Citation
Lim, Jeck (2025) Sums of Various Dilates. Dissertation (Ph.D.), California Institute of Technology. doi:10.7907/6q8b-ck71. https://resolver.caltech.edu/CaltechTHESIS:05132025-055003057
Abstract
Given a finite subset A of an ambient abelian group and a dilate λ, how large must the sum of dilate A+λ∙A be in terms of A? In this thesis, we study this problem in various settings and generalizations, proving tight bounds in many cases. Our five main results are as follows.
1. In the setting of a d-dimensional subset A of ℝᵈ, we prove an exact lower bound on the size of the difference set A-A.
2. In the case when λ ∈ \in C is a transcendental number, we show that there is an absolute constant c>0 such that |A+λ∙A|≥ exp(c√log|A|)|A| for any finite subset A of C. This is best possible up to the constant c.
3. In the algebraic case, given algebraic numbers λ1,...,λk, we prove tight lower bounds for the sum of dilates A+λ∙A+ ... λk∙A. As an important ingredient, we also prove a Freiman-type structure theorem for sets with small sums of dilates.
4. In the setting of sums of linear transformations, we prove tight bounds for the sum of two linear transformations and tight bounds for the sum of multiple pre-commuting linear transformations.
5. In the setting of groups of prime order, we prove near-optimal lower and upper bounds for the sum of dilate A+λ∙A for A of a given density and large λ.
Item Type: | Thesis (Dissertation (Ph.D.)) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Subject Keywords: | additive combinatorics, sumsets, Freiman's theorem | ||||||||||||||||||
Degree Grantor: | California Institute of Technology | ||||||||||||||||||
Division: | Physics, Mathematics and Astronomy | ||||||||||||||||||
Major Option: | Mathematics | ||||||||||||||||||
Awards: | Scott Russell Johnson Graduate Dissertation Award, 2025. Scott Russell Johnson Prize for Excellence in Graduate Studies, 2022. | ||||||||||||||||||
Thesis Availability: | Public (worldwide access) | ||||||||||||||||||
Research Advisor(s): |
| ||||||||||||||||||
Thesis Committee: |
| ||||||||||||||||||
Defense Date: | 29 May 2025 | ||||||||||||||||||
Record Number: | CaltechTHESIS:05132025-055003057 | ||||||||||||||||||
Persistent URL: | https://resolver.caltech.edu/CaltechTHESIS:05132025-055003057 | ||||||||||||||||||
DOI: | 10.7907/6q8b-ck71 | ||||||||||||||||||
Related URLs: |
| ||||||||||||||||||
ORCID: |
| ||||||||||||||||||
Default Usage Policy: | No commercial reproduction, distribution, display or performance rights in this work are provided. | ||||||||||||||||||
ID Code: | 17226 | ||||||||||||||||||
Collection: | CaltechTHESIS | ||||||||||||||||||
Deposited By: | Jeck Lim | ||||||||||||||||||
Deposited On: | 03 Jun 2025 19:16 | ||||||||||||||||||
Last Modified: | 17 Jun 2025 18:33 |
Thesis Files
![]() |
PDF
- Final Version
See Usage Policy. 850kB |
Repository Staff Only: item control page