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ABSTRACT

Given a finite subset 𝐴 of an ambient abelian group and a dilate 𝜆, how large must
the sum of dilate 𝐴 + 𝜆 · 𝐴 be in terms of 𝐴? In this thesis, we study this problem in
various settings and generalizations, proving tight bounds in many cases. Our five
main results are as follows.

1. In the setting of a 𝑑-dimensional subset 𝐴 of R𝑑 , we prove an exact lower bound
on the size of the difference set 𝐴 − 𝐴.

2. In the case when 𝜆 ∈ C is a transcendental number, we show that there is an
absolute constant 𝑐 > 0 such that |𝐴 + 𝜆 · 𝐴| ≥ exp(𝑐

√︁
log |𝐴|) |𝐴| for any finite

subset 𝐴 of C. This is best possible up to the constant 𝑐.

3. In the algebraic case, given algebraic numbers 𝜆1, . . . , 𝜆𝑘 , we prove tight lower
bounds for the sum of dilates 𝐴 + 𝜆1 · 𝐴 + · · · + 𝜆𝑘 · 𝐴. As an important ingredient,
we also prove a Freiman-type structure theorem for sets with small sums of dilates.

4. In the setting of sums of linear transformations, we prove tight bounds for
the sum of two linear transformations and tight bounds for the sum of multiple
pre-commuting linear transformations.

5. In the setting of groups of prime order, we prove near-optimal lower and upper
bounds for the sum of dilate 𝐴 + 𝜆 · 𝐴 for 𝐴 of a given density and large 𝜆.
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C h a p t e r 1

INTRODUCTION

1.1 Sumsets
Given two subsets 𝐴, 𝐵 of an abelian group, the sumset 𝐴 + 𝐵 is defined by

𝐴 + 𝐵 := {𝑎 + 𝑏 : 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵}

and the difference set 𝐴 − 𝐵 is defined similarly. Sumsets play a central role in
additive combinatorics. One of the most classical problems involving sumsets is
the study of their cardinalities and structural characteristics when 𝐴 and 𝐵 satisfy
particular constraints. For instance, if 𝐴 and 𝐵 are subsets of the integers, then with
no additional constraints, |𝐴 + 𝐵 | ≥ |𝐴| + |𝐵 | − 1 is best possible, as witnessed by
arithmetic progressions of the same common difference.

If 𝐴 is a subset of a ring 𝑅 (or more generally an 𝑅-module) and 𝜆 is an element of
𝑅, the dilate 𝜆 · 𝐴 is defined by

𝜆 · 𝐴 := {𝜆𝑎 : 𝑎 ∈ 𝐴}.

The sum of dilates can then be written as

𝐴 + 𝜆 · 𝐴 = {𝑎 + 𝜆 · 𝑎′ : 𝑎, 𝑎′ ∈ 𝐴} ,

or more generally with multiple dilates

𝜆1 · 𝐴 + · · · + 𝜆𝑘 · 𝐴 = {𝜆1𝑎1 + · · · + 𝜆𝑘𝑎𝑘 : 𝑎1, . . . , 𝑎𝑘 ∈ 𝐴} .

Such sums of dilates have attracted considerable attention in recent years, with the
basic problem asking for an estimate on the minimum size of |𝜆1 · 𝐴 + · · · + 𝜆𝑘 · 𝐴|
given |𝐴|. Formally, the general problem is as follows.

Problem 1.1.1. Let 𝑅 be a ring and 𝑀 an 𝑅-module. Given 𝜆1, . . . , 𝜆𝑘 ∈ 𝑅 and
a positive integer 𝑛, determine the smallest possible value of |𝜆1 · 𝐴 + · · · + 𝜆𝑘 · 𝐴|
across all 𝐴 ⊆ 𝑀 with |𝐴| = 𝑛.

We are interested in the asymptotics of |𝜆1 · 𝐴 + · · · + 𝜆𝑘 · 𝐴| as 𝑛 → ∞, with
𝜆1, . . . , 𝜆𝑘 fixed. In this thesis, we study this general problem in various settings.
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1.2 High-dimensional difference sets
Our first setting regards the difference set 𝐴−𝐴, for 𝐴 ⊂ Z𝑑 . Without any restrictions
on 𝐴, the simple bound |𝐴 − 𝐴| ≥ 2|𝐴| − 1 is best possible, with equality when 𝐴 is
an arithmetic progression. However, an arithmetic progression is one-dimensional
and does not make full use of the ambient Z𝑑 , so a natural restriction is that 𝐴 must
be a 𝑑-dimensional set, that is, 𝐴 is not contained in an affine hyperplane.

The motivation for this problem originated from Freiman’s structure theorem, one
of the most fundamental results in additive combinatorics. It says that any finite
set of integers 𝐴 with small doubling, that is, with |𝐴 + 𝐴| ≤ 𝐾 |𝐴| for some fixed
constant 𝐾 , is contained in a generalized arithmetic progression of small size and
dimension.

The first step in Freiman’s original proof [17] of this theorem is a simple lemma
showing that if 𝐴 is a finite 𝑑-dimensional subset of R𝑑 , then

|𝐴 + 𝐴| ≥ (𝑑 + 1) |𝐴| − 𝑑 (𝑑 + 1)/2,

where we say that a subset 𝐴 of R𝑑 is 𝑘-dimensional and write dim(𝐴) = 𝑘 if the
dimension of the affine subspace spanned by 𝐴 is 𝑘 . Freiman’s result is tight, as
may be seen by considering the union of 𝑑 parallel arithmetic progressions with the
same common difference.

Surprisingly, the analogous problem of estimating |𝐴 − 𝐴| for 𝑑-dimensional sub-
sets 𝐴 of R𝑑 has remained open, despite first being raised by Uhrin [49] in 1980
because of connections to the geometry of numbers and then reiterated many times
(see, for example, [13, 18, 37, 44, 45]). The best known construction is due to
Stanchescu [45], who showed there exist arbitrarily large sets 𝑑-dimensional subsets
𝐴 ⊂ R𝑑 satisfying

|𝐴 − 𝐴| =
(
2𝑑 − 2 + 1

𝑑 − 1

)
|𝐴| − (2𝑑2 − 4𝑑 + 3).

Supplanting an earlier conjecture of Ruzsa [37], Stanchescu proposed that this is
best possible.

Conjecture 1.2.1 (Stanchescu [45]). Suppose 𝑑 ≥ 2 and 𝐴 ⊂ R𝑑 is a finite set such
that dim(𝐴) = 𝑑. Then

|𝐴 − 𝐴| ≥
(
2𝑑 − 2 + 1

𝑑 − 1

)
|𝐴| − (2𝑑2 − 4𝑑 + 3).
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This conjecture was only known to be true for 𝑑 = 2, 3. In Chapter 2, we prove
Conjecture 1.2.1 in full provided only that |𝐴| is sufficiently large in terms of 𝑑,
essentially resolving the problem of minimising the value of |𝐴 − 𝐴| over all 𝑑-
dimensional sets 𝐴 of a given size. Our method builds on work of Mudgal [31] and
earlier work of Stanchescu [44, 46].

Theorem 1.2.2. Suppose 𝑑 ≥ 2 and 𝐴 ⊂ R𝑑 is a finite set such that dim(𝐴) = 𝑑.
Then, provided |𝐴| is sufficiently large in terms of 𝑑,

|𝐴 − 𝐴| ≥
(
2𝑑 − 2 + 1

𝑑 − 1

)
|𝐴| − (2𝑑2 − 4𝑑 + 3).

1.3 Sums of linear transformations
We look again at Problem 1.1.1. Over the integers (𝑅 = 𝑀 = Z), this problem was
essentially solved by Bukh [8].

Theorem 1.3.1 (Bukh [8]). If 𝜆1, . . . , 𝜆𝑘 are coprime integers, then, for any finite
set of integers 𝐴,

|𝜆1 · 𝐴 + · · · + 𝜆𝑘 · 𝐴| ≥ (|𝜆1 | + · · · + |𝜆𝑘 |) |𝐴| − 𝑜( |𝐴|),

which is best possible up to the lower-order term.

This result was later tightened by Balog and Shakan [2] when 𝑘 = 2 and then
Shakan [42] in the general case, improving the 𝑜( |𝐴|) term to a constant depending
only on 𝜆1, . . . , 𝜆𝑘 (see also [11, 12, 15, 23, 30] for some earlier work on specific
cases).

In this thesis, we will be concerned with generalizations of these results to higher
dimensions, for example, when 𝑀 = Z𝑑 . One possible direction is to again look at
sums of dilates with the restriction that 𝐴 is 𝑑-dimensional (see, for example, [3, 25,
31–33]). Another direction is to allow more kinds of dilates by setting 𝑅 = Mat𝑑 (Z),
the ring of 𝑑 × 𝑑 integer matrices. This is encapsulated in the following conjecture
of Bukh. This conjecture first appeared on Bukh’s webpage, but has since been
reiterated by several other authors [28, 33, 42].

Conjecture 1.3.2. Suppose that L1, . . . ,L𝑘 ∈ Mat𝑑 (Z) have no common non-
trivial invariant subspace and L1Z𝑑 + · · · + L𝑘Z𝑑 = Z𝑑 . Then, for any finite subset
𝐴 of Z𝑑 ,

|L1𝐴 + · · · + L𝑘𝐴| ≥ (| det(L1) |1/𝑑 + · · · + | det(L𝑘 ) |1/𝑑)𝑑 |𝐴| − 𝑜( |𝐴|).
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The intuition behind this conjecture comes from the Brunn–Minkowski inequality,
the statement that for bodies 𝐴, 𝐵 ⊂ R𝑑 , the measure of their sumset is 𝜇(𝐴 + 𝐵) ≥
(𝜇(𝐴)1/𝑑 + 𝜇(𝐵)1/𝑑)𝑑 , where 𝜇 is the Lebesgue measure on R𝑑 . The conjecture is
then the statement that, under appropriate technical conditions, a discrete analogue
of the Brunn–Minkowski inequality should hold, possibly with some correction term
to deal with boundary effects.

It turns out that Bukh’s conjecture is not quite correct and both conditions, that
L1, . . . ,L𝑘 have no common non-trivial invariant subspace and that L1Z𝑑 + · · · +
L𝑘Z𝑑 = Z𝑑 , need modification. The correct conditions are irreducibility and
coprimality, which we define in Chapter 3. This gives the following modified
version of Bukh’s conjecture.

Conjecture 1.3.3. Suppose that L1, . . . ,L𝑘 ∈ Mat𝑑 (Z) are irreducible and co-
prime. Then, for any finite subset 𝐴 of Z𝑑 ,

|L1𝐴 + · · · + L𝑘𝐴| ≥
(
| det(L1) |1/𝑑 + · · · + | det(L𝑘 ) |1/𝑑

)𝑑
|𝐴| − 𝑜( |𝐴|).

In Chapter 3, we prove this modified conjecture for 𝑘 = 2 and any 𝑑 in the following
strong form. We note that this result is best possible up to the lower-order term in
certain cases, for instance, when 𝑑 = 2, L1 is the identity and L2 ∈ Mat2(Z) is a
dilate of a rotation about the origin through an angle which is not an integer multiple
of 𝜋.

Theorem 1.3.4. Suppose thatL1,L2 ∈ Mat𝑑 (Z) are irreducible and coprime. Then
there are constants 𝐷, 𝜎 > 0 such that, for any finite subset 𝐴 of Z𝑑 ,

|L1𝐴 + L2𝐴| ≥
(
| det(L1) |1/𝑑 + | det(L2) |1/𝑑

)𝑑
|𝐴| − 𝐷 |𝐴|1−𝜎 .

Despite the Brunn–Minkowski inequality being tight, the bound in Conjecture 1.3.3
is not tight in many cases. Indeed, one expects tightness from Brunn–Minkowski
only if there exists a convex set 𝐴 ⊂ R𝑑 such that L1𝐴, . . . ,L𝑘𝐴 are all homothetic,
which does not hold in general. This motivates the following problem.

Problem 1.3.5. Given L1,L2, . . . ,L𝑘 ∈ Mat𝑑 (Z) which are irreducible and co-
prime, determine the largest possible constant 𝐻 = 𝐻 (L1, . . . ,L𝑘 ) such that the
following holds. For any finite subset 𝐴 of Z𝑑 ,

|L1𝐴 + L2𝐴 + · · · + L𝑘𝐴| ≥ 𝐻 |𝐴| − 𝑜( |𝐴|).



5

Bukh’s conjecture then says that

𝐻 (L1, . . . ,L𝑘 ) ≥ (| det(L1) |1/𝑑 + · · · + | det(L𝑘 ) |1/𝑑)𝑑 ,

although we do not expect equality in general.

We will revisit this problem again in Chapter 7. Using the results from previous
chapters, we determine the exact value of 𝐻 (L1, . . . ,L𝑘 ) for pre-commuting matri-
ces. In particular, this resolves Problem 1.3.5 for 𝑘 = 2 and any 𝑑, because, as we
will see, any pair L1,L2 of irreducible and coprime matrices are non-singular and
hence pre-commuting.

1.4 Sums of real and complex dilates
We again look at Problem 1.1.1. This time, consider the setting where 𝑀 = 𝑅 = R

or C. As mentioned before, if 𝜆1, . . . , 𝜆𝑘 ∈ Z and 𝐴 ⊂ Z, then this is completely
solved by Bukh in Theorem 1.3.1. Consider now the general case when the 𝜆𝑖 are
allowed to be any real (or complex) number, and 𝐴 a finite subset of the real (or
complex) numbers. By scaling the 𝜆𝑖, we may assume without loss of generality
that one of the 𝜆𝑖 is 1. With this in mind, we have the following problem.

Problem 1.4.1. Given 𝜆1, . . . , 𝜆𝑘 ∈ C, determine the smallest possible value of
|𝐴 + 𝜆1 · 𝐴 + · · · + 𝜆𝑘 · 𝐴| in terms of |𝐴|.

For instance, when the 𝜆𝑖 are rational, by “clearing denominators,” we may write
𝜆𝑖 = 𝑝𝑖/𝑞 with 𝑝1, . . . , 𝑝𝑘 , 𝑞 coprime. Then, the result of Bukh (Theorem 1.3.1),
which easily extends to all 𝐴 ⊂ R, implies that

|𝐴 + 𝜆1 · 𝐴 + · · · + 𝜆𝑘 · 𝐴| ≥ 𝑞(1 + |𝜆1 | + · · · + |𝜆𝑘 |) |𝐴| − 𝑜( |𝐴|),

which is best possible up to the lower-order term.

Transcendental dilates
Let us consider the case 𝑘 = 1, where we are estimating the size of the simpler
|𝐴 + 𝜆 · 𝐴|. For transcendental 𝜆, it turns out that |𝐴 + 𝜆 · 𝐴| grows superlinearly in
|𝐴|, that is, for any constant 𝐶 > 0, |𝐴 + 𝜆 · 𝐴| ≥ 𝐶 |𝐴| for |𝐴| large enough. Can we
get a more precise growth rate of |𝐴 + 𝜆 · 𝐴| in terms of |𝐴|?

Konyagin and Łaba [27] showed that there exists an absolute constant 𝑐 > 0 such
that

|𝐴 + 𝜆 · 𝐴| ≥ 𝑐 log |𝐴|
log log |𝐴| |𝐴|.
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This result was subsequently improved by Sanders [39], by Schoen [41] and again
by Sanders [40] using successive quantitative refinements of Freiman’s theorem [17]
on sets of small doubling, with Sanders’ second bound saying that there exists an
absolute constant 𝑐 > 0 such that, for |𝐴| sufficiently large,

|𝐴 + 𝜆 · 𝐴| ≥ 𝑒log𝑐 |𝐴| |𝐴|.

This already comes quite close to matching the best known upper bound, due to
Konyagin and Łaba [27], which says that there exists 𝑐′ > 0 and, for any fixed
transcendental number 𝜆, arbitrarily large finite subsets 𝐴 of R such that

|𝐴 + 𝜆 · 𝐴| ≤ 𝑒𝑐′
√

log |𝐴| |𝐴|.

In Chapter 4, we show that this upper bound is in fact best possible up to the constant
𝑐′.

Theorem 1.4.2. There is an absolute constant 𝑐 > 0 such that

|𝐴 + 𝜆 · 𝐴| ≥ 𝑒𝑐
√

log |𝐴| |𝐴|

for any finite subset 𝐴 of C and any transcendental number 𝜆 ∈ C.

Algebraic dilates
For algebraic 𝜆1, . . . , 𝜆𝑘 , the minimum size of 𝐴 + 𝜆1 · 𝐴 + · · · + 𝜆𝑘 · 𝐴 only grows
linearly in |𝐴|. Thus, in the algebraic case, we are interested in this linear rate.

Problem 1.4.3. Given algebraic 𝜆1, . . . , 𝜆𝑘 ∈ C, determine the largest possible
constant 𝐻 = 𝐻 (𝜆1, . . . , 𝜆𝑘 ) such that the following holds. For any finite subset
𝐴 ⊂ C, we have |𝐴 + 𝜆1 · 𝐴 + · · · + 𝜆𝑘 · 𝐴| ≥ 𝐻 |𝐴| − 𝑜( |𝐴|).

Let us first consider this problem for the case 𝑘 = 1. There is a general result due to
Chen and Fang [10], itself improving an earlier result of Breuillard and Green [7],
saying that, for any fixed 𝜆 ≥ 1, |𝐴 + 𝜆 · 𝐴| ≥ (1 + 𝜆 − 𝑜(1)) |𝐴| holds for all finite
subsets 𝐴 of R. This is best possible when 𝜆 is an integer, but can be quite slack in
other cases, for instance, when 𝜆 = 𝑝/𝑞 with 𝑝 and 𝑞 coprime and 𝑝, 𝑞 > 1 as seen
in Theorem 1.3.1.

In their paper, Krachun and Petrov [28] studied the case where 𝜆 =
√

2, showing
that

|𝐴 +
√

2 · 𝐴| ≥ (1 +
√

2)2 |𝐴| − 𝑜( |𝐴|),
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which is best possible up to the lower-order term, as may be seen by considering
the set 𝐴 = {𝑥 + 𝑦

√
2 : 0 ≤ 𝑥 < 𝑀, 0 ≤ 𝑦 < 𝑁} with the ratio 𝑀/𝑁 approaching√

2. They also formulated a conjecture for a general real algebraic 𝜆. Indeed, if
𝑓 (𝑥) ∈ Z[𝑥] is the minimal polynomial of 𝜆, assumed to have coprime coefficients,
and 𝑓 (𝑥) = ∏𝑑

𝑖=1(𝑎𝑖𝑥+𝑏𝑖) is a full complex factorization of 𝑓 , let𝐻 (𝜆) = ∏𝑑
𝑖=1( |𝑎𝑖 |+

|𝑏𝑖 |). For example, if 𝜆 = (𝑝/𝑞)1/𝑑 is in its simplest form, then 𝐻 (𝜆) = (𝑝1/𝑑 +
𝑞1/𝑑)𝑑 .

Krachun and Petrov proved that there exists 𝐴 ⊂ R of arbitrarily large size with
|𝐴 + 𝜆 · 𝐴| = 𝐻 (𝜆) |𝐴| − 𝑜( |𝐴|). They conjectured that this value 𝐻 (𝜆) is best
possible.

Conjecture 1.4.4 (Krachun–Petrov [28]). For any real algebraic number 𝜆, and
finite subset 𝐴 ⊂ R,

|𝐴 + 𝜆 · 𝐴| ≥ 𝐻 (𝜆) |𝐴| − 𝑜( |𝐴|).

In Chapter 6, we determine𝐻 (𝜆1, . . . , 𝜆𝑘 ), completely solving Problem 1.4.3, which
includes Conjecture 1.4.4 as a special case.

Theorem 1.4.5. Let 𝜆1, . . . , 𝜆𝑘 be algebraic numbers. Then for any subset 𝐴 of C,

|𝐴 + 𝜆1 · 𝐴 + · · · + 𝜆𝑘 · 𝐴| ≥ 𝐻 (𝜆1, . . . , 𝜆𝑘 ) |𝐴| − 𝑜( |𝐴|),

where 𝐻 (𝜆1, . . . , 𝜆𝑘 ) is an explicit constant that is best possible.

A crucial ingredient of this result is a Freiman-type structure theorem for sets with
small sums of dilates, stated below.

Theorem 1.4.6. Let 𝐶, 𝑝 > 0. Then there are constants 𝑛 = 𝑛(𝐶, 𝑝) and 𝐹 =

𝐹 (𝐶, 𝑝) such that for any 𝐴 ⊂ O𝐾 satisfying

|𝐴 + 𝜆1 · 𝐴 + · · · + 𝜆𝑘 · 𝐴| ≤ 𝐶 |𝐴|,

there exists a 𝑝-proper O𝐾-GAP 𝑃 ⊂ O𝐾 containing 𝐴 of dimension at most 𝑛 and
size at most 𝐹 |𝐴|.

The definition of an O𝐾-GAP, and the proof of this result, are quite technical, so we
dedicate the entirety of Chapter 5 to them.

Problems 1.4.3 and 1.3.5 are very closely related. To see this connection, first
consider the case 𝑘 = 1 and let 𝐾 = Q(𝜆), the number field generated by an
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algebraic number 𝜆. This is a finite field extension of Q, say of degree 𝑑. Then,
Q(𝜆) � Q𝑑 as a Q-vector space, and multiplication by 𝜆 is equivalent to a linear map
L ∈ Mat𝑑 (Q) under this isomorphism. Thus, the problem of estimating |𝐴 + 𝜆 · 𝐴|
for 𝐴 ⊂ R is equivalent to the problem of estimating |𝐴′ + L𝐴′| for 𝐴′ ⊂ Q𝑑 .

In Chapter 7, we make this equivalence precise. In particular, we show that the
problem of estimating |𝐴 + 𝜆1 · 𝐴 + · · · + 𝜆𝑘 · 𝐴| for 𝜆𝑖 algebraic is equivalent to
estimating |L0𝐴 + L1 · 𝐴 + · · · + L𝑘 · 𝐴| for pre-commuting matrices L0, . . . ,L𝑘 ∈
Mat𝑑 (Z). We will define pre-commuting matrices and classify them in Chapter 7.
Using this equivalence, we can deduce results about algebraic dilates from linear
transformations, and vice versa. As an example, we show that Theorem 1.3.4 can
be translated to prove Conjecture 1.4.4 for 𝜆 of the form (𝑝/𝑞)1/𝑑 . In the other
direction, we show that Theorem 1.4.5 can be translated to solve Problem 1.3.5 for
pre-commuting matrices.

1.5 Sums of dilates mod 𝑝
Let us return to the following simple case of Problem 1.1.1 – estimating the minimum
size of |𝐴+𝜆 · 𝐴| in terms of |𝐴|. In all the previous sections, we considered 𝐴 living
in an ambient space 𝑀 without torsion, such as Z𝑑 or C. This time, we consider
𝑀 = Z/𝑝Z, the group of large prime order 𝑝, and 𝜆 an integer.

Over Z, it is a simple exercise to show that |𝐴 + 𝐵 | ≥ |𝐴| + |𝐵 | − 1. Over Z/𝑝Z, the
corresponding inequality, known as the Cauchy–Davenport theorem [9, 14], says
that

|𝐴 + 𝐵 | ≥ min{|𝐴| + |𝐵 | − 1, 𝑝},

since one must account for the possibility that the sumset contains all the elements
of Z/𝑝Z. Several proofs of this inequality are known (see, for example, [1]), but,
unlike the integer case, none of them is particularly simple.

The problem of estimating the minimum size of |𝐴 + 𝜆 · 𝐴| over Z/𝑝Z with 𝑝 prime
was first studied in detail by Plagne [35] and by Fiz Pontiveros [16]. The latter
showed that for every 𝜆 ∈ Z there exists 𝛼 > 0 such that

|𝐴 + 𝜆 · 𝐴| ≥ (|𝜆 | + 1) |𝐴| − 𝐶𝜆

for all |𝐴| ≤ 𝛼𝑝. On the other hand, he showed that for every 𝜆 ∈ Z and 𝜖 > 0 there
exists 𝛿 > 0 such that, for every sufficiently large prime 𝑝, there is a set 𝐴 ⊆ Z/𝑝Z
with |𝐴| ≥ ( 12 − 𝜖)𝑝 such that |𝐴 + 𝜆 · 𝐴| ≤ (1 − 𝛿)𝑝. That is, as |𝐴| approaches
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𝑝/2, one cannot do much better than the Cauchy–Davenport theorem, which tells
us that |𝐴 + 𝜆 · 𝐴| ≥ 2|𝐴| − 1.

For our purposes, it will be convenient to introduce some terminology. For 𝑝 prime,
𝜆 ∈ Z and 𝛼 ∈ (0, 1), we let

ex(Z/𝑝Z, 𝜆, 𝛼) = min {|𝐴 + 𝜆 · 𝐴|/𝑝 : 𝐴 ⊆ Z/𝑝Z, |𝐴| ≥ 𝛼𝑝}

and then define ex(𝜆, 𝛼) = lim sup𝑝 ex(Z/𝑝Z, 𝜆, 𝛼). The problem of asymptotically
estimating the minimum size of sums of dilates over Z/𝑝Z may then be rephrased
as the problem of determining ex(𝜆, 𝛼). This seems very difficult in full generality,
though the results of Fiz Pontiveros described above imply that

• ex(𝜆, 𝛼) = ( |𝜆 | + 1)𝛼 for 𝜆 fixed and 𝛼 sufficiently small in terms of 𝜆 and

• ex(𝜆, 𝛼) < 1 for 𝛼 < 1
2 .

We look at the case where 𝛼 is fixed and 𝜆 is allowed to grow. In rough terms, we
wish to understand how small the sum of dilates 𝐴+𝜆 · 𝐴 can be if we fix the density
𝛼 of 𝐴 and let 𝜆 tend to infinity. More precisely, we set ex(𝛼) = lim sup𝜆→∞ ex(𝜆, 𝛼)
and investigate the behavior of ex(𝛼).

By Cauchy–Davenport, if 𝛼 ≥ 1
2 , then ex(𝛼) = 1. Moreover, if 𝛼 ≤ 1

2 , then, again
by Cauchy–Davenport, |𝐴 + 𝜆 · 𝐴| ≥ 2|𝐴| − 1, so ex(𝛼) ≥ 2𝛼. On the other hand,
since |𝐴 + 𝜆 · 𝐴| ≤ 𝑝, we always have the trivial upper bound ex(𝛼) ≤ 1.

In Chapter 8, we improve these simple bounds significantly, giving a reasonably
complete picture of the behavior of ex(𝛼).

Theorem 1.5.1. There exist constants 𝐶,𝐶′, 𝑐 > 0 such that

𝑒𝐶
′ log𝑐 (1/𝛼)𝛼 ≤ ex(𝛼) ≤ 𝑒𝐶

√
log(1/𝛼)𝛼

for all 𝛼 ∈ (0, 1
2 ). Moreover, ex(𝛼) < 1 for all 𝛼 ∈ (0, 1

2 ).

1.6 Notation and preliminaries
For functions 𝑓 , 𝑔 : N → R, we use the following “Big-O” and Vinogradov nota-
tions.

1. We write 𝑓 = 𝑂 (𝑔) to mean there exists a constant 𝐶 > 0 such that | 𝑓 (𝑛) | ≤
𝐶𝑔(𝑛) for all sufficiently large 𝑛. We also write 𝑓 ≪ 𝑔 to mean the same
thing.
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2. We write 𝑓 = 𝑜(𝑔) to mean lim𝑛→∞ 𝑓 (𝑛)/𝑔(𝑛) = 0.

3. We write 𝑓 = Ω(𝑔) to mean 𝑔 = 𝑂 ( 𝑓 ).

4. We write 𝑓 = Θ(𝑔) to mean 𝑓 = 𝑂 (𝑔) and 𝑔 = 𝑂 ( 𝑓 ). We also write 𝑓 ∼ 𝑔
to mean the same thing.

Next, we state some standard results from additive combinatorics which we will be
using repeatedly. We have the following sum and difference version of the Ruzsa
triangle inequality.

Lemma 1.6.1 (Ruzsa [38]). For any finite subset 𝑋,𝑌, 𝑍 of an abelian group, the
following holds.

1. |𝑋 | |𝑌 + 𝑍 | ≤ |𝑋 + 𝑌 | |𝑋 + 𝑍 |.

2. |𝑋 | |𝑌 − 𝑍 | ≤ |𝑋 − 𝑌 | |𝑋 − 𝑍 |.

For a positive integer𝑚 and a set 𝐴, denote by𝑚𝐴 the𝑚-fold sumset 𝐴+ 𝐴+ · · ·+ 𝐴.
This is not to be confused with the dilate 𝑚 · 𝐴.

Lemma 1.6.2 (Plünnecke–Ruzsa [36]). If 𝐴 and 𝐵 are finite subsets of an abelian
group and 𝐾 > 0 is a constant so that |𝐴 + 𝐵 | ≤ 𝐾 |𝐴|, then for all nonnegative
integers 𝑚, 𝑛, |𝑚𝐵 − 𝑛𝐵| ≤ 𝐾𝑚+𝑛 |𝐴|.

A fundamental result in additive combinatorics is Freiman’s structure theorem. A
generalized arithmetic progression (or GAP for short) is a set 𝑃 of the form

𝑃 = {𝑣0 + 𝑎1𝑣1 + · · · + 𝑎𝑑𝑣𝑑 : 0 ≤ 𝑎𝑖 < 𝐿1 for all 𝑖} , (1.1)

for some integers 𝑣0, 𝑣1, . . . , 𝑣𝑑 , 𝐿1, . . . , 𝐿𝑑 , where 𝑑 is the dimension of the GAP
𝑃. We say that 𝑃 is proper if the terms in (1.1) are distinct. Freiman’s theorem can
then be stated as:

Theorem 1.6.3 (Freiman [17]). Let 𝐾 > 0. Then there exist 𝑑, 𝐹 > 0 depending
only on 𝐾 such that the following holds. If 𝐴 ⊂ Z satisfies |𝐴 + 𝐴| ≤ 𝐾 |𝐴|, then 𝐴
is contained in a proper GAP of dimension at most 𝑑 and size at most 𝐹 |𝐴|.
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C h a p t e r 2

DIFFERENCE SETS IN R𝑑

Parts of this chapter are based on the author’s publications. The materials have been
adapted for inclusion in this thesis.

[1] D. Conlon and J. Lim, Difference sets in R𝑑 , to appear in Israel Journal of
Mathematics (2025), doi: 10.1007/s11856-025-2717-2.

Recall from the introduction that a subset 𝐴 of R𝑑 is 𝑘-dimensional, written
dim(𝐴) = 𝑘 , if the dimension of the affine subspace spanned by 𝐴 is 𝑘 . In other
words, 𝐴 is contained in an affine subspace of dimension 𝑘 , but not in an affine
subspace of dimension 𝑘 − 1. In this chapter, we are interested in the minimum size
of |𝐴 − 𝐴| in terms of |𝐴|, where 𝐴 ⊂ R𝑑 is 𝑑-dimensional.

For small 𝑑, the problem is well understood. Indeed, for 𝑑 = 1, it is an elementary
observation that |𝐴 − 𝐴| ≥ 2|𝐴| − 1, which is tight for arithmetic progressions,
while, for 𝑑 = 2, the bound |𝐴 − 𝐴| ≥ 3|𝐴| − 3, tight for the union of two parallel
arithmetic progressions with the same length and common difference, was proven
by Freiman, Heppes and Uhrin [18]. More generally, they showed that if 𝐴 is a finite
𝑑-dimensional subset of R𝑑 , then

|𝐴 − 𝐴| ≥ (𝑑 + 1) |𝐴| − 𝑑 (𝑑 + 1)/2,

in analogy with Freiman’s result on |𝐴 + 𝐴|. This estimate was later generalized by
Ruzsa [37], who showed that if 𝐴, 𝐵 ⊂ R𝑑 are finite sets such that |𝐴| ≥ |𝐵 | and
dim(𝐴 + 𝐵) = 𝑑, then

|𝐴 + 𝐵 | ≥ |𝐴| + 𝑑 |𝐵 | − 𝑑 (𝑑 + 1)/2. (2.1)

Finally, for 𝑑 = 3, Stanchescu [44], making use of this inequality of Ruzsa, proved
that |𝐴 − 𝐴| ≥ 4.5|𝐴| − 9 for any finite 3-dimensional subset 𝐴 of R3. This is
again tight, with the example now being a parallelogram of four parallel arithmetic
progressions with the same length and common difference.

In general, the best known construction is due to Stanchescu [45] and comes from
a collection of 2𝑑 − 2 carefully placed parallel arithmetic progressions with the

https://doi.org/10.1007/s11856-025-2717-2
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same length and common difference. More precisely, set 𝑇 = {𝑒0, 𝑒1, . . . , 𝑒𝑑−2},
where 𝑒0 is the origin and {𝑒1, . . . , 𝑒𝑑} is the standard basis for R𝑑 , and, for any
natural number 𝑘 , let 𝐴𝑘 = (𝑇 ∪ (𝑎𝑘 − 𝑇)) + 𝑃𝑘 , where 𝑎𝑘 = 𝑒𝑑 − 𝑘𝑒𝑑−1 and
𝑃𝑘 = {𝑒0, 𝑒𝑑−1, 2𝑒𝑑−1, . . . , (𝑘 − 1)𝑒𝑑−1}. Worked out carefully, this construction
satisfies

|𝐴𝑘 − 𝐴𝑘 | =
(
2𝑑 − 2 + 1

𝑑 − 1

)
|𝐴𝑘 | − (2𝑑2 − 4𝑑 + 3).

Supplanting an earlier conjecture of Ruzsa [37], Stanchescu proposed that this is
best possible.

Conjecture 2.0.1 (Stanchescu [45]). Suppose 𝑑 ≥ 2 and 𝐴 ⊂ R𝑑 is a finite set such
that dim(𝐴) = 𝑑. Then

|𝐴 − 𝐴| ≥
(
2𝑑 − 2 + 1

𝑑 − 1

)
|𝐴| − (2𝑑2 − 4𝑑 + 3).

Until very recently, little was known about this conjecture for 𝑑 ≥ 4 besides the
result of Freiman, Heppes and Uhrin [18]. However, the situation was considerably
improved by Mudgal [31], who showed that

|𝐴 − 𝐴| ≥ (2𝑑 − 2) |𝐴| − 𝑜( |𝐴|)

for any finite 𝑑-dimensional subset 𝐴 of R𝑑 . In this chapter, we build on both
Mudgal’s work and earlier work of Stanchescu [44, 46] to prove Conjecture 2.0.1
in full provided only that |𝐴| is sufficiently large in terms of 𝑑, essentially resolving
the problem of minimising the value of |𝐴 − 𝐴| over all 𝑑-dimensional sets 𝐴 of a
given size.

Theorem 2.0.2. Suppose 𝑑 ≥ 2 and 𝐴 ⊂ R𝑑 is a finite set such that dim(𝐴) = 𝑑.
Then, provided |𝐴| is sufficiently large in terms of 𝑑,

|𝐴 − 𝐴| ≥
(
2𝑑 − 2 + 1

𝑑 − 1

)
|𝐴| − (2𝑑2 − 4𝑑 + 3).

We begin our proof of Theorem 2.0.2 in the next section with a result that we believe
to be of independent interest, an extension of a result of Stanchescu [46] about the
structure of 𝑑-dimensional subsets 𝐴 of R𝑑 with doubling constant smaller than
𝑑 + 4/3 to asymmetric sums 𝐴 + 𝐵.

Remark. Shortly after completing this paper, we learned from Akshat Mudgal that
he had independently proved an asymptotic version of Conjecture 2.0.1. We refer
the reader to his paper [32] for further details.
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2.1 An asymmetric version of a theorem of Stanchescu
Our starting point is with the following theorem of Stanchescu [46] (see also [47]
for the 𝑑 = 3 case).

Theorem 2.1.1 (Stanchescu [46]). Suppose 𝑑 ≥ 2 and 𝐴 ⊂ R𝑑 is a finite set with
dim(𝐴) = 𝑑. If |𝐴| > 3 · 4𝑑 and |𝐴 + 𝐴| < (𝑑 + 4/3) |𝐴| − 1

6 (3𝑑
2 + 5𝑑 + 8), then 𝐴

can be covered by 𝑑 parallel lines.

By considering the set 𝐴 = 𝐴0 ∪ {𝑒3, . . . , 𝑒𝑑} with 𝐴0 = {𝑖𝑒1 + 𝑗 𝑒2 : 0 ≤ 𝑖 < 𝑛, 0 ≤
𝑗 ≤ 2} for some natural number 𝑛, which satisfies |𝐴 + 𝐴| = (𝑑 + 4/3) |𝐴| − 1

6 (3𝑑
2 +

5𝑑 + 8) and yet cannot be covered by 𝑑 parallel lines, we see that Theorem 2.1.1 is
tight. The main result of this section is an extension of Theorem 2.1.1 to asymmetric
sums 𝐴+𝐵. We begin with the two-dimensional case, whose proof relies in a critical
way on the following result of Grynkiewicz and Serra [22, Theorem 1.3].

Lemma 2.1.2 (Grynkiewicz–Serra [22]). Let 𝐴, 𝐵 ⊂ R2 be finite sets, let 𝑙 be a line,
let 𝑟1 be the number of lines parallel to 𝑙 which intersect 𝐴 and let 𝑟2 be the number
of lines parallel to 𝑙 that intersect 𝐵. Then

|𝐴 + 𝐵 | ≥
(
|𝐴|
𝑟1
+ |𝐵 |
𝑟2
− 1

)
(𝑟1 + 𝑟2 − 1).

In particular, we note that, since |𝐵 | ≥ 𝑟2 and 𝑟1 ≥ 1,

|𝐴 + 𝐵 | ≥ 𝑟2

𝑟1
|𝐴|.

Lemma 2.1.3. Let 𝐴, 𝐵 ⊂ R2 be finite sets and 𝑙 be a fixed line. Let 𝑟1 be the number
of lines parallel to 𝑙 which intersect 𝐴. If |𝐴| ≥ |𝐵 | and |𝐴+𝐵 | < |𝐴|+7|𝐵 |/3−5

√︁
|𝐴|,

then either 𝑟1 ≤ 2 or 𝑟1 > |𝐴|/4.

Proof. Notice that if 𝐴 is at most 1 dimensional, then either 𝑟1 = 1 or 𝑟1 = |𝐴|, so
we may assume that dim(𝐴) = 2. Let 𝑟2 be the number of lines parallel to 𝑙 which
intersect 𝐵. We consider 2 cases, depending on whether 𝑟1 is at most

√︁
|𝐴| or not.

Case 1: 𝑟1 ≤
√︁
|𝐴|
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We have 10|𝐴|/3 ≥ |𝐴 + 𝐵| ≥ |𝐴|𝑟2/𝑟1, so 𝑟2 ≤ 10𝑟1/3 ≤ 4
√︁
|𝐴|. Thus, by

Lemma 2.1.2 and the fact that |𝐴| ≥ |𝐵 |,

|𝐴 + 𝐵 | ≥
(
|𝐴|
𝑟1
+ |𝐵 |
𝑟2
− 1

)
(𝑟1 + 𝑟2 − 1)

= |𝐴| + 𝑟2 − 1
𝑟1
|𝐴| +

(
1 + 𝑟1 − 1

𝑟2

)
|𝐵 | − 𝑟1 − 𝑟2 + 1

≥ |𝐴| +
(
1 + 𝑟2 − 1

𝑟1
+ 𝑟1 − 1

𝑟2

)
|𝐵 | − 5

√︁
|𝐴|.

If 𝑟2 = 1 and 𝑟1 ≥ 3, then this last expression is |𝐴| + 𝑟1 |𝐵 | − 5
√︁
|𝐴| ≥ |𝐴| + 3|𝐵 | −

5
√︁
|𝐴|. If 𝑟2 = 2 and 𝑟1 ≥ 3, then it is

|𝐴| +
(
1
2
+ 1
𝑟1
+ 𝑟1

2

)
|𝐵 | − 5

√︁
|𝐴| ≥ |𝐴| + 7

3
|𝐵 | − 5

√︁
|𝐴|.

If 𝑟2 ≥ 3 and 𝑟1 ≥ 3, then it is at least

|𝐴| +
(
3 − 1

𝑟1
− 1
𝑟2

)
|𝐵 | − 5

√︁
|𝐴| ≥ |𝐴| + 7

3
|𝐵 | − 5

√︁
|𝐴|.

In each case, we contradict our assumption that |𝐴 + 𝐵 | < |𝐴| + 7|𝐵 |/3 − 5
√︁
|𝐴|, so

we must have 𝑟1 ≤ 2.

Case 2: 𝑟1 ≥
√︁
|𝐴|

Let 𝑟′1 = |𝐴|/𝑟1 and 𝑟′2 = |𝐵 |/𝑟2, so that 𝑟′1 ≤
√︁
|𝐴| and

|𝐴 + 𝐵 | ≥
(
|𝐴|
𝑟′1
+ |𝐵 |
𝑟′2
− 1

)
(𝑟′1 + 𝑟

′
2 − 1),

which is the same expression as in the previous case, but now 𝑟′1, 𝑟
′
2 may not be

integers. Nevertheless, we still have 1 ≤ 𝑟′1 ≤ |𝐴| and 1 ≤ 𝑟′2 ≤ |𝐵 |, so that
|𝐴 + 𝐵| ≥ 𝑟 ′2

𝑟 ′1
|𝐴| and, therefore, 𝑟′2 ≤ 4

√︁
|𝐴| holds similarly. Expanding the equation

above and using |𝐴| ≥ |𝐵 |, we have

|𝐴 + 𝐵 | ≥ |𝐴| +
(
1 +

𝑟′2
𝑟′1
+
𝑟′1 − 1
𝑟′2
− 1
𝑟′1

)
|𝐵 | − 5

√︁
|𝐴|

≥ |𝐴| +
(
1 + 2

√︄
𝑟′1 − 1
𝑟′1
− 1
𝑟′1

)
|𝐵 | − 5

√︁
|𝐴|.

Setting 𝑐 =

√︂
𝑟 ′1−1
𝑟 ′1

, we see that if 𝑟1 ≤ |𝐴|/4 or, equivalently, 𝑟′1 ≥ 4, then 𝑐 ≥
√

3
2

and the expression above is |𝐴| + (2𝑐 + 𝑐2) |𝐵 | − 5
√︁
|𝐴| ≥ |𝐴| + 7|𝐵 |/3− 5

√︁
|𝐴|. But

this again contradicts our assumption, so we must have 𝑟1 > |𝐴|/4. □



15

For higher dimensions, we will use an induction scheme based on taking a series of
compressions. Let us first say what a compression is in this context.

Definition 2.1.4. Let 𝐻 be a hyperplane in R𝑑 and 𝑣 ∈ R𝑑 a vector not parallel to 𝐻.
For a finite set 𝐴 ⊂ R𝑑 , the compression of 𝐴 onto 𝐻 with respect to 𝑣, denoted by
𝑃(𝐴) = 𝑃𝐻,𝑣 (𝐴), is formed by replacing the points on any line 𝑙 parallel to 𝑣 which
intersects 𝐴 at 𝑠 ≥ 1 points with the points 𝑢 + 𝑗𝑣, 𝑗 = 0, 1, . . . , 𝑠 − 1, where 𝑢 is
the intersection of 𝑙 with 𝐻.

By preserving the ordering of the points on each line, we may view the compression
𝑃 as a pointwise map 𝐴 → 𝑃(𝐴), so we may talk about points of 𝐴 being fixed
by 𝑃. Note that it is clearly the case that |𝑃(𝐴) | = |𝐴|. Moreover, sumsets cannot
increase in size after applying this compression operation. That this is the case is
our next result.

Lemma 2.1.5. For finite sets 𝐴, 𝐵 ⊂ R𝑑 and a compression 𝑃,

|𝑃(𝐴) + 𝑃(𝐵) | ≤ |𝐴 + 𝐵 |.

Proof. Without loss of generality, we may assume that 𝐻 passes through the origin.
Let 𝑝 : R𝑑 → 𝐻 be the projection onto 𝐻 along 𝑣. For 𝑢 ∈ 𝑝(𝐴), let 𝑙𝑢 be the
line through 𝑢 parallel to 𝑣 and define 𝑋𝑢 = 𝑋 ∩ 𝑙𝑢 for any set 𝑋 ⊂ R𝑑 . Note that
𝑝(𝑃(𝐴)) = 𝑝(𝐴) and so 𝑝(𝑃(𝐴) + 𝑃(𝐵)) = 𝑝(𝐴 + 𝐵). It therefore suffices to show
that | (𝑃(𝐴) + 𝑃(𝐵))𝑢 | ≤ |(𝐴 + 𝐵)𝑢 | for each 𝑢 ∈ 𝑝(𝐴 + 𝐵) = 𝑝(𝐴) + 𝑝(𝐵). Since
𝑃(𝐴)𝑥 is a set of the form {𝑥 + 𝑗𝑣 : 𝑗 = 0, . . . , 𝑠 − 1}, we have

| (𝑃(𝐴) + 𝑃(𝐵))𝑢 | = max
{
|𝑃(𝐴)𝑥 + 𝑃(𝐵)𝑦 | : 𝑥 ∈ 𝑝(𝐴), 𝑦 ∈ 𝑝(𝐵), 𝑥 + 𝑦 = 𝑢

}
= max

{
|𝑃(𝐴)𝑥 | + |𝑃(𝐵)𝑦 | − 1 : 𝑥 ∈ 𝑝(𝐴), 𝑦 ∈ 𝑝(𝐵), 𝑥 + 𝑦 = 𝑢

}
= max

{
|𝐴𝑥 | + |𝐵𝑦 | − 1 : 𝑥 ∈ 𝑝(𝐴), 𝑦 ∈ 𝑝(𝐵), 𝑥 + 𝑦 = 𝑢

}
≤ |(𝐴 + 𝐵)𝑢 |. □

Our main compression lemma, which draws on ideas in the work of Stanchescu [46,
47], is now as follows.

Lemma 2.1.6. Let 𝐴, 𝐵 ⊂ R𝑑 be finite sets such that dim(𝐴) = 𝑑 ≥ 3 and 𝑙 be a
fixed line. Suppose that there are exactly 𝑠 < |𝐴| lines parallel to 𝑙 which intersect
𝐴. Then there are sets 𝐴′, 𝐵′ ⊂ R𝑑 satisfying the following properties:

1. |𝐴′| = |𝐴|, |𝐵′| = |𝐵 |;



16

2. |𝐴′ + 𝐵′| ≤ |𝐴 + 𝐵 |;

3. there are exactly 𝑠 lines 𝑙′1, . . . , 𝑙
′
𝑠 parallel to 𝑙 intersecting 𝐴′;

4. dim(𝐴′) = 𝑑;

5. 𝑙′1, . . . , 𝑙
′
𝑠−1 lie on a hyperplane;

6. 𝑙′𝑠 intersects 𝐴′ at a single point.

Proof. The sets 𝐴′, 𝐵′ will be obtained by taking a series of compressions, so 1 and
2 will automatically be satisfied by Lemma 2.1.5. Let 𝑒1, . . . , 𝑒𝑑 be the standard
basis of R𝑑 . By applying an affine transformation if necessary, we may assume that
𝑙 is the line R𝑒𝑑 and that 𝐴 contains the set 𝑆 = {0, 𝑒1, . . . , 𝑒𝑑} (this is possible since
at least one line parallel to 𝑙 intersects 𝐴 in at least 2 points). For each 𝑖, let 𝐻𝑖 be
the hyperplane through 0 perpendicular to 𝑒𝑖. Let 𝑃𝑖 = 𝑃𝐻𝑖 ,𝑒𝑖 be the compression
onto 𝐻𝑖 with respect to 𝑒𝑖. Let 𝐴1 = 𝑃𝑑 (𝐴), noting that this set satisfies 3 and
𝑠 = |𝐴1 ∩ 𝐻𝑑 |. Furthermore, for any compression 𝑃𝑖, 𝑖 < 𝑑, |𝑃𝑖 (𝐴1) ∩ 𝐻𝑑 | = 𝑠, so
𝑃𝑖 (𝐴1) also satisfies 3. Now set 𝐴2 = 𝑃1(𝑃2(· · · 𝑃𝑑−1(𝐴1) · · · )). Then 𝐴2 ⊂ N𝑑

0
again satisfies 3 and, since 𝑆 ⊆ 𝐴2, dim(𝐴2) = 𝑑 and it also satisfies 4. Moreover,
𝐴2 has the property that if (𝑥1, . . . , 𝑥𝑑) ∈ 𝐴2, then, for any 𝑦1, . . . , 𝑦𝑑 ∈ N0 with
𝑦𝑖 ≤ 𝑥𝑖 for all 𝑖, (𝑦1, . . . , 𝑦𝑑) ∈ 𝐴2.

We now show that a finite number of further compressions will give us a set addi-
tionally satisfying 5 and 6. Suppose 𝐴2 can be covered by 𝑛 hyperplanes parallel to
𝐻𝑑−1, i.e., the (𝑑 −1)th coordinate of all the points of 𝐴2 is the set {0, 1, . . . , 𝑛 − 1}.
Let 𝑤 = (𝑤1, . . . , 𝑤𝑑−2, 0, 0) ∈ 𝐴2 be such that 𝑤1 + · · · + 𝑤𝑑−2 is maximal. Then,
whenever 𝑡𝑤 + 𝑢 ∈ 𝐴2 ∩𝐻𝑑−1 ∩𝐻𝑑 for some 𝑢 ∈ N𝑑

0 and 𝑡 ≥ 1, we must have 𝑢 = 0
and 𝑡 = 1. Let 𝑃 be the compression onto 𝐻𝑑−1 with respect to 𝑓 = 𝑒𝑑−1 − 𝑤. Set
𝐴3 = 𝑃(𝐴2). Since 𝑓 is parallel to 𝐻𝑑 , |𝐴3 ∩ 𝐻𝑑 | = |𝐴2 ∩ 𝐻𝑑 | = 𝑠. The number of
lines through 𝐴3 parallel to 𝑙 is |𝐴3 ∩𝐻𝑑 | = 𝑠, so 3 is still satisfied. Moreover, since
𝑤 ∈ 𝐴2, 𝑒𝑑−1 is fixed by 𝑃, so 𝑆 ⊆ 𝐴3 and 4 is still satisfied. We now consider two
cases:

Case 1: 𝑛 = 2

We claim that 𝐴3 is covered by 𝐻𝑑−1 and the single line 𝑒𝑑−1 + R𝑒𝑑 , so that 5 is
satisfied with 𝑙′𝑠 = 𝑒𝑑−1 + R𝑒𝑑 . Indeed, by the maximality of ∥𝑤∥1, the points of 𝐴2

on any vertical line 𝑢 + R𝑒𝑑 with 𝑢 ∈ 𝐻𝑑 \ {𝑒𝑑−1} are mapped by 𝑃 into a vertical
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line contained in 𝐻𝑑−1. To see this, suppose 𝑒𝑑−1 + 𝑟𝑒𝑑 + 𝑣 ∈ 𝐴2 with 𝑣 ∈ 𝐻𝑑−1∩𝐻𝑑
and 𝑟 ∈ N0. Then 𝑒𝑑−1 + 𝑟𝑒𝑑 + 𝑣 is fixed by 𝑃 iff 𝑣 + 𝑟𝑒𝑑 + 𝑤 ∈ 𝐴2. If 𝑣 ≠ 0, then
𝑣 + 𝑤 ∉ 𝐴2 by the maximality of 𝑤, so 𝑣 + 𝑟𝑒𝑑 + 𝑤 ∉ 𝐴2 and 𝑒𝑑−1 + 𝑟𝑒𝑑 + 𝑣 is not
fixed by the compression, being moved instead to 𝑣 + 𝑟𝑒𝑑 + 𝑤.

Case 2: 𝑛 > 2

Suppose (𝑛 − 1)𝑒𝑑−1 + 𝑣 ∈ 𝐴2 with 𝑣 ∈ 𝐻𝑑−1. Then, since (𝑛 − 1)𝑤 + 𝑣 ∉ 𝐴2 as in
Case 1, (𝑛 − 1)𝑒𝑑−1 + 𝑣 is not fixed by the compression. Thus, 𝐴3 is contained in
fewer than 𝑛 hyperplanes parallel to 𝐻𝑑−1. By repeatedly applying compressions of
this type, we will eventually reach the previous case. Abusing notation very slightly,
we shall still call the set obtained after these repeated compressions 𝐴3.

Thus, 𝐴3 is covered by 𝐻𝑑−1 and the line 𝑒𝑑−1 + R𝑒𝑑 . Suppose now that 𝑟 > 0
is the largest integer such that 𝑟𝑒𝑑 ∈ 𝐴3. Let 𝑃′ be the compression with respect
to 𝑔 = 𝑒𝑑−1 − 𝑟𝑒𝑑 and set 𝐴4 = 𝑃′(𝐴3). Then all points of 𝐴3 in 𝐻𝑑−1 and 𝑒𝑑−1

are fixed by 𝑃′, but 𝑒𝑑−1 + 𝑡𝑒𝑑 is mapped to (𝑟 + 𝑡)𝑒𝑑 for each 𝑡 > 0. Thus,
𝐴4∩ (𝑒𝑑−1+𝐻𝑑−1) = {𝑒𝑑−1}, so that 𝐴4 satisfies 3-6. We may therefore set 𝐴′ = 𝐴4.
Finally, to obtain 𝐵′, we simply apply the same series of compressions to 𝐵 that we
applied to 𝐴. □

We are now in a position to prove the main result of this section, the promised
asymmetric version of Theorem 2.1.1.

Theorem 2.1.7. Let 𝑑 ≥ 2, 𝐴, 𝐵 ⊂ R𝑑 be finite sets and 𝑙 be a line. Let 𝑟 be the
number of lines parallel to 𝑙 which intersect 𝐴. Suppose that 𝐴 is 𝑑-dimensional,
|𝐴| ≥ |𝐵 | and |𝐴+𝐵 | < |𝐴| + (𝑑 +1/3) |𝐵 | −2𝑑+1

√︁
|𝐴| −𝐸𝑑 , where 𝐸𝑑 = (𝑑 +2)2𝑑−2.

Then 𝑟 = 𝑑 or 𝑟 > |𝐴|/4.

Proof. Notice that since dim(𝐴) = 𝑑, we must have 𝑟 ≥ 𝑑. We shall induct on
𝑑. The case 𝑑 = 2 was dealt with in Lemma 2.1.3. We may therefore assume that
𝑑 ≥ 3. 𝐸𝑑 is chosen to satisfy the following inequalities:

1. 𝐸𝑑 ≥ 2(𝐸𝑑−1 + 1),

2. 𝐸𝑑 ≥ (𝑑 + 2) (2𝑑 + 𝐸𝑑−1 + 1)2.
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If |𝐴| ≤ (2𝑑 + 𝐸𝑑−1 + 1)2, then |𝐴| + (𝑑 + 1/3) |𝐵 | ≤ (𝑑 + 2) |𝐴| ≤ 𝐸𝑑 , so it is not
possible that |𝐴 + 𝐵 | < |𝐴| + (𝑑 + 1/3) |𝐵 | − 2𝑑+1

√︁
|𝐴| − 𝐸𝑑 . We may therefore

assume that |𝐴| > (2𝑑 + 𝐸𝑑−1 + 1)2 and, thus, that |𝐴| − 2𝑑
√︁
|𝐴| − 𝐸𝑑−1 − 1 ≥ 0.

Suppose that 𝑑 < 𝑟 ≤ |𝐴|/4. By Lemma 2.1.6, replacing 𝐴 with 𝐴′, we can assume
that 𝐴 = 𝐴1 ∪ {𝑒𝑑}, where 𝐴1 lies on the hyperplane 𝐻 defined by 𝑥𝑑 = 0. Let
𝐻1, . . . , 𝐻𝑠 be the hyperplanes parallel to 𝐻 that intersect 𝐵 and let 𝐵𝑖 = 𝐵 ∩ 𝐻𝑖.

If 𝑠 = 1, then |𝐴 + 𝐵 | = |𝐴1 + 𝐵 | + |𝐵 |. Moreover, 𝐴1 is (𝑑 − 1)-dimensional and
is covered by 𝑟 − 1 ≤ |𝐴1 |/4 lines parallel to 𝑙. Thus, if |𝐵 | ≤ |𝐴1 |, our induction
hypothesis implies that |𝐴1+𝐵 | ≥ |𝐴1 |+ (𝑑−1+1/3) |𝐵 |−2𝑑

√︁
|𝐴1 |−𝐸𝑑−1. If instead

|𝐵 | > |𝐴1 |, then |𝐵 | = |𝐴1 | + 1, so, letting 𝐵′ be 𝐵 with an element removed, our
induction hypothesis implies that |𝐴1 + 𝐵 | ≥ |𝐴1 + 𝐵′| ≥ |𝐴1 | + (𝑑 − 1 + 1/3) ( |𝐵 | −
1) − 2𝑑

√︁
|𝐴1 | − 𝐸𝑑−1. In either case, we have

|𝐴 + 𝐵 | ≥ |𝐴1 | + (𝑑 + 1/3) ( |𝐵 | − 1) − 2𝑑
√︁
|𝐴1 | − 𝐸𝑑−1

≥ |𝐴| + (𝑑 + 1/3) |𝐵 | − 2𝑑+1
√︁
|𝐴| − 𝐸𝑑 .

If 𝑠 ≥ 2, then |𝐴 + 𝐵 | ≥ |𝐴1 + 𝐵 | = |𝐴1 + 𝐵1 | + · · · + |𝐴1 + 𝐵𝑠 |. By our induction
hypothesis, |𝐴1 + 𝐵𝑖 | ≥ |𝐴1 | + (𝑑 − 1 + 1/3) |𝐵𝑖 | − 2𝑑

√︁
|𝐴1 | − 𝐸𝑑−1 for each 𝑖 and so

|𝐴 + 𝐵 | ≥ 𝑠 |𝐴1 | + (𝑑 − 1 + 1/3) |𝐵 | − 2𝑑𝑠
√︁
|𝐴1 | − 𝑠𝐸𝑑−1

≥ 2|𝐴| + (𝑠 − 2) |𝐴| − 𝑠 + (𝑑 − 1 + 1/3) |𝐵 |
− 2𝑑+1

√︁
|𝐴| − 2𝑑 (𝑠 − 2)

√︁
|𝐴| − 𝑠𝐸𝑑−1

≥ |𝐴| + (𝑑 + 1/3) |𝐵 | − 2𝑑+1
√︁
|𝐴| − 2(𝐸𝑑−1 + 1)

+ (𝑠 − 2) ( |𝐴| − 2𝑑
√︁
|𝐴| − 𝐸𝑑−1 − 1)

≥ |𝐴| + (𝑑 + 1/3) |𝐵 | − 2𝑑+1
√︁
|𝐴| − 𝐸𝑑 . □

2.2 Special cases of Theorem 2.0.2
In this section, we show that the conclusion of Theorem 2.0.2 holds if we make some
additional assumptions about the structure of 𝐴. We begin with a simple example
of such a result.

Lemma 2.2.1. Let 𝐴 ⊂ R𝑑 be a finite set with dim(𝐴) = 𝑑 that can be covered by 𝑑
parallel lines. Then

|𝐴 − 𝐴| ≥
(
2𝑑 − 2 + 2

𝑑

)
|𝐴| − (𝑑2 − 𝑑 + 1).
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Proof. Suppose 𝐴 = 𝐴1∪· · ·∪𝐴𝑑 where each 𝐴𝑖 lies on a line parallel to some fixed
line 𝑙. Let 𝑎𝑖 = |𝐴𝑖 | and assume, without loss of generality, that 𝑎1 ≥ 𝑎2 ≥ · · · ≥ 𝑎𝑑 .
Since 𝐴 is 𝑑-dimensional, the 𝑑 lines covering 𝐴 are in general position, i.e., no 𝑘
of them lie on a (𝑘 − 1)-dimensional affine subspace for each 1 ≤ 𝑘 ≤ 𝑑. Thus, for
𝑖 ≠ 𝑗 , the sets 𝐴𝑖 − 𝐴 𝑗 are pairwise disjoint and also disjoint from 𝐴1 − 𝐴1. Hence,
we have

|𝐴 − 𝐴| ≥ |𝐴1 − 𝐴1 | +
∑︁
𝑖≠ 𝑗

|𝐴𝑖 − 𝐴 𝑗 |

≥ 2𝑎1 − 1 +
∑︁
𝑖≠ 𝑗

(𝑎𝑖 + 𝑎 𝑗 − 1)

≥ 2𝑎1 − 1 + 2(𝑑 − 1)
∑︁
𝑖

𝑎𝑖 − 𝑑 (𝑑 − 1)

≥
(
2𝑑 − 2 + 2

𝑑

)
|𝐴| − (𝑑2 − 𝑑 + 1). □

We will use a common framework for the next two lemmas, with the following
definition playing a key role.

Definition 2.2.2. Let 𝐴 ⊂ R𝑑 be a finite set with dim(𝐴) = 𝑑 and 𝑙 be a fixed line.
A hyperplane 𝐻 is said to be a supporting hyperplane of 𝐴 if all points of 𝐴 either
lie on 𝐻 or on one side of 𝐻. A supporting hyperplane 𝐻 of 𝐴 is said to be a major
hyperplane of 𝐴 (with respect to 𝑙) if 𝐻 is parallel to 𝑙 and |𝐻 ∩ 𝐴| is maximal.

Suppose now that 𝐴 ⊂ R𝑑 is 𝑑-dimensional and 𝑙 is a fixed line. Let 𝐻 be a major
hyperplane with respect to 𝑙 and 𝐻1 = 𝐻, 𝐻2, . . . , 𝐻𝑟 be the hyperplanes parallel to
𝐻 that intersect 𝐴, arranged in the natural order. Let 𝐴𝑖 = 𝐴 ∩ 𝐻𝑖 for 𝑖 = 1, . . . , 𝑟 .
Since |𝐴1 | is maximal, |𝐴1 | ≥ |𝐴𝑟 |. Let 𝜋 be the projection along 𝑙 onto a hyperplane
perpendicular to 𝑙. Then dim(𝜋(𝐴)) = 𝑑 − 1 and 𝜋(𝐻) is a maximal face of the
convex hull of 𝜋(𝐴) (since |𝐻 ∩ 𝐴| is maximal), so dim(𝜋(𝐴1)) = 𝑑 − 2, which
implies that there are at least 𝑑−1 lines parallel to 𝑙 intersecting 𝐴1. If any such line
intersects 𝐴1 in at least 2 points, then dim(𝐴1) = 𝑑 − 1. Assuming this setup, the
next lemma explores the situation where 𝐴 is covered by two parallel hyperplanes.

Lemma 2.2.3. Suppose that 𝑟 = 2, dim(𝐴1) = 𝑑 − 1 and there are 𝑠 lines parallel
to 𝑙 intersecting 𝐴1.



20

1. If 𝑠 = 𝑑 − 1, then

|𝐴 − 𝐴| ≥ (2𝑑 − 2) |𝐴| + 2
𝑑 − 1

|𝐴1 | − (2𝑑2 − 4𝑑 + 3)

≥
(
2𝑑 − 2 + 1

𝑑 − 1

)
|𝐴| − (2𝑑2 − 4𝑑 + 3).

2. If 𝑑 ≤ 𝑠 ≤ |𝐴1 |/4 and

|𝐴1 − 𝐴1 | ≥
(
2𝑑 − 4 + 1

𝑑 − 2

)
|𝐴1 | − (2𝑑2 − 8𝑑 + 9),

then, given 0 < 𝜖 < min( 23 ,
1
𝑑−2 )−

1
𝑑−1 , there is some 𝑛0 such that for |𝐴| ≥ 𝑛0,

|𝐴 − 𝐴| ≥
(
2𝑑 − 2 + 1

𝑑 − 1
+ 𝜖

)
|𝐴|.

Proof. For 1, note, by Lemma 2.2.1, that

|𝐴1 − 𝐴1 | ≥
(
2𝑑 − 4 + 2

𝑑 − 1

)
|𝐴1 | − (𝑑2 − 3𝑑 + 3).

By Ruzsa’s inequality (2.1), |𝐴1 − 𝐴2 | ≥ |𝐴1 | + (𝑑 − 1) |𝐴2 | − 𝑑 (𝑑 − 1)/2 and so

|𝐴 − 𝐴| ≥ |𝐴1 − 𝐴1 | + 2|𝐴1 − 𝐴2 |

≥
(
2𝑑 − 2 + 2

𝑑 − 1

)
|𝐴1 | + (2𝑑 − 2) |𝐴2 | − 𝑑 (𝑑 − 1) − (𝑑2 − 3𝑑 + 3)

≥ (2𝑑 − 2) |𝐴| + 2
𝑑 − 1

|𝐴1 | − (2𝑑2 − 4𝑑 + 3)

≥
(
2𝑑 − 2 + 1

𝑑 − 1

)
|𝐴| − (2𝑑2 − 4𝑑 + 3).

