Citation
Huang, Hsin-Yuan (2024) Learning in the Quantum Universe. Dissertation (Ph.D.), California Institute of Technology. doi:10.7907/fgpv-3112. https://resolver.caltech.edu/CaltechTHESIS:05032024-044352582
Abstract
In this thesis, I will present our progress in building a rigorous theory to understand how scientists, machines, and future quantum computers could learn models of our quantum universe. The thesis begins with an experimentally feasible procedure for converting a quantum many-body system into a succinct classical description of the system, its classical shadow. Classical shadows can be applied to efficiently predict many properties of interest, including expectation values of local observables and few-body correlation functions. I will then build on the classical shadow formalism to answer two fundamental questions at the intersection of machine learning and quantum physics: Can classical machines learn to solve challenging problems in quantum physics? And can quantum machines learn exponentially faster and predict more accurately than classical machines? The thesis answers both questions positively through mathematical analysis and experimental demonstrations.
Item Type: | Thesis (Dissertation (Ph.D.)) | ||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Subject Keywords: | Quantum information; Learning theory; Quantum computing; Quantum many-body physics | ||||||||||||||||||||||||||||||
Degree Grantor: | California Institute of Technology | ||||||||||||||||||||||||||||||
Division: | Engineering and Applied Science | ||||||||||||||||||||||||||||||
Major Option: | Computing and Mathematical Sciences | ||||||||||||||||||||||||||||||
Awards: | Milton and Francis Clauser Doctoral Prize, 2024. Ben P.C. Chou Doctoral Prize in IST, 2024. Google PhD Fellowship. Boeing Quantum Creators Prize. MediaTek Research Young Scholarship. J. Yang Scholarship. Kortschak Scholars Fellowship. Taiwan Government Scholarship to Study Abroad. | ||||||||||||||||||||||||||||||
Thesis Availability: | Public (worldwide access) | ||||||||||||||||||||||||||||||
Research Advisor(s): |
| ||||||||||||||||||||||||||||||
Group: | Institute for Quantum Information and Matter | ||||||||||||||||||||||||||||||
Thesis Committee: |
| ||||||||||||||||||||||||||||||
Defense Date: | 17 August 2023 | ||||||||||||||||||||||||||||||
Record Number: | CaltechTHESIS:05032024-044352582 | ||||||||||||||||||||||||||||||
Persistent URL: | https://resolver.caltech.edu/CaltechTHESIS:05032024-044352582 | ||||||||||||||||||||||||||||||
DOI: | 10.7907/fgpv-3112 | ||||||||||||||||||||||||||||||
Related URLs: |
| ||||||||||||||||||||||||||||||
ORCID: |
| ||||||||||||||||||||||||||||||
Default Usage Policy: | No commercial reproduction, distribution, display or performance rights in this work are provided. | ||||||||||||||||||||||||||||||
ID Code: | 16367 | ||||||||||||||||||||||||||||||
Collection: | CaltechTHESIS | ||||||||||||||||||||||||||||||
Deposited By: | Robert Huang | ||||||||||||||||||||||||||||||
Deposited On: | 14 May 2024 18:18 | ||||||||||||||||||||||||||||||
Last Modified: | 17 Jun 2024 18:25 |
Thesis Files
PDF
- Final Version
See Usage Policy. 36MB |
Repository Staff Only: item control page