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ABSTRACT

In this thesis, I will present our progress in building a rigorous theory to understand
how scientists, machines, and future quantum computers could learn models of our
quantum universe. The thesis begins with an experimentally feasible procedure for
converting a quantum many-body system into a succinct classical description of the
system, its classical shadow. Classical shadows can be applied to efficiently predict
many properties of interest, including expectation values of local observables and
few-body correlation functions. I will then build on the classical shadow formalism
to answer two fundamental questions at the intersection of machine learning and
quantum physics: Can classical machines learn to solve challenging problems in
quantum physics? And can quantum machines learn exponentially faster and pre-
dict more accurately than classical machines? The thesis answers both questions
positively through mathematical analysis and experimental demonstrations.



v

PUBLISHED CONTENT AND CONTRIBUTIONS

Lewis, Laura et al. (2024). “Improved machine learning algorithm for predicting
ground state properties”. In: nature communications 15.1, p. 895. doi: 10.1038/
s41467-024-45014-7.
H.-Y. H. supervised the first author Laura Lewis (a former Caltech undergraduate)
on this project. H.-Y. H. conceived the project, developed the key ideas for the
proofs, and participated in the completion of the proofs and the writing of the
manuscript.

Huang, Hsin-Yuan, Sitan Chen, and John Preskill (2023). “Learning to predict
arbitrary quantum processes”. In: PRX Quantum 4.4, p. 040337. doi: 10.1103/
PRXQuantum.4.040337.
H.-Y. H. conceived the project, developed the key ideas for the proofs, participated
in the completion of the proofs, and wrote the majority of the manuscript.

Huang, Hsin-Yuan, Michael Broughton, Jordan Cotler, et al. (2022). “Quantum
advantage in learning from experiments”. In: Science 376.6598, pp. 1182–1186.
doi: 10.1126/science.abn7293.
H.-Y. H. conceived the project, conducted the numerical experiments, completed
the theoretical analysis, participated in developing the key ideas and running the
physical experiments, and writing the manuscript.

Huang, Hsin-Yuan, Richard Kueng, Giacomo Torlai, et al. (2022). “Provably effi-
cient machine learning for quantum many-body problems”. In: Science 377.6613,
eabk3333. doi: 10.1126/science.abk3333.
H.-Y. H. conceived the project, developed the key ideas for the proofs, completed
most of the theoretical analysis and the proofs, and participated in the numerical
experiments and the writing of the manuscript.

Chen, Sitan et al. (2021). “Exponential separations between learning with and with-
out quantum memory”. In: 2021 IEEE 62nd Annual Symposium on Foundations
of Computer Science (FOCS). IEEE, pp. 574–585. doi: 10.1109/FOCS52979.
2021.00063.
The author list is ordered alphabetically (all authors contributed equally). H.-Y.
H. participated in conceiving the project, developing the key ideas, completing
the proofs, and writing the manuscript.

Huang, Hsin-Yuan, Michael Broughton, Masoud Mohseni, et al. (May 2021). “Power
of data in quantum machine learning”. In: Nature Communications 12.1, p. 2631.
doi: 10.1038/s41467-021-22539-9.
H.-Y. H. conceived the project, developed the key ideas for the proofs, com-
pleted the theoretical analysis and the proofs, and participated in the numerical
experiments and the writing of the manuscript.

Huang, Hsin-Yuan, Richard Kueng, and John Preskill (July 2021a). “Efficient Esti-
mation of Pauli Observables by Derandomization”. In: Phys. Rev. Lett. 127 (3),

https://doi.org/10.1038/s41467-024-45014-7
https://doi.org/10.1038/s41467-024-45014-7
https://doi.org/10.1103/PRXQuantum.4.040337
https://doi.org/10.1103/PRXQuantum.4.040337
https://doi.org/10.1126/science.abn7293
https://doi.org/10.1126/science.abk3333
https://doi.org/10.1109/FOCS52979.2021.00063
https://doi.org/10.1109/FOCS52979.2021.00063
https://doi.org/10.1038/s41467-021-22539-9


vi

p. 030503. doi: 10.1103/PhysRevLett.127.030503.
H.-Y. H. conceived the project, developed the key ideas for the proofs, completed
the numerical experiments, and participated in the theoretical analysis, the proofs,
and the writing of the manuscript.

Huang, Hsin-Yuan, Richard Kueng, and John Preskill (2021b). “Information-theoretic
bounds on quantum advantage in machine learning”. In: Phys. Rev. Lett. 126 (19),
p. 190505. doi: 10.1103/PhysRevLett.126.190505.
H.-Y. H. conceived the project, developed the key ideas for the proofs, conducted
the numerical experiments, completed the theoretical analysis, and participated
in writing the manuscript.

– (2020). “Predicting many properties of a quantum system from very few mea-
surements”. In: Nature Physics. doi: 10.1038/s41567-020-0932-7.
H.-Y. H. conceived the project, developed the key ideas for the proofs, conducted
the numerical experiments, and participated in completing the proofs and writing
the manuscript.

https://doi.org/10.1103/PhysRevLett.127.030503
https://doi.org/10.1103/PhysRevLett.126.190505
https://doi.org/10.1038/s41567-020-0932-7


vii

CONTENTS

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
Published Content and Contributions . . . . . . . . . . . . . . . . . . . . . . v
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x
Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

I Introduction 1
Chapter I: Learning in the quantum universe . . . . . . . . . . . . . . . . . . 2

1.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Chapter II: Preliminaries on quantum information and learning theory . . . . 13
2.1 A brief review on quantum information theory . . . . . . . . . . . . 13
2.2 A brief review on statistical learning theory . . . . . . . . . . . . . . 18
2.3 A brief review on tensor network diagrams . . . . . . . . . . . . . . 25

Chapter III: Key concepts for learning in the quantum universe . . . . . . . . 35
3.1 Computational power by learning from data . . . . . . . . . . . . . . 35
3.2 Proving quantum advantages in learning . . . . . . . . . . . . . . . 41

II Learning with classical machines 52
Chapter IV: Predicting many properties of quantum systems . . . . . . . . . 53

4.1 Central ideas of classical shadow tomography . . . . . . . . . . . . . 54
4.2 Data acquisition and classical shadows . . . . . . . . . . . . . . . . 59
4.3 Predicting linear functions with classical shadows . . . . . . . . . . 60
4.4 Information-theoretic optimality . . . . . . . . . . . . . . . . . . . . 64
4.5 Predicting nonlinear functions with classical shadows . . . . . . . . 65
4.6 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . 68
4.7 Derandomizing randomized measurements . . . . . . . . . . . . . . 79
4.8 Details regarding numerical experiments . . . . . . . . . . . . . . . 90
4.9 Additional computations and proofs for predicting linear functions . . 99
4.10 Additional computations and proofs for predicting nonlinear functions 107
4.11 Information-theoretic lower bound with scaling in Frobenius norm . . 113
4.12 Information-theoretic bounds on predicting local observables . . . . 122

Chapter V: Solving quantum many-body problems . . . . . . . . . . . . . . . 126
5.1 A brief review of classical shadow tomography . . . . . . . . . . . . 130
5.2 Predicting ground states of quantum many-body systems . . . . . . . 134
5.3 Proof idea for the efficiency in predicting ground states . . . . . . . . 137



viii

5.4 Proof of efficiency for predicting ground states . . . . . . . . . . . . 144
5.5 Sample complexity lower bound for predicting ground states . . . . . 160
5.6 Hardness for non-ML algorithms to predict ground state properties . 169
5.7 Classifying quantum phases of matter . . . . . . . . . . . . . . . . . 175
5.8 No observable can classify topological phases . . . . . . . . . . . . 179
5.9 Proof of efficiency for classifying phases of matter . . . . . . . . . . 181
5.10 Classifying SPT phases with O(2) symmetry . . . . . . . . . . . . . 205
5.11 Neural networks with classical shadow for quantum problems . . . . 211
5.12 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . 214
5.13 Details regarding numerical experiments . . . . . . . . . . . . . . . 220

Chapter VI: Learning to predict quantum dynamics . . . . . . . . . . . . . . 237
6.1 Learning quantum states, observables, and processes . . . . . . . . . 240
6.2 Algorithm for learning an unknown quantum process . . . . . . . . . 244
6.3 Proof ideas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
6.4 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . 255
6.5 Optimizing k-local Hamiltonian with random product states . . . . . 257
6.6 Norm inequalities from approximate optimization algorithm . . . . . 280
6.7 Sample-optimal algorithms for predicting bounded-degree observables282
6.8 Learning to predict an unknown observable . . . . . . . . . . . . . . 288
6.9 Learning quantum evolutions from randomized experiments . . . . . 305
6.10 Details of numerical experiments . . . . . . . . . . . . . . . . . . . 314

III Learning with quantum machines 316
Chapter VII: Information-theoretic bounds on quantum advantage . . . . . . 317

7.1 Machine learning settings . . . . . . . . . . . . . . . . . . . . . . . 319
7.2 Average-case prediction error . . . . . . . . . . . . . . . . . . . . . 321
7.3 Proof of the information-theoretic bounds . . . . . . . . . . . . . . . 323
7.4 Examples saturating the maximum information-theoretic advantage . 344

Chapter VIII: Power of data and quantum advantage . . . . . . . . . . . . . . 348
8.1 Setup and motivating example . . . . . . . . . . . . . . . . . . . . . 351
8.2 Testing quantum advantage . . . . . . . . . . . . . . . . . . . . . . 355
8.3 Projected quantum kernels . . . . . . . . . . . . . . . . . . . . . . . 360
8.4 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . 361
8.5 Relation between quantum kernels and quantum neural networks . . 364
8.6 Proof of a general form of prediction error bound . . . . . . . . . . . 365
8.7 Prediction error bound based on dimension and geometric difference 370
8.8 Detailed discussion on the relevant quantities s, d, and g . . . . . . . 375
8.9 Constructing dataset to separate quantum and classical model . . . . 379
8.10 Lower bound on learning quantum models . . . . . . . . . . . . . . 381
8.11 Limitations of quantum kernel methods . . . . . . . . . . . . . . . . 383
8.12 Projected quantum kernel methods . . . . . . . . . . . . . . . . . . 384
8.13 Simple and rigorous quantum advantage . . . . . . . . . . . . . . . 387
8.14 Details of numerical experiments . . . . . . . . . . . . . . . . . . . 390
8.15 Additional numerical experiments . . . . . . . . . . . . . . . . . . . 396



ix

Chapter IX: Quantum advantage in learning from experiments . . . . . . . . 399
9.1 Provable exponential quantum advantage . . . . . . . . . . . . . . . 402
9.2 Demonstrations of quantum advantage . . . . . . . . . . . . . . . . 406
9.3 Related works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409
9.4 Experimental details . . . . . . . . . . . . . . . . . . . . . . . . . . 412
9.5 Quantum advantage in predicting highly-incompatible observables . 428
9.6 Quantum advantage in principal component analysis . . . . . . . . . 442
9.7 Quantum advantage in testing the purity of a quantum state . . . . . 452
9.8 Quantum advantage in learning a polynomial-time quantum process . 455
9.9 Quantum advantage in testing properties of quantum channels . . . . 464
9.10 Predicting observables with bounded quantum memory . . . . . . . 504

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 512



x

LIST OF FIGURES

Number Page
2.1 Illustration of quantum processes: a formalism for describing physi-

cal processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Illustration of POVM: a formalism encompassing all physical mea-

surements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1 An illustration of the complexity class for classical machine learning

algorithms with the availability of data . . . . . . . . . . . . . . . . 39
3.2 Illustration of the tree representation for a learning algorithm . . . . . 44
3.3 Illustration for the leaf probability distribution . . . . . . . . . . . . 45
3.4 Visualization of the different distinguishing tasks . . . . . . . . . . . 49
4.1 An illustration for constructing the classical shadow of a quantum

system from randomized measurements . . . . . . . . . . . . . . . . 55
4.2 Predicting quantum fidelities using classical shadows (Clifford mea-

surements) and neural network tomography . . . . . . . . . . . . . . 69
4.3 Predicting two-point correlation functions using classical shadows

(Pauli measurements) and neural network tomography . . . . . . . . 71
4.4 Predicting entanglement Rényi entropies using classical shadows

(Pauli measurements) and the Brydges et al. protocol . . . . . . . . . 72
4.5 Comparison between classical shadow and neural network tomogra-

phy (NNQST); toric code . . . . . . . . . . . . . . . . . . . . . . . 74
4.6 Detection of GHZ-type entanglement for 3-qubit states using classical

shadow tomography . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.7 Application of classical shadows to variational quantum simulation

of the lattice Schwinger model . . . . . . . . . . . . . . . . . . . . . 77
4.8 Illustration of the derandomization algorithm for predicting properties 81
4.9 Stabilizers and de-stabilizers of the toric code . . . . . . . . . . . . . 91

4.10 Illustration of the communication protocol for proving information-
theoretic lower bounds for predicting properties of quantum systems . 117

5.1 Illustration for solving quantum many-body problems with classical
machine learning algorithms . . . . . . . . . . . . . . . . . . . . . . 128

5.2 Reduction of planar rectilinear 3SAT to a 2D qubit Hamiltonian . . . 170
5.3 Geometric intuition behind support vector machines . . . . . . . . . 183



xi

5.4 Numerical experiment for predicting ground-state properties in a 1D
Rydberg atom system with 51 atoms . . . . . . . . . . . . . . . . . . 214

5.5 Numerical experiment for predicting ground state properties in the
2D antiferromagnetic Heisenberg model . . . . . . . . . . . . . . . . 216

5.6 Numerical experiments for classifying quantum phases in the bond-
alternating XXZ model . . . . . . . . . . . . . . . . . . . . . . . . . 218

5.7 Numerical experiments for distinguishing between trivial and topo-
logical phases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

5.8 Predicting ground state properties (Pauli-𝑍 in each atom) in a 1D
Rydberg atom system with 51 atoms . . . . . . . . . . . . . . . . . . 220

5.9 Predicting ground state properties (Pauli-𝑋 in each atom) in a 1D
Rydberg atom system with 51 atoms . . . . . . . . . . . . . . . . . . 220

5.10 “Predictions” obtained by performing bivariate B-spline interpolation 221
5.11 The Gram matrix for distinguishing trivial and topological phases . . 222
5.12 Numerical experiment for predicting ground state properties (Pauli-𝑋

and 𝑍 in each atom) in a 1D Rydberg atom system . . . . . . . . . . 228
5.13 Predicting ground state properties in a 2D antiferromagnetic Heisen-

berg model under different hyperparameters . . . . . . . . . . . . . . 230
6.1 Learning to predict an arbitrary unknown quantum process . . . . . . 239
6.2 Prediction performance of ML models for learningE(𝜌) = 𝑒−𝑖𝑡𝐻𝜌𝑒𝑖𝑡𝐻

for a large time 𝑡. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
6.3 Visualization of ML model’s prediction for an initial state 𝜌 = |𝜓⟩⟨𝜓 |

with a domain wall . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
6.4 Visualization of ML model’s prediction for a highly-entangled initial

state 𝜌 = |𝜓⟩⟨𝜓 |. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
6.5 Visualization of ML model’s prediction for a highly-entangled initial

state 𝜌 = |𝜓⟩⟨𝜓 |. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
7.1 Classical and quantum machine learning settings . . . . . . . . . . . 318
8.1 Illustration of the relation between complexity classes and a flowchart

for understanding and pre-screening potential quantum advantage . . 349
8.2 Cartoon of the geometry (kernel function) defined by classical and

quantum ML models . . . . . . . . . . . . . . . . . . . . . . . . . . 354
8.3 Relation between dimension 𝑑, geometric difference 𝑔, and prediction

performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358
8.4 Prediction accuracy (higher the better) on engineered data sets . . . . 361
8.5 Prediction accuracy (higher the better) on engineered data sets. . . . 396



xii

8.6 Prediction error (lower the better) on quantum data set (E2) over
different training set size . . . . . . . . . . . . . . . . . . . . . . . . 397

8.7 A comparison between the prediction error bound based on classical
kernel methods and the prediction performance of the best classical
ML model on the three quantum datasets . . . . . . . . . . . . . . . 397

9.1 Illustration of quantum-enhanced and conventional experiments . . . 400
9.2 Quantum advantage in learning physical states . . . . . . . . . . . . 405
9.3 Quantum advantage in learning physical dynamics . . . . . . . . . . 407
9.4 Layout of a Google Sycamore processor . . . . . . . . . . . . . . . . 414
9.5 Implementation of 2D dynamics on Sycamore . . . . . . . . . . . . . 423
9.6 The best known human-designed one-dimensional representation for

1D and 2D dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . 425
9.7 Two-dimensional representation learned by unsupervised ML for (a)

1D dynamics and (b) 2D dynamics . . . . . . . . . . . . . . . . . . 425
9.8 Accuracy of the unsupervised ML model for classifying general uni-

tary and 𝑇-symmetric dynamics . . . . . . . . . . . . . . . . . . . . 427
9.9 Sycamore state preparation and measurement error data . . . . . . . 428

9.10 Sycamore single- and two-qubit gate error data . . . . . . . . . . . . 429
9.11 Illustration for the task of predicting highly-incompatible observables 430
9.12 Illustration of the equality (9.124) for 𝑇 = 3, 𝜋 = (123) . . . . . . . . 454
9.13 Illustration for the proof of Theorem 55 on learning polynomial-time

quantum processes . . . . . . . . . . . . . . . . . . . . . . . . . . . 458
9.14 Illustration of learning tree representation for algorithms with bounded

quantum memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 506



xiii

NOMENCLATURE

𝑛-qubit system. A qubit is the basic unit of quantum information, and describes the
state of a quantum system with two levels (zero and one). An 𝑛-qubit system
is a system with 𝑛 qubits, where 𝑛 is considered as the scaling parameter
that can be very large. Any finite quantum system can be discretized and be
represented by an 𝑛-qubit system.

Classical learning agent. An agent that can receive classical information from the
world through experiments and measurements, process the classical infor-
mation with classical computation, and store the classical information in a
classical memory.

Classical shadow. Classical shadow is a succinct classical representation of a quan-
tum state constructed from randomized measurements. The classical shadow
representation enables efficient prediction of many properties of the quantum
state, including expectation values of local observables, many-body fidelity,
and few-body correlation functions.

Complexity. Complexity measures how hard, challenging, complex a problem, sys-
tem, function is. For example, computational time complexity characterizes
how much time is required to solve the problem computationally, sample
complexity measures how many samples is needed to learn about an un-
known object, state complexity inquires how many gates must be used to
create a certain state.

CPTP map. CPTP map refers to a completely positive trace-preserving map over
positive semidefinite matrices. Every possible process in the quantum world
can be written as a CPTP map. The map captures the input-output relation
between quantum states and maps an input state to an output state.

Distinguishing task. The problem of distinguishing between multiple (often finite)
hypotheses from a collection of data obtained from experiments.

Empirical average. The average of the observed set of random numbers. Also
called sample mean.

Generalization error. When an algorithm learns on a dataset, the performance
it achieves on the dataset will generally be worse than it’s performance on
new inputs. The additional error incurred on new inputs is known as the
generalization error.

Information-theoretic bounds. Information theory is a field that focuses on the
information and disregards the computational cost. For example, given
an unknown object, finding out its weight and volume is an information-
theoretic task. However, given its weight and volume, figuring out its density
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is a computational task. Information-theoretic bounds provide upper and
lower bounds on how much information is required to achieve a task.

Learning. Learning is an act of gathering information about an unknown entity
(a distribution, a quantum system, a function, a quantum process, etc.),
processing information through computation, and storing the processed in-
formation, such that, subsequently, one could achieve a certain task with the
stored information.

Quantum advantage. Quantum machines are machines that operate under quantum-
mechanical principles and are generalizations of classical machines. In some
problems, quantum machines can address the problem strictly faster and/or
strictly better than all classical machines. This phenomenon is called quan-
tum advantage.

Quantum benchmarking. Quantum systems are hard to control and often are error-
prone. Quantum benchmarking is a field of study to understand how to see if
the quantum system has been engineered to perform according to our design.

Quantum information theory. Our universe is intrinsically quantum-mechanical.
Hence information is fundamentally quantum. Quantum information theory
characterizes what aspects of classical information still preserve in quantum,
and what are the surprising properties that stem from the quantum nature of
information.

Quantum learning machine. An agent that can receive quantum information from
the world through quantum sensors, process the quantum information with
quantum computation, and store the quantum information in a quantum
memory.

Quantum many-body problems. Computational problems that arise from study-
ing quantum many-body systems. Examples include solving ground states
(finding the lowest energy state in a quantum many-body system) and iden-
tifying phases of matter.

Quantum many-body system. A system with many constituents that behaves quan-
tum mechanically. The constituents could be qubits, electrons, atoms, pho-
tons, phonons, superconducting currents, etc.

Quantum process. Quantum process refers to all possible processes in the quantum
world. A quantum process is represented by a CPTP map.

Quantum world. The macroscopic world that we experience every day is best
described by the laws of classical mechanics. The microscopic world operates
under a different set of laws, called quantum mechanics. The quantum world
emphasizes the quantum nature of the microscopic world.
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Introduction
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C h a p t e r 1

LEARNING IN THE QUANTUM UNIVERSE

1.1 Motivations
A central goal of science is to develop models that allow us to understand and
make accurate predictions about the world around us. Predictive models created by
humans and machines have enabled significant technological advancement. Because
our universe is inherently quantum, understanding how to make predictions in
the quantum world could lead to many advances, including the design of better
catalysts, materials, and pharmaceuticals, novel insights into the behavior of exotic
quantum matter, and the engineering of powerful quantum devices for computation,
communication, and sensing.

In this thesis, I will describe our progress in building a mathematical foundation for
understanding how scientists, machines, and future quantum computers could learn
models of our inherently quantum universe. The mathematical foundation enables
the discovery of new algorithmic tools that enhance one’s ability to make predictions
about the quantum world. By utilizing quantum information theory, learning theory,
quantum complexity theory, high-dimensional probability, and quantum many-body
physics, progress has been made in answering the following driving questions.

How to efficiently learn about complex quantum systems?
Given a quantum many-body system that corresponds to a newly engineered quan-
tum device, an exotic quantum matter, or a synthetic molecule/material, the ability
to learn properties or representations of the quantum system is central to the under-
standing of the system. For example, topological properties of an exotic phase of
matter could enable us to discover new physical phenomena, and a representation of
the device allows us to identify what needs to be improved. However, the intrinsic
exponential complexity in a quantum system with 𝑛 constituents makes learning and
making predictions challenging. For example, traditional approaches (Hradil, 1997;
O’Donnell and Wright, 2016; Haah et al., 2017) for learning a representation of an
𝑛-qubit system require exponential resources in 𝑛. This curse of dimensionality is
unavoidable when one aims to construct a complete model of the system. Could one
achieve much higher efficiency by considering effective models that make accurate
predictions instead of insisting on a complete characterization of the system?
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How can learning algorithms advance quantum technology and science?
There has been considerable interest in using classical machine learning (ML) al-
gorithms to solve challenging problems in physical science, such as finding ground
states in quantum many-body systems or classifying quantum phases of matter (Car-
leo and Troyer, 2017a; Carleo, Cirac, et al., 2019; Carrasquilla and Roger G Melko,
2017a). So far, these approaches are mostly heuristic. While shown to be effec-
tive in some intermediate-size experiments (Bohrdt et al., 2019; Rem et al., 2019;
Torlai, Timar, et al., 2019), these methods are not backed by convincing theoretical
arguments to ensure good performance, particularly for problem instances where
traditional classical algorithms falter. Is it possible to develop rigorous learning
algorithms for addressing physical problems? Could learning algorithms solve
challenging problems that non-learning algorithms fail?

Could quantum machines predict more accurately than classical machines?
While classical computers have facilitated many profound advances in science and
technology, they will ultimately fail to simulate every phenomenon in our quantum
universe. The advent of quantum computers allows us to reach beyond classical
computation (Arute et al., 2019). It is natural to wonder how much additional
predictive power quantum computers will provide. When the exact model for a
quantum evolution is available, quantum computers can simulate the dynamics and
predict what would happen beyond the capability of classical computers (Lloyd,
1996; Childs et al., 2018). But what if the exact model is not known? Could quan-
tum computers still learn to predict better than classical machines can? Quantum
machines are not all-powerful, and there are known limitations in what they can learn
(Regev, 2010; Arunachalam, Grilo, and Sundaram, 2019). Understanding both re-
strictions and advantages will allow us to design useful quantum machine learning
models (Biamonte et al., 2017) and make full use of future quantum technology.

1.2 Overview
The thesis is divided into three parts. Part I, Introduction gives an overview of the
thesis (Chapter 1), reviews key results in quantum information theory and learning
theory (Chapter 2), and elucidates several key concepts uncovered by our works on
learning about the quantum universe (Chapter 3). Part II, Learning with classical
machines dives into our recent results studying the power of classical machines in
learning about the quantum universe (Chapter 4, 5, and 6). Part III, Learning with
quantum machines unravels the power of quantum machines in learning about the
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quantum universe (Chapter 7, 8, and 9). In the following, I will provide a summary
of the results presented in this thesis.

Learning with classical machines

The wave function of an 𝑛-qubit system is a 2𝑛-dimensional complex vector. Hence,
quantum many-body systems generally require exponentially-many classical bits
to describe. The classical complexity of describing quantum systems suggests a
significant challenge in learning and making predictions in the quantum world using
classical machines. To learn about the quantum world efficiently, classical machines
must be able to efficiently describe quantum systems. In this thesis, we propose a
new representation of quantum systems, the classical shadow representation, that
enables efficient predictions of many properties of any quantum many-body system
(Chapter 4). Then, we will build on the classical shadow representation to show
how one could design rigorous and efficient classical machine learning algorithms
to solve challenging quantum many-body problems, including classifying quantum
phases of matter and predicting ground states (Chapter 5). Finally, we will show
how to generalize classical shadow representation to learn an efficient representation
of any unitary/process generated by quantum many-body dynamics, even when the
evolution time is arbitrarily long (Chapter 6).

Chapter 4: Predicting many properties of quantum systems

To address the exponential scaling in existing methods for learning a quantum many-
body system, in an article (Huang, Richard Kueng, and Preskill, 2020) published in
Nature Physics, Richard Kueng, John Preskill, and I developed a provably efficient
algorithm for learning a succinct approximate classical representation of an un-
known large-scale quantum system using very few measurements. This description,
called a classical shadow, can be used to predict many different properties: order
log𝑀 measurements suffice to accurately predict 𝑀 functions of the state with high
success probability. The number of measurements is independent of the system
size. Moreover, the protocol allows one to specify target properties after the actual
data acquisition phase (measurements) has been completed. In (Huang, Richard
Kueng, and Preskill, 2020), we applied classical shadows to predict quantum fideli-
ties, entanglement entropies, two-point correlation functions, expectation values of
local observables, and the energy variance of many-body local Hamiltonians. We
observed substantially higher prediction accuracy and lower computational time
relative to previously known methods.
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The core of this work is a versatile mathematical tool for analyzing random unitaries,
known as unitary 𝑡-designs. The measurement procedure we performed contains a
random quantum evolution followed by a computational basis measurement. The
random quantum evolution scrambles the quantum information stored in the quantum
system across the entire system, and a subsequent basis measurement can easily
extract this information. The concept of unitary 𝑡-designs allowed us to capture and
capitalize upon this intuition rigorously.

The practical efficiency of this algorithm led to multiple collaborations with ex-
perimentalists. In collaboration with Rainer Blatt’s experimental group and Peter
Zoller’s theory group at the University of Innsbruck, we considered the ability of
classical shadows to detect entanglement in a mixed quantum state. The result is a
new entanglement certification protocol that reveals entanglement based on existing
experimental data when its presence was previously unknown. The result led to an
article (Andreas Elben, Richard Kueng, et al., 2020a) published in Physical Review
Letters.

In collaboration with Jordan Cotler, Soonwon Choi, Hannes Pichler, and Manuel
Endres’ experimental group at Caltech, we applied the idea of randomized quantum
evolution to benchmark a Rydberg atom system (J. Choi et al., 2021; J. S. Cotler
et al., 2021). Due to the experimental limitation to performing accurate control
of time-dependent quantum evolution, we can only perform a chaotic quantum
evolution (that is not random). Our original theory (Huang, Richard Kueng, and
Preskill, 2020) does not cover this setting. Although chaotic, the dynamics are
inherently deterministic. However, with a modified procedure, we can accurately
predict the fidelity of the Rydberg atom system under various circumstances (J. Choi
et al., 2021). To build an intuition for why and when this works, we developed a
new theoretical concept that relates 𝑡-designs and chaotic evolutions in (J. S. Cotler
et al., 2021). This new benchmarking protocol (J. Choi et al., 2021) was recently
accepted by Nature.

Chapter 5: Solving quantum many-body problems

Solving quantum many-body problems, such as finding ground states of quan-
tum systems or predicting outcomes of quantum dynamics, has far-reaching conse-
quences for physics, materials science, and chemistry. However, these problems are
notoriously hard to solve using classical computers.

In collaboration with Google Quantum AI, we studied how classical machines can
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learn to solve quantum-mechanical problems using small training data sizes and
efficient computational time. In an article (Huang, Broughton, Masoud Mohseni,
Babbush, Boixo, Neven, and Jarrod R. McClean, 2021b) published in Nature Com-
munications, we showed that the computational power of classical machines can be
elevated by learning from classical data obtained in quantum experiments. Because
the data are generated by the quantum universe, these data contain power beyond
classical computation. The power of data enables classical machine learning al-
gorithms that learn from the data to accomplish computational problems that are
impossible to solve efficiently using classical algorithms. As a result, with the power
of data, classical machine learning algorithms have the potential to address chal-
lenging quantum many-body problems that no classical algorithms can accomplish.

In a recent article (Huang, Richard Kueng, Torlai, et al., 2022) published in Sci-
ence, John Preskill, Richard Kueng, Giacomo Torlai, Victor Albert, and I com-
bine a series of ideas, including the insight that data provide computational power
(Huang, Broughton, Masoud Mohseni, Babbush, Boixo, Neven, and Jarrod R. Mc-
Clean, 2021b), the classical shadow formalism (Huang, Richard Kueng, and Preskill,
2020) for representing quantum systems on classical machines, mathematical tools
in computational learning theory, and spectral flow formalism in mathematical
physics, to give provably efficient classical machine learning (ML) algorithms for
solving quantum many-body problems. We rigorously proved that after obtaining
polynomial-size classical data from quantum experiments, the proposed polynomial-
time algorithm could learn to predict ground state representations for new quantum
many-body systems accurately. In contrast, we showed that under a widely-accepted
complexity-theoretic conjecture, no classical polynomial-time algorithm without
data could predict ground state properties as accurately as the ML algorithm trained
with data.

Because the ground state of a physical system captures many of its fundamental
properties, our result rigorously shows how scientists can use learning algorithms
to address challenging physically-relevant problems, even for problem instances
where traditional approaches falter. This work (Huang, Richard Kueng, Torlai,
et al., 2022) provides a particularly interesting example showing the power of data
and illustrates how classical machine learning can be helpful for the development
of quantum technology and physical science. Furthermore, using a similar set of
mathematical and algorithmic techniques combining classical shadow and kernel
machine learning models, we also found in (Huang, Richard Kueng, Torlai, et al.,
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2022) that classical machines can provably learn to classify a wide range of quantum
phases of matter efficiently.

Chapter 6: Learning to predict quantum dynamics

We have seen that classical machines can learn to predict properties of quantum
many-body systems, classify quantum phases of matter, and predict ground state
properties. Another central problem in quantum mechanics is simulating complex
quantum dynamics. In the last chapter on learning with classical machines, we focus
on the problem of learning to predict quantum dynamics, a fundamental problem at
the intersection of machine learning (ML) and quantum physics.

Given an unknown 𝑛-qubit completely positive trace-preserving (CPTP) map E that
represents a quantum process happening in nature or in an experimental laboratory,
we consider the task of learning to predict functions of the form

𝑓 (𝜌, 𝑂) = tr(𝑂E(𝜌)), (1.1)

where 𝜌 is an 𝑛-qubit state and𝑂 is an 𝑛-qubit observable. Related problems arise in
many fields of research, including quantum machine learning, variational quantum
algorithms, machine learning for quantum physics, and quantum benchmarking.
As an example, for predicting outcomes of quantum experiments (Huang, Richard
Kueng, and Preskill, 2021; Melnikov et al., 2018; Huang, Broughton, J. Cotler,
et al., 2022), we consider 𝜌 to be parameterized by a classical input 𝑥, E is an
unknown process happening in the lab, and 𝑂 is an observable measured at the
end of the experiment. Another example is when we want to use a quantum ML
algorithm to learn a model of a complex quantum evolution with the hope that the
learned model can be faster (Cirstoiu et al., 2020; Gibbs et al., 2022; Caro, Huang,
Ezzell, et al., 2023).

Due to the exponential complexity encoded in an arbitrary CPTP map E, all known
works require an exponential number of data samples to guarantee a small constant
error for predicting outcomes tr(𝑂E(𝜌)) in an arbitrary process E under a general
input state 𝜌. While recent works (Caro, Huang, Marco Cerezo, et al., 2022; Caro,
Huang, Ezzell, et al., 2023; Huang, Richard Kueng, and Preskill, 2021; Huang,
Broughton, J. Cotler, et al., 2022) have shown that only a polynomial amount of
data samples is required to learn tr(𝑂E(𝜌)) when E is restricted to being generated
by a polynomial number of gates, these results still require exponential computation
time. This raises the question of whether a classical ML algorithm can efficiently
learn and predict an arbitrary quantum process.
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In a recent work (Huang, Sitan Chen, and Preskill, 2023), Sitan Chen, John Preskill,
and I answered this question in the affirmative by presenting a computationally-
efficient classical ML algorithm that can learn a model of an arbitrary unknown
𝑛-qubit process E, such that given 𝜌 sampled from a wide range of distributions
over arbitrary 𝑛-qubit states and any 𝑂 in a physically-relevant class of observables,
the ML algorithm can accurately predict 𝑓 (𝜌, 𝑂) = tr(𝑂E(𝜌)).

The proposed classical ML algorithm exhibits several surprising properties. First of
all, the training and prediction of the proposed ML model are both efficient even if
the unknown process E is an exponential-sized quantum circuit. This demonstrates
the ability to compress any process into a succinct model through learning. Second
of all, the computation is entirely classical apart from obtaining few-body reduced
density matrices (RDMs) in 𝜌, which may require a quantum computer. Hence, if
the RDMs can be obtained classically, then the proposed ML model is classical.
Furthermore, the ML model can predict outcomes for highly entangled states 𝜌 after
learning from a training set that only contains data for random product states. This
shows a form of strong generalization beyond what is seen in the training set.

Learning with quantum machines

Because our universe is inherently quantum, one would expect that quantum ma-
chines have a stronger learning and prediction ability compared to classical ma-
chines. In particular, one may hope that to learn some aspects of our quantum
universe, a quantum learning machine could learn much faster and predict more
accurately than a classical learning machine. However, it is not clear what prob-
lems quantum machines could demonstrate a significant quantum advantage. This
viewpoint is also challenged by the existence of good classical ML algorithms
for addressing challenging quantum many-body problems and predicting quantum
many-body dynamics in the aforementioned works (Huang, Broughton, Masoud
Mohseni, Babbush, Boixo, Neven, and Jarrod R. McClean, 2021b; Huang, Richard
Kueng, Torlai, et al., 2022; Lewis et al., 2024; Huang, Sitan Chen, and Preskill,
2023). As a result, it is necessary to provide rigorous mathematical analysis to under-
stand when significant quantum advantages in learning are possible or impossible.

In Chapter 7, we show that for a wide range of problems, a large quantum advantage
in terms of the number of experiments is not possible due to an information-theoretic
bound on quantum advantage. In Chapter 8, we revisit the role of data in elevating
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the computational power of classical machine learning algorithms and show that
there are various problems where a quantum advantage in prediction performance
is not possible. While the first two chapters focus on establishing impossibility
results for significant quantum advantages, these impossibility results also carve out
spaces where a large quantum advantage is possible. In Chapter 8, we give rigorous
proofs and experiments demonstrating that for a set of learning problems, quantum
machines can learn exponentially faster than classical machines.

Chapter 7: Information-theoretic bounds on quantum advantage

In this chapter, we focus on an important class of learning problems motivated by
quantum mechanics.‘ Namely, we are interested in predicting functions of the form

𝑓 (𝑥) = tr(𝑂E(|𝑥⟩⟨𝑥 |)), (1.2)

where 𝑥 is a classical input, E is a completely positive and trace preserving (CPTP)
map, and 𝑂 is a known observable. Equation (1.2) encompasses any physical
process that takes a classical input and produces a real number as output. The
problem is to learn a function ℎ(𝑥) that is approximately the same as 𝑓 (𝑥) using as
few accesses to E as possible.

A particularly important special case of setup (1.2) is training an ML model to
predict what would happen in physical experiments (Melnikov et al., 2018). Such
experiments might explore, for instance, the outcome of a reaction in quantum
chemistry (Z. Zhou, Xiaocheng Li, and Zare, 2017), ground state properties of a
novel molecule or material (Parr, 1980; Car and Parrinello, 1985; Becke, 1993;
Steven R White, 1993a; Peruzzo et al., 2014; Kandala et al., 2017; Gilmer et al.,
2017), or the behavior of neutral atoms in an analog quantum simulator (Buluta and
Nori, 2009; Levine et al., 2018; Bernien et al., 2017). In these cases, the input 𝑥
subsumes parameters that characterize the process, e.g., chemicals involved in the
reaction, a description of the molecule, or the intensity of lasers that control the
neutral atoms. The map E characterizes a quantum evolution happening in the lab.
Depending on the parameter 𝑥, it produces the quantum state E(|𝑥⟩⟨𝑥 |). Finally, the
experimentalist measures a certain observable 𝑂 at the end of the experiment. The
goal is to predict the measurement outcome for new physical experiments with new
values of 𝑥 that have not been encountered during the training process.

Motivated by these physical applications, we want to understand the power of
classical and quantum ML models in learning functions of the form given in Equa-
tion (1.2). On the one hand, we consider classical ML models that can gather
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classical experimental data {(𝑥𝑖, 𝑜𝑖)}𝑁C
𝑖=1, where 𝑜𝑖 is the outcome when we perform

a POVM measurement on the state E(|𝑥𝑖⟩⟨𝑥𝑖 |). We denote by 𝑁C the number of such
experiments performed during training in the classical ML setting. On the other
hand, we consider quantum ML models in which multiple runs of the CPTP map E
can be composed coherently to collect quantum data, and predictions are produced
by a quantum computer with access to the quantum data. We denote by 𝑁Q the
number of times E is used during training in the quantum setting.

We focus on the question of whether quantum ML models can have a large advantage
over classical ML models: to achieve a small average prediction error, can the
optimal 𝑁Q in the quantum ML setting be much less than the optimal 𝑁C in the
classical ML setting? While one may expect that a large quantum advantage is
possible since E is a quantum process, we found the contrary. In a manuscript
(Huang, Richard Kueng, and Preskill, 2021) published in Physical Review Letters,
Richard Kueng, John Preskill, and I proved that, for any E, 𝑂, and D, and for
any quantum ML model, one can always design a classical ML model achieving a
similar average prediction error such that 𝑁C is larger than 𝑁Q by at worst a small
polynomial factor. Hence, there is no exponential quantum advantage in the number
of experiments if the problem is to achieve a small average prediction error.

Chapter 8: Power of data and quantum advantage

While there is no large quantum advantage in the number of experiments to achieve
a small average prediction error, there is still hope for quantum advantage in com-
putational time. Even though a small amount of classical data contains sufficient
information to identify ℎ(𝑥), it may still be computationally hard to find ℎ(𝑥) ≈ 𝑓 (𝑥)
with classical computers. There are various recent quantum ML proposals, such
as quantum neural network (Farhi and Neven, 2018) and quantum kernel method
(Havlicek et al., 2019). The justification that these quantum ML models exceed the
capabilities of classical ML models typically follows from the conjecture that the
quantum circuits involved in the quantum ML models are not classically simulatable.

In an article (Huang, Broughton, Masoud Mohseni, Babbush, Boixo, Neven, and
Jarrod R. McClean, 2021b) published in Nature Communications, we showed that
this picture is incomplete in a learning setting where some data is provided. This
perspective connects to Chapter 5 and 6, where we show that the availability of data
in a machine learning problem could elevate the classical ML models to accomplish
computational problems that are hard for classical computers. The provided data
can elevate classical ML models to rival quantum ML models, even when the
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underlying quantum problems are hard to solve classically. This chapter provides
rigorous prediction error bounds for training classical and quantum ML methods
based on kernel functions Cortes and Vapnik, 1995; Schölkopf, Alexander J Smola,
Bach, et al., 2002; Mohri, Rostamizadeh, and Talwalkar, 2018; Jacot, Gabriel, and
Hongler, 2018; Novak, L. Xiao, Hron, J. Lee, Alexander A Alemi, et al., 2019;
Arora et al., 2019; Havlicek et al., 2019; Blank et al., 2020; Bartkiewicz et al., 2020;
Y. Liu, Arunachalam, and Temme, 2020 to learn quantum mechanical models.

We use our prediction error bounds to devise a flowchart for testing potential quantum
prediction advantage, the separation between prediction errors of quantum and
classical ML models for a fixed amount of training data. Moreover, the application
of these tools to existing quantum ML models in the literature rules many of them
out immediately, providing a powerful sieve for focusing the development of new
quantum ML algorithms. Following these constructions, in numerical experiments,
we find that a variety of common quantum models in the literature perform similarly
or worse than classical ML on both classical and quantum datasets. Quantum ML
models involving quantum circuits that are hard to simulate classically are hence
insufficient to guarantee a quantum advantage in learning problems.

Chapter 9: Quantum advantage in learning from experiments

Given so many impossibility results of quantum advantage, as shown in previous
chapters, one may conclude that all hope is lost. However, the impossibility results
also guide us to where the quantum advantage could lie. Throughout the study,
we found that there are some learning problems in quantum physics that are not
amenable to any of the impossibility results and are not efficiently addressable with
any classical ML algorithms we could think of. An example of the learning problem
goes back to the first chapter of Learning with classical machines. While classical
shadow enables classical machines to predict many properties of a quantum many-
body system efficiently, there is a class of properties that is not applicable to classical
shadows. This is the class of Pauli observables {𝐼, 𝑋,𝑌 , 𝑍}⊗𝑛 in an unknown 𝑛-qubit
system 𝜌. We originally thought that this is a weakness of classical shadow, but
after thinking about this problem for some years, we are more and more convinced
that this is a weakness of learning using classical machines.

In a manuscript (Huang, Richard Kueng, and Preskill, 2021) published in Physical
Review Letters, Richard Kueng, John Preskill, and I showed an unconditional expo-
nential lower bound for predicting all Pauli observables using classical machines.
We considered classical ML models that can gather and process classical data by
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performing measurements on the unknown quantum system. And we proved that
all possible classical ML models require at least Ω(2𝑛) experiments to predict all
Pauli observables accurately. We also considered quantum ML models that can
obtain quantum information about the quantum system using a quantum sensor and
perform quantum data processing. And we explicitly constructed a quantum ML
algorithm that uses only O(𝑛) experiments. This work shows that a quantum ma-
chine could achieve a learning task using exponentially fewer experiments than its
classical counterpart.

To further understand the nature of the exponential quantum advantage, I collabo-
rated with learning theorists Sitan Chen and Jerry Li and a high-energy physicist,
Jordan Cotler, to construct a mathematical framework for establishing exponential
separations in problem size between classical and quantum learning algorithms.
We showed that such an exponential advantage is evident in many tasks, includ-
ing predicting properties of quantum systems (shadow tomography) (Aaronson,
2018; Aaronson and Rothblum, 2019), classifying if a random quantum evolution
preserves certain symmetry (e.g., time-reversal symmetry), testing the purity of a
quantum state, etc. This led to a manuscript published in FOCS 2021.

In collaboration with Google Quantum AI, we built on this mathematical frame-
work to show exponential quantum advantages in more tasks, including performing
principal component analysis in a physical system (Lloyd, Masoud Mohseni, and
Rebentrost, 2014), predicting output states of physical processes, and other tasks
that could be readily achieved with near-term quantum computers. Conducting
experiments with up to 40 superconducting qubits and 1300 quantum gates, we
demonstrate that a substantial quantum advantage can be realized using today’s rel-
atively noisy quantum processors. Our results highlight how quantum technology
can enable powerful new strategies to learn about nature and led to an article (Huang,
Broughton, J. Cotler, et al., 2022) published in Science.
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C h a p t e r 2

PRELIMINARIES ON QUANTUM INFORMATION AND
LEARNING THEORY

2.1 A brief review on quantum information theory
In this section, we review some relevant definitions and basic results in quantum
information theory, which are leveraged throughout our problem statements and
proofs. Specifically, we will discuss quantum processes, which are a general math-
ematical formalism for describing physical processes, and positive operator-valued
measures (POVMs), which encompass all possible physical measurements. Readers
familiar with these concepts can skip this section.

Definition and properties of quantum processes
For concreteness, let us consider a Hilbert space H𝑆 ≃ C𝑑 . Here the subscript 𝑆
stands for ‘system’ since the Hilbert space describes the space of states of some
particular system we wish to study. Given a density matrix 𝜌 on this Hilbert space,
we might ask: how can it evolve in time? The Schrödinger equations tell us that a
state can evolve via unitary time evolution, and as such a density matrix can evolve
by 𝜌 ↦→ 𝑈𝜌𝑈†. However, there is a more general type of time evolution allowed
by quantum mechanics. Suppose that we append our Hilbert space by another
H𝐸 ≃ C𝑑

′ which describes an external environment. The joint Hilbert space is
then the tensor product H𝑆 ⊗ H𝐸 . We can imagine having an initial state 𝜌𝑆 ⊗ 𝜌𝐸
which factorizes between the system and environment, and then evolving the state
by a unitary on the joint Hilbert space which couples the system and environment:
𝜌𝑆 ⊗ 𝜌𝐸 ↦→ 𝑈𝑆𝐸 (𝜌𝑆 ⊗ 𝜌𝐸 )𝑈†𝑆𝐸 . If we only have access toH𝑆, then our knowledge of
𝑈𝑆𝐸 (𝜌𝑆 ⊗ 𝜌𝐸 )𝑈†𝑆𝐸 is described by performing a partial trace over the environment,
namely tr𝐸

(
𝑈𝑆𝐸 (𝜌𝑆 ⊗ 𝜌𝐸 )𝑈†𝑆𝐸

)
. As such, if we are only aware of the initial density

matrix 𝜌𝑆 on H𝑆, then only having access to the system Hilbert space H𝑆 the time
evolution would appear to be

𝜌𝑆 ↦−→ tr𝐸
(
𝑈𝑆𝐸 (𝜌𝑆 ⊗ 𝜌𝐸 )𝑈†𝑆𝐸

)
. (2.1)

Note that, viewed as time evolution on 𝜌𝑆 alone, the above map is not unitary. This is
because information in 𝜌𝑆 can leak into the environment, and similarly, information
from the environment can influence the state of our system 𝑆 of interest. This
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mapping is an example of a quantum process, which can be more compactly notated
as 𝜌𝑆 ↦→ C[𝜌𝑆]. Here, C is a map from density matrices on H𝑆 to (other) density
matrices onH𝑆. We visualize this dynamical process in Supp. Fig. 2.1.

Our quantum process C has two properties that are worth highlighting:

1. C is trace-preserving. This means that tr(C[𝜌𝑆]) = tr(𝜌𝑆). The equality
follows from the definition of C[𝜌] via the right-hand side of (2.1), since

tr(C[𝜌𝑆]) = tr𝑆
(
tr𝐸

(
𝑈𝑆𝐸 (𝜌𝑆 ⊗ 𝜌𝐸 )𝑈†𝑆𝐸

))
= tr

(
𝑈𝑆𝐸 (𝜌𝑆 ⊗ 𝜌𝐸 )𝑈†𝑆𝐸

)
(2.2)

= tr(𝜌𝑆 ⊗ 𝜌𝐸 ) = tr(𝜌𝑆) tr(𝜌𝐸 ) = tr(𝜌𝑆) , (2.3)

where we have used the cyclicity of the trace to cancel 𝑈𝑆𝐸 with 𝑈†
𝑆𝐸

, and
have also leveraged tr(𝜌𝐸 ) = 1.

2. C is completely positive. Suppose we append our system Hilbert space H𝑆

by ancillas H𝐴 to arrive at the joint Hilbert space H𝐴 ⊗ H𝑆. Then complete
positivity means that for any density matrix 𝜌𝐴𝑆 on this joint system (and for
any choice of ancilla Hilbert space), (Id𝐴 ⊗ C)[𝜌𝐴𝑆] is positive-semidefinite;
here Id𝐴 acts as the identity on the ancillas. To see why this property holds,
we can write out (Id𝐴 ⊗ C)[𝜌𝐴𝑆] more explicitly:

(Id𝐴 ⊗ C)[𝜌𝐴𝑆] = tr𝐸
(
(𝐼𝐴 ⊗ 𝑈𝑆𝐸 ) (𝜌𝐴𝑆 ⊗ 𝜌𝐸 ) (𝐼𝐴 ⊗ 𝑈†𝑆𝐸 )

)
.

Since the right-hand side is merely performing a unitary transformation on the
density matrix 𝜌𝐴𝑆⊗ 𝜌𝐸 and then tracing out a subsystem (i.e. the environment
subsystem), positive semi-definiteness is preserved.

We have thus shown that our C is a completely positive, trace-preserving (CPTP)
linear map from density matrices on H𝑆 to density matrices on H𝑆. Henceforth,
when we refer to a map as being CPTP, we will implicitly suppose that the map is
linear. Moreover, we will interchangeably call a CPTP map a quantum process.

What is not immediately obvious is the following fact:

Theorem 1 (Stinespring dilation). Any CPTP map C taking density matrices on
H𝑆 ≃ C𝑑 to density matrices onH𝑆 ≃ C𝑑 can be written in the form

C[𝜌𝑆] = tr𝐸
(
𝑈𝑆𝐸 (𝜌𝑆 ⊗ 𝜌𝐸 )𝑈†𝑆𝐸

)
for any 𝜌𝑆, where𝑈𝑆𝐸 , 𝜌𝐸 , and the dimension of the environment 𝑑′ are all fixed.
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Figure 2.1: Illustration of quantum processes: a formalism for describing physi-
cal processes. Quantum process is also known as quantum operation or quantum
dynamical map, and is often referred to as quantum channel in quantum communi-
cation theory.

This theorem means that any CPTP map on a density matrix can be realized as a
unitary operation on a larger system, i.e. coupling the density matrix to an appropriate
environment and evolving the joint state and ultimately tracing out the environment.
In this sense, a quantum process is the most general form of evolution of a density
matrix. Note that a special case of a quantum process is simply a unitary channel,
i.e. C[𝜌] = 𝑈𝜌𝑈†. A way of summarizing the above Theorem is that a quantum
process that is not a unitary channel can be thought of as implementing open system
dynamics.

Definition and properties of POVMs
The most conventional way to measure a quantum state |𝜓⟩ is by decohering it
with respect to a complete orthonormal basis. More specifically, suppose that
|𝜓⟩ ∈ C𝑑 and we choose some complete orthonormal basis {|𝑖⟩}𝑑−1

𝑖=0 of C𝑑 . Then
upon measuring |𝜓⟩ with respect to this basis, we will measure |𝜓⟩ to be in the state
|𝑖⟩ with probability Prob(𝑖) = |⟨𝑖 |𝜓⟩|2. Analogously for a density matrix 𝜌 on the
same Hilbert space, if we measure it with respect to the same orthonormal basis we
will measure the state to be |𝑖⟩⟨𝑖 | with probability Prob(𝑖) = tr( |𝑖⟩⟨𝑖 | 𝜌).

There is a nice way of conceptualizing measurements which will admit useful
generalizations. First, let us develop some notation. We define Π𝑖 = |𝑖⟩⟨𝑖 | which is
the projector onto state |𝑖⟩, and will speak of the collection of projectors {Π𝑖}𝑑−1

𝑖=0 . It
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is readily seen that
∑𝑑−1
𝑖=0 Π𝑖 = 𝐼 since this is just a resolution of the identity. Observe

that each Π𝑖 is Hermitian and positive semi-definite. Now suppose we append to
our Hilbert space another copy C𝑑 . Then we can define a unitary on both copies
which acts by

𝑈
(
|𝜓⟩ ⊗ |0⟩

)
=

𝑑−1∑︁
𝑖=0

Π𝑖 |𝜓⟩ ⊗ |𝑖⟩ (2.4)

for any |𝜓⟩. Note that, as required of a unitary,(
⟨𝜓 | ⊗ ⟨0|

)
𝑈†𝑈

(
|𝜓⟩ ⊗ |0⟩

)
=

𝑑−1∑︁
𝑖, 𝑗=0
⟨𝜓 |Π𝑖Π 𝑗 |𝜓⟩⟨𝑖 | 𝑗⟩

=

𝑑−1∑︁
𝑖=0
⟨𝜓 |Π2

𝑖 |𝜓⟩ =
𝑑−1∑︁
𝑖=0
⟨𝜓 |Π𝑖 |𝜓⟩ = 1

on account of Π2
𝑖
= Π𝑖 and

∑𝑑−1
𝑖=0 Π𝑖 = 𝐼. Given the right-hand side of (2.4), we can

make a measurement on the appended Hilbert space in the {|𝑖⟩}𝑑−1
𝑖=0 basis; we will

then measure the appended register to be in the state |𝑖⟩ with probability

Prob(𝑖) =
(
⟨𝜓 | ⊗ ⟨0|

)
𝑈†

(
𝐼 ⊗ |𝑖⟩⟨𝑖 |

)
𝑈

(
|𝜓⟩ ⊗ |0⟩

)
= tr(Π𝑖 |𝜓⟩⟨𝜓 |) = |⟨𝑖 |𝜓⟩|2 . (2.5)

Similarly, if we consider 𝜌 ⊗ |0⟩⟨0|, conjugate by 𝑈, and then measure the state of
the ancilla, the probability of measuring the ancilla to be |𝑖⟩ is Prob(𝑖) = tr(Π𝑖𝜌) =
tr( |𝑖⟩⟨𝑖 | 𝜌).

We can think about the above in terms of the following procedure. First we prepare
a state |𝜓⟩; then we bring in an ancilla |0⟩ and cause the two states to interact such
that the ancilla goes into a state |𝑖⟩ upon coupling with the |𝑖⟩-component of |𝜓⟩.
This leads to the right-hand side of (2.4). The ancilla can be thought of as a proxy
for the readout of a measurement apparatus: upon reading off the value of |𝑖⟩, we
are informed that the state |𝜓⟩ has been projected into its |𝑖⟩-component.

This type of procedure can be generalized as follows. Suppose we have a set of 𝑁
𝑑 × 𝑑 operators {𝑀𝑖}𝑁−1

𝑖=0 satisfying the completeness relation
∑𝑁−1
𝑖=0 𝑀

†
𝑖
𝑀𝑖 = 𝐼. Let

us append to our Hilbert space C𝑑 and ancillary Hilbert space C𝑁 with complete
orthonormal basis {|𝑖⟩}𝑁−1

𝑖=0 . Then we can consider a unitary map

𝑈
(
|𝜓⟩ ⊗ |0⟩

)
=

𝑁−1∑︁
𝑖=0

𝑀𝑖 |𝜓⟩ ⊗ |𝑖⟩ . (2.6)

The fact that
(
⟨𝜓 | ⊗ ⟨0|

)
𝑈†𝑈

(
|𝜓⟩ ⊗ |0⟩

)
= 1 can be checked using the completeness

relation
∑𝑁−1
𝑖=0 𝑀

†
𝑖
𝑀𝑖 = 𝐼. Now if we measure the ancilla with respect to the
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Figure 2.2: Illustration of POVM: a formalism encompassing all physical measure-
ments. POVM considers a composition of the input state with an auxiliary state in
the measurement apparatus (which can be thought of as a set of ancilla qubits) that
undergoes an unitary evolution, followed by a projective measurement.

{|𝑖⟩}𝑁−1
𝑖=0 basis, then we will measure the ancilla to be in the state |𝑖⟩ with probability

Prob(𝑖) = |𝑀𝑖 |𝜓⟩|2. If we performed an analogous procedure at the level of density
matrices, namely starting with a state 𝜌 ⊗ |0⟩⟨0|, conjugating both sides by 𝑈, and
then measuring the ancilla in the {|𝑖⟩}𝑁−1

𝑖=0 basis, we would measure the ancilla to
be |𝑖⟩ with probability Prob(𝑖) = tr(𝑀†

𝑖
𝑀𝑖𝜌). We visualize the above procedure in

Supp. Fig. 2.2.

We can abstract this procedure into what is called a positive operator-valued measure
(POVM):

Definition 1 (POVM). A POVM is a set Hermitian, positive semi-definite operators
{𝐹𝑖}𝑁−1

𝑖=0 on C𝑑 satisfying the completeness relation
∑𝑁−1
𝑖=0 𝐹𝑖 = 𝐼. A POVM mea-

surement is a procedure in which, given a state 𝜌 on C𝑑 , an ancillary measurement
apparatus registers the index 𝑖 with probability tr(𝐹𝑖𝜌).

This relates to our previous procedure as follows. We simply decompose 𝐹𝑖 = 𝑀†𝑖 𝑀𝑖

(say, by a Cholesky decomposition) and perform the procedure previously stated
with the 𝑀𝑖’s.
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We remark that the term ‘measure’ is used above in two distinct ways. When we
speak of a POVM, the M means measure in the sense of measure theory, since
we can think of {𝐹𝑖}𝑁−1

𝑖=0 as comprising a type of discrete measure on the space of
operator on C𝑑 . Otherwise, we use ‘measure’ in the sense of measurement.

A useful fact is that given a POVM {𝐹𝑖}𝑁−1
𝑖=0 , we can refine it into another, larger

POVM {𝐹𝑖, 𝑗 }𝑁−1,𝑑−1
𝑖=0, 𝑗=0 such that (1) each 𝐹𝑖, 𝑗 is rank-1, and (2) a POVM measurement

of {𝐹𝑖, 𝑗 }𝑁−1,𝑑−1
𝑖=0, 𝑗=0 can simulate a POVM measurement of {𝐹𝑖}𝑁−1

𝑖=0 . Let us explain
this construction. Since each 𝐹𝑖 is a positive semi-definite Hermitian operator,
we can diagonalize each operator as 𝐹𝑖 =

∑𝑑−1
𝑗=0 𝜆

(𝑖)
𝑗
|𝑣 (𝑖)
𝑗
⟩⟨𝑣 (𝑖)

𝑗
|. Then let 𝐹𝑖, 𝑗 :=

𝜆
(𝑖)
𝑗
|𝑣 (𝑖)
𝑗
⟩⟨𝑣 (𝑖)

𝑗
| which is manifestly positive semi-definite, Hermitian, and rank-1; it

is also clear that
∑𝑁−1
𝑖=0

∑𝑑−1
𝑗=0 𝐹𝑖, 𝑗 =

∑𝑁−1
𝑖=0 𝐹𝑖 = 𝐼. We can use a POVM measurement

of {𝐹𝑖, 𝑗 }𝑁−1,𝑑−1
𝑖=0, 𝑗=0 to simulate a POVM measurement of {𝐹𝑖}𝑁−1

𝑖=0 by simply summing
measurement results:

𝑑−1∑︁
𝑗=0

tr(𝐹𝑖, 𝑗 𝜌) = tr(𝐹𝑖𝜌) . (2.7)

Accordingly, we can, without loss of generality, choose to work with rank-1 POVMs,
since we can use these to simulate any other POVMs.

2.2 A brief review on statistical learning theory
Statistical learning theory provides indispensable tools to understand our ability and
inability to learn. The central theme of statistical learning theory is to understand
how learning can be achieved given a collection of data. In particular, given some
random set of data, how to infer the underlying hidden object or mechanism that
generates the data. Statistical learning theory is closely related to high-dimensional
probability, which studies the pattern that arises in a collection of random objects.
In statistical learning theory, random objects are often considered to be the data
collected from experiments. The data are often assumed to have inherent randomness
that emerges from uncontrollable factors in the process of generating the data. By
studying the pattern that arises in a collection of data, we can understand if the data
can tell us about the underlying object or mechanism.

Concentration inequality
In probability theory, an important concept for describing the pattern emerging from
a collection of random objects is called concentration inequality. The simplest form
of concentration inequality is called Hoeffding’s inequality. Hoeffding’s inequality
says that when we have a collection of 𝑛 random numbers, the average of the 𝑛
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numbers will be close to the true average of the random number. Furthermore, the
probability that the average is not close decays exponentially with the distance 𝑡2.

Theorem 2 (Hoeffding’s inequality). Consider 𝑋1, . . . , 𝑋𝑛 to be independent ran-
dom numbers that take values between 0 and 1. We have

Pr

[�����1𝑛 ∑︁
𝑖

𝑋𝑖 − E 𝑋𝑖

����� ≥ 𝑡
]
≤ 2 exp

(
−2𝑛𝑡2

)
, (2.8)

for any 𝑡 > 0.

In terms of learning, this inequality states that by taking a dataset of 𝑛 random
numbers, we can learn the true average of the random number up to 𝜖 error with
high probability by taking the empirical average, i.e., the average over the dataset,
when the dataset size 𝑛 is of order 1/𝜖2. This statement may seem somehow trivial
and one may think that this would always hold. However, this intuition is not correct
because there is actually a condition on Hoeffding’s inequality, i.e., the numbers
must be between 0 and 1. For example, if these random numbers can be extremely
large, then taking the empirical average of a moderate-size dataset does not guarantee
that we will learn the true average. Hence, Hoeffding’s inequality already tells us
something about when the true average of a random number can be learned.

Concentration inequalities of random numbers (formally called random variables)
enable one to prove more sophisticated concentration inequalities. In learning
theory, one often wants to have concentration inequalities for all functions in a
family of functions G. To be more concrete, consider a data generation process that
samples an independent random object 𝑧. The random object 𝑧 could be an image,
a high-dimensional vector, or a measurement outcome from physical experiments.
Consider each function 𝑔 𝑗 ∈ G to be a test for a possible hypothesis ℎ 𝑗 , where 𝑔 𝑗 (𝑧)
is close to zero if 𝑧 is likely generated from the hypothesis ℎ 𝑗 , otherwise 𝑔 𝑗 (𝑧) is
close to one. Then, the real number

E𝑧 [𝑔 𝑗 (𝑧)] (2.9)

tells us whether hypothesis ℎ 𝑗 gives rise to the random object 𝑧 (closer to zero means
ℎ 𝑗 is more likely it gives rise to 𝑧). Hence, a simple learning algorithm would be to
find a hypothesis ℎ 𝑗 such that E𝑧 [𝑔 𝑗 (𝑧)] is the lowest possible.

The problem is that we don’t have access to the true probability distribution over
𝑧. Hence, we do not know what E𝑧 [𝑔 𝑗 (𝑧)] is. By conducting multiple rounds
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of experiments, we can obtain a dataset of independent and identically distributed
(i.i.d.) random objects 𝑧1, . . . , 𝑧𝑁 . This dataset enables us to evaluate the empirical
average

1
𝑁

𝑁∑︁
𝑖=1

𝑔 𝑗 (𝑧𝑖), (2.10)

which may or may not be close to the true average E𝑧 [𝑔 𝑗 (𝑧)]. This raises the
following questions. When we see that the empirical average for 𝑔 𝑗 is close to zero,
can we trust that the true average for 𝑔 𝑗 is close to zero? Even if we can trust the
empirical average for a single 𝑔 𝑗 , can we trust it for all possible tests 𝑔 ∈ G? Could
it be that the hypothesis ℎ# with the lowest 1

𝑁

∑𝑁
𝑖=1 𝑔

#(𝑧𝑖) is very different from the
hypothesis ℎ∗ with the smallest E𝑧 [𝑔∗(𝑧)]?

Intuitively, if there are too many diverse tests 𝑔 in the set G, the empirical average
of some tests can deviate too far from the true average due to random fluctuations.
In statistical learning theory, one approach to characterize the vague concept of
“diversity” in G is through Rademacher complexity,

E𝜎

[
sup
𝑔∈G

1
𝑁

𝑁∑︁
𝑖=1

𝜎𝑖𝑔(𝑧𝑖)
]
, (2.11)

where 𝜎1, . . . 𝜎𝑁 are independent and uniform random variables over ±1. The
smaller the Rademacher complexity is, the less diverse the set G is, and hence the
empirical average will be closer to the true average for all the tests. The concentration
inequality is given by the following theorem, which shows that for all 𝑔 ∈ G, the true
average is not too different from the empirical average. Because the inequality tells
us how the test generalizes from a finite dataset to the unknown true distribution,
one often refer to this as the generalization error bound.

Theorem 3 (See Theorem 3.3 in (Mohri, Rostamizadeh, and Talwalkar, 2018)). Let
G be a family of function mappings from a setZ to [0, 1]. Then for any 𝛿 > 0, with
probability at least 1 − 𝛿 over 𝑁 i.i.d. samples fromZ: 𝑧1, . . . , 𝑧𝑁 , we have

E𝑧 [𝑔(𝑧)] ≤
1
𝑁

𝑁∑︁
𝑖=1

𝑔(𝑧𝑖) + 2E𝜎

[
sup
𝑔∈G

1
𝑁

𝑁∑︁
𝑖=1

𝜎𝑖𝑔(𝑧𝑖)
]
+ 3

√︂
log(2/𝛿)

2𝑁
, (2.12)

for all 𝑔 ∈ G, where 𝜎1, . . . 𝜎𝑁 are i.i.d. uniformly random ±1.

Characterizing the Rademacher complexity for a class of possible hypotheses is the
key challenge in various problems we will consider in this thesis. For example, we
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will show in Chapter 8 and Chapter 5 that the Rademacher complexity is not too
large for classifying quantum phases of matter and for predicting efficiently-learnable
quantum machine learning models.

Rademacher complexity is a powerful tool for many learning problems. However,
sometimes, a simpler solution would also work. For example, suppose that the
family of functions G is a finite set. In this case, we can use Hoeffding’s inequality
to see that for any 𝑔 ∈ G,

Pr

[
E𝑧 [𝑔(𝑧)] >

1
𝑁

𝑁∑︁
𝑖=1

𝑔(𝑧𝑖) + 𝑡
]
≤ 2 exp

(
−2𝑁𝑡2

)
. (2.13)

Hence, by union bound, we have

Pr

[
∃𝑔 ∈ G,E𝑧 [𝑔(𝑧)] >

1
𝑁

𝑁∑︁
𝑖=1

𝑔(𝑧𝑖) + 𝑡
]
≤

∑︁
𝑔∈G

2 exp
(
−2𝑁𝑡2

)
. (2.14)

This immediately leads to the following theorem based on the cardinality of G.

Theorem 4 (Generalization error from the size of G). Let G be a family of functions
from a set Z to [0, 1]. Then for any 𝛿 > 0, with probability at least 1 − 𝛿 over 𝑁
i.i.d. samples fromZ: 𝑧1, . . . , 𝑧𝑁 , we have

E𝑧 [𝑔(𝑧)] ≤
1
𝑁

𝑁∑︁
𝑖=1

𝑔(𝑧𝑖) +
√︂

log( |G|/𝛿)
2𝑁

(2.15)

for all 𝑔 ∈ G.

We can see that the Rademacher complexity is not present, but a cardinality |G|
appears. This generalization error bound is typically worse than the Rademacher
complexity but is very easy to obtain. Of course, one could immediately see that
the inequality becomes useless when G contains infinitely many functions.

There is also a simple method to obtain a generalization error bound when the family
G contains infinitely many functions. The idea is to obtain an 𝜖 covering netN𝜖 (G),
which is defined as the smallest subset of G, such that

∀𝑔 ∈ G, ∃𝑔′ ∈ N𝜖 (G), ∥𝑔 − 𝑔′∥ := sup
𝑧∈Z
|𝑔(𝑧) − 𝑔′(𝑧) | < 𝜖. (2.16)

Intuitively, for any function 𝑔 in G, there is a function 𝑔′ in N𝜖 (G), such that the
function 𝑔′ behaves similarly to 𝑔. In any compact and infinite set G, the covering
netN𝜖 (G) will be finite. Hence, we can use the covering net to obtain the following
generalization error bound.
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Theorem 5 (Generalization error from the covering net). Let G be a family of
functions from a setZ to [0, 1]. Then for any 𝛿 > 0, with probability at least 1 − 𝛿
over 𝑁 i.i.d. samples fromZ: 𝑧1, . . . , 𝑧𝑁 , we have

E𝑧 [𝑔(𝑧)] ≤
1
𝑁

𝑁∑︁
𝑖=1

𝑔(𝑧𝑖) +
√︂

log( |N𝜖 (G)|/𝛿)
2𝑁

+ 2𝜖 (2.17)

for all 𝑔 ∈ G.

Proof. From Theorem 4, we have

E𝑧 [𝑔′(𝑧)] ≤
1
𝑁

𝑁∑︁
𝑖=1

𝑔′(𝑧𝑖) +
√︂

log( |N𝜖 (G)|/𝛿)
2𝑁

(2.18)

for all 𝑔′ ∈ N𝜖 (G). Consider some 𝑔 ∈ G, there is 𝑔′ ∈ N𝜖 (G) such that ∥𝑔 − 𝑔′∥ <
𝜖 . By recalling the definition of ∥𝑔 − 𝑔′∥, we have

E𝑧 [𝑔(𝑧)] ≤ E𝑧 [𝑔′(𝑧)] + 𝜖 ≤
1
𝑁

𝑁∑︁
𝑖=1

𝑔′(𝑧𝑖) +
√︂

log( |N𝜖 (G)|/𝛿)
2𝑁

+ 𝜖 (2.19)

≤ 1
𝑁

𝑁∑︁
𝑖=1

𝑔(𝑧𝑖) +
√︂

log( |N𝜖 (G)|/𝛿)
2𝑁

+ 2𝜖 . (2.20)

This concludes the proof.

We will see the covering net generalization error bound in play when we consider
an information-theoretic lower bound on quantum advantage in Chapter 7 and the
quantum advantage on learning polynomial-time quantum processes in Chapter 9.

Information-theoretic lower bounds
Concentration inequality is useful in proving that a cleverly-designed learning algo-
rithm can successfully learn the underlying mechanism. However, there are often
problems that are too hard for any learning algorithm to perform. In order to show
that no efficient learning algorithms exist, the concept and techniques in information-
theoretic lower bounds become very important. Information-theoretic lower bound
studies how much data or experiments are necessary (in terms of a lower bound on
the number) to accomplish a certain learning task.

There are all kinds of learning problems. In some problems, we would like to
test if certain hypothesis is true. In other problems, we would like to learn how
the underlying mechanism works, e.g., by estimating parameters describing the
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mechanism. There are also problems with the goal of learning an effective model
that behaves approximately the same as the true unknown underlying mechanism
but could be intrinsically very different from the true mechanism. For most of these
problems, we can obtain a good information-theoretic lower bound by reducing the
problem to a distinguishing task.

The simplest distinguishing task is binary hypothesis testing, where the goal is to
distinguish between two hypotheses from some observation 𝑆 ∈ S.

1. Null hypothesis: Under the null hypothesis, we observe an outcome 𝑆 (we
can think of 𝑆 as an entire dataset) with probability 𝑞0(𝑆).

2. Alternative hypothesis: Under the alternative hypothesis, we observe an
outcome 𝑆 with probability 𝑞1(𝑆).

By looking at the total variation distance between 𝑞0 and 𝑞1,

𝑑TV(𝑞0, 𝑞1) :=
1
2

∑︁
𝑆∈S
|𝑞0(𝑆) − 𝑞1(𝑆) | , (2.21)

We can tell whether there is an algorithm that has good distinguishing power. When
the total variation distance is small, then no good algorithm exists.

Fact 1. (Lower bound for binary hypothesis testing) Given distributions 𝑞0, 𝑞1 over
a domain S, if 𝑑TV(𝑞0, 𝑞1) < 1/3, there is no algorithm A : S → {0, 1} for which

Pr
𝑆∼𝑞𝑖
[A(𝑆) = 𝑖] ≥ 2/3 (2.22)

for both 𝑖 = 0, 1.

Proof. Recall that the total variation distance satisfies the following identity,

𝑑TV(𝑞0, 𝑞1) = sup
S′′⊆S

|𝑞0(S′′) − 𝑞1(S′′) |. (2.23)

Let S′ ⊆ S denote the set of elements 𝑆 for which A(𝑆) = 0. Then observe that

Pr
𝑆∼𝑞0
[A(𝑆) = 1] + Pr

𝑥∼𝑞1
[A(𝑥) = 0] = 1 − 𝑞0(S′) + 𝑞1(S′) (2.24)

≥ 1 − sup
S′′⊆S

|𝑞0(S′′) − 𝑞1(S′′) | (2.25)

= 1 − 𝑑TV(𝑞0, 𝑞1) ≥ 2/3, (2.26)

so at least one of the terms on the left-hand side is at least 1/3.
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In many learning tasks, there are many hypotheses that we need to distinguish in
order to accomplish the learning task. However, sometimes, distinguishing between
every pair of hypotheses is not hard, i.e., the total variation distance is high, but the
learning task is still hard. To achieve a better lower bound, we often have to consider
a many-versus-one distinguish task.

In a many-versus-one distinguish task, we are given an observation 𝑆. And we
would like to know if it is more likely to come from a singleton set Q0 = {𝑞0} (the
null hypothesis) or from one of the probability distributions in a large set Q1 (all the
possible alternative hypotheses). While there are many alternative hypotheses, we
can reduce this problem to a binary hypothesis testing problem by considering the
following average-case version of the distinguishing task.

1. Null hypothesis: We observe 𝑆 with probability 𝑞0(𝑆), where 𝑞0 is the
(unique) element of Q0.

2. Mixture of alternatives: We observe 𝑆 with probability

E
𝑞∼D(Q1)

𝑞(𝑆) =
∑︁
𝑞∈Q1

𝑝D (𝑞)𝑞(𝑆), (2.27)

where the specific probability distributionD(Q1) over all possible alternative
hypotheses Q1 is free for us to choose.

We can use this to show that, in order to prove a lower bound for the original
distinguishing task, it suffices to bound 𝑑TV(𝑞0,E𝑞∼D [𝑞]):

Lemma 1 (Le Cam’s two-point method). If there exists a distribution D(Q1) over
the set Q1 of alternative hypotheses for which

𝑑TV(𝑞0, E
𝑞∼D(Q1)

[𝑞]) < 1/3, (2.28)

there is no algorithm A which maps observation 𝑆 to {0, 1} for which

Pr
𝑆∼𝑞
[A(𝑆) = 𝑖] ≥ 2/3 (2.29)

for any 𝑞 ∈ Q𝑖 and 𝑖 = 0, 1.

Proof. Suppose to the contrary that there existed such an algorithm. Let 𝑞1 :=
E𝑞∼D(Q1) [𝑞]. Then

2/3 ≤ E
𝑞∼D(Q1)

[
Pr
𝑆∼𝑞
[A(𝑆) = 𝑖]

]
= Pr
𝑆∼𝑞1
[A(𝑆) = 𝑖] . (2.30)

By Fact 1, this would contradict the fact that 𝑑TV(𝑞0,E𝑞∼D(Q1) [𝑞]) < 1/3.
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In the distinguishing tasks we consider in this thesis, the choice of D will be fairly
clear (usually a uniform distribution suffices), so the primary technical difficulty for
us will be upper bounding the total variation distance between 𝑞0 and E𝑞∼D(Q1) [𝑞].

Sometimes, the lower bound would be tighter if we consider distinguishing many
hypotheses directly. Suppose we have 𝑚 possible hypotheses 𝑞1, . . . , 𝑞𝑚. Given
hypothesis 𝑞𝑖, the observed outcome 𝑆 is distributed according to the probability
distribution 𝑞𝑖 (𝑆). Suppose that each hypothesis is chosen uniformly at random.
We have the following inequality known as Fano’s inequality.

Lemma 2 (Fano’s inequality). Consider a random hypothesis 𝑞∗ chosen uniformly
from 𝑞1, . . . , 𝑞𝑚, and the observation 𝑆 be sampled according to 𝑞∗. For any
algorithm A mapping observation 𝑆 to {𝑞1, . . . , 𝑞𝑚}, we have

Pr [A(𝑆) = 𝑞∗] log𝑚 ≤ 𝐼 (𝑞∗ : 𝑆) + log 2, (2.31)

where 𝐼 (𝑞∗ : 𝑆) is the mutual information between the random hypothesis 𝑞∗ and
the observation 𝑆.

The intuition behind Fano’s inequality is that if there is an algorithm that can recover
the chosen hypothesis 𝑞∗ from the observation 𝑆 with high probability, then the
mutual information between 𝑞∗ and 𝑆 must be of order log𝑚. A common scenario
to prove lower bounds using Fano’s inequality is to then consider an upper bound
of the mutual information 𝐼 (𝑞∗ : 𝑆) by studying the structure of the observation
𝑆. For example, in Chapter 4, we will upper bound the mutual information by the
number of measurements conducted on an unknown quantum state. Together with
the lower bound on mutual information given by Fano’s inequality, we can obtain
a lower bound for the number of measurements needed to learn about an unknown
quantum state.

2.3 A brief review on tensor network diagrams
It will be convenient to review the diagrammatic notation for tensor contraction,
which we will leverage in several proofs. These so-called ‘tensor networks’ will
render the index contraction of higher-rank tensors more transparent than standard
notations. We also refer the interested reader to Landsberg, 2012; Bridgeman and
Chubb, 2017 for a more comprehensive overview of tensor networks.
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Diagrams for individual tensors

For our purposes, a rank (𝑚, 𝑛) tensor is a multilinear map 𝑇 : H ∗ ⊗𝑚 ⊗ H⊗𝑛 → C.
If {|𝑖⟩} is an orthonormal basis for H , then in bra-ket notation 𝑇 can be expressed
as

𝑇 =
∑︁
𝑖1,...,𝑖𝑚
𝑗1,..., 𝑗𝑛

𝑇
𝑖1···𝑖𝑚
𝑗1··· 𝑗𝑛

(
|𝑖1⟩ ⊗ · · · ⊗ |𝑖𝑚⟩

) (
⟨ 𝑗1 | ⊗ · · · ⊗ ⟨ 𝑗𝑛 |

)
. (2.32)

for some 𝑇 𝑖1···𝑖𝑚
𝑗1··· 𝑗𝑛 ∈ C. It is clear that a quantum state |Ψ⟩ on H is a rank (1, 0)

tensor, being a map from H ∗ → C. Accordingly, its dual ⟨Ψ| is a (0, 1) tensor.
Moreover a matrix 𝑀 =

∑
𝑖 𝑗 𝑀

𝑖
𝑗
|𝑖⟩⟨ 𝑗 | is a (1, 1) tensor. We elect to represent 𝑇

diagrammatically by

(2.33)

which has 𝑚 outgoing legs on the left and 𝑛 incoming legs on the right. Each leg in
the diagram may be associated with an index of the coefficients 𝑇 𝑖1···𝑖𝑚

𝑗1··· 𝑗𝑛 . We set the
convention that outgoing legs are ordered counter-clockwise and incoming legs are
ordered clockwise. For instance, in (2.33) the top-left outgoing leg corresponds to
𝑖1, the leg below to 𝑖2, and so on. Likewise the top-right incoming leg corresponds
to 𝑗1, the leg below to 𝑗2, and so on.

Tensor contraction

We next explain how to depict tensor network contractions diagrammatically. For
sake of illustration, suppose we have a rank (2, 1) tensor

(2.34)

and a rank (1, 2) tensor

(2.35)

Now suppose we want to compute the tensor network contraction corresponding to∑︁
𝑖 𝑗 𝑘

𝐴𝑖𝑗 𝑘𝐵
𝑗 𝑘

𝑖
. (2.36)

Here lower indices are contracted with upper indices because this represents con-
tracting vectors with covectors. The contraction in (2.36) is depicted diagrammati-
cally as

(2.37)
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Comparing the diagram with (2.36), we see that contracted indices corresponding
to outgoing and incoming lines which are glued together. The fact that vectors are
to be contracted with covectors is reflected in the fact that we are only allowed to
glue together lines in a manner consistent with their orientations.

As another example, given a matrix 𝑀 =
∑
𝑖 𝑗 𝑀

𝑖
𝑗
|𝑖⟩⟨ 𝑗 |, the trace can be written as

(2.38)

If 𝑀1, 𝑀2, ..., 𝑀𝑘 are matrices, then the product 𝑀1𝑀2 · · ·𝑀𝑘 is depicted by

(2.39)

Multiplication by a scalar

Given a tensor 𝑇 , multiplication by a scalar 𝛼 is often denoted by 𝛼𝑇 . In our
diagrammatic notation, we will simply write

(2.40)

Tensor products

Given two tensors 𝑇1, 𝑇2, we can form the tensor product 𝑇1 ⊗ 𝑇2. We will denote
this diagrammatically as

(2.41)

or also
(2.42)

More generally, how to read off the order of a tensor product (e.g. 𝑇1 ⊗𝑇2 or 𝑇2 ⊗𝑇1)
from a diagram will be clear in context.

Taking norms

Often it will be convenient to compute the norm of a matrix in tensor notation. For
instance, if 𝑀 is a matrix, then its 1-norm ∥𝑀 ∥1 can be expressed diagrammatically
as

(2.43)
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Here we are simply taking the diagrammatic notation for 𝑀 as a stand-in within
the expression ∥𝑀 ∥1. This is particularly convenient in circumstances where 𝑀 is
given by a tensor network contraction whose structure we wish to emphasize; for
instance, the 1-norm of 𝑀 =

∑
𝑖 𝑗 𝑘ℓ 𝐴

𝑖
𝑘ℓ
𝐵𝑘ℓ
𝑗
|𝑖⟩⟨ 𝑗 | is conveniently depicted by

(2.44)

Tensors with legs of different dimensions

So far we have considered rank (𝑚, 𝑛) tensors as maps𝑇 : H ∗⊗𝑚 ⊗H⊗𝑛 → C. More
generally we can consider tensors 𝑇 :

(
H ∗1 ⊗ · · · ⊗ H

∗
𝑚

)
⊗ (H𝑚+1 ⊗ · · · ⊗ H𝑚+𝑛) →

C where the tensored Hilbert spaces in the domain need not be isomorphic. We can
use the same diagrammatic notation as above, with the additional restriction that
tensor legs can be contracted if they both carry the same dimension (i.e., correspond
to a Hilbert space and a dual Hilbert space of the same dimension).

As an example, we can consider the state |Ψ⟩ in C2 ⊗C3, and form its density matrix
|Ψ⟩⟨Ψ|. In our tensor diagram corresponding to this state, the C2 (qubit) legs will
be solid lines and the C3 (qutrit) legs will be dotted lines. Performing a partial over
the qutrit legs is expressed diagrammatically as

(2.45)

We will discuss the diagrammatic notation of partial traces in more detail below.

Identity operator

The identity operator on a Hilbert space H can be expressed diagrammatically as
an oriented line

(2.46)

We can clearly see that given a state in the Hilbert space

(2.47)

if we left-multiply by the identity diagram we will get the same tensor diagram and
thus the same state. Likewise for the dual state

(2.48)

if we right-multiply by the identity diagram then we return the same tensor diagram.
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Likewise, the identity operator on 𝑘 copies of the Hilbert spaceH⊗𝑘 is just

(2.49)

In the setting that the Hilbert space under consideration isH ⊗H ′where each tensor
factor has a different dimension, it is convenient to represent tensor legs in H by
solid lines and tensor legs in H ′ be dotted line; in this setting the identity operator
is

(2.50)

which readily generalizes if there are more than two Hilbert spaces with differing
dimensions.

Resolutions of the identity

Suppose {|Ψ𝑖⟩}𝑖 is an orthonormal basis forH . Then the resolution of the identity∑
𝑖 |Ψ𝑖⟩⟨Ψ𝑖 | = 1 can be expressed diagrammatically as

(2.51)

If instead {|Ψ𝑖⟩}𝑖 is a resolution of the identity for H ⊗ H ′ where the two Hilbert
spaces have different dimensions, we may analogously denote this diagrammatically
by

(2.52)

Similarly, if {𝑀†𝑠𝑀𝑠}𝑠 is a POVM onH then the resolution of the identity∑︁
𝑠

𝑀†𝑠𝑀𝑠 = 1 (2.53)

can be written as

(2.54)

and analogously if the Hilbert space isH ⊗ H ′ or has even more tensor factors.

Taking traces and partial traces

Suppose we have a rank (𝑛, 𝑛) tensor 𝑇 : H ∗⊗𝑛 ⊗ H⊗𝑛. Then its trace is given by
tr(𝑇) = ∑

𝑖1,...,𝑖𝑛 𝑇
𝑖1···𝑖𝑛
𝑖1···𝑖𝑛 , or diagrammatically

(2.55)
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A very useful diagrammatic identity is the trace of the identity matrix, which can
be regarded as a rank (1, 1) tensor 1 =

∑
𝑖 |𝑖⟩⟨𝑖 |. We have

(2.56)

and so we see that a closed loop in tensor diagrams equals the dimension of the
Hilbert space associated that curve. As another example, if we have the identity
1𝑑×𝑑 ⊗ 1𝑑′×𝑑′ on H ⊗ H ′, where dim(H) = 𝑑, dim(H ′) = 𝑑′ and we have used
subscripts on the identity matrices for emphasis, we have

(2.57)

where the solid line corresponds to the H Hilbert space and the dotted line corre-
sponds to theH ′ Hilbert space.

We can also take partial traces in similar fashion. We define the partial trace over
the ‘𝑘th subsystem’ by

tr𝑘 (𝑇) = (2.58)∑︁
𝑖1,...,𝑖𝑘−1,𝑖𝑘+1,...,𝑖𝑛
𝑗1,..., 𝑗𝑘−1, 𝑗𝑘+1,..., 𝑗𝑛

(∑︁
𝑖𝑘

𝑇
𝑖1···𝑖𝑛
𝑗1··· 𝑗𝑛

)
|𝑖1⟩⟨ 𝑗1 | ⊗ · · · ⊗ |𝑖𝑘−1⟩⟨ 𝑗𝑘−1 | (2.59)

⊗ |𝑖𝑘+1⟩⟨ 𝑗𝑘+1 | ⊗ · · · ⊗ |𝑖𝑛⟩⟨ 𝑗𝑛 | . (2.60)

Note that trℓ (tr𝑘 (𝑇)) = tr𝑘 (trℓ (𝑇))). Since the operation of taking partial traces is
commutative we can use the notation tr𝑘,ℓ (𝑇). Notice that tr1,...,𝑛 (𝑇) = tr(𝑇). That
is, taking the partial trace over all subsystems in the tensor is the same as taking the
trace of the entire tensor.

Diagrammatically, the partial trace over the first subsystem is given by

(2.61)

The partial trace over the second subsystem is

(2.62)

and so on.

If we have an tensor with legs corresponding to Hilbert spaces of different dimen-
sions, we can still in some cases take traces or partial traces. In particular, if
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𝑇 : (H ∗1 ⊗ · · · ⊗ H
∗
𝑛 ) ⊗ (H ′1 ⊗ · · · ⊗ H

′
𝑚) → C, then if H𝑘 = H ′

𝑘
we can still

compute the partial trace tr𝑘 (𝑇). As a simple example consider the state |Ψ⟩ living
onH ⊗H ′. Then its density matrix |Ψ⟩⟨Ψ| can be regarded as a (2, 2) tensor taking
(H ∗ ⊗ H ′∗) ⊗ (H ⊗ H ′) → C. Then we have

(2.63)

which is the same example as (2.45); a similar diagram expresses tr1( |Ψ⟩⟨Ψ|).

Isotopies

We remark that tensor network diagrams are to be understood up to isotopy of
the tensor legs; that is, deforming or bending the tensor legs does not change the
interpretation of the diagram. For instance, for a product of matrices 𝑀1𝑀2 we have
equivalences like

(2.64)

and similarly for all other kinds of tensors.

The isotopies are not required to be planar; for instance

(2.65)

We also can allow legs to cross, for instance

(2.66)

We will disregard whether such crossings are overcrossings or undercrossings.

