINO is a deep neural operator
model consisting of three main components, (𝑖) multiple local kernel integration
layers, (𝑖𝑖) a sequence of FNO layers for global kernel integration which precedes
(𝑖𝑖𝑖) the final kernel integral layers. Each layer of GINO follows the form of generic
kernel integral of the form (8.5). Local integration is computed using graphs, while
global integration is done in Fourier space.

Neural operator
A neural operator Ψ Kovachki et al., 2021 maps the input functions 𝑎 = (𝑇, 𝑓 , 𝑔)
to the solution function 𝑢. The neural operator Ψ is composed of multiple layers of
point-wise and integral operators,

Ψ = Q ◦ K𝐿 ◦ . . . ◦ K1 ◦ ¶. (8.4)

The first layer ¶ is a pointwise operator parameterized by a neural network. It
transforms the input function 𝑎 into a higher-dimensional latent space ¶ : 𝑎 ↦→ 𝑣0.
Similarly, the last layer acts as a projection layer, which is a pointwise operator
Q : 𝑣𝑙 ↦→ 𝑢, parameterized by a neural network 𝑄. The model consists of 𝐿 layers
of integral operators K𝑙 : 𝑣𝑙−1 ↦→ 𝑣𝑙 in between.

𝑣𝑙 (𝑥) =
∫
𝐷

𝜅𝑙 (𝑥, 𝑦)𝑣𝑙−1(𝑦)d𝑦 (8.5)

where 𝜅𝑙 is a learnable kernel function. Non-linear activation functions are incor-
porated between each layer.

Graph operator block
To efficiently compute the integral in equation (8.5), we truncate the integral to a
local ball at 𝑥 with radius 𝑟 > 0, as done in (Zongyi Li, Kovachki, Azizzadenesheli,
B. Liu, Bhattacharya, et al., 2020b),

𝑣𝑙 (𝑥) =
∫
𝐵𝑟 (𝑥)

𝜅(𝑥, 𝑦)𝑣𝑙−1(𝑦) d𝑦. (8.6)

We discretize the space and use a Riemann sum to compute the integral. This
process involves uniformly sampling the input mesh points and connecting them
with a graph for efficient parallel computation. Specifically, for each point 𝑥 ∈ 𝐷,
we randomly sample points {𝑦1, . . . , 𝑦𝑀} ⊂ 𝐵𝑟 (𝑥) and approximate equation (8.6)
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as

𝑣𝑙 (𝑥) ≈
𝑀∑︁
𝑖=1

𝜅(𝑥, 𝑦𝑖)𝑣𝑙−1(𝑦𝑖)𝜇(𝑦𝑖), (8.7)

where 𝜇 denotes the Riemannian sum weights corresponding to the ambient space
of 𝐵𝑟 (𝑥). For a fixed input mesh of 𝑁 points, the computational cost of equation
(8.7) scales with the number of edges, denoted as 𝑂 (𝐸) = 𝑂 (𝑀𝑁). Here, the
number of sampling points 𝑀 is the degree of the graph. It can be either fixed to a
constant sampling size, or scale with the area of the ball.

Encoder. Given an input point cloud {𝑥in
1 , . . . , 𝑥

in
𝑁
} ⊂ 𝑆𝑇 , we employ a GNO-

encoder to transform it to a function on a uniform latent grid {𝑥grid
1 , . . . , 𝑥

grid
𝑆
} ⊂

𝐷. The encoder is computed as discretization of an integral operator 𝑣0(𝑥grid) ≈∑𝑀
𝑖=1 𝜅(𝑥grid, 𝑦in

𝑖
)𝜇(𝑦in

𝑖
) over ball 𝐵𝑟in (𝑥grid). To inform the grid density, GINO

computes Riemannian sum weights 𝜇(𝑦in
𝑖
). Further, we use Fourier features in the

kernel Sitzmann et al., 2020. For simple geometries, this encoder can be omitted,
see Section 8.5.

Decoder. Similarly, given a function defined on the uniform latent grid {𝑥grid
1 , . . . , 𝑥

grid
𝑆
} ⊂

𝐷, we use a GNO-decoder to query arbitrary output points {𝑥out
1 , . . . , 𝑥out

𝑁
} ⊂ Ω𝑇 .

The output is evaluated as 𝑢(𝑥out) ≈ ∑𝑀
𝑖=1 𝜅(𝑥out, 𝑦

grid
𝑖
)𝑣𝑙 (𝑦grid

𝑖
)𝜇(𝑦grid

𝑖
) over ball

𝐵𝑟out (𝑥out). Here, the Riemannian weight, 𝜇(𝑦grid
𝑖
) = 1/𝑆 since we choose the latent

space to be regular grid. Since the queries are independent, we divide the output
points into small batches and run them in parallel, which enables us to use much
larger models by saving memory.

Efficient graph construction. The graph construction requires finding neighbors
to each node that are within a certain radius. The simplest solution is to compute
all possible distances between neighbors, which requires 𝑂 (𝑁2) computation and
memory. However, as the 𝑁 gets larger, e.g., 10 ∼ 100 million, computation and
memory become prohibitive even on modern GPUs. Instead, we use a hash grid-
based implementation to efficiently prune candidates that are outside of a ℓ∞-ball
first and then compute the ℓ2 distance between only the candidates that survive. This
reduces the computational complexity to𝑂 (𝑁𝑑𝑟3) where 𝑑 denotes unit density and
𝑟 is the radius. This can be efficiently done using first creating a hash table of voxels
with size 𝑟. Then, for each node, we go over all immediate neighbors to the current
voxel that the current node falls into and compute the distance between all points
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in these neighboring voxels. Specifically, we use the CUDA implementation from
Open3D Zhou, Park, and Koltun, 2018. Then, using the neighbors, we compute the
kernel integration using gather-scatter operations from torch-scatter Fey et al., 2023.
Further, if the degree of the graph gets larger, we can add Nyström approximation
by sampling nodes (Zongyi Li, Kovachki, Azizzadenesheli, B. Liu, Bhattacharya,
et al., 2020b).

Fourier operator block
The geometry encoding 𝑣0 and the geometry specifying map 𝑇 , both evaluated
on a regular grid discretizing 𝐷 are passed to a FNO block. We describe the
basic FNO block as first outlined in Zongyi Li, Kovachki, Azizzadenesheli, B. Liu,
Bhattacharya, et al., 2020a. We will first define global convolution in the Fourier
space and use it to build the full FNO operator block. To that end, we will work
on the 𝑑-dimensional unit torus T𝑑 . We define an integral operator with kernel
𝜅 ∈ 𝐿2(T𝑑;R𝑛×𝑚) as the mapping C : 𝐿2(T𝑑;R𝑚) → 𝐿2(T𝑑;R𝑛) given by

C(𝑣) = F −1 (F (𝜅) · F (𝑣)) , ∀ 𝑣 ∈ 𝐿2(T𝑑;R𝑚)

Here F , F −1 are the Fourier transform and its inverse respectively, defined for 𝐿2

by the appropriate limiting procedure. The Fourier transform of the function 𝜅 will
be parameterized directly by some fixed number of Fourier modes, denoted 𝛼 ∈ N.
In particular, we assume

𝜅(𝑥) =
∑︁
𝛾∈𝐼

𝑐𝛾e𝑖⟨𝛾,𝑥⟩, ∀ 𝑥 ∈ T𝑑

for some index set 𝐼 ⊂ Z𝑑 with |𝐼 | = 𝛼 and coefficients 𝑐𝛾 ∈ C𝑛×𝑚. Then we
may view F : 𝐿2(T𝑑;R𝑛×𝑚) → ℓ2(Z𝑑;C𝑛×𝑚) so that F (𝜅) (𝛾) = 𝑐𝛾 if 𝛾 ∈ 𝐼

and F (𝜅) (𝛾) = 0 if 𝛾 ∉ 𝐼. We directly learn the coefficients 𝑐𝛾 without ever
having to evaluate 𝜅 in physical space. We then define the full operator block
K : 𝐿2(T𝑑;R𝑚) → 𝐿2(T𝑑;R𝑛) by

K(𝑣) (𝑥) = 𝜎
(
𝑊𝑣(𝑥) + C(𝑣)

)
, ∀ 𝑥 ∈ T𝑑

where𝜎 is a pointwise non-linearity and𝑊 ∈ R𝑛×𝑚 is a learnable matrix. We further
modify the layer by learning the kernel coefficients in tensorized form, adding skip
connections, normalization layers, and learnable activations as outlined in Kossaifi
et al., 2023. We refer the reader to this work for further details.
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Ground-truth pressure Predicted pressure Relative error

0.00  0.200 0.400 0.600 0.800 
-197. -96.7 3.54  104.  204.  
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Figure 8.3: Visualization of a ground-truth pressure and corresponding prediction
by GINO from the Shape-Net Car (top) and Ahmed-body (bottom) datasets, as well
as the absolute error.

Adaptive instance normalization. For many engineering problems of interest, the
boundary information is a fixed, scalar, inlet velocity specified on some portion of
𝜕𝐷. In order to efficiently incorporate this scalar information into our architecture,
we use a learnable adaptive instance normalization X. Huang and Belongie, 2017
combined with a Fourier feature embedding Sitzmann et al., 2020. In particular,
the scalar velocity is embedded into a vector with Fourier features. This vector then
goes through a learnable MLP, which outputs the scale and shift parameters of an
instance normalization layer Ulyanov, Vedaldi, and Lempitsky, 2016. In problems
where the velocity information is not fixed, we replace the normalization layers of
the FNO blocks with this adaptive normalization. We find this technique improves
performance, since the magnitude of the output fields usually strongly depends on
the magnitude of the inlet velocity.

8.5 Experiments
We explore a range of models on two CFD datasets. The large-scale Ahmed-Body
dataset, which we generated, and also the Shape-Net Car dataset from Umetani and
Bickel, 2018. Both datasets contain simulations of the Reynold-Averaged Navier-
Stokes (RANS) equations for a chosen turbulence model. The goal is to estimate the
full pressure field given the shape of the vehicle as input. We consider GNO (Zongyi
Li, Kovachki, Azizzadenesheli, B. Liu, Bhattacharya, et al., 2020b), MeshGraphNet
(Pfaff et al., 2020), GeoFNO (Zongyi Li, D. Z. Huang, et al., 2022), 3D UNet (Wolny
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Model latent resolution radius training error test error

GINO 32 0.055 14.11% 13.59%
GINO 48 0.055 8.99% 10.20%
GINO 64 0.055 6.00% 8.47%
GINO 80 0.055 5.77% 7.87%
GINO 32 0.110 8.66% 10.10%
GINO 48 0.073 7.25% 9.17%
GINO 64 0.055 6.00% 8.47%
GINO 80 0.044 6.22% 7.89%

When fixing the radius, larger latent resolutions lead to better performance. The
gaps become smaller when fixing the number of edges and scaling the radius corre-
spondingly.

Table 8.2: Ablation on the Ahmed-body with different sizes of the latent space

et al., 2020) with linear interpolation, FNO (Zongyi Li, Kovachki, Azizzadenesheli,
B. Liu, Bhattacharya, et al., 2020a), and GINO. We train each model for 100 epochs
with Adam optimizer and step learning rate scheduler. The implementation details
can be found in the Appendix. All models run on a single Nvidia V100 GPU.

Ahmed-Body dataset
We generate the industry-level vehicle aerodynamics simulation based on the Ahmed-
body shapes (Ahmed, Ramm, and Faltin, 1984). The shapes are parameterized with
six design parameters: length, width, height, ground clearance, slant angle, and fillet
radius. We also vary the inlet velocity from 10m/s to 70m/s, leading to Reynolds
numbers ranging from 4.35×105 to 6.82×106. We use the GPU-accelerated Open-
FOAM solver for steady state simulation using the SST 𝑘 − 𝜔 turbulence model
(Menter, 1993) with 7.2 million mesh points in total with 100k mesh points on the
surface. Each simulation takes 7-19 hours on 2 Nvidia v100 GPUs with 16 CPU
cores. We generate 551 shapes in total and divide them into 500 for training and 51
for validation.

Shape-Net Car dataset
We also consider the Car dataset generated by Umetani and Bickel, 2018. The
input shapes are from the ShapeNet Car category (Chang et al., 2015). In Umetani
and Bickel, 2018, the shapes are manually modified to remove the side mirrors,
spoilers, and tires. The RANS equations with the 𝑘 − 𝜖 turbulence model and SUPG
stabilization are simulated to obtain the time-averaged velocity and pressure fields
using a finite element solver (Zienkiewicz, Taylor, and Nithiarasu, 2013). The inlet
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Model training error test error

GNO 18.16% 18.77%
Geo-FNO (sphere) 10.79% 15.85%
UNet (interp) 12.48% 12.83%
FNO (interp) 9.65% 9.42%
GINO (encoder-decoder) 7.95% 9.47%
GINO (decoder) 6.37% 7.12%

We do a benchmark study with several standard machine-learning methods on the
Shape-Net and Ahmed body datasets. The training error is normalized L2 error; the
test error is de-normalized L2.

Table 8.3: Shape-Net Car dataset (3.7k mesh points).

velocity is fixed at 20m/s (72km/h) and the estimated Reynolds number is 5 × 106.
Each simulation takes approximately 50 minutes. The car surfaces are stored with
3.7k mesh points. We take the 611 water-tight shapes out of the 889 instances, and
divide the 611 instances into 500 for training and 111 for validation.

As shown in Table 8.3 8.4 and Figure 8.3, GINO achieves the best error rate with a
large margin compared with previous methods. On the Ahmed-body dataset, GINO
achieves 8.31% while the previous best method achieve 11.16%. On the Shape-Net
Car, GINO achieves 7.12% error rate compared to 9.42% on FNO. It takes 0.1
seconds to evaluate, which is 100,000x faster than the GPU-parallel OpenFOAM
solver that take 10 hours to generates the data. We further performance a full
cost-accuracy analysis in the following section.

For ablations, we consider channel dimensions [32, 48, 64, 80], latent space [32,
48, 64, 80], and radius from 0.025 to 0.055 (with the domain size normalized to [-1,
1]). As depicted in Figure 8.5a and Table 8.2, larger latent spaces and radii yield
superior performance.

Cost-accuracy analysis on drag coefficient
To compare the performance of our model against the industry-standard OpenFOAM
solver, we perform a full cost-accuracy trade-off analysis on computing the drag
coefficient, which is the standard design objective of vehicles and airfoils. The
result shows GINO is 26,000x faster at computing the drag coefficients. Figure 8.4b
below shows the cost-accuracy curve, measured in terms of inference time needed
for a relative error in the drag coefficient for GINO and OpenFOAM. The detailed
setup is discussed in the appendix.
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Model training error test error

MeshGraphNet 9.08% 13.88%
UNet (interp) 9.93% 11.16%
FNO (interp) 12.97% 12.59%
GINO (encoder-decoder) 9.36% 9.01%%
GINO (decoder) 9.34% 8.31%

Previous works such as GNO and Geo-FNO cannot scale to large meshes with 100k
points. We instead add the MeshGraphNet for graph comparison. Again, for UNet,
FNO, and GINO, we fix the latent grid to 64 × 64 × 64. The training error is
normalized L2; the test error is de-normalized L2.

Table 8.4: Ahmed-body dataset (100k mesh points).

(a) Example drag coefficient computed
after every iteration of the OpenFOAM
solver. The reference drag corresponds
to the last point of the filtered signal. Tri-
angle indicates the time when the solver
reaches a 3% relative error with respect
to the reference drag.

(b) Cost-accuracy trade-off curve for
OpenFOAM vs. GINO. Increasing cost
of GINO is achieved by increasing the
size of the latent space. Loss function for
models on the red line includes only error
in pressure and wall shear stress, while,
for models on orange line, the loss also
includes drag.

Figure 8.4: Cost-accuracy trade-off analysis for the drag coefficient.

Discretization-convergence and ablation studies
We investigate discretization-convergence by varying different parts of GINO.
Specifically, we vary the latent grid resolution and the sampling rates for input-
output meshes. In these experiments, we fixed the training and test samples to be
the same, i.e., same latent grid resolution or sampling rate, but varied the shape and
input conditions.

Discretization-convergence wrt the latent grid. Here, each model is trained and
tested on (the same) latent resolutions, specifically 32, 48, 64, 80, and 88, and
the architecture is the same. As depicted in Figure 8.5a, GINO demonstrates a
comparable error rate across all resolutions. A minor improvement in errors is
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(a) Varying resolutions of the
latent grid (same resolution
for training and testing).

(b) Varying the sampling
rates of the input-output mesh
(same rate training and test-
ing).

(c) Train with a low sampling
rate and test on full mesh
(zero-shot super-resolution).

Figure 8.5: Discretization-convergence studies and zero-shot super-resolution.

observed when employing a larger latent space. Conversely, the errors associated
with the UNet model grow as the resolution is decreased due to the decreasing
receptive field of its local convolution kernels.

Discretization-convergence in the input-output mesh. Here, GINO is trained
and tested with sub-sampled input-output meshes at various sampling rates (2x, 4x,
6x, 8x). As illustrated in Figure 8.5b, GINO exhibits a consistent error rate across
all sampling rates. A slight increase in errors is observed on coarser meshes.

Zero-shot super-resolution. GINO possesses the ability to perform zero-shot
super-resolution. The model is trained on a coarse dataset, sub-sampled by 2x, 4x,
6x, and 8x, and subsequently tested on the full mesh, that is not seen during training.
The error remains consistent across all sampling rates 8.5c. This characteristic
enables the model to be trained at a coarse resolution when the mesh is dense,
consequently reducing the computational requirements.

Drag Coefficient Comparison
For many engineering tasks, the goal is often to determine a single quantity of
interest from a simulation which can then be used within an overall design process.
In the design of automobiles, a sought after quantity is the drag coefficient of the
vehicle. Intuitively, it is a number inversely proportional to the efficiency with
which a vehicle passes through a fluid. Engineers are therefore often interested in
designing geometries with minimal drag coefficients. For a fluid with unit density,
the drag coefficient is defined as

𝑐𝑑 =
2
𝑣2𝐴

(∫
𝜕Ω

𝑝(𝑥)
(
𝑛̂(𝑥) · 𝑖(𝑥)

)
𝑑𝑥 +

∫
𝜕Ω

𝑇𝑤 (𝑥) · 𝑖(𝑥) 𝑑𝑥
)

(8.8)
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where 𝜕Ω ⊂ R3 is the surface of the car, 𝑝 : R3 → R is the pressure, 𝑛̂ : 𝜕Ω→ S2

is the outward unit normal vector of the car surface, 𝑖 : R3 → S2 is the unit direction
of the inlet flow, 𝑇𝑤 : 𝜕Ω → R3 is the wall shear stress on the surface of the car,
𝑣 ∈ R is the speed of the inlet flow, and 𝐴 ∈ R is the area of the smallest rectangle
enclosing the front of the car.

For our Ahmed-body dataset, we train several GINO models (decoder) to predict
the pressure on the surface of the car as well as the wall shear stress. Since the inlet
flow is always parallel to the 𝑥-axis i.e. 𝑖(𝑥) = (−1, 0, 0), we predict only the first
component of the wall shear stress. Since our results from Table 8.2 indicate that
varying the size of the latent space has a significant effect on predictive performance,
we make this the only hyper-parameter of the model and fix all others. We choose
latent resolutions varying from 24 to 86. Furthermore, we consider two different
loss functions. The first is simply the average of the relative 𝐿2 errors for pressure
and wall shear stress. The second includes in this average the relative error in the
drag coefficient computed using equation (8.8). The drag is always computed from
our full-field predictions and is never given as part of the output from the model.

To compare the performance of our model against the industry-standard OpenFOAM
solver, we perform a full cost-accuracy trade-off analysis. During data generation,
we keep track of the drag coefficient predicted by OpenFOAM after every iteration.
While the coefficient converges with more iterations, this convergence is not mono-
tone and can often appear quite noisy. This makes computing the error from the
raw data not possible. We therefore apply a box filter to the raw signal to compute
a filtered version of the drag which acts as smoother. We take as the reference
drag, the drag at the last iteration of the filtered signal. To compute the number
of iterations it takes for the solver to predict a drag coefficient at a given relative
error, we trace back the predictions from the filtered signal and return the first time
at which this prediction incurs the given error with respect to the reference drag.
An example of this methodology is shown in Figure 8.4a. The errors for our GINO
model are computed with respect to the true drag coefficient from the last iteration
of the solver. This is because we take as ground truth the pressure and wall shear
stress from this last iteration and train our model to predict them.

Figure 8.4b shows the cost-accuracy curve, measured in terms of inference time
needed for a relative error in the drag coefficient for GINO and OpenFOAM. The
cost of GINO is computed as the time, averaged over the test set, needed to predict the
drag coefficient by running the model. This time includes both data pre-processing
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(computing the SDF) as well as the model run-time and the drag calculation given
the predicted fields. All models are ran on a single NVIDIA V100 GPU. The cost
for OpenFOAM is computed as described in the previous paragraph and is averaged
over the test set. The solver is ran on two NVIDIA V100 GPUs in parallel. We
observe a four to five order of magnitude speed-up when using GINO. At a 3%
relative error, we find the speed-up from our model which includes drag in the loss
to be 26, 000×. As we increase the size of the latent space, the cost of GINO grows,
however, we observe a plateau in the drag error. This is common in machine learning
models as the error from using finite data starts to dominate the approximation error.
Furthermore, we use only the size of the latent space as a hyper-parameter, keeping
the number of learnable parameters fixed. It is interesting to explore further how
parametrically scaling the model impacts predictive power.

8.6 Discussion and Conclusion
In this work, we propose the GINO model for 3D PDEs with complex geometries.
The GINO model consists of the graph-kernel blocks for the encoder and decoder
that go to a latent uniform space, where the Fourier blocks run on the latent space
to capture the global interaction. We experiment on two CFD datasets: Shape-Net
car geometries and large-scale Ahmed’s body geometries, the latter encompassing
over 600 car geometries featuring hundreds of thousands of mesh points. The
evidence from these case studies illustrates that our method offers a substantial
speed improvement, with a factor of 100,000 times acceleration in comparison to
the GPU-based OpenFOAM solver. Concurrently, our approach has achieved one-
fourth to one-half the error rates compared to prevailing neural networks such as
3D U-Net. This underscores the potential of our method to significantly enhance
computational efficiency while maintaining a competitive level of accuracy within
the realm of CFD applications. Limitation: The trained surrogate model is limited
to a specific category of shapes. The quality of the model depends on the quality
of the training dataset. For CFD with more complex shapes, it is not easy to obtain
a large training dataset. We will explore physics-informed approaches (Zongyi Li,
Zheng, et al., 2021) and generate time-dependent high-fidelity simulations in the
future.
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C h a p t e r 9

GEOMETRY: NEURAL OPERATOR WITH LEARNED
DEFORMATION

Deep learning surrogate models have shown promise in solving partial differential
equations (PDEs). Among them, the Fourier neural operator (FNO) achieves good
accuracy, and is significantly faster compared to numerical solvers, on a variety of
PDEs, such as fluid flows. However, the FNO uses the Fast Fourier transform (FFT),
which is limited to rectangular domains with uniform grids. In this work, we propose
a new framework, viz., Geo-FNO, to solve PDEs on arbitrary geometries. Geo-FNO
learns to deform the input (physical) domain, which may be irregular, into a latent
space with a uniform grid. The FNO model with the FFT is applied in the latent
space. The resulting Geo-FNO model has both the computation efficiency of FFT
and the flexibility of handling arbitrary geometries. Our Geo-FNO is also flexible
in terms of its input formats, viz., point clouds, meshes, and design parameters are
all valid inputs. We consider a variety of PDEs such as the Elasticity, Plasticity,
Euler’s, and Navier-Stokes equations, and both forward modeling and inverse design
problems. Comprehensive cost-accuracy experiments show that Geo-FNO is 105

times faster than the standard numerical solvers and twice more accurate compared
to direct interpolation on existing ML-based PDE solvers such as the standard FNO.

9.1 Introduction
Data-driven engineering design has the potential to accelerate the design process
by orders of magnitude compared to conventional methods. It can enable extensive
exploration of the design space and yield new designs with far greater efficiency.
This is because the conventional design process requires repeated evaluations of par-
tial differential equations (PDEs) for optimization, which can be time-consuming.
Examples include computational fluid dynamics (CFD) based aerodynamic design
and topology optimization for additive manufacturing. Deep learning approaches
have shown promise in speeding up PDE evaluations and automatically computing
derivatives, hence accelerating the overall design cycle. However, most deep learn-
ing approaches currently focus on predicting a few important quantities in the design
process, e.g. lift and drag in aerodynamics, as opposed to completely emulating the
entire simulation (i.e., pressure or Mach number fields in aerodynamics). This limits
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the design space to be similar to the training data, and may not generalize to new
geometries and scenarios. In contrast, we develop an efficient deep learning-based
approach for design optimization, which emulates the entire PDE simulation on
general geometries leading to a versatile tool for exploring the design space.

Deformable meshes. Solutions of PDEs frequently have high variations across the
problem domain, and hence some regions of the domain often require a finer mesh
compared to other regions for obtaining accurate solutions. For example, in airfoil
flows, the region near the airfoil requires a much higher resolution for accurately
modeling the aerodynamics, as shown in Figure 9.8. To address such variations,
deformable mesh methods such as adaptive finite element methods (FEM) have
been developed. Two adaptive mesh methods are commonly used: the adaptive
mesh refinement method that adds new nodes (and higher-order polynomials), and
the adaptive moving mesh method that relocates the existing nodes Babuška and
Suri, 1990; W. Huang and Russell, 2010. While mesh refinement is popular and
easy to use with traditional numerical solvers, it changes the mesh topology and
requires special dynamic data structures, which reduce speed and make it hard for
parallel processing. On the other hand, the adaptive moving mesh methods retain
the topology of the mesh, making it possible to integrate with spectral methods.
Spectral methods solve the equation on the spectral space (i.e., Fourier, Chebyshev,
and Bessel), which usually have exponential convergence guarantees when appli-
cable Gottlieb and Orszag, 1977. However, these spectral methods are limited to
simple computational domains with uniform grids. When the mesh becomes non-
uniform, spectral basis functions are no longer orthogonal and the spectral transform
is no longer invertible, so the system in the deformed Fourier space is not equiva-
lent to the original one anymore. Thus, traditional numerical methods are slow on
complex geometries due to computational constraints.

Neural operators. Deep learning surrogate models have recently yielded promis-
ing results in solving PDEs. One class of such models is data-driven, and they
directly approximate the input-output map through supervised learning. Such mod-
els have achieved significant speedups compared to traditional solvers in numerous
applications (Zhu and Zabaras, 2018; Bhatnagar et al., 2019). Among them, the
graph neural networks have not been studied for complex geometries (Allen et al.,
2022; Sanchez-Gonzalez et al., 2020) Recently, a new class of data-driven mod-
els known as neural operators aim to directly learn the solution operator of the
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PDE in a mesh-convergent manner. Unlike standard deep learning models, such as
convolutional neural networks from computer vision, neural operators are consis-
tent to discretization and hence, better suited for solving PDEs. They generalize
the previous finite-dimensional neural networks to learn operator mapping between
infinite-dimensional function spaces. Examples include Fourier neural operator
(FNO) (Li, Kovachki, et al., 2020c), graph neural operator Li, Kovachki, et al.,
2020b, and DeepONet (Lu, Jin, and Karniadakis, 2019). We consider FNO (Li,
Kovachki, et al., 2020a) in this paper due to its superior cost-accuracy trade-off (De
Hoop et al., 2022). FNO implements a series of layers computing global convo-
lution operators with the fast Fourier transform (FFT) followed by mixing weights
in the frequency domain and inverse Fourier transform. These global convolu-
tional operators are interspersed with non-linear transformations such as GeLU. By
composing global convolution operators and non-linear activations, FNO can ap-
proximate highly non-linear and non-local solution operators. FNO and its variants
are able to simulate many PDEs such as the Navier-Stokes equation and seismic
waves, do high-resolution weather forecasts, and predict CO2 migration with un-
precedented cost-accuracy trade-off (Pathak et al., 2022; Yang et al., 2021; Wen
et al., 2022).

Limitations of FNO on irregular geometries. While FNO is fast and accurate,
it has limitations on the input format and the problem domain. Since FNO is
implemented with FFT, it can be only applied on rectangular domains with uniform
meshes. When applying it to irregular domain shapes, previous works usually embed
the domain into a larger rectangular domain (Lu, Meng, et al., 2022). However,
such embeddings are less efficient and wasteful, especially for highly irregular
geometries. Similarly, if the input data is in the form of non-uniform meshes such as
triangular meshes, previous works use basic interpolation methods between the input
non-uniform mesh and a uniform mesh on which FFT is computed Li, Kovachki,
et al., 2020a. This can cause large interpolation errors, especially for non-linear
PDEs.

Our contributions. To address the above challenges, we develop a geometry-
aware Fourier neural operator (Geo-FNO) and we summarize our contributions
below:

1. We propose a geometry-aware discretization-convergent FNO framework
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Top: The Geo-FNO model deforms the input functions from irregular physical space to a
uniform latent space. After the standard FNO Li, Kovachki, et al., 2020a is applied, the
Geo-FNO will deform the latent solution function back to the physical space. 𝑃, 𝑄 are
lifting and projection. F and F −1 are the Fourier transforms. 𝐾 is a linear transform (9.18).
Bottom: The deformation, either given or learned, defines a correspondence between the
physical space and computational space. It induces an adaptive mesh and a generalized
Fourier basis on the physical space.

Figure 9.1: Geometry-aware FNO

(Geo-FNO) that works on arbitrary geometries and a variety of input for-
mats such as point clouds, non-uniform meshes, and design parameters.

2. Geo-FNO deforms the irregular input domain into a uniform latent mesh on
which the FFT can be applied. Such deformation can be fixed or learned
with the FNO architecture in an end-to-end manner. For the latter case, we
design a neural network to model the deformation and train it end-to-end with
Geo-FNO.

3. We experiment on different geometries for the Elasticity, Plasticity, Advection,
Euler’s, and Navier-Stokes equations on both forward modeling and inverse
design tasks. The cost-accuracy experiments show that Geo-FNO has up to
105 acceleration compared to the numerical solver, as well as half the error
rate compared to previous interpolation-based methods as shown in Figure
9.3. Further, Geo-FNO maintains discretization-convergence. The model
trained on low resolution datasets can be directly evaluated at high resolution
cases.