For 2, 𝐴1 is (𝑑 − 1)-dimensional and cannot be covered by 𝑑 − 1 lines, so this case
only exists for 𝑑 ≥ 3. Since |𝐴1 | ≥ |𝐴2 |, Theorem 2.1.7 implies that

|𝐴1 − 𝐴2 | ≥ |𝐴1 | + (𝑑 − 2/3) |𝐴2 | − 2𝑑
√︁
|𝐴1 | − 𝐸𝑑−1.

But then, since |𝐴1 | ≥ |𝐴|/2 can be taken sufficiently large,

|𝐴 − 𝐴| ≥ |𝐴1 − 𝐴1 | + 2|𝐴1 − 𝐴2 |

≥
(
2𝑑 − 4 + 1

𝑑 − 2

)
|𝐴1 | − (2𝑑2 − 8𝑑 + 9)

+ 2|𝐴1 | + 2(𝑑 − 2/3) |𝐴2 | − 2𝑑+1
√︁
|𝐴1 | − 2𝐸𝑑−1

≥
(
2𝑑 − 2 + 1

𝑑 − 1
+ 𝜖

)
|𝐴| +

(
1

(𝑑 − 1) (𝑑 − 2) − 𝜖
)
|𝐴1 |

− (2𝑑2 − 8𝑑 + 9) − 2𝑑+1
√︁
|𝐴1 | − 2𝐸𝑑−1

≥
(
2𝑑 − 2 + 1

𝑑 − 1
+ 𝜖

)
|𝐴|,
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as required. □

We now consider the situation where every line parallel to 𝑙 meets 𝐴 in a reasonable
number of points.

Lemma 2.2.4. Let 0 < 𝜖 < 1/(4𝑑 + 1) (𝑑 − 1). Suppose that every line parallel to
𝑙 intersecting 𝐴 intersects 𝐴 in at least 4𝑑 points. Then there is a constant 𝐶𝑑 such
that either

1.
|𝐴 − 𝐴| ≥

(
2𝑑 − 2 + 1

𝑑 − 1
+ 𝜖

)
|𝐴| − 𝐶𝑑

or

2. 𝑟 = 2 and

|𝐴 − 𝐴| ≥ (2𝑑 − 2) |𝐴| + 2
𝑑 − 1

|𝐻 ∩ 𝐴| − (2𝑑2 − 4𝑑 + 3).

In particular,

|𝐴 − 𝐴| ≥
(
2𝑑 − 2 + 1

𝑑 − 1

)
|𝐴| − (2𝑑2 − 4𝑑 + 3)

for |𝐴| sufficiently large.

Proof. We shall induct on 𝑑 and |𝐴|. Let 𝑛0 be chosen sufficiently large that the
following conditions hold:

1. Lemma 2.2.3 holds with this 𝑛0.

2. Whenever 𝐵 ⊂ R𝑑 has dim(𝐵) = 𝑑 −1 > 1, each line parallel to 𝑙 intersecting
𝐵 intersects it in at least 4(𝑑 − 1) points and |𝐵 | ≥ 𝑛0/2, then

|𝐵 − 𝐵 | ≥
(
2𝑑 − 4 + 1

𝑑 − 2

)
|𝐵 | − (2𝑑2 − 8𝑑 + 9).

This is possible by induction since 𝐶𝑑−1 is already determined.

3. 𝜖𝑛0 ≥ 𝑑 (𝑑 − 1).
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Then𝐶𝑑 ≥ 2𝑑2−4𝑑 +3 is chosen sufficiently large that the first option in the lemma
trivially holds for |𝐴| ≤ 𝑛0.

The base case 𝑑 = 2 and the inductive step will be handled together. If |𝐴| ≤ 𝑛0,
the lemma holds, so we may assume that |𝐴| > 𝑛0. Since dim(𝐴1) = 𝑑 − 1, there
are at least 𝑑 − 1 lines parallel to 𝑙 intersecting 𝐴1. Each such line intersects 𝐴1 in
at least 4𝑑 points, so we have |𝐴1 | ≥ 4𝑑 (𝑑 − 1).

First suppose 𝑟 = 2. If 𝐴1 is covered by 𝑠 lines parallel to 𝑙, then, as above, 𝑠 ≥ 𝑑−1.
If 𝑠 = 𝑑 − 1, then, by Lemma 2.2.3,

|𝐴 − 𝐴| ≥ (2𝑑 − 2) |𝐴| + 2
𝑑 − 1

|𝐴1 | − (2𝑑2 − 4𝑑 + 3).

If 𝑠 > 𝑑 − 1, then we must have 𝑑 > 2, since, for 𝑑 = 2, dim(𝐴1) = 1 and 𝐴1 is
covered by a single line. Since dim(𝐴1) = 𝑑 − 1 > 1 and |𝐴1 | ≥ |𝐴|/2 ≥ 𝑛0/2,
condition 2 implies that

|𝐴1 − 𝐴1 | ≥
(
2𝑑 − 4 + 1

𝑑 − 2

)
|𝐴1 | − (2𝑑2 − 8𝑑 + 9).

Each line parallel to 𝑙 passes through at least 4 points of 𝐴1, so 𝑠 ≤ |𝐴1 |/4. Thus,
by Lemma 2.2.3 and condition 1,

|𝐴 − 𝐴| ≥
(
2𝑑 − 2 + 1

𝑑 − 1
+ 𝜖

)
|𝐴|.

Now suppose 𝑟 > 2. Let 𝐵 = 𝐴 \𝐻𝑟 and note that dim(𝐵) = 𝑑 and |𝐵 | ≥ |𝐴|/2. By
our induction hypothesis,

|𝐵 − 𝐵 | ≥
(
2𝑑 − 2 + 1

𝑑 − 1

)
|𝐵 | − 𝐶𝑑 .

Let 𝐻′ be a major hyperplane of 𝐵 with respect to 𝑙 (which is not necessarily a major
hyperplane of 𝐴!), so that |𝐵 ∩ 𝐻′| ≥ |𝐴1 |. If |𝐴1 | ≥ 2𝜖 |𝐴|, then, using Ruzsa’s
inequality (2.1) and condition 3,

|𝐴 − 𝐴| ≥ |𝐵 − 𝐵 | + 2|𝐴1 − 𝐴𝑟 |

≥
(
2𝑑 − 2 + 1

𝑑 − 1

)
|𝐵 | − 𝐶𝑑 + 2|𝐴1 | + (2𝑑 − 2) |𝐴𝑟 | − 𝑑 (𝑑 − 1)

≥
(
2𝑑 − 2 + 1

𝑑 − 1

)
|𝐴| +

(
2 − 1

𝑑 − 1

)
|𝐴1 | − 𝐶𝑑 − 𝑑 (𝑑 − 1)

≥
(
2𝑑 − 2 + 1

𝑑 − 1
+ 2𝜖

)
|𝐴| − 𝐶𝑑 − 𝑑 (𝑑 − 1)

≥
(
2𝑑 − 2 + 1

𝑑 − 1
+ 𝜖

)
|𝐴| − 𝐶𝑑 .
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We may therefore assume that |𝐴1 | < 2𝜖 |𝐴|.

If 𝐵 cannot be covered by two translates of 𝐻′, then, by our induction hypothesis,

|𝐵 − 𝐵 | ≥
(
2𝑑 − 2 + 1

𝑑 − 1
+ 𝜖

)
|𝐵 | − 𝐶𝑑 .

Thus, again using Ruzsa’s inequality (2.1),

|𝐴 − 𝐴| ≥ |𝐵 − 𝐵 | + 2|𝐴1 − 𝐴𝑟 |

≥
(
2𝑑 − 2 + 1

𝑑 − 1
+ 𝜖

)
|𝐵| + 2|𝐴1 | + (2𝑑 − 2) |𝐴𝑟 | − 𝑑 (𝑑 − 1) − 𝐶𝑑

≥
(
2𝑑 − 2 + 1

𝑑 − 1
+ 𝜖

)
|𝐴| +

(
2 − 1

𝑑 − 1
− 𝜖

)
|𝐴1 | − 𝑑 (𝑑 − 1) − 𝐶𝑑

≥
(
2𝑑 − 2 + 1

𝑑 − 1
+ 𝜖

)
|𝐴| − 𝐶𝑑 ,

since |𝐴1 | ≥ 4𝑑 (𝑑 − 1).

We may therefore assume that 𝐵 is covered by two translates of 𝐻′, say 𝐻′ and
𝐻′′. If 𝐴𝑟 ⊆ 𝐻′ ∪ 𝐻′′, then 𝐴 ⊆ 𝐻′ ∪ 𝐻′′, so one of |𝐴 ∩ 𝐻′|, |𝐴 ∩ 𝐻′′| is
at least |𝐴|/2, say |𝐴 ∩ 𝐻′| ≥ |𝐴|/2. But 𝐻 is a major hyperplane of 𝐴, so
|𝐴1 | = |𝐴∩𝐻 | ≥ |𝐴∩𝐻′| ≥ |𝐴|/2, contradicting our assumption that |𝐴1 | < 2𝜖 |𝐴|.
Hence, 𝐴𝑟 ⊈ 𝐻′ ∪ 𝐻′′.

If
|𝐵 − 𝐵 | ≥

(
2𝑑 − 2 + 1

𝑑 − 1
+ 𝜖

)
|𝐵 | − 𝐶𝑑 ,

then the above argument holds similarly. Thus, by our induction hypothesis, we
must have that

|𝐵 − 𝐵 | ≥ (2𝑑 − 2) |𝐵 | + 2
𝑑 − 1

|𝐻′ ∩ 𝐵 | − (2𝑑2 − 4𝑑 + 3).

Let 𝐵1 = 𝐵 ∩𝐻′, 𝐵2 = 𝐵 ∩𝐻′′, noting that |𝐵1 | ≥ |𝐵2 |. Fix also a point 𝑥 ∈ 𝐴𝑟 that
does not lie on 𝐻′ ∪ 𝐻′′. If 𝑥 lies between 𝐻′ and 𝐻′′, then 𝑥 − 𝐵1, 𝐵1 − 𝑥, 𝐵 − 𝐵
are pairwise disjoint. If 𝐻′ lies between 𝑥 and 𝐻′′, then 𝑥 − 𝐵2, 𝐵2 − 𝑥, 𝐵 − 𝐵 are
pairwise disjoint. If𝐻′′ lies between 𝑥 and 𝐻′, then 𝑥−𝐵1, 𝐵1−𝑥, 𝐵−𝐵 are pairwise
disjoint. In any case, there is some 𝑖 ∈ {1, 2} such that 𝑥 − 𝐵𝑖, 𝐵𝑖 − 𝑥, 𝐵 − 𝐵 are
pairwise disjoint. Since |𝐵1 | ≥ |𝐵2 |,
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|𝐴 − 𝐴| ≥ |𝐵 − 𝐵 | + 2|𝐵2 |

≥ (2𝑑 − 2) |𝐵 | + 2
𝑑 − 1

|𝐵1 | − (2𝑑2 − 4𝑑 + 3) + 2|𝐵2 |

≥
(
2𝑑 − 2 + 2

𝑑 − 1

)
|𝐵 | − (2𝑑2 − 4𝑑 + 3)

=

(
2𝑑 − 2 + 2

𝑑 − 1

)
( |𝐴| − |𝐴𝑟 |) − (2𝑑2 − 4𝑑 + 3)

≥
(
2𝑑 − 2 + 1

𝑑 − 1
+ 𝜖

)
|𝐴| − 𝐶𝑑 ,

where the last inequality follows from |𝐴𝑟 | ≤ |𝐴1 | ≤ 2𝜖 |𝐴| and 𝜖 < 1/(4𝑑 + 1) (𝑑 −
1). □

2.3 Proof of Theorem 2.0.2
The final ingredient in our proof is the following structure theorem due to Mud-
gal [33, Lemma 3.2], saying that sets with small doubling in R𝑑 can be almost
completely covered by a reasonably small collection of parallel lines.

Lemma 2.3.1 (Mudgal [33]). For any 𝑐 > 0, there exist constants 0 < 𝜎 ≤ 1/2 and
𝐶 > 0 such that if 𝐴 ⊂ R𝑑 is a finite set with |𝐴| = 𝑛 and |𝐴 + 𝐴| ≤ 𝑐𝑛, then there
exist parallel lines 𝑙1, 𝑙2, . . . , 𝑙𝑟 with

|𝐴 ∩ 𝑙1 | ≥ · · · ≥ |𝐴 ∩ 𝑙𝑟 | ≥ |𝐴 ∩ 𝑙1 |1/2 ≥ 𝐶−1𝑛𝜎

and
|𝐴 \ (𝑙1 ∪ 𝑙2 ∪ · · · ∪ 𝑙𝑟) | < 𝐶𝑐𝑛1−𝜎 .

We are now ready to prove Theorem 2.0.2, which, we recall, states that if 𝑑 ≥ 2 and
𝐴 ⊂ R𝑑 is a finite set such that dim(𝐴) = 𝑑, then, provided |𝐴| is sufficiently large,

|𝐴 − 𝐴| ≥
(
2𝑑 − 2 + 1

𝑑 − 1

)
|𝐴| − (2𝑑2 − 4𝑑 + 3).

Proof of Theorem 2.0.2. We shall proceed by induction on 𝑑, starting from the
known case 𝑑 = 2 [18]. We will suppose throughout that 𝑛0 is large enough for our
arguments to hold. Our aim is to show that, for all 𝐴 ⊂ R𝑑 with dim(𝐴) = 𝑑,

|𝐴 − 𝐴| ≥
(
2𝑑 − 2 + 1

𝑑 − 1

)
|𝐴| −max(2𝑑2 − 4𝑑 + 3, 𝐷 − |𝐴|/3),
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where 𝐷 ≥ 2𝑑2 − 4𝑑 + 3 is chosen so that the above inequality trivially holds for
|𝐴| ≤ 𝑛0. The result then clearly follows for |𝐴| sufficiently large. We will proceed
by induction on |𝐴|, where the base case |𝐴| ≤ 𝑛0 trivially holds.

We may clearly assume that |𝐴 − 𝐴| ≤ (2𝑑 − 1) |𝐴|, since otherwise we already
have the required conclusion. By the Plünnecke–Ruzsa inequality (Lemma 1.6.2),
we then have |𝐴 + 𝐴| ≤ (2𝑑 − 1)2 |𝐴|. Applying Lemma 2.3.1 with 𝑐 = (2𝑑 − 1)2,
we get parallel lines 𝑙1, . . . , 𝑙𝑟 and constants 0 < 𝜎 ≤ 1/2 and 𝐶 > 0 such that

|𝐴 ∩ 𝑙1 | ≥ · · · ≥ |𝐴 ∩ 𝑙𝑟 | ≥ |𝐴 ∩ 𝑙1 |1/2 ≥ 𝐶−1𝑛𝜎

and
|𝐴 \ (𝑙1 ∪ 𝑙2 ∪ · · · ∪ 𝑙𝑟) | < 𝐶𝑐𝑛1−𝜎,

where 𝑛 = |𝐴|. Since |𝐴 ∩ 𝑙𝑖 | ≥ 𝐶−1𝑛𝜎 for each 𝑖, we have 𝑛 = |𝐴| ≥ 𝑟𝐶−1𝑛𝜎 or
𝑟 ≤ 𝐶𝑛1−𝜎. Let 𝐴′ = 𝐴 ∩ (𝑙1 ∪ · · · ∪ 𝑙𝑟) and 𝑆 = 𝐴 \ 𝐴′, so that |𝑆 | < 𝐶𝑐𝑛1−𝜎. If
dim(𝐴′) = 𝑑1 < 𝑑, then, by our induction hypothesis, for |𝐴| sufficiently large,

|𝐴′ − 𝐴′| ≥
(
2𝑑1 − 2 + 1

𝑑1 − 1

)
|𝐴′| − (2𝑑2

1 − 4𝑑1 + 3).

There are 𝑎1, . . . , 𝑎𝑑−𝑑1 ∈ 𝑆 such that dim(𝐴′ ∪
{
𝑎1, . . . , 𝑎𝑑−𝑑1

}
) = 𝑑. This implies

that 𝑎1, . . . , 𝑎𝑑−𝑑1 lie outside the affine span of 𝐴′, so the sets

𝐴′ − 𝐴′, 𝐴′ − 𝑎1, . . . , 𝐴
′ − 𝑎𝑑−𝑑1 , 𝑎1 − 𝐴′, . . . , 𝑎𝑑−𝑑1 − 𝐴′

are pairwise disjoint. Thus,

|𝐴 − 𝐴| ≥ |𝐴′ − 𝐴′| +
𝑑−𝑑1∑︁
𝑖=1
( |𝐴′ − 𝑎𝑖 | + |𝑎𝑖 − 𝐴′|)

≥
(
2𝑑1 − 2 + 1

𝑑1 − 1

)
|𝐴′| − (2𝑑2

1 − 4𝑑1 + 3) + 2(𝑑 − 𝑑1) |𝐴′|

≥
(
2𝑑 − 2 + 1

𝑑1 − 1

)
( |𝐴| − |𝑆 |) − (2𝑑2

1 − 4𝑑1 + 3)

≥
(
2𝑑 − 2 + 1

𝑑 − 1

)
|𝐴|

for |𝐴| ≥ 𝑛0 sufficiently large. Thus, we may assume that dim(𝐴′) = 𝑑.

For 𝑛0 sufficiently large, we may assume that each line 𝑙𝑖 intersects 𝐴′ in at least
4𝑑 points. Let 𝐻 be a major hyperplane of 𝐴′ with respect to 𝑙1 and let 𝐻1 =
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𝐻, 𝐻2, . . . , 𝐻𝑟 be the translates of 𝐻 covering 𝐴′ in the natural order. Fix 0 < 𝜖 <
1/(4𝑑 + 1) (𝑑 − 1). If we are in the case of Lemma 2.2.4 where

|𝐴′ − 𝐴′| ≥
(
2𝑑 − 2 + 1

𝑑 − 1
+ 𝜖

)
|𝐴′| − 𝐶𝑑 ,

then, since |𝑆 | = 𝑂 ( |𝐴|1−𝜎) is sublinear, for |𝐴| sufficiently large,

|𝐴 − 𝐴| ≥ |𝐴′ − 𝐴′|

≥
(
2𝑑 − 2 + 1

𝑑 − 1
+ 𝜖

)
|𝐴′| − 𝐶𝑑

≥
(
2𝑑 − 2 + 1

𝑑 − 1

)
|𝐴|.

Thus, we may assume that 𝑟 = 2 and

|𝐴′ − 𝐴′| ≥ (2𝑑 − 2) |𝐴′| + 2
𝑑 − 1

|𝐴′1 | − (2𝑑
2 − 4𝑑 + 3).

Let 𝐴′1 = 𝐴′ ∩ 𝐻1 and 𝐴′2 = 𝐴′ ∩ 𝐻2. If 𝑆 ⊈ 𝐻1 ∪ 𝐻2, then there is a point 𝑥 ∈ 𝑆
not lying on the hyperplanes 𝐻1, 𝐻2. But then 𝑥 − 𝐴′

𝑖
, 𝐴′

𝑖
− 𝑥, 𝐴′ − 𝐴′ are pairwise

disjoint for some 𝑖 ∈ {1, 2} and so, since |𝐴′1 | ≥ |𝐴
′
2 |,

|𝐴 − 𝐴| ≥ |𝐴′ − 𝐴′| + 2|𝐴′2 |

≥ (2𝑑 − 2) |𝐴′| + 2
𝑑 − 1

|𝐴′1 | − (2𝑑
2 − 4𝑑 + 3) + 2|𝐴′2 |

≥
(
2𝑑 − 2 + 2

𝑑 − 1

)
|𝐴′| − (2𝑑2 − 4𝑑 + 3)

≥
(
2𝑑 − 2 + 1

𝑑 − 1

)
|𝐴|.

We may therefore assume that 𝑆 ⊆ 𝐻1 ∪ 𝐻2.

Let 𝐴1 = 𝐴 ∩𝐻1 and 𝐴2 = 𝐴 ∩𝐻2. Let 𝐻′ be a major hyperplane of 𝐴 with respect
to 𝑙1 (possibly equal to 𝐻) and 𝐻′1 = 𝐻′, 𝐻′2, . . . , 𝐻

′
𝑠 be the translates of 𝐻′ covering

𝐴, ordered naturally. Let 𝐵𝑖 = 𝐴 ∩ 𝐻′
𝑖

for 𝑖 = 1, . . . , 𝑠. Since 𝐻1, 𝐻2 are both
supporting hyperplanes of 𝐴, we must have |𝐵1 | ≥ max( |𝐴1 |, |𝐴2 |) ≥ |𝐴|/2 > |𝑆 |,
so 𝐵1 must contain at least one point of 𝐴′. Hence, 𝐵1 contains one of the lines
𝑙𝑖 ∩ 𝐴, each of which has at least 2 points, and so dim(𝐵1) = 𝑑 − 1.

Suppose 𝑠 = 2. The number of lines parallel to 𝑙1 intersecting 𝐵1 is at most
𝑟 + |𝑆 | = 𝑂 ( |𝐴|1−𝜎), which is smaller than |𝐵1 |/4. Thus, for 𝑛0 sufficiently large,
by both cases of Lemma 2.2.3,

|𝐴 − 𝐴| ≥
(
2𝑑 − 2 + 1

𝑑 − 1

)
|𝐴| − (2𝑑2 − 4𝑑 + 3).
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We may therefore assume that 𝑠 > 2. Let 𝐵 = 𝐴 \ 𝐵𝑠, noting that |𝐵 | ≥ |𝐴|/2 and
dim(𝐵) = 𝑑. By our induction hypothesis,

|𝐵 − 𝐵 | ≥
(
2𝑑 − 2 + 1

𝑑 − 1

)
|𝐵 | − 𝐷.

Thus, again using Ruzsa’s inequality (2.1),

|𝐴 − 𝐴| ≥ |𝐵 − 𝐵 | + 2|𝐵1 − 𝐵𝑠 |

≥
(
2𝑑 − 2 + 1

𝑑 − 1

)
|𝐵 | − 𝐷 + 2|𝐵1 | + (2𝑑 − 2) |𝐵𝑠 | − 𝑑 (𝑑 − 1)

≥
(
2𝑑 − 2 + 1

𝑑 − 1

)
|𝐴| +

(
2 − 1

𝑑 − 1

)
|𝐵1 | − 𝑑 (𝑑 − 1) − 𝐷

≥
(
2𝑑 − 2 + 1

𝑑 − 1

)
|𝐴| +

(
1 − 1

2(𝑑 − 1)

)
|𝐴| − 𝑑 (𝑑 − 1) − 𝐷

≥
(
2𝑑 − 2 + 1

𝑑 − 1

)
|𝐴| − 𝐷 + |𝐴|/3,

where the last inequality holds if |𝐴|/6 ≥ 𝑛0/6 ≥ 𝑑 (𝑑 − 1). □

2.4 Concluding remarks
By carefully analysing our proof of Theorem 2.0.2, it is possible to deduce some
structural properties of large sets 𝐴 ⊂ R𝑑 with dim(𝐴) = 𝑑 and

|𝐴 − 𝐴| ≤
(
2𝑑 − 2 + 1

𝑑 − 1

)
|𝐴| + 𝑜( |𝐴|).

In particular, such sets can be covered by two parallel hyperplanes𝐻1 and𝐻2, where,
writing 𝐴1 = 𝐴∩𝐻1 and 𝐴2 = 𝐴∩𝐻2, we can assume that 𝐴1 and 𝐴2 have roughly
the same size, differing by 𝑜( |𝐴|). We can also assume that dim(𝐴1) = 𝑑 − 1 and
that 𝐴1 can be covered by 𝑑 − 1 parallel lines 𝑙1, . . . , 𝑙𝑑−1, where the sets 𝐴1 ∩ 𝑙𝑖 all
have approximately equal size, again up to 𝑜( |𝐴|).

In practice, 𝐻1 will be a major hyperplane of 𝐴 with respect to 𝑙1, which, we recall,
means that it is parallel to 𝑙1, it is supporting, in the sense that all points of 𝐴 lie
either on or on one side of it, and |𝐻1 ∩ 𝐴| is as large as possible. Knowing this
allows us to also deduce that dim(𝐴2) = 𝑑 − 1. Indeed, it must be the case that the
affine span of 𝐴2 is parallel to 𝑙1, since otherwise |𝐴1 − 𝐴2 | would be too large. But
then, if dim(𝐴2) < 𝑑 − 1, there is a supporting hyperplane through 𝐴2 and one of
the 𝐴1 ∩ 𝑙𝑖 which contains more points than 𝐻1, contradicting the fact that 𝐻1 is a
major hyperplane. Since |𝐴1 | and |𝐴2 | differ by 𝑜( |𝐴|), this then allows us to argue
that 𝐴2 is also covered by 𝑑 − 1 lines parallel to 𝑙1 of approximately equal size.
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In fact, we can deduce the very same structural properties for large sets 𝐴 ⊂ R𝑑 with
dim(𝐴) = 𝑑 and

|𝐴 − 𝐴| ≤
(
2𝑑 − 2 + 1

𝑑 − 1
+ 𝜖

)
|𝐴| + 𝑜( |𝐴|)

for some 𝜖 > 0, giving a difference version of Stanchescu’s result about the structure
of 𝑑-dimensional subsets of R𝑑 with doubling constant smaller than 𝑑 + 4/3, which
we stated as Theorem 2.1.1. It would be interesting to determine the maximum
value of 𝜖 for which this continues to hold.

Unfortunately, our methods tell us very little about how 𝐴1 and 𝐴2 are related,
though we suspect that 𝐴2 should be close to a translate of −𝐴1. Proving this, which
will likely require a better understanding of when Ruzsa’s inequality (2.1) is tight,
may then lead to a determination of the exact structure of 𝑑-dimensional subsets 𝐴
of R𝑑 with |𝐴 − 𝐴| as small as possible in terms of |𝐴|, a problem that was already
solved for 𝑑 = 2 and 3 by Stanchescu [44].
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C h a p t e r 3

SUMS OF LINEAR TRANSFORMATIONS

Parts of this chapter are based on the author’s publications. The materials have been
adapted for inclusion in this thesis.

[1] D. Conlon and J. Lim, Sums of linear transformations, to appear in Transac-
tions of the American Mathematical Society (2025), arXiv:2203.09827, doi:
10.1090/tran/9433.

In this chapter, we look into the following conjecture of Bukh mentioned in the
introduction.

Conjecture 3.0.1. Suppose that L1, . . . ,L𝑘 ∈ Mat𝑑 (Z) have no common non-
trivial invariant subspace and L1Z𝑑 + · · · + L𝑘Z𝑑 = Z𝑑 . Then, for any finite subset
𝐴 of Z𝑑 ,

|L1𝐴 + · · · + L𝑘𝐴| ≥ (| det(L1) |1/𝑑 + · · · + | det(L𝑘 ) |1/𝑑)𝑑 |𝐴| − 𝑜( |𝐴|).

For 𝑑 = 1, this is the problem on integer dilates, which was solved by Bukh [8].
For larger 𝑑, the intuition behind this conjecture comes from the Brunn–Minkowski
inequality (see, for example, [19]). This classic inequality states that if 𝐴 and 𝐵 are
two non-empty compact subsets of R𝑑 , then

𝜇(𝐴 + 𝐵)1/𝑑 ≥ 𝜇(𝐴)1/𝑑 + 𝜇(𝐵)1/𝑑 ,

where 𝜇 is the Lebesgue measure on R𝑑 . Since 𝜇(L𝐴) = | det(L)|𝜇(𝐴) for any
L ∈ Mat𝑑 (R) and any measurable subset 𝐴 of R𝑑 , we may conclude that, for any
L1,L2 ∈ Mat𝑑 (R),

𝜇(L1𝐴 + L2𝐴) ≥ (𝜇(L1𝐴)1/𝑑 + 𝜇(L2𝐴)1/𝑑)𝑑

≥ (| det(L1) |1/𝑑 + | det(L2) |1/𝑑)𝑑𝜇(𝐴).

Moreover, the analogous statement holds for the sum of more transformations by
a simple induction. Conjecture 3.0.1 is then the statement that, under appropriate
technical conditions, a discrete analogue of this result should hold, possibly with
some correction term to deal with boundary effects.

https://doi.org/10.1090/tran/9433
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The first result towards this conjecture was given by Mudgal [33], who showed that
if L ∈ 𝐺𝐿2(R) has no real eigenvalues, then |𝐴 + L𝐴| ≥ 4|𝐴| − 𝑜( |𝐴|) for any
finite subset 𝐴 of R2. In particular, this confirms Conjecture 3.0.1 when 𝑘 = 𝑑 = 2,
L1 is the identity and | det(L2) | = 1.1 Surprisingly, despite this success, it turns
out that Bukh’s conjecture is not quite correct and both conditions, that L1, . . . ,L𝑘
have no common non-trivial invariant subspace and that L1Z𝑑 + · · · + L𝑘Z𝑑 = Z𝑑 ,
need modification.

The first condition, that L1, . . . ,L𝑘 have no common non-trivial invariant subspace
is clearly necessary, since otherwise, for subsets 𝐴 of such a common invariant
subspace, the problem reduces to one of lower dimension. However, this is not the
only case where the problem can reduce to one of lower dimension. For instance,
a simple concrete example where this can happen is when 𝑑 = 𝑘 = 2 and both L1

and L2 are anti-clockwise rotations about the origin by 𝜋/2. Indeed, even though
| det(L1) | = | det(L2) | = 1, so that the conjecture predicts that |L1𝐴 + L2𝐴| ≥
4|𝐴| − 𝑜( |𝐴|), we only have |L1𝐴 + L2𝐴| = 2|𝐴| − 1 when 𝐴 = {(0, 𝑥) : 𝑥 ∈ [𝑛]}.
In order to rule out such examples, we update Bukh’s condition as follows.

Definition 3.0.2. We say that L1, . . . ,L𝑘 ∈ Mat𝑑 (Z) are irreducible if there are no
non-trivial subspaces𝑈,𝑉 of Q𝑑 of the same dimension such that L𝑖𝑈 ⊆ 𝑉 for all 𝑖.

To reiterate the point, this condition is clearly necessary, since otherwise we may
restrict 𝐴 and the L𝑖 to𝑈, again reducing the problem to one of lower dimension.

Consider now the transformations

L1 =

(
2 0
0 1

)
, L2 =

(
0 −1
1 0

) (
2 0
0 1

)
=

(
0 −1
2 0

)
.

It is easily checked that L1 and L2 are irreducible and that L1Z2 + L2Z2 = Z2.
However, the set 𝐴 = {(𝑥, 2𝑦) : 𝑥, 𝑦 ∈ [𝑛]} has |𝐴| = 𝑛2 and |L1𝐴 + L2𝐴| =
(2𝑛−1)2 ∼ 4|𝐴|, giving another counterexample to Conjecture 3.0.1, which predicts
that |L1𝐴 + L2𝐴| ≥ 8|𝐴| − 𝑜( |𝐴|).

The issue here is that L1 and L2 have a “common right factor” with determinant of
absolute value > 1. On the other hand, Bukh’s condition thatL1Z𝑑+· · ·+L𝑘Z𝑑 = Z𝑑

1There is a caveat here, which is that Mudgal’s result, which applies to arbitrary subsets of
R2, requires that L have no non-trivial invariant subspace over R. Our interpretation of Bukh’s
conjecture, which concerns subsets of Z𝑑 (or Q𝑑), is that there is instead no non-trivial invariant
subspace over Q.
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is equivalent to L1, . . . ,L𝑘 not having a “common left factor” with determinant of
absolute value > 1. Indeed, if L1Z𝑑 + · · · + L𝑘Z𝑑 = 𝐿 ⊊ Z𝑑 , then there is some
P ∈ Mat𝑑 (Z) with determinant of absolute value > 1 such that PZ𝑑 ⊇ 𝐿, which
implies that P−1L𝑖Z𝑑 ⊆ Z𝑑 and so P−1L𝑖 ∈ Mat𝑑 (Z) for all 𝑖. Conversely, if
there is some P ∈ Mat𝑑 (Z) with determinant of absolute value > 1 such that
P−1L𝑖 ∈ Mat𝑑 (Z) for all 𝑖, then L1Z𝑑 + · · · + L𝑘Z𝑑 ⊆ PZ𝑑 ⊊ Z𝑑 . Our second
condition incorporates and generalizes both of these possibilities.

Definition 3.0.3. We say that L1, . . . ,L𝑘 ∈ Mat𝑑 (Z) are coprime if there are no
P,Q ∈ GL𝑑 (Q) with 0 < | det(P) det(Q)| < 1 such that

PL1Q,PL2Q, . . . ,PL𝑘Q ∈ Mat𝑑 (Z).

In particular, L1Z𝑑 + · · · + L𝑘Z𝑑 = Z𝑑 .

To see that this condition is also necessary, observe that, for any 𝐴 ⊂ Q𝑑 , if we let
𝐴′ = Q−1𝐴, then |𝐴′| = |𝐴| and |L1𝐴 + · · · + L𝑘𝐴| = |PL1Q𝐴′ + · · · + PL𝑘Q𝐴′|.
But the transformations PL𝑖Q have smaller determinants, suggesting that the lower
bound should instead be phrased in terms of these determinants.

Taking all these observations into account, we arrive at the following modified
version of Bukh’s conjecture.

Conjecture 3.0.4. Suppose that L1, . . . ,L𝑘 ∈ Mat𝑑 (Z) are irreducible and co-
prime. Then, for any finite subset 𝐴 of Z𝑑 ,

|L1𝐴 + · · · + L𝑘𝐴| ≥
(
| det(L1) |1/𝑑 + · · · + | det(L𝑘 ) |1/𝑑

)𝑑
|𝐴| − 𝑜( |𝐴|).

Our main result is a proof of this modified conjecture for 𝑘 = 2 and any 𝑑 in the
following strong form. We note that this result is best possible up to the lower-order
term in certain cases, for instance, when 𝑑 = 2, L1 is the identity and L2 ∈ Mat2(Z)
is a dilate of a rotation about the origin through an angle which is not an integer
multiple of 𝜋.

Theorem 3.0.5. Suppose thatL1,L2 ∈ Mat𝑑 (Z) are irreducible and coprime. Then
there are constants 𝐷, 𝜎 > 0 such that, for any finite subset 𝐴 of Z𝑑 ,

|L1𝐴 + L2𝐴| ≥
(
| det(L1) |1/𝑑 + | det(L2) |1/𝑑

)𝑑
|𝐴| − 𝐷 |𝐴|1−𝜎 .
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The proof of this result has two main steps. First, in Section 3.1, we use compression
methods to prove a certain discrete version of the Brunn–Minkowski inequality.
The core of the proof is then a bootstrapping argument that starts with a trivial
bound and repeatedly improves it using our Brunn–Minkowski inequality, ultimately
approaching the estimate stated in Theorem 3.0.5. Because the details of this second
step are rather easier to digest when L1 is the identity map, we will, in Section 3.2,
first prove Theorem 3.0.5 in this special case. We then prove the full result in
Section 3.3.

Remark. We note that the results in this chapter are nearly superseded by those
in Chapters 6 and 7. In particular, in Chapter 7, we prove a near-strengthening
of Theorem 3.0.5, establishing that |L1𝐴 + L2𝐴| ≥ 𝐻 (L1,L2) |𝐴| − 𝑜( |𝐴|) for
an explicit constant 𝐻 (L1,L2) that is best possible. This result is not strictly
stronger, as the error term 𝑜( |𝐴|) is weaker than the 𝐷 |𝐴|1−𝜎 error appearing in
Theorem 3.0.5. Nevertheless, the approaches are different, and the ideas presented
in this chapter remain of independent interest.

3.1 A discrete Brunn–Minkowski inequality
In this section, we begin our proof of Theorem 3.0.5 by using compression arguments
to establish the following discrete analogue of the Brunn–Minkowski theorem. We
refer the reader to [6, 20, 21] for a selection of results in a similar vein.

Lemma 3.1.1. Fix a basis {𝑏1, . . . , 𝑏𝑑} of R𝑑 . For each 𝐼 ⊆ [𝑑], let 𝑝𝐼 : R𝑑 → R𝐼

be the projection onto the span of {𝑏𝑖}𝑖∈𝐼 along the given basis. Then, for any finite
subsets 𝐴, 𝐵 of R𝑑 ,

|𝐴 + 𝐵 | ≥ (|𝐴|1/𝑑 + |𝐵 |1/𝑑)𝑑 −
∑︁
𝐼⊊[𝑑]
|𝑝𝐼 (𝐴 + 𝐵) |.

Proof. By applying a suitable linear transformation, we may assume that the basis
is the standard one. Let 𝑝𝑖 = 𝑝 [𝑑]\{𝑖} : R𝑑 → R𝑑−1 be the linear map that removes
the 𝑖th coordinate.

We define 𝑖-compressions for 𝑖 = 1, . . . , 𝑑 as follows. For a set 𝐴 ⊂ R𝑑 and a
point 𝑥 ∈ 𝑝𝑖 (𝐴), let 𝐴𝑥 = 𝑝−1

𝑖
(𝑥). Define the 𝑖-compression of 𝐴 to be the set 𝐴′

such that 𝑝𝑖 (𝐴′) = 𝑝𝑖 (𝐴) and, for each 𝑥 ∈ 𝑝𝑖 (𝐴), the 𝑖th coordinates of 𝐴′𝑥 are
0, 1, . . . , |𝐴𝑥 | − 1. Note that |𝐴′| = |𝐴|, so an 𝑖-compression does not alter the size
of the set.
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Suppose that 𝐴′ and 𝐵′ are the 𝑖-compressions of 𝐴 and 𝐵. We will now show that
|𝐴′ + 𝐵′| ≤ |𝐴 + 𝐵 | and, more generally, that |𝑝𝑆 (𝐴′ + 𝐵′) | ≤ |𝑝𝑆 (𝐴 + 𝐵) | for any
𝑆 ⊆ [𝑑]. If 𝑖 ∉ 𝑆, then 𝑝𝑆 (𝐴′ + 𝐵′) = 𝑝𝑆 (𝐴 + 𝐵). We may therefore assume that
𝑖 ∈ 𝑆. Let 𝑇 = 𝑆 \ {𝑖}. For a set 𝐶 and 𝑥 ∈ 𝑝𝑇 (𝐶), denote by (𝑝𝑆 (𝐶))𝑥 the set
{𝑦 ∈ 𝑝𝑆 (𝐶) : 𝑝𝑇 (𝑦) = 𝑥}. Then, for any 𝑧 ∈ 𝑝𝑇 (𝐴′ + 𝐵′) = 𝑝𝑇 (𝐴′) + 𝑝𝑇 (𝐵′), there
is some 𝑥 ∈ 𝑝𝑇 (𝐴′) = 𝑝𝑇 (𝐴) and 𝑦 ∈ 𝑝𝑇 (𝐵′) = 𝑝𝑇 (𝐵) such that 𝑥 + 𝑦 = 𝑧 and
| (𝑝𝑆 (𝐴′ + 𝐵′))𝑧 | = | (𝑝𝑆 (𝐴′))𝑥 | + |(𝑝𝑆 (𝐵′))𝑦 | − 1. Hence,

| (𝑝𝑆 (𝐴 + 𝐵))𝑧 | ≥ |(𝑝𝑆 (𝐴))𝑥 | + |(𝑝𝑆 (𝐵))𝑦 | − 1 = | (𝑝𝑆 (𝐴′))𝑥 | + |(𝑝𝑆 (𝐵′))𝑦 | − 1

= | (𝑝𝑆 (𝐴′ + 𝐵′))𝑧 |.

Taking the sum over all 𝑧, we have |𝑝𝑆 (𝐴′ + 𝐵′) | ≤ |𝑝𝑆 (𝐴 + 𝐵) |, as claimed. We
therefore see that if the required inequality holds for the 𝑖-compressions of 𝐴 and 𝐵,
then it also holds for the original sets.

By repeatedly taking 𝑖-compressions for 𝑖 = 1, . . . , 𝑑, we may assume that 𝐴, 𝐵 ⊂
Z𝑑≥0. We will say that 𝐴 is 𝑖-compressed if the 𝑖-compression of 𝐴 is 𝐴 itself and
𝐴 is compressed if it is 𝑖-compressed for all 𝑖. Now, by considering the sum of the
coordinates of all the points of 𝐴 or 𝐵, we see that taking the 𝑖-compression strictly
decreases these sums unless they are already 𝑖-compressed. Therefore, by repeatedly
taking 𝑖-compressions for each 𝑖, we may assume that 𝐴 and 𝐵 are compressed. This
means that for any points (𝑥1, . . . , 𝑥𝑑) ∈ 𝐴 and (𝑦1, . . . , 𝑦𝑑) such that 0 ≤ 𝑦𝑖 ≤ 𝑥𝑖
for all 𝑖, (𝑦1, . . . , 𝑦𝑑) ∈ 𝐴 and similarly for 𝐵.

For a point 𝑥 = (𝑥1, . . . , 𝑥𝑑) ∈ Z𝑑 , let 𝐶𝑥 be the closed cube
∏𝑑
𝑖=1 [𝑥𝑖 − 1, 𝑥𝑖] . Define

𝐴∗ =
⋃
𝑥∈𝐴 𝐶𝑥 , a compact set with 𝜇(𝐴∗) = |𝐴|, and define 𝐵∗ similarly. Then, by

the Brunn–Minkowski inequality, we have

𝜇(𝐴∗ + 𝐵∗) ≥ (|𝐴|1/𝑑 + |𝐵 |1/𝑑)𝑑 .

We can write 𝐴∗ + 𝐵∗ as the union of closed cubes

𝐴∗ + 𝐵∗ =
⋃

𝑥∈𝐴+𝐵+{0,−1}𝑑
𝐶𝑥 .

Since 𝐴 and 𝐵 are compressed, so is 𝐴 + 𝐵. Using this fact, we can rewrite 𝐴∗ + 𝐵∗

as a union of closed sets with disjoint interiors in the following way. For 𝑆 ⊆ [𝑑],
let 𝑃𝑆 be the set of points in Z𝑑 such that 𝑝𝑆 (𝑃𝑆) = 𝑝𝑆 (𝐴 + 𝐵) and the coordinates
outside of 𝑆 are all −1. Notice that the 𝑃𝑆 are pairwise disjoint for each 𝑆 ⊆ [𝑑]
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and 𝑃𝑆 ⊆ 𝐴 + 𝐵 + {0,−1}𝑑 . Furthermore, for each 𝑥 ∈ 𝐴 + 𝐵 + {0,−1}𝑑 , let 𝑆 be
the set of coordinates of 𝑥 which are not −1. Then 𝑥 ∈ 𝑃𝑆, so that

𝐴∗ + 𝐵∗ =
⋃
𝑆⊆[𝑑]

⋃
𝑥∈𝑃𝑆

𝐶𝑥 .

In particular, 𝜇(𝐴∗ + 𝐵∗) =
∑
𝑆⊆[𝑑] |𝑃𝑆 | =

∑
𝑆⊆[𝑑] |𝑝𝑆 (𝐴 + 𝐵) |. Hence, since

𝑝 [𝑑] (𝐴 + 𝐵) = 𝐴 + 𝐵, we have

𝜇(𝐴∗ + 𝐵∗) = |𝐴 + 𝐵 | +
∑︁
𝐼⊊[𝑑]
|𝑝𝐼 (𝐴 + 𝐵) |

and the lemma follows. □

Our aim now is to apply this discrete Brunn–Minkowski inequality to prove an
estimate that will play an important role in the bootstrap arguments of the next
two sections. For this, we will need several additional ingredients, beginning with
the following classical theorem of Freiman [17] (see also [5]) on subsets of small
doubling in torsion-free abelian groups. Given such a group𝐺, a proper progression
𝑃 of dimension 𝑠 and size 𝐿 is a set of the form

𝑃 = {𝑣0 + 𝑢1𝑣1 + · · · + 𝑢𝑠𝑣𝑠 : 0 ≤ 𝑢𝑖 < 𝐿𝑖 for 1 ≤ 𝑖 ≤ 𝑠} ,

where 𝐿1𝐿2 · · · 𝐿𝑠 = 𝐿, 𝑣0, 𝑣1, . . . , 𝑣𝑠 are elements of 𝐺 and all of the sums arising
in the definition of 𝑃 are distinct.

Theorem 3.1.2. For any 𝐾 > 0, there exist constants 𝐶1 and 𝐶2 such that if 𝐴 is a
subset of a torsion-free abelian group 𝐺 with |𝐴 + 𝐴| ≤ 𝐾 |𝐴|, then 𝐴 is contained
in a proper progression of dimension 𝑠 ≤ 𝐶1 and size 𝐿 ≤ 𝐶2 |𝐴|.

We also need the following result of Plünnecke–Ruzsa type [28, Lemma 3.1].

Lemma 3.1.3. Let 𝐺 be an abelian group. If sets 𝐴, 𝐵 ⊆ 𝐺 with |𝐴| = |𝐵 | are such
that 𝐶 := 𝐴 + 𝐵 satisfies |𝐶 | ≤ 𝐾 |𝐴| for some 𝐾 > 0, then |𝐶 + 𝐶 | ≤ 𝐾6 |𝐶 |.

Finally, we need the following technical lemma, saying that if L ∈ Mat𝑑 (Q) has no
non-trivial invariant subspace over Q and 𝐴 is a finite subset of Z𝑑 with |𝐴 +L𝐴| ≤
𝐾 |𝐴|, then 𝐴 cannot be concentrated on an affine subspace.

Lemma 3.1.4. Let L ∈ Mat𝑑 (Q) with no non-trivial invariant subspace over Q and
let 𝐴 ⊂ Z𝑑 be such that |𝐴| = 𝑛 and |𝐴 + L𝐴| ≤ 𝐾𝑛 for some 𝐾 > 0. If 𝑈 is a
vector subspace of Q𝑑 of dimension 𝑘 < 𝑑, then every translate of 𝑈 contains at
most (𝐾𝑛)1−2−𝑘 points of 𝐴.
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Proof. The fact that L has no non-trivial invariant subspace implies that L is
invertible (over Q). We prove the lemma by induction on 𝑘 . For 𝑘 = 1, let𝑈1 be a 1-
dimensional subspace. Then, since L is invertible, L𝑈1 is a line. Furthermore, the
line L𝑈1 is not parallel to𝑈1, since𝑈1 is not an invariant subspace of L. Thus, for
any translate𝑈1+𝑢 of𝑈1, | (𝑈1+𝑢)∩𝐴|2 = | ( (𝑈1+𝑢)∩𝐴) +L((𝑈1+𝑢)∩𝐴) | ≤ 𝐾𝑛,
so | (𝑈1 + 𝑢) ∩ 𝐴| ≤ (𝐾𝑛)1/2. This proves the base case of our induction.

For 1 < 𝑘 < 𝑑, let 𝑈𝑘 be a subspace of dimension 𝑘 . Then L𝑈𝑘 ≠ 𝑈𝑘 since L
has no non-trivial invariant subspace, so 𝑉 = L𝑈𝑘 ∩𝑈𝑘 is a subspace of dimension
strictly smaller than 𝑘 . Let 𝑈𝑘 + 𝑢 be a translate of 𝑈𝑘 with | (𝑈𝑘 + 𝑢) ∩ 𝐴| = 𝑚.
Suppose 𝑟 translates of 𝑉 are required to cover (𝑈𝑘 + 𝑢) ∩ 𝐴. Note that for any
collection of translates 𝑉 ′ of 𝑉 , the affine subspaces 𝑉 ′ + L(𝑈𝑘 + 𝑢) are translates
of L𝑈𝑘 and are disjoint. Thus, 𝐾𝑛 ≥ |((𝑈𝑘 + 𝑢) ∩ 𝐴) + L((𝑈𝑘 + 𝑢) ∩ 𝐴) | ≥ 𝑚𝑟 .
On the other hand, each translate of 𝑉 intersects 𝐴 in at most (𝐾𝑛)1−21−𝑘 points by
the induction hypothesis. Thus, 𝑚 ≤ 𝑟 (𝐾𝑛)1−21−𝑘 . Using 𝑚𝑟 ≤ 𝐾𝑛, it follows that
𝑚2 ≤ (𝐾𝑛)2−21−𝑘 , so 𝑚 ≤ (𝐾𝑛)1−2−𝑘 , as desired. □

We now come to our application of Lemma 3.1.1.

Lemma 3.1.5. Let L ∈ Mat𝑑 (Q) with no non-trivial invariant subspace over Q and
let 𝐴 ⊂ Z𝑑 be such that |𝐴 +L𝐴| ≤ 𝐾 |𝐴| for some 𝐾 > 0. Then there are constants
𝐷, 𝜎 > 0 depending only on 𝑑 and 𝐾 such that, for any 𝐵1 ⊆ 𝐴, 𝐵2 ⊆ L𝐴,

|𝐵1 + 𝐵2 | ≥
(
|𝐵1 |1/𝑑 + |𝐵2 |1/𝑑

)𝑑
− 𝐷 |𝐴|1−𝜎 .

Proof. Let 𝑛 = |𝐴|. By Lemma 3.1.3, |𝐴 + L𝐴 + 𝐴 + L𝐴| ≤ 𝐾6 |𝐴 + L𝐴| ≤ 𝐾1𝑛,
where 𝐾1 = 𝐾7. We also claim that

|𝐴 + L𝐴 + L(𝐴 + L𝐴) | ≤ 𝐾2𝑛,

where𝐾2 = 𝐾2
1 . To see this, first note that |𝐴+L𝐴+L𝐴| ≤ |𝐴+L𝐴+𝐴+L𝐴| ≤ 𝐾1𝑛

and |L𝐴 + L𝐴 + L2𝐴| = |𝐴 + 𝐴 + L𝐴| ≤ |𝐴 + L𝐴 + 𝐴 + L𝐴| ≤ 𝐾1𝑛. By applying
the sum version of Ruzsa’s triangle inequality (Lemma 1.6.1) with 𝑋 = L𝐴,𝑌 =

𝐴 + L𝐴, 𝑍 = L𝐴 + L2𝐴, we have

𝑛|𝐴 + L𝐴 + L𝐴 + L2𝐴| ≤ |𝐴 + L𝐴 + L𝐴| |L𝐴 + L𝐴 + L2𝐴| ≤ 𝐾2
1𝑛

2.

Thus, |𝐴 + L𝐴 + L(𝐴 + L𝐴) | ≤ 𝐾2
1𝑛, as claimed.
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Since |𝐴 + L𝐴 + 𝐴 + L𝐴| ≤ 𝐾1𝑛, we can apply Theorem 3.1.2 to conclude that
𝐴 + L𝐴 is contained in a proper progression

𝑃 = {𝑣0 + 𝑢1𝑣1 + · · · + 𝑢𝑠𝑣𝑠 : 0 ≤ 𝑢𝑖 < 𝐿𝑖 for 1 ≤ 𝑖 ≤ 𝑠} ,

where 𝑠 ≤ 𝐾3, 𝐿1 ≥ 𝐿2 ≥ · · · ≥ 𝐿𝑠 and 𝐿1𝐿2 · · · 𝐿𝑠 ≤ 𝐾4𝑛 for some 𝐾3, 𝐾4

depending only on 𝐾 . Note that 𝑃 cannot be contained in a hyperplane, since
otherwise it would contradict Lemma 3.1.4.

Let 𝑖1 = 1 and, for 𝑗 = 2, . . . , 𝑑, set 𝑖 𝑗 to be the smallest number such that 𝑣𝑖 𝑗
does not lie in the span of 𝑣𝑖1 , . . . , 𝑣𝑖 𝑗−1 . Then 𝑣𝑖1 , . . . , 𝑣𝑖𝑑 forms a basis of R𝑑 . By
applying Lemma 3.1.1 with this basis, we get that

|𝐵1 + 𝐵2 | ≥
(
|𝐵1 |1/𝑑 + |𝐵2 |1/𝑑

)𝑑
−

∑︁
𝐼⊊[𝑑]
|𝑝𝐼 (𝐵1 + 𝐵2) |

≥
(
|𝐵1 |1/𝑑 + |𝐵2 |1/𝑑

)𝑑
− 2𝑑 ( |𝑝1(𝐵1 + 𝐵2) | + · · · + |𝑝𝑑 (𝐵1 + 𝐵2) |),

where 𝑝 𝑗 = 𝑝 [𝑑]\{ 𝑗}, the projection along the basis element 𝑣𝑖 𝑗 . Hence, it suffices to
show that there is some 𝜎 > 0 such that |𝑝 𝑗 (𝐴 + L𝐴) | = 𝑂 (𝑛1−𝜎) for all 𝑗 .

Note that |𝑝 𝑗 (𝐴 + L𝐴) | ≤ 𝐿1 · · · 𝐿𝑠/𝐿𝑖 𝑗 ≤ 𝐾4𝑛/𝐿𝑖 𝑗 . Let 𝐻 be the span of
𝑣1, 𝑣2, . . . , 𝑣𝑖 𝑗−1, which is a proper subspace. Using the claim that |𝐴 + L𝐴 +
L(𝐴 + L𝐴) | ≤ 𝐾2𝑛, we can apply Lemma 3.1.4 with 𝐴 replaced by 𝐴 + L𝐴 to
conclude that each translate of 𝐻 contains at most (𝐾2𝑛)1−21−𝑑 points of 𝐴 + L𝐴.
But 𝑃 is covered by 𝐿𝑖 𝑗 𝐿𝑖 𝑗+1 · · · 𝐿𝑠 translates of 𝐻. Hence,

𝐿𝑖 𝑗 𝐿𝑖 𝑗+1 · · · 𝐿𝑠 ≥ 𝑛/(𝐾2𝑛)1−21−𝑑
= 𝐾5𝑛

21−𝑑
,

where 𝐾5 = 𝐾21−𝑑−1
2 . Since 𝐿𝑖 𝑗 ≥ 𝐿𝑖 𝑗+1 ≥ · · · ≥ 𝐿𝑠, we have

𝐿𝑖 𝑗 ≥ 𝐾
1/𝑠
5 𝑛21−𝑑/𝑠 ≥ 𝐾6𝑛

21−𝑑/𝐾3 ,

where 𝐾6 = 𝐾
1/𝐾3
5 . Thus,

|𝑝 𝑗 (𝐴 + L𝐴) | ≤ 𝐾4𝑛/𝐿𝑖 𝑗 ≤
𝐾4

𝐾6
𝑛1−21−𝑑/𝐾3 .

The result therefore follows by taking 𝜎 = 21−𝑑/𝐾3 and 𝐷 = 2𝑑𝑑𝐾4/𝐾6. □

3.2 Bounding 𝐴 + L𝐴
As promised, we will first prove our main result in the special case where one
of the transformations is the identity. Like the general case, we will do this by
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proving a bootstrapping lemma which allows us to successively obtain better and
better bounds, approaching the optimal one. We start with a weaker version of this
bootstrapping lemma.

Both here and in what follows, we will make extensive use of the fact that if L is
not singular, then LZ𝑑 has index 𝑘 = | detL| in Z𝑑 . Indeed, this can be seen by
considering the Smith normal form L = 𝑆𝐷𝑇 , where 𝑆, 𝑇 ∈ Mat𝑑 (Z) are invertible
over Z and 𝐷 ∈ Mat𝑑 (Z) is diagonal. Then the index satisfies

[Z𝑑 : LZ𝑑] = [𝑆−1Z𝑑 : 𝐷𝑇Z𝑑] = [Z𝑑 : 𝐷Z𝑑] = | det𝐷 | = | detL|.

Lemma 3.2.1. Let L ∈ Mat𝑑 (Z) have no non-trivial invariant subspace over Q and
𝑘 = | detL|. Then there are constants 𝜎1 > 0 and 𝐷 > 0 depending only on 𝑑 and
𝑘 such that the following holds. Suppose that there are 0 < 𝛼 < (1 + 𝑘1/𝑑)𝑑 and
𝐷1 > 0 such that

|𝐴 + L𝐴| ≥ ((1 + 𝑘1/𝑑)𝑑 − 𝛼) |𝐴| − 𝐷1 |𝐴|1−𝜎1

holds for all finite 𝐴 ⊂ Z𝑑 . Let 𝐼1, . . . , 𝐼𝑘 be the cosets of LZ𝑑 in Z𝑑 and let
𝐴𝑖 = 𝐴 ∩ 𝐼𝑖 for 𝑖 = 1, . . . , 𝑘 . If there is some 𝑗 for which 0 < |𝐴 𝑗 | ≤ |𝐴|/𝑘 , then

|𝐴 + L𝐴| ≥
(
(1 + 𝑘1/𝑑)𝑑 −max

(
𝛼 − 1,

𝑘 − 1
𝑘

𝛼

))
|𝐴| − (𝐷 + (𝑘 − 1)𝐷1) |𝐴|1−𝜎1

holds for all finite 𝐴 ⊂ Z𝑑 .

Proof. Assume that |𝐴 +L𝐴| ≤ (1 + 𝑘1/𝑑)𝑑 |𝐴|. Let 𝐷 and 𝜎1 = 𝜎 be the constants
obtained from applying Lemma 3.1.5 with 𝐾 = (1 + 𝑘1/𝑑)𝑑 . Then, for each 𝑖, we
have

|𝐴𝑖 + L𝐴| ≥
(
|𝐴𝑖 |1/𝑑 + |𝐴|1/𝑑

)𝑑
− 𝐷 |𝐴|1−𝜎1 .

Since L𝐴 ⊂ LZ𝑑 , we have (𝐴 +L𝐴) ∩ 𝐼𝑖 = 𝐴𝑖 +L𝐴. Hence, we can write 𝐴 +L𝐴
as the disjoint union

𝐴 + L𝐴 = (𝐴1 + L𝐴) ∪ · · · ∪ (𝐴𝑘 + L𝐴).

Suppose, without loss of generality, that 0 < |𝐴1 | ≤ |𝐴|/𝑘 . We shall bound
|𝐴1 + L𝐴| by the estimate above and the rest by

|𝐴𝑖 + L𝐴| ≥ |𝐴𝑖 + L𝐴𝑖 | ≥ ((1 + 𝑘1/𝑑)𝑑 − 𝛼) |𝐴𝑖 | − 𝐷1 |𝐴𝑖 |1−𝜎1

≥ ((1 + 𝑘1/𝑑)𝑑 − 𝛼) |𝐴𝑖 | − 𝐷1 |𝐴|1−𝜎1



38

for 𝑖 = 2, . . . , 𝑘 . Combining these estimates, we have

|𝐴 + L𝐴| ≥ |𝐴1 + L𝐴| + |𝐴2 + L𝐴| + · · · + |𝐴𝑘 + L𝐴|

≥
(
|𝐴1 |1/𝑑 + |𝐴|1/𝑑

)𝑑
+ ((1 + 𝑘1/𝑑)𝑑 − 𝛼)

𝑘∑︁
𝑖=2
|𝐴𝑖 |

− (𝐷 + (𝑘 − 1)𝐷1) |𝐴|1−𝜎1

=

(
|𝐴1 |1/𝑑 + |𝐴|1/𝑑

)𝑑
+ ((1 + 𝑘1/𝑑)𝑑 − 𝛼) ( |𝐴| − |𝐴1 |)

− (𝐷 + (𝑘 − 1)𝐷1) |𝐴|1−𝜎1 .

This last expression is concave in terms of |𝐴1 |, which can be seen by expanding the
binomial term and noting that each term in the binomial sum is concave. Hence, it
is minimized when |𝐴1 | = 0 or |𝐴1 | = |𝐴|/𝑘 .

In the first case, where the minimum is when |𝐴1 | = 0, we have

|𝐴 + L𝐴| ≥ ((1 + 𝑘1/𝑑)𝑑 − (𝛼 − 1)) |𝐴| − (𝐷 + (𝑘 − 1)𝐷1) |𝐴|1−𝜎1 .

In the second case, where the minimum is when |𝐴1 | = |𝐴|/𝑘 , we have

|𝐴 + L𝐴| ≥
(
(1 + 𝑘1/𝑑)𝑑 − 𝑘 − 1

𝑘
𝛼

)
|𝐴| − (𝐷 + (𝑘 − 1)𝐷1) |𝐴|1−𝜎1 .

In either case, we have

|𝐴 + L𝐴| ≥
(
(1 + 𝑘1/𝑑)𝑑 −max

(
𝛼 − 1,

𝑘 − 1
𝑘

𝛼

))
|𝐴| − (𝐷 + (𝑘 − 1)𝐷1) |𝐴|1−𝜎1 ,

as required. □

This lemma shows that bootstrapping works if each of the 𝑘 cosets 𝐴𝑖 of 𝐴 are
non-empty. To show that a similar result holds in general, we split each of the cosets
𝐴𝑖 into smaller cosets 𝐴𝑖 𝑗 . There are then three cases: if 𝐴 is contained in some
smaller sublattice, then we can rescale 𝐴, which will contradict a certain minimality
assumption; if 𝐴 + L𝐴 contains cosets that are distinct from all the 𝐴𝑖 𝑗 + L𝐴𝑖 𝑗 ,
then this additional coset boosts the bound; and, finally, if any of the 𝐴𝑖 splits into 𝑘
non-empty cosets, we can again apply the lemma above. The following lemma will
allow us to show that one of these three cases must hold.

Lemma 3.2.2. Let L ∈ Mat𝑑 (Z) be a linear transformation that is invertible over
Q. Let 𝑋 be a subset of the finite abelian group 𝐺 = Z𝑑/L2Z𝑑 containing 0 and
let 𝐻 be the subgroup LZ𝑑/L2Z𝑑 of 𝐺. Notice that L naturally induces a map
𝐺 → 𝐺. Then at least one of the following holds:
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1. 𝑋 + 𝐻 does not generate 𝐺;

2. 𝑋 + L𝑋 ⊋ 𝑋 (note that 𝑋 + L𝑋 ⊇ 𝑋 always holds);

3. 𝐻 ⊆ 𝑋 .

Proof. Suppose all 3 do not hold. Let 𝐿 = {𝑣 ∈ 𝐺 : L𝑣 ∈ 𝑋}. Since 0 ∈ 𝑋 , we have
𝐻 ⊆ 𝐿. For any 𝑣 ∈ 𝐿 and 𝑎 ∈ 𝑋 , we have L𝑣 + L𝑎 ∈ 𝑋 + L𝑋 = 𝑋 , so 𝑣 + 𝑎 ∈ 𝐿.
Since 𝐻 + 𝑋 generates 𝐺, for any 𝑏 ∈ 𝐺, there are ℎ ∈ 𝐻 and 𝑎1, . . . , 𝑎𝑘 ∈ 𝑋 for
some 𝑘 such that 𝑏 = ℎ + 𝑎1 + · · · + 𝑎𝑘 . If ℎ + 𝑎1 + · · · + 𝑎𝑖 ∈ 𝐿 for some 𝑖, then
(ℎ + 𝑎1 + · · · + 𝑎𝑖) + 𝑎𝑖+1 ∈ 𝐿, so, by the fact that ℎ ∈ 𝐿 and a simple induction, we
have that 𝑏 = ℎ + 𝑎1 + · · · + 𝑎𝑘 ∈ 𝐿. Thus, 𝐿 = 𝐺, which implies that 𝐻 ⊆ 𝑋 , a
contradiction. □

We are now ready for our main bootstrapping lemma.

Lemma 3.2.3. Let 𝑑 and 𝑘 be positive integers. Then there are constants 𝜎1 > 0
and 𝐷 > 0 depending only on 𝑑 and 𝑘 such that the following holds. Suppose that
there are 0 < 𝛼 < (1 + 𝑘1/𝑑)𝑑 and 𝐷1 > 0 such that

|𝐴 + L𝐴| ≥ ((1 + 𝑘1/𝑑)𝑑 − 𝛼) |𝐴| − 𝐷1 |𝐴|1−𝜎1

holds for all finite 𝐴 ⊂ Z𝑑 and all L ∈ Mat𝑑 (Z) with no non-trivial invariant
subspace over Q and 𝑘 = | detL|. Then

|𝐴 + L𝐴| ≥
(
(1 + 𝑘1/𝑑)𝑑 −max

(
𝛼 − 1

𝑘2 ,
𝑘2 − 1
𝑘2 𝛼

))
|𝐴| − (𝐷 + 𝑘2𝐷1) |𝐴|1−𝜎1

holds for all such 𝐴 and L.