However, we set the convention that we do not change the relative order of the
endpoints of the outgoing or incoming legs. The reason is that permuting the order
of the endpoints corresponds would correspond to permuting the tensor factors on
which the tensor is defined. As a transparent example, let 𝑇 : (H ∗1 ⊗ H

∗
2 ) ⊗ (H1 ⊗

H2) → C be denoted by
(2.67)

Then the diagram
(2.68)

corresponds to a tensor (H ∗2 ⊗ H
∗
1 ) ⊗ (H1 ⊗ H2) → C where we note thatH ∗1 and

H ∗2 have been permuted. See also the discussion of permutation operators below.
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Permutation operators

Consider the permutation group on 𝑘 elements, 𝑆𝑘 , and let 𝜏 be an element of the
group. We define a representation of 𝜏, namely Perm(𝜏), which acts on a 𝑘-copy
Hilbert space H⊗𝑘 as follows. Letting |𝜓1⟩ ⊗ |𝜓2⟩ ⊗ · · · ⊗ |𝜓𝑛⟩ be a product state
onH⊗𝑘 , we define

Perm(𝜏) |𝜓1⟩ ⊗ |𝜓2⟩ ⊗ · · · ⊗ |𝜓𝑛⟩ = |𝜓𝜏−1 (1)⟩ ⊗ |𝜓𝜏−1 (2)⟩ ⊗ · · · ⊗ |𝜓𝜏−1 (𝑛)⟩ (2.69)

which extends to the entire Hilbert spaceH⊗𝑘 by linearity. With these conventions,
the representations Perm(𝜏) enjoy the property

Perm(𝜏) · Perm(𝜎) = Perm(𝜏𝜎) (2.70)

where 𝜏𝜎 is shorthand for the group product, i.e. the composition 𝜏 ◦ 𝜎.

These representations of 𝑆𝑘 admit a very intuitive tensor diagrams. Consider, for
instance, 𝑆3 and 𝜏 = (123). Then the corresponding tensor diagram is

(2.71)

This is made very clear by labeling the endpoints of the diagram by

(2.72)

This notation generalized accordingly for other permutation representations. The
group product structure is also transparent; for instance Perm((123)) · Perm((12))
is depicted diagrammatically by

(2.73)

where Perm((123)) is given in red and Perm((12)) is given in blue for clarity; the
allowed diagrammatic manipulations of performing isotopies without rearranging
the endpoints of the tensor legs show that the result of the product is Perm((23)).
A nice feature of the diagrams is that the diagram for Perm(𝜏−1) can be obtain from
the diagram for Perm(𝜏) by flipping the latter horizontally.

As another example, if we multiply Perm((123)) by a state |Ψ⟩ inH⊗3, then we get

(2.74)

from which it is clear that Perm((123)) permutes the tensor factors of the state
according to (123)−1 = (132).

In some later proofs where there is no ambiguity, we will denote Perm(𝜏) simply by
𝜏.
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Transposes and partial transposes

Suppose we have a matrix 𝑀 =
∑
𝑖, 𝑗 𝑀

𝑖
𝑗
|𝑖⟩⟨ 𝑗 | viewed as a rank (1, 1) tensor. We

can represent its transpose 𝑀 𝑡 =
∑
𝑖, 𝑗 𝑀

𝑖
𝑗
| 𝑗⟩⟨𝑖 | diagrammatically by

Here we are dualizing each leg by changing the direction of each arrow, and then
reorganizing the legs via isotopy so that the in-arrow comes in from the right and
the out-arrow comes out to the left; this isotopy is done in order to match the arrow
configuration in the diagram on the left.

<latexit sha1_base64="gxCR+Jp8bRkUEF3B3BUeule8NBM=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKewGUY9BL16EBMwDkiXMTnqTMbOzy8ysEEK+wIsHRbz6Sd78GyfJHjSxoKGo6qa7K0gE18Z1v53c2vrG5lZ+u7Czu7d/UDw8auo4VQwbLBaxagdUo+ASG4Ybge1EIY0Cga1gdDvzW0+oNI/lgxkn6Ed0IHnIGTVWqt/3iiW37M5BVomXkRJkqPWKX91+zNIIpWGCat3x3MT4E6oMZwKnhW6qMaFsRAfYsVTSCLU/mR86JWdW6ZMwVrakIXP198SERlqPo8B2RtQM9bI3E//zOqkJr/0Jl0lqULLFojAVxMRk9jXpc4XMiLEllClubyVsSBVlxmZTsCF4yy+vkmal7F2WK/WLUvUmiyMPJ3AK5+DBFVThDmrQAAYIz/AKb86j8+K8Ox+L1pyTzRzDHzifP6dXjNg=</latexit>

M
<latexit sha1_base64="S4V+GwkD/JFssCtbJZ01ybMe67Q=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKewGUY9BL16EiOYByRpmJ5NkyOzsMtMrhCWf4MWDIl79Im/+jZNkD5pY0FBUddPdFcRSGHTdbye3srq2vpHfLGxt7+zuFfcPGiZKNON1FslItwJquBSK11Gg5K1YcxoGkjeD0fXUbz5xbUSkHnAccz+kAyX6glG00v3tI3aLJbfszkCWiZeREmSodYtfnV7EkpArZJIa0/bcGP2UahRM8kmhkxgeUzaiA962VNGQGz+dnTohJ1bpkX6kbSkkM/X3REpDY8ZhYDtDikOz6E3F/7x2gv1LPxUqTpArNl/UTyTBiEz/Jj2hOUM5toQyLeythA2ppgxtOgUbgrf48jJpVMreeblyd1aqXmVx5OEIjuEUPLiAKtxADerAYADP8ApvjnRenHfnY96ac7KZQ/gD5/MHMH+Nvg==</latexit>

M t
<latexit sha1_base64="2Qsdalu/dg77by3FFjV+bjq8QIQ=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKewGUS9C0IvHBMwDkiXMTnqTMbOzy8ysEEK+wIsHRbz6Sd78GyfJHjSxoKGo6qa7K0gE18Z1v53c2vrG5lZ+u7Czu7d/UDw8auo4VQwbLBaxagdUo+ASG4Ybge1EIY0Cga1gdDfzW0+oNI/lgxkn6Ed0IHnIGTVWqt/0iiW37M5BVomXkRJkqPWKX91+zNIIpWGCat3x3MT4E6oMZwKnhW6qMaFsRAfYsVTSCLU/mR86JWdW6ZMwVrakIXP198SERlqPo8B2RtQM9bI3E//zOqkJr/0Jl0lqULLFojAVxMRk9jXpc4XMiLEllClubyVsSBVlxmZTsCF4yy+vkmal7F2WK/WLUvU2iyMPJ3AK5+DBFVThHmrQAAYIz/AKb86j8+K8Ox+L1pyTzRzDHzifP48XjMg=</latexit>=

(2.75)

If we have a higher-rank tensor, such as a rank (2, 2) tensor 𝑇 =
∑
𝑖 𝑗 𝑘ℓ 𝑇

𝑖 𝑗

𝑘ℓ
|𝑖⟩⟨𝑘 | ⊗

| 𝑗⟩⟨ℓ |, then we can also perform a partial transposition on a subsystem; for instance,
the partial transposition on the second subsystem

∑
𝑖 𝑗 𝑘ℓ 𝑇

𝑖 𝑗

𝑘ℓ
|𝑖⟩⟨𝑘 | ⊗ |ℓ⟩⟨ 𝑗 | is given

by
<latexit sha1_base64="GnpFZvzCLYEzbeLTNB0PLjjqYJE=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKewGUY9BLx4TyAuSJcxOepMxs7PLzKwQQr7AiwdFvPpJ3vwbJ8keNLGgoajqprsrSATXxnW/ndzG5tb2Tn63sLd/cHhUPD5p6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8P/fbT6g0j2XDTBL0IzqUPOSMGivVG/1iyS27C5B14mWkBBlq/eJXbxCzNEJpmKBadz03Mf6UKsOZwFmhl2pMKBvTIXYtlTRC7U8Xh87IhVUGJIyVLWnIQv09MaWR1pMosJ0RNSO96s3F/7xuasJbf8plkhqUbLkoTAUxMZl/TQZcITNiYgllittbCRtRRZmx2RRsCN7qy+ukVSl71+VK/apUvcviyMMZnMMleHADVXiAGjSBAcIzvMKb8+i8OO/Ox7I152Qzp/AHzucPsfOM3w==</latexit>

T
(2.76)

This notation extends to higher rank tensors in an analogous fashion.

Maximally entangled state

The maximally entangled state is given by |Ω⟩ = ∑
𝑖 |𝑖⟩|𝑖⟩ where {|𝑖⟩} is the compu-

tational basis. We treat |Ω⟩ as unnormalized, and it and its Hermitian conjugate are
denoted by

<latexit sha1_base64="KpRUWGtnJZwRw7Li3Zs2sHb14AM=">AAAB+XicbVBNS8NAEN34WetX1KOXxSJ4KkkR9SIUvXizgv2AJpTNdpIu3WzC7qZQYv+JFw+KePWfePPfuG1z0NYHA4/3ZpiZF6ScKe0439bK6tr6xmZpq7y9s7u3bx8ctlSSSQpNmvBEdgKigDMBTc00h04qgcQBh3YwvJ367RFIxRLxqMcp+DGJBAsZJdpIPdt+8u5jiIgniYg44OueXXGqzgx4mbgFqaACjZ795fUTmsUgNOVEqa7rpNrPidSMcpiUvUxBSuiQRNA1VJAYlJ/PLp/gU6P0cZhIU0Ljmfp7IiexUuM4MJ0x0QO16E3F/7xupsMrP2cizTQIOl8UZhzrBE9jwH0mgWo+NoRQycytmA6IJFSbsMomBHfx5WXSqlXdi2rt4bxSvyniKKFjdILOkIsuUR3doQZqIopG6Bm9ojcrt16sd+tj3rpiFTNH6A+szx8JCpNF</latexit>|⌦i =

<latexit sha1_base64="k2SGOYQ1nTCG+vQfvrSq14CLCq8=">AAAB+XicbVBNS8NAEN34WetX1KOXxSJ4KkkR9SIUvXizgv2AJpTNdpIu3WzC7qZQYv+JFw+KePWfePPfuG1z0NYHA4/3ZpiZF6ScKe0439bK6tr6xmZpq7y9s7u3bx8ctlSSSQpNmvBEdgKigDMBTc00h04qgcQBh3YwvJ367RFIxRLxqMcp+DGJBAsZJdpIPdv2OBERB+8+hog84eueXXGqzgx4mbgFqaACjZ795fUTmsUgNOVEqa7rpNrPidSMcpiUvUxBSuiQRNA1VJAYlJ/PLp/gU6P0cZhIU0Ljmfp7IiexUuM4MJ0x0QO16E3F/7xupsMrP2cizTQIOl8UZhzrBE9jwH0mgWo+NoRQycytmA6IJFSbsMomBHfx5WXSqlXdi2rt4bxSvyniKKFjdILOkIsuUR3doQZqIopG6Bm9ojcrt16sd+tj3rpiFTNH6A+szx//eJM/</latexit>h⌦| =

(2.77)

LettingH𝐴 ≃ H𝐵 ≃ H𝐶 , we have the identities

(1𝐴 ⊗ ⟨Ω|𝐵𝐶) (|Ω⟩𝐴𝐵 ⊗ 1𝐶) =
∑︁
𝑖

|𝑖⟩𝐴⟨𝑖 |𝐶 (2.78)

(⟨Ω|𝐴𝐵 ⊗ 1𝐶) (1𝐴 ⊗ |Ω⟩𝐵𝐶) =
∑︁
𝑖

|𝑖⟩𝐶 ⟨𝑖 |𝐴 (2.79)

which can be expressed diagrammatically as

<latexit sha1_base64="2Qsdalu/dg77by3FFjV+bjq8QIQ=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKewGUS9C0IvHBMwDkiXMTnqTMbOzy8ysEEK+wIsHRbz6Sd78GyfJHjSxoKGo6qa7K0gE18Z1v53c2vrG5lZ+u7Czu7d/UDw8auo4VQwbLBaxagdUo+ASG4Ybge1EIY0Cga1gdDfzW0+oNI/lgxkn6Ed0IHnIGTVWqt/0iiW37M5BVomXkRJkqPWKX91+zNIIpWGCat3x3MT4E6oMZwKnhW6qMaFsRAfYsVTSCLU/mR86JWdW6ZMwVrakIXP198SERlqPo8B2RtQM9bI3E//zOqkJr/0Jl0lqULLFojAVxMRk9jXpc4XMiLEllClubyVsSBVlxmZTsCF4yy+vkmal7F2WK/WLUvU2iyMPJ3AK5+DBFVThHmrQAAYIz/AKb86j8+K8Ox+L1pyTzRzDHzifP48XjMg=</latexit>= (2.80)
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<latexit sha1_base64="2Qsdalu/dg77by3FFjV+bjq8QIQ=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKewGUS9C0IvHBMwDkiXMTnqTMbOzy8ysEEK+wIsHRbz6Sd78GyfJHjSxoKGo6qa7K0gE18Z1v53c2vrG5lZ+u7Czu7d/UDw8auo4VQwbLBaxagdUo+ASG4Ybge1EIY0Cga1gdDfzW0+oNI/lgxkn6Ed0IHnIGTVWqt/0iiW37M5BVomXkRJkqPWKX91+zNIIpWGCat3x3MT4E6oMZwKnhW6qMaFsRAfYsVTSCLU/mR86JWdW6ZMwVrakIXP198SERlqPo8B2RtQM9bI3E//zOqkJr/0Jl0lqULLFojAVxMRk9jXpc4XMiLEllClubyVsSBVlxmZTsCF4yy+vkmal7F2WK/WLUvU2iyMPJ3AK5+DBFVThHmrQAAYIz/AKb86j8+K8Ox+L1pyTzRzDHzifP48XjMg=</latexit>

= (2.81)

We can think of the black dot as being a transpose operation since it changes the
orientation of the tensor leg; moreover, two black dots annihilate one another since
taking two transposes is the identity operation.
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C h a p t e r 3

KEY CONCEPTS FOR LEARNING IN THE QUANTUM
UNIVERSE

3.1 Computational power by learning from data
In this chapter, we dive into the computational power classical machines obtain by
learning from data. We will look at a motivating example and a rigorous complexity-
theoretic argument. The power of data and how to utilize them will be a central
concept that appears in many chapters of this thesis. In Chapter 5, we will see how
classical machines that learn from data obtained in quantum experiments can solve
very challenging quantum many-body problems that no classical machines could
solve. In Chapter 6, we will also show that classical machines learned from data can
predict the outcomes of a long-time quantum evolution accurately. In Chapter 7, we
will see a broad class of problems where classical machines learned from sampled
measurement data can predict as accurately as quantum machines with coherent
quantum access to the underlying quantum process. In Chapter 8, we will look at
how the power of data can elevate and challenge quantum advantage in machine
learning problems.

Let us begin with a simple motivating example for studying how data can increase
the power of classical machines that learn from the data. Suppose that we have a
collection of 𝑁 training examples {(x𝑖, 𝑦𝑖)}, where x𝑖 is the input data, and 𝑦𝑖 is an
associated label or value. We assume that x𝑖 are sampled independently from a data
distribution D and consider 𝑦𝑖 ∈ R to be generated by some quantum process 𝑓 (𝑥)
with 𝑦𝑖 = 𝑓 (x𝑖).

We now show how the availability of data in machine learning (ML) tasks can
change computational hardness. Consider data points {x𝑖}𝑁𝑖=1 that are 𝑝-dimensional
classical vectors with ∥x𝑖∥2 = 1, and use amplitude encoding Grant et al., 2019;
Schuld, Bocharov, et al., 2020; LaRose and Coyle, 2020 to encode the data into an
𝑛-qubit state |x𝑖⟩ =

∑𝑝

𝑘=1 𝑥
𝑘
𝑖
|𝑘⟩, where 𝑥𝑘

𝑖
is the individual coordinate of the vector

x𝑖. If 𝑈 is a time-evolution under a many-body Hamiltonian, then the function
𝑓 (x) = ⟨x|𝑈†𝑂𝑈 |x⟩ is in general hard to compute classically Aram W Harrow and
Montanaro, 2017b, even for a single input state. In particular, we have the following
proposition showing that if a classical algorithm can compute 𝑓 (x) efficiently, then



36

quantum computers will be no more powerful than classical computers. The proof
is given later in this section.

Proposition 1. If a classical algorithm without training data can compute 𝑓 (x)
efficiently for any𝑈 and 𝑂, then BPP=BQP.

Nevertheless, it is incorrect to conclude that training a classical machine learning
model from data to learn this evolution is hard. To see this, we write out the
expectation value as

𝑓 (𝑥𝑖) =
(
𝑝∑︁
𝑘=1

𝑥𝑘∗𝑖 ⟨𝑘 |
)
𝑈†𝑂𝑈

(
𝑝∑︁
𝑙=1

𝑥𝑙𝑖 |𝑙⟩
)

=

𝑝∑︁
𝑘=1

𝑝∑︁
𝑙=1

𝐵𝑘𝑙𝑥
𝑘∗
𝑖 𝑥

𝑙
𝑖 , (3.1)

which is a quadratic function with 𝑝2 coefficients 𝐵𝑘𝑙 = ⟨𝑘 |𝑈†𝑂𝑈 |𝑙⟩. Using the
theory developed later in this thesis, we can show that, for any 𝑈 and 𝑂, training a
specific classical ML model on a collection of 𝑁 training examples {(x𝑖, 𝑦𝑖 = 𝑓 (x𝑖))}
would give rise to a prediction model ℎ(x𝑖) with

E
x∼D
|ℎ(x) − 𝑓 (x) | ≤ 𝑐

√︂
𝑝2

𝑁
, (3.2)

for a constant 𝑐 > 0. The proof of this statement is given later in this section.
Hence, with 𝑁 ∝ 𝑝2/𝜖2 training data, one can train a classical ML model to predict
the function 𝑓 (x) up to an additive prediction error 𝜖 . This elevation of classical
machines through some training samples is illustrative of the power of data. In the
later part of this section, we give a rigorous complexity-theoretic argument on the
computational power provided by data.

Rigorous proofs for statements regarding the motivating example
We first give a simple proof that the motivating example 𝑓 (x) considered earlier is,
in general, hard to compute classically. Then, we show that training a classical ML
model to predict the function 𝑓 (x) is easy on a classical computer.

Proposition 2 (Restatement of Proposition 1). Consider input vector x ∈ R𝑝 en-
coded into an 𝑛-qubit state |x⟩ = ∑𝑝

𝑘=1 𝑥𝑘 |𝑘⟩. If a randomized classical algorithm
can compute

𝑓 (x) = ⟨x|𝑈†𝑂𝑈 |x⟩ (3.3)
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up to 0.15-error with high probability over the randomness in the classical algorithm
for any 𝑛, 𝑈, and 𝑂 in a time polynomial to the description length of 𝑈 and 𝑂, the
input vector size 𝑝, and the qubit system size 𝑛, then

BPP = BQP. (3.4)

Proof. We consider 𝑝 = 1 and |x⟩ = |0𝑛⟩ the all zero computational basis state. A
language 𝐿 is in BQP if and only if there exists a polynomial-time uniform family
of quantum circuits {𝑄𝑛 : 𝑛 ∈ N}, such that

1. For all 𝑛 ∈ N, 𝑄𝑛 takes an 𝑛-qubit computational basis state as input, apply
𝑄𝑛 on the input state, and measures the first qubit in the computational basis
as output.

2. For all 𝑧 ∈ 𝐿, the probability that output of 𝑄 |𝑧 | applying on the input 𝑧 is one
is greater than or equal to 2/3.

3. For all 𝑧 ∉ 𝐿, the probability that output of𝑄 |𝑧 | applying on the input 𝑧 is zero
is greater than or equal to 2/3.

If we have the randomized classical algorithm that can compute 𝑓 (𝑥), then for all 𝑧:
input bitstring, we consider the unitary quantum neural network given by

𝑈 = 𝑄 |𝑧 |

𝑛⊗
𝑖=1

𝑋
𝑧𝑖
𝑖
, (3.5)

where 𝑋𝑖 is the Pauli-X matrix acting on the 𝑖-th qubit, and the observable 𝑂 is
given by 𝑍1. Hence, we have

1. For all 𝑧 ∈ 𝐿, 𝑓 (x) = ⟨x|𝑈†𝑂𝑈 |x⟩ = ⟨𝑧 |𝑄†|𝑧 |𝑍1𝑄 |𝑧 | |𝑧⟩ = Pr[the output of
𝑄 |𝑧 | applying on the input 𝑧 is one ] − Pr[the probability that output of 𝑄 |𝑧 |
applying on the input 𝑧 is zero] ≥ 2/3 − 1/3 = 1/3.

2. For all 𝑧 ∉ 𝐿, 𝑓 (x) = ⟨x|𝑈†𝑂𝑈 |x⟩ = ⟨𝑧 |𝑄†|𝑧 |𝑍1𝑄 |𝑧 | |𝑧⟩ = Pr[the output of
𝑄 |𝑧 | applying on the input 𝑧 is one ] − Pr[the probability that output of 𝑄 |𝑧 |
applying on the input 𝑧 is zero] ≤ 1/3 − 2/3 = −1/3.

By assumption, we can use the randomized classical algorithm to compute an esti-
mate 𝑓 (x) such that | 𝑓 (x) − 𝑓 (x) | < 0.15 with high probability over the randomness
of the classical algorithm. Therefore with high probability, 𝑓 (x) > 0 if 𝑧 ∈ 𝐿 and
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𝑓 (x) < 0 if 𝑧 ∉ 𝐿. We can use the indication of whether 𝑓 (x) is positive or negative
to determine if 𝑧 ∈ 𝐿 or 𝑧 ∉ 𝐿 with high probability over the randomness of the
classical algorithm. This implies that 𝐿 ∈ BPP.

Together, the existence of the randomized classical algorithm implies that BQP ⊆
BPP. By definition, we have BPP ⊆ BQP, hence BPP = BQP.

We will now give a classical machine learning algorithm that could learn 𝑓 (x)
efficiently using few samples. Recall that the data point is given by {x𝑖}𝑁𝑖=1, where
x𝑖 ∈ R𝑝. Now, we consider a classical ML model with the kernel function 𝑘 (x𝑖, x 𝑗 ) =
(∑𝑝

𝑙=1 𝑥𝑖𝑙𝑥 𝑗 𝑙)
2, which can be evaluated in time linear in the dimension 𝑝. Note

that this definition of kernel is equivalent to the quantum kernel tr(𝜌(𝑥𝑖)𝜌(𝑥 𝑗 )) =
| ⟨𝑥𝑖⟩ 𝑥 𝑗 |2 for the encoding |𝑥𝑖⟩ =

∑𝑝

𝑘=1 𝑥𝑖𝑘 |𝑘⟩. We will now use the theoretical
framework we developed in Chapter 8. In particular, we will use the prediction error
of the quantum kernel method given in Eq. 8.9. It shows that for any observable
𝑂 and quantum circuit 𝑈, the prediction error after training from 𝑁 data points
{(𝑥𝑖, 𝑦𝑖 = 𝑓 (𝑥𝑖))} is given by

Ex∈D |ℎ(x) − 𝑓 (x) | ≤ 𝑐
√︂

min(𝑑, tr(𝑂2))
𝑁

, (3.6)

where 𝑑 is the Hilbert space dimension of {𝜌(𝑥𝑖)}𝑁𝑖=1. Because we have 𝜌(𝑥𝑖) =
|𝑥𝑖⟩⟨𝑥𝑖 | and |𝑥𝑖⟩ =

∑𝑝

𝑘=1 𝑥𝑖𝑘 |𝑘⟩, the dimension of the Hilbert space is upper bounded
by 𝑝2. Therefore,

Ex∈D |ℎ(x) − 𝑓 (x) | ≤ 𝑐
√︂

min(𝑑, tr(𝑂2))
𝑁

≤ 𝑐
√︂
𝑝2

𝑁
. (3.7)

For more details about the machine learning models, the prediction error bound,
and the proof for the prediction error bound of quantum kernel methods, see Sec-
tion 8.6 and 8.7 in Chapter 8.

Complexity-theoretic argument for the power of data
So far, we have seen an argument based on a simple example to demonstrate the
power of data. However, this is not satisfactory when we want to put the power of
data on a rigorous footing. To demonstrate this fact from a rigorous standpoint, let us
capture classical ML algorithms that can learn from data by means of a complexity
class, which we refer to as BPP/samp. A language 𝐿 of bit strings is in BPP/samp
if and only if the following holds: There exist probabilistic Turing machines 𝐷 and
𝑀 . 𝐷 generates samples 𝑥 with |𝑥 | = 𝑛 in polynomial time for any input size 𝑛. 𝐷
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Figure 3.1: We present an illustration of the complexity class for classical machine
learning algorithms with the availability of data. To the right, we have a diagram
showing the relations between different complexity classes.

defines a sequence of input distributions {D𝑛}. 𝑀 takes an input 𝑥 of size 𝑛 along
with T = {(𝑥𝑖, 𝑦𝑖)}poly(𝑛)

𝑖=1 of polynomial size, where 𝑥𝑖 is sampled from D𝑛 using
Turing machine 𝐷 and 𝑦𝑖 conveys language membership: 𝑦𝑖 = 1 if 𝑥𝑖 ∈ 𝐿 and 𝑦𝑖 = 0
if 𝑥𝑖 ∉ 𝐿. Moreover, we require

• The probabilistic Turing machine 𝑀 to process all inputs 𝑥 in polynomial time
(polynomial runtime).

• For all 𝑥 ∈ 𝐿, 𝑀 outputs 1 with probability greater than or equal to 2/3
(probability completeness).

• For all 𝑥 ∉ 𝐿, 𝑀 outputs 1 with probability less than or equal to 1/3 (proba-
bility soundness).

If the Turing machine 𝑀 neglects the sampled data T , this is equivalent to the
definition of BPP. Hence BPP is contained inside BPP/samp.

We can also see that T is a restricted form of randomized advice string. It is not
hard to show that BPP/samp is contained in P/poly based on the same proof strategy
for Adleman’s theorem. We consider a new probabilistic Turing machine 𝑀′ that
runs 𝑀 for 18𝑛 times. Each time, we use an independently sampled training set T
from D𝑛. Then we take a majority vote from the 18𝑛 runs. By Chernoff bound, the
probability of failure for any given 𝑥 with |𝑥 | = 𝑛 would be at most 1/e𝑛. Hence by
union bound, the probability that all 𝑥 with |𝑥 | = 𝑛 succeeds is at least 1 − (2/e)𝑛.
This implies the existence of a particular choice of the 18𝑛 training sets and 18𝑛
random bit-strings used in each run of the probabilistic Turing machine 𝑀 , such
that for all 𝑥 with |𝑥 | = 𝑛 the decision of whether 𝑥 ∈ 𝐿 is correct. We simply
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define the advice string 𝑎𝑛 to one particular choice of the 18𝑛 training sets and 18𝑛
random bit-strings, which will be a string of size polynomial in 𝑛. Hence we know
that BPP/samp is contained in P/poly. An illustration is given in Supplementary
Figure 3.1. We leave open the question of whether BPP/samp is strictly contained
in P/poly, i.e., there is a problem in P/poly but not in BPP/samp.

The separation between P/poly and BPP is often illustrated by undecidable unary
languages. The separation between BPP/samp and BPP could also be proved using
a similar example. Actually, an undecidable unary language serves as an equally
good example. Here, we choose to present a slightly more complicated example
to demonstrate what BPP/samp could do. Let us consider an undecidable unary
language 𝐿hard = {1𝑛 |𝑛 ∈ 𝐴}, where 𝐴 is a subset of the natural numbers N and a
classically easy language 𝐿easy ∈ BPP. We assume that for every input size 𝑛, there
exists an input 𝑎𝑛 ∈ 𝐿easy and an input 𝑏𝑛 ∉ 𝐿easy. We define a new language as
follows:

𝐿 =

∞⋃
𝑛=1
{𝑥 |∀𝑥 ∈ 𝐿easy, 1𝑛 ∈ 𝐿hard, |𝑥 | = 𝑛} ∪ {𝑥 |∀𝑥 ∉ 𝐿easy, 1𝑛 ∉ 𝐿hard, |𝑥 | = 𝑛}.

(3.8)
For each size 𝑛, if 1𝑛 ∈ 𝐿hard, 𝐿 would include all 𝑥 ∈ 𝐿easy with |𝑥 | = 𝑛. If
1𝑛 ∉ 𝐿hard, 𝐿 would include all 𝑥 ∉ 𝐿easy with |𝑥 | = 𝑛. By definition, if we can
output whether 𝑥 ∈ 𝐿 for an input 𝑥 using a classical algorithm (BPP), we can output
whether 1𝑛 ∈ 𝐿hard by computing whether 𝑥 ∈ 𝐿easy. This is however impossible
due to the undecidability of 𝐿hard. Hence the language 𝐿 is not in BPP. On the
other hand, for every size 𝑛, a classical machine learning algorithm can use a single
training data point (𝑥0, 𝑦0) to decide whether 𝑥 ∈ 𝐿. An algorithm is as follows.
Using 𝑦0, we know whether 𝑥0 ∈ 𝐿easy. Hence, we know whether 1𝑛 ∈ 𝐿hard. Then
for any input 𝑥 with size 𝑛, we can output the correct answer by using the knowledge
of whether 1𝑛 ∈ 𝐿hard combined with a classical computation to decide whether
𝑥 ∈ 𝐿easy. This example nicely illustrates the power of data and how machine
learning algorithms can utilize it. In summary, the data provide information that
is hard to compute with a classical computer (e.g., whether 1𝑛 ∈ 𝐿hard). Then the
classical machine learning algorithm would perform the classical computation to
infer the solution from the given knowledge (e.g., computing whether 𝑥 ∈ 𝐿easy).
The same language 𝐿 also yields a separation between BPP/samp and BQP because
𝐿 is constructed to be undecidable.

From a practical perspective, it is impossible to obtain training data that is unde-
cidable. But it is still possible to obtain data that cannot be efficiently computed
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with a classical computer since the universe operates quantum mechanically. If the
universe computes classically, then the data we can obtain will be computable by
BPP and there is no separation between classical ML algorithm with data from BPP
and BPP. We now present a simple argument for a separation between classical algo-
rithm learning with data coming from quantum computation and BPP. This follows
from a similar argument as the previous example. Here, we assume that there is a
sequence of quantum circuits such that the Z measurement on the first qubit (being
+1 with probability > 2/3 or < 1/3) is hard to decide classically. This defines a
unary language 𝐿′hard that is outside BPP, but inside BQP. We can then use 𝐿′hard in
replace of 𝐿hard for the example above. When the data comes from BQP, the class
classical ML algorithms that can learn from the data would not have a separation
from BQP. Together, the motivating example and the complexity-theoretic analysis
give a solid foundation for the computational power of data.

3.2 Proving quantum advantages in learning
One of the central ingredients for establishing exponential quantum advantage in
learning is to prove an exponential lower bound for any classical learning algorithm.
In this chapter, we present a mathematical framework and the key techniques for
proving such lower bounds. The framework is designed to show a lower bound for
any algorithm that only has an external classical memory, i.e., the algorithm cannot
carry quantum information from a previous experiment to the next experiment.
This class of learning algorithms covers all possible classical learning algorithms
(since classical machines cannot carry quantum information) but also covers some
restricted quantum learning algorithms. This framework enables us to establish a
suite of exponential advantages in various physically-relevant tasks, as we will show
in Chapter 9. The purpose of this chapter is to provide the readers with the essential
tools to prove quantum advantages in the tasks they want to study.

The basic tools include the tree representation of learning algorithms, reduction
to distinguishing tasks, and information-theoretic lower bounds. Many of these
techniques were introduced and leveraged in (Sitan Chen, J. Cotler, et al., 2021b).
We also present a novel partially-revealed many-versus-one distinguishing task that
is crucial for realizing the advantage in practice. Then, we discuss how having
noise in the unknown physical states and dynamics only makes the lower bounds
for conventional experiments larger. This result on the presence of noise is simple
to establish but also crucial in practice because there is often noise in the unknown
physical states and dynamics. There are some other techniques presented in a theory
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paper written by some of the authors (Sitan Chen, J. Cotler, et al., 2021b), such as
a multi-linear tensor analysis on the learning tree, which may be of interest to some
readers.

Tree representation
We begin by presenting the tree representation for analyzing algorithms with only
classical memory (Sitan Chen, J. Cotler, et al., 2021b). The key idea is to track
changes in the classical memory state in the algorithm using a graph, which we can
take to be a rooted tree. We consider each node 𝑢 of the graph to be a classical
memory state. Based on the memory state, the algorithm performs an experiment
to obtain a measurement outcome 𝑠.

Experiments for learning physical world

To motivate the definitions in the sequel, we separately describe the two types of
experimental setups that we focus on in this chapter: one on learning an unknown
physical state and the other on learning an unknown process (Huang, Richard Kueng,
and Preskill, 2021; Aharonov, J. S. Cotler, and Qi, 2021; Sitan Chen, J. Cotler, et al.,
2021b).

• Learning an unknown physical state: A physical state is represented by a
density matrix 𝜌. An algorithm leveraging the classical memory state 𝑢
measures the physical system 𝜌 using a rank-1 POVM {𝑤𝑢𝑠 |𝜙𝑢𝑠 ⟩⟨𝜙𝑢𝑠 |} with∑
𝑠 𝑤

𝑢
𝑠 |𝜙𝑢𝑠 ⟩⟨𝜙𝑢𝑠 | = Id. Note that from the discussion in Section 2.1, we can

always consider rank-1 POVMs only. The measurement outcome 𝑠 occurs
with probability

𝑤𝑢𝑠 ⟨𝜙𝑢𝑠 | 𝜌 |𝜙𝑢𝑠 ⟩ . (3.9)

Here, the rank-1 POVM {𝑤𝑢𝑠 |𝜙𝑢𝑠 ⟩⟨𝜙𝑢𝑠 |} depends on the classical memory state
𝑢.

• Learning an unknown physical process: A physical process is represented by
a quantum process E (equivalently, a CPTP map). An algorithm leveraging
the memory state 𝑢 prepares an initial state |𝜓𝑢⟩, feeds it into the physical
evolution E, and measures the output state E(|𝜓𝑢⟩⟨𝜓𝑢 |) with a rank-1 POVM
{𝑤𝑢𝑠 |𝜙𝑢𝑠 ⟩⟨𝜙𝑢𝑠 |} with

∑
𝑠 𝑤

𝑢
𝑠 |𝜙𝑢𝑠 ⟩⟨𝜙𝑢𝑠 | = Id. The outcome 𝑠 is obtained from the

experiment with probability

𝑤𝑢𝑠 ⟨𝜙𝑢𝑠 | E(|𝜓𝑢⟩⟨𝜓𝑢 |) |𝜙𝑢𝑠 ⟩ . (3.10)
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In this case, both the initial state and the measurement depend on the classical
memory state 𝑢.

We consider the initial state |𝜓𝑢⟩ to be an (𝑛 + 𝑛′)-qubit state, where E acts
on the first 𝑛 qubits. The rank-1 POVM {𝑤𝑢𝑠 |𝜙𝑢𝑠 ⟩⟨𝜙𝑢𝑠 |} is on an (𝑛 + 𝑛′)-qubit
state.

Dynamics of the learning algorithm

The classical memory state of the learning algorithm is initialized in a certain state,
which we represent by the root node 𝑟 . The memory state of the algorithm begins at
the root 𝑟. Each measurement outcome 𝑠 resulting from a single experiment causes
the algorithm to transition to a node neighbor of 𝑟 . Whenever the algorithm obtains
a measurement outcome 𝑠, the memory state changes. This is represented by a
transition from a node 𝑢 to another node 𝑣,

𝑢
𝑠−→ 𝑣. (3.11)

The directed edge 𝑒 = (𝑢, 𝑣, 𝑠) from 𝑢 to 𝑣 represents the transition of the memory
in an algorithm when we receive the measurement outcome 𝑠. We illustrate the
transition under a single experiment in Supp. Fig. 3.2(a).

If a different 𝑠 leads us to the same node, then the algorithm is not retaining full
information of the measurement outcome. An example is given in Supp. Fig. 3.2(b).
Since we do not limit the size of the classical memory, there is no need to lose (or
forget) information. Hence, all the outgoing edges of the root node 𝑟 indexed by
the measurement outcome 𝑠 will point to distinct nodes. The same argument holds
for any node in the graph. More precisely, every outgoing edge from a node 𝑢 will
connect to a node 𝑣, such that 𝑣 has exactly one incoming edge (the edge is from
𝑢). The only node in the graph without an incoming edge is the root 𝑟. This is
exactly the definition of a directed rooted tree T . We will focus on an algorithm
that performs 𝑇 experiments. This means the depth of the tree, namely the number
of edges in any root-to-leaf path, will be 𝑇 . The tree representation is shown in
Supp. Fig. 3.2(c).

When we execute the algorithm to achieve a certain task (such as to verify entangle-
ment, or learn a model of the physical system), the entire dynamic process of how
the memory state changes will be represented by a path from the root 𝑟 to a leaf ℓ in
the tree T ,

𝑢0 = 𝑟
𝑠1−→ 𝑢1

𝑠2−→ 𝑢2
𝑠3−→ . . .

𝑠𝑇−1−−−→ 𝑢𝑇−1
𝑠𝑇−−→ 𝑢𝑇 = ℓ. (3.12)
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Figure 3.2: Illustration of the tree representation for a learning algorithm. (a) Dy-
namics of memory. The memory state changes based on the measurement outcome
𝑠. (b) No cycles. If two memory states 𝑎, 𝑏 transition into the same memory state
𝑐, then some information is lost. (c) Tree representation of an algorithm. When
no information is lost, the transition graph of the memory states must be a directed
tree. Each layer of the tree corresponds to one experiment. After 𝑇 experiments,
the memory state is represented by a node in the 𝑇-th layer.

To establish a lower bound against any learning algorithm for a particular task, we
need to analyze each such path along with the probability that the path is taken.

Many-versus-one distinguishing tasks

Reduction

In a learning task, we often want the learning algorithm to be able to make accurate
predictions about some properties of the unknown physical system or dynamics. We
will have a set of states (the mathematical representation of a physical system) or a
set of channels (the mathematical representation of physical dynamics) to which we
assume the unknown system or dynamics belong. The basic technique we employ
in all of our proofs is to pick out one of the states/channels as the null hypothesis,
and consider all the rest as the alternative hypothesis (Huang, Richard Kueng, and
Preskill, 2021; Sitan Chen, J. Cotler, et al., 2021b). LetX denote the set of possible
states/channels.

• Null hypothesis: The unknown state/channel is an element 𝑋0 ∈ X. To
establish a tight lower bound, we should choose an 𝑋0 that we think is close
to every other state/channel in X.

• Alternative hypothesis: The unknown state/channel is a random element in
X \ {𝑋0}.

Furthermore, we need to choose 𝑋0 such that the desired property we would like to
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Figure 3.3: Illustration for the leaf probability distribution. The leaf probability
distribution depends on the unknown physical state/process and the learning algo-
rithm. In the null hypothesis, we have a single state/process, which gives rise to a
probability distribution over leaves. In the alternative hypothesis, there are multiple
possible states/processes. Each state/process produces a different leaf probability
distribution. The leaf probability distribution for the alternative hypothesis is the
average of all the leaf probability distributions.

learn enables us to distinguish between 𝑋0 and the entire set of X \ {𝑋0}.

To prove a lower bound against any classical algorithm, we try to answer the follow-
ing question.

How hard is it to distinguish the alternative hypothesis from the null hypothesis?

Because the alternative hypothesis consists of many elements and the null hypothesis
consists of only one element, we refer to this distinguishing task as the many-versus-
one distinguishing task.

Information-theoretic lower bound

In order to establish a lower bound for the many-versus-one distinguishing task,
we need to first discuss the leaf probability distribution in the tree representation
of the learning algorithm (Huang, Richard Kueng, and Preskill, 2021; Sitan Chen,
J. Cotler, et al., 2021b). Recall that depending on the unknown state/process, the
transition probabilities among the memory states in the learning algorithm will
be different. This is because the outcome probability for each experiment differs
when the unknown state/process differs. Therefore, the probability to traverse a
certain path in the tree representing an execution of the learning algorithm will
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change according to the unknown state/process. Hence, the probability to arrive at
a particular leaf node in the depth-𝑇 tree will change. An illustration is given in
Supp. Fig. 3.3.

For each element 𝑋 in X, the set of all admissible states/channels, we write the
probability distribution over leaves as

𝑝𝑋 (ℓ), ℓ : leaf node of the tree. (3.13)

The probability distribution over the leaves ℓ for the null hypothesis and for the
alternative hypothesis are respectively

𝑝𝑋0 (ℓ) and E
𝑋∈X\{𝑋0}

𝑝𝑋 (ℓ). (3.14)

The probability distribution over 𝑋 ∈ X \ {𝑋0} in the expectation E𝑋∈X\{𝑋0} is
arbitrary. We should choose the probability distribution that yields the largest lower
bound.

Suppose that the null hypothesis and the alternative hypothesis are true with prob-
ability 1/2 each. If we want to use the memory state of the learning algorithm
to distinguish between the null hypothesis and the alternative hypothesis, then the
success probability of any procedure is upper bounded by

1
2
+ 1

2
TV

(
𝑝𝑋0 , E

𝑋∈X\𝑋0
𝑝𝑋

)
=

1
2
+ 1

4

∑︁
ℓ

����𝑝𝑋0 (ℓ) − E
𝑋∈X\𝑋0

𝑝𝑋 (ℓ)
���� , (3.15)

which is also known as LeCam’s two-point method. TV(𝑝0, 𝑝1) is the total variation
distance between the two probability distributions 𝑝0, 𝑝1.

Lemma 3 (Le Cam’s two-point method, see e.g. Lemma 1 in (B. Yu, 1997)).
Consider a learning algorithm without quantum memory that is described by a
rooted tree T . The probability that the learning algorithm solves the many-versus-
one distinguishing task correctly is upper bounded by

1
2
+ 1

2

∑︁
ℓ∈leaf (T )

���E
𝑥
𝑝𝜌𝑥 (ℓ) − 𝑝Id/2𝑛 (ℓ)

��� . (3.16)

Intuitively, as we perform more experiments, the depth of the tree increases, and
the total variation distance between the leaf probability distribution increases. If we
want to achieve a prediction accuracy of 𝑝 ≥ 1

2 , then we need the total variation
distance to be lower bounded by,

TV
(
𝑝𝑋0 , E

𝑋∈X\𝑋0
𝑝𝑋

)
≥ 2𝑝 − 1. (3.17)
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On the other hand, the total variation distance can be upper bounded by a monoton-
ically increasing function of the number of experiments 𝑇 equal to the depth of the
tree. Altogether, this allows us to lower bound the number of experiments 𝑇 by a
function of the success probability 𝑝.

It is tempting to try to apply Lemma 3 by uniformly upper bounding the quantity��E𝑥 𝑝𝜌𝑥 (ℓ) − 𝑝Id/2𝑛 (ℓ)
�� for all leaves ℓ. Unfortunately, it turns out that for some

leaves, this quantity can be very large. The good news however is that we do have
a uniform one-sided bound: as we will show, 𝑝Id/2𝑛 (ℓ) − E𝑥 𝑝𝜌𝑥 (ℓ) (without the
absolute values) can always be upper bounded by a very small value. It turns out that
such a one-sided bound already suffices for applying Le Cam’s two-point method.

Lemma 4 (One-sided bound suffices for Le Cam). Consider a learning algorithm
without quantum memory that is described by a rooted tree T . If we have

E[𝑥] ∗ 𝑝𝜌𝑥 (ℓ)
𝑝Id/2𝑛 (ℓ)

≥ 1 − 𝛿, ∀ℓ ∈ leaf (T ). (3.18)

then the probability that the learning algorithm solves the many-versus-one distin-
guishing task correctly is upper bounded by 𝛿.

Proof. We utilize the basic fact that 1
2
∑
𝑖 |𝑝(𝑖) − 𝑞(𝑖) | =

∑
𝑖:𝑝(𝑖)≥𝑞(𝑖) 𝑝(𝑖) − 𝑞(𝑖),

hence
1
2

∑︁
ℓ∈leaf (T )

���E
𝑥
𝑝𝜌𝑥 (ℓ) − 𝑝Id/2𝑛 (ℓ)

��� = ∑︁
ℓ∈leaf (T )

𝑝Id/2𝑛 (ℓ)≥E𝑥 𝑝𝜌𝑥 (ℓ)

𝑝Id/2𝑛 (ℓ) − E
𝑥
𝑝𝜌𝑥 (ℓ) (3.19)

≤
∑︁

ℓ∈leaf (T )
𝑝Id/2𝑛 (ℓ)≥E𝑥 𝑝𝜌𝑥 (ℓ)

𝑝Id/2𝑛 (ℓ)𝛿 ≤ 𝛿. (3.20)

We can then apply Lemma 3 and conclude the proof of the lemma.

Many-versus-many distinguishing task
Sometimes, it is easier to first reduce the learning task to a many-versus-many
distinguishing task before reducing it to a many-versus-one task. This technique
is used in Section 9.6 to prove an exponential advantage for quantum principal
component analysis. Consider X to be the set of allowed states/channels. We
consider a subset A ⊆ X, and define B = X \ A. Here, we consider the following
two hypotheses.

• Hypothesis A: The unknown state/channel is a random element in A.
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• Hypothesis B: The unknown state/channel is a random element in B.

Assume each hypothesis happens with probability 1/2. The goal is to distinguish
which hypothesis is true. BecauseA,B can contain many elements inX, we refer to
this as the many-versus-many distinguishing task. In Supp. Fig. 3.4, we visualize the
difference between the many-versus-many distinguishing task and the other tasks.

Following a similar derivation as the many-versus-one distinguishing task, for any
learning algorithm in the conventional setting, we represent the algorithm as a learn-
ing tree. Given a tree representation T , the success probability for any procedure
to distinguish hypothesis A and B using the final memory state of the learning
algorithm is upper bounded by

1
2
+ 1

2
TV

(
E
𝑋∈A

𝑝𝑋 , E
𝑋∈B

𝑝𝑋

)
, (3.21)

where 𝑝𝑋 is a probability distribution over the leaf nodes of the tree T when the
unknown state/channel is 𝑋 . Hence, if we want to achieve a prediction accuracy of
𝑝 ≥ 1

2 , then we need the total variation distance to be lower bounded by

TV
(
E
𝑋∈A

𝑝𝑋 , E
𝑋∈B

𝑝𝑋

)
≥ 2𝑝 − 1 . (3.22)

This last inequality will be important for establishing the lower bound on the number
of experiments 𝑇 .

Partially-revealed many-versus-one distinguishing task
In some tasks, it can be challenging to verify if an algorithm has learned accurately
without revealing some information to the learning algorithm. Here, we consider
a setting where after learning, the algorithm is additionally given some partial
information about the underlying state/process.

The set X of all admissible states/processes can be represented as follows,

𝑋 = (𝜉, 𝜒) ∈ X, (3.23)

where 𝜉 is the information that will be revealed during prediction and 𝜒 remains
hidden. After performing all experiments, the algorithm can obtain 𝜉∗, such that the
unknown state/process 𝑋 is guaranteed to be either

𝑋0 or (𝜉∗, 𝜒) ∈ X \ {𝑋0}, (3.24)
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Null hypothesis

Alternative A1

Alternative A2

or

Null hypothesis

Alternative B1

Alternative B2

or

Revealed to be A Revealed to be B

Alternative A1

Alternative A2

Alternative B1

Alternative B2

or

Many-versus-many distinguishing task

(a)

(c)

(b)

Figure 3.4: Visualization of the different distinguishing tasks. (a) In the many-
versus-one distinguishing task, we are distinguishing between the null hypothesis and
the alternative hypothesis (which can be one of many alternatives). (b) In the many-
versus-many distinguishing task, we want to distinguish between two hypotheses
(each of which can be one of many alternatives). (c) In the partially-revealed many-
versus-one distinguishing task, some information about the alternatives is revealed,
which makes the distinguishing task easier.

i.e. the null hypothesis or an element of the alternative hypothesis. In Supp.
Fig. 3.4, we visualize the difference between the partially-revealed many-versus-
one distinguishing task and other tasks. Due to the additional information revealed
to the learning algorithm, the distinguishing task becomes easier. However, in many
examples, we show that revealing a significant amount of information to a learning
algorithm that only has external classical memory will not significantly help its
distinguishing power.

Suppose that after revealing the information 𝜉∗ to the learning algorithm, the condi-
tional probability for whether the unknown state/process 𝑋 is 𝑋0 (null hypothesis) or
one of (𝜉∗, 𝜒) ∈ X \ {𝑋0} (alternative hypothesis) is still uniform, i.e., 1/2 and 1/2.
Then similar to when the information is not revealed, the success probability of any
procedure to distinguish between null and alternative hypothesis is upper bounded
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by

1
2
+ 1

2
TV

(
𝑝𝑋0 , E

(𝜉∗,𝜒)∈X\{𝑋0}
𝑝 (𝜉∗,𝜒)

)
=

1
2
+ 1

4

∑︁
ℓ

����𝑝𝑋0 (ℓ) − E
(𝜉∗,𝜒)∈X\{𝑋0}

𝑝 (𝜉∗,𝜒) (ℓ)
���� .

(3.25)
When 𝜉∗ is chosen randomly, the average success probability is upper bounded by

1
2
+ 1

2
E
𝜉∗

TV
(
𝑝𝑋0 , E

(𝜉∗,𝜒)∈X\{𝑋0}
𝑝 (𝜉∗,𝜒)

)
. (3.26)

Again, similar to the discussion before, in order to achieve a prediction accuracy of
𝑝 ≥ 1/2, we need to satisfy the inequality

E
𝜉∗

TV
(
𝑝𝑋0 , E

(𝜉∗,𝜒)∈X\{𝑋0}
𝑝 (𝜉∗,𝜒)

)
≥ 2𝑝 − 1. (3.27)

The left-hand side of the above inequality can be upper bounded by a monotonically
increasing function of 𝑇 , hence we can obtain a lower bound on 𝑇 . Note that by
Jensen’s inequality, the left hand side of the above inequality is larger than the left
hand side in Eq. (3.17), so we will obtain a weaker lower bound on 𝑇 . This makes
sense because making accurate predictions with partially-revealed information is
easier.

Presence of noise
So far, we have considered protocols for learning quantum states or quantum pro-
cesses in the absence of noise. There are several forms of noise we can consider: (i)
noise on input states, (ii) noise on the POVMs which are measured, and (iii) noise
on the quantum process (if there is one). Let us prove the following result:

Theorem 6 (Noise cannot decrease the lower bound). If the upper bound

TV
(
E
𝑋∈A

𝑝𝑋 , E
𝑋∈B

𝑝𝑋

)
≤ 2𝑝 − 1 (3.28)

holds for all learning protocols with a classical memory, then this same bound holds
for all learning protocols with a classical memory in the presence of noise. Because
the upper bound on total variation distance applies when noise is present, so does
the lower bound on the number of experiments needed to achieve the distinguishing
task.

Proof. Consider first the setting of learning an unknown physical state 𝜌. Suppose
we have a learning protocol with a classical memory described by a learning tree
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T . At node 𝑢 in the protocol, we measure the state 𝜌 with the POVM {𝐹𝑢𝑠 }𝑠. We
will measure the 𝑠th outcome with probability

tr(𝐹𝑢𝑠 𝜌) . (3.29)

If there is noise on 𝜌, we can use 𝜌 ↦→ N [𝜌] for some noise quantum process N .
Likewise if there is noise on the POVM, we can use 𝐹𝑢𝑠 ↦→ M† [𝐹𝑢𝑠 ] for a noise
quantum processM. Then the probability of the 𝑠th outcome is instead

tr(M† [𝐹𝑢𝑠 ] N [𝜌]) = tr((N† ◦M†) [𝐹𝑢𝑠 ] 𝜌) . (3.30)

But {(N† ◦ M†) [𝐹𝑢𝑠 ]}𝑠 also forms a POVM. We can apply this same argument to
each node in the tree; note that the noise channels can be node-dependent. The
result is that we simply get a new learning tree with classical memory, with POVM’s
augmented by the noise channels. But since by hypothesis (3.28) holds for all
learning protocols with a classical memory, the bound evidently still holds in the
noisy setting.

In the setting where we are learning a physical process E, the argument is similar.
Given a learning tree T for learning the physical process, at node 𝑢 we (i) prepare
the state 𝜌𝑢, (ii) apply the physical process E, and (iii) measure with the POVM
{𝐹𝑢𝑠 }𝑠 and obtain outcome 𝑠 with probability

tr(𝐹𝑢𝑠 E[𝜌𝑢]) . (3.31)

If the initial state is noisy, we can implement this by a channel mapping 𝜌𝑢 ↦→ N [𝜌𝑢].
If E is noisy, this can be implemented by E ↦→ D ◦ E ◦ F . Finally, if the POVM
is noisy, we can implement this by 𝐹𝑢𝑠 ↦→ M† [𝐹𝑢𝑠 ]. In these circumstances, the
probability of the 𝑠th outcome is instead

tr(M† [𝐹𝑢𝑠 ] (D ◦ E ◦ F )[N [𝜌𝑢]]) = tr((D† ◦ 𝑀†) [𝐹𝑢𝑠 ] E[F ◦ N [𝜌𝑢]]) . (3.32)

But {(D† ◦𝑀†) [𝐹𝑢𝑠 ]}𝑠 also forms a POVM, and (F ◦N)[𝜌𝑢] is also a valid choice
of input state. The same argument can be used for noise channels applied at every
node in the tree, and furthermore the noise can be node-dependent. The result is that
we just get a modified learning tree with classical memory, which by assumption
satisfies (3.28), as desired.

In summary, we have shown that if a task is hard for all learning protocols with
classical memory, then the task is still just as hard (if not harder) in the presence of
noise. Thus the presence of noise always makes learning with classical machines
more challenging.
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C h a p t e r 4

PREDICTING MANY PROPERTIES OF QUANTUM SYSTEMS

Making predictions based on empirical observations is a central topic in statis-
tical learning theory and is at the heart of many scientific disciplines, including
quantum physics. There, predictive tasks, like estimating target fidelities, verifying
entanglement, and measuring correlations, are essential for building, calibrating and
controlling quantum systems. Recent advances in the size of quantum platforms
(Preskill, 2018) have pushed traditional prediction techniques — like quantum state
tomography — to the limit of their capabilities. This is mainly due to a curse of
dimensionality: the number of parameters needed to describe a quantum system
scales exponentially with the number of its constituents. Moreover, these parame-
ters cannot be accessed directly, but must be estimated by measuring the system. An
informative quantum mechanical measurement is both destructive (wave-function
collapse) and only yields probabilistic outcomes (Born’s rule). Hence, many iden-
tically prepared samples are required to estimate accurately even a single parameter
of the underlying quantum state. Furthermore, all measurement outcomes must be
processed and stored in memory for subsequent prediction of relevant features. In
summary, reconstructing a full description of a quantum system with 𝑛 constituents
(e.g. qubits) necessitates a number of measurement repetitions exponential in 𝑛, as
well as an exponential amount of classical memory and computing power.

Several approaches have been proposed to overcome this fundamental scaling prob-
lem. These include matrix product state (MPS) tomography (Cramer et al., 2010)
and neural network tomography (Torlai, Mazzola, et al., 2018; Carrasquilla, Torlai,
et al., 2019). Both only require a polynomial number of samples, provided that
the underlying state has suitable properties. However, for general quantum systems,
these techniques still require an exponential number of samples.

Pioneering a conceptually very different line of research, Aaronson (Aaronson,
2018) pointed out that demanding full classical descriptions of quantum systems
may be excessive for many concrete tasks. Instead it is often sufficient to accurately
predict certain properties of the quantum system. In quantum mechanics, interesting
properties are often linear functions of the underlying density matrix 𝜌, such as the



54

expectation values {𝑜𝑖} of a set of observables {𝑂𝑖}:

𝑜𝑖 (𝜌) = trace(𝑂𝑖𝜌) 1 ≤ 𝑖 ≤ 𝑀. (4.1)

The fidelity with a pure target state, entanglement witnesses, and the probability
distribution governing the possible outcomes of a measurement are all examples
that fit this framework. A nonlinear function of 𝜌 such as entanglement entropy,
may also be of interest. Aaronson coined the term (Aaronson, 2018; Aaronson and
Rothblum, 2019) shadow tomography1 for the task of predicting properties without
necessarily fully characterizing the quantum state, and he showed that a polynomial
number of state copies already suffice to predict an exponential number of target
functions. While very efficient in terms of samples, Aaronson’s procedure is very
demanding in terms of quantum hardware — a concrete implementation of the
proposed protocol requires exponentially long quantum circuits that act collectively
on all the copies of the unknown state stored in a quantum memory.

4.1 Central ideas of classical shadow tomography
In this section, we present the key ideas of classical shadow tomography. In the next
sections, we will dive more deeply into understanding classical shadows.

We restrict attention to 𝑛-qubit systems, and 𝜌 is a fixed but unknown quantum
state in 𝑑 = 2𝑛 dimensions. To extract meaningful information, we repeatedly
perform a simple measurement procedure: apply a random unitary to rotate the state
(𝜌 ↦→ 𝑈𝜌𝑈†) and perform a computational-basis measurement. The unitary 𝑈 is
selected randomly from a fixed ensemble. Upon receiving the 𝑛-bit measurement
outcome |�̂�⟩ ∈ {0, 1}𝑛, we store an (efficient) classical description of 𝑈† |�̂�⟩⟨�̂� |𝑈
in classical memory. It is instructive to view the average (over both the choice
of unitary and the outcome distribution) mapping from 𝜌 to its classical snapshot
𝑈† |�̂�⟩⟨�̂� |𝑈 as a quantum channel:

E
[
𝑈† |�̂�⟩⟨�̂� |𝑈

]
=M(𝜌) =⇒ 𝜌 = E

[
M−1

(
𝑈† |�̂�⟩⟨�̂� |𝑈

)]
. (4.2)

This quantum channel M depends on the ensemble of (random) unitary transfor-
mations. Although the inverted channelM−1 is not physical (it is not completely
positive), we can still applyM−1 to the (classically stored) measurement outcome
𝑈† |�̂�⟩⟨�̂� |𝑈 in a completely classical post-processing step.2 In doing so, we produce

1According to Ref. (Aaronson, 2018) it was actually S.T. Flammia who originally suggested the
name shadow tomography.

2M is invertible if the ensemble of unitary transformations defines a tomographically complete
set of measurements.
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Figure 4.1: An illustration for constructing a classical representation, the classi-
cal shadow, of a quantum system from randomized measurements. In the data
acquisition phase, we perform a random unitary evolution and measurements on
independent copies of an 𝑛-qubit system to obtain a classical representation of the
quantum system — the classical shadow. Such classical shadows facilitate accurate
prediction of a large number of different properties using a simple median-of-means
protocol.

a single classical snapshot �̂� = M−1
(
𝑈† |�̂�⟩⟨�̂� |𝑈

)
of the unknown state 𝜌 from a

single measurement. By construction, this snapshot exactly reproduces the underly-
ing state in expectation (over both unitaries and measurement outcomes): E[ �̂�] = 𝜌.
Repeating this procedure 𝑁 times results in an array of 𝑁 independent, classical
snapshots of 𝜌:

S(𝜌; 𝑁) =
{
�̂�1 =M−1

(
𝑈
†
1 |�̂�1⟩⟨�̂�1 |𝑈1

)
, . . . , �̂�𝑁 =M−1

(
𝑈
†
𝑁
|�̂�𝑁⟩⟨�̂�𝑁 |𝑈𝑁

)}
.

(4.3)
We call this array the classical shadow of 𝜌. Classical shadows of sufficient size 𝑁
are expressive enough to predict many properties of the unknown quantum state
efficiently. To avoid outlier corruption, we split the classical shadow up into
equally-sized chunks and construct several independent sample mean estimators.
Subsequently, we predict linear function values (4.1) via median of means estima-
tion (Jerrum, Leslie G. Valiant, and V. V. Vazirani, 1986; Nemirovsky and Yudin,
1983). This procedure is summarized in Algorithm 1. For many physically relevant
properties 𝑂𝑖 and measurement channelsM, Algorithm 1 can be carried out very
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Algorithm 1 Median of means prediction based on a classical shadow S(𝜌, 𝑁).

1 function LinearPredictions(𝑂1, . . . , 𝑂𝑀 ,S(𝜌; 𝑁), 𝐾)
2 Import S(𝜌; 𝑁) = [ �̂�1, . . . , �̂�𝑁 ] ⊲ Load classical shadow
3 Split the shadow into 𝐾 equally-sized parts and set ⊲ Construct 𝐾 estimators of 𝜌

�̂� (𝑘 ) =
1

⌊𝑁/𝐾⌋

𝑘 ⌊𝑁/𝐾 ⌋∑︁
𝑖=(𝑘−1) ⌊𝑁/𝐾 ⌋+1

�̂�𝑖

4 for 𝑖 = 1 to 𝑀 do
5 Output 𝑜𝑖 (𝑁, 𝐾) = median

{
tr

(
𝑂𝑖 �̂� (1)

)
, . . . , tr

(
𝑂𝑖 �̂� (𝐾 )

)}
. ⊲ Median of means

efficiently without explicitly constructing the large matrix �̂�𝑖.

The median of means prediction with classical shadows can be defined for any
distribution of random unitary transformations. Two prominent examples are: (i)
random 𝑛-qubit Clifford circuits; and (ii) tensor products of random single-qubit
Clifford circuits. Example (i) results in a clean and powerful theory, but also practical
drawbacks, because 𝑛2/log(𝑛) entangling gates are needed to sample from 𝑛-qubit
Clifford unitaries. The corresponding inverted quantum channel is M−1

𝑛 (𝑋) =

(2𝑛 + 1)𝑋 − I. Example (ii) is equivalent to measuring each qubit independently
in a random Pauli basis. Such measurements can be routinely carried out in many
experimental platforms. The corresponding inverted quantum channel is M−1

𝑃
=⊗𝑛

𝑖=1M−1
1 . We refer to examples (i) / (ii) as random Clifford / Pauli measurements,

respectively. In both cases, the resulting classical shadow can be stored efficiently
in a classical memory using the stabilizer formalism.

Classical shadow tomography satisfies the following rigorous guarantee.

Theorem 7 (informal version). Classical shadows of size 𝑁 suffice to predict𝑀 arbi-
trary linear target functions tr(𝑂1𝜌), . . . , tr(𝑂𝑀𝜌) up to additive error 𝜖 given that
𝑁 ≥ (order) log(𝑀)max𝑖 ∥𝑂𝑖∥2shadow /𝜖2. The definition of the norm ∥𝑂𝑖∥shadow

depends on the ensemble of unitaries used to create the classical shadow.

Theorem 7 is most powerful when the linear functions have a bounded norm that
is independent of system size. In this case, classical shadows allow for predicting
a large number of properties from only a logarithmic number of quantum measure-
ments. The norm ∥𝑂𝑖∥shadow in Theorem 7 plays an important role in defining the
space of linear functions that can be predicted efficiently.
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For random Clifford measurements, ∥𝑂∥2shadow is closely related to the Hilbert-
Schmidt norm tr(𝑂2). As a result, a large collection of (global) observables with
a bounded Hilbert-Schmidt norm can be predicted efficiently. For random Pauli
measurements, the norm scales exponentially in the locality of the observable, not
the actual number of qubits. For an observable 𝑂𝑖 that acts non-trivially on (at
most) 𝑘 qubits, ∥𝑂𝑖∥2shadow ≤ 4𝑘 ∥𝑂𝑖∥2∞, where ∥·∥∞ denotes the operator norm3.
This guarantees the accurate prediction of many local observables from only a much
smaller number of measurements.

The following paragraphs present three illustrative examples for using classical
shadow tomography.

Quantum fidelity estimation. Suppose we wish to certify that an experimental
device prepares a desired 𝑛-qubit state. Typically, this target state |𝜓⟩⟨𝜓 | is pure
and highly structured, e.g. a a GHZ state (Greenberger, Horne, and Zeilinger,
1989) for quantum communication protocols, or a toric code ground state (Dennis
et al., 2002a) for fault-tolerant quantum computation. Theorem 7 asserts that a
classical shadow (Clifford measurements) of dimension-independent size suffices to
accurately predict the fidelity of any state in the lab with any pure target state. This
improves on the best existing result on direct fidelity estimation (Steven T. Flammia
and Y.-K. Liu, 2011) which requires𝑂 (2𝑛/𝜖4) samples in the worst case. Moreover,
a classical shadow of polynomial size allows for estimating an exponential number
of (pure) target fidelities all at once.

Entanglement verification. Fidelities with pure target states can also serve as
(bipartite) entanglement witnesses (Gühne and Tóth, 2009). For every (bipartite)
entangled state 𝜌, there exists a constant 𝛼 and an observable 𝑂 = |𝜓⟩⟨𝜓 | such
that tr(𝑂𝜌) > 𝛼 ≥ tr(𝑂𝜌𝑠), for all (bipartite) separable states 𝜌𝑠. Establishing
tr(𝑂𝜌) > 𝛼 verifies the existence of entanglement in the state 𝜌. Any 𝑂 = |𝜓⟩⟨𝜓 |
that satisfies the above condition is known as an entanglement witness for the state 𝜌.
Classical shadows (Clifford measurements) of logarithmic size allow for checking a
large number of potential entanglement witnesses simultaneously.

Predicting expectation values of local observables. Many near-term applications
of quantum devices rely on repeatedly estimating a large number of local observables.
For example, low-energy eigenstates of a many-body Hamiltonian may be prepared

3This scaling can be further improved to 3𝑘 if𝑂𝑖 is a tensor product of 𝑘 single-qubit observables.
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and studied using a variational method, in which the Hamiltonian, a sum of local
terms, is measured many times. Classical shadows constructed from a logarithmic
number of random Pauli measurements can efficiently estimate polynomially many
such local observables. Because only single-qubit Pauli measurements suffice, this
measurement procedure is highly efficient. Potential applications include quantum
chemistry (Kandala et al., 2017) and lattice gauge theory (Kokail et al., 2019).

The non-example above raises an important question: does the scaling of the re-
quired number of measurements with the Hilbert-Schmidt norm or with the locality
of observables arise from a fundamental limitation, or is it merely an artifact of
prediction with classical shadows? A rigorous analysis reveals that this scaling is
no mere artifact; rather, it stems from information-theoretic reasons.

Theorem 8 (informal version). Any procedure based on single-copy measurements,
that can predict any 𝑀 linear functions tr(𝑂𝑖𝜌) up to additive error 𝜖 , requires at
least (order) log(𝑀)max𝑖 ∥𝑂𝑖∥2shadow/𝜖

2 measurements.

Here, ∥𝑂𝑖∥2shadow could be taken as the Hilbert-Schmidt norm tr(𝑂2
𝑖
) or as a function

scaling exponentially in the locality of 𝑂𝑖. The proof results from embedding the
abstract prediction procedure into a communication protocol. Quantum information
theory imposes fundamental restrictions on any quantum communication protocol
and allows us to deduce stringent lower bounds. We refer to Section 4.11 and 4.12
for details and proofs.

The two main technical results complement each other nicely. Theorem 7 equips
classical shadows with a constructive performance guarantee: an order of

log(𝑀)max
𝑖
∥𝑂𝑖∥2shadow/𝜖

2 (4.4)

single-copy measurements suffice to accurately predict an arbitrary collection of
𝑀 target functions. Theorem 8 highlights that this number of measurements is
unavoidable in general.

The classical shadow 𝑆(𝜌; 𝑁) = { �̂�1, . . . , �̂�𝑁 } of the unknown quantum state 𝜌 may
also be used to predict non-linear functions 𝑓 (𝜌). We illustrate this with a quadratic
function 𝑓 (𝜌) = tr(𝑂𝜌 ⊗ 𝜌), where 𝑂 acts on two copies of the state. Because �̂�𝑖
is equal to the quantum state 𝜌 in expectation, one could predict tr(𝑂𝜌 ⊗ 𝜌) using
two independent snapshots �̂�𝑖, �̂� 𝑗 , 𝑖 ≠ 𝑗 . Because of independence, tr(𝑂�̂�𝑖 ⊗ �̂� 𝑗 )
correctly predicts the quadratic function in expectation:

E tr(𝑂�̂�𝑖 ⊗ �̂� 𝑗 ) = tr(𝑂 E �̂�𝑖 ⊗ E �̂� 𝑗 ) = tr(𝑂𝜌 ⊗ 𝜌). (4.5)
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To reduce the prediction error, we use 𝑁 independent snapshots and symmetrize
over all possible pairs: 1

𝑁 (𝑁−1)
∑
𝑖≠ 𝑗 tr(𝑂�̂�𝑖 ⊗ �̂� 𝑗 ). We then repeat this procedure

several times and form their median to further reduce the likelihood of outlier
corruption (similar to median of means). Rigorous performance guarantees are
given in Supplementary Section 4.10. This approach readily generalizes to higher
order polynomials using U-statistics (Hoeffding, 1992).

One particularly interesting nonlinear function is the second-order Rényi entangle-
ment entropy, given by− log(tr(𝜌2

𝐴
)), where 𝐴 is a subsystem of the 𝑛-qubit quantum

system. We can rewrite the argument in the log as tr(𝜌2
𝐴
) = tr (𝑆𝐴𝜌 ⊗ 𝜌) — where

𝑆𝐴 is the local swap operator of two copies of the subsystem 𝐴 — and use classical
shadows to obtain very accurate predictions. The required number of measurements
scales exponentially in the size of the subsystem 𝐴, but is independent of total sys-
tem size. Probing this entanglement entropy is a useful task and a highly efficient
specialized approach has been proposed in (Brydges et al., 2019). We compare this
Brydges et al. method to classical shadows in the numerical experiments.

For nonlinear functions, unlike linear ones, we have not derived an information-
theoretic lower bound on the number of measurements needed, though it may be
possible to do so by generalizing our methods.

4.2 Data acquisition and classical shadows
We now dive deeper into the general-purpose strategy of classical shadow tomog-
raphy for predicting many properties of this unknown state. To extract meaningful
information about 𝜌, we need to perform a collection of measurements.

Definition 2 (measurement primitive). We can apply a restricted set of unitary
evolutions 𝜌 ↦→ 𝑈𝜌𝑈†, where 𝑈 is chosen from an ensemble U. Subsequently,
we can measure the rotated state in the computational basis {|𝑏⟩ : 𝑏 ∈ {0, 1}𝑛}.
Moreover, we assume that this collection is tomographically complete, i.e. for each
𝜎 ≠ 𝜌 there exist𝑈 ∈ U and 𝑏 such that ⟨𝑏 |𝑈𝜎𝑈† |𝑏⟩ ≠ ⟨𝑏 |𝑈𝜌𝑈† |𝑏⟩.

Based on this primitive, we repeatedly perform a simple randomized measurement
procedure: randomly rotate the state 𝜌 ↦→ 𝑈𝜌𝑈† and perform a computational
basis measurement. Then, after the measurement, we apply the inverse of 𝑈 to the
resulting computational basis state. This procedure collapses 𝜌 to

𝑈† |�̂�⟩⟨�̂� |𝑈 where Pr
[
�̂� = 𝑏

]
= ⟨𝑏 |𝑈𝜌𝑈† |𝑏⟩, 𝑏 ∈ {0, 1}𝑛 (Born’s rule).

(4.6)
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This random snapshot contains valuable information about 𝜌 in expectation:

E
[
𝑈† |�̂�⟩⟨�̂� |𝑈

]
= E𝑈∼U

∑︁
𝑏∈{0,1}𝑛

⟨𝑏 |𝑈𝜌𝑈† |𝑏⟩𝑈† |𝑏⟩⟨𝑏 |𝑈 =M(𝜌). (4.7)

For any unitary ensembleU, this relation describes a quantum channel 𝜌 ↦→ M(𝜌).
Tomographic completeness ensures that M — viewed as a linear map — has a
unique inverseM−1 and we set

�̂� =M−1
(
𝑈† |�̂�⟩⟨�̂� |𝑈

)
(classical shadow). (4.8)

The classical shadow is a modified post-measurement state that has a unit trace,
but need not be positive semi-definite. However, it is designed to reproduce the
underlying state 𝜌 exactly in expectation: E [ �̂�] = 𝜌. This classical shadow �̂�

corresponds to the linear inversion (or least squares) estimator of 𝜌 in the single-
shot limit. Linear inversion estimators have been used to perform full quantum state
tomography (Sugiyama, P. S. Turner, and Murao, 2013; Guta et al., 2020), where
an exponential number of measurements is needed. We wish to show that �̂� can
predict many properties from only very few measurements.

4.3 Predicting linear functions with classical shadows
Classical shadows are well suited to predict linear functions in the unknown state 𝜌:

𝑜𝑖 = tr (𝑂𝑖𝜌) 1 ≤ 𝑖 ≤ 𝑀. (4.9)

To achieve this goal, we simply replace the (unknown) quantum state 𝜌 by a classical
shadow �̂�. Since classical shadows are random, this produces a random variable
that yields the correct prediction in expectation:

𝑜𝑖 = tr (𝑂𝑖 �̂�) obeys E [𝑜] = tr (𝑂𝑖𝜌) . (4.10)

Fluctuations of 𝑜 around this desired expectation are controlled by the variance.

Lemma 5. Fix 𝑂 and set 𝑜 = tr (𝑂�̂�), where �̂� is a classical shadow (4.8). Then

Var [𝑜] = E
[
(𝑜 − E [𝑜])2

]
≤

𝑂 − tr(𝑂)
2𝑛 I

2

shadow
. (4.11)

The norm ∥·∥shadow only depends on the measurement primitive:

∥𝑂∥shadow = max
𝜎: state

(
E𝑈∼U

∑︁
𝑏∈{0,1}𝑛

⟨𝑏 |𝑈𝜎𝑈† |𝑏⟩⟨𝑏 |𝑈M−1 (𝑂)𝑈† |𝑏⟩2
)1/2

. (4.12)
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It is easy to check that ∥𝑂∥shadow is nonnegative and homogeneous (∥0∥shadow =

0). After some work, one can verify that this expression also obeys the triangle
inequality, and so is indeed a norm.

Proof. Classical shadows have unit trace by construction (tr( �̂�) = 1). This feature
implies that the variance only depends on the traceless part 𝑂0 = 𝑂 − tr(𝑂)

2𝑛 I of 𝑂,
not 𝑂 itself:

𝑜 − E[𝑜] = tr (𝑂�̂�) − tr (𝑂𝜌) = tr (𝑂0 �̂�) − tr (𝑂0𝜌) . (4.13)

Moreover, it is easy to check that the inverse ofM (4.7) is self-adjoint,

tr
(
𝑋M−1(𝑌 )

)
= tr

(
M−1(𝑋)𝑌

)
(4.14)

for any pair of matrices 𝑋,𝑌 with compatible dimension. These two observations
allow us to rewrite the variance in the following fashion:

Var [𝑜] = E
[
(𝑜 − E𝑜)2

]
= E

[
(tr(𝑂0 �̂�))2

]
− (tr (𝑂0 E [ �̂�]))2 (4.15)

= E
[
⟨�̂� |𝑈M−1(𝑂0)𝑈† |�̂�⟩2

]
− (tr (𝑂0𝜌))2 . (4.16)

Classical shadows arise from mixing two types of randomness: (i) a (classical)
random choice of unitary 𝑈 ∼ U and (ii) a random choice of computational basis
state |�̂�⟩ that is governed by Born’s rule (4.6). Inserting the average over computa-
tional basis states produces a (squared) norm that closely resembles the advertised
expression, but does depend on the underlying state:

E⟨�̂� |𝑈M−1(𝑂0)𝑈† |�̂�⟩2 = E𝑈∼U
∑︁

𝑏∈{0,1}𝑛
⟨𝑏 |𝑈𝜌𝑈† |𝑏⟩⟨𝑏 |𝑈M−1(𝑂0)𝑈† |𝑏⟩2.

(4.17)
Maximizing over all possible states𝜎 removes this implicit dependence and produces
a universal upper bound on the variance. Ignoring the subtraction of (tr (𝑂0𝜌))2

(which can only make the bound tighter), we obtain (4.11).

Lemma 5 sets the stage for successful linear function estimation with classical
shadows. A single classical shadow (4.8) correctly predicts any linear function 𝑜𝑖 =
tr(𝑂𝑖𝜌) in expectation. Convergence to this desired target can be boosted by forming
empirical averages of multiple independent shadow predictions. The empirical mean
is the canonical example for such a procedure. Construct 𝑁 independent classical
shadows �̂�1, . . . , �̂�𝑁 and set

𝑜𝑖 (𝑁, 1) =
1
𝑁

𝑁∑︁
𝑗=1

tr
(
𝑂𝑖 �̂� 𝑗

)
. (4.18)
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Each summand is an independent random variable with correct expectation and
variance bounded by Lemma 5. Convergence to the expectation value tr(𝑂𝑖𝜌) can
be controlled by classical concentration arguments (e.g. Chernoff or Hoeffding
inequalities). In order to achieve a failure probability of (at most) 𝛿, the number
of samples must scale like 𝑁 = Var [𝑜𝑖] /(𝛿𝜖2). While the scaling in variance and
approximation accuracy 𝜖 is optimal, the dependence on 1/𝛿 is particularly bad.
Unfortunately, this feature of sample mean estimators cannot be avoided without
imposing additional assumptions (that do not apply to classical shadows). Median of
means (Nemirovsky and Yudin, 1983; Jerrum, Leslie G. Valiant, and V. V. Vazirani,
1986) is a conceptually simple trick that addresses this issue. Instead of using
all samples to construct a single empirical mean (4.18), construct 𝐾 independent
sample means and form their median:

𝑜𝑖 (𝑁, 𝐾) = median
{
𝑜
(1)
𝑖
(𝑁, 1), . . . , 𝑜(𝐾)

𝑖
(𝑁, 1)

}
(4.19)

where 𝑜
(𝑘)
𝑖

= 1
𝑁

𝑁𝑘∑︁
𝑗=𝑁 (𝑘−1)+1

tr
(
𝑂𝑖 �̂� 𝑗

)
(4.20)

for 1 ≤ 𝑘 ≤ 𝐾 . This estimation technique requires 𝑁𝐾 samples in total, but
it is much more robust with respect to outlier corruption. Indeed, |𝑜(𝑁, 𝐾) −
tr(𝑂𝜌) | > 𝜖 if and only if more than half of the empirical means individually
deviate by more than 𝜖 . The probability associated with such an undesirable event
decreases exponentially with the number of batches𝐾 . This results in an exponential
improvement over sample mean estimation in terms of failure probability. The main
result of derandomizing randomized measurements capitalizes on this improvement.

Theorem 9. Fix a measurement primitive U, a collection 𝑂1, . . . , 𝑂𝑀 of 2𝑛 × 2𝑛

Hermitian matrices and accuracy parameters 𝜖, 𝛿 ∈ [0, 1]. Set

𝐾 = 2 log(2𝑀/𝛿) and 𝑁 =
34
𝜖2 max

1≤𝑖≤𝑀
∥𝑂𝑖 − tr(𝑂𝑖)

2𝑛 I∥
2
shadow, (4.21)

where ∥ · ∥shadow denotes the norm defined in Eq. (4.12). Then, a collection of
𝑁𝐾 independent classical shadows allow for accurately predicting all features via
median of means prediction (4.20):

|𝑜𝑖 (𝑁, 𝐾) − tr (𝑂𝑖𝜌) | ≤ 𝜖 for all 1 ≤ 𝑖 ≤ 𝑀 (4.22)

with probability at least 1 − 𝛿.

Proof. The claim follows from combining the variance estimates from Lemma 5
with a rigorous performance guarantee for median of means estimation (Nemirovsky
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and Yudin, 1983; Jerrum, Leslie G. Valiant, and V. V. Vazirani, 1986): Let 𝑋 be
a random variable with variance 𝜎2. Then, 𝐾 independent sample means of size
𝑁 = 34𝜎2/𝜖2 suffice to construct a median of means estimator �̂�(𝑁, 𝐾) that obeys
Pr [| �̂�(𝑁, 𝐾) − E [𝑋] | ≥ 𝜖] ≤ 2e−𝐾/2 for all 𝜖 > 0. The parameters 𝑁 and 𝐾 are
chosen such that this general statement ensures Pr [|𝑜𝑖 (𝑁, 𝐾) − tr (𝑂𝑖𝜌) | ≥ 𝜖] ≤ 𝛿

𝑀

for all 1 ≤ 𝑖 ≤ 𝑀 . Apply a union bound over all 𝑀 failure probabilities to deduce
the claim.

Remark 1 (Constants in Theorem 9). The numerical constants featuring in 𝑁 and
𝐾 result from a conservative (worst case) argument that is designed to be simple,
not tight. We expect that the actual constants are much smaller in practice.

Each classical shadow is the result of a single quantum measurement on 𝜌. Viewed
from this angle, Theorem 9 asserts that a total of

𝑁tot =O
(
log(𝑀)
𝜖2 max

1≤𝑖≤𝑀

𝑂𝑖 − tr(𝑂𝑖)
2𝑛 I

2

shadow

)
(sample complexity) (4.23)

measurement repetitions suffice to accurately predict a collection of 𝑀 linear target
functions tr(𝑂𝑖𝜌).

Importantly, this sample complexity only scales logarithmically in the number of
target functions 𝑀 . Moreover, the problem dimension 2𝑛 does not feature explicitly.
The sample complexity does, however, depend on the measurement primitive via the
norm ∥·∥shadow. This term reflects expressiveness and structure of the measurement
primitive in question. This subtle point is best illustrated with two concrete examples.
We defer technical derivations to subsequent sections and content ourselves with
summarizing the important aspects here.

Example 1: Random Clifford measurements Clifford circuits are generated by
CNOT, Hadamard and Phase gates and form the group Cl(2𝑛). The “random global
Clifford basis” measurement primitive — U = Cl(2𝑛) (endowed with uniform
weights) — implies the following simple expression for classical shadows and the
associated norm ∥·∥shadow:

�̂� = (2𝑛 + 1)𝑈† |�̂�⟩⟨�̂� |𝑈 − I and
𝑂 − tr(𝑂)

2𝑛 I
2

shadow
≤ 3tr(𝑂2). (4.24)

We refer to Section 4.9 for details and proofs. Combined with Eq. (4.23), this ensures
that O(log(𝑀)max𝑖 tr(𝑂2

𝑖
)/𝜖2) random global Clifford basis measurements suffice

to accurately predict𝑀 linear functions. This prediction technique is most powerful,



64

when the target functions have constant Hilbert-Schmidt norm. In this case, the
sample rate is completely independent of the problem dimension 2𝑛. Prominent
examples include estimating quantum fidelities (with pure states), or entanglement
witnesses.

Example 2: Random Pauli measurements Although (global) Clifford circuits
are believed to be much more tractable than general quantum circuits, they still
feature entangling gates, like CNOT. Such gates are challenging to implement re-
liably on today’s devices. The “random Pauli basis” measurement primitive takes
this serious drawback into account and assumes that one is only able to apply
single-qubit Clifford gates, i.e. 𝑈 = 𝑈1 ⊗ · · · ⊗ 𝑈𝑛 ∼ U = Cl(2)⊗𝑛 (endowed
with uniform weights). This is equivalent to assuming that we can perform ar-
bitrary Pauli (basis) measurements, i.e., measuring each qubit in the 𝑋-, 𝑌 - and
𝑍-basis, respectively. Such basis measurements decompose nicely into tensor prod-
ucts (𝑈 |�̂�⟩ =

⊗𝑛

𝑗=1𝑈 𝑗 |𝑏 𝑗 ⟩ for 𝑏 = (𝑏1, . . . , 𝑏𝑛) ∈ {0, 1}𝑛) and respect locality. The
associated classical shadows and the norm ∥·∥shadow inherit these desirable features:

�̂� =

𝑛⊗
𝑗=1

(
3𝑈†

𝑗
|�̂� 𝑗 ⟩⟨�̂� 𝑗 |𝑈 𝑗 − I

)
and

𝑂 − tr(𝑂)
2𝑛

2

shadow
≤ 4locality(𝑂) ∥𝑂∥2∞.

(4.25)
Here, locality(𝑂) counts the number of qubits on which 𝑂 acts nontrivially. We
refer to Section 4.9 for details and proofs. Combined with Eq. (4.23) this ensures
that O

(
log(𝑀)4𝑘/𝜖2) local Clifford (Pauli) basis measurements suffice to predict

𝑀 bounded observables that are at most 𝑘-local. For observables that are the
tensor product of 𝑘 single-qubit observables, the sample complexity can be further
improved to O

(
log(𝑀)3𝑘/𝜖2) . This prediction technique is most powerful when

the target functions do respect some sort of locality constraint. Prominent examples
include 𝑘-point correlators, or individual terms in a local Hamiltonian.

4.4 Information-theoretic optimality
These two examples complement each other nicely. Random Clifford measurements
excel at performing useful subroutines in quantum computing and communication
tasks, such as certifying (global) entanglement, which will be feasible using suffi-
ciently advanced hardware. Their practical utility, however, hinges on the ability
to execute circuits with many entangling gates. Random Pauli measurements, on
the other hand, are much less demanding from a hardware perspective. In today’s
NISQ era, local Pauli operators can be accurately measured using available hardware
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platforms. While not well-suited for predicting global features, Pauli measurements
excel at making local predictions. Furthermore, for both kinds of randomized mea-
surements, linear prediction based on classical shadows saturates fundamental lower
bounds from information theory.

Theorem 10 (random Clifford measurements; informal version). Any procedure
based on a fixed set of single-copy measurements that can predict, with additive error
𝜖 , 𝑀 arbitrary linear functions tr(𝑂𝑖𝜌), requires at leastΩ(log(𝑀)max𝑖 tr(𝑂2

𝑖
)/𝜖2)

copies of the state 𝜌.

Theorem 11 (random Pauli measurements; informal version). Any procedure based
on a fixed set of single-copy local measurements that can predict, with additive error
𝜖 , 𝑀 arbitrary 𝑘-local linear functions tr(𝑂𝑖𝜌), requires at least Ω(log(𝑀)3𝑘/𝜖2)
copies of the state 𝜌.

We refer to Section 4.11 (Clifford) and 4.12 (Pauli) for further context, details and
proofs. In the random Pauli basis measurement setting, classical shadows provably
saturate this lower bound only for tensor product observables. For general 𝑘-local
observables, there is a small discrepancy between 4𝑘 (upper bound) and 3𝑘 (lower
bound).

4.5 Predicting nonlinear functions with classical shadows
Feature prediction with classical shadows readily extends beyond the linear case.
Here, we shall focus on quadratic functions, but the procedure and analysis readily
extend to higher order polynomials. Every quadratic function in an unknown state
𝜌 can be recast as a linear function acting on the tensor product 𝜌 ⊗ 𝜌:

𝑜𝑖 = tr (𝑂𝑖𝜌 ⊗ 𝜌) 1 ≤ 𝑖 ≤ 𝑀. (4.26)

An immediate generalization of linear feature prediction with classical shadows
suggests the following procedure. Take two independent snapshots �̂�1, �̂�2 of the
unknown state 𝜌 and set

𝑜𝑖 = tr (𝑂𝑖 �̂�1 ⊗ �̂�2) such that E𝑜𝑖 = tr (𝑂𝑖E�̂�1 ⊗ E�̂�2) = tr (𝑂𝑖𝜌 ⊗ 𝜌) = 𝑜𝑖 .
(4.27)

This random variable is designed to yield the correct target function in expectation.
Similar to linear function prediction we can boost convergence to this desired target
by forming empirical averages. To make the best of use of 𝑁 samples, we average



66

over all 𝑁 (𝑁 − 1) (distinct) pairs:

𝑜𝑖 (𝑁, 1) =
1

𝑁 (𝑁 − 1)
∑︁
𝑗≠𝑙

tr
(
𝑂𝑖 �̂� 𝑗 ⊗ �̂�𝑙

)
. (4.28)

This idea provides a systematic approach for constructing estimators for nonlinear
(polynomial) functions. Estimators of this form always yield the desired target in
expectation. For context, we point out that the estimator (4.28) closely resembles
the sample variance, while estimators of higher order polynomials are known as U-
statistics (Hoeffding, 1992). Fluctuations of 𝑜𝑖 (𝑁, 1) around its desired expectation
are once more controlled by the variance. U-statistics estimators are designed to
minimize this variance and therefore considerably boost the rate of convergence.