Geo-FNO thus learns a deformable mesh along with the solution operator in an end-
to-end manner by applying a series of FFTs and inverse FFTs on a uniform latent
mesh, as shown in Figure 9.1. Thus, Geo-FNO combines both the computational
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efficiency of the FFT and the flexibility of learned deformations. It is as fast as
the original FNO but can represent the variations in solutions and domain shapes
more efficiently and accurately. The learned deformation from the physical irregular
domain to a uniform computational domain is inspired by the traditional adaptive
moving mesh method (W. Huang and Russell, 2010). However, the adaptive moving
mesh method has not had much success with traditional numerical solvers due to
the loss of orthogonality of the spectral transform. On a deformed mesh, the system
in the Fourier space is no longer equivalent to the original system, so it does not
make sense to solve the PDE in the deformed Fourier space. However, Geo-FNO
does not have this limitation. It does not involve solving equations in the Fourier
space. Instead, Geo-FNO approximates the solution operator via the computation
on Fourier space in a data-driven manner.

In principle, our Geo-FNO framework can be directly extended to general topologies.
Given complex input topology we can apply the decomposition techniques such as
triangle tessellation to divide the domain into sub-domains such as each sub-domain
is regular. Similarly, for other input formats such as the signed distance functions
(SDF), we can sample collocation points. Furthermore, it is possible to extend
the Geo-FNO framework to the physics-informed neural operator setting which
incorporates PDE constraints (Li, Zheng, et al., 2021). Since the deformation is
parameterized by a neural network, we can obtain the exact derivatives and apply
the chain rule to compute the residual error.

9.2 Problem Settings and Preliminaries
Problem settings. In this work, we consider parametric partial differential equa-
tions defined on various domains. Assume the problem domain 𝐷𝑎 is parameterized
by design parameters 𝑎 ∈ A, which follows some distribution 𝑎 ∼ 𝜇. For simplicity,
we assume all the domains are bounded, orientable manifolds embedded in some
background Euclidean space Ω (e.g., R3). We consider both stationary problems
and time-dependent problems of the following forms:

𝑑𝑢

𝑑𝑡
= R(𝑢), in 𝐷𝑎 × 𝑇

𝑢 = 𝑢0, in 𝐷𝑎 × {0}
𝑢 = 𝑢𝑏, in 𝜕𝐷𝑎 × 𝑇

(9.1)

where 𝑢0 ∈ U(0) is the initial condition; 𝑢𝑏 is the boundary condition; and 𝑢(𝑡) ∈
U(𝑡) for 𝑡 > 0 is the target solution function. R is a possibly non-linear differential
operator. We assume that 𝑢 exists and is bounded for all time and for every 𝑢0 ∈ U(𝑡)
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at every 𝑡 ∈ 𝑇 . This formulation gives rise to the solution operatorG† : (𝑎, 𝑢0, 𝑢𝑏) ↦→
𝑢. Prototypical examples include fluid mechanics problems such as the Burgers’
equation and the Navier-Stokes equation and solid mechanics problems such as
elasticity and plasticity defined on various domain shapes such as airfoils and pipes.
In this paper, we assume the initial condition 𝑢0 and the boundary condition 𝑢𝑏 are
fixed. Specifically, we also consider stationary problem R(𝑢) = 0 where 𝑢0 is not
necessary. In this case, the solution operator simplifies to G† : 𝑎 ↦→ 𝑢.

Input formats. In practice, the domain shape can be parameterized in various
ways. It can be given as meshes, functions, and design parameters. In the most
common cases, the domain space is given as meshes (point clouds) 𝑎 = T = {𝑥𝑖}𝑁 ⊂
Ω, such as triangular tessellation meshes used in many traditional numerical solvers.
Alternatively, the shapes can be described by some functions 𝑎 = 𝑓 : Ω → R. For
example, if the domain is a 2D surface, then it can be parameterized by its boundary
function 𝑓 : [0, 1] → 𝜕𝐷𝑎. Similarly, the domain can be described as signed
distance functions (SDF) or occupancy functions. These are common examples
used in computer vision and graphics. At last, we also consider specific design
parameters 𝑎 ∈ R𝑑 . For example, it can be the width, height, volume, angle,
radius, and spline nodes used to model the boundary. The design parameters restrict
the domain shape in a relatively smaller subspace of all possible choices. This
format is most commonly used in a design problem, which is easy to optimize and
manufacture. For the latter two cases, it is possible to sample a mesh T based on
the shape.

Learning the solution operator
Given a PDE as defined in (9.1) and the corresponding solution operator G†, one
can use a neural operator G𝜃 with parameters 𝜃 as a surrogate model to approximate
G†. Usually we assume a dataset {𝑎 𝑗 , 𝑢 𝑗 }𝑁𝑗=1 is available, where G†(𝑎 𝑗 ) = 𝑢 𝑗 and
𝑎 𝑗 ∼ 𝜇 are i.i.d. samples from some distribution 𝜇 supported on A. In this case,
one can optimize the solution operator by minimizing the relative empirical data
loss on a given data pair

Ldata(𝑢,G𝜃 (𝑎)) =
∥𝑢 − G𝜃 (𝑎)∥L2

∥𝑢∥L2
=

√√√∫
𝐷𝑎
|𝑢(𝑥) − G𝜃 (𝑎) (𝑥) |2d𝑥∫

𝐷𝑎
𝑢(𝑥)2d𝑥

(9.2)



181

The operator data loss is defined as the average error across all possible inputs

Jdata(G𝜃) = E𝑎∼𝜇 [Ldata(G†(𝑎),G𝜃 (𝑎))] ≈
1
𝑁

𝑁∑︁
𝑗=1

√√√∫
𝐷𝑎
|𝑢 𝑗 (𝑥) − G𝜃 (𝑎 𝑗 ) (𝑥) |2d𝑥∫

𝐷𝑎
𝑢 𝑗 (𝑥)2d𝑥

.

(9.3)

When the prediction 𝑢 is time-dependent, the L2 integration should also account
for the temporal dimension.

Neural operator
In this work, we will focus on the neural operator model designed for the operator
learning problem. The neural operator, proposed in (Li, Kovachki, et al., 2020c), is
formulated as a generalization of standard deep neural networks to operator setting.
Neural operators compose linear integral operator K with pointwise non-linear
activation function 𝜎 to approximate highly non-linear operators.

Definition 9.2.1 (Neural operator G𝜃) Define the neural operator

G𝜃 := Q ◦ (𝑊𝐿 + K𝐿 + 𝑏𝐿) ◦ · · · ◦ 𝜎(𝑊1 + K1 + 𝑏1) ◦ P (9.4)

where P : R𝑑𝑎 → R𝑑1 , Q : R𝑑𝐿 → R𝑑𝑢 are the pointwise neural networks that
encode the lower dimension function into higher dimensional space and vice versa.
The model stack 𝐿 layers of 𝜎(𝑊𝑙 + K𝑙 + 𝑏𝑙) where 𝑊𝑙 ∈ R𝑑𝑙+1×𝑑𝑙 are pointwise
linear operators (matrices), K𝑙 : {𝐷 → R𝑑𝑙 } → {𝐷 → R𝑑𝑙+1} are integral kernel
operators, 𝑏𝑙 : 𝐷 → R𝑑𝑙+1 are the bias term made of a linear layer, and 𝜎 are
fixed activation functions. The parameters 𝜃 consists of all the parameters in
P,Q,𝑊𝑙 ,K𝑙 , 𝑏𝑙 .

Definition 9.2.2 (Fourier integral operator K) Define the Fourier integral oper-
ator (

K(𝜙)𝑣𝑡
)
(𝑥) = F −1

(
𝑅𝜙 · (F 𝑣𝑡)

)
(𝑥) ∀𝑥 ∈ 𝐷 (9.5)

where 𝑅𝜙 is the Fourier transform of a periodic function 𝜅 : 𝐷̄ → R𝑑𝑣×𝑑𝑣 parame-
terized by 𝜙 ∈ ΘK .

The Fourier transform F is defined as

(F 𝑣) (𝑘) = ⟨𝑣, 𝜓(𝑘)⟩𝐿 (𝐷) =
∫
𝑥

𝑣(𝑥)𝜓(𝑥, 𝑘)𝜇(𝑥) ≈
∑︁
𝑥∈T

𝑣(𝑥)𝜓(𝑥, 𝑘) (9.6)



182

where 𝜓(𝑥, 𝑘) = 𝑒2𝑖𝜋⟨𝑥,𝑘⟩ ∈ 𝐿 (𝐷) is the Fourier basis and T is the mesh sampled
from the distribution 𝜇. In Li, Kovachki, et al., 2020c, the domain 𝐷 is assumed to
be a periodic, square torus and the mesh T is uniform, so the Fourier transform F
can be implemented by the fast Fourier transform algorithm (FFT). In this work, we
aim to extend the framework to non-uniform meshes and irregular domains.

9.3 Geometry-Aware Fourier Neural Operator
The idea of the geometry-aware Fourier neural operator is to deform the physical
space into a regular computational space so that the fast Fourier transform can be
performed on the computational space. Formally, we want to find a diffeomorphic
deformation 𝜙𝑎 between the input domain 𝐷𝑎 and the unit torus 𝐷𝑐 = [0, 1]𝑑 .
The computational mesh 𝐷𝑐 is shared among all input space 𝐷𝑎. It is equipped
with a uniform mesh and standard Fourier basis. Once the coordinate map 𝜙𝑎

is determined, the map induces an adaptive mesh and deformed Fourier basis on
the physical space. In the community of numerical PDEs, the diffeomorphism
corresponds to the adaptive moving mesh (W. Huang and Russell, 2010).

Deformation from the physical space to the computational space.
Let 𝐷𝑎 be the physical domain and 𝐷𝑐 be the computational domain. Let 𝑥 ∈ 𝐷𝑎

and 𝜉 ∈ 𝐷𝑐 be the corresponding mesh points. Denote the input meshes as T𝑎 =

{𝑥 (𝑖)} ⊂ 𝐷𝑎 and the computational meshes as T 𝑐 = {𝜉 (𝑖)} ⊂ 𝐷𝑐. For simplicity,
we assume the output mesh is the same as the input mesh. The adaptive moving
mesh is defined by a coordinate transformation 𝜙𝑎 that transforms the points from
the computational mesh to the physical mesh, as shown in Figure 9.1 (b)

𝜙𝑎 : 𝐷𝑐 → 𝐷𝑎

𝜉 ↦→ 𝑥
(9.7)

Ideally, 𝜙𝑎 is a diffeomorphism, meaning it has an inverse 𝜙−1
𝑎 , and both 𝜙𝑎 and 𝜙−1

𝑎

are smooth. When such a diffeomorphism exists, there is a correspondence between
the physical space and the computational space. Let T 𝑐 ⊂ 𝐷𝑐 be the uniform mesh
and 𝜓𝑐 ∈ 𝐿 (𝐷𝑐) be the standard spectral basis defined on the computational space.
The coordinate transformation 𝜙𝑎 ⊂ 𝐷𝑎 induces an adaptive mesh T𝑎 and adaptive
spectral basis 𝜓𝑎 ∈ 𝐿 (𝐷𝑎) (pushforward)

T𝑎 := 𝜙𝑎 (T 𝑐)
𝜓𝑎 (𝑥) := 𝜓𝑐 ◦ 𝜙−1

𝑎 (𝑥)
(9.8)
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It can be interpreted as solving the system R(𝑣) = 0 with adaptive mesh T𝑎 and
generalized basis 𝜓𝑎. Conversely, for any function defined on the physical do-
main 𝑣 ∈ 𝐿 (𝐷𝑎), it can be transformed to the computational domain 𝑣𝑐 ∈ 𝐿 (𝐷𝑐)
(pullback)

𝑣𝑐 (𝜉) := 𝑣(𝜙𝑎 (𝜉)) (9.9)

Similarly, for any system of equations R(𝑣) = 0 such as (9.1) defined on the physical
domain 𝐷𝑎, the transformation 𝜙𝑎 induced a new deformed system of equations
R𝑐 (𝑣𝑐) = 0. It can be interpreted as solving the deformed system R𝑐 (𝑣𝑐) = 0 with
uniform mesh T 𝑐 and standard basis 𝜓𝑐.

Examples: Chebyshev Basis. Chebyshev method is a standard spectral method
for solving PDE with non-periodic boundary Driscoll, Hale, and Trefethen, 2014.
It can be induced from the standard cosine basis (in discrete cosine transform) with
a cosine grid. The Chebyshev polynomials on domain [−1, 1] has the form of

𝜓𝑘cheb := cos(𝑘 · cos−1(𝑥)), 𝑘 = 0, 1, 2 . . .

It’s equivalent to apply the cosine deformation 𝜙𝑎 : [0, 𝜋] → [−1, 1]

𝜙𝑎 (𝑥) = cos(𝑥)

to the basis of cosine series

𝜓𝑘cos := cos(𝑘 · 𝑥), 𝑘 = 0, 1, 2 . . .

in the same manner as a deformed basis (9.8)

𝜓𝑘cheb = 𝜓𝑘cos ◦ 𝜙−1
𝑎 (𝑥)

Intuitively, the cosine deformation places more grid points around the boundary −1
and 1, which addresses the stability issue around the boundary. Notice, in practice
the discrete cosine transform on [0, 𝜋] can be implemented by the faster Fourier
transform using an extended domain [−𝜋, 𝜋] and restricts to real coefficients. We
will discuss the use of extended domain in Section 9.3 Fourier continuation. There-
fore, GeoFNO equipped with the cosine deformation can implement the Chebyshev
method. However, it is hard to deform the Fourier basis into spherical basis, since
the underlying domain is not homeomorphic. For these non-homeomorphic domain
we will use domain decomposition as discussed in Section 9.3.
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Geometric Fourier transform
Based on the deformation, we can define the spectral transform in the computational
space. Fourier transforms conducted in the computational domain are standard,
since we have a uniform structured mesh in the computational domain. In this
subsection, We will introduce a geometric spectral transform between the function
𝑣(𝑥) in the physical domain 𝐷𝑎 and the function 𝑣̂(𝑘) in the spectral space of the
computation domain 𝐷𝑐.

To transform the function 𝑣(𝑥) from the physical domain to the spectral space of the
computation domain, we define the forward transform:

(F𝑎𝑣) (𝑘) :=
∫
𝐷𝑐
𝑣𝑐 (𝜉)𝑒−2𝑖𝜋⟨𝜉,𝑘⟩𝑑𝜉

=

∫
𝐷

𝑣(𝑥)𝑒−2𝑖𝜋⟨𝜙−1
𝑎 (𝑥),𝑘⟩ |det[∇𝑥𝜙−1

𝑎 (𝑥)] |𝑑𝑥

≈ 1
|T𝑎 |

∑︁
𝑥∈T𝑎

𝑚(𝑥)𝑣(𝑥)𝑒−2𝑖𝜋⟨𝜙−1
𝑎 (𝑥),𝑘⟩

(9.10)

(9.11)

(9.12)

where the weight𝑚(𝑥) = |det[∇𝑥𝜙−1
𝑎 (𝑥)] |/𝜌𝑎 (𝑥) and 𝜌𝑎 is a distribution from which

the input mesh T𝑎 is sampled. Notice, in many cases, we have an input mesh T𝑎 so
that computational mesh 𝜙−1

𝑎 (T𝑎) = 𝑇 𝑐 is uniform. In this case, |det[∇𝑥𝜙−1
𝑎 (𝑥)] | =

𝜌𝑎 (𝑥), and 𝑚(𝑥) = 1 can be omitted. Other choices can be made, for example, we
can define 𝑚(𝑥) using heuristics depending on the solution 𝑢(𝑥) or residual error.
The weight 𝑚(𝑥) corresponds to the monitor functions in the literature of adaptive
meshes, where the adaptive mesh is finer near 𝑥, when 𝑚(𝑥) is large.

To transform the spectral function 𝑣̂(𝑘) from the spectral space of the computation
domain to the physical domain, we define the inverse transform

(F −1
𝑎 𝑣̂) (𝑥) = (F −1𝑣̂) (𝜙−1

𝑎 (𝑥)) =
∑︁
𝑘

𝑣̂(𝑘)𝑒2𝑖𝜋⟨𝜙−1
𝑎 (𝑥),𝑘⟩ (9.13)

It is worth mentioning that F𝑎◦F −1
𝑎 = 𝐼, since both are defined on the computational

space.

(F𝑎 ◦ F −1
𝑎 𝑣̂) (𝑘) =

∫
𝐷𝑐
(F −1

𝑎 𝑣̂)𝑐 (𝜉)𝑒−2𝑖𝜋⟨𝜉,𝑘⟩𝑑𝜉

=

∫
𝐷𝑐

∑︁
𝑘

𝑣̂(𝑘)𝑒2𝑖𝜋⟨𝜉,𝑘⟩𝑒−2𝑖𝜋⟨𝜉,𝑘⟩𝑑𝜉 = 𝑣̂(𝑘)

(9.14)

(9.15)

Notice both F𝑎 (9.12) and F −1
𝑎 (9.13) only involve the inverse coordinate transform

𝜙−1
𝑎 : 𝐷𝑎 → 𝐷𝑐. Intuitively, in the forward Fourier transform F𝑎, we use 𝜙−1

𝑎 to
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transform the input function to the computational space, while in the inverse Fourier
transform F −1

𝑎 , we use 𝜙−1
𝑎 to transform the query point to the computational space

to evaluate the Fourier basis. It makes the implementation easy in that we only need
to define 𝜙−1

𝑎 .

Architecture of Geo-FNO and the deformation neural network
We consider two scenarios: (1) the coordinate map is given, and (2) learning a
coordinate map. In many cases, the input mesh T𝑎 is non-uniform but structured.
For example, the meshes of airfoils are usually generated in the cylindrical structure.
If the input mesh is structured, meaning it can be indexed as a multi-dimensional
array T𝑎 [𝑖1, . . . , 𝑖𝑑] with 0 ≤ 𝑖𝑘 ≤ 𝑠𝑘 ∀𝑘 , then its indexing induces a canonical
coordinate map

𝜙−1
𝑎 : T𝑎 [𝑖1, . . . , 𝑖𝑑] ↦→ (𝑖1/𝑠1, . . . , 𝑖𝑑/𝑠𝑑) (9.16)

In this case, (𝑖1/𝑠1, . . . , 𝑖𝑑/𝑠𝑑) forms a uniform mesh within a unit cube, allowing
for the direct application of the FFT. And Geo-FNO reduces to a standard FNO
directly applied to the input meshes.

When we need to learn a coordinate map, we parameterize the coordinate map 𝜙−1
𝑎

as a neural network and learn it along with the solution operator𝐺𝜃 in an end-to-end
manner with loss (9.3).

𝜙−1
𝑎 : (𝑥1, 𝑥2, · · · , 𝑥𝑑 , 𝑎) ↦→ (𝜉1, 𝜉2, · · · , 𝜉𝑑) (9.17)

We parameterize the deformation as 𝜙−1
𝑎 (𝑥, 𝑎) = 𝑥 + 𝑓 (𝑥, 𝑎), where 𝑓 is a standard

feed-forward neural network. Specially, 𝑓 takes input (𝑥1, 𝑥2, · · · , 𝑥𝑑 , 𝑎), where 𝑎
is the geometry parameters. This formulation initializes 𝜙−1

𝑎 around an identity
map, which is a good initial choice. Following the works of implicit representation
(Mildenhall et al., 2020), (Sitzmann et al., 2020), we use sinusoidal features in the
first layers sin(𝐵𝑥), 𝐵 = 2𝑖 to improve the expressiveness of the network. Concretely,
we define 𝑓 as a three-layer feed-forward neural network with a width of 32. The
input to this network comprises a combination of components, namely 𝑥 and 𝑎,
alongside a series of trigonometric terms such as sin(21𝑥), cos(21𝑥), sin(22𝑥),
cos(22𝑥), · · · , sin(2𝐾𝑥) and cos(2𝐾𝑥), which are applied coordinatewisely. And 𝑎
can represent the coordinates of the point clouds that encode the design geometry.
Finally, 𝜙−1

𝑎 is used to compute F𝑎 and F −1
𝑎 (See (9.12) and (9.13)).

As shown in Figure 9.1, Geo-FNO has a similar architecture as the standard FNO,
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but with a deformation in the input and output

G𝜃 := Q ◦ (𝑊𝐿 + K𝐿 (𝜙𝑎) + 𝑏𝐿) ◦ · · · ◦ 𝜎(𝑊1 + K1(𝜙𝑎) + 𝑏1) ◦ P (9.18)

Here, we begin by employing P to lift (encode) the input to a higher channel
dimension. Subsequently, the first Fourier convolution operator K1 employs the
geometric Fourier transform F𝑎 (9.12), while the last layer K𝐿 employs the inverse
geometric Fourier transform F −1

𝑎 (9.13). To finalize the process, we utilize Q to
project (decode) the output back to the desired dimension. In the case where the
input is presented as a structured mesh, we define the coordinates as (9.16). Under
this circumstance, both F𝑎 and F −1

𝑎 reduce to the standard FFT, leading to Geo-FNO
being reduced to the standard FNO.

Fourier continuation
For some PDE problems, the input domain has an irregular topology that is not
homeomorphic to a disk or a torus. Consequentially, there does not exist a diffeo-
morphism between 𝐷𝑎 and 𝐷𝑐. In this case, we will first embed the input domain
into a larger regular domain

𝐷𝑎

𝑖
↩−→ 𝐷̄𝑎

so that 𝐷̄𝑎 is diffeomorphic to 𝐷𝑐. For example, the elasticity problem section 9.4
has a hole in its square domain. We can first embed the domain into a full square
by completing the hole. Such embedding corresponds to the Fourier continuation
(Bruno, Han, and Pohlman, 2007) techniques used in conventional spectral solvers.
Usually it requires to extend the function 𝑢 ∈ U(𝐷𝑎) to 𝑢̄ ∈ U(𝐷̄𝑎) by fitting
polynomials. However, in the data-driven setting, a such extension can be done
implicitly during the training. We only need to compute the loss on the original space
𝐷𝑎 and discard the extra output from the underlying space 𝐷̄𝑎. This continuation
technique is universal. According to the Whitney embedding theorem, any m-
dimensional manifold can be smoothly embedded into a Euclidean space R2𝑚.

Domain decomposition
For complex topologies, another technique is to decompose the domain into multiple
sub-domains such that each of the domains is equipped with a standard topology.
We mainly consider 2-dimensional manifolds in our experiments, although the
technique is applicable for any dimension. Given any 2-manifoldM, we apply the
decomposition

M = 𝐷1# · · · #𝐷𝑛
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Figure 9.2: Elasticity (a) and plasticity problems (b) introduced in section 9.4. The
comparison is shown between the reference obtained using a traditional solver (left)
and the Geo-FNO result (right).

where # is the connect-sum, and each 𝐷𝑖 is homeomorphic to either a sphere
𝑆2 or torus 𝑇2. We then train 𝑛 sub-models G1 · · · G𝑛, each equipped with a
deformation map 𝜙𝑎1 · · · 𝜙𝑎𝑛 . This domain decomposition is also universal since
any orientable compact 2-dimensional manifold is homeomorphic to a sphere or
a 𝑛-genus torus, where 𝑛-genus torus can be naturally decomposed into 𝑛 tori.
Compared to continuation, the decomposition method does not require raising the
dimensionality, but it needs multiple sub-models. A numerical example is included
in Section 9.4.

9.4 Numerical Examples
In this section, we study Geo-FNO numerically, and compare the Geo-FNO against
other machine-learning models on PDEs with various geometries, including hyper-
elastic problem in section 9.4, plastic problem in section 9.4, advection equation on
a sphere problem in section 9.4, airfoil problem in section 9.4, and pipe problem
in section 9.4. We demonstrate that Geo-FNO can be applied on irregular domains
and non-uniform meshes (See figs. 9.2 and 9.8) and show it is more accurate than
combining direct interpolation with existing ML-based PDE solvers such as the
standard FNO (Li, Kovachki, et al., 2020a) and UNet(Ronneberger, Fischer, and
Brox, 2015), as well as mesh-free methods such as Graph neural operators (GNO)
(Li, Kovachki, et al., 2020c) and DeepONet (Lu, Jin, and Karniadakis, 2019) (See
table 9.1 and table 9.2). Meanwhile, Geo-FNO perseveres the speed of standard
FNO. It can accelerate the numerical solvers up to 105 times on the airfoil problem
(See section 9.4). All experiments are performed on a single Nvidia 3090 GPU.
With no special mention, we train all the models with 500 epochs with an initial
learning rate of 0.001 which decays by half every 100 epochs. We use the relative
𝐿2 error for both the training and testing. And the standard Adam optimizer is used.
The code is available at https://github.com/neuraloperator/Geo-FNO.
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Figure 9.3: The cost-accuracy trade-off for Geo-FNO/UNet and traditional numeri-
cal solver with implicit/explicit temporal integrators on the airfoil problem.

Hyper-elastic problem
The governing equation of a solid body can be written as

𝜌𝑠
𝜕2𝒖

𝜕𝑡2
+ ∇ · 𝝈 = 0

where 𝜌𝑠 is the mass density, 𝒖 is the displacement vector, 𝝈 is the stress tensor.
Constitutive models, which relate the strain tensor 𝝐 to the stress tensor, are required
to close the system. We consider the unit cell problem Ω = [0, 1] × [0, 1] with an
arbitrary shape void at the center, which is depicted in Figure 9.2 (a). The prior of
the void radius is 𝑟 = 0.2+ 0.2

1+exp(𝑟) with 𝑟 ∼ N(0, 42(−∇+32)−1), which embeds the
constraint 0.2 ≤ 𝑟 ≤ 0.4. The unit cell is clamped on the bottom edge and tension
traction 𝒕 = [0, 100] is applied on the top edge. The material is the incompressible
Rivlin-Saunders material Pascon, 2019 and the constitutive model of the material is
given by

𝝈 =
𝜕𝑤(𝝐)
𝜕𝝐

𝑤(𝝐) = 𝐶1(𝐼1 − 3) + 𝐶2(𝐼2 − 3)
where 𝐼1 = tr(𝐶) and 𝐼2 = 1

2 [(tr(𝐶)
2 − tr(𝐶2)] are scalar invariants of the right

Cauchy Green stretch tensor 𝐶 = 2𝝐 + I. And energy density function parameters
are 𝐶1 = 1.863× 105 and 𝐶1 = 9.79× 103. We generate 1000 training data and 200
test data with a finite element solver D. Z. Huang, Xu, et al., 2020 with about 100
quadratic quadrilateral elements. It takes about 5 CPU seconds for each simulation.
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The inputs 𝑎 are given as point clouds with a size of around 1000. The target output
is the stress field.

The elasticity problem has an unstructured input format. We compare the mesh-
convergent methods such as Geo-FNO, Graph neural operator (GNO), and Deep
operator network (DeepONet), as well as interpolation-based ML methods including
uniform meshes (FNO, UNet) and heuristic adaptive meshes (R-mesh, O-mesh). The
details of these methods are listed below.

• GNO: Since the graph structure is flexible on the problem geometry, graph
neural networks have been widely used for complex geometries (Sanchez-
Gonzalez et al., 2020; Pfaff et al., 2020). In this work, we compare with
the graph kernel operator (Li, Kovachki, et al., 2020c; Li, Kovachki, et al.,
2020b), which is a graph neural network-based neural operator model. It
implements the linear operator K by message passing on graphs. We build
a full graph with edge connection radius 𝑟 = 0.2, width 64, and kernel with
128.

• DeepONet: the deep operator network (Lu, Jin, and Karniadakis, 2019) is a
line of works designed with respect to the linear approximation of operator as
shown in (T. Chen and H. Chen, 1995). It has two neural networks a trunk net
and a branch net to represent the basis and coefficients of the operator. Both
DeepONets and neural operators aim to parameterize infinitely dimensional
solution operators, but neural operators directly output the full field solution
functions, while DeepONets output the solution at specific query points. This
design difference gives neural operators, especially FNO, an advantage when
the data are fully observed while DeepONet has an advantage when the data
are partially observed. In this work, we use five layers for both the trunk net
and branch net, each with a width of 256.

• FNO interpolation: as a baseline, we simply interpolate the input point cloud
into a 41-by-41 uniform grid and train a plain FNO model (Li, Kovachki, et al.,
2020a). As shown in figure 9.4 (c), the interpolation causes an interpolation
error, which loses information on the singularities (the red regions). As a
result, the testing error is constantly higher than 5%.

• UNet interpolation: Similarly, we train a UNet model (Ronneberger, Fischer,
and Brox, 2015) on the interpolated uniform grid. As FNO-interpolation, the
error is constantly higher than 5% as shown in the figure 9.4 (d).
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• Geo-FNO (R mesh): We consider a heuristic adaptive mesh method for each
input geometry by deforming a uniform 41 by 41 grid, as shown in the figure
9.4 (a). The stretching is applied in the radial direction originated at the void
center (0.5, 0.5) to attain a finer mesh near the interface of the void. Let 𝑟
denote the radial distance of mesh points, the deformation map is

𝑟 →

𝑟𝑠 + 𝛼(𝑟 − 𝑟𝑠) + (1 − 𝛼) (𝑟−𝑟𝑠)

2

𝑟𝑒−𝑟𝑠 𝑟 ≥ 𝑟𝑠
𝑟𝑠 − 𝛼(𝑟𝑠 − 𝑟) − (1 − 𝛼) (𝑟𝑠−𝑟)

2

𝑟𝑠
𝑟 ≤ 𝑟𝑠

where 𝑟𝑠 and 𝑟𝑒 denote the void radius and the unit cell radius in this radial
direction, 𝛼 = 0.2 denotes the stretching factor, where the ratio of mesh sizes
between these near the void interface and these near the unit cell boundary
is about 𝛼

2−𝛼 . It is worth mentioning that the deformation map remains void
interface, the origin, and the unit cell boundary. Once the adaptive meshes are
generated, we interpolate the input data to the adaptive meshes. The surrogate
model is learned on the adaptive meshes. We used four Fourier layers with
mode 12 and width 32.

• Geo-FNO (O mesh): Similarly, we design another heuristic adaptive mesh
method with cylindrical meshing, as shown in the figure 9.4 (b). A body-fitted
O-type mesh is generated for each geometry with 64 points in the azimuth
direction and 41 points in the radial direction. The points in the azimuth
direction are uniformly located between 0 and 2𝜋, and the points in the radial
direction are uniformly located between 𝑟𝑠 and 𝑟𝑒, where 𝑟𝑠 and 𝑟𝑒 denote the
void radius and the unit cell radius. Again, we interpolate the input data to
the adaptive meshes. The surrogate model is learned on the adaptive meshes.
We used four Fourier layers with mode 12 and width 32.