Proof. Take 𝜎1, 𝐷 as in Lemma 3.2.1. By translating 𝐴, we may assume that 0 ∈ 𝐴.
We may also assume that |𝐴+L𝐴| ≤ (1+𝑘1/𝑑)𝑑 |𝐴|, so that, by Lemma 3.1.4, 𝐴 does
not lie on a hyperplane. Let ⟨𝐴⟩ denote the Z-span of 𝐴, which is a 𝑑-dimensional
sublattice of Z𝑑 . Suppose the lemma does not hold and pick a counterexample
(𝐴,L) such that ⟨𝐴⟩ has minimum index in Z𝑑 .

Let 𝑣1 = 0, 𝑣2, . . . , 𝑣𝑘 be coset representatives of LZ𝑑 over Z𝑑 . For 𝑖, 𝑗 = 1, . . . , 𝑘 ,
let 𝐴𝑖 = 𝐴 ∩ (𝑣𝑖 + LZ𝑑) and 𝐴𝑖 𝑗 = 𝐴 ∩ (𝑣𝑖 + L𝑣 𝑗 + L2Z𝑑). Then the 𝐴𝑖 𝑗 partition
𝐴𝑖 and the 𝐴𝑖 partition 𝐴. If there is some 𝑖 for which 0 < |𝐴𝑖 | ≤ |𝐴|/𝑘 , then we are
done by Lemma 3.2.1. Hence, we may assume that either 𝐴𝑖 = ∅ or |𝐴𝑖 | > |𝐴|/𝑘
for every 𝑖.
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If there is some 𝑖, 𝑗 such that 𝐴𝑖 ≠ ∅ and 0 < |𝐴𝑖 𝑗 | ≤ |𝐴𝑖 |/𝑘 , then let 𝐴′ = L−1(𝐴𝑖 −
𝑣𝑖) = L−1(𝐴 − 𝑣𝑖) ∩ Z𝑑 ⊆ Z𝑑 . For each 𝑙 = 1, . . . , 𝑘 , let 𝐴′

𝑙
= L−1(𝐴𝑖𝑙 − 𝑣𝑖) =

L−1(𝐴−𝑣𝑖)∩(𝑣𝑙+LZ𝑑). Thus, 𝐴′
𝑙
= 𝐴′∩(𝑣𝑙+LZ𝑑). Hence, applying Lemma 3.2.1

with 𝐴 and 𝐴 𝑗 replaced by 𝐴′ and 𝐴′
𝑗
, we have

|𝐴𝑖 + L𝐴𝑖 | = |𝐴′ + L𝐴′|

≥
(
(1 + 𝑘1/𝑑)𝑑 −max

(
𝛼 − 1,

𝑘 − 1
𝑘

𝛼

))
|𝐴𝑖 | − (𝐷 + (𝑘 − 1)𝐷1) |𝐴𝑖 |1−𝜎1 .

Using the fact that |𝐴 + L𝐴| ≥ ∑𝑘
𝑙=1 |𝐴𝑙 + L𝐴𝑙 | and |𝐴𝑖 | ≥ |𝐴|/𝑘 , we have

|𝐴 + L𝐴| ≥
∑︁
𝑙≠𝑖

|𝐴𝑙 + L𝐴𝑙 | + |𝐴𝑖 + L𝐴𝑖 |

≥
(
(1 + 𝑘1/𝑑)𝑑 − 𝛼

) ∑︁
𝑙≠𝑖

|𝐴𝑙 | − (𝑘 − 1)𝐷1 |𝐴|1−𝜎1

+
(
(1 + 𝑘1/𝑑)𝑑 −max

(
𝛼 − 1,

𝑘 − 1
𝑘

𝛼

))
|𝐴𝑖 | − (𝐷 + (𝑘 − 1)𝐷1) |𝐴|1−𝜎1

=

(
(1 + 𝑘1/𝑑)𝑑 − 𝛼

)
|𝐴| +min

(
1,
𝛼

𝑘

)
|𝐴𝑖 | − (𝐷 + 2(𝑘 − 1)𝐷1) |𝐴|1−𝜎1

≥
(
(1 + 𝑘1/𝑑)𝑑 − 𝛼

)
|𝐴| +min

(
1
𝑘
,
𝛼

𝑘2

)
|𝐴| − (𝐷 + 2(𝑘 − 1)𝐷1) |𝐴|1−𝜎1

≥
(
(1 + 𝑘1/𝑑)𝑑 −max

(
𝛼 − 1

𝑘
,
𝑘2 − 1
𝑘2 𝛼

))
|𝐴| − (𝐷 + 𝑘2𝐷1) |𝐴|1−𝜎1 .

Hence, we may assume that, for all 𝑖, 𝑗 , either 𝐴𝑖 𝑗 = ∅ or |𝐴𝑖 𝑗 | > |𝐴𝑖 |/𝑘 > |𝐴|/𝑘2.
This assumption will be crucial in many of the estimates that follow.

Let 𝑋 be the image of 𝐴 in 𝐺 = Z𝑑/L2Z𝑑 and let 𝐻 = LZ𝑑/L2Z𝑑 ⊆ 𝐺. Applying
Lemma 3.2.2 to 𝑋 , we have the following 3 cases:

Case 1: 𝑋 + 𝐻 does not generate 𝐺

Let 𝐸 ⊂ Z𝑑 be the lattice that is the preimage of the subgroup of 𝐺 generated by
𝑋 + 𝐻 with respect to the quotient map 𝑞 : Z𝑑 → Z𝑑/L2Z𝑑 = 𝐺. In other words,
𝐸 = ⟨𝐴⟩ +LZ𝑑 . Since 𝐴 does not lie on a hyperplane, 𝐸 is 𝑑-dimensional and, since
𝑋 +𝐻 does not generate 𝐺, 𝐸 ≠ Z𝑑 . Consider a linear transformation P ∈ Mat𝑑 (Z)
such that PZ𝑑 = 𝐸 , so that | detP| > 1. Then

|𝐴 + L𝐴| = |PP−1𝐴 + PP−1LPP−1𝐴| = |P−1𝐴 + (P−1LP)(P−1𝐴) |.

Since L𝐸 ⊂ LZ𝑑 = 𝑞−1(𝐻) ⊆ 𝐸 , we have

P−1LPZ𝑑 = P−1L𝐸 ⊂ P−1𝐸 = Z𝑑 ,
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so that P−1LP ∈ Mat𝑑 (Z) and | detP−1LP| = | detP|−1 | detL|| detP| = 𝑘 . Now
replace 𝐴 by P−1𝐴 ⊂ Z𝑑 and L by P−1LP. But then the index of

〈
P−1𝐴

〉
is

[Z𝑑 :
〈
P−1𝐴

〉
] = [PZ𝑑 : ⟨𝐴⟩] = [Z𝑑 : ⟨𝐴⟩]/[Z𝑑 : PZ𝑑] = | detP|−1 [Z𝑑 : ⟨𝐴⟩] .

Thus,
〈
P−1𝐴

〉
has strictly smaller index than ⟨𝐴⟩, so the pair (P−1𝐴,P−1LP)

contradicts the minimality of the pair (𝐴,L).

Case 2: 𝑋 + L𝑋 ⊋ 𝑋

This case is saying that 𝐴 + L𝐴 intersects strictly more cosets of L2Z𝑑 than
𝐴, so we can exploit the extra cosets to obtain a better lower bound. Let 𝐼 ={
(𝑖, 𝑗) ∈ [𝑘]2 : 𝐴𝑖 𝑗 ≠ ∅

}
. Suppose (𝑖, 𝑗), (𝑖′, 𝑗 ′) ∈ 𝐼 are distinct pairs. We claim

that 𝐴𝑖 𝑗+L𝐴𝑖 𝑗 and 𝐴𝑖′ 𝑗 ′+L𝐴𝑖′ 𝑗 ′ belong to different cosets ofL2Z𝑑 . Indeed, suppose
they belong to the same coset. 𝐴𝑖 𝑗 +L𝐴𝑖 𝑗 belongs to the coset 𝑣𝑖+L𝑣 𝑗 +L𝑣𝑖+L2Z𝑑 ,
while 𝐴𝑖′ 𝑗 ′ +L𝐴𝑖′ 𝑗 ′ ⊂ 𝑣𝑖′ +L𝑣 𝑗 ′ +L𝑣𝑖′ +L2Z𝑑 . So if they belong to the same coset,
we must have 𝑖 = 𝑖′ and 𝑗 = 𝑗 ′. Now, since 𝐴 + L𝐴 intersects more than |𝐼 | cosets,
there are (𝑖1, 𝑗1), (𝑖2, 𝑗2) ∈ 𝐼 such that 𝐴𝑖1 𝑗1 + L𝐴𝑖2 𝑗2 belongs to a coset different
from 𝐴𝑖 𝑗 + L𝐴𝑖 𝑗 for all (𝑖, 𝑗) ∈ 𝐼. Since 𝐴𝑖1 𝑗1 is non-empty, |𝐴𝑖1 𝑗1 | ≥ |𝐴|/𝑘2, so we
have

|𝐴 + L𝐴| ≥
∑︁
(𝑖, 𝑗)∈𝐼

|𝐴𝑖 𝑗 + L𝐴𝑖 𝑗 | + |𝐴𝑖1 𝑗1 + L𝐴𝑖2 𝑗2 |

≥ ((1 + 𝑘1/𝑑)𝑑 − 𝛼) |𝐴| − 𝑘2𝐷1 |𝐴|1−𝜎1 + |𝐴𝑖1 𝑗1 |

≥ ((1 + 𝑘1/𝑑)𝑑 − 𝛼) |𝐴| − 𝑘2𝐷1 |𝐴|1−𝜎1 + 1
𝑘2 |𝐴|

= ((1 + 𝑘1/𝑑)𝑑 − (𝛼 − 1/𝑘2)) |𝐴| − 𝑘2𝐷1 |𝐴|1−𝜎1 .

Case 3: 𝐻 ⊆ 𝑋

In this case, 𝐴1 𝑗 ≠ ∅ for 𝑗 = 1, . . . , 𝑘 . But, since the 𝐴1 𝑗 partition 𝐴1, there is then
some 𝑗 for which |𝐴1 𝑗 | ≤ |𝐴1 |/𝑘 , contradicting our assumption. This completes the
proof of the lemma. □

It is now a simple matter to complete the proof of Theorem 3.0.5 in the special case
where L1 is the identity.
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Theorem 3.2.4. Let L ∈ Mat𝑑 (Z) be a linear transformation with no non-trivial
invariant subspace over Q and 𝑘 = | detL|. Then there are 𝐷2, 𝜎2 > 0 depending
only on 𝑑 and 𝑘 such that

|𝐴 + L𝐴| ≥ (1 + 𝑘1/𝑑)𝑑 |𝐴| − 𝐷2 |𝐴|1−𝜎2

for all finite 𝐴 ⊂ Z𝑑 .

Proof. Let 𝜎1, 𝐷 > 0 be as in Lemma 3.2.3. Using the trivial base case |𝐴+L𝐴| ≥
|𝐴| and repeatedly applying Lemma 3.2.3, we can find some 0 < 𝜖 < 1 and 𝐷′2 > 𝐷
such that

|𝐴 + L𝐴| ≥ ((1 + 𝑘1/𝑑)𝑑 − 𝜖) |𝐴| − 𝐷′2 |𝐴|
1−𝜎1

holds for all finite 𝐴 ⊂ Z𝑑 .

Applying Lemma 3.2.3 𝑚 more times, we have

|𝐴 + L𝐴| ≥
(
(1 + 𝑘1/𝑑)𝑑 −

(
𝑘2 − 1
𝑘2

)𝑚
𝜖

)
|𝐴| − (𝑘2 + 1)𝑚𝐷′2 |𝐴|

1−𝜎1 .

Taking 𝑚 =
𝜎1 log |𝐴|

2 log(𝑘2+1) (and ignoring integer rounding issues), we have

(𝑘2 + 1)𝑚𝐷′2 |𝐴|
1−𝜎1 = 𝐷′2 |𝐴|

1−𝜎1/2

and (
𝑘2 − 1
𝑘2

)𝑚
𝜖 |𝐴| = 𝜖 |𝐴|1+

𝜎1 (log(𝑘2−1)−log 𝑘2 )
2 log(𝑘2+1) .

Now, taking 𝜎2 = min
(
𝜎1
2 ,

𝜎1 (log 𝑘2−log(𝑘2−1))
2 log(𝑘2+1)

)
, we get

|𝐴 + L𝐴| ≥ (1 + 𝑘1/𝑑)𝑑 |𝐴| − 𝐷2 |𝐴|1−𝜎2 ,

where 𝐷2 = 𝜖 + 𝐷′2. □

3.3 Bounding L1𝐴 + L2𝐴

In this section, we prove our main result, our lower bound on |L1𝐴 + L2𝐴| when
L1,L2 ∈ Mat𝑑 (Z) are irreducible and coprime. Note that we may assume that both
L1 and L2 are invertible over Q. Indeed, if L1, say, is not invertible, then there is a
line 𝐿 such that L1𝐿 = 0, so L1,L2 would not be irreducible.

We first note the following elementary fact about abelian groups.
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Lemma 3.3.1. Let 𝐺 be an abelian group and 𝐻1, 𝐻2 be subgroups of finite index
such that 𝐻1 + 𝐻2 = 𝐺. Then

[𝐺 : 𝐻1 ∩ 𝐻2] = [𝐺 : 𝐻1] [𝐺 : 𝐻2] .

Proof. By the isomorphism theorems, we have that

𝐻1/(𝐻1 ∩ 𝐻2) ≡ (𝐻1 + 𝐻2)/𝐻2,

𝐺/𝐻1 ≡ (𝐺/(𝐻1 ∩ 𝐻2))/(𝐻1/(𝐻1 ∩ 𝐻2)).

Hence, [𝐻1 : 𝐻1∩𝐻2] = [𝐺 : 𝐻2] and [𝐺 : 𝐻1∩𝐻2] = [𝐺 : 𝐻1] [𝐻1 : 𝐻1∩𝐻2] =
[𝐺 : 𝐻1] [𝐺 : 𝐻2]. □

For the proof, we will need to introduce a number of additional linear transformations
associated withL1 andL2. Indeed, let 𝑝 = | detL1 | and 𝑞 = | detL2 |. SinceL1,L2

are coprime, we know thatL1Z𝑑 +L2Z𝑑 = Z𝑑 . Thus, by Lemma 3.3.1 with𝐺 = Z𝑑 ,
𝐻1 = L1Z𝑑 and 𝐻2 = L2Z𝑑 , we have

[Z𝑑 : L1Z𝑑 ∩ L2Z𝑑] = [Z𝑑 : L1Z𝑑] [Z𝑑 : L2Z𝑑] = 𝑝𝑞.

Hence,

[L1Z𝑑 : L1Z𝑑 ∩ L2Z𝑑] = 𝑞, [L2Z𝑑 : L1Z𝑑 ∩ L2Z𝑑] = 𝑝

and so
[Z𝑑 : Z𝑑 ∩ L−1

1 L2Z𝑑] = 𝑞, [Z𝑑 : Z𝑑 ∩ L−1
2 L1Z𝑑] = 𝑝.

We now let P1,P2 ∈ Mat𝑑 (Z) be linear transformations such that P1Z𝑑 = Z𝑑 ∩
L−1

2 L1Z𝑑 and P2Z𝑑 = Z𝑑 ∩ L−1
1 L2Z𝑑 , noting that | detP1 | = 𝑝 and | detP2 | = 𝑞.

As in the 𝐴+L𝐴 case, we begin the proof proper with a weak bootstrapping lemma.

Lemma 3.3.2. Let L1,L2 ∈ Mat𝑑 (Z) be irreducible, coprime linear transforma-
tions with | detL1 | = 𝑝 and | detL2 | = 𝑞. Then there are constants 𝜎1 > 0 and
𝐷 > 0 depending only on 𝑑, 𝑝 and 𝑞 such that the following holds. Suppose that
there are 0 < 𝛼 < (𝑝1/𝑑 + 𝑞1/𝑑)𝑑 and 𝐷1 > 0 such that

|L1𝐴 + L2𝐴| ≥ ((𝑝1/𝑑 + 𝑞1/𝑑)𝑑 − 𝛼) |𝐴| − 𝐷1 |𝐴|1−𝜎1

holds for all finite 𝐴 ⊂ Z𝑑 . Let 𝐼1, . . . , 𝐼𝑝 be the cosets of P1Z𝑑 in Z𝑑 and 𝐼1, . . . , 𝐼𝑞

the cosets of P2Z𝑑 and let 𝐴𝑖 = 𝐴 ∩ 𝐼𝑖, 𝐴 𝑗 = 𝐴 ∩ 𝐼 𝑗 and 𝐴 𝑗
𝑖
= 𝐴 ∩ 𝐼𝑖 ∩ 𝐼 𝑗 . If either



44

1. 𝐴𝑖, 𝐴 𝑗 ≠ ∅ for all 1 ≤ 𝑖 ≤ 𝑝, 1 ≤ 𝑗 ≤ 𝑞 or

2. there are some 𝑖, 𝑗 such that 𝐴𝑖, 𝐴 𝑗 ≠ ∅ and |𝐴 𝑗
𝑖
| ≤ 𝑐 |𝐴|, where 𝑐 =

1
2𝑝(𝑝1/𝑑+𝑞1/𝑑)2𝑑 ,

then

|L1𝐴 + L2𝐴| ≥ ((𝑝1/𝑑 + 𝑞1/𝑑)𝑑 − (1 − 𝑐)𝛼) |𝐴| − ((𝑝 + 𝑞)𝐷1 + 𝐷) |𝐴|1−𝜎1

holds for all finite 𝐴 ⊂ Z𝑑 .

Proof. SinceL1,L2 are irreducible,L−1
1 L2 ∈ Mat𝑑 (Q) has no non-trivial invariant

subspace over Q. We may also assume that |L1𝐴 + L2𝐴| ≤ (𝑝1/𝑑 + 𝑞1/𝑑)𝑑 |𝐴|, so
that, by Lemma 3.1.5 with L = L−1

1 L2, there are 𝜎1, 𝐷 > 0 such that, for any
𝐵1, 𝐵2 ⊆ 𝐴,

|L1𝐵1 + L2𝐵2 | = |𝐵1 + L𝐵2 | ≥ (|𝐵1 |1/𝑑 + |𝐵2 |1/𝑑)𝑑 − 𝐷 |𝐴|1−𝜎1 .

We claim that there is a choice of 𝑖 and 𝑗 such that 𝐴𝑖, 𝐴 𝑗 ≠ ∅ and

( |𝐴𝑖 |1/𝑑 + |𝐴 𝑗 |1/𝑑)𝑑 − ((𝑝1/𝑑 + 𝑞1/𝑑)𝑑 − 𝛼) |𝐴 𝑗
𝑖
| ≥ 𝛼𝑐 |𝐴|.

Suppose first that 𝐴𝑖, 𝐴 𝑗 ≠ ∅ for all 𝑖, 𝑗 . Pick 𝑖 and 𝑗 such that |𝐴 𝑗
𝑖
| is minimal. If

|𝐴 𝑗
𝑖
| ≤ 𝑐 |𝐴|, then we may pass to the second case. Otherwise, |𝐴 𝑗

𝑖
| > 𝑐 |𝐴|. Since,

for any 𝑖′, 𝑗 ′, we have |𝐴 𝑗
𝑖′ | ≥ |𝐴

𝑗

𝑖
| and |𝐴 𝑗

′

𝑖
| ≥ |𝐴 𝑗

𝑖
|, we see that |𝐴 𝑗 | ≥ 𝑝 |𝐴 𝑗

𝑖
| and

|𝐴𝑖 | ≥ 𝑞 |𝐴 𝑗𝑖 |. Hence,

( |𝐴𝑖 |1/𝑑 + |𝐴 𝑗 |1/𝑑)𝑑 − ((𝑝1/𝑑 + 𝑞1/𝑑)𝑑 − 𝛼) |𝐴 𝑗
𝑖
| ≥ 𝛼 |𝐴 𝑗

𝑖
| ≥ 𝛼𝑐 |𝐴|.

Suppose now that there are 𝑖, 𝑗 such that 𝐴𝑖, 𝐴 𝑗 ≠ ∅ and |𝐴 𝑗
𝑖
| ≤ 𝑐 |𝐴|. If there is

some 𝑖′ such that |𝐴 𝑗
𝑖′ | > (𝑝1/𝑑 + 𝑞1/𝑑)𝑑𝑐 |𝐴|, then

( |𝐴𝑖 |1/𝑑 + |𝐴 𝑗 |1/𝑑)𝑑 − ((𝑝1/𝑑 + 𝑞1/𝑑)𝑑 − 𝛼) |𝐴 𝑗
𝑖
|

≥ |𝐴 𝑗
𝑖′ | − ((𝑝

1/𝑑 + 𝑞1/𝑑)𝑑 − 𝛼) |𝐴 𝑗
𝑖
|

≥ (𝑝1/𝑑 + 𝑞1/𝑑)𝑑𝑐 |𝐴| − ((𝑝1/𝑑 + 𝑞1/𝑑)𝑑 − 𝛼)𝑐 |𝐴|
= 𝛼𝑐 |𝐴|.
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Otherwise, we may assume that |𝐴 𝑗
𝑖′ | ≤ (𝑝1/𝑑 + 𝑞1/𝑑)𝑑𝑐 |𝐴| for all 𝑖′. Since

∑
𝑖 |𝐴𝑖 | =

|𝐴|, there is some 𝑖′ such that |𝐴𝑖′ | ≥ |𝐴|/𝑝. Thus,

( |𝐴𝑖′ |1/𝑑 + |𝐴 𝑗 |1/𝑑)𝑑 − ((𝑝1/𝑑 + 𝑞1/𝑑)𝑑 − 𝛼) |𝐴 𝑗
𝑖′ |

≥ |𝐴𝑖′ | − ((𝑝1/𝑑 + 𝑞1/𝑑)𝑑 − 𝛼) |𝐴 𝑗
𝑖′ |

≥ 1
𝑝
|𝐴| − ((𝑝1/𝑑 + 𝑞1/𝑑)𝑑 − 𝛼) (𝑝1/𝑑 + 𝑞1/𝑑)𝑑𝑐 |𝐴|

≥ 1
2𝑝
|𝐴| > 𝛼𝑐 |𝐴|.

This proves the claim. From here on, without loss of generality, we will assume that
𝐴1, 𝐴

1 ≠ ∅ and

( |𝐴1 |1/𝑑 + |𝐴1 |1/𝑑)𝑑 − ((𝑝1/𝑑 + 𝑞1/𝑑)𝑑 − 𝛼) |𝐴1
1 | ≥ 𝛼𝑐 |𝐴|. (3.1)

We will now show that the sets L1𝐴 + L2𝐴𝑖 belong to different cosets of L1Z𝑑 for
𝑖 = 1, . . . , 𝑝 and so are disjoint. Note that L2P1Z𝑑 ⊆ L1Z𝑑 , so the sets do indeed
belong to cosets of L1Z𝑑 . If, for some 𝑖, 𝑖′, the corresponding sets belong to the
same coset, then L2𝐼𝑖 − L2𝐼𝑖′ ⊆ L1Z𝑑 , so 𝐼𝑖 − 𝐼𝑖′ ⊆ L−1

2 L1Z𝑑 . But this means that
𝐼𝑖 and 𝐼𝑖′ are the same coset of P1Z𝑑 . Hence, L1𝐴+L2𝐴 can be partitioned into the
setsL1𝐴+L2𝐴𝑖 for 𝑖 = 1, . . . , 𝑝. Similarly, the setsL1𝐴

𝑗 +L2𝐴1 belong to disjoint
cosets of L2Z𝑑 , so L1𝐴 + L2𝐴1 can be partitioned into the sets L1𝐴

𝑗 + L2𝐴1 for
𝑗 = 1, 2, . . . , 𝑞.

Note now that, by our choice of 𝜎1 and 𝐷, we have

|L1𝐴
1 + L2𝐴1 | ≥ (|𝐴1 |1/𝑑 + |𝐴1 |1/𝑑)𝑑 − 𝐷 |𝐴|1−𝜎1 .

Thus, using our earlier claim, we have

|L1𝐴 + L2𝐴| =
𝑝∑︁
𝑖=2
|L1𝐴 + L2𝐴𝑖 | +

𝑞∑︁
𝑗=2
|L1𝐴

𝑗 + L2𝐴1 | + |L1𝐴
1 + L2𝐴1 |

≥
𝑝∑︁
𝑖=2
|L1𝐴𝑖 + L2𝐴𝑖 | +

𝑞∑︁
𝑗=2
|L1𝐴

𝑗

1 + L2𝐴
𝑗

1 | + |L1𝐴
1 + L2𝐴1 |

≥ ((𝑝1/𝑑 + 𝑞1/𝑑)𝑑 − 𝛼) ( |𝐴| − |𝐴1
1 |) − (𝑝 + 𝑞)𝐷1 |𝐴|1−𝜎1

+ (|𝐴1 |1/𝑑 + |𝐴1 |1/𝑑)𝑑 − 𝐷 |𝐴|1−𝜎1

≥ ((𝑝1/𝑑 + 𝑞1/𝑑)𝑑 − 𝛼) |𝐴| + 𝛼𝑐 |𝐴| − ((𝑝 + 𝑞)𝐷1 + 𝐷) |𝐴|1−𝜎1

= ((𝑝1/𝑑 + 𝑞1/𝑑)𝑑 − (1 − 𝑐)𝛼) |𝐴| − ((𝑝 + 𝑞)𝐷1 + 𝐷) |𝐴|1−𝜎1 ,

as required, where we used (3.1) in going from the third to the fourth line. □
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We now introduce some further notation. Indeed, let P ∈ Mat𝑑 (Z) be a linear
transformation such that

PZ𝑑 = Z𝑑 ∩ L−1
1 L2Z𝑑 ∩ L−1

2 L1Z𝑑 = P1Z𝑑 ∩ P2Z𝑑 .

Then, by Lemma 3.3.1,

| detP| = [Z𝑑 : PZ𝑑] = [Z𝑑 : P1Z𝑑 + P2Z𝑑] [P1Z𝑑 + P2Z𝑑 : P1Z𝑑 ∩ P2Z𝑑]
= [Z𝑑 : P1Z𝑑 + P2Z𝑑] [P1Z𝑑 + P2Z𝑑 : P1Z𝑑] [P1Z𝑑 + P2Z𝑑 : P2Z𝑑]
≤ [Z𝑑 : P1Z𝑑] [Z𝑑 : P2Z𝑑] = | detP1 | | detP2 | = 𝑝𝑞.

Moreover, let Q ∈ Mat𝑑 (Z) be such that

QZ𝑑 = L1Z𝑑 ∩ L2Z𝑑 ,

so that, as above, | detQ| = | detL1 | | detL2 | = 𝑝𝑞.

Note that L1PZ𝑑 ,L2PZ𝑑 ⊆ L1Z𝑑 ∩ L2Z𝑑 = QZ𝑑 , so Q−1L1PZ𝑑 ,Q−1L2PZ𝑑 ⊆
Z𝑑 , implying that Q−1L1P,Q−1L2P ∈ Mat𝑑 (Z). Therefore, since L1,L2 are
coprime,

| detQ−1P| ≥ 1.

But | detQ| = 𝑝𝑞 and | detP| ≤ 𝑝𝑞, so we must have | detP| = 𝑝𝑞.

Finally, we let 𝐿1 be the lattice PZ𝑑 ∩ L−1
2 L1PZ𝑑 and 𝐿2 = PZ𝑑 ∩ L−1

1 L2PZ𝑑 .
The next lemma will be important in the proof of Lemma 3.3.4 below, which, like
Lemma 3.2.2 in the last section, says that any set 𝐴 falls into one of three categories,
each helpful for our bootstrap.

Lemma 3.3.3. The linear maps L1,L2 induce homomorphisms

𝜙1, 𝜙2 : Z𝑑/𝐿1 → Z𝑑/L1PZ𝑑

of finite abelian groups. Furthermore, 𝜙1 + 𝜙2 is an isomorphism.

Proof. If 𝑥 ∈ 𝐿1, then L1𝑥 ∈ L1PZ𝑑 and L2𝑥 ∈ L1PZ𝑑 , so 𝜙1 and 𝜙2 are well-
defined group homomorphisms. Now let 𝜙′ : Z𝑑 → Z𝑑/L1PZ𝑑 be the map induced
by L1 + L2.

We first show that ker 𝜙′ = 𝐿1. We have already seen above that ker 𝜙′ ⊇ 𝐿1. For
the converse, suppose that 𝑥 ∈ ker 𝜙′, so that L1𝑥 + L2𝑥 = L1P𝑦 for some 𝑦 ∈ Z𝑑 .
This implies that

𝑥 = P𝑦 − L−1
1 L2𝑥,
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𝑥 = L−1
2 L1P𝑦 − L−1

2 L1𝑥.

Since P𝑦 ∈ L−1
1 L2Z𝑑 , the first equation implies that 𝑥 ∈ Z𝑑 ∩ L−1

1 L2Z𝑑 . From
the second equation, we have 𝑥 ∈ Z𝑑 ∩ L−1

2 L1Z𝑑 , so that 𝑥 ∈ Z𝑑 ∩ L−1
1 L2Z𝑑 ∩

L−1
2 L1Z𝑑 = PZ𝑑 . It then follows from applying the second equation again that

𝑥 ∈ L−1
2 L1PZ𝑑 , so that 𝑥 ∈ PZ𝑑 ∩ L−1

2 L1PZ𝑑 = 𝐿1, proving that ker 𝜙′ = 𝐿1.

Hence, the induced map 𝜙 : Z𝑑/𝐿1 → Z𝑑/L1PZ𝑑 is injective. To show that it is in
fact an isomorphism, we shall show that |Z𝑑/𝐿1 | = |Z𝑑/L1PZ𝑑 |. From injectivity,
we have |Z𝑑/𝐿1 | ≤ |Z𝑑/L1PZ𝑑 |, so it suffices to show that |Z𝑑/𝐿1 | ≥ |Z𝑑/L1PZ𝑑 |.

LetR ∈ Mat𝑑 (Z) be such thatRZ𝑑 = L1PZ𝑑+L2PZ𝑑 . ThenR−1L1PZ𝑑 ⊆ Z𝑑 and
R−1L2PZ𝑑 ⊆ Z𝑑 , so R−1L1P and R−1L2P are integer matrices. By coprimality,
we have | detR| ≤ | detP|. By Lemma 3.3.1, we have

[L1PZ𝑑 + L2PZ𝑑 : L1PZ𝑑 ∩ L2PZ𝑑]
= [L1PZ𝑑 + L2PZ𝑑 : L1PZ𝑑] [L1PZ𝑑 + L2PZ𝑑 : L2PZ𝑑] .

In other words, [Z𝑑 : L2𝐿1] | detR| = [Z𝑑 : L1PZ𝑑] [Z𝑑 : L2PZ𝑑]. Since
| detR| ≤ | detP|, it follows from [Z𝑑 : L2𝐿1] = | detL2 | [Z𝑑 : 𝐿1] and [Z𝑑 :
L2PZ𝑑] = | detL2 | [Z𝑑 : PZ𝑑] that [Z𝑑 : 𝐿1] ≥ [Z𝑑 : L1PZ𝑑], as required. □

SinceL1PZ𝑑 has index | detL1P| = 𝑝2𝑞 and 𝜙1+𝜙2 is an isomorphism, the lemma
implies that 𝐿1 also has index 𝑝2𝑞. Similarly, 𝐿2 has index 𝑝𝑞2.

Lemma 3.3.4. Let 𝑋 be a subset of 𝐺 = Z𝑑/𝐿1 containing 0 and define 𝜙1, 𝜙2 as in
the previous lemma. Then at least one of the following holds:

1. 𝑋 does not generate 𝐺;

2. |𝜙1(𝑋) + 𝜙2(𝑋) | > |𝑋 |;

3. PZ𝑑/𝐿1 ⊆ 𝑋 .

Proof. Suppose all 3 do not hold. Let 𝜙 = 𝜙1 + 𝜙2, which is an isomorphism by
Lemma 3.3.3. Note that 𝜙(𝑋) ⊆ 𝜙1(𝑋) + 𝜙2(𝑋), so |𝜙1(𝑋) + 𝜙2(𝑋) | ≥ |𝑋 | always
holds. By assumption, we must have 𝜙1(𝑋) + 𝜙2(𝑋) = 𝜙(𝑋). Hence, for any
𝑥, 𝑦 ∈ 𝑋 , we have 𝜙−1𝜙1(𝑥) + 𝜙−1𝜙2(𝑦) ∈ 𝑋 . In particular, since 0 ∈ 𝑋 , we have
𝜙−1𝜙1(𝑥), 𝜙−1𝜙2(𝑥) ∈ 𝑋 .

We claim that 𝜙−1𝜙2(𝐺) = P2Z𝑑/𝐿1 and 𝜙−1𝜙1(P2Z𝑑/𝐿1) = PZ𝑑/𝐿1. For the first
claim, note that 𝜙2(𝐺) = L2Z𝑑/L1PZ𝑑 , so it suffices to show that 𝜙(P2Z𝑑/𝐿1) =
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L2Z𝑑/L1PZ𝑑 . Note that, for any 𝑥 ∈ P2Z𝑑 = Z𝑑 ∩L−1
1 L2Z𝑑 , we have L1𝑥,L2𝑥 ∈

L2Z𝑑 , so that 𝜙(P2Z𝑑/𝐿1) ⊆ L2Z𝑑/L1PZ𝑑 . Since P2Z𝑑 and L2Z𝑑 have index 𝑞
and 𝐿1 and L1PZ𝑑 have index 𝑝2𝑞, we have |P2Z𝑑/𝐿1 | = |L2Z𝑑/L1PZ𝑑 | = 𝑝2.
Since 𝜙 is an isomorphism, we must then have 𝜙(P2Z𝑑/𝐿1) = L2Z𝑑/L1PZ𝑑 .

For the second claim, note that 𝜙1(P2Z𝑑/𝐿1) = L1P2Z𝑑/L1PZ𝑑 = (L1Z𝑑 ∩
L2Z𝑑)/L1PZ𝑑 , so it suffices to show that 𝜙(PZ𝑑/𝐿1) = (L1Z𝑑 ∩ L2Z𝑑)/L1PZ𝑑 .
If 𝑥 ∈ PZ𝑑 , thenL1𝑥,L2𝑥 ∈ L1Z𝑑 ∩L2Z𝑑 , so we have the inclusion 𝜙(PZ𝑑/𝐿1) ⊆
(L1Z𝑑 ∩ L2Z𝑑)/L1PZ𝑑 . By again counting sizes, we have |PZ𝑑/𝐿1 | = | (L1Z𝑑 ∩
L2Z𝑑)/L1PZ𝑑 | = 𝑝, so 𝜙(PZ𝑑/𝐿1) = (L1Z𝑑∩L2Z𝑑)/L1PZ𝑑 , proving our claim.

Let 𝑋′ = 𝑋 ∩ P2Z𝑑/𝐿1. Since 𝜙−1𝜙2(𝑋) ⊆ 𝑋′ and 𝑋 generates 𝐺, we have that 𝑋′

generates P2Z𝑑/𝐿1. Moreover, 𝜙−1𝜙1(𝑋′) ⊆ 𝑋 and generates PZ𝑑/𝐿1. Note that,
for any 𝑥 ∈ PZ𝑑/𝐿1, 𝜙1(𝑥) = 0, so 𝜙−1𝜙2(𝑥) = 𝑥. This implies that, for any 𝑥 ∈ 𝑋 ∩
PZ𝑑/𝐿1 and 𝑦 ∈ 𝑋′, we have 𝜙−1𝜙1(𝑦) + 𝑥 = 𝜙−1𝜙1(𝑦) + 𝜙−1𝜙2(𝑥) ∈ 𝑋 ∩PZ𝑑/𝐿1,
so 𝑋 ∩ PZ𝑑/𝐿1 is closed under adding elements of 𝜙−1𝜙1(𝑋′). But 𝜙−1𝜙1(𝑋′)
generates PZ𝑑/𝐿1 and 0 ∈ 𝑋 ∩ PZ𝑑/𝐿1. It follows that 𝑋 ∩ PZ𝑑/𝐿1 = PZ𝑑/𝐿1,
contradicting our third assumption. □

We now come to our main bootstrapping lemma.

Lemma 3.3.5. Let 𝑑, 𝑝 and 𝑞 be positive integers. Then there are constants 𝜎1 > 0
and 𝐷 > 0 depending only on 𝑑, 𝑝 and 𝑞 such that the following holds. Suppose
that there are 0 < 𝛼 < (𝑝1/𝑑 + 𝑞1/𝑑)𝑑 and 𝐷1 > 0 such that

|L1𝐴 + L2𝐴| ≥ ((𝑝1/𝑑 + 𝑞1/𝑑)𝑑 − 𝛼) |𝐴| − 𝐷1 |𝐴|1−𝜎1

holds for all finite 𝐴 ⊂ Z𝑑 and all irreducible, coprime linear transformations
L1,L2 ∈ Mat𝑑 (Z) with | detL1 | = 𝑝 and | detL2 | = 𝑞. Then

|L1𝐴 + L2𝐴| ≥ ((𝑝1/𝑑 + 𝑞1/𝑑)𝑑 − (1 − 𝑐2)𝛼) |𝐴| − (4𝑝2𝑞2𝐷1 + 𝐷) |𝐴|1−𝜎1

holds for all such 𝐴 ⊂ Z𝑑 and L1,L2, where 𝑐 = 1
2 max(𝑝,𝑞) (𝑝1/𝑑+𝑞1/𝑑)2𝑑 .

Proof. Take 𝜎1, 𝐷 as in Lemma 3.3.2. By translating 𝐴, we may assume that 0 ∈ 𝐴.
We may also assume that |L1𝐴+L2𝐴| ≤ (𝑝1/𝑑+𝑞1/𝑑)𝑑 |𝐴|, so that, by Lemma 3.1.4,
𝐴 cannot lie on a hyperplane. Suppose now that 𝐴 is a counterexample to the lemma
with [Z𝑑 : ⟨𝐴⟩] minimal. Let 𝐴′ be the image of 𝐴 in Z𝑑/𝐿1. By Lemma 3.3.4, one
of the following possibilities holds:
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1. 𝐴′ does not generate Z𝑑/𝐿1;

2. |𝜙1(𝐴′) + 𝜙2(𝐴′) | > |𝐴′|;

3. PZ𝑑/𝐿1 ⊆ 𝐴′.

We consider each case separately.

Case 1: (1) holds, but not (2)

The fact that (1) holds means that ⟨𝐴⟩ + 𝐿1 ≠ Z𝑑 , so it must be a strictly smaller
sublattice ofZ𝑑 of some index 𝑘 > 1. LetQ ∈ Mat𝑑 (Z) be such thatQZ𝑑 = ⟨𝐴⟩+𝐿1,
so that | detQ| = 𝑘 . Since (2) does not hold, we have 𝜙1(𝐴′) + 𝜙2(𝐴′) = 𝜙(𝐴′), so
⟨𝜙1(𝐴′) + 𝜙2(𝐴′)⟩ = 𝜙(⟨𝐴′⟩). Since 𝜙 is an isomorphism and ⟨𝐴′⟩ is a subgroup
of Z/𝐿1 of index 𝑘 , 𝜙(⟨𝐴′⟩) is a subgroup of Z𝑑/L1PZ𝑑 of index 𝑘 . Thus,
⟨L1𝐴 + L2𝐴⟩ + L1PZ𝑑 is a sublattice of Z𝑑 of index 𝑘 .

LetQ′ ∈ Mat𝑑 (Z) be such thatQ′Z𝑑 = ⟨L1𝐴 + L2𝐴⟩+L1PZ𝑑 , so that | detQ′| = 𝑘 .
Notice that

|L1𝐴 + L2𝐴| = |Q′−1L1Q(Q−1𝐴) + Q′−1L2Q(Q−1𝐴) |,

so we may replace the triple (L1,L2, 𝐴) with (Q′−1L1Q,Q′−1L2Q,Q−1𝐴). It is
easy to see that Q′−1L1Q,Q′−1L2Q are still irreducible and coprime and Q−1𝐴 ⊂
Z𝑑 . However, this contradicts the minimality of [Z𝑑 : ⟨𝐴⟩], since [Z𝑑 :

〈
Q−1𝐴

〉
] =

[Z𝑑 : ⟨𝐴⟩]/𝑘 .

Case 2: (2) holds

Let 𝐼1, . . . , 𝐼𝑝𝑞 be the cosets of PZ𝑑 with 0 ∈ 𝐼1 and let 𝐴𝑖 = 𝐴∩ 𝐼𝑖 for 𝑖 = 1, . . . , 𝑝𝑞.
Note that the cosets 𝐼𝑖 are the intersections of the cosets of P1Z𝑑 and the cosets of
P2Z𝑑 . If 0 < |𝐴𝑖 | ≤ 𝑐 |𝐴| for some 𝑖, then condition 2 of Lemma 3.3.2 implies that

|L1𝐴 + L2𝐴| ≥ ((𝑝1/𝑑 + 𝑞1/𝑑)𝑑 − (1 − 𝑐)𝛼) |𝐴| − ((𝑝 + 𝑞)𝐷1 + 𝐷) |𝐴|1−𝜎1 .

We may therefore assume that |𝐴𝑖 | > 𝑐 |𝐴| whenever 𝐴𝑖 ≠ ∅. Let 𝐼𝑖,𝑘 be the cosets
of PZ𝑑 ∩L−1

2 L1PZ𝑑 in 𝐼𝑖 for 𝑘 = 1, . . . , 𝑝, where 0 ∈ 𝐼1,1, and let 𝐴𝑖,𝑘 = 𝐴∩ 𝐼𝑖,𝑘 =
𝐴𝑖 ∩ 𝐼𝑖,𝑘 .

Suppose that |𝐴𝑖,𝑘 | > 𝑐2 |𝐴| whenever 𝐴𝑖,𝑘 ≠ ∅. By (2), |𝜙1(𝐴′) + 𝜙2(𝐴′) | > |𝐴′| =
|𝜙(𝐴′) |. Hence, since 𝜙(𝐴′) ⊆ 𝜙1(𝐴′) + 𝜙2(𝐴′), there are 𝑎1, 𝑎2 ∈ 𝐴 such that

L1𝑎1 + L2𝑎2 ∉ (L1 + L2)𝑎 + L1PZ𝑑
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for all 𝑎 ∈ 𝐴. Take 𝑖1, 𝑘1, 𝑖2, 𝑘2 such that 𝑎1 ∈ 𝐴𝑖1,𝑘1 , 𝑎2 ∈ 𝐴𝑖2,𝑘2 , so they are both
non-empty. Then

L1𝐴𝑖1,𝑘1 + L2𝐴𝑖2,𝑘2 ⊂ L1𝑎1 + L2𝑎2 + L1PZ𝑑 ,

which is disjoint from any of the L1𝐴𝑖,𝑘 + L2𝐴𝑖,𝑘 . Therefore,

|L1𝐴 + L2𝐴| ≥
𝑝𝑞∑︁
𝑖=1

𝑝∑︁
𝑘=1
|L1𝐴𝑖,𝑘 + L2𝐴𝑖,𝑘 | + |L1𝐴𝑖1,𝑘1 + L2𝐴𝑖2,𝑘2 |

≥ ((𝑝1/𝑑 + 𝑞1/𝑑)𝑑 − 𝛼) |𝐴| − 𝑝2𝑞𝐷1 |𝐴|1−𝜎1 + |𝐴𝑖1,𝑘1 |
≥ ((𝑝1/𝑑 + 𝑞1/𝑑)𝑑 − (1 − 𝑐2)𝛼) |𝐴| − 𝑝2𝑞𝐷1 |𝐴|1−𝜎1 .

Otherwise, by translating if necessary, we may assume that |𝐴1,1 | ≤ 𝑐2 |𝐴| ≤ 𝑐 |𝐴1 |
and 0 ∈ 𝐴1,1. Let Q ∈ Mat𝑑 (Z) be such that QZ𝑑 = L1Z𝑑 ∩ L2Z𝑑 , so that
| detQ| = 𝑝𝑞. SetM𝑖 = Q−1L𝑖P. Since L𝑖PZ𝑑 ⊆ L1Z𝑑 ∩ L2Z𝑑 = QZ𝑑 , we have
M𝑖Z𝑑 ⊆ Z𝑑 for 𝑖 = 1, 2, soM𝑖 ∈ Mat𝑑 (Z). Moreover,M1,M2 are irreducible and
coprime, with determinants of absolute value 𝑝 and 𝑞, respectively.

If we let 𝐵 = P−1𝐴1 ⊂ Z𝑑 , our aim now is to apply Lemma 3.3.2 to the sum
M1𝐵 +M2𝐵. Indeed, if we replace P1,P2 in that lemma by P′1,P

′
2 chosen so that

P′1Z
𝑑 = Z𝑑∩M−1

2 M1Z𝑑 and P′2Z
𝑑 = Z𝑑∩M−1

1 M2Z𝑑 , the set 𝐴1 by 𝐵1 = P−1𝐴1,1,
which, since 𝐴1,1 = 𝐴1 ∩ L−1

2 L1PZ𝑑 , satisfies 𝐵1 = 𝐵 ∩ P−1L−1
2 L1PZ𝑑 = 𝐵 ∩

M−1
2 M1Z𝑑 , and 𝐴1

1 by an appropriate non-empty subset 𝐵1
1 ⊆ 𝐵1 (which is possible

since 𝐵1 contains 0), then we have 0 < |𝐵1
1 | ≤ |𝐵1 | ≤ 𝑐 |𝐵 |, so condition 2 of

Lemma 3.3.2 holds. Hence, by that lemma,

|M1𝐵 +M2𝐵 | ≥ ((𝑝1/𝑑 + 𝑞1/𝑑)𝑑 − (1 − 𝑐)𝛼) |𝐵 | − ((𝑝 + 𝑞)𝐷1 + 𝐷) |𝐵 |1−𝜎1 .

This implies that

|L1𝐴1 + L2𝐴1 | = |Q−1L1P(P−1𝐴1) + Q−1L2P(P−1𝐴1) |
= |M1𝐵 +M2𝐵 |
≥ ((𝑝1/𝑑 + 𝑞1/𝑑)𝑑 − (1 − 𝑐)𝛼) |𝐵 | − ((𝑝 + 𝑞)𝐷1 + 𝐷) |𝐵 |1−𝜎1

≥ ((𝑝1/𝑑 + 𝑞1/𝑑)𝑑 − (1 − 𝑐)𝛼) |𝐴1 | − ((𝑝 + 𝑞)𝐷1 + 𝐷) |𝐴|1−𝜎1 .
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Thus, since |𝐴1 | ≥ 𝑐 |𝐴|,

|L1𝐴 + L2𝐴| ≥
𝑝𝑞∑︁
𝑖=2
|L1𝐴𝑖 + L2𝐴𝑖 | + |L1𝐴1 + L2𝐴1 |

≥ ((𝑝1/𝑑 + 𝑞1/𝑑)𝑑 − 𝛼) ( |𝐴| − |𝐴1 |) − 𝑝𝑞𝐷1 |𝐴|1−𝜎1

+ ((𝑝1/𝑑 + 𝑞1/𝑑)𝑑 − (1 − 𝑐)𝛼) |𝐴1 | − ((𝑝 + 𝑞)𝐷1 + 𝐷) |𝐴|1−𝜎1

≥ ((𝑝1/𝑑 + 𝑞1/𝑑)𝑑 − 𝛼) |𝐴| + 𝑐𝛼 |𝐴1 | − ((𝑝 + 𝑞 + 𝑝𝑞)𝐷1 + 𝐷) |𝐴|1−𝜎1

≥ ((𝑝1/𝑑 + 𝑞1/𝑑)𝑑 − 𝛼) |𝐴| + 𝑐2𝛼 |𝐴| − ((𝑝 + 𝑞 + 𝑝𝑞)𝐷1 + 𝐷) |𝐴|1−𝜎1

≥ ((𝑝1/𝑑 + 𝑞1/𝑑)𝑑 − (1 − 𝑐2)𝛼) |𝐴| − (4𝑝2𝑞2𝐷1 + 𝐷) |𝐴|1−𝜎1 .

Case 3: (3) holds

Let 𝐴′′ be the image of 𝐴 in Z𝑑/𝐿2. If we apply Lemma 3.3.4 to 𝐴′′, but with
the roles of L1,L2 swapped, we arrive at three similar cases. If either of the first
two occurs, then we are again done as above. Otherwise, the third case holds, i.e.,
PZ𝑑/𝐿2 ⊆ 𝐴′′. Define 𝐴1,M1,M2, 𝐵 as in Case 2 and partition 𝐵 into 𝐵1∪· · ·∪𝐵𝑝,
where the 𝐵𝑖 belong to different cosets of Z𝑑 ∩M−1

2 M1Z𝑑 , and into 𝐵1 ∪ · · · ∪ 𝐵𝑞,
where the 𝐵 𝑗 belong to different cosets of Z𝑑 ∩M−1

1 M2Z𝑑 .

Since PZ𝑑/𝐿1 ⊆ 𝐴′, we have PZ𝑑 ⊆ 𝐴 + 𝐿1 and so PZ𝑑 ⊆ 𝐴1 + 𝐿1, since
𝐴1 = 𝐴 ∩ PZ𝑑 . Thus, Z𝑑 = P−1𝐴1 + P−1𝐿1, which means that 𝐵 = P−1𝐴1

intersects every coset of P−1𝐿1 = Z𝑑 ∩ P−1L−1
2 L1PZ𝑑 = Z𝑑 ∩M−1

2 M1Z𝑑 , so all
the 𝐵𝑖 are non-empty. Similarly, all of the 𝐵 𝑗 are non-empty. Thus, condition 1 of
Lemma 3.3.2 holds, so that

|M1𝐵 +M2𝐵 | ≥ ((𝑝1/𝑑 + 𝑞1/𝑑)𝑑 − (1 − 𝑐)𝛼) |𝐵 | − ((𝑝 + 𝑞)𝐷1 + 𝐷) |𝐵 |1−𝜎1 .

The same calculation as in Case 2 then shows that

|L1𝐴 + L2𝐴| ≥ ((𝑝1/𝑑 + 𝑞1/𝑑)𝑑 − (1 − 𝑐2)𝛼) |𝐴| − (4𝑝2𝑞2𝐷1 + 𝐷) |𝐴|1−𝜎1 ,

as required. □

Theorem 3.3.6. Let L1,L2 ∈ Mat𝑑 (Z) be irreducible, coprime linear transforma-
tions with | detL1 | = 𝑝 and | detL2 | = 𝑞. Then there are constants 𝜎2 > 0 and
𝐷2 > 0 depending only on 𝑑, 𝑝 and 𝑞 such that

|L1𝐴 + L2𝐴| ≥ (𝑝1/𝑑 + 𝑞1/𝑑)𝑑 |𝐴| − 𝐷2 |𝐴|1−𝜎2

for all finite 𝐴 ⊂ Z𝑑 .

Proof. This follows from Lemma 3.3.5, identical to how Theorem 3.2.4 follows
from Lemma 3.2.3. □
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3.4 Concluding remarks
Better bounds. Although Theorem 3.0.5 can be tight, there is a stronger general
bound. In analogy with the algebraic number setting, given L ∈ Mat𝑑 (Q) with
minimal polynomial 𝑓 (𝑥) ∈ Z[𝑥], which we assume to have coprime coefficients,
suppose that 𝑓 (𝑥) = ∏𝑑

𝑖=1(𝑎𝑖𝑥 + 𝑏𝑖) is a full complex factorization of 𝑓 and let
𝐻 (L) =

∏𝑑
𝑖=1( |𝑎𝑖 | + |𝑏𝑖 |). We will prove the following, a variant of a recent

conjecture of Krachun and Petrov [28, Conjecture 2] that was itself inspired by a
continuous analogue [28, Theorem 2].

Theorem 3.4.1. Let L1,L2 ∈ Mat𝑑 (Z) be irreducible. Then, for any finite subset
𝐴 of Z𝑑 ,

|L1𝐴 + L2𝐴| ≥ 𝐻 (L−1
1 L2) |𝐴| − 𝑜( |𝐴|).

The proof of the above will be delayed to Chapter 7. Note that the coprimeness
condition is unnecessary here, since if we were to replaceL1,L2 withPL1Q,PL2Q
to make them coprime, then

𝐻 ((PL1Q)−1(PL2Q)) = 𝐻 (Q−1L−1
1 L2Q) = 𝐻 (L−1

1 L2).

Moreover, Theorem 3.4.1 implies our Theorem 3.0.5, since if L1,L2 are co-
prime, then it can be shown that the minimal polynomial of L−1

1 L2 over Z is
𝑐𝑑𝑥

𝑑 + 𝑐𝑑−1𝑥
𝑑−1 + · · · + 𝑐0, where |𝑐𝑑 | = | det(L1) | and |𝑐0 | = |𝑐𝑑 | | det(L−1

1 L2) | =
| det(L2) |. Therefore, by Hölder’s inequality,

𝐻 (L−1
1 L2) =

𝑑∏
𝑖=1
( |𝑎𝑖 | + |𝑏𝑖 |) ≥

(
𝑑∏
𝑖=1
|𝑎𝑖 |1/𝑑 +

𝑑∏
𝑖=1
|𝑏𝑖 |1/𝑑

)𝑑
= ( |𝑐𝑑 |1/𝑑 + |𝑐0 |1/𝑑)𝑑 .

There should also be a suitable generalization of Theorem 3.4.1 to more than two
variables, but, unlike Conjecture 3.0.4, which itself remains open for three or more
variables, it is not at all obvious what this should be.

Lower-order terms. Unlike with sums of dilates (see, for instance, [2, 25, 42] and
Chapter 2), we cannot in general hope for the error term in Theorem 3.0.5 to be a
constant. Indeed, in two dimensions, if we set 𝐴 = {(𝑥, 𝑦) : 0 ≤ 𝑥, 𝑦 ≤ 𝑛 − 1} and
L to be the anti-clockwise rotation about the origin through 𝜋/2, then |𝐴| = 𝑛2, but
|𝐴 + L𝐴| = (2𝑛 − 1)2 = 4|𝐴| − 4|𝐴|1/2 + 1. That is, the error term in this case is
a multiple of |𝐴|1/2. Similarly, in 𝑑 dimensions, there are examples for which the
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error term is a multiple of |𝐴|1−1/𝑑 . Following Shakan [42], we conjecture that there
are no significantly worse examples.

Conjecture 3.4.2. Suppose that L1, . . . ,L𝑘 ∈ Mat𝑑 (Z) are irreducible and co-
prime. Then there is a constant 𝐷 such that, for any finite subset 𝐴 of Z𝑑 ,

|L1𝐴 + · · · + L𝑘𝐴| ≥
(
| det(L1) |1/𝑑 + · · · + | det(L𝑘 ) |1/𝑑

)𝑑
|𝐴| − 𝐷 |𝐴|1−1/𝑑 .

A proof of this conjecture when 𝑘 = 2 would already constitute a significant im-
provement on our Theorem 3.0.5, which gives an error term of the form 𝐷 |𝐴|1−𝜎

for some 𝜎 > 0 which depends not only on 𝑑, but also on | det(L1) | and | det(L2) |.

Real-valued analogues. Our main result, Theorem 3.0.5, can be extended to subsets
of R𝑑 as follows.

Theorem 3.4.3. Suppose thatL1,L2 ∈ Mat𝑑 (Z) are irreducible and coprime. Then
there are constants 𝐷, 𝜎 > 0 such that, for any finite subset 𝐴 of R𝑑 ,

|L1𝐴 + L2𝐴| ≥
(
| det(L1) |1/𝑑 + | det(L2) |1/𝑑

)𝑑
|𝐴| − 𝐷 |𝐴|1−𝜎 .

To see this, suppose that 𝐴 ⊂ R𝑑 and let 𝐵 ⊂ R be the set consisting of all
real numbers that appear as a coordinate of some element of 𝐴. For any fixed
natural number 𝑘 , a standard result in additive combinatorics (see, for instance, [48,
Lemma 5.25]) allows us to find a set 𝐵′ ⊂ Z which has a Freiman isomorphism
of order 𝑘 with 𝐵. We then obtain a set 𝐴′ ⊂ Z𝑑 by replacing each coordinate of
each element of 𝐴 with its image in 𝐵′. Provided 𝑘 is chosen sufficiently large in
terms of the coefficients of L1 and L2, it is now easy to verify that |L1𝐴

′ +L2𝐴
′| =

|L1𝐴 + L2𝐴|. Therefore, since the conclusion of the theorem is known for all
𝐴′ ⊂ Z𝑑 , it is also true for all 𝐴 ⊂ R𝑑 .
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C h a p t e r 4

SUMS OF TRANSCENDENTAL DILATES

Parts of this chapter are based on the author’s publications. The materials have been
adapted for inclusion in this thesis.

[1] D. Conlon and J. Lim, Sums of transcendental dilates, Bulletin of the London
Mathematical Society 55 (2023), no. 5, 2400–2406, doi: 10.1112/blms.
12870.

Our interest here will be in estimating the minimum size 𝐴 + 𝜆 · 𝐴 given |𝐴|, for a
transcendental 𝜆 ∈ C and subset 𝐴 ⊂ C.

Let us first recall what happens when 𝜆 is not transcendental. When 𝜆 is rational,
say 𝜆 = 𝑝/𝑞 with 𝑝 and 𝑞 coprime, a result of Bukh [8] implies that

|𝐴 + 𝜆 · 𝐴| ≥ (|𝑝 | + |𝑞 |) |𝐴| − 𝑜( |𝐴|),

which is best possible up to the lower-order term (though see [2] for an improvement
of the lower-order term to a constant depending only on 𝜆). Moreover, as noted by
Krachun and Petrov [28], for any fixed algebraic number 𝜆, the minimum size of
|𝐴 + 𝜆 · 𝐴| is always at most linear in |𝐴|. We postpone further discussion of the
algebraic case to Chapter 6.

For 𝜆 transcendental, the picture is very different. Indeed, Konyagin and Łaba [27]
showed that in this case there exists an absolute constant 𝑐 > 0 such that

|𝐴 + 𝜆 · 𝐴| ≥ 𝑐 log |𝐴|
log log |𝐴| |𝐴|.

That is, |𝐴 + 𝜆 · 𝐴| can no longer be linear in |𝐴|. This result was subsequently
improved by Sanders [39], by Schoen [41] and again by Sanders [40] using successive
quantitative refinements of Freiman’s theorem [17] on sets of small doubling, with
Sanders’ second bound saying that there exists an absolute constant 𝑐 > 0 such that,
for |𝐴| sufficiently large,

|𝐴 + 𝜆 · 𝐴| ≥ 𝑒log𝑐 |𝐴| |𝐴|.

This already comes quite close to matching the best known upper bound, due to
Konyagin and Łaba [27], which says that there exists 𝑐′ > 0 and, for any fixed
transcendental number 𝜆, arbitrarily large finite subsets 𝐴 of R such that

https://doi.org/10.1112/blms.12870
https://doi.org/10.1112/blms.12870
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|𝐴 + 𝜆 · 𝐴| ≤ 𝑒𝑐′
√

log |𝐴| |𝐴|.

Our main result this chapter says that this upper bound is in fact best possible up to
the constant 𝑐′.

Theorem 4.0.1. There is an absolute constant 𝑐 > 0 such that

|𝐴 + 𝜆 · 𝐴| ≥ 𝑒𝑐
√

log |𝐴| |𝐴|

for any finite subset 𝐴 of R and any transcendental number 𝜆 ∈ R.

Before proceeding to the proof of this theorem, let us briefly look at the upper bound,
which comes from considering sets of the form

𝐴 =

{
𝑚∑︁
𝑖=1

𝑎𝑖𝜆
𝑖 : (𝑎1, . . . , 𝑎𝑚) ∈ [𝑛]𝑚

}
.

This set has size 𝑛𝑚 and

𝐴 + 𝜆 · 𝐴 ⊂
{
𝑚+1∑︁
𝑖=1

𝑏𝑖𝜆
𝑖 : (𝑏1, . . . , 𝑏𝑚+1) ∈ [2𝑛]𝑚+1

}
,

which has size (2𝑛)𝑚+1. If we take 𝑛 = 2𝑚, we have |𝐴| = 𝑛𝑚 = 2𝑚2 , so that

|𝐴 + 𝜆 · 𝐴| ≤ (2𝑛)𝑚+1 = 2(𝑚+1)
2 ≤ 𝑒𝑐′

√
log |𝐴| |𝐴|

for some 𝑐′ > 0, as required. This bound is reminiscent, both in its form and its
proof, of Behrend’s lower bound [4] for the largest subset of [𝑛] containing no
three-term arithmetic progressions. Our Theorem 4.0.1 is arguably the first example
where such a bound is known to be tight to this level of accuracy.

4.1 Proof of Theorem 4.0.1
To begin, we use a simple observation of Krachun and Petrov to recast the problem.

Lemma 4.1.1 (Krachun–Petrov [28]). Suppose that 𝜆 ∈ C and 𝐴 is a finite subset
of C. Then there exists 𝐵 ⊂ Q[𝜆] such that |𝐵 | = |𝐴| and |𝐵 + 𝜆 · 𝐵| ≤ |𝐴 + 𝜆 · 𝐴|.

Suppose now that 𝑉 is the Q-vector space Q[𝜆] with basis
{
1, 𝜆, 𝜆2, . . .

}
. For

any positive integer 𝑑, let 𝑉𝑑 ⊂ 𝑉 be the 𝑑-dimensional subspace spanned by{
1, 𝜆, 𝜆2, . . . , 𝜆𝑑−1}, noting that 𝑉 =

⋃
𝑑 𝑉𝑑 . For any finite 𝐴 ⊂ 𝑉 , we must have
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𝐴 ⊂ 𝑉𝑑 for some 𝑑. Multiplication by 𝜆 therefore corresponds to taking the linear
map Φ : 𝑉 → 𝑉 given by the union of the maps 𝑉𝑑 → 𝑉𝑑+1 with

(𝑥1, . . . , 𝑥𝑑) ↦→ (0, 𝑥1, . . . , 𝑥𝑑).

Thus, the problem of estimating |𝐴 + 𝜆 · 𝐴| for finite 𝐴 ⊂ R and 𝜆 transcendental
is equivalent to estimating |𝐴 + Φ(𝐴) | for finite 𝐴 ⊂ 𝑉 . In particular, we may
reformulate Theorem 4.0.1 in the following terms.

Theorem 4.1.2. There is an absolute constant 𝑐 > 0 such that if 𝐴 ⊂ 𝑉 with |𝐴| = 𝑛,
then

|𝐴 +Φ(𝐴) | ≥ 𝑒𝑐
√

log 𝑛𝑛.

We will focus on proving this latter result from here on.

Before getting to the proof proper, we first note a few additional results that we
will need. The first is a discrete variant of the Brunn–Minkowski theorem taken
from Chapter 3. In what follows, for each 𝐼 ⊆ [𝑑], we write 𝑝𝐼 : R𝑑 → R𝑑 for
the projection onto the coordinates indexed by 𝐼, setting all other coordinates to 0.
Note that we may naturally extend the definition of 𝑝𝐼 to 𝑉𝑑 , and hence to 𝑉 , by
identifying 𝑉𝑑 with Q𝑑 .

Lemma 4.1.3 (also Lemma 3.1.1). For any finite subsets 𝐴, 𝐵 of R𝑑 ,∑︁
𝐼⊆[𝑑]
|𝑝𝐼 (𝐴 + 𝐵) | ≥ (|𝐴|1/𝑑 + |𝐵 |1/𝑑)𝑑 .

For our next result, we need the following estimate of Ruzsa [37] for the size of
sumsets in R𝑑 . We say that a subset𝐶 of R𝑑 is 𝑘-dimensional and write dim(𝐶) = 𝑘
if the dimension of the affine subspace spanned by 𝐶 is 𝑘 .

Lemma 4.1.4 (Ruzsa [37]). If 𝐴, 𝐵 ⊂ R𝑑 , |𝐴| ≥ |𝐵 | and dim(𝐴 + 𝐵) = 𝑑, then

|𝐴 + 𝐵 | ≥ |𝐴| + 𝑑 |𝐵 | − 𝑑 (𝑑 + 1)
2

.