Lemma 6. Fix 𝑂 and a sample size 𝑁 . Then, the variance of the U-statistics
estimator (4.28) obeys

Var[𝑜(𝑁, 1)] ≤ 2
𝑁

(
Var[tr(𝑂�̂�1 ⊗ 𝜌)] + Var[tr(𝑂𝜌 ⊗ �̂�1)]

+ 1
𝑁

Var[tr(𝑂�̂�1 ⊗ �̂�2)]
)
. (4.29)

We emphasize that this variance decreases with the number of samples 𝑁 . This
sets the stage for successful quadratic function prediction with classical shadows.
Similar to the linear case, we will not use all samples to construct a single U-statistics
estimator. Instead, we construct 𝐾 of them and form their median:

𝑜𝑖 (𝑁, 𝐾) =median
{
𝑜
(1)
𝑖
(𝑁, 1), . . . , 𝑜(𝐾)

𝑖
(𝑁, 1)

}
, where

𝑜
(𝑘)
𝑖
(𝑁, 1) = 1

𝑁 (𝑁−1)

∑︁
𝑗≠𝑙

𝑗 ,𝑙∈{𝑁 (𝑘−1)+1,...,𝑁𝑘}

tr
(
𝑂𝑖 �̂� 𝑗 ⊗ �̂�𝑙

)
for 1 ≤ 𝑘 ≤ 𝐾. (4.30)

This renders the entire estimation procedure more robust to outliers and exponen-
tially suppresses failure probabilities.

Theorem 12. Fix a measurement primitiveU, a collection𝑂1, . . . , 𝑂𝑀 of quadratic
target functions and accuracy parameters 𝜖, 𝛿 ∈ [0, 1]. Set

𝐾 =2 log(2𝑀/𝛿) and

𝑁 =
34
𝜖2 max

1≤𝑖≤𝑀
8 ×max

(
Var[tr(𝑂𝑖𝜌 ⊗ �̂�1)],Var[tr(𝑂𝑖 �̂�1 ⊗ 𝜌)], (4.31)

√︁
Var[tr(𝑂𝑖 �̂�1 ⊗ �̂�2)]

)
. (4.32)
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Then, a collection of 𝑁𝐾 independent classical shadows allow for accurately pre-
dicting all quadratic features via the median of U-statistics estimators (4.30):

|𝑜𝑖 (𝑁, 𝐾) − tr (𝑂𝑖𝜌 ⊗ 𝜌) | ≤ 𝜖 for all 1 ≤ 𝑖 ≤ 𝑀 (4.33)

with probability at least 1 − 𝛿.

Proof. The proof is similar to the argument for linear prediction. We combine the
bound on the variance of U-statistics estimators from Lemma 6 with a rigorous per-
formance guarantee for median estimation (Nemirovsky and Yudin, 1983; Jerrum,
Leslie G. Valiant, and V. V. Vazirani, 1986). Let 𝑍 be a random variable with vari-
ance at most 𝜖2/34. Then, setting �̂� = median {𝑍1, . . . , 𝑍𝑘 } produces an estimator
that obeys Pr [| �̂� − E [𝑍] | ≥ 𝜖] ≤ 2e−𝐾/2. The parameter 𝑁 is chosen ensure that
each 𝑜(𝑘)

𝑖
(𝑁, 1) has variance at most 𝜖2/34. The parameter 𝐾 is chosen such that

each probability of failure is at most 𝛿/𝑀 . The advertised statement then follows
from taking a union bound over all 𝑀 target estimations.

Remark 2 (Constants in Theorem 12). The numerical constants featuring in 𝑁 and
𝐾 result from a conservative (worst case) argument that is designed to be simple,
not tight. We expect that the actual constants are much smaller in practice.

Theorem 12 is a general statement that provides upper bounds for the sample com-
plexity associated with predicting quadratic target functions:

𝑁tot = O
( log(𝑀)

𝜖2 max
1≤𝑖≤𝑀

max
(

Var[tr(𝑂𝑖𝜌 ⊗ �̂�1)],Var[tr(𝑂𝑖 �̂�1 ⊗ 𝜌)] (4.34)√︁
Var[tr(𝑂𝑖 �̂�1 ⊗ �̂�2)]

))
(4.35)

independent randomized measurements suffice to accurately predict a collection of
𝑀 nonlinear target functions tr(𝑂𝑖𝜌 ⊗ 𝜌). This sampling rate once more depends
on the measurement primitive and it is instructive to consider concrete examples.

Example 1: Random Pauli measurements We first discuss the practically more
relvant example for today’s NISQ era: classical shadows constructed from random
single-qubit Pauli basis measurements. This measurement primitive remains well-
suited for predicting local quadratic features tr(𝑂𝜌 ⊗ 𝜌). Suppose that 𝑂 acts
nontrivially on 𝑘 qubits in the first state copy and on 𝑘 qubits in the second state
copy. Thus, when viewed as an observable for a 2𝑛-qubit system, 𝑂 is 2𝑘-local. A
technical argument shows that the maximum of the variances in Equation (4.34) is
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bounded by 4𝑘 . We emphasize that this scaling is much better than the naive guess
42𝑘 – one of the key advantages of U-statistics. Hence we only need a total number
of 𝑁tot = O(log(𝑀)4𝑘/𝜖2) random Pauli basis measurements to predict𝑀 quadratic
functions tr(𝑂𝑖𝜌 ⊗ 𝜌). An important concrete application of this procedure is the
prediction of subsystem Rényi-2 entanglement entropies.

Example 2: Random Clifford measurements Theorem 12 also applies to the
global Clifford measurement primitive. There, the maximum of the variances in
Equation (4.34) can be bounded by

√︁
9 + 6/2𝑛 tr(𝑂2

𝑖
) ≃ 3 tr(𝑂2

𝑖
). Hence we only

need a total number of 𝑁tot = O(log(𝑀)max𝑖 tr(𝑂2
𝑖
)/𝜖2) random Clifford basis

measurements to predict𝑀 quadratic functions tr(𝑂𝑖𝜌⊗𝜌). While a clean extension
of linear feature prediction with Clifford basis measurements, the applicability of
this result seems somewhat limited. Interesting global quadratic features tend to have
prohibitively large Hilbert-Schmidt norms. The purity tr(𝜌2) provides an instructive
non-example. It can be written as tr (𝑆𝜌 ⊗ 𝜌), where 𝑆 |𝜓⟩ ⊗ |𝜙⟩ = |𝜙⟩ ⊗ |𝜓⟩
denotes the swap operator. Alas, tr(𝑆2) = tr(I) = 2𝑛 which scales exponentially
in the number of qubits. Nonetheless, quadratic feature prediction with Clifford
measurements is by no means useless. For instance, it can help provide statistical a
posteriori guarantees on the quality of linear feature prediction — for example, by
estimating sample variances to construct confidence intervals.

4.6 Numerical experiments
One of the key features of prediction with classical shadows is scalability. The data
acquisition phase is designed to be tractable for state of the art platforms (Pauli mea-
surements) and future quantum computers (Clifford measurements), respectively.
The resulting classical shadow can be stored efficiently in classical memory. For
may important features – such as local observables or global features with efficient
stabilizer decompositions – scalability moreover extends to the computational cost
associated with median of means prediction.

These design features allowed us to conduct numerical experiments for a wide range
of problems and system sizes (up to 160 qubits). The computational bottleneck
is not feature prediction with classical shadows, but generating synthetic data, i.e.
classically generating target states and simulating quantum measurements. Needless
to say, this classical bottle-neck does not occur in actual experiments. We then use
this synthetic data to learn a classical representation of 𝜌 and use this representation
to predict various interesting properties.
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(a) (b)

Figure 4.2: Predicting quantum fidelities using classical shadows (Clifford mea-
surements) and NNQST.
(a) (Left): Number of measurements required to identify an 𝑛-qubit GHZ state with
0.99 fidelity. The shaded regions are the standard deviation of the needed number
of experiments over ten independent runs.
(b) (Right): Estimated fidelity between a perfect GHZ target state and a noisy
preparation, where 𝑍-errors can occur with probability 𝑝 ∈ [0, 1], under 6 × 104

experiments. The dotted line represents the true fidelity as a function of 𝑝.
NNQST can only estimate an upper bound on quantum fidelity efficiently, so we
consider this upper bound for NNQST and use quantum fidelity for the classical
shadow.

Machine learning based approaches (Carrasquilla, Torlai, et al., 2019; Torlai, Maz-
zola, et al., 2018) are among the most promising alternative methods that have
applications in this regime, where the Hilbert space dimension is roughly compa-
rable to the total number of silicon atoms on earth (2160 ≃ 1048). For example, a
recent version of neural network quantum state tomography (NNQST) is a genera-
tive model that is based on a deep neural network trained on independent quantum
measurement outcomes (local SIC/tetrahedral POVMs (Renes et al., 2004)). In this
section, we consider the task of learning a classical representation of an unknown
quantum state, and using the representation to predict various properties, addressing
the relative merit of classical shadows and alternative methods.

Predicting quantum fidelities
Here we focus on classical shadows based on random Clifford measurements which
are designed to predict observables with bounded Hilbert-Schmidt norm. When the
observables have efficient representations — such as efficient stabilizer decompo-
sitions — the computational cost for performing median of means prediction can
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also be efficient.4 An important example is the quantum fidelity with a target state.
In (Carrasquilla, Torlai, et al., 2019), the viability of NNQST is demonstrated by
considering GHZ states with a varying number of qubits 𝑛. Numerical experiments
highlight that the number of measurement repetitions (size of the training data) to
learn a neural network model of the GHZ state that achieves target fidelity of 0.99
scales linearly in 𝑛. We have also implemented NNQST for GHZ states and com-
pared it to median of means prediction with classical shadows. The left-hand side
of Figure 4.2 confirms the linear scaling of NNQST and the assertion of Theorem 7:
classical shadows of constant size suffice to accurately estimate GHZ target fideli-
ties, regardless of the actual system size. In addition, we have also tested the ability
of both approaches to detect potential state preparation errors. More precisely, we
consider a scenario where the GHZ-source introduces a phase error with probability
𝑝 ∈ [0, 1]:

𝜌𝑝 = (1 − 𝑝) |𝜓+GHZ(𝑛)⟩⟨𝜓
+
GHZ(𝑛) | + 𝑝 |𝜓

−
GHZ(𝑛)⟩⟨𝜓

−
GHZ(𝑛) |, (4.36)

|𝜓±GHZ(𝑛)⟩ = 1√
2

(
|0⟩⊗𝑛 ± |1⟩⊗𝑛⟩

)
. (4.37)

We learn a classical representation of the GHZ-source and subsequently predict
the fidelity with the pure GHZ state. The right hand side of Figure 4.2 highlights
that the classical shadow prediction accurately tracks the decrease in target fidelity
as the error parameter 𝑝 increases. NNQST, in contrast, seems to consistently
overestimate this target fidelity. In the extreme case (𝑝 = 1), the true underlying
state is completely orthogonal to the target state, but NNQST nonetheless reports
fidelities close to one. This shortcoming arises because the POVM-based machine
learning approach can only efficiently estimate an upper bound on the true quantum
fidelity efficiently. To estimate the actual fidelity, an exceedingly large number of
measurements is needed.

Predicting two-point correlation & subsystem entanglement entropy
Classical shadows based on random Clifford measurements excel at predicting quan-
tum fidelities. However, random Clifford measurements can be challenging to im-
plement in practice, because many entangling gates are needed to implement general
Clifford circuits. Next we consider classical shadows based on random local Pauli
measurements, which are easier to perform experimentally. The subsystem prop-
erties can be predicted efficiently by constructing the reduced density matrix from

4The runtime of Algorithm 1 is dominated by the cost of computing quadratic functions
⟨�̂� |𝑈𝑂𝑈† |�̂�⟩ in 2𝑛 dimensions. If 𝑂 = |𝜓⟩⟨𝜓 | is a stabilizer state, the Gottesman-Knill theorem
allows for evaluation in O(𝑛2)-time.
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Figure 4.3: Predicting two-point correlation functions using classical shadows
(Pauli measurements) and NNQST.
(a) (Top Left): Predictions of two-point functions ⟨𝜎𝑍0 𝜎

𝑍
𝑖
⟩ for ground states of the

one-dimensional critical anti-ferromagnetic transverse field Ising model with 50
lattice sites. These are based on 29 × 1000 random Pauli measurements.
(b) (Bottom): Predictions of two-point functions ⟨𝜎0 ·𝜎𝑖⟩ for the ground state of the
two-dimensional anti-ferromagnetic Heisenberg model with 8 × 8 lattice sites. The
predictions are based on 29 × 1000 random Pauli measurements.
(c) (Top Right): The classical processing time (CPU time in seconds) and the pre-
diction error (the largest among all pairs of two-point correlations) over different
number of measurements: {21, . . . , 29} ×1000. The quantum measurement scheme
in classical shadows (Pauli) is the same as the POVM-based neural network tomog-
raphy (NNQST) in (Carrasquilla, Torlai, et al., 2019). The only difference is the
classical post-processing. As the number of measurements increases, the processing
time increases, while the prediction error decreases.

the classical shadow. Therefore, the computational complexity scales exponentially
only in the subsystem size, rather than the size of the entire system. Our numerical
experiments confirm that classical shadows obtained using random Pauli measure-
ments excel at predicting few-body properties of a quantum state, such as two-point
correlation functions and subsystem entanglement entropy.
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Figure 4.4: Predicting entanglement Rényi entropies using classical shadows (Pauli
measurements) and the Brydges et al. protocol.
(a) (Left): Prediction of second-order Rényi entanglement entropy for all subsystems
of size at most two in the approximate ground state of a disordered Heisenberg
spin chain with 10 sites and open boundary conditions. The classical shadow is
constructed from 2500 quantum measurements. The predicted values using the
classical shadow visually match the true values with a maximum prediction error
of 0.052. The Brydges et al. protocol (Brydges et al., 2019) results in a maximum
prediction error of 0.24.
(b) (Right): Comparison of classical shadows and the Brydges et al. protocol
(Brydges et al., 2019) for estimating second-order Rényi entanglement entropy in
GHZ states. We consider the entanglement entropy of the left-half subsystem with
size 𝑛/2.

Two-point correlation functions. NNQST has been shown to predict two-point
correlation functions effectively (Carrasquilla, Torlai, et al., 2019). Here, we com-
pare classical shadows with NNQST for two physically motivated test cases: ground
states of the anti-ferromagnetic transverse field Ising model in one dimension (TFIM)
and the anti-ferromagnetic Heisenberg model in two dimensions. The Hamiltonian
for TFIM is 𝐻 = 𝐽

∑
𝑖 𝜎

𝑍
𝑖
𝜎𝑍
𝑖+1 + ℎ

∑
𝑖 𝜎

𝑋
𝑖

, where 𝐽 > 0, and we consider a chain of
50 lattice sites. The critical point occurs at ℎ = 𝐽 and exhibits power-law decay of
correlations rather than exponential decay. The Hamiltonian for the 2D Heisenberg
model is 𝐻 = 𝐽

∑
⟨𝑖, 𝑗⟩ 𝜎𝑖 · 𝜎𝑗 , where 𝐽 > 0, and we consider an 8 × 8 triangular

lattice. We follow the approach in (Carrasquilla, Torlai, et al., 2019), where the
ground state is approximated by a tensor network found using the density matrix
renormalization group (DMRG). Random Pauli measurements on the ground state
may then be simulated using this tensor network. The two methods are compared
in Figure 4.3. On the top left (a) and bottom (b), we can see that both the clas-



73

sical shadow (with Pauli measurements) and NNQST perform well at predicting
two-point correlations. However, NNQST has a larger error for the 2D Heisenberg
model; note that for larger separations (the lower right corner of the surface plot),
NNQST produces some fictitious oscillations that are not visible in the results from
DMRG and classical shadows. The two approaches use the same quantum mea-
surement data; the only difference is the classical post-processing. On the top right
side (c) of Figure 4.3, we compare the cost of this classical post-processing, finding
roughly a 104 times speedup in classical processing time using the classical shadow
instead of NNQST.

Subsystem entanglement entropies. An important nonlinear property that can be
predicted with classical shadows is subsystem entanglement entropy. The required
number of measurements scales exponentially in subsystem size, but is independent
of the total number of qubits. Moreover, these measurements can be used to predict
many subsystem entanglement entropies at once. This problem has also been
studied extensively in (Brydges et al., 2019), where a specialized approach (which
we refer to here as the “Brydges et al. protocol”) was designed to efficiently estimate
second-order Rényi entanglement entropies using random local measurements. In
(Brydges et al., 2019), a random unitary rotation is reused several times. Predictions
using classical shadows could also be slightly modified to adapt to this scenario.
Results from our numerical experiments are shown in Figure 4.4. On the left (a),
we predict the entanglement entropy for all subsystems of size ≤ 2 from only 2500
measurements of the approximate ground state of the disordered Heisenberg model
in one dimension. This is a prototypical model for studying many-body localization
(Nandkishore and Huse, 2015). The ground state is approximated by a set of singlet
states { 1√

2
( |01⟩ − |10⟩)} found using the strong-disorder renormalization group

(Ma, Dasgupta, and C.-k. Hu, 1979; Dasgupta and Ma, 1980). Both, the classical
shadow protocol and the Brydges et al. method use random single-qubit rotations
and basis measurements to find a classical representation of the quantum state; the
only difference between the methods is in the classical post-processing. For these
small subsystems, we find that the prediction error of the classical shadow is smaller
than the error of the Brydges et al. protocol. On the right hand side of Figure 4.4
(b), we consider predicting the entanglement entropy in a GHZ state for system sizes
ranging from 𝑛 = 4 to 𝑛 = 10 qubits. We focus on the entanglement entropy of
the left-half subsystem with system size 𝑛/2. Note that this entanglement entropy
is equal to one bit for any system size 𝑛. To achieve an error of 0.05, classical
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(a) (b)

Figure 4.5: Comparison between classical shadow and neural network tomography
(NNQST); toric code.
(a) (Left): Number of measurements required for neural network tomography to
identify a particular toric-code ground state. We use classical fidelity for NNQST,
which is an upper bound for quantum fidelity.
(b)(Right): Performance of classical shadows for the same problem. We use quan-
tum fidelity for classical shadows. The shaded regions are the standard deviation of
the estimated fidelity over ten runs.

shadows require several times fewer measurements and the discrepancy increases as
we require smaller error.

Direct fidelity estimation for the toric code ground state
In the main text, we have considered direct fidelity estimation for GHZ states and
compared it with neural network quantum state tomography (NNQST). While highly
instructive from a theoretical perspective, GHZ states comprised of 100 qubits are
very fragile and challenging to implement in practice. To conduct experiments for
more physical target states, we consider Toric code ground states (Dennis et al.,
2002a). Not only are they the most prominent example of a topological quantum
error correcting code and thus highly relevant for quantum computing devices. They
also correspond to ground states of a Hamiltonian: 𝐻 = −∑

𝑣 𝐴𝑣 −
∑
𝑝 𝐵𝑝, where

𝐴𝑣 and 𝐵𝑝 denote vertex- and plaquette operators5. The ground space of 𝐻 is four-
fold degenerate and we select the superposition of all closed-loop configurations
(|𝜓⟩ ∝ ∑

𝑆: closed loop |𝑆⟩) as a test state for both classical shadows and NNQST: how
many measurement repetitions are required to accurately identify this toric code

5𝐴𝑣 is the product of four Pauli-𝑋 operators around a vertex 𝑣, while 𝐵𝑝 is the product of four
Pauli-𝑍 operators around the plaquette 𝑝.
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Figure 4.6: Detection of GHZ-type entanglement for 3-qubit states.
(a) (Left): Schematic illustration of 3-partite entanglement. Entanglement wit-
nesses are linear functions that separate part of one entanglement class from all
other classes.
(b) (Right): Number of entanglement witnesses vs. number of experiments required
to accurately estimate all of them. The dashed lines represent the expected number
of (random) entanglement witnesses required to detect genuine three-partite entan-
glement and GHZ-type entanglement in a randomly rotated GHZ state. The shaded
region is the standard deviation of the required number of experiments over ten
independent repetitions of the entire setup.

ground state with high fidelity? The results are shown in Supplementary Figure 4.5.
Neural network tomography based on a deep generative model seems to require a
number of samples that scales unfavorably in the system size 𝑛 (left). In contrast,
fidelity estimation with classical shadows is completely independent of the system
size. The difficulty of NNQST in learning 2D toric code may be related to some
observed failures of deep learning (Shalev-Shwartz, O. Shamir, and Shammah,
2017) for learning patterns with combinatorial structures. In Supplementary Sec-
tion 4.8, we provide further evidence for potential difficulties when using machine
learning approaches to reconstruct some simple quantum states due to a well-known
computational hardness conjecture.

Witnesses for tripartite entanglement
Entanglement is at the heart of virtually all quantum communication and cryptogra-
phy protocols and an important resource for quantum technologies in general. This
renders the task of detecting entanglement important both in theory and practice
(Friis et al., 2019; Gühne and Tóth, 2009). While bipartite entanglement is com-
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paratively well-understood, multi-partite entanglement has a much more involved
structure. Already for 𝑛 = 3 qubits, there is a variety of inequivalent entanglement
classes. These include fully-separable, as well as bi-separable states,𝑊-type states
and finally GHZ-type states. The relations between these classes are summarized
in Supplementary Figure 4.6 and we refer to (Acín et al., 2001) for a complete char-
acterization. Despite this increased complexity, entanglement witnesses remain a
simple and useful tool for testing which class a certain state 𝜌 belongs to. However,
any given entanglement witness only provides a one-sided test – see Supplementary
Figure 4.6 (left) for an illustration – and it is often necessary to compute multiple
witnesses for a definitive answer.

Classical shadows based on random Clifford measurements can considerably speed
up this search: according to Theorem 7 a classical shadow of moderate size allows
for checking an entire list of fixed entanglement witnesses simultaneously. Supple-
mentary Figure 4.6 (right) underscores the economic advantage of such an approach
over measuring the individual witnesses directly. Directly measuring 𝑀 different
entanglement witnesses requires a number of quantum measurements that scales
(at least) linearly in 𝑀 . In contrast, classical shadows get by with log(𝑀)-many
measurements only.

More concretely, suppose that the state to be tested is a local, random unitary
transformation of the GHZ state. Then, this state is genuinely tripartitely entangled
and moreover belongs to the GHZ class. The dashed vertical lines in Supplementary
Figure 4.6 (right) denote the expected number of (randomly selected) witnesses
required to detect genuine tripartite entanglement (first) and GHZ-type entanglement
(later). From the experiment, we can see that classical shadows achieve these
thresholds with an exponentially smaller number of samples than the naive direct
method. Finally, classical shadows are based on random Clifford measurements
and do not depend on the structure of the concrete witness in question. In contrast,
direct estimation crucially depends on the concrete witness in question and may be
considerably more difficult to implement.

Application to quantum simulation of the lattice Schwinger model
Simulations of quantum field theory using quantum computers may someday ad-
vance our understanding of fundamental particle physics. Although high impact
discoveries may still be a ways off, notable results have already been achieved in
studies of one-dimensional lattice gauge theories using quantum platforms.



77

50 100 150

System size (number of lattice sites)

0

5⇥103

104

1.5⇥104

2⇥104

2.5⇥104

3⇥104

N
um

b
er

of
ex

p
er

im
en

ts
(l
in

ea
r

sc
al

e)

(x2.1)

(x3.9)

(x5.6)

(x7.4)

(x9.2)

(x11.0)

(x12.6)

(x14.3)
Shadow (derandomized)

Shadow (randomized)

Hand-crafted (original) [44]

50 100 150

System size (number of lattice sites)

103

104

105

106

107

108

N
um

b
er

of
ex

p
er

im
en

ts
(l
og

-s
ca

le
)

Shadow (derandomized)

Shadow (randomized)

Partial tomography [8]

Hand-crafted (original) [44]

Direct measurement

Entangling
gate

Entangling
gate

Local
rotation

Local
rotation

U
nitary

Evolution
Random

 U
nitary

M
easurem

ents

Predicting …

Classical
Representation

Trial state for
fermionic field

Stochastic 
Optimization

for
Variational
Parameters

Variational 
Parameters             

Hamiltonian Variance

Variational Quantum Simulation
of Lattice Schwinger Model

Predicting Hamiltonian Variance
using Classical Shadows

(a) (b)

Figure 4.7: Application of classical shadows (Pauli measurements) to variational
quantum simulation of the lattice Schwinger model.
(a) (Left): An illustration of variational quantum simulation and the role of classical
shadows.
(b) (Right): The comparison between different approaches in the number of mea-
surements needed to predict all 4-local Pauli observables in the expansion of
⟨
(
�̂� − ⟨�̂�⟩𝜃

)2⟩𝜃 with an error equivalent to measuring each Pauli observable at
least 100 times. We include a linear-scale plot that compares classical shadows
with the original hand-designed measurement scheme in (Kokail et al., 2019) and a
log-scale plot that compares with other approaches. In the linear-scale plot, (×𝑇)
indicates that the original scheme uses 𝑇 times the number of measurements com-
pared to classical shadows (derandomized).

For example, in (Kokail et al., 2019) a 20-qubit trapped ion analog quantum simulator
was used to prepare low-energy eigenstates of the lattice Schwinger model (one-
dimensional quantum electrodynamics). The authors prepared a family of quantum
states {|𝜓(𝜃)⟩}, where 𝜃 is a variational parameter, and computed the variance of the
energy ⟨

(
�̂� − ⟨�̂�⟩𝜃

)2⟩𝜃 for each value of 𝜃. Here �̂� is the Hamiltonian of the model,
and ⟨�̂�⟩𝜃 = ⟨𝜓(𝜃) |�̂� |𝜓(𝜃)⟩ is the expectation value of the operator �̂� in the state
|𝜓(𝜃)⟩. Because energy eigenstates, and only energy eigenstates, have vanishing
energy dispersion, adjusting 𝜃 to minimize the variance of energy prepares an energy
eigenstate.

After solving the Gauss law constraint to eliminate the gauge fields, the Hamilto-
nian �̂� of the Schwinger model is 2-local, though not geometrically local in one
dimension. Hence the quantity ⟨

(
�̂� − ⟨�̂�⟩𝜃

)2⟩𝜃 is a sum of expectation values of
4-local observables, which can be measured efficiently using a classical shadow
derived from random Pauli measurements. This is illustrated on the left side of
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Figure 4.7 (a). On the right side of Figure 4.7 (b), we compare the performance
of classical shadows to the measurement scheme for 4-local observables designed
in (Kokail et al., 2019), and also to a recent method (Bonet-Monroig, Babbush,
and T. E. O’Brien, 2019) for measuring local observables, as well as the standard
approach that directly measures all observables independently.

The results show, for the methods we considered, the number of copies of the quan-
tum state needed to measure the expectation value of all 4-local Pauli observables
in ⟨

(
�̂� − ⟨�̂�⟩𝜃

)2⟩𝜃 with an error equivalent to measuring each of these observables
at least 100 times. In (Kokail et al., 2019), such a relatively small number of mea-
surements per local observable already yielded results comparable to theoretical
predictions based on exact diagonalization. We find that the performance of the
classical shadow method is better than the method used in (Kokail et al., 2019) only
for system size larger than 50 qubits and may actually be worse for small system
sizes. However, classical shadows provide a good prediction for any set of local
observables, while the method of (Kokail et al., 2019) was hand-crafted for the
particular task of estimating the variance of the energy in the Schwinger model.

To make a more apt comparison, we constructed a deterministic version of clas-
sical shadows, using a fixed set of measurements rather than random Pauli mea-
surements, specifically adapted for the purpose of estimating ⟨

(
�̂� − ⟨�̂�⟩𝜃

)2⟩𝜃 in
the lattice Schwinger model. This deterministic collection of Pauli measure-
ments is obtained by a powerful technique called derandomization (Raghavan,
1988; J. Spencer, 1994). This procedure simulates the classical shadow scheme
based on randomized measurements and makes use of the rigorous performance
bound we developed. When a coin is tossed in the randomized scheme to de-
cide which measurement to perform next, the next measurement in the derandom-
ized version is chosen to have the best possible performance bound for the rest
of the protocol. It turns out that this derandomization of the classical shadow
method can be carried out very efficiently; full details will be presented in the
next section. Not surprisingly, the derandomized version, also included in Fig-
ure 4.7, outperforms the randomized version by a considerable margin. We then
find that the derandomized classical shadow method is significantly more efficient
than the other methods we considered, including the hand-crafted method from
(Kokail et al., 2019). Finally, we emphasize that the derandomization proce-
dure is fully automated (see https://github.com/momohuang/predicting-
quantum-properties for open-source code) and not problem-specific. It could

https://github.com/momohuang/predicting-quantum-properties
https://github.com/momohuang/predicting-quantum-properties
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be used for any pre-specified set of local observables.

4.7 Derandomizing randomized measurements
So far, we have seen that randomized measurements are very powerful in learning
an approximate description of a quantum many-body system. A natural question is
to ask if the randomness involved is necessary. If there is an approach to remove
the randomness, could such an approach learn even more efficiently? From the
last numerical experiments on speeding up the quantum simulation of the lattice
Schwinger model, we have seen that performing derandomization gives a substantial
boost in performance. In this section, we will present how derandomization works
and why it can give much better results.

Statistical background
Let 𝜌 be a fixed, but unknown, quantum state on 𝑛 qubits. We want to accurately
predict 𝐿 expectation values

𝜔ℓ (𝜌) = tr(𝑂oℓ 𝜌) for 1 ≤ ℓ ≤ 𝐿, (4.38)

where each 𝑂oℓ = 𝜎oℓ [1] ⊗ · · · ⊗ 𝜎oℓ [𝑛] is a tensor product of single-qubit Pauli ma-
trices, i.e. oℓ = [oℓ [1], . . . , oℓ [𝑛]] with oℓ [𝑘] ∈ {𝐼, 𝑋,𝑌 , 𝑍}. To extract meaningful
information, we perform𝑀 (single-shot) Pauli measurements on independent copies
of 𝜌. There are 3𝑛 possible measurement choices. Each of them is characterized
by a full-weight Pauli string p𝑚 ∈ {𝑋,𝑌, 𝑍}𝑛 and produces a random string of 𝑛
outcome signs q𝑚 ∈ {±1}𝑛.

Not every Pauli measurement p𝑚 (1 ≤ 𝑚 ≤ 𝑀) provides actionable advice about
every target observable oℓ (1 ≤ ℓ ≤ 𝐿). The two must be compatible in the sense
that the latter corresponds to a marginal of the former, i.e. it is possible to obtain
oℓ from p𝑚 by replacing some local non-identity Paulis with 𝐼. If this is the case,
we write oℓ ▷ p𝑚 and say that measurement p𝑚 “hits” target observable oℓ. For
instance, [𝑋, 𝐼], [𝐼, 𝑋], [𝑋, 𝑋] ▷ [𝑋, 𝑋], but [𝑍, 𝐼], [𝐼, 𝑍], [𝑍, 𝑍] ▷̸ [𝑋, 𝑋]. We
can approximate each 𝜔ℓ (𝜌) by empirically averaging (appropriately marginalized)
measurement outcomes that belong to Pauli measurements that hit oℓ:

�̂�ℓ =
1

ℎ(oℓ; [p1, . . . , p𝑀])
∑︁

𝑚: oℓ▷p𝑚

∏
𝑗 :oℓ [ 𝑗]≠𝐼

q𝑚 [ 𝑗], (4.39)

where ℎ(oℓ; [p1, . . . , p𝑀]) =
∑𝑀
𝑚=1 1 {oℓ ▷ p𝑚} ∈ {0, 1, . . . , 𝑀} counts how many

Pauli measurements hit target observable oℓ.
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It is easy to check that each �̂�ℓ exactly reproduces𝜔ℓ (𝜌) in expectation (provided that
ℎ(oℓ; P) ≥ 1). Moreover, the probability of a large deviation improves exponentially
with the number of hits.

Lemma 7 (Confidence bound). Fix 𝜀 ∈ (0, 1) (accuracy) and 1 − 𝛿 ∈ (0, 1) (confi-
dence). Suppose that Pauli observables O = [o1, . . . , o𝐿] and Pauli measurements
P = [p1, . . . , p𝑀] are such that

Conf𝜀 (O; P) :=
𝐿∑︁
ℓ=1

exp
(
− 𝜀2

2 ℎ(oℓ; P)
)
≤ 𝛿

2
. (4.40)

Then, the associated empirical averages (4.39) obey

|�̂�ℓ − 𝜔ℓ (𝜌) | ≤ 𝜀 for all 1 ≤ ℓ ≤ 𝐿 (4.41)

with probability (at least) 1 − 𝛿.

See Section 4.7 for a detailed derivation. We call the function defined in Eq. (4.40)
the confidence bound. It is a statistically sound summary parameter that checks
whether a set of Pauli measurements (P) allows for confidently predicting a collection
of Pauli observables (O) up to accuracy 𝜀 each.

Randomized Pauli measurements
Intuitively speaking, a small confidence bound (4.40) implies a good Pauli es-
timation protocol. But how should we choose our 𝑀 Pauli measurements (P)
in order to achieve Conf𝜀 (O; P) ≤ 𝛿/2? The randomized measurement tool-
box (Ohliger, Nesme, and Eisert, 2013a; A. Elben et al., 2019a; Huang, Richard
Kueng, and Preskill, 2020; Paini and Kalev, 2019; Andreas Elben, Richard Kueng,
et al., 2020a) provides a perhaps surprising answer to this question. Let w(oℓ)
denote the weight of Pauli observable oℓ, i.e. the number of qubits on which the
observable acts nontrivially: w(oℓ) =

∑𝑛
𝑘=1 1 {oℓ [𝑘] ≠ 𝐼}. These weights cap-

ture the probability of hitting oℓ with a completely random measurement string:
Prp [oℓ ▷ p] = 1/3w(oℓ ) . In turn, a total of 𝑀 randomly selected Pauli measure-
ments will on average achieve EP [ℎ(oℓ; P)] = 𝑀/3w(oℓ ) hits, regardless of the actual
Pauli observable oℓ in question. This insight allows us to compute expectation values
of the confidence bound (4.40):

EP [Conf𝜀 (O; P)] =
𝐿∑︁
ℓ=1

(
1 − 𝜈/3w(oℓ )

)𝑀
, (4.42)
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Figure 4.8: Derandomization algorithm (Algorithm 2): We envision𝑀 randomized
𝑛-qubit measurements as a 2-dimensional array comprised of 𝑛 × 𝑀 Pauli labels.
Blue squares are placeholders for random Pauli labels, while green squares denote
deterministic assignments (either 𝑋,𝑌 or 𝑍). Starting with a completely unspecified
array (left), the algorithm iteratively checks how a concrete Pauli assignment (red
square) affects the confidence bound, Eq. (4.40), averaged over all remaining assign-
ments. A simple update rule, Eq. (4.45), replaces the initially random label with a
deterministic assignment that keeps the remaining confidence bound expectation as
small as possible (centre). Once the entire grid is traversed, no randomness is left
(right) and the algorithm outputs 𝑀 deterministic 𝑛-qubit Pauli measurements.

where 𝜈 = 1−exp(−𝜀2/2) ∈ (0, 1). Each of the 𝐿 terms is exponentially suppressed
in 𝜀2𝑀/3w(oℓ ) . Concrete realizations of a randomized measurement protocol are
extremely unlikely to deviate substantially from this expected behavior, see e.g.
(Evans, Harper, and Steven T Flammia, 2019). Combined with Lemma 7, this
observation implies a powerful error bound.

Theorem 13 (Theorem 3 in Ref. (Evans, Harper, and Steven T Flammia, 2019)).
Empirical averages (4.39) obtained from 𝑀 randomized Pauli measurements allow
for 𝜀-accurately predicting 𝐿 Pauli expectation values tr(𝑂o1𝜌), . . . , tr(𝑂o𝐿 𝜌) up
to additive error 𝜀 given that 𝑀 ∝ log(𝐿)maxℓ 3w(oℓ )/𝜀2.

In particular, order log(𝐿) randomized Pauli measurements suffice for estimating any
collection of 𝐿 low-weight Pauli observables. It is instructive to compare this result
to other powerful statements about randomized measurements, most notably the
“classical shadow” paradigm (Huang, Richard Kueng, and Preskill, 2020; Paini and
Kalev, 2019). For Pauli observables and Pauli measurements, the two approaches are
closely related. The estimators (4.39) are actually simplified variants of the classical
shadow protocol (in particular, they don’t require median of means prediction) and
the requirements on 𝑀 are also comparable. This is no coincidence; information-
theoretic lower bounds from (Huang, Richard Kueng, and Preskill, 2020) assert that
there are scenarios where the scaling 𝑀 ∝ log(𝐿)maxℓ 3w(oℓ )/𝜀2 is asymptotically
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Algorithm 2 (Derandomization)
Input: measurement budget 𝑀 , accuracy 𝜀, and 𝐿 𝑛-qubit Pauli O = [o1, . . . , o𝐿]
Output: 𝑀 Pauli measurements P♯ ∈ {𝑋,𝑌, 𝑍}𝑛×𝑀

1 function derandomization(O, 𝑀, 𝜀)
2 initialize P♯ = [ [ ] ] (empty 𝑛 × 𝑀 array)
3 for 𝑚 = 1 to 𝑀 do ⊲ loop of over measurements
4 for 𝑘 = 1 to 𝑛 do ⊲ loop over qubits
5 for𝑊 = 𝑋,𝑌, 𝑍 do compute
6 𝑓 (𝑊) = EP

[
Conf𝜀 (O; P) |P♯,P[𝑘, 𝑚] = 𝑊

]
7 (see Eq. (4.43) for a precise formula)
8 P♯ [𝑘, 𝑚] ← argmin𝑊∈{𝑋,𝑌 ,𝑍 } 𝑓 (𝑊)
9 output P♯ ∈ {𝑋,𝑌, 𝑍}𝑛×𝑀

optimal and cannot be avoided.

Nevertheless, this does not mean that randomized measurements are always a good
idea. High-weight observables do pose an immediate challenge, because it is
extremely unlikely to hit them by chance alone.

Derandomized Pauli measurements
The main result of derandomization is a procedure for identifying “good” Pauli
measurements that allow for accurately predicting many (fixed) Pauli expectation
values. This procedure is designed to interpolate between two extremes: (i) com-
pletely randomized measurements (good for predicting many local observables)
and (ii) completely deterministic measurements that directly measure observables
sequentially (good for predicting few global observables).

Note that we can efficiently compute concrete confidence bounds (4.40), as well as
expected confidence bounds averaged over all possible Pauli measurements (4.42).
Combined, these two formulas also allow us to efficiently compute expected confi-
dence bounds for a list of measurements that is partially deterministic and partially
randomized. Suppose that P♯ subsumes deterministic assignments for the first
(𝑚 − 1) Pauli measurements, as well as concrete choices for the first (𝑘 − 1) Pauli
labels of the 𝑚-th measurement, see Fig. 4.8 (center). There are three possible
choices for the next Pauli assignment: P♯ [𝑘, 𝑚] = 𝑊 with 𝑊 = 𝑋,𝑌, 𝑍 . For each
choice, we can explicitly compute the resulting conditional expectation value:

EP

[
Conf𝜀 (O; P) |P♯,P[𝑘, 𝑚] = 𝑊

]
(4.43)

=

𝐿∑︁
ℓ=1

exp

(
− 𝜀2

2

𝑚−1∑︁
𝑚′=1

𝑛∏
𝑘 ′=1

1
{
oℓ [𝑘′] ▷ P♯ [𝑘′, 𝑚′]

})
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×
(
1 − 𝜈1 {oℓ [𝑘] ▷ 𝑊}

3w¬𝑘 (oℓ )

𝑘−1∏
𝑘 ′=1

1
{
oℓ [𝑘′] ▷ P♯ [𝑘′, 𝑚]

})
×

(
1 − 𝜈3−w(oℓ )

)𝑀−𝑚
,

where 𝜈 = 1 − exp(−𝜀2/2), w¬𝑘 (oℓ) = w( [oℓ [𝑘 + 1], . . . , oℓ [𝑛]]) and oℓ [𝑘′] ▷
P♯ [𝑘′, 𝑚] if oℓ [𝑘′] = 𝐼 or oℓ [𝑘′] = P♯ [𝑘′, 𝑚]. This formula allows us to build
deterministic measurements one Pauli-label at a time.

We start by envisioning a collection of 𝑀 completely random 𝑛-qubit Pauli mea-
surements. That is, each Pauli label is random and Eq. (4.42) captures the expected
confidence bound averaged over all 3𝑛 × 3𝑀 = 3𝑛+𝑀 assignments. There are three
possible choices for the first label in the first Pauli measurement: P[1, 1] = 𝑋 ,
P[1, 1] = 𝑌 and P[1, 1] = 𝑍 . At least one concrete choice does not further increase
the confidence bound averaged over all remaining Pauli signs:

min
𝑊∈{𝑋,𝑌,𝑍}

EP [Conf𝜀 (O; P) |P[1, 1] = 𝑊] (4.44)

≤ 1
3

∑︁
𝑊∈{𝑋,𝑌,𝑍}

EP [Conf𝜀 (O; P) |P[1, 1] = 𝑊]

=EP [Conf𝜀 (O; P)] .

Crucially, Eq. (4.43) allows us to efficiently identify a minimizing assignment:

P♯ [1, 1] = argmin
𝑊∈{𝑋,𝑌,𝑍}

EP [Conf𝜀 (O; P) |P[1, 1] = 𝑊] (4.45)

Doing so, replaces an initially random single-qubit measurement setting by a con-
crete Pauli label that minimizes the conditional expectation value over all remaining
(random) assignments. This procedure is known as derandomization (Motwani and
Raghavan, 1995; Alon and J. H. Spencer, 2008; V. V. Vazirani, 2001) and can be
iterated. Fig. 4.8 provides visual guidance, while pseudo-code can be found in
Algorithm 2. There are a total of 𝑛 × 𝑀 iterations. Step (𝑘, 𝑚) is contingent on
comparing three conditional expectation valuesEP

[
Conf𝜀 (O; P) |P♯,P[𝑘, 𝑚] = 𝑊

]
and assigning the Pauli label that achieves the smallest score. These update rules
are constructed to ensure that (appropriate modifications of) Eq. (4.44) remain valid
throughout the procedure. Combining all of them implies the following rigorous
statement about the resulting Pauli measurements P♯.

Theorem 14 (Derandomization). Algorithm 2 is guaranteed to output Pauli mea-
surements P♯ with below average confidence bound:

Conf𝜀 (O; P♯) ≤ EP [Conf𝜀 (O; P)] . (4.46)
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We see that derandomization produces deterministic Pauli measurements that per-
form at least as favorably as (averages of) randomized measurement protocols. But
the actual difference between randomized and derandomized Pauli measurements
can be much more pronounced. In the examples we considered, derandomization
reduces the measurement budget 𝑀 by at least an order of magnitude, compared to
randomized measurements. Furthermore, because Algorithm 2 implements a greedy
update procedure, we have no assurance that our derandomized measurement pro-
cedure is globally optimal or even close to optimal. Using dynamic programming,
the derandomization algorithm runs in time O(𝑛𝑀𝐿).

Illustrative derandomization examples
The exact workings of Algorithm 2 depend on the structure of the set of Pauli
observables. In this section, we provide several examples to illustrate the mechanism
of the derandomization procedure.

Many local Pauli observables. Many near-term applications of quantum devices
rely on repeatedly estimating a large number of low-weight Pauli observables. For
example, low-energy eigenstates of a many-body Hamiltonian may be prepared and
studied using a variational method, in which the Hamiltonian, a sum of local terms,
is measured many times. Using randomized measurements, we can predict many
low-weight observables simultaneously at comparatively little cost. It is known
that a logarithmic number of randomized Pauli measurements allows for accurately
predicting a polynomial number of low-weight observables (Huang, Richard Kueng,
and Preskill, 2020).

This desirable feature provably extends to derandomized measurements. From
Theorem 14 and Eq. (4.42), we infer that the measurement budget

𝑀 = 4 log(2𝐿/𝛿)max
ℓ

3w(oℓ )/𝜀2 (4.47)

suffices to ensure that Algorithm 2 outputs Pauli measurements P♯ that obey
Conf𝜀 (O; P) ≤ 𝛿/2. With Lemma 7, we may convert this into an error bound:
empirical averages (4.39) formed from appropriate measurement outcomes are guar-
anteed to obey

���̂�ℓ − tr(𝑂oℓ 𝜌)
�� ≤ 𝜀 for all 1 ≤ ℓ ≤ 𝐿 with high probability (at least

1 − 𝛿). This error bound is roughly on par with the best rigorous result about
predicting local Pauli observables from randomized Pauli measurements (Evans,
Harper, and Steven T Flammia, 2019). But this argument implicitly assumes that
Conf𝜀 (O; P♯) (which we can compute) is comparable to EP [Conf𝜀 (O; P)] (which
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is characterized by Eq. (4.42)). This assumption is extremely pessimistic, because
often Conf𝜀 (O; P♯) ≪ EP [Conf𝜀 (O; P)]. If this is the case, derandomized Pauli
measurements perform substantially better.

Few global Pauli observables. We have seen that derandomized measurements
never perform worse than randomized measurements. But they can perform much
better. This discrepancy is best illustrated with a simple example: design Pauli
measurements to predict both a complete𝑌 -string (o1 = [𝑌, . . . , 𝑌 ]) and a complete
𝑍-string (o2 = [𝑍, . . . , 𝑍]). Here, randomized measurements are a terrible idea,
because it is exponentially unlikely to hit either string by chance alone.

Contrast this with derandomization. For the very first assignment (𝑘 = 1,𝑚 = 1),
Algorithm 2 starts by computing three conditional expectations. Comparing them
reveals 𝑓 (𝑌 ) = 𝑓 (𝑍) < 𝑓 (𝑋) and the algorithm determines that assigning 𝑋 is
likely a bad idea. The two remaining choices should be equivalent and the algorithm
assigns, say, P♯ [1, 1] = 𝑌 . This initial choice does affect the expected confidence
bound associated with the second Pauli label (𝑘 = 2,𝑚 = 1): 𝑓 (𝑌 ) < 𝑓 (𝑋) =
𝑓 (𝑍). Taking into account the already assigned first Pauli label, both 𝑋 and 𝑍

become equally unfavorable and the algorithm sticks to assigning P♯ [2, 1] = 𝑌 .
This situation now repeats itself until the first Pauli measurement is completely
assigned: p♯1 = [𝑌, . . . , 𝑌 ] = o1. The algorithm has successfully kept track of an
entire global Pauli string.

It is now time to assign the first Pauli label of the second Pauli measurement
(𝑘 = 1, 𝑚 = 2). While 𝑋 is still a bad idea, taking into account that we have
already measured o1 once also breaks the symmetry between 𝑌 and 𝑍 assignments:
𝑓 (𝑍) < 𝑓 (𝑌 ) < 𝑓 (𝑋). So the algorithm chooses P♯ [1, 2] = 𝑍 and subsequently
sticks to assigning 𝑍 for all qubits: p♯2 = [𝑍, . . . , 𝑍] = o2. Having measured both
o1 and o2 an equal number of times restores the initial symmetry and the algorithm
basically resets. This process resets until all 𝑀 Pauli measurements are assigned
and Algorithm 2 outputs P♯ = [o1, o2, . . . , o1, o2]. In words: measure both global
observables equally often. Although statistically optimal, this measurement protocol
is neither surprising nor particularly interesting. What is encouraging, though, is
that Algorithm 2 has (re-)discovered it all by itself.

Very many global Pauli observables (non-example): The derandomization al-
gorithm is not without flaws. The greedy update rule in line 8 of Algorithm 2 can
be misguided to produce non-optimal results. This happens, for instance, for a very
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large collection of global Pauli observables that appears to have favorable structure
but actually doesn’t. For instance, set o1 = [𝑋, . . . , 𝑋] and oℓ = [𝑍; õℓ], where
õℓ ∈ {𝑋,𝑌, 𝑍}𝑛−1 ranges through all 3𝑛−1 possible Pauli strings of size (𝑛 − 1).
There are 𝐿 = 3𝑛−1 + 1 target observables, all of which are global and therefore
incompatible. However, 3𝑛−1 of them start with a Pauli-𝑍 label. This imbalance
leads the algorithm to believe that assigning P♯ [1, 𝑚] = 𝑍 for all 1 ≤ 𝑚 ≤ 𝑀 is
always a good idea (provided that 𝑀 is not much larger than 3𝑛−1). By doing so, it
completely ignores the first target observable which starts with an 𝑋-label. But at
the same time, it cannot capitalize on this particular decision, because observables
o2 to o𝐿 are actually incompatible. This results in an imbalanced output P♯ that treats
observables o2 to o𝐿 roughly equally, but completely forgets about o1. Needless to
say, the resulting confidence bound will not be minimal either. We emphasize that
this highly stylized non-example is not motivated by actual applications. Instead it
is intended to illustrate how greedy update procedures can get stuck in local minima.

Additional details and proofs
Proof of Lemma 7 Let us briefly recapitulate the general setting. A 𝑛-qubit
Pauli measurement p ∈ {𝑋,𝑌, 𝑍}𝑛 produces a random string of 𝑛 signs q̂ ∈ {±1}𝑛.
Information about the underlying 𝑛-qubit state 𝜌 is encoded in the distribution of
outcome strings

Pr [q̂ = q|p, 𝜌] = tr ©«
𝑚⊗
𝑗=1

1
2
(
𝜎𝐼 + q[ 𝑗]𝜎p[ 𝑗]

)
𝜌
ª®¬ for all q ∈ {±1}𝑛. (4.48)

Now, suppose that o ∈ {𝐼, 𝑋,𝑌 , 𝑍}𝑛 is another Pauli string that is hit by p (o ▷ p).
Then, we can appropriately marginalize 𝑛-qubit outcome strings q ∈ {±1}𝑛 to
reproduce 𝜔(𝜌) = tr (𝑂o𝜌) in expectation:

E
∏

𝑗 :o[ 𝑗]≠𝐼
q[ 𝑗] (4.49)

=
∑︁

q∈{±1}𝑛
Pr [q|p, 𝜌]

∏
𝑗 : o 𝑗≠𝐼

q[ 𝑗] (4.50)

=
∑︁

q∈{±1}𝑛
tr ©«

⊗
𝑗 :o[ 𝑗]≠𝐼

1
2
(
q[ 𝑗] + 𝜎p[ 𝑗]

) ⊗
𝑗 :o[ 𝑗]=𝐼

1
2
(
𝜎𝐼 + q[ 𝑗]𝜎p[ 𝑗]

)
𝜌
ª®¬

= 1
2𝑛

∑︁
q∈{±1}𝑛

tr ©«
⊗

𝑗 : o[ 𝑗]≠𝐼
𝜎o[ 𝑗]

⊗
𝑗 : o[ 𝑗]=𝐼

𝜎𝐼𝜌
ª®¬ = tr ©«

𝑛⊗
𝑗=1

𝜎o[ 𝑗]𝜌
ª®¬ = tr (𝑂o𝜌) ,
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whenever o ▷ p (which ensures o[ 𝑗] = p[ 𝑗] whenever o[ 𝑗] ≠ 𝐼). Now, suppose
that we perform a total of 𝑀 Pauli measurements p1, . . . , p𝑀 . The above relation
suggests to approximate Pauli observables 𝜔ℓ (𝜌) = tr(𝑂oℓ 𝜌) by empirical averages:

�̂�ℓ =


1

ℎ(oℓ ;P)
∑
𝑚:oℓ▷p𝑚

∏
𝑗 :oℓ [ 𝑗]≠𝐼 q𝑚 [ 𝑗] if ℎ(oℓ; P) ≥ 1

0 if ℎ(oℓ; P) = 0.
(4.51)

Here, ℎ(oℓ; P) = ∑𝑀
𝑚=1 1 {oℓ ▷ p𝑚} denotes the hitting count, i.e. the number of

times a Pauli measurement p𝑚 provides meaningful information about observable
oℓ. If ℎ(oℓ; P) = 0, not a single Pauli measurement is compatible with the target
observable in question and we set �̂�ℓ = 0, because we do not have any actionable
advice. The above procedure allows us to jointly estimate 𝐿 Pauli observables based
on 𝑀 Pauli measurement outcomes. The quality of reconstruction is exponentially
suppressed in the number of times we hit each target Pauli observable.

Lemma 8. Fix a collection of𝑀 Pauli measurements P = [p1, . . . , p𝑀], a collection
of 𝐿 Pauli observables 𝜔ℓ (𝜌) = tr

(
𝑂oℓ 𝜌

)
. Then, for all 𝜀 > 0

Pr
[

max
1≤ℓ≤𝐿

|�̂�ℓ − 𝜔ℓ (𝜌) | ≥ 𝜀
]
≤ 2

𝐿∑︁
ℓ=1

exp
(
− 𝜀2

2 ℎ(oℓ; P)
)
. (4.52)

Lemma 7 in the main text is an immediate consequence of this concentration in-
equality.

Proof. The union bound – also known as Boole’s inequality – states that the proba-
bility associated with a union of events is upper bounded by the sum of individual
event probabilities. For the task at hand, it implies

Pr
[

max
1≤ℓ≤𝐿

|�̂�ℓ − 𝜔ℓ (𝜌) | ≥ 𝜀
]
= Pr

[
𝐿⋃
ℓ=1
{|�̂�ℓ − 𝜔ℓ | ≥ 𝜀}

]
(4.53)

≤
𝐿∑︁
ℓ=1

Pr [|�̂�ℓ − 𝜔ℓ (𝜌) | ≥ 𝜀] . (4.54)

This allows us to treat individual deviation probabilities separately. Fix 1 ≤ ℓ ≤ 𝐿
and note that �̂�ℓ is an empirical average of 𝑀ℓ = ℎ(oℓ; P) random signs 𝑠(ℓ)

𝑖
=∏

𝑗 : oℓ [ 𝑗]≠𝐼 q𝑖 [ 𝑗] ∈ {±1} that are independent each (they arise from different mea-
surement outcomes). Empirical averages of independent signed random variables
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tend to concentrate sharply around their true expectation value E𝑠(ℓ)
𝑖

= tr(𝑂oℓ 𝜌).
Hoeffding’s inequality makes this intuition precise and asserts for any 𝜀 > 0

Pr [|�̂�ℓ − 𝜔ℓ (𝜌) | ≥ 𝜀] =Pr

[����� 1
𝑀ℓ

𝑀ℓ∑︁
𝑖=1

(
𝑠
(ℓ)
𝑖
− E𝑠(ℓ)

𝑖

)����� ≥ 𝜀
]
≤ 2 exp

(
− 𝜀2

2 𝑀ℓ

)
.

(4.55)

The claim follows, because such an exponential bound is valid for each term in
Eq. (4.54). This also includes terms with zero hits (𝑀ℓ = 0), because

Pr [|�̂�ℓ − 𝜔ℓ | ≥ 𝜀] ≤ 1 = exp (−0/2) (4.56)

and the claim follows.

Derivation of Eq. (4.43) Note that each hitting count

ℎ(oℓ; P) =
𝑀∑︁
𝑚=1

1 {oℓ ▷ p𝑚} (4.57)

is a sum of 𝑀 indicator functions that can take binary values each. This structure
allows us to rewrite the confidence bound (4.40) as

Conf𝜀 (O; P) =
𝐿∑︁
ℓ=1

exp
(
− 𝜀2

2 ℎ(oℓ; P)
)
=

𝐿∑︁
ℓ=1

𝑀∏
𝑚′=1

exp
(
− 𝜀2

2 1 {oℓ ▷ p𝑚′}
)

(4.58)

=

𝐿∑︁
ℓ=1

𝑀∏
𝑚′=1
(1 − 𝜈1 {oℓ ▷ p𝑚′}) ,

where 𝜈 = 1 − exp
(
−𝜀2/2

)
∈ (0, 1). Next, note that each remaining indicator

function can be further decomposed into a product of more elementary indicator
functions:

1 {oℓ ▷ p𝑚′} =
𝑛∏

𝑘 ′=1
1 {oℓ [𝑘′] ▷ p𝑚′ [𝑘′]} (4.59)

=

𝑛∏
𝑘 ′=1
(1 {oℓ [𝑘′] = 𝐼} + 1 {oℓ [𝑘′] = p𝑚′ [𝑘′]}) . (4.60)

Finally, note that a randomly assigned single-qubit label p𝑚 [ 𝑗] ∈ {𝑋,𝑌, 𝑍} hits
non-identity Pauli label oℓ [ 𝑗] ≠ 𝐼 with probability 1/3. More precisely,

Ep𝑚 [ 𝑗] [1 {oℓ [ 𝑗] ▷ p𝑚 [ 𝑗]}] = Prp𝑚 [ 𝑗] [oℓ [ 𝑗] ▷ p𝑚 [ 𝑗]] (4.61)
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= (1/3)1{oℓ [ 𝑗]≠𝐼} =


1/3 if oℓ [ 𝑗] ≠ 𝐼,

1 if oℓ [ 𝑗] = 𝐼.
(4.62)

Together with independence, this observation allows us to compute expectation
values of confidence bounds that are partially assigned already. Let P♯ denote the
already assigned part that encompasses the first𝑚−1 Pauli measurements, as well as
the first 𝑘 single-qubit labels of the𝑚-th Pauli measurement: P♯ =

[
p♯1, . . . , p

♯

𝑚−1

]
∪[

p♯𝑚 [1], . . . , p𝑚 [𝑘]♯
]
. We also assume that all remaining Pauli labels are assigned

independently and uniformly at random (Pr [p𝑚′ [𝑘′] = 𝑋] = Pr [p𝑚′ [𝑘′] = 𝑌 ] =
Pr [p𝑚′ [𝑘′] = 𝑍] = 1/3). Independence ensures that the conditional expectation
factorizes nicely into individual components:

EP

[
Conf𝜀 (O; P) |P♯

]
(4.63)

=

𝐿∑︁
ℓ=1

𝑚−1∏
𝑚′=1

(
1 − 𝜈1{oℓ ▷ p♯

𝑚′}
)

(4.64)

×
(
1 − 𝜈

𝑘∏
𝑘 ′=1
{oℓ [𝑘′] ▷ p𝑚 [𝑘′]}

𝑛∏
𝑘 ′=𝑘+1

Ep𝑚 [𝑘 ′]{oℓ [𝑘′] ▷ p𝑚 [𝑘′]}
)

×
𝑀∏

𝑚′=𝑚+1

(
1 − 𝜈

𝑛∏
𝑘 ′=1
Ep𝑚′ [𝑘 ′]1{oℓ [𝑘

′] ▷ p𝑚′ [𝑘′]}
)

=

𝐿∑︁
ℓ=1

𝑚−1∏
𝑚′=1

(
1 − 𝜈1{oℓ ▷ p♯

𝑚′}
) (

1 − 𝜈
𝑘∏

𝑘 ′=1
{oℓ [𝑘′] ▷ p𝑚 [𝑘′]}

𝑛∏
𝑘 ′=𝑘+1

(1/3)1{oℓ [𝑘 ′]≠𝐼}
)

×
𝑀∏

𝑚′=𝑚+1

(
1 − 𝜈

𝑛∏
𝑘 ′=1
(1/3)1{oℓ [𝑘 ′]≠𝐼}

)
.

Now, note that the exponent
∑𝑛
𝑘 ′=𝑘+1 1{oℓ [𝑘′] ≠ 𝐼} = w¬𝑘 (oℓ) captures the weight

of the reduced Pauli string [oℓ [𝑘 + 1], . . . , oℓ [𝑛]] (in particular, w¬0(oℓ) = w(oℓ))
Reading Eq. (4.58) backwards to recognize

𝑚−1∏
𝑚′=1

(
1 − 𝜈1{oℓ ▷ p♯

𝑚′}
)
= exp

(
− 𝜀2

2 ℎ(oℓ; [p
♯

1, . . . , p
♯

𝑚−1])
)

(4.65)

further simplifies the expression:

EP

[
Conf𝜀 (O; P♯) |P♯

]
(4.66)

=

𝐿∑︁
ℓ=1

exp
(
− 𝜀2

2 ℎ(oℓ; [p
♯

1, . . . , p
♯

𝑚−1])
) (

1 − 𝜈
𝑘∏

𝑘 ′=1
{oℓ [𝑘′] ▷ p𝑚 [𝑘′]}3−w¬𝑘 (oℓ )

)
(4.67)
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×
(
1 − 𝜈3−w(oℓ )

)𝑀−𝑚
.

4.8 Details regarding numerical experiments
In this section, we present all the details for reproducing the numerical experiments
we discussed in previous sections.

Predicting quantum fidelities
This numerical experiment considers classical shadows based on random Clifford
measurements. We exploit the Gottesman-Knill theorem for efficient classical com-
putations. This well-known result states that Clifford circuits can be simulated
efficiently on classical computers; see also (Aaronson and Gottesman, 2004) for an
improved classical algorithm. This has allowed us to address rather large system
sizes (more than 160 qubits). To test the performance of feature prediction with
classical shadows we first have to simulate the (quantum) data acquisition phase.
We do this by repeatedly executing the following (efficient) protocol:

1. Sample a Clifford unitary 𝑈 from the Clifford group using the algorithm
proposed in (Koenig and J. A. Smolin, 2014). This Clifford unitary is pa-
rameterized by (𝛼, 𝛽, 𝛾, 𝛿, 𝑟, 𝑠) which fully characterize its action on Pauli
operators:

𝑈𝑃𝑋𝑗 𝑈
† = (−1)𝑟 𝑗Π𝑛

𝑖=1(𝑃
𝑋
𝑖 )𝛼 𝑗𝑖 (𝑃𝑍𝑖 )𝛽 𝑗𝑖 (4.68)

𝑈𝑃𝑍𝑗 𝑈
† = (−1)𝑠 𝑗Π𝑛

𝑖=1(𝑃
𝑋
𝑖 )𝛾 𝑗𝑖 (𝑃𝑍𝑖 )𝛿 𝑗𝑖 (4.69)

for all 𝑗 = 1, . . . , 𝑛. Here, 𝑃𝑋
𝑗
, 𝑃𝑍

𝑗
are the Pauli 𝑋 , 𝑍-operators acting on the

𝑗-th qubit, and 𝛼 𝑗𝑖, 𝛽 𝑗𝑖, 𝛾 𝑗𝑖, 𝛿 𝑗𝑖, 𝑟 𝑗 , 𝑠 𝑗 ∈ {0, 1}.

2. Given a unitary 𝑈 parameterized by (𝛼, 𝛽, 𝛾, 𝛿, 𝑟, 𝑠), we can apply 𝑈 on any
stabilizer state by changing the stabilizer generators and the destabilizers as
defined in (Aaronson and Gottesman, 2004).

3. A computational basis measurement can be simulated using the standard
algorithm provided in (Aaronson and Gottesman, 2004).

Although originally designed for pure target states |𝜓𝑖⟩⟨𝜓𝑖 |, we can readily extend
this strategy to mixed states 𝜌 =

∑
𝑖 𝑝𝑖 |𝜓𝑖⟩⟨𝜓𝑖 |. Operationally speaking, mixed

states arise from sampling from a pure state ensemble. This mixing process can be
simulated efficiently on classical machines.
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Figure 4.9: Stabilizers and de-stabilizers of the toric code that encodes |00⟩.

For neural network quantum state tomography, we use the open-source code pro-
vided by the authors (Carrasquilla, Torlai, et al., 2019). The main challenge is
generating training data, i.e. simulating measurement outcomes. For pure and noisy
GHZ states, we use the tetrahedral POVM (Carrasquilla, Torlai, et al., 2019). For the
toric code ground state, we use the Psi2 POVM (which is a measurement in the com-
putational (𝑍-) basis). Note that measuring in the 𝑍-basis is not a tomographically
complete measurement, but we found machine learning models to perform better
using Psi2. This is possibly because the pattern is much more obvious (closed-loop
configurations) and the figure of merit used in NNQST is a classical fidelity.

A concrete algorithm for creating training data for pure GHZ states is included
in the aforementioned open-source implementation of (Carrasquilla, Torlai, et al.,
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2019). It uses matrix product states to simulate quantum measurements efficiently.
The training data for noisy GHZ states is a slight modification of the existing code.
With probability 1 − 𝑝, we sample a measurement outcome from the original state
|𝜓+GHZ⟩ =

1√
2
( |0⟩⊗𝑛 + |1⟩⊗𝑛). And with probability 𝑝, we sample a measurement

outcome from |𝜓−GHZ⟩ =
1√
2
( |0⟩⊗𝑛 − |1⟩⊗𝑛) (phase error). Since the figure of merit

is the fidelity with the pure GHZ state in both pure and noisy GHZ experiment, we
reuse the implementation provided in (Carrasquilla, Torlai, et al., 2019).

Creating training data for toric code is somewhat more involved. The goal is
to sample a closed-loop configuration on a 2D torus uniformly at random. This
can again be done using classical simulations of stabilizer states (Aaronson and
Gottesman, 2004). The main technical detail is to create a tableau that contains both
the stabilizer and the de-stabilizer for the state in question. The rich structure of
the toric code renders this task rather easy. The stabilizers are the 𝑋-stars and the
𝑍-plaquettes, with two 𝑍-strings over the two loops of the torus. The de-stabilizer of
each stabilizer is a Pauli-string that anticommutes with the stabilizer, but commutes
with other stabilizers and other de-stabilizers. The full set of stabilizers and de-
stabilizers for the toric code can be seen in Supplementary Figure 4.9.

Potential obstacles for learning certain quantum states
In our numerical studies, we have seen that neural network quantum state tomography
based on deep generative models seems to have difficulty learning toric code ground
states.

Here, we take a closer look at this curious aspect and construct a simple class of
quantum states where efficient learning of the quantum state from the measurement
data would violate a well-known computational hardness conjecture. First of all,
each computational (𝑍-) basis measurement of the toric code produces a random bit-
string. Most bits are sampled uniformly at random from {0, 1} and the remaining bits
are binary functions that only depend on these random bits. Consider a simple class
of quantum states that mimic this property. Given 𝑎 ∈ {0, 1}𝑛−1 and 𝑓𝑎 (𝑥) =

∑
𝑖 𝑎𝑖𝑥𝑖

(mod 2), we define |𝑎⟩ = 1√
2𝑛−1

∑
𝑥∈{0,1}𝑛−1 |𝑥⟩ ⊗ | 𝑓𝑎 (𝑥)⟩. Such states can be created

by preparing |+⟩ on the first 𝑛 − 1 qubits, |0⟩ on the 𝑛-th qubit followed by CNOT
gates between 𝑖-th qubit and 𝑛-th qubit for every 𝑎𝑖 = 1. Measuring |𝑎⟩ in the
computational (𝑍-) basis is equivalent to sampling the first 𝑛 − 1 bits 𝑥 uniformly
at random. The final bit is characterized by the deterministic formula 𝑓𝑎 (𝑥). Now,
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consider a (globally) depolarized version of this pure state:

𝜌𝑎 = D𝜂 ( |𝑎⟩⟨𝑎 |) = (1 − 𝜂) |𝑎⟩⟨𝑎 | + 𝜂

2𝑛 I
⊗𝑛 for some 𝜂 ∈ (0, 1). (4.70)

One of the most widely used conjectures for building post-quantum cryptography
is the hardness of learning with error (LWE) (Regev, 2009). LWE considers the
task of learning a linear 𝑛-ary function 𝑓 over a finite ring from noisy data samples
(𝑥, 𝑓 (𝑥) + 𝜂), where 𝑥 is sampled uniformly at random and 𝜂 is some independent
error. An efficient learning algorithm for LWE will be able to break many post-
quantum cryptographic protocals that are believed to be hard even for quantum
computers. The simplest example of LWE is called learning parity with error,
where 𝑓 (𝑥) = ∑

𝑖 𝑎𝑖𝑥𝑖 (mod 2) for 𝑥 ∈ {0, 1}𝑛 and some unknown 𝑎 ∈ {0, 1}𝑛.
Learning parity with error is also conjectured to be computationally hard (Blum,
Kalai, and Wasserman, 2003). Since learning |𝑎⟩ from computational (𝑍-) basis
measurements on 𝜌𝑎 is equivalent to learning parity with error, it is unlikely there
will be a neural network approach that can learn 𝜌𝑎 efficiently.

Predicting witnesses for tripartite entanglement
This numerical experiment considers classical shadows based on random Clifford
measurements. The numerical studies regarding entanglement witnesses are based
locally rotated 3-qubit (𝑛 = 3) GHZ states:

|𝜓⟩ = 𝑈𝐴 ⊗𝑈𝐵 ⊗𝑈𝐶 |𝜓+GHZ⟩ where𝑈𝐴,𝑈𝐵,𝑈𝐶 are random single-qubit rotations.
(4.71)

For 𝜌 = |𝜓⟩⟨𝜓 |, we hope to verify the tripartite entanglement present in the system.
To this end, we consider a simple family of entanglement witnesses with compatible
structure:

𝑂 := 𝑂 (𝑉𝐴, 𝑉𝐵, 𝑉𝐶) = 𝑉𝐴 ⊗ 𝑉𝐵 ⊗ 𝑉𝐶 |𝜓+GHZ⟩⟨𝜓
+
GHZ |𝑉

†
𝐴
⊗ 𝑉†

𝐵
⊗ 𝑉†

𝐶
. (4.72)

The single-qubit unitaries 𝑉𝐴, 𝑉𝐵, 𝑉𝐶 parametrize different witnesses.

A complete characterization of entanglement in three-qubit systems can be found
in Supplementary Figure 4.6. The expectation value of an entanglement witness
𝑂 (𝑉𝐴, 𝑉𝐵, 𝑉𝐶) in the tripartite state 𝜌 can certify that 𝜌 belongs to a particular
entanglement class. For example, it is known from the analysis in (Acín et al., 2001)
that for any state 𝜌𝑠 with only bipartite entanglement, tr (𝑂𝜌𝑠) ≤ .5, while for any
state 𝜌𝑠 with at most W-type entanglement, tr (𝑂𝜌𝑠) ≤ .75. Therefore verifying
that tr (𝑂𝜌) > .5 certifies that 𝜌 has tripartite entanglement, while tr (𝑂𝜌) > .75
certifies that 𝜌 has GHZ-type entanglement.
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After choosing random unitaries 𝑈𝐴,𝑈𝐵,𝑈𝐶 to specify the GHZ-type state |𝜓⟩,
we generate a list of random 𝑉𝐴, 𝑉𝐵, 𝑉𝐶 to specify a set of potential entanglement
witnesses for |𝜓⟩:

𝑂1 = 𝑂 (𝑉𝐴,1, 𝑉𝐵,1, 𝑉𝐶,1), . . . , 𝑂𝑀 = 𝑂 (𝑉𝐴,𝑀 , 𝑉𝐵,𝑀 , 𝑉𝐶,𝑀). (4.73)

If the randomly generated 𝑂𝑖 = 𝑂 (𝑉𝐴,𝑖, 𝑉𝐵,𝑖, 𝑉𝐶,𝑖) satisfies tr(𝑂𝑖 |𝜓⟩⟨𝜓 |) > 0.5,
then 𝑂𝑖 is an entanglement witness for genuine tripartite entanglement, and if
tr(𝑂𝑖 |𝜓⟩⟨𝜓 |) > 0.75, then 𝑂𝑖 is a witness for GHZ-type entanglement. We can
compute the expected number of random candidates we have to test to find an
observable 𝑂 such that tr(𝑂 |𝜓⟩⟨𝜓 |) > 0.5 or tr(𝑂 |𝜓⟩⟨𝜓 |) > 0.75; these numbers
are indicated as the dashed lines on the right side of Supplementary Figure 4.6.

Given the list of randomly generated witness candidates𝑂1, . . . , 𝑂𝑀 , we would like
to predict tr(𝑂𝑖 |𝜓⟩⟨𝜓 |) for all 1 ≤ 𝑖 ≤ 𝑀 . The naive approach is to directly measure
all observables (witnesses). We refer to this as the direct measurement approach.
For this approach, we consider the number of total experiments required to estimate
every tr(𝑂𝑖 |𝜓⟩⟨𝜓 |) up to an error 0.1. Note that the number of required samples
may vary from witness to witness — it depends on the variance associated with the
estimation. In the worst case, one would need ≈ 100 measurements for each witness
candidate.

Instead of this direct measurement approach, one could use classical shadows
(Clifford measurements) to predict all the observables (witnesses) 𝑂1, . . . , 𝑂𝑀

at once. Because, tr(𝑂2
𝑖
) = 1 for al 1 ≤ 𝑖 ≤ 𝑀 , the shadow norm obeys

∥𝑂𝑖∥2shadow ≤ 3 tr
(
𝑂2
𝑖

)
= 3, according to the analysis in Supplementary Section

4.3. Hence Theorem 7 shows that classical shadows can predict the expectation
values of many candidate witnesses very efficiently.

In the numerical experiment, we gradually increased the number of random Clifford
measurements we use to construct classical shadows until the classical shadows
could accurately predict all tr(𝑂𝑖 |𝜓⟩⟨𝜓 |) up to 0.1-error. The results are shown
in Supplementary Figure 4.6. Because the system size is small (𝑛 = 3 qubits), we
simulate the quantum experiments classically by storing and processing all 23 = 8
amplitudes. In practice, one should use statistics, like sample variance estimation or
the bootstrap (Efron and R. J. Tibshirani, 1993), to determine confidence intervals
and a posteriori guarantees. Quadratic function prediction with classical shadows
(Clifford measurements) can be used to achieve this goal efficiently.
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Predicting two-point correlation functions
Predicting two-point correlation function could be done efficiently using classical
shadows based on random Pauli measurements. To facilitate direct comparison,
this numerical experiment is designed to reproduce one of the core examples in in
(Carrasquilla, Torlai, et al., 2019). In particular, we use the same data, downloaded
from https://github.com/carrasqu/POVM_GENMODEL. The classical shadow
(based on random Pauli basis measurements) replaces the original machine learning
based approach for predicting local observables. We use multi-core CPU for training
and making prediction with the machine learning model. The reported time is the
total CPU time. Predicting local observables 𝑂 using the (Pauli) classical shadow
can be done efficiently by creating the reduced density matrix 𝜌𝐴, where 𝐴 is the
subsystem 𝑂 acts on. The reduced density matrix 𝜌𝐴 can be created by simply
neglecting the data for the rest of the system. Importantly, M−1(𝑈† |�̂�⟩⟨�̂� |𝑈) is
never created as an 2𝑛 × 2𝑛 matrix. Taking the inner product of 𝜌𝐴 with the local
observables 𝑂 yields the desired result.

Predicting subsystem Rényi entanglement entropies
We consider classical shadows based on random Pauli measurements for predicting
subsystem entanglement entropies. In the first part of the experiment, we consider
the ground state of a disordered Heisenberg model. The associated Hamiltonian is
𝐻 =

∑
𝑖 𝐽𝑖 ⟨𝑆𝑖 · 𝑆𝑖+1⟩, where each 𝐽𝑖 is sampled uniformly (and independently) from

the unit interval [0, 1]. The approximate ground state is found by implementing
the recursive procedure from (Refael and E. Altman, 2013): identify the largest 𝐽𝑖,
forming singlet for the connected sites, and reduce the system by removing 𝐽𝑖. We
refer to (Refael and E. Altman, 2013) for details. In the experiment, we perform
single-shot random Pauli basis measurements on the approximate ground state. I.e.
we measure the state in a random Pauli basis only once and then choose a new
random basis. However, in physical experiments, it is often easier to repeat a single
Pauli basis measurement many times before re-calibrating to measure another Pauli
basis. Performing a single random basis measurement for many repetitions can be
beneficial experimentally compared to measuring a random basis every single time.
Classical shadows (Pauli) are flexible enough to incorporate economic measurement
strategies that take this discrepancy into account. We refer to the open source
implementation in https://github.com/momohuang/predicting-quantum-
properties for the exact details.

To obtain a reasonable benchmark, we compare this procedure with the approach

https://github.com/carrasqu/POVM_GENMODEL
https://github.com/momohuang/predicting-quantum-properties
https://github.com/momohuang/predicting-quantum-properties
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proposed by Brydges et al. (Brydges et al., 2019). For a subsystem 𝐴 comprised of
𝑘 qubits, the approach proposed in (Brydges et al., 2019) for predicting the Rényi
entropy works as follows. First, one samples a random single-qubit unitary rotations
independently for all 𝑘 qubits. Then, one applies the single-qubit unitary rotation
to the system and measures the system in the computational basis to obtain a string
of binary values 𝑠 ∈ {0, 1}𝑘 . For each random unitary rotation, several repetitions
are performed. The precise number of repetitions for a single random basis is a
hyper-parameter that has to be optimized. The estimator for the Rényi entropy takes
the following form:

tr(𝜌2
𝐴) = 2𝑘

∑︁
𝑠,𝑠′∈{0,1}𝑘

(−2)−𝐻 (𝑠,𝑠′)𝑃(𝑠)𝑃(𝑠′). (4.74)

The function 𝐻 (𝑠, 𝑠′) is the Hamming distance between strings 𝑠 and 𝑠′ (i.e, the
number of positions at which individual bits are different), while 𝑃(𝑠) and 𝑃(𝑠′) are
the probabilities for measuring 𝜌 and obtaining the outcomes 𝑠 and 𝑠′, respectively.
The probability 𝑃(𝑠) is a function that depends on the randomly sampled single-
qubit rotation. 𝑃(𝑠)𝑃(𝑠′) is the expectation of 𝑃(𝑠)𝑃(𝑠′) averaged over the random
single-qubit rotations.

The random single-qubit rotations could be taken as single-qubit Haar-random ro-
tations or single-qubit random Clifford rotations. The latter choice is equivalent to
random Pauli measurements – the measurement primitive we consider for classical
shadows also. For the test cases we considered, using random Pauli measurements
yields similar (and sometimes improved) performance compared to single-qubit
Haar-random unitary rotation. This allows the approach by (Brydges et al., 2019)
and the procedure based on classical shadows to be compared on the same ground.
We follow the strategy in (Brydges et al., 2019) to estimate the formula in Eq. (4.74).
First, we sample 𝑁𝑈 random unitary rotations. For each random unitary rotation,
we perform 𝑁𝑀 repetitions of rotating the system and measuring in the computa-
tional basis. The 𝑁𝑀 measurement outcomes allow us to construct an empirical
distribution for 𝑃(𝑠). Thus we could use the 𝑁𝑀 measurement outcomes to estimate
2𝑘

∑
𝑠,𝑠′∈{0,1}𝑘 (−2)−𝐻 (𝑠,𝑠′)𝑃(𝑠)𝑃(𝑠′) for a single random unitary rotation. We then

take the average over 𝑁𝑈 different random unitary rotations. Choosing a suitable
parameter for 𝑁𝑈 and 𝑁𝑀 is nontrivial. We employ the strategy advocated in (Bry-
dges et al., 2019) for finding the best parameter for 𝑁𝑈 and 𝑁𝑀 . This strategy is
called grid search and is performed by trying many different choices for 𝑁𝑈 , 𝑁𝑀
and recording the best one.
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Variational quantum simulation of the lattice Schwinger model
The application for variational quantum simulation uses classical shadows based on
random Pauli measurements which is designed to predict a large number of local
observables efficiently. It is based on the seminal work presented in (Kokail et al.,
2019). After a Kogut-Susskind encoding to map fermionic configurations to a spin-
1/2 lattice with an even number 𝑁 of lattice sites and a subsequent Jordan-Wigner
transform, the Hamiltonian becomes

�̂� =
𝑤

2

𝑁−1∑︁
𝑗=1

𝑃𝑋𝑗 𝑃
𝑋
𝑗+1︸            ︷︷            ︸

Λ̂𝑋

+ 𝑤
2

𝑁−1∑︁
𝑗=1

𝑃𝑌𝑗 𝑃
𝑌
𝑗+1︸           ︷︷           ︸

Λ̂𝑌

+
𝑁∑︁
𝑗=1

𝑑 𝑗𝑃
𝑧
𝑗
+
𝑁−2∑︁
𝑗=1

𝑁−1∑︁
𝑗 ′= 𝑗+1

𝑐 𝑗 , 𝑗 ′𝑃
𝑧
𝑗
𝑃𝑧
𝑗 ′︸                                   ︷︷                                   ︸

Λ̂𝑍

. (4.75)

Here, 𝑃𝑋
𝑗
, 𝑃𝑌

𝑗
, 𝑃𝑍

𝑗
denote Pauli-𝑋,𝑌, 𝑍 operators acting on the 𝑗-th qubit (1 ≤

𝑗 ≤ 𝑁). This Hamiltonian has very advantageous structure. Each of the three
contributions can be estimated by performing a single Pauli basis measurement
(measure every qubit in the 𝑋 basis to determine Λ̂𝑋 , measure every qubit in the
𝑌 basis to determine Λ̂𝑌 and measure every qubit in the 𝑍 basis to determine Λ̂𝑍 ).
The measurement of the Hamiltonian variance ⟨�̂�2⟩ − ⟨�̂�⟩2 is more complicated,
because ⟨�̂�2⟩ does not decompose nicely. To determine its value, we must first
measure Λ̂2

𝑋
, Λ̂2

𝑌
and Λ̂2

𝑍
. This is the easy part, because 3 measurement bases once

more suffice. However, in addition, we must also estimate the anti-commutators
{Λ̂𝑋 , Λ̂𝑌 }, {Λ̂𝑋 , Λ̂𝑍 }, {Λ̂𝑌 , Λ̂𝑍 }. This may be achieved by measuring the following
𝑘-local observables (with 𝑘 at most 4):

{Λ̂𝑋 , Λ̂𝑌 } : 𝑃𝑋𝑗 𝑃
𝑋
𝑗+1𝑃

𝑌
𝑗 ′𝑃

𝑌
𝑗 ′+1,

∀ 𝑗 , 𝑗 ′ ∈ {1, 𝑁 − 1}, s.t. 𝑗 ≠ 𝑗 ′, 𝑗 ≠ 𝑗 ′ + 1, 𝑗 + 1 ≠ 𝑗 ′,

{Λ̂𝑋 , Λ̂𝑍 } : 𝑃𝑋𝑗 𝑃
𝑋
𝑗+1𝑃

𝑍
𝑗 ′𝑃

𝑍
𝑗 ′′ ,

∀ 𝑗 , 𝑗 ′, 𝑗 ′′ ∈ {1, 𝑁 − 1}, s.t. 𝑗 ≠ 𝑗 ′, 𝑗 ≠ 𝑗 ′′, 𝑗 + 1 ≠ 𝑗 ′, 𝑗 + 1 ≠ 𝑗 ′′, 𝑗 ′ < 𝑗 ′′,

{Λ̂𝑋 , Λ̂𝑍 } : 𝑃𝑋𝑗 𝑃
𝑋
𝑗+1𝑃

𝑍
𝑗 ′ ,

∀ 𝑗 , 𝑗 ′ ∈ {1, 𝑁 − 1}, s.t. 𝑗 ≠ 𝑗 ′, 𝑗 + 1 ≠ 𝑗 ′, (4.76)

{Λ̂𝑌 , Λ̂𝑍 } : 𝑃𝑌𝑗 𝑃
𝑌
𝑗+1𝑃

𝑍
𝑗 ′𝑃

𝑍
𝑗 ′′ ,

∀ 𝑗 , 𝑗 ′, 𝑗 ′′ ∈ {1, 𝑁 − 1}, s.t. 𝑗 ≠ 𝑗 ′, 𝑗 ≠ 𝑗 ′′, 𝑗 + 1 ≠ 𝑗 ′, 𝑗 + 1 ≠ 𝑗 ′′, 𝑗 ′ < 𝑗 ′′,

{Λ̂𝑌 , Λ̂𝑍 } : 𝑃𝑌𝑗 𝑃
𝑌
𝑗+1𝑃

𝑍
𝑗 ′ ,

∀ 𝑗 , 𝑗 ′ ∈ {1, 𝑁 − 1}, s.t. 𝑗 ≠ 𝑗 ′, 𝑗 + 1 ≠ 𝑗 ′,

Although local, estimating all observables of this form is the main bottleneck of
the entire procedure. To minimize the number of measurement bases, the orig-
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inal work (Kokail et al., 2019) has performed an analysis of symmetry in the
lattice Schwinger model. First, the target Hamiltonian in Equation (4.75) satisfies
[�̂�,∑𝑖 𝑃

𝑍
𝑖
] = 0, which corresponds to a charge conservation symmetry in the scalar

fermionic field. (Kokail et al., 2019) further consider a charge symmetry subspace
with

∑
𝑖 𝑃

𝑍
𝑖
= 0, which corresponds to a 𝐶𝑃 symmetry. In this subspace, we have

⟨{Λ̂𝑋 , Λ̂𝑍 }⟩ = ⟨{Λ̂𝑌 , Λ̂𝑍 }⟩. This ensures that we only have to estimate local observ-
ables corresponding to {Λ̂𝑋 , Λ̂𝑌 } and {Λ̂𝑋 , Λ̂𝑍 }. In the original setup (Kokail et al.,
2019), this task was achieved by measuring roughly 2𝑁 bases in total. We refer to
(Kokail et al., 2019, Appendix B and Appendix C) for further details and explana-
tion. We propose to replace this original approach by linear feature prediction with
classical shadows (Pauli measurements).

For classical shadows based on random Pauli measurements, every measurement
basis is an independent random 𝑋 , 𝑌 , or 𝑍 measurement for every qubit. This
randomized general-purpose procedure does not take into account the fact that we
want to measure a specific set of 𝑘-local observables given in Equation (4.76). The
derandomized version of classical shadows is based on the concept of pessimistic
estimators (Raghavan, 1988; J. Spencer, 1994) (see also (Wigderson and D. Xiao,
2008) for an application with quantum information context). It removes the original
randomness by utilizing the knowledge of this specific set of 𝑘-local observables.
When we throw a dice (or coin) to decide whether we want to measure in either, the
𝑋−, the 𝑌−, or the 𝑍−basis, the derandomized version would choose the measure-
ment basis (𝑋 , 𝑌 , or 𝑍) that would lead to the best expected performance on the set
of 𝑘-local observables given in Equation (4.76). The expected performance is com-
puted based on random Pauli basis measurements and the analysis in later sections.
The derandomized version of classical shadows would perform at least as well as the
original randomized version. Furthermore, due to the dependence on the specific
set of observables for choosing the measurement bases, the derandomized version
can exploit advantageous structures in the set of observables we want to measure.
As detailed in the main text, classical shadows based on random Pauli measure-
ments provide improvement only for larger system sizes (more than 50 qubits). A
derandomized version of classical shadows improves upon the randomized version
and leads to a substantial improvement in efficiency and scalability over a wide
range of system sizes. As an added benefit, derandomization can be completely
automated and does not depend on the concrete set of target observables. We refer
to https://github.com/momohuang/predicting-quantum-properties for
a (roughly linear time) algorithm that derandomizes random Pauli measurements

https://github.com/momohuang/predicting-quantum-properties
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for any collection of target observables with Pauli structure.

4.9 Additional computations and proofs for predicting linear functions
Background: Clifford circuits and the stabilizer formalism
Clifford circuits were introduced by Gottesman (Gottesman, 1997) and form an
indispensable tool in quantum information processing. Applications range from
quantum error correction (Michael A. Nielsen and Isaac L. Chuang, 2000), to
measurement-based quantum computation (Raussendorf and Hans J. Briegel, 2001;
H. J. Briegel et al., 2009) and randomized benchmarking (Emerson, Alicki, and
Życzkowski, 2005; Knill et al., 2008; Magesan, Gambetta, and Emerson, 2011). For
systems comprised of 𝑛 qubits, the Clifford group is generated by CNOT, Hadamard
and phase gates. This results in a finite group of cardinality 2O(𝑛2) that maps (tensor
products of) Pauli matrices to Pauli matrices upon conjugation. This underlying
structure allows for efficiently storing and simulating Clifford circuits on classical
computers – a result commonly known as Gottesman-Knill theorem. The 𝑛-qubit
Clifford group Cl(2𝑛) also comprises a unitary 3-design (Webb, 2016; Zhu, 2017;
Richard Kueng and David Gross, 2015). Sampling Clifford circuits uniformly at
random reproduces the first 3 moments of the full unitary group endowed with the
Haar measure. For 𝑘 = 1, 2, 3

E𝑈∼Cl(2𝑛)
(
𝑈𝑋𝑈†

)⊗𝑘
=

∫
𝑈 (𝑑)
(𝑈𝐴𝑈†)⊗𝑘d𝜇Haar(𝑈) for all 2𝑛 × 2𝑛 matrices 𝐴.