As shown in Table 9.1, for the elasticity problem, the Geo-FNO model has a
significantly lower error compared to combining direct interpolation with existing
ML-based PDE solvers such as the standard FNO(Li, Kovachki, et al., 2020a)
and UNet(Ronneberger, Fischer, and Brox, 2015). Both FNO+interpolation and
UNet+interpolation methods have a test error larger that 5%, which is likely caused
by the interpolation error. Geo-FNO also has a lower error compared to mesh-free
methods such as Graph neural operators (GNO) (Li, Kovachki, et al., 2020c) and
DeepONet (Lu, Jin, and Karniadakis, 2019) due to the advantages of the spectral
transform, similar to standard FNO (De Hoop et al., 2022). Notice that the Geo-FNO
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Model mesh size model size training time training error testing error
Geo-FNO (learned) 972 1546404 1s 0.0125 0.0229
GraphNO 972 571617 32s 0.1271 0.1260
DeepONet 972 1025025 45s 0.0528 0.0965
Geo-FNO (R mesh) 1681 1188417 0.6s 0.0308 0.0536
Geo-FNO (O mesh) 1353 1188385 0.5s 0.0344 0.0363
FNO interpolation 1681 1188353 0.5s 0.0314 0.0508
UNet interpolation 1681 7752961 0.9s 0.0089 0.0531

Table 9.1: Benchmark on the elasticity problem. Inputs are point clouds. The table
presents the mesh size as the number of input mesh points, the model size as the
quantity of training parameters, the training time for each epoch, and the relative
training and test errors.

with a learned deformation has better accuracy compared to Geo-FNO with fixed
heuristic deformations (R-mesh) and (O-mesh).

Remark 9.4.1 (Visualization of 𝜙−1
𝑎 ) Figure 9.5 shows the effects of the coordinate

transform, where (a) is the prediction G𝜃 (𝑎) (𝑥) on the original physical mesh and
(b) is the prediction on the computational mesh (without transforming back to the
physical space) G𝜃 (𝑎) (𝜙−1

𝑎 (𝑥)). The top row visualizes the solution on the original
mesh 𝑇 𝑖 and 𝜙−1

𝑎 (𝑇 𝑖), while the bottom row is the full field solution on 𝑇 𝑐 directly
evaluated on the Fourier coefficients. The solution on the latent space has more
"white region", which is latent encoding that does not show up in the final solution.
This latent encoding is similar to the Fourier continuation, making the solution
easier to be represented with the Fourier basis. As shown in the figure, the solution
function on the computational mesh has a cleaner wave structure and is more
periodic compared to the physical space, allowing it to be better represented by
the Fourier basis. Interestingly, there exists a vertical discontinuity on the latent
space around 𝑥 = 0.5 in the latent encoding. Since most features are horizontal, the
vertical discontinuity does not affect the output. The gap can be seen as a result of
encoding in the high-dimensional channel space.

Plastic problem
We consider the plastic forging problem where a block of materialΩ = [0, 𝐿]×[0, 𝐻]
is impacted by a frictionless, rigid die at time 𝑡 = 0. The die is parameterized by an
arbitrary function 𝑆𝑑 ∈ 𝐻1( [0, 𝐿];R) and traveled at a constant speed 𝑣. The block
is clamped on the bottom edge and the displacement boundary condition is imposed
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The first column is the original unstructured input; the second column is the interpolated
input; the third column is the prediction; the last column is the error. As shown in the
figures, interpolation causes an error, which is less accurate than geometry-aware methods.

Figure 9.4: Interpolation into different meshes for the elasticity problem
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The left column is the prediction of Geo-FNO on the physical space G𝜃 (𝑎) (𝑥); the right col-
umn is the prediction of Geo-FNO on the computational space G𝜃 (𝑎) (𝜉) = G𝜃 (𝑎) (𝜙−1

𝑎 (𝑥)).
The top row is the solution on the input mesh. The bottom row is the full-field solution. The
latent space has a cleaner wave structure.

Figure 9.5: Visualization of the deformation map

on the top edge. The governing equation is the same as the previous example but
with an elasto-plastic constitutive model given by

𝝈 = C : (𝝐 − 𝝐𝑝)
¤𝝐𝑝 = 𝜆∇𝝈 𝑓 (𝝈)

𝑓 (𝝈) =
√︂

3
2
|𝝈 − 1

3
tr(𝝈) · 𝐼 |𝐹 − 𝝈𝑌

where 𝜆 is the plastic multiplier constrained by 𝜆 ≥ 0, 𝑓 (𝝈) ≤ 0, and 𝜆 · 𝑓 (𝝈) = 0.
The isotropic stiffness tensor C is with Young’s modulus 𝐸 = 200 GPa and Poisson’s
ratio 0.3. The yield strength 𝝈𝑌 is set to 70 MPa with the mass density 𝜌𝑠 =

7850kg·m−3. We generate 900 training data and 80 test data by using the commercial
Finite Element software ABAQUS Smith, 2009, using 3000 4-node quadrilateral
bi-linear elements (CPS4R in ABAQUS’s notation). Without lose of generality, we
fix 𝐿 = 50mm, 𝐻 = 15mm, and 𝑣 = 3 ms−1. For each sample, we generate a
random function 𝑆𝑑 by randomly sampling 𝑆𝑑 (𝑥𝑘 ) on {𝑥𝑘 = 𝑘𝐿/7; 𝑘 = 0, .., 7} with
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The top row is the truth and the bottom row is the prediction. The five columns represent
the changes in time. The color represents the norm of displacement.

Figure 9.6: Geo-FNO on Plasticity

a uniform probability measure. The die geometry is then generated by interpolating
𝑆𝑑 (𝑥𝑘 ) using piecewise Cubic Hermit Splines. It takes about 600 CPU seconds for
each simulation. The target solution operator maps from the shape of the die to
the time-dependent mesh grid and deformation. The data is given on the 101 × 31
structured mesh with 20 time steps.

The plastic forging problem is a time-dependent problem, so we used the FNO3d
model as the backbone to do convolution in both spatial dimension and temporal
dimensions. Since the data is given on a structured mesh, the deformation (9.16)
has an analytical form, so there is no need to learn a deformation. Geo-FNO is
equivalent to directly applying the standard FNO on the structured mesh, and hence
it perseveres the speed of standard FNO with an inference time of around 0.01
second per. In this experiment, Geo-FNO outputs both the position of the grid as
well as the displacement at each grid point. As shown in fig. 9.6, Geo-FNO correctly
predicts the evolution of the shape and the displacement. It has a moderate error on
the top of the material, which is flat in the ground truth but curved in the prediction.
Overall, Geo-FNO serves as an efficient surrogate model with test error 0.0074 (See
table 9.2).

Advection equation on unit sphere
We consider the cos bell test introduced in Rasch, 1994, where a cos bell 𝑐(0, 𝑥) =
ℎ𝑐 (1.0 + cos(𝜋 dist(𝑥,𝑥𝑐)

𝑟
)) is randomly generated and centered at 𝑥𝑐 = (𝜆𝑐, 𝜃𝑐) with

radius 𝑟 ∼ U[ 10𝜋
128 ,

20𝜋
128 ] and height ℎ𝑐 ∼ U[0.5, 1.5] on the unit sphere. Here dist

denotes great-circle distance, 𝜆𝑐, 𝜃𝑐 ∼ U[−𝜋3 ,
𝜋
3 ] denote longitude and latitude. The

cos bell is advected following
𝜕𝑐

𝜕𝑡
+ ∇(𝒗𝑐) = 0,
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Model Airfoil Pipe Plasticity
training testing training testing training testing

Geo-FNO 0.0134 0.0138 0.0047 0.0067 0.0071 0.0074
FNO interpolation 0.0287 0.0421 0.0083 0.0151 − −
UNet interpolation 0.0039 0.0519 0.0109 0.0182 − −

The Plasticity requires the mesh as a target output, so interpolation methods do not apply.

Table 9.2: Benchmark on airfoils, pipe flows, and plasticity. Inputs are structured
meshes.

Model topology mesh size model size training error testing error
FNO2D 𝑇2 128x64 2368001 0.0119 0.0381
FNO3D 𝐷3 64x64x64 35397665 > 100% > 100%

Geo-FNO2D 𝐷2#𝐷2 128x64 4736002 0.0119 0.0332
UNet2D 𝐷2 128x64 7752961 0.1964 0.3132

DeepONet - 128x64 2624769 0.1113 0.1599

Table 9.3: Advection equation on sphere

here the advective speed 𝒗(𝜆, 𝜃) =
(
cos 𝛽 + sin 𝛽 tan 𝜃 cos𝜆,−𝑈 sin 𝛽 sin𝜆

)
with

𝛽 = 𝜋/2 and 𝑈 = 2𝜋/256. We generate 1000 training data and 200 test data with
a finite volume solver. The inputs 𝑐(0, 𝑥) are given as point clouds with a size of
around 8000 on the unit sphere. The target output is the solution 𝑐(𝑡, 𝑥) at 𝑡 = 256/3.

As shown in Figure 9.7 and table 9.3, Geo-FNO can work on topology differently than
torus or disk. Through domain decomposition, particularly by splitting the sphere
into the northern and southern hemispheres, we can apply FFT2D for the spherical
problem without raising dimensionality. It outperforms baseline models such as
the original FNO and UNet models applied on the 2D spherical map projection,
whose topology is not a sphere. We also compare against the FNO3D model that
embeds the sphere into 𝑅3. It exhibits a remarkably high level of test error, which we
attribute to the considerably larger training data and resolution demands associated
with 3D learning. This underscores the significance of selecting an appropriate
latent computation domain.

Airfoil problem with Euler’s equation
We consider the transonic flow over an airfoil, where the governing equation is the
Euler equation, as follows,

𝜕𝜌 𝑓

𝜕𝑡
+ ∇ · (𝜌 𝑓 𝒗) = 0,

𝜕𝜌 𝑓 𝒗

𝜕𝑡
+ ∇ · (𝜌 𝑓 𝒗 ⊗ 𝒗 + 𝑝I) = 0,

𝜕𝐸

𝜕𝑡
+ ∇ ·

(
(𝐸 + 𝑝)𝒗

)
= 0
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Figure 9.7: Advection equation on the unit sphere. It shows that 2D Geo-FNO with
domain decomposition can simulate PDE on general topologies.

Figure 9.8: The airfoil flows (a) and pipe flows (b) introduced in section 9.4; The
comparison is shown between the reference obtained using a traditional solver (top)
and the Geo-FNO result (bottom).

where 𝜌 𝑓 is the fluid density, 𝒗 is the velocity vector, 𝑝 is the pressure, and 𝐸 is
the total energy. The viscous effect is ignored. The far-field boundary condition is
𝜌∞ = 1, 𝑝∞ = 1.0, 𝑀∞ = 0.8, 𝐴𝑜𝐴 = 0 where 𝑀∞ is the Mach number and 𝐴𝑜𝐴
is the angle of attack, and at the airfoil, no-penetration condition is imposed. The
shape parameterization of the airfoil follows the design element approach Farin,
2014. The initial NACA-0012 shape is mapped onto a ‘cubic’ design element with
8 control nodes, and the initial shape is morphed to a different one following the
displacement field of the control nodes of the design element. The displacements of
control nodes are restricted to vertical direction only with prior 𝑑 ∼ U[−0.05, 0.05].
We generate 1000 training data and 200 test data with a second-order implicit finite
volume solver. The C-grid mesh with about (200 × 50) quadrilateral elements is
used, and the mesh is adapted near the airfoil but not around the shock. It takes
about 1 CPU-hour for each simulation. The mesh point locations and Mach number
on these mesh points are used as input and output data.
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Similar with the plastic problem, the data for the airfoil problem is given on a
structured mesh (Omesh), the deformation (9.16) is prescribed, so there is no need
to learn a deformation. Geo-FNO is equivalent to directly applying the standard
FNO on the structured mesh. The prediction of Geo-FNO on a sample test is
presented in fig. 9.8-a, although there are two shocks induced by the airfoil, the
Geo-FNO prediction matches well with the reference. We also compare Geo-FNO
with the interpolation-based ML methods, which directly interpolates the target on
a larger rectangular space. As shown in table 9.2, Geo-FNO outperforms both FNO
and UNet with interpolation. In the following discusses, we explore discretization
convergence of Geo-FNO model, throughly compare the cost-accuracy trade-off
between Geo-FNO and traditional Euler solvers. And finally we demonstrate that
we can conduct real-time design optimization with the trained Geo-FNO model.

Discretization Convergence Discretization-convergence is an important property
for surrogate models (Kovachki, Li, et al., 2021). It means the model can be applied
to any discretizations and resolutions, and further, the same set of parameters can
be transferred to different discretizations and resolutions. Such a design philosophy
guides the research on neural operators to model the target solution operator as a
mapping between function spaces, not just a specific model at one testing resolution.
The graph neural operator and Fourier neural operator (with discrete Fourier trans-
form) are both discretization-convergent. However, when implemented with the
Fast Fourier transform, Fourier neural operator is restricted to the uniform grids and
therefore it loses the discretization-convergent property. The proposed Geo-FNO
model, on the other hand, extends FNO (with FFT) to non-uniform meshes, and
retains discretization-convergence. Geo-FNO can be trained on a low-resolution
dataset and evaluated at a higher resolution. On the Airfoil problem, we train Geo-
FNO on a 56 × 51 mesh. It achieves test errors of 0.0147, 0.0329, and 0.0428 on
56 × 51, 111 × 51, and 221 × 51 meshes, respectively. Conventional deep learning
methods such as U-Nets are not capable of transferring among different resolutions.

Cost-Accuracy Study Geo-FNO is used as the surrogate model to efficiently
approximate expensive PDE simulations. Such surrogate modeling is an enabling
methodology for many-query computations in science and engineering, e.g., design
optimization. In principle, the relative merits of different surrogate models can be
evaluated by understanding, for each one, the cost required to achieve a given level
of accuracy. De Hoop et. al. demonstrates in (De Hoop et al., 2022), that FNO
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has a superior cost-accuracy trade-off among different neural operator approaches.
In this section, we study the cost-accuracy trade-off in comparison with traditional
numerical solvers with different resolutions. Specifically, we consider the Euler
equation airfoil test 9.4, where the reference data are generated by a 220×50 grid with
2000 implicit backward-Euler pseudo-time-stepping iterations. For comparison, we
use the same solver but with different spatial resolutions: 220 × 50, 110 × 20, and
44 × 5 grids, and different time integrators, including implicit backward-Euler and
explicit Runge-Kutta-2 schemes, with different pseudo time-stepping iterations. For
each setup, we estimate the error and CPU time by an average of 10 runs sampled
from the data set. The cost-accuracy trade-off is depicted in Figure 9.3. Geo-FNO is
at least 104x faster while having the same accuracy, for the presented test. We should
also mention, the speed-up of Geo-FNO is due to the avoidance of time-stepping
iterations, Euler flux computation, and GPU acceleration.

Inverse design Once the Geo-FNO model is trained, it can be used to do the
inverse design. We can directly optimize the design parameters to achieve the design
goal. For example, as shown in fig. 9.9, the shape of the airfoil is parameterized
by the vertical displacements of seven spline nodes. We set the design goal to
minimize the drag lift ratio. We first train the model mapping from the input mesh
to the output pressure field, then program the maps from the vertical displacement
of spline nodes to input mesh and from the output pressure field to the drag lift
ratio and finally optimize the vertical displacement of spline nodes in an end-to-end
manner. As shown in the figure, the resulting airfoil becomes asymmetry with larger
upper camber over the optimization iteration, which increases the lift coefficient and
matches the physical intuition. Finally, we use the traditional numerical solver to
verify optimized design shape. For the optimized design shape, both Geo-FNO and
traditional numerical solver lead to a drag coefficient of 0.04 and a lift coefficient of
0.29.

Pipe problem with Navier-Stokes equation
Finally, we consider the incompressible flow in a pipe, where the governing equation
is the incompressible Navier-Stokes equation, as follows,

𝜕𝒗

𝜕𝑡
+ (𝒗∇)𝒗 = −∇𝑝 + 𝜈∇2𝒗, ∇ · 𝒗 = 0

where 𝒗 is the velocity vector, 𝑝 is the pressure, and 𝜈 = 0.005 is the viscosity.
The parabolic velocity profile with maximum velocity 𝒗 = [1, 0] is imposed at the
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Figure 9.9: The inverse design for the airfoil flow problem with end-to-end optimiza-
tion. The optimal design using the simulation from the numerical solver matches
the prediction from Geo-FNO.

inlet, the free boundary condition is imposed at the outlet, and no-slip boundary
condition is imposed at the pipe surface. The pipe is of length 10 and width 1, and
the centerline of the pipe is parameterized by 4 piecewise cubic polynomials, which
are determined by the vertical positions and slopes on 5 spatially uniform control
nodes. The vertical position at these control nodes obeys 𝑑 ∼ U[−2, 2] and the slop
at these control nodes obeys 𝑑 ∼ U[−1, 1]. We generate 1000 training data and 200
test data with an implicit finite element solver with about 4000 Taylor-Hood Q2-Q1
mixed elements D. Z. Huang, Pazner, et al., 2020. It takes about 70 CPU seconds
for each simulation. The mesh point locations (129 × 129) and horizontal velocity
on these mesh points are used as input and output data.

Similar with the plastic problem, the data for the pipe problem is given on a structured
mesh, the deformation eq. (9.16) has an analytical form, so there is no need to learn
a deformation. Geo-FNO is equivalent to directly applying the standard FNO on
the structured mesh. The prediction of Geo-FNO on a sample test is presented in
fig. 9.8-b, the Geo-FNO is able to capture the boundary layer, and the prediction
matches well with the reference. Geo-FNO also outperforms these interpolation-
based ML ethods, which directly interpolates the target on a larger rectangular space,
as shown in table 9.2.

9.5 Discussion and Conclusion
In this work, we propose a geometry-aware FNO framework (Geo-FNO) that applies
to arbitrary geometries and a variety of input formats. The Geo-FNO deforms the
irregular input domain into a uniform latent mesh on which the FFT can be applied.
Such deformation can be fixed or learned with the FNO architecture in an end-to-
end manner. The Geo-FNO combines both the computational efficiency of the FFT
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and the flexibility of learned deformations. It is as fast as the original FNO but
can represent the variations in solutions and domain shapes more efficiently and
accurately. In the end, we also discussed several potential extensions of Geo-FNO.

Physics-informed settings. In this work, we mainly consider learning surrogate
models in the data-driven setting. However, the dataset may not always be available.
In this case, we can use the physics-informed setting by optimizing the physics-
informed equation loss. Given a fixed input 𝑎, the output function 𝑢 = G𝜃 (𝑎) can
be explicitly written out using the formula (9.18) and (9.13). The derivative of the
deformed basis 𝜓𝑎 = 𝑒2𝑖𝜋⟨𝜙−1

𝑎 (𝑥),𝑘⟩ can be exactly computed using chain rule with
the auto-differentiation of the neural network 𝜙−1

𝑎 . Using the exact gradient, one can
minimize the residual errorR(G𝜃 (𝑎)) to find out the parameterG𝜃 (𝑎) that represents
the solution function. The Geo-PINO method will be an optimization-based spectral
method for general geometry.

General topologies. In this work, we mainly studied simple topologies of 2D disks
or 2D disks with holes. If the problem topology is more challenging, there does not
exist a diffeomorphism from the physical space to the uniform computational space.
Thankfully, we can use the Fourier continuation and decomposition to convert the
problem domain into simpler ones. It is known that 2D connected orientable surfaces
can be classified as either a sphere or an n-genus torus. For spheres, it is natural
to use the unit sphere as the computational space and the spherical harmonics as
the computational basis. For n-genus torus (𝑛 ≥ 2), usually, there do not exist
useful harmonics series, but we can decompose the domain, which requires training
multiple FNO models on each of the sub-domain in a coupled manner. We leave the
domain decomposition as exciting future work.

Theoretical guarantees. In the end, it will be interesting to extend the universal
approximation bound of Fourier neural operator (Kovachki, Lanthaler, and Mishra,
2021) to the solution operator of PDEs defined on general geometries. In (Kovachki,
Lanthaler, and Mishra, 2021), the approximation is achieved by using existing
pseudo-spectral solvers. Since FNO’s architecture can approximate the operation in
the pseudo-spectral solvers, FNO can approximate the target solution operators. For
general domains, usually, there does not exist a pseudo-spectral solver. However, we
can transform the problem into a computational space. By applying the universal
approximation bound on the deformed equationR𝑐 = 0, as well as the approximation
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bound for the neural network 𝜙−1
𝑎 , it is possible to obtain a bound for Geo-FNO. We

also leave this direction as future work.
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C h a p t e r 10

GEOMETRY: NEURAL OPERATOR WITH OPTIMAL
TRANSPORT

Classical geometry learning problems typically focus on discretized meshes or point
clouds. In this work, we extend geometry learning to an operator learning problem
by generalizing discretized meshes to mesh density functions. Our approach for-
mulates geometry embedding as an optimal transport (OT) problem, mapping the
mesh density function to the uniform density function in reference space. Com-
pared to previous methods with interpolation or shared deformation, our OT-based
method has instance-dependent deformation, which is flexible and efficient. Further,
for 3D simulations focused on surfaces, our OT-based neural operator embeds the
surface geometry into 2D latent space. By constraining computations to the 2D
surface manifold, we achieve significant computational efficiency gains compared
to volumetric simulation. Experiments utilizing Reynolds-averaged Navier–Stokes
equations (RANS) on the ShapeNet-Car and DrivAerNet datasets reveal that our
method not only achieves superior accuracy but also significantly reduces com-
putational expenses in terms of both time and memory usage compared to earlier
machine learning models. Additionally, our model demonstrates improved accuracy
on the FlowBench dataset, underscoring the benefits of utilizing instance-dependent
deformation for datasets with highly variable geometries.

10.1 Introduction
Handling complex 3D geometries remains one of the fundamental challenges in
scientific computing. While standard numerical solvers based on finite element or
spectral methods have been successful on simple regular domains, they struggle with
complex geometries due to computationally expensive meshing processes that often
require iterative refinement. The challenge of geometric modeling poses a significant
obstacle across multiple domains, including fluid dynamics, solid mechanics, and
earth science applications. This challenge is particularly evident in 3D aerodynamic
simulations of automobiles, where a single shape takes over three hundred hours
on CPU (Elrefaie, Dai, and Ahmed, 2024) or ten hours on GPU (Zongyi Li, N. B.
Kovachki, et al., 2023).

Machine learning methods have emerged as promising alternatives for solving partial



205

differential equations (PDEs) on complex geometries, offering dramatic improve-
ments in computational efficiency (Bhatnagar et al., 2019; Pfaff et al., 2021; Thuerey
et al., 2020; Hennigh et al., 2021). These approaches can operate effectively at lower
resolutions compared to traditional numerical solvers, significantly reducing com-
putational overhead. However, most existing ML-based methods are constrained to
specific resolutions, limiting their flexibility and broader applicability. To address
this limitation, we focus on neural operators, a recent breakthrough in scientific
computing that offers a resolution-independent approach to solving PDEs.

Neural operators for complex geometries. Neural operators represent an inno-
vative class of data-driven models designed to directly learn the mapping of solution
operators for PDEs in a mesh-free manner (Zongyi Li, N. Kovachki, et al., 2020a; N.
Kovachki et al., 2023; Lu et al., 2021). Unlike conventional deep learning models,
neural operators are designed to be invariant to discretization, making them partic-
ularly effective for solving PDEs. Significant advances in neural operator research
have focused on addressing PDEs with complex geometries (Zongyi Li, D. Z. Huang,
et al., 2022; M. Yin et al., 2024; Ahmad et al., 2024), primarily through embedding
the geometries into uniform latent spaces where efficient spectral methods such as
the Fast Fourier Transform (FFT) (Cooley and Tukey, 1965) can be applied.

The Geometry-Aware Fourier Neural Operator (Geo-FNO) (Zongyi Li, D. Z. Huang,
et al., 2022) marked a significant advancement in this direction by introducing a dif-
feomorphic mapping from physical to computational domains structured as regular
grids. This innovation enabled the application of the FFT in latent computational
spaces, dramatically improving computational efficiency. However, Geo-FNO faces
two major limitations. It learns a shared deformation map for a class of shapes,
which cannot address case-dependent geometry features. In addition, GeoFNO
encodes and decodes the geometry using a Fourier transform based on computa-
tionally expensive matrix-vector multiplication, which restricts scaling to large 3D
simulations.

Building on these ideas, the Geometry-Informed Neural Operator (GINO) (Zongyi
Li, N. B. Kovachki, et al., 2023) combined Graph Neural Operators (GNO) (Zongyi
Li, N. Kovachki, et al., 2020b) with Fourier Neural Operators (FNO) (Zongyi Li,
N. Kovachki, et al., 2020a). By leveraging the adaptability of graphs for local
interactions and the computational efficiency of FFT for global physics, it became
the first neural operator capable of tackling large-scale 3D aerodynamics challenges.
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Despite its potential, the method struggles with the inherent limitations of graph
embeddings’ locality and the high computational cost of 3D latent spaces. These
challenges are especially evident in large-scale scenarios.

Another line of works encode the geometry into structure-free tokens based on
transformer (Hao et al., 2023; Wu et al., 2024; Alkin et al., 2024) or implicit neural
representation (Y. Yin et al., 2022; Serrano et al., 2023; H. Chen et al., 2023; P. Y.
Chen et al., 2022). These methods are flexible and generic, but they generally do
not preserve geometric properties in their encoding. Meanwhile, their encoders
are generally not invertible, which limits their applications in inverse meshing
optimization and shape design.

Despite these advances, current neural operator approaches continue to grapple with
the computational burden of 3D PDEs and the challenge of learning operators across
diverse geometries. To address these challenges, we propose reformulating geometry
embedding as an optimal transport problem for each instance. This allows solution
operators to be learned directly on the surface manifold, with deformation tailored
to each instance. This novel approach fundamentally transforms the handling of
complex geometries in neural operators.

Geometry encoding with optimal transport Optimal transport provides a rig-
orous mathematical framework for determining the most efficient transformation
between densitys. We leverage this framework by interpreting surface meshes as
continuous density functions, where mesh density reflects the underlying geometric
complexity and surface curvature. Our key insight is to formulate the geometry
embedding problem as an optimal transport problem that maps these mesh density
functions to uniform density functions in a latent space.

Unlike traditional approaches that rely on direct projection and interpolation—which
often result in problematic point clustering and density distortions—optimal trans-
port inherently preserves the structural properties of the mesh while ensuring a
smooth, physically meaningful transformation, as illustrated in Figure 10.1. This
preservation property shares conceptual similarities with adaptive moving mesh
methods (Budd, Russell, and Walsh, 2015), but offers flexibility for different topolo-
gies. Recent computational advances, particularly the Sinkhorn algorithm (Cuturi,
2013), have made optimal transport practically feasible by providing efficient approx-
imations to the transport problem. Building on these developments, we demonstrate
how optimal transport can effectively embed surface mesh sub-manifolds into latent
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Figure 10.1: OT plans as bi-partite graphs. In the figure, the green nodes represent
the input shape and the red nodes represent the latent grid. Compared to other graph
mapping strategies such as ball connection and nearest neighbor connection, OT
preserves the global measure, which is essential for computing integral operators.

space while maintaining their essential geometric properties, as illustrated in Figure
10.2.

Conformal mapping (Gu et al., 2004; Choi, Lam, and Lui, 2015) represents a
common approach for mapping irregular meshes to canonical manifolds. These
mappings preserve local angles, making them particularly suitable for Laplacian-
type equations. The smoothness and harmonic properties of conformal mappings
work exceptionally well with numerical solvers such as finite element methods, as
they have less local distortion on each cell within a mesh. However, despite these
advantages, conformal mapping is suboptimal for evaluating the integral operators
widely employed in neural operators. For this reason, our work adopts optimal
transport as the preferred geometric transformation. While optimal transport may
not be as smooth locally, they preserve global measure, which is essential for integral
operators.

Our Contribution: In this work, we generalize geometry learning from dis-
cretized mesh points to mesh density function. Our key innovation lies in for-
mulating geometry embedding as a pre-determined transform that maps the input
mesh density function to the uniform density function in the canonical reference
space. Such geometric transform is computed as optimal transport.

We explore both the Monge formulation (transport maps) and Kantorovich formu-
lation (transport plans), showing how this unified framework naturally encompasses
previous approaches: transport maps generalize the deformation maps in Geo-FNO,
while transport plans extend the graph representations in GINO.

Building on this theoretical foundation, we introduce the optimal transport neural



208

Figure 10.2: Illustration of the optimal transport neural operator (OTNO). (a) OT
Encoder: The surface mesh is encoded onto a latent computational mesh, and the
OT coupling is visualized by representing the coordinates of points as RGB colors.
(b) Fourier Neural Operator (FNO): Within the latent space, we apply S/FNO to
calculate solutions on the latent mesh. (c) OT Decoder: We decode the solutions
from the latent space back to the original surface mesh; here, the colors indicate
solution values.

operator (OTNO), which combines OT-based geometry encoding/decoding with
(Spherical) Fourier Neural Operators (Zongyi Li, N. Kovachki, et al., 2020a; Bonev
et al., 2023) (Figure 10.2). We use Kantorovich formulation to achieve sparse
transport plan and implement it with Sinkhorn algorithm(Cuturi, 2013), and use
Monge formulation to obtain bijective map and implement it with Projection pursuit
Monge map (PPMM)(Meng et al., 2019).

Our optimal transport technique enables crucial dimension reduction by embedding
the surface manifolds from the 𝑑-dimensional ambient space into the (𝑑 − 1)-
dimensional latent spaces. This capability is particularly valuable for automotive
and aerospace applications, where many critical simulations, including Reynolds-
averaged Navier-Stokes (RANS) and Large-Eddy Simulation (LES), fundamentally
operate on boundary value problems. The input is a 2D surface design, and the
desired outputs are surface quantities like pressure and shear velocity that determine
total drag.

We validate our method through simulations based on RANS equations on the
ShapeNet-Car (Umetani and Bickel, 2018) and DrivAerNet-Car (Elrefaie, Morar,
et al., 2024) datasets. Results under different sampling rates (Figure 10.3) show that
our approach achieves the fastest convergence rate compared to baseline methods
and achieves both the smallest error and shortest time cost when using full dataset.
Given different sampling size, our model maintains robust performance in geometry
representation and embedding.