For 𝑎 ∈ 𝑉 , write 𝑝𝑘 (𝑎) for the vector obtained by removing the 𝑘-th coordinate from
𝑎. For 𝐴 ⊂ 𝑉 and 𝑥 ∈ 𝑝𝑘 (𝐴), let 𝐴𝑥 = 𝑝−1

𝑘
(𝑥). We define the compression 𝐶𝑘 (𝐴)

of 𝐴 along the 𝑘-th coordinate to be the set 𝐴′ such that 𝑝𝑘 (𝐴′) = 𝑝𝑘 (𝐴) and, for
each 𝑥 ∈ 𝑝𝑘 (𝐴), the 𝑘-th coordinates of 𝐴′𝑥 are 0, 1, . . . , |𝐴𝑥 | − 1. It is known (see,
for example, Lemma 3.1.1 in Chapter 3) that |𝐶𝑘 (𝐴) + 𝐶𝑘 (𝐵) | ≤ |𝐴 + 𝐵 | for any
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finite 𝐴, 𝐵 ⊂ 𝑉 . We say that 𝐴 is compressed if 𝐶𝑘 (𝐴) = 𝐴 for all 𝑘 . A compressed
set 𝐴 ⊂ 𝑉𝑑 has the property that if (𝑎1, . . . , 𝑎𝑑) ∈ 𝐴 and 𝑏𝑖 ∈ Z with 0 ≤ 𝑏𝑖 ≤ 𝑎𝑖
for all 1 ≤ 𝑖 ≤ 𝑑, then (𝑏1, . . . , 𝑏𝑑) ∈ 𝐴. The next lemma will allow us to assume
that 𝐴 is both compressed and of low dimension when proving our main result.

Lemma 4.1.5. Suppose that 𝐴 ⊂ 𝑉 is finite with |𝐴 + Φ(𝐴) | = 𝐾 |𝐴|. Then there
is some 𝑑 ≤ 2𝐾 and 𝐴′ ⊂ 𝑉𝑑 with |𝐴′| = |𝐴| such that 𝐴′ is compressed and
|𝐴′ +Φ(𝐴′) | ≤ |𝐴 +Φ(𝐴) |.

Proof. Since 𝐴 is finite, 𝐴 ⊂ 𝑉𝐷 for some 𝐷. Note that Φ ◦ 𝐶𝑖 = 𝐶𝑖+1 ◦Φ for all 𝑖.
Denote by 𝐶[𝑖] the composition 𝐶1 ◦ 𝐶2 ◦ · · · ◦ 𝐶𝑖. Then 𝐶[𝐷+1] (𝐴) = 𝐶[𝐷] (𝐴) and
𝐶[𝐷+1] (Φ(𝐴)) = Φ(𝐶[𝐷] (𝐴)). Thus, setting 𝐴1 = 𝐶[𝐷] (𝐴), we have |𝐴1 | = |𝐴| and

|𝐴1 +Φ(𝐴1) | = |𝐶[𝐷] (𝐴) +Φ(𝐶[𝐷] (𝐴)) |
= |𝐶[𝐷+1] (𝐴) + 𝐶[𝐷+1] (Φ(𝐴)) | ≤ |𝐴 +Φ(𝐴) |.

Furthermore, 𝐴1 is compressed.

Let 𝑒𝑘 = 𝜆𝑘−1 be the basis vectors for 𝑘 = 1, . . . , 𝐷. If 𝑒𝑘 ∉ 𝐴1, then the 𝑘-th
coordinate of every point of 𝐴1 is 0. Let 𝐴′1 be the set formed by replacing each point
(𝑥1, . . . , 𝑥𝑘−1, 0, 𝑥𝑘 , . . . , 𝑥𝐷−1) of 𝐴1 with the point (𝑥1, . . . , 𝑥𝑘−1, 𝑥𝑘 , . . . , 𝑥𝐷−1), so
that 𝐴′1 ⊂ 𝑉𝐷−1. We claim that |𝐴′1 + Φ(𝐴

′
1) | ≤ |𝐴1 + Φ(𝐴1) |. Indeed, every point

of 𝐴1 +Φ(𝐴1) is of the form

(𝑥1, 𝑥2 + 𝑦1, 𝑥3 + 𝑦2, . . . , 𝑥𝑘−1 + 𝑦𝑘−2, 𝑦𝑘−1, 𝑥𝑘 , 𝑥𝑘+1 + 𝑦𝑘 , . . . , 𝑥𝐷−1 + 𝑦𝐷−2, 𝑦𝐷−1)

for some (𝑥1, . . . , 𝑥𝑘−1, 0, 𝑥𝑘 , . . . , 𝑥𝐷−1), (𝑦1, . . . , 𝑦𝑘−1, 0, 𝑦𝑘 , . . . , 𝑦𝐷−1) ∈ 𝐴1, whereas
every point of 𝐴′1 +Φ(𝐴

′
1) is of the form

(𝑥1, 𝑥2 + 𝑦1, 𝑥3 + 𝑦2, . . . , 𝑥𝐷−1 + 𝑦𝐷−2, 𝑦𝐷−1).

There is a clear surjection from 𝐴1+Φ(𝐴1) to 𝐴′1+Φ(𝐴
′
1) by summing and combining

the 𝑘-th and (𝑘 + 1)-th coordinates.

Repeating the above procedure whenever possible for each 𝑘 , we obtain a set 𝐴′

with |𝐴′| = |𝐴|, |𝐴′ + Φ(𝐴′) | ≤ |𝐴 + Φ(𝐴) | and 𝐴′ ⊂ 𝑉𝑑 for some 𝑑 with 𝑒𝑘 ∈ 𝐴′

for 𝑘 = 1, . . . , 𝑑. By this last condition, 𝐴′ is 𝑑-dimensional and, moreover,
𝐴′+Φ(𝐴′) is (𝑑 +1)-dimensional. Hence, by Lemma 4.1.4, we have |𝐴′+Φ(𝐴′) | ≥
(𝑑 + 2) |𝐴′| − (𝑑+1) (𝑑+2)2 . Using that |𝐴′ + Φ(𝐴′) | ≤ 𝐾 |𝐴′| and |𝐴′| ≥ 𝑑 + 1, we get
𝑑 ≤ 2𝐾 , as required. □
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We also note the following result of Plünnecke–Ruzsa type.

Lemma 4.1.6. Suppose 𝐴 ⊂ 𝑉 is finite. If |𝐴 +Φ(𝐴) | ≤ 𝐾 |𝐴| for some 𝐾 > 0, then
| (𝐴 +Φ(𝐴)) +Φ(𝐴 +Φ(𝐴)) | ≤ 𝐾10 |𝐴|.

Proof. By the sum version of Ruzsa’s triangle inequality (Lemma 1.6.1), setting
𝑋 = Φ(𝐴), 𝑌 = 𝑍 = 𝐴 and noting that |Φ(𝐴) | = |𝐴|, we have

|Φ(𝐴) | |𝐴 + 𝐴| ≤ |𝐴 +Φ(𝐴) | |𝐴 +Φ(𝐴) |,

so that |𝐴+ 𝐴| ≤ 𝐾2 |𝐴|. Hence, by the Plünnecke–Ruzsa inequality (Lemma 1.6.2),
|𝐴 + 𝐴 + 𝐴 + 𝐴| ≤ 𝐾8 |𝐴|. Thus, another application of Ruzsa’s triangle inequality
(with 𝑋 = Φ(𝐴), 𝑌 = 𝐴, 𝑍 = Φ(𝐴) +Φ(𝐴) +Φ(𝐴)) yields

|Φ(𝐴) | |𝐴 +Φ(𝐴) +Φ(𝐴) +Φ(𝐴) | ≤ |𝐴 +Φ(𝐴) | |Φ(𝐴) +Φ(𝐴) +Φ(𝐴) +Φ(𝐴) |,

so that |𝐴 + Φ(𝐴) + Φ(𝐴) + Φ(𝐴) | ≤ 𝐾9 |𝐴|. Applying Ruzsa’s triangle inequality
once more (with 𝑋 = Φ(𝐴), 𝑌 = 𝐴 +Φ(𝐴) +Φ(𝐴), 𝑍 = Φ2(𝐴)), we see that

|Φ(𝐴) | |𝐴 +Φ(𝐴) +Φ(𝐴) +Φ2(𝐴) | ≤ |𝐴 +Φ(𝐴) +Φ(𝐴) +Φ(𝐴) | |Φ(𝐴) +Φ2(𝐴) |,

so that |𝐴 +Φ(𝐴) +Φ(𝐴) +Φ2(𝐴) | ≤ 𝐾10 |𝐴|, as required. □

We now come to the main novel ingredient in our proof, which is a strong upper
bound for the size of the projections of any compressed 𝐴 ⊂ 𝑉𝑑 in terms of |𝐴+Φ(𝐴) |.
Given a set 𝐼 ⊆ [𝑑], we will write 𝛼(𝐼) for the length of the longest set of consecutive
integers in 𝐼.

Lemma 4.1.7. Let 𝐴 ⊂ 𝑉𝑑 be finite and compressed with |𝐴 + Φ(𝐴) | = 𝑁 . Then,
for any subset 𝐼 ⊆ [𝑑],

|𝑝𝐼 (𝐴) | ≤ 𝑁
𝑘
𝑘+1 ,

where 𝑘 = 𝛼(𝐼).

Proof. For any set of integers 𝐽, define 𝜙(𝐽) = { 𝑗 + 1 : 𝑗 ∈ 𝐽}. We claim that, for
any 𝐽1, 𝐽2 ⊂ [𝑑],

|𝑝𝐽1 (𝐴) | |𝑝𝐽2 (𝐴) |
|𝑝𝐽1∩𝜙(𝐽2) (𝐴) |

≤ 𝑁.

To show this, we will exhibit an injection 𝑝𝐽1 (𝐴) × 𝑝𝐽2 (𝐴) → 𝑝𝐽1∩𝜙(𝐽2) (𝐴) × (𝐴 +
Φ(𝐴)). Let (𝑥, 𝑦) ∈ 𝑝𝐽1 (𝐴) × 𝑝𝐽2 (𝐴) and consider the map

(𝑥, 𝑦) ↦→ (𝑝𝐽1∩𝜙(𝐽2) (𝑥), 𝑥 +Φ(𝑦)).
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Since 𝐴 is compressed, 𝑝𝐽 (𝐴) ⊆ 𝐴 for every 𝐽, which easily implies that (𝑝𝐽1∩𝜙(𝐽2) (𝑥), 𝑥+
Φ(𝑦)) is indeed in 𝑝𝐽1∩𝜙(𝐽2) (𝐴) × (𝐴 +Φ(𝐴)). To see that the map is injective, it is
enough to observe that

𝑥 = 𝑝𝐽1∩𝜙(𝐽2) (𝑥) + 𝑝𝐽1\𝜙(𝐽2) (𝑥) = 𝑝𝐽1∩𝜙(𝐽2) (𝑥) + 𝑝𝐽1\𝜙(𝐽2) (𝑥 +Φ(𝑦))

and

Φ(𝑦) = 𝑝𝜙(𝐽2) (Φ(𝑦)) = 𝑝𝜙(𝐽2) (𝑥+Φ(𝑦))−𝑝𝜙(𝐽2) (𝑥) = 𝑝𝜙(𝐽2) (𝑥+Φ(𝑦))−𝑝𝐽1∩𝜙(𝐽2) (𝑥).

For 𝑖 = 0, 1, . . . , 𝑘 , let

𝐼𝑖 = { 𝑗 ∈ 𝐼 : { 𝑗 , 𝑗 − 1, . . . , 𝑗 − 𝑖} ⊆ 𝐼} .

Then 𝐼 = 𝐼0 ⊃ 𝐼1 ⊃ · · · ⊃ 𝐼𝑘 = ∅ and, for each 𝑖 = 0, 1, . . . , 𝑘 − 1, 𝐼 ∩ 𝜙(𝐼𝑖) = 𝐼𝑖+1.
Thus, by the claim above,

|𝑝𝐼 (𝐴) | |𝑝𝐼𝑖 (𝐴) |
|𝑝𝐼𝑖+1 (𝐴) |

≤ 𝑁.

Taking the product of this inequality over all 𝑖 = 0, 1 . . . , 𝑘 − 1, we get

|𝑝𝐼 (𝐴) |𝑘+1 ≤ 𝑁 𝑘

and the lemma follows. □

We are now ready to prove our main result.

Proof of Theorem 4.1.2. Suppose instead that |𝐴+Φ(𝐴) | = 𝐾𝑛, where 𝐾 < 𝑒𝑐
√

log 𝑛

for some 𝑐 > 0 that will be fixed later. By Lemma 4.1.5, we may assume that 𝐴 is
compressed and 𝐴 ⊂ 𝑉𝑑 with 𝑑 ≤ 2𝐾 .

By Lemma 4.1.6, we have

|𝐴 +Φ(𝐴) +Φ(𝐴 +Φ(𝐴)) | ≤ 𝐾10𝑛.

Since 𝐴 is compressed, so are Φ(𝐴) and, therefore, 𝐴+Φ(𝐴). Hence, Lemma 4.1.7
implies that

|𝑝𝐼 (𝐴 +Φ(𝐴)) | ≤ (𝐾10𝑛) 𝑘
𝑘+1

for any 𝐼 ⊆ [𝑑 + 1], where 𝑘 = 𝛼(𝐼). But the number of 𝐼 ⊆ [𝑑 + 1] with 𝛼(𝐼) = 𝑘
is at most

𝑑+2−𝑘∑︁
𝑖=1
|{𝐼 ⊆ [𝑑 + 1] : 𝑖, 𝑖 + 1, . . . , 𝑖 + 𝑘 − 1 ∈ 𝐼}| ≤ (𝑑 + 2)2𝑑+1−𝑘 .
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Thus, by Lemma 4.1.3, we have that

2𝑑+1𝑛 ≤
∑︁

𝐼⊆[𝑑+1]
|𝑝𝐼 (𝐴 +Φ(𝐴)) | ≤

𝑑+1∑︁
𝑘=0
|{𝐼 ⊆ [𝑑 + 1] : 𝛼(𝐼) = 𝑘}| (𝐾10𝑛) 𝑘

𝑘+1

≤
𝑑+1∑︁
𝑘=0
(𝑑 + 2)2𝑑+1−𝑘 (𝐾10𝑛) 𝑘

𝑘+1 .

Therefore,

1 ≤
𝑑+1∑︁
𝑘=0
(𝑑 + 2)2−𝑘𝐾 10𝑘

𝑘+1𝑛−
1
𝑘+1 ≤ 2(𝑑 + 2)

𝑑+1∑︁
𝑘=0

2−𝑘−1𝐾10𝑛−
1
𝑘+1

≤ 2(𝑑 + 2)
𝑑+1∑︁
𝑘=0

𝑒−(𝑘+1) log 2+10𝑐
√

log 𝑛− log 𝑛
𝑘+1

≤ 2(𝑑 + 2)
𝑑+1∑︁
𝑘=0

𝑒−2
√
(log 2) log 𝑛+10𝑐

√
log 𝑛(

using (𝑘 + 1) log 2 + log 𝑛
𝑘 + 1

≥ 2
√︁
(log 2) log 𝑛

)
= 2(𝑑 + 2)2𝑒(10𝑐−2

√
log 2)
√

log 𝑛 ≤ 𝑒(13𝑐−2
√

log 2)
√

log 𝑛,

which is a contradiction for 𝑐 = 0.1 and 𝑛 sufficiently large. For smaller 𝑛, we may
use the trivial estimate |𝐴 +Φ(𝐴) | ≥ 2|𝐴| − 1 to choose an appropriate 𝑐 that works
for all 𝑛. □

As a final remark, we note that the conclusion of Theorem 4.0.1 also holds for any
finite subset 𝐴 of C and any transcendental 𝜆 ∈ C. Indeed, Lemma 4.1.1 again
reduces the problem to estimating |𝐴 + 𝜆 · 𝐴| for finite 𝐴 ⊂ Q[𝜆] and then to
estimating |𝐴+Φ(𝐴) | for finite 𝐴 ⊂ 𝑉 , so the rest of the proof goes through without
change.
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C h a p t e r 5

STRUCTURE THEOREM FOR SUMS OF DILATES

Parts of this chapter are based on the author’s publications. The materials have been
adapted for inclusion in this thesis.

[1] D. Conlon and J. Lim, Sums of algebraic dilates, in preparation.

A fundamental result in additive combinatorics is Freiman’s structure theorem.
Recall that a generalized arithmetic progression (or GAP for short) is a set 𝑃 of the
form

𝑃 = {𝑣0 + 𝑎1𝑣1 + · · · + 𝑎𝑑𝑣𝑑 : 0 ≤ 𝑎𝑖 < 𝐿1 for all 𝑖} , (5.1)

for some integers 𝑣0, 𝑣1, . . . , 𝑣𝑑 , 𝐿1, . . . , 𝐿𝑑 , where 𝑑 is the dimension of the GAP
𝑃. We say that 𝑃 is proper if the terms in (5.1) are distinct. Freiman’s theorem can
then be stated as:

Theorem 5.0.1 (Freiman [17]). Let 𝐾 > 0. Then there exist 𝑑, 𝐹 > 0 depending
only on 𝐾 such that the following holds. If 𝐴 ⊂ Z satisfies |𝐴 + 𝐴| ≤ 𝐾 |𝐴|, then 𝐴
is contained in a proper GAP of dimension at most 𝑑 and size at most 𝐹 |𝐴|.

In this chapter, we prove an analogous version of Freiman’s theorem for sets with
small sums of algebraic dilates. Let 𝜆1, . . . , 𝜆𝑘 be algebraic integers and 𝐾 =

Q(𝜆1, . . . , 𝜆𝑘 ). Denote by O𝐾 the ring of algebraic integers in 𝐾 . Our main result is
as follows, which is a crucial ingredient in our proof of Theorem 1.4.5 in Chapter 6.

Theorem 5.0.2. Let 𝐶, 𝑝 > 0. Then there are constants 𝑛 = 𝑛(𝐶, 𝑝) and 𝐹 =

𝐹 (𝐶, 𝑝) such that for any 𝐴 ⊂ O𝐾 satisfying

|𝐴 + 𝜆1 · 𝐴 + · · · + 𝜆𝑘 · 𝐴| ≤ 𝐶 |𝐴|,

there exists a 𝑝-proper O𝐾-GAP 𝑃 ⊂ O𝐾 containing 𝐴 of dimension at most 𝑛 and
size at most 𝐹 |𝐴|.

We will define O𝐾-GAPs in Section 5.4. This result is qualitatively best possible,
in the sense that any O𝐾-GAP has small sums of dilates.
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In order to prove this result, we extend several results from additive geometry, a term
we borrow from Tao and Vu [48, Chapter 3], to rings of integers, culminating in
the version of Freiman’s theorem for sums of dilates mentioned in the introduction.
Along the way, we prove several results that may be of independent interest, including
versions of Minkowski’s second theorem and John’s theorem for lattices over rings
of integers.

5.1 Notation
Throughout this chapter, we will use the following notation:

• 𝜆0, 𝜆1, . . . , 𝜆𝑘 are algebraic numbers with 𝜆0 = 1.

• 𝐾 := Q(𝜆1, . . . , 𝜆𝑘 ) is the number field generated by 𝜆1, . . . , 𝜆𝑘 .

• The degree of 𝐾 over Q is 𝑑 := deg(𝐾/Q), so 𝐾 � Q𝑑 .

• The ring of integers over 𝐾 is denoted O𝐾 , so O𝐾 � Z𝑑 .

• We write 𝐾R := 𝐾 ⊗Q R = O𝐾 ⊗Z R � R𝑑 and 𝐾C := 𝐾 ⊗Q C � C𝑑 .

• A convex body in R𝑛 is assumed to be convex, open, non-empty and bounded.

• We will generally use 𝑖 to index 1, . . . , 𝑑, 𝑗 to index 1, . . . , 𝑛 and 𝑙 to index
1, . . . , 𝑘 (possibly starting at 0). However, this is not strict and the usage can
depend on context.

5.2 A norm on O𝐾 and 𝐾R

In this section, we define a norm on O𝐾 and 𝐾R and note some of its basic properties
(this is not to be confused with the field norm 𝑁𝐾/Q(·) on 𝐾 , which we also use).

Fix a Z-basis 𝑒1, . . . , 𝑒𝑑 of O𝐾 , and define the isomorphism Φ : O𝐾 → Z𝑑 given by
sending a basis 𝑒1, . . . , 𝑒𝑑 of O𝐾 to the standard basis of Z𝑑 . By pulling back Φ, the
∞-norm on Z𝑑 defines a norm ∥·∥ on O𝐾 , namely, for 𝑙1, . . . , 𝑙𝑑 ∈ Z,

∥𝑙1𝑒1 + · · · + 𝑙𝑑𝑒𝑑 ∥ := max
𝑖
|𝑙𝑖 |.

The open ball 𝐵(𝐿) of radius 𝐿 > 0 under this norm is then given by

𝐵(𝐿) := {𝑙1𝑒1 + · · · + 𝑙𝑑𝑒𝑑 ∈ O𝐾 : |𝑙𝑖 | < 𝐿 for all 𝑖} .

∥·∥ extends linearly and continuously to a norm on 𝐾R, which we also denote by
∥·∥. The open ball 𝐵R(𝑅) of radius 𝑅 > 0 in 𝐾R is then

𝐵R(𝑅) := {𝑒1 ⊗ 𝑟1 + · · · + 𝑒𝑑 ⊗ 𝑟𝑑 ∈ 𝐾R : |𝑟𝑖 | < 𝑅 for all 𝑖} .
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The following lemma may be seen as defining some constants associated to the norm
∥·∥.

Lemma 5.2.1. There exist constants 𝐶1, 𝐶2, 𝐶3 ∈ N such that the following hold:

1. For all 𝑥, 𝑦 ∈ 𝐾R, ∥𝑥𝑦∥ ≤ 𝐶1 ∥𝑥∥ ∥𝑦∥.

2. For all 𝑙 = 0, . . . , 𝑘 , 𝐶2𝜆𝑙 ∈ O𝐾 .

3. For all 𝑙 = 0, . . . , 𝑘 and 𝑥 ∈ O𝐾 , 𝜆𝑙𝑥 ∈ 1
𝐶2
· 𝐵(𝐶3 ∥𝑥∥).

Proof. 1. Let 𝑀 > 0 be the maximum of


𝑒𝑖𝑒 𝑗

 over all pairs 𝑖, 𝑗 ∈ [𝑑]. Now,

for any 𝑥 = 𝑒1 ⊗ 𝑥1 + · · · + 𝑒𝑑 ⊗ 𝑥𝑑 and 𝑦 = 𝑒1 ⊗ 𝑦1 + · · · + 𝑒𝑑 ⊗ 𝑦𝑑 with
𝑥𝑖, 𝑦𝑖 ∈ R, we have |𝑥𝑖 | ≤ ∥𝑥∥ and |𝑦𝑖 | ≤ ∥𝑦∥. Therefore,

∥𝑥𝑦∥ = ∥
∑︁
𝑖, 𝑗

𝑒𝑖𝑒 𝑗 ⊗ 𝑥𝑖𝑦𝑖∥ ≤
∑︁
𝑖, 𝑗



𝑒𝑖𝑒 𝑗 ⊗ 𝑥𝑖𝑦𝑖


=

∑︁
𝑖, 𝑗



𝑒𝑖𝑒 𝑗

 |𝑥𝑖𝑦𝑖 | ≤ 𝑑2𝑀 ∥𝑥∥ ∥𝑦∥ ,

so we may pick 𝐶1 = 𝑑2𝑀 .

2. Since O𝐾 is of full rank, for any 𝜆 ∈ 𝐾 , there is some integer 𝐶 > 0 such that
𝐶𝜆 ∈ O𝐾 . Thus, we may pick 𝐶2 to be the lowest common multiple of the
𝐶’s corresponding to each 𝜆𝑙 .

3. Pick an integer𝐶3 such that𝐶3 > 𝐶1𝐶2 max𝑙 ∥𝜆𝑙 ∥. Then we have𝐶2𝜆𝑙𝑥 ∈ O𝐾
and ∥𝐶2𝜆𝑙𝑥∥ ≤ 𝐶1𝐶2 ∥𝜆𝑙 ∥ ∥𝑥∥ < 𝐶3 ∥𝑥∥. Therefore, 𝜆𝑙𝑥 ∈ 1

𝐶2
· 𝐵(𝐶3 ∥𝑥∥).

□

Throughout the rest of this chapter and the next, we will use the constants𝐶1, 𝐶2, 𝐶3

as given by this lemma.

5.3 An algebraic Minkowski’s second theorem
In this section, we prove a variant of Minkowski’s second theorem for lattices over
rings of integers. Before we state this result, let us recall the original theorem of
Minkowski. We first need a definition, noting that here a convex body is assumed to
be convex, open, non-empty and bounded.



64

Definition 5.3.1. Let Γ ⊂ R𝑛 be a lattice of rank 𝑚 and 𝐵 ⊂ R𝑛 a convex body
containing 0. We define the successive minima ℓ 𝑗 = ℓ 𝑗 (𝐵, Γ) of 𝐵 with respect to Γ

by

ℓ 𝑗 := inf {ℓ > 0 : ℓ · 𝐵 contains 𝑗 linearly independent elements of Γ}

for each 1 ≤ 𝑗 ≤ 𝑚. Note that 0 < ℓ1 ≤ · · · ≤ ℓ𝑚 < ∞.

Minkowski’s second theorem (see, for example, [48, Theorem 3.30]) is then as
follows.

Theorem 5.3.2 (Minkowski’s second theorem). Let Γ ⊂ R𝑛 be a lattice of full
rank and let 𝐵 be a centrally symmetric convex body in R𝑛 with successive minima
0 < ℓ1 ≤ · · · ≤ ℓ𝑛. Then there exist 𝑛 linearly independent vectors 𝑣1, . . . , 𝑣𝑛 ∈ Γ

with the following properties:

• for each 1 ≤ 𝑗 ≤ 𝑛, 𝑣 𝑗 lies in the boundary of ℓ 𝑗 · 𝐵, but ℓ 𝑗 · 𝐵 itself does not
contain any vectors in Γ outside the span of 𝑣1, . . . , 𝑣 𝑗−1;

• the octahedron with vertices ±𝑣 𝑗 for 1 ≤ 𝑗 ≤ 𝑛 contains no elements of Γ in
its interior other than the origin;

• one has
2𝑛 [Γ : ⟨𝑣1, . . . , 𝑣𝑛⟩Z]

𝑛!
≤ ℓ1 · · · ℓ𝑛 Vol(𝐵)

Vol(R𝑛/Γ) ≤ 2𝑛.

To state our variant of this theorem, we need to first clarify what we mean by a
lattice over a ring of integers.

Definition 5.3.3. An O𝐾-lattice is a lattice Γ in 𝐾𝑛 � Q𝑑𝑛 that is closed under
multiplication by O𝐾 . That is, for any 𝑣 ∈ Γ and 𝑎 ∈ O𝐾 , 𝑎𝑣 ∈ Γ. Equivalently, Γ
is a discrete O𝐾-submodule of 𝐾𝑛. Observe that Q · Γ = 𝐾 · Γ is a 𝐾-subspace of
𝐾𝑛. The O𝐾-rank of Γ is the dimension 𝑚 of this subspace.

Note that, when viewed as an ordinary lattice, the rank of Γ is 𝑚𝑑.

For the next definition, we recall, from Section 5.2, that we view O𝐾 as having a
fixed Z-basis 𝑒1, . . . , 𝑒𝑑 .

Definition 5.3.4. For a real number 𝑟 ≥ 1, a subset 𝐵 ⊆ 𝐾𝑛R is said to be 𝑟-thick if
𝑒𝑖 · 𝐵 ⊆ 𝑟 · 𝐵 for all 𝑖 ∈ [𝑑].
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For example, by Lemma 5.2.1, ∥𝑒𝑖𝑥∥ ≤ 𝐶1 ∥𝑒𝑖∥ ∥𝑥∥ = 𝐶1 ∥𝑥∥ for all 𝑥 ∈ 𝐾R, so that
𝐵R(𝐿) is 𝐶1-thick for any 𝐿 > 0.

We now redefine successive minima, but with respect to O𝐾-lattices.

Definition 5.3.5. Let Γ be an O𝐾-lattice of O𝐾-rank 𝑚 and 𝐵 a convex body in 𝐾𝑛R
containing 0. We define the successive minima ℓ 𝑗 = ℓ 𝑗 (𝐵, Γ) of 𝐵 with respect to Γ

by

ℓ 𝑗 := inf {ℓ > 0 : ℓ · 𝐵 contains 𝑗 𝐾-linearly independent elements of Γ}

for each 1 ≤ 𝑗 ≤ 𝑚. Note that we again have 0 < ℓ1 ≤ · · · ≤ ℓ𝑚 < ∞, since Γ has
O𝐾-rank 𝑚 and so contains 𝑚 𝐾-linearly independent elements of 𝐾𝑛.

We may now state and prove our version of Minkowski’s second theorem for O𝐾-
lattices.

Lemma 5.3.6. Let 𝑟 ≥ 1 be a real number, let Γ ⊂ 𝐾𝑛 be an O𝐾-lattice of full
rank and let 𝐵 be an 𝑟-thick centrally symmetric convex body in 𝐾𝑛R with successive
minima 0 < ℓ1 ≤ · · · ≤ ℓ𝑛. Then there exist 𝑛 𝐾-linearly independent vectors
𝑣1, . . . , 𝑣𝑛 ∈ Γ with the following properties:

• for each 1 ≤ 𝑗 ≤ 𝑛, 𝑣 𝑗 lies on the boundary of ℓ 𝑗 · 𝐵, but ℓ 𝑗 · 𝐵 does not
contain any vectors in Γ outside the 𝐾-span of 𝑣1, . . . , 𝑣 𝑗−1;

• the octahedron with vertices ±1
𝑟
𝑒𝑖𝑣 𝑗 for 𝑖 ∈ [𝑑], 𝑗 ∈ [𝑛] contains no elements

of Γ in its interior other than the origin;

• if Γ′ is the O𝐾-lattice generated by 𝑣1, . . . , 𝑣𝑛, then

(2/𝑟)𝑛𝑑 [Γ : Γ′]
(𝑛𝑑)! ≤ (ℓ1 · · · ℓ𝑛)

𝑑 Vol(𝐵)
Vol(𝐾𝑛R/Γ)

≤ 2𝑛𝑑 . (5.2)

We note that here the volume of a set 𝐵 ⊂ 𝐾𝑛R is defined by fixing some isomorphism
𝐾𝑛R � R𝑛𝑑 and using the standard Lebesgue measure onR𝑛𝑑 . Crucially, the statement
of the lemma does not depend on the particular identification 𝐾𝑛R � R𝑛𝑑 , since any
two volume forms differ by a scalar.

Proof of Lemma 5.3.6. The proof is essentially identical to that of the original the-
orem given in [48, Theorem 3.30], though some care is required to differentiate
between the Q-span and 𝐾-span.
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By the definition of ℓ1, we may find 𝑣1 ∈ Γ on the boundary of ℓ1 · 𝐵, where ℓ1 · 𝐵
does not contain any non-zero elements of Γ. By the definition of 𝜆2, we may then
find 𝑣2 ∈ Γ on the boundary of ℓ2 · 𝐵 which is 𝐾-linearly independent of 𝑣1, where
ℓ2 · 𝐵 contains no elements of Γ outside the 𝐾-span of 𝑣1. Continuing, we have a
𝐾-basis 𝑣1, . . . , 𝑣𝑛 such that 𝑣 𝑗 is on the boundary of ℓ 𝑗 · 𝐵, where ℓ 𝑗 · 𝐵 does not
contain any element of Γ other than then 𝐾-span of 𝑣1, . . . , 𝑣 𝑗−1, as required by the
first property.

Since 𝑣1, . . . , 𝑣𝑛 are 𝐾-linearly independent, the vectors 𝑒𝑖𝑣 𝑗 are Q-linearly inde-
pendent. Therefore, the octahedron 𝑆 with vertices ±1

𝑟
𝑒𝑖𝑣 𝑗 is non-degenerate and

spans 𝐾𝑛 over Q. Suppose the interior of 𝑆 contains a non-zero point 𝑣 ∈ Γ. Let 𝑚
be the smallest positive integer such that 𝑣 lies in the 𝐾-span of 𝑣1, . . . , 𝑣𝑚. Then 𝑣
does not lie in the 𝐾-span of 𝑣1, . . . , 𝑣𝑚−1. Since ℓ𝑚 · 𝐵 contains 𝑣1, . . . , 𝑣𝑚 and 𝐵
is 𝑟-thick, 𝑟ℓ𝑚 · 𝐵 contains 𝑒𝑖𝑣 𝑗 for all 𝑖 ∈ [𝑑] and 𝑗 ≤ 𝑚. Therefore, ℓ𝑚 · 𝐵 contains
1
𝑟
𝑒𝑖𝑣 𝑗 , so its interior ℓ𝑚 ·𝐵 contains 𝑣. But this contradicts the definition of ℓ𝑚, since
ℓ𝑚 · 𝐵 cannot contain any vector outside the 𝐾-span of 𝑣1, . . . , 𝑣𝑚−1, including 𝑣.
Hence, the interior of 𝑆 contains no vector in Γ, verifying the second property.

Since 𝑒𝑖𝑣 𝑗 ∈ 𝑟ℓ 𝑗 · 𝐵, we have that 𝐵 contains the vectors 1
𝑟ℓ 𝑗
𝑒𝑖𝑣 𝑗 and, hence, the

octahedron 𝑆′ with vertices ± 1
𝑟ℓ 𝑗
𝑒𝑖𝑣 𝑗 . The volume of the simplex with vertices 0 and

𝑒𝑖𝑣 𝑗 for all 𝑖, 𝑗 is 1
(𝑛𝑑)! Vol(𝐾𝑛R/Γ

′). Since 𝑆′ is the union of 2𝑛𝑑 many such scaled
simplices, the volume of 𝑆′ is

Vol(𝑆′) = 1
𝑟𝑛𝑑ℓ𝑑1 · · · ℓ

𝑑
𝑛

2𝑛𝑑

(𝑛𝑑)! Vol(𝐾𝑛R/Γ
′).

Therefore, since 𝐵 contains 𝑆′, we have

Vol(𝐵) ≥ Vol(𝑆′) = 1
𝑟𝑛𝑑ℓ𝑑1 · · · ℓ

𝑑
𝑛

2𝑛𝑑

(𝑛𝑑)! Vol(𝐾𝑛R/Γ
′)

=

(
(2/𝑟)𝑛
ℓ1 · · · ℓ𝑛

)𝑑 [Γ : Γ′]
(𝑛𝑑)! Vol(𝐾𝑛R/Γ),

establishing the lower bound in (5.2).

For the upper bound, we require the following lemma.

Lemma 5.3.7 (Squeezing lemma [48, Lemma 3.31]). Let 𝑆 be a centrally symmetric
convex body in R𝑛, 𝐴 be an open subset of 𝑆, 𝑉 be a 𝑚-dimensional subspace of
R𝑛 and 0 < 𝜃 ≤ 1. Then there exists an open subset 𝐴′ of 𝑆 such that Vol(𝐴′) =
𝜃𝑚 Vol(𝐴) and (𝐴′ − 𝐴′) ∩𝑉 ⊆ 𝜃 · (𝐴 − 𝐴) ∩𝑉 .
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Let𝑉 𝑗 be the R-span of the 𝐾-span of 𝑣1, . . . , 𝑣 𝑗 , so that𝑉 𝑗 is a 𝑗 𝑑-dimensional real
subspace of𝐾𝑛R. We apply the squeezing lemma iteratively, starting with 𝐴0 := ℓ𝑛

2 ·𝐵,
to create open sets 𝐴1, . . . , 𝐴𝑛−1 ⊆ 𝐴0 such that

Vol(𝐴 𝑗 ) =
(
ℓ 𝑗

ℓ 𝑗+1

) 𝑗 𝑑
Vol(𝐴 𝑗−1)

and
(𝐴 𝑗 − 𝐴 𝑗 ) ∩𝑉 𝑗 ⊆

ℓ 𝑗

ℓ 𝑗+1
· (𝐴 𝑗−1 − 𝐴 𝑗−1) ∩𝑉 𝑗

for 𝑗 = 1, . . . , 𝑛− 1. Then Vol(𝐴𝑛−1) = (ℓ1 · · · ℓ𝑛2−𝑛)𝑑 Vol(𝐵) and one can show by
induction that

(𝐴𝑛−1 − 𝐴𝑛−1) ∩𝑉 𝑗 ⊆
ℓ 𝑗

ℓ𝑛
· (𝐴 𝑗−1 − 𝐴 𝑗−1) ∩𝑉 𝑗 .

On the other hand, 𝐴 𝑗−1 ⊆ 𝐴0 =
ℓ𝑛
2 ·𝐵 and 𝐵 is centrally symmetric, so 𝐴 𝑗−1−𝐴 𝑗−1 ⊆

ℓ𝑛 · 𝐵. It follows that

(𝐴𝑛−1 − 𝐴𝑛−1) ∩𝑉 𝑗 ⊆ 𝜆 𝑗 · 𝐵 ∩𝑉 𝑗

for 𝑗 = 1, . . . , 𝑛. By the definition of successive minima, 𝜆 𝑗 · 𝐵 ∩ 𝑉 𝑗 does not
contain any point in Γ except for those in 𝑉 𝑗−1. This implies that 𝐴𝑛−1 − 𝐴𝑛−1 does
not contain any point in Γ other than the origin. If Vol(𝐴𝑛−1) > Vol(𝐾𝑛R/Γ), then
one can find a translate 𝐴𝑛−1 + 𝑡 of 𝐴𝑛−1 containing two distinct points of Γ. Thus,
𝐴𝑛−1 − 𝐴𝑛−1 contains a non-zero point of Γ, a contradiction. Therefore, we have
Vol(𝐴𝑛−1) ≤ Vol(𝐾𝑛R/Γ). Hence, we have

(ℓ1 · · · ℓ𝑛2−𝑛)𝑑 Vol(𝐵) ≤ Vol(𝐾𝑛R/Γ),

giving the upper bound in (5.2). □

5.4 O𝐾-GAPs and an algebraic John’s theorem
Recall that a generalized arithmetic progression (or GAP) 𝑃 ⊂ Z𝑑 is a set of the
form

𝑃 =
{
𝑣0 + 𝑙1𝑣1 + · · · + 𝑙𝑛𝑣𝑛 : 0 ≤ 𝑙 𝑗 < 𝐿 𝑗 for all 𝑗

}
for some 𝑣0, . . . , 𝑣𝑛 ∈ Z𝑑 and 𝐿1, . . . , 𝐿𝑛 ∈ N. The dimension of 𝑃 is 𝑛. We say
that 𝑃 is proper if all elements on the RHS are distinct and 𝑘-proper if{

𝑙1𝑣1 + · · · + 𝑙𝑛𝑣𝑛 : 0 ≤ 𝑙 𝑗 < 𝑘𝐿 𝑗 for all 𝑗
}
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has all elements distinct.

Our object of study in this section is the following algebraic analogue of a GAP
which we call an O𝐾-GAP.

Definition 5.4.1. An O𝐾-GAP is a set 𝑃 ⊂ 𝐾 of the form

𝑃 =
{
𝑣0 + 𝑙1𝑣1 + · · · + 𝑙𝑛𝑣𝑛 : 𝑙 𝑗 ∈ 𝐵(𝐿 𝑗 ) for all 𝑗

}
(5.3)

for some 𝑣0, . . . , 𝑣𝑛 ∈ 𝐾 and 𝐿1, . . . , 𝐿𝑛 ∈ N. The dimension of 𝑃 is 𝑛. For 𝑝 ∈ N,
define

𝑝 ★ 𝑃 :=
{
𝑝𝑣0 + 𝑙1𝑣1 + · · · + 𝑙𝑛𝑣𝑛 : 𝑙 𝑗 ∈ 𝐵(𝑝𝐿 𝑗 ) for all 𝑗

}
. (5.4)

We say that 𝑃 is proper if all the elements on the RHS of (5.3) are distinct and
𝑝-proper if all the elements on the RHS of (5.4) are distinct. Note that 𝑝 ★ 𝑃 is
similar, but, because 𝐵(𝐿 𝑗 ) is an open ball, not exactly equal, to the 𝑝-fold sumset
𝑝𝑃.

Lemma 5.4.2. For any real number 𝑟 ≥ 1, there are integer constants 𝐷1, 𝐷2 > 0
such that the following holds. Let Γ ⊆ 𝐾𝑛 be an O𝐾-lattice of full rank and 𝐵 ⊂ 𝐾𝑛R
be an 𝑟-thick convex centrally symmetric body. Then there exist 𝑣1, . . . , 𝑣𝑛 ∈ 𝐾 and
positive integers 𝐿1, . . . , 𝐿𝑛 such that the O𝐾-GAPs given by

𝑃1 := {𝑙1𝑣1 + · · · + 𝑙𝑛𝑣𝑛 : 𝑙𝑖 ∈ 𝐵(𝐿𝑖) for all 𝑖} ,
𝑃2 := {𝑙1𝑣1 + · · · + 𝑙𝑛𝑣𝑛 : 𝑙𝑖 ∈ 𝐵(𝐷1𝐿𝑖) for all 𝑖}

satisfy

𝑃1 ⊆ 𝐵 ∩ Γ ⊆ 1
𝐷2
· 𝑃2. (5.5)

Unlike for the discrete John’s theorem for ordinary lattices, the constant 𝐷2 is
necessary here. Indeed, if 𝐾 has non-trivial ideal class group, then, for Γ ⊂ O𝐾
a non-principal ideal, we cannot hope for a one-dimensional O𝐾-GAP to span the
same lattice as Γ, since any such O𝐾-GAP is generated by a single element.

Proof of Lemma 5.4.2. The first ingredient we need is the classical John’s theorem
(see [26] or [48, Theorem 3.13]), which says that for a symmetric convex body
𝐴 ⊂ R𝑑 , there exists an open centrally symmetric ellipsoid 𝐸 ⊂ R𝑑 such that
𝐸 ⊆ 𝐴 ⊆

√
𝑑 · 𝐸 .

Applying John’s theorem to 𝐵 ⊂ 𝐾𝑛R � R𝑑𝑛, we obtain open centrally symmetric
ellipsoid 𝐸 ⊂ 𝐾𝑛R such that 𝐸 ⊆ 𝐵 ⊆

√
𝑑𝑛 · 𝐸 . For any 𝑥 ∈ 𝐸 and 𝑖 ∈ [𝑑],
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𝑒𝑖𝑥 ∈ 𝑒𝑖 · 𝐵 ⊆ 𝑟 · 𝐵 ⊆ 𝑟
√
𝑑𝑛 · 𝐸 , so 𝐸 is 𝑟1-thick with 𝑟1 := 𝑟

√
𝑑𝑛. Define the norm

∥·∥𝐸 on 𝐾𝑛R whose unit ball is 𝐸 , that is,

∥𝑥∥𝐸 := inf {ℓ > 0 : 𝑥 ∈ ℓ · 𝐸} .

Since 𝐸 is 𝑟1-thick, for any ℓ > 0 and 𝑥 ∈ 𝐾𝑛R, 𝑥 ∈ ℓ · 𝐸 implies that 𝑒𝑖𝑥 ∈ 𝑟1ℓ · 𝐸 .
Therefore,

∥𝑒𝑖𝑥∥𝐸 ≤ 𝑟1 ∥𝑥∥𝐸 . (5.6)

Since |𝑎𝑖 | ≤ ∥𝑙∥ for any 𝑙 = 𝑎1𝑒1 + · · · + 𝑎𝑑𝑒𝑑 ∈ O𝐾 , we have that

∥𝑙𝑥∥𝐸 ≤
𝑑∑︁
𝑖=1
∥𝑎𝑖𝑒𝑖𝑥∥𝐸 ≤ 𝑑𝑟1 ∥𝑙∥ ∥𝑥∥𝐸 . (5.7)

Let 𝑣1, . . . , 𝑣𝑛 ∈ 𝐾 be as in Lemma 5.3.6, when applied to the centrally symmetric
convex body 𝐸 . For each 𝑗 , let

𝐿 𝑗 :=

⌈
1

𝑛𝑑𝑟1


𝑣 𝑗

𝐸

⌉
.

Then, for any 𝑙 𝑗 ∈ 𝐵(𝐿 𝑗 ),


𝑙 𝑗

 ≤ 1

𝑛𝑑𝑟1∥𝑣 𝑗 ∥𝐸
. Thus, by (5.7),



𝑙 𝑗𝑣 𝑗

𝐸 ≤ 𝑑𝑟1


𝑙 𝑗

 

𝑣 𝑗

𝐸 ≤ 1

𝑛
.

Therefore, for 𝑙 𝑗 ∈ 𝐵(𝐿 𝑗 ),

∥𝑙1𝑣1 + · · · + 𝑙𝑛𝑣𝑛∥𝐸 ≤
𝑛∑︁
𝑗=1



𝑙 𝑗𝑣 𝑗

𝐸 ≤ 1.

In other words, 𝑃1 ⊆ 𝐸 ∩ Γ ⊆ 𝐵 ∩ Γ, giving the first inclusion in (5.5).

Let Γ′ ⊆ Γ be the O𝐾-span of 𝑣1, . . . , 𝑣𝑛. Then, from Lemma 5.3.6, [Γ : Γ′] ≤
𝐷 :=

⌊
𝑟𝑛𝑑 (𝑛𝑑)!

⌋
. As a finite abelian group, Γ/Γ′ has order at most 𝐷, so every

element has order dividing 𝐷!. Therefore, 𝐷! · Γ ⊆ Γ′ or, equivalently, Γ ⊆ 1
𝐷!Γ

′.

Since 𝐸 is a centrally symmetric ellipsoid, the norm ∥·∥𝐸 arises from an inner
product on 𝐾𝑛R. Define the volume form on 𝐾𝑛R based on this inner product. Then
Vol(𝐸) = 𝑉𝑛𝑑 , the volume of the unit ball in R𝑛𝑑 . For 𝑢1, . . . , 𝑢𝑛𝑑 ∈ 𝐾𝑛R, write
𝑢1 ∧ · · · ∧ 𝑢𝑛𝑑 for the parallelepiped in 𝐾𝑛R spanned by 𝑢1, . . . 𝑢𝑛𝑑 . Then Vol(𝑢1 ∧
· · · ∧ 𝑢𝑛𝑑) ≤ ∥𝑢1∥𝐸 · · · ∥𝑢𝑛𝑑 ∥𝐸 .
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Let the successive minima of𝐸 with respect toΓ be ℓ1, . . . , ℓ𝑛, so we have


𝑣 𝑗

𝐸 = ℓ 𝑗 .

Let 𝑥 ∈ 𝐵 ∩ Γ ⊆
√
𝑑𝑛 · 𝐸 , so that ∥𝑥∥𝐸 ≤

√
𝑑𝑛. Since 𝑥 ∈ Γ ⊆ 1

𝐷!Γ
′, we can find

unique integers 𝑙𝑖 𝑗 for 𝑖 = 1, . . . , 𝑑 and 𝑗 = 1, . . . , 𝑛 such that

𝑥 =
1
𝐷!
(𝑙11𝑒1𝑣1 + · · · + 𝑙𝑑𝑛𝑒𝑑𝑣𝑛).

Using Cramer’s rule, we can solve for |𝑙𝑖 𝑗 |. This gives

|𝑙𝑖 𝑗 | = 𝐷!
Vol(𝑒1𝑣1 ∧ · · · ∧ 𝑥 ∧ · · · ∧ 𝑒𝑑𝑣𝑛)

Vol(𝑒1𝑣1 ∧ · · · ∧ 𝑒𝑑𝑣𝑛)
here, 𝑥 is in place of 𝑒𝑖𝑣 𝑗

= 𝐷!
Vol(𝑒1𝑣1 ∧ · · · ∧ 𝑥 ∧ · · · ∧ 𝑒𝑑𝑣𝑛)

Vol(𝐾𝑛R/Γ′)

≤ 𝐷!
∥𝑥∥𝐸

∏
(𝑖′, 𝑗 ′)≠(𝑖, 𝑗)



𝑒𝑖′𝑣 𝑗 ′

𝐸
Vol(𝐾𝑛R/Γ′)

≤ 𝐷!
𝑟𝑛𝑑−1

1 ∥𝑥∥𝐸
∏
(𝑖′, 𝑗 ′)≠(𝑖, 𝑗)



𝑣 𝑗 ′

𝐸
Vol(𝐾𝑛R/Γ′)

by (5.6)

= 𝐷!𝑟𝑛𝑑−1
1
(ℓ1 · · · ℓ𝑛)𝑑 ∥𝑥∥𝐸
ℓ 𝑗 Vol(𝐾𝑛R/Γ′)

.

From Lemma 5.3.6, we have

Vol(𝐾𝑛R/Γ
′) ≥ Vol(𝐾𝑛R/Γ) ≥

(
ℓ1 · · · ℓ𝑛

2𝑛

)𝑑
Vol(𝐸) =

(
ℓ1 · · · ℓ𝑛

2𝑛

)𝑑
𝑉𝑛𝑑 .

Therefore, using that ∥𝑥∥𝐸 ≤
√
𝑑𝑛 and 𝐿 𝑗 ≥ 1

𝑛𝑑𝑟1∥𝑣 𝑗 ∥𝐸
, we have

|𝑙𝑖 𝑗 | ≤
𝐷!𝑟𝑛𝑑−1

1 2𝑛𝑑 ∥𝑥∥𝐸
ℓ 𝑗𝑉𝑛𝑑

<
𝐷!𝑟𝑛𝑑1 2𝑛𝑑+1𝑛𝑑

√
𝑛𝑑

𝑉𝑛𝑑
𝐿 𝑗 .

We obtain the second inclusion in (5.5) by setting 𝐷2 = 𝐷! and

𝐷1 =

⌈
𝐷!𝑟𝑛𝑑1 2𝑛𝑑+1𝑛𝑑

√
𝑛𝑑/𝑉𝑛𝑑

⌉
.

□

We now come to a key lemma, saying that if 𝑃 is an O𝐾-GAP that is not 𝑝-proper,
then there is an O𝐾-GAP of smaller dimension which contains and is not too much
larger than 𝑃.

Lemma 5.4.3. If 𝑃 is an O𝐾-GAP of dimension 𝑛 that is not 𝑝-proper, then there is
an O𝐾-GAP 𝑄 of dimension 𝑛 − 1 containing 𝑃 with |𝑄 | ≪𝑛,𝑝 |𝑃 |.
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Proof. Assume that 𝑃 is centered and of the form

𝑃 =
{
𝑙1𝑣1 + · · · + 𝑙𝑛𝑣𝑛 : 𝑙 𝑗 ∈ 𝐵(𝐿 𝑗 )

}
.

Since 𝑃 is not 𝑝-proper, there exist 𝑙 𝑗 , 𝑙′𝑗 ∈ 𝐵(𝑝𝐿 𝑗 ) such that 𝑙 𝑗 ≠ 𝑙′𝑗 for some 𝑗 and

𝑙1𝑣1 + · · · + 𝑙𝑛𝑣𝑛 = 𝑙′1𝑣1 + · · · + 𝑙′𝑛𝑣𝑛.

Setting 𝑎 𝑗 = 𝑙 𝑗−𝑙′𝑗 ∈ 𝐵(2𝑝𝐿 𝑗 ), we have that the 𝑎 𝑗 are not all 0 and 𝑎1𝑣1+· · ·+𝑎𝑛𝑣𝑛 =
0. We may assume without loss of generality that 𝑎𝑛 ≠ 0. Then we have the relation

𝑣𝑛 = −
𝑎1𝑣1

𝑎𝑛
− · · · − 𝑎𝑛−1𝑣𝑛−1

𝑎𝑛
. (5.8)

Let 𝑤 = (− 𝑎1
𝑎𝑛
, . . . ,−𝑎𝑛−1

𝑎𝑛
) ∈ 𝐾𝑛−1. Let Γ := O𝑛−1

𝐾
+ O𝐾 · 𝑤 ⊂ 𝐾𝑛−1. Then Γ is

a discrete lattice which is invariant under multiplication by O𝐾 and so is an O𝐾-
lattice. Γ is also of full rank, since it contains O𝑛−1

𝐾
. Consider the homomorphism

𝑓 : Γ→ 𝐾 given by

𝑓 ((𝑥1, . . . , 𝑥𝑛−1) + 𝑥𝑛𝑤) := 𝑥1𝑣1 + · · · + 𝑥𝑛𝑣𝑛.

Then 𝑓 is well-defined because of the relation (5.8). Note also that 𝑓 is O𝐾-linear,
that is, 𝑓 is linear and 𝑓 (𝑎𝑥) = 𝑎 𝑓 (𝑥) for any 𝑎 ∈ O𝐾 , 𝑥 ∈ Γ. We may also extend
𝑓 O𝐾-linearly to a 𝐾-linear map 𝑓 : 𝐾𝑛−1 → 𝐾 .

Let 𝐵0 ⊂ 𝐾𝑛−1
R be the convex centrally symmetric body

𝐵0 :=
{
(𝑥1, . . . , 𝑥𝑛−1) ∈ 𝐾𝑛−1

R : 𝑥𝑖 ∈ 𝐵R(𝐿𝑖)
}
.

Let 𝐵 = 𝐵0 + 𝐵R(𝐿𝑛) · 𝑤, which is also a convex centrally symmetric body. Since
𝐵0 and 𝐵R(𝐿𝑛) ·𝑤 are 𝐶1-thick, so is 𝐵. Indeed, if 𝑥 ∈ 𝐵0 and 𝑦 ∈ 𝐵R(𝐿𝑛) ·𝑤, then
𝑒𝑖 · (𝑥 + 𝑦) = 𝑒𝑖 · 𝑥 + 𝑒𝑖 · 𝑦 ∈ 𝐶1 · 𝐵0 + 𝐶1 · (𝐵R(𝐿𝑛) · 𝑤) = 𝐶1 · (𝐵0 + 𝐵R(𝐿𝑛) · 𝑤).

Claim 5.4.4. One has the inclusions

𝑃 ⊆ 𝑓 (𝐵 ∩ Γ) ⊆ (2𝑝𝐶1 + 1)𝑃.

Proof. For the first inclusion, let 𝑣 = 𝑙1𝑣1 + · · · + 𝑙𝑛𝑣𝑛 ∈ 𝑃 with 𝑙 𝑗 ∈ 𝐵(𝐿 𝑗 ). Then
𝑣 = 𝑓 ((𝑙1, . . . , 𝑙𝑛−1) + 𝑙𝑛𝑤) with



𝑙 𝑗

 < 𝐿 𝑗 , so that (𝑙1, . . . , 𝑙𝑛−1) + 𝑙𝑛𝑤 ∈ 𝐵 ∩ Γ.

For the second inclusion, let (𝑙1, . . . , 𝑙𝑛−1) + 𝑙𝑛𝑤 ∈ 𝐵 ∩ Γ with 𝑙 𝑗 ∈ O𝐾 . Since
(𝑙1, . . . , 𝑙𝑛−1) + 𝑙𝑛𝑤 ∈ 𝐵, there exist 𝑥1, . . . , 𝑥𝑛 ∈ 𝐾R with



𝑥 𝑗

 < 𝐿 𝑗 such that
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(𝑙1, . . . , 𝑙𝑛−1) + 𝑙𝑛𝑤 = (𝑥1, . . . , 𝑥𝑛−1) + 𝑥𝑛𝑤. In other words, 𝑙 𝑗 −
𝑎 𝑗 𝑙𝑛
𝑎𝑛

= 𝑥 𝑗 −
𝑎 𝑗𝑥𝑛
𝑎𝑛

for
𝑗 = 1, . . . , 𝑛 − 1. Let 𝑧 = 𝑙𝑛−𝑥𝑛

𝑎𝑛
∈ 𝐾R, so we have

𝑙 𝑗 − 𝑥 𝑗 = 𝑎 𝑗 𝑧 (5.9)

for all 𝑗 = 1, . . . , 𝑛. Let 𝑥 ∈ O𝐾 be the closest element to 𝑧 according to the metric
∥·∥. Recall that this is the∞-norm, so we have ∥𝑥 − 𝑧∥ ≤ 1. Let 𝑙′

𝑗
= 𝑙 𝑗 − 𝑎 𝑗𝑥 ∈ O𝐾 .

Then 𝑙1𝑣1 + · · · + 𝑙𝑛𝑣𝑛 = 𝑙′1𝑣1 + · · · + 𝑙′𝑛𝑣𝑛, so we have 𝑓 ((𝑙1, . . . , 𝑙𝑛−1) + 𝑙𝑛𝑤) =
𝑙′1𝑣1 + · · · + 𝑙′𝑛𝑣𝑛. It suffices to show that




𝑙′𝑗


 < (2𝑝𝐶1 + 1)𝐿 𝑗 for all 𝑗 . Indeed, we
have 


𝑙′𝑗


 = 

𝑙 𝑗 − 𝑎 𝑗𝑥



≤


𝑙 𝑗 − 𝑎 𝑗𝑥 − 𝑥 𝑗

 + 

𝑥 𝑗



<


𝑎 𝑗 (𝑧 − 𝑥)

 + 𝐿 𝑗 by (5.9)

≤ 𝐶1


𝑎 𝑗

 ∥𝑧 − 𝑥∥ + 𝐿 𝑗 by Lemma 5.2.1

≤ (2𝑝𝐶1 + 1)𝐿 𝑗 ,

as required. □

By Lemma 5.4.2, we can find constants 𝐷1, 𝐷2 = 𝑂𝑛 (1) and O𝐾-GAPs 𝑃1, 𝑃2 of
dimension 𝑛 − 1 such that 𝑃2 = 𝐷1 ★ 𝑃1 and 𝑃1 ⊆ 𝐵 ∩ Γ ⊆ 1

𝐷2
· 𝑃2. In particular,

𝑃2 can be covered by 𝐷𝑛−1
1 translates of 𝑃1.

Applying the homomorphism 𝑓 , we obtain

𝑓 (𝑃1) ⊆ 𝑓 (𝐵 ∩ Γ) ⊆ 1
𝐷2

𝑓 (𝑃2).

Since 𝑓 is O𝐾-linear, 𝑓 (𝑃1) and 𝑓 (𝑃2) are also O𝐾-GAPs of dimension 𝑛 − 1.
Setting 𝑄 = 1

𝐷2
𝑓 (𝑃2), which is an O𝐾-GAP of dimension 𝑛 − 1, we have, by the

claim above, that 𝑃 ⊆ 𝑓 (𝐵∩Γ) ⊆ 𝑄, so it suffices to show that𝑄 is small. Since 𝑃2

can be covered by 𝐷𝑛−1
1 = 𝑂𝑛 (1)-many translates of 𝑃1, 𝑓 (𝑃2) can also be covered

by 𝑂𝑛 (1)-many translates of 𝑓 (𝑃1). But then

| 𝑓 (𝑃2) | ≪𝑛 | 𝑓 (𝑃1) | ≤ | 𝑓 (𝐵 ∩ Γ) | ≤ |(2𝑝𝐶1 + 1)𝑃 | ≪𝑛,𝑝 |𝑃 |,

as required. □

5.5 Freiman’s theorem for sums of dilates
We have now built up sufficient background to prove the promised Freiman-type
structure theorem for sets with small sums of dilates, which we restate for the reader’s
convenience.
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Theorem 5.5.1. For every 𝐶 > 0 and 𝑝 ∈ N, there are constants 𝑛 and 𝐹 such that
for any 𝐴 ⊂ 𝐾 satisfying

|𝐴 + 𝜆1 · 𝐴 + · · · + 𝜆𝑘 · 𝐴| ≤ 𝐶 |𝐴|,

there exists a 𝑝-proper O𝐾-GAP 𝑃 ⊂ 𝐾 containing 𝐴 of dimension at most 𝑛 and
size at most 𝐹 |𝐴|.

Recall, from Lemma 5.2.1, that we have constants 𝐶2, 𝐶3 ∈ N with the property that
𝜆𝑙𝑥 ∈ 1

𝐶2
· 𝐵(𝐶3 ∥𝑥∥) for all 𝑙 = 0, . . . , 𝑘 and 𝑥 ∈ O𝐾 . Thus, if 𝑃 is an O𝐾-GAP, then

𝜆𝑙 · 𝑃 lies in a translate of 1
𝐶2
· (𝐶3 ★ 𝑃). Therefore,

|𝑃 + 𝜆1 · 𝑃 + · · · + 𝜆𝑘 · 𝑃 | ≤ |(𝑘 + 1)𝐶3 ★ 𝑃 |
≤ ((𝑘 + 1)𝐶3)𝑛𝑑 |𝑃 |.

In other words, 𝑃 has a small sum of dilates. That is, Theorem 5.5.1 embeds a set
𝐴 with a small sum of dilates into another, more structured set which, unlike an
ordinary GAP, also has a small set of dilates. We now proceed to the proof of this
statement.

Proof of Theorem 5.5.1. By translating, we may assume that 0 ∈ 𝐴. By the Ruzsa
triangle inequality,

|𝐴 + 𝐴| |𝜆1 · 𝐴 + · · · + 𝜆𝑘 · 𝐴| ≤ |𝐴 + 𝜆1 · 𝐴 + · · · + 𝜆𝑘 · 𝐴|2 ≤ 𝐶2 |𝐴|2.

Using the trivial bound |𝜆1 · 𝐴 + · · · + 𝜆𝑘 · 𝐴| ≥ |𝐴|, we obtain |𝐴 + 𝐴| ≤ 𝐶2 |𝐴|.
By the Plünnecke–Ruzsa inequality, |𝐴 + 𝐴 + 𝐴| ≤ 𝐶6 |𝐴|. By the Ruzsa triangle
inequality again,

| (𝐴 + 𝐴) + 𝜆1 · 𝐴 + · · · +𝜆𝑘 · 𝐴| |𝐴| ≤ |𝐴 + 𝐴 + 𝐴| |𝐴 + 𝜆1 · 𝐴 + · · · +𝜆𝑘 · 𝐴| ≤ 𝐶7 |𝐴|2,

so | (𝐴 + 𝐴) + 𝜆1 · 𝐴 + · · · + 𝜆𝑘 · 𝐴| ≤ 𝐶7 |𝐴|. Similar repeated applications of the
triangle inequality gives | (𝐴 + 𝐴) + 𝜆1 · (𝐴 + 𝐴) + · · · + 𝜆𝑘 · (𝐴 + 𝐴) | ≤ 𝐶7+6𝑘 |𝐴|.
Thus, 𝐴 + 𝜆1 · 𝐴 + · · · + 𝜆𝑘 · 𝐴 has small doubling constant. Therefore, by Freiman’s
theorem, 𝐴 + 𝜆1 · 𝐴 + · · · + 𝜆𝑘 · 𝐴 is contained in a proper GAP

𝑃0 =
{
𝑙1𝑣1 + · · · + 𝑙𝑛0𝑣𝑛0 : −𝐿𝑖 < 𝑙𝑖 < 𝐿𝑖

}
of dimension 𝑛0 with |𝑃0 | ≪ |𝐴|. Note that since 0 ∈ 𝐴 ⊆ 𝑃0, we are free to assume
that 𝑃0 is centered.
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Now let 𝑃1 be the O𝐾-GAP given by

𝑃1 =
{
𝑙1𝑣1 + · · · + 𝑙𝑛0𝑣𝑛0 : 𝑙𝑖 ∈ 𝐵(𝐿𝑖)

}
.

Then 𝑃1 contains 𝑃0. At first glance, it might seem that the size of 𝑃1 could be as
large as |𝑃0 |𝑑 . However, we now show that this is not the case.

Claim 5.5.2. |𝑃1 | ≪ |𝑃0 |.

Proof. For a subset 𝑋 ⊆ 𝐾 and 𝑐 > 0, we say that 𝑋 is (𝑐, 𝑃0)-small if 𝑋 can
be covered by 𝑐-many translates of 𝑃0. For brevity, we will simply say that 𝑋 is
𝑃0-small if 𝑐 is a bounded constant independent of 𝑋, 𝑃0. Thus, if 𝑋,𝑌 are 𝑃0-small,
so is their sumset 𝑋 + 𝑌 . Indeed, if 𝑋,𝑌 can be covered by 𝑥, 𝑦-many translates of
𝑃0, respectively, then 𝑋 +𝑌 can be covered by 𝑥𝑦-many translates of 𝑃0 + 𝑃0, which
itself can be covered by 2𝑛0-many translates of 𝑃0.

We shall show that for each 𝑖 ∈ [𝑑], 𝑗 ∈ [𝑛0], the set 𝑆𝑖 𝑗 :=
{
𝑒𝑖𝑣 𝑗 , 2𝑒𝑖𝑣 𝑗 , . . . , 𝐿 𝑗𝑒𝑖𝑣 𝑗

}
is 𝑃0-small. Then we would have proved the claim, since

{
−𝐿 𝑗𝑒𝑖𝑣 𝑗 , . . . , 𝐿 𝑗𝑒𝑖𝑣 𝑗

}
is

𝑃0-small, 𝑃1 is the sum of these sets, and there are only a bounded number of such
sets.