(4.77)

The right hand side of this equation can be evaluated explicitly by using techniques
from representation theory, see e.g. (D. Gross, Krahmer, and R. Kueng, 2015,
Sec. 3.5). This in turn yields closed-form expressions for Clifford averages of linear
and quadratic operator-valued functions. Choose a unit vector 𝑥 ∈ C2𝑛 and let H2𝑛

denote the space of Hermitian 2𝑛 × 2𝑛 matrices. Then,

E𝑈∼Cl(2𝑛)𝑈
† |𝑥⟩⟨𝑥 |𝑈†⟨𝑥 |𝑈𝐴𝑈† |𝑥⟩ (4.78)

=
𝐴 + tr(𝐴)I
(2𝑛 + 1)2𝑛 =

1
2𝑛
D1/(2𝑛+1) (𝐴) for 𝐴 ∈ H2𝑛 , (4.79)

E𝑈∼Cl(2𝑛)𝑈
† |𝑥⟩⟨𝑥 |𝑈⟨𝑥 |𝑈𝐵0𝑈

† |𝑥⟩⟨𝑥 |𝑈𝐶0𝑈
† |𝑥⟩ (4.80)

=
tr(𝐵0𝐶0)I + 𝐵0𝐶0 + 𝐶0𝐵0
(2𝑛 + 2) (2𝑛 + 1)2𝑛 for 𝐵0, 𝐶0 ∈ H2𝑛 traceless. (4.81)

Here,D𝑝 (𝐴) = 𝑝𝐴 + (1− 𝑝) tr(𝐴)2𝑛 I denotes a 𝑛-qubit depolarizing channel with loss
parameter 𝑝. Linear maps of this form can be readily inverted. In particular,

D−1
1/(2𝑛+1) (𝐴) = (2

𝑛 + 1)𝐴 − tr(𝐴)I for any 𝐴 ∈ H2𝑛 . (4.82)
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These closed-form expressions allow us to develop very concrete strategies and
rigorous bounds for classical shadows based on (global and local) Clifford circuits.

Performance of classical shadows based on random Clifford measurements
Proposition 3. Adopt a “random Clifford basis” measurement primitive, i.e. each
rotation 𝜌 ↦→ 𝑈𝜌𝑈† is chosen uniformly from the 𝑛 qubit Clifford group Cl(2𝑛).
Then, the associated classical shadow is

�̂� = (2𝑛 + 1)𝑈† |�̂�⟩⟨�̂� |𝑈 − I, (4.83)

where �̂� ∈ {0, 1}𝑛 is the observed computational basis measurement outcome (of
the rotated state𝑈𝜌𝑈†). Moreover, the norm defined in Eq. (4.12) is closely related
to the Hilbert-Schmidt norm:

tr
(
𝑂2

0

)
≤ ∥𝑂0∥2shadow ≤ 3tr

(
𝑂2

0

)
for any traceless 𝑂0 ∈ H2𝑛 . (4.84)

Note that passing from 𝑂 to its traceless part 𝑂0 = 𝑂 − tr(𝑂)
2𝑛 I is a contraction in

Hilbert-Schmidt norm:

tr
(
𝑂2

0

)
= tr(𝑂2) − tr(𝑂)2

2𝑛
≤ tr(𝑂2). (4.85)

Hence, we can safely replace the upper bound in Eq. (4.84) by 3tr(𝑂2)— the Hilbert
Schmidt norm (squared) of the original observable.

Proof. Eq. (4.79) readily provides a closed-form expression for the measurement
channel defined in Eq. (4.7):

M(𝜌) =
∑︁

𝑏∈{0,1}𝑛
E𝑈∼Cl(2𝑛) ⟨𝑏 |𝑈𝜌𝑈† |𝑏⟩𝑈† |𝑏⟩⟨𝑏 |𝑈 (4.86)

=
∑︁

𝑏∈{0,1}𝑛

1
2𝑛
D1/(2𝑛+1) (𝜌) = D1/(2𝑛+1) (𝜌). (4.87)

This depolarizing channel can be readily inverted, see Eq. (4.82). In particular,

�̂� =M−1
(
𝑈† |�̂�⟩⟨�̂� |𝑈

)
= (2𝑛 + 1)𝑈† |�̂�⟩⟨�̂� |𝑈 − I and M−1(𝑂0) = (2𝑛 + 1)𝑂0

(4.88)
for any traceless matrix 𝑂0 ∈ H2𝑛 . The latter reformulation considerably simplifies
the expression for the norm ∥𝑂0∥2shadow defined in Eq. (4.12). A slight reformulation
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allows us to furthermore capitalize on Eq. (4.81) to exactly compute this norm for
traceless observables:

∥𝑂0∥2shadow = max
𝜎 state

tr
(
𝜎

∑︁
𝑏∈{0,1}𝑛

E𝑈∼Cl(2𝑛)𝑈
† |𝑏⟩⟨𝑏 |𝑈⟨𝑏 |𝑈 (2𝑛 + 1)𝑂0𝑈

† |𝑏⟩2
)

= max
𝜎 state

tr
©«𝜎
(2𝑛 + 1)2

(
tr(𝑂2

0)I + 2𝑂2
0

)
(2𝑛 + 2) (2𝑛 + 1)2𝑛

ª®®¬ (4.89)

=
2𝑛 + 1
2𝑛 + 2

max
𝜎 state

(
tr(𝜎)tr(𝑂2

0) + 2tr
(
𝜎𝑂2

0

))
. (4.90)

To further simplify this expression, recall tr(𝜎) = 1 and note that

max
𝜎 state

tr(𝜎𝑂2
0) = ∥𝑂

2
0∥∞, (4.91)

where ∥ · ∥∞ denotes the spectral norm. The bound Eq. (4.84) then foloows from
the elementary relation between the spectral and Hilbert-Schmidt norms: ∥𝑂2

0∥∞ ≤
tr(𝑂2

0).

Performance of classical shadows based on random Pauli measurements
Proposition 4. Adopt a “random Pauli basis” measurement primitive, i.e. each
rotation 𝜌 ↦→ 𝑈𝜌𝑈† is a tensor product𝑈1 ⊗ · · · ⊗𝑈𝑛 of randomly selected single-
qubit Clifford gates 𝑈1, . . . ,𝑈𝑛 ∈ Cl(2). Then, the associated classical shadow
is

�̂� =

𝑛⊗
𝑗=1

(
3𝑈†

𝑗
|�̂� 𝑗 ⟩⟨�̂� 𝑗 |𝑈 𝑗 − I

)
(4.92)

where |�̂�⟩ = |�̂�1⟩ ⊗ · · · ⊗ |�̂�𝑛⟩ and �̂�1, . . . , �̂�𝑛 ∈ {0, 1}. (4.93)

Moreover, the norm defined in Eq. (4.12) respects locality. Suppose that 𝑂 ∈ H⊗𝑘2
only acts nontrivially on 𝑘-qubits, e.g. 𝑂 = �̃� ⊗ I⊗(𝑛−𝑘) with �̃� ∈ H⊗𝑘2 . Then
∥𝑂∥shadow = ∥�̃�∥shadow, where ∥�̃�∥shadow is the same norm, but for 𝑘-qubit systems.

Proof. Unitary rotation and computational basis measurements factorize completely
into tensor products. This insight allows us to decompose the measurement channel
M defined in Eq. (4.7) into a tensor product of single-qubit operations. For
elementary tensor products 𝑋1 ⊗ · · · ⊗ 𝑋𝑛 ∈ H⊗𝑛2 we can apply Eq. (4.79) separately
for each single-qubit action and infer

M (𝑋1 ⊗ · · · ⊗ 𝑋𝑛) =
𝑛⊗
𝑗=1

( ∑︁
𝑏 𝑗∈{0,1}

E𝑈 𝑗∼Cl(2)𝑈
†
𝑗
|𝑏⟩⟨𝑏 |𝑈 𝑗 ⟨𝑏 |𝑈 𝑗𝑋 𝑗𝑈

†
𝑗
|𝑏⟩

)
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=

𝑛⊗
𝑗=1

( ∑︁
𝑏 𝑗∈{0,1}

1
2
D1/(2+1) (𝜌 𝑗 )

)
= D⊗𝑛1/3 (𝑋1 ⊗ · · · ⊗ 𝑋𝑛) .

(4.94)

Linear extension to all of H⊗𝑛2 yields the following formula forM and its inverse:

M(𝑋) =
(
D1/3

)⊗𝑛 (𝑋) and M−1(𝑋) =
(
D−1

1/3

)⊗𝑛
(𝑋) for all 𝑋 ∈ H⊗𝑛2 ,

(4.95)
where D−1

1/3(𝑌 ) = 3𝑌 − tr(𝑌 )I according to Eq. (4.82). This formula readily yields
a closed-form expression for the classical shadow. Use

𝑈† |�̂�⟩⟨�̂� |𝑈 =

𝑛⊗
𝑗=1

𝑈 𝑗 |�̂� 𝑗 ⟩⟨�̂� 𝑗 |𝑈 𝑗 (4.96)

to conclude

�̂� =M−1
(
𝑈† |�̂�⟩⟨�̂� |𝑈

)
=

𝑛⊗
𝑗=1
D−1

1/3

(
𝑈
†
𝑗
|�̂� 𝑗 ⟩⟨�̂� 𝑗 |𝑈 𝑗

)
=

𝑛⊗
𝑗=1

(
3𝑈†

𝑗
|�̂� 𝑗 ⟩⟨�̂� 𝑗 |𝑈 − I

)
.

(4.97)
For the second claim, we exploit a key feature of depolarizing channels and their
inverses. The identity matrix is a fix-point, i.e. D−1

1/3(I) = I = D1/3(I). For 𝑘-local
observables, e.g. 𝑂 = �̃� ⊗ I⊗(𝑛−𝑘) , this feature ensures

M−1
(
�̃� ⊗ I⊗(𝑛−𝑘)

)
=

((
D−1

1/3

)⊗𝑘
(�̃�)

)
⊗ I⊗(𝑛−𝑘) = M̃−1(�̃�) ⊗ I⊗(𝑛−𝑘) , (4.98)

where M̃−1(𝑋) = (D−1
1/3)

⊗𝑘 (𝑋) denotes the inverse channel of a 𝑘-qubit local
Clifford measurement procedure. This observation allows us to compress the norm
(4.12) to the “active” subset of 𝑘 qubits. Exploit the tensor product structure
𝑈 = 𝑈1 ⊗ · · · ⊗ 𝑈𝑛 with𝑈𝑖 ∼ Cl(2) to conclude�̃� ⊗ I⊗(𝑛−𝑘)2

shadow

= max
𝜎: state

E𝑈∼Cl(2)⊗𝑛
∑︁

𝑏∈{0,1}𝑛
⟨𝑏 |𝑈𝜎𝑈† |𝑏⟩⟨𝑏 |𝑈M−1(𝑂 ⊗ I⊗(𝑛−𝑘)𝑈† |𝑏⟩2

= max
𝜎: state

E𝑈∼Cl(2)⊗𝑘
∑︁

𝑏∈{0,1}𝑘
⟨𝑏 |𝑈tr𝑘+1,...,𝑛 (𝜎)𝑈† |𝑏⟩⟨𝑏 |𝑈M̃−1(�̃�)𝑈† |𝑏⟩2, (4.99)

where tr𝑘+1,...,𝑛 (𝜎) denotes the partial trace over all “inactive” subsystems. Partial
traces preserve the space of all quantum states. So maximizing over all partial
traces tr𝑘+1,...,𝑛 (𝜎) is equivalent to maximizing over all 𝑘-qubit states and we exactly
recover the norm ∥�̃�∥2shadow on 𝑘 qubits. Finally, it is easy to check that the actual
location of the active 𝑘-qubit support of 𝑂 does not affect the argument.
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Recall that the (squared) norm ∥ · ∥2shadow is the most important figure of merit for
feature prediction with classical shadows. According to Theorem 9, max𝑖 ∥𝑂𝑖∥2shadow
determines the number of samples required to accurately predict a collection of
linear functions tr(𝑂1𝜌), . . . , tr(𝑂𝑀𝜌). Viewed from this angle, Proposition 4 has
profound consequences for predicting (collections of) local observables under the
local Clifford measurement primitive. For each local observable 𝑂𝑖, the norm
∥𝑂𝑖∥2shadow collapses to its active support, regardless of its precise location. The size
of these supports is governed by the locality alone, not the total number of qubits!

It is instructive to illustrate this point with a simple special case first.

Lemma 9. Let 𝑂 be a single 𝑘-local Pauli observable, e.g. 𝑂 = 𝑃𝑝1 ⊗ · · · ⊗ 𝑃𝑝𝑘 ⊗
I⊗(𝑛−𝑘) , where 𝑝 𝑗 ∈ {𝑋,𝑌, 𝑍}. Then, ∥𝑂∥2shadow = 3𝑘 , for any choice of the 𝑘 qubits
where nontrivial Pauli matrices act. This scaling can be generalized to arbitrary
elementary tensor products supported on 𝑘 qubits, e.g. 𝑂 = 𝑂1⊗ · · · ⊗𝑂𝑘 ⊗ I⊗(𝑛−𝑘) .

Proof. Pauli matrices are traceless and obey, 𝑃2
𝑝 𝑗

= I and D−1
1/3(𝑃𝑝 𝑗 ) = 3𝑃𝑝 𝑗 for

each 𝑝 𝑗 ∈ {𝑋,𝑌, 𝑍}. Proposition 4 and the tensor product structure of the problem
then ensure

∥𝑂∥2shadow

=∥𝑃𝑝1 ⊗ · · · ⊗ 𝑃𝑝𝑘 ∥2shadow

= max
𝜎: state

E𝑈∼Cl(2)⊗𝑘
∑︁

𝑏∈{0,1}𝑛
⟨𝑏 |𝑈†𝜎𝑈 |𝑏⟩⟨𝑏 |𝑈 (D−1

1/3)
⊗𝑘 (𝑃1 ⊗ · · · ⊗ 𝑃𝑘 )𝑈† |𝑏⟩2

= max
𝜎: state

tr
(
𝜎

𝑘⊗
𝑗=1

( ∑︁
𝑏 𝑗∈{0,1}

E𝑈 𝑗∼Cl(2)𝑈
† |𝑏 𝑗 ⟩⟨𝑏 𝑗 |𝑈⟨𝑏 𝑗 |𝑈3𝑃 𝑗𝑈†𝑈 |𝑏 𝑗 ⟩2

) )
= max
𝜎: state

tr
(
𝜎

𝑘⊗
𝑗=1

(
9

∑︁
𝑏∈{0,1}

tr
(
𝑃2
𝑗

)
I + 2𝑃2

𝑗

(2 + 2) (2 + 1)2
) )

= max
𝜎: state

tr
(
𝜎

𝑘⊗
𝑗=1

3I
)
= 3𝑘 , (4.100)

where we have used Eq. (4.81) to explicitly evaluate the single qubit Clifford aver-
ages.

We leave the extension to more general tensor product observables as an exercise
for the dedicated reader.

The norm expression in Lemma 9 scales exponentially in the locality 𝑘 , but is
independent of the total number of qubits 𝑛. The compression property (Prop. 4)
suggests that this desirable feature should extend to general 𝑘-local observables.
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And, indeed, it is relatively straightforward to obtain crude upper bounds that scale
with 32𝑘 . The additional factor of two, however, effectively doubles the locality
parameter and can render conservative feature prediction with classical shadows
prohibitively expensive in concrete applications.

The main result of this section considerably improves upon these crude bounds and
almost reproduces the (tight) scaling associated with 𝑘-local Pauli observables.

Proposition 5. Let 𝑂 be a 𝑘-local observable, e.g. 𝑂 = �̃� ⊗ I⊗(𝑛−𝑘) with �̃� ∈ H⊗𝑘2
Then,

∥𝑂∥2shadow ≤ 4𝑘 ∥𝑂∥2∞, where ∥ · ∥∞ denotes the spectral/operator norm.
(4.101)

The same bound holds for the shadow norm of the traceless part of 𝑂: ∥𝑂 −
tr(𝑂)

2𝑛 I∥
2
shadow ≤ 4𝑘 ∥𝑂∥2∞.

The proof is considerably more technical than the proof of Lemma 9 and relies on
the following auxiliary result.

Lemma 10. Fix two 𝑘-qubit Pauli observables 𝑃p = 𝑃𝑝1 ⊗ · · · ⊗ 𝑃𝑝𝑘 , 𝑃q = 𝑃𝑞1 ⊗
· · · ⊗ 𝑃𝑞𝑘 with p, q ∈ {I, 𝑋,𝑌 , 𝑍}𝑘 . Then, the following is true for any state 𝜎:

E𝑈∼Cl(2)⊗𝑘
∑︁

𝑏∈{0,1}𝑘
⟨𝑏 |𝑈𝜎𝑈† |𝑏⟩⟨𝑏 |𝑈 (D−1

1/3)
⊗𝑘 (𝑃p)𝑈† |𝑏⟩⟨𝑏 |𝑈 (D−1

1/3)
⊗𝑘 (𝑃q)𝑈† |𝑏⟩

(4.102)

= 𝑓 (p, q)tr
(
𝜎𝑃p𝑃q

)
, (4.103)

where 𝑓 (p, q) = 0 whenever there exists an index 𝑖 such that 𝑝𝑖 ≠ 𝑞𝑖 and 𝑝𝑖, 𝑞𝑖 ≠ I.
Otherwise, 𝑓 (p, q) = 3𝑠, where 𝑠 is the number of non-identity Pauli indices that
match (𝑠 = |{𝑖 : 𝑝𝑖 = 𝑞𝑖, 𝑝𝑖 ≠ I}|).

This combinatorial formula follows from a straightforward, but somewhat cumber-
some, case-by-case analysis based on the (single-qubit) relations (4.79) and (4.81).
We include a proof at the end of this subsection.

Proof of Proposition 5. Proposition 4 allows us to restrict our attention to the rel-
evant 𝑘-qubit region on which �̃� ∈ H⊗𝑘2 acts nontrivially. Next, expand �̃� in the
(tensor product) Pauli basis, i.e. �̃� =

∑
p 𝛼p𝑃p with p ∈ {I, 𝑋,𝑌 , 𝑍}𝑘 . Fix an

arbitrary 𝑘-qubit state 𝜎 and use Lemma 10 to conclude

∥�̃�∥2shadow (4.104)
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= max
𝜎 state

E𝑈∼Cl(2)⊗𝑘
∑︁

𝑏∈{0,1}𝑘
⟨𝑏 |𝑈𝜎𝑈† |𝑏⟩⟨𝑏 |𝑈 (D−1

1/3)
⊗𝑘 (�̃�)𝑈† |𝑏⟩2

= max
𝜎 state

∑︁
p,q

𝛼p𝛼qE𝑈∼Cl(2)⊗𝑘
∑︁

𝑏∈{0,1}𝑘
⟨𝑏 |𝑈𝜎𝑈† |𝑏⟩ (4.105)

⟨𝑏 |𝑈 (D−1
1/3)

⊗𝑘 (𝑃p)𝑈† |𝑏⟩⟨𝑏 |𝑈 (D−1
1/3)

⊗𝑘 (𝑃q)𝑈† |𝑏⟩

= max
𝜎 state

∑︁
p,q

𝛼p𝛼q 𝑓 (p, q)tr
(
𝜎𝑃p𝑃q

)
= max
𝜎 state

tr

(
𝜎

∑︁
p,q

𝛼p𝛼q 𝑓 (p, q)tr
(
𝜎𝑃p𝑃q

))
=

∑︁p,q 𝛼p𝛼q 𝑓 (p, q)tr𝑃p𝑃q


∞

, (4.106)

where 𝑓 (p, q) is the combinatorial function defined in Lemma 10. The last equality
follows from the dual characterization of the spectral norm:

∥𝐴∥∞ = max
𝜎: state

tr(𝜎𝐴) (4.107)

for any positive semidefinite matrix 𝐴.

We can further simplify this expression by introducing a partial order on Pauli strings
q, s ∈ {I, 𝑋,𝑌 , 𝑍}𝑛. We write q ▷ s if it is possible to obtain q from s by replacing
some local non-identity Paulis with I. Moreover, let |q| = |{𝑖 : 𝑞𝑖 ≠ I}| denote the
number of non-identity Pauli’s in the string q. Then,∑︁p,q 𝛼p𝛼q 𝑓 (p, q)tr𝑃p𝑃q


∞

=

 1
3𝑘

∑︁
s∈{𝑋,𝑌,𝑍}𝑘

(∑︁
q▷s

3|q|𝛼q𝑃q

)2

∞

(4.108)

≤ 1
3𝑘

∑︁
s∈{𝑋,𝑌,𝑍}𝑘

(∑︁
q▷s

3|q|𝛼q𝑃q

)2

, (4.109)

where we have used ∥𝑃q∥∞ = 1 for all Pauli strings. Next, note that for fixed
s ∈ {𝑋,𝑌, 𝑍}𝑘 , ∑︁

q▷s
3|q| = 3𝑘 + 𝑘3𝑘−1 +

(
𝑘

2

)
3𝑘−2 + · · · + 1 = 4𝑘 . (4.110)

Together with Cauchy-Schwarz, this numerical insight implies

1
3𝑘

∑︁
s∈{𝑋,𝑌,𝑍}𝑘

(∑︁
q▷s

3|q| |𝛼q |
)2

≤ 1
3𝑘

∑︁
s∈{𝑋,𝑌,𝑍}𝑘

(∑︁
q▷s

3|q|
) (∑︁

q▷s
3|q| |𝛼2

p

)
(4.111)

= 4𝑘
∑︁

s∈{𝑋,𝑌,𝑍}

∑︁
q▷s

3|q|−𝑘 |𝛼q |2. (4.112)
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Finally, observe that every q ∈ {I, 𝑋,𝑌 , 𝑍}𝑘 is dominated by exactly 3𝑘−|q| different
strings s ∈ {𝑋,𝑌, 𝑍}𝑘 . This ensures

4𝑘
∑︁

s∈{𝑋,𝑌,𝑍}
3|q|−𝑘 |𝛼q |2 = 4𝑘

∑︁
q∈{I,𝑋,𝑌 ,𝑍}

|𝛼q |2 = 4𝑘2−𝑘 ∥�̃�∥22, (4.113)

because Pauli matrices are proportional to an orthonormal basis ofH⊗𝑘2 :
∑

q |𝛼q |2 =∑
q
��2−𝑘 tr(𝜎q�̃�

) ��2 = 2−𝑘 ∥�̃�∥22. The general claim then follows from the fundamental
relation among Schatten norms: ∥�̃�∥22 ≤ 2𝑘 ∥�̃�∥2∞ = 2𝑘 ∥𝑂∥2∞.

The bound on traceless parts 𝑂0 of observables is nearly analogous, because the
transition from 𝑂 to 𝑂0 respects locality. E.g. 𝑂 = �̃� ⊗ I⊗(𝑛−𝑘) obeys 𝑂0 =

�̃�0 ⊗ I⊗(𝑛−𝑘) . To get the same bound, we use that this transition is a contraction in
Hilbert-Schmidt norm:

∥𝑂0∥2shadow = ∥�̃�0∥2shadow ≤ 4𝑘2−𝑘 ∥�̃�0∥22 ≤ 4𝑘2−𝑘 ∥�̃�∥22 ≤ 4𝑘 ∥�̃�∥2∞ = ∥𝑂∥2∞.

This concluded the proof.

Proof of Lemma 10. Since Pauli observables decompose nicely into tensor prod-
ucts, this claim readily follows from extending a single-qubit argument. Note that
D−1

1/3(𝑃𝑝) = 3𝑃𝑝 for 𝑝 ≠ I and D−1
1/3(I) = I. It is straightforward to evaluate the

single-qubit expression for the trivial case 𝑃𝑝 = 𝑃𝑞 = I. Fix a state 𝜎 and compute

E𝑈∼Cl(2)
∑︁

𝑏∈{0,1}
⟨𝑏 |𝑈𝜎𝑈† |𝑏⟩⟨𝑏 |𝑈D−1

1/3(I)𝑈
† |𝑏⟩2 = E𝑈∼Cl(2)

∑︁
𝑏∈{0,1}

⟨𝑏 |𝑈𝜎𝑈† |𝑏⟩

(4.114)

= E𝑈∼Cl(2)tr(𝜎) = tr
(
𝜎I2

)
. (4.115)

Next, suppose 𝑃𝑞 = I, but 𝑃𝑝 ≠ I. This single-qubit case is covered by Eq. (4.79):

E𝑈∼Cl(2)
∑︁

𝑏∈{0,1}
⟨𝑏 |𝑈𝜎𝑈† |𝑏⟩⟨𝑏 |𝑈D−1

1/3(𝑃𝑝)𝑈
† |𝑏⟩⟨𝑏 |𝑈D−1

1/3I𝑈
† |𝑏⟩

=tr
(
𝜎

∑︁
𝑏∈{0,1}

𝑈† |𝑏⟩⟨𝑏 |𝑈⟨𝑏 |𝑈3𝑃𝑝𝑈† |𝑏⟩
)
= 3tr

(
𝜎

∑︁
𝑏∈{0,1}

1
2
D1/3(𝑃𝑝)

)
= tr

(
𝜎𝑃𝑝I

)
,

(4.116)

because D1/3(𝑃𝑝) = 1
3𝑃𝑝. The case 𝑃𝑝 = I and 𝑃𝑞 ≠ I leads to analogous results.

Finally, suppose that both 𝑃𝑝, 𝑃𝑞 ≠ I. By assumptionD−1
1/3(𝑃𝑝),D

−1
1/3(𝑃𝑞) and both

matrices are traceless. Hence, we can resort to Eq. (4.81) to conclude

E𝑈∼Cl(2)⊗𝑛
∑︁

𝑏∈{0,1}𝑘
⟨𝑏 |𝑈𝜎𝑈† |𝑏⟩⟨𝑏 |𝑈 (D−1

1/3)
⊗𝑘 (𝑃𝑝)𝑈† |𝑏⟩⟨𝑏 |𝑈 (D−1

1/3)
⊗𝑘 (𝑃𝑞)𝑈† |𝑏⟩
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=tr
(
𝜎

∑︁
𝑏∈{0,1}

𝑈† |𝑏⟩⟨𝑏 |𝑈⟨𝑏 |𝑈3𝑃𝑝𝑈† |𝑏⟩⟨𝑏 |𝑈3𝑃𝑞𝑈† |𝑏⟩
)

(4.117)

=9tr
(
𝜎

∑︁
𝑏∈{0,1}

tr(𝑃𝑝𝑃𝑞)I + 𝑃𝑝𝑃𝑞 + 𝑃𝑞𝑃𝑝
(2 + 2) (2 + 1)2

)
(4.118)

for any state 𝜎. Pauli matrices are orthogonal (tr(𝑃𝑝𝑃𝑞) = 2𝛿𝑝,𝑞) and anticommute
(𝑃𝑝𝑃𝑞 + 𝑃𝑞𝑃𝑝 = 2𝛿𝑝,𝑞). This implies that the above expression vanishes whenever
𝑝 ≠ 𝑞. If 𝑝 = 𝑞 it evaluates to 3tr(𝜎𝑃𝑝𝑃𝑞) and we can conclude that the single
qubit average always equals

𝑓 (𝑝, 𝑞)tr
(
𝜎𝑃𝑝𝑃𝑞

)
where 𝑓 (𝑝, 𝑞) =


1 if 𝑝 = I or 𝑞 = I,

3 if 𝑝 = 𝑞 ≠ I,

0 else.

(4.119)

The statement then follows from extending this formula to tensor products of 𝑘 Pauli
matrices.

4.10 Additional computations and proofs for predicting nonlinear functions
We focus on the particularly relevant task of predicting quadratic functions with
classical shadows, using

𝑜(𝑁, 1) = 1
𝑁 (𝑁 − 1)

∑︁
𝑗≠𝑙

tr(𝑂�̂�𝑖 ⊗ �̂� 𝑗 ) to predict tr (𝑂𝜌 ⊗ 𝜌) = E 𝑜(𝑁, 1).

(4.120)

General variance bound

Lemma 11 (Variance). The variance associated with the estimator �̂� (𝑁, 1) obeys

Var[𝑜(𝑁, 1)] (4.121)

=

(
𝑁

2

)−1 (
2(𝑁 − 2) Var[tr(𝑂𝑠 �̂�1 ⊗ 𝜌)] + Var[tr(𝑂𝑠 �̂�1 ⊗ �̂�2)]

)
≤ 4
𝑁2 Var[tr(𝑂�̂�1 ⊗ �̂�2)] +

2
𝑁

Var[tr(𝑂�̂�1 ⊗ 𝜌)] +
2
𝑁

Var[tr(𝑂𝜌 ⊗ �̂�1)], (4.122)

where 𝑂𝑠 = (𝑂 + 𝑆𝑂𝑆)/2 is the symmetrized version of 𝑂 and 𝑆 denotes the swap
operator ( 𝑆 |𝜓⟩ ⊗ |𝜙⟩ = |𝜙⟩ ⊗ |𝜓⟩).

Proof. First, note that 𝑜(𝑁, 1) and the target tr(𝑂𝜌 ⊗ 𝜌) are invariant under sym-
metrization. This ensures

𝑜(𝑁, 1) =
(
𝑁

2

) ∑︁
𝑖< 𝑗

tr
(
𝑂𝑠⊗̂ �̂� 𝑗

)
and moreover tr (𝑂𝜌 ⊗ 𝜌) = tr (𝑂𝑠𝜌 ⊗ 𝜌) .

(4.123)
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Thus, we may without loss replace the original observable 𝑂 by its symmetrized
version 𝑂𝑠. Next, we expand the definition of the variance:

Var[𝑜(𝑁, 1)] =E
[
(𝑜(𝑁, 1) − tr(𝑂𝑠𝜌 ⊗ 𝜌))2

]
=

(
𝑁

2

)−2 ∑︁
𝑖< 𝑗

∑︁
𝑘<𝑙

(
E

[
tr(𝑂𝑠 �̂�𝑖 ⊗ �̂� 𝑗 ) tr(𝑂𝑠 �̂�𝑘 ⊗ �̂�𝑙)

]
− tr(𝑂𝑠𝜌 ⊗ 𝜌)2

)
=

(
𝑁

2

)−2 ∑︁
𝑖< 𝑗

E
[

tr(𝑂𝑠 �̂�𝑖 ⊗ �̂� 𝑗 )2
]
− tr(𝑂𝑠𝜌 ⊗ 𝜌)2

)
+2

(
𝑁

2

)−2 ∑︁
𝑖< 𝑗

∑︁
𝑙≠𝑖, 𝑗

(
E

[
tr(𝑂𝑠 �̂�𝑖 ⊗ �̂� 𝑗 ) tr(𝑂𝑠 �̂�𝑖 ⊗ �̂�𝑙)

]
− tr(𝑂𝑠𝜌 ⊗ 𝜌)2

)
=

(
𝑁

2

)−1
Var[tr(𝑂𝑠 �̂�1 ⊗ �̂�2)] +

(
𝑁

2

)−1
2(𝑁 − 2) Var[tr(𝑂𝑠 �̂�1 ⊗ 𝜌)] .

(4.124)

We can use the inequality Var[(𝐴 + 𝐵)/2] ≤ (Var[𝐴] + Var[𝐵])/2 (for any pair of
random variables 𝐴, 𝐵) to obtain a simplified upper bound:

Var[𝑜(𝑁, 1)] (4.125)

=

(
𝑁

2

)−1
Var[tr(𝑂𝑠 �̂�1 ⊗ �̂�2)] +

(
𝑁

2

)−1
2(𝑁 − 2) Var[tr(𝑂𝑠 �̂�1 ⊗ 𝜌)]

≤ 4
𝑁2 Var[tr(𝑂𝑠 �̂�1 ⊗ �̂�2)] +

4
𝑁

Var[tr(𝑂𝑠 �̂�1 ⊗ 𝜌)]

≤ 4
𝑁2 Var[tr(𝑂�̂�1 ⊗ �̂�2)] +

2
𝑁

Var[tr(𝑂�̂�1 ⊗ 𝜌)] +
2
𝑁

Var[tr(𝑂𝜌 ⊗ �̂�1)] .

(4.126)

Concrete variance bounds for random Pauli measurements

Proposition 6. Suppose that 𝑂 describes a quadratic function tr(𝑂𝜌 ⊗ 𝜌) that acts
on at most 𝑘-qubits in the first system and at most 𝑘-qubits in the second system and
obeys ∥𝑂∥∞ ≥ 1. Then,

max
(
Var[tr(𝑂𝜌 ⊗ �̂�1)],Var[tr(𝑂�̂�1 ⊗ 𝜌)],

√︁
Var[tr(𝑂�̂�1 ⊗ �̂�2)]

)
≤ 4𝑘 ∥𝑂∥2∞ .

(4.127)

Proof. Because of the single-qubit tensor product structure in the random Pauli
measurement and the inverted quantum channel M−1

𝑃
, the tensor product of two
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snapshots �̂�1 ⊗ �̂�2 of the unknown quantum state 𝜌 may be viewed as a single
snapshot of the tensor product state 𝜌 ⊗ 𝜌:

�̂�1 ⊗ �̂�2 =

𝑛⊗
𝑖=1

(
M−1

1 (𝑈
(𝑖)
1 |𝑏

(𝑖)
1 ⟩⟨𝑏

(𝑖)
1 | (𝑈

(𝑖)
1 )
†)

) 𝑛⊗
𝑖=1

(
M−1

1 (𝑈
(𝑖)
2 |𝑏

(𝑖)
2 ⟩⟨𝑏

(𝑖)
2 | (𝑈

(𝑖)
2 )
†)

)
=

2𝑛⊗
𝑖=1
M−1

1 (𝑈
(𝑖) |𝑏 (𝑖)⟩⟨𝑏 (𝑖) | (𝑈 (𝑖))†) =: �̂�. (4.128)

Hence tr(𝑂�̂�1 ⊗ �̂�2) = tr(𝑂�̂�) and, by assumption, 𝑂 is an observable that acts on
𝑘 + 𝑘 = 2𝑘 qubits only. The claim then follows from invoking the variance bounds
for linear feature prediction presented in Proposition 5.

Concrete variance bounds for random Clifford measurements
In contrast to the Pauli basis setup, variances for quadratic feature prediction with
Clifford basis measurements cannot be directly reduced to its linear counterpart.
Nonetheless, a more involved direct analysis does produces bounds that do closely
resemble the linear base case.

Proposition 7. Suppose that 𝑂 describes a quadratic function tr(𝑂𝜌 ⊗ 𝜌) and
obeys tr(𝑂2) ≥ 1. Then, the variance associated with classical shadow estimation
(random Clifford measurements) obeys

max
(

Var[tr(𝑂𝜌 ⊗ �̂�1)],Var[tr(𝑂�̂�1 ⊗ 𝜌)], (4.129)√︁
Var[tr(𝑂�̂�1 ⊗ �̂�2)]

)
≤

√︁
9 + 6/2𝑛 tr(𝑂2). (4.130)

The pre-factor
√︁

9 + 6/2𝑛 converges to the constant 3 at an exponential rate in system
size.

This claim is based on the following technical Lemma and insights regarding linear
feature prediction.

Lemma 12. Suppose that 𝑂 describes a quadratic function tr(𝑂𝜌 ⊗ 𝜌). Then,

Var[tr(𝑂�̂�1 ⊗ �̂�2)] ≤ 9 tr(𝑂2) + 6
2𝑛
∥𝑂∥2∞. (4.131)

Proof of Proposition 7. The variance of tr(𝑂𝜌 ⊗ �̂�1) is equivalent to the variance
of tr(�̃�𝜌 �̂�), where �̃�𝜌 = tr1 (𝜌 ⊗ I𝑂) describes a linear function. According to
Proposition 3, this variance term obeys

Var [tr (𝑂𝜌 ⊗ �̂�)] = Var
[
tr

(
�̃�𝜌 �̂�1

) ]
≤ 3tr

(
�̃�2
𝜌

)
= tr

(
tr1 (𝜌 ⊗ I𝑂)2

)
≤ 3tr(𝑂2),

(4.132)



110

because tr(𝜌) = 1 and tr(𝜌2) ≤ 1. A similar argument takes care of the second
variance contribution Var [tr (𝑂�̂�1 ⊗ 𝜌)]. Lemma 12 supplies a bound for the
square of the final contribution. By assumption

√︁
tr(𝑂2) ≤ tr(𝑂2) and the claim

follows.

The remainder of this section is devoted to proving Lemma 12. Unfortunately,
there does not seem to be a direct way to relate this task to variance bounds for
linear feature prediction. Instead, we base our analysis on the 3-design property
(4.81) of Clifford circuits and a reformulation of this feature in terms of permutation
operators. This strategy is inspired by the approach developed in (Brandão et al.,
2019), but conceptually and technically somewhat simpler. We believe that similar
arguments extend to variances associated with higher order polynomials, but do
refrain from a detailed analysis. Instead, we carefully outline the main ideas and
leave a rigorous extension to future work.

Problem statement and reformulation: We will ignore symmetrization (which
can only make the variance smaller) and focus on bounding the variance of

tr (𝑂�̂�1 ⊗ �̂�2) , (4.133)

where each �̂�𝑖 is an independent classical shadow. To simplify notation, we set
𝑑 = 2𝑛 and define the following traceless variants of 𝑂:

𝑂
(1)
0 =tr2(𝑂) −

tr (𝑂)
𝑑
I, and 𝑂

(2)
0 = tr1(𝑂) −

tr(𝑂)
𝑑
I, as well as

𝑂
(1,2)
0 =𝑂 − tr2(𝑂) ⊗

I

𝑑
− I
𝑑
⊗ tr1(𝑂) + tr(𝑂) I

𝑑
⊗ I
𝑑
. (4.134)

Here, tr𝑎 (𝑂) with 𝑎 = 1, 2 denotes the partial trace over the first and second system,
respectively. All three operators are traceless (recall tr (tr𝑎 (𝑂)) = tr(𝑂)) and the
final (bipartite) operator has the additional property that both partial traces vanish
identically: tr𝑎

(
𝑂
(1,2)
0

)
= 0.

Proposition 3 asserts �̂�𝑎 = (𝑑 + 1)𝑈†𝑎 |�̂�𝑎⟩⟨�̂�𝑎 |𝑈𝑎 − I, where each 𝑈𝑎 ∈ Cl(𝑑) is a
random Clifford unitary and �̂�𝑎 ∈ {0, 1}𝑛 is the outcome of a computational basis
measurement. These explicit formulas allow us to decompose the expression of
interest in the following fashion:

tr (𝑂�̂�1 ⊗ �̂�2) =(𝑑 + 1)2tr
(
𝑂
(1,2)
0 𝑈

†
1 |�̂�1⟩⟨�̂�1 |𝑈1 ⊗ 𝑈†2 |�̂�1⟩⟨�̂�2 |𝑈2

)
+ tr(𝑂)2

𝑑2
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+𝑑 + 1
𝑑

tr
(
𝑂
(1)
0 𝑈

†
1 |�̂�1⟩⟨�̂�1 |𝑈1

)
+ 𝑑 + 1

𝑑
tr

(
𝑂
(2)
0 𝑈

†
2 |�̂�2⟩⟨�̂�2 |𝑈2

)
.

(4.135)

The variance corresponds to the expected square of this expression. The second
term is constant and does not contribute. We analyze the remaining terms on a
case-by case basis.

Linear terms: The third and fourth terms in Eq. (4.135) are linear feature functions
in one classical shadow only. Their (squared) contribution to the overall variance is
characterized by Proposition 3:

E

[(
𝑑 + 1
𝑑

tr
(
𝑂
(𝑎)
0 𝑈†𝑎 |�̂�𝑎⟩⟨�̂�𝑎 |𝑈𝑎

))2
]
≤ 3
𝑑2

𝑂 (𝑎)0

2

2
for 𝑎 = 1, 2. (4.136)

Both bounds can be related to the Hilbert-Schmidt norm (squared) of the original
observable:

3
𝑑2

𝑂 (𝑎)0

2

2
≤ 3
𝑑2 ∥tr𝑎 (𝑂)∥

2
2 ≤ 3∥𝑂∥22 = 3tr

(
𝑂2

)
. (4.137)

Leading-order term: We need to bound

E
[
(𝑑 + 1)4tr

(
𝑂
(1,2)
0 𝑈

†
1 |�̂�1⟩⟨�̂�1 |𝑈1 ⊗ 𝑈†2 |�̂�2⟩⟨�̂�2 |𝑈2

)2 ]
, (4.138)

where 𝑂 (1,2)0 has the special property that both partial traces vanish identically:
tr𝑎

(
𝑂
(1,2)
0

)
= 0 for 𝑎 = 1, 2. Moreover, the Hilbert-Schmidt norm (squared) of this

operator factorizes nicely:𝑂 (1,2)0

2

2
= ∥𝑂∥22 −

1
𝑑

𝑂 (1)0

2
2 −

𝑂 (2)0

2
2 −

tr(𝑂)2
𝑑2 . (4.139)

Not only is this expression bounded by the original Hilbert-Schmidt norm ∥𝑂∥22.
The norms of partial traces also feature explicitly with a minus sign. This will allow
us to fully counter-balance the variance contributions (4.137) from the linear terms.

Next, we use the 3-design property (4.77) of Clifford circuits in dimension 𝑑 = 2𝑛:

E𝑈𝑎∼Cl(𝑑)

[(
𝑈†𝑎 |𝑏𝑎⟩⟨𝑏𝑎 |𝑈𝑎

)⊗3
]
=

(
𝑑 + 2

3

)−1
𝑃∨3 , (4.140)

where 𝑃∨3 is the projector onto the totally symmetric subspace of C𝑑 ⊗ C𝑑 ⊗ C𝑑 .
This formula implies

E

[
(𝑑 + 1)4tr

(
𝑂
(1,2)
0 𝑈

†
1 |�̂�1⟩⟨�̂�1 |𝑈1 ⊗ 𝑈†2 |�̂�2⟩⟨�̂�2 |𝑈2

)2
]

(4.141)
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≤ tr
(
𝑂
(1,2)
0 ⊗ 𝑂 (1,2)0 ⊗ 𝜌 ⊗ 𝜌 𝑃(odd)

∨3 ⊗ 𝑃(even)
∨3

)
, (4.142)

where the superscripts “even” and “odd” indicate on which subset of tensor factors
the projectors act.

Next, we exploit the fact that symmetric projectors can be decomposed into permu-
tation operators: (3!)𝑃∨3 =

∑
𝜋∈𝑆3 𝑊𝜋, where 𝑆3 is the group of all six permutations

of three elements and the permutation operators act like 𝑊𝜋 |𝜓1⟩ ⊗ |𝜓2⟩ ⊗ |𝜓3⟩ =
|𝜓𝜋−1 (1)⟩ ⊗ |𝜓𝜋−1 (2)⟩ ⊗ |𝜓𝜋−1 (3)⟩:

tr
(
𝑂
(1,2)
0 ⊗ 𝑂 (1,2)0 ⊗ 𝜌 ⊗ 𝜌 𝑃(odd)

∨3 ⊗ 𝑃(even)
∨3

)
(4.143)

=
∑︁
𝜋,𝜏∈𝑆3

tr
(
𝑂
(1,2)
0 ⊗ 𝑂 (1,2)0 ⊗ 𝜌 ⊗ 𝜌 𝑊 (odd)

𝜋 ⊗𝑊 (even)
𝜏

)
. (4.144)

The specific structure of 𝑂 (1,2)0 implies that several contributions must vanish. Per-
mutations that have either 1 or 2 as a fix-point lead to a partial trace of 𝑂 (1,2)0
that evaluates to zero. There are only three permutations that do not have such
fix-points: The flip (1, 2, 3) ↦→ (2, 1, 3) and the two cycles (1, 2, 3) ↦→ (3, 1, 2),
(1, 2, 3) ↦→ (2, 3, 1). There are in total 9 = 32 potential combinations of such
permutations. Each of them results in a trace expression that can be upper-bounded
by Hilbert-Schmidt norms. For instance the pair flip and flip produces

tr
(
𝑂
(1,2)
0 𝑂

(1,2)
0

)
tr(𝜌)2 =

𝑂 (1,2)0

2

2
. (4.145)

All other 8 contributions can also be bounded by this expression and we conclude

E

[
(𝑑 + 1)4tr

(
𝑂
(1,2)
0 𝑈

†
1 |�̂�1⟩⟨�̂�1 |𝑈1 ⊗ 𝑈†2 |�̂�2⟩⟨�̂�2 |𝑈2

)2
]
≤ 9

𝑂 (1,2)0

2

2
(4.146)

Bounds on cross-terms: Cross-terms are considerably easier to evaluate, because
one (or both) random matrices only feature linearly. We can use E

[
𝑈
†
𝑎 |�̂�𝑎⟩⟨�̂�𝑎 |𝑈𝑎

]
=

D1/(𝑑+1) (𝜌) = 𝜌+I
𝑑+1 to effectively get rid of the linear contribution. For instance,(

𝑑 + 1
𝑑

)2
E

[ ∏
𝑎=1,2

tr
(
𝑂
(1)
0 𝑈†𝑎 |�̂�𝑎⟩⟨�̂�𝑎 |𝑈𝑎

)]
(4.147)

=
1
𝑑2 tr

(
𝑂
(1)
0 𝜌

)
tr

(
𝑂
(2)
0 𝜌

)
≤ 1

2𝑑2

(
∥𝑂 (1)0 ∥

2
∞ + ∥𝑂

(2)
0 ∥

2
∞

)
, (4.148)

where ∥ · ∥∞ denotes the operator norm. Cross terms that do feature the leading order
term require slightly more work but can be addressed in a similar fashion. Using
linearity in one snapshot reduces the expression to an expectation of a quadratic
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function in one snapshot only. The remaining computation is similar to the proof of
Proposition 3 and yields

(𝑑 + 1)3
𝑑

E
[
tr

(
𝑂
(1,2)
0 𝑈

†
1 |�̂�1⟩⟨�̂�1 |𝑈1 ⊗ 𝑈†2 |�̂�2⟩⟨�̂�2 |𝑈2

)
tr

(
𝑂
(𝑎)
0 𝑈†𝑎 |�̂�𝑎⟩⟨�̂�𝑎 |𝑈𝑎

)]
(4.149)

≤ 3
2𝑑2

(
∥�̃� (𝑎)𝜌 ∥22 + ∥𝑂

(𝑎)
0 ∥

2
2

)
, (4.150)

for 𝑎 = 1, 2, as well as �̃� (1)𝜌 = tr2 (I ⊗ 𝜌𝑂) and �̃� (2)𝜌 = tr1 (𝜌 ⊗ I𝑂), respectively.

Full variance bound: We are now ready to combine all individual bounds to
control the full variance:

Var [𝑜] (4.151)

≤E
(
(𝑑 + 1)2tr

(
𝑂
(1,2)
0 𝑈

†
1 |�̂�1⟩⟨�̂�1 |𝑈1 ⊗ 𝑈†2 |�̂�2⟩⟨�̂�2 |𝑈2

)
+

∑︁
𝑎=1,2

𝑑 + 1
𝑑

tr
(
𝑂
(𝑎)
0 𝑈†𝑎 |�̂�𝑎⟩⟨�̂�𝑎 |𝑈𝑎

) )2

≤9∥𝑂 (1,2)0 ∥22 +
6

2𝑑2

(
∥tr2 (I ⊗ 𝜌𝑂) ∥22 + ∥𝑂

(1)
0 ∥

2
2

)
+ 6

2𝑑2

(
∥tr1 (𝜌 ⊗ I𝑂) ∥22

)
+ 3
𝑑2 ∥𝑂

(1)
0 ∥

2
2 +

3
𝑑2 ∥𝑂
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0 ∥

2
2 +

1
2𝑑2

(
∥𝑂 (1)0 ∥

2
∞ + ∥𝑂

(2)
0 ∥

2
∞

)
. (4.152)

Standard norm inequalities, as well as the explicit expression for ∥𝑂 (1,2)0 ∥22, allow
for counter-balancing some of the sub-leading terms, and we conclude

Var [𝑜] ≤ 9∥𝑂0∥22 +
3
𝑑2

(
∥tr2 (I ⊗ 𝜌𝑂) ∥22 + ∥tr1 (𝜌 ⊗ I𝑂) ∥22

)
≤ 9∥𝑂0∥22 +

6
𝑑
∥𝑂∥2∞.
(4.153)

4.11 Information-theoretic lower bound with scaling in Frobenius norm
Before stating the content of the statement, we need to introduce some additional
notation. In quantum mechanics, the most general notion of a quantum measurement
is a POVM (positive operator-valued measure). A 𝑑-dimensional POVM 𝐹 consists
of a collection𝐹1, . . . , 𝐹𝑁 of positive semidefinite matrices that sum up to the identity
matrix: ⟨𝑥 |𝐹𝑖 |𝑥⟩ ≥ 0 for all 𝑥 ∈ C𝑑 and

∑
𝑖 𝐹𝑖 = I. The index 𝑖 is associated with

different potential measurement outcomes and Born’s rule asserts Pr [𝑖 |𝜌] = tr(𝐹𝑖𝜌)
for all 1 ≤ 𝑖 ≤ 𝑀 and any 𝑑-dimensional quantum state 𝜌. We present a simplified
version of the proof by consider the relevant case where 𝑀 ≤ exp(2𝑛/32). The full
proof can be found in (Huang and Richard Kueng, 2019).
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Detailed statement and proof idea

Theorem 15 (Detailed restatement of Theorem 8 for Hilbert-Schmidt norm). Fix
a sequence of POVMs 𝐹 (1) , . . . , 𝐹 (𝑁) . Suppose that given any 𝑀 features 0 ⪯
𝑂1, 𝑂2, . . . , 𝑂𝑀 ⪯ 𝐼 with max𝑖

(
∥𝑂𝑖∥22

)
≤ 𝐵, there exists a machine (with arbitrary

runtime as long as it always terminates) that can use the measurement outcomes
of 𝐹 (1) , . . . , 𝐹 (𝑁) on 𝑁 copies of an unknown 𝑑-dimensional quantum state 𝜌 to
𝜖-accurately predict tr(𝑂1𝜌), . . . , tr(𝑂𝑀𝜌) with high probability. Assuming 𝑀 ≤
exp(𝑑/32), then necessarily

𝑁 ≥ Ω

(
𝐵 log(𝑀)

𝜖2

)
. (4.154)

It is worthwhile to put this statement into context and discuss consequences, as well
as limitations. Theorem 7 (Clifford measurements) equips classical shadows with a
universal convergence guarantee: (order) log(𝑀)max𝑖 tr(𝑂2

𝑖
)/𝜖2 single-copy mea-

surements suffice to accurately predict any collection of 𝑀 target functions in any
state. Theorem 15 implies that there are cases where this number of measurements
is unavoidable. This highlights that the sample complexity of feature prediction with
classical shadows is optimal in the worst case – a feature also known as minimax
optimality.

Minimax optimality, however, does not rule out potential for further improvement
in certain best-case scenarios. Advantageous structure in 𝜌 or the𝑂𝑖’s (or both) can
facilitate the design of more efficient prediction techniques. Prominent examples
include matrix product state tomography (MPST) (Cramer et al., 2010; Lanyon
et al., 2017) and neural network tomography (NNQST) (Carrasquilla, Torlai, et al.,
2019). Such tailored approaches, however, hinge on additional assumptions about
the states to be measured or the properties to be predicted.6

Finally, we emphasize that Theorem 8 only applies to single-copy measurements.
Another way to bypass this lower bound is to use joint quantum measurements that
act on all copies of the quantum state 𝜌 simultaneously. Although very challenging
to implement, such procedures can get by with substantially fewer state copies
while still being universal. Shadow tomography (Aaronson, 2018; Aaronson and
Rothblum, 2019) is a prominent example.

6Although tractable in theory, MPST becomes prohibitively expensive if 𝜌 is not well-
approximated by a MPS with small bond dimension. Likewise, NNQST seems to struggle to
identify quantum states with intricate combinatorial structures, such as toric code ground states. We
refer to the other supplementary sections for numerical (Section 4.6) and theoretical (Section 4.8)
support of this claim.
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Proof idea: We adapt a versatile proof technique for establishing information-
theoretic lower bounds on tomographic procedures that is originally due to Flammia
et al. (Steven T Flammia et al., 2012); see also (Haah et al., 2017; Roth et al., 2018)
for adaptations and refinements. The key idea is to consider a communication task in
which Alice chooses a quantum state from among an alphabet of possible states and
then sends copies of her chosen state to Bob, who measures all the copies hoping
to extract a classical message from Alice. If we choose Alice’s alphabet suitably,
then by learning many properties of Alice’s state, Bob will be able to identify the
state, hence decoding Alice’s message. Information-theoretical lower bounds on the
number of copies Bob needs to decode the message can therefore be translated into
lower bounds on how many copies Bob needs to learn the properties.

To be more specific, suppose Alice chooses her state from an ensemble of𝑀 possible
𝑛-qubit signal states {𝜌1, 𝜌2, . . . 𝜌𝑀} and suppose there are 𝑀 linear operators
{𝑂1, 𝑂2, . . . 𝑂𝑀}, each with tr

(
𝑂2
𝑖

)
≤ 𝐵, such that learning the expectation values

of all the operators {𝑂𝑖} up to an additive error 𝜖 suffices to determine 𝜌𝑖 uniquely.
Suppose furthermore that if Bob receives 𝑁 copies of any 𝑛-qubit state, and measures
them one at a time, he is able to learn all of the properties {𝑂𝑖} with an additive error
no larger than 𝜖 with high success probability. This provides Bob with a method for
identifying the state 𝜌𝑖 with high probability. Therefore, if Alice chooses her signal
state uniformly at random from among the 𝑀 possible states, by performing the
appropriate single-copy measurements, Bob can acquire log2 𝑀 bits of information
about Alice’s message. A lower bound on how many copies Bob needs to gain
log2 𝑀 bits of information about Alice’s state, then, becomes a lower bound on how
many copies Bob needs to learn the 𝑀 properties {𝑂𝑖}. To get the best possible
lower bound, we choose Alice’s signal ensemble {𝜌𝑖} so that it is as hard as possible
for Bob to distinguish the signals using properties with tr

(
𝑂2
𝑖

)
≤ 𝐵.

So far, this lower bound on 𝑁 would apply even if Bob has complete knowledge
of Alice’s signal states and the properties he should learn to distinguish them.
We can derive a stronger lower bound on 𝑁 by invoking a powerful feature of
classical shadows — that Bob must make his measurements before he finds out
which properties he must learn. To obtain this stronger bound, we introduce into the
communication scenario a third party, named Loki7, who tampers with the signal
states. Loki chooses a Haar-random 𝑛-qubit unitary 𝑈, and replaces all 𝑁 copies

7In Norse mythology, Loki is infamous for mischief and trickery. However, not entirely malicious,
he often shows up in the nick of time to remedy the dire consequences of his actions.
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of Alice’s signal state 𝜌𝑖 by the rotated states 𝑈𝜌𝑖𝑈† before presenting the states to
Bob (Loki’s mischief).

If Bob knew Loki’s unitary 𝑈, he could modify his measurement procedure to
learn the rotated properties {𝑈𝑂𝑖𝑈†}. These rotated properties are just as effective
for distinguishing the rotated states as the unrotated properties were effective for
distinguishing the unrotated states. However, Loki keeps𝑈 secret, so Bob is forced
to perform his measurements on the rotated states without knowing 𝑈. Only after
Bob’s data acquisition phase is completed does Loki confide in Bob and provide him
with a full classical description of the unitary he applied earlier (Loki’s redemption).
This three-party scenario is illustrated in Supplementary Figure 4.10.

Suppose, though, that using the classical shadow based on his measurements, Bob
can predict any 𝑀 properties (with additive error bounded by 𝜖 and with high
success probability), provided that the Hilbert-Schmidt norm is no larger than

√
𝐵

for each property. Then he is just as well equipped to learn {𝑈𝑂𝑖𝑈†} as {𝑂𝑖}, and
can therefore decode Alice’s message successfully once Loki reveals𝑈. It must be,
then, that Bob’s measurement outcomes provide log2 𝑀 bits of information about
Alice’s prepared state, when 𝑈 is known. This is the idea we use to derive the
stronger upper bound on 𝑁 , and hence prove Theorem 15.

We emphasize again that quantum feature prediction with classical shadows can
cope with Loki’s mischief, by merely rotating the features Bob predicts, because the
predicted features need not be known at the time Bob measures. The lower bound
in Theorem 15 does not apply to the task of learning features that are already known
in advance. We also emphasize again that Theorem 15 assumes that the copies of
the state are measured individually. It does not apply to protocols where collective
measurements are applied across many copies.

Description of the communication protocol
We show how Alice can communicate any integer in {1, . . . , 𝑀} to Bob. Alice and
Bob first agree on a codebook for encoding any integer selected from {1, . . . , 𝑀}
in a 𝑑-dimensional quantum state. We denote these codebook states by 𝜌1, . . . , 𝜌𝑀 .
Alice and Bob also agree on a set of linear features 𝑂1, . . . , 𝑂𝑀 that satisfies

tr(𝑂𝑖𝜌𝑖) ≥ max
𝑗≠𝑖

tr(𝑂 𝑗 𝜌𝑖) + 3𝜖 . (4.155)

Therefore, if each feature can be predicted with additive error 𝜖 , these features can
be used to identify the state 𝜌𝑖. The communication protocol between Alice and
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Figure 4.10: Illustration of the communication protocol behind Theorem 15 and
Theorem 16. Two parties (Alice and Bob) devise a protocol that allows them
to communicate classical bit strings: Alice encodes a bit string 𝑋 in a quantum
state and sends 𝑁 independent copies of the state to Bob. Bob performs quantum
measurements and uses a black box device (e.g. classical shadows) to decode Alice’s
original message. An unpredictable trickster (Loki) tampers with this procedure by
randomly rotating Alice’s quantum states en route to Bob. Loki reveals his actions
only after Bob has completed the measurement stage of his protocol.

Bob is now apparent:

1. Alice randomly selects an integer 𝑋 from {1, . . . , 𝑀}.

2. Alice prepares 𝑁 copies of the code-state 𝜌𝑋 associated to 𝑋 and sends them
to Bob.

3. Bob performs POVMs 𝐹 (𝑖) on individual states and receives a string of mea-
surement outcomes 𝑌 .

4. Bob inputs 𝑌 into the feature prediction machine to estimate tr(𝑂𝑖𝜌𝑋),∀𝑖 =
1, . . . , 𝑀 .

5. Bob finds 𝑋 that has the largest tr(𝑂
𝑋
𝜌𝑋).

The working assumption is that the feature prediction machine can estimate

tr(𝑂1𝜌𝑋), . . . , tr(𝑂𝑀𝜌𝑋) (4.156)
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within 𝜖-error and high success probability. This in turn ensures that this plain
communication protocol is mostly successful, i.e. 𝑋 = 𝑋 with high probability. In
words: Alice can transmit information to Bob, when no adversary is present.

We now show how they can still communicate safely in the presence of an adversary
(Loki) who randomly rotates the transmitted code states en route: 𝜌𝑋 ↦→ 𝑈𝜌𝑋𝑈

†

and𝑈 is a Haar-random unitary.

This random rotation affects the measurement outcome statistics associated with
the fixed POVMs 𝐹 (1) , . . . , 𝐹 (𝑁) . Each element of 𝑌 =

[
𝑌 (1) , . . . , 𝑌 (𝑁)

]
is now

a random variable that depends on both 𝑋 and 𝑈. After Bob has performed the
quantum measurements to obtain 𝑌 , the adversary confesses to Bob and reveals
the random unitary 𝑈. While Bob no longer has any copies of 𝜌𝑋 , he can still
incorporate precise knowledge of 𝑈 by instructing the machine to predict linear
features𝑈𝑂1𝑈

†, . . . ,𝑈𝑂𝑀𝑈
†, instead of the original𝑂1, . . . , 𝑂𝑀 . This reverses the

effect of the original unitary transformation, because tr(𝑈𝑂𝑖𝑈†𝑈𝜌𝑋𝑈†) = tr(𝑂𝑖𝜌𝑋).
This modification renders the original communication protocol stable with respect
to Loki’s actions. Alice can still send any integer in {1, . . . , 𝑀} to Bob with high
probability.

Information-theoretic analysis
The following arguments use properties of Shannon entropy and mutual information,
which can be found in standard textbooks on information theory, such as (Cover and
Thomas, 2006).

The communication protocol is guaranteed to work with high probability, ensur-
ing that Bob’s recovered message �̄� equals Alice’s input 𝑋 with high probability.
Moreover, we assume that Alice selects her message uniformly at random. Fano’s
inequality then implies

𝐼 (𝑋 : 𝑋) = 𝐻 (𝑋) − 𝐻 (𝑋 |𝑋) ≥ Ω(log(𝑀)), (4.157)

where 𝐼 (𝑋 : 𝑋) is the mutual information, and 𝐻 (𝑋) is the Shannon entropy. By
assumption, Loki chooses the unitary roatation 𝑈 uniformly at random, regardless
of the message 𝑋 . This implies 𝐼 (𝑋 : 𝑈) = 0 and, in turn

𝐼 (𝑋 : 𝑋) ≤ 𝐼 (𝑋 : 𝑋,𝑈) = 𝐼 (𝑋 : 𝑈) + 𝐼 (𝑋 : 𝑋 |𝑈) = 𝐼 (𝑋 : 𝑋 |𝑈). (4.158)

For fixed 𝑈, 𝑋 is the output of the machine that only takes into account the mea-
surement outcomes 𝑌 . The data processing inequality then yields

𝐼 (𝑋 : 𝑌 |𝑈) ≥ 𝐼 (𝑋 : 𝑋 |𝑈) ≥ 𝐼 (𝑋 : 𝑋) ≥ Ω(log(𝑀)). (4.159)
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Recall that 𝑌 is the measurement outcome of the 𝑁 POVMs 𝐹1, . . . , 𝐹𝑁 . We denote
the measurement outcome of 𝐹𝑘 as 𝑌𝑘 . Because 𝑌1, . . . , 𝑌𝑁 are random variables
that depend on 𝑋 and𝑈,

𝐼 (𝑋 : 𝑌 |𝑈) = 𝐻 (𝑌1, . . . , 𝑌𝑁 |𝑈) − 𝐻 (𝑌1, . . . , 𝑌𝑁 |𝑋,𝑈)
≤ 𝐻 (𝑌1 |𝑈) + . . . + 𝐻 (𝑌𝑁 |𝑈) − 𝐻 (𝑌1, . . . , 𝑌𝑁 |𝑋,𝑈)

=

𝑁∑︁
𝑘=1

(
𝐻 (𝑌𝑘 |𝑈) − 𝐻 (𝑌𝑘 |𝑋,𝑈)

)
=

𝑁∑︁
𝑘=1

𝐼 (𝑋 : 𝐹𝑘 on𝑈𝜌𝑋𝑈† |𝑈).

(4.160)

The second to last equality uses the fact that when 𝑋,𝑈 are fixed, 𝑌1, . . . , 𝑌𝑁 are
independent. To obtain the best lower bound, we should choose Alice’s signal states
{𝜌𝑖} such that 𝐼 (𝑋 : 𝐹𝑘 on𝑈𝜌𝑋𝑈† |𝑈) is as small as possible. In Sec. 4.11, we will
see that, no matter how Bob chooses his measurements {𝐹1, 𝐹2, . . . , 𝐹𝑁 }, there are
signal states satisfying (4.155) such that

𝐼 (𝑋 : 𝐹𝑘 on𝑈𝜌𝑋𝑈† |𝑈) ≤
36𝜖2

𝐵
,∀𝑘. (4.161)

Assuming that this relation holds, we have established a connection between 𝑀 and
𝑁: Ω(log(𝑀)) ≤ 𝐼 (𝑋 : 𝑌 |𝑈) ≤ 36𝑁𝜖2/𝐵 and, therefore, 𝑁 ≥ Ω

(
𝐵 log(𝑀)/𝜖2

)
.

This establishes the claim in Theorem 15.

Detailed construction of quantum encoding and linear prediction decoding
We now construct a codebook 𝜌1, . . . , 𝜌𝑀 and linear features 0 ⪯ 𝑂1, 𝑂2, . . . , 𝑂𝑀 ⪯
I with max𝑖 ∥𝑂𝑖∥22 ≤ 𝐵 that obey two key properties:

1. the code states 𝜌1, . . . , 𝜌𝑀 obey the requirement displayed in Eq. (4.161).

2. the linear features 𝑂1, . . . , 𝑂𝑀 are capable of identifying a unique code state:

tr(𝑂𝑖𝜌𝑖) ≥ max
𝑗≠𝑖

tr(𝑂 𝑗 𝜌𝑖) + 3𝜖 for all 1 ≤ 𝑖 ≤ 𝑀. (4.162)

The second condition requires each 𝜌𝑖 to be distinguishable from 𝜌1, . . . , 𝜌𝑀 via
linear features 𝑂𝑖. The first condition, on the contrary, requires 𝜌𝑋 to convey as
little information about 𝑋 as possible. The general idea would then be to create
distinguishable quantum states that are, at the same time, very similar to each other.

In order to achieve these two goals, we choose 𝑀 rank-𝐵/4 subspace projectors
Π1, . . . ,Π𝑀 that obey tr(Π𝑖Π 𝑗 )/𝑟 < 1/2 for all 𝑖 ≠ 𝑗 . The probabilistic method
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asserts that such a projector configuration exists; see Lemma 13 below. Now, we set

𝜌𝑖 = (1 − 3𝜖) I
𝑑
+ 3𝜖

4Π𝑖
𝐵
, and 𝑂𝑖 = 2Π𝑖, for all 1 ≤ 𝑖 ≤ 𝑀. (4.163)

It is easy to check that this construction meets the requirement in Eq. (4.162). The
other condition – Eq. (4.161) is verified in Lemma 14 below.

Lemma 13. If 𝑀 ≤ exp(𝑟𝑑/32) and 𝑑 ≥ 4𝑟, then ∃𝑀 rank-𝑟 subspace projectors
Π1, . . . ,Π𝑀 such that

tr(Π𝑖Π 𝑗 )/𝑟 < 1/2,∀𝑖 ≠ 𝑗 . (4.164)

Proof. We find the subspace projectors using a probabilistic argument. We randomly
choose 𝑀 rank-𝑟 subspaces according to the unitarily invariant measure in the
Hilbert space, the Grassmannian, and bound the probability that the randomly
chosen subspaces do not satisfy the condition. For a pair of fixed 𝑖 ≠ 𝑗 , we have

Pr

[
1
𝑟

tr(Π𝑖Π 𝑗 ) ≥
1
2

]
≤ exp

(
− 𝑟2 𝑓

(
𝑑

2𝑟
− 1

))
< exp

(
− 𝑟𝑑

16

)
, (4.165)

where we make use of (Haah et al., 2017, Lemma 6) in the first inequality and
𝑓 (𝑧) = 𝑧 − log(1 + 𝑧) > 𝑧/4 for all 𝑧 ≥ 1 in the second inequality. A union bound
then asserts

Pr
[
∃𝑖 ≠ 𝑗 ,

1
𝑟

tr(Π𝑖Π 𝑗 ) ≥
1
2

]
< 𝑀2 exp

(
− 𝑟𝑑

16

)
≤ 1. (4.166)

Because the probability is less than one, there must exist Π1, . . . ,Π𝑀 that satisfy
the desired property.

Lemma 14. Consider a set of 𝑑-dimensional quantum states {𝜌1, . . . , 𝜌𝑀} such that
𝜌𝑖 = (1− 𝛼) I𝑑 + 𝛼

Π𝑖
𝑟

, where Π𝑖 is a rank-𝑟 subspace projector. Consider𝑈 sampled
from Haar measure, and 𝑋 sampled from {1, . . . , 𝑀} uniformly at random. Consider
any POVM measurement 𝐹. Then the information gain regarding 𝑋 , conditioned
on𝑈, obtained from the measurement 𝐹 performed on the state𝑈𝜌𝑋𝑈† satisfies

𝐼 (𝑋 : 𝐹 on𝑈𝜌𝑋𝑈† |𝑈) ≤
𝛼2

𝑟
. (4.167)

Note that we can obtain the statement (4.161) by choosing 𝛼 = 3𝜖 and 𝑟 = 𝐵/4,
hence completing the proof of Theorem 15.
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Proof. First of all, let us decompose all POVM elements {𝐹1, . . . , 𝐹𝑙} to rank-1
elements 𝐹′ =

{
𝑤𝑖𝑑 |𝑣𝑖⟩ ⟨𝑣𝑖 |

}𝑙′
𝑖=1, where 𝑙 ≤ 𝑙′. We can perform measurement 𝐹 by

performing measurement with 𝐹′: when we measure a rank-1 element, we return
the original POVM element the rank-1 element belongs to. Using data processing
inequality, we have 𝐼 (𝑋 : 𝐹 on𝑈𝜌𝑋𝑈† |𝑈) ≤ 𝐼 (𝑋 : �̃� on𝑈𝜌𝑋𝑈† |𝑈). From now
on, we can consider the POVM F to be

{
𝑤𝑖𝑑 |𝑣𝑖⟩ ⟨𝑣𝑖 |

}𝑙
𝑖=1. Normalization demands

tr
(∑︁

𝑖

𝑤𝑖𝑑 |𝑣𝑖⟩ ⟨𝑣𝑖 |
)
= tr(I) = 𝑑 and therefore

∑︁
𝑖

𝑤𝑖 = 1. (4.168)

Let us define the probability vector p = tr(𝑈𝜌1𝑈
†F), so 𝑝𝑖 = 𝑤𝑖𝑑 ⟨𝑣𝑖 |𝑈𝜌1𝑈

† |𝑣𝑖⟩ .
And the expression we hope to bound satisfies 𝐼 (𝑋 : 𝐹 on𝑈𝜌𝑋𝑈† |𝑈) = 𝐼 (𝑋,𝑈 :
𝐹 on𝑈𝜌𝑋𝑈†) − 𝐼 (𝑈 : 𝐹 on𝑈𝜌𝑋𝑈†) ≤ 𝐼 (𝑋,𝑈 : 𝐹 on𝑈𝜌𝑋𝑈†) using the chain rule
and the nonnegativity of mutual information. We now bound

𝐼 (𝑋,𝑈 : 𝐹 on𝑈𝜌𝑋𝑈†) (4.169)

=𝐻

( 𝑀∑︁
𝑋=1

1
𝑀
E
𝑈
[tr(𝑈𝜌𝑋𝑈†F)]

)
−

𝑀∑︁
𝑋=1

1
𝑀
E
𝑈

[
𝐻

(
tr(𝑈𝜌𝑋𝑈†F)

)]
=𝐻

(
tr(E

𝑈
[𝑈𝜌1𝑈

†]F)
)
− E
𝑈

[
𝐻

(
tr(𝑈𝜌1𝑈

†F)
)]

=
∑︁
𝑖

−(E
𝑈
𝑝𝑖) log(E

𝑈
𝑝𝑖) + E

𝑈
[𝑝𝑖 log 𝑝𝑖]

≤
∑︁
𝑖

−(E
𝑈
𝑝𝑖) log(E

𝑈
𝑝𝑖) + E

𝑈

[
𝑝𝑖 log(E

𝑈
𝑝𝑖) + 𝑝𝑖

𝑝𝑖 − E𝑈 𝑝𝑖
E𝑈 𝑝𝑖

]
=
∑︁
𝑖

E𝑈 [𝑝2
𝑖
] − E𝑈 [𝑝𝑖]2

E𝑈 [𝑝𝑖]
. (4.170)

The second equality uses the fact that E𝑈 𝑓 (𝑈𝜌𝑋𝑈†) = 𝐸𝑈 𝑓 (𝑈𝜌1𝑈
†),∀𝑋 which

follows from the fact that ∀𝑋, ∃𝑈𝑋 , 𝜌𝑋 = 𝑈𝑋𝜌1𝑈
†
𝑋
. The inequality uses the fact

that log(𝑥) is concave, so log(𝑥) ≤ log(𝑦) + 𝑥−𝑦
𝑦

. Using properties of Haar random
unitary 𝑑 × 𝑑 matrices, we conclude

E
𝑈
[𝑝𝑖] = 𝑤𝑖, E

𝑈
[𝑝2
𝑖 ] = 𝑤2

𝑖

𝑑

(𝑑 + 1)

(
1 + 1

𝑑
+ 𝛼2

(1
𝑟
− 1
𝑑

))
. (4.171)

Therefore we have
E𝑈 [𝑝2

𝑖
] − E𝑈 [𝑝𝑖]2

E𝑈 [𝑝𝑖]
= 𝑤𝑖𝛼

2 𝑑

𝑑 + 1

(1
𝑟
− 1
𝑑

)
≤ 𝑤𝑖𝛼

2

𝑟
, (4.172)

which establishes the claim:

𝐼 (𝑋 : 𝐹 on𝑈𝜌𝑋𝑈† |𝑈) ≤
∑︁
𝑖

E𝑈 [𝑝2
𝑖
] − E𝑈 [𝑝𝑖]2

E𝑈 [𝑝𝑖]
≤ 𝛼

2

𝑟
. (4.173)
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4.12 Information-theoretic bounds on predicting local observables
In Theorem 15, we have shown that if a procedure can predict arbitrary observables
with tr(𝑂2

𝑖
) ≤ 𝐵, then it must use at least Ω(𝐵 log(𝑀)/𝜖2) single-copy measure-

ments (as long as 𝑀 is not extraordinarily large). A similar argument can be used to
show that if a procedure can predict arbitrary 𝑘-local observables, then it requires
at least Ω(2𝑘 log(𝑀)/𝜖2) single-copy measurements (when 𝑀 is not too large).
This is because if we focus on a 𝑘-qubit subsystem, then the guarantee allows us
to predict arbitrary observables 0 ⪯ 𝑂𝑖 ⪯ I with tr(𝑂2

𝑖
) ≤ 2𝑘 . In the following

theorem, we show a stronger lower bound by focusing on local measurements. A
local measurement is a POVM {𝑤𝑖𝑑 |𝑣𝑖⟩⟨𝑣𝑖 |}𝑖 where |𝑣𝑖⟩ = |𝑣 (1)𝑖 ⟩ ⊗ . . . ⊗ |𝑣

(𝑛)
𝑖
⟩,∑

𝑖 𝑤𝑖 = 1, and 𝑑 = 2𝑛. This is the same as not performing any entangling gates
when implementing the measurement. (Random) Pauli basis measurements are a
prominent example.

Theorem 16 (Detailed restatement of Theorem 8 for exponential scaling in locality).
Fix a sequence of local measurements 𝐹1, . . . , 𝐹𝑁 on 𝑛-qubit system, i.e., 𝐹𝑗 =

{𝑤 𝑗 ,𝑖𝑑 |𝑣 𝑗 ,𝑖⟩⟨𝑣 𝑗 ,𝑖 |}𝑖 where |𝑣 𝑗 ,𝑖⟩ = |𝑣 (1)𝑗 ,𝑖 ⟩ ⊗ . . . ⊗ |𝑣
(𝑛)
𝑗 ,𝑖
⟩, ∑

𝑖 𝑤 𝑗 ,𝑖 = 1, and 𝑑 = 2𝑛.
Suppose that given any 𝑀 𝑘-local observables −I ⪯ 𝑂1, 𝑂2, . . . , 𝑂𝑀 ⪯ I, there
exists a machine (with arbitrary runtime as long as it always terminates) that can use
the measurement outcomes of 𝐹1, . . . , 𝐹𝑁 on 𝑁 copies of an unknown quantum state
𝜌 to 𝜖-accurately predict tr(𝑂1𝜌), . . . , tr(𝑂𝑀𝜌) with high probability. Assuming
𝑀 ≤ 3𝑘

(𝑛
𝑘

)
, then necessarily

𝑁 ≥ Ω

(
3𝑘 log(𝑀)

𝜖2

)
. (4.174)

Proof. The proof uses a quantum communication protocol between Alice and Bob,
with Loki interfering in the middle. Alice would encode some classical information
in the quantum state and send to Bob. Bob would then use the prediction procedure
to decode the encoded classical information. In the middle, Loki will alter the
quantum state by applying a random unitary. Loki would then reveal the random
unitary to Bob after Bob performed quantum measurements on the quantum states.
An illustration of the communication protocol can be found in Supplementary
Figure 4.10. The quantum state Alice encodes, the unitary applied by Loki, and the
features predicted by Bob are considerably simplified in this result compared to the
previous proof.
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We define 𝜌𝑖 = (I + 3𝜖𝑃𝑖)/2𝑛,∀𝑖 = 1, . . . , 𝑀 . 𝑃𝑖 is the 𝑖-th Pauli observable acting
on 𝑘 qubits in the 𝑛-qubit system. Any ordering of the Pauli observables is fine.
Note that there are at most 3𝑘

(𝑛
𝑘

)
such Pauli observables. This is the reason why

we assume 𝑀 ≤ 3𝑘
(𝑛
𝑘

)
. The corresponding linear functions chosen by Bob are

𝑂𝑖 = 𝑃𝑖,∀𝑖 = 1, . . . , 𝑀 . This guarantees the following relation:

tr(𝑂𝑖𝜌 𝑗 ) = 3𝜖𝛿𝑖 𝑗 for all 1 ≤ 𝑖, 𝑗 ≤ 𝑀 , (4.175)

where 𝛿𝑖 𝑗 is the Kronecker-delta (𝛿𝑖 𝑗 = 1 if 𝑖 = 𝑗 and 𝛿𝑖 𝑗 = 0 otherwise). The
random unitary applied by Loki consists of random single-qubit unitary rotations,
i.e.𝑈 = 𝑈 (1) ⊗ . . . ⊗𝑈 (𝑛) . The complete communication protocol works as follows.

1. Alice randomly selects an integer 𝑋 from {1, . . . , 𝑀}.

2. Alice prepares 𝑁 copies of the code-state 𝜌𝑋 according associated to 𝑋 and
sends them to Bob.

3. Loki intercepts the 𝑁 copies, samples a random unitary𝑈 = 𝑈 (1) ⊗ . . .⊗𝑈 (𝑛) ,
applies𝑈 on all copies of 𝜌𝑋 → 𝑈𝜌𝑋𝑈

†, and sends to Bob.

4. Bob performs local measurements 𝐹𝑗 on individual states and receives a string
of measurement outcomes 𝑌 .

5. Loki reveals the random unitary𝑈 to Bob. Now Bob would have to predict the
expectation value of𝑈𝑂1𝑈

†, . . . ,𝑈𝑂𝑀𝑈
† instead of the original𝑂1, . . . , 𝑂𝑀 .

6. Since𝑈𝑂1𝑈
†, . . . ,𝑈𝑂𝑀𝑈

† are still 𝑘-local observables, Bob can input𝑌 into
the feature prediction machine to estimate ⟨𝑈𝑂𝑖𝑈†⟩𝑈𝜌𝑋𝑈† = tr(𝑂𝑖𝜌𝑋),∀𝑖 =
1, . . . , 𝑀 .

7. Bob finds 𝑋 ∈ {1, . . . , 𝑀} that has the largest tr(𝑂
𝑋
𝜌𝑋).

Because tr(𝑂𝑖𝜌𝑋) are predicted to 𝜖 additive error, and tr(𝑂𝑖𝜌𝑋) = 3𝜖𝛿𝑖𝑋 , if the
prediction procedure works as guaranteed, Bob’s decoded information �̂� would be
equal to Alice’s encoded information 𝑋 with high probability. Moreover, we assume
that Alice selects her message uniformly at random. Fano’s inequality then implies

𝐼 (𝑋 : 𝑋) = 𝐻 (𝑋) − 𝐻 (𝑋 |𝑋) ≥ Ω(log(𝑀)), (4.176)

where 𝐼 (𝑋 : 𝑋) is the mutual information, and 𝐻 (𝑋) is the Shannon entropy. By
assumption, Loki chooses the random unitary 𝑈 regardless of the message 𝑋 . This
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implies 𝐼 (𝑋 : 𝑈) = 0 and, in turn

𝐼 (𝑋 : 𝑋) ≤ 𝐼 (𝑋 : 𝑋,𝑈) = 𝐼 (𝑋 : 𝑈) + 𝐼 (𝑋 : 𝑋 |𝑈) = 𝐼 (𝑋 : 𝑋 |𝑈). (4.177)

For fixed 𝑈, 𝑋 is the output of the machine that only takes into account the mea-
surement outcomes 𝑌 . The data processing inequality then implies

𝐼 (𝑋 : 𝑌 |𝑈) ≥ 𝐼 (𝑋 : 𝑋 |𝑈) ≥ 𝐼 (𝑋 : 𝑋) ≥ Ω(log(𝑀)). (4.178)

Recall that 𝑌 is the measurement outcome of the 𝑁 POVMs 𝐹1, . . . , 𝐹𝑁 . We denote
the measurement outcome of 𝐹𝑗 as 𝑌 𝑗 . Because 𝑌1, . . . , 𝑌𝑁 are random variables
that depend on 𝑋 and𝑈,

𝐼 (𝑋 : 𝑌 |𝑈) = 𝐻 (𝑌1, . . . , 𝑌𝑁 |𝑈) − 𝐻 (𝑌1, . . . , 𝑌𝑁 |𝑋,𝑈)
≤ 𝐻 (𝑌1 |𝑈) + . . . + 𝐻 (𝑌𝑁 |𝑈) − 𝐻 (𝑌1, . . . , 𝑌𝑁 |𝑋,𝑈)

=

𝑁∑︁
𝑗=1

(
𝐻 (𝑌 𝑗 |𝑈) − 𝐻 (𝑌 𝑗 |𝑋,𝑈)

)
=

𝑁∑︁
𝑗=1

𝐼 (𝑋 : 𝐹𝑗 on𝑈𝜌𝑋𝑈† |𝑈).

(4.179)

The second to last equality uses the fact that when 𝑋,𝑈 are fixed, 𝑌1, . . . , 𝑌𝑁 are
independent. This part of the derivation is exactly the same as in Section 4.11. All
that is left is to properly upper bound 𝐼 (𝑋 : 𝐹𝑗 on𝑈𝜌𝑋𝑈† |𝑈). First, by definition,

𝐼 (𝑋 : 𝐹𝑗 on𝑈𝜌𝑋𝑈† |𝑈) = E
𝑈

[
𝐻 (𝐹𝑗 on𝑈𝜌𝑋𝑈†) − 𝐻 (𝑋, 𝐹𝑗 on𝑈𝜌𝑋𝑈†)

]
= E
𝑈

[
𝐻

(
E
𝑋

tr(𝑈𝜌𝑋𝑈†F 𝑗 )
)
− E
𝑋
𝐻

(
tr(𝑈𝜌𝑋𝑈†F 𝑗 )

)]
≤ 𝐻

(
E
𝑋
E
𝑈

tr(𝑈𝜌𝑋𝑈†F 𝑗 )
)
− E
𝑋
E
𝑈
𝐻

(
tr(𝑈𝜌𝑋𝑈†F 𝑗 )

)
.

(4.180)

The last inequality exploits concavity of the Shannon entropy 𝐻 (·). By assumption,
the 𝐹𝑗 ’s must be local measurements, i.e. 𝐹𝑗 = {𝑤 𝑗 ,𝑖𝑑 |𝑣𝑘,𝑖⟩⟨𝑣𝑘,𝑖 |}𝑖 where |𝑣𝑘,𝑖⟩ =
|𝑣 (1)
𝑘,𝑖
⟩ ⊗ . . . ⊗ |𝑣 (𝑛)

𝑘,𝑖
⟩, ∑𝑖 𝑤𝑖 = 1, and 𝑑 = 2𝑛. We define the probability of measuring

𝑖-th outcome using POVM 𝐹𝑗 as

𝑝 𝑗 ,𝑖 = 𝑤 𝑗 ,𝑖𝑑 ⟨𝑣 𝑗 ,𝑖 |𝑈𝜌𝑋𝑈† |𝑣 𝑗 ,𝑖⟩ , (4.181)

which is a random number depending on 𝑋 and𝑈. Using Equation (4.180) and the
definition of 𝐻 (·), we have

𝐼 (𝑋 : 𝐹𝑗 on𝑈𝜌𝑋𝑈† |𝑈) (4.182)
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≤ 𝐻
(
E
𝑋
E
𝑈

tr(𝑈𝜌𝑋𝑈†F(𝑘))
)
− E
𝑋
E
𝑈
𝐻

(
tr(𝑈𝜌𝑋𝑈†F(𝑘))

)
=

∑︁
𝑖

(
E
𝑋,𝑈
[𝑝 𝑗 ,𝑖 log(𝑝 𝑗 ,𝑖)] − E

𝑋,𝑈
[𝑝 𝑗 ,𝑖] log( E

𝑋,𝑈
[𝑝 𝑗 ,𝑖])

)
≤

∑︁
𝑖

−( E
𝑋,𝑈

𝑝 𝑗 ,𝑖) log( E
𝑋,𝑈

𝑝 𝑗 ,𝑖) + E
𝑋,𝑈

[
𝑝 𝑗 ,𝑖 log( E

𝑋,𝑈
𝑝 𝑗 ,𝑖) + 𝑝 𝑗 ,𝑖

𝑝 𝑗 ,𝑖 − E𝑋,𝑈 𝑝 𝑗 ,𝑖
E𝑋,𝑈 𝑝 𝑗 ,𝑖

]
=

∑︁
𝑖

E𝑋,𝑈 [𝑝2
𝑗 ,𝑖
] − E𝑋,𝑈 [𝑝 𝑗 ,𝑖]2

E𝑋,𝑈 [𝑝 𝑗 ,𝑖]
. (4.183)

The second inequality uses the fact that log(𝑥) is concave, so log(𝑥) ≤ log(𝑦) + 𝑥−𝑦
𝑦

.
We now compute E𝑋,𝑈 [𝑝 𝑗 ,𝑖] and E𝑋,𝑈 [𝑝2

𝑗 ,𝑖
] by using the following relation for

single-qubit random unitary:

E
𝑈 ( 𝑗 )

[
𝑈 ( 𝑗) |𝑣 ( 𝑗)

𝑘,𝑖
⟩⟨𝑣 ( 𝑗)

𝑘,𝑖
| (𝑈 ( 𝑗))†

]
=
I( 𝑗)

2
, (4.184)

E
𝑈 ( 𝑗 )

[(
𝑈 ( 𝑗) |𝑣 ( 𝑗)

𝑘,𝑖
⟩⟨𝑣 ( 𝑗)

𝑘,𝑖
| (𝑈 ( 𝑗))†

)⊗2
]
=
I( 𝑗) ⊗ I( 𝑗) + 𝑆( 𝑗)

3
, (4.185)

where 𝑗 refers to the 𝑗-th qubit, and 𝑆 is the two qubit swap operator (|𝜓⟩ ⊗ |𝜙⟩ =
|𝜙⟩ ⊗ |𝜓⟩). Recall the definition of 𝑝 𝑗 ,𝑖 in Equation (4.181). Together with the above
relation, we have

E
𝑋,𝑈
[𝑝 𝑗 ,𝑖] =E

𝑋

[
𝑤 𝑗 ,𝑖𝑑 tr

(
𝜌𝑋
I

2𝑛

)]
= E
𝑋

[
𝑤 𝑗 ,𝑖2𝑛 tr

(
I + 3𝜖𝑃𝑋

2𝑛
I

2𝑛

)]
= 𝑤 𝑗 ,𝑖 and

E
𝑋,𝑈
[𝑝2

𝑗 ,𝑖] =E
𝑋

𝑤2
𝑗 ,𝑖𝑑

2 tr ©«𝜌⊗2
𝑋

𝑛⊗
𝑗=1

(
I( 𝑗) ⊗ I( 𝑗) + 𝑆( 𝑗)

3

)ª®¬
 = 𝑤2

𝑗 ,𝑖

(
1 + 9𝜖2

3𝑘

)
. (4.186)

Putting this computation into Inequality (4.183), we have obtained

𝐼 (𝑋 : 𝐹𝑗 on𝑈𝜌𝑋𝑈† |𝑈) ≤
∑︁
𝑖

𝑤 𝑗 ,𝑖

9𝜖2

3𝑘
=

9𝜖2

3𝑘
. (4.187)

Combining the above result with Inequality (4.178) and (4.179), we have

9𝑁𝜖2

3𝑘
≥ 𝐼 (𝑋 : 𝑌 |𝑈) ≥ Ω(log(𝑀)) which implies 𝑁 ≥ Ω

(
3𝑘 log(𝑀)

𝜖2

)
.