Moreover, our OTNO conducts geometry embedding for each shape individually,
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Figure 10.3: Convergence Plot: This figure presents a comparison of convergence
rates among different models. We vary the physical mesh size and scale the latent
mesh size along the physical size. The data indicates that our model, OTNO, exhibits
the fastest exponential convergence rate of 1.85, surpassing both GINO at 1.37 and
GeoFNO at 1.32.

distinguishing it from previous methods such as GeoFNO and GINO, which learned a
shared deformation network across all geometries. As confirmed by our experiments
on the FlowBench dataset, this feature enables our model to better handle datasets
composed of a wider variety of shapes. Our main contributions are summarized as
follows:

1. A novel optimal transport framework for mesh embedding that unifies and
generalizes previous approaches by mapping mesh density functions to latent
uniform density functions, bridging the gap between Geo-FNO and GINO
methodologies.

2. The Sub-Manifold Method, a dimension-reduction technique for high-dimensional
PDEs that restricts solution operators to 2D surface manifolds, implemented
with optimal transport and coupled with latent spectral neural operators for
efficient PDE resolution in reduced dimensional space, which achieve signif-
icant reduction in computational expense.

3. Comprehensive validation on industry-standard datasets—ShapeNet (3.7k
points) (Chang et al., 2015) and DrivAerNet (400k points) (Elrefaie, Dai,
and Ahmed, 2024)—demonstrates unprecedented efficiency in RANS pres-
sure field prediction. Our method achieves a performance improvement of
2x-8x faster processing and 2x-8x smaller memory usage compared to current
machine learning methods, while also slightly enhancing accuracy. Moreover,
it is approximately 7,000 times faster than traditional approaches.
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4. Optimal transport provides instance-dependent geometry embeddings. Our
model notably excels across diverse geometries, as evidenced on the Flow-
Bench dataset, which contains shapes with greater variability.

10.2 Problem Setting: Geometric Operator Learning
In this work, we consider boundary value problems arising from partial differential
equations (PDEs). Our aim is to learn the operator from the boundary geometries of
PDEs to their boundary solutions. In previous works, the boundary shapes have been
parameterized as discrete design parameters (Timmer, 2009), occupancy functions
or signed distance functions Zongyi Li, N. B. Kovachki, et al., 2023. In this work, we
model the geometries as supports of mesh density functions defined on an ambient
Euclidean space. Suppose we have density functions 𝑓 ∈ F defined in domain R𝑑 .
Let Ω 𝑓 = supp( 𝑓 ) for 𝑓 ∈ F be the manifolds in which the PDEs are defined. We
assume that 𝜕Ω 𝑓 ∈ 𝑉 for any 𝑓 ∈ F , where 𝑉 is a compact subset of R𝑑 . Denote
L and B as a partial differential operator and a boundary operator. The primary
high-dimensional PDEs are as follows:

L(𝑢) = ℎ, in Ω 𝑓 ,

B(𝑢) = 𝑏, in 𝜕Ω 𝑓 ,

where 𝜕Ω 𝑓 denote the boundary manifold of Ω 𝑓 , which is a sub-manifold of Ω 𝑓 .
ℎ and 𝑏 are some fixed functions on R𝑑 . We assume (L,B) satisfies that for any
(ℎ, 𝑏), the PDE (10.1) has a unique solution 𝑢 on Ω 𝑓 . Denote U as the set of
solution functions. Then the solution operator of these high-dimensional PDEs is
given by:

G : F → U
𝑓 ↦→ 𝑢 in Ω 𝑓 ,

(10.1)

Sub-Manifold Operator For the associated boundary value problems, the solu-
tion operator on the sub-manifold 𝜕Ω 𝑓 is given by:

G∗ : 𝑓 sub ↦→ 𝑢sub in 𝜕Ω 𝑓 , (10.2)

where 𝑓 sub =
𝑓 |𝜕Ω 𝑓∫

𝜕Ω 𝑓
𝑓 (𝑥)𝑑𝑆 (𝑑𝑆 is a surface measure) denotes the normalized function

of 𝑓 constrained to 𝜕Ω 𝑓 which is a density function on 𝜕Ω 𝑓 , and 𝑢sub denotes our
target solution function on 𝜕Ω 𝑓 . Our aim is to solve the operator G∗ in Eq (10.2)
on the sub-manifolds {𝜕Ω 𝑓 : 𝑓 ∈ F }.



211

For linear elliptic PDEs such as the Helmholtz equations on regular domains (Ih-
lenburg and Babuška, 1995; Hubbert, 1956), solution operators can be explicitly
constructed on boundary sub-manifolds through a well-established process: defining
basis functions for boundary inputs and solutions via singular value decomposition
(SVD), then establishing a linear mapping between these bases. However, this
approach breaks down for nonlinear problems like RANS and LES with complex
geometries, where explicit linear mappings become mathematically impossible. To
overcome this limitation, we introduce a novel approach that combines optimal trans-
port for geometry embedding with neural operators learned directly on the surface
sub-manifold, enabling efficient handling of nonlinear boundary value problems.

Reynolds-Averaged Navier-Stokes Equations One common example in com-
putational fluid dynamics is the shape design problem. Given a mesh with mesh
density function 𝑓 ∈ 𝑉 ⊂ R3, we aim to solve the Reynolds-averaged Navier–Stokes
Equations in Ω 𝑓 = supp( 𝑓 ), which is the open volume outside of automotive or
airfoil.

− 1
𝑅𝑒

Δv + (v · ∇)v + ∇p = h in Ω 𝑓 ,

∇v = 0 in Ω 𝑓 ,

v = b in 𝜕Ω 𝑓 ,

(10.3)

where v represents the time-averaged velocity field, b is boundary condition of
velocity, and p denotes the time-averaged pressure field. The 𝑅𝑒 represents the
Reynolds number, which accounts for turbulence effects in the averaged flow field.
The vector h includes any external forces acting on the fluid. Given that the boundary
condition b and vector h are fixed, these equations on various manifolds give rise to
the solution operator G : 𝑓 ↦→ 𝑢 = (v, p).

Our objective is to solve the pressure field p on the boundary manifold 𝜕Ω 𝑓 which
is the surface of automotive or airfoil in practice. Correspondingly, the solution
operator we target is a sub-manifold operator of the original 3D PDE solution
operator G:

G∗ : 𝑓 sub ↦→ 𝑢sub = p in Ω. (10.4)

where 𝑓 sub is the density function of the surface mesh of the automotive or airfoil and
a mass function on it in practice. Although this setting presents certain limitations,
it remains a general framework applicable to many realistic 3D geometry design
problems, where the desired solutions are typically concentrated on the surfaces of
objects such as cars and airfoils.
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10.3 Geometry Embedding as Optimal Transport
In this section, our goal is to embed a complex geometric domain into a simpler
latent geometric domain while simultaneously embedding the associated density
function. To address this challenge, we construct a computational framework based
on optimal transport, as described below.

For convenience, we use 𝑓 , 𝑢 and Ω to denote the 𝑓 sub, 𝑢sub and 𝜕Ω 𝑓 in Eq (10.2).
According to the settings from Sec 10.2, 𝑓 is a density function defined on the
complex geometric domain Ω and Ω = supp( 𝑓 ). We define a measure 𝜇 built from
the density 𝑓 as follows:

𝑑𝜇 = 𝑓 (𝑥) 𝑑𝑥 on Ω. (10.5)

The task is then to embed the physical density function 𝑓 on Ω into a latent density
function 𝑔 on a simple geometric domain Ω∗ within the same metric space R𝑑 .
This is equivalent to finding a transformation between measures 𝜇 and 𝜆, where
𝑑𝜆 = 𝑔(𝜉)𝑑𝜉 represents a uniform measure on a canonical geometric domain Ω∗,
such as a unit sphere or torus. And we use 𝑥 and 𝜉 to represent positions in Ω and
Ω∗.

Thereby, we can model the geometries as the density functions (probability mea-
sures) and then encode these density functions using transport maps/plans, finally
cooperate with the latent operators such as FNO to solve the PDEs, detailed as
follows.

Transport Map Given a transport map 𝑇 from latent measure 𝜆 to physical
measure 𝜇, which is a function defined on latent domain Ω∗ :

𝑇 : (Ω∗, 𝜆) → (Ω, 𝜇),
𝜉 ↦→ 𝑥,

(10.6)

we define the latent neural operator such that maps the transport map 𝑇 to the latent
solution function 𝑣 on the latent domain Ω∗:

G : 𝑇 ↦→ 𝑣 on Ω∗. (10.7)

The final solution is
𝑢(𝑥) = 𝑣 ◦ 𝑇−1(𝑥) ∀𝑥 ∈ Ω. (10.8)

Moreover, for any function 𝑛(𝑥) on the physical domain Ω, the transport map 𝑇
enables encoding it onto the latent domain Ω∗ through:

𝑛∗(𝜉) = 𝑛(𝑇 (𝜉)), ∀𝜉 ∈ Ω∗. (10.9)
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Transport Plan Given a transport Plan 𝑃 from latent measure 𝜆 to physical
measure 𝜇, which is a probability measure on Ω∗ ×Ω with marginals 𝜇 on Ω and 𝜆
on Ω∗:

𝑃 : (Ω∗, 𝜆) × (Ω, 𝜇) → [0, 1],
(𝜉, 𝑥) ↦→ 𝑃(𝜉, 𝑥),

(10.10)

we define the latent neural operator such that maps the marginal map of 𝑃 to the
latent solution function 𝑣 on the latent domain Ω∗):

G :

∫
Ω
𝑃(·, 𝑥)𝑥𝑑𝜇(𝑥)∫

Ω
𝑃(·, 𝑥)𝑑𝜇(𝑥)

↦→ 𝑣 on Ω∗. (10.11)

The final solution is

𝑢(𝑥) =
∫
Ω∗
𝑃(𝜉, 𝑥)𝑣(𝜉)𝑑𝜆(𝜉) ∀𝑥 ∈ Ω. (10.12)

Moreover, for any function 𝑛(𝑥) on the physical domain Ω, the transport plan 𝑃
enables encoding it onto the latent domain Ω∗ through:

𝑛∗(𝜉) =
∫
Ω

𝑃(𝜉, 𝑥)𝑛(𝑥)𝑑𝜇(𝑥). (10.13)

Monge Problem: OT Map
Monge originally formulated the OT problem as finding the most economical map
to transfer one measure to another (Monge, 1781). Later, Kantorovich introduced a
relaxation of these strict transportation maps to more flexible transportation plans,
solved using linear programming techniques (Kantorovich, 2006). In the following
sections, we explore both types of OT methods—map and plan. Additionally,
we analyze state-of-the-art methods for the deformation layer in operator learning,
categorizing them into these two types.

The transportation map 𝑇 : Ω∗ → Ω is measure preserving, if for any Borel set
𝐵 ⊆ Ω, ∫

𝑇−1 (𝐵)
𝑑𝜆(𝜉) =

∫
𝐵

𝑑𝜇(𝑥), (10.14)

denoted as 𝑇#𝜆 = 𝜇.

Monge raised the OT problem: given the transportation cost function 𝑐 : Ω∗ ×Ω→
R+, we aim to find a transportation map 𝑇 : Ω∗ → Ω that minimizes the total
transportation cost,

(MP) inf{
∫
Ω∗
𝑐(𝜉, 𝑇 (𝜉))𝑑𝜆(𝜉) | 𝑇#𝜆 = 𝜇}. (10.15)
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Moreover, the following theorem and continuity property hold for the Monge for-
mulation.

Theorem 10.3.1 (Existence and uniqueness of transport map (Brenier, 1991)) Suppose
the measures 𝜇 and 𝜆 are with compact supports Ω,Ω∗ ⊆ R𝑑 respectively, and they
have equal total mass 𝜇(Ω) = 𝜆(Ω∗). Assume the corresponding density functions
satisfy 𝑓 , 𝑔 ∈ 𝐿1(R𝑑), and the cost function is 𝑐(𝜉, 𝑥) = 1

2 |𝜉 − 𝑥 |
2, then the OT map

from 𝜆 to 𝜇 exists and is unique. It can be expressed as 𝑇 (𝜉) = 𝜉 + ∇𝜙(𝜉), where
𝜙 : Ω∗ → R is a convex function, and 𝜙 is unique up to adding a constant.

Lemma 10.3.1 (Continuity of transport map) Given that cost function is the squared
Euclidean distance and 𝜆 is a measure with uniform density function with a com-
pact support, if 𝜇 is absolutely continuous and strictly positive also with a compact
support, then the OT map 𝑇 is continuous almost everywhere. (This lemma can be
easily derived from Theorem 10.3.1.)

In practice, the measures are discretized on the grids and represented by the discrete
measure:

𝜇(𝑥) =
𝑛∑︁
𝑖=1

𝜇𝑖𝛿(𝑥 − 𝑥𝑖), 𝜆(𝜉) =
𝑛∑︁
𝑖=1

𝜆𝑖𝛿(𝜉 − 𝜉𝑖), (10.16)

where 𝜇𝑖 = 𝑓 (𝑥𝑖)∑𝑛
𝑖=1 𝑓 (𝑥𝑖)

, 𝜆𝑖 = 1
𝑛
, X = {𝑥𝑖} are the locations of the vertex in complex

geometric domainΩ, 𝜉 = {𝜉𝑖} are the positions of the computational mesh inΩ∗ and
𝛿 is the Dirac delta function. Thus

∑𝑛
𝑖=1 𝜇𝑖 =

∑𝑛
𝑖=1 𝜆𝑖 satisfy measure perserving.

The corresponding discrete Monge problem is as follows:

(MP) min
𝑇 :𝜉→X

𝑛∑︁
𝑖=1

𝑐(𝜉𝑖, 𝑇 (𝜉𝑖)) · 𝜆𝑖 . (10.17)

As for Geo-FNO(Zongyi Li, D. Z. Huang, et al., 2022), the deformation map can be
viewed as generalized OT map with a special choice of cost function:∫

Ω

𝑐(𝑥, 𝑇−1(𝑥))𝑑𝜇(𝑥) :=
∫
Ω

𝐺 (𝑇−1(𝑥)) − 𝑢sub(𝑥)𝑑𝜇(𝑥) (10.18)

where 𝑢sub is our target solution function as presented in Eq (10.2). However, this is
a non-standard, generalized cost function, since it depends not on (𝑥, 𝑇−1(𝑥)), but
the global solution operator 𝐺 and domain Ω.
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Similar to learning the function 𝜙 (defined in Theorem 10.3.1) in Monge’s formula-
tion, Geo-FNO (Zongyi Li, D. Z. Huang, et al., 2022) implements a skip connection
𝜉 = 𝜓(𝑥) + 𝑥 within the deformation network to learn only 𝜓. The difference is that
Geo-FNO adopts an end-to-end approach, optimizing the deformation map based
on the final solution error and learning a shared network to implement geometry
deformation. In contrast, the Monge problem learns the deformation map separately
from the operator learning and optimizing based on the instance-specific transporta-
tion cost for each geometry respectively. Despite these differences in optimization
strategies, both approaches can be categorized as employing a map-type for the
deformation layer.

Kantorovich Problem: OT Plan
Relaxing the map constraint, the Kantorovich formulation seeks probability mea-
sures 𝑃 on Ω∗ ×Ω that attains the infimum,

(KP) inf{
∫
Ω∗×Ω

𝑐(𝜉, 𝑥)𝑑𝑃(𝜉, 𝑥) | 𝑃 ∈ Γ(𝜆, 𝜇)}. (10.19)

where Γ(𝜆, 𝜇) denotes the collection of all probability measures on Ω∗ × Ω with
marginals 𝜆 on Ω∗ and 𝜇 on Ω, and 𝑐 : Ω∗×Ω→ R+ is transportation cost function.

For its discrete implementation, we define 𝜉 = {𝜉1, . . . , 𝜉𝑛1} and X = {𝑥1, . . . , 𝑥𝑛2}
as vertex locations in the domains Ω∗ and Ω, where 𝜉 is a uniform mesh in computa-
tional space. Denote 𝑎 = (𝜆(𝜉1), . . . , 𝜆(𝜉𝑛1)) = 1

𝑛1
1𝑛1 and 𝑏 = (𝜇(𝑥1), . . . , 𝜇(𝑥𝑛2))

as the density mass vectors of the discrete probability measure 𝜆 and uniform mea-
sure 𝜇, respectively. Define 𝑀 ∈ R𝑛1×𝑛2 as the cost matrix, where each element
represents the cost function value 𝑐(𝜉𝑖, 𝑥 𝑗 ). The discrete OT problem then seeks to
minimize the total transport cost, known as the Wasserstein distance:

(KP) 𝑊𝑀 (𝑎, 𝑏) = min
𝑃∈Γ(𝑎,𝑏)

⟨𝑃, 𝑀⟩

= min
𝑃∈Γ(𝑎,𝑏)

𝑛1∑︁
𝑖=1

𝑛2∑︁
𝑗=1

𝑀𝑖 𝑗 · 𝑃𝑖 𝑗

= min
𝑃∈Γ(𝑎,𝑏)

𝑛1∑︁
𝑖=1

𝑛2∑︁
𝑗=1
𝑐(𝜉𝑖, 𝑥 𝑗 ) · 𝑃𝑖 𝑗 , (10.20)

where Γ(𝑎, 𝑏) represents the set of all feasible coupling matrices, defined as the
discrete probability measures Γ(𝑎, 𝑏) = {𝑃 ≥ 0 | 𝑃1𝑛2 = 𝑎, 𝑃𝑇1𝑛1 = 𝑏}. More-
over, the following sparity property holds for the discrete implementation of the
Kantorovich formulation (Peyré, Cuturi, et al., 2019):
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Lemma 10.3.2 (Sparsity of Transport Plan) The solution to the linear program-
ming is sparse; the number of non-zero entries in the transport plan 𝑃 is at most
𝑛1 + 𝑛2 − 1.

Similar to learning the optimal coupling matrix in the Kantorovich formulation,
GINO (Zongyi Li, N. B. Kovachki, et al., 2023) employs a Graph Neural Operator
(GNO), which can be interpreted as a learnable Graph Laplacian. GNO constructs
the adjacency matrix by performing neighborhood searches within a fixed radius
and learns the edge weights using kernel functions. In contrast, the Kantorovich
formulation solves a global transport plan by optimizing the Wasserstein distance,
which accounts for the pairwise distances between all points across the two do-
mains. Despite these differences in optimization strategies, both approaches can be
categorized as employing a plan-type transformation layer.

Cost function
We choose the squared Euclidean distance as the cost function in optimal transport
due to both its mathematical convenience and its relevance in geometric applica-
tions. In the context of transporting probability measures between two geometric
domains embedded in 3D space, the squared Euclidean distance 𝑐(𝑥, 𝑦) = ∥𝑥 − 𝑦∥2

naturally captures the geometric cost of moving mass from one location to another.
It emphasizes longer displacements more heavily, encouraging smoother and more
localized transport plans. Moreover, it is widely used in the literature and aligns
with the assumptions of classical results like Brenier’s theorem, which guarantees
the existence of a unique optimal map under this cost. Thus, it serves as a principled
and standard choice for geometric transformation tasks in 3D Euclid space.

10.4 Optimal Transport Neural Operator (OTNO)
In this paper, we introduce a novel model, the optimal transport neural operator
(OTNO), which efficiently integrates optimal transport with neural operators. Our
model employs the Projection pursuit Monge map to obtain an approximate solution
of the Monge OT map 𝑇 , and employs Sinkhorn method (Cuturi, 2013) to obtain an
approximate solution of the Kantorovich OT plan 𝑇 . The resulting Map/plan is then
utilized to construct the OT encoder/decoder for neural operator. The methodology
and implementation are detailed below.
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OTNO Algorithm
Given a dataset {(X𝑗 , 𝑢 𝑗 )}𝑁𝑗=1 of surface sampling meshes and corresponding PDEs’

solution values on surface, where X𝑗 =
[
𝑥 𝑗 ,𝑘

]𝑛1
𝑗

𝑘=1 ∈ R𝑛
1
𝑗
×3 and 𝑢 𝑗 =

[
𝑢 𝑗 ,𝑘

]𝑛1
𝑗

𝑘=1 ∈

R𝑛
1
𝑗
×𝑠. For each X𝑗 , generate a latent surface mesh Ξ 𝑗 =

[
𝜉 𝑗 ,𝑙

]𝑛2
𝑗

𝑙=1 ∈ R𝑛
2
𝑗
×3 using a

2D parametric mapping from a square grid, where 𝑛2
𝑗

is a perfect square. Compute

the normals N𝑗 ∈ R𝑛
1
𝑗
×3 on X𝑗 andH 𝑗 ∈ R𝑛

2
𝑗
×3 on Ξ 𝑗 .

By solving OT problem from each latent mesh Ξ 𝑗 to each physical sampling mesh

X𝑗 , we obtain a set of transported mesh {X′
𝑗
}𝑁
𝑗=1, where X′

𝑗
=

[
𝑥′
𝑗 ,𝑙

]𝑛2
𝑗

𝑙=1
∈ R𝑛

2
𝑗
×3.

Note that X′
𝑗

serves as a representation of the physical surface from which 𝑋 𝑗 is
sampled.

Algorithm 3 Optimal Transport Neural Operator (OTNO)
1: Given physical mesh {X𝑗 }𝑁𝑗=1, latent mesh {Ξ 𝑗 }𝑁𝑗=1, transported mesh {X′

𝑗
}𝑁
𝑗=1

and solution values {𝑢 𝑗 }𝑁𝑗=1.
2: Initialize a FNO G𝜃 .
3: for 𝑗 = 1 to 𝑁 do
4: 1. Build Index Mapping:

5: Encoder indices E =

(
arg min

𝑘=1,...,𝑛1
𝑗

∥𝑥′
𝑗 ,𝑙
− 𝑥 𝑗 ,𝑘 ∥2 : 𝑙 = 1, . . . , 𝑛2

𝑗

)
6: Decoder indices D =

(
arg min

𝑙=1,...,𝑛2
𝑗

∥𝑥′
𝑗 ,𝑙
− 𝑥 𝑗 ,𝑘 ∥2 : 𝑘 = 1, . . . , 𝑛1

𝑗

)
7: 2. OT encoder: M 𝑗 = X𝑗 (E) ∈ R𝑛

2
𝑗
×3, whereM 𝑗 selects rows from X𝑗

according to the indices specified in E.
8: 3. Latent FNO: 𝑣 𝑗 = G𝜃 (T𝑗 ), where T𝑗 = (Ξ 𝑗 ,M 𝑗 ,H 𝑗 × N𝑗 (E)) ∈ R𝑛

2
𝑗
×9

9: (H 𝑗 ×N𝑗 (E) computes the cross product between rows).
10: 4. OT decoder: 𝑢′

𝑗
= 𝑣 𝑗 (D) ∈ R𝑛

1
𝑗
×𝑠, where 𝑢 𝑗 selects rows from 𝑣 𝑗

according to the indices specified in D.
11: end for

12: Compute the empirical loss over all dataset instances:
𝑁∑︁
𝑗=1
∥𝑢′𝑗 − 𝑢 𝑗 ∥U .

Encoder For each point 𝑥′
𝑗 ,𝑙

(𝑙 = 1, . . . , 𝑛2
𝑗
) in the transported mesh X′

𝑗
, we

find the closet point in X𝑗 and denote 𝑒𝑘 as the index of this closest point in X𝑗 .

Thus, we obtain an index sequence E =

(
arg min

𝑘=1,...,𝑛1
𝑗

∥𝑥′
𝑗 ,𝑙
− 𝑥 𝑗 ,𝑘 ∥ : 𝑙 = 1, . . . , 𝑛2

𝑗

)
=
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(𝑒1, . . . , 𝑒𝑛2
𝑗
). Using these indices, we encode the meshX𝑗 toM 𝑗 = X𝑗 (E) ∈ R𝑛

2
𝑗
×3,

whereM 𝑗 selects rows from X𝑗 according to the indices specified in E.

Latent Operator In the latent space, we deploy the FNO G𝜃 to execute the
latent neural operator G as introduced in Eq (10.7)(10.11). Denote 𝑇 as the
transport map in Eq (10.7) or marginal map of transport plan in Eq (10.11).
Then it can be fundamentally represented by pairs of latent mesh and transported
mesh (Ξ 𝑗 , 𝑇 (Ξ 𝑗 )) = (Ξ 𝑗 ,X′𝑗 ). Considering 𝑇 as a deformation map, we include
deformation-related features by using the cross-product over normals H 𝑗 × 𝑇 (H 𝑗 )
(further discussion on normal feature is in Sec 10.6). Thus, we configure T𝑗 as
(Ξ 𝑗 ,X′𝑗 ,H 𝑗 × 𝑇 (H 𝑗 )) to fully encapsulate the map’s properties. To enhance the
quantity of surface representation, we substitute points inX′

𝑗
with their closest coun-

terparts in X𝑗 , i.e. use M 𝑗 = X𝑗 (E) to replace X′
𝑗
. Similarly, we use N𝑗 (E) to

replace the 𝑇 (H 𝑗 ). Consequently, T𝑗 = (Ξ 𝑗 ,M 𝑗 ,H 𝑗 ×N𝑗 (E)) serves as a compre-
hensive representation of the deformation map 𝑇 , as well as the input for the latent
FNO.

Decoder Corresponding to the encoder, we compute the index 𝑑𝑘 of the closest
point in the transported mesh X′

𝑗
for each point 𝑥 𝑗 ,𝑘 (𝑘 = 1, . . . , 𝑛1

𝑗
) in X𝑗 and

build a decoder index sequence D =

(
arg min

𝑙=1,...,𝑛2
𝑗

∥𝑥′
𝑗 ,𝑙
− 𝑥 𝑗 ,𝑘 ∥2 : 𝑘 = 1, . . . , 𝑛1

𝑗

)
=

(𝑑1, . . . , 𝑑𝑛1
𝑗
). Using these indices, we decode the solutions 𝑣 𝑗 back to physical

surface.

Note that the latent surface mesh Ξ 𝑗 ∈ R𝑛
2
𝑗
×3 is constructed from a 2D parametric

grid. This ensures that the input features 𝑇𝑗 ∈ R𝑛
2
𝑗
×9 for the FNO are organized

on a 2D grid. Consequently, the FNO computations occur in 2D space, leveraging
the structured layout of Ξ 𝑗 , rather than directly handling the unstructured 3D point
cloud.

OTNO with OT Plan
Transported Mesh

Using the Sinkhorn method (Cuturi, 2013) detailed in the following Sec 10.4, we
obtain dense coupling matrices 𝑃 𝑗 that represent the OT plans from the latent
computational mesh Ξ 𝑗 to the boundary sampling mesh X𝑗 . How to effectively
utilize these dense matrices within a neural operator framework become a problem
worth discussing.
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Directly applying the dense matrix by multiplying it with the mesh will lead to a
lower accuracy of the final predictions because it only approximates the solution
plan for the Kantorovich problem (10.20). And saving large-scale dense matrices
is costly. Therefore we discuss how to use these optimal coupling matrices more
effectively. As the matrix 𝑃 𝑗 represents a discrete probability measure on X𝑗 × Ξ 𝑗 ,
a practical approach is to focus on the maximum probability elements, referred
to as the "Max" strategy. Additionally, a more effective "Mean" strategy involves
replacing each point 𝑥′ ∈ X′

𝑗
= 𝑃 𝑗X𝑗 with the nearest point in X𝑗 , significantly

reducing approximation ambiguity caused by Sinkhorn method. Further, we can
encode/decode by the top-k nearest neighbors in X𝑗 /X′𝑗 instead of only find the
single nearest one. Details of these different strategies are further discussed in
Section 10.6.

Latent Mesh

In practice, we design the computational grid to have more vertices than the boundary
sampling mesh to ensure maximal information retention during the encoding and
decoding processes. Let 𝛼 be an expansion factor, and the number of points in
latent space is then set to 𝑛2

𝑗
= ⌈

√︃
𝛼 × 𝑛1

𝑗
⌉2. This approach implies that the encoder

functions as an interpolator, while the decoder acts as a selective querier. A simple
illustration of the encoder and decoder processes is shown in Fig.10.4. And detailed
ablation studies for latent mesh shape and latent mesh size are in Sec 10.6 and
Sec 10.6.

Figure 10.4: Illustration of OT encoder and OT decoder. The curve represents the
boundary sampling points and the line denotes the latent computational grid

Voxel Downsampling To achieve a well-balanced input density function, we em-
ploy voxel downsampling as a normalization process that constrains the density
function within a predefined range [0, 𝑎], where 𝑎 is determined by the voxel size.
This approach mitigates excessive clustering in regions with high point density,
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such as around the wheels in some some car data, therefore ensuring a more uniform
spatial distribution of points.

Sinkhorn Algorithm

Sinkhorn (Cuturi, 2013) method added an entropy regularizer to the Kantorovich
potential and greatly improved efficiency. They first propose the Sinkhorn distance
that added entropy constraint:

𝑑𝑀,𝛼 (𝑎, 𝑏) = min
𝑃∈Γ𝛼 (𝑎,𝑏)

⟨𝑃, 𝑀⟩, (10.21)

where

Γ𝛼 (𝑎, 𝑏) = {𝑃 ∈ Γ(𝑎, 𝑏) | KL(𝑃, 𝑎𝑏𝑇 ) ≤ 𝛼} = {𝑃 ∈ Γ(𝑎, 𝑏) | ℎ(𝑃) ≥ ℎ(𝑎) + ℎ(𝑏) − 𝛼}.

(10.22)
Then they consider the dual problem that arises from Lagrange multiplier:

𝑃𝛽 = argmin
𝑃∈Γ(𝑎,𝑏)

⟨𝑃, 𝑀⟩ − 1
𝛽
ℎ(𝑃), (10.23)

This formulation leads to a problem where 𝛽 adjusts the trade-off between the
transport cost and the entropy of the transport plan 𝑃. When 𝛽 increases, the
influence of the entropy regularization decreases, making 𝑃𝛽 converge closer to the
solution of the original Kantorovich problem (10.20). This implies that a larger 𝛽
leads to a solution that is more accurate and economically efficient.

By introducing the entropy constraint, the Sinkhorn distance not only regularizes
the OT problem but also ensures that the solution is computationally feasible even
for large-scale problems. This regularization dramatically improves the numerical
stability and convergence speed of the algorithm.