Since 𝜆1, . . . , 𝜆𝑘 generate 𝐾 , there exist (fixed) integers 𝑏, 𝑎1, . . . , 𝑎𝑘 with 𝑏 >

0 such that 𝑏𝑒𝑖 = 𝑎1𝜆1 + · · · + 𝑎𝑘𝜆𝑘 . It will suffice to show that the set 𝑆 :={
𝑏𝑒𝑖𝑣 𝑗 , 2𝑏𝑒𝑖𝑣 𝑗 , . . . , 𝐿 𝑗𝑏𝑒𝑖𝑣 𝑗

}
is 𝑃0-small, since 𝑆𝑖 𝑗 can be covered by 𝑏 translates

of it. But then it suffices to show that 𝑆′
𝑙

:=
{
𝑎𝑙𝜆𝑙𝑣 𝑗 , 2𝑎𝑙𝜆𝑙𝑣 𝑗 , . . . , 𝐿 𝑗𝑎𝑙𝜆𝑙𝑣 𝑗

}
is

𝑃0-small, since 𝑆 is contained in 𝑆′1 + · · · + 𝑆
′
𝑘
. But then, finally, it suffices to show

that 𝑆𝑙 :=
{
𝜆𝑙𝑣 𝑗 , 2𝜆𝑙𝑣 𝑗 , . . . , 𝐿 𝑗𝜆𝑙𝑣 𝑗

}
is 𝑃0-small for each 𝑙, since 𝑆′

𝑙
is covered by

|𝑎𝑙 |-many translates of 𝑆𝑙 .

Suppose |𝑃0+𝑃0 | < 𝑐 |𝐴|, where 𝑐 = 𝑂 (1) is a positive integer. Let 𝑠 be an arbitrary
positive integer with 𝑠 < 𝐿 𝑗/𝑐. Consider the sets

𝐴, 𝐴 + 𝑠𝑣 𝑗 , 𝐴 + 2𝑠𝑣 𝑗 , . . . , 𝐴 + 𝑐𝑠𝑣 𝑗 .

All these sets have size |𝐴| and are contained in 𝑃0+𝑃0. But |𝑃0+𝑃0 | < 𝑐 |𝐴|, so two
of these sets intersect, say (𝐴+𝑚𝑠𝑣 𝑗 ) ∩ (𝐴+𝑚′𝑠𝑣 𝑗 ) ≠ ∅ for 0 ≤ 𝑚 < 𝑚′ ≤ 𝑐. Thus,
(𝑚′ − 𝑚)𝑠𝑣 𝑗 ∈ 𝐴 − 𝐴. Therefore, 𝑐!𝑠𝜆𝑙𝑣 𝑗 ∈ 𝑐!(𝜆𝑙 · 𝐴) − 𝑐!(𝜆𝑙 · 𝐴) ⊆ 𝑐!𝑃0 − 𝑐!𝑃0.
Since 1 ≤ 𝑠 < 𝐿 𝑗/𝑐 was arbitrary, we have that the set{

𝑐!𝜆𝑙𝑣 𝑗 , 2𝑐!𝜆𝑙𝑣 𝑗 , . . . ,
⌊
𝐿 𝑗/𝑐

⌋
𝑐!𝜆𝑙𝑣 𝑗

}
⊆ 𝑐!𝑃0 − 𝑐!𝑃0

is 𝑃0-small. Thus, the set𝑇 :=
{
𝑐!𝜆𝑙𝑣 𝑗 , 2𝑐!𝜆𝑙𝑣 𝑗 , . . . , 𝐿 𝑗𝑐!𝜆𝑙𝑣 𝑗

}
is 𝑃0-small. Finally,

𝑆𝑙 is 𝑃0-small since it can be covered by 𝑐!-many translates of 𝑇 . □
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If 𝑃1 is 𝑝-proper, then we are done. Otherwise, by Lemma 5.4.3, we can find an
O𝐾-GAP 𝑃2 of one dimension smaller containing 𝑃1 with |𝑃2 | ≪ |𝑃1 |. If 𝑃2 is also
not 𝑝-proper, we invoke Lemma 5.4.3 again to obtain 𝑃3 and so on. Note that we
can only do this at most 𝑛0 times, since any O𝐾-GAP of dimension 1 is necessarily
𝑝-proper. Thus, we will eventually find a 𝑝-proper O𝐾-GAP 𝑃 containing 𝐴 of
dimension 𝑂 (1) with |𝑃 | ≪ |𝐴|. □
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C h a p t e r 6

SUMS OF ALGEBRAIC DILATES

Parts of this chapter are based on the author’s publications. The materials have been
adapted for inclusion in this thesis.

[1] D. Conlon and J. Lim, Sums of algebraic dilates, in preparation.

Our concern in this chapter will be with estimating the minimum size of |𝐴 + 𝜆1 ·
𝐴 + · · · + 𝜆𝑘 · 𝐴| in terms of |𝐴|. For 𝜆1, . . . , 𝜆𝑘 ∈ Q, this problem was essentially
solved by Bukh [8], from whose results it follows that if 𝜆𝑖 = 𝑝𝑖/𝑞 for 𝑞 as small as
possible for such a common denominator, then, for finite subsets 𝐴 of C,

|𝐴 + 𝜆1 · 𝐴 + · · · + 𝜆𝑘 · 𝐴| ≥ (|𝑝1 | + · · · + |𝑝𝑘 | + |𝑞 |) |𝐴| − 𝑜( |𝐴|),

which is best possible up to the lower-order term. This result was later sharpened
by Balog and Shakan [2] when 𝑘 = 2 and then Shakan [42] in the general case,
improving the 𝑜( |𝐴|) term to a constant depending only on 𝜆1, . . . , 𝜆𝑘 .

When at least one of the𝜆𝑖 is transcendental, it was shown by Konyagin and Łaba [27]
that

|𝐴 + 𝜆1 · 𝐴 + · · · + 𝜆𝑘 · 𝐴| = 𝜔( |𝐴|).

The problem of giving more precise estimates for |𝐴+𝜆 ·𝐴| when 𝜆 is transcendental
was discussed in Chapter 4.

Our focus here will be on the complementary case, where each of 𝜆1, . . . , 𝜆𝑘 is
algebraic. Early results in this direction were proved by Breuillard and Green [7]
and Chen and Fang [10], with the latter showing that, for any fixed 𝜆 ≥ 1, |𝐴+𝜆 ·𝐴| ≥
(1 + 𝜆) |𝐴| − 𝑜( |𝐴|) for finite subsets 𝐴 of R. The problem of estimating |𝐴 + 𝜆 · 𝐴|
for 𝜆 algebraic was raised explicitly by Shakan [42] and by Krachun and Petrov [28],
with the latter authors conducting the first systematic study and making the first
concrete conjectures.

To state their conjecture, suppose that 𝑓 (𝑥) ∈ Z[𝑥] is the minimal polynomial of 𝜆,
assumed to have coprime coefficients, and 𝑓 (𝑥) = ∏𝑑

𝑖=1(𝑎𝑖𝑥 + 𝑏) is a full complex
factorization of 𝑓 . If we set 𝐻 (𝜆) :=

∏𝑑
𝑖=1( |𝑎𝑖 | + |𝑏𝑖 |), the conjecture of Krachun

and Petrov [28] is then as follows.
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Conjecture 6.0.1. For any algebraic number 𝜆,

|𝐴 + 𝜆 · 𝐴| ≥ 𝐻 (𝜆) |𝐴| − 𝑜( |𝐴|)

for finite subsets 𝐴 of C.

Krachun and Petrov [28] gave some evidence for their conjecture by proving it in
the special case where 𝜆 =

√
2. Subsequently, we verified the conjecture for all 𝜆

of the form (𝑝/𝑞)1/𝑑 with 𝑝, 𝑞, 𝑑 ∈ N, to be discussed in Chapter 7. Assuming all
of 𝑝, 𝑞 and 𝑑 are as small as possible for such a representation, our results, which
includes that of Krachun and Petrov, says that

|𝐴 + 𝜆 · 𝐴| ≥ (𝑝1/𝑑 + 𝑞1/𝑑)𝑑 |𝐴| − 𝑜( |𝐴|).

Our results also imply a general lower bound for sums of algebraic dilates, though
this bound only matches the conjectured one in the cases above.

More recently, Krachun and Petrov [29] have revisited the problem, proving their
conjecture in full whenever 𝜆 is an algebraic integer. This is somewhat incomparable
to our previously mentioned result, since (𝑝/𝑞)1/𝑑 , when written in lowest terms, is
only an algebraic integer when 𝑞 = 1. Here we again revisit the problem, proving
Conjecture 6.0.1 in full for all algebraic numbers. Our method also extends to longer
sums of algebraic dilates, so we will state our results in that level of generality.

To state the result, given a field extension 𝐾 := Q(𝜆1, . . . , 𝜆𝑘 ) of Q of degree
𝑑 = deg(𝐾/Q), we first recall that there are exactly 𝑑 different complex embeddings
𝜎1, . . . , 𝜎𝑑 : 𝐾 → C. We also need to define the denominator ideal, which is the
ideal in the ring of integers O𝐾 given by

𝔇𝜆1,...,𝜆𝑘 ;𝐾 := {𝛼 ∈ O𝐾 : 𝛼𝜆𝑙 ∈ O𝐾 for 𝑙 = 1, . . . , 𝑘} .

The key quantity 𝐻 (𝜆1, . . . , 𝜆𝑘 ) that plays the role of 𝐻 (𝜆) for sums of many
algebraic dilates is then

𝐻 (𝜆1, . . . , 𝜆𝑘 ) := 𝑁𝐾/Q(𝔇𝜆1,...,𝜆𝑘 ;𝐾)
𝑑∏
𝑖=1
(1 + |𝜎𝑖 (𝜆1) | + |𝜎𝑖 (𝜆2) | + · · · + |𝜎𝑖 (𝜆𝑘 ) |).

To see that this indeed generalizes 𝐻 (𝜆), observe that we can write the integer
minimal polynomial 𝑓 (𝑥) ∈ Z[𝑥] of 𝜆 as 𝑓 (𝑥) = 𝐷 (𝑥 − 𝜆1) (𝑥 − 𝜆2) · · · (𝑥 − 𝜆𝑑),
for some integer 𝐷 and 𝜆1, . . . , 𝜆𝑑 are all the conjugates of 𝜆. Then, 𝐻 (𝜆) =

|𝐷 | (1 + |𝜆1 |) · · · (1 + |𝜆𝑑 |) and it can be shown that |𝐷 | = 𝑁𝐾/Q(𝔇𝜆;𝐾). With this
definition in place, our main result, which is best possible up to the behaviour of the
lower-order terms, is as follows.
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Theorem 6.0.2. For any algebraic numbers 𝜆1, . . . , 𝜆𝑘 ,

|𝐴 + 𝜆1 · 𝐴 + · · · + 𝜆𝑘 · 𝐴| ≥ 𝐻 (𝜆1, . . . , 𝜆𝑘 ) |𝐴| − 𝑜( |𝐴|)

for finite subsets 𝐴 of C.

Sketch of proof
Our general strategy is similar to that of Krachun and Petrov [29], which can be
summarized as the following three steps:

1. Reduction to the case when 𝐴 is a dense subset of the box.

2. A continuous variant of sums of dilates.

3. A representation of the discrete set 𝐴 by a continuous set 𝐴.

Step 1 guarantees that the 𝐴 obtained in step 3 is well-behaved. One then applies
the continuous variant from step 2 on 𝐴, and the corresponding result in the discrete
world follows.

Despite having the same overall strategy, the methods used in steps 1 and 3 are
significantly more complex.

In step 1, we use the Freiman-type structure theorem for sets 𝐴 with small sum of
dilates, proved in Chapter 5. Using this structure theorem, we can then map 𝐴 to
a dense subset of the box [0, 𝑁)𝑑 via a Freiman isomorphism of the surrounding
O𝐾-GAP, reducing the problem to the case of a dense set.

In step 2, our proof is similar to that of Krachun and Petrov, by partitioning space
into eigenspaces, then symmetrizing our set along those eigenspaces.

Step 3 is the main and most difficult step. We first describe the method used by
Krachun and Petrov [29] to prove the case |𝐴+𝜆 · 𝐴| where 𝜆 is an algebraic integer.
This is equivalent to the problem of estimating the size of |𝐴+L𝐴| when 𝐴 is a dense
subset of the box [𝑁]𝑑 and L ∈ Mat𝑑 (Z) is a linear transformation corresponding
to multiplication by 𝜆.

A naive way of representing 𝐴with a continuous set 𝐴, is to divide the box [𝑁]𝑑 into
tiny cubes, and setting 𝐴 ⊂ R𝑑 to be the union of the cubes which intersect 𝐴. This
is not a good representation, since the volume of 𝐴 can be very different from |𝐴|.
Indeed, if 𝐴 consists of all points in [𝑁]𝑑 with even coordinates, its representation
𝐴 is the same as if 𝐴 consists of all points of [𝑁]𝑑 .
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Krachun and Petrov’s solution is to introduce a new dimension to encode the “local
density” of 𝐴, which is, roughly speaking, the relative density of 𝐴 within a small
box containing 𝑥. Their continuous representation is a (compact) set 𝐴 ⊂ R𝑑+1,
which can be seen as having a base in R𝑑 resembling 𝐴, as described in the naive
way above, and fibers in R. The fiber at some point 𝑥 ∈ R𝑑 is the interval [0, 𝑟],
where 𝑟 is the local density of 𝐴 at 𝑥. Therefore, the volume of 𝐴 matches the size
|𝐴|. A key fact is the following simple observation:

Observation 6.0.3. The local density of 𝐵 = 𝐴 + L𝐴 at 𝑥 + L𝑦 is at least the local
density of 𝐴 at 𝑥.

If 𝐵 is the continuous representation of 𝐵, then the above observation is equivalent
to 𝐵 containing 𝐴+L′(𝐴), where L′ : R𝑑+1 → R𝑑+1 is given by L′(𝑥, 𝑦) = (L𝑥, 0)
for 𝑥 ∈ R𝑑 and 𝑦 ∈ R. Therefore, Vol(𝐵) ≥ Vol(𝐴 + L′(𝐴)). One can then
apply the continuous version of sums of dilates to obtain a tight lower bound for
Vol(𝐴 + L′(𝐴)) in terms of Vol(𝐴), then translate the result back to the discrete
world using the fact that Vol(𝐴) = |𝐴|.

The problem with extending this method to general algebraic 𝜆 is that Observa-
tion 6.0.3 is too weak. Indeed, if 𝜆 is not integral, estimating |𝐴+𝜆 · 𝐴| is equivalent
to estimating |L1𝐴 + L2𝐴| for some L1,L2 ∈ Mat𝑑 (Z) and 𝐴 a dense subset of
[𝑁]𝑑 . The observation here is that the local density of L1𝐴 + L2𝐴 at L1𝑥 + L2𝑦

is only at least 1
| detL1 | times the local density of 𝐴 at 𝑥. This is not tight, since if

𝐴 contains all lattice points in some convex region, then the local density of 𝐴 is 1
uniformly, and we also expect the local density ofL1𝐴+L2𝐴 to be 1 uniformly. The
observation only guarantees that the local density of L1𝐴 + L2𝐴 is at least 1

| detL1 | ,
which is less than 1 if 𝜆 is not integral.

This indicates that recording local density is insufficient, and we require a deeper
understanding of how the points are arranged locally in 𝐴. Our innovation here is to
record how 𝐴 is locally arranged in certain lattices, and compress that information
as a high-dimensional compact set we call the “lattice density.”

For a (periodic) set 𝐴 ⊆ Z𝑑 and a flag of lattices F = {𝐿0 ⊆ 𝐿1 ⊆ · · · ⊆ 𝐿𝑘 },
the lattice density LD(𝐴;F ) is a compact down-set in [0, 1]𝑘+1, which encodes
various information about the density of 𝐴 within the lattices 𝐿𝑙 . Our continuous
representation 𝐴 will then be a compact subset of R𝑑+𝑘+1, with a base in R𝑑 looking
like 𝐴, and fibers in R𝑘+1 equal to the local lattice density at each point of 𝐴.
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Estimating |𝐴+𝜆1 · 𝐴+ · · · +𝜆𝑘 · 𝐴| is equivalent to estimating |L0𝐴+ · · · +L𝑘𝐴| for
some L1, . . . ,L𝑘 ∈ Mat𝑑 (Z). The key now is that one can find two flags F ,G such
that for each 𝑖 = 0, . . . , 𝑘 , 𝜋𝑖+1(LD(L𝑖𝐴;G)) ≈ 𝜋𝑖+1(LD(𝐴;F )). One should think
of this as “transformation by L𝑖 is analogous to the projection 𝜋𝑖+1 of the lattice
density.” This analogy extends nicely to sumsets. If 𝐴0, . . . , 𝐴𝑘 are periodic sets in
Z𝑑 , then LD(L0𝐴0 + · · · + L𝑘𝐴𝑘 ;G) roughly contains the cuboid of side lengths

|𝜋1(LD(L0𝐴0)) |, . . . , |𝜋𝑘+1(LD(L𝑘𝐴𝑘 )) |.

Just like Observation 6.0.3 above, this implies that if 𝐵 = L0𝐴 + · · · + L𝑘𝐴, then
𝐵 contains the sumset L′0𝐴 + · · · + L

′
𝑘
𝐴, where L′

𝑖
: R𝑑+𝑘+1 → R𝑑+𝑘+1 is given

by L′
𝑖
(𝑥, 𝑦) = (L𝑖𝑥, 𝜋𝑖+1(𝑦)) for 𝑥 ∈ R𝑑 and 𝑦 ∈ R𝑘+1. We can then apply the

continuous variant to L′0𝐴+ · · · +L
′
𝑘
𝐴, which would then correspond to our desired

result on the discrete set 𝐴.

Notation
Throughout the chapter, we will use the following notation:

• 𝜆0, 𝜆1, . . . , 𝜆𝑘 are algebraic numbers with 𝜆0 = 1.

• 𝐾 := Q(𝜆1, . . . , 𝜆𝑘 ) is the number field generated by 𝜆1, . . . , 𝜆𝑘 .

• The degree of 𝐾 over Q is 𝑑 := deg(𝐾/Q), so 𝐾 � Q𝑑 .

• The ring of integers over 𝐾 is denoted O𝐾 , so O𝐾 � Z𝑑 .

• We write 𝐾R := 𝐾 ⊗Q R = O𝐾 ⊗Z R � R𝑑 and 𝐾C := 𝐾 ⊗Q C � C𝑑 .

• We will generally use 𝑖 to index 1, . . . , 𝑑, 𝑗 to index 1, . . . , 𝑛 and 𝑙 to index
1, . . . , 𝑘 (possibly starting at 0). However, this is not strict and the usage can
depend on context.
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6.1 Mapping to Z𝑑

In this section, we show how the problem of estimating sums of algebraic dilates
can be recast in terms of estimating sums of linear transformations. Our first lemma,
generalising [29, Lemma 3.1], will allow us to assume that 𝐴 is a subset of 𝐾 .
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Lemma 6.1.1. Suppose that 𝜆1, . . . , 𝜆𝑘 ∈ C and 𝐴 ⊂ C is finite. Then there exists a
finite set 𝐵 ⊂ 𝐾 = Q(𝜆1, . . . , 𝜆𝑘 ) such that |𝐵 | = |𝐴| and |𝐵 +𝜆1 · 𝐵 + · · · +𝜆𝑘 · 𝐵 | ≤
|𝐴 + 𝜆1 · 𝐴 + · · · + 𝜆𝑘 · 𝐴|.

Proof. Let 𝐿 be the field extension of 𝐾 generated by 𝐴. Pick any 𝐾-linear map
𝑓 : 𝐿 → 𝐾 which is injective on 𝐴. Such a map exists since 𝐴 is finite. Set
𝐵 = 𝑓 (𝐴). Then |𝐵 | = |𝐴| and, for any 𝑎0, . . . , 𝑎𝑘 ∈ 𝐴,

𝑓 (𝑎0 + 𝜆1𝑎1 + · · · + 𝜆𝑘𝑎𝑘 ) = 𝑓 (𝑎0) + 𝜆1 𝑓 (𝑎1) + · · · + 𝜆𝑘 𝑓 (𝑎𝑘 ).

Hence, |𝐵+𝜆1·𝐵+· · ·+𝜆𝑘 ·𝐵 | = | 𝑓 (𝐴+𝜆1·𝐴+· · ·+𝜆𝑘 ·𝐴) | ≤ |𝐴+𝜆1·𝐴+· · ·+𝜆𝑘 ·𝐴|. □

In light of this result, we will henceforth assume that 𝐴 ⊂ 𝐾 . For any 𝑎 ∈ 𝐾 , there
exists a positive integer 𝑛 such that 𝑛𝑎 ∈ O𝐾 . In fact, this is true for any fractional
ideal I ⊆ O𝐾 – for any 𝑎 ∈ 𝐾 , there exists a positive integer 𝑛 such that 𝑛𝑎 ∈ I.
Thus, since 𝐴 is finite, by rescaling 𝐴 to 𝑛 · 𝐴 for an appropriately large 𝑛, we may
assume that 𝐴 ⊂ I if we wish to without any loss of generality.

To pass to linear transformations, we fix a Z-basis 𝑒1 = 1, 𝑒2, . . . , 𝑒𝑑 of O𝐾 and let
Φ : O𝐾 → Z𝑑 be the isomorphism mapping the 𝑒𝑖 to the standard basis of Z𝑑 . This
map extends linearly to an isomorphism Φ : 𝐾 → Q𝑑 . Under this isomorphism,
multiplication by 𝜆𝑙 corresponds to the linear mapM𝑙 ∈ Mat𝑑 (Q) defined by

M𝑙 (𝑥) = Φ(𝜆𝑙 · Φ−1(𝑥)).

The problem of estimating |𝐴 + 𝜆1 · 𝐴 + · · · + 𝜆𝑘 · 𝐴| for 𝐴 ⊂ 𝐾 is then equivalent
to estimating |𝐴 +M1𝐴 + · · · +M𝑘𝐴| for 𝐴 ⊂ Q𝑑 .

One further step allows us to convert the problem into one about sums of linear
transformations with integer entries. Recall, from the introduction, that the denom-
inator ideal of 𝜆1, . . . , 𝜆𝑘 is the non-zero ideal 𝔇 = O𝐾 ∩ 𝜆−1

1 O𝐾 ∩ · · · ∩ 𝜆
−1
𝑘
O𝐾

with the property that 𝜆𝑙𝔇 ⊆ O𝐾 for all 𝑙 = 0, . . . , 𝑘 . If we fix an isomorphism
Φ′ : 𝔇 → Z𝑑 , then multiplication of the elements of 𝔇 by 𝜆𝑙 corresponds to the
linear map L𝑙 : Z𝑑 → Z𝑑 defined by

L𝑙 (𝑥) = Φ(𝜆𝑙 · Φ′−1(𝑥)).

By rescaling, we may assume that 𝐴 ⊂ 𝔇, so that Theorem 6.0.2 becomes equivalent
to the following result, whose proof will now be our principal goal.
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Theorem 6.1.2. For finite subsets 𝐴 of Z𝑑 ,

|L0𝐴 + · · · + L𝑘𝐴| ≥ 𝐻 (𝜆1, . . . , 𝜆𝑘 ) |𝐴| − 𝑜( |𝐴|).

The next lemma determines all the (simultaneous) eigenvalues of the 𝜆𝑙 , when they
are viewed as Q-linear maps on 𝐾 . In the statement and proof, we will use the
fact that there are exactly 𝑑 different complex embeddings (that is, injective field
homomorphisms) of 𝐾 in C, which we denote by 𝜎1, . . . , 𝜎𝑑 with 𝜎1 the identity.

Lemma 6.1.3. Viewing 𝐾 � Q𝑑 , multiplication by 𝜆𝑙 induces a Q-linear map
M𝑙 : Q𝑑 → Q𝑑 . Then the mapsM0, . . . ,M𝑘 are simultaneously diagonalizable
over C into the diagonal matrices D0, . . . ,D𝑘 , where D𝑙 has diagonal entries
(𝜎1(𝜆𝑙), . . . , 𝜎𝑑 (𝜆𝑙)) for 𝑙 = 0, . . . , 𝑘 .

Proof. Let 𝐾C = 𝐾 ⊗Q C and define 𝜎 : 𝐾C → C𝑑 be the C-linear map defined by
𝜎(𝛼 ⊗ 𝑐) = (𝑐𝜎1(𝛼), . . . , 𝑐𝜎𝑑 (𝛼)). We claim that 𝜎 is an isomorphism. Indeed,
let 𝛼 ∈ 𝐾 be a generator of 𝐾 , i.e., 𝐾 = Q(𝛼). Then (1, 𝛼, . . . , 𝛼𝑑−1) is a Q-basis
for 𝐾 , and 𝜎1(𝛼), . . . , 𝜎𝑑 (𝛼) are all distinct. Under this basis, which is also a basis
for 𝐾C, 𝜎 is represented by the matrix

©­­­­­«
1 𝜎1(𝛼) 𝜎1(𝛼)2 · · · 𝜎1(𝛼)𝑑−1

1 𝜎2(𝛼) 𝜎2(𝛼)2 · · · 𝜎2(𝛼)𝑑−1

...
...

...
. . .

...

1 𝜎𝑑 (𝛼) 𝜎𝑑 (𝛼)2 · · · 𝜎𝑑 (𝛼)𝑑−1

ª®®®®®¬
,

which is non-singular, since it is a Vandemonde matrix. Let 𝑒1, . . . , 𝑒𝑑 ∈ C𝑑 be the
standard basis of C𝑑 and 𝑣𝑖 = 𝜎−1(𝑒𝑖). Then 𝑣1, . . . , 𝑣𝑑 form a basis for 𝐾C. We
claim that, in this basis,M𝑙 diagonalizes into the desired form. It suffices to check
thatM𝑙 (𝑣𝑖) = 𝜎𝑖 (𝜆𝑙)𝑣𝑖.

Let 𝑥1, . . . , 𝑥𝑑 ∈ 𝐾 be a Q-basis for 𝐾 . Then 𝑣𝑖 can be written in the form
𝑣𝑖 = 𝑥1 ⊗ 𝑐𝑖1 + · · · + 𝑥𝑘 ⊗ 𝑐𝑖𝑘 for some 𝑐𝑖𝑙 ∈ C, so that 𝜎(𝑣𝑖) = 𝑒𝑖 says that

𝑘∑︁
𝑙=1

𝑐𝑖𝑙𝜎𝑗 (𝑥𝑙) = 𝛿𝑖 𝑗 .
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But then

𝜎𝑗 (M𝑙 (𝑣𝑖)) = 𝜎𝑗

(
M𝑙

(
𝑘∑︁

𝑚=1
𝑥𝑚 ⊗ 𝑐𝑖𝑚

))
= 𝜎𝑗

(
𝑘∑︁

𝑚=1
(𝜆𝑙𝑥𝑚) ⊗ 𝑐𝑖𝑚

)
=

𝑘∑︁
𝑚=1

𝑐𝑖𝑚𝜎𝑗 (𝜆𝑙𝑥𝑚) = 𝜎𝑗 (𝜆𝑙)
𝑘∑︁

𝑚=1
𝑐𝑖𝑚𝜎𝑗 (𝑥𝑚)

= 𝜎𝑗 (𝜆𝑙)𝛿𝑖 𝑗 = 𝜎𝑖 (𝜆𝑙)𝛿𝑖 𝑗 .

It follows thatM𝑙 (𝑣𝑖) = 𝜎𝑖 (𝜆𝑙)𝑣𝑖, as required. □

We will also recall the norm ∥·∥ defined on O𝐾 and 𝐾R in Chapter 5. By pulling
back Φ, the∞-norm on Z𝑑 defines a norm ∥·∥ on O𝐾 , namely, for 𝑙1, . . . , 𝑙𝑑 ∈ Z,

∥𝑙1𝑒1 + · · · + 𝑙𝑑𝑒𝑑 ∥ := max
𝑖
|𝑙𝑖 |.

The open ball 𝐵(𝐿) of radius 𝐿 > 0 under this norm is then given by

𝐵(𝐿) := {𝑙1𝑒1 + · · · + 𝑙𝑑𝑒𝑑 ∈ O𝐾 : |𝑙𝑖 | < 𝐿 for all 𝑖} .

∥·∥ extends linearly and continuously to a norm on 𝐾R, which we also denote by
∥·∥. The open ball 𝐵R(𝑅) of radius 𝑅 > 0 in 𝐾R is then

𝐵R(𝑅) := {𝑒1 ⊗ 𝑟1 + · · · + 𝑒𝑑 ⊗ 𝑟𝑑 ∈ 𝐾R : |𝑟𝑖 | < 𝑅 for all 𝑖} .

We have the following constants associated to the norm ∥·∥ from Chapter 5.

Lemma 6.1.4 (Lemma 5.2.1). There exist constants 𝐶1, 𝐶2, 𝐶3 ∈ N such that the
following hold:

1. For all 𝑥, 𝑦 ∈ 𝐾R, ∥𝑥𝑦∥ ≤ 𝐶1 ∥𝑥∥ ∥𝑦∥.

2. For all 𝑙 = 0, . . . , 𝑘 , 𝐶2𝜆𝑙 ∈ O𝐾 .

3. For all 𝑙 = 0, . . . , 𝑘 and 𝑥 ∈ O𝐾 , 𝜆𝑙𝑥 ∈ 1
𝐶2
· 𝐵(𝐶3 ∥𝑥∥).

6.2 The continuous version
We now come to the first part of our argument, which is to extend an estimate of
Krachun and Petrov [29, Theorem 2] on sums of linear transformations of compact
sets to more than two variables. We will need to assume that the linear transfor-
mations are simultaneously diagonalizable. But, as we have seen in Lemma 6.1.3
above, this is exactly the situation we are concerned with.



84

Throughout this section, we will fix an identification 𝐾R � R𝑑 and take 𝜇 to be the
Lebesgue measure on R𝑑 and, hence, on 𝐾R. Our main result may then be stated as
follows.

Theorem 6.2.1. SupposeL1, . . . ,L𝑘 ∈ Mat𝑑 (R) are simultaneously diagonalizable
over C into the diagonal matrices D1, . . . ,D𝑘 , where D𝑙 = diag(𝜆𝑙1, . . . , 𝜆𝑙𝑑) with
each 𝜆𝑙𝑖 ∈ C. Then, for any compact 𝐴 ⊂ R𝑑 ,

𝜇(L1𝐴 + L2𝐴 + · · · + L𝑘𝐴) ≥
(
𝑑∏
𝑖=1

𝑘∑︁
𝑙=1
|𝜆𝑙𝑖 |

)
𝜇(𝐴).

Moreover, equality holds for some 𝐴 with 𝜇(𝐴) > 0.

Proof. Let Λ = {(𝜆1𝑖, 𝜆2𝑖, . . . , 𝜆𝑘𝑖)}𝑑𝑖=1. Since complex conjugation preserves each
L𝑙 , it permutes the elements of Λ. Thus, we can split Λ into two parts Λ1 and Λ2,
where Λ1 ⊂ R𝑘 consists of those tuples fixed by conjugation and Λ2 consists of
conjugate pairs of tuples. Then we may decompose R𝑑 into the eigenspaces

R𝑑 =
⊕
𝜆∈Λ1

𝐸𝜆 ⊕
⊕
(𝜆,𝜆)∈Λ2

𝐸
𝜆,𝜆
,

where each𝐸𝜆 is 1-dimensional and each𝐸
𝜆,𝜆

is 2-dimensional. For𝜆 = (𝜆1, . . . , 𝜆𝑘 ) ∈
Λ1, each L𝑙 acts on 𝐸𝜆 by 𝜆𝑙 . For (𝜆, 𝜆) ∈ Λ2, each L𝑙 acts on 𝐸

𝜆,𝜆
by |𝜆𝑙 |𝑅arg(𝜆𝑙) ,

where 𝑅𝜃 is the rotation map on R2 by 𝜃.

We prove the theorem in the following more general form. Suppose we have a
decomposition

R𝑑 =
𝑛⊕
𝑗=1

𝐸 𝑗 ,

where dim 𝐸 𝑗 = 𝑑 𝑗 and L𝑙 acts on 𝐸 𝑗 by 𝑟𝑙 𝑗𝑃𝑙 𝑗 , where 𝑟𝑙 𝑗 ≥ 0 and 𝑃𝑙 𝑗 is an
orthogonal matrix acting on 𝐸 𝑗 . In other words, for any vector 𝑣 ∈ R𝑑 , if we
decompose it into 𝑣 = 𝑣1 + · · · + 𝑣𝑛 with 𝑣 𝑗 ∈ 𝐸 𝑗 for all 1 ≤ 𝑗 ≤ 𝑛, then L𝑙𝑣 =

𝑟𝑙1𝑃𝑙1𝑣1 + · · · + 𝑟𝑙𝑛𝑃𝑙𝑛𝑣𝑛. We will show that

𝜇(L1𝐴 + L2𝐴 + · · · + L𝑘𝐴) ≥ ©­«
𝑛∏
𝑗=1

(
𝑘∑︁
𝑙=1

𝑟𝑙 𝑗

)𝑑 𝑗ª®¬ 𝜇(𝐴).
We perform Steiner symmetrization, a continuous analogue of compression intro-
duced by Steiner in his classical work on the isoperimetric problem, along each of
the eigenspaces 𝐸 𝑗 as follows. Write R𝑑 = 𝐸 𝑗 ⊕ 𝐸 , where 𝐸 is the direct sum of the
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remaining spaces. Let 𝜋1 : R𝑑 → 𝐸 𝑗 and 𝜋2 : R𝑑 → 𝐸 be the projections onto 𝐸 𝑗
and 𝐸 , respectively. For a compact 𝐴 ⊂ R𝑑 and 𝑥 ∈ 𝐸 , write 𝐴𝑥 := 𝜋1(𝜋−1

2 (𝑥)) ⊂ 𝐸 𝑗
for the fiber of 𝐴 at 𝑥. Then 𝜇(𝐴) =

∫
𝑥
𝜇(𝐴𝑥)𝑑𝜇(𝑥). The Steiner symmetrization of

𝐴 along 𝐸 𝑗 is the set 𝑆 𝑗 (𝐴) ⊂ R𝑑 with the same support as 𝐴 on 𝐸 and such that,
for each 𝑥 ∈ 𝜋2(𝐴), 𝑆 𝑗 (𝐴)𝑥 is the closed ball centered at 0 with the same volume as
𝐴𝑥 .

Claim 6.2.2. The Steiner symmetrization has the following properties:

1. 𝜇(𝑆 𝑗 (𝐴)) = 𝜇(𝐴).

2. 𝑆 𝑗 (𝐴) is invariant under any orthogonal transformation of 𝐸 𝑗 .

3. 𝑆 𝑗 (L𝑙𝐴) ⊇ L𝑙 (𝑆 𝑗 (𝐴)) for all 𝑙.

4. 𝑆 𝑗 (𝐴) is compact.

5. If 𝐵 is compact, then 𝑆 𝑗 (𝐴 + 𝐵) ⊇ 𝑆 𝑗 (𝐴) + 𝑆 𝑗 (𝐵).

6. If 𝐹 ∈ GL(𝐸) and 𝐹′ ∈ GL𝑑 (R) is given by 𝐼𝐸 𝑗 ⊕ 𝐹 and 𝐹′(𝐴) = 𝐴, then
𝐹′(𝑆 𝑗 (𝐴)) = 𝑆 𝑗 (𝐴).

Proof. 1. This is true since 𝜇(𝑆 𝑗 (𝐴)𝑥) = 𝜇(𝐴𝑥) for all 𝑥 ∈ 𝐸 .

2. This is true since 𝑆 𝑗 (𝐴)𝑥 is a ball for all 𝑥 ∈ 𝐸 .

3. Let 𝑥 ∈ 𝜋2(𝐴) and 𝐵 = 𝑆 𝑗 (𝐴)𝑥 , a ball. ThenL𝑙 (𝑆 𝑗 (𝐴)) =
⋃
𝑥∈𝜋2 (𝐴) L𝑙 |𝐸 𝑗 (𝐵)⊕

L𝑙𝑥. Note thatL𝑙 |𝐸 𝑗 (𝐵) is also a ball of volume 𝜇(L𝑙 |𝐸 𝑗 (𝐴𝑥)) ≤ 𝜇((L𝑙𝐴)L𝑙𝑥).
Thus, L𝑙 |𝐸 𝑗 (𝐵) ⊕ L𝑙𝑥 ⊆ 𝑆 𝑗 (L𝑙𝐴) and the result follows.

4. Since 𝐴 is bounded, so is 𝑆 𝑗 (𝐴). To show that 𝑆 𝑗 (𝐴) is closed, it is sufficient
to show that for any sequence 𝑥1, 𝑥2, . . . ∈ 𝐸 converging to 𝑥 ∈ 𝐸 , we have
𝜇(𝐴𝑥) ≥ lim sup𝑛 𝜇(𝐴𝑥𝑛). Since 𝐴 is closed, 𝐴𝑥 ⊇ lim sup𝑖 𝐴𝑥𝑖 , so it suffices
to show that 𝜇(lim sup𝑖 𝐴𝑥𝑖 ) ≥ lim sup𝑖 𝜇(𝐴𝑥𝑖 ). But this is true since the 𝐴𝑥𝑖
are uniformly bounded.

5. For 𝑥 ∈ 𝜋2(𝐴) and 𝑦 ∈ 𝜋2(𝐵), let 𝑟, 𝑟′ be the radii of the balls 𝑆 𝑗 (𝐴)𝑥 and
𝑆 𝑗 (𝐵)𝑦, with volumes 𝑉,𝑉 ′. Then (𝑆 𝑗 (𝐴) + 𝑆 𝑗 (𝐵))𝑥+𝑦 is a ball of radius
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𝑟 + 𝑟′, maximized over all 𝑥, 𝑦 with the same fixed sum. But, by the Brunn–
Minkowski inequality,

𝜇(𝑆 𝑗 (𝐴 + 𝐵)𝑥+𝑦) ≥ 𝜇(𝑆 𝑗 (𝐴)𝑥 + 𝑆 𝑗 (𝐵)𝑦)
≥ (𝜇(𝑆 𝑗 (𝐴)𝑥)1/𝑑 𝑗 + 𝜇(𝑆 𝑗 (𝐵)𝑦)1/𝑑 𝑗 )𝑑 𝑗

= (𝑉1/𝑑 𝑗 +𝑉 ′1/𝑑 𝑗 )𝑑 𝑗

= 𝜇((𝑆 𝑗 (𝐴) + 𝑆 𝑗 (𝐵))𝑥+𝑦).

Thus, 𝑆 𝑗 (𝐴 + 𝐵)𝑥+𝑦 ⊇ (𝑆 𝑗 (𝐴) + 𝑆 𝑗 (𝐵))𝑥+𝑦 and the result follows.

6. Let 𝑥 ∈ 𝐸 . Since 𝐹′(𝐴) = 𝐴, we have 𝐴𝐹 (𝑥) = 𝐴𝑥 . Therefore, 𝑆 𝑗 (𝐴)𝐹 (𝑥) =
𝑆 𝑗 (𝐴)𝑥 , so we have 𝐹′(𝑆 𝑗 (𝐴)) = 𝑆 𝑗 (𝐴). □

Perform Steiner symmetrization on 𝐴 successively along 𝐸1, . . . , 𝐸𝑛 to obtain, by
Claim 6.2.2(4), the compact set 𝐵 = 𝑆1(𝑆2(· · · 𝑆𝑛 (𝐴) · · · )). By Claim 6.2.2(1), (5)
and (3),

𝜇(L1𝐴 + · · · + L𝑘𝐴) = 𝜇(𝑆 𝑗 (L1𝐴 + · · · + L𝑘𝐴))
≥ 𝜇(𝑆 𝑗 (L1𝐴) + · · · + 𝑆 𝑗 (L𝑘𝐴))
≥ 𝜇(L1(𝑆 𝑗 (𝐴)) + · · · + L𝑘 (𝑆 𝑗 (𝐴))).

Iterating, we see that 𝜇(L1𝐴 + · · · + L𝑘𝐴) ≥ 𝜇(L1𝐵 + · · · + L𝑘𝐵), where we also
have 𝜇(𝐵) = 𝜇(𝐴).

Let L′
𝑙
be the linear map that just scales by 𝑟𝑙 𝑗 on each 𝐸 𝑗 , i.e., L′

𝑙
(𝑣1 + · · · + 𝑣𝑛) =

𝑟𝑙1𝑣1 + · · · + 𝑟𝑙𝑛𝑣𝑛 for any 𝑣 𝑗 ∈ 𝐸 𝑗 . By repeated applications of Claim 6.2.2(2) and
(6), we may check that 𝐵 is rotationally invariant on each 𝐸 𝑗 , so we haveL′

𝑙
𝐵 = L𝑙𝐵.

Thus,

𝜇(L1𝐵 + · · · + L𝑘𝐵) = 𝜇(L′1𝐵 + · · · + L
′
𝑘𝐵)

≥ 𝜇((L′1 + · · · + L
′
𝑘 ) (𝐵))

= | det(L′1 + · · · + L
′
𝑘 ) |𝜇(𝐵)

=
©­«

𝑙∏
𝑗=1

(
𝑘∑︁
𝑙=1

𝑟𝑙 𝑗

)𝑑 𝑗ª®¬ 𝜇(𝐵).
Finally, to see that equality may hold, observe that we can take 𝐴 to be the product
of the unit balls in each 𝐸 𝑗 . □



87

In particular, this yields the smallest possible value of 𝜇(𝐴+𝜆1·𝐴+· · ·+𝜆𝑘 ·𝐴) in terms
of 𝜇(𝐴). To see this, letM𝑙 ∈ Mat𝑑 (Q) be the matrix representing multiplication
by 𝜆𝑙 for 𝑙 = 0, . . . , 𝑘 , as defined in Section 6.1. Then, by Lemma 6.1.3, the
M𝑙 are simultaneously diagonalizable into the diagonal matrices D𝑙 with entries
(𝜎1(𝜆𝑙), . . . , 𝜎𝑑 (𝜆𝑙)), where 𝜎1, . . . , 𝜎𝑑 are all the complex embeddings of 𝐾 . By
Theorem 6.2.1, we therefore have

𝜇(𝐴 + 𝜆1 · 𝐴 + · · · + 𝜆𝑘 · 𝐴) = 𝜇(M0𝐴 + · · · +M𝑘𝐴)

≥
(
𝑑∏
𝑖=1
(1 + |𝜎𝑖 (𝜆1) | + · · · + |𝜎𝑖 (𝜆𝑘 ) |)

)
𝜇(𝐴).

Comparing this to our main result, Theorem 6.0.2, we see that the discrete version
differs from the continuous one only in the factor 𝑁𝐾/Q(𝔇𝜆1,...,𝜆𝑘 ;𝐾), which is a
measure of the non-integrality of 𝜆1, . . . , 𝜆𝑘 . We say more below.

Lower bound construction
In this short subsection, we give a lower bound construction for the discrete case,
showing that the constant 𝐻 (𝜆1, . . . , 𝜆𝑘 ) in Theorem 6.0.2 is best possible. In brief,
the construction is a discretized version of the equality case in Theorem 6.2.1.

Proposition 6.2.3. Let 𝜆1, . . . , 𝜆𝑘 ∈ 𝐾 = Q(𝜆1, . . . , 𝜆𝑘 ) be algebraic numbers.
Then there exist arbitrarily large 𝐴 ⊂ C such that

|𝐴 + 𝜆1 · 𝐴 + · · · + 𝜆𝑘 · 𝐴| ≤ 𝐻 (𝜆1, . . . , 𝜆𝑘 ) |𝐴| +𝑂 ( |𝐴|
𝑑−1
𝑑 ),

where 𝑑 = deg(𝐾/Q).

Proof. Let 𝜎1, . . . , 𝜎𝑑 : 𝐾 → C be the complex embeddings of 𝐾 and set 𝔇 =

𝔇𝜆1,...,𝜆𝑘 ;𝐾 . Viewing multiplication by 𝜆𝑙 as a Q-linear mapM𝑙 : 𝐾 → 𝐾 for each
𝑙, take 𝐴′ ⊂ 𝐾R satisfying the equality case in Theorem 6.2.1 with 𝜇(𝐴′) = 1. Then
𝜇(𝐴′ + 𝜆1 · 𝐴′ + · · · + 𝜆𝑘 · 𝐴′) =

(∏𝑑
𝑖=1(1 + |𝜎𝑖 (𝜆1) | + · · · + |𝜎𝑖 (𝜆𝑘 ) |)

)
𝜇(𝐴′).

Let 𝑛 be an arbitrarily large positive integer and let 𝐴 = 𝑛𝐴′ ∩𝔇, so that

|𝐴| = 𝜇(𝑛𝐴′)/Vol(𝐾R/𝔇) +𝑂 (𝑛𝑑−1) = 𝑛𝑑/Vol(𝐾R/𝔇) +𝑂 (𝑛𝑑−1).

On the other hand, for each 𝑙, 𝜆𝑙 · 𝐴 ⊂ 𝜆𝑙 ·𝔇 ⊆ O𝐾 , so we have

𝐴 + 𝜆1 · 𝐴 + · · · + 𝜆𝑘 · 𝐴 ⊆ 𝑛(𝐴′ + 𝜆1 · 𝐴′ + · · · + 𝜆𝑘 · 𝐴′) ∩ O𝐾 .
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Therefore,

|𝐴 + 𝜆1 · 𝐴 + · · · + 𝜆𝑘 · 𝐴|
≤ 𝜇(𝑛(𝐴′ + 𝜆1 · 𝐴′ + · · · + 𝜆𝑘 · 𝐴′))/Vol(𝐾R/O𝐾) +𝑂 (𝑛𝑑−1)

= 𝑛𝑑

(
𝑑∏
𝑖=1
(1 + |𝜎𝑖 (𝜆1) | + · · · + |𝜎𝑖 (𝜆𝑘 ) |)

)
/Vol(𝐾R/O𝐾) +𝑂 (𝑛𝑑−1).

Since Vol(𝐾R/𝔇)/Vol(𝐾R/O𝐾) = [O𝐾 : 𝔇] = 𝑁𝐾/Q(𝔇), we obtain that

|𝐴 + 𝜆1 · 𝐴 + · · · + 𝜆𝑘 · 𝐴|

≤ 𝑁𝐾/Q(𝔇)
(
𝑑∏
𝑖=1
(1 + |𝜎𝑖 (𝜆1) | + · · · + |𝜎𝑖 (𝜆𝑘 ) |)

)
|𝐴| +𝑂 (𝑛𝑑−1)

= 𝐻 (𝜆1, . . . , 𝜆𝑘 ) |𝐴| +𝑂 ( |𝐴|
𝑑−1
𝑑 ). □

6.3 Reduction to a dense subset of the box
We recall our structure theorem for sets with small sums of dilates from Chapter 5.

Theorem 6.3.1 (Theorem 5.0.2). Let𝐶, 𝑝 > 0. Then there are constants 𝑛 = 𝑛(𝐶, 𝑝)
and 𝐹 = 𝐹 (𝐶, 𝑝) such that for any 𝐴 ⊂ O𝐾 satisfying

|𝐴 + 𝜆1 · 𝐴 + · · · + 𝜆𝑘 · 𝐴| ≤ 𝐶 |𝐴|,

there exists a 𝑝-proper O𝐾-GAP 𝑃 ⊂ O𝐾 containing 𝐴 of dimension at most 𝑛 and
size at most 𝐹 |𝐴|.

With this result in hand, we are now able to complete the second part of our plan,
reducing the proof of our main result, in the form of Theorem 6.1.2, to the case
where 𝐴 is a dense subset of the box [0, 𝑁)𝑑 .

Lemma 6.3.2. For any 𝜀 > 0, there exists 𝑁0 such that if 𝑁 ≥ 𝑁0 and 𝐴 ⊆ [0, 𝑁)𝑑

with |𝐴| ≥ 𝜀𝑁𝑑 , then

|L0𝐴 + · · · + L𝑘𝐴| ≥ 𝐻 (𝜆1, . . . , 𝜆𝑘 ) |𝐴| − 𝑜𝜀 ( |𝐴|).

The proof of Lemma 6.3.2, which is the heart of this paper, will occupy us for the
next few sections. Before moving on to this, we first show that, together with our
version of Freiman’s theorem for sums of dilates, Lemma 6.3.2 completes the proof
of Theorem 6.1.2.
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Proof of Theorem 6.1.2 assuming Lemma 6.3.2. Let 𝐴 ⊂ Z𝑑 be finite and suppose
that

|L0𝐴 + · · · + L𝑘𝐴| ≤ 𝐻 |𝐴|,

where 𝐻 = 𝐻 (𝜆1, . . . , 𝜆𝑘 ). Let Φ,Φ′,𝔇 be as in Section 6.1. Setting 𝐴′ =

Φ′−1(𝐴) ⊆ 𝔇 ⊆ O𝐾 , we have

|𝐴′ + 𝜆1 · 𝐴′ + · · · + 𝜆𝑘 · 𝐴′| ≤ 𝐻 |𝐴′|.

Let 𝐶3 be as in Lemma 6.1.4. By Theorem 6.3.1, our version of Freiman’s theorem
for sums of dilates applied with 𝑝 = (𝑘 +1)𝐶3, 𝐴′ is contained in a (𝑘 +1)𝐶3-proper
O𝐾-GAP 𝑃 ⊂ 𝐾 of dimension 𝑛 = 𝑂 (1) and size |𝑃 | = 𝑂 ( |𝐴′|). Suppose 𝑃 is of
the form {

𝑣0 + 𝑙1𝑣1 + · · · + 𝑙𝑛𝑣𝑛 : 𝑙 𝑗 ∈ 𝐵(𝐿 𝑗 )
}
.

Then |𝑃 | ∼ (∏𝑛
𝑗=1 𝐿 𝑗 )𝑑 , where the notation 𝐴 ∼ 𝐵 indicates that the quantities 𝐴 and

𝐵 are equal up to a constant multiplicative factor depending only on 𝜆1, . . . , 𝜆𝑘 . By
translating 𝐴′, we may assume that 𝑣0 = 0. By Lemma 6.1.4, we have 𝜆𝑙 · 𝐵(𝐿 𝑗 ) ⊆
1
𝐶2
· 𝐵(𝐶3𝐿 𝑗 ) for all 𝑗 , 𝑙. Thus, 𝜆𝑙 · 𝐴′ ⊆ 𝜆𝑙 · 𝑃 ⊆ 1

𝐶2
· (𝐶3 ★ 𝑃) for all 𝑙.

We will now map 𝑃 to a dense subset of a box via a Freiman isomorphism. Let
𝑣∗1 = 1 and 𝑣∗

𝑙
= 3(𝑘 + 1)𝐶3𝐿𝑙−1𝑣

∗
𝑙−1 for 𝑙 = 2, . . . , 𝑛. Let 𝑃∗ be the O𝐾-GAP

𝑃∗ :=
{
𝑙1𝑣
∗
1 + 𝑙2𝑣

∗
2 + · · · + 𝑙𝑛𝑣

∗
𝑛 : 𝑙 𝑗 ∈ 𝐵(𝐿 𝑗 )

}
.

Then 𝑃∗ is (𝑘+1)𝐶3-proper. Indeed, if 𝑙1𝑣∗1+ 𝑙2𝑣
∗
2+· · ·+ 𝑙𝑛𝑣

∗
𝑛 = 𝑙

′
1𝑣
∗
1+ 𝑙
′
2𝑣
∗
2+· · ·+ 𝑙

′
𝑛𝑣
∗
𝑛

for some 𝑙 𝑗 , 𝑙′𝑗 ∈ 𝐵((𝑘 + 1)𝐶3𝐿 𝑗 ), then we have

(𝑙1 − 𝑙′1)𝑣
∗
1 + · · · + (𝑙𝑛 − 𝑙

′
𝑛)𝑣∗𝑛 = 0.

Suppose 𝑙𝑡 ≠ 𝑙′𝑡 for some 𝑡 ∈ [𝑛]. Let 𝑡 be the largest such index, so we have

(𝑙′𝑡 − 𝑙𝑡)𝑣∗𝑡 = (𝑙1 − 𝑙′1)𝑣
∗
1 + · · · + (𝑙𝑡−1 − 𝑙′𝑡−1)𝑣

∗
𝑡−1.

However,


(𝑙′𝑡 − 𝑙𝑡)𝑣∗𝑡 

 ≥ 𝑣∗𝑡 = 3(𝑘 + 1)𝐶3𝐿𝑡−1𝑣

∗
𝑡−1, whereas

(𝑙1 − 𝑙′1)𝑣∗1 + · · · + (𝑙𝑡−1 − 𝑙′𝑡−1)𝑣

∗
𝑡−1




≤



(𝑙1 − 𝑙′1)𝑣∗1

 + · · · + 

(𝑙𝑡−1 − 𝑙′𝑡−1)𝑣
∗
𝑡−1




≤ (∥𝑙1∥ +



𝑙′1

)𝑣∗1 + · · · + (∥𝑙𝑡−1∥ +


𝑙′𝑡−1



)𝑣∗𝑡−1

< 2(𝑘 + 1)𝐶3𝐿1𝑣
∗
1 + · · · + 2(𝑘 + 1)𝐶3𝐿𝑡−1𝑣

∗
𝑡−1

≤ 3(𝑘 + 1)𝐶3𝐿𝑡−1𝑣
∗
𝑡−1,
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a contradiction. This proves that 𝑃∗ is (𝑘 + 1)𝐶3-proper.

Consider Ψ : (𝑘 + 1)𝐶3 ★ 𝑃→ (𝑘 + 1)𝐶3 ★ 𝑃
∗, the natural bijection given by

𝑙1𝑣1 + · · · + 𝑙𝑛𝑣𝑛 ←→ 𝑙1𝑣
∗
1 + 𝑙2𝑣

∗
2 + · · · + 𝑙𝑛𝑣

∗
𝑛.

Let 𝐴∗ = Ψ(𝐴′), so that |𝐴∗ | = |𝐴′|. We claim that for 𝑙 = 0, . . . , 𝑘 , we have
Ψ(𝐶2𝜆𝑙 · 𝐴′) = 𝐶2𝜆𝑙 · 𝐴∗. Indeed, first observe that the LHS is well-defined, since
𝜆𝑙 · 𝑃 ⊆ 1

𝐶2
· (𝐶3 ★ 𝑃), so we have 𝐶2𝜆𝑙 · 𝑃 ⊆ 𝐶3 ★ 𝑃, which is in the domain of Ψ.

For any 𝑎 = 𝑙1𝑣1 + · · · + 𝑙𝑛𝑣𝑛 ∈ 𝐴′, set 𝑙′
𝑗 𝑙
= 𝐶2𝜆𝑙 · 𝑙 𝑗 , which belongs to 𝐵(𝐶3𝐿 𝑗 ) by

Lemma 6.1.4. Then

Ψ(𝐶2𝜆𝑙 · 𝑎) = Ψ(𝑙′1𝑙𝑣1 + · · · + 𝑙′𝑛𝑙𝑣𝑛) = 𝑙
′
1𝑙𝑣
∗
1 + · · · + 𝑙

′
𝑛𝑙𝑣
∗
𝑛

= 𝐶2𝜆𝑙 · (𝑙1𝑣∗1 + · · · + 𝑙𝑛𝑣
∗
𝑛) = 𝐶2𝜆𝑙Ψ(𝑎).

This proves the stated claim that Ψ(𝐶2𝜆𝑙 · 𝐴′) = 𝐶2𝜆𝑙 · 𝐴∗.

Since 𝑃 is (𝑘 +1)𝐶3-proper, 𝐶3★𝑃 is (𝑘 +1)-proper. Hence, Ψ is a (𝑘 +1)-Freiman
isomorphism on 𝐶3 ★ 𝑃 and, therefore, since 𝐶3 > 𝐶2,

Ψ(𝐶2 · (𝐴′ + 𝜆1 · 𝐴′ + · · · + 𝜆𝑘 · 𝐴′))
= Ψ(𝐶2𝜆0 · 𝐴′ + 𝐶2𝜆1 · 𝐴′ + · · · + 𝐶2𝜆𝑘 · 𝐴′)
= Ψ(𝐶2𝜆0 · 𝐴′) + Ψ(𝐶2𝜆1 · 𝐴′) + · · · + Ψ(𝐶2𝜆𝑘 · 𝐴′)
= 𝐶2𝜆0 · 𝐴∗ + 𝐶2𝜆1 · 𝐴∗ + · · · + 𝐶2𝜆𝑘 · 𝐴∗

= 𝐶2 · (𝐴∗ + 𝜆1 · 𝐴∗ + · · · + 𝜆𝑘 · 𝐴∗).

It follows that

|𝐴∗ + 𝜆1 · 𝐴∗ + · · · + 𝜆𝑘 · 𝐴∗ | = |𝐴′ + 𝜆1 · 𝐴′ + · · · + 𝜆𝑘 · 𝐴′|.

Note that 𝑃∗ ⊆ 𝐵(𝐿) for some 𝐿 ∼ ∏𝑛
𝑗=1 𝐿 𝑗 . Recall that 𝐶2 is an integer satisyfing

𝐶2𝜆𝑙 ∈ O𝐾 for all 𝑙. In particular, 𝐶2 ∈ 𝔇, and since 𝑃∗ ⊂ O𝐾 , 𝐶2 · 𝑃∗ ⊂ 𝔇. Since
𝐶2 · 𝑃∗ ⊆ 𝐵(𝐶2𝐿), Φ′(𝐶2 · 𝑃∗) is contained in a box [−𝑁, 𝑁]𝑑 with 𝑁 ∼ 𝐿. But
𝑁𝑑 ∼ |𝑃 | ∼ |𝐴| and so Φ′(𝐶2 · 𝐴∗) is a dense subset of the box [−𝑁, 𝑁]𝑑 . By
Lemma 6.3.2 (after translating into the box [0, 2𝑁 + 1)𝑑), we have

|L0𝐴 + · · · + L𝑘𝐴| = |𝐴′ + 𝜆1 · 𝐴′ + · · · + 𝜆𝑘 · 𝐴′|
= |𝐴∗ + 𝜆1 · 𝐴∗ + · · · + 𝜆𝑘 · 𝐴∗ |
= |L0(Φ′(𝐶2 · 𝐴∗)) + · · · + L𝑘 (Φ′(𝐶2 · 𝐴∗)) |
≥ 𝐻 |𝐴∗ | − 𝑜( |𝐴∗ |)
= 𝐻 |𝐴| − 𝑜( |𝐴|),

as required. □
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6.4 Lattice densities
As already mentioned in the introduction, the key to proving Lemma 6.3.2 is to
represent each discrete set 𝐴 by a continuous set 𝐴, which we call a lattice density,
to which we can apply the continuous estimate given by Theorem 6.2.1. In this
section, we introduce these lattice densities and prove some general facts about
them. Very roughly, the lattice density of a set 𝐴 ⊆ Z𝑑 will encode the density of 𝐴
with respect to certain lattices.

Lattice densities for periodic sets
Let 𝐿 be a lattice of rank 𝑑, that is, 𝐿 � Z𝑑 . We say that 𝐴 ⊆ 𝐿 is 𝑑-periodic if
its group of translational symmetries has rank 𝑑. Let F = {𝐿1 ⊆ 𝐿2 ⊆ · · · ⊆ 𝐿𝑘 }
be a flag of sublattices of 𝐿, each of which has rank 𝑑. In this section, we will
define the lattice density of any 𝑑-periodic set 𝐴 ⊆ 𝐿 with respect to the flag F ,
denoted by LD(𝐴;F ), which will be a subset of [0, 1]𝑘 that is a finite union of
closed axis-aligned boxes.

For any affine lattice 𝑀 ⊆ 𝐿 of rank 𝑑, we write 𝜌𝑀 (𝐴) for the density of 𝐴 ∩ 𝑀
in 𝑀 . Since 𝐴 is 𝑑-periodic, this density is always well-defined. In particular, 0 ≤
𝜌𝑀 (𝐴) ≤ 1. This already allows us to define the lattice density for 𝑘 = 1. Indeed,
if F = {𝐿1} and 𝐴 ∩ 𝐿1 ≠ ∅, we set LD(𝐴;F ) to be the interval [0, 𝜌𝐿1 (𝐴)] ⊂ R,
while if 𝐴 ∩ 𝐿1 = ∅, we set LD(𝐴;F ) = ∅.

For 𝑘 > 1, let 𝑎1, . . . , 𝑎𝑚 ∈ 𝐿𝑘 be any set of coset representatives of 𝐿𝑘/𝐿𝑘−1, where
𝑚 = [𝐿𝑘 : 𝐿𝑘−1]. Let 𝐷 𝑗 = LD(𝐴 + 𝑎 𝑗 ;F \ 𝐿𝑘 ) ⊆ [0, 1]𝑘−1 for each 𝑗 ∈ [𝑚] and

𝐷 =

𝑚⋃
𝑗=1

(
𝐷 𝑗 ×

[
𝑗 − 1
𝑚

,
𝑗

𝑚

] )
⊆ [0, 1]𝑘 .

Finally, set LD(𝐴;F ) = 𝐶𝑘 (𝐷), where 𝐶𝑘 is the compression in the 𝑘-th direction,
defined as follows.

In our case, we will only be compressing sets which are finite unions of axis-aligned
closed boxes. Let 𝑋 ⊂ R𝑑 be such a set and 1 ≤ 𝑖 ≤ 𝑑. Let 𝜋𝑖 : R𝑑 → R𝑑−1 be the
projection along the 𝑖-th axis. For 𝑥 ∈ R𝑑−1, let 𝑋𝑥 = 𝜋−1

𝑖
(𝑥), viewed as a subset

of R, and write |𝑋𝑥 | for the measure of 𝑋𝑥 . Now define 𝐶′
𝑖
(𝑋) to be the set 𝑌 such

that 𝜋𝑖 (𝑋) = 𝜋𝑖 (𝑌 ) and, for each 𝑥 ∈ 𝜋𝑖 (𝑋), 𝑌𝑥 is the interval [0, |𝑋𝑥 |]. However,
because of boundary issues, this is not quite the compression we want. For example,
if 𝑋 = [0, 1]2 ∪ [1, 2]2 ⊂ R2, then 𝐶′2(𝑋) = [0, 2] × [0, 1] ∪ {1} × [1, 2]. The
artifact {1} × [1, 2] is undesirable and only arises because the boundaries of the
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𝐷1

𝐷3

1 (mod 3)

2 (mod 3)

0 (mod 3)

1

1

1

1

Figure 6.1: On the left, the 𝐷𝑖 are stacked, while on the right they are compressed
to give the final lattice density.

two squares [0, 1]2 and [1, 2]2 overlap in the projection. To remove this artifact, we
formally define 𝐶𝑖 (𝑋) to be the closure of the interior of 𝐶′

𝑖
(𝑋). Since we will only

be compressing sets which are finite unions of axis-aligned closed boxes, we still
enjoy the main properties of compressions, such as preservation of the measure of
𝑋 and that 𝐶𝑖 (𝑋) is also a finite union of axis-aligned closed boxes. We will say
that 𝑋 is 𝐶𝑖-compressed if 𝐶𝑖 (𝑋) = 𝑋 and compressed if it is 𝐶𝑖-compressed for all
𝑖.

Observe that, because of the compression, LD(𝐴;F ) is independent of the ordering
𝑎1, . . . , 𝑎𝑚.

Example 6.4.1. Suppose 𝑑 = 1, 𝑘 = 2, 𝐿 = Z, F = {3Z ⊂ Z} and 𝐴 = 12Z ∪
(12Z + 1) ∪ (6Z + 3). Pick 𝑎𝑖 = −𝑖 for 𝑖 = 1, 2, 3 to be the coset representatives of
Z/3Z. Let 𝐴𝑖 = (𝐴 − 𝑖) ∩ 3Z for 𝑖 = 1, 2, 3. Thus, 𝐴1, 𝐴2, 𝐴3 are the parts of 𝐴 in
the residue classes mod 3, translated so they all lie in 3Z. We can easily check that

• 𝐴1 = 12Z,

• 𝐴2 = ∅,

• 𝐴3 = 12Z + {0, 6, 9}.

From the definition, 𝐷𝑖 = LD(𝐴𝑖; {3Z}) = [0, 𝜌3Z(𝐴𝑖)], so we have 𝐷1 = [0, 1/4],
𝐷2 = ∅ and 𝐷3 = [0, 3/4]. Stacking these intervals vertically and compressing, we
get LD(𝐴;F ) ⊂ [0, 1]2 as shown in Figure 6.1.

Throughout the rest of this section, F = {𝐿1 ⊆ · · · ⊆ 𝐿𝑘 } will be a flag of full-rank
sublattices of a lattice 𝐿 � Z𝑑 and 𝐴 ⊆ 𝐿 a 𝑑-periodic subset of 𝐿, our aim being
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to understand the properties of the lattice density LD(𝐴;F ). We begin with some
basic observations.