(4.188)
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C h a p t e r 5

SOLVING QUANTUM MANY-BODY PROBLEMS

Solving quantum many-body problems, such as finding ground states of quantum
systems, has far-reaching consequences for physics, materials science, and chem-
istry. While classical computers have facilitated many profound advances in science
and technology, they often struggle to solve such problems. Powerful methods,
such as density functional theory (P. Hohenberg and W. Kohn, 1964; W. Kohn,
1999), quantum Monte Carlo (Ceperley and Alder, 1986; Sandvik, 1999; Becca and
Sorella, 2017) and density-matrix renormalization group (Steven R. White, 1992;
Steven R. White, 1993b), have enabled solutions to certain restricted instances of
many-body problems, but many general classes of problems remain outside the
reach of even the most advanced classical algorithms.

Scalable fault-tolerant quantum computers will be able to solve a broad array of quan-
tum problems, but are unlikely to be available for years to come. Meanwhile, how
can we best exploit our powerful classical computers to advance our understanding of
complex quantum systems? Recently, classical machine learning (ML) techniques
have been adapted to investigate problems in quantum many-body physics (Carleo,
Cirac, et al., 2019; Carrasquilla, 2020), with promising results (Deng, Xiaopeng Li,
and Das Sarma, 2017; Carrasquilla and Roger G. Melko, 2017b; Carleo and Troyer,
2017b; Torlai and Roger G. Melko, 2016; Nomura et al., 2017; Nieuwenburg, Y.-H.
Liu, and Sebastian D. Huber, 2017; Wang, 2016; Gilmer et al., 2017; Torlai, Maz-
zola, et al., 2018; Vargas-Hernández et al., 2018; Schütt et al., 2019; Glasser et al.,
2018; Rodriguez-Nieva and Scheurer, 2019; Qiao et al., 2020; Choo, Mezzacapo,
and Carleo, 2020; Kawai and Nakagawa, 2020; Moreno, Carleo, and Georges, 2020;
Kottmann et al., 2021). So far, these approaches are mostly heuristic, reflecting
the general paucity of rigorous theory in ML. While shown to be effective in some
intermediate-size experiments (Bohrdt et al., 2019; Rem et al., 2019; Torlai, Timar,
et al., 2019), these methods are generally not backed by convincing theoretical
arguments to ensure good performance, particularly for problem instances where
traditional classical algorithms falter.

In general, simulating quantum many-body physics is hard for classical computers
because accurately describing an 𝑛-qubit quantum system may require an amount
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of classical data that is exponential in 𝑛. In Chapter 4, we addressed this bottleneck
using classical shadows — succinct classical descriptions of quantum many-body
states that can be used to accurately predict a wide range of properties with rigorous
performance guarantees (Huang, Richard Kueng, and Preskill, 2020; Paini and
Kalev, 2019). Furthermore, this quantum-to-classical conversion technique can be
readily implemented in various existing quantum experiments (Struchalin et al.,
2021; Andreas Elben, Richard Kueng, et al., 2020b; J. Choi et al., 2021). Classical
shadows open new opportunities for addressing quantum problems using classical
methods such as ML. In this chapter, we build on the classical shadow formalism and
devise polynomial-time classical ML algorithms for quantum many-body problems,
which are supported by rigorous theory.

We consider two applications of classical ML, indicated in Figure 5.1. The first
application we examine is learning to predict classical representations of quantum
many-body ground states. We consider a family of Hamiltonians, where the Hamil-
tonian 𝐻 (𝑥) depends smoothly on 𝑚 real parameters (denoted by 𝑥). The ML
algorithm is trained on a set of training data consisting of sampled values of 𝑥,
each accompanied by the corresponding classical shadow for the ground state 𝜌(𝑥)
of 𝐻 (𝑥). This training data could be obtained from either classical simulations
or quantum experiments. During the prediction phase, the ML algorithm predicts
a classical representation of 𝜌(𝑥) for new values of 𝑥 different from those in the
training data. Ground state properties can then be estimated using the predicted
classical representation.

This learning algorithm is efficient, provided that the ground state properties to
be predicted do not vary too rapidly as a function of 𝑥. Indeed, sufficient upper
bounds on the gradient can be derived for any family of gapped geometrically-
local Hamiltonians in any finite spatial dimension if the property of interest is the
expectation value of a sum of few-body observables. The conclusion is that any
such property can be predicted with a small average error, where the amount of
training data and the classical computation time are polynomial in 𝑚 and linear in
the system size. Furthermore, we show that classical algorithms that do not learn
from data cannot provide the same rigorous guarantee without violating widely
accepted complexity-theoretic conjectures. This is a manifestation of the advantage
of ML algorithms with data over those without data (Huang, Broughton, Masoud
Mohseni, Babbush, Boixo, Neven, and Jarrod R McClean, 2021a) as discussed in
Section 3.1.
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Figure 5.1: (a) Efficient quantum-to-classical conversion. The classical
shadow of a quantum state, constructed by measuring very few copies of the state,
can be used to predict many properties of the state with a rigorous performance guar-
antee. (b) Predicting ground state properties. After training on data obtained
in quantum experiments, a classical ML model predicts a classical representation
of the ground state 𝜌(𝑥) of the Hamiltonian 𝐻 (𝑥) for parameters 𝑥 spanning the
entire phase. This representation yields estimates of the properties of 𝜌(𝑥), avoid-
ing the need to run exhaustive classical computations or quantum experiments. (c)
Classifying quantum phases. After training, a classical ML receives a classical
representation of a quantum state and predicts the phase from which the state was
drawn. (d) Training data. For predicting ground states, the classical ML receives
a classical representation of 𝜌(𝑥) for each value of 𝑥 sampled during training. For
predicting quantum phases of matter, the training data consists of classical repre-
sentations of quantum states accompanied by labels identifying the phase to which
each state belongs.

If the training data are obtained from quantum experiments, then one might choose
to learn about properties of 𝜌(𝑥) for a new input 𝑥 by conducting new experiments
rather than by using the classical ML to generalize from the training data. However,
ML could be far more convenient in some cases, especially when changing some
parameters may even require costly re-engineering of the entire experiment. ML
algorithms open up the possibility of efficiently and accurately predicting properties
of quantum states that are extremely challenging to prepare and measure in the
laboratory.
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Classical ML could be used to generalize from training data that are obtained from
either quantum experiments or classical simulations; the same rigorous performance
guarantees apply in either case. Even if the training data are generated classically,
it could be more efficient and more accurate to use ML to predict properties for
new values of the input 𝑥, rather than doing new simulations which could be com-
putationally very demanding and of unverified reliability. Promising insights into
quantum many-body physics are already being obtained using classical ML based on
classical simulation data (Deng, Xiaopeng Li, and Das Sarma, 2017; Nomura et al.,
2017; Carleo and Troyer, 2017b; Y. Zhang, Roger G Melko, and E.-A. Kim, 2017;
Y. Zhang, Ginsparg, and E.-A. Kim, 2020; Gilmer et al., 2017; Vargas-Hernández et
al., 2018; Schütt et al., 2019; Qiao et al., 2020; Choo, Mezzacapo, and Carleo, 2020;
Kawai and Nakagawa, 2020). Our rigorous analysis identifies general conditions
that guarantee the success of classical ML models, and elucidates the advantages of
classical ML models over non-ML algorithms. These results enhance the prospects
for interpretable ML techniques (Ribeiro, Singh, and Guestrin, 2016; Arrieta et al.,
2020; Y. Zhang, Ginsparg, and E.-A. Kim, 2020) to further shed light on quantum
many-body physics.

In the second application we examine, the goal is to classify quantum states of matter
into phases (Read, 2012) in a supervised learning scenario. Suppose that during
training, we are provided with sample quantum states which carry labels indicating
whether each state belongs to phase 𝐴 or phase 𝐵. Our goal is to predict the
phase label for new quantum states that were not encountered during training. We
assume that, during both the learning and prediction stages, each quantum state is
represented by its classical shadow, which could be obtained either from a classical
computation or from an experiment on a quantum device. The classical ML, then,
trains on labeled classical shadows, and learns to predict labels for new classical
shadows.

We assume that the 𝐴 and 𝐵 phases can be distinguished by a nonlinear function
of marginal density operators of subsystems of constant size. This assumption is
reasonable because we expect the phase to be revealed in subsystems that are larger
than the correlation length but independent of the total system size. We show that
if such a function exists, a classical ML can learn to distinguish the phases using
an amount of training data and classical processing, which are polynomial in the
system size. We do not need to know anything about this nonlinear function in
advance, apart from its existence.
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In this chapter, we briefly review the classical shadow formalism (Huang, Richard
Kueng, and Preskill, 2020) for readers that skipped Chapter 4 and use this formalism
to derive rigorous guarantees for ML algorithms in predicting ground state properties
and classifying quantum phases of matter. We also describe numerical experiments
in a wide range of physical systems to support our theoretical results.

5.1 A brief review of classical shadow tomography
The classical shadows formalism uses randomized (single-shot) measurements to
predict many properties of an unknown quantum state 𝜌 at once (Huang, Richard
Kueng, and Preskill, 2020). The underlying idea dates back to (Ohliger, Nesme, and
Eisert, 2013b) and also features prominently in (Enk and Beenakker, 2012; A. Elben
et al., 2019b; Vermersch et al., 2018). In particular, the classical shadows formalism
comes with rigorous performance guarantees in terms of approximation accuracy,
classical storage, as well as data processing. Here, we focus on randomized single-
qubit Pauli measurements and repeat the following procedure a total of 𝑇 times:
(i) prepare an independent copy of 𝜌; (ii) select 𝑛 single-qubit Pauli measurements
uniformly at random (𝑍 , 𝑋 and 𝑌 occur with probability 1/3 each) and (iii) perform
the associated measurement to obtain 𝑛 classical bits (+1 if we measure ‘up’ and
−1 if we measure ‘down’). Subsequently, we store the associated post-measurement
state

|𝑠(𝑡)1 ⟩ ⊗ · · · ⊗ |𝑠
(𝑡)
𝑛 ⟩ with |𝑠(𝑡)1 ⟩, . . . , |𝑠

(𝑡)
𝑛 ⟩ ∈ {|0⟩, |1⟩, |+⟩, |−⟩, |i+⟩, |i−⟩} ⊂ C2

(5.1)
in classical memory. This is very cheap because there are only six possibilities
for each qubit. Randomized measurements can be performed in actual physical
experiments or through classical simulations. After 𝑇 repetitions, we obtain an
entire collection of 𝑛𝑇 single-qubit states that we arrange in a two-dimensional
array:

𝑆𝑇 (𝜌) =
{
|𝑠(𝑡)
𝑖
⟩ : 𝑖 ∈ {1, . . . , 𝑛}, 𝑡 ∈ {1, . . . , 𝑇}

}
∈ {|0⟩, |1⟩, |+⟩, |−⟩, |i+⟩, |i−⟩}𝑛×𝑇

(5.2)
The distribution of product states contains valuable information about the underlying
𝑛-qubit density matrix 𝜌. In fact, we can use 𝑆𝑇 (𝜌) to approximate 𝜌 via

𝜌 ≈ 𝜎𝑇 (𝜌) =
1
𝑇

𝑇∑︁
𝑡=1

𝜎
(𝑡)
1 ⊗ · · · ⊗ 𝜎

(𝑡)
𝑛 where 𝜎

(𝑡)
𝑖

= 3|𝑠(𝑡)
𝑖
⟩⟨𝑠(𝑡)

𝑖
| − I, (5.3)

and I denotes the identity matrix (here, a 2-by-2 identity). It is instructive to view
this as the empirical average of𝑇 independent and identically (iid) random matrices.
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Each random matrix is an iid copy of 𝜎1(𝜌) =
(
3|𝑠1⟩⟨𝑠1 | − I

)
⊗ · · · ⊗

(
3|𝑠𝑛⟩⟨𝑠𝑛 | − I

)
.

Each tensor factor is guaranteed to have eigenvalues 𝜆+ = 2 and 𝜆− = −1. This
ensures that

tr (𝜎1(𝜌)) =tr ( |𝑠1⟩⟨𝑠1 | − I) · · · tr ( |𝑠𝑛⟩⟨𝑠𝑛 | − I) = 1 and (5.4a)

∥𝜎1(𝜌)∥𝑝 = ∥3|𝑠1⟩⟨𝑠1 | − I∥𝑝 · · · ∥3|𝑠𝑛⟩⟨𝑠𝑛 | − I∥𝑝 (5.4b)

= ( |𝜆+ |𝑝 + |𝜆− |𝑝)𝑛/𝑝 = (2𝑝 + 1𝑝)𝑛/𝑝 , (5.4c)

regardless of the concrete realization (and the underlying quantum state 𝜌). The most
relevant Schatten-𝑝 norms are ∥𝜎1(𝜌)∥1 = 3𝑛, ∥𝜎1(𝜌)∥2 = 5𝑛/2 and ∥𝜎1(𝜌)∥∞ = 2𝑛.
Note, however, that the matrix 𝜎1(𝜌) is never positive semidefinite.

The random matrix 𝜎1(𝜌) is a highly structured tensor product that can assume
a total of 6𝑛 values. Each of them reflects the outcome of performing randomly
selected single-qubit Pauli measurements on the 𝑛-qubit state 𝜌. Let us denote
these Pauli matrices by 𝑊1, . . . ,𝑊𝑛 ∈ {𝑋,𝑌, 𝑍} and let 𝑜1, . . . , 𝑜𝑛 ∈ {±1} be the
observed outcomes (+1 if we measure ‘spin up’ and −1 if we measure ‘spin down’).
Elementary reformulations and Born’s rule then imply

𝜎1(𝜌) =
1
2
(I + 3𝑜1𝑊1) ⊗ · · · ⊗

1
2
(I + 3𝑜𝑛𝑊𝑛) (5.5)

with prob.
1
3𝑛

tr
(
1
2
(I + 𝑜1𝑊1) ⊗ · · · ⊗

1
2
(I + 𝑜𝑛𝑊𝑛)𝜌

)
. (5.6)

This construction ensures that 𝜎1(𝜌) exactly reproduces the underlying quantum
state 𝜌 in expectation. That is, if we average over all 3𝑛 choices of Pauli measure-
ments and the associated (single-shot) outcomes 𝑜𝑖 ∈ {±1}, we obtain

E
𝑠1,...,𝑠𝑛

[𝜎1(𝜌)] (5.7a)

= E
𝑠1,...,𝑠𝑛

[
1
2
(I + 3𝑜1𝑊1) ⊗ · · · ⊗

1
2
(I + 3𝑜𝑛3𝑊𝑛)

]
(5.7b)

=
∑︁

𝑊1,...,𝑊𝑛=𝑋,𝑌,𝑍

∑︁
𝑜1,...,𝑜𝑛=±1

1
3𝑛

tr
(
1
2
(I + 𝑜1𝑊1) ⊗ · · · ⊗

1
2
(I + 𝑜𝑛𝑊𝑛)𝜌

)
(5.7c)

× 1
2
(I + 𝑜13𝑊1) ⊗ · · · ⊗

1
2
(I + 𝑜𝑛3𝑊𝑛) (5.7d)

= 𝜌. (5.7e)

We refer the readers to Ref. (Huang, Richard Kueng, and Preskill, 2020) for a more
detailed derivation and context.

The classical shadow (5.3) attempts to approximate this expectation value by an
empirical average over 𝑇 independent samples, much like Monte Carlo sampling
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approximates an integral. The accuracy of the approximation increases with 𝑇 , but
insisting on accurate approximations of the global state 𝜌 is prohibitively expensive.
Known fundamental lower bounds (Steven T Flammia et al., 2012; Haah et al.,
2017) state that classical shadows of exponential size (at least) 𝑇 = Ω

(
2𝑛/𝜖2) are

required to 𝜖-approximate 𝜌 in trace distance. This quickly becomes intractable in
terms of both measurement budget, as well as classical storage and processing.

This bleak picture lightens up considerably if we restrict our attention to subsystem
approximations. The classical shadow size required to accurately approximate all
reduced 𝑟-body density matrices scales exponentially in subsystem size 𝑟, but is
independent of the total number of qubits 𝑛.

Lemma 15. Fix 𝜖, 𝛿 ∈ (0, 1), a subsystem size 𝑟 ≤ 𝑛 and let 𝜎𝑇 (𝜌) be a classical
shadow (5.3) of an 𝑛-qubit quantum state 𝜌 with size

𝑇 = (8/3)12𝑟 (𝑟 (log(𝑛) + log(12)) + log(1/𝛿)) /𝜖2 = O
(
𝑟12𝑟 log(𝑛/𝛿)/𝜖2

)
.

(5.8)
Then, with probability at least 1 − 𝛿,

∥tr¬𝐴 (𝜎𝑇 (𝜌)) − tr¬𝐴 (𝜌)∥1 ≤ 𝜖 (5.9)

for all subsystems 𝐴 ⊂ {1, . . . , 𝑛} with size |𝐴| ≤ 𝑟.

Proof. Let us start by considering a fixed subsystem 𝐴 = {𝑖1, . . . , 𝑖𝑟} comprised of
(at most) 𝑟 qubits. Use linearity to exchange partial trace with expectation value to
obtain

E
𝑠
(𝑡 )
𝑖1
,...,𝑠

(𝑡 )
𝑖𝑟

[ (
3|𝑠(𝑡)

𝑖1
⟩⟨𝑠(𝑡)

𝑖1
| − I

)
⊗ · · · ⊗

(
3|𝑠(𝑡)

𝑖𝑟
⟩⟨𝑠(𝑡)

𝑖𝑟
| − I

) ]
(5.10a)

= tr¬𝐴

(
E

𝑠
(𝑡 )
1 ,...,𝑠

(𝑡 )
𝑛

[ (
3|𝑠(𝑡)1 ⟩⟨𝑠

(𝑡)
1 | − I

)
⊗ · · · ⊗

(
3|𝑠(𝑡)𝑛 ⟩⟨𝑠(𝑡)𝑛 | − I

) ] )
(5.10b)

= tr¬𝐴 (𝜌), (5.10c)

according to Eq. (5.7). In words, each reduced tensor product is an independent
random matrix that reproduces the 𝑟-qubit state tr¬𝐴 (𝜌) exactly in expectation.
Empirical averages of 𝑇 such independent and identically distributed (iid) random
matrices tend to concentrate sharply around this expectation value. The matrix
Bernstein inequality, see e.g. (Tropp, 2012), provides powerful tail bounds in terms
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of operator norm deviation. Let 𝑋1, . . . , 𝑋𝑇 be iid random 𝐷-dimensional matrices
that obey ∥𝑋𝑡 − E 𝑋𝑡 ∥∞ ≤ 𝑅 almost surely. Then, for 𝜖 > 0

Pr

[ 1
𝑇

𝑇∑︁
𝑡=1
(𝑋𝑡 − E 𝑋𝑡)


∞

≥ 𝜖
]
≤ 2𝐷 exp

(
− 𝑇𝜖2/2
𝜎2 + 𝑅𝜖/3

)
(5.11)

where 𝜎2 =

 1
𝑇

∑︁
𝑡

E 𝑋2
𝑡


∞
. (5.12)

Let us apply this tail bound to classical shadow concentration. We have 𝐷 ≤ 2𝑟

(at most 𝑟 qubits) and set 𝑋𝑡 =
(
3|𝑠(𝑡)

𝑖1
⟩⟨𝑠(𝑡)

𝑖1
− I

)
⊗ · · · ⊗

(
3|𝑠(𝑡)

𝑖𝑟
⟩⟨𝑠(𝑡)

𝑖𝑟
| − I

)
, such that

E 𝑋𝑡 = tr¬𝐴 (𝜌). Eq. (5.4) then implies ∥𝑋𝑡 −E 𝑋𝑡 ∥∞ ≤ ∥𝑋𝑡 ∥ + ∥ E 𝑋𝑡 ∥∞ ≤ 2𝑟 + 1 =:
𝑅. Accurately bounding 𝜎2 is somewhat more involved, and we turn to existing
literature. A computation detailed in (Guţă et al., 2020a, Appendix C.3) yields
𝜎2 = 3𝑟 . We are now ready to apply the matrix Bernstein inequality. For 𝜖 > 0,

Pr [∥tr¬𝐴 (𝜎𝑇 (𝜌)) − tr¬𝐴 (𝜌)∥∞ ≥ 𝜖] (5.13)

≤ 2𝑟+1 exp
(
− 𝑇𝜖2/2

3𝑟 + (2𝑟 + 1)𝜖/3

)
≤ 2𝑟+1 exp

(
− 3𝑇𝜖2

8 × 3𝑟

)
, (5.14)

for 𝜖 ∈ (0, 1). This is a powerful concentration statement in the operator norm.
We can use the equivalence relation between trace- and operator norm, ∥𝑋 ∥∞ ≤
∥𝑋 ∥1 ≤ 𝐷∥𝑋 ∥∞, to obtain a tail bound for trace norm deviations:

Pr [∥tr¬𝐴 (𝜎𝑇 (𝜌)) − tr¬𝐴 (𝜌)∥∞ ≥ 𝜖] (5.15)

≤ Pr [∥tr¬𝐴 (𝜎𝑇 (𝜌)) − tr¬𝐴 (𝜌)∥1 ≥ 𝜖/2𝑟] ≤ 2𝑟+1 exp
(
− 3𝑇𝜖2

8 × 12𝑟

)
. (5.16)

We see that for a fixed subsystem 𝐴 = {𝑖1, . . . , 𝑖𝑟}, the probability of an 𝜖-deviation
in trace distance is exponentially suppressed in the size 𝑇 of the classical shadow.
A union bound allows us to extend this assertion to all subsystems comprised of (at
most) 𝑟 qubits:

Pr
[

max
𝐴⊂{1,...,𝑛},|𝐴|≤𝑟

∥tr¬𝐴 (𝜎𝑇 (𝜌)) − tr¬𝐴 (𝜌)∥1 ≥ 𝜖
]

(5.17a)

≤
∑︁

𝐴⊂{1,...,𝑛},|𝐴|≤𝑟
Pr [∥tr¬𝐴 (𝜎𝑇 (𝜌)) − tr¬𝐴 (𝜌)∥1 ≥ 𝜖] (5.17b)

≤ 𝑛𝑟2𝑟+1 exp
(
− 3𝑇𝜖2

8 × 12𝑟

)
. (5.17c)

Setting

𝑇 = (8/3)12𝑟 (log(𝑛𝑟12𝑟) + log(1/𝛿)) /𝜖2 (5.18)
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= (8/3)12𝑟 (𝑟 (log(𝑛) + log(12)) + log(1/𝛿)) /𝜖2 (5.19)

ensures that this upper bound on failure probability does not exceed 𝛿.

This classical shadow representation (Huang, Richard Kueng, and Preskill, 2020;
Paini and Kalev, 2019) exactly reproduces the global density matrix in the limit
𝑇 →∞, but𝑇 = O(const𝑟 log(𝑛)/𝜖2) already provides an 𝜖-accurate approximation
of all reduced 𝑟-body density matrices (in trace distance). This, in turn, implies
that we can use 𝜎𝑇 (𝜌) to predict any function that depends on only reduced density
matrices, such as expectation values of (sums of) local observables and (sums of)
entanglement entropies of small subsystems. Classical storage and postprocessing
cost also remain tractable in this regime. To summarize, the classical shadow
formalism equips us with an efficient quantum-to-classical converter that allows
classical machines to efficiently and reliably estimate subsystem properties of any
quantum state 𝜌.

5.2 Predicting ground states of quantum many-body systems
We consider the task of predicting ground state representations of quantum many-
body Hamiltonians in finite spatial dimensions. Suppose that a family of geomet-
rically local, 𝑛-qubit Hamiltonians {𝐻 (𝑥) : 𝑥 ∈ [−1, 1]𝑚} is parametrized by a
classical variable 𝑥. That is, 𝐻 (𝑥) smoothly maps a bounded 𝑚-dimensional vector
𝑥 (parametrization) to a Hermitian matrix of size 2𝑛 × 2𝑛 (𝑛-qubit Hamiltonian).
We do not impose any additional structure on this mapping; in particular, we do
not assume knowledge about how the physical Hamiltonian depends on the param-
eterization. The goal is to learn a model �̂�(𝑥) that can predict properties of the
ground state 𝜌(𝑥) associated with Hamiltonian. This problem arises in many prac-
tical scenarios. Suppose diligent experimental effort has produced experimental
data for ground state properties of various physical systems. We would like to use
this data to train an ML model that predicts ground state representations of hitherto
unexplored physical systems.

An ML algorithm with rigorous guarantee
We will prove that a classical ML algorithm can predict classical representations of
ground states after training on data belonging to the same quantum phase of mat-
ter. Formally, we consider a smooth family of Hamiltonians 𝐻 (𝑥) with a constant
spectral gap. During the training phase of the ML algorithm, many values of 𝑥 are
randomly sampled, and for each sampled 𝑥, the classical shadow of the correspond-
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ing ground state 𝜌(𝑥) of𝐻 (𝑥) is provided, either by classical simulations or quantum
experiments. The full training data of size 𝑁 is given by

{
𝑥ℓ → 𝜎𝑇 (𝜌(𝑥ℓ))

}𝑁
ℓ=1,

where 𝑇 is the number of randomized measurements in the construction of the
classical shadows at each value of 𝑥ℓ.

We train classical ML models using the size-𝑁 training data, such that when given
the input 𝑥ℓ, the ML model can produce a classical representation �̂�(𝑥) that approxi-
mates𝜎𝑇 (𝜌(𝑥ℓ)). During prediction, the classical ML produces �̂�(𝑥) for new values
of 𝑥 different from those in the training data. While �̂�(𝑥) and 𝜎𝑇 (𝜌(𝑥ℓ)) classically
represent exponentially large density matrices, the training and prediction can be
done efficiently on a classical computer using various existing classical ML models,
such as neural networks with large hidden layers (Jacot, Gabriel, and Hongler, 2018;
Z. Li et al., 2019; Du et al., 2019; Novak, L. Xiao, Hron, J. Lee, Alexander A. Alemi,
et al., 2020) and kernel methods (Cortes and Vapnik, 1995; Chang and C.-J. Lin,
2011a). In particular, the predicted output of the trained classical ML models can be
written as the extrapolation of the training data using a learned metric 𝜅(𝑥, 𝑥ℓ) ∈ R,

�̂�(𝑥) = 1
𝑁

𝑁∑︁
ℓ=1

𝜅(𝑥, 𝑥ℓ)𝜎𝑇 (𝜌(𝑥ℓ)). (5.20)

For example, prediction using a trained neural network with large hidden layers
(Jacot, Gabriel, and Hongler, 2018) is equivalent to using the metric 𝜅(𝑥, 𝑥ℓ) =∑𝑁
ℓ′=1 𝑓

(NTK) (𝑥, 𝑥ℓ′) (𝐹−1)ℓ′ℓ, where 𝑓 (NTK) (𝑥, 𝑥′) is the neural tangent kernel (Ja-
cot, Gabriel, and Hongler, 2018) corresponding to the neural network and 𝐹ℓ′ℓ =

𝑓 (NTK) (𝑥ℓ′ , 𝑥ℓ); see Appendix 5.11 for more discussion. The ground state properties
are then estimated using these predicted classical representations �̂�(𝑥). Specifically,
𝑓𝑂 (𝑥) = tr (𝑂𝜌(𝑥)) can be predicted efficiently whenever 𝑂 is a sum of few-body
operators.

To derive a provable guarantee, we consider the simple metric

𝜅(𝑥, 𝑥ℓ) =
∑︁

𝑘∈Z𝑚,∥𝑘 ∥2≤Λ
cos(𝜋𝑘 · (𝑥 − 𝑥ℓ)) (5.21)

with cutoff Λ, which we refer to as the 𝑙2-Dirichlet kernel. We prove that the
prediction will be accurate and efficient if the function 𝑓𝑂 (𝑥) does not vary too
rapidly when 𝑥 changes in any direction. Indeed, sufficient upper bounds on the
gradient magnitude of 𝑓𝑂 (𝑥) can be derived using quasi-adiabatic continuation
(Matthew B Hastings and Wen, 2005; Bachmann, Michalakis, et al., 2012).

Under the 𝑙2-Dirichlet kernel, the classical ML model is equivalent to learning a
truncated Fourier series to approximate the function 𝑓𝑂 (𝑥). The parameter Λ is a
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cutoff for the wavenumber 𝑘 that depends on (upper bounds on) the gradient of 𝑓𝑂 (𝑥).
Using statistical analysis, one can guarantee that E𝑥 | tr(𝑂�̂�(𝑥)) − 𝑓𝑂 (𝑥) |2 ≤ 𝜖 as
long as the amount of training data obeys 𝑁 = 𝑚O(1/𝜖) in the 𝑚 → ∞ limit. The
conclusion is that any such 𝑓𝑂 (𝑥) can be predicted with a small constant average
error, where the amount of training data and the classical computation time are
polynomial in 𝑚 and at most linear in the system size 𝑛. Moreover, the training data
need only contain a single classical shadow snapshot at each point 𝑥ℓ in the parameter
space (i.e., 𝑇 = 1). An informal statement of the theorem is given below; we explain
the proof strategy in Appendix 5.3, and provide more details in Appendix 5.4. We
also discuss how one could generalize the proof to long-range interacting systems,
electronic Hamiltonians, and other settings in Appendix 5.3.

Theorem 17 (Learning to predict ground state representations; informal). For any
smooth family of Hamiltonians {𝐻 (𝑥) : 𝑥 ∈ [−1, 1]𝑚} in a finite spatial dimension
with a constant spectral gap, the classical machine learning algorithm can learn to
predict a classical representation of the ground state 𝜌(𝑥) of𝐻 (𝑥) that approximates
few-body reduced density matrices up to a constant error 𝜖 when averaged over 𝑥.
The required training data size 𝑁 and computation time are polynomial in 𝑚 and
linear in the system size 𝑛.

Though formally “efficient” in the sense that 𝑁 scales polynomially with 𝑚 for any
fixed approximation error 𝜖 , the required amount of training data scales badly with
𝜖 . This unfortunate scaling is not a shortcoming of the considered ML algorithm,
but a necessary feature. In Appendix 5.5, we show that the data size and time
complexity cannot be improved further without making stronger assumptions about
the class of gapped local Hamiltonians. However, in cases of practical interest, the
Hamiltonian may obey restrictions such as translational invariance or graph structure
that can be exploited to obtain better results. Incorporating these restrictions can be
achieved by using a suitable 𝜅(𝑥, 𝑥ℓ), such as one that corresponds to a large-width
convolutional neural network (Z. Li et al., 2019) or a graph neural network (Du
et al., 2019). Rigorously establishing that neural-network-based ML algorithms can
achieve improved prediction performance and efficiency for particular classes of
Hamiltonians is a goal for future work.

Computational hardness for non-ML algorithms
In the following proposition, we show that a classical algorithm that does not learn
from data cannot achieve the same guarantee in estimating ground state properties
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without violating the widely believed conjecture that NP-complete problems cannot
be solved in randomized polynomial time. This proposition is a corollary of standard
complexity-theoretic results (Lichtenstein, 1982; L. Valiant and V. Vazirani, 1986).
See Appendix 5.6 for the detailed statement and proof.

Proposition 8 (Informal). Consider a randomized polynomial-time classical algo-
rithm A that does not learn from data. Suppose for any smooth family of two-
dimensional Hamiltonians {𝐻 (𝑥) : 𝑥 ∈ [−1, 1]𝑚} with a constant spectral gap, A
can efficiently compute expectation values of one-body observables in the ground
state 𝜌(𝑥) of 𝐻 (𝑥) up to a constant error when averaged over 𝑥. Then there is a
randomized classical algorithm that can solve NP-complete problems in polynomial
time.

It is instructive to observe that a classical ML algorithm with access to data can
perform tasks that cannot be achieved by classical algorithms which do not have ac-
cess to data. This phenomenon is studied in (Huang, Broughton, Masoud Mohseni,
Babbush, Boixo, Neven, and Jarrod R McClean, 2021a), where it is shown that the
complexity class defined by classical algorithms that can learn from data is strictly
larger than the class of classical algorithms that do not learn from data. (The data
can be regarded as a restricted form of randomized advice string.) We caution that
obtaining the data to train the classical ML model could be challenging. However,
if we focus only on data that could be efficiently generated by quantum-mechanical
processes, it is still possible that a classical ML that learns from data could be more
powerful than classical computers. In Appendix 5.6, we present a contrived family
of Hamiltonians that establishes this claim based on the (classical) computational
hardness of factoring.

5.3 Proof idea for the efficiency in predicting ground states
In order to illustrate the proof of Theorem 17, let us begin by looking at a simpler
task: training a machine learning model to predict a specified ground state property
instead of the classical representation of the ground state. Consider the property
tr(𝑂𝜌), where 𝜌 is the ground state and𝑂 is a local observable. In this simpler task,
we consider the training data to be{

𝑥1 → tr(𝑂𝜌(𝑥1)), . . . , 𝑥𝑁 → tr(𝑂𝜌(𝑥𝑁 ))
}
, (5.22)

where 𝑥ℓ ∈ [−1, 1]𝑚 is a classical description of the Hamiltonian 𝐻 (𝑥ℓ) and 𝜌(𝑥ℓ) is
the ground state of 𝐻 (𝑥). Intuitively, in a quantum phase of matter, the ground state
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property tr(𝑂𝜌(𝑥)) changes smoothly as a function of the input parameter 𝑥. The
smoothness condition can be rigorously established as an upper bound on the average
magnitude of the gradient of tr(𝑂𝜌(𝑥)) using quasi-adiabatic evolution (Matthew
B Hastings and Wen, 2005; Bachmann, Michalakis, et al., 2012), assuming that
the spectral gap of 𝐻 (𝑥) is bounded below by a nonzero constant throughout the
parameter space. The upper bound on the average gradient magnitude enables us to
design a simple classical ML model based on an 𝑙2-Dirichlet kernel for generalizing
from the training set to a new input 𝑥 ∈ [−1, 1]𝑚:

�̂�𝑁 (𝑥) =
1
𝑁

𝑁∑︁
ℓ=1

𝜅(𝑥, 𝑥ℓ) tr(𝑂𝜌(𝑥ℓ)) (5.23)

with 𝜅(𝑥, 𝑥ℓ) =
∑︁

𝑘∈Z𝑚,∥𝑘 ∥2≤Λ
cos(𝜋𝑘 · (𝑥 − 𝑥ℓ)) ∈ R. (5.24)

The 𝑙2-Dirichlet kernel is often used in the study of high-dimensional Fourier
series (Weisz, 2012) and the proposed ML model is equivalent to learning a
truncated Fourier series to approximate the function tr(𝑂𝜌(𝑥)), where the pa-
rameter Λ is a cutoff on the wavenumber 𝑘 that depends on the upper bound
on the gradient of tr(𝑂𝜌(𝑥)). Using statistical analysis, one can guarantee that
E𝑥 |�̂�𝑁 (𝑥) − tr(𝑂𝜌(𝑥)) |2 ≤ 𝜖 as long as the amount of training data 𝑁 = 𝑚O(1/𝜖)

where our big-O notation is with respect to the𝑚 →∞ limit. Hence, we can achieve
a small constant prediction error with an amount of training data and computational
time that are both polynomial in the number 𝑚 of input parameters. The training
is efficient because the number of modes needed for the truncated Fourier series to
provide an accurate approximation to tr(𝑂𝜌) scales polynomially with 𝑚.

The key to the statistical analysis is to bound the model complexity of the above
machine learning model. In particular, the model complexity depends on the number
of wave vectors we consider in the 𝑙2-Dirichlet kernel. The more wave vectors 𝑘 we
include, the higher the model complexity; and we would have to use more data to
train the ML model to achieve good generalization performance. Furthermore, one
could show that the amount of data is proportional to the number of wave vectors
we consider. In order to achieve a prediction error E𝑥 |�̂�𝑁 (𝑥) − tr(𝑂𝜌(𝑥)) |2 ≤ 𝜖 ,
we would need to select Λ to be of order

√︁
1/𝜖 . Hence, the number of wave

vectors is proportional to the number of lattice points in an 𝑚-dimensional 𝑙2 ball of
radius Λ. The volume of an 𝑚-dimensional 𝑙2 ball with radius Λ is proportional to
Λ𝑚 = (1/𝜖)𝑚/2. If the number of lattices points is proportional to the volume, then
this would imply an exponential scaling in the number of parameters 𝑚. However,
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through a proper combinatorial analysis, we show that the number of lattices points
is actually proportional to𝑚O(Λ2) = 𝑚O(1/𝜖) , which is only polynomial in the number
of parameters 𝑚.

We can build on this idea to address the task of predicting ground state represen-
tations. Now instead of predicting tr(𝑂𝜌) for a new input 𝑥, the goal is to predict
the classical shadow of the ground state 𝜌(𝑥). We consider the training data to be{
𝑥ℓ → 𝜎1(𝜌(𝑥ℓ))

}𝑁
ℓ=1, where 𝜎1(𝜌(𝑥ℓ)) is the classical shadow representation of

𝜌(𝑥ℓ) obtained from just a single randomized Pauli measurement of the state (the
𝑇 = 1 case of Eq. (5.3)). Following the same approach as outlined above for the
case of predicting a single property, the predicted ground state representation is now
given by

�̂�𝑁 (𝑥) =
1
𝑁

𝑁∑︁
ℓ=1

𝜅(𝑥, 𝑥ℓ)𝜎1(𝜌(𝑥ℓ)) (5.25)

with 𝜅(𝑥, 𝑥ℓ) =
∑︁

𝑘∈Z𝑚,∥𝑘 ∥2≤Λ
cos(𝜋𝑘 · (𝑥 − 𝑥ℓ)) ∈ R. (5.26)

One can then guarantee that this representation accurately predicts expectation
values for a wide range of observables.

The fact that only a single snapshot 𝜎1 per parameter point is required for our pro-
tocol may be surprising. However, since the snapshots depends on the parameters,
sampling over training data indirectly samples over different snapshots, and is thus
sufficient for a reasonable estimate of properties of the phase. The estimate can of
course be further improved if multiple snapshots are used for each parameter point,
and we leave proving such improved bounds as an exciting goal for future work.

Generalization to other systems and settings
In this subsection, we discuss how one could generalize the proof of Theorem 17 to
various different scenarios.

Prediction based on other quantum measurements Throughout this chapter,
we considered classical shadows based on randomized Pauli measurements (Huang,
Richard Kueng, and Preskill, 2020). However, it may be difficult to perform ran-
domized Pauli measurements in some experimental systems. Theorem 17 can be
directly generalized to other kinds of measurement procedures. Consider a restricted
setting where the experimentalist can only obtain training data of the form

{𝑥ℓ → tr(𝑂𝜌(𝑥ℓ))}𝑁ℓ=1 , (5.27)
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for a single observable 𝑂 (that can be written as a sum of local observables). In
this case, the classical ML model can no longer predict a classical representation of
𝜌(𝑥) for a new 𝑥. Nevertheless, the classical ML model can still predict tr(𝑂𝜌(𝑥))
accurately for a new 𝑥 by following the proof sketch in Appendix 5.3.

More generally, suppose the experimentalist can construct some classical representa-
tion of the ground state 𝜌(𝑥ℓ) through the available measurements, such as classical
shadows based on another random unitary ensemble (H.-Y. Hu and You, 2021), or
simply a list of properties of 𝜌(𝑥ℓ). And suppose that the classical representation
allows us to predict the expectation values of observables 𝑂1, 𝑂2, . . . , 𝑂𝑀 in the
ground state 𝜌(𝑥ℓ). Then for a new 𝑥, the classical ML model can predict tr(𝑂𝑖𝜌(𝑥))
accurately for 𝑖 = 1, . . . , 𝑀 .

A variable number of parameters So far, we have considered the input vector 𝑥
to be of a fixed dimension𝑚. Here we briefly discuss how to generalize Theorem 17
to a setting where the input is not a fixed dimensional vector. We can think of the
input as 𝜉 = (𝑚, 𝑥), where 𝑚 ∈ N is a discrete variable specifying the number of
parameters, and 𝑥 ∈ R𝑚 is an 𝑚-dimensional vector with continuous entries. The
number of parameters 𝑚 may range from 𝑚min to 𝑚max. We consider a class of
Hamiltonians 𝐻 (𝜉) = 𝐻 ((𝑚, 𝑥)) that depends on both the discrete parameter 𝑚 and
the continuous vector 𝑥. For example, we may have

𝑚 = 1 : 𝐻 ((𝑚, 𝑥)) =
𝑛∑︁
𝑖=1

𝑥1(𝑋𝑖𝑋𝑖+1 + 𝑌𝑖𝑌𝑖+1), (5.28)

𝑚 = 2 : 𝐻 ((𝑚, 𝑥)) =
𝑛∑︁
𝑖=1

𝑥1(𝑋𝑖𝑋𝑖+1 + 𝑌𝑖𝑌𝑖+1) + 𝑥2(𝑍𝑖𝑍𝑖+1), (5.29)

where 𝑥1, 𝑥2 denote the first and second entry of the vector 𝑥. In order the train the
ML model, we can consider training data to be of the form{

𝜉ℓ → 𝜎𝑇 (𝜌(𝜉ℓ))
}𝑁
ℓ=1, (5.30)

where 𝜌(𝜉ℓ) is the ground state of the Hamiltonian 𝐻 (𝜉ℓ) (and 𝜉ℓ = (𝑚ℓ, 𝑥ℓ)).
In this most general case, we can now simply train a distinct ML model for each
𝑚 ∈ [𝑚min, 𝑚max]. Using this direct method, we only need a training data size 𝑁
that is (𝑚max − 𝑚min + 1) times larger than the training data size when 𝑚 is fixed.

Systems with long-range interactions For simplicity, the proof for our main
theorem (Theorem 17) focuses on Hamiltonians that can be written as a sum of
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geometrically local terms,
𝐻 (𝑥) =

∑︁
𝑗

ℎ 𝑗 (𝑥), (5.31)

where ℎ 𝑗 (𝑥) acts on a constant number of constituents that are contained in a ball of
constant size in a finite-dimensional space. Our proof can be generalized to some
physical systems where ℎ 𝑗 (𝑥) acts on constituents that are geometrically non-local.
The main condition we must impose is that the evolution under the Hamiltonian
𝐻 (𝑥) in the ground state 𝜌(𝑥) has a bounded speed of information spreading. In the
study of quantum many-body systems (C.-F. Chen and Lucas, 2019; Kuwahara and
Saito, 2020; Tran et al., 2020) this assumption is described as a linear light cone,
meaning that if a perturbation is applied at a point 𝑃 at time zero, then the effects of
that perturbation at a later time 𝑡 are mostly confined to a region centered at 𝑃 with
radius 𝑣𝑡; here 𝑣 > 0 is called the Lieb-Robinson velocity.

To be more precise, consider two few-body operators, 𝑂𝐴 acting on a set of con-
stituents 𝐴, and 𝑂𝐵 acting on a set of constituents 𝐵; the sets 𝐴 and 𝐵 need not
be geometrically local. We denote by 𝑑 (𝑂𝐴, 𝑂𝐵) the minimum Euclidean distance
between constituents in 𝐴 and constituents in 𝐵. Recall that in the Heisenberg
picture, operators evolve according to 𝑂 (𝑡) = e𝑖𝑡𝐻 (𝑥)𝑂e−𝑖𝑡𝐻 (𝑥) , where 𝐻 (𝑥) is the
Hamiltonian. We require that the expectation value in the ground state 𝜌(𝑥) of
the commutator of 𝑂𝐴 with 𝑂𝐵 (𝑡) is highly suppressed when 𝑑 (𝑂𝐴, 𝑂𝐵) is small
compared to 𝑣𝑡, i.e.,

|tr ( [𝑂𝐴, 𝑂𝐵 (𝑡)] 𝜌(𝑥)) | ≤
𝑐 |𝑡 |𝛽

max(0, 𝑑 (𝑂𝐴, 𝑂𝐵) − 𝑣 |𝑡 |)𝛼
∥𝑂𝐴∥∞ ∥𝑂𝐵∥∞ , (5.32)

where 𝑐 is a constant, and 𝛼 > 𝛽 > 0 are constants that determine the decay,

Such Lieb-Robinson bounds were proven for geometrically local Hamiltonians
decades ago, but linear light cones in physical systems with non-local interactions
had not been studied until comparatively recently (C.-F. Chen and Lucas, 2019;
Kuwahara and Saito, 2020; Tran et al., 2020). It has now been established that,
for many long-range interacting systems, Eq. (5.32) applies, where 𝛼 is sufficiently
large compared to 𝛽 for our arguments to apply. Specifically, in the proof given in
Appendix 5.4, we can replace Eq. (5.107) by

| tr( [𝑂, 𝐷 �̂� (𝑥)]𝜌(𝑥)) | (5.33)

≤
∑︁
𝑖

∫ ∞

−∞
𝑊𝛾 (𝑡)

∑︁
𝑗

����tr ( [
𝑂𝑖, ei𝑡𝐻 (𝑥) 𝜕ℎ 𝑗

𝜕�̂�
(𝑥)e−i𝑡𝐻 (𝑥)

]
𝜌(𝑥)

)���� d𝑡, (5.34)
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and also replace the Lieb-Robinson bound in Eq. (5.100) by the bound in Eq. (5.32).
When 𝛼 is sufficiently large compared to 𝛽 in Eq. (5.32), we can guarantee that the
right hand side of Eq. (5.33) is upper bounded by

const ×
∑︁
𝑖

∥𝑂𝑖∥∞ , (5.35)

using an analysis similar to that given in Appendix 5.4. After establishing such
an upper bound on | tr( [𝑂, 𝐷 �̂� (𝑥)]𝜌(𝑥)) |, we can follow exactly the same proof
given in the other sections in Appendix 5.4 to show that the classical ML model
can accurately predict the classical representation of the ground state for long-range
interacting systems with a similar guarantee as Theorem 17, assuming that the
Lieb-Robinson velocity 𝑣 is bounded above by a constant.

Fermionic systems We can also generalize the proof of Theorem 17 to fermionic
systems, such as those arising in studies of electronic structure; see for example
(Helgaker, Jorgensen, and Olsen, 2014). We consider second quantization, also
known as the occupation number representation, and use the abstract Fock space to
represent the Hamiltonians of fermionic systems. Given a system of 𝑛 spin orbitals,
the Fock space is a 2𝑛-dimensional space spanned by |𝑐0, 𝑐1, . . . , 𝑐𝑛−1⟩, where 𝑐 𝑗 = 1
indicates that mode 𝑗 is occupied and 𝑐 𝑗 = 0 indicates that mode 𝑗 is unoccupied.
A vector in the Fock space is a linear combination of these 2𝑛 basis states. Given a
mode 𝑗 ∈ {1, . . . , 𝑛}, a fermionic creation operator 𝐴 𝑗 is defined by

𝐴
†
𝑗
|𝑐0, 𝑐1, . . . , 0 𝑗 , . . . , 𝑐𝑛−1⟩ = (−1)

∑ 𝑗−1
𝑘=0 𝑐𝑘 |𝑐0, 𝑐1, . . . , 1 𝑗 , . . . , 𝑐𝑛−1⟩ ,

𝐴
†
𝑗
|𝑐0, 𝑐1, . . . , 1 𝑗 , . . . , 𝑐𝑛−1⟩ = 0,

(5.36)

whereas the fermionic annihilation operator 𝐴 𝑗 is defined by

𝐴 𝑗 |𝑐0, 𝑐1, . . . , 0 𝑗 , . . . , 𝑐𝑛−1⟩ = 0,

𝐴 𝑗 |𝑐0, 𝑐1, . . . , 1 𝑗 , . . . , 𝑐𝑛−1⟩ = (−1)
∑ 𝑗−1
𝑘=0 𝑐𝑘 |𝑐0, 𝑐1, . . . , 0 𝑗 , . . . , 𝑐𝑛−1⟩ .

(5.37)

For a fermionic system, each local term ℎ 𝑗 (𝑥) in the Hamiltonian𝐻 (𝑥) = ∑
𝑗 ℎ 𝑗 (𝑥) is

a Hermitian matrix that can be expressed as a product of an even number of fermionic
creation and annihilation operators; we refer to such a Hermitian matrix as an even
fermionic observable. For example, we could have ℎ𝑝𝑞𝑟𝑠 (𝑥) = 𝑈𝑝𝑞𝑟𝑠 (𝑥)𝐴†𝑝𝐴†𝑞𝐴𝑟𝐴𝑠+
𝑈𝑝𝑞𝑟𝑠 (𝑥)𝐴†𝑠 𝐴†𝑟 𝐴𝑞𝐴𝑝, where𝑈𝑝𝑞𝑟𝑠 (𝑥) is a complex-valued number. (This particular
term conserves the total fermion number, but fermion number conservation is not
actually required for our arguments to work.) Two even fermionic observables
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acting on disjoint sets of spin orbitals commute with one another, just as two local
observables acting on disjoint sets of qubits commute. As a result, several results
in qubit systems based on the commutation relations of disjoint local observables
can be easily generalized to even fermionic observables in fermionic systems. In
particular, one can generalize the proof of Theorem 17 as follows.

• First, we construct a classical shadow representation for fermionic systems.
An efficient approach for constructing such a representation is given in (Zhao,
Rubin, and Miyake, 2021). This work rigorously analyzes how to predict
a large number of properties using outcomes of measurements performed
after randomized fermionic Gaussian unitaries. We can replace the classical
shadow based on randomized Pauli measurements with the fermionic partial
tomography introduced in (Zhao, Rubin, and Miyake, 2021).

• Secondly, we establish a bounded speed of information spreading under evolu-
tion governed by 𝐻 (𝑥) in the ground state 𝜌(𝑥). Intuitively, we would like the
“diameter” of the support (by “support” we mean the set of spin orbitals that
an observable acts on substantially) of an even fermionic observable under
Heisenberg evolution to grow at most linearly in time. As for qubit systems,
this growth rate is known as the Lieb-Robinson velocity. Because two even
fermionic observables acting on disjoint sets of spin orbitals commute with
one another, one can establish an upper bound on the Lieb-Robinson velocity
in fermionic systems by following the argument used for qubit systems (Bru
and Siqueira Pedra, 2016; Nachtergaele, Sims, and Young, 2018). This argu-
ment does not work for arbitrary fermionic systems, but it does work if the
interaction graph of the spin orbitals is suitably sparse.

After these replacements, the rest of the proof follows immediately, yielding a
version of Theorem 17 for fermionic systems. As we noted, the argument used
to bound the Lieb-Robinson velocity does not work for some fermionic systems;
for example it fails in models where orbitals have all-to-all connectivity without
any geometrical constraints (the same is true for qubit systems). But the proof
of Theorem 17 does go through for tight-binding models, including the Fermi-
Hubbard model. Since computing ground state properties of the Fermi-Hubbard
model is notoriously difficult for classical computers, it is encouraging to find that
our classical ML algorithm can compute these properties efficiently when provided
with polynomial-size training data.
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5.4 Proof of efficiency for predicting ground states
This section contains a detailed proof for one of our main contributions. Namely, a
rigorous performance guarantee for learning to predict ground state representations.

Theorem 18 (Theorem 17, detailed restatement). Consider any family of 𝑛-qubit
geometrically-local Hamiltonians {𝐻 (𝑥) : 𝑥 ∈ [−1, 1]𝑚} in a finite spatial dimen-
sion, such that each local term in 𝐻 (𝑥) depends smoothly on 𝑥, and the smallest
eigenvalue and the next smallest eigenvalues have a constant gap 𝛾 ≥ Ω(1) between
them. Let 𝜌(𝑥) be the ground state of 𝐻 (𝑥), that is

𝜌(𝑥) = lim
𝛽→∞

𝑒−𝛽𝐻 (𝑥)/tr(𝑒−𝛽𝐻 (𝑥)) ∈ (H2)⊗𝑛 (ground state of Hamiltonian 𝐻 (𝑥))

(5.38)

where H2 is the vector space of 2 × 2 Hermitian matrices. Suppose that we are
interested in learning to predict a sum 𝑂 =

∑𝐿
𝑖=1𝑂𝑖 of 𝐿 local observables that

satisfies
∑𝐿
𝑖=1 ∥𝑂𝑖∥ ≤ 𝐵 (bounded norm). Then, classical shadow data {𝑥ℓ →

𝜎1(𝜌(𝑥ℓ))}𝑁ℓ=1, with 𝑥ℓ ∼ Unif [−1, 1]𝑚 and

𝑁 = 𝐵2𝑚O(𝐵
2/𝜖) (training data size), (5.39)

suffices to produce a ground state prediction model

�̂�𝑁 (𝑥) =
1
𝑁

𝑁∑︁
ℓ=1

𝜅(𝑥, 𝑥ℓ)𝜌(𝑥ℓ) with 𝜅(𝑥, 𝑥ℓ) =
∑︁

𝑘∈Z𝑚,∥𝑘 ∥2≤Λ
cos(𝜋𝑘 · (𝑥 − 𝑥ℓ)) ∈ R,

(5.40)
that achieves

E
𝑥∼[−1,1]𝑚

| tr(𝑂�̂�𝑁 (𝑥)) − tr(𝑂𝜌(𝑥)) |2 ≤ 𝜖, (5.41)

with high probability. The classical training time for constructing �̂�𝑁 (𝑥) and
the prediction time for computing tr(𝑂�̂�(𝑥)) are both upper bounded by O((𝑛 +
𝐿)𝐵2𝑚O(𝐵

2/𝜖)).

Theorem 18 can be generalized to the following statement about learning a family
of quantum states. In particular, we will prove the following theorem and use it to
derive Theorem 18.

Theorem 19. Consider a parametrized family of 𝑛-qubit states

{𝜌(𝑥) : 𝑥 ∈ [−1, 1]𝑚} (5.42)
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and a sum 𝑂 =
∑𝐿
𝑖=1𝑂𝑖 of 𝐿 local observables that obey

E
𝑥∼[−1,1]𝑚

∥∇𝑥 tr(𝑂𝜌(𝑥))∥22 ≤ 𝐶 (smoothness condition), (5.43a)∑︁
𝑖

∥𝑂𝑖∥ ≤ 𝐵 (bounded norm). (5.43b)

Then, classical shadow data {𝑥ℓ → 𝜎1(𝜌(𝑥ℓ))}𝑁ℓ=1, with 𝑥ℓ ∼ Unif [−1, 1]𝑚 and

𝑁 = 𝐵2𝑚O(𝐶/𝜖) (training data size), (5.44)

suffices to produce a state prediction model we can learn from classical data {𝑥ℓ →
𝜎1(𝜌(𝑥ℓ))}𝑁ℓ=1 to produce a model

�̂�𝑁 (𝑥) =
1
𝑁

𝑁∑︁
ℓ=1

𝜅(𝑥, 𝑥ℓ) tr(𝑂𝜌(𝑥ℓ)) (5.45)

with 𝜅(𝑥, 𝑥ℓ) =
∑︁

𝑘∈Z𝑚,∥𝑘 ∥2≤Λ
cos(𝜋𝑘 · (𝑥 − 𝑥ℓ)) ∈ R, (5.46)

that achieves
E

𝑥∼[−1,1]𝑚
| tr(𝑂�̂�𝑁 (𝑥)) − tr(𝑂𝜌(𝑥)) |2 ≤ 𝜖, (5.47)

with high probability. The classical training time for constructing �̂�𝑁 (𝑥) and
the prediction time for computing tr(𝑂�̂�(𝑥)) are both upper bounded by O((𝑛 +
𝐿)𝐵2𝑚O(𝐶/𝜖)).

The following sections are structured as follows. In Section 5.4, we provide an
overview to illustrate the proof of the sample complexity upper bound. The first step,
given in Section 5.4, bounds the truncation error when approximating the quantum
state function 𝜌(𝑥) using a truncated Fourier series. The second step, given in
Section 5.4, bounds the generalization error for learning the Fourier approximation
to the quantum state function 𝜌(𝑥). Then, in Section 5.4, we analyze the training
and prediction time of the proposed classical machine learning model. These three
sections establish Theorem 19. Finally, in Section 5.4, we use Theorem 19 and nice
properties about ground states of Hamiltonians to prove Theorem 18.

Overview for sample complexity upper bound
The key intermediate step is to construct a truncated Fourier series of the quantum
state function 𝜌(𝑥). The Fourier series of the matrix-valued function 𝜌(𝑥) is given
as

𝜌(𝑥) =
∑︁
𝑘∈Z𝑚

𝑒i𝜋𝑘 ·𝑥𝐴𝑘 , (5.48)
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where 𝐴𝑘 are matrix-valued Fourier coefficients

𝐴𝑘 =
1

2𝑚

∫
[−1,1]𝑚

𝑒−i𝜋𝑘 ·𝑥𝜌(𝑥)d𝑚𝑥. (5.49)

We define the truncated Fourier series as

𝜌Λ(𝑥) =
∑︁

𝑘∈Z𝑚,∥𝑘 ∥2≤Λ
𝑒i𝜋𝑘 ·𝑥𝐴𝑘 , (5.50)

where Λ > 0 is a pre-specified cutoff value. Given an observable 𝑂 that can
be written as a sum of local observables 𝑂 =

∑
𝑖 𝑂𝑖 with

∑
𝑖 ∥𝑂𝑖∥∞ ≤ 𝐵 and

E𝑥∼[−1,1]𝑚 ∥∇𝑥 tr(𝑂𝜌(𝑥))∥22 ≤ 𝐶, the proof of Theorem 18 consists of two parts.

First, we bound the error between the truncated Fourier series 𝜌Λ(𝑥) and the true
quantum state function 𝜌(𝑥) in Section 5.4 giving

E
𝑥∼[−1,1]𝑚

|tr(𝑂𝜌(𝑥)) − tr (𝑂𝜌Λ(𝑥)) |2 ≤ O
(
𝐶

Λ2

)
, (5.51)

We choose the truncation Λ = Θ(
√︁
𝐶/𝜖) such that the error between truncated

Fourier series and the true quantum state function obeys

E
𝑥∼[−1,1]𝑚

|tr(𝑂𝜌(𝑥)) − tr (𝑂𝜌Λ(𝑥)) |2 ≤
𝜖

4
. (5.52)

In the second part, we bound the error between the machine learning model �̂�(𝑥)
and the truncated Fourier series 𝜌Λ(𝑥) in Section 5.4. With high probability over
the randomness in generating the training data, we have

E
𝑥∼[−1,1]𝑚

|tr(𝑂�̂�(𝑥)) − tr (𝑂𝜌Λ(𝑥)) |2 ≤
𝐵2𝑚O(Λ

2)

𝑁
. (5.53)

The training data contains two sources of randomness, one from the sampling of
𝑥ℓ and the other from the local randomized measurement to construct approximate
classical representation for 𝜌(𝑥ℓ) that could be feed into the classical machine
learning model. We choose the training data size

𝑁 =
2𝐵2𝑚O(𝐶/𝜖)

𝜖
≤ 𝐵2𝑚O(𝐶/𝜖)+log(1/𝜖)+1 = 𝐵2𝑚O(𝐶/𝜖) , (5.54)

such that the error between the machine learning model and the truncated Fourier
series obeys

E
𝑥∼[−1,1]𝑚

|tr(𝑂�̂�(𝑥)) − tr (𝑂𝜌Λ(𝑥)) |2 ≤ 𝜖/4, (5.55)
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with high probability. The two parts can be combined by a triangle inequality to
yield

E
𝑥∼[−1,1]𝑚

|tr(𝑂�̂�(𝑥)) − tr (𝑂𝜌(𝑥)) |2 (5.56a)

≤
(√︂

E
𝑥∼[−1,1]𝑚

|tr(𝑂�̂�(𝑥)) − tr (𝑂𝜌Λ(𝑥)) |2 (5.56b)

+
√︂

E
𝑥∼[−1,1]𝑚

|tr(𝑂𝜌(𝑥)) − tr (𝑂𝜌Λ(𝑥)) |2
)2

= 𝜖, (5.56c)

with high probability over the randomness in the training data. This establishes the
sample complexity upper bound for Theorem 18.

When the Hamiltonians 𝐻 (𝑥) have spectral gap ≥ Ω(1) in the domain 𝑥 ∈ [−1, 1]𝑚,
for any observable𝑂 =

∑
𝑖 𝑂𝑖 that can be written as a sum of local observables with∑

𝑖 ∥𝑂𝑖∥∞ ≤ 𝐵, we have

E
𝑥∼[−1,1]𝑚

∥∇𝑥 tr(𝑂𝜌(𝑥))∥22 ≤ O(𝐵2). (5.57)

Hence, we can prove the sample complexity upper bound in Theorem 19 by utilizing
Theorem 18 and the fact that 𝐶 = O(𝐵2).

Controlling the truncation error
For a fixed observable 𝑂, we can define a function

𝑓 (𝑥) = tr(𝑂𝜌(𝑥)) =
∑︁
𝑘∈Z𝑚

𝑒i𝜋𝑘 ·𝑥 tr(𝑂𝐴𝑘 ). (5.58)

And the truncated Fourier series of the function 𝑓 (𝑥) is given by

𝑓Λ(𝑥) = tr(𝑂𝜌Λ(𝑥)) = 𝜌Λ(𝑥) =
∑︁

𝑘∈Z𝑚,∥𝑘 ∥2≤Λ
𝑒i𝜋𝑘 ·𝑥 tr(𝑂𝐴𝑘 ). (5.59)

Lemma 16 (truncation error). Let

𝑓 (𝑥) =
∑︁
𝑘∈Z𝑚

𝛼𝑘𝑒
i𝜋𝑘 ·𝑥 (5.60)

and
𝑓Λ(𝑥) =

∑︁
𝑘∈Z𝑚,∥𝑘 ∥2≤Λ

𝛼𝑘𝑒
i𝜋𝑘 ·𝑥 . (5.61)

Then

E
𝑥∼[−1,1]𝑚

| 𝑓 (𝑥) − 𝑓Λ(𝑥) |2 ≤
1

𝜋2Λ2 E
𝑥∼[−1,1]𝑚

∥∇𝑥 𝑓 (𝑥)∥22 for any cutoff Λ > 0.

(5.62)
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Proof. The claim follows from standard Harmonic analysis arguments. More pre-
cisely, we combine orthogonality (

∫
[−1,1]𝑚 ei(𝜋(𝑘−𝑘 ′)𝑥d𝑚𝑥 = 𝛿(𝑘,𝑘 ′)) with the fact that

the Fourier transform exchanges differentials (“momentum”) with multiplications
(“position”):

∇𝑥 𝑓 (𝑥) =
∑︁
𝑘∈Z𝑚

𝛼𝑘∇𝑥ei𝜋𝑘𝑥 = i𝜋
∑︁
𝑘∈Z𝑚

𝛼𝑘 𝑘ei𝜋𝑘𝑥 . (5.63)

Use orthogonality to rewrite the truncation error as

E
𝑥∼[−1,1]𝑚

| 𝑓 (𝑥) − 𝑓Λ(𝑥) |2 =

∫
[−1,1]𝑚

��� ∑︁
𝑘∈Z𝑚:∥𝑘 ∥>Λ

ei𝜋𝑘𝑥𝛼𝑘

���2d𝑚𝑥 (5.64a)

=
∑︁

𝑘:∥𝑘 ∥2>Λ

∑︁
𝑘 ′:∥𝑘 ′∥2>Λ

( ∫
[−1,1]𝑚

ei𝜋(𝑘−𝑘 ′)𝑥d𝑚𝑥
)
𝛼𝑘𝛼𝑘

(5.64b)

=
∑︁

𝑘:∥𝑘 ∥2>Λ
|𝛼𝑘 |2 . (5.64c)

Conversely, we use orthogonality and Rel. (5.63) to rephrase this upper bound. Let
⟨𝑘′, 𝑘⟩ be the Euclidean inner product between two vectors 𝑘, 𝑘′ ∈ Z𝑚. Then,

E
𝑥∼[−1,1]𝑚

∥∇𝑥 𝑓 (𝑥)∥22 =

∫
[−1,1]𝑚

 ∑︁
𝑘∈Z𝑚

𝜋𝑘ei𝜋𝑘𝑥𝛼𝑘

2

2

d𝑚𝑥 (5.65a)

=
∑︁

𝑘,𝑘 ′∈Z𝑚
𝜋2⟨𝑘′, 𝑘⟩

∫
[−1,1]𝑚

ei𝜋(𝑘−𝑘 ′)𝑥d𝑚𝑥𝛼𝑘 ′𝛼𝑘 (5.65b)

=𝜋2
∑︁
𝑘∈Z𝑚
⟨𝑘, 𝑘⟩|𝛼𝑘 |2 = 𝜋2

∑︁
𝑘∈Z𝑚
∥𝑘 ∥22 |𝛼𝑘 |

2 . (5.65c)

In words, the upper bound from Eq. (5.64c) can be rephrased as the Euclidean
norm ∥∇𝑥 𝑓 (𝑥)∥22 of the vector ∇𝑥 𝑓 (𝑥). The advertised claim readily follows from
comparing these two reformulations:∑︁

𝑘:∥𝑘 ∥2>Λ
|𝛼𝑘 |2 ≤

1
Λ2

∑︁
𝑘:∥𝑘 ∥2>Λ

∥𝑘 ∥22 |𝛼𝑘 |
2 ≤ 1

𝜋2Λ2

(
𝜋2

∑︁
𝑘∈Z𝑚
∥𝑘 ∥22 |𝛼𝑘 |

2
)
. (5.66)

This concludes the proof.

Using Lemma 16 and the condition that E𝑥∼[−1,1]𝑚 ∥∇𝑥 tr(𝑂𝜌(𝑥))∥22 ≤ 𝐶, we can
obtain the desired inequality for bounding the truncation error,

E
𝑥∼[−1,1]𝑚

|tr(𝑂𝜌(𝑥)) − tr (𝑂𝜌Λ(𝑥)) |2 ≤ O
(
𝐶

Λ2

)
. (5.67)
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Controlling generalization errors from using the training data
This section is devoted to a practical issue regarding training data based on classical
shadows. Each label is obtained by performing a single-shot quantum measurement
of a parametrized quantum state 𝜌(𝑥𝑖). We can use Eq. (5.3) to convert the single-
shot outcome into 𝜎1(𝜌) =

⊗𝑛

𝑖=1 (3|𝑠𝑖⟩⟨𝑠𝑖 | − I). Such a classical shadow approx-
imation reproduces the underlying state in expectation, i.e., E𝑠1,...,𝑠𝑛 [𝜎1(𝜌)] = 𝜌.
Recall that the training data T = {𝑥ℓ → 𝜎1(𝜌(𝑥ℓ))}𝑁ℓ=1 consists of such classical
shadow approximations. The machine learning model makes predictions based on
a truncated Fourier kernel for future predictions. For new input 𝑥 ∈ [−1, 1]𝑛, we
predict

�̂�(𝑥) = 1
𝑁

𝑁∑︁
ℓ=1

𝜅(𝑥, 𝑥ℓ)𝜎1 (𝜌(𝑥ℓ)) with (5.68a)

𝜅(𝑥, 𝑥ℓ) =
∑︁

𝑘∈Z𝑚,∥𝑘 ∥2≤Λ
ei𝜋𝑘 ·(𝑥−𝑥ℓ ) =

∑︁
𝑘∈Z𝑚,∥𝑘 ∥2≤Λ

cos(𝜋𝑘 · (𝑥 − 𝑥ℓ)). (5.68b)

In the following, we will show that machine learning model �̂�(𝑥) is equal to the trun-
cated Fourier series 𝜌Λ(𝑥) of the true target quantum state if we take the expectation
over the training data, which includes the sampled inputs 𝑥1, . . . , 𝑥𝑁 and the ran-
domized measurement outcomes 𝑆1(𝜌(𝑥ℓ)) = {𝑠𝑖}𝑛𝑖=1 for each input 𝑥ℓ. Moreover,
statistical flucutations due to shot noise will be small provided that we are interested
in predicting an observable that decomposes nicely as a sum of local terms. These
observations are the content of the following statement.

Lemma 17 (Statistical properties of the predicted quantum state �̂�(𝑥)). Let T =

{𝑥ℓ → 𝜎1(𝜌(𝑥ℓ))}𝑁ℓ=1 be a training set featuring uniformly random inputs 𝑥ℓ
unif∼

[−1, 1]𝑚 and classical shadows of the associated quantum states as labels. Then,
the machine learning model obeys

E
T
[�̂�(𝑥)] = 𝜌Λ(𝑥) =

∑︁
𝑘∈Z𝑚,∥𝑘 ∥2≤Λ

𝑒i𝜋𝑘 ·𝑥𝐴𝑘 . (5.69)

Moreover, suppose that an observable 𝑂 =
∑
𝑖 𝑂𝑖 decomposes into a sum of 𝑞-local

terms. Then, with probability at least 1 − 𝛿, we have

E
𝑥∼[−1,1]𝑚

|tr(𝑂�̂�(𝑥)) − tr (𝑂𝜌Λ(𝑥)) |2 (5.70)

≤ 1
𝑁

9𝑞
(∑︁

𝑖

∥𝑂𝑖∥∞
)2(2𝑚 + 1)Λ2

(
Λ2 log(2𝑚 + 1) + log (4/𝛿)

)
. (5.71)
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The advertised bound can be further streamlined if the observable locality 𝑞 and
confidence level 𝛿 are constant. Assuming 𝑞, 𝛿 = O(1) ensures the following
simplified scaling:

E
𝑥∼[−1,1]𝑚

|tr(𝑂�̂�(𝑥)) − tr (𝑂𝜌Λ(𝑥)) |2 (5.72)

= O ©« 1
𝑁

(∑︁
𝑖

∥𝑂𝑖∥
)2

(2𝑚 + 1)Λ2+log(Λ2)+1ª®¬ (5.73)

=
(∑𝑖 ∥𝑂𝑖∥)2 𝑚O(Λ

2)

𝑁
. (5.74)

Using the condition that
∑
𝑖 ∥𝑂𝑖∥ ≤ 𝐵, we have

E
𝑥∼[−1,1]𝑚

|tr(𝑂�̂�(𝑥)) − tr (𝑂𝜌Λ(𝑥)) |2 =
𝐵2𝑚O(Λ

2)

𝑁
, (5.75)

which controls the generalization error from quantum measurements. The argument
is based on fundamental properties of classical shadows that have been reviewed in
Appendix 5.1.

Proof of Lemma 17. We begin by condensing notation somewhat. Here, we only
consider classical shadows of size 𝑇 = 1. Hence, we may replace the superscript
(𝑡) by (𝑥ℓ) to succinctly keep track of classical input parameters. More precisely,
we let |𝑠(𝑥ℓ )

𝑖
⟩ be the randomized Pauli measurement outcome for the 𝑖-th qubit when

measuring the quantum state 𝜌(𝑥ℓ). The training data T = {𝑥ℓ → 𝜎1(𝜌(𝑥ℓ))}𝑁ℓ=1 is
determined by the following random variables

𝑥ℓ ∈ [−1, 1]𝑚, for ℓ ∈ {1, . . . , 𝑁},
(5.76a)

𝑠
(𝑥ℓ )
𝑖
∈ {|0⟩ , |1⟩ , |+⟩ , |−⟩ , |i+⟩ , |i−⟩} , for 𝑖 ∈ {1, . . . , 𝑛} and ℓ ∈ {1, . . . , 𝑁}.

(5.76b)

The first claim is an immediate consequence of Eq. (5.7):

E
T
[�̂�(𝑥)] = 1

𝑁

𝑁∑︁
ℓ=1

E
𝑥ℓ∼[−1,1]𝑚

[
𝜅(𝑥, 𝑥ℓ) E

𝑠
(𝑥ℓ )
1 ,...,𝑠

(𝑥ℓ )
𝑛

[𝜎1(𝜌(𝑥ℓ))]
]

(5.77a)

=
1
𝑁

𝑁∑︁
ℓ=1

E
𝑥ℓ∼[−1,1]𝑚

[𝜅(𝑥, 𝑥ℓ)𝜌(𝑥ℓ)] (5.77b)

= E
𝑥1∼[−1,1]𝑚

[𝜅(𝑥, 𝑥1)𝜌(𝑥1)] (5.77c)
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=
∑︁

𝑘∈Z𝑚,∥𝑘 ∥2≤Λ
𝑒i𝜋𝑘 ·𝑥 E

𝑥1∼[−1,1]𝑚
[
𝑒−i𝜋𝑘 ·𝑥1𝜌(𝑥1)

]
(5.77d)

=
∑︁

𝑘∈Z𝑚,∥𝑘 ∥2≤Λ
𝑒i𝜋𝑘 ·𝑥 1

2𝑚

∫
[−1,1]𝑚

𝑒−i𝜋𝑘 ·𝑥1𝜌(𝑥)d𝑚𝑥1 (5.77e)

=
∑︁

𝑘∈Z𝑚,∥𝑘 ∥2≤Λ
𝑒i𝜋𝑘 ·𝑥𝐴𝑘 (5.77f)

= 𝜌Λ(𝑥). (5.77g)

Here, we have also used the fact that each 𝑥ℓ is sampled independently and uniformly
from [−1, 1]𝑚.

The second result is contingent on the training data for predicting the ground state
representation T = {𝑥ℓ → 𝜎1(𝜌(𝑥ℓ))}𝑁ℓ=1. We begin with using the definitions of
�̂�(𝑥) (5.68) and 𝜌Λ(𝑥) to rewrite the expression of interest as

E
𝑥∼[−1,1]𝑚

|tr(𝑂�̂�(𝑥)) − tr (𝑂𝜌Λ(𝑥)) |2

=
1

2𝑚

∫
[−1,1]𝑚

d𝑚𝑥

������ ∑︁
𝑘∈Z𝑚,∥𝑘 ∥2≤Λ

ei𝜋𝑘 ·𝑥
(

1
𝑁

𝑁∑︁
ℓ=1

e−i𝜋𝑘 ·𝑥ℓ tr (𝑂𝜎1 (𝜌(𝑥ℓ))) − tr (𝑂𝐴𝑘 )
)������

2

(5.78a)

=
∑︁

𝑘∈Z𝑚,∥𝑘 ∥2≤Λ

����� 1
𝑁

𝑁∑︁
ℓ=1

e−i𝜋𝑘 ·𝑥ℓ tr (𝑂𝜎1 (𝜌(𝑥ℓ))) − tr (𝑂𝐴𝑘 )
�����2 , (5.78b)

≡
∑︁

𝑘∈Z𝑚,∥𝑘 ∥2≤Λ
𝐷 (𝑘) (T )2 , (5.78c)

where we have evaluated the Fourier integral over 𝑥 and introduced shorthand
notation 𝐷 (𝑘) (T )2 for each summand.

The next key step is to notice that each 𝐴𝑘 is an expectation value over both the
parameters and the shadows. Writing out 𝐴𝑘 and expressing 𝜌 in terms of shadows
using Eq. (5.7),

tr (𝑂𝐴𝑘 ) =
1

2𝑚

∫
[−1,1]𝑚

e−i𝜋𝑘 ·𝑥ℓ tr (𝑂𝜌(𝑥ℓ)) d𝑚𝑥ℓ (5.79a)

= E
𝑥ℓ∼[−1,1]𝑚

e−i𝜋𝑘 ·𝑥ℓ tr (𝑂𝜌(𝑥ℓ)) (5.79b)

= E
𝑥ℓ and 𝑠 (𝑥ℓ )1 ,...,𝑠

(𝑥ℓ )
𝑛

e−i𝜋𝑘 ·𝑥ℓ tr (𝑂𝜎1 (𝜌(𝑥ℓ))) . (5.79c)

Plugging this back into the summand in Eq. (5.78c) yields

𝐷 (𝑘) (T )2 (5.80)
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=

����� 1
𝑁

𝑁∑︁
ℓ=1

e−i𝜋𝑘 ·𝑥ℓ tr (𝑂𝜎1 (𝜌(𝑥ℓ))) − E
𝑥ℓ and 𝑠 (𝑥ℓ )1 ,...,𝑠

(𝑥ℓ )
𝑛

e−i𝜋𝑘 ·𝑥ℓ tr (𝑂𝜎1 (𝜌(𝑥ℓ)))
�����2 .

(5.81)

Therefore, each 𝐷 (𝑘) (T )2 is the (square-)deviation of an empirical average from the
true expectation value 𝐴𝑘 . Hence, we can use Hoeffding’s inequality to bound it,
provided that𝑂 is local and bounded. This may come as a surprise, as the empirical
average samples only different parameters 𝑥ℓ and not different shadows 𝜎. However,
the shadows depend on the parameters, so sampling only over the parameters turns
out to be sufficient for a reasonable estimate.

In order to apply Hoeffding’s inequality, we first have to make sure the expectation
value is bounded. Recall that 𝑂 =

∑
𝑖 𝑂𝑖 decomposes nicely into a sum of 𝑞-body

terms. More formally, supp(𝑂 𝑗 ) ⊂ {1, . . . , 𝑛} contains at most 𝑞 qubits. We
also know trace and trace norm of each single-qubit contribution to 𝜎1(𝜌(𝑥ℓ)),
tr
(
3|𝑠(𝑥ℓ )

𝑗
⟩⟨𝑠(𝑥ℓ )

𝑗
| − I

)
= 1, and Eq. (5.4) asserts

3|𝑠(𝑥ℓ )
𝑗
⟩⟨𝑠(𝑥ℓ )

𝑗
| − I


1 = 3. The matrix

Hoelder inequality then implies, for every 𝑥ℓ ∈ [−1, 1]𝑚,��ei𝜋𝑘 ·𝑥ℓ tr (𝑂𝜎1 (𝜌(𝑥ℓ)))
�� ≤∑︁

𝑖

|tr (𝑂𝑖𝜎1(𝜌(𝑥ℓ))) | (5.82a)

=
∑︁
𝑖

��tr (
𝑂𝐴𝑖 tr¬𝐴𝑖 (𝜎1 (𝜌(𝑥ℓ)))

) �� (5.82b)

≤
∑︁
𝑖

𝑂𝐴𝑖


∞

tr¬𝐴𝑖 (𝜎1 (𝜌(𝑥ℓ)))


1 (5.82c)

=
∑︁
𝑖

∥𝑂𝑖∥∞
∏

𝑗∈supp(𝑂𝑖)

3|𝑠(𝑥ℓ )
𝑗
⟩⟨𝑠(𝑥ℓ )

𝑗
| − I


1

(5.82d)

=
∑︁
𝑖

∥𝑂𝑖∥∞3|supp(𝑂 𝑗 ) | ≤ 3𝑞
∑︁
𝑖

∥𝑂𝑖∥∞. (5.82e)

Thus, the expectation value is bounded.

We are now ready to bound the likelihood of a large deviation 𝐷 (𝑘) (T )2. To recap,
for each 𝑘 ∈ Z𝑚 obeying ∥𝑘 ∥2 ≤ Λ, we face a contribution that collects the (square-
)deviation of a sum of iid and bounded random variables around their expectation
value. These variables are complex, but one can analyze their real and imaginary
parts separately and collect them into a complex version of Hoeffding’s inequality:

Pr
[
𝐷 (𝑘) (T )2 ≥ 𝜏2] = Pr

[
𝐷 (𝑘) (T ) ≥ 𝜏

]
(5.83a)

≤ 2 exp

(
− 2𝑁𝜏2

9𝑞 (∑𝑖 ∥𝑂𝑖∥)2

)
for all 𝜏 > 0. (5.83b)
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This concentration bound connects training data size 𝑁 = |T | with the size of
a (fixed, but arbitrary) contribution to the expected deviation (5.78). For fixed
magnitude 𝜏 and confidence 𝛿, there is always a (finite) training data size𝑁 = 𝑁 (𝜏, 𝛿)
that ensures 𝐷 (𝑘) (T )2 ≤ 𝜏 with probability at least 1 − 𝛿. We can extend this
reasoning to the entire sum in Eq. (5.78) by exploiting that Rel. (5.83) is independent
of 𝑘 , and the summation only ranges over finitely many terms. Introduce 𝐾Λ =

|{𝑘 ∈ Z𝑚 : ∥𝑘 ∥2 ≤ Λ}| — the number of wave-vectors 𝑘 ∈ Z𝑚 whose Euclidean
norm is bounded by Λ — and apply a union bound to conclude

Pr


∑︁
𝑘∈Z𝑚,∥𝑘 ∥2≤Λ

𝐷 (𝑘) (T )2 ≥ 𝐾Λ𝜏
2
 (5.84a)

≤ Pr
[
∃𝑘 ∈ Z𝑚 : ∥𝑘 ∥2 ≤ Λ, s.t. 𝐷 (𝑘) (T )2 ≥ 𝜏2] (5.84b)

≤
∑︁

𝑘∈Z𝑚,∥𝑘 ∥2≤Λ
Pr

[
𝐷 (𝑘) (T )2 ≥ 𝜏2] (5.84c)

≤ 2𝐾Λ exp

(
− 2𝑁𝜏2

9𝑞 (∑𝑖 ∥𝑂𝑖∥)2

)
(5.84d)

for all 𝜏 > 0. To finish the argument, we take guidance from Eq. (5.83). Fix a
confidence level 𝛿 ∈ (0, 1) and set

𝜏2 =
1
𝑁

9𝑞
(∑︁
𝑖

∥𝑂𝑖∥
)2

log(2𝐾Λ/𝛿) (5.85)

to ensure

Pr
[
E

𝑥∼[−1,1]𝑚
|tr(𝑂�̂�(𝑥)) − tr (𝑂𝜌Λ(𝑥)) |2 ≥ 𝐾Λ𝜏

2
]
≤ 𝛿. (5.86)

The advertised bound follows from inserting an explicit bound on the number of
relevant wavevectors:

𝐾Λ = |{𝑘 ∈ Z𝑚 : ∥𝑘 ∥2 ≤ Λ}| ≤ (2𝑚 + 1)Λ2
. (5.87)

To see this, note that ∥𝑘 ∥22 =
∑𝑛
𝑖=1 |𝑘𝑖 |2 ≥

∑𝑛
𝑖=1 |𝑘𝑖 | = ∥𝑘 ∥1, because 𝑘𝑖 ∈ Z.

Conversely, every 𝑘 ∈ Z𝑚 that obeys ∥𝑘 ∥2 ≤ Λ also obeys ∥𝑘 ∥1 ≤ Λ2. Next,
we enumerate all wave-vectors that obey the relaxed condition ∥𝑘 ∥1 ≤ Λ2. To
this end, we consider a simple process: select an index 𝑖 ∈ [𝑚], and update the
associated wave number by +1 (increment), 0 (do nothing) or −1 (decrement).
Repeating this process a total of Λ2 times allows us to generate no more than
(2𝑚 + 1)Λ2 different wavevectors. But, at the same time, every wave vector 𝑘 ∈ Z𝑚

that obeys ∥𝑘 ∥2 ≤ Λ2 can be reached in this fashion. Hence, we conclude 𝐾Λ ≤��{𝑘 ∈ Z𝑚 : ∥𝑘 ∥1 ≤ Λ2}�� ≤ (2𝑚 + 1)Λ2 .
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Computational time for training and prediction
We have proposed a very simple prediction model that is based on approximating
a truncated Fourier series (𝑙2-Dirichlet kernel). The training time is equivalent to
loading the training data T = {𝑥ℓ → 𝜎1(𝜌(𝑥ℓ))}𝑁ℓ=1. Only a single snapshot is
provided for each sampled parameter 𝑥ℓ (i.e., 𝑇 = 1), so we relabel 𝑠(𝑡) → 𝑠(𝑥ℓ ) .
The training data is given by the collection of 𝑥ℓ and shadows {𝑠𝑥ℓ

𝑖
}𝑛
𝑖=1, following

Eq. (5.76). Therefore, one only needs

O ((𝑛 + 𝑚)𝑁) = O
(
(𝑛 + 𝑚)𝐵2𝑚O(𝐶/𝜖)

)
= O

(
𝑛𝐵2𝑚O(𝐶/𝜖)

)
(training time)

(5.88)

computational time to load the relevant data into a classical memory. Next, suppose
that 𝑂 =

∑𝐿
𝑖=1𝑂𝑖 is comprised of 𝐿 𝑞-local terms. Then, we can compute the

associated expectation value for the predicted quantum state �̂�(𝑥) by evaluating

tr(𝑂�̂�(𝑥)) = 1
𝑁

𝑁∑︁
ℓ=1

𝐿∑︁
𝑖=1

𝜅(𝑥, 𝑥ℓ) tr(𝑂𝑖𝜎1(𝜌(𝑥ℓ))). (5.89)

Recall that the kernel function is defined as

𝜅(𝑥, 𝑥ℓ) =
∑︁

𝑘∈Z𝑚,∥𝑘 ∥2≤Λ
ei𝜋𝑘 ·(𝑥−𝑥ℓ ) =

∑︁
𝑘∈Z𝑚,∥𝑘 ∥2≤Λ

cos(𝜋𝑘 · (𝑥 − 𝑥ℓ)). (5.90)

This can be computed in time O (𝐾Λ), where 𝐾Λ = |{𝑘 ∈ Z𝑚 : ∥𝑘 ∥2 ≤ Λ}| ≤
(2𝑚+1)Λ2 , according to Rel. (5.87) above. Because we have chosen Λ = Θ(

√︁
𝐶/𝜖),

the runtime to evaluate one kernel function is upper bounded by 𝑚O(𝐶/𝜖) .

On the other hand, the computation of each tr(𝑂 𝑗𝜎1(𝜌(𝑥ℓ))) can be performed in
constant time after storing the data in a classical memory. This is a consequence of
the tensor product structure of 𝜎1(𝜌(𝑥ℓ)) =

⊗𝑛

𝑖=1

(
3|𝑠(𝑥ℓ )

𝑖
⟩⟨𝑠(𝑥ℓ )

𝑖
| − I

)
which ensures

tr(𝑂 𝑗𝜎1(𝜌(𝑥ℓ))) = tr
(
𝑂 𝑗

⊗
𝑖∈supp(𝑂 𝑗 )

(
3|𝑠(𝑥ℓ )

𝑖
⟩⟨𝑠(𝑥ℓ )

𝑖
| − I

) )
, (5.91)

where supp(𝑂 𝑗 ) is the set of qubits in {1, . . . , 𝑛} the local observable 𝑂 𝑗 acts on.
Because |supp(𝑂 𝑗 ) | ≤ 𝑞 = O(1), computing tr(𝑂 𝑗𝜎1(𝜌(𝑥ℓ))) takes only constant
time. However, the computation time does scale exponentially in |supp(𝑂 𝑗 ) |. This
can become a problem if |supp(𝑂 𝑗 ) | ceases to be a small constant. Putting everything
together implies that tr(𝑂�̂�(𝑥)) can be computed in time (at most)

O
(
𝑁𝐿𝑚O(𝐶/𝜖)

)
= O

(
𝐿𝐵2𝑚O(𝐶/𝜖)

)
(prediction time). (5.92)
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We conclude that both classical training time and prediction time for tr(𝑂�̂�(𝑥)) are
upper bounded by

O((𝑛 + 𝐿)𝐵2𝑚O(𝐶/𝜖)). (5.93)

This concludes the proof of all statements given in Theorem 19.

Spectral gap implies smooth parametrizations
We attempt to deduce Theorem 18 from Theorem 19. The key step involves showing
that the ground state 𝜌(𝑥) in a quantum phase of matter satisfies the following
condition: For any observable 𝑂 =

∑
𝑖 𝑂𝑖 that can be written as a sum of local

observables with
∑
𝑖 ∥𝑂𝑖∥∞ ≤ 𝐵, we have

E
𝑥∼[−1,1]𝑚

∥∇𝑥 tr(𝑂𝜌(𝑥))∥22 ≤ O(𝐵2). (5.94)

Then we can apply Theorem 19 with 𝐶 = O(𝐵2) to derive Theorem 18.

The average gradient magnitude E𝑥∼[−1,1]𝑚 ∥∇𝑥 tr(𝑂𝜌(𝑥))∥22 depends on the observ-
able𝑂 in question, but also on the parametrization 𝑥 ↦→ 𝐻 (𝑥) ↦→ 𝜌(𝑥). This section
provides a useful smoothness bound based on physically meaningful assumptions:

(a) Physical system: We consider 𝑛 finite-dimensional quantum many-body sys-
tems that are arranged at locations, or sites, in a 𝑑-dimensional space, e.g.,
a spin chain (𝑑 = 1), a square lattice (𝑑 = 2), or a cubic lattice (𝑑 = 3).
Unless specified otherwise, our big-O,Ω,Θ notation will be with respect to
the thermodynamic limit 𝑛→∞.

(b) Hamiltonian: 𝐻 (𝑥) decomposes into a sum of geometrically local terms
𝐻 (𝑥) = ∑

𝑗 ℎ 𝑗 (𝑥), each of which only acts on an O(1) number of sites in a
ball of O(1) radius. Individual terms ℎ 𝑗 (𝑥) obey

ℎ 𝑗 (𝑥)∞ ≤ 1 and also have
bounded directional derivative:

𝜕ℎ 𝑗/𝜕�̂�∞ ≤ 1, where �̂� is a unit vector in
parameter space. However, each term ℎ 𝑗 (𝑥) can depend on the entire input
vector 𝑥 ∈ [−1, 1]𝑚.