Implementation In the implementation, we set 𝑎 = 1
𝑛1

1𝑛1 given that the sampling
mesh X = {𝑥1, . . . , 𝑥𝑛1} from the computational fluid dynamics (CFD) simulations
typically demonstrates advantages such as increased point density in regions with
sharp changes. This uniform mass vector on the mesh X provides a denser dis-
tribution in these critical regions, enhancing aerodynamics prediction. For cases
with excessively dense regions, we employ voxel downsampling to prevent excessive
density variations, thereby maintaining the feasibility of our uniform mass vector.
We set 𝛽 = 1 × 106 to ensure that the solution is economical without incurring
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excessive computational costs. For computational support, we utilize the geomloss
implementation from the Python Optimal Transport (POT) library (Flamary et al.,
2021), which supports GPU acceleration and use lazy tensors to store dense coupling
matrix obtained from Sinkhorn method.

OTNO with OT Map
Transported Mesh

Using the PPMM, detailed in Section 10.4, we obtain the transported mesh 𝑋′
𝑗
,

which is mapped from the latent mesh Ξ 𝑗 to the physical mesh 𝑋 𝑗 . This results in
the same number of points as the latent mesh while representing the distribution of
the physical mesh. Since PPMM operates directly on the latent mesh, projecting it
towards the physical mesh (as shown in Algorithm 4), the output is the transported
mesh itself rather than a mapping that can operate on any function on the latent
mesh, and it cannot offer an inverse direction itself. (An OT plan, discretized as
a coupling matrix, can handle both.) Therefore, we also compute the indices for
encoding and decoding, as outlined in Algorithm 3.

Latent Mesh

Since the latent mesh has the same number of points as the physical mesh, and the
2-dimensional FNO on the latent space requires a square mesh, the number of points
in both the latent mesh and the physical mesh should be a perfect square.

Therefore, we first apply voxel downsampling to normalize the mesh density, fol-
lowed by random sampling to further downsample the mesh so that ensure the
number of points is a perfect square. Finally, we generate the latent mesh to match
the square number of points in the downsampled physical mesh. We choose a spher-
ical mesh as the latent mesh, given its suitability for the Projection Pursuit Monge
Map (PPMM).

Projection pursuit Monge map (PPMM)

The PPMM proposes an estimation method for large-scale OT maps by combining
the concepts of projection pursuit regression and sufficient dimension reduction. As
summarized in Algorithm 4, in each iteration, the PPMM applies a one-dimensional
OT map along the most "informative" projection direction. The direction 𝑒𝑘 is
considered the most "informative" in the sense that the projected samples 𝑋𝑘𝑒𝑘



222

Algorithm 4 Projection pursuit Monge map
Input: two matrix 𝑋 ∈ R𝑛×𝑑 and 𝑌 ∈ R𝑛×𝑑
𝑘 ← 0, 𝑋0 ← 𝑋

repeat
(a) calculate the most ’informative’ projection direction 𝑒𝑘 ∈ R𝑑 between 𝑋𝑘

and 𝑌
(b) find the one-dimensional OT Map 𝜙(𝑘) that matches 𝑋𝑘𝑒𝑘 to 𝑌𝑒𝑘 (using

look-up table)
(c) 𝑋𝑘+1 ← 𝑋𝑘 + (𝜙(𝑘) (𝑋𝑘𝑒𝑘 ) − 𝑋𝑘𝑒𝑇𝑘 )𝑒

𝑇
𝑘

and 𝑘 ← 𝑘 + 1
until converge
The final mapping is given by 𝜙 : 𝑋 → 𝑋𝑘

and 𝑌𝑒𝑘 exhibit the greatest "discrepancy." The specific method for calculating this
direction is detailed in Algorithm 1 in paper Meng et al., 2019.

10.5 Experiments
We conducted experiments on three CFD datasets. Two of them are 3D car datasets,
where the target prediction is the pressure field or drag coefficient, which depends
solely on the car surface—a 2D manifold. The ShapeNet dataset includes 611
car designs, each with 3.7k vertices and corresponding average pressure values,
following the setup from (Zongyi Li, N. B. Kovachki, et al., 2023). The DrivAerNet
dataset, sourced from (Elrefaie, Dai, and Ahmed, 2024), contains 4k meshes, each
with 200k vertices, along with results from CFD simulations that measure the drag
coefficient. Additionally, we further evaluate our model on the 2D FlowBench
dataset (Tali et al., 2024), which features a wider variety of shapes, including three
groups, each containing 1k shapes with a resolution of 512 × 512. Although the
PDE solutions are not on the boundary sub-manifold, preventing our model from
reducing dimensions by embedding boundary geometries, this dataset provides an
excellent opportunity to explore our model’s capabilities across diverse shapes.

Experiments: 3D Car Datasets
ShapeNet Car Dataset

To ensure a fair comparison, we maintained identical experimental settings to those
used in GINO paper (Zongyi Li, N. B. Kovachki, et al., 2023). We compared
the relative error, total time (including data processing and training), and GPU
memory usage against key baselines from (Zongyi Li, N. B. Kovachki, et al., 2023).
As detailed in Table.10.1, our method, OTNO, achieved a relative error of 6.70%,
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Model Relative L2 Total Time (hr) GPU Memory (MB)

Geo-FNO 13.50% 1.96 12668
UNet 13.14% 6.86 7402
GINO 7.21% 10.45 12734
OTNO(Plan) 6.70% 1.52 1890

Table 10.1: Predict pressure field on ShapeNet Car Dataset

which is a slight improvement over the lowest error reported in the baseline—7.21%
by GINO. Across all baselines, our method demonstrated reduced total time and
lower GPU memory usage. Compared to GINO, our method significantly reduced
both time costs and memory expenses by factors of eight and seven, respectively.
The visual results for pressure prediction are presented in Fig.10.5a.

DrivAerNet Car Dataset

Herein, we follow all the experimental settings from DrivAerNet paper (Elrefaie,
Dai, and Ahmed, 2024) and compare our model to RegDGCNN, as proposed in
(Elrefaie, Dai, and Ahmed, 2024), and the state-of-the-art neural operator model,
GINO (Zongyi Li, N. B. Kovachki, et al., 2023). Note that we do not use pressure
data for training; instead, we only use the drag coefficient (Cd). The visual result for
Cd prediction is presented in Fig.10.5b. For OTNO, we employ voxel downsampling
with a size of 0.05, corresponding to approximately 60k samples (see ablation in
10.6).

As detailed in Table.10.2, OTNO(Plan) demonstrates significantly superior accu-
racy and reduced computational costs compared to RegDGCNN, halving the MSE,
speeding up computations by a factor of 5, and reducing memory usage by a factor of
24. Compared to GINO, OTNO(Plan) achieves a slightly lower MSE, a marginally
higher R2 score, and notably reduces total computation time and memory usage by
factors of 4 and 5, respectively.

Given that PPMM is designed for large-scale OT maps, we evaluate OTNO(Map) on
this large-scale dataset to assess its performance. Unfortunately, both the error and
time cost are worse than OTNO(Plan). However, the memory cost is significantly
lower. This is primarily because OTNO(Plan) expands the latent space, while
OTNO(Map) does not.
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Model MSE (e-05) R2 Score Total Time (hr) GPU Memory (MB)

RegDGCNN 6.63 0.887 10.78 72392
GINO 3.33 0.955 7.73 14696
OTNO(Map) 3.93 0.947 10.63 2896
OTNO(Plan) 3.28 0.956 5.26 9702

Table 10.2: Predict drag coefficient (Cd) on DrivAerNet Car Dataset (single A100)

(a) Results of pressure on ShapeNet dataset.

(b) Results of drag coefficient on DrivAerNet dataset

Figure 10.5: Results visualization for OTNO on Car Datasets

Showcase of Dataset with Diverse Geometries - 2D Flow Datasets
To assess the performance of instance-dependent deformation in our model across
diverse geometries, we conducted further evaluations using the FlowBench dataset
(Tali et al., 2024). We use two metrics for training:

1. M1: Global metrics: The errors of in velocity and pressure fields over the
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entire domain.

2. M2: Boundary layer metrics: The errors in velocity and pressure fields over a
narrow region around the object. We define the boundary layer by considering
the solution conditioned on the Signed Distance Field (0 ≤ 𝑆𝐷𝐹 ≤ 0.2).

The results of training using the M1 metric (global) and M2 metric (boundary) are
presented in Table 10.3, and Table 10.4, respectively. We present a subset of the
visualization results in Fig. 10.6.

The results demonstrate that OTNO significantly outperforms in accuracy under
both the M1 (global) and M2 (boundary) metrics, particularly for M1. Furthermore.
And OTNO achieves notably better accuracy across all three groups, especially
for G2 (harmonics). However, cost reduction is not observed in the FlowBench
dataset. It is important to note that the cost reductions seen in car datasets stem
from the sub-manifold method, which employs optimal transport to generate 2D
representations and perform computations in 2D latent space instead of 3D. In the
FlowBench dataset, however, the solutions are not restricted to the boundary sub-
manifold. Even for the M2 metric, although the relevant data is close to the boundary
with a width of 0.2, it does not reduce to a 1D line. As a result, computations cannot
be confined to the sub-manifold, and the associated cost reduction benefits are
consequently absent.

We do not present Geo-FNO results on this dataset as the relative L2 errors consis-
tently exceed 60%. Our analysis suggests that Geo-FNO, which uses an end-to-end
approach to learn a shared deformation map and the latent operator, is less suited
for the diverse shapes present in the FlowBench dataset. In contrast, our OTNO
model, which solves the OT plan/map for each shape separately, exhibits superior
performance on diverse geometries.

10.6 Ablation Studies
In this section, we discuss ablation experiments for the optimal transport neural
operators. We will first cover transport plan formulation, and then transport map
based on PPMM.
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Group Model Relative L2 Time per Epoch (sec) GPU Memory (MB)

G1
FNO 16.27% 43 4548
GINO 8.62% 371 57870
OTNO 3.06% 578 26324

G2
FNO 56.67% 43 4548
GINO 43.16% 390 58970
OTNO 7.16% 603 22868

G3
FNO 23.20% 44 4548
GINO 13.27% 383 73140
OTNO 4.02% 606 26008

Table 10.3: Prediction under M1 Metric (global) on FlowBench Dataset (single
A100)

Group Model Relative L2 Time per Epoch (sec) GPU Memory (MB)

G1
FNO 5.65% 43 4536
GINO 5.83% 190 67632
OTNO 3.91% 135 7300

G2
FNO 29.37% 43 4534
GINO 19.74% 177 73792
OTNO 14.36% 124 7012

G3
FNO 10.47% 43 4538
GINO 10.69% 219 67838
OTNO 7.18% 153 11406

Table 10.4: Prediction under M2 Metric (boundary) on FlowBench Dataset

OTNO with OT Plan (Sinkhorn)
Encoder and Decoder Strategy

Using the Sinkhorn algorithm, we solve the Kantorovich optimal transport problem
between the latent mesh Ξ ∈ R𝑛2 and the physical mesh X ∈ R𝑛1 , resulting in a
large, dense coupling matrix 𝑃 ∈ R𝑛2×𝑛1 that approximates the OT plan. The direct
way to get transported mesh is as X′ = 𝑃 · X, we refer to as the Matrix Strategy.
However, storing these large, dense matrices for each physical mesh is too costly, and
the approximate matrices obtained from the Sinkhorn Method introduce a degree of
imprecision in the results. Therefore, this section discusses strategies to implement
these approximate matrices more efficiently, aiming to conserve memory and reduce
imprecision.
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(a) Results of velocity in y direction under M1 metric (global).

(b) Results of velocity in y direction under M2 metric (boundary).

Figure 10.6: Results Visualization for OTNO on FlowBench Dataset

1. Max vs Mean

As the matrix 𝑃 ∈ R𝑛2×𝑛1 represents a discrete probability measure on Ξ×X,
a natural approach to take use of the plan is to transport by the maximum
probability, termed as "Max" strategy. LetX = (𝑥1, . . . , 𝑥𝑛1) ∈ R𝑛1×𝑑 . Denote
𝑃 = (𝑝𝑘,𝑙)𝑛2×𝑛1 . We calculate the indices of the max element in each row

𝑖𝑘 = arg min
𝑗

{𝑝𝑘, 𝑗 : 𝑗 = 1, . . . , 𝑛1}, for 𝑘 = 1, . . . , 𝑛2, (10.24)

and then use these indices to get a refined transported mesh:M = (𝑥𝑖1 , . . . , 𝑥𝑖𝑛2
) ∈

R𝑛2×𝑑 .

Another approach, perhaps more intuitive, involves finding the element in
mesh X that is closest to the directly transported mesh X′ = (𝑥′1, . . . , 𝑥

′
𝑛2) ∈

R𝑛2×𝑑 . We name this approach as "Mean" strategy due to the weight product
across rows in X′ = 𝑃 · X. The specific process is described as follows: first
compute the indices

𝑖𝑘 = arg min
𝑗

{|𝑥′𝑘 − 𝑥 𝑗 | : 𝑗 = 1, . . . , 𝑛1}, for 𝑘 = 1, . . . , 𝑛2. (10.25)

The refined transported mesh isM = (𝑥𝑖1 , . . . , 𝑥𝑖𝑛2
) ∈ R𝑛2×𝑑 .

As shown in Table.10.5, "Mean" strategy has a better performance.
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Dataset Matrix Max Mean

ShapeNet (Relative L2) 7.21% 7.01% 6.70%
DrivAerNet (MSE e-5) 5.6 4.8 3.4

Table 10.5: Comparison of Max vs. Mean Strategy

Dataset Multi Enc Multi Dec Single

ShapeNet (Relative L2) 20.55% 72.30% 6.70%
DrivAerNet (MSE e-5) 4.2 4.5 3.4

Table 10.6: Comparison of Multi vs. Single Encoder/Decoder Strategy

2. Single vs Multiple

Besides the implementation of OT, integrating OT with FNO poses another
significant question. For FNO, the requirement of inputs is just need to be
features on a latent grid, suggesting that the encoder’s output can combine
multiple transported distributions, same for the decoder. Thus, under the
"Mean" strategy, we further investigate utilizing indices of the top 𝑘 closest
elements, termed as "Multi-Enc" and "Multi-Dec". We choose 𝑘 = 8 for
"Multi-End" and 𝑘 = 3 for "Multi-Dec" setups. The comparative results
are presented in Table 10.6, indicating that "Multi-Enc" and "Multi-Dec"
configurations underperform relative to "Single" strategy which utilize the
index of the closest point instead of top 𝑘 closest points.

Normal Features

Our model, which incorporates latent FNO, learns the operator mapping from 𝑇 to
the latent solution function 𝑣, where 𝑇 represents the transport map or the marginal
map of the transport plan, as described in equations (10.7) and (10.11). The basic
representation of the map 𝑇 in our experiments can be defined as T = (Ξ, 𝑇 (Ξ)).
The previous section discussed how to refine the transported mesh 𝑇 (Ξ), and in
this section, we further explore the addition of normal features to enhance the
representation T , leveraging the normal’s ability to describe a surface.

We propose three different approaches to integrate normals and compare them with
the case where no normal features are added. The three methods are as follows:
"Car": Only add car surface normals. "Concatenate": Add the concatenation of
latent surface normals and car surface normals as normal features. "Cross Product":



229

Add the cross product of latent surface normals and car surface normals as normal
features to capture the deformation information of the transport.

As shown in Table 10.7, the "Cross Product" method performs the best.

Dataset Non Car Concatenate Cross Product

ShapeNet (Rel L2) 7.19% 6.82% 6.83% 6.70%
DrivAerNet (MSE e-5) 3.4 3.9 3.8 3.4

Table 10.7: Comparison of Different Normal Features

Shape of mesh in latent space

We investigated the effects of different shapes for the latent mesh, i.e., the target
shapes for optimal transport. The results presented in Table 10.8 indicate that
the torus provides the best performance due to its alignment with the periodic
Fourier function. Although the capped hemisphere and the spherical surface share
the same topological structure as the car surface, their performance is suboptimal.
Additionally, we experimented with the double sphere method (Mildenberger and
Quellmalz, 2023), which unfortunately yielded worse accuracy compared to the
sphere and doubled the time costs.

Dataset Hemisphere Plane Double Sphere Sphere Torus

ShapeNet (Rel L2) 8.9% 8.67% 7.41% 7.09% 6.70%
DrivAerNet (MSE e-5) 4.7 4.4 4.6 4.1 3.4

Table 10.8: Comparison of Different Mesh Shapes in Latent Space

Expand Factor

For OTNO(Plan), we found that expanding the size of the latent mesh within a
certain range leads to better results. The ablation experiments for different expansion
factors 𝛼 = 1, 2, 3, 4are presented. As shown in Fig. 10.7, on both the DrivAerNet
and ShapeNet datasets, 𝛼 = 3 achieves the best accuracy.

OTNO with OT Map (PPMM)
Number of Iterations

The theoretical time complexity of the PPMM is 𝑂 (𝐾𝑛 log(𝑛)), where 𝐾 is the
number of iterations and 𝑛 is the number of points. While the original study
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(a) Tests of different expand factor for
OTNO(Plan) on ShapeNet dataset

(b) Tests of different expand factor for
OTNO(Plan) on DrivAerNet dataset

Figure 10.7: Ablation Studies of expand factor for OTNO(Plan)

claims that empirically 𝐾 = 𝑂 (𝑑) works reasonably well, our experience with 3D
car datasets tells a different story. In this section, we conduct ablation studies to
explore the relationship between the optimal number of iterations and the number
of points. We employ voxel downsampling to generate subsets of the car surface
mesh, varying in the number of points. The results for different voxel sizes (𝑟) and
iteration numbers (𝐾) are presented in Table 10.9. From these results, we observe
that 𝐾 ∝ 𝑟−1. Given that the car surface mesh is a 2D manifold embedded in 3D
space, the number of points 𝑛 should be inversely proportional to the square of the
voxel size 𝑟 , i.e., 𝑛 ∝ 𝑟−2. Consequently, 𝐾 ∝ 𝑛1/2, and the experimental time
complexity of PPMM in our model on the car dataset is accordingly𝑂 (𝑛3/2 log(𝑛)).

Voxel Size / Itr 500 1000 2000 4000

0.2 6.2 6.6 6.9 8.0
0.1 5.3 4.6 5.5 5.4
0.05 4.8 4.2 3.9 4.5

Table 10.9: Results on the DrivAerNet Dataset for Different Voxel Sizes and Dif-
ferent Iteration Numbers of PPMM (MSE (e-5))

Sampling Mesh Size

It is a challenging problem to efficiently and effectively solve large-scale OT prob-
lems. We investigate the Sinkhorn method for large-scale OT plans and the PPMM
algorithm for large-scale OT maps, and accordingly build two models, OTNO(Plan)
and OTNO(Map). In this section, we conduct experiments on the large-scale Dri-
vAerNet dataset to explore our models’ ability to handle large sampling meshes. We
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(a) Test errors associate with the number
of sampling points. We set the voxel size
𝑟 = 0.2, 0.1, 0.05, 0.025, corresponding to
about 1k, 4.5k, 18k, 60k points.

(b) Time complexity associate with the num-
ber of sampling points. We set the voxel size
𝑟 = 0.1, 0.05, 0.025, corresponding to about
4.5k, 18k, 60k points.

Figure 10.8: Ablation Studies of Sampling Mesh Size for OTNO(Map) and
OTNO(Plan) on DrivAerNet Dataset

use voxel downsampling to reduce the mesh with 200k points from the DrivAerNet
dataset into a normalized sampling mesh of varying sizes.

As shown in Fig. 10.8a, both OTNO(Plan) and OTNO(Map) achieve their lowest
accuracy at a voxel size of 0.05, corresponding to approximately 18k points. But
when the sampling mesh size increases more, the accuracy does not improves. This
suggests that our model has a range of limitations when dealing with large-scale
problems, primarily due to the difficulty of solving large-scale OT problems with
high precision. Regarding the comparison between OTNO(Plan) and OTNO(Map),
we find that OTNO(Plan) consistently outperforms OTNO(Map) in terms of accu-
racy, regardless of the sampling mesh size.

From the experimental results, we observe that the training time of OTNO(Plan) is
much larger than OTNO(Map) as shown in Fig. 10.8b. This is because we expand
the latent space by a factor of 3 for OTNO(Plan), and the FNO on the latent space
has linear complexity, attributed to the linear FFT. Note that the time complexity
of OTNO(Plan) and OTNO(Map) are 𝑂 (𝑛2) and 𝑂 (𝑛3/2 log(𝑛)), respectively, both
of which are larger than the training complexity of 𝑂 (𝑛). Therefore, the overall
time complexity of OTNO(Plan) and OTNO(Map) relative to the number of points
𝑛 should be 𝑂 (𝑛2) and 𝑂 (𝑛3/2 log(𝑛)), respectively. These results align with the
plots shown in Fig. 10.8b that the time cost of OTNO(Plan) increases faster than
that of OTNO(Map) as the sampling mesh size grows.
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10.7 Discussion and Conclusion
Recently, several studies have focused on integrating diffeomorphic transformations
within PDE solution operators to extract geometric information and ultimately solve
PDEs. Examples include DIMON (M. Yin et al., 2024), which employs LDDMM
to learn diffeomorphic deformations, and DNO (Zhao et al., 2025), which utilizes
harmonic mapping for the same purpose.

A recent work, Diffeomorphic Latent Neural Operators (Ahmad et al., 2024),
compared conformal mapping and LDDMM, which are both diffeomorphic map-
pings, with discrete optimal transport via the Hungarian algorithm, which is a
non-diffeomorphic mapping. Their findings suggest that, for invertible spatial trans-
formations, diffeomorphic approaches generally offer better performance.

However, the Hungarian algorithm is designed primarily for discrete assignment
problems, which is not suited for spatial transformations between meshes. In
contrast, our method employs continuous OT algorithms, which are better equipped
for distribution transformations that encode/decode geometric information.

We observe several advantages of our method employing continuous OT algorithms
compared to diffeomorphic methods. First, we found that smoothness is an un-
necessarily strict requirement—piecewise continuity is often sufficient for effective
geometric embeddings. For example, using a sphere surface as a latent shape results
in a globally continuous transported mesh, whereas for a torus, the transported mesh
is only piecewise continuous. Yet, as shown in Table 10.8, the torus-based repre-
sentation outperforms the sphere-based one. Secondly invertibility is not always
beneficial. Invertibility requires the size of latent mesh should be the same as the
size of phyical mesh. However, As illustrated in Fig. 10.7a, expanding the size of
latent mesh within a certain range leads to improved performance.

Moreover, the topology of the mapping warrants attention. While diffeomorphisms
preserve topology, our OT framework does not require topological consistency. As
demonstrated in Table 10.8, the torus representation achieves the best performance
despite a change in topology. We also tested this on a 2D elasticity example to
assess its generalization capability. The results, shown in Fig. 10.10, confirm that
enforcing topological consistency does not yield improved outcomes.

In this work, we propose an OT framework for geometry embedding, which maps
density functions from physical geometric domains to latent uniform density func-
tions on regular latent geometric domains. We developed the OTNO model by
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Latent grid Topology Relative Error

Ring 3.8%
Square 2.7%

Table 10.10: Demonstrate topology independence of OTNO on elasticity

integrating neural operator with optimal transport to solve PDEs on complex geome-
tries. Specifically, there are two implementations: OTNO(Plan) and OTNO(Map),
using Kantorovich and Monge formulations, respectively.

Our model achieves particularly good performance in automotive and aerospace
applications, where the inputs are 2D surface designs, and the outputs are surface
pressure and velocity. These applications provide the opportunity to use optimal
transport to embed the physical surface mesh in 3D space into a 2D parameterized
latent mesh, allowing computations in a lower-dimensional space. The effectiveness
and efficiency of our model in these scenarios are confirmed by our experiments on
the ShapeNet-Car and DrivAerNet-Car datasets.

Moreover, by leveraging the advantage of instance-dependent OT Map/Plan, our
model handles diverse geometries effectively. As demonstrated on the FlowBench
dataset, which includes a wider variety of shapes, OTNO significantly outperforms
other models in terms of accuracy.

While our proposed methods demonstrate promise, they present certain limitations
that pave the way for future research. A primary challenge lies in the trade-off
between computational complexity and accuracy. The Sinkhorn algorithm, un-
derpinning our OTNO(Plan) model, exhibits a complexity of 𝑂 (𝑛2), posing scal-
ability challenges for large-scale point clouds. Our alternative, the OTNO(Map)
model leveraging the PPMM method, achieves a reduced experimental complexity
of 𝑂 (𝑛3/2 log(𝑛)) in a lower-dimensional Euclidean space, yet at the cost of dimin-
ished accuracy compared to OTNO(Plan). Consequently, a key direction for future
work is the development of novel, sub-quadratic algorithms for optimal transport
that can achieve higher accuracy, thereby bridging this performance gap.

A second promising avenue involves a deeper investigation into the optimal selection
of the latent sub-manifold. Our experimental results indicate that the optimal latent
manifold is non-canonical, diverging from the intuitively favored spherical topology
typically chosen for its topological preservation properties. Future efforts will focus
on systematically exploring criteria and methods for determining the most suitable
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latent manifold structure to enhance model performance.
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C h a p t e r 11

APPLICATION: WEATHER FORECAST

FourCastNet, short for Fourier ForeCasting Neural Network, is a global data-driven
weather forecasting model that provides accurate short to medium-range global
predictions at 0.25◦ resolution. FourCastNet accurately forecasts high-resolution,
fast-timescale variables such as the surface wind speed, precipitation, and atmo-
spheric water vapor. It has important implications for planning wind energy re-
sources, predicting extreme weather events such as tropical cyclones, extra-tropical
cyclones, and atmospheric rivers. FourCastNet matches the forecasting accuracy
of the ECMWF Integrated Forecasting System (IFS), a state-of-the-art Numerical
Weather Prediction (NWP) model, at short lead times for large-scale variables, while
outperforming IFS for variables with complex fine-scale structure, including precip-
itation. FourCastNet generates a week-long forecast in less than 2 seconds, orders of
magnitude faster than IFS. The speed of FourCastNet enables the creation of rapid
and inexpensive large-ensemble forecasts with thousands of ensemble-members for
improving probabilistic forecasting. We discuss how data-driven deep learning
models such as FourCastNet are a valuable addition to the meteorology toolkit to
aid and augment NWP models.

11.1 Introduction
The beginnings of modern numerical weather prediction (NWP) can be traced to the
1920s. Now ubiquitous, they contribute to economic planning in key sectors such as
transport, logistics, agriculture, and energy production. Accurate weather forecasts
have saved countless human lives by providing advance notice of extreme events.
The quality of weather forecasts has been steadily improving over the past decades
(c.f. Bauer, Thorpe, and Brunet (2015) and Alley, Emanuel, and Zhang (2019)).
The earliest dynamically-modeled numerical weather forecast for a single point was
computed using a slide rule and table of logarithms by Lewis Fry Richardson in
1922 (Richardson, 2007) and took six weeks to compute a 6-hour forecast of the
atmosphere. By the 1950s, early electronic computers greatly improved the speed of
forecasting, allowing operational forecasts to be calculated fast enough to be useful
for future prediction. In addition to better computing capabilities, improvements
in weather forecasting have been achieved through better parameterization of fine-



238

scale processes through deeper understanding of their physics and higher-quality
atmospheric observations. The latter has resulted in improved model initializations
via data assimilation.

There is now increasing interest around developing data-driven DL-based models
for weather forecasting owing to their orders of magnitude lower computational cost
as compared to state-of-the-art NWP models (Schultz et al., 2021; Balaji, 2021;
Irrgang et al., 2021; Reichstein et al., 2019). Many studies have attempted to build
data-driven models for forecasting the large-scale circulation of the atmosphere,
either trained on climate model outputs, general circulation models (GCM) (Scher
and Messori, 2018; Scher and Messori, 2019; Ashesh Chattopadhyay, Nabizadeh,
and Hassanzadeh, 2020), reanalysis products (Weyn, Durran, and Caruana, 2019;
Weyn, Durran, and Caruana, 2020; Weyn, Durran, Caruana, and Cresswell-Clay,
2021; Rasp, Dueben, et al., 2020; Rasp and Thuerey, 2021a; Rasp and Thuerey,
2020; Ashesh Chattopadhyay, Mustafa Mustafa, Hassanzadeh, Bach, et al., 2021;
Arcomano, Szunyogh, Pathak, et al., 2020; Chantry et al., 2021; Grönquist et al.,
2021), or a blend of climate model outputs and reanalysis products (Rasp and
Thuerey, 2021a).

Data-driven models have great potential to improve weather predictions by over-
coming model biases present in NWP models and by enabling the generation of
large ensembles at low computational cost for probabilistic forecasting and data
assimilation. By training on reanalysis data or observations, data-driven models
can avoid limitations that exist in NWP models (Schultz et al., 2021; Balaji, 2021),
such as biases in convection parameterization schemes that strongly affect precip-
itation forecasts. Once trained, data-driven models are orders of magnitude faster
than traditional NWP models in generating forecasts via inference, thus enabling
the generation of very large ensembles (Ashesh Chattopadhyay, Mustafa Mustafa,
Hassanzadeh, Bach, et al., 2021; Weyn, Durran, Caruana, and Cresswell-Clay,
2021).

In this regard, Weyn, Durran, Caruana, and Cresswell-Clay (2021) have shown that
large data-driven ensembles improve subseasonal-to-seasonal (S2S) forecasts over
operational NWP models that can only incorporate a small number of ensemble
members. Furthermore, a large ensemble helps improve data-driven predictions of
extreme weather events in short- and long-term forecasts (Ashesh Chattopadhyay,
Nabizadeh, and Hassanzadeh, 2020).

Most data-driven weather models, however, use low-resolution data for training,
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usually at the 5.625◦ resolution as in Rasp and Thuerey (2021b) or 2◦ as in Weyn,
Durran, and Caruana (2020). These prior attempts have achieved good results on
forecasting some of the coarse, low-resolution atmospheric variables. However, the
coarsening procedure leads to the loss of crucial, fine-scale physical information.
For data-driven models to be truly impactful, it is essential that they generate
forecasts at the same or greater resolution than current state-of-the-art numerical
weather models, which are run at ≈ 0.1◦ resolution. Forecasts at 5.625◦ spatial
resolution, for instance, result in a mere 32 × 64 pixels grid representing the entire
globe. Such a forecast is not able to resolve features smaller than ≈ 500 km. Such
coarse forecasts fail to account for the important effects of small-scale dynamics on
the large scales and the impact of topographic features such as mountain ranges and
lakes on small-scale dynamics. This limits the practical utility of low-resolution
forecasts. While low-resolution forecasts may be justified for variables that do not
possess complex fine-scale structure, such as the geopotential height at 500 hPa
(𝑍500), higher-resolution data (e.g., at 0.25◦ resolution) can substantially improve
the predictions of data-driven models for variables like low-level winds (𝑈10 and
𝑉10) that have complex fine-scale structures. Moreover, high-resolution models can
resolve the formation and dynamics of high-impact extreme events such as tropical
cyclones, which would otherwise be inadequately represented on a coarser grid.