Lemma 6.4.2. The following are true:

1. For any 𝑎 ∈ 𝐿𝑘 , LD(𝐴;F ) = LD(𝐴 + 𝑎;F ).

2. LD(𝐴;F ) is compressed.

3. If 𝐵 ⊆ 𝐴 is 𝑑-periodic, then LD(𝐵;F ) ⊆ LD(𝐴;F ).

4. 𝜌𝐿𝑘 (𝐴) = Vol(LD(𝐴;F )).

5. LD(𝐴;F ) is a finite union of boxes of the form

[0, 𝑟] ×
[
0,

𝑚2

[𝐿2 : 𝐿1]

]
× · · · ×

[
0,

𝑚𝑘

[𝐿𝑘 : 𝐿𝑘−1]

]
,

where 𝑟 ∈ (0, 1] and 𝑚2, . . . , 𝑚𝑘 are positive integers.

Proof. We proceed by induction on 𝑘 . In the base case 𝑘 = 1, we have LD(𝐴;F ) =
[0, 𝜌𝐿1 (𝐴)] and it is easy to check that all of the required properties hold.

Assume therefore that 𝑘 > 1. Let 𝐷1, . . . , 𝐷𝑘 , 𝐷 be as defined above. We verify
each property in turn:

1. Addition by 𝑎 permutes the cosets 𝐿𝑘/𝐿𝑘−1, so let 𝑎′1, . . . , 𝑎
′
𝑚 be a permutation

of 𝑎1, . . . , 𝑎𝑚 such that 𝑎 𝑗 +𝑎 = 𝑎′
𝑗
+𝑏 𝑗 for some 𝑏 𝑗 ∈ 𝐿𝑘−1. Let 𝐷′

𝑗
= LD(𝐴+

𝑎+𝑎 𝑗 ;F \ 𝐿𝑘 ). By the induction hypothesis, 𝐷′
𝑗
= LD(𝐴+𝑎′

𝑗
+𝑏 𝑗 ;F \ 𝐿𝑘 ) =

LD(𝐴 + 𝑎′
𝑗
;F \ 𝐿𝑘 ), so 𝐷′1, . . . , 𝐷

′
𝑚 is a permutation of 𝐷1, . . . , 𝐷𝑚. After

compression, it follows that LD(𝐴;F ) = LD(𝐴 + 𝑎;F ).

2. Each of the 𝐷 𝑗 are 𝐶𝑙-compressed for 𝑙 = 1, . . . , 𝑘 − 1. Thus, 𝐷 is 𝐶𝑙-
compressed for 𝑙 = 1, . . . , 𝑘 − 1 and, therefore, LD(𝐴;F ) = 𝐶𝑘 (𝐷) is 𝐶𝑙-
compressed for 𝑙 = 1, . . . , 𝑘 .

3. Let 𝐷′
𝑗
= LD(𝐵 + 𝑎 𝑗 ;F \ 𝐿𝑘 ). By the induction hypothesis, 𝐷′

𝑗
⊆ 𝐷 𝑗 , so the

corresponding 𝐷′ satisfies 𝐷′ ⊆ 𝐷. Therefore, LD(𝐵;F ) ⊆ LD(𝐴;F ).
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4. By definition, 𝐷 𝑗 = LD(𝐴 + 𝑎 𝑗 ;F \ 𝐿𝑘 ) and, by the induction hypothesis, we
have 𝜌𝐿𝑘−1 (𝐴 + 𝑎 𝑗 ) = Vol(𝐷 𝑗 ). Therefore,

Vol(LD(𝐴;F )) = Vol(𝐷) = 1
𝑚

𝑚∑︁
𝑗=1

Vol(𝐷 𝑗 ) =
1
𝑚

𝑚∑︁
𝑗=1

𝜌𝐿𝑘−1 (𝐴 + 𝑎 𝑗 )

=
[𝐿𝑘 : 𝐿𝑘−1]

𝑚

𝑚∑︁
𝑗=1

𝜌𝐿𝑘 ((𝐴 + 𝑎 𝑗 ) ∩ 𝐿𝑘−1)

=

𝑚∑︁
𝑗=1

𝜌𝐿𝑘 (𝐴 ∩ (𝐿𝑘−1 − 𝑎 𝑗 )) = 𝜌𝐿𝑘 (𝐴).

5. We show by induction that LD(𝐴;F ) is an interior-disjoint union of boxes of
the form

𝑣 + [0, 𝑟] ×
[
0,

1
[𝐿2 : 𝐿1]

]
× · · · ×

[
0,

1
[𝐿𝑘 : 𝐿𝑘−1]

]
,

where 𝑣 is of the form (
0,

𝑚2

[𝐿2 : 𝐿1]
, . . . ,

𝑚𝑘

[𝐿𝑘 : 𝐿𝑘−1]

)
with𝑚2, . . . , 𝑚𝑘 non-negative integers. The base case is trivial since LD(𝐴;F )
is an interval.

By the induction hypothesis, each 𝐷 𝑗 is an interior-disjoint union of boxes of
the form

𝑣 + [0, 𝑟] ×
[
0,

1
[𝐿2 : 𝐿1]

]
× · · · ×

[
0,

1
[𝐿𝑘−1 : 𝐿𝑘−2]

]
.

Thus, 𝐷 is also the interior-disjoint union of boxes of the same kind and
compressing preserves this property.

Finally, since LD(𝐴;F ) is compressed, it is the finite union of boxes of the
required form. □

The next lemma fully determines LD(𝐴;F ) by giving a precise condition for when
the lattice density contains any given point.

Lemma 6.4.3. Suppose 𝑘 ≥ 2, 𝑟 ∈ (0, 1] is real and 𝑚2, . . . , 𝑚𝑘 are positive
integers. Then the following are equivalent:

1. LD(𝐴;F ) contains the point(
𝑟,

𝑚2

[𝐿2 : 𝐿1]
,

𝑚3

[𝐿3 : 𝐿2]
, . . . ,

𝑚𝑘

[𝐿𝑘 : 𝐿𝑘−1]

)
.
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2. For each 𝑙 = 2, . . . , 𝑘 and (𝑖𝑙 , 𝑖𝑙+1, . . . , 𝑖𝑘 ) ∈ [𝑚𝑙] × [𝑚𝑙+1] × · · · × [𝑚𝑘 ], there
exist 𝑏𝑖𝑙 ,...,𝑖𝑘 ∈ 𝐿𝑘 such that:

a) For 𝑙 < 𝑘 , 𝑏𝑖𝑙 ,𝑖𝑙+1,...,𝑖𝑘 ∈ 𝑏𝑖𝑙+1,...,𝑖𝑘 + 𝐿𝑙 .

b) 𝑏𝑖,𝑖𝑙+1,...,𝑖𝑘 − 𝑏 𝑗 ,𝑖𝑙+1,...,𝑖𝑘 ∉ 𝐿𝑙−1 for each 𝑖 ≠ 𝑗 with 𝑖, 𝑗 ∈ [𝑚𝑙].

c) 𝜌𝐿1 (𝐴 + 𝑏𝑖2,...,𝑖𝑘 ) ≥ 𝑟 for each 𝑖2, . . . , 𝑖𝑘 .

Proof. We proceed by induction on 𝑘 . Let 𝑎1, . . . , 𝑎𝑚 be any coset representatives
of 𝐿𝑘/𝐿𝑘−1 with 𝑚 = [𝐿𝑘 : 𝐿𝑘−1] and 𝐷𝑖 = LD(𝐴 + 𝑎𝑖;F \ 𝐿𝑘 ).

1⇒ 2: From the construction of LD(𝐴;F ), 𝑚𝑘 of the 𝐷𝑖 contain the point(
𝑟,

𝑚2

[𝐿2 : 𝐿1]
,

𝑚3

[𝐿3 : 𝐿2]
, . . . ,

𝑚𝑘−1

[𝐿𝑘−1 : 𝐿𝑘−2]

)
.

Without loss of generality, assume that they are 𝐷1, . . . , 𝐷𝑚𝑘 . Set 𝑏𝑖 = 𝑎𝑖 ∈ 𝐿𝑘 for
𝑖 = 1, . . . , 𝑚𝑘 . Then 𝑏𝑖 − 𝑏 𝑗 ∉ 𝐿𝑘−1 for 𝑖 ≠ 𝑗 .

If 𝑘 = 2, then each 𝐷𝑖 with 𝑖 ∈ [𝑚𝑘 ] contains 𝑟, meaning that 𝜌𝐿1 (𝐴 + 𝑎𝑖) ≥ 𝑟.
Thus, 𝜌𝐿1 (𝐴 + 𝑏𝑖) ≥ 𝑟 for each 𝑖 ∈ [𝑚𝑘 ], completing the proof of the base case.

Now suppose that 𝑘 > 2. By the induction hypothesis applied to each 𝐷𝑖𝑘 , there
exist 𝑏′

𝑖𝑙 ,...,𝑖𝑘
∈ 𝐿𝑘−1 for each (𝑖𝑙 , 𝑖𝑙+1, . . . , 𝑖𝑘 ) ∈ [𝑚𝑙] × [𝑚𝑙+1] × · · · × [𝑚𝑘 ] such that

(a) For 𝑙 < 𝑘 − 1, 𝑏′
𝑖𝑙 ,...,𝑖𝑘

∈ 𝑏′
𝑖𝑙+1,...,𝑖𝑘

+ 𝐿𝑙 .

(b) For 𝑙 < 𝑘 , 𝑏′
𝑖,𝑖𝑙+1,...,𝑖𝑘

− 𝑏′
𝑗 ,𝑖𝑙+1,...,𝑖𝑘

∉ 𝐿𝑙−1 for each 𝑖 ≠ 𝑗 with 𝑖, 𝑗 ∈ [𝑚𝑙].

(c) 𝜌𝐿1 (𝐴 + 𝑏𝑖𝑘 + 𝑏′𝑖2,...,𝑖𝑘 ) ≥ 𝑟 for each 𝑖2, . . . , 𝑖𝑘 .

Set 𝑏𝑖𝑙 ,...,𝑖𝑘 = 𝑏′𝑖𝑙 ,...,𝑖𝑘 + 𝑏𝑖𝑘 . Then property (a) holds for 𝑙 < 𝑘 − 1; property (b) holds
for 𝑙 < 𝑘 and property (c) holds. It remains to check that 𝑏𝑖𝑘−1,𝑖𝑘 ∈ 𝑏𝑖𝑘 + 𝐿𝑘−1 and
𝑏𝑖 − 𝑏 𝑗 ∉ 𝐿𝑘−1 for each 𝑖 ≠ 𝑗 . The former holds since 𝑏𝑖𝑘−1,𝑖𝑘 = 𝑏′

𝑖𝑘−1,𝑖𝑘
+ 𝑏𝑖𝑘 ∈

𝑏𝑖𝑘 + 𝐿𝑘−1 and the latter was observed earlier.

2 ⇐ 1: Since 𝑎1, . . . , 𝑎𝑚 are any coset representatives, we may pick 𝑎𝑖 = 𝑏𝑖 for
𝑖 = 1, . . . , 𝑚𝑘 .

For 𝑘 = 2, since 𝜌𝐿1 (𝐴 + 𝑏𝑖) ≥ 𝑟, 𝐷𝑖 contains 𝑟 for 𝑖 = 1, . . . , 𝑚2. Thus, LD(𝐴;F )
contains the point (𝑟, 𝑚2

|𝐿2/𝐿1 | ).

Now assume 𝑘 > 2. Let 𝑏′
𝑖𝑙 ,...,𝑖𝑘

= 𝑏𝑖𝑙 ,...,𝑖𝑘 − 𝑏𝑖𝑘 . Then we have the following
properties, inherited from the 𝑏:
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(a) For 𝑙 < 𝑘 − 1, 𝑏′
𝑖𝑙 ,...,𝑖𝑘

∈ 𝑏′
𝑖𝑙+1,...,𝑖𝑘

+ 𝐿𝑙 .

(b) For 𝑙 < 𝑘 , 𝑏′
𝑖,𝑖𝑙+1,...,𝑖𝑘

− 𝑏′
𝑗 ,𝑖𝑙+1,...,𝑖𝑘

∉ 𝐿𝑙−1 for each 𝑖 ≠ 𝑗 with 𝑖, 𝑗 ∈ [𝑚𝑙].

(c) 𝜌𝐿1 (𝐴 + 𝑏𝑖𝑘 + 𝑏′𝑖2,...,𝑖𝑘 ) ≥ 𝑟 for each 𝑖2, . . . , 𝑖𝑘 .

By the induction hypothesis, for 𝑖 = 1, . . . , 𝑚𝑘 , 𝐷𝑖 contains the point(
𝑟,

𝑚2

[𝐿2 : 𝐿1]
,

𝑚3

[𝐿3 : 𝐿2]
, . . . ,

𝑚𝑘−1

[𝐿𝑘−1 : 𝐿𝑘−2]

)
.

Therefore, by the definition of LD(𝐴;F ), it contains the point(
𝑟,

𝑚2

[𝐿2 : 𝐿1]
,

𝑚3

[𝐿3 : 𝐿2]
, . . . ,

𝑚𝑘

[𝐿𝑘 : 𝐿𝑘−1]

)
,

as required. □

As an application of this lemma, we now show how to compute the projections of
lattice densities.

Lemma 6.4.4. The following are true:

1. 𝜋1(LD(𝐴;F )) is the interval [0, 𝑟], where

𝑟 = max
𝑎∈𝐿𝑘

{
𝜌𝐿1 (𝐴 + 𝑎)

}
.

In particular, 𝜋1(LD(𝐴;F )) depends only on 𝐴, 𝐿1 and 𝐿𝑘 .

2. For 2 ≤ 𝑙 ≤ 𝑘 , 𝜋𝑙 (LD(𝐴;F )) is the interval[
0,

𝑚

[𝐿𝑙 : 𝐿𝑙−1]

]
,

where 𝑚 ∈ Z is the maximum number of elements 𝑎1, . . . , 𝑎𝑚 ∈ 𝐴 ∩ 𝐿𝑘 such
that 𝑎𝑖 − 𝑎 𝑗 ∈ 𝐿𝑙 \ 𝐿𝑙−1 for any 𝑖 ≠ 𝑗 . In particular, 𝜋𝑙 (LD(𝐴;F )) depends
only on 𝐴, 𝐿𝑙−1, 𝐿𝑙 and 𝐿𝑘 .

Proof. We first observe that the maxima are well-defined. Indeed, 𝜌𝐿1 is invariant
under translations by elements of 𝐿1, so, for (1), we may take the maximum over
the finitely many coset representatives of 𝐿𝑘/𝐿1. For (2), we see that each 𝑎𝑖 must
belong to a different coset of 𝐿𝑙/𝐿𝑙−1, so 𝑚 ≤ [𝐿𝑙 : 𝐿𝑙−1].
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1. If 𝜋1(LD(𝐴;F )) = [0, 𝑟], then LD(𝐴;F ) contains the point(
𝑟,

1
[𝐿2 : 𝐿1]

,
1

[𝐿3 : 𝐿2]
, . . . ,

1
[𝐿𝑘 : 𝐿𝑘−1]

)
and 𝑟 is the maximum such real number. By Lemma 6.4.3, this is equivalent
to the existence of some 𝑏 ∈ 𝐿𝑘 such that 𝜌𝐿1 (𝐴 + 𝑏) ≥ 𝑟. Thus,

𝑟 = max
𝑏∈𝐿𝑘

{
𝜌𝐿1 (𝐴 + 𝑏)

}
.

2. Suppose LD(𝐴;F ) contains the point(
𝑟,

1
[𝐿2 : 𝐿1]

, . . . ,
𝑚

[𝐿𝑙+1 : 𝐿𝑙]
, . . . ,

1
[𝐿𝑘 : 𝐿𝑘−1]

)
for some 𝑟 > 0 and 𝑚 is the maximum such integer. By Lemma 6.4.3, this
is equivalent to the existence of 𝑏 ∈ 𝐿𝑘 and 𝑏1, . . . , 𝑏𝑚 ∈ 𝑏 + 𝐿𝑙 such that
𝑏𝑖 − 𝑏 𝑗 ∉ 𝐿𝑙−1 for each 𝑖 ≠ 𝑗 and 𝜌𝐿1 (𝐴 + 𝑏𝑖) ≥ 𝑟 for each 𝑖. Since we may
take 𝑟 to be the minimum of 𝜌𝐿1 (𝐴 + 𝑏𝑖) over all 𝑖, we are just requiring that
𝜌𝐿1 (𝐴 + 𝑏𝑖) > 0, that is, (𝐴 + 𝑏𝑖) ∩ 𝐿1 ≠ ∅ for each 𝑖.

Suppose such 𝑏, 𝑏𝑖 exist. Let 𝑎𝑖 ∈ 𝐴 be such that 𝑎𝑖 + 𝑏𝑖 ∈ 𝐿1, which exists
since (𝐴 + 𝑏𝑖) ∩ 𝐿1 ≠ ∅. Note that 𝑎𝑖 ∈ 𝐿𝑘 since 𝑎𝑖 ∈ −𝑏𝑖 + 𝐿1 ⊆ 𝐿𝑘 .
Moreover, for any 𝑖 ≠ 𝑗 , 𝑎𝑖 − 𝑎 𝑗 ∈ 𝑏 𝑗 − 𝑏𝑖 + 𝐿1 ⊆ 𝐿𝑙 \ 𝐿𝑙−1, as required.

On the other hand, suppose we have 𝑎1, . . . , 𝑎𝑚 ∈ 𝐴 ∩ 𝐿𝑘 such that 𝑎𝑖 − 𝑎 𝑗 ∈
𝐿𝑙 \ 𝐿𝑙−1 for all 𝑖 ≠ 𝑗 . Set 𝑏 = −𝑎1 and 𝑏𝑖 = −𝑎𝑖 for each 𝑖. Then
𝑏𝑖 = 𝑏 + 𝑎1 − 𝑎𝑖 ∈ 𝑏 + 𝐿𝑙 and 𝑏𝑖 − 𝑏 𝑗 = 𝑎 𝑗 − 𝑎𝑖 ∉ 𝐿𝑙−1 for 𝑖 ≠ 𝑗 . Finally, note
that (𝐴 + 𝑏𝑖) ∩ 𝐿1 ≠ ∅ for each 𝑖, since it contains 0. □

The next result, which again makes use of Lemma 6.4.3, describes lattice densities
of sumsets.

Theorem 6.4.5. Suppose 𝐵 ⊆ 𝐿 is 𝑑-periodic. If 𝑝 = (𝑝1, . . . , 𝑝𝑘 ) ∈ LD(𝐴;F )
and 𝑞 = (𝑞1, . . . , 𝑞𝑘 ) ∈ LD(𝐵;F ), then

max(𝑝, 𝑞) ∈ LD(𝐴 + 𝐵;F ),

where max(𝑝, 𝑞) = (max(𝑝1, 𝑞1), . . . ,max(𝑝𝑘 , 𝑞𝑘 )).

Proof. Since LD(𝐴;F ) and LD(𝐵;F ) are both unions of boxes of the form

[0, 𝑟] ×
[
0,

𝑚2

[𝐿2 : 𝐿1]

]
× · · · ×

[
0,

𝑚𝑘

[𝐿𝑘 : 𝐿𝑘−1]

]
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for 𝑟 ∈ (0, 1] and 𝑚2, . . . , 𝑚𝑘 positive integers, we may assume that 𝑝, 𝑞 are of the
form

𝑝 =

(
𝑟,

𝑚2

[𝐿2 : 𝐿1]
,

𝑚3

[𝐿3 : 𝐿2]
, . . . ,

𝑚𝑘

[𝐿𝑘 : 𝐿𝑘−1]

)
,

𝑞 =

(
𝑟′,

𝑚′2
[𝐿2 : 𝐿1]

,
𝑚′3

[𝐿3 : 𝐿2]
, . . . ,

𝑚′
𝑘

[𝐿𝑘 : 𝐿𝑘−1]

)
.

Without loss of generality, we assume that 𝑟 ≥ 𝑟′. By Lemma 6.4.3, we obtain
𝑏𝑖𝑙 ,...,𝑖𝑘 , 𝑏

′
𝑖𝑙 ,...,𝑖𝑘

∈ 𝐿𝑘 with the properties given in the lemma. Let 𝐼 =
{
𝑖 ∈ [2, 𝑘] : 𝑚𝑖 ≥ 𝑚′𝑖

}
and 𝐽 = [2, 𝑘] \ 𝐼. Set 𝑐𝑖𝑙 ,...,𝑖𝑘 = 𝑏𝑖′𝑙 ,...,𝑖′𝑘 + 𝑏

′
𝑖′′
𝑙
,...,𝑖′′

𝑘

, where

𝑖′𝑗 =


𝑖 𝑗 if 𝑗 ∈ 𝐼

1 otherwise
and 𝑖′′𝑗 =


𝑖 𝑗 if 𝑗 ∈ 𝐽

1 otherwise

for (𝑖𝑙 , . . . , 𝑖𝑘 ) ∈ [max(𝑚𝑙 , 𝑚′𝑙)] × · · · × [max(𝑚𝑘 , 𝑚
′
𝑘
)]. We wish to show that the

𝑐𝑖𝑙 ,...,𝑖𝑘 satisfy properties (a)–(c) in Lemma 6.4.3 for LD(𝐴 + 𝐵;F ). Note that we
have 𝑐𝑖𝑙 ,...,𝑖𝑘 ∈ 𝐿𝑘 since 𝑏𝑖′

𝑙
,...,𝑖′

𝑘
, 𝑏′
𝑖′′
𝑙
,...,𝑖′′

𝑘

∈ 𝐿𝑘 . We now prove each of (a)–(c) in turn:

(a) For 𝑙 < 𝑘 , we have 𝑏𝑖′
𝑙
,𝑖′
𝑙+1,...,𝑖

′
𝑘
∈ 𝑏𝑖′

𝑙+1,...,𝑖
′
𝑘
+ 𝐿𝑙 and 𝑏′

𝑖′′
𝑙
,𝑖′′
𝑙+1,...,𝑖

′′
𝑘

∈ 𝑏′
𝑖′′
𝑙+1,...,𝑖

′′
𝑘

+ 𝐿𝑙 .
Thus, 𝑐𝑖𝑙 ,𝑖𝑙+1,...,𝑖𝑘 ∈ 𝑐𝑖𝑙+1,...,𝑖𝑘 + 𝐿𝑙 .

(b) Suppose 𝑙 ∈ 𝐼. Then, for 𝑖 ≠ 𝑗 , 𝑐𝑖,𝑖𝑙+1,...,𝑖𝑘 −𝑐 𝑗 ,𝑖𝑙+1,...,𝑖𝑘 = 𝑏𝑖,𝑖′𝑙+1,...,𝑖′𝑘 −𝑏 𝑗 ,𝑖′𝑙+1,...,𝑖′𝑘 ∉
𝐿𝑙−1. The case 𝑙 ∈ 𝐽 is similar.

(c) We have 𝜌𝐿1 (𝐵 + 𝑏′𝑖′′2 ,...,𝑖′′𝑘 ) ≥ 𝑟′ > 0. In particular, 𝐵 + 𝑏′
𝑖′′2 ,...,𝑖

′′
𝑘

contains
some element 𝑥 ∈ 𝐿1. Thus, 𝐴 + 𝐵 + 𝑐𝑖2,...,𝑖𝑘 ⊇ 𝐴 + 𝑏𝑖′2,...,𝑖′𝑘 + 𝑥, so we have
𝜌𝐿1 (𝐴 + 𝐵 + 𝑐𝑖2,...,𝑖𝑘 ) ≥ 𝜌𝐿1 (𝐴 + 𝑏𝑖′2,...,𝑖′𝑘 + 𝑥) = 𝜌𝐿1 (𝐴 + 𝑏𝑖′2,...,𝑖′𝑘 ) ≥ 𝑟 . □

The final result of this subsection relates projections of lattice densities with respect
to different flags.

Lemma 6.4.6. Suppose F ′ =
{
𝐿′1 ⊆ · · · ⊆ 𝐿

′
𝑘−1 ⊆ 𝐿𝑘

}
is a flag of full-rank sublat-

tices of 𝐿. Then the following are true:

1. If 𝐿′1 ⊆ 𝐿1, then

|𝜋1(LD(𝐴;F ))| ≤ |𝜋1(LD(𝐴;F ′)) |.

2. For 2 ≤ 𝑙 ≤ 𝑘 , if 𝐿′
𝑙
= 𝐿𝑙 and 𝐿′

𝑙−1 ⊆ 𝐿𝑙−1, then

|𝜋𝑙 (LD(𝐴;F ))| ≥ |𝜋𝑙 (LD(𝐴;F ′)) |.
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Proof. 1. Let

𝑟 = max
𝑎∈𝐿𝑘

{
𝜌𝐿1 (𝐴 + 𝑎)

}
and 𝑟′ = max

𝑎∈𝐿𝑘

{
𝜌𝐿′1 (𝐴 + 𝑎)

}
.

By Lemma 6.4.4, it suffices to show that 𝑟 ≤ 𝑟′. Suppose 𝑟 is attained by
𝑎 ∈ 𝐿𝑘 . Let 𝑠 = [𝐿1 : 𝐿′1] and 𝑐1, . . . , 𝑐𝑠 be coset representatives of 𝐿1/𝐿′1.
We can split (𝐴+ 𝑎) ∩ 𝐿1 into the disjoint union

⋃𝑠
𝑖=1(𝐴+ 𝑎 + 𝑐𝑖) ∩ 𝐿′1, so that

𝜌𝐿1 (𝐴 + 𝑎) =
1
𝑠

𝑠∑︁
𝑖=1

𝜌𝐿′1 (𝐴 + 𝑎 + 𝑐𝑖).

Therefore, there is some 𝑖 such that 𝜌𝐿′1 (𝐴 + 𝑎 + 𝑐𝑖) ≥ 𝑟, so 𝑟′ ≥ 𝑟.

2. Suppose |𝜋𝑙 (LD(𝐴;F ′)) | = 𝑛
[𝐿′
𝑙
:𝐿′
𝑙−1]

. By Lemma 6.4.4, there are 𝑏1, . . . , 𝑏𝑛 ∈
𝐴 ∩ 𝐿𝑘 such that 𝑏𝑖 − 𝑏 𝑗 ∈ 𝐿′

𝑙
\ 𝐿′

𝑙−1. Let 𝑠 = [𝐿𝑙−1 : 𝐿′
𝑙−1]. Define

an equivalence relation by setting 𝑏𝑖 ∼ 𝑏 𝑗 if 𝑏𝑖 − 𝑏 𝑗 ∈ 𝐿𝑙−1. Then each
equivalence class has at most 𝑠 elements, since no two elements belong to
the same coset of 𝐿𝑙−1/𝐿′𝑙−1. Let 𝑎1, . . . , 𝑎𝑚 be any representatives of the
equivalence classes of 𝑏1, . . . , 𝑏𝑛, so that 𝑚𝑠 ≥ 𝑛. Since the 𝑎𝑖 are in different
equivalence classes, we have 𝑎𝑖 − 𝑎 𝑗 ∉ 𝐿𝑙−1 for 𝑖 ≠ 𝑗 . By Lemma 6.4.4 again,
we have

|𝜋𝑙 (LD(𝐴;F ))| ≥ 𝑚

[𝐿𝑙 : 𝐿𝑙−1]
=

𝑚𝑠

[𝐿𝑙 : 𝐿′
𝑙−1]
≥ 𝑛

[𝐿𝑙 : 𝐿′
𝑙−1]

= |𝜋𝑙 (LD(𝐴;F ′)) |,

as required. □

Local lattice densities
We will also make use of a local variant of lattice density. Intuitively, the local
lattice density of 𝐴 at some point 𝑥 is the lattice density of a tiny region of 𝐴 around
𝑥. However, 𝐴 is a discrete set, so we cannot simply take an infinitesimally small
ball around 𝑥. Instead, we define the local lattice density around some small region
𝑆 ⊂ R𝑑 to be the lattice density of repeating copies 𝐴∩ 𝑆, in order to be 𝑑-periodic.
To fit the repeating copies nicely, we require 𝑆 to be tileable. In practice, we will
only consider 𝑆 to be affine transformations of cubes.

We continue to use notation from the previous subsection. In particular, F =

{𝐿1 ⊆ · · · ⊆ 𝐿𝑘 } is a flag of full-rank sublattices of a lattice 𝐿 � Z𝑑 and 𝐴 ⊆ 𝐿 is
always assumed to be 𝑑-periodic.

Let 𝐿R = 𝐿 ⊗ R � R𝑑 . We say that 𝑆 ⊂ 𝐿R is tileable if there is a sublattice 𝑃 ⊆ 𝐿1

of full rank such that 𝑆 ⊕ 𝑃 = 𝐿R. In this case, we say that 𝑆 is tiled by 𝑃. For
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example, if 𝐿 = Z𝑑 , the box [0, 𝑀)𝑑 ⊂ R𝑑 is tileable, as long as 𝑀Z𝑑 ⊆ 𝐿1. In
all of our applications, 𝑆 will be a half-open box of the form [0, 𝑀)𝑑 or an affine
transformation of it.

Let 𝑃 ⊆ 𝐿1 and 𝑆 ⊂ 𝐿R be such that 𝑆 is tiled by 𝑃. For any 𝐴 ⊆ 𝐿, define the local
lattice density

LD𝑆 (𝐴;F ) := LD((𝐴 ∩ 𝑆) + 𝑃;F ),

noting that (𝐴 ∩ 𝑆) + 𝑃 is 𝑑-periodic. Using Lemma 6.4.3, it is not hard to check
that LD𝑆 (𝐴;F ) is independent of the choice of 𝑃 as long as 𝑃 ⊆ 𝐿1.

Before moving on, we note some basic properties of these local lattice densities.

Lemma 6.4.7. Let 𝑆, 𝑇 ⊂ 𝐿R be tileable and 𝐴 ⊆ 𝑆 ∩ 𝑇 ∩ 𝐿. Then

LD𝑆 (𝐴;F ) = Ψ(LD𝑇 (𝐴;F )),

where Ψ : R𝑑 → R𝑑 is given by

(𝑥1, . . . , 𝑥𝑘 ) ↦→
(
Vol(𝑇)
Vol(𝑆) 𝑥1, 𝑥2, . . . , 𝑥𝑘

)
.

Proof. Suppose 𝑇 is tiled by 𝑃 ⊆ 𝐿1. Let 𝑥 =

(
𝑟,

𝑚2
[𝐿2:𝐿1] , . . . ,

𝑚𝑘
[𝐿𝑘 :𝐿𝑘−1]

)
∈

LD𝑇 (𝐴;F ). By Lemma 6.4.3, there exist 𝑏𝑖𝑙 ,...,𝑖𝑘 ∈ 𝐿𝑘 satisfying the conditions
in the lemma, one of which is that 𝜌𝐿1 (𝐴 + 𝑃 + 𝑏𝑖2,...,𝑖𝑘 ) ≥ 𝑟.

Suppose 𝑆 is tiled by 𝑄 ⊆ 𝐿1. Since 𝑇 ⊕ 𝑃 = 𝐿R, det(𝑃) = Vol(𝑇) and similarly
det(𝑄) = Vol(𝑆). Since 𝐴 + 𝑄 + 𝑏𝑖2,...,𝑖𝑘 consists of translates 𝐴 + 𝑏𝑖2,...,𝑖𝑘 for each
point of 𝑄, its density within 𝐿1, 𝜌𝐿1 (𝐴 + 𝑄 + 𝑏𝑖2,...,𝑖𝑘 ), is inversely proportional to
det(𝑄). In other words, 𝜌𝐿1 (𝐴+𝑄+𝑏𝑖2,...,𝑖𝑘 )/det(𝑄) = 𝜌𝐿1 (𝐴+𝑃+𝑏𝑖2,...,𝑖𝑘 )/det(𝑃).
Then

𝜌𝐿1 (𝐴 +𝑄 + 𝑏𝑖2,...,𝑖𝑘 ) =
det(𝑄)
det(𝑃) 𝜌𝐿1 (𝐴 + 𝑃 + 𝑏𝑖2,...,𝑖𝑘 ) ≥

Vol(𝑇)
Vol(𝑆) 𝑟.

Therefore, by Lemma 6.4.3, Ψ(𝑥) ∈ LD𝑆 (𝐴;F ), so we have LD𝑆 (𝐴;F ) ⊇
Ψ(LD𝑇 (𝐴;F )). The converse follows similarly. □

Lemma 6.4.8. Let 𝑆, 𝑇 ⊂ 𝐿R be tileable with 𝑇 ⊆ 𝑆. Then, for 2 ≤ 𝑙 ≤ 𝑘 ,

|𝜋𝑙 (LD𝑇 (𝐴;F ))| ≤ |𝜋𝑙 (LD𝑆 (𝐴;F ))|.
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Proof. By Lemma 6.4.7,

|𝜋𝑙 (LD𝑇 (𝐴;F ))| = |𝜋𝑙 (LD𝑇 (𝐴 ∩ 𝑇 ;F ))|
= |𝜋𝑙 (LD𝑆 (𝐴 ∩ 𝑇 ;F ))|
≤ |𝜋𝑙 (LD𝑆 (𝐴;F ))|,

as required. □

6.5 Families of flags
In this section, we construct suitable flags such that “multiplication by𝜆𝑖 is analogous
to taking the projection 𝜋𝑖+1 of the lattice density.” More precisely, we want to find a
flag F in 𝔇𝜆1,...,𝜆𝑘 ;𝐾 and a flag G in O𝐾 such that, for any 𝑑-periodic 𝐴 ⊆ 𝔇𝜆1,...,𝜆𝑘 ;𝐾 ,

𝜋𝑙+1(LD(𝐴;F )) ⊆ 𝜋𝑙+1(LD(𝜆𝑙 · 𝐴;G)) (6.1)

for 𝑙 = 0, 1, . . . , 𝑘 . We can find such flags for each 𝑙, but, unfortunately, it may not
be possible to find F ,G that work simultaneously for all 𝑙. To overcome this, we
construct families of flags F®𝑛,G®𝑛 and show that for ®𝑛 “sufficiently large” these pairs
of flags satisfy (6.1) approximately for all 𝑙.

Algebraic families of flags
Recall that 𝜆1, . . . , 𝜆𝑘 ∈ 𝐾 = Q(𝜆1, . . . , 𝜆𝑘 ) and 𝑑 = deg(𝐾/Q). Let 𝔞𝑙 be the ideal
O𝐾 ∩ 𝜆−1

1 O𝐾 ∩ · · · ∩ 𝜆
−1
𝑙
O𝐾 for 𝑙 = 0, 1, . . . , 𝑘 . In particular, 𝔞𝑘 = 𝔇𝜆1,...,𝜆𝑘 ;𝐾 . Then

𝔞−1
𝑙

is the fractional ideal O𝐾 + 𝜆1O𝐾 + . . . + 𝜆𝑙O𝐾 . We also have O𝐾 = 𝔞0 | 𝔞1 |
· · · | 𝔞𝑘 . Let 𝔟𝑙 ⊆ O𝐾 be the ideal such that 𝔞𝑙 = 𝔟𝑙𝔞𝑙−1 for each 𝑙 = 1, . . . , 𝑘 . For
each ®𝑛 = (𝑛1, . . . , 𝑛𝑘 ) ∈ Z𝑘≥0 and 𝑙 = 0, 1, . . . , 𝑘 , let 𝔠®𝑛,𝑙 = 𝔟

𝑛𝑙+1
𝑙+1 · · · 𝔟

𝑛𝑘
𝑘

. Define two
flags of lattices by

F 𝐾®𝑛 :=
{
𝔞𝑘𝔠®𝑛,0 ⊆ 𝔞𝑘𝔠®𝑛,1 ⊆ · · · ⊆ 𝔞𝑘𝔠®𝑛,𝑘−1 ⊆ 𝔞𝑘

}
,

G𝐾®𝑛 :=
{
𝔠®𝑛,0 ⊆ 𝔠®𝑛,1 ⊆ · · · ⊆ 𝔠®𝑛,𝑘−1 ⊆ O𝐾

}
.

These families of flags will serve as candidates for satisfying (6.1). The following
two lemmas make this precise. Note that for any two vectors ®𝑛, ®𝑚 ∈ Z𝑘 , we write
®𝑛 ≥ ®𝑚 if 𝑛𝑖 ≥ 𝑚𝑖 for all 𝑖. We also write ®𝑛+𝑐 to denote the vector (𝑛1+𝑐, . . . , 𝑛𝑘 +𝑐).

Lemma 6.5.1. Let 𝐴 ⊆ 𝔞𝑘 be 𝑑-periodic. Then, for any ®𝑛 ≥ 0,

𝜋1(LD(𝐴;F 𝐾®𝑛 )) = 𝜋1(LD(𝐴;G𝐾®𝑛+1)).
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Proof. Let

𝑟 = max
𝑎∈𝔞𝑘

{
𝜌𝔞𝑘𝔠 ®𝑛,0 (𝐴 + 𝑎)

}
and 𝑟′ = max

𝑎∈O𝐾

{
𝜌𝔞𝑘𝔠 ®𝑛,0 (𝐴 + 𝑎)

}
.

Note that 𝔟1 · · · 𝔟𝑘 = 𝔞𝑘 , so that 𝔠®𝑛+1,0 = 𝔞𝑘𝔠®𝑛,0. By Lemma 6.4.4(1), it suffices
to show that 𝑟 = 𝑟′. Since 𝔞𝑘 ⊆ O𝐾 , we clearly have 𝑟′ ≥ 𝑟 . To see that 𝑟 ≥ 𝑟′,
observe that, since 𝐴 ⊆ 𝔞𝑘 , (𝐴 + 𝑎) ∩ 𝔞𝑘 = ∅ for any 𝑎 ∈ O𝐾 \ 𝔞𝑘 . In particular,
𝜌𝔞𝑘𝔠 ®𝑛,0 (𝐴 + 𝑎) = 0. □

Recall thatM𝑙 : 𝐾 → 𝐾 is the Q-linear map corresponding to multiplication by 𝜆𝑙 .
Then eachM𝑙 restricts to the map 𝔞𝑘 → O𝐾 .

Lemma 6.5.2. Let 𝐴 ⊆ 𝔞𝑘 be 𝑑-periodic and 𝑙 ∈ [𝑘]. Then, for ®𝑛, ®𝑚 ≥ 0 with
𝑚𝑖 = 𝑛𝑖 + 1 for 𝑖 = 𝑙 + 1, 𝑙 + 2, . . . , 𝑘 and 𝑚𝑙 = 𝑛𝑙 ,

|𝜋𝑙+1(LD(𝐴;F 𝐾®𝑛 )) | ≤ |𝜋𝑙+1(LD(M𝑙𝐴;G𝐾®𝑚 )) |.

Proof. Let 𝑟 be the maximum number of elements 𝑎1, . . . , 𝑎𝑟 ∈ 𝐴 such that 𝑎𝑖−𝑎 𝑗 ∈
𝔞𝑘𝔠®𝑛,𝑙\𝔞𝑘𝔠®𝑛,𝑙−1 for 𝑖 ≠ 𝑗 . Then by Lemma 6.4.4(2), |𝜋𝑙+1(LD(𝐴;F 𝐾®𝑛 )) | = 𝑟/[𝔞𝑘𝔠®𝑛,𝑙 :
𝔞𝑘𝔠®𝑛,𝑙−1]. Since 𝑚𝑙 = 𝑛𝑙 , we have [𝔞𝑘𝔠®𝑛,𝑙 : 𝔞𝑘𝔠®𝑛,𝑙−1] = [𝔠®𝑛,𝑙 : 𝔠®𝑛,𝑙−1] = 𝑁𝐾/Q(𝔟𝑛𝑙𝑙 ) =
[𝔞𝑘𝔠 ®𝑚,𝑙 : 𝔞𝑘𝔠 ®𝑚,𝑙−1]. By Lemma 6.4.4(2) applied to |𝜋𝑙+1(LD(M𝑙𝐴;G𝐾®𝑚 )) |, it suffices
to find 𝑏1, . . . , 𝑏𝑟 ∈ M𝑙𝐴 = 𝜆𝑙 · 𝐴 such that 𝑏𝑖 − 𝑏 𝑗 ∈ 𝔠 ®𝑚,𝑙 \ 𝔠 ®𝑚,𝑙−1.

Set 𝑏𝑖 = 𝜆𝑙𝑎𝑖, then it is clear that 𝑏𝑖 ∈ 𝜆𝑙 · 𝐴. It suffices to show:

(a) 𝑏𝑖 − 𝑏 𝑗 ∈ 𝔠 ®𝑚,𝑙 ,

(b) 𝑏𝑖 − 𝑏 𝑗 ∉ 𝔠 ®𝑚,𝑙−1 for 𝑖 ≠ 𝑗 .

For (a), observe that 𝜆𝑙𝔞𝑘𝔠®𝑛,𝑙 ⊆ 𝔞−1
𝑙
𝔞𝑘𝔠®𝑛,𝑙 = 𝔟𝑙+1 · · · 𝔟𝑘𝔠®𝑛,𝑙 = 𝔠 ®𝑚,𝑙 . Thus, 𝑏𝑖 − 𝑏 𝑗 =

𝜆𝑙 (𝑎𝑖 − 𝑎 𝑗 ) ∈ 𝜆𝑙𝔞𝑘𝔠®𝑛,𝑙 ⊆ 𝔠 ®𝑚,𝑙 .

For (b), suppose that 𝑏𝑖 − 𝑏 𝑗 ∈ 𝔠 ®𝑚,𝑙−1 for some 𝑖 ≠ 𝑗 . Then 𝑎𝑖 − 𝑎 𝑗 ∈ 𝜆−1
𝑙
𝔠 ®𝑚,𝑙−1. On

the other hand, 𝑎𝑖 − 𝑎 𝑗 ∈ 𝔞𝑘𝔠®𝑛,𝑙 . Together, we have 𝑎𝑖 − 𝑎 𝑗 ∈ 𝜆−1
𝑙
𝔠 ®𝑚,𝑙−1 ∩ 𝔞𝑘𝔠®𝑛,𝑙 .

We claim that 𝜆−1
𝑙
𝔠 ®𝑚,𝑙−1∩𝔞𝑘𝔠®𝑛,𝑙 ⊆ 𝔞𝑘𝔠®𝑛,𝑙−1, which will lead to a contradiction, since

𝑎𝑖 − 𝑎 𝑗 ∉ 𝔞𝑘𝔠®𝑛,𝑙−1. We prove the claim by proving it locally at every prime ideal
𝔭 ⊆ O𝐾 , that is, that 𝜈𝔭 (𝜆−1

𝑙
𝔠 ®𝑚,𝑙−1 ∩ 𝔞𝑘𝔠®𝑛,𝑙) ≥ 𝜈𝔭 (𝔞𝑘𝔠®𝑛,𝑙−1).
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Recall that 𝔞𝑙 = 𝔞𝑙−1 ∩ 𝜆−1
𝑙
O𝐾 , so 𝜈𝔭 (𝔞𝑙) = max(𝜈𝔭 (𝔞𝑙−1), 𝜈𝔭 (𝜆−1

𝑙
)), which implies

that 𝜈𝔭 (𝔟𝑙) = max(0, 𝜈𝔭 (𝜆−1
𝑙
) − 𝜈𝔭 (𝔞𝑙−1)). We have

𝜈𝔭 (𝜆−1
𝑙 𝔠 ®𝑚,𝑙−1 ∩ 𝔞𝑘𝔠®𝑛,𝑙) = 𝜈𝔭 (𝜆−1

𝑙 𝔞𝑘𝔞
−1
𝑙 𝔠®𝑛,𝑙−1 ∩ 𝔞𝑘𝔟−1

𝑙 𝔠®𝑛,𝑙−1)
= 𝜈𝔭 (𝔞𝑘𝔠®𝑛,𝑙−1)) +max(𝜈𝔭 (𝜆−1

𝑙 ) − 𝜈𝔭 (𝔞𝑙),−𝜈𝔭 (𝔟𝑙)).

If 𝜈𝔭 (𝔞𝑙−1) ≥ 𝜈𝔭 (𝜆−1
𝑙
)), then 𝜈𝔭 (𝔟𝑙) = 0. Otherwise, 𝜈𝔭 (𝔞𝑙) = 𝜈𝔭 (𝜆−1

𝑙
). In either

case, max(𝜈𝔭 (𝜆−1
𝑙
) − 𝜈𝔭 (𝔞𝑙),−𝜈𝔭 (𝔟𝑙)) ≥ 0, proving the claim and the lemma. □

Unfortunately, there are no pairs of flags F 𝐾®𝑛 and G𝐾®𝑚 that simultaneously satisfy
Lemmas 6.5.1 and 6.5.2 for all 𝑙. Indeed, for 𝜋1(LD(𝐴;F 𝐾®𝑛 )) = 𝜋1(LD(𝐴;G𝐾®𝑚 ))
and |𝜋𝑙+1(LD(𝐴;F 𝐾®𝑛 )) | ≤ |𝜋𝑙+1(LD(M𝑙𝐴;G𝐾®𝑚 )) | to hold for all 𝑙 by the lemmas,
we require that 𝑚𝑙 = 𝑛𝑙 and 𝑚𝑙 = 𝑛𝑙 + 1 simultaneously. To overcome this, in the
next subsection, we show that for ®𝑛 sufficiently large the projections of the lattice
densities stabilise, so we may use F 𝐾®𝑛 and G𝐾®𝑛 . This seems to suggest that, as ®𝑛 tends
to infinity, the lattice densities LD(𝐴;F®𝑛) themselves converge as compact subsets.
However, we make no attempt to formally prove this, since all we require is that
their projections converge.

Regularity
For this subsection, we consider a more general setup, where we have, for each
®𝑛 = (𝑛1, . . . , 𝑛𝑘 ) ∈ N𝑘 , two flags

F®𝑛 =
{
𝐿 ®𝑛,1 ⊆ 𝐿 ®𝑛,2 ⊆ · · · ⊆ 𝐿 ®𝑛,𝑘 ⊆ Z𝑑

}
,

G®𝑛 =
{
𝑀®𝑛,1 ⊆ 𝑀®𝑛,2 ⊆ · · · ⊆ 𝑀®𝑛,𝑘 ⊆ Z𝑑

}
,

where 𝐿 ®𝑛,𝑙 depends only on 𝑛𝑙 , 𝑛𝑙+1, . . . , 𝑛𝑘 and 𝐿 ®𝑛,𝑙 ⊆ 𝐿 ®𝑛′,𝑙 if ®𝑛 ≥ ®𝑛′ and similarly
for 𝑀®𝑛,𝑙 . We also fix a set 𝐴 ⊆ Z𝑑 .

For a positive integer 𝑅, an 𝑅-cube is a set that comes from taking the set [0, 𝑅)𝑑 ⊂
R𝑑 and shifting it by an element of 𝑅Z𝑑 . Let 𝑃 be an 𝑅-cube for some 𝑅. For
natural numbers 𝑀, 𝑛𝑙 , 𝑛𝑙+1, . . . , 𝑛𝑘 with 𝑀 > 0 and a real number 𝛿 > 0, we say
that 𝑃 is (𝑀, 𝛿, 𝑛𝑙 , . . . , 𝑛𝑘 )-regular if each of the 𝑀𝑑 different 𝑅/𝑀-subcubes 𝑄 of
𝑃 satisfies

|𝜋𝑙+1(LD𝑄 (𝐴;F®𝑛′)) | ≥ (1 − 𝛿) |𝜋𝑙+1(LD𝑃 (𝐴;F®𝑛)) |,

where ®𝑛 = (0, . . . , 0, 𝑛𝑙 , . . . , 𝑛𝑘 ) and ®𝑛′ = (0, . . . , 0, 𝑛𝑙 + 1, . . . , 𝑛𝑘 ).

Remark. Here we are implicitly assuming that 𝑅/𝑀 is an integer. Throughout the
remainder of the paper, whenever we mention a local density LD𝑃 (𝐴;F ), we will
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assume that 𝑃 is tileable. In particular, this means that 𝑅 and 𝑅/𝑀 will always
be multiples of every bounded number, so that the lattices 𝑅Z𝑑 and (𝑅/𝑀)Z𝑑 are
contained in 𝐿 ®𝑛,1. In practice, we will only be considering F®𝑛 where ®𝑛 is bounded
and (𝑁/𝑀)-cubes where 𝑀 is bounded and 𝑁 can be taken to be a multiple of a
sufficiently large integer.

By Lemmas 6.4.6 and 6.4.8, we always have

|𝜋𝑙+1(LD𝑄 (𝐴;F®𝑛′)) | ≤ |𝜋𝑙+1(LD𝑄 (𝐴;F®𝑛)) | ≤ |𝜋𝑙+1(LD𝑃 (𝐴;F®𝑛)) |,

so regularity says that both inequalities are close to equalities. In other words, our
notion of regularity really encompasses two different types of regularity. The first is
that the size of the projection 𝜋𝑙+1 does not change much when we replace ®𝑛 with ®𝑛′.
The second is that the local lattice density does not change much when we shrink the
local region from 𝑃 to 𝑄. Note that in the definition of regularity, we may replace
®𝑛, ®𝑛′ with ®𝑛 = (∗, . . . , ∗, 𝑛𝑙 , . . . , 𝑛𝑘 ) and ®𝑛′ = (∗, . . . , ∗, 𝑛𝑙 + 1, . . . , 𝑛𝑘 ), where the
∗ could be any (possibly distinct) natural number, since that does not change the
relevant projection of the lattice density.

Before proving our main result on regularity, we note some simple consequences of
the definition.

Lemma 6.5.3. Let 𝑀1, 𝑀2 be positive integers and 𝑃 be an (𝑀1𝑀2, 𝛿, 𝑛𝑙 , . . . , 𝑛𝑘 )-
regular 𝑅-cube. Then the following hold:

1. 𝑃 is (𝑀1, 𝛿, 𝑛𝑙 , . . . , 𝑛𝑘 )-regular.

2. For any 𝑅/𝑀1-subcube 𝑄 of 𝑃, 𝑄 is (𝑀2, 𝛿, 𝑛𝑙 , . . . , 𝑛𝑘 )-regular.

Proof. Let 𝑄 be any 𝑅/𝑀1-subcube of 𝑃 and 𝑆 be any 𝑅/(𝑀1𝑀2)-subcube of 𝑄.
By regularity, we have

|𝜋𝑙+1(LD𝑆 (𝐴;F®𝑛′)) | ≥ (1 − 𝛿) |𝜋𝑙+1(LD𝑃 (𝐴;F®𝑛)) |.

By Lemma 6.4.8, we have |𝜋𝑙+1(LD𝑃 (𝐴;F®𝑛)) | ≥ |𝜋𝑙+1(LD𝑄 (𝐴;F®𝑛)) | and |𝜋𝑙+1(LD𝑄 (𝐴;F®𝑛′)) | ≥
|𝜋𝑙+1(LD𝑆 (𝐴;F®𝑛′)) |. Therefore,

|𝜋𝑙+1(LD𝑄 (𝐴;F®𝑛′)) | ≥ (1 − 𝛿) |𝜋𝑙+1(LD𝑃 (𝐴;F®𝑛)) |,
|𝜋𝑙+1(LD𝑆 (𝐴;F®𝑛′)) | ≥ (1 − 𝛿) |𝜋𝑙+1(LD𝑄 (𝐴;F®𝑛)) |,

which prove the first and second parts of the lemma, respectively. □
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We now come to our main result on regularity, which says that, for any dense
𝐴 ⊆ [0, 𝑁)𝑑 , one can cut the box [0, 𝑁)𝑑 into a bounded number of subcubes, most
of which are regular and such that the union of the regular subcubes covers most
of 𝐴. We first prove such a result with respect to a single projection 𝜋𝑙+1, before
iterating it to establish regularity with respect to all projections.

Lemma 6.5.4. Fix 𝜀, 𝛿 > 0 and 𝑙 ∈ [𝑘], a positive integer 𝑀 and non-negative
integers 𝑛𝑙+1, . . . , 𝑛𝑘 . Then there exists 𝑅0 = 𝑅0(𝑀, 𝜀, 𝛿) such that if 𝐴 ⊆ [0, 𝑁)𝑑

is of size at least 𝜀𝑁𝑑 and 𝑁′ | 𝑁 , then there exists a natural number 𝑟 ≤ 𝑅0 and a
collection P of disjoint 𝑁′/𝑀𝑟-cubes such that, for 𝐴′ = 𝐴 ∩⋃

𝑃∈P 𝑃,

1. |𝐴′| ≥ (1 − 𝛿) |𝐴|,

2. 𝑃 is (𝑀, 𝛿, 𝑟, 𝑛𝑙+1, . . . , 𝑛𝑘 )-regular for all 𝑃 ∈ P.

Proof. Let P (𝑟) be the collection of 𝑁′/𝑀𝑟-cubes in [0, 𝑁)𝑑 , 𝐴(𝑟) = 𝐴∩⋃
𝑃∈P (𝑟 ) 𝑃

and P (𝑟)0 be the collection of all (𝑀, 𝛿, 𝑟, 𝑛𝑙+1, . . . , 𝑛𝑘 )-regular cubes in P (𝑟) . We
will set 𝐴′ = 𝐴(𝑟) and P = P (𝑟)0 , so we wish to show that there is some bounded 𝑟
such that |𝐴(𝑟) | ≥ (1 − 𝛿) |𝐴|.

Let P (𝑟)1 be the collection of all cubes in P (𝑟) which are not (𝑀, 𝛿, 𝑟, 𝑛𝑙+1, . . . , 𝑛𝑘 )-
regular. Writing ®𝑛(𝑟) = (0, . . . , 0, 𝑟, 𝑛𝑙+1, . . . , 𝑛𝑘 ), consider the quantity

𝐷𝑟 :=
(𝑁′/𝑁)𝑑
𝑀𝑟𝑑

∑︁
𝑃∈P (𝑟 )

|𝜋𝑙+1(LD𝑃 (𝐴;F®𝑛(𝑟 ) )) | ≤
(𝑁′/𝑁)𝑑
𝑀𝑟𝑑

|P (𝑟) | = 1.

For any 𝑃 ∈ P (𝑟) and subcube 𝑄 ∈ P (𝑟+1) , we have the inequalities

|𝜋𝑙+1(LD𝑃 (𝐴;F®𝑛(𝑟 ) )) | ≥ |𝜋𝑙+1(LD𝑃 (𝐴;F®𝑛(𝑟+1) )) | ≥ |𝜋𝑙+1(LD𝑄 (𝐴;F®𝑛(𝑟+1) )) |.

Therefore, 𝐷𝑟 is decreasing in 𝑟. Set 𝑅0 := 𝑀𝑑

𝜀𝛿2 . Since 𝐷𝑟 is decreasing and in
[0, 1], there is some 𝑟 ≤ 𝑅0 such that 𝐷𝑟 ≥ 𝐷𝑟+1 ≥ 𝐷𝑟 − 𝜀𝛿2

𝑀𝑑 . For each 𝑃 ∈ P (𝑟)1 ,
since 𝑃 is not regular, there is some subcube 𝑄 ∈ P (𝑟+1) of 𝑃 such that

|𝜋𝑙+1(LD𝑄 (𝐴;F®𝑛(𝑟+1) )) | ≤ (1 − 𝛿) |𝜋𝑙+1(LD𝑃 (𝐴;F®𝑛(𝑟 ) )) |.
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Therefore,

𝐷𝑟 − 𝐷𝑟+1 =
(𝑁′/𝑁)𝑑
𝑀𝑟𝑑

∑︁
𝑃∈P (𝑟 )

©­­­­«
|𝜋𝑙+1(LD𝑃 (𝐴;F®𝑛(𝑟 ) )) | −

1
𝑀𝑑

∑︁
𝑄∈P (𝑟+1)
𝑄⊂𝑃

|𝜋𝑙+1(LD𝑄 (𝐴;F®𝑛(𝑟+1) )) |
ª®®®®¬

≥ (𝑁
′/𝑁)𝑑
𝑀𝑟𝑑

∑︁
𝑃∈P (𝑟 )1

𝛿

𝑀𝑑
|𝜋𝑙+1(LD𝑃 (𝐴;F®𝑛(𝑟 ) )) |

=
(𝑁′/𝑁)𝑑𝛿
𝑀 (𝑟+1)𝑑

∑︁
𝑃∈P (𝑟 )1

|𝜋𝑙+1(LD𝑃 (𝐴;F®𝑛(𝑟 ) )) |.

On the other hand,

|𝐴 \ 𝐴(𝑟) | =
∑︁
𝑃∈P (𝑟 )1

|𝐴 ∩ 𝑃 | = 𝑁′𝑑

𝑀𝑟𝑑

∑︁
𝑃∈P (𝑟 )1

Vol(LD𝑃 (𝐴;F®𝑛(𝑟 ) ))

≤ 𝑁′𝑑

𝑀𝑟𝑑

∑︁
𝑃∈P (𝑟 )1

|𝜋𝑙+1(LD𝑃 (𝐴;F®𝑛(𝑟 ) )) |.

Therefore, we have

|𝐴 \ 𝐴(𝑟) | ≤ 𝑁
𝑑𝑀𝑑

𝛿
(𝐷𝑟 − 𝐷𝑟+1) ≤ 𝜀𝛿𝑁𝑑 ≤ 𝛿 |𝐴|,

as required. □

Lemma 6.5.5. Fix 𝜀, 𝛿 > 0 and a positive integer 𝑀 and suppose that 𝐴 ⊆ [0, 𝑁)𝑑

is of size at least 𝜀𝑁𝑑 . Then there exist 𝑛1, . . . , 𝑛𝑘 , 𝑟 ≤ 𝑅1 = 𝑅1(𝑀, 𝜀, 𝛿) and a
collection P of disjoint 𝑁/𝑀𝑟-cubes such that, for 𝐴′ = 𝐴 ∩⋃

𝑃∈P 𝑃,

1. |𝐴′| ≥ (1 − 𝛿) |𝐴|,

2. 𝑃 is (𝑀, 𝛿, 𝑛𝑙 , . . . , 𝑛𝑘 )-regular for all 𝑃 ∈ P and 𝑙 ∈ [𝑘].

Proof. Following the notation of Lemma 6.5.4, set 𝑆1 = 𝑅0(𝑀, 𝜀/2, 𝛿/𝑘) and, for
𝑙 = 2, . . . , 𝑘 ,

𝑆𝑙 = 𝑅0(𝑀𝑆1+···+𝑆𝑙−1+1, 𝜀/2, 𝛿/𝑘).

We then set 𝑅1 := 𝑆1 + · · · + 𝑆𝑘 . We shall apply Lemma 6.5.4 𝑘 times in succession
to obtain 𝑛𝑘 , 𝑛𝑘−1, . . . , 𝑛1 ≤ 𝑅1.

First, we obtain 𝑛𝑘 ≤ 𝑆𝑘 and a collection P (𝑘) of disjoint 𝑁/𝑀𝑛𝑘 -cubes, so that, for
𝐴(𝑘) = 𝐴 ∩⋃

𝑃∈P (𝑘 ) 𝑃, we have
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1. |𝐴(𝑘) | ≥
(
1 − 𝛿

𝑘

)
|𝐴|,

2. 𝑃 is (𝑀𝑆1+···+𝑆𝑘−1+1, 𝛿, 𝑛𝑘 )-regular for all 𝑃 ∈ P (𝑘) .

Suppose we have constructed 𝑛𝑘 , 𝑛𝑘−1, . . . , 𝑛𝑙+1 for some 𝑙 ≥ 1. Then, using
Lemma 6.5.4, we obtain 𝑛𝑙 ≤ 𝑆𝑙 and a collection P (𝑙) of disjoint 𝑁/𝑀𝑛𝑘+···+𝑛𝑙 -
cubes, so that, for 𝐴(𝑙) = 𝐴(𝑙+1) ∩⋃

𝑃∈P (𝑙) 𝑃, we have

1. |𝐴(𝑙) | ≥
(
1 − 𝛿

𝑘

)
|𝐴(𝑙+1) |,

2. 𝑃 is (𝑀𝑆1+···+𝑆𝑙−1+1, 𝛿, 𝑛𝑙 , . . . , 𝑛𝑘 )-regular for all 𝑃 ∈ P (𝑙) .

We may assume that the collection P (𝑙) is a subset of a refinement of P (𝑙+1) .

Finally, set P = P (1) , a collection of 𝑁/𝑀𝑟-cubes, where 𝑟 = 𝑛1 + · · · + 𝑛𝑘 ≤ 𝑅1.
Then, for 𝐴′ = 𝐴 ∩⋃

𝑃∈P 𝑃, we have

1. |𝐴′| ≥
(
1 − 𝛿

𝑘

) 𝑘 |𝐴| ≥ (1 − 𝛿) |𝐴|,
2. for each 𝑙 ∈ [𝑘] and each 𝑃 ∈ P, 𝑃 is a subcube of some 𝑃(𝑙) ∈ P (𝑙) ,

which is, by construction, (𝑀𝑆1+···+𝑆𝑙−1+1, 𝛿, 𝑛𝑙 , . . . , 𝑛𝑘 )-regular. But then, by
Lemma 6.5.3, 𝑃 is (𝑀, 𝛿, 𝑛𝑙 , . . . , 𝑛𝑘 )-regular. □

6.6 Proof of the dense case
In this section, we make use of everything we have developed previously to prove
the dense case, Lemma 6.3.2, which we state again for the readers’ convenience.

Lemma 6.6.1. For any 𝜀 > 0, there exists 𝑁0 such that if 𝑁 ≥ 𝑁0 and 𝐴 ⊂ [0, 𝑁)𝑑

with |𝐴| ≥ 𝜀𝑁𝑑 , then

|L0𝐴 + · · · + L𝑘𝐴| ≥ 𝐻 (𝜆1, . . . , 𝜆𝑘 ) |𝐴| − 𝑜𝜀 ( |𝐴|).

Recall that from Section 6.1, we have isomorphisms Φ′ : 𝔇 → Z𝑑 and Φ : O𝐾 →
Z𝑑 . Multiplication by 𝜆𝑙 translates to the map L𝑙 : Z𝑑 → Z𝑑 given by L𝑙 =

Φ ◦M𝑙 ◦Φ′−1, then | detL0 | = 𝑁𝐾/Q(𝔇).

Let F 𝐾®𝑛 ,G
𝐾
®𝑛 be the families of flags of sublattices of 𝔇 and O𝐾 as defined in

Section 6.5. Under isomorphisms Φ,Φ′, these families translate to families F®𝑛,G®𝑛
in Z𝑑 , given by F®𝑛 := Φ′(F 𝐾®𝑛 ) and G®𝑛 := Φ(G𝐾®𝑛 ). By Lemmas 6.5.1 and 6.5.2, we
have the following two properties:
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1. For 𝑑-periodic 𝐴 ⊆ Z𝑑 ,

𝜋1(LD(𝐴;F®𝑛)) = 𝜋1(LD(L0𝐴;G®𝑛+1)). (6.2)

2. For 𝑑-periodic 𝐴 ⊆ Z𝑑 , and 𝑙 ∈ [𝑘],

|𝜋𝑙+1(LD(𝐴;F®𝑛)) | ≤ |𝜋𝑙+1(LD(L𝑙𝐴;G ®𝑚)) | (6.3)

if 𝑚𝑖 = 𝑛𝑖 + 1 for 𝑖 = 𝑙 + 1, . . . , 𝑘 and 𝑚𝑙 = 𝑛𝑙 .

Let 𝜀 > 0 and 𝐴 ⊆ [0, 𝑁)𝑑 with |𝐴| ≥ 𝜀𝑁𝑑 . Let 𝛿 > 0 be arbitrary, 𝐷 be a
large integer and 𝑀 be a sufficiently large multiple of 𝐷. All these constants may
depend on 𝜀, but not on 𝑁 , which is assumed to be very large. By Lemma 6.5.5, we
obtain bounded 𝑛1, . . . , 𝑛𝑘 , 𝑟 and a collection P of disjoint 𝑁/𝑀𝑟-cubes such that
for 𝐴′ = 𝐴 ∩⋃

𝑃∈P 𝑃, we have

1. |𝐴′| ≥ (1 − 𝛿) |𝐴|;

2. 𝑃 is (𝑀2, 𝛿, 𝑛𝑙 , . . . , 𝑛𝑘 )-regular for all 𝑃 ∈ P and 𝑙 ∈ [𝑘].