(c) Ground-state subspace: We consider “the” ground state 𝜌(𝑥) for the Hamil-
tonian 𝐻 (𝑥) to be defined as 𝜌(𝑥) = lim𝛽→∞ e−𝛽𝐻 (𝑥)/tr(e−𝛽𝐻 (𝑥)). This is
equivalent to a uniform mixture over the eigenspace of 𝐻 (𝑥) with the mini-
mum eigenvalue.

(d) Observable: 𝑂 decomposes into a sum of few-body observables 𝑂 =
∑
𝑖 𝑂𝑖,

each of which only acts on an O(1) number of sites. Each few-body observ-
ables 𝑂𝑖 can act on geometrically-nonlocal sites.
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Assumptions (a)–(c) should be viewed as mild technical assumptions that are often
met in practice. The main result of this section bounds the smoothness condition
based on an additional requirement.

Lemma 18 (Spectral gap implies smoothness condition). Consider a class of local
Hamiltonians

{𝐻 (𝑥) : 𝑥 ∈ [−1, 1]𝑚} (5.95)

and an observable 𝑂 =
∑
𝑖 𝑂𝑖 that obey the technical requirements (a)–(c) above.

Moreover, suppose that the spectral gap of each𝐻 (𝑥) is lower bounded by (constant)
𝛾 > Ω(1). Then,

E
𝑥∼[−1,1]𝑚

∥∇𝑥 tr(𝑂𝜌(𝑥))∥22 ≤ 𝑐all

(∑︁
𝑖

∥𝑂𝑖∥∞
)2
. (5.96)

Here, 𝑐all > 0 is a constant that depends on spatial dimension 𝑑, spectral gap 𝛾, as
well as the Lieb-Robinson velocities.

The proof is based on combining two powerful techniques from quantum many
body physics. Namely, Lieb-Robinson bounds (Elliott H. Lieb and Robinson, 1972)
to exploit locality and the spectral flow formalism (Bachmann, Michalakis, et al.,
2012), also referred to as quasi-adiabatic evolution or continuation (Matthew B
Hastings and Wen, 2005; Osborne, 2007), to exploit the spectral gap.

Quasi-adiabatic continuation for gapped Hamiltonians (Matthew B Hastings
and Wen, 2005; Osborne, 2007; Bachmann, Michalakis, et al., 2012): Given a
quantum system satisfying the above assumptions (a)-(c), it is reasonable to expect
that small changes in 𝑥 only lead to small changes in the associated ground state
𝜌(𝑥). Spectral flow makes this intuition precise. Let the spectral gap of 𝐻 (𝑥) be
lower bounded by a constant 𝛾 over [−1, 1]𝑚. Then, the directional derivative of
an associated ground state, in the direction defined by the parameter unit vector �̂�,
obeys

𝜕𝜌

𝜕�̂�
(𝑥) = i[𝐷 �̂� (𝑥), 𝜌(𝑥)] where 𝐷 �̂� (𝑥) =

∫ ∞

−∞
𝑊𝛾 (𝑡)ei𝑡𝐻 (𝑥) 𝜕𝐻

𝜕�̂�
(𝑥)e−i𝑡𝐻 (𝑥)d𝑡.

(5.97)
Here, 𝑊𝛾 (𝑡) is a fast decaying weight function that obeys sup𝑡

��𝑊𝛾 (𝑡)
�� = 1/2 and

only depends on the spectral gap. More precisely,

|𝑊𝛾 (𝑡) | ≤


1
2 0 ≤ 𝛾 |𝑡 | ≤ 𝜃,

35e2(𝛾 |𝑡 |)4e−
2
7

𝛾 |𝑡 |
log(𝛾 |𝑡 | )2 𝛾 |𝑡 | > 𝜃.

(5.98)
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The constant 𝜃 is chosen to be the largest real solution of 35e2𝜃4 exp(−2
7

𝜃

log(𝜃)2 ) =
1/2.

Lieb-Robinson bounds for local Hamiltonians/observables (Elliott H. Lieb and
Robinson, 1972; Matthew B Hastings, 2010): Let supp(𝑋) denote the sites on
which a many-body operator 𝑋 acts nontrivially. Furthermore, for any two operators
𝑋1, 𝑋2, we define the distance Δ(𝑋1, 𝑋2) to be the minimum distance between all
pairs of sites acted on by 𝑋1 and 𝑋2, respectively, in the 𝑑-dimensional space. We
also consider the number of local terms in a ball of radius 𝑟. For any operator 𝑋
acting on a single site, this ball contains O(𝑟𝑑) local terms in 𝑑-dimensional space,∑︁

𝑗 :Δ(𝑋,ℎ 𝑗 )≤𝑟
1 ≤ 𝑏𝑑 + 𝑐𝑑𝑟𝑑 ,∀𝑟 ≥ 0, (5.99)

where we recall the definition that 𝐻 =
∑
𝑗 ℎ 𝑗 is a sum of local terms ℎ 𝑗 . The bound

on the number of local terms in a ball of radius 𝑟 implies the existence of a Lieb-
Robinson bound (Bravyi, Matthew B Hastings, and Verstraete, 2006; Matthew B
Hastings, 2010). It states that for any two operator 𝑋1, 𝑋2 and any 𝑡 ∈ R, we have

∥ [exp(i𝑡𝐻 (𝑥))𝑋1 exp(−i𝑡𝐻 (𝑥)), 𝑋2] ∥∞ (5.100)

≤ 𝑐lr ∥𝑋1∥∞ ∥𝑋2∥∞ |supp(𝑋1) |e−𝑎lr (Δ(𝑋1,𝑋2)−𝑣lr |𝑡 |) , (5.101)

for some constants 𝑎lr, 𝑐lr, 𝑣lr = Θ(1).

Apart from these two concepts, we will also need a bound on integrals of certain
fast-decaying functions.

Lemma 19 (Lemma 2.5 in (Bachmann, Michalakis, et al., 2012)). Fix 𝑎 > 0 and
define the function 𝑢𝑎 (𝑥) = exp(−𝑎𝑥/log(𝑥)2) on the domain 𝑥 ∈ (1,∞). Then,∫ ∞

𝑡

𝑥𝑘𝑢𝑎 (𝑥)d𝑥 ≤
2𝑘 + 3
𝑎

𝑡2𝑘+2𝑢𝑎 (𝑡) for all 𝑡 > e4 and 𝑘 ∈ N (5.102)

that obey 2𝑘 + 2 ≤ 𝑎𝑡

log(𝑡)2 .

Proof of Lemma 18. Fix an input 𝑥 ∈ [−1, 1]𝑛 and a unit vector �̂� ∈ R𝑛 (direction).
We may then rewrite the associated directional derivative of 𝜌(𝑥) in two ways,
namely

𝜕𝜌

𝜕�̂�
(𝑥) = �̂� · ∇𝑥𝜌(𝑥), and (5.103a)
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𝜕𝜌

𝜕�̂�
(𝑥) = −i [𝐷 �̂� (𝑥), 𝜌(𝑥)] with 𝐷 �̂� (𝑥) =

∫ ∞

−∞
d𝑡𝑊𝛾 (𝑡)ei𝑡𝐻 (𝑥) 𝜕𝐻

𝜕�̂�
(𝑥)e−i𝑡𝐻 (𝑥) .

(5.103b)

When evaluated on an observable 𝑂, this establishes the following correspondence:

�̂� · ∇𝑥 tr(𝑂𝜌(𝑥)) = tr (𝑂 [𝐷 �̂� (𝑥), 𝜌(𝑥)]) = tr ( [𝑂, 𝐷 �̂� (𝑥)] 𝜌(𝑥)) , (5.104)

for any �̂�. Choosing �̂� = �̂�(𝑥, 𝑂) = ∇𝑥 tr(𝑂𝜌(𝑥))
∥∇𝑥 tr(𝑂𝜌(𝑥))∥2

implies

∥∇𝑥 tr(𝑂𝜌(𝑥))∥22 =
��tr( [𝑂, 𝐷 �̂�(𝑥,𝑂) (𝑥)]𝜌(𝑥))

��2 . (5.105)

The left hand side is the magnitude of steepest slope in a phase for the particular
observable 𝑂. The average slope over the entire domain [−1, 1]𝑚 is thus given as

E
𝑥∼[−1,1]𝑚

∥∇𝑥 tr(𝑂𝜌(𝑥))∥22 =
1

2𝑚

∫
[−1,1]𝑚

��tr( [𝑂, 𝐷 �̂�(𝑥,𝑂) (𝑥)]𝜌(𝑥))
��2 d𝑚𝑥. (5.106)

Intuitively, thermodynamic observables should not change too rapidly within a
phase. Making this intuition precise will allow us to upper bound the average slope
by a constant 𝐶.

We first expand 𝐷 �̂� (𝑥) and apply a triangle inequality to obtain

| tr( [𝑂, 𝐷 �̂� (𝑥)]𝜌(𝑥)) | ≤
∑︁
𝑖

∫ ∞

−∞
𝑊𝛾 (𝑡)

∑︁
𝑗

[𝑂𝑖, ei𝑡𝐻 (𝑥) 𝜕ℎ 𝑗
𝜕�̂�
(𝑥)e−i𝑡𝐻 (𝑥)

]
∞

d𝑡.

(5.107)

For fixed 𝑡, we can separate local Hamiltonian terms into two groups, defines
using the constants in the Lieb-Robinson bound (5.100). The first group contains
all terms ℎ 𝑗 that obey Δ(𝑂𝑖, ℎ 𝑗 ) ≤ 𝑣lr |𝑡 |. The second group contains all ℎ 𝑗 that
obey Δ(𝑂𝑖, ℎ 𝑗 ) > 𝑣lr |𝑡 | instead. Equation (5.99) above provides a useful bound
on the size of the first group. It contains at most |supp(𝑂𝑖) | (𝑏𝑑 + 𝑐𝑑 (𝑣lr |𝑡 |)𝑑) ≤
𝑐𝑂 (𝑏𝑑 +𝑐𝑑 (𝑣lr |𝑡 |)𝑑) local terms ℎ 𝑗 , for some constant 𝑐𝑂 ≤ supp(𝑂). We can bound
the summation over these terms using ∥ [𝐴, 𝐵] ∥∞ ≤ 2 ∥𝐴∥∞ ∥𝐵∥∞ to obtain∑︁

𝑗 :Δ(𝑂𝑖 ,ℎ 𝑗 )≤𝑣lr𝑡

[𝑂𝑖, ei𝑡𝐻 (𝑥) 𝜕ℎ 𝑗
𝜕�̂�
(𝑥)e−i𝑡𝐻 (𝑥)

]
∞

(5.108a)

≤ 𝑐𝑂 (𝑏𝑑 + 𝑐𝑑 (𝑣lr |𝑡 |)𝑑) × 2 ∥𝑂𝑖∥∞
𝜕ℎ 𝑗𝜕�̂�


∞

(5.108b)

≤ 2𝑐𝑂 ∥𝑂𝑖∥∞ (𝑏𝑑 + 𝑐𝑑 (𝑣lr |𝑡 |)𝑑). (5.108c)

The second inequality follows from technical assumption (b):
𝜕ℎ 𝑗/𝜕�̂�∞ ≤ 1.
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The contributions from the second group can be controlled via the Lieb-Robinson
bound from Eq. (5.100). For every ℎ 𝑗 that obeys Δ(𝑂𝑖, ℎ 𝑗 ) > 𝑣lr |𝑡 |, we have[𝑂𝑖, ei𝑡𝐻 (𝑥) 𝜕ℎ 𝑗

𝜕�̂�
(𝑥)e−i𝑡𝐻 (𝑥)

]
∞

(5.109a)

≤ 𝑐lr ∥𝑂𝑖∥∞
𝜕ℎ 𝑗/𝜕�̂�∞ |supp(ℎ 𝑗 ) |e−𝑎lr (Δ(𝑂𝑖 ,ℎ 𝑗 )−𝑣lr |𝑡 |) (5.109b)

≤ 𝑐lr𝑐ℎ ∥𝑂𝑖∥∞ e−𝑎lr (Δ(𝑂𝑖 ,ℎ 𝑗 )−𝑣lr |𝑡 |) . (5.109c)

Reusing Eq. (5.99), we conclude that there are at most |supp(𝑂𝑖) | (𝑏𝑑 + 𝑐𝑑 (𝑣lr |𝑡 | +
𝑟 + 1)𝑑) local terms ℎ 𝑗 with Δ(𝑂𝑖, ℎ 𝑗 ) ∈ [𝑣lr |𝑡 | + 𝑟, 𝑣lr |𝑡 | + 𝑟 + 1]. This ensures∑︁

𝑗 :Δ(𝑂𝑖 ,ℎ 𝑗 )>𝑣lr |𝑡 |

[𝑂𝑖, ei𝑡𝐻 (𝑥) 𝜕ℎ 𝑗
𝜕�̂�
(𝑥)e−i𝑡𝐻 (𝑥)

]
∞

≤
∞∑︁
𝑟=0

∑︁
𝑗 :Δ(𝑂𝑖 ,ℎ 𝑗 )∈[𝑣lr |𝑡 |+𝑟,𝑣lr |𝑡 |+𝑟+1]

[𝑂𝑖, ei𝑡𝐻 (𝑥) 𝜕ℎ 𝑗
𝜕�̂�
(𝑥)e−i𝑡𝐻 (𝑥)

]
∞

(5.110a)

≤
∫ ∞

𝑟=0
d𝑟𝑐lr𝑐ℎ ∥𝑂𝑖∥∞ e−𝑎lr𝑟 × supp(𝑂𝑖) (𝑏𝑑 + 𝑐𝑑 (𝑣lr |𝑡 | + 𝑟 + 1)𝑑) (5.110b)

≤ 𝑐lr𝑐ℎ𝑐𝑂 ∥𝑂𝑖∥∞
∫ ∞

𝑟=0
d𝑟e−𝑎lr𝑟 (𝑏𝑑 + 𝑐𝑑 (𝑣lr |𝑡 | + 𝑟 + 1)𝑑) (5.110c)

≤ 𝑐lr𝑐ℎ𝑐𝑂 ∥𝑂𝑖∥∞
©«𝑏𝑑𝑎lr
+ 𝑐𝑑

𝑑∑︁
𝑝=0

𝑑!
𝑝!𝑎𝑑−𝑝+1lr

(𝑣lr |𝑡 | + 1)𝑝ª®¬ . (5.110d)

We can now combine the two bounds into a single statement:∑︁
𝑗

[𝑂𝑖, ei𝑡𝐻 (𝑥) 𝜕ℎ 𝑗
𝜕�̂�
(𝑥)e−i𝑡𝐻 (𝑥)

]
∞
≤ ∥𝑂𝑖∥∞

𝑑∑︁
𝑝=0

𝐶𝑝 |𝑡 |𝑝 . (5.111)

Here, we have implicitly defined a new set of constants 𝐶𝑝 that depend on the
constants 𝑐𝑂 , 𝑐ℎ, 𝑐lr, 𝑐𝑑 , 𝑎lr, 𝑣lr, 𝑑 that had already featured before. Plugging the
above into Eq. (5.107) and substituting the spectral flow weight function 𝑊 (5.98)
for its absolute value allows us to bound the maximum slope of tr(𝑂𝜌(𝑥)) when the
Hamiltonian moves from 𝐻 (𝑥) to 𝐻 (𝑥 + d�̂�). Indeed,

| tr( [𝑂, 𝐷 �̂� (𝑥)]𝜌(𝑥)) | ≤
(∑︁

𝑖

∥𝑂𝑖∥∞
) 𝑑∑︁
𝑝=0

𝐶𝑝

∫ ∞

−∞
|𝑊𝛾 (𝑡) | |𝑡 |𝑝d𝑡 . (5.112)

To bound the resulting integral, we recall that𝑊𝛾 (𝑡) obeys sup𝑡 |𝑊𝛾 (𝑡) | = 1/2, define
𝑡∗ = max(e4, 7(𝑑 + 5), 𝜃)/𝛾, and split up the integration into two parts, 𝑡 ∈ [−𝑡∗, 𝑡∗]
and 𝑡 ∉ [−𝑡∗, 𝑡∗]. Symmetry then ensures∫ ∞

−∞
d𝑡 |𝑊𝛾 (𝑡) | |𝑡 |𝑝 ≤

1
2

∫ 𝑡∗

−𝑡∗
d𝑡 |𝑡 |𝑝 + 2

∫ ∞

𝑡∗
d𝑡 35e2(𝛾𝑡)4e−

2
7

𝛾𝑡

log(𝛾𝑡 )2 𝑡 𝑝 (5.113a)
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=

∫ 𝑡∗

0
d𝑡 𝑡 𝑝 + 70e2𝛾−𝑝−1

∫ ∞

𝑥=𝛾𝑡∗
d𝑥 𝑥𝑝+4e−

2
7

𝑥

log(𝑥 )2 . (5.113b)

The first integral is straightforward, and the second integral can be bounded using
Lemma 19. Set 𝑎 = 2/7, 𝑘 = 𝑝 + 4 and note that we have chosen 𝑡∗ such that all
assumptions are valid. Applying Lemma 19 ensures∫ ∞

−∞
d𝑡 |𝑊𝛾 (𝑡) | |𝑡 |𝑝d𝑡 ≤ |𝑡

∗ |𝑝+1
𝑝 + 1

+ 70e2𝛾−𝑝−1 2𝑘 + 3
𝑎
(𝛾𝑡∗)2𝑘+2e−

2𝛾𝑡∗
7 log(𝛾𝑡∗ )2 (5.114a)

=
|𝑡∗ |𝑝+1
𝑝 + 1

+ 35e2𝛾−𝑝−17(2𝑝 + 11) (𝛾𝑡∗)2𝑝+10e−
2𝛾𝑡∗

7 log(𝛾𝑡∗ )2 ,

(5.114b)

for any integer 0 ≤ 𝑝 ≤ 𝑑. Inserting these bounds into the sum (5.111) implies

| tr( [𝑂, 𝐷 �̂� (𝑥)]𝜌(𝑥)) | (5.115)

≤
(∑︁

𝑖

∥𝑂𝑖∥∞
) 𝑑∑︁
𝑝=0

𝐶𝑝

(
|𝑡∗ |𝑝+1
𝑝 + 1

+ 35e2𝛾−𝑝−17(2𝑝 + 11) (𝛾𝑡∗)2𝑝+10e−
2𝛾𝑡∗

7 log(𝛾𝑡∗ )2

)
.

(5.116)

Recall that 𝑡∗ = max(e4, 7(𝑑 + 5), 𝜃)/𝛾 is a constant that only depends on 𝑑 and 𝛾,
and the 𝐶𝑝’s are also constants that depend on on 𝑐𝑂 , 𝑐ℎ, 𝑐lr, 𝑐𝑑 , 𝑎lr, 𝑣lr, 𝑑. We may
subsume all of these constant contributions in a new constant 𝑐all and conclude

| tr( [𝑂, 𝐷 �̂� (𝑥)]𝜌(𝑥)) | ≤ 𝑐all

(∑︁
𝑖

∥𝑂𝑖∥∞
)
. (5.117)

Inserting this upper bound into Eq. (5.106) completes the proof of Lemma 18.

5.5 Sample complexity lower bound for predicting ground states
This section establishes an information-theoretic lower bound for the task of pre-
dicting ground state approximations. It highlights that, without further assumptions
on the Hamiltonians, the training data size required in Theorem 19 is tight.

Theorem 20. Fix a prediction error tolerance 𝜖 , a number 𝑚 of parameters, as well
as constants 𝐶, 𝐵 > 0 such that 𝐶/(9𝜖) ≤ 𝑚0.99. Consider a quantum ML model
that learns from quantum data {𝑥ℓ → 𝜌(𝑥ℓ)}𝑁ℓ=1 of size 𝑁 to generate ground state
predictions �̂�(𝑥), where 𝑥 ∈ [−1, 1]𝑚. Suppose the quantum ML model can achieve

E
𝑥∼[−1,1]𝑚

| tr(𝑂�̂�(𝑥)) − tr(𝑂𝜌(𝑥)) |2 ≤ 𝜖, (5.118)
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with high probability, for every class of Hamiltonians𝐻 (𝑥) and for every observable
𝑂 given as a sum of local observables

∑
𝑖 𝑂𝑖 that obey

E
𝑥∼[−1,1]𝑚

∥∇𝑥 tr(𝑂𝜌(𝑥))∥22 ≤ 𝐶 (smoothness condition), (5.119a)∑︁
𝑖

∥𝑂𝑖∥ ≤ 𝐵 (bounded norm). (5.119b)

Then, the (quantum) training data size must obey

𝑁 ≥ 𝐵2𝑚Ω(𝐶/𝜖)/log(𝐵). (5.120)

This is also a lower bound on quantum computational time associated with the
quantum ML model.

The assumption 𝐶/(9𝜖) ≤ 𝑚0.99 is required for technical reasons outlined below.
It is equivalent to demanding that the prediction error tolerance is large enough
compared to the inverse of 𝑚, i.e., 𝜖 ≥ 𝐶/(9𝑚0.99). If the quantum ML model
can achieve an even smaller prediction error, such that E𝑥∼[−1,1]𝑚 | tr(𝑂�̂�(𝑥)) −
tr(𝑂𝜌(𝑥)) |2 < 𝐶/(9𝑚0.99), then we choose 𝜖 = 𝐶/(9𝑚0.99). For such a choice
of 𝜖 , the training data size lower bound becomes 𝑁 ≥ 𝐵2𝑚Ω(𝑚0.99)/log(𝐵), which
is exponential in 𝑚0.99. Hence, in all cases, we need 𝜖 to be a constant for any
(quantum or classical) machine learning algorithm to obtain a sample complexity
that scales polynomially in 𝑚.

We prove Theorem 20 by means of an information-theoretic analysis. Concep-
tually, it resembles arguments developed in prior work (Huang, Richard Kueng,
and Preskill, 2021) (sample complexity lower bound for general quantum machine
learning models). Section 5.5 formulates a learning problem that involves predicting
ground state properties of a certain class of Hamiltonians. Subsequently, Section 5.5
incorporates a hypothetical (quantum ML) solution to this learning problem as a de-
coding procedure in a communication protocol. Information-theoretic bottlenecks
then beget fundamental restrictions on the sample complexity of any ML model that
solves the learning problem, see Section 5.5.

Learning problem formulation
We consider a family of single-qubit Hamiltonians, i.e. 𝑛 = 1, that is parametrized
by 𝑚 degrees of freedom. We first map 𝑥 ∈ [−1, 1]𝑚 to a real number by evaluating
a truncated Fourier series 𝑓𝑎. Fix a cutoff Λ =

√︁
𝐶/(9𝜖) and let

𝐾Λ =

���{𝑘 ∈ Z𝑚 : ∥𝑘 ∥2 ≤ Λ =
√︁
𝐶/(9𝜖)

}��� (5.121)
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denote the number of 𝑛-dimensional wave-vectors with Euclidean norm at most Λ.
We equip each of these wave vectors 𝑘 with a sign 𝑎𝑘 ∈ {±1} and define the function

𝑓𝑎 (𝑥) =
√︂

9𝜖
𝐾Λ

∑︁
𝑘∈Z𝑚,∥𝑘 ∥2≤Λ

𝑎𝑘 cos (𝜋𝑘 · 𝑥) , where 𝑎 ∈ {±1}𝐾Λ , (5.122)

subsumes all sign choices involved. We use this function to define a single-qubit
Hamiltonian. For Pauli matrices 𝑋 and 𝑍 , we set

𝐻𝑎 (𝑥) = exp
(
+ i

2 arcsin ( 𝑓𝑎 (𝑥)/𝐵) 𝑋
)
(−𝑍) exp

(
− i

2 arcsin ( 𝑓𝑎 (𝑥)/𝐵) 𝑋
)
,

(5.123)
where 𝐵 is a constant reflecting the size of the target observable, see Eq. (5.119b).
To summarize, each choice of 𝑎 ∈ {±1}𝐾Λ yields an entire class of single-qubit
Hamiltonians 𝐻𝑎 (𝑥) that is parametrized by 𝑚-dimensional inputs 𝑥 ∈ [−1, 1]𝑚.
These stylized Hamiltonians are simple enough to compute their (nondegenerate)
ground state explicitly:

𝜌𝑎 (𝑥) = |𝜓𝑎 (𝑥)⟩⟨𝜓𝑎 (𝑥) | with |𝜓𝑎 (𝑥)⟩ = ©«
cos

(
1
2 arcsin( 𝑓𝑎 (𝑥)/𝐵)

)
i sin

(
1
2 arcsin( 𝑓𝑎 (𝑥)/𝐵)

) ª®¬ ∈ C2.

(5.124)
Finally, we fix the single-qubit observable 𝑂 to be a scaled version of Pauli 𝑌 .
Setting 𝑂 = 𝐵𝑌 yields a 1-local observable. And, more importantly,

tr (𝑂𝜌𝑎 (𝑥)) = 𝐵⟨𝜓𝑎 |𝑌 |𝜓𝑎⟩ = 𝐵
(
−i⟨0|𝜓𝑎 (𝑥)⟩⟨1|𝜓𝑎 (𝑥)⟩ + i⟨0|𝜓𝑎 (𝑥)⟩⟨1|𝜓𝑎 (𝑥)⟩

)
(5.125a)

= 2𝐵 cos
(

1
2 arcsin ( 𝑓𝑎 (𝑥)/𝐵)

)
sin

(
1
2 arcsin ( 𝑓𝑎 (𝑥)/𝐵)

)
(5.125b)

= 𝐵 sin (arcsin ( 𝑓𝑎 (𝑥)/𝐵)) = 𝑓𝑎 (𝑥). (5.125c)

By construction, the expectation value tr (𝑂𝜌𝑎 (𝑥)) exactly reproduces the function
𝑓𝑎 (𝑥) defined in Eq. (5.122). Being able to accurately predict it will be equivalent
to accurately learning this function – regardless of the underlying sign parameter
𝑎 ∈ {±1}𝐾Λ .

To complete the formulation of the learning problem, we recall that the train-
ing parameters are sampled from the uniform distribution over the hypercube,
Unif [−1, 1]𝑚, and that we will evaluate the expectation E over 𝑥 with respect to this
distribution from now on. This choice of distribution implies a nice closed-form ex-
pression for the average squared distance of two functions 𝑓𝑎, 𝑓𝑏. For 𝑎, 𝑏 ∈ {±1}𝐾Λ ,
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E
𝑥
| 𝑓𝑎 (𝑥) − 𝑓𝑏 (𝑥) |2 (5.126a)

=
9𝜖
𝐾Λ

∑︁
𝑘,𝑙∈Z𝑚,∥𝑘 ∥2,∥𝑙∥2≤Λ

(𝑎𝑘 − 𝑏𝑘 ) (𝑎𝑙 − 𝑏𝑙)
∫
[−1,1]𝑚

cos (𝜋𝑘 · 𝑥) cos (𝜋𝑙 · 𝑥) d𝑚𝑥

(5.126b)

=
9𝜖
𝐾Λ

∑︁
𝑘∈Z𝑚,∥𝑘 ∥2≤Λ

(𝑎𝑘 − 𝑏𝑘 )2 (5.126c)

=
9𝜖
𝐾Λ

∑︁
𝑘∈Z𝑚,∥𝑘 ∥2≤Λ

4 × 1 {𝑎𝑘 ≠ 𝑏𝑘 } (5.126d)

=
36𝜖
𝐾Λ

𝑑𝐻 (𝑎, 𝑏) , (5.126e)

where we have used orthonormality of the Fourier basis cos(𝜋𝑘 · 𝑥), and 𝑑𝐻 (𝑎, 𝑏) =∑
𝑘 1 {𝑎𝑘 ≠ 𝑏𝑘 } is the Hamming distance on {±1}𝐾Λ .

We conclude this expository section by examining whether the construction fulfills
the requirement stated in the theorem and presenting a technical lemma. First of all,
we have

∥𝑂∥ = 𝐵 ∥𝑌 ∥ = 𝐵, (5.127)

which satisfies the bounded norm constraint in Eq. (5.119b). Furthermore, we can
use the orthonormality of cos(𝜋𝑘 · 𝑡) to find that

E
𝑥∼[−1,1]𝑚

∥∇𝑥 tr(𝑂𝜌𝑎 (𝑥))∥22 =
9𝜖
𝐾Λ

∑︁
𝑘∈Z𝑚:∥𝑘 ∥2≤Λ

∥𝑘 ∥22 |𝑎𝑘 |2 ≤
9𝜖
𝐾Λ

𝐾ΛΛ
2 = 𝐶.

(5.128)
Thus the smoothness condition in Eq. (5.119a) is also satisfied. Now, we turn our
attention to the ground state (5.124). The following technical lemma exposes the
function 𝑓𝑎 (𝑥)/𝐵 directly in the amplitudes of ground states.

Lemma 20. Let |𝜓𝑎 (𝑥)⟩ be the ground state of 𝐻𝑎 defined in Eq. (5.124). Then, we
have

𝜌𝑎 (𝑥) = |𝜓𝑎 (𝑥)⟩⟨𝜓𝑎 (𝑥) | = 1
2

(
1 +

√︁
1 − ( 𝑓𝑎 (𝑥)/𝐵)2 −i 𝑓𝑎 (𝑥)/𝐵
i 𝑓𝑎 (𝑥)/𝐵 1 −

√︁
1 − ( 𝑓𝑎 (𝑥)/𝐵)2

)
.

(5.129)

Proof. The proof is based on double-angle and half-angle trigonometric identities.
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Suppressing 𝑥 dependence, the first diagonal entry becomes

⟨0|𝜌𝑎 |0⟩ = |⟨0|𝜓𝑎⟩|2 = cos2
(

1
2 arcsin ( 𝑓𝑎/𝐵)

)
= 1

2 (1 + cos (arcsin ( 𝑓𝑎/𝐵)))

(5.130a)

= 1
2

(
1 +

√︃
1 − sin2 (arcsin ( 𝑓𝑎/𝐵))

)
= 1

2

(
1 +

√︃
1 − ( 𝑓𝑎/𝐵)2

)
, (5.130b)

and normalization implies that ⟨1|𝜌𝑎 |1⟩ = 1 − ⟨0|𝜌𝑎 |0⟩. The off-diagonal entries
are given by

⟨1|𝜌𝑎 |0⟩ = ⟨0|𝜌𝑎 |1⟩ = ⟨0|𝜓𝑎⟩⟨𝜓𝑎 |1⟩ (5.131a)

= −i cos
(

1
2 arcsin ( 𝑓𝑎/𝐵)

)
sin

(
1
2 arcsin ( 𝑓𝑎/𝐵)

)
(5.131b)

= − i
2 sin (arcsin ( 𝑓𝑎/𝐵)) = − i

2 𝑓𝑎/𝐵 . (5.131c)

This concludes the proof.

Communication protocol
Consider the learning problem introduced in the previous section. Suppose that a
quantum ML model can use training data T = {𝑥ℓ, 𝜌𝑎 (𝑥ℓ)}𝑁ℓ=1 to learn a function
𝑓 𝑄 (𝑥) that (on average) predicts tr (𝑂𝜌𝑎 (𝑥)) = 𝑓𝑎 (𝑥) for a particular unknown
𝑎 ∈ {±1}𝐾Λ , up to some accuracy 𝜖 ,

E
𝑥

�� 𝑓 𝑄 (𝑥) − 𝑓𝑎 (𝑥)��2 ≤ 𝜖 . (5.132)

Such a model will not fare as well in estimating the expectation value associated
with 𝑏 ≠ 𝑎, whenever 𝑏 is sufficiently far away from 𝑎. Using the triangle inequality
and Eq. (5.126),

E
𝑥

�� 𝑓 𝑄 (𝑥) − 𝑓𝑏 (𝑥)��2 ≥ E
𝑥
| 𝑓𝑎 (𝑥) − 𝑓𝑏 (𝑥) |2 − E

𝑥

�� 𝑓 𝑄 (𝑥) − 𝑓𝑎 (𝑥)��2 (5.133)

≥ 36𝜖
𝐾Λ

𝑑𝐻 (𝑎, 𝑏) − 𝜖 . (5.134)

The model’s accuracy significantly worsens at 𝑑𝐻 (𝑎, 𝑏) > 𝐾Λ/18, where we recall
𝐾Λ = |{𝑘 ∈ Z𝑚 : ∥𝑘 ∥2 ≤ Λ}| from Eq. (5.121). In other words, a good quantum
ML model would allow us to use training data T in order to recover the underlying
parameter 𝑎 ∈ {±1}𝐾Λ up to resolution 𝐾Λ/18 in Hamming distance.

We can use this assertion as an effective decoding procedure in a two-way commu-
nication protocol involving Alice and Bob. To accommodate imperfect resolution,
Alice and Bob agree on a dictionary of sign vectors

{
𝑎 (1) , . . . , 𝑎 (𝑀)

}
⊂ {±1}𝐾Λ
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whose pairwise Hamming distance is large enough: 𝑑𝐻 (𝑎𝑖, 𝑎 𝑗 ) > 𝐾Λ/18 for all
𝑖 ≠ 𝑗 . Let 𝑀 denote the cardinality of this dictionary. Alice and Bob use this
dictionary and the ML procedure to transmit integers up to size 𝑀 over a quantum
channel. Alice samples an integer 𝑗 ∈ {1, . . . , 𝑀} and sets 𝑎 = 𝑎 ( 𝑗) ∈ {±1}𝐾Λ . Sub-
sequently, she uses 𝑎 to generate (quantum) training data T = {(𝑥ℓ, 𝜌𝑎 (𝑥ℓ))}𝑁ℓ=1 with
𝑥1, . . . , 𝑥𝑁 ∼ Unif [−1, 1]𝑚 which she passes on to Bob. Subsequently, Bob uses T
to train a quantum ML model to predict the underlying function tr (𝑂𝜌𝑎 (𝑥)) = 𝑓𝑎 (𝑥).
By checking E𝑥

�� 𝑓�̄� (𝑥) − 𝑓 𝑄 (𝑥)��2 ≤ 𝜖 for every possible dictionary element �̄�, he
will retrieve the correct message with high probability, i.e., �̄� = 𝑎.

This is a protocol that conveys classical information via a quantum dataset. It is
subject to fundamental constraints from information theory. These will allow us to
deduce a lower bound on the required training data size 𝑁 = |T |. An important
figure of merit in this argument is the cardinality 𝑀 of the dictionary. That is, the
number of different integers that can be communicated. The larger 𝑀 , the more
powerful the communication protocol, and following result, sometimes attributed
to Gilbert and Varshamov (Gilbert, 1952), is a lower bound on how many bits one
can “pack” into the space of 𝐿-bit strings while maintaining the required distance.

Lemma 21 (Lemma 5.12 in (Rigollet and Hütter, 2015)). There exists a dictio-
nary

{
𝑎 (1) , . . . , 𝑎 (𝑀)

}
∈ {±1}𝐾Λ of cardinality 𝑀 ≥ ⌊exp (𝐾Λ/32)⌋ that achieves

𝑑𝐻

(
𝑎 (𝑖) , 𝑎 ( 𝑗)

)
≥ 𝐾Λ/4 whenever 𝑖 ≠ 𝑗 .

Information-theoretic analysis
Let us now take a closer look at the communication protocol introduced above by
bounding the correlation between Alice’s original randomly chosen message 𝑎 and
Bob’s decoded signal �̄�. Up to now, we have stablished the following. Per the
bound in Lemma 21, the dictionary of available 𝑎’s can be chosen to be rather large:
𝑀 = ⌊exp (𝐾Λ/32)⌋. Moreover, the existence of a good quantum ML procedure, in
the sense of Proposition 20, ensures that �̄� = 𝑎 with high probability.

Correlations between Alice’s and Bob’s variables are quantified by the (classical)
mutual information

𝐼 (𝑎 : �̄�) ≥ Ω (log(𝑀)) = Ω(𝐾Λ), (5.135)

which we have bounded from below using Fano’s inequality (B. Yu, 1997). Our
task now is to provide an upper bound on 𝐼 (𝑎 : �̄�), in terms of 𝑁, 𝐵 and 𝜖 , in order
to relate those parameters to 𝐾Λ and obtain the desired result in Theorem 20.
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Since the parameters 𝑥1, . . . , 𝑥𝑁 are sampled independently from 𝑎, we have 𝐼 (𝑎 :
𝑥1, . . . , 𝑥𝑁 ) = 0 and 𝑎 |𝑥1,...,𝑥𝑁 = 𝑎. Therefore, we can upper bound the mutual
information as follows,

𝐼 (𝑎 : �̄�) ≤ 𝐼 (𝑎 : �̄�, 𝑥1, . . . , 𝑥𝑁 ) (5.136a)

= 𝐼 (𝑎 : 𝑥1, . . . , 𝑥𝑁 ) + 𝐼 (𝑎 : �̄� |𝑥1, . . . , 𝑥𝑁 ) (5.136b)

= 𝐼 (𝑎 : �̄� |𝑥1, . . . , 𝑥𝑁 ) (5.136c)

= E
𝑥1,...,𝑥𝑁

𝐼
(
𝑎 |𝑥1,...,𝑥𝑁 : �̄� |𝑥1,...,𝑥𝑁

)
(5.136d)

= E
𝑥1,...,𝑥𝑁

𝐼
(
𝑎 : �̄� |𝑥1,...,𝑥𝑁

)
, (5.136e)

where 𝑄 |𝑥 denotes the random variable 𝑄 conditioned on the random variable 𝑥.

Next, recall that Bob reconstructs the classical �̄� by performing quantum operations
on the training data T = {(𝑥ℓ, 𝜌𝑎 (𝑥ℓ)}𝑁ℓ=1. For each instance of randomly chosen
parameters 𝑥1, . . . , 𝑥𝑁 ∼ Unif [−1, 1]𝑚, Bob performs a quantum measurement on
the state

⊗𝑁

ℓ=1 𝜌𝑎 (𝑥ℓ) and uses the measurement outcomes to reconstruct �̄�. Bob’s
procedure is equivalent to performing the quantum ML algorithm that we have
been promised in Sec. 5.5. Thus we can use Holevo’s theorem (A. S. Holevo,
1973)[Wilde, 2013, Sec. 11.6.1] to write

𝐼
(
𝑎 : �̄� |𝑥1,...,𝑥𝑁

)
≤ 𝜒

(
𝑎 :

𝑁⊗
ℓ=1

𝜌𝑎 (𝑥ℓ)
���
𝑥1,...,𝑥𝑁

)
, (5.137)

where the Holevo information 𝜒 quantifies correlations between a random variable
𝑧 and a quantum state 𝜌𝑧,

𝜒(𝑧 : 𝜌𝑧) = 𝑆
(
E
𝑧
𝜌𝑧

)
− E

𝑧
𝑆(𝜌𝑧) , (5.138)

and 𝑆(𝜌) = − tr(𝜌 log 𝜌) is the von Neumann entropy. In other words, for each
instance of parameters, the correlation between 𝑎 and �̄� is bounded by the Holevo
information of Bob’s ensemble of quantum states.

Next, we use the subadditivity of von Neumann entropy, 𝑆(E𝑧 𝜌𝑧 ⊗𝜎𝑧) ≤ 𝑆(E𝑧 𝜌𝑧) +
𝑆(E𝑧 𝜎𝑧), and the additivity of entropy for independent systems, 𝑆(𝜌 ⊗ 𝜎) = 𝑆(𝜌) +
𝑆(𝜎), to obtain

𝜒

(
𝑎 :

𝑁⊗
ℓ=1

𝜌𝑎 (𝑥ℓ)
���
𝑥1,...,𝑥𝑁

)
≤

𝑁∑︁
ℓ=1

𝜒

(
𝑎 : 𝜌𝑎 (𝑥ℓ)

��
𝑥1,··· ,𝑥𝑁

)
. (5.139)
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Plugging Eqs. (5.137) and (5.139) into Eq. (5.136) and using the fact that 𝜌𝑎 (𝑥ℓ) is
independent to 𝑥ℓ′ for any ℓ′ ≠ ℓ, we obtain

𝐼 (𝑎 : �̄�) ≤
𝑁∑︁
ℓ=1

E
𝑥1,··· ,𝑥𝑁

𝜒

(
𝑎 : 𝜌𝑎 (𝑥ℓ)

��
𝑥1,··· ,𝑥𝑁

)
(5.140a)

=

𝑁∑︁
ℓ=1
E
𝑥ℓ
𝜒

(
𝑎 : 𝜌𝑎 (𝑥ℓ)

��
𝑥ℓ

)
(5.140b)

= 𝑁 E
𝑥
𝜒 (𝑎 : 𝜌𝑎 (𝑥)) . (5.140c)

The last equality follows from the fact that each (𝑥ℓ, 𝜌𝑎 (𝑥ℓ)) is generated indepen-
dently and in an identical fashion for all ℓ = 1, . . . , 𝑁 .

We have thus reduced the problem of bounding the correlations between classical
variables 𝑎 and �̄� to that of bounding the Holevo information of the ensemble
of states 𝜌𝑎 — a much simpler problem because 𝜌𝑎 is a two-by-two matrix. In
Lemma 22 at the end of section, we obtain the bound

E
𝑥
𝜒 (𝑎 : 𝜌𝑎 (𝑥)) ≤

9𝜖
4𝐵2 log

(
4e𝐵2

9𝜖

)
. (5.141)

Using this bound, the first claim in Theorem 20 readily follows, provided that we
are allowed to choose

𝐾Λ = 𝑚Ω(𝐶/𝜖) . (5.142)

This assumption, combined with Eqs. (5.135-5.141) ensures that

𝑁
9𝜖

4𝐵2 log
(
4e𝐵2

9𝜖

)
≥ Ω(𝐾Λ) = 𝑚Ω(𝐶/𝜖) which implies 𝑁 ≥ 𝐵

2𝑚Ω(𝐶/𝜖)

log(𝐵) .

(5.143)
Because the quantum ML has to process quantum training data of size𝑁 ≥ 𝐵2𝑚Ω(𝐶/𝜖 )

log(𝐵) ,
the runtime of the quantum ML has to be lower bounded by that amount as well.

Let us now verify the assumption (5.142) on the number of Fourier modes 𝐾Λ

available for estimating the quantum state. While we have already determined
that 𝐾Λ ≤ 𝑚O(𝐶/𝜖) in Eq. (5.87), here we need a lower bound. We utilize the
assumption that 𝐶/(9𝜖) ≤ 𝑚0.99, which implies ⌊𝐶/(9𝜖)⌋ ≤ 𝑚0.99. To establish
Eq. (5.142), we restrict our attention to binary wavevectors 𝑘 ∈ {0, 1}𝑚, such that
the number of ones is exactly equal to ⌊𝐶/(9𝜖)⌋. Clearly, every such wavevector
obeys ∥𝑘 ∥2 ≤

√︁
𝐶/(9𝜖), so the number of such wavevectors lower bounds 𝐾Λ. This

observation, along with some combinatorics, yields

𝐾Λ ≥
���{𝑘 ∈ {0, 1}𝑚 :

𝑚∑︁
𝑗=1

𝑘 𝑗 = ⌊𝐶/(9𝜖)⌋
}��� (5.144a)
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=

(
𝑚

⌊𝐶/(9𝜖)⌋

)
≥ 𝑚 ⌊𝐶/(9𝜖)⌋

(⌊𝐶/9𝜖⌋) ⌊𝐶/(9𝜖)⌋
(5.144b)

= 𝑚 ⌊𝐶/(9𝜖)⌋−(⌊𝐶/9𝜖⌋) log(⌊𝐶/(9𝜖)⌋)/log(𝑚) ≥ 𝑚0.01⌊𝐶/(9𝜖)⌋ = 𝑚Ω(𝐶/𝜖) . (5.144c)

We now prove the upper bound (5.141) on the mutual information. It follows from
analyzing the ground state representations provided by Lemma 20.

Lemma 22. The learning problem from Section 5.5 is set up to obey

E
𝑥∼Unif [−1,1]𝑚

𝜒 (𝑎 : 𝜌𝑎 (𝑥)) ≤
9𝜖

4𝐵2 log
(
4e𝐵2

9𝜖

)
. (5.145)

Proof. Using the definition (5.138) of the Holevo information and the von Neumann
entropy,

E
𝑥∼Unif [−1,1]𝑚

𝜒 (𝑎 : 𝜌𝑎 (𝑥)) (5.146a)

= E
𝑥

[
E
𝑎
[tr(𝜌𝑎 (𝑥) log 𝜌𝑎 (𝑥))] − tr

((
E
𝑎
𝜌𝑎 (𝑥)

)
log

(
E
𝑎
𝜌𝑎 (𝑥)

))]
(5.146b)

= −E
𝑥

tr
[(
E
𝑎
𝜌𝑎 (𝑥)

)
log

(
E
𝑎
𝜌𝑎 (𝑥)

)]
. (5.146c)

The second equality follows from the fact that 𝜌𝑎 (𝑥) is a pure state, so we have
tr(𝜌𝑎 (𝑥) log 𝜌𝑎 (𝑥)) = 0. We also consider E𝑥 to be E𝑥∼Unif [−1,1]𝑚 . Recalling
Lemma 20 yields

E
𝑎
𝜌𝑎 (𝑥) =

1
2
E
𝑎

(
1 +

√︁
1 − ( 𝑓𝑎 (𝑥)/𝐵)2 −i 𝑓𝑎 (𝑥)/𝐵
i 𝑓𝑎 (𝑥)/𝐵 1 −

√︁
1 − ( 𝑓𝑎 (𝑥)/𝐵)2

)
. (5.147)

The eigenvalues 𝜆± of E𝑎 𝜌𝑎 (𝑥), like those of any two-by-two matrix, can be ex-
pressed in terms of the trace and determinant. Using the formula for the eigenvalues
and evaluating the trace and determinant yield

𝜆± =
1
2

tr
[
E
𝑎
𝜌𝑎 (𝑥)

]
± 1

2

√︂(
tr

[
E
𝑎
𝜌𝑎 (𝑥)

] )2
− 4 det

[
E
𝑎
𝜌𝑎 (𝑥)

]
(5.148a)

=
1
2
± 1

2

√︄(
E
𝑎
𝑓𝑎 (𝑥)

)2
/𝐵2 +

(
E
𝑎

√︃
1 − 𝑓𝑎 (𝑥)2/𝐵2

)2
. (5.148b)

We will use following lower bound for 𝜆+

𝜆+ ≥
1
2
+ 1

2
E
𝑎

√︃
1 − 𝑓𝑎 (𝑥)2/𝐵2 (5.149a)

≥ 1
2
+ 1

2
(1 − E

𝑎
𝑓𝑎 (𝑥)2/𝐵2) (5.149b)
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= 1 − 1
2
E
𝑎
𝑓𝑎 (𝑥)2/𝐵2 ≥ 1

2
. (5.149c)

The first inequality follows from dropping the term (E𝑎 𝑓𝑎 (𝑥))2/𝐵2. The second
inequality follows from the fact that

√
1 − 𝑧 ≥ 1 − 𝑧 for all 𝑧 ∈ [0, 1].

We now proceed to bounding the von Neumann entropy of E𝑎 𝜌𝑎 (𝑥),

− tr
((
E
𝑎
𝜌𝑎 (𝑥)

)
log

(
E
𝑎
𝜌𝑎 (𝑥)

))
= −𝜆+ log𝜆+ − 𝜆− log𝜆− = 𝐻 (𝜆+) (5.150a)

≤ 𝐻
(
1 − 1

2
E
𝑎
𝑓𝑎 (𝑥)2/𝐵2

)
(5.150b)

= 𝐻

(
1
2
E
𝑎
𝑓𝑎 (𝑥)2/𝐵2

)
(5.150c)

≡ 𝐻 (𝑔(𝑥)) ≤ 𝑔(𝑥) log(e/𝑔(𝑥)) , (5.150d)

where 𝐻 (𝑥) = −𝑥 log 𝑥 − (1 − 𝑥) log(1 − 𝑥) is the binary entropy, and 𝑔(𝑥) =
1
2 E𝑎 𝑓𝑎 (𝑥)

2/𝐵2. The first inequality follows from the fact that 𝐻 (𝑥) ≤ 𝐻 (𝑥′) for all
1/2 ≤ 𝑥′ ≤ 𝑥. Going back to Eq. (5.146),

E
𝑥
𝜒 (𝑎 : 𝜌𝑎 (𝑥) |𝑥) = −E

𝑥
tr

[(
E
𝑎
𝜌𝑎 (𝑥)

)
log

(
E
𝑎
𝜌𝑎 (𝑥)

)]
(5.151a)

≤ E
𝑥
[𝑔(𝑥) log(e/𝑔(𝑥))] (5.151b)

≤
(
E
𝑥
𝑔(𝑥)

)
log

(
e

E𝑥 𝑔(𝑥)

)
(5.151c)

=
E𝑥,𝑎 𝑓𝑎 (𝑥)2

2𝐵2 log
(

2e𝐵2

E𝑥,𝑎 𝑓𝑎 (𝑥)2

)
. (5.151d)

The first inequality follows from Eq. (5.150). The second inequality follows Jensen’s
inequality and the fact that 𝑧 log(e/𝑧) is concave for all 𝑧 ≥ 0. Orthogonality of the
cos(𝜋𝑘 · 𝑥) terms in 𝑓𝑎 (5.122) yields

E
𝑥,𝑎
𝑓𝑎 (𝑥)2 =

1
2
× 9𝜖
𝐿

∑︁
𝑘∈Z𝑚,∥𝑘 ∥2≤Λ

E
𝑎
|𝑎𝑘 |2 =

9𝜖
2
. (5.152)

Plugging the above into Eq. (5.151d), we obtain the advertised bound.

5.6 Hardness for non-ML algorithms to predict ground state properties
NP-hardness for estimating one-body observables in the ground state of 2D
Hamiltonians
We begin by showing that the task of estimating one-body observables in the ground
state of any smooth class of two-dimensional Hamiltonians with a constant spectral
gap is NP-hard. The task is hard even if we consider the computation to yield a
small error averaged over the smooth class of Hamiltonians.
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Figure 5.2: Reduction of planar rectilinear 3SAT (left) to a qubit Hamiltonian on
a 2D grid (right). Each pair (𝑖, 𝑗) of nearby grid points on a path (originating
from variable 𝑋,𝑌, 𝑍, 𝑆, 𝑇,𝑊) contains a two-body local term −𝑍𝑖𝑍 𝑗 (illustrated
by boxes with gray stroke). Each clause (𝐶, 𝐷, 𝐸, 𝐹) corresponds to a three-body
local term that imposes the Boolean constraint, e.g., 𝑋 ∨ 𝑍 ∨ 𝑆 would correspond to
−∑

𝑥,𝑧,𝑠∈{0,1} 1[𝑥 ∨ 𝑧 ∨ 𝑠 = 1] · |𝑥⟩⟨𝑥 | ⊗ |𝑧⟩⟨𝑧 | ⊗ |𝑠⟩⟨𝑠 |. Every empty grid point (the
irrelevant qubits) contain a single body term −𝑍𝑖.

Proposition 9 (Detailed restatement of Proposition 8; a variant of Lemma 1.4 in
(Abrahamsen, 2020)). Consider a randomized polynomial-time classical algorithm
A(𝐻, 𝑖, 𝑟) whose inputs are the description of a Hamiltonian 𝐻, an index 𝑖 that
enumerates the qubits in the Hamiltonian, and a random bit string 𝑟 . Suppose that
for any smooth class of Hamiltonians on a two-dimensional grid with a spectral gap
≥ 1 and a unique ground state,

𝐻 (𝑥) =
∑︁
𝑎

ℎ𝑎 (𝑥) with 𝜌(𝑥) : the ground state of 𝐻 (𝑥), (5.153)

where 𝑥 ∈ [−1, 1]𝑚 is a parameter and ℎ𝑎 (𝑥) is a three-qubit geometrically-local
observable, and for each one-body Pauli-Z observable 𝑍𝑖, the randomized classical
algorithmA outputsA(𝐻, 𝑖, 𝑟) that approximates tr(𝑍𝑖𝜌(𝑥)) up to an average error
E𝑥∼[−1,1]𝑚 |E𝑟 A(𝐻, 𝑖, 𝑟) − tr(𝑍𝑖𝜌(𝑥)) | ≤ 1/4. Then RP = NP.

Proof. From standard results in complexity theory (Lichtenstein, 1982; Knuth and
Raghunathan, 1992; L. Valiant and V. Vazirani, 1986), it is known that if there is a
randomized polynomial-time classical algorithm that can find the solution for any
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planar rectilinear 3SAT problem with a unique solution with probability at least
1/2, then RP = NP. (RP, also known as Randomized Polynomial Time, is the class
of decision problems such that there is a polynomial-time randomized classical
algorithm that outputs YES with probability at least 1/2 when the correct answer
is YES, and outputs NO with probability one when the correct answer is NO. RP
is contained in BPP, the class of decision problems that can be solved efficiently
by a randomized classical computer.) The planar rectilinear 3SAT problem is a
constrained version of 3SAT, where all the Boolean variables 𝑥1, . . . , 𝑥𝑛 are vertices
on the 𝑥-axis and all the clauses containing three variables are vertices that lie
above or below the 𝑥-axis. Each clause is connected by an edge to each of the the
variables that the clause contains. The vertices and the edges form a planar graph;
see Figure 5.2 (left) for an illustration.

We can embed such a planar graph in a two-dimensional grid with a single qubit on
each grid point; see Figure 5.2 (right) for an illustration of the embedding. First, we
distinguish between the variable vertices and the clause vertices in the planar graph.
Variable vertices lie on the 𝑥-axis of the two-dimensional qubit grid, and clause
vertices lie above or below the 𝑥-axis. Edges of the planar graph become embedded
paths on the the 2D grid connecting clause vertices to variable vertices. Because the
original graph is planar, we can ensure that the paths corresponding to each edge on
the planar graph do not overlap (except when they terminate at the same variable)
by choosing a large enough spacing between the variable vertices on the 𝑥-axis. For
each path on the 2D grid, we add a −𝑍𝑖𝑍 𝑗 term to the Hamiltonian for every pair
of nearest neighbors along the path. The two body −𝑍𝑖𝑍 𝑗 term ensures that, in the
unique ground state, the qubits on the path must be either all |0⟩’s or all |1⟩’s. Then,
for every clause vertex on the planar graph, we add a three-body geometrically-local
term (diagonal in the 𝑍-basis) to the Hamiltonian enforcing that in the ground state
the endpoints of the three corresponding paths satisfy the Boolean constraint of the
corresponding clause. For example, the Boolean clause 𝑋∨𝑍∨𝑆 would correspond
to the three body local term −∑

𝑥,𝑧,𝑠∈{0,1} 1[𝑥 ∨ 𝑧 ∨ 𝑠 = 1] · |𝑥⟩⟨𝑥 | ⊗ |𝑧⟩⟨𝑧 | ⊗ |𝑠⟩⟨𝑠 |,
where 1[𝐴] is 1 if 𝐴 is true and 0 otherwise. The qubits on paths are called the
“relevant” qubits, and the rest of the qubits are called “irrelevant.” We add a −𝑍𝑖
term to the Hamiltonian for all the irrelevant qubits, fixing these qubits to be |0⟩ in
the ground state.

Moreover, the eigenstates of the Hamiltonian are computational basis states, because
all the local terms are diagonal in the 𝑍-basis. We can also see that there are no
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terms connecting the relevant and irrelevant qubits, hence the ground state space of
the constructed Hamiltonian must be the tensor product of the ground state space for
the relevant qubits and the ground state space for the irrelevant qubits. The unique
ground state for the irrelevant qubits is the all-zero state |0⟩ ⊗ · · · ⊗ |0⟩ due to the −𝑍𝑖
term. Because the original planar rectilinear 3SAT problem has a unique solution,
the ground state for the relevant qubits is also unique. We denote the ground state
by |𝑏⟩⟨𝑏 |, 𝑏 ∈ {0, 1}𝑛, where 𝑛 is the total number of qubits in the two dimensional
grid. In this ground state, all variable vertices are fixed at the values that solve
the 3SAT problem. Furthermore, because all eigenvalues of the Hamiltonian are
integers, the spectral gap is at least one.

Let us define
∑
𝑎 ℎ𝑎 to be the Hamiltonian constructed from a planar rectilinear

3SAT problem. Note that ℎ𝑎 is diagonal in the 𝑍-basis and acts on at most three
geometrically-local qubits. We define a trivial class of two-dimensional Hamiltoni-
ans with a spectral gap ≥ 1,

𝐻 (𝑥) =
∑︁
𝑎

ℎ𝑎 (𝑥) =
∑︁
𝑎

ℎ𝑎 = 𝐻, (5.154)

where 𝑥 ∈ [−1, 1]𝑚 is the parameter, and 𝐻 (𝑥) does not depend on 𝑥. Let 𝜌(𝑥)
be the unique ground state of 𝐻 (𝑥). We have 𝜌(𝑥) = |𝑏⟩⟨𝑏 |, 𝑏 ∈ {0, 1}𝑛, where 𝑏
encodes the solution to the planar rectilinear 3SAT problem.

We apply the randomized classical algorithm to provide estimates for all the expec-
tation values of Pauli-𝑍 observables in the ground state space 𝜌(𝑥) of 𝐻 (𝑥). Let
A be the randomized classical algorithm. By the assumption that the randomized
classical algorithm could output an estimate of tr(𝑍𝑖𝜌(𝑥)) up to an additive error
1/4 averaged uniformly over 𝑥 ∈ [−1, 1]𝑚, we have

E
𝑥∼[−1,1]𝑚

���E
𝑟
A(𝐻 (𝑥), 𝑖, 𝑟) − tr(𝑍𝑖𝜌(𝑥))

��� ≤ 1/4, ∀𝑖 = 1, . . . , 𝑛. (5.155)

Using Jensen’s inequality, we have the following bound,���� E
𝑥∼[−1,1]𝑚

E
𝑟
A(𝐻 (𝑥), 𝑖, 𝑟) − E

𝑥∼[−1,1]𝑚
tr(𝑍𝑖𝜌(𝑥))

���� ≤ 1/4, ∀𝑖 = 1, . . . , 𝑛. (5.156)

We can see that E𝑥∼[−1,1]𝑚 tr(𝑍𝑖𝜌(𝑥)) = ⟨𝑏𝑖 | 𝑍𝑖 |𝑏𝑖⟩ , where 𝑏𝑖 is the 𝑖-th bit in the
𝑛-bit string 𝑏 that encodes the solution to the planar rectilinear 3SAT problem.

We sample random 𝑥 uniformly from [−1, 1]𝑚 and sample the random string 𝑟,
obtaining the output value A(𝐻 (𝑥), 𝑖, 𝑟) using the randomized classical algorithm
A. As a result of the above analysis, by sampling O(log(𝑛)) times and computing
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the average over the output A(𝐻 (𝑥), 𝑖, 𝑟), we can obtain an estimate for ⟨𝑏𝑖 | 𝑍𝑖 |𝑏𝑖⟩
up to an additive error 1/2 with probability at least 1 − 1

2𝑛 , where 𝑛 is the total
number of qubits in the 2D grid. Because ⟨𝑏𝑖 | 𝑍𝑖 |𝑏𝑖⟩ ∈ {−1, 1}, an estimate for
⟨𝑏𝑖 | 𝑍𝑖 |𝑏𝑖⟩ up to an additive error 1/2 allows us to obtain 𝑏𝑖 ∈ {0, 1}. Using the
union bound, with probability at least 1/2, we can obtain 𝑏𝑖, for all 𝑖 = 1, . . . , 𝑛.
This implies that we can obtain the bit string 𝑏 with probability at least 1/2. Hence,
we can use the randomized classical algorithmA to find the unique solution for the
planar rectilinear 3SAT problem with probability at least 1/2. Therefore, RP=NP if
such an algorithm exists.

We remark that a similar argument still applies if we replace the constant Hamiltonian
𝐻 (𝑥) considered above by a suitably chosen class of Hamiltonians {𝐻 (𝑥) = 𝐻 : 𝑥 ∈
[−1, 1]𝑚} with nontrivial dependence on 𝑥. For example, we can consider 𝐻 (𝑥) =∑
𝑎 ℎ𝑎 (𝑥) =

∑
𝑎 (𝑈1(𝑥1) ⊗ . . . ⊗ 𝑈𝑛 (𝑥𝑛)) ℎ𝑎 (𝑈1(𝑥1) ⊗ . . . ⊗ 𝑈𝑛 (𝑥𝑛))†, where 𝑛 is

the number of qubits in the Hamiltonian, 𝑈𝑖 (𝑥𝑖) = exp(−i(𝜋/4)𝑋𝑖𝑥𝑖) is a single-
qubit rotation, 𝑋𝑖 is the Pauli-𝑋 matrix on the 𝑖-th qubit, and 𝑚 = 𝑛. It is not hard
to see that ℎ𝑎 (𝑥) still acts on at most three geometrically-local qubits. Furthermore,
one can adapt the proof to show that predicting ground state properties averaged
over 𝑥 for this nonconstant class of Hamiltonians is still hard.

Computational hardness for a class of Hamiltonians based on factoring
Theorem 17 and Proposition 9 together implies that an NP-hard problem could be
solved by performing single-qubit measurements on a modest number of copies of
the ground state of a two-dimensional local Hamiltonian, and then performing an
efficient classical computation with the measurement outcomes as input. We may
therefore conclude that, in hard instances, the preparation of the ground state is
itself an NP-hard task. Because we do not expect any NP-hard task to be performed
efficiently in the physics lab, or in any other physically realizable process, Proposition
9 does not usefully characterize the computational power of data under realistic
conditions.

In contrast, it is reasonable to expect that simple measurements performed on
quantum states that are efficiently prepared by quantum computers, combined with
classical processing, suffice for solving computational problems that are beyond the
reach of classical processing alone. Indeed, proposals for using variation quantum
eigensolvers to study quantum chemistry and materials (Peruzzo et al., 2014; Jarrod
R McClean, Romero, et al., 2016) are motivated by this expectation. Theorem 17
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is of potential practical interest for a class of Hamiltonians {𝐻 (𝑥)} such that the
ground state of 𝐻 (𝑥) can be prepared efficiently by a feasible quantum process, yet
cannot be efficiently prepared classically.

The rest of this subsection outlines a stylized example that illustrates this idea.
Leveraging the efficient quantum algorithm for factoring large numbers, and the
assumption that factoring is classically hard, we construct a smooth class of local
Hamiltonians whose ground states are easy to prepare quantumly, such that expec-
tation values of one-local observables can be learned efficiently from training data,
yet are hard to learn by any classical procedure without access to data.

The first step is to construct two-dimensional Hamiltonians such that computing
expectation values of one-local observables in the ground state is equivalent to
solving a factoring problem. This can be done by noting a series of well-known
facts in complexity theory.

1. The following task is expected to be hard for classical computers. Given a
𝑛-bit number 𝑅 guaranteed to be a product of two prime numbers 𝑝 < 𝑞, find
𝑝, 𝑞. When 𝑅 is large, all known classical algorithms scale superpolynomially
with 𝑛. Solving this problem suffices to break the RSA encryption (Rivest,
A. Shamir, and Adleman, 1978).

2. We can represent 𝑝, 𝑞 using at most 2𝑛 binary variables (bits), and we can
write down a propositional formula for these 2𝑛 variables, which corresponds
to a logical circuit that computes the multiplication of 𝑝, 𝑞 and checks if
the product equals 𝑅. The propositional formula can be written without any
additional Boolean variable. This yields a SAT problem with 2𝑛 Boolean
variables whose unique solution is equal to the two prime numbers 𝑝, 𝑞.

3. A SAT problem with a unique solution can be efficiently mapped to a 3SAT
problem with a unique solution; see (Kozen, 1992).

4. A 3SAT problem with a unique solution can be efficiently mapped to a planar
rectilinear 3SAT problem with a unique solution; see (Lichtenstein, 1982;
Knuth and Raghunathan, 1992).

5. A planar rectilinear 3SAT problem with a unique solution can be efficiently
mapped to a two-dimensional 3-local Hamiltonian with a spectral gap of one
and a unique ground state, such that estimating one-local observables in the
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ground state of the Hamiltonian to a constant error with a constant probability
is sufficient to find the unique solution for the planar rectilinear 3SAT problem;
see the proof of Proposition 9.

We now focus on any smooth class of two-dimensional Hamiltonians 𝐻RSA(𝑥) with
a constant spectral gap such that there exists 𝑥RSA ∈ [−1, 1]𝑚 such that 𝐻RSA(𝑥RSA)
can be written as a two-dimensional Hamiltonian that is mapped from a factoring
problem. We refer to such a class of Hamiltonians as an RSA-based two-dimensional
gapped Hamiltonian class.

For any RSA-based Hamiltonian class 𝐻RSA, we can efficiently obtain the training
data from a quantum experiment. We first prepare the ground state for 𝐻RSA(𝑥RSA)
by applying Shor’s algorithm. Then we can adiabatically evolve the ground state
for 𝐻RSA(𝑥RSA) to obtain the ground state for 𝐻RSA(𝑥),∀𝑥 ∈ [−1, 1] due to the
existence of a constant spectral gap (Aharonov, Van Dam, et al., 2008; Wan and
I. Kim, 2020). Hence, according to Theorem 17, for any RSA-based Hamiltonian
class, a classical ML algorithm trained from data obtained in quantum experiments
can efficiently predict expectation values of one-local observables in the ground
state. In contrast, a classical algorithm that does not learn from training data is
unable to efficiently estimate 1-body observables in the ground state, assuming that
classical computers cannot break RSA encryption.

5.7 Classifying quantum phases of matter
Classifying quantum phases of matter is another important application of machine
learning to physics. We will consider this classification problem in the case where
quantum states are succinctly represented by their classical shadows. For simplicity,
we consider the classification of two phases (denoted 𝐴 and 𝐵), but the analysis
naturally generalizes to classifying any number of phases.

ML algorithms
We envision training a classical ML with classical shadows, where each classical
shadow carries a label 𝑦 indicating whether it represents a quantum state 𝜌 from
phase 𝐴 (𝑦(𝜌) = 1) or phase 𝐵 (𝑦(𝜌) = −1). We want to show that a suitably
chosen classical ML can learn to efficiently predict the phase for new classical
shadows beyond those encountered during training. Following a strategy which is
standard in learning theory, we consider a classical ML that maps each classical
shadow to a corresponding feature vector in a high-dimensional feature space, and
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then attempts to find a hyperplane that separates feature vectors in the 𝐴 phase from
feature vectors in the 𝐵 phase. The learning is efficient if the geometry of the feature
space is efficiently computable, and if the feature map is sufficiently expressive.
Thus, our task is to construct a feature map with the desired properties.

In the simpler task of classifying symmetry-breaking phases, there is typically a
local order parameter 𝑂 =

∑
𝑖 𝑂𝑖 given as a sum of 𝑟-body observables for some

𝑟 > 0 that satisfies

tr(𝑂𝜌) ≥ 1,∀𝜌 ∈ phase 𝐴, tr(𝑂𝜌) ≤ −1,∀𝜌 ∈ phase 𝐵. (5.157)

Under this criterion, the classification function may be chosen to be 𝑦(𝜌) =

sign(tr(𝑂𝜌)). Hence, classifying symmetry-breaking phases can be achieved by
finding a hyperplane that separates the two phases in the high-dimensional feature
space that subsumes all 𝑟-body reduced density matrices of the quantum state 𝜌.
The feature vector consisting of all 𝑟-body reduced density matrices of the quantum
state 𝜌 can be accurately reconstructed from the classical shadow representation
𝑆𝑇 (𝜌) when 𝑇 is sufficiently large.

Finding a suitable choice of hyperplane in the feature space can be cast as a convex
optimization problem known as the soft-margin support vector machine, discussed
in more detail in Appendix 5.9. With a sufficient amount of training data, the
hyperplane found by the classical ML model will generalize so the phase 𝑦(𝜌) can
be predicted accurately for a previously unseen quantum state 𝜌. The classical ML is
not merely a black box; it exhibits the order parameter (encoded by the hyperplane),
guiding physicists toward a deeper understanding of the phase structure.

For more exotic quantum phases of matter, such as topologically ordered phases,
the above classical ML model no longer suffices. The topological phase of a state
is invariant under a constant-depth quantum circuit, and a phase containing the
product state |0⟩⊗𝑛 is called the trivial phase. Using these notions, we can prove
that no observable — not even one that acts on the entire system — can be used to
distinguish between two topological phases. The proof, given in Appendix 5.8, uses
the observation that random single-qubit unitaries can confuse any global or local
order parameter.

Proposition 10. Consider two distinct topological phases 𝐴 and 𝐵 (one of the
phases could be the trivial phase). No observable 𝑂 exists such that

tr(𝑂𝜌) > 0,∀𝜌 ∈ phase 𝐴, tr(𝑂𝜌) ≤ 0,∀𝜌 ∈ phase 𝐵. (5.158)
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While this proposition implies that no linear function tr(𝑂𝜌) can be used to clas-
sify topologically ordered phases, it does not exclude nonlinear functions, such as
quadratic functions tr(𝑂𝜌 ⊗ 𝜌), degree-𝑑 polynomials tr(𝑂𝜌⊗𝑑) and more general
analytic functions. For example, it is known that the topological entanglement en-
tropy (A. Y. Kitaev and Preskill, 2006; Levin and Wen, 2006), a nonlinear function
of 𝜌, can be used to classify a wide variety of topologically ordered phases. For
this purpose, it suffices to consider a subsystem whose size is large compared to
the correlation length of the state, but is independent of the total size of the system.
The correlation length in the ground state of a local Hamiltonian increases when
the spectral gap between the ground state and the first excited state becomes smaller
(Matthew B Hastings and Koma, 2006). On the other hand, a linear function on the
full system will fail even with constant correlation length.

To learn nonlinear functions, we need a more expressive ML model. For this
purpose we devise a powerful feature map that takes the classical shadow 𝑆𝑇 (𝜌) of
the quantum state 𝜌 to a feature vector that includes arbitrarily-large 𝑟-body reduced
density matrices, as well as an arbitrarily-high-degree polynomial expansion,

𝜙(shadow) (𝑆𝑇 (𝜌)) (5.159)

= lim
𝐷,𝑅→∞

𝐷⊕
𝑑=0

√︂
𝜏𝑑

𝑑!

(
𝑅⊕
𝑟=0

√︂
1
𝑟!

(𝛾
𝑛

)𝑟 𝑛⊕
𝑖1=1

. . .
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𝑖𝑟=1

vec

[
1
𝑇

𝑇∑︁
𝑡=1

𝑟⊗
ℓ=1

𝜎
(𝑡)
𝑖ℓ

])⊗𝑑
,

(5.160)

where 𝜏, 𝛾 > 0 are hyper-parameters. The direct sum
⊕𝑅

𝑟=0 is a concatenation of
all 𝑟-body reduced density matrices, and the other direct sum

⊕𝐷

𝑑=0 subsumes all
degree-𝑑 polynomial expansions. The computational cost of finding a hyperplane
in feature space that separates the training data into two classes is dominated by
the cost of computing inner products between feature vectors. The inner product
⟨𝜙(shadow) (𝑆𝑇 (𝜌)), 𝜙(shadow) (𝑆𝑇 ( �̃�))⟩ can be analytically computed by reorganizing
the direct sums, writing it as a double series, and wrapping both series into an
exponential, which gives

𝑘 (shadow) (𝑆𝑇 (𝜌), 𝑆𝑇 ( �̃�)) = exp

(
𝜏

𝑇2

𝑇∑︁
𝑡,𝑡′=1

exp

(
𝛾

𝑛

𝑛∑︁
𝑖=1

tr
(
𝜎
(𝑡)
𝑖
�̃�
(𝑡′)
𝑖

)))
, (5.161)

where 𝑆𝑇 (𝜌) and 𝑆𝑇 ( �̃�) are classical shadow representations of 𝜌 and �̃�, respectively.
The computation time for the inner product is O(𝑛𝑇2), linear in the system size 𝑛
and quadratic in 𝑇 , the number of copies of each quantum state which are measured
to construct the classical shadow.
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Rigorous guarantee
By statistical analysis, we can establish a rigorous guarantee for the classical ML
model ⟨𝛼, 𝜙(shadow) (𝑆𝑇 (𝜌))⟩, where 𝛼 is the trainable vector defining the classifying
hyperplane. The result is the following theorem proven in Appendix 5.9.

Theorem 21 (Classifying quantum phases of matter; informal). If there is a non-
linear function of few-body reduced density matrices that classifies phases, then
the classical algorithm can learn to classify these phases accurately. The required
amount of training data and computation time scale polynomially in system size.

If there is an efficient procedure based on few-body reduced density matrices for
classifying phases, the proposed ML algorithm is guaranteed to find the procedure
efficiently. This includes local order parameters for classifying symmetry breaking
phases, and topological entanglement entropy in a sufficiently large local region for
partially classifying topological phases (A. Y. Kitaev and Preskill, 2006; Levin and
Wen, 2006). We expect that, to classify topological phases accurately, the classical
ML will need access to local regions that are sufficiently large compared to the
correlation length, and as we approach the phase boundary, the correlation length
increases. As a result, the classifying function for topological phases may depend on
𝑟-body subsystems with a larger 𝑟, and the amount of training data and computation
time required would increase accordingly. Note that the classical ML not only
classifies phases accurately, but also constructs a classifying function explicitly.

Our classical ML model may also be useful for classifying and understanding
symmetry-protected topological (SPT) phases. SPT phases are characterized much
like topological phases, but with the additional constraint that all structures involved
(states, Hamiltonians, and quantum circuits) respect a particular symmetry. It is
reasonable to expect that an SPT phase can be identified by examining reduced
density matrices on constant-size regions (H. Li and F. D. M. Haldane, 2008;
Pollmann, Ari M. Turner, et al., 2010; Pollmann and Ari M Turner, 2012; Haegeman
et al., 2012; Shapourian, Shiozaki, and Ryu, 2017; Dehghani et al., 2021), where
the size of the region is large compared to the correlation length. The existence of
classifying functions based on reduced matrices have been rigorously established in
some cases (Alexei Yu. Kitaev, 2006; Y. Zhang and E.-A. Kim, 2017; Matthew B.
Hastings and Michalakis, 2015; Kapustin and Sopenko, 2020; Bachmann, Bols,
et al., 2020; Bachmann and Nachtergaele, 2014; Tasaki, 2018; Tasaki, 2020). In
Appendix 5.10, we prove that the ML algorithm is guaranteed to efficiently classify
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a class of gapped spin-1 chains in one dimension. For more general SPT phases,
the ML algorithm should be able to corroborate known classification schemes,
determine new and potentially more compact classifiers, and shed light on interacting
SPT phases in two or more dimensions for which complete classification schemes
have not yet been firmly established.

The hypothesis of Theorem 21, stating that phases can be recognized by inspecting
regions of constant size independent of the total system size, is particularly plausible
for gapped phases, but might apply to some gapless phases as well. Our classical
ML model would be able to efficiently classify such gapless phases. On the other
hand, the contrapositive of Theorem 21 asserts that if the classical ML is not able
to distinguish between two distinct gapless phases, then nonlocal data is required to
characterize at least one of those phases.

5.8 No observable can classify topological phases
Recall that ground states of two Hamiltonians are in the same topological phase if
there exists a constant-depth geometrically-local quantum circuit that can transform
one state to another (Zeng et al., 2019). The goal of this section is to establish the
following proposition.

Proposition 11. Consider two distinct topological phases 𝐴 and 𝐵 (one of the
phases could be the trivial phase). No observable 𝑂 exists such that

tr(𝑂𝜌) > 0,∀𝜌 ∈ phase 𝐴, tr(𝑂𝜌) ≤ 0,∀𝜌 ∈ phase 𝐵. (5.162)

Proof. We consider depth-1 quantum circuits consisting of single-qubit unitaries
𝑈1, . . . ,𝑈𝑛. We let |𝜓𝐴⟩ , |𝜓𝐵⟩ be the signature quantum state for phase 𝐴 and 𝐵.
Suppose there is an observable such that

tr(𝑂𝜌) > 0,∀𝜌 ∈ phase 𝐴, tr(𝑂𝜌) ≤ 0,∀𝜌 ∈ phase 𝐵. (5.163)

Then, by definition, we have

⟨𝜓𝐴 | (𝑈†1 ⊗ . . . ⊗ 𝑈
†
𝑛)𝑂 (𝑈1 ⊗ . . . ⊗ 𝑈𝑛) |𝜓𝐴⟩ > 0,∀𝑈1, . . . ,𝑈𝑛 ∈ 𝑈 (2), (5.164a)

⟨𝜓𝐵 | (𝑈†1 ⊗ . . . ⊗ 𝑈
†
𝑛)𝑂 (𝑈1 ⊗ . . . ⊗ 𝑈𝑛) |𝜓𝐵⟩ ≤ 0,∀𝑈1, . . . ,𝑈𝑛 ∈ 𝑈 (2), (5.164b)

However, from Lemma 23, no such observable exists. Hence no observable exists
that can be used to classify two topologically ordered phases.

The key lemma utilized in the above proof is the following.
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Lemma 23. For any two 𝑛-qubit states |𝜓1⟩ , |𝜓2⟩, no observable 𝑂 exists such that

⟨𝜓1 | (𝑈†1 ⊗ . . . ⊗ 𝑈
†
𝑛)𝑂 (𝑈1 ⊗ . . . ⊗ 𝑈𝑛) |𝜓1⟩ > 0,∀𝑈1, . . . ,𝑈𝑛 ∈ 𝑈 (2), (5.165a)

⟨𝜓2 | (𝑈†1 ⊗ . . . ⊗ 𝑈
†
𝑛)𝑂 (𝑈1 ⊗ . . . ⊗ 𝑈𝑛) |𝜓2⟩ ≤ 0,∀𝑈1, . . . ,𝑈𝑛 ∈ 𝑈 (2), (5.165b)

where𝑈 (2) is the unitary group of 2 × 2 unitary matrices.

Proof. We will prove this result by contradiction. Assume the existence of an
observable 𝑂 such that Eq. (5.165a) and (5.165b) both hold. Consider 𝑈1, . . . ,𝑈𝑛

to be independent random matrices that follows the Haar measure on the unitary
group𝑈 (2). Then using the identity for the first order moment of Haar integration,

E
𝑈∼Haar(𝑈 (𝑑))

𝑈𝑋𝑈† = tr(𝑋) I
𝑑
, (5.166)

we can obtain the following identity,

E
𝑈1,...,𝑈𝑛∼Haar(𝑈 (2))

[
(𝑈1 ⊗ . . . ⊗ 𝑈𝑛) |𝜓1⟩⟨𝜓1 | (𝑈†1 ⊗ . . . ⊗ 𝑈

†
𝑛)

]
(5.167)

= tr( |𝜓1⟩⟨𝜓1 |)
I

2𝑛
=
I

2𝑛
. (5.168)

The key property is the compactness of the unitary group 𝑈 (2). Consider the
following infimum,

𝑜1 = inf
𝑈1,...,𝑈𝑛∈𝑈 (2)

⟨𝜓1 | (𝑈†1 ⊗ . . . ⊗ 𝑈
†
𝑛)𝑂 (𝑈1 ⊗ . . . ⊗ 𝑈𝑛) |𝜓1⟩ . (5.169)

Because the infimum is always attained by an element in the compact set,

∃𝑈inf
1 , . . . ,𝑈inf

𝑛 ∈ 𝑈 (2) (5.170)

such that

𝑜1 = ⟨𝜓1 | ( (𝑈inf
1 )
† ⊗ . . . ⊗ (𝑈inf

𝑛 )†)𝑂 (𝑈inf
1 ⊗ . . . ⊗ 𝑈

inf
𝑛 ) |𝜓1⟩ . (5.171)

Therefore, we have 𝑜1 > 0 from Eq. (5.165a). Using the property of infimum, we
have

⟨𝜓1 | (𝑈†1 ⊗ . . . ⊗ 𝑈
†
𝑛)𝑂 (𝑈1 ⊗ . . . ⊗ 𝑈𝑛) |𝜓1⟩ ≥ 𝑜1,∀𝑈1, . . . ,𝑈𝑛 ∈ 𝑈 (2), (5.172)

we have the following inequality,

E
𝑈1,...,𝑈𝑛∼Haar(𝑈 (2))

⟨𝜓1 | (𝑈†1 ⊗ . . . ⊗ 𝑈
†
𝑛)𝑂 (𝑈1 ⊗ . . . ⊗ 𝑈𝑛) |𝜓1⟩ ≥ 𝑜1 > 0. (5.173)
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By the linearity of expectation and Eq. (5.167), we have

E
𝑈1,...,𝑈𝑛∼Haar(𝑈 (2))

⟨𝜓1 | (𝑈†1 ⊗ . . . ⊗ 𝑈
†
𝑛)𝑂 (𝑈1 ⊗ . . . ⊗ 𝑈𝑛) |𝜓1⟩ (5.174)

= tr
(
𝑂 E
𝑈1,...,𝑈𝑛∼Haar(𝑈 (2))

[
(𝑈1 ⊗ . . . ⊗ 𝑈𝑛) |𝜓1⟩⟨𝜓1 | (𝑈†1 ⊗ . . . ⊗ 𝑈

†
𝑛)

] )
=

tr(𝑂)
2𝑛

.

Together, we have
tr(𝑂)

2𝑛
≥ 𝑜1 > 0. (5.175)

The argument for |𝜓2⟩ is slightly simpler. Consider the following supremum,

𝑜2 = sup
𝑈1,...,𝑈𝑛∈𝑈 (2)

⟨𝜓2 | (𝑈†1 ⊗ . . . ⊗ 𝑈
†
𝑛)𝑂 (𝑈1 ⊗ . . . ⊗ 𝑈𝑛) |𝜓2⟩ . (5.176)

From Eq. (5.165b), we have 𝑜2 ≤ 0. Using the fact that

⟨𝜓2 | (𝑈†1 ⊗ . . . ⊗ 𝑈
†
𝑛)𝑂 (𝑈1 ⊗ . . . ⊗ 𝑈𝑛) |𝜓2⟩ ≤ 𝑜2,∀𝑈1, . . . ,𝑈𝑛 ∈ 𝑈 (2), (5.177)

we have the following inequality,

E
𝑈1,...,𝑈𝑛∼Haar(𝑈 (2))

⟨𝜓2 | (𝑈†1 ⊗ . . . ⊗ 𝑈
†
𝑛)𝑂 (𝑈1 ⊗ . . . ⊗ 𝑈𝑛) |𝜓2⟩ ≤ 𝑜2 ≤ 0. (5.178)

By the linearity of expectation and Eq. (5.167), we have

E
𝑈1,...,𝑈𝑛∼Haar(𝑈 (2))

⟨𝜓2 | (𝑈†1 ⊗ . . . ⊗ 𝑈
†
𝑛)𝑂 (𝑈1 ⊗ . . . ⊗ 𝑈𝑛) |𝜓2⟩ (5.179)

= tr
(
𝑂 E
𝑈1,...,𝑈𝑛∼Haar(𝑈 (2))

[
(𝑈1 ⊗ . . . ⊗ 𝑈𝑛) |𝜓2⟩⟨𝜓2 | (𝑈†1 ⊗ . . . ⊗ 𝑈

†
𝑛)

] )
=

tr(𝑂)
2𝑛

.

Together, we have
tr(𝑂)

2𝑛
≤ 𝑜2 ≤ 0. (5.180)

From Eq. (5.175) and (5.180), we have derived the following result

tr(𝑂)
2𝑛
≤ 𝑜2 ≤ 0 < 𝑜1 ≤

tr(𝑂)
2𝑛

, (5.181)

which is a contradiction. Therefore, no such observable 𝑂 exists.

5.9 Proof of efficiency for classifying phases of matter
This section contains a detailed proof for another one of our main contributions.
Namely, a rigorous performance guarantee for learning to predict quantum phases
of matter.
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Training support vector machines
Let us start by reviewing the textbook framework for reasoning about supervised
learning tasks: support vector machines (SVMs). The underlying idea is simple
and intuitive. Suppose that we have 𝑁 data points xℓ ∈ R𝐷 with binary labels
𝑦ℓ ∈ {±1} that form two well separated clusters. Then, we may try to separate
these training clusters with a linear hyperplane H𝛼 =

{
x ∈ R𝐷 : ⟨𝛼, x⟩ = 0

}
⊂ R𝐷 ,

defined using any vector 𝛼 that is perpendicular to all vectors in the hyperplane.
Here, we implicitly assume that the hyperplane H𝛼 must contain the origin 0 ∈ R𝐷 .
This simplifies exposition and will suffice for our purposes, but also constitutes
an actual restriction (linear SVMs typically also allow for affine shifts). Such a
hyperplane divides R𝐷 up into two half-spaces. For linear classification, we want
that these half-spaces perfectly capture the labels of training data: ⟨𝛼, xℓ⟩ > 0
whenever 𝑦ℓ = +1 and ⟨𝛼, xℓ⟩ < 0 whenever 𝑦ℓ = −1. The hope is that this simple
linear classification strategy generalizes to data we haven’t yet seen. When we get a
new data point, we simply check which halfspace it belongs to and assign the label
accordingly. In the training stage, the main question is: how do we find a suitable
hyperplane? Several strategies are known in the literature. One of them is the soft
margin problem:

minimize
𝛼∈R𝐷

𝑁∑︁
ℓ=1

max {0, 1 − 𝑦ℓ⟨𝛼, xℓ⟩} (5.182a)

subject to ⟨𝛼, 𝛼⟩ ≤ Λ2. (5.182b)

For both label values, a positive product 𝑦ℓ⟨𝛼, xℓ⟩ is theoretically sufficient. How-
ever, numerical precision considerations warrant a nonzero separation between the
clusters, so the product is optimized to be at least as large as a positive number
(here, 1). Otherwise, a hyperplane defined by 𝛼 does not perfectly classify the data,
yielding the training error Etr(𝛼) =

∑𝑁
ℓ=1 max {0, 1 − 𝑦ℓ⟨𝛼, xℓ⟩}. The task is to find

𝛼♯ that achieves the smallest training error: Etr(𝛼♯) ≤ Etr(𝛼) for all vectors that obey
⟨𝛼, 𝛼⟩ ≤ Λ2. This is a convex optimization problem that can be solved in polynomial
time and we refer to Figure 5.3 for a visual illustration. The most interesting situation
occurs if we manage to achieve an optimal objective value of 0. This corresponds
to zero training error. In this case, we have found a hyperplane H𝛼♯ that perfectly
separates training data. What is more, the constraint ⟨𝛼♯, 𝛼♯⟩ ≤ Λ2 ensures that the
margin of separation is strictly positive. Let �̂� = 𝛼/∥𝛼∥ be the unit vector that char-
acterizes a hyperplane. Then, zero training error implies ⟨�̂�, xℓ⟩ ≥ 1/∥𝛼∥ ≥ 1/Λ
for all xℓ with 𝑦ℓ = +1 and ⟨�̂�, xℓ⟩ < −1/Λ for all xℓ with 𝑦ℓ = −1. In turn, the
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Figure 5.3: (a) Geometric intuition behind support vector machines (SVMs).
The idea is to separate clusters of labeled data with a linear hyperplane. The
separation margin (yellow) is inversely proportional to the length

√︁
⟨𝛼, 𝛼⟩ of the

hyperplane normal vector. During the training stage we try to find a hyperplane that
separates points with label +1 (blue) from points with label -1 (red) such that the
margin is as large as possible (left). This hyperplane separates the data space into
two halfspaces. In order to predict the label of a new data point, we simply check
which halfspace it belongs to. (b) Geometric intuition behind the representer
theorem. When trying to find a separating hyperplane, the total dimension of the
data space does not matter. We can without loss restrict our attention to the smallest
subspace that contains all the data points. This is because orthogonal directions don’t
matter during training and has two implications: (i) the cost of finding a separating
hyperplane depends on the training data size 𝑁 , not feature space dimension and
(ii) we can express the hyperplane vector as a linear combination of training data
points.

minimal margin amounts to 2/Λ.