Our approach. We develop FourCastNet, a Fourier-based neural network fore-
casting model, to generate global data-driven forecasts of key atmospheric variables
at a resolution of 0.25°, which corresponds to a spatial resolution of roughly 30 km
× 30 km near the equator and a global grid size of 720 × 1440 pixels. This allows
us, for the first time, to make a direct comparison with the high-resolution Inte-
grated Forecasting System (IFS) model of the European Center for Medium-Range
Weather Forecasting (ECMWF).

Figure 11.1 shows an illustrative global near-surface wind speed forecast at a 96-hour
lead time generated using FourCastNet. We highlight key high-resolution details
that are resolved and accurately tracked by our forecast, including Super Typhoon
Mangkhut and three named cyclones heading towards the eastern coast of the United
States (Florence, Issac, and Helene).

FourCastNet is about 45,000 times faster than traditional NWP models on a node-
hour basis. This orders of magnitude speedup, along with the unprecedented accu-
racy of FourCastNet at high resolution, enables inexpensive generation of extremely
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To prepare this figure, we initialized FourCastNet with an initial condition from the out-of-
sample test dataset with the calendar timestamp September 8, 2018 at 00:00 UTC. Starting
from this initial condition, the model was allowed to run freely for 16 time-steps of six
hours each in inference mode (Figure 11.2(c)) corresponding to a 96-hour forecast. Panel
(a) shows the wind speed at model initialization. Panel (b) shows the model forecasts at
forecast lead time of 96 hours (upper panel) and the corresponding true wind speeds at that
time (lower panel). FourCastNet is able to forecast the wind speeds 96 hours in advance
with remarkable fidelity and correct fine-scale features. The forecast accurately captures
the formation and track of Super Typhoon Mangkhut that begins to form at roughly 10°𝑁 ,
210°𝑊 (see Inset 1). Further, the model captures the intensification and track of the typhoon
over a period of four days. During the period of this forecast, the model reveals three named
hurricanes (Florence, Issac, and Helene) forming in the Atlantic Ocean and approaching the
eastern coast of North America.
Figure 11.1: Illustrative example of a global near-surface wind forecast generated
by FourCastNet over the entire globe at a resolution of 0.25°.
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large ensemble forecasts. This dramatically improves probabilistic weather forecast-
ing. Massive large-ensemble forecasts of events such as hurricanes, atmospheric
rivers, and extreme precipitation can be generated in seconds using FourCastNet.
This could lead to better-informed disaster response. Furthermore, FourCastNet’s
reliable, rapid, and cheap forecasts of near-surface wind speeds can improve wind
energy resource planning at onshore and offshore wind farms. The energy required
to train FourCastNet is approximately equal to the energy required to generate a
10-day forecast with 50 ensemble members using the IFS model. Once trained,
however, FourCastNet uses about 12,000 times less energy to generate a forecast
than the IFS model. We expect FourCastNet to be only trained once; the energy
consumption of subsequent fine tuning is negligible.

FourCastNet uses a Fourier transform-based token-mixing scheme (Guibas et al.,
2022) with a vision transformer (ViT) backbone (Dosovitskiy et al., 2021). This
approach is based on the recent Fourier neural operator that learns in a resolution-
invariant manner and has shown success in modeling challenging partial differential
equations (PDE) such as fluid dynamics (Li, Kovachki, et al., 2021). We chose
a ViT backbone since it is capable of modeling long-range dependencies well.
Combining ViT with Fourier-based token mixing yields a state-of-the-art high-
resolution model that resolves fine-grained features and scales well with resolution
and size of dataset. This approach enables training high-fidelity data-driven models
at truly unprecedented resolution.1

In summary, FourCastNet makes four significant contributions to data-driven weather
forecasting:

1. FourCastNet predicts, with unparalleled accuracy at forecast lead times of up
to one week, challenging variables with complex fine-scale structure, such
as surface winds and precipitation. Until now, no deep learning model was
able to forecast surface winds on global scales. Additionally, DL models for
precipitation on global scales have been inadequate for resolving fine-scale
structures. This has important implications for disaster mitigation and wind
energy resource planning.

2. FourCastNet, at 0.25◦ resolution, has eight times greater resolution than state-
of-the-art DL-based global weather models. Due to its high resolution and

1We estimate that FourCastNet could be trained on currently available GPU hardware in about
two months with 40 years of global 5-km data, if such data were available.
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accuracy, FourCastNet accurately resolves extreme weather patterns such as
tropical cyclones and atmospheric rivers that have been inadequately repre-
sented by prior DL models owing to their coarser grids.

3. FourCastNet’s predictions are comparable to the IFS model on metrics of
Root Mean Squared Error (RMSE) and Anomaly Correlation Coefficient
(ACC) at lead times of up to three days. After, predictions of all modeled
variables lag close behind IFS at lead times of up to a week. Whereas the IFS
model has been developed over decades, contains greater than 150 variables
at more than 50 vertical levels in the atmosphere, and is guided by physics,
FourCastNet models 20 variables at five vertical levels, and is purely data
driven. This comparison points to the enormous potential of data-driven
modeling in complementing and eventually replacing NWP.

4. FourCastNet’s reliable, rapid, and computationally inexpensive forecasts fa-
cilitate the generation of very large ensembles, thus enabling estimation of
well-calibrated and constrained uncertainties in extremes with higher confi-
dence than current NWP ensembles that have at most 50 members owing to
their high computational cost. Fast generation of 1,000-member ensembles
dramatically changes what is possible in probabilistic weather forecasting,
including improving reliability of early warnings of extreme weather events
and enabling rapid assessment of their impacts.

11.2 Training Methods
The ECMWF provides a publicly available, comprehensive dataset called ERA5 (Hers-
bach et al., 2020) which consists of hourly estimates of several atmospheric vari-
ables at a latitude and longitude resolution of 0.25° from the surface of the earth
to roughly 100 km altitude from 1979 to the present day. ERA5 is an atmospheric
reanalysis (Kalnay et al., 1996) dataset and is the result of an optimal combination
of observations from various measurement sources and the output of a numerical
model using a Bayesian estimation process called data-assimilation (Kalnay, 2003).
The dataset is essentially a reconstruction of the optimal estimate of the observed
history of the Earth’s atmosphere. We use the ERA5 dataset to train FourCastNet.
While the ERA5 dataset has several prognostic variables available at 37 vertical lev-
els with an hourly resolution, computational and data limitations along with other
operational considerations for DL models restricts our choice, based on physical
reasoning, to a subset of these available variables to train our model on.
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In this work, we focus on forecasting two important and challenging atmospheric
variables, namely, (1) the wind velocities at a distance of 10m from the surface of the
earth and (2) the 6-hourly total precipitation. There are a few reasons for our focus
on these variables. First, surface wind velocities and precipitation require high-
resolution models to resolve and forecast accurately because they contain and are
influenced by many fine-scale features. Due to computational and model architec-
tural limitations, previous efforts in DL-based weather prediction have not been able
to produce global forecasts for these variables at full ERA5 resolution. Near-surface
wind velocity forecasts have a tremendous amount of utility due to their key role in
planning energy storage, grid transmission, and other operational considerations at
on-shore and off-shore wind farms. As we show in Section 11.3, near-surface wind
forecasts (along with wind forecasts above the atmospheric boundary layer) can help
track extreme wind events such as hurricanes and can be used for disaster prepared-
ness. Our second focus is on forecasting total precipitation where DL models can
potentially show great promise. NWP models, such as the operational IFS, have
several parameterization schemes to tractably forecast precipitation and since neural
networks are known to have impressive capabilities at deducing parameterizations
from high-resolution observational data, they are well-suited for this task.

Although we focus on forecasting near-surface wind-speed and precipitation, our
model also forecasts with remarkable accuracy several other variables. In our
forecast, we include the geopotential height, temperature, wind velocity, and relative
humidity at a few different vertical levels, a few near-surface variables such as surface
pressure and mean sea-level pressure as well as the integrated total column of water
vapor.

FourCastNet: Model Description
To produce our high-resolution forecasts, we choose the Adaptive Fourier Neural
Operator (AFNO) model (Guibas et al., 2022). This particular neural network
architecture is appealing as it is specifically designed for high-resolution inputs and
synthesizes several key recent advances in DL into one model. Namely, it combines
the Fourier Neural Operator (FNO) learning approach of Li, Kovachki, et al., 2021,
which has been shown to perform well in modeling challenging PDE systems, with
a powerful ViT backbone.

The vision transformer (ViT) architecture and its variants have emerged as the
state-of-the-art in computer vision over the previous years, showing remarkable
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performance on a number of tasks and scaling well with increased model and
dataset sizes. Such performance is attributed mainly to the multi-head self-attention
mechanism in these networks, which allows the network to model interactions
between features (called tokens in ViT representation terms) globally at each layer
in the network. However, spatial mixing via self-attention is quadratic in the number
of tokens, and thus quickly becomes infeasible for high-resolution inputs.

Several ViT variants with reduced computational complexity have been proposed,
with various alternate mechanisms for spatial token mixing employed in each. How-
ever, the AFNO model is unique in that it frames the mixing operation as continu-
ous global convolution, implemented efficiently in the Fourier domain with FFTs,
which allows modeling dependencies across spatial and channel dimensions flex-
ibly and scalably. With such a design, the spatial mixing complexity is reduced
to O(𝑁 log 𝑁), where 𝑁 is the number of image patches or tokens. This scaling
allows the AFNO model to be well-suited to high-resolution data at the current 0.25°

resolution considered in this paper as well as potential future work at an even higher
resolution. In the original FNO formulation, the operator learning approach showed
impressive results solving turbulent Navier-Stokes systems, so incorporating this
into a data-driven atmospheric model is a natural choice.

Given the general popularity of convolutional network architectures, and particularly
their usage in previous works forecasting ERA5 variables (Rasp and Thuerey, 2021b;
Weyn, Durran, and Caruana, 2020), it is worth contrasting our AFNO model with
these more conventional architectures. For one, the ability of AFNO to scale well
with resolution yields immediate practical benefits – at our 720x1440 resolution,
the FourCastNet model memory footprint is about 10GB with a batch size of 1. To
contrast this, we can look at the 19-layer ResNet architecture from a prior result
on WeatherBench (Rasp and Thuerey, 2021b), which was trained at a very coarse
resolution (32×64 pixels). Naively transferring this architecture to our dataset and
training at 720×1440 resolution would require 83GB for a batch size of 1. This is
prohibitive, and is compounded by the fact that it is somewhat of a lower bound
– with order-of-magnitude increases in resolution, a convolution-based network’s
receptive field would similarly need to grow via the addition of even more layers.

Beyond practical considerations, our preliminary non-exhaustive experiments sug-
gested that convolutional architectures showed poor performance on capturing small
scales over many time steps in auto-regressive inference. These observations along
with our knowledge of the current state of the art for high-resolution image process-
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ing in image de-noising, super-resolution and de-blurring are a strong motivation
for our choice of a ViT architecture over a convolutional architecture.

While we refer the reader to the original AFNO paper (Guibas et al., 2022) for more
details, we briefly describe the flow of computation in our model here. First, the
input variables on the 720 × 1440 lat-lon grid are projected to a 2D grid (ℎ × 𝑤)
of patches (with a small patch size 𝑝 × 𝑝, where e.g., 𝑝 = 8), with each patch
represented as a 𝑑-dimensional token. Then, the sequence of patches are fed, along
with a positional encoding, to a series of AFNO layers. Each layer, given an input
tensor of patches 𝑋 ∈ Rℎ×𝑤×𝑑 , performs spatial mixing followed by channel mixing.
Spatial mixing happens in the Fourier domain as follows:

Step 1. Transform tokens to the Fourier domain with

𝑧𝑚,𝑛 = [DFT(𝑋)]𝑚,𝑛, (11.1)

where 𝑚, 𝑛 index the patch location and DFT denotes a 2D discrete Fourier
transform.

Step 2. Apply token weighting in the Fourier domain, and promote sparsity with a
Soft-Thresholding and Shrinkage operation as

𝑧𝑚,𝑛 = 𝑆𝜆 (MLP(𝑧𝑚,𝑛)), (11.2)

where 𝑆𝜆 (𝑥) = sign(𝑥)max( |𝑥 | −𝜆, 0) with the sparsity controlling parameter
𝜆, and MLP() is a 2-layer multi-layer perceptron with block-diagonal weight
matrices which are shared across all patches.

Step 3. Inverse Fourier to transform back to the patch domain and add a residual
connection as

𝑦𝑚,𝑛 = [IDFT(𝑍̃)]𝑚,𝑛 + 𝑋𝑚,𝑛. (11.3)

Training
While our primary interest lies in forecasting the surface wind velocities and pre-
cipitation, the complex atmospheric system contains strong nonlinear interactions
across several variables such as temperatures, surface pressures, humidity, moisture
content from the surface of the earth to the stratosphere, etc. In order to model these
interactions, we choose a few variables (Table 11.1) to represent the instantaneous
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(a) The multi-layer transformer architecture that utilizes the Adaptive Fourier Neural Op-
erator with shared MLP and frequency soft-thresholding for spatial token mixing. The
input frame is first divided into a ℎ × 𝑤 grid of patches, where each patch has a small size
𝑝 × 𝑝 × 𝑐. Each patch is then embedded in a higher dimensional space with high number
of latent channels and position embedding is added to form a sequence of tokens. Tokens
are then mixed spatially using AFNO, and subsequently for each token the latent channels
are mixed. This process is repeated for 𝐿 layers, and finally a linear decoder reconstructs
the patches for the next frame from the final embedding. The right-hand panels describe the
FourCastNet model’s additional training and inference modes: (b) two-step fine-tuning, (c)
backbone model that forecasts the 20 variables in Table 11.1 with secondary precipitation
diagnostic model (note that p(𝑘 + 1) denotes the 6 hour accumulated total precipitation that
falls between 𝑘 + 1 and 𝑘 + 2 time steps) (d) forecast model in free-running autoregressive
inference mode.

Figure 11.2: Architecture of FourCastNet
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state of the atmosphere. These variables are specifically chosen to model important
processes that influence low-level winds and precipitation. As such, we treat all
the prognostic variables equally and the model architecture or optimization scheme
does not afford special treatment to any of the prognostic variables.

Each of the variables in Table 11.1 is re-gridded from a Gaussian grid to a regular
Euclidean grid using the standard interpolation scheme provided by the Copernicus
Climate Data Store (CDS) Application Programming Interface (API). Following
the re-gridding process, each of the 20 variables is represented as a 2D field of
shape (721 × 1440) pixels. Thus, a single training data point at an instant in time
containing all 20 variables is represented by a tensor of shape (721 × 1440 × 20).
While the ERA5 dataset is available at a temporal resolution of 1 hour, we choose
to sub-sample the dataset and use snapshots spaced 6 hours apart to train our model.
Within each 24 hour day, we choose to sample the 20 variable subset of the ERA5
dataset at 0000 hrs, 0600 hrs, 1200 hrs and 1800 hrs. We divide the dataset into three
sets, namely training, validation and out-of-sample testing datasets. The training
dataset consists of data from the year 1979 to 2015 (both included). The validation
dataset contains data from the years 2016 and 2017. The out-of-sample testing
dataset consists of the years 2018 and beyond.

We collectively denote the modeled variables by the tensor
⃗⃗ ⃗⃗
𝑋 (𝑘Δ𝑡), where 𝑘 denotes

the time index and Δ𝑡 is the temporal spacing between consecutive snapshots in the
training dataset. We will consider the ERA5 dataset as the truth and denote the
true variables by

⃗⃗ ⃗⃗
𝑋 true(𝑘Δ𝑡). With the understanding that Δ𝑡 is fixed at 6 hours

throughout this work, we omit Δ𝑡 in our notation for convenience where appropriate.
The training procedure consists of two steps, pre-training and fine-tuning. In the
pre-training step, we train the AFNO model using the training dataset in a supervised
fashion to learn the mapping from

⃗⃗ ⃗⃗
𝑋 (𝑘) to

⃗⃗ ⃗⃗
𝑋 (𝑘 +1). In the fine-tuning step, we start

from the previously pre-trained model and optimize the model to predict two time
steps, i.e., The model first generates the output

⃗⃗ ⃗⃗
𝑋 (𝑘 + 1) from the input

⃗⃗ ⃗⃗
𝑋 (𝑘). The

model then uses its own output
⃗⃗ ⃗⃗
𝑋 (𝑘+1) as an input and generates the output

⃗⃗ ⃗⃗
𝑋 (𝑘+2).

We then compute a training loss by comparing each of
⃗⃗ ⃗⃗
𝑋 (𝑘 + 1) and

⃗⃗ ⃗⃗
𝑋 (𝑘 + 2) to the

respective ground truth from the training data and use the sum of the two training
losses for optimizing the model. In both, the pre-training and fine-tuning steps, the
training dataset is used to optimize the model and the validation dataset is used to
estimate the model skill during hyper-parameter optimization. The out-of-sample
testing dataset is untouched. The training dataset consists of 54020 samples while



248

Vertical Level Variables
Surface 𝑈10, 𝑉10, 𝑇2𝑚, 𝑠𝑝, 𝑚𝑠𝑙𝑝
1000ℎ𝑃𝑎 𝑈, 𝑉 , 𝑍
850ℎ𝑃𝑎 𝑇 ,𝑈, 𝑉 , 𝑍 , 𝑅𝐻
500ℎ𝑃𝑎 𝑇 ,𝑈, 𝑉 , 𝑍 , 𝑅𝐻
50ℎ𝑃𝑎 𝑍

Integrated 𝑇𝐶𝑊𝑉

Table 11.1: Prognostic variables modeled by the DL model. Abbreviations are as
follows. 𝑈10 (𝑉10): zonal (meridional) wind at 10 m; 𝑇2𝑚: temperature at 2 m
above ground; 𝑇 , 𝑈, 𝑉 , 𝑍 , 𝑅𝐻: temperature, zonal velocity, meridional velocity,
geopotential, and relative humidity (at the specified pressure level); 𝑇𝐶𝑊𝑉 : total
column water vapor.

the validation dataset contains 2920 samples. We refer to the trained and fine-tuned
model as the ‘backbone’. The model is pre-trained using a cosine learning-rate
schedule with a starting learning rate ℓ1 for 80 epochs. Following the pre-training,
the model is fine-tuned for a further 50 epochs using a cosine learning-rate schedule
and a lower learning rate ℓ2. The precipitation model (described in Section 11.2) is
then added to the trained backbone and trained for 25 epochs using a cosine learning
rate schedule with an initial learning rate ℓ3. The end to end training takes about 16
hours wall-clock time on a cluster of 64 Nvidia A100 GPUs.

Precipitation Model
The total precipitation (𝑇𝑃) in the ERA5 re-analysis dataset is a variable that
represents the the accumulated liquid and frozen water that falls to the Earth’s surface
through rainfall and snow. It is defined in units of length as the depth of water that
would accumulate if spread evenly over a unit grid box of the model. Compared
to the variables handled by our backbone model, 𝑇𝑃 exhibits certain features that
complicate the task of forecasting it—the probability distribution of 𝑇𝑃 is strongly
peaked at zero with a long tail towards positive values. Hence, 𝑇𝑃 exhibits more
sparse spatial features than the other prognostic variables. In addition, 𝑇𝑃 does not
have significant impact on the variables that guide the dynamical evolution of the
atmosphere (e.g. winds, pressures, and temperatures), and capturing it accurately
in NWP involves complex parameterizations for processes like phase changes.

For these reasons, we treat the total precipitation (𝑇𝑃) as a diagnostic variable
and denote it by ⃗⃗𝑝(𝑘Δ𝑡). Total precipitation is not included in the 20 variable
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dataset used to train the backbone model2. Rather, we train a separate AFNO
model to diagnose 𝑇𝑃 using the outputs of the backbone model, as indicated in
Figure 11.2(c). This approach decouples the difficulties of modeling precipitation
(which typically deteriorates in accuracy fairly quickly) from the general task of
forecasting the atmospheric state. In addition, once trained, our diagnostic 𝑇𝑃
model could potentially be used in conjunction with other forecast models (either
traditional NWP or data-driven forecasts).

The model used to diagnose precipitation from the output of the backbone has
the same base AFNO architecture, with an additional 2D convolutional layer (with
periodic padding) and a ReLU activation as the last layer, used to enforce non-
negative precipitation outputs. Since the backbone model makes predictions in
6-hour increments, we train our diagnostic precipitation model to predict the 6-
hourly accumulated total precipitation (rather than the 1 hour precipitation in the
raw ERA5 data). This also enables easy comparison with the IFS model, which is
archived in 6-hour increments and thus also predicts 6-hourly accumulated precip-
itation. Following (Rasp, Dueben, et al., 2020), we additionally log-transform the
precipitation field: ˜𝑇𝑃 = log (1 + 𝑇𝑃/𝜖), with 𝜖 = 1𝐸 − 5. Since total precipitation
values are highly sparse, this transformation discourages the network from predict-
ing zeros and ensures a less skewed distribution of values. For any comparisons
with the IFS model or ERA5 ground truth, we transform 𝑇𝑃 back to units of length.

Inference
We generate forecasts of the core atmospheric variables in Table 11.1 and the
total precipitation by using our trained models in autoregressive inference mode
as shown in Figure 11.2(d). The model is initialized with an initial condition
(
⃗⃗ ⃗⃗
𝑋 true( 𝑗)) from the year 2018 3 out-of-sample held out dataset for 𝑁 𝑓 different initial

conditions and allowed to freely run iteratively for 𝜏 time-steps to generate forecasts
{
⃗⃗ ⃗⃗
𝑋 pred( 𝑗+𝑖Δ𝑡)}𝜏𝑖=1. The initial conditions

⃗⃗ ⃗⃗
𝑋 true( 𝑗) are spaced apart by𝐷 days based

on a rough estimate of the temporal de-correlation time for each of the variables
being forecast. The value of 𝐷 and 𝑁 𝑓 is thus different for each of the forecast
variables. We also use the IFS forecasts for the year 2018 from The International
Grand Global Ensemble (TIGGE) archive for comparative analysis. The archived
IFS forecasts, with initial conditions matching the times of corresponding initial

2This approach is similar to previous work (Rasp and Thuerey, 2021b), which trained a separate
model for precipitation than for the other atmospheric variables.

3The year 2018 was chosen from the out-of-sample dataset due to ready availability of IFS
forecasts for that year from the TIGGE archive.
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conditions for the FourCastNet model forecast, are used for comparing our model’s
accuracy to that of the IFS model.

11.3 Results
Figure 11.1 qualitatively shows the forecast skill of our FourCastNet model on
forecasting the surface wind speeds over the entire globe at a resolution of 0.25°-lat-
long. The wind speeds are computed as the magnitude of the surface wind velocity

using the zonal and meridonal components of the wind velocity i.e.,
√︂(

𝑈2
10 +𝑉

2
10

)
To prepare this figure, we initialized the FourCastNet model with an initial condition
from the out-of-sample test dataset. Starting from this initial condition, the model
was allowed to run freely for 16 time-steps in inference mode (Figure 11.2(d)).
The calendar time-stamp of the initial condition used to generate this forecast was
September 8, 2018 at 00:00 UTC. Figure 11.1(a) shows the wind speed at model
initialization. Figure 11.1(b) shows the model forecasts at a lead time of 96 hours
(upper-panel) and the corresponding true wind speeds at that time (lower-panel). We
note that the FourCastNet model is able to forecast the wind speeds upto 96 hours
in advance with remarkable fidelity with correct fine-scale features. Notably, this
figure illustrates the forecast of the formation and track of a super-typhoon named
Mangkhut that is beginning to form in the initialization frame at roughly 10°𝑁

latitude, 210°𝑊 longitude. The model qualitatively tracks with remarkable fidelity
the intensification of the typhoon and its track over a period of 4 days. Also of note
are three simultaneous named hurricanes (Florence, Issac and Helene) forming in
the Atlantic ocean and approaching the eastern coast of North America during the
period of this forecast. The FourCastNet model appears to be able to forecast the
formation and track of these phenomena remarkably well. We provide a further
discussion of hurricane forecasts with a few quantitative results and case studies in
Section 11.3.

In Fig 11.3, we show the forecast skill of our model in diagnosing total precipitation
over the entire globe. Using the free running FourCastNet model predictions (from
above) for the 20 prognostic variables as input to the precipitation model, we diag-
nose total precipitation at the same time steps. Fig 11.3(a) shows the precipitation
at the initial time, Fig 11.3(b) shows the model predictions at lead time 36 hours
along with the corresponding ground truth. The inset panels show the precipitation
fields over a local region along the western coast of the United States, highlighting
the ability of the FourCastNet model to resolve and forecast localized areas of high
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precipitation with remarkable accuracy. Forecasting precipitation is known to be an
extremely difficult task due to its intermittent and stochastic nature. Despite these
challenges, we observe that the FourCastNet diagnosis shows excellent skill in cap-
turing short-term high-resolution precipitation features, which can have significant
impact in predicting extreme events. We also note that this is the first time a DL
model has been successfully utilized to provide competitive precipitation diagnosis
at this scale.

Hurricanes
In this section, we explore the potential utility of developing DL models for forecast-
ing hurricanes, a category of extreme events with tremendous destructive potential.
A rapidly available, computationally inexpensive atmospheric model that could
could forewarn the possibility of hurricane formation and track the path of the hur-
ricane would be of great utility for mitigating loss of life and property damage. As
the stakes for mis-forecasting such extreme weather phenomena are very high, more
rigorous studies need to be undertaken before DL can be considered a mature tech-
nology to forecast hurricanes. The results herein should be considered a preliminary
and exploratory dive for inspiring future research into the potential of DL models to
provide valuable models of this phenomenon. Prior to this work, DL models were
trained on data that was too coarse and thus incapable of resolving atmospheric
variables finely enough. Prior models could not generate accurate predictions of
wind speed and other important prognostic variables with long enough forecast lead
times to consider hurricane forecasts. Our model has reasonably good resolution
and generates accurate medium-range forecasts of variables that allow us to track
the generation and path of hurricanes. For a case-study we consider a hurricane that
occurred in 2018 (a year that is part of our out-of-sample dataset), namely hurricane
Michael.

Michael was a category 5 hurricane on the Saffir -Simpson Hurricane Wind Scale
that made landfall in Florida causing catastrophic damage (Beven II, Berg, and
Hagen, 2019). Michael started as a tropical depression around October 7, 2018.
Within a day, the depression intensified into a hurricane. After undergoing rapid
intensification in the gulf of Mexico, Michael reached category 5 status. Soon after,
Michael made landfall in Florida on October 10, 2018. Thus within a short period of
roughly 72 hours, Michael went from a tropical depression to a category 5 hurricane
to landfall.
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Land-sea borders are shown using a thin white trace. For ease of visualization, the pre-
cipitation field is plotted as a log-transformed field in all panels. Panel (a) shows the TP
fields at the time of forecast initialization. Panel (b) shows the TP forecast generated by the
FourCastNet model (upper panel) over the entire globe at 0.25°-lat-long resolution with the
corresponding truth (lower panel). Inset 1 shows the I.C., forecast and true precipitation
fields at a lead time of 36 hours over a local region along the western coast of the United
States. This highlights the ability of the FourCastNet model to resolve and predict localized
regions of high precipitation, in this case due to an atmospheric river. Inset 2 shows the I.C.,
forecast, and true precipitation fields near the coast of the U.K. and highlights an extreme
precipitation event due to an extra-tropical cyclone that is predicted very well by the Four-
CastNet model. The precipitation is diagnosed from the FourCastNet predicted prognostic
variables as described in Figure 11.2(d). The calendar time-stamp of the initial condition
used to generate this forecast was 00:00 UTC on April 4, 2018. The high-resolution Four-
CastNet model demonstrates excellent skill in capturing small scale features that are key to
precipitation forecasting.

Figure 11.3: Illustration of a global Total Precipitation (TP) forecast using the
FourCastNet model.
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We use our trained model as described in Section 11.2 (with no further changes) to
study the potential of our model for forecasting the formation, rapid intensification
and tracking of hurricane Michael. The FourCastNet model is capable of rapidly
generating large ensemble forecasts. We start from the initial condition at the
calendar time 00:00 hours on October 7, 2018 UTC. The initial condition was
perturbed with Gaussian noise to generate an ensemble of 𝐸 = 100 perturbed
initial conditions. We provide further discussion of ensemble forecasting using
FourCastNet in Section 11.3. Figure 11.4 shows the track of the hurricane and
the intensification as forecast by the 100-member FourCastNet ensemble using the
Mean Sea Level Pressure to estimate the eye of the hurricane and the minimum
pressure at the eye. Figure 11.4(a) shows the mean position of the minima of
Mean Sea Level Pressure using a 100 member ensemble forecast generated by
FourCastNet (red circles). The corresponding ground truth according to ERA5
reanalysis is indicated on the same plot (blue squares) over a trajectory spanning
108 hours. The shaded ellipses in the figure have a width and height equal to the
90th percentile spread in the longitudinal and latitudinal positions respectively of
the hurricane eye as indicated by the MSLP minima in the 100-member FourCastNet
ensemble. Figure 11.4(b) quantitatively demonstrates that the FourCastNet model
is able to predict the intensification of the hurricane as the hurricane eye pressure
drops rapidly in the first 72 hours. The minimum MSLP at the eye of hurricane
Michael as forecast by FourCastNet is indicated by red circles and the corresponding
true minimum from the ERA5 reanalysis is shown by blue circles. The red shaded
region shows the region between the first and third quartiles of minimum MSLP in
the 100-member ensemble. While this is an impressive result for a model trained
on 0.25° resolution data, the model fails to fully forecast the extent of the sharp
drop in pressure between 36 and 48 hours. We hypothesize that this is likely due
to the fact that the current version of the FourCastNet model does not account for
a number of convective and radiative processes that would be crucial to such a
forecast. Additionally we expect an AFNO model trained on even higher resolution
data to improve such a forecast.

Figures 11.4(c),(d) respectively provide a qualitative visualization of three prognos-
tic variables that are useful for tracking the formation, intensification and path of
a hurricane, namely the wind speed at the surface and at 850hPa level (calculated
as the magnitude of the velocity from the meridional and zonal components of the
respective velocity – 𝑈10, 𝑉10, 𝑈850, 𝑉850 ), and the Mean Sea Level Pressure. We
believe there is tremendous potential to improve these forecasts by training even
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higher resolution DL weather models using the AFNO architecture.