Let Q be the collection of 𝑁/𝑀𝑟+1-cubes 𝑄 such that 𝑄 ⊂ 𝑃 for some 𝑃 ∈ P
and 𝑄 is at least distance 𝐷𝑁/𝑀𝑟+1 away from the boundary of 𝑃. In particular,
|Q| = (𝑀 − 2𝐷)𝑑 |P |. By Lemma 6.5.3, each 𝑄 is (𝑀, 𝛿, 𝑛𝑙 , . . . , 𝑛𝑘 )-regular for all
𝑙 ∈ [𝑘]. Set 𝐴′′ = 𝐴 ∩⋃

𝑄∈Q 𝑄. Then 𝐴′ \ 𝐴′′ consists of points covered by P but
not Q, therefore,

|𝐴′ \ 𝐴′′| ≤
(
1 −

(
𝑀 − 2𝐷
𝑀

)𝑑)
𝑁𝑑 ≤ 𝜀−1

(
1 −

(
𝑀 − 2𝐷
𝑀

)𝑑)
|𝐴|

≤ 2𝐷𝑑
𝑀𝜀
|𝐴| ≤ 𝛿 |𝐴|

for 𝑀 ≥ 2𝐷𝑑/𝛿𝜀. It follows that |𝐴′′| ≥ (1 − 2𝛿) |𝐴|. Let Q0 be the collection
of all 𝑁/𝑀𝑟+1-cubes, including those outside [0, 𝑁)𝑑 . For 𝑄 ∈ Q0, denote by 𝑄+

the slightly expanded cube 𝑄 + [− 𝐷𝑁

𝑀𝑟+2 ,− 𝐷𝑁

𝑀𝑟+2 ]𝑑 . Then, for 𝑀 sufficiently large
(𝑀 ≥ 4𝐷𝑑/𝛿 suffice),

Vol(𝑄+) =
(
1 + 2𝐷

𝑀

)𝑑
Vol(𝑄) ≤ (1 + 𝛿) Vol(𝑄).
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Define the bodies 𝑋,𝑌 ⊂ R𝑑+𝑘+1 = R𝑑 × R𝑘+1 by

𝑋 :=
⋃
𝑄∈Q
(𝑄 × LD𝑄 (𝐴;F®𝑛)),

𝑌 :=
⋃
𝑄∈Q0

(L0𝑄 × ((1 + 2𝛿) LDL0 (𝑄+) (L0𝐴 + · · · + L𝑘𝐴;G®𝑛+1))).

We remark that in order for LDL0 (𝑄+) to make sense, we require that L0(𝑄+) be
tileable, with respect to the sparsest lattice in G®𝑛+1. But this is possible for 𝑁 a
multiple of a large enough number, since ®𝑛 is bounded.

For each 𝑙 = 0, . . . , 𝑘 , let L′
𝑙

: R𝑑+𝑘+1 → R𝑑+𝑘+1 be the linear map given by

L′𝑙 (®𝑥, 𝑦0, 𝑦1, . . . , 𝑦𝑘 ) = (L𝑙 ®𝑥, 0, . . . , 0, 𝑦𝑙 , 0, . . . , 0).

Claim 6.6.2. We have
L′0𝑋 + · · · + L

′
𝑘𝑋 ⊆ 𝑌 .

We finish the proof of Lemma 6.6.1 assuming the claim. Let L∗ : R𝑑+𝑘+1 → R𝑑+𝑘+1

be given by L∗(𝑥, 𝑦) = (L−1
0 𝑥, 𝑦), where 𝑥 ∈ R𝑑 and 𝑦 ∈ R𝑘+1.

Note thatL−1
0 L𝑙 is conjugate toM𝑙 , the map given by multiplication by 𝜆𝑙 on 𝐾 . By

Lemma 6.1.3, the maps 1,L−1
0 L1, . . . ,L−1

0 L𝑘 are simultaneously diagonalizable
over C, where the diagonal matrix corresponding to L−1

0 L𝑙 has diagonal entries
(𝜎1(𝜆𝑙), . . . , 𝜎𝑑 (𝜆𝑙)). Therefore, L∗L′

𝑙
are simultaneously diagonalizable with

corresponding diagonal matrix entries (𝜎1(𝜆𝑙), . . . , 𝜎𝑑 (𝜆𝑙), 0, . . . , 0, 1, 0, . . . , 0).
Thus, by Theorem 6.2.1, we have

𝜇(L∗L′0𝑋 + · · · + L
∗L′𝑘𝑋) ≥

𝑑∏
𝑖=1
(1 + |𝜎𝑖 (𝜆1) | + |𝜎𝑖 (𝜆2) | + · · · + |𝜎𝑖 (𝜆𝑘 ) |)𝜇(𝑋).

Therefore,

𝜇(𝑌 ) ≥ 𝜇(L′0𝑋 + · · · + L
′
𝑘𝑋)

=
1

det(L∗) 𝜇(L
∗L′0𝑋 + · · · + L

∗L′𝑘𝑋)

≥ det(L0)
𝑑∏
𝑖=1
(1 + |𝜎𝑖 (𝜆1) | + |𝜎𝑖 (𝜆2) | + · · · + |𝜎𝑖 (𝜆𝑘 ) |)𝜇(𝑋)

= 𝐻 (𝜆1, . . . , 𝜆𝑘 )𝜇(𝑋).
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By properties of lattice densities,

𝜇(𝑋) =
∑︁
𝑄∈Q

Vol(𝑄) × Vol(LD𝑄 (𝐴;F®𝑛))

=
∑︁
𝑄∈Q
|𝐴 ∩𝑄 | = |𝐴′′| ≥ (1 − 2𝛿) |𝐴|.

Recall from the definition of 𝐶1, since 𝐴 lies in the cube (−𝑁, 𝑁)𝑑 , the sum
𝐴 + L−1

0 L1𝐴 + · · · + L−1
0 L𝑘𝐴 lies in the cube (−(𝑘 + 1)𝐶1𝑁, (𝑘 + 1)𝐶1𝑁)𝑑 ⊂ R𝑑 .

There are at most (4(𝑘 + 1)𝐶1)𝑑𝑀𝑑 (𝑟+1) different 𝑄 ∈ Q0 such that 𝑄+ intersects
(−(𝑘 + 1)𝐶1𝑁, (𝑘 + 1)𝐶1𝑁)𝑑 . For simplicity, assume that 𝐷 > (4(𝑘 + 1)𝐶1)𝑑 , so
that there are at most 𝐷𝑀𝑑 (𝑟+1) such𝑄’s. Thus, there are at most 𝐷𝑀𝑑 (𝑟+1) different
𝑄 ∈ Q0 such that L0(𝑄+) ∩ (L0𝐴 + · · · + L𝑘𝐴) ≠ ∅. For each such 𝑄, we have

|L0(𝑄+) ∩ (L0𝐴 + · · · + L𝑘𝐴) | − |L0𝑄 ∩ (L0𝐴 + · · · + L𝑘𝐴) |
≤ det(L0) (Vol(𝑄+) − Vol(𝑄))

= 𝑂

(
𝐷𝑁𝑑

𝑀 (𝑟+1)𝑑+1

)
≤ 𝛿(𝑁/𝑀𝑟+1)𝑑 .

Therefore,

𝜇(𝑌 ) =
∑︁
𝑄∈Q0

Vol(L0𝑄) × (1 + 2𝛿)𝑘+1 Vol(LDL0 (𝑄+) (L0𝐴 + · · · + L𝑘𝐴;G®𝑛+1))

≤ (1 + 2𝛿)𝑘+1
∑︁
𝑄∈Q0

Vol(L0𝑄)
Vol(L0(𝑄+))

|L0(𝑄+) ∩ (L0𝐴 + · · · + L𝑘𝐴) |

≤ (1 + 2𝛿)𝑘+1
∑︁
𝑄∈Q0

|L0(𝑄+) ∩ (L0𝐴 + · · · + L𝑘𝐴) |

≤ (1 + 2𝛿)𝑘+1 ©­«
∑︁
𝑄∈Q0

|L0𝑄 ∩ (L0𝐴 + · · · + L𝑘𝐴) | + 𝐷𝑀𝑑 (𝑟+1) · 𝛿(𝑁/𝑀𝑟+1)𝑑ª®¬
≤ (1 + 2𝛿)𝑘+1 |L0𝐴 + · · · + L𝑘𝐴| + 𝐷𝛿𝑁𝑑 .

Thus, we have

|L0𝐴 + · · · + L𝑘𝐴| ≥ (1 + 2𝛿)−(𝑘+1)𝜇(𝑌 ) −𝑂𝐷 (𝛿)𝑁𝑑

= (1 −𝑂 (𝛿))𝜇(𝑌 ) −𝑂𝐷 (𝛿)𝑁𝑑

≥ (1 −𝑂 (𝛿))𝐻 (𝜆1, . . . , 𝜆𝑘 )𝜇(𝑋) −𝑂𝐷 (𝛿)𝑁𝑑

≥ (1 −𝑂 (𝛿))𝐻 (𝜆1, . . . , 𝜆𝑘 ) (1 − 2𝛿) |𝐴| −𝑂𝐷 (𝛿)𝑁𝑑

= 𝐻 (𝜆1, . . . , 𝜆𝑘 ) |𝐴| −𝑂𝐷 (𝛿)𝑁𝑑 .
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This proves the Lemma 6.6.1 since 𝛿 is arbitrary.

Proof of Claim 6.6.2. Let (𝑥𝑙 , 𝑦𝑙) ∈ 𝑋 for 𝑙 = 0, . . . , 𝑘 , where 𝑄𝑙 ∈ Q is the cube
containing 𝑥𝑙 , and 𝑦𝑙 ∈ LD𝑄𝑙 (𝐴;F®𝑛). Our aim is to show that (∑𝑙 L𝑙𝑥𝑙 , 𝑦) ∈ 𝑌 ,
where 𝑦 = (𝜋1(𝑦0), . . . , 𝜋𝑘+1(𝑦𝑘 )).

Let𝑄∗ ∈ Q0 be the cube containing 𝑥 := 𝑥0+L−1
0 L1𝑥1+· · ·+L−1

0 L𝑘𝑥𝑘 . ThenL0𝑥0+
· · · +L𝑘𝑥𝑘 = L0𝑥 ∈ L0𝑄

∗, so it suffices to show that 𝑦 ∈ (1+2𝛿) LDL0 (𝑄∗+) (L0𝐴+
· · · + L𝑘𝐴;G®𝑛+1).

Suppose 𝑄∗ = 𝑄0 + 𝑡 for some translate 𝑡 ∈ 𝑁

𝑀𝑟+1Z𝑑 . Then 𝑡 = L−1
0 L1𝑥1 + · · · +

L−1
0 L𝑘𝑥𝑘 + 𝑡0, for some 𝑡0 ∈ [0, 𝑁

𝑀𝑟+1 )𝑑 . Let 𝑅𝑙 be the unique 𝑁/𝑀𝑟+2-cube
containing 𝑥𝑙 , for 𝑙 = 1, . . . , 𝑘 . Let 𝑥∗

𝑘
= 𝑥𝑘 + L−1

𝑘
L0𝑡0, then

𝑥∗𝑘 − 𝑥𝑘 = L
−1
𝑘 L0𝑡0 ∈

[
− 𝐶1𝑁

𝑀𝑟+1 ,
𝐶1𝑁

𝑀𝑟+1

]𝑑
⊆

[
− 𝐷𝑁
𝑀𝑟+1 ,

𝐷𝑁

𝑀𝑟+1

]𝑑
.

If 𝑃𝑘 ∈ P is the cube containing 𝑄𝑘 and 𝑄∗
𝑘
∈ Q0 is the unique cube containing

𝑥∗
𝑘
, then 𝑄∗

𝑘
⊂ 𝑃𝑘 , since 𝑄𝑘 ∈ Q is at least a distance 𝐷𝑁/𝑀𝑟+1 away from the

boundary of 𝑃𝑘 . Let 𝑅∗
𝑘

be the 𝑁/𝑀𝑟+2-cube containing 𝑥∗
𝑘
, then 𝑅∗

𝑘
⊂ 𝑃𝑘 .

Define the following sets:

• 𝐴0 = 𝐴 ∩𝑄0,

• 𝐴𝑙 = 𝐴 ∩ 𝑅𝑙 for 𝑙 = 1, . . . , 𝑘 − 1,

• 𝐴𝑘 = 𝐴 ∩ 𝑅∗𝑘 .

We have 𝑥𝑙 ∈ 𝐴𝑙 for 𝑙 = 0, . . . , 𝑘−1 and 𝑥∗
𝑘
∈ 𝐴𝑘 , and 𝑡 = L−1

0 L1𝑥1+· · ·+L−1
0 L𝑘𝑥

∗
𝑘
.

Since 𝐴𝑙 is contained in a 𝑁/𝑀𝑟+2-cube for 𝑙 = 1, . . . , 𝑘 ,L−1
0 L1𝐴1+· · ·+L−1

0 L𝑘𝐴𝑘
is contained in a cube of side length 𝐷𝑁/𝑀𝑟+2 if 𝐷 is sufficiently large. Therefore,
𝐴0 + L−1

0 L1𝐴1 + · · · + L−1
0 L𝑘𝐴𝑘 ⊆ 𝑄

∗+.

Let𝑄+ be tiled by a lattice 𝐿, for any𝑄 ∈ Q0. By repeatedly applying Theorem 6.4.5,
we have the following inclusion of the rectangular box

𝑘∏
𝑙=0

𝜋𝑙+1(LD(L𝑙𝐴𝑙 + L0𝐿;G®𝑛+1)) ⊆ LD(L0𝐴0 + · · · + L𝑘𝐴𝑘 + L0𝐿;G®𝑛+1)

= LDL0 (𝑄∗+) (L0𝐴0 + · · · + L𝑘𝐴𝑘 ;G®𝑛+1).
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Denote by ®𝑛(𝑙) the vector (𝑛1 + 1, . . . , 𝑛𝑙 + 1, 𝑛𝑙+1, . . . , 𝑛𝑘 ). We shall show that
|𝜋𝑙+1(LD(L𝑙𝐴𝑙 + L0𝐿;G®𝑛+1)) | ≥ (1 − 𝛿)𝜋𝑙+1(𝑦𝑙) for all 𝑙, by showing separately
for the three cases 𝑙 = 0, 1 ≤ 𝑙 ≤ 𝑘 − 1 and 𝑙 = 𝑘 .

For 𝑙 = 0, we have

|𝜋1(LD(L0𝐴0 + L0𝐿;G®𝑛+1)) | = |𝜋1(LD(𝐴0 + 𝐿;F®𝑛)) | by (6.2)

= |𝜋1(LD𝑄+0
(𝐴0;F®𝑛)) |

≥ Vol(𝑄0)
Vol(𝑄+0)

|𝜋1(LD𝑄0 (𝐴0;F®𝑛)) | by Lemma 6.4.7

≥ (1 − 𝛿) |𝜋1(LD𝑄0 (𝐴;F®𝑛)) |
≥ (1 − 𝛿)𝜋1(𝑦0).

For 𝑙 = 1, . . . , 𝑘 − 1, since 𝑄𝑙 is (𝑀, 𝛿, 𝑛𝑙 , . . . , 𝑛𝑘 )-regular, we have

|𝜋𝑙+1(LD𝑅𝑙 (𝐴;F®𝑛(𝑙) )) | ≥ (1 − 𝛿) |𝜋𝑙+1(LD𝑄𝑙 (𝐴;F®𝑛)) |.

Therefore,

|𝜋𝑙+1(LD(L𝑙𝐴𝑙 + L0𝐿;G®𝑛+1)) |
≥ |𝜋𝑙+1(LD(𝐴𝑙 + L−1

𝑙 L0𝐿;F®𝑛(𝑙) )) | by (6.3)

= |𝜋𝑙+1(LD𝑅𝑙 (𝐴𝑙 ;F®𝑛(𝑙) )) | by Lemma 6.4.8

= |𝜋𝑙+1(LD𝑅𝑙 (𝐴;F®𝑛(𝑙) )) |
≥ (1 − 𝛿) |𝜋𝑙+1(LD𝑄𝑙 (𝐴;F®𝑛)) | by regularity

≥ (1 − 𝛿)𝜋𝑙+1(𝑦𝑙).

Similarly, for 𝑙 = 𝑘 , we have

|𝜋𝑘+1(LD(L𝑘𝐴𝑘 + L0𝐿;G®𝑛+1)) |
≥ |𝜋𝑘+1(LD(𝐴𝑘 + L−1

𝑘 L0𝐿;F®𝑛(𝑘 ) )) | by (6.3)

≥ |𝜋𝑘+1(LD𝑄∗+
𝑘
(𝐴𝑘 ;F®𝑛(𝑘 ) )) |

= |𝜋𝑘+1(LD𝑅∗
𝑘
(𝐴𝑘 ;F®𝑛(𝑘 ) )) | by Lemma 6.4.8

= |𝜋𝑘+1(LD𝑅∗
𝑘
(𝐴;F®𝑛(𝑘 ) )) |

≥ (1 − 𝛿) |𝜋𝑘+1(LD𝑃𝑘 (𝐴;F®𝑛)) | by regularity of 𝑃𝑘
≥ (1 − 𝛿) |𝜋𝑘+1(LD𝑄𝑘 (𝐴;F®𝑛)) | by Lemma 6.4.8

≥ (1 − 𝛿)𝜋𝑘+1(𝑦𝑘 ).
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Therefore, we have

(1 − 𝛿)𝑦 = ((1 − 𝛿)𝜋1(𝑦0), . . . , (1 − 𝛿)𝜋𝑘+1(𝑦𝑘 ))
∈ LDL0 (𝑄∗+) (L0𝐴0 + · · · + L𝑘𝐴𝑘 ;G®𝑛+1)
⊆ LDL0 (𝑄∗+) (L0𝐴 + · · · + L𝑘𝐴;G®𝑛+1),

which implies that 𝑦 ∈ (1+2𝛿) LDL0 (𝑄∗+) (L0𝐴+ · · · +L𝑘𝐴;G®𝑛+1), as required. □

6.7 Concluding remarks
A careful analysis of our arguments gives the 𝑜( |𝐴|) error term in Theorem 6.0.2 as

𝑂 ( |𝐴|/
√︃

log(𝑘) |𝐴|), where log(𝑘) is the 𝑘-iterate log. As seen in Proposition 6.2.3,
there are constructions giving a polynomial error of𝑂 ( |𝐴| 𝑑−1

𝑑 ), which we suspect is
closer to the truth. We conjecture that the error term should at least be polynomial
in size.

Conjecture 6.7.1. For any algebraic numbers 𝜆1, . . . , 𝜆𝑘 , there exists a constant
𝜎 > 0 such that

|𝐴 + 𝜆1 · 𝐴 + · · · + 𝜆𝑘 · 𝐴| ≥ 𝐻 (𝜆1, . . . , 𝜆𝑘 ) |𝐴| −𝑂 ( |𝐴|1−𝜎)

for finite subsets 𝐴 of C.

As a final remark, we note that Theorem 3.0.5 in Chapter 3 does give an error
𝑂 ( |𝐴|1−𝜎). Chapter 7 discusses how to translate a problem on algebraic dilates to
linear transformations and vice versa, so the above conjecture is true for 𝑘 = 1 and
𝜆1 of the form (𝑝/𝑞)1/𝑑 .
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C h a p t e r 7

SUMS OF LINEAR TRANSFORMATIONS, REVISITED

Parts of this chapter are based on the author’s publications. The materials have been
adapted for inclusion in this thesis.

[1] D. Conlon and J. Lim, Sums of algebraic dilates, in preparation.

[2] D. Conlon and J. Lim, Sums of linear transformations, to appear in Transac-
tions of the American Mathematical Society (2025), arXiv:2203.09827, doi:
10.1090/tran/9433.

We revisit the following problem mentioned in the introduction.

Problem 7.0.1. Given L0,L1, . . . ,L𝑘 ∈ Mat𝑑 (Z) which are irreducible and co-
prime, determine the largest possible constant 𝐻 = 𝐻 (L0, . . . ,L𝑘 ) such that the
following holds. For any finite subset 𝐴 of Z𝑑 ,

|L0𝐴 + L1𝐴 + · · · + L𝑘𝐴| ≥ 𝐻 |𝐴| − 𝑜( |𝐴|).

We first recall what it means for a set of matrices to be irreducible and coprime,
defined in Chapter 3.

Definition 7.0.2. We say that L0, . . . ,L𝑘 ∈ Mat𝑑 (Q) are irreducible if there are no
non-trivial subspaces 𝑈, 𝑉 of Q𝑑 of the same dimension such that L𝑙𝑈 ⊆ 𝑉 for all
𝑙 = 0, . . . , 𝑘 .

Definition 7.0.3. We say that L0, . . . ,L𝑘 ∈ Mat𝑑 (Z) are coprime if there are no
P,Q ∈ GL𝑑 (Q) with 0 < | det(P) det(Q)| < 1 such that

PL0Q,PL1Q, . . . ,PL𝑘Q ∈ Mat𝑑 (Z).

These are reasonable assumptions to have. If L0, . . . ,L𝑘 were not irreducible, then
we may consider 𝐴 to just be in the subspace 𝑈, and restrict L0, . . . ,L𝑘 to 𝑈. If
L0, . . . ,L𝑘 are not coprime, then we may replace them with

PL0Q,PL1Q, . . . ,PL𝑘Q ∈ Mat𝑑 (Z),

which are “smaller.” For more details, we refer the reader to Chapter 3.

https://doi.org/10.1090/tran/9433
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The main purpose of this chapter is to formalize the equivalence between the prob-
lems of estimating sums of algebraic dilates and sums of pre-commuting linear
transformations, defined below.

Definition 7.0.4. We say that L0, . . . ,L𝑘 ∈ Mat𝑑 (Q) are pre-commuting if there is
some P ∈ GL𝑑 (Q) such that PL0, . . . ,PL𝑘 pairwise commute.

In particular, using Theorem 3.0.5, we prove the following.

Theorem 7.0.5. Suppose that 𝜆 ∈ C is an algebraic number with minimal polyno-
mial 𝑝(𝑥) = 𝑎𝑑𝑥𝑑 + · · · + 𝑎0 ∈ Z[𝑥], where all the 𝑎𝑖 are coprime. Then there are
constants 𝐷, 𝜎 > 0 such that

|𝐴 + 𝜆 · 𝐴| ≥ (|𝑎𝑑 |1/𝑑 + |𝑎0 |1/𝑑)𝑑 |𝐴| − 𝐷 |𝐴|1−𝜎

holds for all finite subsets 𝐴 of C.

Going the other way, using Theorem 6.0.2, we prove the following.

Theorem 7.0.6. Let L0, . . . ,L𝑘 ∈ Mat𝑑 (Z) be pre-commuting, irreducible and
coprime matrices. Then for any finite 𝐴 ⊂ Z𝑑 ,

|L0𝐴 + · · · + L𝑘𝐴| ≥ 𝐻 (L0, . . . ,L𝑘 ) |𝐴| − 𝑜( |𝐴|),

where 𝐻 (L0, . . . ,L𝑘 ) is to be defined later in the chapter. Furthermore, the value
of 𝐻 (L0, . . . ,L𝑘 ) is optimal.

7.1 Two linear transformations
To get started, we first consider the case 𝑘 = 1. Our aim is to show that estimating
|𝐴 + 𝜆 · 𝐴| for some algebraic 𝜆 ∈ C reduces to estimating |L1𝐴 + L2𝐴|. In this
section, we prove Theorem 7.0.5 by reducing it to Theorem 3.0.5. Though our
estimate applies for all finite 𝐴 ⊂ C, the following simple lemma of Krachun and
Petrov [28, Lemma 2.1] allows us to restrict attention to sets 𝐴 ⊂ Q[𝜆].

Lemma 7.1.1. Suppose that 𝜆 ∈ C and 𝐴 is a finite set of complex numbers. Then
there exists a finite set 𝐵 ⊂ Q[𝜆] such that |𝐵 | = |𝐴| and |𝐵 + 𝜆 · 𝐵 | ≤ |𝐴 + 𝜆 · 𝐴|.

Suppose now that 𝜆 is algebraic and has minimal polynomial 𝑝(𝑥) = 𝑥𝑑 +𝑎𝑑−1𝑥
𝑑−1+

· · · + 𝑎0 ∈ Q[𝑥]. If we view Q[𝜆] as a 𝑑-dimensional Q-vector space with basis
1, 𝜆, 𝜆2, . . . , 𝜆𝑑−1, then multiplication by 𝜆 is given by the linear transformation
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L =

©­­­­­­­­«

0 0 0 · · · 0 −𝑎0

1 0 0 · · · 0 −𝑎1

0 1 0 · · · 0 −𝑎2
...
...
...
. . .

...
...

0 0 0 · · · 1 −𝑎𝑑−1

ª®®®®®®®®¬
∈ GL𝑑 (Q).

Thus, the problem of estimating |𝐴 + 𝜆 · 𝐴| reduces to that of bounding |𝐴 + L𝐴|
for 𝐴 ⊂ Q𝑑 . Let 𝑏 be the smallest positive integer such that 𝑏𝑎𝑖 ∈ Z for all
𝑖 = 0, 1, . . . , 𝑑 − 1. Then, if we let

L1 =

©­­­­­­­­«

1 0 · · · 0 0
0 1 · · · 0 0
...
...
. . .

...
...

0 0 · · · 1 0
0 0 · · · 0 𝑏

ª®®®®®®®®¬
, L2 =

©­­­­­­­­«

0 0 0 · · · 0 −𝑏𝑎0

1 0 0 · · · 0 −𝑏𝑎1

0 1 0 · · · 0 −𝑏𝑎2
...
...
...
. . .

...
...

0 0 0 · · · 1 −𝑏𝑎𝑑−1

ª®®®®®®®®¬
∈ Mat𝑑 (Z),

we see that |𝐴 + L𝐴| = |L1(L−1
1 𝐴) + L2(L−1

1 𝐴) |. Setting 𝐵 = L−1
1 𝐴, the problem

becomes that of bounding |L1𝐵 + L2𝐵 | for 𝐵 ⊂ Q𝑑 . By scaling, we may even
assume that 𝐵 ⊂ Z𝑑 . Therefore, in order to apply Theorem 3.3.6, we only need
to verify that L1,L2 are irreducible and coprime. For this, we now derive general
conditions for irreducibility and coprimeness. We first look at irreducibility.

Theorem 7.1.2. 𝑃,𝑄 ∈ Mat𝑑 (Q) are irreducible if and only if they are invertible
and the characteristic polynomial of 𝑃−1𝑄 is irreducible over Q.

Proof. Suppose 𝑃,𝑄 are irreducible. If 𝑃, say, is not invertible, then there is a
one-dimensional subspace 𝑈 ⊂ Q𝑑 such that 𝑃𝑈 = 0. But then both 𝑃𝑈 and 𝑄𝑈
lie in the subspace 𝑄𝑈 of dimension at most 1, contradicting irreducibility.

Note that 𝑃,𝑄 are irreducible iff 𝑅 = 𝑃−1𝑄 has no non-trivial invariant subspace
over Q. Let 𝑝(𝑥) ∈ Q[𝑥] be the characteristic polynomial of 𝑃−1𝑄. If 𝑃−1𝑄 has a
non-trivial invariant subspace 𝑈, then restricting to 𝑈 gives a linear transformation
𝑅 |𝑈 : 𝑈 → 𝑈. But the characteristic polynomial of 𝑅 |𝑈 divides 𝑝, so 𝑝 is reducible.

Conversely, suppose that 𝑝 = 𝑓 𝑔 is reducible, with deg 𝑓 , deg 𝑔 < 𝑑. Then at least
one of 𝑓 (𝑅), 𝑔(𝑅) is not invertible, since 0 = 𝑝(𝑅) = 𝑓 (𝑅)𝑔(𝑅). Without loss of
generality, assume that 𝑓 (𝑅) is not invertible, so there is some 𝑣 ∈ Q𝑑−{0} such that
𝑓 (𝑅)𝑣 = 0. If 𝑓 has degree 𝑒 < 𝑑, then 𝑅𝑒𝑣 lies in the space𝑈 =

〈
𝑣, 𝑅𝑣, . . . , 𝑅𝑒−1𝑣

〉
.

Thus,𝑈 is a non-trivial invariant subspace. □
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For our coprimeness condition, we need the following lemma.

Lemma 7.1.3. Let 𝑃 ∈ Mat𝑑 (Q) and 𝑄 ∈ Mat𝑑 (Z) be such that 𝑄𝑃 ∈ Mat𝑑 (Z).
For 1 ≤ 𝑘 ≤ 𝑑, let𝑚 be a 𝑘×𝑘 minor of 𝑃, i.e., the determinant of a 𝑘×𝑘 submatrix.
Then 𝑚 det(𝑄) ∈ Z.

Proof. Let 𝑚 be the 𝑘 × 𝑘 minor corresponding to rows 𝑆 ⊆ [𝑑] and columns
𝑇 ⊆ [𝑑]. Construct a matrix 𝑅 ∈ Mat𝑑 (Q) as follows: the 𝑇 columns of 𝑅 are just
the𝑇 columns of 𝑃; the 𝑆×𝑇 𝑐 submatrix of 𝑅 is all zeroes; and the 𝑆𝑐×𝑇 𝑐 submatrix
of 𝑅 is the identity matrix. Then det 𝑅 = ±𝑚, so that det(𝑄𝑅) = ±𝑚 det𝑄. But the
𝑇 columns of 𝑄𝑅 are the 𝑇 columns of 𝑄𝑃, which has all integer entries, and each
of the other columns of 𝑄𝑅 is a column of 𝑄, which also has integer entries. Thus,
𝑄𝑅 ∈ Mat𝑑 (Z), so that 𝑚 det𝑄 = ± det(𝑄𝑅) ∈ Z. □

Theorem 7.1.4. Suppose that 𝑃,𝑄 ∈ Mat𝑑 (Z) are irreducible and 𝑝(𝑥) ∈ Q[𝑥] is
the characteristic polynomial of 𝑃−1𝑄. Then 𝑃,𝑄 are coprime if and only if | det 𝑃 |
is the smallest positive integer 𝑔 such that 𝑔𝑝 ∈ Z[𝑥].

Proof. Let 𝑔 be the smallest positive integer such that 𝑔𝑝 ∈ Z[𝑥]. Let 𝑅, 𝑆 ∈
GL𝑑 (Q) be such that 𝑅𝑃𝑆, 𝑅𝑄𝑆 ∈ Mat𝑑 (Z). Let𝑀 = (𝑅𝑃𝑆)−1𝑅𝑄𝑆 = 𝑆−1𝑃−1𝑄𝑆 ∈
Mat𝑑 (Q). Then the characteristic polynomial of𝑀 is again 𝑝. By Lemma 7.1.3 with
𝑀 and 𝑅𝑃𝑆 as 𝑃 and𝑄, if𝑚 is any 𝑘×𝑘 minor of𝑀 , then𝑚 det(𝑅𝑃𝑆) ∈ Z. Suppose
𝑝(𝑥) = 𝑥𝑑 +𝑎𝑑−1𝑥

𝑑−1+ · · · +𝑎0. By looking at the expansion of 𝑝(𝑥) = det(𝑥𝐼 −𝑀),
we see that 𝑎𝑑−𝑘 can be written as aZ-linear combination of 𝑘×𝑘 minors of𝑀 . Thus,
𝑎𝑑−𝑘 det(𝑅𝑃𝑆) ∈ Z for all 𝑘 , so 𝑔 | det(𝑅𝑃𝑆) = ±| det 𝑃 | det(𝑅𝑆). In particular, if
we take both 𝑅 and 𝑆 to be the identity matrix, then 𝑔 | | det 𝑃 |.

Suppose now that 𝑔 = | det 𝑃 |. Then this implies that | det(𝑅𝑆) | ≥ 1, so 𝑃,𝑄 are
indeed coprime. Conversely, suppose that 𝑃,𝑄 are coprime. Consider the rational
canonical form of 𝑃−1𝑄, which is a block diagonal matrix similar to 𝑃−1𝑄 where
each block looks like

©­­­­­­­­­­«

0 1 0 · · · 0
0 0 1 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−𝑐0 −𝑐1 −𝑐2 · · · −𝑐𝑘−1

ª®®®®®®®®®®¬
.
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The characteristic polynomial of such a block is 𝑥𝑘 + 𝑐𝑘−1𝑥
𝑘−1 + · · · + 𝑐0 and the

characteristic polynomial 𝑝 of 𝑃−1𝑄 is the product of the characteristic polynomials
of its blocks. But, by Theorem 7.1.2, 𝑝(𝑥) = 𝑥𝑑 + 𝑎𝑑−1𝑥

𝑑−1 + · · · + 𝑎0 is irreducible,
so the rational canonical form of 𝑃−1𝑄 consists of a single block. That is, there is
some 𝑆 ∈ GL𝑑 (Q) such that

𝑆−1𝑃−1𝑄𝑆 =

©­­­­­­­­­­«

0 1 0 · · · 0
0 0 1 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−𝑎0 −𝑎1 −𝑎2 · · · −𝑎𝑑−1

ª®®®®®®®®®®¬
.

Let 𝐷 be the diagonal matrix with entries (1, 1, . . . , 1, 𝑔). Then 𝐷 and 𝐷𝑆−1𝑃−1𝑄𝑆

are integer matrices. Now set 𝑅 = 𝐷𝑆−1𝑃−1, so that 𝑅𝑃𝑆, 𝑅𝑄𝑆 ∈ Mat𝑑 (Z). By
coprimeness, | det 𝑅 det 𝑆 | ≥ 1. But this implies that 𝑔/| det 𝑃 | ≥ 1, so | det 𝑃 | ≤ 𝑔.
However, from before, we have 𝑔 | | det 𝑃 |, so that | det 𝑃 | = 𝑔, as required. □

Using Theorems 7.1.2 and 7.1.4, it is now a simple matter to verify that L1,L2

are irreducible and coprime. Thus, by Theorem 3.3.6, we have that if 𝜆 ∈ C is an
algebraic number with minimal polynomial 𝑝(𝑥) = 𝑎𝑑𝑥𝑑 + · · · + 𝑎0 ∈ Z[𝑥], where
all the 𝑎𝑖 are coprime, then there are 𝐷, 𝜎 > 0 such that

|𝐴 + 𝜆 · 𝐴| ≥ (| det(L1) |1/𝑑 + | det(L2) |1/𝑑)𝑑 |𝐴| − 𝐷 |𝐴|1−𝜎

holds for all finite 𝐴 ⊂ Q[𝜆]. But, taking the rescaling of the characteristic polyno-
mial into account, | det(L1) | = |𝑎𝑑 | and | det(L2) | = |𝑎0 |, completing the proof of
Theorem 7.0.5.

7.2 Sufficient conditions for irreducibility and coprimality
For the remainder of this chapter, let L0, . . . ,L𝑘 ∈ Mat𝑑 (Z). As we saw in
Theorems 7.1.2 and 7.1.4, we have necessary and sufficient conditions for when two
linear transformations L0,L1 are irreducible and coprime. For 𝑘 > 1, we do not
know whether irreducibility and coprimality are decidable. Nevertheless, we give
some simple sufficient conditions for L0, . . . ,L𝑘 to be irreducible and coprime,
which are necessary for 𝑘 = 1. Let 𝐹 be the integer polynomial

𝐹 (𝑥0, . . . , 𝑥𝑘 ) := det(𝑥0L0 + · · · + 𝑥𝑘L𝑘 ) ∈ Z[𝑥0, . . . , 𝑥𝑘 ], (7.1)

which will be used throughout this chapter.
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Lemma 7.2.1. The following holds.

1. If 𝐹 is irreducible over Q, then L0, . . . ,L𝑘 are irreducible.

2. If the coefficients of 𝐹 are coprime, then L0, . . . ,L𝑘 are coprime.

Proof. 1. SupposeL0, . . . ,L𝑘 are reducible, then there are non-trivial subspaces
𝑈,𝑉 ⊂ Q𝑑 of dimension 𝑐with 0 < 𝑐 < 𝑑, such thatL𝑙 (𝑈) ⊆ 𝑉 . By changing
basis, assume that 𝑈 = 𝑉 = Q𝑐 corresponds to the first 𝑐 coordinates of Q𝑑 .
Then L𝑙 has the form

L𝑙 =
(
𝑃𝑙 𝑄𝑙

0 𝑅𝑙

)
,

where 𝑃𝑙 ∈ Mat𝑐×𝑐 (Z), 𝑄𝑙 ∈ Mat𝑐×(𝑑−𝑐) (Z) and 𝑅𝑙 ∈ Mat(𝑑−𝑐)×(𝑑−𝑐) (Z).
Then

𝐹 (𝑥0, . . . , 𝑥𝑘 ) = det(𝑥0𝑃0 + · · · + 𝑥𝑘𝑃𝑘 ) det(𝑥0𝑅0 + · · · + 𝑥𝑘𝑅𝑘 )

is reducible.

2. Suppose L0, . . . ,L𝑘 are not coprime, then there are P,Q ∈ GL𝑑 (Q) with
0 < | det(P) det(Q)| < 1 such that

PL0Q,PL1Q, . . . ,PL𝑘Q ∈ Mat𝑑 (Z).

But now, the polynomial

det(P) det(Q)𝐹 = det(𝑥0PL0Q + · · · + 𝑥𝑘PL𝑘Q)

has integer coefficients, so the coefficients of 𝐹 are not coprime.

□

The converse to the two statements above are not true for 𝑘 > 1. We give a counter
example in Section 7.6.

7.3 Algebraic number theory preliminaries
Before continuing, we will state some standard results from algebraic number theory
and prove some new ones that we require later. For general background on algebraic
number theory, we refer to [34].

For any 𝛼 ∈ 𝐾 , the multiplication map M : 𝐾 → 𝐾 given by M(𝑥) = 𝛼𝑥 is a
Q-linear map. The field norm of 𝛼, denoted by 𝑁𝐾/Q(𝛼), is the determinant ofM,
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as a Q-linear map. For a non-zero ideal 𝔞 ⊆ O𝐾 , the ideal norm of 𝔞, also denoted
𝑁𝐾/Q(𝔞), is the index [O𝐾 : 𝔞].

For 𝛼1, . . . , 𝛼𝑘 ∈ 𝐾 , define the denominator ideal

𝔇𝛼1,...,𝛼𝑘 ;𝐾 := {𝑥 ∈ O𝐾 : 𝑥𝛼𝑖 ∈ O𝐾 for all 𝑖 = 1, . . . , 𝑘} .

Equivalently, 𝔇𝛼1,...,𝛼𝑘 ;𝐾 = O𝐾 ∩ 𝛼−1
1 O𝐾 ∩ · · · ∩ 𝛼

−1
𝑘
O𝐾 . Such ideals have been

studied before, for example in [43].

For algebraic numbers 𝛼1, . . . , 𝛼𝑘 , we recall the definition of 𝐻 (𝛼1, . . . , 𝛼𝑘 ), first
defined in Chapter 6.

Definition 7.3.1. Let 𝛼1, . . . , 𝛼𝑘 ∈ 𝐾 = Q[𝛼1, . . . , 𝛼𝑘 ]. Define the quantity

𝐻 (𝛼1, . . . , 𝛼𝑘 ) := 𝑁𝐾/Q(𝔇𝛼1,...,𝛼𝑘 ;𝐾)
𝑑∏
𝑖=1
(1 + |𝜎𝑖 (𝛼1) | + |𝜎𝑖 (𝛼2) | + · · · + |𝜎𝑖 (𝛼𝑘 ) |).

The following result gives an alternative way to compute the norm of the denominator
ideal.

Theorem 7.3.2. Let 𝛼1, . . . , 𝛼𝑘 ∈ 𝐾 for some number field 𝐾 . Consider the poly-
nomial

𝐹 (𝑥0, . . . , 𝑥𝑘 ) := 𝑁𝐾/Q(𝑥0 + 𝑥1𝛼1 + . . . + 𝑥𝑘𝛼𝑘 ) ∈ Q[𝑥0, 𝑥1, . . . , 𝑥𝑘 ] .

Let 𝐷 > 0 be the smallest positive integer such that 𝐷𝐹 has integer coefficients.
Then 𝐷 = 𝑁𝐾/Q(𝔇𝛼1,...,𝛼𝑘 ;𝐾).

To prove this, we require the following variant of Gauss’s Lemma over the ring of
integers. We first define the content of a polynomial with coefficients in 𝐾 .

Definition 7.3.3. Let 𝐹 (𝑥) = 𝑎0 + 𝑎1𝑥 + · · · + 𝑎𝑛𝑥𝑛 ∈ 𝐾 [𝑥]. Define the content of
𝐹, denoted cont𝐾 (𝐹), to be the fractional ideal 𝑎0O𝐾 + 𝑎1O𝐾 + · · · + 𝑎𝑛O𝐾 ⊆ 𝐾 . If
it is clear from context, we omit the subscript and simply write cont(𝐹).

If 𝐹 ∈ Z[𝑥], then contQ(𝐹) = 𝑐Z, where 𝑐 ∈ Z is the usual content of 𝐹 as used in
the usual Gauss’s Lemma.

If 𝐾 ≤ 𝐿 is a field extension and 𝐹 ∈ 𝐾 [𝑥], then cont𝐿 (𝐹) = cont𝐾 (𝐹) · O𝐿 . In
particular, if 𝐹 ∈ Q[𝑥], then cont𝐾 (𝐹) = contQ(𝐹) · O𝐾 .
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Theorem 7.3.4 (Gauss’s Lemma over O𝐾). Let 𝐹, 𝐺 ∈ 𝐾 [𝑥] be two polynomials.
Then cont(𝐹𝐺) = cont(𝐹) cont(𝐺).

Proof. Let 𝐹 (𝑥) = 𝑎0 + 𝑎1𝑥 + · · · + 𝑎𝑛𝑥𝑛 and 𝐺 (𝑥) = 𝑏0 + 𝑏1𝑥 + · · · + 𝑏𝑚𝑥𝑚.
Then their product 𝐹 (𝑥)𝐺 (𝑥) = 𝑐0 + 𝑐1𝑥 + · · · + 𝑐𝑛+𝑚𝑥𝑛+𝑚 has coefficients 𝑐 𝑗 =

𝑎0𝑏 𝑗 + 𝑎1𝑏 𝑗−1 + · · · + 𝑎 𝑗𝑏0. It is clear that cont(𝐹𝐺) ⊆ cont(𝐹) cont(𝐺). To show
that cont(𝐹𝐺) ⊇ cont(𝐹) cont(𝐺), it suffices to show for any prime ideal 𝔭 ⊆ O𝐾 ,
𝜈𝔭 (cont(𝐹𝐺)) ≤ 𝜈𝔭 (cont(𝐹)) + 𝜈𝔭 (cont(𝐺)).

Suppose 𝜈𝔭 (cont(𝐹)) = 𝑠 and 𝜈𝔭 (cont(𝐺)) = 𝑡. Since

𝜈𝔭 (cont(𝐹)) = min(𝜈𝔭 (𝑎0), . . . , 𝜈𝔭 (𝑎𝑛)),

there exists an index 𝑘 such that 𝜈𝔭 (𝑎𝑘 ) = 𝑠. Let 𝑘 be the smallest such index, so
that 𝜈𝔭 (𝑎 𝑗 ) ≥ 𝑠 + 1 for 𝑗 = 0, . . . , 𝑘 − 1. Similarly, let 𝑙 be the smallest index such
that 𝜈𝔭 (𝑏𝑙) = 𝑡, so that 𝜈𝔭 (𝑏 𝑗 ) ≥ 𝑡 + 1 for 𝑗 = 0, . . . , 𝑙 − 1.

Consider the coefficient 𝑐𝑘+𝑙 =
∑𝑘+𝑙
𝑗=0 𝑎 𝑗𝑏𝑘+𝑙− 𝑗 . For 𝑗 = 𝑘 , the term 𝑎𝑘𝑏𝑙 satisfies

𝜈𝔭 (𝑎𝑘𝑏𝑙) = 𝜈𝔭 (𝑎𝑘 ) + 𝜈𝔭 (𝑏𝑙) = 𝑠 + 𝑡. For every other 𝑗 ≠ 𝑘 , either 𝑗 < 𝑘 (for which
𝜈𝔭 (𝑎 𝑗 ) ≥ 𝑠 + 1) or 𝑗 > 𝑘 (for which 𝜈𝔭 (𝑏𝑘+𝑙− 𝑗 ) ≥ 𝑡 + 1). In either case, we have
𝜈𝔭 (𝑎𝑘𝑏𝑙) ≥ 𝑠 + 𝑡 + 1. Therefore, 𝜈𝔭 (𝑐𝑘+𝑙) = 𝑠 + 𝑡, so we have 𝜈𝔭 (cont(𝐹𝐺)) ≤ 𝑠 + 𝑡
as required. □

Observe that we may define content for multivariate polynomials 𝐹 ∈ 𝐾 [𝑥0, . . . , 𝑥𝑘 ]
and our Gauss’s Lemma also holds for multivariate polynomials. Indeed, the set of
coefficients for 𝐹 (𝑥0, . . . , 𝑥𝑘 ) is the same as for 𝐹 (𝑥, 𝑥𝑁1 , . . . , 𝑥𝑁𝑘 ) for sufficiently
large 𝑁𝑘 ≫ 𝑁𝑘−1 ≫ · · · ≫ 𝑁1 ≫ 1. Thus, the content of 𝐹 is the same as the
content of 𝐹 (𝑥, 𝑥𝑁1 , . . . , 𝑥𝑁𝑘 ), so we may apply the univariate case.

Proof of Theorem 7.3.2. Let 𝜎1, . . . , 𝜎𝑑 : 𝐾 → C be the complex embeddings of
𝐾 , with 𝜎1 being the identity. Set 𝔇 = 𝔇𝛼1,...,𝛼𝑘 ;𝐾 . Then

𝐹 (𝑥0, . . . , 𝑥𝑘 ) = 𝑁𝐾/Q(𝑥0+𝑥1𝛼1+ . . .+𝑥𝑘𝛼𝑘 ) =
𝑑∏
𝑖=1
(𝑥0+𝑥1𝜎𝑖 (𝛼1) + · · ·+𝑥𝑘𝜎𝑖 (𝛼𝑘 )).

Let 𝐾′ ⊆ C be the smallest field containing 𝜎1(𝐾), . . . , 𝜎𝑑 (𝐾), that is, 𝐾′ is
the normal closure of 𝐾 over Q. By definition, 𝐷−1Z = contQ(𝐹), so we have
cont𝐾 ′ (𝐹) = 𝐷−1O𝐾 ′ . On the other hand, by Lemma 7.3.4,

cont𝐾 ′ (𝐹) =
∏
𝑖

cont𝐾 ′ (𝑥0 + 𝑥1𝜎𝑖 (𝛼1) + · · · + 𝑥𝑘𝜎𝑖 (𝛼𝑘 )).
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But we have

cont𝐾 ′ (𝑥0 + 𝑥1𝜎𝑖 (𝛼1) + · · · + 𝑥𝑘𝜎𝑖 (𝛼𝑘 )) = O𝐾 ′ + 𝜎𝑖 (𝛼1)O𝐾 ′ + · · · + 𝜎𝑖 (𝛼𝑘 )O𝐾 ′

= 𝜎𝑖 (O𝐾 ′ + 𝛼1O𝐾 ′ + · · · + 𝛼𝑘O𝐾 ′)
= 𝜎𝑖 (𝔇−1 · O𝐾 ′) = 𝜎𝑖 (𝔇)−1 · O𝐾 ′ .

Multiplying across all 𝑖, we get
∏
𝑖 𝜎𝑖 (𝔇)−1 · O𝐾 ′ = 𝑁𝐾/Q(𝔇)−1 · O𝐾 ′ , thus 𝐷 =

𝑁𝐾/Q(𝔇). □

7.4 Pre-commuting matrices
In general, we do not know the value of 𝐻 (L0, . . . ,L𝑘 ) in Problem 7.0.1. However,
we are able to solve the problem completely for the class of pre-commuting linear
transformations, defined below.

Definition 7.4.1. We say that L0, . . . ,L𝑘 ∈ Mat𝑑 (Q) are pre-commuting if there is
some P ∈ GL𝑑 (Q) such that PL0, . . . ,PL𝑘 pairwise commute.

For example, given algebraic numbers 𝜆1, . . . , 𝜆𝑘 , the linear maps L0, . . . ,L𝑘 ob-
tained from Chapter 6, Section 6.1 are pre-commuting. Indeed, L−1

0 L𝑙 = M𝑙 are
pairwise commuting, since they are equivalent to the map given by multiplication
by 𝜆𝑙 .

We remark that if there are only two linear transformations L0,L1, then pre-
commuting is a weak condition. Indeed, if L0 is non-singular (which holds if
L0,L1 are irreducible), then L0,L1 are pre-commuting, since L−1

0 L0 = 𝐼 and
L−1

0 L1 commute.

For pre-commuting matrices, the converses of Lemma 7.2.1 are true.

Theorem 7.4.2. Suppose L0, . . . ,L𝑘 ∈ Mat𝑑 (Z) are pre-commuting. Let 𝐹 be the
polynomial defined in (7.1). Then, the following holds.

1. 𝐹 is irreducible if and only if L0, . . . ,L𝑘 are irreducible.

2. The coefficients of 𝐹 are coprime if and only if L0, . . . ,L𝑘 are coprime.

We also have the following characterization of pre-commutative, irreducible, co-
prime matrices. Roughly speaking, it says that if L0, . . . ,L𝑘 ∈ Mat𝑑 (Z) are irre-
ducible, coprime and pre-commuting, then they arise from some algebraic numbers
𝜆1, . . . , 𝜆𝑘 .
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Theorem 7.4.3. Suppose L0, . . . ,L𝑘 ∈ Mat𝑑 (Z) are non-zero, pre-commuting,
irreducible and coprime. Then there exists a number field 𝐾 with deg(𝐾/Q) =
𝑑 and 𝜆1, . . . , 𝜆𝑘 ∈ 𝐾 , together with an isomorphism Ψ : 𝐾 → Q𝑑 such that
| det(L0) | = 𝑁𝐾/Q(𝔇𝜆1,...,𝜆𝑘 ;𝐾) and for all 𝑢 ∈ Q𝑑 and 𝑙 = 1, . . . , 𝑘 ,

L−1
0 L𝑙 (𝑢) = Ψ(𝜆𝑙 · Ψ−1(𝑢)).

Before proving these results, we prove some general results about commuting matri-
ces. The following folklore result (see, for example, [24, Corollary 2.4.6.4]) says that
pairwise-commuting maps are simultaneously upper-triangularizable. For a vector
space 𝑉 over a field 𝐾 , denote by End𝐾 (𝑉) the space of 𝐾-linear maps 𝑉 → 𝑉 . If
the field is clear in context, we omit the subscript and simply write End(𝑉).

Theorem 7.4.4. Let𝑉 be a 𝑑-dimensional complex vector space. Let L1, . . . ,L𝑘 ∈
End(𝑉) be pairwise-commuting matrices. Then, there is a basis 𝐵 = {𝑣1, . . . , 𝑣𝑑}
of𝑉 such that for 𝑙 = 1, . . . , 𝑘 , L𝑙 is represented by an upper-triangular matrix with
respect to 𝐵. In particular, 𝑣1 is a common eigenvector.

This gives the following about pre-commuting matrices.

Lemma 7.4.5. If L0, . . . ,L𝑘 ∈ Mat𝑑 (Q) are pre-commuting and 𝐹 is defined as in
(7.1), then 𝐹 factorizes over C into linear terms

𝐹 (𝑥0, . . . , 𝑥𝑘 ) =
𝑑∏
𝑖=1
(𝑎0𝑖𝑥0 + · · · + 𝑎𝑘𝑖𝑥𝑘 )

for some 𝑎𝑙𝑖 ∈ C.

Proof. Let P ∈ GL𝑑 (Q) be such that PL0, . . . ,PL𝑘 pairwise commute. By
Theorem 7.4.4, we may pick a basis such that the matrices PL𝑙 are simultaneously
upper triangular, sayM0, . . . ,M𝑘 ∈ Mat𝑑 (C). Let the diagonal entries ofM𝑙 be
𝑎𝑙1, . . . , 𝑎𝑙𝑑 . Then,

𝐹 =
1

detP det(𝑥0PL0 + · · · + 𝑥𝑘PL𝑘 )

=
1

detP det(𝑥0M0 + · · · + 𝑥𝑘M𝑘 )

=
1

detP

𝑑∏
𝑖=1
(𝑎0𝑖𝑥0 + · · · + 𝑎𝑘𝑖𝑥𝑘 ).

The lemma follows by absorbing 1
detP into one of the linear terms. □
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In general, commuting matrices may not be simultaneously diagonalizable. How-
ever, we can always decompose the space into simultaneous generalized eigenspaces.

Definition 7.4.6. Let𝑉 be a finite dimensional complex vector space andL1, . . . ,L𝑘
be linear maps in End(𝑉). For 𝜆 = (𝜆1, . . . , 𝜆𝑘 ) ∈ C𝑘 , the simultaneous generalized
𝜆-eigenspace 𝐸

𝜆
is the subspace of vectors 𝑣 ∈ 𝑉 such that for 𝑙 = 1, . . . , 𝑘 , there

exists a positive integer 𝑚 such that (L𝑙 − 𝜆𝑙 𝐼)𝑚𝑣 = 0.

Theorem 7.4.7 ([24, Corollary 2.4.6.4]). Let 𝑉 be a finite dimensional complex
vector space and L1, . . . ,L𝑘 ∈ End(𝑉) be pairwise-commuting. Then, 𝑉 can be
decomposed into simultaneous generalized eigenspaces. In other words, there is a
finite Λ ⊂ C𝑘 such that for each 𝜆 ∈ Λ, the simultaneous generalized eigenspace 𝐸

𝜆

are non-trivial and we have the decomposition

𝑉 =
⊕
𝜆∈Λ

𝐸
𝜆
.

Let L0, . . . ,L𝑘 be pairwise-commuting, then there exists a basis for which they
are simultaneously upper-triangular. If L0, . . . ,L𝑘 have rational entries, we do
not expect the entries of the upper-triangular matrices to be rational in general.
Nevertheless, we have the following structural result about pairwise-commuting
matrices with rational coefficients, which roughly says that they must come from
upper-triangular matrices over some number field 𝐾 .

Theorem 7.4.8. Let L1, . . . ,L𝑘 ∈ Mat𝑑 (Q) be pairwise-commuting. Then, there is
a positive integer 𝑟, number fields 𝐾1, . . . , 𝐾𝑟 , positive integers 𝑒1, . . . , 𝑒𝑟 , and a Q-
isomorphism Ψ :

⊕𝑟

𝑖=1 𝐾
𝑒𝑖
𝑖
→ Q𝑑 , such that for each 𝑖 = 1, . . . , 𝑟 and 𝑙 = 1, . . . , 𝑘 ,

1. 𝐾𝑒𝑖
𝑖

is an invariant subspace of Ψ−1L𝑙Ψ ∈ EndQ(
⊕𝑟

𝑖=1 𝐾
𝑒𝑖
𝑖
);

2. the restriction (Ψ−1L𝑙Ψ) |𝐾𝑒𝑖
𝑖
∈ EndQ(𝐾𝑒𝑖𝑖 ) is in fact in End𝐾𝑖 (𝐾

𝑒𝑖
𝑖
);

3. there is an upper-triangular matrix 𝑀 (𝑖)
𝑙
∈ Mat𝑒𝑖 (𝐾𝑖), such that the 𝐾𝑖-linear

map (Ψ−1L𝑙Ψ) |𝐾𝑒𝑖
𝑖
∈ End𝐾𝑖 (𝐾

𝑒𝑖
𝑖
) is represented by the matrix 𝑀

(𝑖)
𝑙

with
respect to the standard basis of 𝐾𝑒𝑖

𝑖
;

4. there are 𝜆(𝑖)1 , . . . , 𝜆
(𝑖)
𝑘
∈ 𝐾𝑖 such that 𝐾𝑖 = Q(𝜆(𝑖)1 , . . . , 𝜆

(𝑖)
𝑘
) and the diagonal

entries of 𝑀 (𝑖)
𝑙

are all 𝜆(𝑖)
𝑙

.
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Proof. Viewing L1, . . . ,L𝑘 as linear maps on C𝑑 , Theorem 7.4.7 gives us a decom-
position C𝑘 =

⊕
𝜆∈Λ 𝐸𝜆 into simultaneous generalized eigenspaces 𝐸

𝜆
⊆ C𝑘 .

Let 𝜎 ∈ Gal(C/Q) be any automorphism of C over Q. Let 𝜆 = (𝜆1, . . . , 𝜆𝑘 ) ∈ Λ

and 𝑣 ∈ 𝐸
𝜆

be any vector. Then for each 𝑙 = 1, . . . , 𝑘 , there is a positive integer 𝑚
such that (L𝑙 − 𝜆𝑙 𝐼)𝑚𝑣 = 0. Then we have

0 = 𝜎((L𝑙 − 𝜆𝑙 𝐼)𝑚𝑣) = (L𝑙 − 𝜎(𝜆𝑙))𝑚𝜎(𝑣).

Therefore, 𝜎(𝜆) ∈ Λ and 𝜎(𝑣) ∈ 𝐸
𝜎(𝜆) . It follows that Λ is closed under 𝜎 and

𝜎(𝐸
𝜆
) = 𝐸

𝜎(𝜆) , so Λ can be partitioned into orbits under the action of Gal(C/Q).
Denote by Λ(𝜆) the orbit containing 𝜆, and let Λ∗ ⊆ Λ be any collection of orbit
representatives. In particular, we have the partition Λ =

⊔
𝜆∈Λ∗ Λ(𝜆).

Let Λ∗ =

{
𝜆
(1)
, 𝜆
(2)
, . . . , 𝜆

(𝑟)}. For 𝑖 = 1, . . . , 𝑟 , let 𝐾𝑖 = Q(𝜆(𝑖)1 , . . . , 𝜆
(𝑖)
𝑘
) and

𝑒𝑖 = dimC 𝐸
𝜆
(𝑖) . Let 𝑑𝑖 = deg(𝐾𝑖/Q), then there are exactly 𝑑𝑖 different field

embeddings 𝜎 : 𝐾𝑖 → C, each determined by the image 𝜎(𝜆(𝑟)). Therefore,
|Λ(𝜆(𝑟)) | = 𝑑𝑖. Define the subspace of C𝑑

𝐸𝑖 :=
⊕

𝜆∈Λ(𝜆 (𝑖) )

𝐸
𝜆
,

then dimC 𝐸𝑖 = 𝑑𝑖𝑒𝑖. We also have the (L1, . . . ,L𝑘 )-invariant decomposition

C𝑑 =
𝑟⊕
𝑖=1

𝐸𝑖,

so that 𝑑 = 𝑑1𝑒1 + · · · + 𝑑𝑟𝑒𝑟 .

By Theorem 7.4.4, we can find a basis 𝐵𝑖 =

{
𝑣
(𝑖)
1 , . . . , 𝑣

(𝑖)
𝑒𝑖

}
of 𝐸

𝜆
(𝑖) such that

for 𝑙 = 1, . . . , 𝑘 , the restriction L𝑙 |𝐸
𝜆
(𝑖) is given by an upper-triangular matrix

𝑀
(𝑖)
𝑙
∈ Mat𝑒𝑖 (C) with respect to 𝐵𝑖. Since 𝐾𝑖 = Q(𝜆(𝑖)), we may even assume that

𝐵𝑖 ⊂ 𝐾𝑑𝑖 and 𝑀 (𝑖)
𝑙
∈ Mat𝑒𝑖 (𝐾𝑖). Since the L𝑙’s commute, so do the 𝑀 (𝑖)

𝑙
’s. Note

that 𝑀 (𝑖)
𝑙

has 𝜆(𝑖)
𝑙

along the whole diagonal. In particular, its top left entry is 𝜆(𝑖)
𝑙

.
Therefore 𝐾𝑖 is generated by the top left entries of 𝑀 (𝑖)1 , . . . , 𝑀

(𝑖)
𝑘

, proving (4) in the
theorem.

Let 𝜎1, . . . , 𝜎𝑑𝑖 : 𝐾𝑖 → C be all the field embeddings of 𝐾𝑖 into C. Since 𝐵𝑖 ⊂
𝐾𝑑
𝑖

is a basis for 𝐸
𝜆
(𝑖) , for each 𝑗 = 1, . . . , 𝑑𝑖, 𝜎𝑗 (𝐵𝑖) ⊂ 𝜎𝑗 (𝐾𝑖)𝑑 is a basis for

𝐸
𝜎𝑗 (𝜆

(𝑖) ) . Furthermore, the restriction L𝑙 |𝐸
𝜎𝑗 (𝜆

(𝑖) )
is given by the upper-triangular



126

matrix 𝜎𝑗 (𝑀 (𝑖)𝑙 ) ∈ Mat𝑒𝑖 (𝜎𝑗 (𝐾𝑖)) with respect to 𝜎𝑗 (𝐵𝑖). Therefore, the union
𝐵 =

⋃𝑑𝑖
𝑗=1 𝜎𝑗 (𝐵𝑖) is a basis for

𝑑𝑖⊕
𝑗=1

𝐸
𝜎𝑗 (𝜆

(𝑖) ) = 𝐸𝑖 .

Claim 7.4.9. dimQ(𝐸𝑖 ∩ Q𝑑) = 𝑑𝑖𝑒𝑖.

Proof. Let 𝛼 ∈ 𝐾𝑖 be a generator, i.e., 𝐾𝑖 = Q(𝛼). Then, 𝜎1(𝛼), . . . , 𝜎𝑑𝑖 (𝛼) are all
distinct. For 𝑚 = 1, . . . , 𝑒𝑖 and 𝑗 = 1, . . . , 𝑑𝑖, define the vector

𝑢𝑚 𝑗 := 𝜎1(𝛼 𝑗−1𝑣
(𝑖)
𝑚 ) + 𝜎2(𝛼 𝑗−1𝑣

(𝑖)
𝑚 ) + · · · + 𝜎𝑑𝑖 (𝛼 𝑗−1𝑣

(𝑖)
𝑚 ) ∈ C𝑑 .

We see that 𝑢𝑚 𝑗 is a C-linear combination of vectors in 𝐸𝑖, thus 𝑢𝑚 𝑗 ∈ 𝐸𝑖. On the
other hand, we can write 𝑢𝑚 𝑗 = Tr𝐾𝑖/Q(𝛼 𝑗−1𝑣

(𝑖)
𝑚 ) ∈ Q𝑑 , thus 𝑢𝑚 𝑗 ∈ 𝐸𝑖 ∩ Q𝑑 . It

suffices to show that the vectors 𝑢𝑚 𝑗 form a basis for 𝐸𝑖 ∩Q𝑑 . To this end, we show
that each 𝜎𝑗 (𝑣 (𝑖)𝑚 ) can be written as a C-linear combination of the 𝑢𝑚 𝑗 ’s.

We can express the 𝑢𝑚 𝑗 ’s in the following way. Fix an 𝑚. Then, viewing 𝑢𝑚 𝑗 and
𝜎𝑗 (𝑣 (𝑖)𝑚 ) as column vectors, we have the following identity of 𝑑 × 𝑑𝑖 matrices

(
𝑢𝑚1 · · · 𝑢𝑚𝑑𝑖

)
=

(
𝜎1(𝑣 (𝑖)𝑚 ) · · · 𝜎𝑑𝑖 (𝑣

(𝑖)
𝑚 )

) ©­­­­­«
𝜎1(1) 𝜎1(𝛼) · · · 𝜎1(𝛼𝑑𝑖−1)
𝜎2(1) 𝜎2(𝛼) · · · 𝜎2(𝛼𝑑𝑖−1)
...

...
. . .

...

𝜎𝑑𝑖 (1) 𝜎𝑑𝑖 (𝛼) · · · 𝜎𝑑𝑖 (𝛼𝑑𝑖−1)

ª®®®®®¬
.

Note that the Vandermonde matrix

𝑆 =

©­­­­­«
𝜎1(1) 𝜎1(𝛼) · · · 𝜎1(𝛼𝑑𝑖−1)
𝜎2(1) 𝜎2(𝛼) · · · 𝜎2(𝛼𝑑𝑖−1)
...

...
. . .

...

𝜎𝑑𝑖 (1) 𝜎𝑑𝑖 (𝛼) · · · 𝜎𝑑𝑖 (𝛼𝑑𝑖−1)

ª®®®®®¬
has non-zero determinant, hence is invertible. Thus, we have(

𝑢𝑚1 · · · 𝑢𝑚𝑑𝑖

)
𝑆−1 =

(
𝜎1(𝑣 (𝑖)𝑚 ) · · · 𝜎𝑑𝑖 (𝑣

(𝑖)
𝑚 )

)
.

This shows that each 𝜎𝑗 (𝑣 (𝑖)𝑚 ) can be expressed as a C-linear combination of the
𝑢𝑚 𝑗 ’s, as desired.

□
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From the claim, we have a (L1, . . . ,L𝑘 )-invariant decomposition

Q𝑑 =

𝑟⊕
𝑖=1
(𝐸𝑖 ∩ Q𝑑).

By focusing on each subspace 𝐸𝑖 ∩ Q𝑑 , we may assume that 𝑟 = 1.