However, it should not come as a surprise that such linear classification strategies
are often inadequate. Most labeled collections of data simply cannot be separated
by a linear hyperplane. However, it has been observed that this drawback can
be overcome by first transforming data into a (usually much larger) feature space
xℓ ↦→ 𝜙(xℓ) and trying to find a separating hyperplane there. This transformation
is typically nonlinear and increases the expressiveness of hyperplane classification.
Although the separating hyperplane is linear in feature space, it may be highly
nonlinear in the original data space. Denote the feature space by F and suppose
that it comes with an inner product ⟨·, ·⟩F and dual space F ∗. We can then formally
phrase the search for a linear classifier in feature space as

minimize
𝛼∈F ∗

𝑁∑︁
ℓ=1

max {0, 1 − 𝑦ℓ⟨𝛼, 𝜙(xℓ)⟩F } (5.183a)

subject to ⟨𝛼, 𝛼⟩F ≤ Λ2. (5.183b)
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This problem looks more daunting than its linear counterpart, especially because
the feature space F may have an exceedingly large – perhaps even infinite – di-
mension. But we are still interested in identifying a hyperplane that separates
a total of 𝑁 transformed data points 𝜙(x1), . . . , 𝜙(x𝑁 ) ∈ F in a linear fashion:
⟨𝛼, 𝜙(xℓ)⟩F > 0 if 𝑦ℓ = +1 and ⟨𝛼, 𝜙(xℓ)⟩F < 0 else if 𝑦ℓ = −1. And in order to
achieve this, we can without loss restrict ourselves to the 𝑁-dimensional subspace
span {𝜙(x1), . . . , 𝜙(x𝑁 )} ⊂ F that is spanned by the data points themselves (all other
directions are orthogonal to all data points and do not play a role for classification).
For finite dimensional feature spaces (F , ⟨·, ·⟩F ), this is an intuitive observation that
follows from basic orthogonality arguments. We refer to Figure 5.3 for a visual il-
lustration. For infinite-dimensional feature spaces it is the content of the celebrated
generalized representer theorem (Schölkopf, Herbrich, and Alex J Smola, 2001).
More formally, this insight allows us to decompose every (relevant) hyperplane nor-
mal vector 𝛼 in the optimization problem (5.183a) as 𝛼 =

∑𝑁
ℓ=1 𝛼ℓ𝜙(xℓ). Linearity

then ensures ⟨𝛼, 𝜙(xℓ′)⟩F =
∑𝑁
ℓ=1 𝛼ℓ⟨𝜙(xℓ), 𝜙(xℓ′)⟩F for each ℓ′ ∈ {1, . . . , 𝑁} and

also ⟨𝛼, 𝛼⟩F =
∑𝑁
ℓ,ℓ′=1 𝛼ℓ𝛼ℓ′ ⟨𝜙(xℓ), 𝜙(xℓ′)⟩F . These expressions only depend on

the elements of a 𝑁 × 𝑁 Gram matrix in feature space:

[K]ℓℓ′ = ⟨𝜙(xℓ), 𝜙(xℓ′)⟩F =: 𝑘 (xℓ, xℓ′) for ℓ, ℓ′ ∈ {1, . . . , 𝑁}. (5.184)

The expression 𝑘 (xℓ, xℓ′) is called the kernel associated with the feature map 𝜙 and
the matrix K is the kernel matrix. Kernels are a measure of similarity between
(training) data points that is often easier to compute than performing the underlying
feature map 𝜙 : R𝐷 → F . But, for linear classification (in feature space), both
contain exactly the same amount of information. Indeed, we may re-express the
optimization problem (5.183a) as

minimize
𝛼∈R𝑁

𝑁∑︁
ℓ=1

max
{
0, 1 − 𝑦ℓ𝛼𝑇Keℓ

}
(5.185a)

subject to 𝛼𝑇K𝛼 ≤ Λ2. (5.185b)

We can also collect the classification labels in a diagonal matrix

Y = diag (𝑦1, . . . , 𝑦𝑁 ) (5.186)

of compatible dimension and linearize the loss function by means of an entry-wise
nonnegative slack variable 𝛽 ≥ 0. Let 1 = (1, . . . , 1)𝑇 denote the vector of ones.
Then, problem (5.185a) is equivalent to solving

minimize
𝛼,𝛽∈R𝑁

⟨1, 𝛽⟩ (5.187a)
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subject to 𝛽 ≥ 1 − YK𝛼 (5.187b)

𝛽 ≥ 0, 𝛼∗K𝛼 ≤ Λ2. (5.187c)

Similar to before, the optimal function value denotes the minimal training error
Etr(𝛼♯) = ⟨1, 𝛽♯⟩. Apart from a single quadratic constraint (𝛼∗K𝛼 ≤ Λ2), this
optimization problem looks like a linear program in 2𝑁 dimensions. It is a convex
instance of a quadratically constrained quadratic program (QCQP) and can be solved
in time at most polynomial in the training data size 𝑁 (S. Boyd, S. P. Boyd, and
Vandenberghe, 2004). In practice, one could use existing software packages, such
as scikit-learn (Pedregosa et al., 2011) or LIBSVM (Chang and C.-J. Lin, 2011a). If
the time to compute the kernel function 𝑘 (xℓ, xℓ′) is 𝑡kernel, then the time complexity
for training a support vector machine is given by

O(𝑡kernel𝑁
2 + poly(𝑁)) (training time). (5.188)

Hence, for support vector machines with efficiently computable kernel functions
𝑘 (xℓ, xℓ′), small training data sizes 𝑁 directly ensure a short training time. The
polynomial scaling in training data size depends on the type of algorithm. Dedicated
solvers for the soft margin problem (Joachims, 1999; Chang and C.-J. Lin, 2011a;
Hazan, Koren, and Srebro, 2011) require (at most) O

(
𝑁3 + Λ2𝑁/𝜖2) arithmetic

operations to produce a solution𝛼♯,𝜖 that is 𝜖-close to optimal: Etr(𝛼♯,𝜖 ) ≤ Etr(𝛼♯)+𝜖 .
For the concrete training problems considered here, such an approximation is good
enough and the associated runtime bound simplifies to O

(
𝑡kernel𝑁

2 + 𝑁3) . Interior
point methods offer an alternative that scale worse in training data size, but much
better in the approximation error 𝜖 , see e.g. (S. Boyd, S. P. Boyd, and Vandenberghe,
2004).

Prediction using support vector machines
In the last section, we have explained how feature maps and kernels can considerably
boost the expressiveness of initially linear classifiers. We have also explained how to
use labeled training data of size 𝑁 to find a separating hyperplane in feature space by
solving a quadratic program (5.187a) that depends on the kernel matrix (5.184). Ide-
ally, Etr(𝛼♯) = 0 (zero training error) and the optimal solution 𝛼♯ ∈ R𝑁 parametrizes
a separating hyperplane with minimal margin 2/Λ in feature space:

ℎ♯ (xℓ′) =
𝑁∑︁
ℓ=1

[
𝛼♯

]
ℓ
⟨𝜙(xℓ), 𝜙(xℓ′)⟩F (5.189)
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=

𝑁∑︁
ℓ=1

[
𝛼♯

]
ℓ
𝑘 (xℓ, xℓ′)


> +1/Λ if 𝑦ℓ′ = +1,

< −1/Λ else if 𝑦ℓ′ = −1,
(5.190)

for all (labeled) training data points (x1, 𝑦1), . . . , (x𝑁 , 𝑦𝑁 ).The sign of this classifier,
in turn, correctly reproduces training labels:

𝑦♯ (xℓ′) := sign
(
ℎ♯ (xℓ′)

)
= 𝑦ℓ′ for each ℓ ∈ {1, . . . , 𝑁}. (5.191)

In the prediction stage, we use this function to assign a label 𝑦♯ (x) ∈ {±1} to a new
(and unlabeled) data point x. The cost of evaluating 𝑦♯ (xℓ′) is dominated by the
cost of evaluating 𝑁 kernel functions. If the time to compute the kernel function is
𝑡kernel, then the prediction time for a new input vector x is bounded by

O(𝑡kernel𝑁) (prediction time). (5.192)

Similar to the training time (5.188), a small training data size 𝑁 translates into a fast
prediction time.

The hope is that training with an adequate kernel uncovers latent structure that
generalizes beyond training data. Typically, larger training data sizes 𝑁 also increase
the chance for learning good classifiers (5.191). But generalization beyond training
data often only makes sense if the new data point x is somewhat related to the training
data (e.g. training a SVM on labeled cat-vs-dog images does not necessarily produce
a classifier that can distinguish apples from oranges). Extra assumptions that address
similarity of training and prediction data are important when one aims at establishing
rigorous bounds on the probability of making a wrong prediction, i.e. 𝑦♯ (x) = −𝑦(x).
A common assumption is that both the training data and new data points are generated
independently from the same distribution: (x1, 𝑦1), . . . , (x𝑁 , 𝑦𝑁 ), (x, 𝑦) ∼ D. The
data distribution D is a joint distribution over both the input vector x and the label
𝑦. Such an assumption encompasses the intuition that the label 𝑦 is correlated with
the input vector x, but is not necessarily a function of x. Flexibility of this form is
useful for describing situations where the data points x are corrupted by noise. This
is often the case in quantum mechanics due to the inherent randomness in quantum
measurements. The underlying data distribution should be taken into account when
reasoning about false predictions, motivating the probability

Pr(x,𝑦)∼D
[
𝑦♯ (x) ≠ 𝑦

]
∈ [0, 1] (average-case prediction error) (5.193)

as a good figure of merit. Noting that there are in general many approaches to
bounding the prediction error, we present a user-friendly theorem that bounds the
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average-case prediction error in terms of the training error Etr(𝛼♯) and training data
size 𝑁 .

Theorem 22 (Prediction error for support vector machines). Fix a data distribution
(x, 𝑦) ∼ D, a kernel function 𝑘 (·, ·), a minimal margin 2/Λ and a training data size
𝑁 . Assume 𝑘 (x, x) ≤ 𝑅2 almost surely. Then, with probability (at least) 1 − 𝛿,

Pr(x,𝑦)∼D
[
𝑦♯ (x) ≠ 𝑦

]
≤ 1
𝑁

Etr(𝛼♯) + 7(Λ𝑅 + 1)
√︂

log(2/𝛿)
𝑁

, (5.194)

where 𝑦♯ (x) is the classifier (5.191) obtained from solving the training prob-
lem (5.187a) on independently sampled training data (x1, 𝑦1) , . . . , (x𝑁 , 𝑦𝑁 ) ∼ D,
and Etr denotes the associated training error.

This rigorous statement bounds the average prediction error in terms of the training
error plus an error term that decays as 1/

√
𝑁 in training data size. The core

assumption is that training and prediction data is sampled in an independent and
identically distributed (iid) fashion. The proof is based on specializing a standard
result from high dimensional probability theory to the task at hand.

Theorem 23 (Theorem 3.3 in (Mohri, Rostamizadeh, and Talwalkar, 2018)). Fix a
probability distribution D over elements in a set X, a family of functions G from X
to the interval [0, 𝛾max], as well as 𝛿 ∈ (0, 1) and 𝑁 ∈ N. Then, with probability
1 − 𝛿, the following bound is valid for all functions 𝑔 ∈ G simultaneously:

E
𝑥∼D
[𝑔(𝑥)] (5.195)

≤ 1
𝑁

𝑁∑︁
ℓ=1

𝑔(𝑥ℓ) + 3𝛾max

√︂
log(2/𝛿)

2𝑁
+ 2
√
𝑁

E
𝜀1,...,𝜀𝑁

[
sup
𝑔∈G

1
√
𝑁

𝑁∑︁
ℓ=1

𝜀ℓ𝑔(𝑥ℓ)
]
. (5.196)

Here, 𝑥1, . . . , 𝑥𝑁
iid∼ D are sampled from X and 𝜀1, . . . , 𝜀𝑁

iid∼ {±1} are Rademacher
random variables (the failure probability ≤ 𝛿 addresses these random selections).

The right hand side of this upper bound contains three qualitatively different contri-
butions. The first term describes an empirical average over 𝑁 independent samples.
It approximates the true expectation value by Monte Carlo sampling, and can un-
derestimate the true average. As 𝑁 increases, the approximation accuracy becomes
better and, simultaneously, the probability of sampling a poor approximation di-
minishes exponentially. This is precisely the content of the second term. Larger
sampling rates 𝑁 suppress it and also allow for insisting on ever smaller failure prob-
abilities 𝛿. However, these two terms are still not enough for an upper bound because
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we would like to have a bound for all functions 𝑔 ∈ G. This is where the third term
comes into play. It contains the empirical width, a statistical summary parameter for
the extent of the function set G, see e.g. (Vershynin, 2018a). Suppose, for instance,
that G = {𝑔} contains only a single function. Then, we can ignore the supremum
(over a single element) and the contribution vanishes entirely (Rademacher random
variables have zero expectation). The empirical width parameter can, however, grow
with the size of the function set 𝑔 ∈ G.

In the context of bounding the performance of support vector machines, the domain
variable 𝑥 becomes (x, 𝑦), and the function family consists of the training error 𝑔𝛼
from Eq. (5.183a), indexed by 𝛼. The third term in Theorem 23 can then be bounded
by the largest norm of the feature vectors.

Lemma 24. Fix a feature map 𝜙 : R𝐷 × {±1} → F and define 𝑔𝛼 (x, 𝑦) =

max {0, 1 − 𝑦⟨𝛼, 𝜙(x)⟩F } for 𝛼 ∈ F ∗. Then,

E
𝜀1,...,𝜀𝑁

[
sup

⟨𝛼,𝛼⟩F≤Λ2

1√
𝑁

𝑁∑︁
ℓ=1

𝜀ℓ𝑔𝛼 (xℓ, 𝑦ℓ)
]
≤ Λ max

1≤ℓ≤𝑁

√︁
⟨𝜙(xℓ), 𝜙(xℓ)⟩F (5.197)

for any collection (x1, 𝑦1) , . . . , (x𝑁 , 𝑦𝑁 ) ∈ R𝐷 × {±1}.

Proof. Let us abbreviate the expectation over all 𝑁 Rademacher random variables
by E𝜀. Note that the empirical width is invariant under a constant shift of the
hinge loss function: max {0, 1 − 𝑧} ↦→ max {0, 1 − 𝑧} − 1. In turn, the shifted
loss function 𝐿 (𝑧) = max {0, 1 − 𝑧} − 1 describes a contraction, i.e. 𝐿 (0) = 0 and
|𝐿 (𝑧1) − 𝐿 (𝑧2) | ≤ |𝑧1 − 𝑧2 | for all 𝑧1, 𝑧2 ∈ R. Such contractions can only decrease
the empirical width. More precisely, the Rademacher comparison principle (Ledoux
and Talagrand, 2013, Eq. (4.20)) asserts

E
𝜀

[
sup

⟨𝛼,𝛼⟩F≤Λ2

1√
𝑁

𝑁∑︁
ℓ=1

𝜀ℓ𝑔𝛼 (xℓ, 𝑦ℓ)
]

(5.198a)

= E
𝜀

[
sup

⟨𝛼,𝛼⟩F≤Λ2

1√
𝑁

𝑁∑︁
ℓ=1

𝜀ℓ (max {0, 1 − 𝑦ℓ⟨𝛼, 𝜙(xℓ)⟩F } − 1)
]

(5.198b)

≤ E
𝜀

[
sup

⟨𝛼,𝛼⟩F≤Λ2

1√
𝑁

𝑁∑︁
ℓ=1

𝜀ℓ𝑦ℓ⟨𝛼, 𝜙(xℓ)⟩F

]
(5.198c)

= E
𝜀

[
sup

⟨𝛼,𝛼⟩F≤Λ2
⟨𝛼, ℎ𝜀⟩F

]
. (5.198d)
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In the last step, we have introduced the short-hand notation

ℎ𝜀 =
1√
𝑁

𝑁∑︁
ℓ=1

𝜀ℓ𝑦ℓ𝜙(xℓ) ∈ F . (5.199)

Applying a Cauchy-Schwarz inequality in feature space allows us to separate the
supremum from the Rademacher randomness:

E
𝜀

[
sup

⟨𝛼,𝛼⟩F≤Λ2
⟨𝛼, ℎ𝜀⟩F

]
≤ sup
⟨𝛼,𝛼⟩F≤Λ2

√︁
⟨𝛼, 𝛼⟩F E

𝜀

[√︁
⟨ℎ𝜀, ℎ𝜀⟩F

]
≤ Λ

√︃
E
𝜀
⟨ℎ𝜀, ℎ𝜀⟩F .

(5.200)

The last inequality is Jensen’s. We complete the argument using E𝜀 [𝜀ℓ𝜀ℓ′] = 𝛿ℓ,ℓ′
and 𝑦2

ℓ
= 1:

E
𝜀
⟨ℎ𝜀, ℎ𝜀⟩F =

1
𝑁

𝑁∑︁
ℓ,ℓ′=1

E
𝜀
[𝜀ℓ𝜀ℓ′] 𝑦ℓ𝑦ℓ′ ⟨𝜙(xℓ), 𝜙(xℓ′)⟩F (5.201)

=
1
𝑁

𝑁∑︁
ℓ=1
⟨𝜙(xℓ), 𝜙(xℓ)⟩F ≤ max

1≤ℓ≤𝑁
⟨𝜙(xℓ), 𝜙(xℓ)⟩F . (5.202)

This establishes the claim.

We are now ready to prove the general connection between average prediction
(5.193) and training error.

Proof of Theorem 22. We consider functions 𝑦𝛼 (x) = sign (⟨𝛼, 𝜙 (x)⟩F ) ∈ {±1},
such that 𝛼 ∈ F ∗ obeys ⟨𝛼, 𝛼⟩F ≤ Λ2. This family of functions includes all
classifiers that are feasible points in the training stage (5.187a) of our support vector
machine. For𝛼 fixed, but otherwise arbitrary, we want to compare the corresponding
classifier 𝑦𝛼 (x) to the true data label 𝑦 ∈ {±1}. Elementary reformulations then
allow us to re-express the failure probability as

Pr(x,𝑦)∼D [𝑦𝛼 (x) ≠ 𝑦] (5.203)

= Pr(x,𝑦)∼D [sign (⟨𝛼, 𝜙(x)⟩F ) ≠ 𝑦] = Pr(x,𝑦)∼D [𝑦⟨𝛼, 𝜙(x)⟩F < 0] , (5.204)

because the sign is negative if and only if the number itself is. Next, we rewrite
this probability as the expectation value of the associated indicator function and use
1 {𝑧 ≤ 0} ≤ max {0, 1 − 𝑧} for all 𝑧 ∈ R to obtain

Pr(x,𝑦)∼D [𝑦⟨𝛼, 𝜙(x)⟩F < 0] = E
(x,𝑦)∼D

[1 {𝑦⟨𝛼, 𝜙(xℓ)⟩F < 0}] (5.205)
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≤ E
(x,𝑦)∼D

[max {0, 1 − 𝑦⟨𝛼, 𝜙(x)⟩F }] . (5.206)

This upper bound is the expected value of a certain hinge loss function

𝑔𝛼 (x, 𝑦) = max {0, 1 − 𝑦⟨𝛼, 𝜙(x)⟩F } with ⟨𝛼, 𝛼⟩F ≤ Λ2. (5.207)

The function is a specific element of an entire family, namely

G =
{
𝑔𝛼 (·, ·) : ⟨𝛼, 𝛼⟩F ≤ Λ2} : R𝐷 × {±1} → [0,∞) . (5.208)

The associated function values are always nonnegative and bounded. Indeed, the
Cauchy-Schwarz inequality in feature space asserts

𝑔𝛼 (x, 𝑦) ≤ (5.209)

|𝑦⟨𝛼, 𝜙(x)⟩F | + 1 ≤
√︁
⟨𝛼, 𝛼⟩F ⟨𝜙(x), 𝜙(x)⟩F + 1 (5.210)

≤ Λ
√︁
𝑘 (x, x) + 1 ≤ Λ𝑅 + 1 =: 𝛾max. (5.211)

We are now in a position to use Theorem 23. With probability (at least) 1 − 𝛿,

E
(x,𝑦)∼D

[𝑔𝛼 (x, 𝑦)] ≤ (5.212)

1
𝑁

𝑁∑︁
ℓ=1

𝑔𝛼 (xℓ, 𝑦ℓ) + 3𝛾max

√︂
log(2/𝛿)

2𝑁
+ 2
√
𝑁
E
𝜀

[
sup

⟨𝛼,𝛼⟩F≤Λ2

1
√
𝑁

𝑁∑︁
ℓ=1

𝜀ℓ𝑔𝛼 (xℓ, 𝑦ℓ)
]
,

(5.213)

is true for all dual vectors 𝛼 ∈ F ∗ that obey ⟨𝛼, 𝛼⟩F ≤ Λ2. Here,

(x1, 𝑦1) , . . . , (x𝑁 , 𝑦𝑁 ) ∼ D (5.214)

is a randomly sampled (but fixed) collection of labeled data points. We now use√︁
𝑘 (xℓ, xℓ) ≤ 𝑅 almost surely to apply Lemma 24 and control the empirical width

term:

E
(x,𝑦)∼D

[𝑔𝛼 (x, 𝑦)] ≤
1
𝑁

𝑁∑︁
ℓ=1

𝑔𝛼 (xℓ, 𝑦ℓ) + 3(Λ𝑅 + 1)
√︂

log(2/𝛿)
2𝑁

+ 2Λ𝑅
√
𝑁

(5.215a)

≤ 1
𝑁

𝑁∑︁
ℓ=1

𝑔𝛼 (xℓ, 𝑦ℓ) + 7(Λ𝑅 + 1)
√︂

log(2/𝛿)
𝑁

. (5.215b)

With probability (at least) 1−𝛿, this bound is valid for all hyperplane vectors 𝛼 ∈ F .
The tightest bound is achieved for minimizing the right hand side. This is precisely
what training a support vector machine does, as the first term is precisely the training
error that is minimized in the training stage (5.187a). The optimal solution 𝛼♯ to
this problem simultaneously produces the actual classifier 𝑦♯ (x) on the left hand
side and the (minimal) training error on the right hand side.
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Kernel functions for classical shadows
We have reviewed the classical shadow formalism in Appendix 5.1. For randomized
single-qubit Pauli measurements, a classical shadow approximates a 𝑛-qubit state 𝜌
by means of 𝑇 elementary tensor products. Each shadow raw data corresponds to a
two-dimensional array

𝑆𝑇 (𝜌) = 𝑆𝑇 (𝜌) =
{
|𝑠(𝑡)
𝑖
⟩ : 𝑖 ∈ {1, . . . , 𝑛}, 𝑡 ∈ {1, . . . , 𝑇}

}
(5.216)

∈ {|0⟩, |1⟩, |+⟩, |−⟩, |i+⟩, |i−⟩}𝑛×𝑇 (5.217)

and is combined into an approximator of the state as

𝜎𝑇 (𝜌) ==
1
𝑇

𝑇∑︁
𝑡=1

𝜎
(𝑡)
1 ⊗ · · · ⊗ 𝜎

(𝑡)
𝑛 , (5.218)

where we have introduced the short-hand notation 𝜎 (𝑡)
𝑖

= 3|𝑠(𝑡)
𝑖
⟩⟨𝑠(𝑡)

𝑖
| − I. For these

quantum state representations, we fix parameters 𝜏, 𝛾 > 0 and introduce a suggestive,
yet finite-dimensional feature map. For large, but finite, integers 𝐷, 𝑅 > 0 we define

𝜙(finite) (𝑆𝑇 (𝜌)) = (5.219)
𝐷⊕
𝑑=0

√︂
𝜏𝑑

𝑑!

( 𝑅⊕
𝑟=0

√︂
1
𝑟!

(𝛾
𝑛

)𝑟 𝑟⊕
𝑖1=1
· · ·

𝑟⊕
𝑖𝑟=1

1
𝑇

𝑇∑︁
𝑡=1

vec
(
𝜎
(𝑡)
𝑖1

)
⊗ · · · ⊗ vec

(
𝜎
(𝑡)
𝑖𝑟

) )⊗𝑑
,

(5.220)

Here, vec(·) denotes an appropriate vectorization operation that maps the real-valued
vector space H2 of Hermitian 2 × 2 matrices to R4 such that the Hilbert-Schmidt
inner product is preserved: ⟨vec(𝐴), vec(𝐵)⟩ = tr(𝐴𝐵).

This feature map embeds classical shadows in a very large-dimensional, real-valued
feature space F (finite). This feature space arises from taking direct sums and tensor
products of vec(H2) ≃ R4. We can extend the standard inner product ⟨·, ·⟩ on R4 to
this feature space by setting ⟨𝑥1 ⊕ 𝑥2, 𝑦1 ⊕ 𝑦2⟩ = ⟨𝑥1, 𝑦1⟩ + ⟨𝑥2, 𝑦2⟩ (direct sums),
as well as ⟨𝑥1 ⊗ 𝑥2, 𝑦1 ⊗ 𝑦2⟩ = ⟨𝑥1, 𝑦1⟩⟨𝑥2, 𝑦2⟩ (tensor products) and extend these
definitions linearly. Doing so equips the feature space F (finite) with a well-defined
inner product ⟨·, ·⟩F (finite) . The inner product and feature map induce a kernel function
on pairs of classical shadows of equal size 𝑇 :

𝑘 (finite)(𝑆𝑇 (𝜌1),𝑆𝑇 (𝜌2))=
〈
𝜙(finite)

(
𝑆𝑇 (𝜌1)

)
,𝜙(finite)

(
𝑆𝑇 (𝜌2)

) 〉
F(finite) (5.221a)

=
∑𝐷
𝑑=0

𝜏𝑑

𝑑!

(∑𝑅
𝑟=0

1
𝑟! ( 𝛾𝑛 )𝑟

∑𝑛
𝑖1=1···

∑𝑛
𝑖𝑟=1

1
𝑇2

∑𝑇
𝑡,𝑡′=1

〈
vec

(
𝜎
(𝑡 )
𝑖1

)
,vec

(
�̃�
(𝑡′ )
𝑖1

)〉
···

〈
vec

(
𝜎
(𝑡 )
𝑖𝑟

)
,vec

(
�̃�
(𝑡′ )
𝑖𝑟

)〉)𝑑
(5.221b)
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=
∑𝐷
𝑑=0

𝜏𝑑

𝑑!

(∑𝑅
𝑟=0

1
𝑟! ( 𝛾𝑛 )𝑟

∑𝑛
𝑖1=1···

∑𝑛
𝑖𝑟=1 tr

((
1
𝑇

∑𝑇
𝑡=1 𝜎

(𝑡 )
𝑖1
⊗···⊗𝜎 (𝑡 )

𝑖𝑟

)) (
1
𝑇

∑𝑇
𝑡′=1 �̃�

(𝑡′ )
𝑖1
⊗···⊗�̃� (𝑡

′ )
𝑖𝑟

))𝑑
(5.221c)

=
∑𝐷
𝑑=0

1
𝑑!

(
𝜏

𝑇2
∑𝑇
𝑡,𝑡′=1

∑𝑅
𝑟=0

1
𝑟! ( 𝛾𝑛 )𝑟

∑𝑛
𝑖=1···

∑𝑟
𝑖𝑟=1 tr

(
𝜎
(𝑡 )
𝑖1
�̃�
(𝑡′ )
𝑖1

)
···tr

(
𝜎
(𝑡 )
𝑖𝑟
�̃�
(𝑡′ )
𝑖𝑟

))𝑑 (5.221d)

=
∑𝐷
𝑑=0

1
𝑑!

(
𝜏

𝑇2
∑𝑇
𝑡,𝑡′=1

∑𝑅
𝑟=0

1
𝑟!

(
𝛾

𝑛

∑𝑛
𝑖=1 tr

(
𝜎
(𝑡 )
𝑖
�̃�
(𝑡′ )
𝑖

))𝑟 )𝑑
. (5.221e)

This kernel function still looks somewhat complicated, but it simplifies considerably
if we first take 𝑅 →∞ and then 𝐷 →∞:

𝑘 (shadow) (𝑆𝑇 (𝜌1), 𝑆𝑇 (𝜌2)
)

(5.222a)

:= lim
𝐷→∞

lim
𝑅→∞

𝑘 (finite) (
𝑆𝑇 (𝜌1), 𝑆𝑇 (𝜌2)

)
(5.222b)

= lim
𝐷→∞

𝐷∑︁
𝑑=0

1
𝑑!

(
𝜏

𝑇2

𝑇∑︁
𝑡,𝑡′=1

lim
𝑅→∞

𝑅∑︁
𝑟=0

1
𝑟!

(
𝛾

𝑛

𝑛∑︁
𝑖=1

tr
(
𝜎
(𝑡)
𝑖
�̃�
(𝑡′)
𝑖

))𝑟 )𝑑
(5.222c)

= exp

(
𝜏

𝑇2

𝑇∑︁
𝑡,𝑡′=1

exp

(
𝛾

𝑛

𝑛∑︁
𝑖=1

tr
(
𝜎
(𝑡)
𝑖
�̃�
(𝑡′)
𝑖

)))
(5.222d)

We call this kernel function a shadow kernel. In contrast to its finite approximations,
this kernel function can be computed very efficiently. Trace inner products between
single-qubit shadow constituents assume one out of 3 values only:

tr
(
𝜎
(𝑡)
𝑖
�̃�
(𝑡)
𝑖

)
= tr

(
(3|𝑠(𝑡)

𝑖
⟩⟨𝑠(𝑡)

𝑖
| − I) (3|𝑠(𝑡)

𝑖
⟩⟨𝑠(𝑡)

𝑖
| − I)

)
(5.223)

= 9
���⟨𝑠(𝑡)𝑖 |𝑠(𝑡)𝑖 ⟩���2 − 4 ∈ {−4, 1/2, 5} . (5.224)

And we need to compute exactly 𝑛𝑇2 of them to unambiguously characterize the
shadow kernel (5.222b). The total cost for evaluating shadow kernels also amounts
to

O
(
𝑛𝑇2

)
(shadow kernel evaluation cost) (5.225)

arithmetic operations. As long as 𝑇 is not too large, this is extremely efficient, given
that we combine classical approximations of 𝑛-qubit quantum states 𝜌1, 𝜌2 which
way well have (4𝑛 − 1) degrees of freedom. Eq. (5.224) also ensures that shadow
kernels remain bounded functions:

0 ≤ 𝑘 (shadow) (𝑆𝑇 (𝜌1), 𝑆𝑇 (𝜌2)
)
≤ exp (𝜏 exp (5𝛾)) , (5.226)

because exponential functions are nonnegative and monotonic.
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While easy to evaluate and conceptually appealing, the shadow kernel does have its
downsides. By construction, the associated feature space is not finite-dimensional
anymore. This can complicate a thorough analysis of support vector machines
substantially. In particular, it is a priori not clear if powerful results, like Theorem 22,
cover the shadow kernel as well. Fortunately, we can bypass such mathematical
subtleties by approximating 𝑘 (shadow) (·, ·) with 𝑘 (finite)(·, ·), where 𝐷 and 𝑅 are
large, but finite, numbers. This incurs an additional approximation error, but allows
us to formulate theoretical prediction and training guarantees exclusively for finite-
dimensional feature spaces. What is more, elementary approximation results from
calculus ensure that we can make this additional approximation error arbitrarily
small by making the cutoffs sufficiently large. Taylor’s approximation theorem,
for instance, shows that 𝐷 = e2𝜏 exp(5𝛾) + log(1/𝜂) − 1, as well as 𝑅 = 5e2𝛾 +
𝜏 exp(5𝛾) + log(𝜏/𝜂) − 1 ensure���𝑘 (shadow) (𝑆𝑇 (𝜌1), 𝑆𝑇 (𝜌2)

)
− 𝑘 (finite) (

𝑆𝑇 (𝜌1), 𝑆𝑇 (𝜌2)
) ��� ≤ 2𝜂 (5.227)

for all pairs of classical shadows with compatible size 𝑇 . Properly tuning 𝛾 and 𝜏
would yield better prediction performance in practice. Nevertheless, for simplicity,
we will assume 𝛾 = 𝜏 = 1 in the following theoretical analysis.

Finite-dimensional feature space approximations also allow us to highlight the ex-
pressiveness behind the shadow kernel (5.222b). It describes (the limit of) a feature
map that extracts all tensor powers of all subsystem operators 𝑋𝐴 = tr¬𝐴 (𝑋) ∈ H⊗|𝐴|2 ,
where 𝐴 ⊂ [𝑛] = {1, . . . , 𝑛}. In particular, any function that can be written as a
finite power series, of degree at most 𝑑𝑝, in reduced subsystem operators, of size at
most 𝑟 , becomes a linear function in feature space, represented by the dual vector
𝛼 𝑓 :

𝑓 (𝑆𝑇 (𝜌)) (5.228a)

=

𝑑𝑝∑︁
𝑑=0

1
𝑑!

∑︁
𝐴1...𝐴𝑑⊂{1,...,𝑛},|𝐴𝑖 |≤𝑟

tr
(
𝑂𝐴1,...,𝐴𝑑 tr¬𝐴1 (𝜎𝑇 (𝜌)) ⊗ · · · ⊗ tr¬𝐴𝑑 (𝜎𝑇 (𝜌))

)
(5.228b)

= ⟨𝛼 𝑓 , 𝜙(finite)(𝑆𝑇 (𝜌))⟩F (finite) , (5.228c)

provided that 𝑑𝑝 ≤ 𝐷, 𝑟 ≤ 𝑅. The (extended) Euclidean norm of 𝛼 𝑓 is also bounded.
Use Eq. (5.220) (with tuning parameters 𝛾, 𝜏 = 1) to compute

⟨𝛼 𝑓 , 𝛼 𝑓 ⟩F (finite) (5.229a)
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≤
𝑑𝑝∑︁
𝑑=0

(𝑟!𝑛𝑟)𝑑

𝑑!

∑︁
𝐴1,...,𝐴𝑑⊂{1,...,𝑛},|𝐴𝑖 |≤𝑟

tr
(
𝑂2
𝐴1,...,𝐴𝑑

)
(5.229b)

≤
𝑑𝑝∑︁
𝑑=0

(𝑟!𝑛𝑟)𝑑

𝑑!

∑︁
𝐴1,...,𝐴𝑑⊂{1,...,𝑛},|𝐴𝑖 |≤𝑟

2𝑟𝑑 ∥𝑂𝐴1,...,𝐴𝑑 ∥2∞ (5.229c)

≤ (2𝑛𝑟)𝑟𝑑𝑝 max
𝑑≤𝑑𝑝 ,𝐴1,...,𝐴𝑑
⊂{1,...,𝑛},|𝐴𝑖 |≤𝑟

𝑂𝐴1,...,𝐴𝑑


∞

𝑑𝑝∑︁
𝑑=0

1
𝑑!

∑︁
𝐴1,...,𝐴𝑑⊂{1,...,𝑛},

|𝐴𝑖 |≤𝑟

∥𝑂𝐴1,...,𝐴𝑑 ∥∞

(5.229d)

≤ (2𝑛𝑟)𝑟𝑑𝑝 𝑑𝑑𝑝𝑝
©«
𝑑𝑝∑︁
𝑑=0

1
𝑑!

∑︁
𝐴1,...,𝐴𝑑⊂{1,...,𝑛},|𝐴𝑖 |≤𝑟

∥𝑂𝐴1,...,𝐴𝑑 ∥∞
ª®¬

2

(5.229e)

Here, we have used the fundamental Schatten-𝑝 norm relation

∥𝑋 ∥2 ≤
√︁

dim(𝑋)∥𝑋 ∥∞, (5.230)

as well as the assumption that each 𝑂𝐴1,...,𝐴𝑑 is supported on a total tensor prod-
uct space with dimension 2𝑟𝑑 (a tensor product of 𝑑 subsystems comprised of at
most 𝑟 qubits each). The second to last inequality follow from using

∑
𝑖 𝑥

2
𝑖
≤

max𝑖 |𝑥𝑖 |
∑
𝑖 |𝑥𝑖 |, and Stirling’s formula. The final simplifications uses Stirling’s

formula again as well as the fact that
∑
𝑖 |𝑥𝑖 | ≥ max𝑖 |𝑥𝑖 |.

Physical assumptions about classifying quantum phases of matter
We want to learn how to classify two phases of 𝑛-qubit states: either 𝜌 belongs
to phase 𝐴 (𝑦(𝜌) = +1) or 𝜌 belongs to phase 𝐵 (𝑦(𝜌) = −1). We assume that
we have access to labeled classical shadows:

{(
𝑆𝑇 (𝜌ℓ), 𝑦(𝜌ℓ)

)
: ℓ ∈ {1, . . . , 𝑁}

}
,

where each 𝑆𝑇 (𝜌ℓ) is classical shadow data obtained from performing𝑇 randomized
single-qubit measurements on independent copies of 𝜌ℓ. We can use this raw data
to form classical representations 𝜎𝑇 (𝜌ℓ) of the underlying quantum state 𝜌ℓ, see
Eq. (5.3). The number 𝑇 determines the resolution of these approximations. Note
that 𝜎𝑇 (𝜌ℓ) ≈ 𝜌ℓ can only become exact for 𝑇 ≥ exp (Ω(𝑛)) (Guţă et al., 2020a;
Haah et al., 2017). This would be far too costly for experimental implementations
and efficient data processing. For instance, recall from Eq. (5.225) that a single
shadow kernel evaluation scales quadratically in 𝑇 . In this section, we show that we
can choose much coarser resolutions if the underlying phase can be classified by a
nice analytic function on reduced density matrices.

Assumption 1 (well-conditioned phase separation). Consider two phases among 𝑛-
qubit states. For 𝜖 > 0, we assume that there exists a function 𝑓 on reduced 𝑟-body
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density matrices 𝜌𝐴 = tr¬𝐴 (𝜌) that can distinguish the two phases in question. In
particular,

𝑓 (𝜌) = 𝑓 ({𝜌𝐴 : 𝐴 ⊂ {1, . . . , 𝑛}, |𝐴| ≤ 𝑟}) satisfies (5.231a)

𝑓 (𝜌)

> +1 for all 𝜌 that belong to phase 𝐴 (𝑦(𝜌) = +1),

< −1 for all 𝜌 that belong to phase 𝐵 (𝑦(𝜌) = −1).
(5.231b)

Moreover, we assume that 𝑓 (𝜌) can be approximated by a truncated power series

𝑓 (𝑑𝑝) (𝜌) =
𝑑𝑝∑︁
𝑑=0

1
𝑑!

∑︁
𝐴1,...,𝐴𝑑⊂{1,...,𝑛},|𝐴𝑖 |≤𝑟

tr
(
𝑂𝐴1,...,𝐴𝑑 𝜌𝐴1 ⊗ · · · ⊗ 𝜌𝐴𝑑

)
, (5.232)

up to constant accuracy:
�� 𝑓 (𝜌) − 𝑓 (𝑑𝑝) (𝜌)�� ≤ 0.25 for all 𝑛-qubit quantum states

𝜌. We refer to 𝑑𝑝 as the truncation degree and define the normalization constant

𝐶 =

𝑑𝑝∑︁
𝑑=0

1
𝑑!

( ∑︁
𝐴1,...,𝐴𝑑⊂{1,...,𝑛},|𝐴𝑖 |≤𝑟

∥𝑂𝐴1,...,𝐴𝑑 ∥∞
)
. (5.233)

We don’t need to know the normalization constant exactly. An upper bound is fully
adequate for the theoretical analysis presented in this section.

Morally, the second part of Assumption 1 requires that the phase classication func-
tion can be well-approximated by a degree-𝑑𝑝-polynomial in reduced density matri-
ces. The actual formulation is general enough to encompass most physically relevant
functions. Let us illustrate this by means of three popular examples.

Subsystem purity: Fix a subsystem 𝐴 ⊂ {1, . . . , 𝑛} comprised of |𝐴| = 𝑟 qubits
and let 𝜌𝐴 = tr¬𝐴 (𝜌) be the associated 𝑟-body density matrix. The subsystem purity
𝑓 (𝜌) = tr(𝜌2

𝐴
) is a quadratic polynomial in this reduced density matrix. We can

rewrite this as 𝑓 (2) (𝜌) = tr(𝑆𝐴𝜌𝐴⊗𝜌𝐴), where 𝑆𝐴 denotes the swap operator between
two copies of the subsystem 𝐴. This reformulation is also an exact approximation
of 𝑓 (𝜌) with degree 𝑑𝑝 = 2 and normalization constant 𝐶 = 1

2! ∥𝑆𝐴∥∞ = 1
2 . These

arguments readily extend to averages of multiple subsystem purities.

Subsystem Rényi entropy: Let us consider the subsystem Rényi entropy of order
two 𝐻2(𝜌𝐴) = − log

(
tr(𝜌2

𝐴
)
)

(the argument will generalize straightforwardly to
higher order entropies). This function is closely related to the subsystem purity
but also features a logarithm. And, although the logarithm is not a polynomial,



196

− log(1 − 𝑥) can be accurately approximated by the truncated Mercator series. A
crude but sufficient bound ensures

𝑙 (𝑑𝑝) (𝑥) =
𝑑𝑝∑︁
𝑑=1

1
𝑑
𝑥𝑑 (5.234)

obeys
���𝑙 (𝑑𝑝) (𝑥) − log(1 − 𝑥)

��� ≤ 𝑥𝑑𝑝 log (1/(1 − 𝑥)) for 𝑥 ∈ (−1, 1). (5.235)

We can now approximate 𝐻2(𝜌𝐴) = − log
(
1 − (1 − tr(𝜌2

𝐴
))

)
by 𝑙 (𝑑𝑝) (1 − tr(𝜌2

𝐴
)).

Subsystem purities necessarily obey tr(𝜌2
𝐴
) ≥ 2−|𝐴| = 2−𝑟 . This allows us to

conclude���𝑙 (𝑑𝑝) (1 − tr(𝜌2
𝐴)

)
− 𝐻2(𝜌𝐴)

��� ≤ (1 − 2−𝑟)𝑑𝑝 𝑟 log(2) ≤ log(2)𝑟 exp
(
−𝑑𝑝/2𝑟

)
(5.236)

which drops beneath 0.25 if we set 𝑑𝑝 = log(4 log(2)𝑟)2𝑟 = O (log(𝑟)2𝑟). This
degree scales exponentially in the subsystem size 𝑟, but is independent of total
dimension. We can also use 1 = tr(𝜌𝐴)2 = tr

(
I⊗2
𝐴
𝜌⊗2
𝐴

)
and tr(𝑋)tr(𝑌 ) = tr(𝑋 ⊗ 𝑌 )

to bring this polynomial approximation onto the form advertised in Eq. (5.232).
Indeed,

𝑙 (𝑑𝑝)
(
1 − tr(𝜌2

𝐴)
)

(5.237a)

= 𝑙 (𝑑𝑝)
(
tr

(
(I⊗2
𝐴
− 𝑆𝐴)𝜌⊗2

𝐴

))
(5.237b)

=

𝑑𝑝∑︁
𝑑=1

1
𝑑!

tr
(
(𝑑 − 1)!

(
I⊗2
𝐴
− 𝑆𝐴

)⊗𝑑
𝜌⊗2𝑑
𝐴

)
and (5.237c)

𝐶 =

𝑑𝑝∑︁
𝑑=1

1
𝑑!

(𝑑 − 1)!(I⊗2
𝐴
− 𝑆𝐴)⊗𝑑


∞ =

𝑑𝑝∑︁
𝑑=1

1
𝑑

I⊗2
𝐴
− 𝑆𝐴

𝑑
∞ =

𝑑𝑝∑︁
𝑑=1

1
𝑑
≈ log(𝑑𝑝).

(5.237d)

This analysis readily extends to higher order Rényi entropies, as well as averages
over multiple subsystems.

Entanglement entropy: This is where things start to get somewhat interesting,
because the entanglement (von Neumann) entropy 𝐻 (𝜌𝐴) = −tr (𝜌𝐴 log(𝜌𝐴)) ∈
[0, 𝑟 log(2)] of a 𝑟-body subsystem is notoriously difficult to accurately approx-
imate with a polynomial (Fawzi, Saunderson, and Parrilo, 2019). Fortunately,
Assumption 1 does not require an accurate approximation – a constant error of size
1/4 is fine. To achieve this goal, we make the following polynomial ansatz in the
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reduced density matrix 𝜌𝐴:

𝐻 (𝑑𝑝) (𝜌𝐴) = − tr ©«(𝜌𝐴 − I𝐴) +
𝑑𝑝∑︁
𝑘=2

(I𝐴 − 𝜌𝐴)𝑘

𝑘 (𝑘 − 1)
ª®¬ (5.238)

Let𝜆𝑖 denote the eigenvalues of a subsystem density matrix 𝜌𝐴 and note that there are
2𝑟 eigenvalues in 𝜌𝐴. We can rewrite the entanglement entropy and the polynomial
ansatz as

𝐻 (𝜌𝐴) = −
2𝑟∑︁
𝑖=1

𝜆𝑖 log(𝜆𝑖) and (5.239a)

𝐻 (𝑑𝑝) (𝜌𝐴) = −
2𝑟∑︁
𝑖=1

©«(𝜆𝑖 − 1) +
𝑑𝑝∑︁
𝑘=2

(1 − 𝜆𝑖)𝑘

𝑘 (𝑘 − 1)
ª®¬ , (5.239b)

respectively. Using Taylor’s theorem in the interval [0, 1], we have

𝑥 log(𝑥) = (𝑥 − 1) +
( ∞∑︁
𝑘=2

(1 − 𝑥)𝑘
𝑘 (𝑘 − 1)

)
. (5.240)

Note that at 𝑥 = 0, 𝑥 log 𝑥 = 0 and the infinite sum comprising the second term on
the right hand side also converges to 1. This ensures that the above equality is valid
for the closed interval [0, 1]. We shall also use the following identity

𝑛∑︁
𝑘=2

1
𝑘 (𝑘 − 1) = 1 − 1

𝑛
, (5.241)

which remains valid even in the limit 𝑛→∞. We combine Eq. (5.240) and (5.241) to
obtain an approximation error for our polynomial ansatz function. For all 𝑥 ∈ [0, 1],
we have ������𝑥 log(𝑥) − ©«(𝑥 − 1) + ©«

𝑑𝑝∑︁
𝑘=2

(1 − 𝑥)𝑘
𝑘 (𝑘 − 1)

ª®¬ª®¬
������ (5.242)

≤
∞∑︁

𝑘=𝑑𝑝+1

(1 − 𝑥)𝑘
𝑘 (𝑘 − 1) ≤

∞∑︁
𝑘=𝑑𝑝+1

1
𝑘 (𝑘 − 1) =

1
𝑑𝑝
. (5.243)

This allows us to bound the approximation error for each individual eigenvalue
𝜆𝑖 ∈ [0, 1] of 𝜌𝐴. There are in total 2𝑟 eigenvalues and a triangle inequality asserts

|𝐻 (𝜌𝐴) − 𝐻 (𝑑𝑝) (𝜌𝐴) | ≤
2𝑟∑︁
𝑖=1

������𝜆𝑖 log(𝜆𝑖) −
©«(𝜆𝑖 − 1) + ©«

𝑑𝑝∑︁
𝑘=2

(1 − 𝜆𝑖)𝑘
𝑘 (𝑘 − 1)

ª®¬ª®¬
������ ≤ 2𝑑

𝑑𝑝
.

(5.244)
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By choosing 𝑑𝑝 = 2𝑟+2, we can approximate the entanglement entropy in 𝑟-body
subsystem by a polynomial function. As long as the subsystem size 𝑟 is a constant
independent of total system size 𝑛, the polynomial approximation degree 𝑑𝑝 is also
a constant. And it is not hard to check that the same is true for the normalization
constant 𝐶. This analysis readily extends to averages of multiple entanglement
entropies.

Training with shadow kernels
We are now ready to dive into the main results of this section: converting As-
sumption 1 into a statement about classical shadows and their expressiveness when
it comes to training a support vector machine. Our measure of similarity is the
shadow kernel (5.222b) evaluated on classical shadows. The kernel matrix is

[K]ℓℓ′ = 𝑘 (shadow) (𝑆𝑇 (𝜌ℓ), 𝑆𝑇 (𝜌ℓ′)) for ℓ, ℓ′ ∈ {1, . . . , 𝑁}, (5.245)

and implicitly specifies the feature map, as well as the nonlinear geometry with
respect to which we want to find classifiers for phases. We begin by approximating
the true classifier, given as a nonlinear function 𝑓 (𝜌) in Assumption 1, by a finite
power series 𝑓 (𝑑𝑝) (𝜌) with degree-𝑑𝑝. We will then use 𝑓 (𝑑𝑝) (𝜌) as an approximate
phase classifier. Recalling Eq. (5.228c), a finite power series 𝑓 (𝑑𝑝) (𝑆𝑇 (𝜌)) is
linear in feature space, with its corresponding dual vector 𝛼 𝑓 defining a candidate
hyperplane for separating the two phases. To complete the connection to the support
vector machines from Section 5.9, we must ensure that 𝑓 (𝑑𝑝) (𝑆𝑇 (𝜌)) does not differ
substantially from the approximate phase classifier 𝑓 (𝑑𝑝) (𝜌) from Assumption 1.
This is the content of the following auxiliary statement.

Lemma 25. Suppose that Assumption 1 is valid for a function on reduced 𝑟-body
density matrices with the two constants 𝐶 ≥ 1 and 𝑑𝑝 ∈ N. For any 0 < 𝜖 < 1,
classical shadows of size

𝑇 = (32/3)𝑑2
𝑝𝐶

212𝑟 (𝑟 (log(𝑛) + log(12)) + log(1/𝛿)) /𝜖2 (5.246)

suffice to 𝜖-approximate 𝑓 (𝑑𝑝) (𝜌) with high probability. In particular, for any
density matrix 𝜌 ∈ H⊗𝑛2 , ��� 𝑓 (𝑑𝑝) (𝑆𝑇 (𝜌)) − 𝑓 (𝑑𝑝) (𝜌)��� ≤ 𝜖 (5.247)

with probability at least 1 − 𝛿 (over the randomized measurement settings and
outcomes producing 𝑆𝑇 (𝜌)).
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A proof can be found at the end of this subsection. With high probability, this
statement ensures that existence of a well-conditioned phase separation implies the
existence of a separating hyperplane in shadow feature space. This, in turn, is
enough to ensure that the SVM training stage can be executed perfectly: solving the
training problem (5.187a) efficiently yields a separating hyperplane parametrization
𝛼♯ that (1) lies in the subspace R𝑁 of F (shadow) spanned by the 𝑁 training vectors,
and (2) performs at least as well as 𝛼 𝑓 . Since we are guaranteed that 𝛼 𝑓 separates
training data perfectly and achieves zero training error, 𝛼♯ must be at least as good:
Etr(𝛼♯) ≤ Etr(𝛼 𝑓 ) = 0 with high probability. The main result of this section
formalizes this observation.

Proposition 12. Suppose that Assumption 1 is valid for some function on reduced
𝑟-body density matrices with normalization constant 𝐶 and truncation degree 𝑑𝑝.
Then, for 𝛿 ∈ (0, 1), a (joint) classical shadow size

𝑇 = (512/3)𝑑2
𝑝𝐶

212𝑟 (𝑟 (log(𝑛) + log(12)) + log(𝑁/𝛿)) (5.248)

ensures that we can achieve zero training error when solving (5.187a) with squared
margin constant Λ2 = 4 (2𝑟𝑛)𝑟𝑑𝑝 𝑑𝑑𝑝𝑝 𝐶2.

The extra constraintΛ2 ≥ ⟨𝛼 𝑓 , 𝛼 𝑓 ⟩F (finite) ensures that the ideal separating hyperplane
is a feasible point of the training problem (5.187a).

Proof of Proposition 12. We establish the claim not for the shadow kernel itself
(𝑘 (shadow)(·, ·)), but for large finite-dimensional approximations (𝑘 (finite)(·, ·)) thereof.
We begin by utilizing Eq. (5.232) that approximates the nonlinear function 𝑓 (𝜌) by
a finite power series 𝑓 (𝑑𝑝) (𝜌) with the approximation error,

| 𝑓 (𝜌) − 𝑓 (𝑑𝑝) (𝜌) | ≤ 0.25. (5.249)

For each ℓ ∈ {1, . . . , 𝑁}, we invoke Lemma 25 using the truncated Taylor series to
conclude

Pr
[
| 𝑓 (𝑑𝑝) (𝜌ℓ) − 𝑓 (𝑑𝑝) (𝑆𝑇 (𝜌ℓ)) | ≥ 0.25

]
≤ 𝛿/𝑁, (5.250)

provided that 𝑇 = (512/3)𝑑2
𝑝𝐶

212𝑟 (𝑟 (log(𝑛) + log(12)) + log(𝑁/𝛿)). Triangle
inequality and a union bound allows us to combine these approximation guarantees
into a single statement:

max
1≤ℓ≤𝑁

��� 𝑓 (𝜌ℓ) − 𝑓 (𝑑𝑝) (𝑆𝑇 (𝜌ℓ))��� ≤ 0.5 with probability (at least) 1 − 𝛿. (5.251)
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Let us condition on this desirable event and also assume hat the cutoff values of
our finite kernel approximation are large enough, i.e. 𝐷 ≥ 𝑑𝑝, 𝑅 ≥ 𝑟). Then, the
function

2 𝑓 (𝑑𝑝) (𝑆𝑇 (𝜌ℓ)) = ⟨𝛼 𝑓 , 𝜙(finite)(𝑆𝑇 (𝜌ℓ))⟩ (5.252)

describes a linear function in feature space F (finite) that is guaranteed to achieve zero
training error. Indeed, combine Eq. (5.231) and Eq. (5.251) to ensure���2 𝑓 (𝑑𝑝) (𝑆𝑇 (𝜌ℓ))��� ≥ 2( | 𝑓 (𝜌ℓ) |−

��� 𝑓 (𝜌ℓ) − 𝑓 (𝑑𝑝) (𝑆𝑇 (𝜌ℓ))���) ≥ 2(1−0.5) = 1 (5.253)

and, moreover,

sign
(
𝑓 (𝑑𝑝) (𝑆𝑇 (𝜌ℓ))

)
= sign ( 𝑓 (𝜌ℓ)) = 𝑦(𝜌ℓ) ∈ {±1} (5.254)

for all ℓ ∈ {1, . . . , 𝑁}. In turn,

𝑁∑︁
ℓ=1

max
{
0, 1 − 𝑦(𝜌ℓ)⟨𝛼 𝑓 , 𝜙(finite) (𝑆𝑇 (𝜌ℓ))⟩

}
(5.255a)

=

𝑁∑︁
ℓ=1

max
{
0, 1 − sign

(
𝑓 (𝑑𝑝) (𝑆𝑇 (𝜌ℓ))

)
2 𝑓 (𝑑𝑝) (𝑆𝑇 (𝜌ℓ))

}
(5.255b)

=

𝑁∑︁
ℓ=1

max
{
0, 1 −

��� 𝑓 (𝑑𝑝) (𝑆𝑇 (𝜌ℓ))���} = 0. (5.255c)

Since zero is the smallest possible training error, the minimizer of the original
training problem (5.187a) must also achieve zero, provided that 𝛼 𝑓 is actually a
feasible point of this optimization. We can, however, ensure this by choosing the
squared margin constant large enough. Eq. (5.229) and Assumption 1 ensures

⟨𝛼 𝑓 , 𝛼 𝑓 ⟩F (finite) ≤ 4 (2𝑟𝑛)𝑟𝑑𝑝 𝑑𝑑𝑝𝑝 𝐶2. (5.256)

Choosing a squared margin size Λ2 that exceeds this bound ensures that 𝛼 𝑓 is indeed
a feasible point of the training problem (5.187a) and the claim follows.

We conclude our discussion on training with shadow kernels by providing a rigorous
proof of the auxiliary statement.

Proof of Lemma 25. It suffices to analyze implications of Lemma 15: for 𝜂, 𝛿 ∈
(0, 1)

𝑇 ≥ (8/3)12𝑟 (𝑟 (log(𝑛) + log(12)) + log(1/𝛿)) /𝜂2 (5.257)



201

⇒ max
𝐴⊂{1,...,𝑛},|𝐴|≤𝑟

∥tr¬𝐴 (𝜎𝑇 (𝜌)) − tr¬𝐴 (𝜌)∥1 ≤ 𝜂 (5.258)

with probability at least 1 − 𝛿. Here, ∥ · ∥1 denotes the trace norm. Abbreviate
tr¬𝐴𝑖 (𝜎𝑇 (𝜌)) and tr¬𝐴𝑖 (𝜌) as 𝜎𝐴𝑖 and 𝜌𝐴𝑖 , respectively. A combination of triangle
inequalities and Matrix Hoelder (tr(𝑋𝑌 ) ≤ ∥𝑋 ∥∞∥𝑌 ∥1) asserts��� 𝑓 (𝑑𝑝) (𝜌) − 𝑓 (𝑑𝑝) (𝑆𝑇 (𝜌))��� (5.259a)

≤
𝑑𝑝∑︁
𝑑=0

1
𝑑!

∑︁
𝐴1,...,𝐴𝑑⊂{1,...,𝑛},|𝐴𝑖 |≤𝑟

��tr (
𝑂𝐴1,...,𝐴𝑟

(
𝜌𝐴1 ⊗ · · · ⊗ 𝜌𝐴𝑑 − 𝜎𝐴1 ⊗ · · · ⊗ 𝜎𝐴𝑑

) ) ��
(5.259b)

≤
𝑑𝑝∑︁
𝑑=0

1
𝑑!

∑︁
𝐴1,...,𝐴𝑑⊂{1,...,𝑛},|𝐴𝑖 |≤𝑟

𝑂𝐴1,...,𝐴𝑑


∞

𝜌𝐴1 ⊗ · · · ⊗ 𝜌𝐴𝑑 − 𝜎𝐴1 ⊗ · · · ⊗ 𝜎𝐴𝑑


1 .

(5.259c)

Next, we fix a trace norm contribution and use a telescoping trick (𝐴1 ⊗ 𝐴2 −
𝐵1 ⊗ 𝐵2 = (𝐴1 − 𝐵1) ⊗ 𝐴2 + 𝐵1 ⊗ (𝐴2 − 𝐵2)), as well as a triangle inequality and
∥𝜌𝐴𝑖 ∥1 = tr(𝜌𝐴𝑖 ) = 1 to infer𝜌𝐴1 ⊗ . . . ⊗ 𝜌𝐴𝑑 − 𝜎𝐴1 ⊗ . . . ⊗ 𝜎𝐴𝑑


1 (5.260a)

=
(𝜌𝐴1 − 𝜎𝐴1

)
⊗ 𝜌𝐴2 ⊗ . . . ⊗ 𝜌𝐴𝑑 + 𝜎𝐴1 ⊗

(
𝜌𝐴2 ⊗ 𝜌𝐴3 . . . − 𝜎𝐴2 ⊗ 𝜎𝐴3 . . .

)
1

(5.260b)

≤ ∥𝜌𝐴1 − 𝜎𝐴1 ∥1∥𝜌𝐴2 ∥1 . . . ∥𝜌𝐴𝑑 ∥1 + ∥𝜎𝐴1 ∥1
𝜌𝐴2 ⊗ 𝜌𝐴3 . . . − 𝜎𝐴1 ⊗ 𝜎𝐴3 . . .


1

(5.260c)

≤ ∥𝜌𝐴1 − 𝜎𝐴1 ∥1 +
(
1 + ∥𝜌𝐴1 − 𝜎𝐴1 ∥1

) 𝜌𝐴2 ⊗ . . . ⊗ 𝜌𝐴𝑑 − 𝜎𝐴1 ⊗ . . . ⊗ 𝜎𝐴𝑑


1
(5.260d)

≤ 𝜂 + (1 + 𝜂)∥𝜌𝐴2 ⊗ . . . ⊗ 𝜌𝐴𝑑 − 𝜎𝐴1 ⊗ 𝜎𝐴𝑑 ∥1. (5.260e)

The last line follows from Rel. (5.258). Iterating this simplification procedure
ensures𝜌𝐴1 ⊗ · · · ⊗ 𝜌𝐴𝑑 − 𝜎𝐴1 ⊗ · · · ⊗ 𝜎𝐴𝑑


1 ≤ 𝜂

𝑑−1∑︁
𝑘=0
(1 + 𝜂)𝑘 = (1 + 𝜂)𝑑 − 1. (5.261)

According to Rel. (5.258), such an upper bound is valid for every trace norm
contribution in Eq. (5.259). This allows us to obtain��� 𝑓 (𝑑𝑝) (𝜌) − 𝑓 (𝑑𝑝) (𝑆𝑇 (𝜌))��� (5.262a)
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≤
𝑑𝑝∑︁
𝑑=0

1
𝑑!

∑︁
𝐴1,...,𝐴𝑑⊂{1,...,𝑛},|𝐴𝑖 |≤𝑟

𝑂𝐴1,...,𝐴𝑑


∞

[
(1 + 𝜂)𝑑 − 1

]
(5.262b)

≤
[
(1 + 𝜂)𝑑𝑝 − 1

] 𝑑𝑝∑︁
𝑑=0

1
𝑑!

∑︁
𝐴1,...,𝐴𝑑⊂{1,...,𝑛},|𝐴𝑖 |≤𝑟

𝑂𝐴1,...,𝐴𝑑


∞ (5.262c)

= 𝐶
[
(1 + 𝜂)𝑑𝑝 − 1

]
. (5.262d)

Here, we have used Assumption 1. Finally, by choosing 𝜂 = 𝜖/(2𝐶𝑑𝑝), we can see
that��� 𝑓 (𝑑𝑝) (𝜌) − 𝑓 (𝑑𝑝) (𝑆𝑇 (𝜌))��� ≤ 𝐶 [(

1 + 𝜖

2𝐶𝑑𝑝

)𝑑𝑝
− 1

]
≤ 𝐶 [exp(𝜖/2𝐶) − 1] ≤ 𝜖 .

(5.263)
The second inequality follows from (1 + 𝑥/𝑛)𝑛 ≤ exp(𝑥),∀|𝑥 | ≤ 𝑛, 𝑛 ≥ 1. The
third inequality utilizes exp(𝑥) ≤ 1 + 2𝑥,∀𝑥 ∈ [0, 1]. The claim of Lemma 25 now
follows from inserting this specific choice of 𝜂 into Rel. (5.258).

Prediction based on shadow kernels
We now have all pieces in place to prove strong bounds on the prediction error of a
SVM based on shadow kernels. The main result of this section will be a consequence
of Theorem 22. For fixed parameters 𝜏, 𝛾 = 1, the shadow kernel (5.222b) (and
finite approximations thereof) is always bounded when applied to classical shadows.
Eq. (5.226) (under 𝜏 = 𝛾 = 1) asserts

𝑘 (shadow) (𝑆𝑇 (𝜌1), 𝑆𝑇 (𝜌2)
)
≤ exp (exp (5)) (5.264)

for any𝑇 and quantum states 𝜌1, 𝜌2. This bound readily extends to finite dimensional
approximations 𝑘 (finite)(·, ·). Next, we need to specify a distribution. We assume
that D̃ is a distribution over 𝑛-qubit quantum states 𝜌 that either belong to phase 𝐴
or phase 𝐵. We sample quantum states 𝜌ℓ ∼ D̃ accordingly, but are not permitted to
process them directly. Instead, we obtain a (randomly generated) classical shadow
of size 𝑇 . Denote the raw data by 𝑆𝑇 (𝜌ℓ) which allows us to produce a state
approximation 𝜎𝑇 (𝜌ℓ). We do, however, require that we have direct access to the
label 𝑦(𝜌ℓ) ∈ {±1} associated with the phase of 𝜌ℓ. This produces a joint distribution
over input data 𝑆𝑇 (𝜌ℓ) and the label 𝑦(𝜌ℓ) which we call D. In summary, we
assume that training data and new data are generated independently from this data
distribution: (𝑆𝑇 (𝜌1), 𝑦(𝜌1)) , . . . , (𝑆𝑇 (𝜌𝑁 ), 𝑦(𝜌𝑁 )) , (𝑆𝑇 (𝜌), 𝑦) ∼ D. We are now
ready to combine Theorem 22 (the prediction error is bounded by the training error)
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and Proposition 12 (the training error vanishes if a good phase classifier exists) to
obtain a powerful result about generalization.

Corollary 1. Fix 𝛿, 𝜖 ∈ (0, 1) and suppose there exists an analytic function on
reduced 𝑟-body density matrices that can distinguish phases: 𝑓 (𝜌) > 1 if 𝜌 ∈
phase 𝐴 and 𝑓 (𝜌) < −1 else if 𝜌 ∈ phase 𝐵. Let 𝐶 be the normalization constant
and 𝑑𝑝 be the truncation degree given in Assumption 1. Suppose that we obtain
identically distributed training data (𝑆𝑇 (𝜌1), 𝑦(𝜌1)) , . . . , (𝑆𝑇 (𝜌𝑁 ), 𝑦(𝜌𝑁 )) ∼ D
such that

𝑇 ≥ (512/3)𝑑2
𝑝𝐶

212𝑟 (𝑟 (log(𝑛) + log(12)) + log(𝑁/𝛿)) and (5.265a)

𝑁 ≥ 256 (2𝑟𝑛)𝑟𝑑𝑝 𝑑𝑑𝑝𝑝 𝐶2 exp(exp(5)) log(4/𝛿)/𝜖2. (5.265b)

Then, solving the training problem (5.187a) for the shadow kernel with squared
margin constant Λ2 = 4 (2𝑟𝑛)𝑟𝑑𝑝 𝑑𝑑𝑝𝑝 𝐶2 will produce a hyperplane 𝛼♯ ∈ R𝑁 in
shadow feature space that achieves zero training error with probability (at least)
1 − 𝛿/2. Conditioned on perfect training, the resulting classifier

𝑦♯ (𝑆𝑇 (𝜌)) = sign
( 𝑁∑︁
ℓ=1

[
𝛼♯

]
ℓ
𝑘 (shadow) (𝑆𝑇 (𝜌ℓ), 𝑆𝑇 (𝜌))

)
∈ {±1} (5.266)

achieves, with probability (at least) 1 − 𝛿/2,

Pr(𝑆𝑇 (𝜌),𝑦(𝜌))
[
𝑦♯ (𝑆𝑇 (𝜌)) ≠ 𝑦(𝜌)

]
≤ 𝜖 . (5.267)

The total probability of success is (at least) 1−𝛿 and follows from a union bound over
either desirable event failing. Theorem 1 is contingent on four core assumptions:

1. It must be possible to distinguish phases 𝐴 and 𝐵 by evaluating a well-
conditioned analytical function on reduced 𝑟-body density matrices. The
coefficients in the power series of the analytical function should also be
bounded, but explicit knowledge is not necessary. This is the content of
Assumption 1.

2. We use classical shadow raw data to read-in training data (𝜌ℓ ↦→ 𝑆𝑇 (𝜌ℓ)) and
process new states in the prediction phase (𝜌 ↦→ 𝑆𝑇 (𝜌)). We assume that
each classical shadow arises from 𝑇 randomized single-qubit Pauli measure-
ments on independent state copies. The larger 𝑇 , the more accurate these
representations become. Theorem 1 requires

𝑇 ≥ (512/3)𝑑2
𝑝𝐶

212𝑟 (𝑟 (log(𝑛) + log(12)) + log(𝑁/𝛿)) (5.268)
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= O
(
𝑟12𝑟𝑑2

𝑝𝐶
2 log(𝑛𝑁/𝛿))

)
. (5.269)

If 𝑟, 𝐶, 𝑑𝑝 are constants, this resolution only scales polylogarithmically in
system size 𝑛 because 𝑁 scales polynomially in 𝑛; see the next bullet point.

3. The training data size must not be too small either. We need to have a training
data size 𝑁 of order at least (2𝑟𝑛)𝑟𝑑𝑝 𝑑𝑑𝑝𝑝 𝐶2 exp(exp(5)) log(4/𝛿)/𝜖2. As long
as 𝑟, 𝐶, 𝑑𝑝 are constants (independent of system size 𝑛), this requirement sim-
plifies to 𝑁 = O

(
𝑛𝑟𝑑𝑝 log(1/𝛿)/𝜖2) . Hence, the number scales polynomially

in system size 𝑛.

4. The squared margin constant also scales polynomially with system size 𝑛:
Λ2 = 4 (2𝑟𝑛)𝑟𝑑𝑝 𝑑𝑑𝑝𝑝 𝐶2 = O

(
𝑛𝑟𝑑𝑝

)
if 𝑟, 𝐶, 𝑑𝑝 = const. This is equivalent

to demanding that the minimal margin 2/Λ scales inverse polynomially in
system size 𝑛.

Corollary 1 does not only bound a hypothetical training error. The required shadow
size 𝑇 and training data size 𝑁 both scale favorably in the number of qubits 𝑛. This
also ensures that the numerical costs behind this procedure remain tractable for a
wide range of system sizes. The costs associated with storage (classical shadows
are sums of 𝑇 elementary tensor products), training (can be reduced to a QCQP in
𝑁 dimensions per Section 5.9) and prediction (execute Formula (5.191)) all scale
polynomially in system size 𝑛, shadow size 𝑇 , and training data size 𝑁 .

Proof of Corollary 1. Again, we establish the claim for large, but finite-dimensional,
approximations to the shadow kernel (1 ≤ 𝑑𝑝 ≪ 𝐷 < ∞ and 1 ≤ 𝑟 ≪ 𝑅 < ∞). Fix
𝛿 ∈ (0, 1) (probability of failure) and 𝜖 ∈ (0, 1) (bound on average prediction error).
Consider the data distribution (𝑆𝑇 (𝜌), 𝑦(𝜌)) ∼ D, the kernel 𝑘 (finite)(·, ·) – which
obeys 𝑘 (finite) (𝑆𝑇 (𝜌), 𝑆𝑇 (𝜌)) ≤ exp (exp(5)) – and a squared margin constant Λ2

to be specified later. Assume Λ2 exp(exp(5)) ≥ 1 for simplicity (the other case is
similar). Then, for training data size 𝑁 , Theorem 22 asserts

Pr(𝑆𝑇 (𝜌),𝑦(𝜌))∼D
[
𝑦♯ (𝑆𝑇 (𝜌)) ≠ 𝑦(𝜌)

]
≤ 1
𝑁

Etr(𝛼♯) + 8
√︂
Λ2 exp(exp(5)) log(4/𝛿)

𝑁
,

(5.270)
with probability (at least) 1 − 𝛿/2. Choosing 𝑁 large enough allows us to suppress
the second contribution beneath the desired approximation error bound:

𝑁 ≥ 64Λ2 exp(exp(5)) log(4/𝛿)/𝜖2 (5.271)
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⇒ Pr(𝑆𝑇 (𝜌),𝑦(𝜌))∼D
[
𝑦♯ (𝑆𝑇 (𝜌)) ≠ 𝑦(𝜌)

]
≤ 1
𝑁

Etr(𝛼♯) + 𝜖, (5.272)

with probability (at least) 1 − 𝛿/2. Here, Etr(𝛼♯) is the training error obtained
from solving problem (5.187a) for 𝑁 independently sampled training data points
(𝑆𝑇 (𝜌1), 𝑦(𝜌1)) , . . . , (𝑆𝑇 (𝜌𝑁 ), 𝑦(𝜌𝑁 )) ∼ D. Proposition 12 asserts that this train-
ing error can vanish with high probability, provided that a well-conditioned analytical
function on reduced 𝑟-body density matrices exists that can distinguish the phases
(see Assumption 1). The classical shadow size 𝑇 and the squared margin constant
Λ2 depend on the number of body 𝑟, the normalization constant𝐶, and the truncation
degree 𝑑𝑝 of this classifier:

𝑇 ≥ (512/3)𝑑2
𝑝𝐶

212𝑟 (𝑟 (log(𝑛) + log(12)) + log(𝑁/𝛿))
Λ ≥ 4 (2𝑟𝑛)𝑟𝑑𝑝 𝑑𝑑𝑝𝑝 𝐶2

}
⇒ Etr(𝛼♯) = 0

(5.273)
with probability (at least) 1−𝛿/2. The claim now follows from inserting this squared
margin size into the expression (5.272) for training data size.

5.10 Classifying SPT phases with O(2) symmetry
Symmetry-protected topological phases
We consider a scenario similar to that of Section 5.4, namely, a family of Hamil-
tonians 𝐻 (𝑥) parameterized by 𝑥. We additionally enforce that 𝐻 (𝑥) be invariant
under certain symmetry transformations, which can include tensor products of on-
site rotations, “spatial” transformations permuting the sites, or antiunitary maps
characterizing time-reversal. These additional symmetry constraints allow for a
fine-grained characterization of 𝐻 (𝑥) into various symmetry-protected topologi-
cal (SPT) phases. Removing said constraints reduces this characterization to the
coarser one involving purely topological phases. Similar to the coarser characteri-
zation, ground states of 𝐻 (𝑥) remain in a particular SPT when the parameters 𝑥 are
varied continuously, as long as the spectral gap of the Hamiltonian remains finite.
In other words, the gap has to close at some 𝑥 in order for the ground states to
transition into another phase. When there is a constant spectral gap, it is expected
that an operator acting on a local region larger than some constant size independent
of the full system size 𝑛 can classify different SPT phases. The existence of a
classifying function of local density matrices has been rigorously established for a
handful of cases: 𝑈 (1)-symmetric systems in two dimensions (either noninteracting
fermionic (Alexei Yu. Kitaev, 2006; Y. Zhang and E.-A. Kim, 2017) or interacting
(Matthew B. Hastings and Michalakis, 2015; Kapustin and Sopenko, 2020; Bach-
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mann, Bols, et al., 2020)), and certain spin-1 chains in one dimension (Bachmann
and Nachtergaele, 2014; Tasaki, 2018; Tasaki, 2020).

SPT phases of one-dimensional spin chains with unique ground states, symmetric
under tensor-product unitaries forming a symmetry group 𝐺, are in one-to-one cor-
respondence with the various projective representations realized by 𝐺 (X. Chen,
Z.-C. Gu, and Wen, 2011). Projective representations are those in which the group’s
multiplication table is decorated with phases in a way that is consistent with asso-
ciativity (Arovas, n.d.). A genuine (i.e., linear) representation corresponds to the
unique trivial projective representation.

Consider, for example, spin chains symmetric under𝐺 = 𝑆𝑂 (3). This group admits
two distinct classes of projective representations: one class corresponds to integer
spin, and one corresponds to half-integer spin. Thus, there are two different phases
for such chains — the trivial phase and the “Haldane phase” (F. Haldane, 1983;
X. Chen, Z.-C. Gu, and Wen, 2011).

Relaxing the symmetry group down to its 𝑂 (2) subgroup maintains the two-phase
classification, because 𝑂 (2) also admits two projective representations (X. Chen,
Z.-C. Gu, Z.-X. Liu, et al., 2013). In fact, one can relax the symmetry all the way
down to the simplest dihedral subgroup 𝑍2×𝑍2 (Z.-C. Gu and Wen, 2009; Pollmann,
Ari M. Turner, et al., 2010); such a classification is similar to that of the model in
Appendix 5.13. We investigate systems admitting the larger 𝑂 (2) symmetry below,
noting that the work we rely on (Tasaki, 2018; Tasaki, 2020) also studies symmetry
groups that include spatial inversion and time reversal.

𝑂 (2)-symmetric qutrit spin chains
The representative states for each of the two 𝑂 (2)-symmetric phases for qutrit
spin chains are the product state, representing the trivial phase, and the valence-
bond-solid (VBS) state (Affleck, Kennedy, et al., 1988), admitting a projective
representation of the symmetry (Tasaki, 2020) and thus representing the Haldane
phase. It has long been known that the expectation value of a nonlocal “twist”
operator 𝑂𝐿 (Totsuka and Suzuki, 1995; Nakamura and Todo, 2002) distinguishes
these two representative states: sign(⟨𝑂𝐿⟩) is +1 for the product state, and −1 for
the VBS state. We will see later that, by continuity arguments, this sign will stay
constant for other states within the same phase.

In order to work efficiently, our phase classification algorithms require a local
operator whose expectation value (a) has the same sign as that of 𝑂𝐿; and (b) is
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above or below a margin (here, 1/2), in order to determine the required accuracy of
the classical shadows. Recently, criterion (a) was explicitly demonstrated by Tasaki
(Tasaki, 2018; Tasaki, 2020) using a local version 𝑂ℓ of the twist, see Eq. (5.278)
below. We collect relevant parts of his results to prove both criteria in the theorem
below. Due to the existence of a local operator for classifying the SPT phases, our
ML algorithms are guaranteed to predict the SPT phases accurately based on the
proof given in Appendix 5.9.

Theorem 24. Consider the triple {𝐻 (𝑥), |𝜓(𝑥)⟩ ,Δ(𝑥)} containing (2𝐿 + 2)-site
spin-one chains with periodic boundary conditions

𝐻 (𝑥) =
𝐿−𝑟+1∑︁
𝑗=−(𝐿−𝑟)

ℎ 𝑗 (𝑥) + ℎ−𝐿 (𝑥) + ℎ𝐿+1(𝑥) (5.274)

that admit corresponding unique ground states |𝜓(𝑥)⟩ and spectral gaps Δ(𝑥) ≥
𝛾 = Ω(1), bounded interaction strength

ℎ 𝑗 (𝑥)∞ ≤ 𝑅 = O(1), and whose terms
ℎ 𝑗 (𝑥) are supported on sites 𝑘 such that | 𝑗 − 𝑘 | ≤ 𝑟 = O(1). Assume that 𝐻 (𝑥) is
𝑂 (2)-symmetric, with the symmetry group generated by

1. a collective 𝑧-axis rotation by any angle, and

2. an 𝑥-axis rotation by 𝜋.

There exists a few-body observable 𝐴, such that for all 𝑥, we have

sign(⟨𝜓(𝑥) | 𝐴 |𝜓(𝑥)⟩) = sign (⟨𝜓(𝑥) |𝑂𝐿 |𝜓(𝑥)⟩) , as well as (5.275a)

| ⟨𝜓(𝑥) | 𝐴 |𝜓(𝑥)⟩ | ≥ 1/2 . (5.275b)

Proof. We use spin-one operators 𝑆(𝛼) with 𝛼 ∈ {𝑥, 𝑦, 𝑧} that have eigenvalues
{0,±1} and satisfy angular-momentum commutation relations [𝑆(𝑥) , 𝑆(𝑦)] = i𝑆(𝑧) .
Eigenstates of 𝑆(𝑧) are denoted by |𝜎⟩ with 𝜎 ∈ {0,±1}. A rotation around axis 𝛼
is a unitary operator generated by the corresponding 𝑆(𝛼) . The two symmetry group
generators are, for 𝜃 ∈ [0, 2𝜋),

𝑈 (𝜃) =
𝐿+1⊗
𝑗=−𝐿

𝑒
−i𝜃𝑆 (𝑧)

𝑗 and 𝑉 =

𝐿+1⊗
𝑗=−𝐿

𝑒
−i𝜋𝑆 (𝑥 )

𝑗 .

(5.276)
By assumption, both symmetries commute with each Hamiltonian term ℎ 𝑗 ; we will
explicitly use both to prove the theorem. We will also need superimposed versions
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𝑆(±) = 𝑆(𝑥) ± i𝑆(𝑦) , which satisfy

𝑒i𝜙𝑆 (𝑧)𝑆(±)𝑒−i𝜙𝑆 (𝑧) = 𝑆(±)𝑒±i𝜙 . (5.277)

The family of unitary twist operators (Affleck and Elliott H. Lieb, 1986), acting on
an interval of 2ℓ spins centered at the origin, is

𝑂ℓ =
⊗

𝑘 ,

���𝑘−1
2
���≤ℓ+1

2

exp
(
−i2𝜋

𝑘 + ℓ
2ℓ + 1

𝑆
(𝑧)
𝑘

)
. (5.278)

Each site’s rotation is by a multiple of 2𝜋/(2ℓ+1) that is proportional to the site index,
forming the namesake twist pattern. The ℓ = 𝐿 case reduces to the aforementioned
nonlocal twist operator 𝑂𝐿 , while ℓ ≪ 𝐿 are its local versions.

Suppressing 𝑥 dependence, the key property is that the twisted ground state 𝑂ℓ |𝜓⟩
has energy close to that of the ground state. In particular, there exists 𝐶0, 𝐶1 > 0,
such that for all ℓ ≥ 𝐶0, Lemma 26 below yields

⟨𝜓 |𝑂ℓ𝐻𝑂†ℓ |𝜓⟩ − ⟨𝜓 |𝐻 |𝜓⟩ ≤
𝐶1
ℓ
. (5.279)

The ground state is unique by our assumption of a gap, so the twisted ground state
must then become proportional to the ground state as ℓ → ∞. In other words, the
magnitude of their overlap must be close to one as long as ℓ ≥ 𝐶0,

|⟨𝜓 |𝑂ℓ |𝜓⟩|2 ≥ 1 − 𝐶1
Δℓ

; (5.280)

see Lemma 27 below. The phase of this overlap is either 0 or 𝜋 because the 𝜋-rotation
𝑉 leaves the ground state invariant:

⟨𝜓 |𝑂ℓ |𝜓⟩ = ⟨𝜓 |𝑉†𝑂ℓ𝑉 |𝜓⟩ = ⟨𝜓 |𝑂†ℓ |𝜓⟩ = ⟨𝜓 |𝑂ℓ |𝜓⟩ ∈ R . (5.281)

Hence, the few-body Hermitian observable 𝐴 = (𝑂ℓ +𝑂†ℓ )/2 with

ℓ = max(4𝛾/(3𝐶1), 𝐶0) (5.282)

satisfies

|⟨𝜓 |𝐴|𝜓⟩| = |⟨𝜓 |𝑂ℓ |𝜓⟩| ≥
√︂

1 − 𝐶1
Δℓ
≥ 1

2
, (5.283)

proving Eq. (5.275b). Note that the required value of ℓ depends on the gap, and thus
also on 𝑥.

To prove Eq. (5.275a), we need to show that the sign of the twist’s expectation value
remains the same for any ℓ ≥ max(4𝛾/(3𝐶1), 𝐶0). To do this, first notice that,



209

when ℓ is relaxed to be a nonnegative real, the twist (5.278) is continuous in ℓ.
(This can be verified, e.g., by studying the twist’s eigenvalues.) Continuity implies
that the expectation value cannot change sign; otherwise, it would have to cross
zero, thus violating Eq. (5.283). Therefore, the sign remains the same, confirming
Eq. (5.275a). Similarly, by continuity in ℓ and 𝑥, the expectation value maintains its
sign within each phase.

The above argument is contingent on two auxiliary statements, which we now prove.

Lemma 26 (Vanishing energy difference (Tasaki, 2018); Eq. (5.279)). For constants
𝐶0, 𝐶1, as long as ℓ ≥ 𝐶0, we have

⟨𝜓 |𝑂ℓ𝐻𝑂†ℓ |𝜓⟩ − ⟨𝜓 |𝐻 |𝜓⟩ ≤
𝐶1
ℓ
. (5.284)

Proof. Using the variational principle (which says that the difference in energy
between any state and the ground state is nonnegative), plugging in 𝑂ℓ and 𝐻,
applying ⟨𝜓 |𝑂 |𝜓⟩ ≤ ∥𝑂∥∞, and distributing the norm over the sum yields

⟨𝜓 |𝑂ℓ𝐻𝑂†ℓ |𝜓⟩ − ⟨𝜓 |𝐻 |𝜓⟩ ≤ ⟨𝜓 |
(
𝑂ℓ𝐻𝑂

†
ℓ
+𝑂†

ℓ
𝐻𝑂ℓ − 2𝐻

)
|𝜓⟩ (5.285a)

=

ℓ+𝑟+1∑︁
𝑗=−(ℓ+𝑟)

⟨𝜓 |
(
𝑂ℓℎ 𝑗𝑂

†
ℓ
+𝑂†

ℓ
ℎ 𝑗𝑂ℓ − 2ℎ 𝑗

)
|𝜓⟩ (5.285b)

≤
ℓ+𝑟+1∑︁
𝑗=−(ℓ+𝑟)

𝑂ℓℎ 𝑗𝑂†ℓ +𝑂†ℓℎ 𝑗𝑂ℓ − 2ℎ 𝑗

∞

(5.285c)

Next, we use the finite support and rotational invariance of ℎ 𝑗 from Eq. (5.276) to
rotate the twist 𝑂ℓ,

𝑂ℓℎ 𝑗𝑂
†
ℓ
= 𝑂ℓ𝑈

(
𝜃 𝑗

)
ℎ 𝑗𝑈

† (𝜃 𝑗 ) 𝑂†ℓ (5.286a)

=
©«

⊗
|𝑘− 𝑗 |≤𝑟

𝑒−i( 2𝜋
2ℓ+1 [𝑘+ℓ]+𝜃 𝑗)𝑆 (𝑧)𝑘 ª®¬ ℎ 𝑗 ©«

⊗
|𝑘− 𝑗 |≤𝑟

𝑒i( 2𝜋
2ℓ+1 [𝑘+ℓ]+𝜃 𝑗)𝑆 (𝑧)𝑘 ª®¬ , (5.286b)

where we pick 𝜃 𝑗 = − 2𝜋
2ℓ+1 ( 𝑗 + ℓ) for each 𝑗 . That way, the twist does not affect site

𝑗 , with

𝑂ℓℎ 𝑗𝑂
†
ℓ
= 𝑒i 2𝜋

2ℓ+1𝑀 𝑗 ℎ 𝑗𝑒
−i 2𝜋

2ℓ+1𝑀 𝑗 , and 𝑀 𝑗 =
∑︁
|𝑘− 𝑗 |≤𝑟

( 𝑗 − 𝑘) 𝑆(𝑧)
𝑘
.

(5.287)
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We now expand ℎ 𝑗 as a polynomial in {𝑆(𝑧)
𝑘
, 𝑆
(±)
𝑘
}. This can be done because

products of powers of these operators form a matrix basis for any operator on
the chain. For a single site, the set {𝑆(𝑧)𝑆(±) , (𝑆(+))2}, along with their complex
conjugates and some powers of 𝑆(𝑧) , form the basis of nine matrix units for all 3× 3
operators on the site. Tensor products of these operators therefore form a matrix-unit
basis for all sites. The conjugation property (5.277) and Eq. (5.287) imply that each
term in the expansion of ℎ 𝑗 , upon conjugation by 𝑂ℓ, will be imparted with a phase
that is some multiple 𝜇 of 2𝜋/(2ℓ + 1). Combining all terms with the same phase
into ℎ 𝑗 ,𝜇, we have

𝑒i 2𝜋
2ℓ+1𝑀 𝑗 ℎ 𝑗 ,𝜇𝑒

−i 2𝜋
2ℓ+1𝑀 𝑗 = ℎ 𝑗 ,𝜇𝑒

i 2𝜋
2ℓ+1 𝜇 . (5.288)

Moreover, |𝜇 | ≤ 2𝜇max, where 𝜇max =
∑
|𝑘− 𝑗 |≤𝑟 | 𝑗 − 𝑘 | = 𝑟 (𝑟 + 1) is the largest

eigenvalue of 𝑀 𝑗 . Plugging this in and expanding the resulting cosine yields

𝑂ℓℎ 𝑗𝑂†ℓ +𝑂†ℓℎ 𝑗𝑂ℓ − 2ℎ 𝑗

∞
= 2

 ∑︁
|𝜇 |≤2𝑟 (𝑟+1)

[
cos

(
2𝜋

2ℓ + 1
𝜇

)
− 1

]
ℎ 𝑗 ,𝜇


∞

(5.289a)

≤
(

2𝜋
2ℓ + 1

)2 ∑︁
|𝜇 |≤2𝑟 (𝑟+1)

𝜇2 ℎ 𝑗 ,𝜇∞ . (5.289b)

Since the spin operators form a matrix-unit basis, each ℎ 𝑗 ,𝜇 is simply ℎ 𝑗 with some
entries removed. Therefore, the norm of ℎ 𝑗 ,𝜇 is bounded by 𝑅. Applying that and
performing the remaining sum (5.285c) over 𝑗 yields

⟨𝜓 |𝑂ℓ𝐻𝑂†ℓ |𝜓⟩ − ⟨𝜓 |𝐻 |𝜓⟩ ≤
ℓ + 𝑟 + 1
(2ℓ + 1)2

4𝜋2𝑅
©«

∑︁
|𝜇 |≤2𝑟 (𝑟+1)

𝜇2ª®¬ . (5.290)

Thus, for ℓ ≥ 𝐶0, the difference in energies between the ground state and twisted
ground state will be bounded by 𝐶1/ℓ, where 𝐶0, 𝐶1 are two constants depending
on the interaction range 𝑟 and norm bound 𝑅 of the Hamiltonian terms.