Our forecasts of the wind speeds and the mean sea level pressure qualitatively match
the ground truth remarkably well over a period of 72 hours. Figures 11.4(a),(b), (c),
(d) clearly show that the DL model is able to forecast the formation, intensification
and track of the hurricane from a tropical depression to landfall on the coast of
Florida.

Further research is warranted to quantitatively study the potential of our DL model
to accurately forecast hurricanes and similar extreme phenomena but these results
show great promise in the ability of DL models to aid in the forecasting of one of
the most destructive phenomena affecting human life.

Atmospheric Rivers
Atmospheric rivers are columns of moisture that are transported by atmospheric
circulation currents and carry large amounts of water vapor from the tropics to the
extra-tropical regions. They are called ‘rivers’ as they often carry an amount of
water equivalent to that of the flow rate of major rivers. Large atmospheric rivers
can cause extreme precipitation upon landfall, with the potential to cause flooding
and extensive damage. More moderately-sized atmospheric rivers are crucial to the
water supply of the western United States. Thus, forecasting atmospheric rivers and
their landfall locations is crucial for early warning of flooding in low-lying coastal
areas as well as for water resource planning.

Figure 11.5 shows the use of our FourCastNet model for predicting the formation and
evolution of an atmospheric river (using the Total Column of Water Vapor variable)
in April 2018 as it made eventual landfall in Northern California. This type of river
which passes through Hawaii is often called the Pineapple Express. Atmospheric
rivers show up very clearly in the ‘Total Column Water Vapor’ field that is forecast by
the FourCastNet backbone model. The FourCastNet model has very good prediction
accuracy for 𝑇𝐶𝑊𝑉 , with ACC> 0.6 out beyond 8 days. For this atmospheric river,
the FourCastNet model was initialized using an intial condition on April 4, 2018 at
00:00 hours UTC, which we display in Figure 11.5(a). Figures 11.5(b) and 11.5(c)
show the forecast of the 𝑇𝐶𝑊𝑉 fields generated by the FourCastNet model (top
panels) at a lead time of 36 hours and 72 hours respectively and the corresponding
ground truth (bottom panels).

Whie TCWV is a reasonable proxy for atmospheric rivers, we expect future iterations
of our model to include Integrated Vapor Transport and Total Column of Liquid
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As an illustrative example, we have chosen Hurricane Michael which underwent rapid
intensification during the course of its four day trajectory. Panel (a) shows the mean
position of the minima of Mean Sea Level Pressure (indicating the eye of hurricane Michael)
as forecast by a 100 member ensemble forecast using FourCastNet (red circles) and the
corresponding ground truth according to ERA5 reanalysis (blue squares) for 108 hours
starting from the initial condition at 00:00 hours on October 7, 2018 UTC. To generate
an ensemble forecast, the initial condition was perturbed with Gaussian noise as described
in Section 11.3 and 100 forecast trajectories were computed. The shaded ellipses have
a width and height equal to the 90th percentile spread of the longitudinal and latitudinal
positions respectively of the hurricane eye as indicated by the MSLP minima in the 100-
member FourCastNet ensemble. Panel (b) shows the minimum MSLP at the eye of hurricane
Michael as forecast by FourCastNet (red filled circles) along with the corresponding true
minimum from the ERA5 reanalysis (blue filled circles). The red shaded region shows
the 90 percent confidence region in the 100-member ensemble forecast. Panels (c) and (d)
respectively show the surface wind speed and 850hPa wind speed predictions at lead times
of 18 hours, 36 hours, 54 hours and 72 hours generated by FourCastNet along with the
corresponding true wind speeds at those times. The surface wind speed and the 850hPa
speed in the initial condition (Oct. 7, 2018 00:00 UTC) that was used to initialize this
forecast is shown in the leftmost column. Collectively, the minimum MSLP tracks, surface
wind speed and the 850hPa wind speed forecasts show the formation, intensification and
path of Hurricane Michael as it goes from a tropical depression to a category 5 hurricane
with landfall on the west coast of Florida.
Figure 11.4: The FourCastNet model has excellent skill on forecasting fine-scale,
rapidly changing variables relevant to a hurricane forecast.
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Water as additional variables to aid in the forecast of atmospheric rivers.

Atmospheric rivers are important phenomena that can cause extreme precipitation and
contribute significantly to the supply of precipitable water in several parts of the world.
Panels (a)-(c) visualize the Total Column Water Vapor (𝑇𝐶𝑊𝑉) in a FourCastNet model
forecast initialized at 00:00 UTC on April 4, 2018. Panel (a) Shows the 𝑇𝐶𝑊𝑉 field in
the initial condition that was used to initialize the FourCastNet model. Panels (b) and (c)
show the forecasts of the 𝑇𝐶𝑊𝑉 field produced by the FourCastNet model (top panels) at
lead times of 36 and 72 hours respectively along with the corresponding true 𝑇𝐶𝑊𝑉 fields
at those instants of time. The forecast shows an atmospheric river building up and making
landfall on the northern California coastline.
Figure 11.5: Illustrative example of the utility of the FourCastNet model for fore-
casting atmospheric rivers.

Quantitative Skill of FourCastNet
We illustrate the forecast skill of our model for 𝑁 𝑓 initial conditions from the out-
of-sample dataset (consisting of the year 2018) and generate a forecast for each
initial condition. For each forecast, we evaluate the latitude-weighted Anomaly
Correlation Coefficient (ACC) and Root Mean Squared Error (RMSE) for all of the
variables included in the forecast. We report the mean ACC and RMSE for each of
the variables along with the first and third quartile values of the ACC and RMSE at
each forecast time step, to show the dispersion of these metrics over different initial
conditions. As a comparison, we also compute the same ACC and RMSE metrics
for the corresponding IFS forecast with time-matched initial conditions.

Figure 11.6(a-f) shows the latitude weighted ACC for the FourCastNet model fore-
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averaged over several forecasts initialized using initial conditions in the out-of-sample testing
dataset corresponding to the calendar year 2018 for the variables (a)𝑈10, (b)𝑇𝑃, (c)𝑇2𝑚, (d)
𝑍500, (e)𝑇850, and (f)𝑉10. The ACC values are averaged over 𝑁 𝑓 initial conditions over a full
year with an interval of 𝐷 days between consecutive initial conditions to account for seasonal
variability in forecast skill. The appropriately colored shaded regions around the ACC curves
indicate the region between the first and third quartile values of the corresponding quantity
at each time step.

Figure 11.6: Latitude weighted ACC for the FourCastNet model forecasts (red line
with markers) and the corresponding matched IFS forecasts (blue line with markers)

casts (Red line with markers) and the corresponding matched IFS forecasts (Blue
line with markers) for the variables (a)𝑈10, (b)𝑇𝑃, (c)𝑇2𝑚, (d) 𝑍500, (e)𝑇850, (f)𝑉10.
The ACC and RMSE values are averaged over 𝑁 𝑓 initial conditions with an interval
of 𝐷 days between consecutive initial conditions. The shaded regions around the
ACC curves indicate the region between the first and third quartile values of the
corresponding quantity at each time step.

In general, the FourCastNet predictions are very competitive with IFS, with our
model achieving similar ACC and RMSE over a horizon of several days. At shorter
lead times (∼ 48hrs or less), we actually outperform the IFS model in ACC and/or
RMSE for key variables like precipitation, winds, and temperature. Remarkably,
we achieve this accuracy using only part of the full variable set available to the IFS
model, and we do so at a fraction of the compute cost (see section 11.4 for a detailed
speed comparison between models).
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Ensemble Forecasts Using FourCastNet
Ensemble forecasts have become a crucial component of numerical weather predic-
tion (Palmer, 2019), and consume the largest share of compute costs at operational
weather forecasting centers (Bauer, Quintino, et al., 2020). An ensemble forecast
improves upon a single deterministic forecast by modeling multiple possible tra-
jectories of a system. For a chaotic atmosphere with uncertain initial conditions,
ensemble forecasting helps quantify the likelihood of extreme events and improves
the accuracy of long-term predictions. Thus, rapidly generating large ensemble
forecasts is an extremely promising direction for DL-based weather models (Weyn,
Durran, Caruana, and Cresswell-Clay, 2021), which can provide immense speedups
over traditional NWP models. NWP models such as the IFS perform ensemble
forecasting with up to 51 ensemble members. The initial conditions for the en-
semble forecasts are obtained by perturbing the analysis state obtained from data
assimilation.

As seen in Section 11.3, ensemble forecasting is useful for generating probabilistic
forecasts of extreme events such as hurricanes. While the individual perturbed
ensemble members typically show lower forecast skill than the unperturbed ‘control’
forecast, the mean of a large number of such perturbed ensemble members has better
forecast skill than the control.

In Section 11.4, we estimate that FourCastNet is roughly 45,000 times faster than
a traditional NWP model. This speed allows us to consider probabilistic ensemble
forecasting with massive ensemble sizes. Ensemble weather forecasts using Four-
CastNet are highly computationally efficient because (1.) Inference time for a single
forecast on a GPU is very fast and (2.) An ensemble of initial conditions can be
folded into the the ‘batch’ dimension in a tensor and as such, inference on a large
batch (𝑂 (100) or more) of initial conditions using a few GPUs is straightforward.

As a simple test of ensemble forecasting, we generate an ensemble forecast using
FourCastNet from a given ERA5 initial condition by perturbing the initial condition
using Gaussian random noise. This allows us to simulate initial condition uncertainty
due to errors in the estimate of the starting state of the forecast. This method of
ensemble generation is the same as methods used in Ensemble Kalman Filtering
(EnKF) (Evensen, 2003) for background forecast covariance estimation and not
too dissimilar from the way operational NWP models generate perturbed initial
conditions. Thus, given an initial condition

⃗⃗ ⃗⃗
𝑋 true(𝑘) from our out-of-sample testing

dataset, we generate an ensemble of 𝐸 perturbed initial conditions {
⃗⃗ ⃗⃗
𝑋 (𝑒) (𝑘) =
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ˆ⃗⃗⃗⃗𝑋 true(𝑘) + 𝜎𝜉}𝐸𝑒=1, where ˆ⃗⃗⃗⃗𝑋 true(𝑘) is the standardized initial condition with zero
mean and unit variance and 𝜉 ∼ N(

⃗⃗
0,
⃗⃗
1) is a normally distributed random variable

of the same shape as
⃗⃗ ⃗⃗
𝑋 true and with unit mean and variance. The perturbations are

scaled by a factor 𝜎 = 0.3. We refer to the forecast starting from the unperturbed
initial condition as the control forecast. We generate an ensemble of perturbed
forecasts each starting from a perturbed initial conditions and compute the ensemble
mean of the perturbed forecasts at every forecast time step. We compute a control
forecast and an ensemble mean forecast for 𝑁 𝑓 initial conditions separated by 𝐷
days. We report the mean ACC and RMSE over all 𝑁 𝑓 initial conditions for both
the control and the mean forecast in Figure 11.7.

Figure 11.7 shows the ACC and RMSE of the FourCastNet ensemble mean (magenta
line with markers) and FourCastNet unperturbed control (red line with markers)
forecasts along with the unperturbed control IFS model (blue line with markers)
forecasts for reference. It is challenging to unambiguously visualize in a single
plot, both the spread due to simulated initial condition uncertainty in an ensemble
forecast and the spread due to seasonal and day-to-day variability. As such, we do
not visualize the spread in ACC and RMSE over the 𝑁 𝑓 forecasts and simply report
the mean.

Indeed, in Figure 11.7, we see that the ensemble mean from our 100-member
FourCastNet ensemble results in a net improvement in ACC and RMSE at longer
timescales over the unperturbed control. We do observe a marginal degradation
in skill for the ensemble mean at short (< 48hr) lead times, as averaging over
the individual ensemble members likely averages over relevant fine-scale features.
Nevertheless, these ensemble forecasts are impressive, and warrant further work
in how to optimally choose ensemble members. In addition to perturbing initial
conditions with Gaussian noise, as we do here, it is possible and likely worthwhile
to introduce more nuanced perturbations to both the initial conditions as well as the
model itself. This is a promising direction of research for future work.

Forecast Skill Over Land For Near-surface Wind Speed
Most wind farms are located on land or just off of coastlines, so accurately modeling
near-surface wind speed over these regions is of critical importance to wind energy
resource planning. To demonstrate the accuracy of FourCastNet predictions over
landmasses, we plot the 10m wind speed (

√︃
𝑈2

10 +𝑉
2
10) forecast and ground truth over

North America in Figure 11.8. We find that FourCastNet can qualitatively capture
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We compare the forecast skill of the unperturbed ‘control’ forecasts using FourCastNet
(red) with the mean of a 100-member ensemble forecast using FourCastNet (magenta) for
𝑍500 (panel a) and 𝑈10 (panel b). The IFS unperturbed control forecast is included for
reference (blue). We find that the 100-member FourCastNet ensemble mean is more skillful
than the FourCastNet control at longer forecast lead times. The 100-member FourCastNet
ensemble mean shows significant improvement over the unperturbed FourCastNet control
forecast beyond 70 hours for 𝑈10 and 100 hours for 𝑍500. Due to the challenge of clearly
disambiguating in a single plot the forecast spread arising from simulated initial condition
uncertainty and the forecast spread due to seasonal and day-to-day variability, we choose
not to visualize the spread in ACC and RMSE over the 𝑁 𝑓 forecasts and simply report the
mean.
Figure 11.7: Illustration of the improvement in forecast skill of FourCastNet by
utilizing large ensembles.

the spatial patterns and intensities of surface winds with impressive accuracy up to
several days in advance. Moreover, the visualizations emphasize the importance of
running forecasts at high resolution, as the surface wind speed exhibits significant
fine-scale spatial variations which would be lost with a coarser grid.

We evaluate the forecast skill of our model over land versus over oceans quantita-
tively. By computing a separate land-masked ACC and a sea-masked ACC for the
surface wind velocity components, we find that the forecast quality of our model for
surface wind speed over landmass is almost as good as it is over the ocean. This
is significant, as surface wind speed over land is strongly affected by orographic
features such as mountains, making it in general harder to forecast surface winds
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This is a significant result for wind energy resource planning, as windfarms are located on
land or just offshore. The figure shows The 10m wind speed (

√︃
𝑈2

10 +𝑉
2
10) forecast (top four

panels) generated by FourCastNet and corresponding ground truth (bottom four panels) for
forecast lead times of 18 hours, 36 hours, 54 hours and 72 hours. The forecast was initialized
with an initial condition at calendar time 06:00:00 on July 4 2018 UTC.

Figure 11.8: The FourCastNet model shows excellent skill on forecasting overland
wind speed, a challenging problem due to topographic features such as mountains
and lakes.

over land than over the oceans.

Extremes
We assess the ability of the FourCastNet model to capture instantaneous extremes by
looking at the top quantiles of each field at a given time step. Similar to the approach
in Fildier, W. D. Collins, and Muller, 2021, we use 50 logarithmically-spaced quan-
tile bins𝑄 = 1− {10−1, ..., 10−4} (corresponding to percentiles {90%, ..., 99.99%})
to emphasize the most extreme values (generally, the FourCastNet predictions and
ERA5 targets match closely up to around the 98th percentile). We choose the 99.99th

as the top percentile bin because percentiles beyond there sample less than 1000
pixels in each image and are subject to more variability. We show example plots
of the top quantiles for 𝑈10 and 𝑇𝑃 at 24-hour forecast times in the left panel of
Figure 11.9 (these particular forecasts were initialized at 00:00 UTC Jan 1 2018).
At this particular time, both the FourCastNet and IFS models under-predict extreme
precipitation, while for extreme winds in𝑈10 the IFS model over-predicts and Four-
CastNet under-predicts. To get a more comprehensive picture, we need to evaluate
the model performance at multiple forecast times over multiple initial conditions in
order to ascertain if there is a systematic bias in the model’s predictions for extreme
values.
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Figure 11.9: Comparison of extreme percentiles between ERA5, FourCastNet, and
IFS. The left panel shows the top percentiles of the 𝑇𝑃 and 𝑈10 distribution at a
forecast time of 24 hours, for a randomly sampled initial condition. The right panel
shows the 𝑇𝑃 and𝑈10 relative quantile error (RQE, defined in the text) as a function
of forecast time, averaged over 𝑁 𝑓 initial conditions in the calendar year 2018 (filled
region spans the 1st and 3rd quartiles). On average, RQE trends slightly negative
for both models as they under-predict the most extreme values for these variables,
especially for 𝑇𝑃.

To this end, we define the relative quantile error (RQE) at each time step 𝑙 as

RQE(𝑙) =
∑︁
𝑞∈𝑄
(
⃗⃗ ⃗⃗
𝑋
𝑞

pred(𝑙) −
⃗⃗ ⃗⃗
𝑋
𝑞
true(𝑙))/

⃗⃗ ⃗⃗
𝑋
𝑞
true(𝑙), (11.4)

where
⃗⃗ ⃗⃗
𝑋 𝑞 (𝑙) is the 𝑞th-quantile of

⃗⃗ ⃗⃗
𝑋 (𝑙). RQE trends negative for a given variable if

a model systematically under-predicts that variable’s extremes, and we indeed find
that both the FourCastNet and IFS models show a slight negative RQE over different
forecast times and initial conditions for both 𝑇𝑃 and 𝑈10. This can be seen in the
right-hand panel of Figure 11.9. For 𝑈10, the difference between FourCastNet and
IFS is negligible and, on average, both models underestimate the extreme percentiles
by just a few percentage points in RQE.

For 𝑇𝑃, the difference with respect to IFS is more pronounced, and FourCastNet
underestimates the extreme percentiles by ∼ 35% in RQE, compared to ∼ 15% for
IFS. This is not surprising given the forecasts visualized in Figure 11.3, which show
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the FourCastNet predictions being generally smoother than the ERA5 targets. As
the extreme values tend to be concentrated in extremely small regions (sometimes
down to the gridbox/pixel scale), a model that fails to fully resolve these scales
will have a harder time capturing 𝑇𝑃 extremes. Given the noise and uncertainties,
predicting precipitation extremes is well-known to be a challenging problem, but we
believe our model could be improved further by focusing more on such fine-scale
features. We leave this for future work.

11.4 Computational Cost of FourCastNet
In comparing the speed of forecast generation between FourCastNet and IFS, we
have to deal with the rather difficult problem of comparing a forecast computed
using a CPU cluster (in the case of the IFS model) and a forecast that is computed
on a single (or perhaps a few) GPU(s) (FourCastNet). We take a nuanced approach
to reporting this comparison. Our motivation is not to create a definitive apples
to apples comparison and tout a single numerical factor advantage for our model,
but merely to illustrate the order-of-magnitude differences in forecast generation
time and also highlight the radically different perspectives of computation when
comparing traditional NWP models with DL models. Through this comparison, we
also wish to highlight the significant potential of FourCastNet and future DL models
to offer an important addition to the toolkit of a meteorologist.

To estimate the forecast speed of the IFS model, we use figures provided in Bauer,
Quintino, et al. (2020) as a baseline. In Ref. (Bauer, Quintino, et al., 2020), we
see that the IFS model computes a 15-day, 51-member ensemble forecast using
the “L91” 18km resolution grid on 1530 Cray XC40 nodes with dual socket Intel
Haswell processors in 82 minutes. The IFS model archived in TIGGE, which we
compare the FourCastNet predictions with in Section 11.3, also uses the L91 18km
grid for computation (but is archived at the ERA5 resolution of 30km). Based
on this information, we estimate that to compute a 24-hour 100-member ensemble
forecast, the reference IFS model would require 984,000 node-seconds. We estimate
the energy consumption for computing such a 100-member forecast to be 271MJ4.

We now estimate the latency and energy consumption of the FourCastNet model.
The FourCastNet model can compute a 100-member 24-hour forecast in 7 seconds
by using a single node on the Perlmutter HPC cluster which contains 4 A100 GPUs
per node. This is achieved by performing batched inference on the 4 A100 GPUs

4A dual-socket Intel Haswell node draws a Thermal Design Power (TDP) of 270 Watts
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using a batch size of 25. Thus, the FourCastNet model takes 7 node-seconds per
forecast day for a 100-member ensemble. With a peak power consumption of 1kW
per node, we estimate this 100-member 24-hour forecast to use 8kJ of energy.

We attempt to account for the resolution difference between the 18km L91 model
and the 30km FourCastNet model by additionally reporting the inference time for
an 18km FourCastNet model. Since we did not train the FourCastNet with 18km
resolution data (due to the lack of such a publicly available dataset), the reported
numbers simply estimate the computational costs for such a hypothetical model by
performing inference on data and model parameters interpolated to 18km resolution
from the original 30km resolution.

Table 11.2 provides a comparison of computational speed and energy consumption
of the IFS L91 18km model and the FourCastNet model at 30km resolution, as well
as the extrapolated 18km resolution. These results suggest that the FourCastNet
model can compute a 100-member ensemble forecast using vastly fewer nodes, at
a speed that is between 45,000 times faster (at the 18 km resolution) and 145,000
times faster (at the 30 km resolution) on a node-to-node comparison. By the same
estimates, FourCastNet has an energy consumption that is between 12,000 (18 km)
and 24,000 (30 km) times lower than that of the IFS model.

Latency and Energy consumption for a 24-hour 100-member ensemble forecast

IFS FCN - 30km
(actual)

FCN - 18km
(extrapolated) IFS / FCN(18km) Ratio

Nodes required 3060 1 2 1530
Latency
(Node-seconds) 984000 7 22 44727

Energy Consumed
(kJ) 271000 7 22 12318

In comparison, the IFS model needs 3060 nodes for such a forecast. In this table, we
provide information about latency and energy consumption for the FourCastNet model in
comparison with the IFS model. The FourCastNet model at a 30km resolution is about
145,000 times faster on a single-node basis than the IFS model. We can also estimate the
cost of generating an 18km resolution forecast using FourCastNet. Such a hypothetical
18km model would be about 45,000 times faster than the IFS on a single-node basis.
The FourCastNet model at 30km resolution uses 24,000 times less energy to compute the
ensemble forecast than the IFS model, while a hypothetical FourCastNet model at 18km
resolution would use 12000 times less energy.

Table 11.2: The FourCastNet model can compute a 100-member ensemble forecast
on a single 4GPU A100 node.

This comparison comes with several caveats. The IFS model generates forecasts that



265

are provably physically consistent, while FourCastNet in its current iteration does not
impose physics constraints. The IFS model also outputs an order of magnitude more
variables at as many as 100 vertical levels. Notably, the IFS model is generally more
accurate than FourCastNet (although in several variables, the DL model approaches
the accuracy of the IFS model and exceeds it for precipitation in certain cases). On
the other hand, it is worth noting our rudimentary speed assessments of FourCastNet
do not employ any of the common optimizations used for inference of DL models
(e.g., model distillation, pruning, quantization, or reduced precision). We expect
implementing these would greatly accelerate our speed of inference, and lead to
further gains in computational efficiency over IFS.

While the above caveats are important, it is fair to say that if one were only interested
in limited-purpose forecasting (e.g., a wind farm operator interested in short-term
surface wind speed forecasts), FourCastNet would be a very attractive option as the
infrastructure requirements are minimal. FourCastNet can generate a 10-day, global
forecast at full ERA5 resolution using a single device, which is simply not possible
with IFS, and such a forecast completes in seconds. This means one could generate
reasonably accurate forecasts using a tabletop computer with a single GPU, rather
than needing a substantial portion of a compute cluster. Similarly, only a handful of
GPUs are needed for generating ensemble forecasts with 100s of ensemble members,
and such ensembles run quickly and efficiently using batched inference. This greatly
lowers the barrier to entry for doing data-assimilation and uncertainty quantification,
and future work in this direction is warranted to explore these possibilities.

11.5 Comparison Against State-of-the-art DL Weather Prediction
To the best of our knowledge, the current state-of-the-art DL weather prediction
model is the DLWP model of Weyn, Durran, and Caruana (2020)—they employ
a deep convolutional network with a cubed-sphere remapped coordinate system
to predict important weather forecast variables. The authors work with a coarser
resolution of 2◦ and forecast variables relating to geopotential heights, geopotential
thickness, and 2-m temperature (see (Weyn, Durran, and Caruana, 2020) for further
details). The FourCastNet model predicts more variables than the DLWP model at
a resolution that is higher than the DLWP model by a factor of 8. The significantly
higher resolution of the FourCastNet model resolves fine-scale features present in
variables such as wind velocities and precipitation allowing us to resolve important
phenomena such as hurricanes, extreme precipitation and atmospheric rivers. This
would not be possible at a lower resolution such as 2° (and almost entirely a futile
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exercise at a 5° resolution.) For reference, we have visualized the MSLP over
the trajectory of hurricane Michael at a resolution of 2°. Thus, the FourCastNet
model has many characteristics that make it superior to the prior SOTA DLWP
model. Nonetheless, we undertake a comparison of forecasts generated by the
FourCastNet model with those of the DLWP model by coarsening the FourCastNet
outputs to bring them to a resolution comparable to that of the DLWP model. We
emphasize that this comparison has been provided only for the sake of completeness.
Coarsening our forecasts and making them less effective in order to accommodate a
prior benchmark at a lower resolution is not fair to our model.

We downsample our predictions eight times (in each direction, using bilinear inter-
polation) to coarsen them to a resolution that is comparable to that of the DLWP
model. Since the two variables reported in the DLWP results are 𝑍500 and 𝑇2𝑚, we
re-compute our ACC and RMSE metrics for those two variables. We also note that
the ACC metric in the DLWP baseline was computed using daily climatology (we
use a time-averaged climatology in this work, motivated by (Rasp, Dueben, et al.,
2020)) and, hence, we modify our ACC computation using the same definition for
a fair comparison. We show our comparisons for ACC and RMSE in Figure 11.10.
We observe that even at the lower resolution of the DLWP work, the FourCastNet
model predictions show significant improvement over the current state-of-the-art
DLWP model in both variables. Additionally, the FourCastNet model operates at a
resolution that is 8 times higher than the DLWP model allowing it to resolve many
important fine-scale phenomena.

11.6 Implications, Discussion, and Future Work
FourCastNet is a novel global data-driven DL-based weather forecasting model
based on the FNO and AFNO (Li, Kovachki, et al., 2021; Guibas et al., 2022). Four-
CastNet’s speed, computational cost, energy footprint, and capacity for generating
large ensembles has several important implications for science and society. In par-
ticular, FourCastNet’s high-resolution, high-fidelity wind and precipitation forecasts
are of tremendous value. Even though FourCastNet was developed in less than a
year and has only a fraction of the number of variables and vertical levels compared
to NWP, its accuracy is comparable to the IFS model and better than state-of-the-art
DL weather prediction models (Weyn, Durran, Caruana, and Cresswell-Clay, 2021;
Rasp, Dueben, et al., 2020) on short timescales. We anticipate that with additional
resources and further development, FourCastNet could match the capabilities of
current NWP models on all timescales and at all vertical levels of the atmosphere.
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(a) 𝑍500 and (b)𝑇2𝑚. We observe that the FourCastNet predictions show significant improve-
ment over the baseline model. We also note that the FourCastNet generates predictions that
have a higher resolution by a factor of 8, and is thus able to resolve many more important
fine-scale features than the DLWP model.
Figure 11.10: Comparison of ACC and RMSE metrics between the (downsampled)
FourCastNet predictions, (downsampled) IFS, and baseline state-of-the-art DLWP
model

Implications
FourCastNet’s predictions are four to five orders of magnitude faster than traditional
NWP models. This has two important implications. First, large ensembles of
thousands of members can be generated in seconds, thus enabling estimation of
well-calibrated and constrained uncertainties in extremes with higher confidence
than current NWP ensembles that have at most approximately 50 members owing
to their high computational cost. Fast generation of 1,000-member ensembles
dramatically changes what is possible in probabilistic weather forecasting, including
improving reliability of early warnings of extreme weather events and enabling rapid
assessment of their impacts. Second, FourCastNet is suitable for rapidly testing
hypotheses about mechanisms of weather variability and their predictability.

The unprecedented accuracy in short-range forecasts of precipitation and its ex-
tremes has potentially massive benefits for society such as enabling rapid responses
for disaster mitigation. Furthermore, a highly accurate DL-based diagnostic pre-
cipitation model provides the flexibility to input prognostic variables from different
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models or observational sources.

For the wind energy industry, FourCastNet’s rapid and reliable high-resolution wind
forecasts can help mitigate disasters from extreme wind events and enables planning
for fluctuations in wind power output. Wind farm designers can benefit from fast and
reliable high-resolution wind forecasts to optimize wind farm layouts that account
for a wide variety of wind and weather conditions.

Discussion
FourCastNet’s skill improves with increasing number of modeled variables. A larger
model trained on more variables, perhaps even on entire 3D atmospheric fields, may
extend prediction horizons even further and with better uncertainty estimates. Not
far in the future, FourCastNet could be trained on all nine petabytes of the ERA5
dataset to predict all currently predicted variables in NWP at all atmospheric levels.
Although the cost of training such a model will be huge, fast inference will enable
rapid predictions of entire 3D fields in a few seconds. Such an advancement will
likely revolutionize weather prediction.

Due to the current absence of a data-assimilation component, FourCastNet can-
not yet generate up-to-the-minute weather forecasts. If observations are available,
however, such a component could be readily added given the ease of generating
large ensembles for methods such as Ensemble Kalman Filtering with data-driven
background covariance estimation (Ashesh Chattopadhyay, Mustafa Mustafa, Has-
sanzadeh, and Karthik Kashinath, 2020). Therefore, in principle, future iterations
of FourCastNet could be trained on observational data. This will enable real-time
weather prediction by initializing the model with real-time observations.

With ever-increasing demands for very high-resolution forecasts, NWP has seen
a steady growth in resolution. The increase in computational cost of NWP for a
doubling of resolution is nearly 12-fold (23.5). Current IFS forecasts are at 9-km
resolution but we require forecasts at sub-km resolution for improvements in a wide
variety of applications, such as energy and agricultural planning, transportation,
and disaster mitigation. Simultaneously, DL continues to have ever-increasing
accuracy and predictive power with larger models that have hundreds of billions of
parameters (Rajbhandari et al., 2020). With advances in large-scale DL we expect
that FourCastNet can be trained to predict weather on sub-km scales. Even though
training such a large DL model will be computationally expensive, since inference
of large DL models can still be done rapidly (DeepSpeed: Accelerating large-scale
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model inference and training via system optimizations and compression 2021), a
sub-km resolution version of FourCastNet will have even more dramatic speedup
over sub-km resolution NWP, likely more than six orders of magnitude.