We will now define the Q-isomorphism Ψ : 𝐾𝑒1
1 → Q𝑑 . First observe that 𝑑 = 𝑒1𝑑1,

so the dimensions match. Let 𝑥1, . . . , 𝑥𝑒1 be the standard basis for 𝐾𝑒1
1 . Note that

for 𝑙 = 1, . . . , 𝑘 , the upper-triangular matrix 𝑀 (1)
𝑙
∈ Mat𝑒1 (𝐾1) has diagonal entries

all 𝜆(1)
𝑙

. Since 𝜆(1)1 , . . . , 𝜆
(1)
𝑘

generate 𝐾1, it follows that any 𝑣 ∈ 𝐾𝑒1
1 can be written

in the form

𝑣 = 𝑃1(𝑀 (1)1 , . . . , 𝑀
(1)
𝑘
)𝑥1 + · · · + 𝑃𝑒1 (𝑀

(1)
1 , . . . , 𝑀

(1)
𝑘
)𝑥𝑒1 ,

for some polynomials 𝑃1, . . . , 𝑃𝑒1 in 𝑘 variables and rational coefficients.

For 𝑚 = 1, . . . , 𝑒1, let 𝑢𝑚 = 𝜎1(𝑣 (1)𝑚 ) +𝜎2(𝑣 (1)𝑚 ) + · · · +𝜎𝑑1 (𝑣
(1)
𝑚 ). From the proof of

the claim, we have 𝑢𝑚 ∈ Q𝑑 . Define Ψ by setting

Ψ(𝑣) = 𝑃1(L1, . . . ,L𝑘 )𝑢1 + · · · + 𝑃𝑒1 (L1, . . . ,L𝑘 )𝑢𝑒1 .

Claim 7.4.10. Ψ is well-defined and is an isomorphism.

Proof. We first show that Ψ is well-defined. Suppose we have two different repre-
sentations of 𝑣,

𝑣 = 𝑃1(𝑀 (1)1 , . . . , 𝑀
(1)
𝑘
)𝑥1 + · · · + 𝑃𝑒1 (𝑀

(1)
1 , . . . , 𝑀

(1)
𝑘
)𝑥𝑒1

= 𝑃′1(𝑀
(1)
1 , . . . , 𝑀

(1)
𝑘
)𝑥1 + · · · + 𝑃′𝑒1

(𝑀 (1)1 , . . . , 𝑀
(1)
𝑘
)𝑥𝑒1 .

We wish to show that

𝑃1(L1, . . . ,L𝑘 )𝑢1 + · · · + 𝑃𝑒1 (L1, . . . ,L𝑘 )𝑢𝑒1

= 𝑃′1(L1, . . . ,L𝑘 )𝑢1 + · · · + 𝑃′𝑒1
(L1, . . . ,L𝑘 )𝑢𝑒1 .

Without loss of generality, suppose that 𝜎1 is the identity. For 𝑗 = 1, . . . , 𝑑1, let 𝜋 𝑗
be the projection

𝜋 𝑗 : C𝑑 =
𝑑1⊕
𝑗 ′=1

𝐸
𝜎𝑗′ (𝜆

(1) ) → 𝐸
𝜎𝑗 (𝜆

(1) ) .

Note that 𝜋 𝑗 commutes with L1, . . . ,L𝑘 , since their simultaneous generalized
eigenspaces are (L1, . . . ,L𝑘 )-invariant. Recall that in 𝐸

𝜎𝑗 (𝜆
(1) ) , we have a ba-

sis 𝜎𝑗 (𝐵1) such that L𝑙 is represented by the matrix 𝜎𝑗 (𝑀 (1)𝑙 ). In other words, for
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any polynomial 𝑃 in 𝑘 variables and rational coefficients, for any 𝑚 = 1, . . . , 𝑒1,
the vector 𝑃(L1, . . . ,L𝑘 )𝜎𝑗 (𝑣 (1)𝑚 ) is represented by 𝑃(𝜎𝑗 (𝑀 (1)1 ), . . . , 𝜎𝑗 (𝑀

(1)
𝑘
))𝑥𝑚

with respect to 𝜎𝑗 (𝐵1). Therefore,

𝜋 𝑗 (𝑃1(L1, . . . ,L𝑘 )𝑢1 + · · · + 𝑃𝑒1 (L1, . . . ,L𝑘 )𝑢𝑒1)
= 𝑃1(L1, . . . ,L𝑘 )𝜋 𝑗 (𝑢1) + · · · + 𝑃𝑒1 (L1, . . . ,L𝑘 )𝜋 𝑗 (𝑢𝑒1)
= 𝑃1(L1, . . . ,L𝑘 )𝜎𝑗 (𝑣 (1)1 ) + · · · + 𝑃𝑒1 (L1, . . . ,L𝑘 )𝜎𝑗 (𝑣 (1)𝑒1 ).

With respect to the basis 𝜎𝑗 (𝐵1), the above is represented by

𝑃1(𝜎𝑗 (𝑀 (1)1 ), . . . , 𝜎𝑗 (𝑀
(1)
𝑘
))𝑥1 + · · · + 𝑃𝑒1 (𝜎𝑗 (𝑀

(1)
1 ), . . . , 𝜎𝑗 (𝑀

(1)
𝑘
))𝑥𝑒1

= 𝜎𝑗 (𝑃1(𝑀 (1)1 , . . . , 𝑀
(1)
𝑘
)𝑥1 + · · · + 𝑃𝑒1 (𝑀

(1)
1 , . . . , 𝑀

(1)
𝑘
)𝑥𝑒1)

= 𝜎𝑗 (𝑃′1(𝑀
(1)
1 , . . . , 𝑀

(1)
𝑘
)𝑥1 + · · · + 𝑃′𝑒1

(𝑀 (1)1 , . . . , 𝑀
(1)
𝑘
)𝑥𝑒1).

It follows that

𝜋 𝑗 (𝑃1(L1, . . . ,L𝑘 )𝑢1 + · · · + 𝑃𝑒1 (L1, . . . ,L𝑘 )𝑢𝑒1)
= 𝜋 𝑗 (𝑃′1(L1, . . . ,L𝑘 )𝑢1 + · · · + 𝑃′𝑒1

(L1, . . . ,L𝑘 )𝑢𝑒1).

Since this holds for all 𝑗 , we have

𝑃1(L1, . . . ,L𝑘 )𝑢1 + · · · + 𝑃𝑒1 (L1, . . . ,L𝑘 )𝑢𝑒1

= 𝑃′1(L1, . . . ,L𝑘 )𝑢1 + · · · + 𝑃′𝑒1
(L1, . . . ,L𝑘 )𝑢𝑒1 .

This proves that Ψ is well-defined.

Next, we show that Ψ is an isomorphism. It is not hard to see that Ψ is Q-
linear. Since the dimensions of Q𝑑 and 𝐾

𝑒1
1 agree, it suffices to show that Ψ

has trivial kernel. Indeed, suppose that for some 𝑣 = 𝑃1(𝑀 (1)1 , . . . , 𝑀
(1)
𝑘
)𝑥1 + · · · +

𝑃𝑒1 (𝑀
(1)
1 , . . . , 𝑀

(1)
𝑘
)𝑥𝑒1 , we have 𝑃1(L1, . . . ,L𝑘 )𝑢1+· · ·+𝑃𝑒1 (L1, . . . ,L𝑘 )𝑢𝑒1 = 0.

From the arguments above, this implies that for each 𝑗 = 1, . . . , 𝑑1, we have

𝜋 𝑗 (𝑃1(L1, . . . ,L𝑘 )𝑢1 + · · · + 𝑃𝑒1 (L1, . . . ,L𝑘 )𝑢𝑒1) = 0.

This shows that 𝑃1(L1, . . . ,L𝑘 )𝑢1 + · · · + 𝑃𝑒1 (L1, . . . ,L𝑘 )𝑢𝑒1 = 0. Therefore, Ψ
is injective, hence an isomorphism. □

To finish the theorem, it suffices to show that:

1. Ψ−1L𝑙Ψ ∈ End𝐾1 (𝐾
𝑒1
1 );
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2. Ψ−1L𝑙Ψ is represented by 𝑀 (1)
𝑙

with respect to the standard basis of 𝐾𝑒1
1 .

To this end, it suffices to show that for any 𝑣 ∈ 𝐾𝑒1
1 , we have Ψ−1L𝑙Ψ(𝑣) = 𝑀 (1)𝑙 𝑣.

Write 𝑣 in the form

𝑣 = 𝑃1(𝑀 (1)1 , . . . , 𝑀
(1)
𝑘
)𝑥1 + · · · + 𝑃𝑒1 (𝑀

(1)
1 , . . . , 𝑀

(1)
𝑘
)𝑥𝑒1 .

For 𝑚 = 1, . . . , 𝑒1, let 𝑃′𝑚 be the polynomial 𝑃′𝑚 (𝑧1, . . . , 𝑧𝑘 ) = 𝑧𝑙𝑃𝑚 (𝑧1, . . . , 𝑧𝑘 ).
Then, we have

Ψ−1L𝑙Ψ(𝑣) = Ψ−1L𝑙Ψ(𝑃1(𝑀 (1)1 , . . . , 𝑀
(1)
𝑘
)𝑥1 + · · · + 𝑃𝑒1 (𝑀

(1)
1 , . . . , 𝑀

(1)
𝑘
)𝑥𝑒1)

= Ψ−1L𝑙 (𝑃1(L1, . . . ,L𝑘 )𝑢1 + · · · + 𝑃𝑒1 (L1, . . . ,L𝑘 )𝑢𝑒1)
= Ψ−1(𝑃′1(L1, . . . ,L𝑘 )𝑢1 + · · · + 𝑃′𝑒1

(L1, . . . ,L𝑘 )𝑢𝑒1)
= 𝑃′1(𝑀

(1)
1 , . . . , 𝑀

(1)
𝑘
)𝑥1 + · · · + 𝑃′𝑒1

(𝑀 (1)1 , . . . , 𝑀
(1)
𝑘
)𝑥𝑒1

= 𝑀
(1)
𝑙
(𝑃1(𝑀 (1)1 , . . . , 𝑀

(1)
𝑘
)𝑥1 + · · · + 𝑃𝑒1 (𝑀

(1)
1 , . . . , 𝑀

(1)
𝑘
)𝑥𝑒1)

= 𝑀
(1)
𝑙
𝑣.

□

If in addition, L1, . . . ,L𝑘 have no non-trivial common invariant subspace, then we
can say a lot more about their structure. Roughly speaking, this says thatL1, . . . ,L𝑘
are similar to multiplication by algebraic numbers.

Lemma 7.4.11. Let L1, . . . ,L𝑘 ∈ Mat𝑑 (Q) be pairwise-commuting and have no
non-trivial common invariant subspace. Then, there is a number field 𝐾 of degree
𝑑, algebraic numbers 𝜆1, . . . , 𝜆𝑘 ∈ 𝐾 and a Q-isomorphism Ψ : 𝐾 → Q𝑑 such that

1. 𝐾 = Q(𝜆1, . . . , 𝜆𝑘 );

2. for 𝑙 = 1, . . . , 𝑘 , the map Ψ−1L𝑙Ψ : 𝐾 → 𝐾 is given by multiplication by 𝜆𝑙 .

Proof. By Theorem 7.4.8, there is a (L1, . . . ,L𝑘 )-invariant decomposition

Q𝑑 �
𝑟⊕
𝑖=1

𝐾
𝑒𝑖
𝑖
.

Since L0, . . . ,L𝑘 have no non-trivial common invariant subspace, 𝑟 = 1. So we
have an isomorphism Ψ : 𝐾𝑒 → Q𝑑 for some number field 𝐾 and positive integer
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𝑒. For 𝑙 = 1, . . . , 𝑘 , let 𝑀𝑙 = Ψ−1PL𝑙Ψ ∈ Mat𝑒 (𝐾) be upper-triangular. Then, the
subspace 𝐾 ×0𝑒−1 ⊂ 𝐾𝑒 is 𝑀𝑙-invariant for all 𝑙. Thus, Ψ(𝐾 ×0𝑒−1) is L𝑙-invariant.
Since L0, . . . ,L𝑘 have no non-trivial common invariant subspace, we must have
𝑒 = 1.

This gives an isomorphism Ψ : 𝐾 → Q𝑑 , and the matrices 𝑀𝑙 are just single
elements 𝜆𝑙 ∈ 𝐾 , so that Ψ−1L𝑙Ψ acts on 𝐾 as multiplication by 𝜆𝑙 . Furthermore,
by Theorem 7.4.8(4), 𝐾 = Q(𝜆1, . . . , 𝜆𝑘 ). □

We now prove the first part of Theorem 7.4.2, which can be stated as follows.

Lemma 7.4.12. Suppose L0, . . . ,L𝑘 ∈ Mat𝑑 (Z) are pre-commuting and 𝐹 is de-
fined as in (7.1). Then 𝐹 is irreducible over Q if and only if L0, . . . ,L𝑘 are
irreducible.

Proof. The forward direction is already proven in Lemma 7.2.1, so we only have to
prove the reverse direction. Assume that L0, . . . ,L𝑘 are irreducible.

Let P ∈ GL𝑑 (Q) be such that PL0, . . . ,PL𝑘 are pairwise commuting. Since
L0, . . . ,L𝑘 are irreducible, PL0, . . . ,PL𝑘 have no non-trivial common invariant
subspace. By Lemma 7.4.11, there is a number field 𝐾 of degree 𝑑, algebraic
numbers 𝜆0, . . . , 𝜆𝑘 ∈ 𝐾 and a Q-isomorphism Ψ : 𝐾 → Q𝑑 such that

1. 𝐾 = Q(𝜆0, . . . , 𝜆𝑘 );

2. for 𝑙 = 0, . . . , 𝑘 , the map Ψ−1PL𝑙Ψ : 𝐾 → 𝐾 is given by multiplication by
𝜆𝑙 .

We have

𝐹 (𝑥0, . . . , 𝑥𝑘 ) = det(𝑥0L0 + · · · + 𝑥𝑘L𝑘 )

=
1

detP det(𝑥0PL0 + · · · + 𝑥𝑘PL𝑘 )

=
1

detP 𝑁𝐾/Q(𝑥0𝜆0 + · · · + 𝑥𝑘𝜆𝑘 )

=
1

detP

𝑑∏
𝑖=1
(𝑥0𝜎𝑖 (𝜆0) + · · · + 𝑥𝑘𝜎𝑖 (𝜆𝑘 )),

where 𝜎1, . . . , 𝜎𝑑 : 𝐾 → C are all the field embeddings of 𝐾 into C.
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Suppose 𝐹 is reducible into 𝐹 = 𝐺𝐻. Then, one of 𝐺 or 𝐻, say 𝐺, contains
the linear factor (𝑥0𝜆0 + · · · + 𝑥𝑘𝜆𝑘 ). Since 𝐺 has rational coefficients, it must also
contain the factors 𝜎𝑖 (𝑥0𝜆0+· · ·+𝑥𝑘𝜆𝑘 ) = 𝑥0𝜎𝑖 (𝜆0) + · · ·+𝑥𝑘𝜎𝑖 (𝜆𝑘 ) for 𝑖 = 1, . . . , 𝑑.

Recall that 𝐾 is generated by 𝜆0, . . . , 𝜆𝑘 , thus the tuples (𝜎𝑖 (𝜆0), . . . , 𝜎𝑖 (𝜆𝑘 )) are
distinct for 𝑖 = 1, . . . , 𝑑. Therefore, 𝐺 contains all the factors of 𝐹, contradicting
the irreducibility of 𝐹.

□

Next, we prove Theorem 7.4.3. We leave the second part of Theorem 7.4.2 for last
since it is the trickiest.

Proof of Theorem 7.4.3. Let P ∈ GL𝑑 (Q) be such that PL0, . . . ,PL𝑘 are pair-
wise commuting. Since L0, . . . ,L𝑘 are irreducible, PL0, . . . ,PL𝑘 have no non-
trivial common invariant subspace. Let 𝐾, 𝜆0, . . . , 𝜆𝑘 ,Ψ be as in the conclusion of
Lemma 7.4.11.

Since all of the L0, . . . ,L𝑘 are non-zero, all of the 𝜆0, . . . , 𝜆𝑘 are non-zero. In
particular, L0 is invertible over Q. Since 𝐼, (PL0)−1PL1, . . . , (PL0)−1PL𝑘 are
also pairwise-commuting, we may assume without loss of generality that P = L−1

0 .
Thus, 𝜆0 = 1. By definition of Ψ and 𝜆1, . . . , 𝜆𝑘 , we have for all 𝑢 ∈ Q𝑑 and
𝑙 = 1, . . . , 𝑘 ,

L−1
0 L𝑙 (𝑢) = Ψ(𝜆𝑙 · Ψ−1(𝑢)).

It suffices to show that | det(L0) | = 𝑁𝐾/Q(𝔇𝜆1,...,𝜆𝑘 ;𝐾). We have

𝐹 = det(𝑥0L0 + · · · + 𝑥𝑘L𝑘 )
= det(L0) det(𝑥0 + 𝑥1L−1

0 L1 + · · · + 𝑥𝑘L−1
0 L𝑘 )

= det(L0)𝑁𝐾/Q(𝑥0 + 𝑥1𝜆1 + · · · + 𝑥𝑘𝜆𝑘 ).

Since L0, . . . ,L𝑘 are coprime, 𝐹 has coprime integer coefficients. By Theo-
rem 7.3.2, 𝑁𝐾/Q(𝔇𝜆1,...,𝜆𝑘 ;𝐾) is the smallest positive integer required to scale
𝑁𝐾/Q(𝑥0 + 𝑥1𝜆1 + · · · + 𝑥𝑘𝜆𝑘 ) into an integer polynomial. Thus, | det(L0) | =
𝑁𝐾/Q(𝔇𝜆1,...,𝜆𝑘 ;𝐾).

□

Finally, we prove the second part of Theorem 7.4.2. For a 𝑑-dimensional Q-vector
space 𝑉 and 𝑑-dimensional lattices 𝑍1, 𝑍2 ⊂ 𝑉 , set [𝑍1 : 𝑍2] = [𝑍 : 𝑍2]/[𝑍 : 𝑍1],
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where 𝑍 ⊂ 𝑉 is any lattice containing 𝑍1, 𝑍2 (for instance, 𝑍 = 𝑍1 + 𝑍2). We begin
with the following lemma.

Lemma 7.4.13. Let 𝑉 be a 𝑑-dimensional Q-vector space and let L1, . . . ,L𝑘 ∈
End(𝑉) be pairwise-commuting. Define the 𝑘-variate polynomial

𝐹𝑉 (𝑥1, . . . , 𝑥𝑘 ) = det(𝑥1L1 + · · · + 𝑥𝑘L𝑘 ).

Let 𝑐 = cont(𝐹𝑉 ) be the content of 𝐹𝑉 .

1. If 𝑐 = 0, then L1(𝑉) + · · · + L𝑘 (𝑉) is a stict subspace of 𝑉 .

2. If 𝑐 > 0, then there are 𝑑-dimensional lattices 𝑍1, 𝑍2 ⊂ 𝑉 such that [𝑍1 :
𝑍2] = 𝑐 and for 𝑙 = 1, . . . , 𝑘 , L𝑙 (𝑍1) ⊆ 𝑍2.

Proof. We induct on 𝑑. Suppose𝑉 can be decomposed into𝑈 ⊕𝑊 where𝑈,𝑊 ⊂ 𝑉
are non-trivial and (L1, . . . ,L𝑘 )-invariant. Let 𝐹𝑈 , 𝐹𝑊 be the corresponding poly-
nomials for the restriction of L1, . . . ,L𝑘 onto𝑈,𝑊 , respectively. Then 𝐹𝑉 = 𝐹𝑈𝐹𝑊

and 𝑐 = cont(𝐹𝑈) cont(𝐹𝑊 ). If 𝑐 = 0, then one of cont(𝐹𝑈) or cont(𝐹𝑊 ) is zero, and
the lemma follows by our induction hypothesis. Otherwise, cont(𝐹𝑈) cont(𝐹𝑊 ) ≠ 0.

By our induction hypothesis, we can find full lattices 𝑋1, 𝑋2 ⊂ 𝑈 and 𝑌1, 𝑌2 ⊂ 𝑊
such that [𝑋1 : 𝑋2] = cont(𝐹𝑈), [𝑌1 : 𝑌2] = cont(𝐹𝑊 ) and for 𝑙 = 1, . . . , 𝑘 ,
L𝑙 (𝑋1) ⊆ 𝑋2 and L𝑙 (𝑌1) ⊆ 𝑌2. Take 𝑍𝑖 = 𝑋𝑖 ⊕ 𝑌𝑖 ⊂ 𝑉 for 𝑖 = 1, 2. Then,
[𝑍1 : 𝑍2] = [𝑋1 : 𝑋2] [𝑌1 : 𝑌2] = 𝑐 and L𝑙 (𝑍1) = L𝑙 (𝑋1) + L𝑙 (𝑌1) ⊆ 𝑋2 + 𝑌2 = 𝑍2.

Thus, we may assume that 𝑉 cannot be decomposed into such 𝑈 ⊕ 𝑊 . By The-
orem 7.4.8 and the indecomposability of 𝑉 , there is a number field 𝐾 , a positive
integer 𝑒, a Q-isomorphism Ψ : 𝐾𝑒 → 𝑉 , and for each 𝑙 = 1, . . . , 𝑘 , an element
𝜆𝑙 ∈ 𝐾 and an upper-triangular matrix 𝑀𝑙 ∈ Mat𝑒 (𝐾) with diagonal entries 𝜆𝑙 ,
satisfying 𝐾 = Q(𝜆1, . . . , 𝜆𝑘 ) and for each 𝑣 ∈ 𝐾𝑒,

Ψ−1L𝑙Ψ𝑣 = 𝑀𝑙𝑣.

We have

𝐹𝑉 = det(𝑥1L1 + · · · + 𝑥𝑘L𝑘 )
= 𝑁𝐾/Q det(𝑥1𝑀1 + · · · + 𝑥𝑘𝑀𝑘 )
= 𝑁𝐾/Q(𝑥1𝜆1 + · · · + 𝑥𝑘𝜆𝑘 )𝑒 .
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So if 𝑐 = 0, then 𝜆1 = · · · = 𝜆𝑘 = 0. Since 𝑀𝑙 are upper-triangular with zeros on the
diagonal, their images lie in a common strict subspace. Thus, L1(𝑉) + · · · + L𝑘 (𝑉)
is a stict subspace of 𝑉 .

Otherwise, assume that 𝑐 ≠ 0, so that not all 𝜆𝑙 are zero. Let 𝑓 = deg(𝐾/Q),
then 𝑑 = 𝑒 𝑓 . Let 𝔟 be the fractional ideal 𝜆1O𝐾 + · · · + 𝜆𝑘O𝐾 . By Theorem 7.3.2,
𝑁𝐾/Q(𝔟) is equal to the content of the polynomial 𝑁𝐾/Q(𝑥1𝜆1 + · · · + 𝑥𝑘𝜆𝑘 ). Thus,
𝑐 = 𝑁𝐾/Q(𝔟)𝑒.

We will now define fractional ideals 𝔞𝑒, . . . , 𝔞1 as inductively. Let 𝔞𝑒 = O𝐾 .
Suppose we have defined down to 𝔞𝑖+1 for some 𝑖 ≥ 1. To define 𝔞𝑖, let 𝔠𝑙 =

(𝑀𝑙)𝑖𝑒𝔞𝑒 + (𝑀𝑙)𝑖(𝑒−1)𝔞𝑒−1 + · · · + (𝑀𝑙)𝑖(𝑖+1)𝔞𝑖+1. Then, define

𝔞𝑖 = O𝐾 + 𝔠1𝔟
−1 + · · · + 𝔠𝑘𝔟−1.

From the definition, it is easy to check that for 𝑙 = 1, . . . , 𝑘 ,

𝑀𝑙 (𝔞1 × · · · × 𝔞𝑒) ⊆ 𝔞1𝔟 × · · · × 𝔞𝑒𝔟.

Taking 𝑍1 = Ψ(𝔞1 × · · · × 𝔞𝑒) and 𝑍2 = Ψ(𝔞1𝔟 × · · · × 𝔞𝑒𝔟), we have [𝑍1 : 𝑍2] =
𝑁𝐾/Q(𝔟)𝑒 = 𝑐 and

L𝑙 (𝑍1) = Ψ𝑀𝑙 (𝔞1 × · · · × 𝔞𝑒)
⊆ Ψ(𝔞1𝔟 × · · · × 𝔞𝑒𝔟)
= 𝑍2. □

We are now ready to prove the second part of Theorem 7.4.2, which we can state as
follows.

Lemma 7.4.14. Suppose L0, . . . ,L𝑘 ∈ Mat𝑑 (Z) are pre-commuting. Then the
coefficients of 𝐹, defined in (7.1), are coprime if and only ifL0, . . . ,L𝑘 are coprime.

Proof. The forward direction is already proven in Lemma 7.2.1, so we only have to
prove the reverse direction. Assume that L0, . . . ,L𝑘 are coprime. Let P ∈ GL𝑑 (Q)
be such that PL0, . . . ,PL𝑘 are pairwise commuting.

Define

𝐹′(𝑥0, . . . , 𝑥𝑘 ) = det(𝑥0PL0 + · · · + 𝑥𝑘PL𝑘 ) = det(P) det(𝑥0L0 + · · · + 𝑥𝑘L𝑘 )
= det(P)𝐹 (𝑥0, . . . , 𝑥𝑘 )
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and 𝑐 = cont(𝐹′) ≥ | det(P)|. By Lemma 7.4.13, if 𝑐 ≠ 0, we can find full rank
lattices 𝑍1, 𝑍2 ⊂ Q𝑑 such that [𝑍1 : 𝑍2] = 𝑐 and PL𝑙 (𝑍1) ⊆ 𝑍2. Let Q : Z𝑑 → 𝑍1

and R : 𝑍2 → Z𝑑 be arbitrary isomorphisms, which can be viewed as matrices in
GL𝑑 (Q). Then | det(QR)| = [𝑍2 : 𝑍1] = 𝑐−1 andRPL𝑙Q : Z𝑑 → Z𝑑 , so they are in
Mat𝑑 (Z). By coprimality of L1, . . . ,L𝑘 , we have 1 ≤ | det(QPR)| = | det(P)|𝑐−1.
Thus, 𝑐 ≤ | det(P)|. But we have 𝑐 = cont(𝐹′) ≥ | det(P)|, so equality holds,
therefore 𝐹 has coprime coefficients.

If 𝑐 = 0, then the images of PL0, . . . ,PL𝑘 lie in a strict subspace of Q𝑑 . In
particular, we can find full rank lattices 𝑍1, 𝑍2 ⊂ Q𝑑 such that [𝑍1 : 𝑍2] = 𝑐′ and
PL𝑙 (𝑍1) ⊆ 𝑍2, for arbitrarily large 𝑐′ > 0. By the same argument above, we have
| det(P)| ≥ 𝑐′, which is absurd since 𝑐′ can be taken to be arbitrarily large. □

7.5 Sums of pre-commuting linear transformations
Suppose L0, . . . ,L𝑘 ∈ Mat𝑑 (Z) are non-zero, pre-commuting, irreducible and
coprime, then 𝐹, defined in (7.1), factorizes into linear terms

𝐹 (𝑥0, . . . , 𝑥𝑛) =
𝑑∏
𝑖=1
(𝑎0𝑖𝑥0 + · · · + 𝑎𝑘𝑖𝑥𝑘 ).

We define 𝐻 (L0, . . . ,L𝑘 ) as the quantity

𝐻 (L0, . . . ,L𝑘 ) :=
𝑑∏
𝑖=1
( |𝑎0𝑖 | + · · · + |𝑎𝑘𝑖 |).

Note that the factorization is only unique up to scalars, but the quantity𝐻 (L0, . . . ,L𝑘 )
is well-defined.

We now prove Theorem 7.0.6, which we state again for the reader’s convenience.

Theorem 7.5.1. Let L0, . . . ,L𝑘 ∈ Mat𝑑 (Z) be pre-commuting, irreducible and
coprime matrices. Then for any finite 𝐴 ⊂ Z𝑑 ,

|L0𝐴 + · · · + L𝑘𝐴| ≥ 𝐻 (L0, . . . ,L𝑘 ) |𝐴| − 𝑜( |𝐴|).

Proof. We may assume that L0, . . . ,L𝑘 are non-zero. By Theorem 7.4.3, this
becomes equivalent to Theorem 6.0.2. The only thing we have to show is that
𝐻 (L0, . . . ,L𝑘 ) = 𝐻 (𝜆1, . . . , 𝜆𝑘 ). Indeed, ifM𝑙 : 𝐾 → 𝐾 is the homomorphism
given by multiplication by 𝜆𝑙 , which is similar to L−1

0 L𝑙 , then we have
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𝐹 (𝑥0, . . . , 𝑥𝑘 ) = det(𝑥0L0 + · · · + 𝑥𝑘L𝑘 )
= det(L0) det(𝑥0 + 𝑥1M1 + · · · + 𝑥𝑘M𝑘 )

= det(L0)
𝑑∏
𝑖=1
(𝑥0 + 𝜎𝑖 (𝜆1)𝑥1 + · · · + 𝜎𝑖 (𝜆𝑘 )𝑥𝑘 ).

Therefore,

𝐻 (L0, . . . ,L𝑘 ) = | det(L0) |
𝑑∏
𝑖=1
(1 + |𝜎𝑖 (𝜆1) | + · · · + |𝜎𝑖 (𝜆𝑘 ) |)

= 𝑁𝐾/Q(𝔇𝜆1,...,𝜆𝑘 ;𝐾)
𝑑∏
𝑖=1
(1 + |𝜎𝑖 (𝜆1) | + · · · + |𝜎𝑖 (𝜆𝑘 ) |)

= 𝐻 (𝜆1, . . . , 𝜆𝑘 ). □

Corollary 7.5.2. Let L0,L1 ∈ Mat𝑑 (Z) be irreducible and coprime. Then for any
finite 𝐴 ⊂ Z𝑑 ,

|L0𝐴 + L1𝐴| ≥ 𝐻 (L0,L1) |𝐴| − 𝑜( |𝐴|).

Proof. This follows from the 𝑘 = 1 case of Theorem 7.0.6, and noting that if L0,L1

are irreducible, then they are non-singular and hence pre-commuting. □

7.6 An example
Consider the following matrices:

L0 =
©­­«

0 1 0
−1 0 0
0 0 0

ª®®¬ , L1 =
©­­«

0 0 1
0 0 0
−1 0 0

ª®®¬ , L2 =
©­­«
0 0 0
0 0 1
0 −1 0

ª®®¬ .
The corresponding polynomial 𝐹 is the zero polynomial. However, we claim that
L0,L1,L2 are irreducible and coprime, giving a counter-example to Lemma 7.2.1.

We first show that they are irreducible. If not, then there are non-trivial subspaces
𝑈,𝑉 ⊂ Q3 such that L𝑖 (𝑈) ⊆ 𝑉 for all 𝑖. Let 𝑢 = (𝑎, 𝑏, 𝑐) ∈ Q3 be any non-zero
vector. Then the span of L0𝑢,L1𝑢,L2𝑢 is

𝑉𝑢 :=
{
(𝑥, 𝑦, 𝑧) ∈ Q3 : 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 = 0

}
.

This is a 2-dimensional subspace contained in 𝑉 , thus dim𝑈 = dim𝑉 = 2. More-
over, 𝑉𝑢 is distinct for different 𝑢 (up to scalar), so picking 𝑢1, 𝑢2 ∈ 𝑈 as a basis, the
subspaces 𝑉𝑢1 , 𝑉𝑢2 are distinct but are contained in 𝑉 , so 𝑉 can only be Q3.
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Suppose L0,L1,L2 are not coprime, then there are P,Q ∈ GL3(Q) with 0 <

| detPQ| < 1 and PL𝑖Q ∈ Mat3(Z). There exists invertible R1,R2 ∈ Mat3(Z)
such that R1P is upper triangular and QR2 is lower triangular. Thus by replacing
P,Q with R1P,QR2, we may assume that P,Q are of the form

P =
©­­«
𝑃11 𝑃12 𝑃13

0 𝑃22 𝑃23

0 0 𝑃33

ª®®¬ , Q =
©­­«
𝑄11 0 0
𝑄21 𝑄22 0
𝑄31 𝑄32 𝑄33

ª®®¬ .
Then PL𝑖Q is an integer matrix implies that the following matrices have integer
entries:

©­­«
−𝑃12𝑄11 + 𝑃11𝑄21 𝑃11𝑄22 0
−𝑃22𝑄11 0 0

0 0 0

ª®®¬ ,
©­­«
−𝑃13𝑄11 + 𝑃11𝑄31 𝑃11𝑄32 𝑃11𝑄33

−𝑃23𝑄11 0 0
−𝑃33𝑄11 0 0

ª®®¬ ,
©­­«
−𝑃13𝑄21 + 𝑃12𝑄31 −𝑃13𝑄22 + 𝑃12𝑄32 𝑃12𝑄33

−𝑃23𝑄21 + 𝑃22𝑄31 −𝑃23𝑄22 + 𝑃22𝑄32 𝑃22𝑄33

−𝑃33𝑄21 𝑃33𝑄22 0

ª®®¬ .
In particular, 𝑃11𝑄22, 𝑃22𝑄33, 𝑃33𝑄11 ∈ Z, hence 𝑃11𝑃22𝑃33𝑄11𝑄22𝑄33 ∈ Z. But
0 < | detPQ| = |𝑃11𝑃22𝑃33𝑄11𝑄22𝑄33 | < 1, a contradiction.

We believe that 𝐻 (L0,L1,L2) = 8 in this case, which will be tight by considering
𝐴 to be an 𝑁 × 𝑁 × 𝑁 cube. However, the methods developed in this thesis are
insufficient to even prove that it is positive.
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C h a p t e r 8

SUMS OF DILATES OVER GROUPS OF PRIME ORDER

Parts of this chapter are based on the author’s publications. The materials have been
adapted for inclusion in this thesis.

[1] D. Conlon and J. Lim, Sums of dilates over groups of prime order, to appear
in American Mathematical Monthly (2025), arXiv:2409.17112.

Our concern in this chapter will be with estimating the minimum size of |𝐴 + 𝜆 · 𝐴|,
for 𝐴 ⊂ Z/𝑝Z, with 𝑝 prime. This problem over Z/𝑝Z was first studied in detail by
Plagne [35] and by Fiz Pontiveros [16]. For instance, using a rectification argument,
which allows one to treat small subsets of Z/𝑝Z as though they are sets of integers,
the latter showed that for every 𝜆 ∈ Z there exists 𝛼 > 0 such that

|𝐴 + 𝜆 · 𝐴| ≥ (|𝜆 | + 1) |𝐴| − 𝐶𝜆

for all |𝐴| ≤ 𝛼𝑝. On the other hand, he showed that for every 𝜆 ∈ Z and 𝜖 > 0 there
exists 𝛿 > 0 such that, for every sufficiently large prime 𝑝, there is a set 𝐴 ⊆ Z/𝑝Z
with |𝐴| ≥ ( 12 − 𝜖)𝑝 such that |𝐴 + 𝜆 · 𝐴| ≤ (1 − 𝛿)𝑝. That is, as |𝐴| approaches
𝑝/2, one cannot do much better than the Cauchy–Davenport theorem, which tells
us that |𝐴 + 𝜆 · 𝐴| ≥ 2|𝐴| − 1.

Recall the following terminology defined in the introduction. For 𝑝 prime, 𝜆 ∈ Z

and 𝛼 ∈ (0, 1), we let

ex(Z/𝑝Z, 𝜆, 𝛼) = min {|𝐴 + 𝜆 · 𝐴|/𝑝 : 𝐴 ⊆ Z/𝑝Z, |𝐴| ≥ 𝛼𝑝}

and then define ex(𝜆, 𝛼) = lim sup𝑝 ex(Z/𝑝Z, 𝜆, 𝛼). The problem of asymptotically
estimating the minimum size of sums of dilates over Z/𝑝Z may then be rephrased
as the problem of determining ex(𝜆, 𝛼). This seems very difficult in full generality,
though the results of Fiz Pontiveros described above imply that

• ex(𝜆, 𝛼) = ( |𝜆 | + 1)𝛼 for 𝜆 fixed and 𝛼 sufficiently small in terms of 𝜆 and

• ex(𝜆, 𝛼) < 1 for 𝛼 < 1
2 .
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Here we look at the case where𝛼 is fixed and𝜆 is allowed to grow. In rough terms, we
wish to understand how small the sum of dilates 𝐴+𝜆 · 𝐴 can be if we fix the density
𝛼 of 𝐴 and let 𝜆 tend to infinity. More precisely, we set ex(𝛼) = lim sup𝜆→∞ ex(𝜆, 𝛼)
and investigate the behavior of ex(𝛼).

By Cauchy–Davenport, if 𝛼 ≥ 1
2 , then ex(𝛼) = 1. Moreover, if 𝛼 ≤ 1

2 , then, again by
Cauchy–Davenport, |𝐴 +𝜆 · 𝐴| ≥ 2|𝐴| − 1, so ex(𝛼) ≥ 2𝛼. On the other hand, since
|𝐴 + 𝜆 · 𝐴| ≤ 𝑝, we always have the trivial upper bound ex(𝛼) ≤ 1. Our main result
improves these simple bounds significantly, giving a reasonably complete picture of
the behavior of ex(𝛼).

Theorem 8.0.1. There exist constants 𝐶,𝐶′, 𝑐 > 0 such that

𝑒𝐶
′ log𝑐 (1/𝛼)𝛼 ≤ ex(𝛼) ≤ 𝑒𝐶

√
log(1/𝛼)𝛼

for all 𝛼 ∈ (0, 1
2 ). Moreover, ex(𝛼) < 1 for all 𝛼 ∈ (0, 1

2 ).

Unlike in the fixed 𝜆 case, we cannot improve the trivial upper bound ex(𝛼) ≤ 1 by
just taking 𝐴 to be an interval. Instead, what we do is show that ex(𝛼) is bounded
above by a continuous variant defined over the torus T = R/Z and then provide an
upper bound for that variant. We go straight into the details of this construction,
before returning to the lower bound, which makes use of several classical tools from
additive combinatorics, in Section 8.2.

8.1 The upper bound
Let T = R/Z, 𝑛 > 1 be an integer and 𝜇 be the Lebesgue measure on T𝑘 for any
positive integer 𝑘 . Let 𝜋1 : T𝑛 → T𝑛−1 be the projection map ignoring the first
coordinate and 𝜋𝑛 : T𝑛 → T𝑛−1 the projection map ignoring the last coordinate.
Consider the following problem: given 0 < 𝛼 < 1, what is the smallest possible
value of 𝜇(𝜋1(𝐵) + 𝜋𝑛 (𝐵)) over all open sets 𝐵 ⊆ T𝑛 with 𝜇(𝐵) > 𝛼?

Equivalently, we can ask for the smallest possible value of 𝜇(𝐵 × T + T × 𝐵) over
all open sets 𝐵 ⊆ T𝑛 with 𝜇(𝐵) > 𝛼. In this form, written as a problem about
sums of shifts rather than sums of projections, there is a ready analogy with the
problem of estimating sums of transcendental dilates, which can also be phrased in
terms of sums of shifts and ultimately has bounds of a similar form (see Chapter 4).
This analogy partly motivates the methods we use here for both the upper and lower
bounds.
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To capture this question more succinctly, we define

ex𝑇 (𝑛, 𝛼) = inf {𝜇(𝜋1(𝐵) + 𝜋𝑛 (𝐵)) : 𝐵 ⊆ T𝑛 open, 𝜇(𝐵) > 𝛼}

and set ex𝑇 (𝛼) = lim𝑛→∞ ex𝑇 (𝑛, 𝛼). This limit exists since ex𝑇 (𝑛, 𝛼) is decreasing in
𝑛. Indeed, if 𝐵 ⊆ T𝑛 with 𝜇(𝜋1(𝐵) +𝜋𝑛 (𝐵)) = 𝛽, consider 𝐵′ = 𝐵×T ⊆ T𝑛+1. Then
𝜇(𝐵′) = 𝜇(𝐵) and 𝜇(𝜋1(𝐵′)+𝜋𝑛+1(𝐵′)) = 𝜇(𝜋1(𝐵)×T+𝐵) = 𝜇(𝜋1(𝐵)+𝜋𝑛 (𝐵)) = 𝛽,
so that ex𝑇 (𝑛 + 1, 𝛼) ≤ ex𝑇 (𝑛, 𝛼).

The main result of this section says that ex(𝛼) ≤ ex𝑇 (𝛼), thereby allowing us to
give an upper bound on ex(𝛼) by instead bounding ex𝑇 (𝛼). The idea of the proof is
to construct an example in Z/𝑝Z from one in T𝑛 by approximating each point of T𝑛

by a number in Z/𝑝Z written in base 𝜆, with each point (𝑥1, . . . , 𝑥𝑛) ∈ T𝑛 roughly
corresponding to ⌊(𝑥1 + 𝑥2

𝜆
+ · · · + 𝑥𝑛

𝜆𝑛−1 )𝑝⌋ ∈ Z/𝑝Z.

Theorem 8.1.1. ex(𝛼) ≤ ex𝑇 (𝛼).

Proof. Let 𝑛 > 1 and 𝐵 ⊆ T𝑛 be an open set such that 𝜇(𝐵) = 𝛼′ > 𝛼 and
𝜇(𝜋1(𝐵) + 𝜋𝑛 (𝐵)) = 𝛽. We will show that ex(𝛼) ≤ 𝛽.

Let 𝜖 > 0 be arbitrary, 𝜆 be a positive integer, 𝑇 = Z/𝜆Z and discretize T𝑛 into 𝑇𝑛.
For 𝑥 = (𝑥1, . . . , 𝑥𝑛) ∈ 𝑇𝑛 (with integers 0 ≤ 𝑥𝑖 < 𝜆 for each 𝑖), define 𝐶𝑥 ⊆ T𝑛 to
be the cubical box

𝑛∏
𝑖=1

[
𝑥𝑖

𝜆
,
𝑥𝑖 + 1
𝜆

)
.

Let 𝑆 = {𝑥 ∈ 𝑇𝑛 : 𝐶𝑥 ⊆ 𝐵} and 𝐵′ =
⋃
𝑥∈𝑆 𝐶𝑥 ⊆ 𝐵. As 𝜆 → ∞, 𝜇(𝐵′) approaches

𝜇(𝐵) = 𝛼′ since 𝐵 is open. Therefore, for 𝜆 sufficiently large in terms of 𝜖 , we have
𝜇(𝐵′) ≥ 𝛼′ − 𝜖 . For 𝑥 ∈ 𝑇𝑛, define 𝐼𝑥 to be the interval [𝑦, 𝑦 + 𝜆−𝑛), where

𝑦 =
𝑥1

𝜆
+ 𝑥2

𝜆2 + · · · +
𝑥𝑛

𝜆𝑛
.

Set 𝐴 =
⋃
𝑥∈𝑆 𝐼𝑥 ⊆ T. Then 𝜇(𝐴) = |𝑆 |/𝜆𝑛 = 𝜇(𝐵′) ≥ 𝛼′ − 𝜖 . We claim that

𝜇(𝐴 + 𝜆 · 𝐴) ≤ 𝜇(𝜋1(𝐵′) + 𝜋𝑛 (𝐵′)).

To see how the theorem follows from this claim, we again discretize T into Z/𝑝Z.
Set 𝐴′ ⊆ Z/𝑝Z to be 𝐴′ = {0 ≤ 𝑎 < 𝑝 :

[
𝑎
𝑝
, 𝑎+1
𝑝

)
⊆ 𝐴}. By construction,

|𝐴′|/𝑝 ≤ 𝜇(𝐴). Moreover, since 𝐴 is a finite union of half-closed intervals, |𝐴′|/𝑝
approaches 𝜇(𝐴) as 𝑝 →∞. Therefore, for 𝑝 sufficiently large in terms of 𝜖 , we have
|𝐴′| ≥ (𝜇(𝐴)−𝜖)𝑝. For any 𝑎+𝜆𝑏 ∈ 𝐴′+𝜆 ·𝐴′with 𝑎, 𝑏 ∈ 𝐴′, we have

[
𝑎
𝑝
, 𝑎+1
𝑝

)
⊆ 𝐴
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and 𝑏
𝑝
∈ 𝐴. Thus,

[
𝑎+𝜆𝑏
𝑝
, 𝑎+𝜆𝑏+1

𝑝

)
⊆ 𝐴+𝜆 · 𝐴. Hence, |𝐴′ +𝜆 · 𝐴′|/𝑝 ≤ 𝜇(𝐴+𝜆 · 𝐴).

From the claim,

|𝐴′ + 𝜆 · 𝐴′|
𝑝

≤ 𝜇(𝐴 + 𝜆 · 𝐴) ≤ 𝜇(𝜋1(𝐵′) + 𝜋𝑛 (𝐵′)) ≤ 𝛽.

Since |𝐴′| ≥ (𝜇(𝐴) − 𝜖)𝑝 ≥ (𝛼′ − 2𝜖)𝑝, taking 𝜖 = 𝛼′−𝛼
2 gives ex(𝛼) ≤ 𝛽, as

required.

To prove the claim, let 𝑆′ = 𝜋1(𝑆) + 𝜋𝑛 (𝑆) + {0, 1}𝑛−1. Then 𝑆′ is the set of all 𝑧 =
(𝑧1, 𝑧2, . . . , 𝑧𝑛−1) ∈ 𝑇𝑛−1 with 𝑧𝑘 = 𝑎𝑘+1+𝑏𝑘 + 𝜖𝑘 for some 𝑎 = (𝑎1, 𝑎2, . . . , 𝑎𝑛), 𝑏 =

(𝑏1, 𝑏2, . . . , 𝑏𝑛) ∈ 𝑆 and 𝜖𝑘 ∈ {0, 1} for all 𝑘 . Since 𝐵′ is the union of boxes⋃
𝑥∈𝑆 𝐶𝑥 , we have that 𝜋1(𝐵′) + 𝜋𝑛 (𝐵′) is the union of boxes

⋃
𝑥∈𝑆′ 𝐶𝑥 , though now

with each 𝐶𝑥 ⊆ T𝑛−1. Thus,

|𝑆′|/𝜆𝑛−1 = 𝜇(𝜋1(𝐵′) + 𝜋𝑛 (𝐵′)).

On the other hand, 𝐴 + 𝜆 · 𝐴 consists of all points in T of the form

𝑏1 + 𝑎2

𝜆
+ 𝑏2 + 𝑎3

𝜆2 + · · · + 𝑏𝑛−1 + 𝑎𝑛
𝜆𝑛−1 + 𝑏𝑛

𝜆𝑛
+ 𝜖,

where 𝑎, 𝑏 ∈ 𝑆 and 𝜖 ∈ [0, 𝜆−𝑛 + 𝜆−𝑛+1). Here, we are viewing 𝑎𝑖 and 𝑏𝑖 as integers
in [0, 𝜆 − 1], so 𝑏𝑖 + 𝑎𝑖+1 could “overflow.” Nevertheless, each element of 𝐴 + 𝜆 · 𝐴
is of the form

𝑐1

𝜆
+ 𝑐2

𝜆2 + · · · +
𝑐𝑛−1

𝜆𝑛−1 + 𝛿,

where 𝑐𝑖 = 𝑏𝑖 + 𝑎𝑖+1 mod 𝜆 or 𝑏𝑖 + 𝑎𝑖+1 + 1 mod 𝜆 and 𝛿 ∈ [0, 𝜆−𝑛+1). Thus,
𝐴 + 𝜆 · 𝐴 ⊆ ⋃

𝑥∈𝑆′ 𝐼𝑥 , so we have

𝜇(𝐴 + 𝜆 · 𝐴) ≤ |𝑆′|/𝜆𝑛−1 = 𝜇(𝜋1(𝐵′) + 𝜋𝑛 (𝐵′)),

as required. □

We believe that the two functions ex(𝛼) and ex𝑇 (𝛼) should in fact be equal, but
leave the task of proving that ex(𝛼) ≥ ex𝑇 (𝛼) as an open problem.

We now give an upper bound for ex𝑇 (𝛼), and therefore ex(𝛼), by considering a
suitable set 𝐵 ⊆ T𝑛.

Theorem 8.1.2. For any positive integer 𝑑, ex𝑇 (𝛼) ≤ 2𝑑−1𝛼1−1/𝑑 for all 𝛼 ∈
(0, 2−𝑑). In particular, there is a constant 𝐶 > 0 such that ex𝑇 (𝛼) ≤ 𝑒𝐶

√
log(1/𝛼)𝛼

for all 𝛼 ∈ (0, 1
2 ).
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Proof. If 𝐵 = (0, 𝛾1/𝑑)𝑑 ⊆ T𝑑 , then 𝜇(𝐵) = 𝛾. Furthermore, 𝜋1(𝐵) = 𝜋𝑑 (𝐵) =
(0, 𝛾1/𝑑)𝑑−1 ⊆ T𝑑−1, so we have 𝜇(𝜋1(𝐵) + 𝜋𝑑 (𝐵)) = (2𝛾1/𝑑)𝑑−1 = 2𝑑−1𝛾1−1/𝑑 .
Taking the infimum over all 𝛾 > 𝛼 then gives the required upper bound ex𝑇 (𝛼) ≤
ex𝑇 (𝑑, 𝛼) ≤ 2𝑑−1𝛼1−1/𝑑 . To get a general bound independent of 𝑑, we simply
optimize by setting 𝑑 =

√︁
log(1/𝛼) and the bound follows. □

Remark. The constant term 2𝑑−1 in Theorem 8.1.2 is not optimal. For example, for
𝑑 = 3, instead of picking 𝐵 to be the 𝛾1/3 × 𝛾1/3 × 𝛾1/3 box, we could optimize the
side lengths of the box by picking 𝐵 to be (2𝛾)1/3 × (𝛾/4)1/3 × (2𝛾)1/3. This yields
𝜇(𝜋1(𝐵) + 𝜋3(𝐵)) = 9

24/3 𝛾
2/3, where we note that 9

24/3 < 22. We made no attempt
to optimize these constants for higher values of 𝑑, as any improvement would not
change the form of the bound 𝑒𝐶

√
log(1/𝛼)𝛼.

While Theorem 8.1.2 proves the first upper bound in Theorem 8.0.1, the following
result proves the second upper bound ex(𝛼) < 1.

Theorem 8.1.3. ex𝑇 (𝛼) < 1 for all 𝛼 ∈ (0, 1
2 ).

Proof. Let 𝑛 be sufficiently large and set 𝐵 = {𝑥 ∈ T𝑛 : 𝑥𝑖 > 0 for all 𝑖,
∑𝑛
𝑖=1 𝑥𝑖 <

𝑛
2 − 1}, where 𝑥𝑖 is considered an element of [0, 1) for all 𝑖. As 𝑛→∞, 𝜇(𝐵) → 1

2 ,
since, if 𝑥 ∈ T𝑛 is picked uniformly randomly,

∑
𝑥𝑖 is approximately normal with

mean 𝑛
2 and variance Θ(𝑛). Thus, for sufficiently large 𝑛, 𝛼 < 𝜇(𝐵) < 1

2 . Fix such
an 𝑛. Now both 𝜋1(𝐵) and 𝜋𝑛 (𝐵) are contained in the set𝐶 = {𝑥 ∈ T𝑛−1 :

∑𝑛−1
𝑖=1 𝑥𝑖 <

𝑛
2 − 1}, so

𝜋1(𝐵) + 𝜋𝑛 (𝐵) ⊆ 𝐶 + 𝐶 = {𝑥 ∈ T𝑛−1 :
𝑛−1∑︁
𝑖=1

𝑥𝑖 < 𝑛 − 2} ⊊ T𝑛−1.

Hence, 𝜇(𝜋1(𝐵) + 𝜋𝑛 (𝐵)) < 1, so that ex𝑇 (𝛼) ≤ ex𝑇 (𝑛, 𝛼) < 1. □

8.2 The lower bound
We now prove the lower bound in Theorem 8.0.1, which we restate as follows. As
prefaced in the previous section, the proof of this result makes use of ideas similar
to those used in [39] for studying sums of transcendental dilates.

Theorem 8.2.1. There are constants 𝐶′, 𝑐 > 0 such that ex(𝛼) ≥ 𝑒𝐶′ log𝑐 (1/𝛼)𝛼 for
all 𝛼 ∈ (0, 1/2). In particular, one may take 𝑐 = 1

7 .
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In what follows, as well as the notation 𝜆 · 𝐵 = {𝜆𝑏 : 𝑏 ∈ 𝐵} for dilates, we will use
𝑚𝐵 to denote the 𝑚-fold sumset

𝑚𝐵 = 𝐵 + 𝐵 + · · · + 𝐵︸             ︷︷             ︸
𝑚 times

.

Before proving Theorem 8.2.1, we require the following result, a variant of the
Plünnecke–Ruzsa inequality allowing for dilates of each term.

Lemma 8.2.2. Let 𝐵 be a finite subset of an abelian group, 𝜆 an integer and 𝐾 > 0
such that |𝐵 + 𝜆 · 𝐵 | ≤ 𝐾 |𝐵 |. Then, for any positive integer 𝑙,

|𝐵 + 𝜆 · 𝐵 + 𝜆2 · 𝐵 + · · · + 𝜆𝑙 · 𝐵 | ≤ 𝐾7𝑙−6 |𝐵|.

Proof. Apply the sum version of Ruzsa’s triangle inequality (Lemma 1.6.1) with
𝑋 = 𝜆 · 𝐵, 𝑌 = 𝑍 = 𝐵 and noting that |𝜆 · 𝐵 | = |𝐵 |, we have |𝐵 + 𝐵 | ≤ 𝐾2 |𝐵 |.
Hence, by the Plünnecke–Ruzsa inequality (Lemma 1.6.2), |𝐵 + 𝐵 + 𝐵 | ≤ 𝐾6 |𝐵 |.
Thus, another application of Ruzsa’s triangle inequality (with 𝑋 = 𝐵, 𝑌 = 𝐵 + 𝐵,
𝑍 = 𝜆 · 𝐵) yields

|𝐵 + 𝐵 + 𝜆 · 𝐵 | ≤ |𝐵 + 𝐵 + 𝐵 | |𝐵 + 𝜆 · 𝐵 |/|𝐵 | ≤ 𝐾7 |𝐵 |.

We prove the lemma by induction on 𝑙, noting that the case 𝑙 = 1 follows from the
given assumption. Suppose now that we have

|𝐵 + 𝜆 · 𝐵 + 𝜆2 · 𝐵 + · · · + 𝜆𝑙 · 𝐵 | ≤ 𝐾7𝑙−6 |𝐵 |

for some 𝑙 and we wish to prove it for 𝑙 + 1. Yet another application of Ruzsa’s
triangle inequality (with 𝑋 = 𝜆𝑙 ·𝐵,𝑌 = 𝐵+𝜆 ·𝐵+ · · · +𝜆𝑙−1 ·𝐵, 𝑍 = 𝜆𝑙 ·𝐵+𝜆𝑙+1 ·𝐵)
yields

|𝐵 + 𝜆 · 𝐵 + · · · + 𝜆𝑙+1 · 𝐵 | ≤ |𝐵 + 𝜆 · 𝐵 + · · · + 𝜆𝑙 · 𝐵 | |𝜆𝑙 · 𝐵 + 𝜆𝑙 · 𝐵 + 𝜆𝑙+1 · 𝐵 |/|𝐵 |
≤ 𝐾7𝑙−6 |𝜆𝑙 · 𝐵 + 𝜆𝑙 · 𝐵 + 𝜆𝑙+1 · 𝐵 |
= 𝐾7𝑙−6 |𝐵 + 𝐵 + 𝜆 · 𝐵 |
≤ 𝐾7(𝑙+1)−6 |𝐵 |,

as required. □

The other thing that we need for the proof of Theorem 8.2.1 is Sanders’ quantitative
version of the Bogolyubov–Ruzsa lemma [40, Theorem 1.1], which states that if 𝐴
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is a finite subset of an abelian group with |𝐴 + 𝐴| ≤ 𝐾 |𝐴|, then 2𝐴 − 2𝐴 contains
a proper generalized arithmetic progression 𝑃 of dimension 𝑑 ≤ 𝑑0(𝐾) ≤ 𝐶 log6 𝐾

and size at least 𝐶1(𝐾) |𝐴|, where 𝐶 is an absolute constant. Here a generalized
arithmetic progression 𝑃 of dimension 𝑑 is a set of the form

𝑃 = {𝑎 +
𝑑∑︁
𝑖=1

𝑛𝑖𝑣𝑖 : 0 ≤ 𝑛𝑖 ≤ 𝑘𝑖 − 1 for all 𝑖}

and such a generalized arithmetic progression is proper if all of its elements are
distinct, that is, if |𝑃 | = 𝑘1𝑘2 · · · 𝑘𝑑 .

Proof of Theorem 8.2.1. Fix 𝛼 ∈ (0, 1/2) and let 𝐾 = 2 ex(𝛼)/𝛼. Let 𝜆 be suffi-
ciently large and 𝑝 be sufficiently large in terms of 𝜆. Let 𝐴 ⊆ Z/𝑝Z, which we may
assume has size |𝐴| = 𝛼𝑝, be such that |𝐴 + 𝜆 · 𝐴| ≤ 2 ex(𝛼)𝑝 = 𝐾 |𝐴|. By Ruzsa’s
triangle inequality, we again have |𝐴+ 𝐴| ≤ 𝐾2 |𝐴|. Hence, by Sanders’ quantitative
version of the Bogolyubov–Ruzsa lemma, 2𝐴 − 2𝐴 contains a proper generalized
arithmetic progression 𝑃 of dimension 𝑑 ≤ 𝑑0(𝐾) ≤ 𝐶 log6 𝐾 and size at least
𝐶1(𝐾)𝛼𝑝, where 𝐶 is an absolute constant. By the Plünnecke–Ruzsa inequality, we
have |2𝐴 − 2𝐴 + 2𝐴 − 2𝐴| ≤ 𝐾16 |𝐴|. By Ruzsa’s triangle inequality (with 𝑋 = 𝐴,
𝑌 = 2𝐴 − 2𝐴 + 𝐴 − 2𝐴, 𝑍 = 𝜆 · 𝐴), we have

|2𝐴 − 2𝐴 + 𝐴 − 2𝐴 + 𝜆 · 𝐴| ≤ |2𝐴 − 2𝐴 + 2𝐴 − 2𝐴| |𝐴 + 𝜆 · 𝐴|/|𝐴| ≤ 𝐾17 |𝐴|.

Repeating three more times, each time replacing an appropriate 𝐴 term with 𝜆 · 𝐴,
we get

| (2𝐴 − 2𝐴) + 𝜆 · (2𝐴 − 2𝐴) | ≤ 𝐾20 |𝐴|.

By Lemma 8.2.2 applied to 2𝐴 − 2𝐴, we then have that,

| (2𝐴 − 2𝐴) + 𝜆 · (2𝐴 − 2𝐴) + · · · + 𝜆𝑑 · (2𝐴 − 2𝐴) | ≤ 𝐾140𝑑 |𝐴|.

Suppose 𝑃 = 𝑣0 + 𝑃0 for some 𝑣0 ∈ Z/𝑝Z and 𝑃0 a proper Minkowski sum of 𝑑
arithmetic progressions {0, 𝑣𝑖, 2𝑣𝑖, . . . , (𝑘𝑖 − 1)𝑣𝑖}, 𝑖 = 1, . . . , 𝑑, with |𝑃 | = |𝑃0 | =
𝑘1𝑘2 · · · 𝑘𝑑 and 𝑘1 ≥ 𝑘2 ≥ · · · ≥ 𝑘𝑑 . Let 𝑚 ≤ 𝑑 be the largest integer with
𝑘𝑚 ≥ 𝜆. Since |𝑃0 | ≥ 𝜆𝑑 for sufficiently large 𝑝, we have 𝑚 ≥ 1. Let 𝑃′ =∑𝑚
𝑖=1 {0, 𝑣𝑖, 2𝑣𝑖, . . . , (𝑘𝑖 − 1)𝑣𝑖}. Then this is a proper sum with |𝑃′| ≥ |𝑃0 |/𝜆𝑑−𝑚.

Since 𝑘1 ≥ · · · ≥ 𝑘𝑚 ≥ 𝜆, we have that,

𝑃′ + 𝜆 · 𝑃′ + 𝜆2 · 𝑃′ + · · · + 𝜆𝑑 · 𝑃′ ⊇
𝑚∑︁
𝑖=1

{
0, 𝑣𝑖, 2𝑣𝑖, . . . , 𝜆𝑑 (𝑘𝑖 − 1)𝑣𝑖

}
= 𝜆𝑑𝑃′.
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By repeated application of the Cauchy–Davenport theorem, we have that

|𝜆𝑑𝑃′| ≥ min(𝜆𝑑 |𝑃′| − 𝜆𝑑 + 1, 𝑝) ≥ min(𝜆𝑚𝐶1𝛼𝑝 − 𝜆𝑑 + 1, 𝑝) = 𝑝

for 𝜆 large enough that 𝜆𝐶1𝛼 ≥ 2 and 𝑝 sufficiently large. Thus, 𝑃′ + 𝜆 · 𝑃′ + 𝜆2 ·
𝑃′ + · · · + 𝜆𝑑 · 𝑃′ = Z/𝑝Z. On the other hand,

|𝑃′ + 𝜆 · 𝑃′ + 𝜆2 · 𝑃′ + · · · + 𝜆𝑑 · 𝑃′|
≤ |𝑃 + 𝜆 · 𝑃 + 𝜆2 · 𝑃 + · · · + 𝜆𝑑 · 𝑃 |
≤ |(2𝐴 − 2𝐴) + 𝜆 · (2𝐴 − 2𝐴) + 𝜆2 · (2𝐴 − 2𝐴) + · · · + 𝜆𝑑 · (2𝐴 − 2𝐴) |
≤ 𝐾140𝑑 |𝐴| ≤ 𝐾140𝑑0 |𝐴|.

This implies that 𝐾140𝑑0𝛼 ≥ 1. From 𝑑0 ≤ 𝐶 log6 𝐾 , we obtain 𝑒140𝐶 log7 𝐾𝛼 ≥ 1,
which implies that

ex(𝛼) = 𝐾𝛼/2 ≥ 𝑒𝐶′ (log 1
𝛼
)𝑐𝛼

for some absolute constants 𝑐 and 𝐶′, where one may take 𝑐 = 1
7 . □

If one could show that the Bogolyubov–Ruzsa lemma holds with 𝑑0(𝐾) ≤ 𝐶 log𝐾 ,
which would be best possible, then we could take 𝑐 = 1

2 , matching our upper bound.

To close, let us mention a variant of the problem we have studied, namely, that of
estimating the minimum size of |𝐴 + · · · + 𝐴 + 𝜆 · 𝐴| over all 𝐴 ⊆ Z/𝑝Z of given
size. If there are 𝑘 summands, we can again study the asymptotic behaviour of this
minimum by considering

ex(𝑘, 𝜆, 𝛼) = lim sup
𝑝→∞

min

 | 𝐴 + · · · + 𝐴︸       ︷︷       ︸
𝑘−1 times

+𝜆 · 𝐴|/𝑝 : 𝐴 ⊆ Z/𝑝Z, |𝐴| ≥ 𝛼𝑝
 .

As a possible extension of his result that ex(𝜆, 𝛼) < 1 for 𝛼 < 1
2 , Fiz Pontiveros [16,

Conjecture 1.3] conjectured that ex(𝑘, 𝜆, 𝛼) < 1 for 𝛼 < 1
𝑘
. However, this is easily

seen to be false. Indeed, a simple consequence of the proof of Theorem 8.2.1
is that, provided 𝑘 is sufficiently large, |𝐴 + 𝜆 · 𝐴| ≥ 10|𝐴| for all 𝐴 ⊆ Z/𝑝Z
with |𝐴| = ⌈𝑝/(𝑘 + 1)⌉ and all 𝜆 sufficiently large in terms of 𝑘 . But then, by
repeated application of the Cauchy–Davenport inequality, |𝐴 + · · · + 𝐴 + 𝜆 · 𝐴| ≥
min{(𝑘 + 8) |𝐴| − (𝑘 − 2), 𝑝} = 𝑝. In particular, ex(𝑘, 𝜆, 𝛼) = 1 for 𝛼 ≥ 1/(𝑘 + 1)
and 𝜆 sufficiently large in terms of 𝑘 . This bound on the minimum 𝛼 such that
ex(𝑘, 𝜆, 𝛼) = 1 for 𝜆 sufficiently large in terms of 𝑘 can certainly be improved,
though we have made no serious attempt to do so here. Instead, we leave it as an
open problem to give more precise estimates on how this threshold changes with 𝑘 .
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