DLWP has shown good skill on S2S timescales (Weyn, Durran, Caruana, and
Cresswell-Clay, 2021). FourCastNet has better skill at short timescales (up to two
weeks). We envision a coupled model using a two-timescale approach that com-
bines DLWP and FourCastNet with two-way interactions to achieve unprecedented
accuracies on short-, medium-, and long-range weather forecasts.

FourCastNet is a purely data-driven DL weather model. The physical systems of
weather and climate are governed by the laws of nature, some of which are well-
understood, such as Navier-Stokes equations for the fluid dynamics of atmosphere
and oceans. Weather forecasts and climate predictions that obey known physical
laws are more trustworthy than those that do not. Furthermore, models that obey the
laws of physics are more likely to be robust under climate change. An emerging field
in AI applications in the sciences is Physics-informed Machine Learning (Kashinath
et al., 2021). The Fourier Neural Operator has been extended to be physics-informed
(Li, Zheng, et al., 2021). Future versions of FourCastNet will incorporate physical
laws. A physics-informed version of FourCastNet could be trained with fewer
datapoints. This benefit is particularly valuable at higher resolutions in order to
reduce the data volume requirements for training. FourCastNet could also combine
with a physics-based NWP model Arcomano, Szunyogh, Wikner, et al. (2021), to
generate long-term stable forecasts over S2S timescales.

An important question that remains unanswered is whether FourCastNet generalizes
under climate change. FourCastNet was trained on data from 1979 to 2015 and tested
on data from 2016 to 2020. We know that Earth’s climate has changed over this
period of time. Therefore, FourCastNet has been trained on data from a changing
climate. However, FourCastNet may not predict weather reliably under extreme
climate change expected in the decades to come. A future version will initialize
with climate model output to evaluate FourCastNet’s performance under different
warming scenarios. A grand challenge for the climate community is to predict the
changing behavior of extreme weather events under climate change, such as their
frequency, intensity, and spatio-temporal nature. Once FourCastNet achieves high
fidelity under extreme climate change, it can address this grand challenge.
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C h a p t e r 12

APPLICATION: CARBON CAPTURE AND STORAGE

Carbon capture and storage (CCS) is an essential climate change mitigation strategy
for reducing carbon dioxide emissions. We consider the storage aspect of CCS,
which involves injecting carbon dioxide into underground reservoirs. This requires
accurate and high-resolution predictions of carbon dioxide plume migration and
reservoir pressure buildup. However, such modeling is challenging at scale due
to the high computational costs of existing numerical methods. We introduce a
novel machine learning approach for four-dimensional spatial-temporal modeling,
which speeds up predictions nearly 700,000 times compared to existing methods. It
provides a general-purpose numerical simulator alternative for highly accurate flow
and pressure predictions under diverse reservoir conditions, geological heterogene-
ity, and injection schemes. Our framework, Nested Fourier Neural Operator (FNO),
uses a hierarchy of FNO models to produce outputs at different refinement levels.
It enables unprecedented real-time high-resolution modeling for basin-scale carbon
dioxide storage.

12.1 Introduction
Carbon capture and storage (CCS) is the process of capturing carbon dioxide
and permanently storing it in subsurface geological formations to mitigate climate
change (NAS, 2018). We consider the storage modeling of CCS, which involves
the multiphase flow of carbon dioxide and water through porous media. Numerical
simulations are used to guide critical engineering decisions in CCS projects by
forecasting carbon dioxide gaseous plume migration in the formation and pressure
buildup caused by the injection.

Current numerical simulations are very expensive due to the multi-scale and multi-
physics modeling involved, the high-resolution grids required, and the large spatio-
temporal ranges needed for real-world scenarios. The governing partial differential
equations (PDEs) involving the multiphase variation of Darcy’s law are expensive
to solve (Pruess, Oldenburg, and Moridis, 1999; Blunt, 2017). Carbon dioxide
and water are immiscible and mutually soluble, requiring multi-physics simulation
coupled with thermodynamics (Pruess and Garcia, 2002). High-resolution spatial
grids (1-2 m resolution) are necessary to provide accurate estimates of the carbon
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dioxide plume migration, which is controlled by the complex interplay of buoyancy,
viscous, and capillary forces (Doughty, 2010; Wen and Benson, 2019). Pressure
buildup, as well as the dry-out effect, i.e., evaporation of formation fluid into
the gas phase (Pruess and Müller, 2009; André, Peysson, and Azaroual, 2014),
also demand particularly high resolutions around the injection well. In real-world
scenarios, CCS projects often involve large reservoir spatial domains of hundreds
of kilometers (Chadwick et al., 2004) and long time frames that span from decades
to hundreds of years (NETL, 2017).

One approach for reducing the computational costs of numerical simulations is to
use non-uniform grids to capture different responses at different grid resolutions. A
popular method, known as local grid refinement (Bramble et al., 1988) (LGR), has
enabled scaling simulations to real-world three-dimensional (3D) carbon dioxide
storage projects, where the fine-grid responses capture the plume migration while
the coarser grid responses capture the far-field pressure buildup (Eigestad et al.,
2009; Faigle et al., 2014; Kamashev and Amanbek, 2021). However, even with non-
uniform grid approaches, these numerical models are still too expensive for tasks
that require repetitive forward simulations, e.g., site selection (Callas et al., 2022),
inversion (Strandli, Mehnert, and Benson, 2014), or optimization (Nghiem et al.,
2010; Zhang and Agarwal, 2012). In practice, these numerical simulation methods
are forced to reduce computational costs by coarsening the grid resolution (Kou
et al., 2022) and/or simplifying the physics (Cavanagh and Ringrose, 2011), which
reduces the accuracy of modeling.

In recent years, machine learning (ML) approaches are emerging as a promising
alternative to numerical simulation for subsurface flow problems (Zhu and Zabaras,
2018; Mo et al., 2019; M. Tang, Liu, and Durlofsky, 2020; Wen, M. Tang, and
Benson, 2021; Wen, Hay, and Benson, 2021). ML methods are usually much faster
than numerical simulators because the inference is very cheap once the ML models
are trained. However, standard ML methods suffer from the lack of generalization
and fail to provide accurate estimates away from the domain of training data. This
limits the usage of ML in challenging applications such as carbon dioxide storage
modeling because it requires generalization under diverse geology, reservoir condi-
tions, and injection schemes. A recent machine-learning framework, termed neural
operators (Kovachki et al., 2021; Li et al., 2020b; Li et al., 2020c), overcomes these
generalization challenges by directly learning the solution operator for the PDE
system family instead of just learning a single instance. By learning the solution
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(a-b) Permeability for a dipped 3D reservoir with four injection wells; white and black lines
indicate level 0 to 4’s boundary; the black dotted lines in the zoomed-in circles show the
locations of injection perforation intervals. (c) Each grey block represents an FNO model;
light grey arrows point to the input and output’s level; dark grey arrows show when one
model’s output is used as another model’s input. Notice we feed level 0 pressure buildup
output to level 1 gas saturation model because carbon dioxide plumes never migrate to level
0. (d) Pressure buildup and gas saturation at 30 years.

Figure 12.1: Introduction to Nested-FNO.

operator, neural operators generalize well to different conditions in the PDE system
as well as discretizations without the need for re-training the ML model.

Fourier neural operator (FNO) is a class of neural operators that uses Fourier trans-
form to learn the solution operator (Li et al., 2020a) efficiently. A variant of
FNO was previously used in carbon dioxide storage modeling (Wen, Li, et al.,
2022) that showed 60,000 times speedup and excellent generalization. This previ-
ous model (Wen, Li, et al., 2022) is limited to a 2D spatial domain that can only
represent flat reservoirs with a single injection well. However, In real-world sce-
narios, CCS projects often involve multiple injection wells and dipped reservoirs.
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Due to the buoyancy effect, reservoir dipping angles can significantly influence
the gaseous plume migration. These processes can only be accurately captured by
high-resolution 3D spatial domains, where the costs of collecting training data from
numerical solvers become prohibitive. We incorporate these practical modeling
features in the current work.

Here, we present an ML approach with unprecedented capabilities of high-resolution
4D spatial-temporal modeling of pressure buildup and gas saturation for realistic
carbon dioxide storage projects. We integrate the FNO architecture with the LGR
modeling approach to obtain a Nested Fourier Neural Operator (Nested FNO) ar-
chitecture. As shown in Figure 12.1, five levels of FNOs are used to predict outputs
in five levels of grid refinements; each coarser-level model’s output is used as
the finer-level model’s input. This nested approach vastly reduces the computa-
tional cost needed during data collection and overcomes the memory constraints
in model training. For instance, Nested FNO only needs less than 2,500 training
data at the coarsest resolution (level 0) and about 6,000 samples for the finer lev-
els (1-4). Despite the small training size, Nested FNO generalizes well to large
problem dimensions with millions of cells. The spatial resolutions provided by
Nested FNO are finer than most current simulations run with existing numerical
models (e.g., Sleipner benchmark model (Data: Sleipner CO2 reference dataset,
published via the CO2 DataShare online portal administrated by SINTEF AS n.d.)
and Decatur model (Data: llinois State Geological Survey (ISGS), Illinois Basin -
Decatur Project (IBDP) CO2 Injection Monitoring Data, April 30, 2021. Midwest
Geological Sequestration Consortium (MGSC) Phase III Data Sets. DOE Cooper-
ative Agreement No. DE-FC26-05NT42588 n.d.)). Nested FNO provides 700,000
times speedup. The fast inference enables rigorous probabilistic assessments for
maximum pressure buildup and carbon dioxide plume footprint. Such assessments
are important for decisions on injection design and land lease acquisition. Running
such assessments take nearly two years with traditional simulators, and it took only
2.8 seconds with the Nested FNO model.

12.2 Methods
Data overview
The data set is generated using a semi-adaptive LGR approach to ensure both high
fidelity and computational tractability. We use the global (level 0) resolution grid
in the large spatial domain to mimic typical saline storage formations with infinite
boundary conditions. Next, we apply four levels of local refinements (levels 1 to
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(a) Visualizations of gas saturation predictions at 30 years for a 3-well case. Each row shows
permeability, gas saturation ground truth, prediction, and error. The white lines indicate
the boundary between each level. (b) Reservoir permeability and the location of each well.
(c) Testing set plume saturation error versus time for 250 random cases. The red dotted
line shows the 95% prediction bands of the error. (d) Error histograms for 250 cases in the
training and test set. The solid red column indicates the error for the shown example.

Figure 12.2: Gas saturation prediction.

4) around each well to gradually increase the grid resolutions. Going from levels
0 to 4, we reduce the cell size by 80x on the 𝑥, 𝑦 dimensions and 10x on the 𝑧
dimension to resolve near-well plume migration, dry-out, and pressure buildup. See
Supplementary, Local Grid Refinement for details on the LGR design.

Nested FNO architecture
Nested FNO uses a sequence of FNO models to predict the data set with multiple
refinement levels. The computational domain of the Nested FNO is a 3D space with
time, 𝐷 = Ω × 𝑇 , where 𝑇 is the time interval of 30 years and Ω is the reservoir
domain. As shown in Figure 12.1, the 3D reservoir domain consists of subdomains
Ω𝑖 at levels 0 to 4 for each grid refinement. We use nine FNO models: G𝑃0...4 for
pressure buildup (𝑃), and G𝑆1...4 for gas saturation (𝑆), to predict outputs at each
level. We extend the original FNO (Li et al., 2020a) architecture into 4D to produce
outputs in the 3D space-time domain. See Supplementary, Fourier Neural Operator
for detailed architecture and parameters.

The input for each model includes the permeability field, initial hydro-static pressure,
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reservoir temperature, injection scheme, as well as spatial and temporal encoding.
In carbon dioxide-water multiphase flow, pressure buildup travels significantly faster
than gas saturation. Therefore, we useG𝑃0 to predict level 0 (global) pressure buildup
as well as the pressure interaction between wells. We then feed level 0 pressure
buildup prediction around each injection well (𝑃̂0 |𝑤𝑒𝑙𝑙 𝑗 ) to models on level 1. Each
subsequent model takes the input on domain Ω𝑖 together with the coarser-level
prediction of 𝑃̂ or 𝑆 on Ω𝑖−1, and outputs the prediction of 𝑃̂ or 𝑆 on Ω𝑖. By giving
the coarser-level prediction to the finer-level model as an input, we also provide the
boundary conditions of the finer-level subdomain, which significantly improves the
finer-level predictions.

Training procedure
To train the Nested FNO, we first prepare the input-output pairs for each subdomain
and train each of the nine models independently. For each model, we use the ground
truth, i.e., numerical simulation, pressure buildup and gas saturation on the coarse-
level training domain to construct the input. This approach is time efficient because
it allows us to train all models concurrently instead of sequentially going from
coarser-level to finer-level models. Refer to Supplementary, Training procedure for
more details.

Inference procedure
Once we train the nine models in the Nested FNO, we can predict the gas saturation
and pressure buildup according to Algorithm 5. Notice that the number of subdo-
mains in Ω depends on the number of injection wells. For example, a reservoir with
three injection wells has 13 subdomainsΩ = {Ω0,Ω𝑙𝑒𝑣𝑒𝑙1...4,𝑤𝑒𝑙𝑙1,Ω𝑙𝑒𝑣𝑒𝑙1...4,𝑤𝑒𝑙𝑙2,Ω𝑙𝑒𝑣𝑒𝑙1...4,𝑤𝑒𝑙𝑙3}.
Therefore, we repeat the inference for each injection well. The input can be con-
structed given any random combination of reservoir condition (depth, temperature,
and dip angle), injection scheme (number of wells, rate, location, perforation in-
terval), and permeability field, as long as the variables are within the training data
sampling ranges.

Evaluation metrics
To evaluate the gas saturation prediction accuracy in reservoirs with multiple levels
of refinements, we introduce the plume saturation error 𝛿𝑆, defined as:
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Algorithm 5 Predict gas saturation and pressure buildup in a reservoir with 𝑛

injection wells. G denotes the a model, 𝑃 denotes pressure buildup, 𝑆 denotes gas
situation, and 𝑎 denotes input.

Use G𝑃0 to predict 𝑃̂0 given 𝑎0
for each well 𝑗 = 1, . . . , 𝑛 do

Construct input (𝑎1, 𝑗 , 𝑃̂0 | 𝑗 )
Use G𝑃1 and above input to predict 𝑃̂1, 𝑗
Use G𝑆1 and above input to predict 𝑆1, 𝑗
for each level 𝑖 = 2, . . . , 4 do

Construct input (𝑎𝑖, 𝑗 , 𝑆𝑖−1, 𝑗 )
Use G𝑆

𝑖
and above input to predict 𝑆𝑖, 𝑗

Construct input (𝑎𝑖, 𝑗 , 𝑃̂𝑖−1, 𝑗 )
Use G𝑃

𝑖
and above input to predict 𝑃̂𝑖, 𝑗

end for
end for

𝛿𝑆 =
1∑
𝐼𝑡,𝑖

∑︁
𝑡∈𝑇

∑︁
𝑖∈Ω

𝐼𝑡,𝑖 |𝑆𝑡,𝑖 − 𝑆𝑡,𝑖 |,

𝐼𝑡,𝑖 = 1 𝑖 𝑓 (𝑆𝑡,𝑖 > 0.01) ∪ (|𝑆𝑡,𝑖 | > 0.01). (12.1)

𝑆 is the ground truth gas saturation, 𝑆 is the predicted gas saturation, 𝑇 includes
all times snapshots over the 30 years, and Ω includes all the cells as in the original
domain of the numerical simulator; refer Supplementary, Training procedure for
more details. We use this metric because the reservoir domain includes many cells
with zero gas saturation; taking an average with these zero predictions leads to an
overestimation of the gas saturation accuracy. 𝛿𝑆 is a more strict metric focusing on
the error within the plume.

For pressure buildup, we introduce relative error 𝛿𝑃:

𝛿𝑃 =
1

𝑛Ω𝑛𝑇

∑︁
𝑡∈𝑇

∑︁
𝑖∈Ω

|𝑃𝑡,𝑖 − 𝑃̂𝑡,𝑖 |
𝑃𝑡,𝑚𝑎𝑥

(12.2)

Here 𝑃 is the ground truth pressure buildup given by numerical simulation, 𝑃̂ is
the predicted pressure buildup, 𝑃𝑡,𝑚𝑎𝑥 is the maximum reservoir pressure buildup at
time 𝑡, 𝑛Ω is the number of cells in Ω, and 𝑛𝑇 is the number time steps. This metric
is commonly used for evaluating reservoir pressure buildup (H. Tang et al., 2021;
Wen, Li, et al., 2022).
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Each model’s separate and sequential error for (a) pressure buildup before fine-tuning, (b)
pressure buildup after fine-tuning, (d) gas saturation before fine-tuning, and (e) gas saturation
after fine-tuning. On the legend, ‘seq’ denotes sequential prediction, ‘sep’ denotes separate
prediction. The transparent lines indicate the before fine-tune error. (e) Training and
validation set 𝛿𝑃4 of fine-tuning using Option 1 to 3. (f) Principle component number and
cumulative percentage of the 40 strongest rank for G𝑃3 ’s error.

Figure 12.3: Fine-tuning.

Fine-tuning procedure
Separate vs. sequential prediction. As described in Algorithm 5, during infer-
ence, the input for each model in levels 1 to 4 includes the 𝑆 or 𝑃̂ predicted by
their corresponding coarser-level model. However, during training, the inputs are
constructed by ground truth numerical simulation data. The discrepancy in training
and inference leads to error accumulation, especially for the models that appear later
in the prediction sequence.

To investigate this effect, we introduce two ways to evaluate each model: (1) separate
prediction using the ground truth input taken from the numerical simulation (as in
training), and (2) sequential prediction using predicted values from the coarser level
as input (as in inference). Figure 12.3 a compares the average relative pressure
buildup 𝛿𝑃

Ω 𝑗
for each model using both separate and sequential prediction methods.

Unlike 𝛿𝑃, 𝛿𝑃
Ω 𝑗

focuses on the ability of each model to produce outputs similar to
the training data, defined as:
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𝛿𝑃Ω 𝑗
=

1
𝑛𝑇𝑛Ω 𝑗

∑︁
𝑡∈𝑇

∑︁
𝑖∈Ω 𝑗

|𝑃𝑡,𝑖 − 𝑃̂𝑡,𝑖 |
𝑃𝑡,𝑚𝑎𝑥

. (12.3)

Figure 12.3 a shows that all models have low errors and negligible overfitting
when using separate predictions. However, with sequential prediction, 𝛿𝑃

Ω 𝑗
quickly

accumulates, going from coarser to finer-level models. The validation error of level 4
using sequential prediction increased by 13 times compared to separate predictions.

Similarly, for the gas saturation, the plume gas saturation error 𝛿𝑆
Ω 𝑗

for each model
is defined as:

𝛿𝑆
Ω 𝑗

=
1∑
𝐼𝑡,𝑖

∑︁
𝑡∈𝑇

∑︁
𝑖∈Ω 𝑗

|𝑆𝑡,𝑖 − 𝑆𝑡,𝑖 |

𝐼𝑡,𝑖 = 1 𝑖 𝑓 (𝑆𝑡,𝑖 > 0.01) ∪ ( ˆ|𝑆𝑡,𝑖 | > 0.01) (12.4)

Figure 12.3 d compares 𝛿𝑆
Ω 𝑗

using separate verses sequential prediction. We ob-
served less error accumulation for gas saturation than pressure buildup, which indi-
cates that the prediction of gas saturation does not rely as heavily on coarser-level
models.

Random perturbation. To reduce the error accumulation, we explored several fine-
tuning techniques to improve generalizability using the level 4 pressure prediction
as an example. To fine-tune G𝑃4 , we add a perturbation to the ground truth input,
𝑃′3,𝑖 = 𝑃3,𝑖 + 𝜁𝑖 where 𝑖 represents a sample taken from the training set. We defined
the coarser-level model’s error in the training set as 𝜖3 = 𝑃̂3 − 𝑃3, and explore three
configurations of perturbation 𝜁𝑖.

• Option 1: 𝜁𝑖 = 𝜖3, 𝑗 - randomly sample an instance from 𝜖3.

• Option 2: 𝜁𝑖 = 𝜖3,𝑖 - choose the error corresponding to the specific training
sample (i.e., fine-tune with the predicted label 𝑃̂3,𝑖).

• Option 3: 𝜁𝑖 ∼ N(𝜇𝜖3 , 𝜎𝜖3) - generate a random Gaussian error using the
mean and standard deviation of 𝜖3.

As shown in Figure 12.3 c, Option 1 provides the best validation set performance
with the smallest overfitting. By providing a randomly sampled noise instance
from 𝜖3 with each training data, we let the finer-level models become aware of the
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presence of a structured error and learn to filter it out. Option 2 gives the best
training set error but is significantly overfitted. Interestingly, Option 3 leads to the
largest errors in both the training and validation set despite being a commonly used
machine learning technique for introducing randomness.

We applied Option 1 toG𝑃1 , G𝑃4 , G𝑆1 , andG𝑆2 . After fine-tuning, sequential prediction
errors are reduced for both pressure buildup and gas saturation (Figure 12.3 b and
e). For pressure buildup, we observe a dramatic improvement on level 4, where the
validation error decreased by more than 50%.

Structure of prediction error. We hypothesize that the FNO model’s predictions
and errors lie in a perturbed low-dimensional manifold in the output function spaces
due to its structure. To verify our hypothesis, we analyzed the functional principle
components on error 𝜖3 (Blanchard, Bousquet, and Zwald, 2007). As shown in
Figure 12.3 f, only a few principal components are needed to describe nearly a third
of the error. Gaussian noised functions did not improve prediction because the
Gaussian noise resides in an infinite-dimensional space, whereas the actual error
only lives in a small linear sub-space.

12.3 Results
We consider carbon dioxide injection into dipped 3D reservoirs through multiple
wells over 30 years, as shown in Figure 12.1 a. Our data set considers a compre-
hensive collection of input variables for practical carbon dioxide storage projects,
covering most realistic scenarios of potential sites. Each input variable is sampled
according to expert knowledge, including reservoir conditions (depth, temperature,
dip angle), injection schemes (number of injection wells, rates, perforation intervals),
and permeability heterogeneity (mean, standard deviation, correlation lengths). See
Supplementary, Data set generation for details for the input variable sampling.

Prediction accuracy
Gas saturation

The migration of carbon dioxide plumes is governed by the complex interplay of
viscous, capillary, and gravity forces. Due to the presence of the dip angle, the
reservoir condition around each well can lead to various fluid properties in the same
reservoir. In addition, carbon dioxide plumes can form distinctively different shapes
and sizes according to different injection schemes and permeability heterogeneity.

As shown in Figure 12.2 a, Nested FNO captures these complex processes with
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(a) Global and (b) well pressure buildup predictions at 30 years. Each row shows pressure
buildup ground truth, prediction, and relative error. The white lines indicate the boundary
between each level. (c) Testing set pressure relative error versus time for 250 random cases.
The red dotted line shows the 95% prediction bands of the error. (d) Error histograms
for 250 cases in the training and test set. The solid red column indicates the error for the
visualized example.

Figure 12.4: Pressure buildup prediction.

excellent accuracy. Near the injection perforation interval, we observe dry-out
zones where the gas saturation is near one, e.g., at the bottom half of well 1. This
is a highly nonlinear response caused by the vaporization of the formation fluids
into the gas phase (Pruess and Müller, 2009). This important physical process is
neglected by many numerical models because it can only be captured with high
grid resolutions and high-fidelity simulations. Nevertheless, Nested FNO predicts
the dry-out with high accuracy. We observe slightly more errors at the plumes and
dry-out zones’ edges. This is because the simulation data around discontinuous
saturation transitions consist of inherent numerical artifacts that are less systematic.

Overall, Nested FNO displays small overfitting considering the problem’s high
dimensionality (Figure 12.2 d). The average saturation error (𝛿𝑆) for the gaseous
carbon dioxide plume is 1.2% for the training set and 1.8% for the testing set. See
Methods for 𝛿𝑆’s definition. This accuracy is sufficient for practical applications
such as forecasting plume footprints and estimating sweep efficiencies.
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Pressure buildup

As demonstrated in Figure 12.4 a, Nested FNO precisely captures the local pres-
sure buildup responses around each well, as well as the global interaction among
them. The high resolution provides accurate estimates of the maximum pressure
buildup, which is an essential indicator of reservoir integrity. The global level
prediction provides the spatial extent of the region of pressure buildup influence,
another important parameter required for regulatory purposes (EPA, 2013). Addi-
tionally, Figure 12.4 a-c shows that accuracy is consistent across different prediction
domains and throughout the injection period. These predictions are sufficient to
guide important engineering decisions such as injection schemes and monitoring
program designs.

The relative pressure buildup error 𝛿𝑃 (as defined in Methods) for the training and
the testing set are 0.3% and 0.5%, respectively. Similar to the gas saturation, we
observe small overfitting from the error histogram (Figure 12.4 d) for the training
and testing set. This generalization is remarkable, considering the training data
size for this high-dimensional problem. The generalizability is achieved through a
fine-tuning technique which we will introduce in Methods.

(a) Histogram of CO2 plume footprint predictions given 1,000 permeability realizations
from the same geological parameters. The result satisfies a log-normal distribution; P5,
P50, and P95 are marked on the distribution. (b) Ten realizations of CO2 plume at 30 years.
(c) Histogram of CO2 pressure buildup predictions given the same 1,000 permeability
realizations. The result satisfies a log-normal distribution; P5, P50, and P95 are marked on
the distribution. (d) Ten realizations of pressure buildup at 30 years.

Figure 12.5: Probabilistic assessment.
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Computational Speed-up
Once the Nested FNO model is trained, we can use it as a general-purpose numerical
simulator alternative in realistic 3D reservoirs. This approach allows traditional
users to skip numerical simulations for an entire class of problems and directly obtain
efficient, high-fidelity, and high-resolution predictions (Wen, Hay, and Benson,
2021). Our approach differs from the task-specific “surrogate” modeling approach,
which often involves a specific set of reservoir conditions.

As a result, we calculate the computational speedup by comparing the Nested
FNO’s prediction time to the numerical simulation run time of a state-of-the-art
full-physics simulator ECLIPSE (Schlumberger, 2014). Each model in Nested FNO
takes about 0.005s to infer, while the total prediction time depends on the number
of injection wells. On average, the Nested FNO provides 400,000 (1-well case) to
700,000 (4-well case) times speedup compared to traditional simulation. Refer to
Supplementary, Speedup analysis for detailed specifications for the simulator and
ML models.

Probabilistic assessment
Nested FNO’s fast prediction speed enables rigorous probabilistic assessments that
were previously unattainable. As an example, we investigate the maximum pressure
buildup and carbon dioxide plume footprint for a four-well reservoir where each
well injects at a 1MT/year rate. Refer to Supplementary, Probabilistic assessment
for detailed setups. We generate 1,000 permeability realizations using the same
distribution and spatial correlations, then use Nested FNO to predict gas satura-
tion plumes and pressure buildup for each realization. As shown in Figure 12.5,
the probabilistic estimates of the carbon dioxide plume footprint and maximum
pressure buildup can support project developers and regulators in making impor-
tant engineering decisions (Pawar et al., 2016). For example, the plume footprint
helps determine the area of the land lease acquisition required and the monitoring
program’s design (NETL, 2017); the maximum reservoir pressure buildup helps
evaluate the safety of an injection scheme and ensure reservoir integrity. Running
such assessments takes nearly two years with traditional numerical simulators, and
it takes only 2.8 seconds with Nested FNO.

12.4 Discussion
We present the Nested FNO model for high-resolution 4D gas saturation and pres-
sure buildup in CO2 storage problems. The trained model provides exceptionally
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fast predictions and can support many engineering tasks that require repetitive for-
ward simulations, including but not limited to (1) probabilistic assessment - as
demonstrated above, (2) site selection (Callas et al., 2022) - quick screening for a
large number of potential reservoirs, (3) storage optimizations (Kumar and Bryant,
2008; Zhang and Agarwal, 2012) - exhaustive search in the parameter space, and (4)
seismic inversion (Yin et al., 2022) - provide forward simulation outputs and gradi-
ents. Nested FNO can readily serve as a high-fidelity and high-resolution numerical
simulator alternative and facilitate rigorous analyses for these tasks.

A highlight of the Nested FNO is its excellent generalizability. The training sizes for
Nested FNO are small (2,408 for the level 0 model and 5,916 for level 1-4 models),
considering the large problem dimension with millions of cells. We achieve this
generalizability through (1) a novel fine-tuning technique for nested architecture as
introduced in Methods and (2) the utilization of the FNO architecture. Most existing
machine learning approaches for subsurface flow use convolutional neural network
(CNN)-based models with local kernels and deep architectures that are prone to
overfitting (Jiang, Tahmasebi, and Mao, 2021; Wu and Qiao, 2020; Kadeethum
et al., 2021; M. Tang, Liu, and Durlofsky, 2021; H. Tang et al., 2021). Unlike CNN,
FNO uses global kernels to learn an infinite-dimensional input and output mapping
in the function space (Li et al., 2020a). Our previous study shows that FNO-based
models require only one-third of the training data compared to the CNN-based
model in a 2D spatial-temporal setting (Wen, Li, et al., 2022). As a result, using
FNO greatly reduces the demand for training data; combining FNO with the LGR
approach makes this high-resolution 3D problem tractable.

Besides data-driven approaches, another line of work, often referred to as a physics-
informed neural network, attempts to solve the governing PDE by parameterizing
governing relations and initial/boundary conditions using neural networks (Raissi,
Perdikaris, and Karniadakis, 2019). However, these approaches have not yet shown
significant advantages in computational efficiency for subsurface multiphase flow
through heterogeneous media (Fuks and Tchelepi, 2020; Almajid and Abu-Alsaud,
2021; Fraces and Hamdi Tchelepi, 2021; Haghighat, Amini, and Juanes, 2022).
On the contrary, as a data-driven approach, Nested FNO provides a framework
with great potential not only for CO2 storage but also for other scientific problems
that involve multi-level modeling. For instance, in weather forecast modeling,
different cyclones can develop locally while interacting with each other on a global
level (Dong and Neumann, 1983); in nuclear fusion, the collision of multiple nuclei
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in a particle involves long-distance interactions as well as inner-nucleus many-
particle physics (Jin et al., 2021).
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