Lemma 27 (High overlap (Tasaki, 2020); Eq. (5.280)). For constants 𝐶0, 𝐶1, as
long as ℓ ≥ 𝐶0, we have

|⟨𝜓 |𝑂ℓ |𝜓⟩|2 ≥ 1 − 𝐶1
Δℓ

. (5.291)

Proof. All eigenvalues of 𝐻 are bounded below by the sum of the ground state
energy 𝐸gnd = ⟨𝜓 |𝐻 |𝜓⟩ and spectral gap Δ,

𝐻 ≥ 𝐸gnd |𝜓⟩⟨𝜓 | +
(
𝐸gnd + Δ

)
(I − |𝜓⟩⟨𝜓 |) = 𝐸gndI + Δ (I − |𝜓⟩⟨𝜓 |) . (5.292)
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Conjugating by 𝑂ℓ and evaluating the result in the ground state yields

⟨𝜓 |𝑂ℓ𝐻𝑂†ℓ |𝜓⟩ ≥ 𝐸gnd + Δ
(
1 − |⟨𝜓 |𝑂ℓ |𝜓⟩|2

)
. (5.293)

Rearranging this and plugging in Lemma 26 yields the desired result.

5.11 Neural networks with classical shadow for quantum problems
Imposing inductive biases in the ML model is a common technique for boosting the
prediction performance of ML models. One approach is to enhance the proposed ML
algorithms with neural networks, such as convolutional or graph neural networks.
These neural networks could better capture structure of the underlying function
we are trying to learn and hence may require significantly less data than the very
expressive ML model given in the main text. We leave the proof that neural network
enhancements can lead to better prediction performance as a goal for future work.

There are multiple ways of combining classical shadows and neural networks. Here,
we will only showcase one such approach by utilizing the theory of neural tangent
kernels (Jacot, Gabriel, and Hongler, 2018). Remarkably, this theory allows us to
efficiently train various types of neural networks (convolutional/graph/etc.) with an
infinite number of neurons in each hidden layer (infinite width). As such, this line
of work has gained a lot of attention (Du et al., 2019; Arora et al., 2019; Novak,
L. Xiao, Hron, J. Lee, Alexander A. Alemi, et al., 2020) in recent years. In the limit
of infinite width, one can analytically solve for the neural network after training on
a set of data {𝑥ℓ, 𝑦ℓ}𝑁ℓ=1, where 𝑥ℓ and 𝑦ℓ are vectors of some size. For example,
consider training a neural network that takes in a vector 𝑥 and produces a vector
𝑓 NN
𝜃
(𝑥) through the following optimization problem using gradient descent,

min
𝜃

𝑁∑︁
ℓ=1

 𝑓 NN
𝜃 (𝑥ℓ) − 𝑦ℓ

2
2 , (5.294)

where we begin on a randomly initialized 𝜃. Note that due to the infinite number of
neurons, 𝜃 is a vector of infinite dimension. The trained neural network 𝑓 NN

𝜃∗ (𝑥) can
always be written in the following form

𝑓 NN
𝜃∗ (𝑥) =

𝑁∑︁
ℓ=1

𝑁∑︁
ℓ′=1

𝑘 (NTK) (𝑥, 𝑥ℓ) (𝐾−1)ℓℓ′𝑦ℓ′ , (5.295)

where 𝑘 (NTK) (𝑥, 𝑥′) is a function called the neural tangent kernel (Jacot, Gabriel,
and Hongler, 2018), and 𝐾ℓ,ℓ′ = 𝑘 (NTK) (𝑥ℓ, 𝑥ℓ′) is the kernel matrix of the neural
tangent kernel. One can see that the infinite-dimensional vector 𝜃∗ does not appear
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on the right hand side of Eq. (5.295). And as long as we can efficiently evaluate the
neural tangent kernel 𝑘 (NTK) (𝑥, 𝑥′), we can evaluate the infinite-dimensional neural
network in polynomial time. This is the main contribution of (Jacot, Gabriel, and
Hongler, 2018), which enables one to efficiently train infinite-width neural networks.
For a given neural network architecture, one can compute 𝑘 (NTK) (𝑥, 𝑥′) efficiently
using open-source software, such as (Novak, L. Xiao, Hron, J. Lee, Alexander A.
Alemi, et al., 2020). In Appendix 5.13, we give the code for training infinite-width
neural networks using the open-source software: Neural Tangents (Novak, L. Xiao,
Hron, J. Lee, Alexander A. Alemi, et al., 2020).

Predicting ground state representation
For the task of predicting ground state representation, we consider the training data
to be {

𝑥ℓ → 𝜎𝑇 (𝜌(𝑥ℓ))
}𝑁
ℓ=1 , (5.296)

where 𝜎𝑇 (𝜌(𝑥ℓ)) is the classical shadow representation of 𝜌(𝑥ℓ) given in Eqs. (5.3)
based on𝑇 randomized Pauli measurements. Recall that𝜎𝑇 (𝜌(𝑥ℓ)) is a 2𝑛×2𝑛 matrix
that reproduces 𝜌(𝑥ℓ) in expectation over the randomized Pauli measurements.
Suppose we now train an infinite-width neural network parameterized by 𝜃 that
takes in an input 𝑥 and produces an exponential-size matrix 𝜎NN

𝜃
(𝑥), by solving the

optimization problem

min
𝜃

𝑁∑︁
ℓ=1

𝜎NN
𝜃 (𝑥ℓ) − 𝜎𝑇 (𝜌(𝑥ℓ))

2
𝐹
. (5.297)

The squared Frobenius difference between two matrices is equal to the squared
Euclidean norm of their vectorizations (flattenings). In turn, the theory of infinite-
width neural networks (Jacot, Gabriel, and Hongler, 2018) shows that the trained
neural network 𝜎NN

𝜃∗ (𝑥) could be written in the form

𝜎NN
𝜃∗ (𝑥) =

𝑁∑︁
ℓ=1

𝑁∑︁
ℓ′=1

𝑘 (NTK) (𝑥, 𝑥ℓ) (𝐾−1)ℓℓ′𝜎𝑇 (𝜌(𝑥ℓ′)). (5.298)

The kernel function 𝑘 (NTK) (𝑥, 𝑥′) depends on the neural network architecture and
could be calculated utilizing existing open-source software (Novak, L. Xiao, Hron,
J. Lee, Alexander A. Alemi, et al., 2020). This also falls into the general form shown
in the main text; see Eq. (5.20). Hence, training an infinite-width neural network to
predict an exponentially large density matrix can be done efficiently on a classical
computer. For a given neural network architecture, all one has to do is compute the
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kernel function 𝑘 (NTK) (𝑥, 𝑥′). Then the neural network optimized using the training
data could be analytically solved as given in Eq. (5.298). To estimate a property on
the predicted ground state using the neural network is as simple as evaluating

tr(𝑂𝜎NN
𝜃∗ (𝑥)) =

𝑁∑︁
ℓ=1

𝑁∑︁
ℓ′=1

𝑘 (NTK) (𝑥, 𝑥ℓ) (𝐾−1)ℓℓ′ tr(𝑂𝜎𝑇 (𝜌(𝑥ℓ′))), (5.299)

which can be done by first computing tr(𝑂𝜎𝑇 (𝜌(𝑥ℓ))),∀ℓ = 1, . . . , 𝑁 and compute
the linear interpolation.

Classifying phases of matter
We want to learn how to classify two phases of 𝑛-qubit states. A fully classical
training set would simply consist of 𝑁 labeled classical representations of quantum
states {𝜌ℓ → 𝑦ℓ}𝑁ℓ=1, where 𝑦ℓ = +1 (−1) if 𝜌ℓ belongs to phase 𝐴 (𝐵). However,
insisting on perfect knowledge of each 𝜌ℓ is impractical for a variety of reasons.
Instead, we assume that we have access to classical shadows of 𝜌ℓ. The raw data
𝑆𝑇 (𝜌ℓ) behind each classical shadow is a 2-dimensional array,

𝑆𝑇 (𝜌ℓ) =
{
|𝑠(𝑡)
𝑖
⟩ : 𝑖 ∈ {1, . . . , 𝑛}, 𝑡 ∈ {1, . . . , 𝑇}

}
(5.300)

where |𝑠(𝑡)
𝑖
⟩ ∈ {|0⟩ , |1⟩ , |+⟩ , |−⟩ , |i+⟩ , |i−⟩}. (5.301)

In the main text, we propose to use this data to train a support vector machine based
on the shadow kernel

𝑘 (shadow) (𝑆𝑇 (𝜌ℓ), 𝑆𝑇 (𝜌ℓ′)) (5.302)

= exp

(
𝜏

𝑇2

𝑇∑︁
𝑡,𝑡′=1

exp

(
𝛾

𝑛

𝑛∑︁
𝑖=1

tr
( (

3|𝑠(𝑡)
𝑖
⟩⟨𝑠(𝑡)

𝑖
| − I

) (
3|𝑠(𝑡)

𝑖
⟩⟨𝑠(𝑡)

𝑖
| − I

) )))
. (5.303)

This specific choice of (deterministic) kernel function allows us to carry out a
thorough theoretical analysis of the entire learning procedure; see Appendix 5.9.

But there are other sensible kernels that may perform even better in practice. For
instance, we could feed the two-dimensional data array (5.301) into a neural net-
work architecture, e.g. a convolutional neural network. In the limit of an infinite
number of neurons in each hidden layer, this produces the neural tangent ker-
nel 𝑘 (NTK) (𝑆𝑇 (𝜌ℓ), 𝑆𝑇 (𝜌ℓ′)) (Jacot, Gabriel, and Hongler, 2018). This kernel is
positive-semidefinite and should be viewed as a measure of similarity induced by
the trained neural network. Mercer’s theorem (Mercer, 1909) allows us to make
this intuition precise by reformulating the neural tangent kernel as a Gram matrix in
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Figure 5.4: Numerical experiment for predicting ground-state properties in a 1D
Rydberg atom system with 51 atoms. (a) Hamiltonian. Illustration of the Rydberg
array geometry, Hamiltonian, and phases. (b) Phase diagram. The system’s three
distinct phases (Bernien et al., 2017) are characterized by two order parameters (for
𝑍2 and 𝑍3 orders). Training data are enclosed by gray circles, and three specific
testing points are indicated by the star, diamond, and cross, respectively. (c) Local
expectation values. We use classical ML (the best model is selected from a set
of ML models) to predict the expectation values of Pauli operators 𝑋𝑖 and 𝑍𝑖 for
each atom at the three testing points. We compare with “predictions” obtained
from the training data nearest to the testing points. The markers denote predicted
values, while the solid lines denote exact values obtained from DMRG. Additional
predictions are shown in Appendix 5.13.

feature space:

𝑘 (NTK) (𝑆𝑇 (𝜌ℓ), 𝑆𝑇 (𝜌ℓ′)) = 〈
𝜙(NTK) (𝑆𝑇 (𝜌ℓ)) , 𝜙(NTK) (𝑆𝑇 (𝜌ℓ′))〉 . (5.304)

Hence, any infinite-width neural network with input array 𝑆𝑇 (𝜌) induces a feature
map 𝜙(NTK) that can be used instead of the doubly-infinite feature map 𝜙(shadow)

(5.159) that is associated with the shadow kernel (5.303).

5.12 Numerical experiments
We have conducted numerical experiments assessing the performance of classical
ML algorithms in some practical settings. The results demonstrate that our theoret-
ical claims carry over to practice, with the results sometimes turning out even better
than our guarantees suggest.

Predicting ground state properties
For predicting ground states, we consider classical ML models encompassed by
Eq. (5.20). We examine various metrics 𝜅(𝑥, 𝑥ℓ) equivalent to training neural net-
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works with large hidden layers (Jacot, Gabriel, and Hongler, 2018; Novak, L. Xiao,
Hron, J. Lee, Alexander A. Alemi, et al., 2020) or training kernel methods (Cortes
and Vapnik, 1995; Murphy, 2012). We find the best ML model and the hyperparam-
eters using a validation set to minimize root-mean-square error (RMSE) and report
the predictions on a test set. The full details of the models and hyperparameters, as
well as their comparison, are given in Appendix 5.13 and 5.13.

Rydberg atom chain — Our first example is trapped Rydberg atoms (Fendley, Sen-
gupta, and Sachdev, 2004; Browaeys and Lahaye, 2020), a programmable and highly
controlled platform for Ising-type quantum simulations (Schauß et al., 2015; Endres
et al., 2016; Bernien et al., 2017; Labuhn et al., 2016; Ebadi et al., 2020; Scholl
et al., 2020). Following (Bernien et al., 2017), we consider a one-dimensional array
of 𝑛 = 51 atoms, with each atom effectively described as a two-level system com-
posed of a ground state |𝑔⟩ and a highly-excited Rydberg state |𝑟⟩. The atomic chain
is characterized by a Hamiltonian 𝐻 (𝑥) (given in Figure 5.4(a)) whose parameters
are the laser detuning 𝑥1 = Δ/Ω and the interaction range 𝑥2 = 𝑅𝑏/𝑎. The phase
diagram (shown in Figure 5.4(b)) features a disordered phase and several broken-
symmetry phases, stemming from the competition between the detuning and the
Rydberg blockade (arising from the repulsive Van der Waals interactions).

We trained a classical ML model using 20 randomly chosen values of the parameter
𝑥 = (𝑥1, 𝑥2); these values are indicated by gray circles in Figure 5.4(b). For each such
𝑥, an approximation to the exact ground state was found using DMRG (Steven R.
White, 1992) based on the formalism of matrix product states (MPS) (Schollwoeck,
2011). For each MPS, we performed 𝑇 = 500 randomized Pauli measurements to
construct a classical shadow. The classical ML then predicted classical represen-
tations at the testing points in the parameter space, and these predicted classical
representations were used to estimate expectation values of local observables at the
testing points.

Predictions for expectation values of Pauli operators 𝑍𝑖 and 𝑋𝑖 at the testing points
are shown in Figure 5.4(c), and found to agree well with exact values obtained
from the DMRG computation of the ground state at the testing points. Additional
predictions can be found in Appendix 5.13. Also shown are results from a more
naive procedure, in which properties are predicted using only the data at the point
in the training set which is closest to the testing point. The naive procedure predicts
poorly, illustrating that the considered classical ML model effectively leverages the
data from multiple points in the training set.
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Figure 5.5: Numerical experiment for predicting ground state properties in the
2D antiferromagnetic Heisenberg model. (a) Hamiltonian. Illustration of the
Heisenberg model geometry and Hamiltonian. We consider random couplings 𝐽𝑖 𝑗 ,
sampled uniformly from [0, 2]. A particular instance is shown, with coupling
strength indicated by the thickness of the edges connecting lattice points. (b) Two-
point correlator. Exact values and ML predictions of the expectation value of the
correlation function 𝐶𝑖 𝑗 = 1

3 (𝑋𝑖𝑋 𝑗 +𝑌𝑖𝑌 𝑗 + 𝑍𝑖𝑍 𝑗 ) for all spin pairs (𝑖 𝑗) in the lattice,
for the Hamiltonian instance shown in (a). The absolute value of 𝐶𝑖 𝑗 is represented
by the size of each circle, while the circle’s color indicates the actual value. (c)
Prediction error. Each blue point indicates the root-mean-square error (averaged
over Heisenberg model instances) of the correlation function for a particular pair
(𝑖 𝑗), where the estimate of 𝐶𝑖 𝑗 is obtained using a classical shadow with 𝑇 = 500
randomized Pauli measurements of the true ground state. Red points indicate errors
in ML predictions for 𝐶𝑖 𝑗 .

This example corroborates our expectation that classical machines can learn to
efficiently predict ground state representations. An important caveat is that the
rigorous guarantee in Theorem 17 applies only when the training points and the
testing points are sampled from the same phase, while in this example the training
data includes values of 𝑥 from three different phases. Nevertheless, our numerics
show that classical machines can still learn to predict well.

2D antiferromagnetic Heisenberg model — Our next example is the two-dimensional
antiferromagnetic Heisenberg model. Spin-1

2 particles (i.e. qubits) occupy sites on
a square lattice, and for each pair (𝑖 𝑗) of neighboring sites the Hamiltonian contains
a term 𝐽𝑖 𝑗

(
𝑋𝑖𝑋 𝑗 + 𝑌𝑖𝑌 𝑗 + 𝑍𝑖𝑍 𝑗

)
where the couplings {𝐽𝑖 𝑗 } are uniformly sampled

from the unit interval [0, 2]. The parameter 𝑥 is a list of all 𝐽𝑖 𝑗 couplings; hence in
this case the dimension of the parameter space is 𝑚 = 𝑂 (𝑛), where 𝑛 is the number
of qubits. The Hamiltonian 𝐻 (𝑥) on a 5 × 5 lattice is shown in Figure 5.5(a).

We trained a classical ML model using 90 randomly chosen values of the parameter
𝑥 = {𝐽𝑖 𝑗 }. For each such 𝑥, the exact ground state was found using DMRG, and we
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simulated 𝑇 = 500 randomized Pauli measurements to construct a classical shadow.
The classical ML predicted the classical representation at new values of 𝑥, and
we used the predicted classical representation to estimate a two-body correlation
function, the expectation value of 𝐶𝑖 𝑗 = 1

3
(
𝑋𝑖𝑋 𝑗 + 𝑌𝑖𝑌 𝑗 + 𝑍𝑖𝑍 𝑗

)
, for each pair of

qubits (𝑖 𝑗). In Figure 5.5(b), the predicted and actual values of the correlation
function are displayed for a particular value of 𝑥, showing reasonable agreement.

Figure 5.5(c) shows the prediction performance for all pairs of spins and for variable
system size. Each red point in the plot represents the RMSE in the correlation
function estimated using our predicted classical representation, for a particular pair
of spins and averaged over sampled values of 𝑥. For comparison, each blue point
is the RMSE when the correlation function is predicted using the classical shadow
obtained by measuring the actual ground state 𝑇 = 500 times. For most correlation
functions, the prediction error achieved by the best classical ML model is comparable
to the error achieved by measuring the actual ground state.

Classifying quantum phases of matter
For classifying quantum phases of matter, we consider an unsupervised classical
ML model that constructs an infinite-dimensional nonlinear feature vector for each
quantum state 𝜌 by applying the map 𝜙(shadow) in Eq. (5.159) with 𝜏, 𝛾 = 1 to
the classical shadow 𝑆𝑇 (𝜌) of the quantum state 𝜌. We then perform a principal
component analysis (PCA) (Pearson, 1901) in the infinite-dimensional nonlinear
feature space. The low-dimensional subspace found by PCA in the nonlinear feature
space corresponds to a nonlinear low-dimensional manifold in the original quantum
state space. This method is efficient using the shadow kernel 𝑘 (shadow) given in
Eq. (5.161) and the kernel PCA procedure (Schölkopf, A. Smola, and Müller,
1998). Details are given in Appendix 5.13 and 5.13.

Bond-alternating XXZ model — We begin by considering the bond-alternating XXZ
model with 𝑛 = 300 spins. The Hamiltonian is given in Figure 5.6(a); it encompasses
the bond-alternating Heisenberg model (𝛿 = 1) and the bosonic version of the Su-
Schrieffer-Heeger model (𝛿 = 0) (Su, Schrieffer, and Heeger, 1979). The phase
diagram in Figure 5.6(b) is obtained by evaluating the partial reflection many-body
topological invariant (Pollmann and Ari M Turner, 2012; Andreas Elben, J. Yu, et
al., 2020). There are three different phases: trivial, symmetry-protected topological,
and symmetry broken.

For each value of 𝐽 and 𝛿 considered, we construct the exact ground state using
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(XiXi+1 + YiYi+1 + �ZiZi+1)

Figure 5.6: Numerical experiments for classifying quantum phases in the bond-
alternating XXZ model. (a) Hamiltonian. Illustration of the model — a one-
dimensional qubit chain, where the coefficient of (𝑋𝑖𝑋𝑖+1 + 𝑌𝑖𝑌𝑖+1 + 𝛿𝑍𝑖𝑍𝑖+1) alter-
nates between 𝐽 and 𝐽′. (b) Phase diagram. The system’s three distinct phases are
characterized by the many-body topological invariant �̃�𝑅 discussed in Refs. (Poll-
mann and Ari M Turner, 2012; Andreas Elben, J. Yu, et al., 2020). Blue denotes
�̃�𝑅 = 1, red denotes �̃�𝑅 = −1, and gray denotes �̃�𝑅 ≈ 0. (c, d) Unsupervised phase
classification. Bottom panels: �̃�𝑅 vs. 𝐽′/𝐽 at cross sections (c) 𝛿 = 0.5 and (d)
𝛿 = 3.0 of the phase diagram. Top panels: visualization of the quantum states pro-
jected to two dimensions using the unsupervised ML (nonlinear PCA with shadow
kernel). In all panels, colors of the points indicate the value of 𝐽′/𝐽, indicating that
the two phases naturally cluster in the expressive feature space.

DMRG, and find its classical shadow by performing randomized Pauli measurement
𝑇 = 500 times. We then consider a two-dimensional principal subspace of the
infinite-dimensional nonlinear feature space found by the unsupervised ML based
on the shadow kernel, which is visualized in Figure 5.6(c, d). We can clearly see
that the different phases are well separated in the principal subspace. This shows
that even without any phase labels on the training data, the ML model can already
classify the phases accurately. Hence, when trained with only a small amount of
labeled data, the ML model will be able to correctly classify the phases as guaranteed
by Theorem 21.

Distinguishing a topological phase from a trivial phase — We consider the task of
distinguishing the toric code topological phase from the trivial phase in a system
of 𝑛 = 200 qubits. Figure 5.7(a) illustrates the sampled topological and trivial
states. We generate representatives of the nontrival topological phase by applying
low-depth geometrically local random quantum circuits to Kitaev’s toric code state
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Figure 5.7: Numerical experiments for distinguishing between trivial and topolog-
ical phases. (a) State generation. Trivial or topological states are generated by
applying local random quantum circuits of some circuit depth to a product state or
exactly-solved topological state, respectively. (b) Unsupervised phase classifi-
cation. visualization of the quantum states projected to one dimension using the
unsupervised ML (nonlinear PCA with shadow kernel), shown for varying circuit
depth (divided by the “code distance” 10, which quantifies the depth at which the
topological properties are washed out). The feature space is sufficiently expressive
to resolve the phases for a small enough depth without training, with classification
becoming more difficult as the depth increases. (c) Classification accuracy for
three ML algorithms described in Section 5.12.

(A Yu Kitaev, 2003) with code distance 10, and we generate representatives of the
trivial phase by applying random circuits to a product state.

Randomized Pauli measurements are performed 𝑇 = 500 times to convert the states
to their classical shadows, and these classical shadows are mapped to feature vectors
in the high-dimensional feature space using the feature map 𝜙(shadow) . Figure 5.7(b)
displays a one-dimensional projection of the feature space using the unsupervised
classical ML for various values of the circuit depth, indicating that the phases become
harder to distinguish as the circuit depth increases. In Figure 5.7(c), we show the
classification accuracy of the unsupervised classical ML model. We also compare to
training convolutional neural networks (CNN) that use measurement outcomes from
the Pauli-6 POVM (Carrasquilla, Torlai, et al., 2019) as input to learn an observable
for classifying the phases. Since Proposition 10 establishes that no observable (even
a global one) can classify topological phases, this CNN approach is doomed to fail.
On the other hand, if the CNN takes classical shadow representations as input, then
it can learn nonlinear functions and successfully classify the phases.
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5.13 Details regarding numerical experiments
In this appendix, we provide additional numerical experiments as well as more
details about the numerical experiments described in the main text.

Additional numerical experiments

Classical ML Nearest training data

Classical ML Nearest training data

Nearest training dataClassical ML

*Solid lines indicate exact values from DMRG

Figure 5.8: Numerical experiment for predicting ground state properties (Pauli-𝑍
in each atom) in a 1D Rydberg atom system with 51 atoms. We use classical ML
to predict the ground state properties at the three testing points. Also shown are
“predictions” obtained from the training data nearest to the testing points. The
markers denote predicted values, while the solid lines denote exact values obtained
from DMRG.

Classical ML Nearest training data

Classical ML Nearest training data

Nearest training dataClassical ML

*Solid lines indicate exact values from DMRG

Figure 5.9: Numerical experiment for predicting ground state properties (Pauli-𝑋
in each atom) in a 1D Rydberg atom system with 51 atoms. We use classical ML
to predict the ground state properties at the three testing points. Also shown are
“predictions” obtained from the training data nearest to the testing points. The
markers denote predicted values, while the solid lines denote exact values obtained
from DMRG.

Rydberg atom chain — In the main text, we have provided partial prediction out-
comes for a one-dimensional chain of 𝑛 = 51 Rydberg atoms; see Figure 5.4. Here,
we supply predictions of expectation values of Pauli operators 𝑍𝑖 and 𝑋𝑖 on all 51
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Spline interpolation

Spline interpolation

Spline interpolation

*Solid lines indicate exact values from DMRG

Spline interpolation

Spline interpolation

Spline interpolation

*Solid lines indicate exact values from DMRG

Figure 5.10: “Predictions” obtained by performing bivariate B-spline interpolation
using the training data. The markers denote interpolated values, while the solid
lines denote exact values obtained from DMRG.

atoms at the testing points marked in Figure 5.4(b). These are shown in Figure 5.8
and Figure 5.9, respectively. These extend the more restricted presentation in the
main text to all qubits. In Figure 5.10, we show a different baseline considering
bivariate B-spline interpolation from the training data.

Distinguishing an SPT phase from a trivial phase — We consider a one-dimensional
chain of 𝑛 = 50 qubits with 𝑍2 × 𝑍2 symmetry. The 1D cluster state is in the
nontrivial SPT phase. We generate other representatives of the nontrivial SPT
phase by applying symmetric depth-3 geometrically local random quantum circuits
to the cluster state, and we generate representatives of the trivial phase by applying
symmetric depth-3 random circuits to a product state.

Randomized Pauli measurements are performed 𝑇 = 500 times to convert the states
to their classical shadows, and these classical shadows are mapped to feature vectors
in the infinite-dimensional feature space using the feature map 𝜙(shadow) (5.159). In
Figure 5.11(a), inner products of feature vectors (matrix elements of the shadow
kernel) are displayed. Figure 5.11(b) shows the feature vectors projected onto a two-
dimensional subspace using nonlinear principal component analysis (PCA) based
on the shadow kernel 𝑘 (shadow) . Both figures show that feature vectors representing
distinct phases can be distinguished easily. Correspondingly, the classical ML
efficiently learns how to classify phases accurately, even if the training data is
unlabeled.

Distinguishing a topologically-ordered phase from a trivial phase — We consider
the task of distinguishing the toric code (A Yu Kitaev, 2003) topologically-ordered
phase from the trivial phase in a system of 𝑛 = 200 qubits. We generate other
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Figure 5.11: Numerical experiments for distinguishing trivial and topological
phases. Trivial or topological states are generated by applying low-depth local ran-
dom quantum circuits to a product state or exactly solved topological state respec-
tively. (a) Kernel matrix for SPT/trivial phases The exactly solved topological
state is the cluster state. The (𝑖, 𝑗)-entry denotes the inner product of the 𝑖-th and
𝑗-th feature vectors in the infinite-dimensional feature space defined by the classical
shadow representation. To the left, states from the two phases are randomly mixed.
To the right, the two phases are ordered. (b) Kernel matrix for topologically-
ordered/trivial phases. The exactly solved topological state is the toric code
ground state.

representatives of the topologically-ordered phase by applying two-dimensional
depth-3 geometrically local random quantum circuits to the toric code state, and we
generate representatives of the trivial phase by applying two-dimensional depth-3
random circuits to a product state.

Randomized Pauli measurements are performed 𝑇 = 500 times to convert the
states to their classical shadows, and these classical shadows are mapped to feature
vectors in the infinite-dimensional feature space using the feature map 𝜙(shadow) .
In Figure 5.11(c, d), inner products of feature vectors (matrix elements of the
shadow kernel) and the projection of feature space data onto the two-dimensional
subspace spanned by the largest principal components is shown. Once more, one
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can clearly see that feature vectors representing distinct phases can be distinguished
easily. Correspondingly, the classical ML efficiently learns how to classify phases
accurately, even if the training data is unlabeled.

Ground state properties of the Rydberg atom chain
Our first example is a one-dimensional chain of 𝑛 = 51 Rydberg atoms (Fendley,
Sengupta, and Sachdev, 2004; Browaeys and Lahaye, 2020; Bernien et al., 2017).
Each atom can be in either its ground state or a highly excited Rydberg state. Such
systems can effectively be regarded as a qubit, where the basis state |0⟩ is the ground
state |𝑔⟩ and the basis state |1⟩ is the Rydberg state |𝑟⟩. The Hamiltonian of the
atomic chain is

𝐻 =
Ω

2

∑︁
𝑖

𝑋𝑖 − Δ
∑︁
𝑖

𝑁𝑖 +Ω
∑︁
𝑖< 𝑗

(
𝑅𝑏

𝑎 |𝑖 − 𝑗 |

)6
𝑁𝑖𝑁 𝑗 , (5.305)

where Ω is the (fixed) Rabi frequency, Δ is the laser detuning, 𝑁𝑖 is the Rydberg
occupation number operator, 𝑎 is the separations of the atoms, and 𝑅𝑏 is the so
called Rydberg blockade radius. For large and negative Δ, the ground state of 𝐻 is a
vacuum state, where all atoms are in the ground state |𝑔⟩. In contrast, for large and
positive Δ, different broken-symmetry ground states can be engineered depending
on the value of 𝑅𝑏.

Approximations of the exact ground states of the Rydberg chain were found using
the density-matrix renormalization group (DMRG) based on matrix product states
(MPS). Starting from a random MPS with bond dimension 𝜒 = 10, we variationally
optimize the MPS using a singular value decomposition (SVD) cutoff of 10−9.
We perform a number of DMRG sweeps until the change in energy is below 𝜖 =

10−6. Upon convergence, we perform randomized Pauli measurements simply by
performing local rotations into the corresponding Pauli bases, and sampling the
resulting state (Ferris and Vidal, 2012).

In Figure 5.4(b), the color in the phase diagram corresponds to the phase obtained
by two order parameters for characterizing 𝑍2 and 𝑍3 order. For 𝑍2 order, where the
atoms are in |𝑟𝑔𝑟𝑔𝑟𝑔 . . .⟩ or |𝑔𝑟𝑔𝑟𝑔𝑟 . . .⟩, we consider the order parameter,

𝑂𝑍2 =
1

𝑛 − 1

𝑛−1∑︁
𝑖=1
( |𝑟𝑖𝑔𝑖+1⟩⟨𝑟𝑖𝑔𝑖+1 | + |𝑔𝑖𝑟𝑖+1⟩⟨𝑔𝑖𝑟𝑖+1 |) . (5.306)

For 𝑍3 order, where the atoms are in |𝑟𝑔𝑔𝑟𝑔𝑔 . . .⟩ or |𝑔𝑟𝑔𝑔𝑟𝑔 . . .⟩ or |𝑔𝑔𝑟𝑔𝑔𝑟 . . .⟩,
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we consider the order parameter,

𝑂𝑍3 =

(5.307)

1
𝑛−2

𝑛−2∑︁
𝑖=1
( |𝑟𝑖𝑔𝑖+1𝑔𝑖+2⟩⟨𝑟𝑖𝑔𝑖+1𝑔𝑖+2 | + |𝑔𝑖𝑟𝑖+1𝑔𝑖+2⟩⟨𝑔𝑖𝑟𝑖+1𝑔𝑖+2 | + |𝑔𝑖𝑔𝑖+1𝑟𝑖+2⟩⟨𝑔𝑖𝑔𝑖+1𝑟𝑖+2 |) .

(5.308)

We estimate the two order parameters of the ground state 𝜌. First we check which
order parameter (𝑂𝑍2 or 𝑂𝑍3) yields a larger expectation value. Then, we check
if that expectation value is larger than the threshold value 0.8. If 𝑂𝑍2 > 𝑂𝑍3 and
𝑂𝑍2 > 0.8, we associate the state with the 𝑍2-order phase (red color). Else if
𝑂𝑍3 > 𝑂𝑍2 and 𝑂𝑍3 > 0.8, we say that the state is in the 𝑍3-order phase (vanilla
color). If neither of these conditions is satisfied (both expectation values are less
than 0.8), we assign the disordered phase (blue color) to this state.

For the Rydberg atom experiment, the input parameter vector 𝑥 is two-dimensional.
We first normalize the values to lie within a square [−1, 1]2. Then we consider
classical machine learning models given by

�̂�𝑁 (𝑥) =
𝑁∑︁
ℓ=1

𝜅(𝑥, 𝑥ℓ)𝜎𝑇 (𝑥ℓ) =
𝑁∑︁
ℓ=1

(
𝑁∑︁
ℓ′=1

𝑘 (𝑥, 𝑥ℓ′) (𝐾 + 𝜆𝐼)−1
ℓ′ℓ

)
︸                           ︷︷                           ︸

𝜅(𝑥,𝑥ℓ )

𝜎𝑇 (𝑥ℓ), (5.309)

where 𝜆 > 0 is a parameter to regularize the model when 𝐾 is not invertible,
𝜎𝑇 (𝑥ℓ) is shorthand for 𝜎𝑇 (𝜌ℓ) and denotes the classical shadow representation of
the ground state 𝜌ℓ = 𝜌(𝑥ℓ) under 𝑇 randomized Pauli measurements. Moreover,
𝐾𝑖 𝑗 = 𝑘 (𝑥𝑖, 𝑥 𝑗 ) is the kernel matrix, 𝑘 (𝑥, 𝑥′) is a kernel function, and 𝜅(𝑥, 𝑥ℓ) is
a function that depends on the kernel function, the kernel matrix 𝐾 , and 𝜆. We
consider a set of different regularization parameters,

𝜆 ∈ {0.0125, 0.025, 0.05, 0.125, 0.25, 0.5, 1.0, 2.0, 4.0, 8.0}, (5.310)

and we also consider a set of different kernel functions

𝑘 (𝑥, 𝑥′) = �̃� (𝑥, 𝑥′)/
√︃
�̃� (𝑥, 𝑥) �̃� (𝑥′, 𝑥′), (5.311)

where the kernels �̃� are

�̃� (𝑥, 𝑥′) = exp(−𝛾 ∥𝑥 − 𝑥′∥22), (Gaussian),

(5.312a)
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�̃� (𝑥, 𝑥′) =
3∑︁

𝑘1=−3

3∑︁
𝑘2=−3

cos
(
𝜋(𝑘1(𝑥1 − 𝑥′1) + 𝑘2(𝑥2 − 𝑥′2))

)
, (Dirichlet),

(5.312b)

�̃� (𝑥, 𝑥′) = 𝑘 (NTK) (𝑥, 𝑥′), (Neural tangent).
(5.312c)

The hyperparameter 𝛾 > 0 in the Gaussian kernel is chosen to be equal to

𝑁2/
𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1

𝑥𝑖 − 𝑥 𝑗2
2 , (5.313)

the inverse of the average distance between 𝑥𝑖 and 𝑥 𝑗 . We consider the neural
tangent kernel 𝑘 (NTK) (𝑥, 𝑥′) (Jacot, Gabriel, and Hongler, 2018; Novak, L. Xiao,
Hron, J. Lee, Alexander A. Alemi, et al., 2020) that is equivalent to an infinite-
width feed-forward neural network with 2, 3, 4, 5 hidden layers and that uses the
rectified linear unit (ReLU) as the activation function. Computing the neural tangent
kernel can be implemented easily using the open-source software Neural Tangents
(Novak, L. Xiao, Hron, J. Lee, Alexander A. Alemi, et al., 2020). Suppose that
the input data {𝑥ℓ}𝑁ℓ=1 is stored in a numpy array of size 𝑁 × 𝑚, denoted as dataX
in the following code. We can use then use following code to generate the neural
tangent kernel matrix. The imported package neural_tangents can be downloaded
from https://github.com/google/neural-tangents.

import jax

import numpy as np

from neural_tangents import stax

init_fn, apply_fn, kernel_fn = stax.serial(

stax.Dense(32), stax.Relu(),

stax.Dense(32), stax.Relu(),

stax.Dense(1)

)

kernel_NN2 = kernel_fn(dataX, dataX, ’ntk’)

init_fn, apply_fn, kernel_fn = stax.serial(

stax.Dense(32), stax.Relu(),

stax.Dense(32), stax.Relu(),

stax.Dense(32), stax.Relu(),

https://github.com/google/neural-tangents
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stax.Dense(1)

)

kernel_NN3 = kernel_fn(dataX, dataX, ’ntk’)

init_fn, apply_fn, kernel_fn = stax.serial(

stax.Dense(32), stax.Relu(),

stax.Dense(32), stax.Relu(),

stax.Dense(32), stax.Relu(),

stax.Dense(32), stax.Relu(),

stax.Dense(1)

)

kernel_NN4 = kernel_fn(dataX, dataX, ’ntk’)

init_fn, apply_fn, kernel_fn = stax.serial(

stax.Dense(32), stax.Relu(),

stax.Dense(32), stax.Relu(),

stax.Dense(32), stax.Relu(),

stax.Dense(32), stax.Relu(),

stax.Dense(32), stax.Relu(),

stax.Dense(1)

)

kernel_NN5 = kernel_fn(dataX, dataX, ’ntk’)

list_kernel_NN = [kernel_NN2 , kernel_NN3 , kernel_NN4 , kernel_NN5]

# Normalization of the kernel matrix
for r in range(len(list_kernel_NN)):

for i in range(len(list_kernel_NN[r])):

for j in range(len(list_kernel_NN[r])):

list_kernel_NN[r][i][j] /= (list_kernel_NN[r][i][i] \

∗ list_kernel_NN[r][j][j]) ∗∗ 0.5

In order to predict the expectation value tr(𝑂�̂�𝑁 (𝑥)) of an observable 𝑂 for a new
ground state �̂�𝑁 (𝑥), we utilize the following property of expectation values,

tr(𝑂�̂�𝑁 (𝑥)) =
𝑁∑︁
ℓ=1

𝜅(𝑥, 𝑥ℓ) tr(𝑂𝜎𝑇 (𝑥ℓ)). (5.314)
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Hence, we first compute tr(𝑂𝜎𝑇 (𝑥ℓ)), which can be done efficiently for 𝑟-body
observables that factorize nicely into tensor products. Indeed, an𝑂 = 𝑂𝑖1 ⊗ . . .⊗𝑂𝑖𝑟
ensures

tr(𝑂𝜎𝑇 (𝑥ℓ)) =
1
𝑇

𝑇∑︁
𝑡=1

tr
(
𝑂𝜎

(𝑡)
1 (𝑥ℓ) ⊗ · · · ⊗ 𝜎

(𝑡)
𝑛 (𝑥ℓ)

)
(5.315)

=
1
𝑇

𝑇∑︁
𝑡=1

tr
(
𝑂𝑖1𝜎

(𝑡)
𝑖1
(𝑥ℓ)

)
. . . tr

(
𝑂𝑖𝑟𝜎

(𝑡)
𝑖𝑟
(𝑥ℓ)

)
, (5.316)

and the right hand side can be computed withO(𝑇𝑛) arithmetic operations. Then, we
can compute tr(𝑂�̂�𝑁 (𝑥)) by extrapolating tr(𝑂𝜎𝑇 (𝑥ℓ)) using 𝜅(𝑥, 𝑥ℓ). We utilize
scikit-learn, a Python package (Pedregosa et al., 2011), for the training of these
machine learning models.

Due to the different classical ML models one could consider (corresponding to
different regularization parameters 𝜆 and kernel functions 𝑘 (𝑥, 𝑥′)), we have to
perform model selection to find an appropriate ML model. Typically, the prediction
performance will be quite sensitive to these parameters, so one has to select them
carefully. To evaluate the ML models, we consider 100 different points 𝑥 ∈ [−1, 1]2

in parameter space. Among these 100 points, we select 𝑁 = 20 to be training data.
These are the circled points in Figure 5.4(b). For each property we would like to
predict, we choose one of the the three kernels and the different values of 𝜆 such
that the prediction error is minimized on a validation set containing 80− 3 inputs of
𝑥. The validation set is disjoint from the 20 training points and the 3 testing points
for evaluating the prediction performances (special markers in Figure 5.4(a)). Their
purpose is to perform model selection. Finally, we test on the three input 𝑥’s shown
by the special markers (cross, diamond and star) in Figure 5.4(b).

We found that for each property we would like to predict, the prediction performance
for different classical ML model varies moderately. When we have sufficiently large
training data size 𝑁 , most choices of 𝜆 and the kernel function should yield good
prediction performance. However, we are using a very small number of training
data in our experiments, hence the choice of these options becomes more important.
In particular, the best choice of 𝜆 can differ quite significantly over the different
properties we would like to predict.

For completeness, we include a set of experiments where we vary the training data
size 𝑁 or the classical shadow size𝑇 , where by “shadow size” we mean the number of
randomized Pauli measurements used to approximate each state. The result in given
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Figure 5.12: Numerical experiment for predicting ground state properties (Pauli-𝑋
and 𝑍 in each atom) in a 1D Rydberg atom system with 51 atoms under different hy-
perparameters. (Left) The prediction error (root-mean-square error) over different
training sizes 𝑁 with a fixed number 𝑇 = 10 of randomized Pauli measurements,
also referred to as the shadow size. (Right) The prediction error over different
shadow sizes 𝑇 with a fixed training data size 𝑁 = 31.

in Figure 5.12. For this set of experiments, we consider a fixed set of 70 validation
points in the phase space. Recall that we are using the ML model to predict ground
state properties. Here, we consider the properties to be the expectation values of
single-site Pauli-𝑋 and Pauli-𝑍 operators. Because there are a total of 51 atoms,
there are a total of 51 × 2 = 102 properties. For each property, we randomly draw
10 different points in the phase space (not in the training set or the validation set).
Therefore, the test set is of size 1020, where each instance in the test set corresponds
to a property of a point in the phase space. The prediction error is given by the
root-mean-square error over the 1020 instances in the test set. We can see that as
training set size 𝑁 increases, the prediction becomes better. However, we see that as
the training size increases, the slope of the prediction error (RMSE) over 𝑁 flattens.
This is expected from the theorem we established showing that 𝑁 = 𝑚O(1/𝜖) , where
𝑁 is the training set size, 𝑚 is the number of parameters, and 𝜖 is the prediction
error. While the theorem only provides an upper bound on 𝑁 , if we assume the
upper bound is saturated, then we can use elementary calculus to derive

𝑑𝜖

𝑑𝑁
is proportional to − 𝜖2

𝑁 log(𝑚) . (5.317)

Hence, the analysis is compatible with the observation that the slope of RMSE over
𝑁 flattens as 𝑁 becomes larger. While we proved a rigorous result using the
Dirichlet kernel, other commonly used ML models may yield a better prediction
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performance in practice. Proving rigorous prediction guarantees and understand-
ing the limitations and strengths for other more commonly used ML models are
important future directions.

Ground state properties of the 2D antiferromagnetic Heisenberg model
Our next example is the two-dimensional antiferromagnetic Heisenberg model.
Spin-1

2 particles (i.e. qubits) occupy sites on a square lattice, and for each pair (𝑖 𝑗)
of neighboring sites the Hamiltonian contains a term 𝐽𝑖 𝑗

(
𝑋𝑖𝑋 𝑗 + 𝑌𝑖𝑌 𝑗 + 𝑍𝑖𝑍 𝑗

)
where

the couplings {𝐽𝑖 𝑗 } are uniformly sampled from the interval [0, 2]. The parameter 𝑥
is a list of all 𝐽𝑖 𝑗 couplings; hence in this case the dimension of the parameter space
is 𝑚 = 𝑂 (𝑛), where 𝑛 is the number of qubits. The Hamiltonian 𝐻 (𝑥) on a 5 × 5
lattice is shown in Figure 5.5(a). The exact ground state was found using DMRG.
Analogously to the Rydberg atoms experiments, we fixed the SVD cutoff to 10−8

and stopped the DMRG runs when the difference in energy was below 10−4.

The classical ML models we considered are the same as the Rydberg atom chain
experiment. The only difference is that we slightly modify the Dirichlet kernel
(5.312b) to

𝑘 (𝑥, 𝑥′) =
∑︁
𝑖≠ 𝑗

3∑︁
𝑘𝑖=−3

3∑︁
𝑘 𝑗=−3

cos
(
𝜋(𝑘𝑖 (𝑥𝑖 − 𝑥′𝑖) + 𝑘 𝑗 (𝑥 𝑗 − 𝑥′𝑗 ))

)
, (Dirichlet kernel).

(5.318)
We trained the classical ML model using a training set containing 𝑁 = 90 randomly
chosen values of the parameter 𝑥 = {𝐽𝑖 𝑗 }. Then, for each property we would like to
predict, we find the top-performing ML model setting (out of all 𝜆 parameters and
kernel functions 𝑘 (𝑥, 𝑥′)) on a validation set containing 100 parameters 𝑥 distinct
from the training set. Finally, we test on 10 newly sampled parameters 𝑥 to estimate
the prediction error. Figure 5.5(b) shows the prediction outcome from one of the
input parameter 𝑥. Figure 5.5(c) shows the RMSE from all 10 input parameters.

Similar to the Rydberg atom experiment, the best-performing ML model setting
differs across the properties we would like to predict. The three kernels perform
similarly at larger training data size 𝑁 and larger number of randomized Pauli
measurements𝑇 . But neural networks and Gaussian kernel methods tend to perform
better in most cases. The best choice of 𝜆 differs substantially across the different
properties: there is no single choice of 𝜆 that performs uniformly better than the
other choices.

To showcase these effects, we also include a set of experiments where we vary
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Figure 5.13: Numerical experiment for predicting ground state properties (two-point
correlation functions) in a 2D antiferromagnetic Heisenberg model with 5× 5 spins
under different hyperparameters. (Left) The predict error (root-mean-square error)
over different training size 𝑁 with a fixed number of randomized Pauli measurements
𝑇 = 10, also referred to as the shadow size. (Right) The prediction error (root-
mean-square error) over different shadow size 𝑇 with a fixed training data size
𝑁 = 90.

the training data size 𝑁 or the classical shadow size 𝑇 , that is, the number of
randomized Pauli measurements used to approximate each state. The numerical
results are summarized in Figure 5.13. For this set of experiments, we consider
fixed sets of 100 validation points. For this set of experiments, we consider a fixed
set of 70 validation points in the phase space. Recall that we are using the ML
model to predict ground state properties. Here, we consider the properties to be
the two-point correlation functions over every pair of the 25 spins. This results
in a total of 25 × 25 = 625 properties. For each property, we randomly draw 10
testing points in the 𝑚 = O(𝑛) dimensional parameter space (not in the training set
or the validation set). Therefore, the test set is of size 6250, where each instance
in the test set corresponds to a property of a point in the parameter space. The
prediction error is given by the root-mean-square error over the 6250 instances in
the test set. The results resemble what was found in the Rydberg atom experiments,
but with one notable difference — in the Rydberg experiments, but not for the 2D
antiferromagnet, the Dirichlet kernel has the best performance for the largest shadow
size 𝑇 we considered. This may be because the dimension 𝑚 of the parameter space
is much lower in the Rydberg case.
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Classifying phases of the bond-alternating XXZ model
To illustrate our classical ML for classifying quantum phases of matter, we consider
the bond-alternating XXZ model with 𝑛 = 300 spin-1

2 particles (i.e. qubits). The
Hamiltonian is given by∑︁

𝑖:odd
𝐽 (𝑋𝑖𝑋𝑖+1 + 𝑌𝑖𝑌𝑖+1 + 𝛿𝑍𝑖𝑍𝑖+1) +

∑︁
𝑖:even

𝐽′(𝑋𝑖𝑋𝑖+1 + 𝑌𝑖𝑌𝑖+1 + 𝛿𝑍𝑖𝑍𝑖+1), (5.319)

and encompasses the bond-alternating Heisenberg model (𝛿 = 1), as well as the
bosonic version of the Su-Schrieffer-Heeger model (Su, Schrieffer, and Heeger,
1979) (𝛿 = 0). The phase diagram in Figure 5.6(b) is obtained by evaluating the
partial reflection many-body topological invariant (Pollmann and Ari M Turner,
2012; Andreas Elben, J. Yu, et al., 2020). It is given by

Z̃R =
ZR√︃

[tr(𝜌2
𝐼1
) + tr(𝜌2

𝐼2
)]/2

, where ZR = tr(𝜌𝐼1∪𝐼2R𝐼1∪𝐼2), (5.320)

and we consider 𝐼1 with 6 spins: the 145-th spin to the 150-th spin. Likewise, we
fix 𝐼2 to also contain 6 spins: the 151-th spin to the 156-th spin. Hence, the union
𝐼1∪ 𝐼2 contains 12 spins. The symbols 𝜌𝐼1 , 𝜌𝐼2 and 𝜌𝐼1∪𝐼2 denote the reduced density
matrices associated with each local region. The reflection operator R𝐼1∪𝐼2 acts on
the local region 𝐼1 ∪ 𝐼2 and is given by

R𝐼1∪𝐼2 |𝑠1, . . . , 𝑠 |𝐼1∪𝐼2 |⟩ = |𝑠 |𝐼1∪𝐼2 |, . . . , 𝑠1⟩ , ∀𝑠1, . . . , 𝑠 |𝐼1∪𝐼2 | ∈ {0, 1}. (5.321)

The partial reflection many body-topological invariant can resolve three phases:
trivial (Z̃R = +1), symmetry-protected topological (SPT) (Z̃R = −1) and symmetry
broken (Z̃R = 0). In Figure 5.6(b), we use the colors blue (trivial), red (SPT) and
gray (symmetry broken) to visualize these different types of phases.

For each value of 𝐽′/𝐽 and 𝛿 considered, we construct the exact ground state using
DMRG, and find its classical shadow by performing randomized single-qubit Pauli
measurements a total of 𝑇 = 500 times. To simulate this experiment, we follow the
same setting for DMRG used in (Andreas Elben, J. Yu, et al., 2020). We limit the
maximum number of sweeps to 100 and set the DMRG cutoff to 10−9. We initialize
the state to be the Néel state |0101 . . .⟩. To pin one of the degenerate ground states
in the symmetry-broken phase, we include a penalty term given by 0.1𝐽𝑍1 in the
Hamiltonian.

After obtaining the classical shadow representation 𝑆𝑇 (𝜌ℓ) for each quantum state
𝜌ℓ, we compute the kernel matrix 𝐾 ∈ R𝑁×𝑁 , where each entry is given by the
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shadow kernel 𝑘 (shadow) (𝑆𝑇 (𝜌ℓ), 𝑆𝑇 (𝜌ℓ′)). Recall that the shadow kernel is defined
as

𝑘 (shadow) (𝑆𝑇 (𝜌), 𝑆𝑇 ( �̃�)) = exp

(
1
𝑇2

𝑇∑︁
𝑡,𝑡′=1

exp

(
1
𝑛

𝑛∑︁
𝑖=1

tr
(
𝜎
(𝑡)
𝑖
�̃�
(𝑡′)
𝑖

)))
, (5.322)

where 𝜎 (𝑡)
𝑖

= 3|𝑠(𝑡)
𝑖
⟩⟨𝑠(𝑡)

𝑖
| − I, (5.323)

and the classical shadow representation is given by

𝑆𝑇 (𝜌) =
{
|𝑠(𝑡)
𝑖
⟩ : 𝑖 ∈ {1, . . . , 𝑛} , 𝑡 ∈ {1, . . . , 𝑇}

}
, (5.324)

where |𝑠(𝑡)
𝑖
⟩ ∈ {|0⟩ , |1⟩ , |+⟩ , |−⟩ , |i+⟩ , |i−⟩} . (5.325)

Care should be taken when computing diagonal elements of the kernel matrix 𝐾 .
The problem is that for 𝜌 = �̃� and 𝑡 = 𝑡′, we necessarily have tr

(
𝜎
(𝑡)
𝑖
�̃�
(𝑡)
𝑖

)
= 5 for

all 1 ≤ 𝑖 ≤ 𝑛. And the double exponential will amplify this already substantial
contribution enormously. We found that counteracting this blow-up improves the
numerical stability of the kernel method substantially. When ℓ = ℓ′, when we
compute 𝑘 (shadow) (𝑆𝑇 (𝜌ℓ), 𝑆𝑇 (𝜌ℓ)), we sum over 𝑡 ≠ 𝑡′ instead of all 𝑡, 𝑡′. In
particular, when 𝜌 = �̃�, we consider a slight modification to the kernel definition,

𝑘 (shadow) (𝑆𝑇 (𝜌), 𝑆𝑇 (𝜌)) = exp

(
1

𝑇 (𝑇 − 1)
∑︁
𝑡≠𝑡′

exp

(
1
𝑛

𝑛∑︁
𝑖=1

tr
(
𝜎
(𝑡)
𝑖
𝜎
(𝑡′)
𝑖

)))
, (5.326)

This modification also seems to slightly improve the classification performance.

After evaluating the kernel matrix 𝐾 , we renormalize the entries to obtain the
standardized kernel matrix

𝐾ℓℓ′ =
𝐾ℓℓ′√
𝐾ℓℓ𝐾ℓ′ℓ′

for ℓ, ℓ′ ∈ {1, . . . , 𝑁} . (5.327)

Subsequently, we perform kernel principal component analysis (PCA) on 𝐾 . The
implementation we used for kernel PCA is based on scikit-learn (Buitinck et al.,
2013). The output of kernel PCA is a list of low-dimensional vectors (the dimension
can be chosen arbitrarily, but we choose two dimensions for this experiment). Each
low-dimensional vector corresponds to a quantum state. In Figure 5.6(c, d), we can
see that the low-dimensional vectors are clustered into different quantum phases of
matter.

Distinguishing an SPT phase from a trivial phase — We consider a one-dimensional
chain of 𝑛 = 50 qubits with 𝑍2 × 𝑍2 symmetry. The 1D cluster state is in the
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nontrivial SPT phase. We generate other representatives of the nontrivial SPT phase
by applying symmetric low-depth geometrically local random quantum circuits to
the cluster state, and we generate representatives of the trivial phase by applying
symmetric random circuits to a product state. We simulate the application of
symmetric low-depth geometrically local random quantum circuits to the cluster
state through matrix product states (MPS). Each circuit layer consists of patterns of
random two-qubit gates acting on next-to-nearest neighbors sites. We generate the
random gates in a block-sparse structure in the parity symmetry sectors. This choice,
together with the choice of connectivity, guarantees that the 𝑍2 × 𝑍2 symmetry is
conserved during the circuit evolution.

Randomized Pauli measurements are performed 𝑇 = 500 times to convert the states
to their classical shadows. We perform kernel PCA to find low-dimensional repre-
sentation for the quantum states using exactly the same method as the experiment
on bond-alternating XXZ model.

Distinguishing a topological phase from a trivial phase
We consider the task of distinguishing the toric code topological phase from the
trivial phase in a system of 𝑛 = 200 qubits. Kitaev’s toric code state (A Yu
Kitaev, 2003) is in the nontrivial topologically-ordered phase, while a product
state represents the trivial phase. To populate both phases, we apply low-depth
geometrically local random Clifford circuits (Aaronson and Gottesman, 2004) to
Kitaev’s toric code state (A Yu Kitaev, 2003) with code distance 10, and we generate
representatives of the trivial phase by applying random Clifford circuits to a product
state. We utilize Clifford circuits to ensure efficient simulation of in total 𝑛 = 200
qubits (and with a depth up to 9) by means of the Gottesman-Knill theorem. We again
perform kernel PCA to find low-dimensional representations for the quantum states
using exactly the same method as the experiment on bond-alternating XXZ model.
This is used to generate the plot in Figure 5.7(b) for a one-dimensional projection
of the feature space, as well as the plot in Figure 5.11(d) for a two-dimensional
projection.

For the unsupervised ML model shown in Figure 5.7(c), we consider a combination
of kernel PCA and randomized projections (Karnin et al., 2012). First we perform
kernel PCA to map the data to a six-dimensional subspace of the infinite-dimensional
feature space. Then we repeat the following procedure 500 times. We select a one-
dimensional subspace uniformly at random in the six-dimensional subspace. We
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project all the quantum states to the one-dimensional subspace. Then, we find the
center point (according to median instead of mean) to split up the quantum states
into two phases. We also record the sum of the absolute values from all points to the
center point in the one-dimensional subspace. Finally, we consider the classification
obtained from the random one-dimensional projection that results in the largest sum
of the absolute values.

For the convolutional neural network (CNN) approach shown in Figure 5.7(c), we
consider the following CNN built from Keras (Chollet et al., 2015).

import tensorflow as tf

from tensorflow.keras import datasets , layers, models

model = models.Sequential()

model.add(layers.Conv2D(32, (2, 2), activation=’relu’, padding=’same’,

input_shape=(2∗L, L, 6)))
model.add(layers.MaxPooling2D((2, 2)))

model.add(layers.Conv2D(32, (2, 2), activation=’relu’, padding=’same’))

model.add(layers.MaxPooling2D((2, 2)))

model.add(layers.Conv2D(32, (2, 2), activation=’relu’, padding=’same’))

model.add(layers.Flatten())

model.add(layers.Dense(32, activation=’relu’))

model.add(layers.Dense(2))

In the above code, 𝐿 is the code distance for the toric code and is equal to 10 in
this experiment (recall that toric code ground state has 𝑛 = 2𝐿2 qubits). This CNN
model is supervised and requires a training data with a corresponding label for
indicating which phase the training data point is in. We first perform the Pauli-6
POVM on each qubit (Carrasquilla, Torlai, et al., 2019) to transform the quantum
state into a array of size 𝑛 where each entry has six outcomes. We perform one-hot
encoding to yield a classical vector of size 6𝑛, where each entry in the classical
vector is either 0 or 1. Because the toric code ground state is two-dimensional
(2𝐿 × 𝐿), we restructure the classical vector into a three-dimensional tensor of size
2𝐿 × 𝐿 × 6. The first two dimensions corresponds to the spatial dimension of the
toric code ground state. The last dimension corresponds to the one-hot encoded
vector for the six-outcome POVM. We then train the above model using the Adam
optimizer (Kingma and Ba, 2014) with the categorical cross entropy as the loss
function. The code is given below.
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model.compile(optimizer=’adam’,

loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),

metrics=[’accuracy’])

We train the convolutional neural network using 100 training points (half are
topologically-ordered states, and the other half are trivial states). Then we use
a validation set of 100 points to perform early stopping. This is because the longer
we train, the more likely the neural network is going to overfit. Hence, it is a good
practice to perform model selection by choosing which model to use at different
time points (during the training process). We choose the model that performs the
best on the validation set. Then we test the classification accuracy (the percentage
that the prediction of the phases is correct) on a testing set consisting of 100 points.

The performance of the above ML model is not substantially different from random
guessing. Hence, we also consider a very simple CNN enhanced with classical
shadow under 𝑇 = 500 randomized Pauli measurements. In particular, we compute
the local reduced density matrix using the classical shadow. Then for each qubit,
we represent it with the local reduced density matrix. For simplicity, we consider
the 𝑖-th qubit to be represented by a vector of size 16, which includes the 2-body
reduced density matrix for the subsystem consisting of the 𝑖-th and the 𝑖 +1-th qubit.
Hence, each quantum state is now represented by a classical vector of dimension
2𝐿2 × 16. We reshape the classical vector into a three-dimensional tensor of size
2𝐿 × 𝐿 × 16. The classical vector is feed into the convolutional neural network
structured as follows. We also apply the Adam optimizer (Kingma and Ba, 2014)
with the categorical cross entropy as the loss function. The evaluation process is
exactly the same as the CNN approach based on the Pauli-6 POVM.

import tensorflow as tf

from tensorflow.keras import datasets , layers, models

model = models.Sequential()

model.add(layers.Conv2D(16, (1, 1), activation=’relu’,\

padding=’same’, input_shape=(2∗L, L, 16)))
model.add(layers.MaxPooling2D((2, 2)))

model.add(layers.Conv2D(16, (2, 2), activation=’relu’,\

padding=’same’))

model.add(layers.MaxPooling2D((2, 2)))
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model.add(layers.Conv2D(16, (2, 2), activation=’relu’,\

padding=’same’))

model.add(layers.MaxPooling2D((2, 2)))

model.add(layers.Flatten())

model.add(layers.Dense(32, activation=’relu’))

model.add(layers.Dense(2))

model.compile(optimizer=’adam’,

loss=tf.keras.losses.SparseCategoricalCrossentropy(

from_logits=True),

metrics=[’accuracy’])
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C h a p t e r 6

LEARNING TO PREDICT QUANTUM DYNAMICS

Learning complex quantum dynamics is a fundamental problem at the intersection of
machine learning (ML) and quantum physics. Given an unknown 𝑛-qubit completely
positive trace preserving (CPTP) map E that represents a physical process happening
in nature or in a laboratory, we consider the task of learning to predict functions of
the form

𝑓 (𝜌, 𝑂) = tr(𝑂E(𝜌)), (6.1)

where 𝜌 is an 𝑛-qubit state and 𝑂 is an 𝑛-qubit observable. Related problems
arise in many fields of research, including quantum machine learning (Biamonte
et al., 2017; Schuld and Killoran, 2019; Havlicek et al., 2019; Caro, Huang, Marco
Cerezo, et al., 2022; Schreiber, Jens Eisert, and Meyer, 2022; Jarrod R McClean,
Boixo, et al., 2018; Caro, Huang, Ezzell, et al., 2023; Huang, Broughton, J. Cotler,
et al., 2022; Farhi and Neven, 2018; Arunachalam and Wolf, 2017), variational
quantum algorithms (Gibbs et al., 2022; Cirstoiu et al., 2020; Peruzzo et al., 2014;
Kandala et al., 2017; Kokail et al., 2019; Marco Cerezo et al., 2021; Grimsley et al.,
2019), machine learning for quantum physics (Carleo and Troyer, 2017a; Sharir
et al., 2020; Van Nieuwenburg, Y.-H. Liu, and Sebastian D Huber, 2017; Z. Zhou,
Xiaocheng Li, and Zare, 2017; Carrasquilla and Roger G Melko, 2017a; Parr, 1980;
Car and Parrinello, 1985; Becke, 1993; Steven R White, 1993a; Gilmer et al., 2017;
Huang, Richard Kueng, Torlai, et al., 2022; Huang, Broughton, Masoud Mohseni,
Babbush, Boixo, Neven, and Jarrod R McClean, 2021a), and quantum benchmarking
(Masoud Mohseni, Ali T Rezakhani, and Daniel A Lidar, 2008; Scott, 2008; J. L.
O’Brien et al., 2004; Levy, Luo, and Clark, 2021; Huang, Steven T Flammia, and
Preskill, 2022; Merkel et al., 2013; Blume-Kohout et al., 2017). As an example, for
predicting outcomes of quantum experiments (Huang, Richard Kueng, and Preskill,
2021; Melnikov et al., 2018; Huang, Broughton, J. Cotler, et al., 2022), we consider
𝜌 to be parameterized by a classical input 𝑥, E is an unknown process happening
in the lab, and 𝑂 is an observable measured at the end of the experiment. Another
example is when we want to use a quantum ML algorithm to learn a model of
a complex quantum evolution with the hope that the learned model can be faster
(Cirstoiu et al., 2020; Gibbs et al., 2022; Caro, Huang, Ezzell, et al., 2023).
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As an 𝑛-qubit CPTP map E consists of exponentially many parameters, prior works,
including those based on covering number bounds (Caro, Huang, Marco Cerezo,
et al., 2022; Caro, Huang, Ezzell, et al., 2023; Huang, Richard Kueng, and Preskill,
2021; Huang, Broughton, J. Cotler, et al., 2022), classical shadow tomography
(Levy, Luo, and Clark, 2021; Kunjummen et al., 2021), or quantum process to-
mography (Masoud Mohseni, Ali T Rezakhani, and Daniel A Lidar, 2008; Scott,
2008; J. L. O’Brien et al., 2004), require an exponential number of data samples
to guarantee a small constant error for predicting outcomes of an arbitrary evolu-
tion E under a general input state 𝜌. To improve upon this, recent works (K.-M.
Chung and H.-H. Lin, 2018; Caro, Huang, Marco Cerezo, et al., 2022; Caro, Huang,
Ezzell, et al., 2023; Huang, Richard Kueng, and Preskill, 2021; Huang, Broughton,
J. Cotler, et al., 2022) have considered quantum processes E that can be generated
in polynomial-time and shown that a polynomial amount of data samples suffices
to learn tr(𝑂E(𝜌)) in this restricted class. However, these results still require
exponential computation time.

In this chapter, we present a computationally-efficient ML algorithm that can learn
a model of an arbitrary unknown 𝑛-qubit process E, such that given 𝜌 sampled
from a wide range of distributions over arbitrary 𝑛-qubit states and any 𝑂 in a large
physically-relevant class of observables, the ML algorithm can accurately predict
𝑓 (𝜌, 𝑂) = tr(𝑂E(𝜌)). The ML model can predict outcomes for highly entangled
states 𝜌 after learning from a training set that only contains data for random product
input states and randomized Pauli measurements on the corresponding output states.
The training and prediction of the proposed ML model are both efficient even if the
unknown process E is a Hamiltonian evolution over an exponentially long time, a
quantum circuit with exponentially many gates, or a quantum process arising from
contact with an infinitely large environment for an arbitrarily long time. Further-
more, given few-body reduced density matrices (RDMs) of the input state 𝜌, the ML
algorithm uses only classical computation to predict output properties tr(𝑂E(𝜌)).

The proposed ML model is a combination of efficient ML algorithms for two learning
problems: (1) predicting tr(𝑂𝜌) given a known observable𝑂 and an unknown state
𝜌, and (2) predicting tr(𝑂𝜌) given an unknown observable 𝑂 and a known state
𝜌. We give sample- and computationally-efficient learning algorithms for both
problems. Then we show how to combine the two learning algorithms to address
the problem of learning to predict tr(𝑂E(𝜌)) for an arbitrary unknown 𝑛-qubit
quantum process E. Together, the sample and computational efficiency of the two
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Figure 6.1: Learning to predict an arbitrary unknown quantum process E. Given an
unknown quantum process E with arbitrarily high complexity, and a classical dataset
obtained from evolving random product states under E and performing randomized
Pauli measurements on the output states. We give an algorithm that can learn a
low-complexity model for predicting the local properties of the output states given
the local properties of the input states.

learning algorithms implies the efficiency of the combined ML algorithm.

In order to establish the rigorous guarantee for the proposed ML algorithms, we
consider a different task: optimizing a 𝑘-local Hamiltonian𝐻 =

∑
𝑃∈{𝐼,𝑋,𝑌 ,𝑍}⊗𝑛 𝛼𝑃𝑃.

We present an improved approximate optimization algorithm that finds either a
maximizing/minimizing state |𝜓⟩ with a rigorous lower/upper bound guarantee on
the energy ⟨𝜓 | 𝐻 |𝜓⟩ in terms of the Pauli coefficients 𝛼𝑃 of 𝐻. The rigorous bounds
improve upon existing results on optimizing 𝑘-local Hamiltonians (Dinur et al., 2006;
Barak et al., 2015; Aram W Harrow and Montanaro, 2017a; Anshu, Gosset, et al.,
2021). We then use the improved optimization algorithm to give a constructive proof
of several useful norm inequalities relating the spectral norm ∥𝑂∥ of an observable
𝑂 and the ℓ𝑝-norm of the Pauli coefficients 𝛼𝑃 associated to the observable 𝑂. The
proof resolves a recent conjecture in (Rouzé, Wirth, and Haonan Zhang, 2022) about
the existence of quantum Bohnenblust-Hille inequalities. These norm inequalities
are then used to establish the efficiency of the proposed ML algorithms.
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6.1 Learning quantum states, observables, and processes
Before proceeding to state our main results in greater detail, we describe informally
the learning tasks discussed in this paper: what do we mean by learning a quantum
state, observable, and process?

Learning an unknown state
It is possible in principle to provide a complete classical description of an 𝑛-qubit
quantum state 𝜌. However this would require an exponential number of experiments,
which is not at all practical. Therefore, we set a more modest goal: to learn enough
about 𝜌 to predict many of its physically relevant properties. We specify a family
of target observables {𝑂𝑖} and a small target accuracy 𝜖 . The learning procedure
is judged to be successful if we can predict the expectation value tr(𝑂𝑖𝜌) of every
observable in the family with error no larger than 𝜖 .

Suppose that 𝜌 is an arbitrary and unknown 𝑛-qubit quantum state, and suppose
that we have access to 𝑁 identical copies of 𝜌. We acquire information about
𝜌 by measuring these copies. In principle, we could consider performing collec-
tive measurements across many copies at once. Or we might perform single-copy
measurements sequentially and adaptively; that is, the choice of measurement per-
formed on copy 𝑗 could depend on the outcomes obtained in measurements on
copies 1, 2, 3, . . . 𝑗−1. The target observables we consider are bounded-degree ob-
servables. A bounded-degree 𝑛-qubit observable 𝑂 is a sum of local observables
(each with support on a constant number of qubits independent of 𝑛) such that only
a constant number (independent of 𝑛) of terms in the sum act on each qubit. Most
thermodynamic quantities that arise in quantum many-body physics can be written
as a bounded-degree observable 𝑂, such as a geometrically-local Hamiltonian or
the average magnetization.

In the learning protocols discussed in this paper, the measurements are neither
collective nor adaptive. Instead, we fix an ensemble of possible single-copy mea-
surements, and for each copy of 𝜌 we independently sample from this ensemble
and perform the selected measurement on that copy. Thus there are two sources
of randomness in the protocol — the randomly chosen measurement on each copy,
and the intrinsic randomness of the quantum measurement outcomes. If we are
unlucky, the chosen measurements and/or the measurement outcomes might not be
sufficiently informative to allow accurate predictions. We will settle for a protocol
that achieves the desired prediction task with a high success probability.
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For the protocol to be practical, it is highly advantageous for the sampled mea-
surements to be easy to perform in the laboratory and easy to describe in classical
language. The measurements we consider, random Pauli measurements, meet both
of these criteria. For each copy of 𝜌 and for each of the 𝑛 qubits, we choose uni-
formly at random to measure one of the three single-qubit Pauli observables 𝑋 , 𝑌 ,
or 𝑍 . This learning method, called classical shadow tomography, was analyzed in
(Huang, Richard Kueng, and Preskill, 2020), where an upper bound on the sample
complexity (the number 𝑁 of copies of 𝜌 needed to achieve the task) was expressed
in terms of a quantity called the shadow norm of the target observables.

In this chapter, using a new norm inequality derived here, we improve on the result
in (Huang, Richard Kueng, and Preskill, 2020) by obtaining a tighter upper bound
on the shadow norm for bounded degree observables. The upshot is that, for a fixed
target accuracy 𝜖 , we can predict all bounded-degree observables with spectral norm
less than 𝐵 by performing random Pauli measurements on

𝑁 = O
(
log(𝑛)𝐵2/𝜖2

)
(6.2)

copies of 𝜌. This result improves upon the previously known bound of

O(𝑛 log(𝑛)𝐵2/𝜖2). (6.3)

Furthermore, we derive a matching lower bound on the number of copies required
for this task, which applies even if collective measurements across many copies are
allowed.

Learning an unknown observable
Now suppose that 𝑂 is an arbitrary and unknown 𝑛-qubit observable. We also
consider a distribution D on 𝑛-qubit quantum states. This distribution, too, need
not be known, and it may include highly entangled states. Our goal is to find a
function ℎ(𝜌) which predicts the expectation value tr(𝑂𝜌) of the observable 𝑂 on
the state 𝜌 with a small mean squared error:

E
𝜌∼D
|ℎ(𝜌) − tr(𝑂𝜌) |2 ≤ 𝜖 .

To define this learning task, it is convenient to assume that we can access training
data of the form

{𝜌ℓ, tr (𝑂𝜌ℓ)}𝑁ℓ=1 , (6.4)

where 𝜌ℓ is sampled from the distributionD. In practice, though, we cannot directly
access the exact value of the expectation value tr (𝑂𝜌ℓ); instead, we might measure
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𝑂 multiple times in the state 𝜌ℓ to obtain an accurate estimate of the expectation
value. Furthermore, we don’t necessarily need to sample states from D to achieve
the task. We might prefer to learn about 𝑂 by accessing its expectation value in
states drawn from a different ensemble.

A crucial idea is that we can learn𝑂 efficiently if the distributionD has suitably nice
features. Specifically, we consider distributions that are invariant under single-qubit
Clifford gates applied to any one of the 𝑛 qubits. We say that such distributions
are locally flat, meaning that the probability weight assigned to an 𝑛-qubit state is
unmodified (i.e., the distribution appears flat) when we locally rotate any one of the
qubits.

An arbitrary observable 𝑂 can be expanded in terms of the Pauli operator basis:

𝑂 =
∑︁

𝑃∈{𝐼,𝑋,𝑌 ,𝑍}⊗𝑛
𝛼𝑃𝑃. (6.5)

Though there are 4𝑛 Pauli operators, if the distribution D is locally flat and 𝑂 has a
constant spectral norm, we can approximate the sum over 𝑃 by a truncated sum

𝑂 (𝑘) =
∑︁

𝑃∈{𝐼,𝑋,𝑌 ,𝑍}⊗𝑛:|𝑃 |≤𝑘
𝛼𝑃𝑃. (6.6)

including only the Pauli operators 𝑃with weight |𝑃 | up to 𝑘 , those acting nontrivially
on no more than 𝑘 qubits. The mean squared error incurred by this truncation decays
exponentially with 𝑘 . Therefore, to learn 𝑂 with mean squared error 𝜖 it suffices
to learn this truncated approximation to 𝑂, where 𝑘 = O(log(1/𝜖)). Furthermore,
using norm inequalities derived in this paper, we show that for the purpose of
predicting the expectation value of this truncated operator it suffices to learn only a
few relatively large coefficients 𝛼𝑃, while setting the rest to zero. The upshot is that,
for a fixed target error 𝜖 , an observable with constant spectral norm can be learned
from training data with size O(log 𝑛), where the classical computational cost of
training and predicting is 𝑛O(𝑘) .

Usually, in machine learning, after learning from a training set sampled from a dis-
tribution D, we can only predict new instances sampled from the same distribution
D. We find, though, that for the purpose of learning an unknown observable, there
is a particular locally flat distribution D′ such that learning to predict under D′

suffices for predicting under any other locally flat distribution. Namely, we samples
from the 𝑛-qubit state distributionD′ by preparing each one of the 𝑛 qubits in one of
the six Pauli operator eigenstates {|0⟩ , |1⟩ , |+⟩ , |−⟩ , |𝑦+⟩ , |𝑦−⟩}, chosen uniformly
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at random. Pleasingly, preparing samples fromD′ is not only sufficient for our task,
but also easy to do with existing quantum devices.

After training is completed, to predict tr(𝑂𝜌) for a new state 𝜌 drawn from the
distribution D, we need to know some information about 𝜌. The state 𝜌, like the
operator𝑂, can be expanded in terms of Pauli operators, and when we replace𝑂 by
its weight-𝑘 truncation, only the truncated part of 𝜌 contributes to its expectation
value. Thus if the 𝑘-body reduced density matrices (RDMs) for states drawn fromD
are known classically, then the predictions can be computed classically. If the states
drawn from D are presented as unknown quantum states, then we can learn these
𝑘-body RDMs efficiently (for small 𝑘) using classical shadow tomography, and then
proceed with the classical computation to obtain a predicted value of tr(𝑂𝜌).

Learning an unknown process
Now suppose that E is an arbitrary and unknown quantum process mapping 𝑛 qubits
to 𝑛 qubits. Let {𝑂𝑖} be a family of target observables, and D be a distribution
on quantum states. We assume the ability to repeatedly access E for a total of
𝑁 times. Each time we can apply E to an input state of our choice, and perform
the measurement of our choice on the resulting output. In principle we could
allow input states that are entangled across the 𝑁 channel uses, and allow collective
measurements across the 𝑁 channel outputs. But here we confine our attention to
the case where the 𝑁 inputs are unentangled, and the channel outputs are measured
individually. Our goal is to find a function ℎ(𝜌, 𝑂) which predicts, with a small
mean squared error, the expectation value of 𝑂𝑖 in the output state E(𝜌) for every
observable 𝑂𝑖 in the family {𝑂𝑖}:

E
𝜌∼D
|ℎ(𝜌, 𝑂𝑖) − tr(𝑂𝑖E(𝜌)) |2 ≤ 𝜖 . (6.7)

Our main result is that this task can be achieved efficiently if𝑂𝑖 is a bounded-degree
observable and D is locally flat. That is, 𝑁 , the number of times we access E, and
the computational complexity of training and prediction, scale reasonably with the
system size 𝑛 and the target accuracy 𝜖 .

To prove this result, we observe that the task of learning an unknown quantum process
can be reduced to learning unknown states and learning unknown observables. If
𝜌ℓ is sampled from the distribution D, then, since E is unknown, E(𝜌ℓ) should be
regarded as an unknown quantum state. Suppose we learn this state; that is, after
preparing and measuring E(𝜌ℓ) sufficiently many times we can accurately predict
the expectation value tr(𝑂𝑖E(𝜌ℓ)) for each target observable 𝑂𝑖.
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Now notice that tr(𝑂𝑖E(𝜌ℓ)) = tr(E†(𝑂𝑖)𝜌ℓ), where E† is the (Heisenberg-picture)
map dual to E. Since E† is unknown, E†(𝑂𝑖) should be regarded as an un-
known observable. Suppose we learn this observable; that is, using the dataset
{𝜌ℓ, tr(E†(𝑂𝑖)𝜌ℓ)} as training data, we can predict tr(E†(𝑂𝑖)𝜌) for 𝜌 drawn from
D with a small mean squared error. This achieves the task of learning the process
E for state distribution D and target observable 𝑂𝑖.

Having already shown that arbitrary quantum states can be learned efficiently for
the purpose of predicting expectation values of bounded-degree observables, and
that arbitrary observables can be learned efficiently for locally flat input state dis-
tributions, we obtain our main result. Since the distribution D is locally flat, it
suffices to learn the low-degree truncated approximation to the unknown operator
E†(𝑂𝑖), incurring only a small mean squared error. To predict tr(E†(𝑂𝑖)𝜌), then, it
suffices to know only the few-body RDMs of the input state 𝜌. For any input state
𝜌, these few-body density matrices can be learned efficiently using classical shadow
tomography.

As noted above in the discussion of learning observables, the states 𝜌ℓ in the training
data need not be sampled fromD. To learn a low-degree approximation to E†(𝑂𝑖),
it suffices to sample from a locally flat distribution on product states. Even if we
sample only product states during training, we can make accurate predictions for
highly entangled input states. We also emphasize again that the unknown process
E is arbitrary. Even if E has quantum computational complexity exponential in 𝑛,
we can learn to predict tr(𝑂E(𝜌)) accurately and efficiently, for bounded-degree
observables 𝑂 and for any locally flat distribution on the input state 𝜌.

6.2 Algorithm for learning an unknown quantum process
Consider an unknown 𝑛-qubit quantum process E (a CPTP map). Suppose we
have obtained a classical dataset by performing 𝑁 randomized experiments on E.
Each experiment prepares a random product state |𝜓 (in)⟩ =

⊗𝑛

𝑖=1 |𝑠
(in)
𝑖
⟩, passes

through E, and performs a randomized Pauli measurement (Huang, Richard Kueng,
and Preskill, 2020; Andreas Elben, Steven T Flammia, et al., 2022) on the output
state. Recall that a randomized Pauli measurement measures each qubit of a state
in a random Pauli basis (𝑋 , 𝑌 or 𝑍) and produces a measurement outcome of
|𝜓 (out)⟩ =

⊗𝑛

𝑖=1 |𝑠
(out)
𝑖
⟩, where |𝑠(out)

𝑖
⟩ ∈ stab1 ≜ {|0⟩ , |1⟩ , |+⟩ , |−⟩ , |𝑦+⟩ , |𝑦−⟩}.
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We denote the classical dataset of size 𝑁 to be

𝑆𝑁 (E) ≜
{
|𝜓 (in)
ℓ
⟩ =

𝑛⊗
𝑖=1
|𝑠(in)
ℓ,𝑖
⟩ , |𝜓 (out)

ℓ
⟩ =

𝑛⊗
𝑖=1
|𝑠(out)
ℓ,𝑖
⟩
}𝑁
ℓ=1

, (6.8)

where |𝑠(in)
ℓ,𝑖
⟩ , |𝑠(out)

ℓ,𝑖
⟩ ∈ stab1. Each product state is represented classically with

O(𝑛) bits. Hence, the classical dataset 𝑆𝑁 (E) is of size O(𝑛𝑁) bits. The classical
dataset can be seen as one way to generalize the notion of classical shadows of
quantum states (Huang, Richard Kueng, and Preskill, 2020) to quantum processes.
Our goal is to design an ML algorithm that can learn an approximate model of
E from the classical dataset 𝑆𝑁 (E), such that for a wide range of states 𝜌 and
observables𝑂, the ML model can predict a real value ℎ(𝜌, 𝑂) that is approximately
equal to tr(𝑂E(𝜌)).

ML algorithm
We are now ready to state the proposed ML algorithm. At a high level, the ML
algorithm learns a low-degree approximation to the unknown 𝑛-qubit CPTP map E.
Despite the simplicity of the ML algorithm, several ideas go into the design of the
ML algorithm and the proof of the rigorous performance guarantee. These ideas
are presented in Section 6.3.

Let 𝑂 be an observable with ∥𝑂∥ ≤ 1 that is written as a sum of few-body observ-
ables, where each qubit is acted by O(1) of the few-body observables. We denote
the Pauli representation of 𝑂 as

∑
𝑄∈{𝐼,𝑋,𝑌 ,𝑍}⊗𝑛 𝑎𝑄𝑄. By definition of 𝑂, there are

O(𝑛) nonzero Pauli coefficients 𝑎𝑄 . We consider a hyperparameter 𝜖 > 0; roughly
speaking 𝜖 will scale inverse polynomially in the dataset size 𝑁 from Eq. (6.13).
For every Pauli observable 𝑃 ∈ {𝐼, 𝑋,𝑌 , 𝑍}⊗𝑛 with |𝑃 | ≤ 𝑘 = Θ(log(1/𝜖)), the
algorithm computes an empirical estimate for the corresponding Pauli coefficient
𝛼𝑃 via

𝑥𝑃 (𝑂) =
1
𝑁

𝑁∑︁
ℓ=1

tr

(
𝑃

𝑛⊗
𝑖=1
|𝑠(in)
ℓ,𝑖
⟩⟨𝑠(in)

ℓ,𝑖
|
)

tr

(
𝑂

𝑛⊗
𝑖=1

(
3|𝑠(out)

ℓ,𝑖
⟩⟨𝑠(out)

ℓ,𝑖
| − 𝐼

))
, (6.9)

�̂�𝑃 (𝑂) =


3|𝑃 |𝑥𝑃 (𝑂),
(

1
3

) |𝑃 |
> 2𝜖 and |𝑥𝑃 (𝑂) | > 2 · 3|𝑃 |/2

√
𝜖
∑
𝑄:𝑎𝑄≠0 |𝑎𝑄 |,

0, otherwise.

(6.10)

The computation of 𝑥𝑃 (𝑂) and �̂�𝑃 (𝑂) can both be done classically. The basic idea
of �̂�𝑃 (𝑂) is to set the coefficient 3|𝑃 |𝑥𝑃 (𝑂) to zero when the influence of Pauli
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observable 𝑃 is negligible. Given an 𝑛-qubit state 𝜌, the algorithm outputs

ℎ(𝜌, 𝑂) =
∑︁

𝑃:|𝑃 |≤𝑘
�̂�𝑃 (𝑂) tr(𝑃𝜌). (6.11)

With a proper implementation, the computational time is O(𝑘𝑛𝑘𝑁). Note that, to
make predictions, the ML algorithm only needs the 𝑘-body reduced density matrices
(𝑘-RDMs) of 𝜌. The 𝑘-RDMs of 𝜌 can be efficiently obtained by performing
randomized Pauli measurement on 𝜌 and using the classical shadow formalism
(Huang, Richard Kueng, and Preskill, 2020; Andreas Elben, Steven T Flammia,
et al., 2022). Except for this step, which may require quantum computation, all
other steps of the ML algorithm only requires classical computation. Hence, if the
𝑘-RDMs of 𝜌 can be computed classically, then we have a classical ML algorithm
that can predict an arbitrary quantum process E after learning from data.

Rigorous guarantee
To measure the prediction error of the ML model, we consider the average-case
prediction performance under an arbitrary 𝑛-qubit state distribution D invariant
under single-qubit Clifford gates, which means that the probability distribution
𝑓D (𝜌) of sampling a state 𝜌 is equal to 𝑓D (𝑈𝜌𝑈†) of sampling 𝑈𝜌𝑈† for any
single-qubit Clifford gate𝑈. We call such a distribution locally flat.

Theorem 25 (Learning an unknown quantum process). Given 𝜖, 𝜖′ = Θ(1) and
a training set 𝑆𝑁 (E) of size 𝑁 = O(log 𝑛) as specified in Eq. (6.8). With high
probability, the ML model can learn a function ℎ(𝜌, 𝑂) from 𝑆𝑁 (E) such that for
any distribution D over 𝑛-qubit states invariant under single-qubit Clifford gates,
and for any bounded-degree observable 𝑂 with ∥𝑂∥ ≤ 1,

E
𝜌∼D
|ℎ(𝜌, 𝑂) − tr(𝑂E(𝜌)) |2 ≤ 𝜖 +max

(
∥𝑂′∥2 , 1

)
𝜖′, (6.12)

where 𝑂′ is the low-degree truncation (of degree 𝑘 = ⌈log1.5(1/𝜖)⌉) of the observ-
able 𝑂 after the Heisenberg evolution under E. The training and prediction time of
ℎ(𝜌, 𝑂) are both polynomial in 𝑛. When 𝜖 is small and 𝜖′ = 0, the data size 𝑁 and
computational time scale as 2O(log( 1

𝜖
) log(𝑛)) .

The detailed theorem statement and the proof of the theorem are given in Section 6.9.
An interesting aspect of the above theorem is that the states sampled from the
distribution D can be highly entangled, even though the training data 𝑆𝑁 (E) only
contains information about random product states. From the theorem, we can see
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that if ∥𝑂′∥ = O(1), then we only need O(log(𝑛)) samples to obtain a constant
prediction error. Otherwise, O(log(𝑛)) samples is still enough to guarantee a
constant prediction error relative to ∥𝑂′∥2. The precise scaling is given as follows.
Consider data size

𝑁 = log(𝑛) min
(
2O(log( 1

𝜖
)(log log( 1

𝜖
)+log( 1

𝜖 ′ ))) , 2O(log( 1
𝜖
) log(𝑛))

)
. (6.13)

The computational time to learn and predict ℎ(𝜌, 𝑂) is bounded above by O(𝑘𝑛𝑘𝑁)
and the prediction error is bounded as

E
𝜌∼D
|ℎ(𝜌, 𝑂) − tr(𝑂E(𝜌)) |2 ≤ 𝜖 +max

(
∥𝑂′∥2 , 1

)
𝜖′. (6.14)

As we take 𝜖′ to be zero, we can remove the dependence on the low-degree truncation
𝑂′. In this setting, 𝑁 and computation time both become 2O(log( 1

𝜖
) log(𝑛)) , which is

polynomial in 𝑛 if 𝜖 = Θ(1).

6.3 Proof ideas
The proof of the rigorous performance guarantee for the proposed ML algorithm
consists of five parts. The first two parts presented in Section 6.5 and Section 6.6
are a detour to establish a few fundamental and useful norm inequalities about
Hamiltonians/observables. The latter three parts given in Section 6.7, Section 6.8,
and Section 6.9 apply the newly-established norm inequalities to three learning tasks.
In the following, we present the basic ideas in each part.

Improved approximation algorithms for optimizing local Hamiltonians
We begin with a different task, namely optimizing local Hamiltonians. We are given
an 𝑛-qubit 𝑘-local Hamiltonian

𝐻 =
∑︁

𝑃∈{𝐼,𝑋,𝑌 ,𝑍}⊗𝑛:|𝑃 |≤𝑘
𝛼𝑃𝑃, (6.15)

where |𝑃 | is the weight of the Pauli operator 𝑃, the number of qubits upon which 𝑃
acts nontrivially. Our goal is to find a state |𝜓⟩ that maximizes/minimizes ⟨𝜓 | 𝐻 |𝜓⟩.
This task is related to solving ground states (Kempe, A. Kitaev, and Regev, 2006;
Sakurai and Napolitano, 2017) when we consider minimizing ⟨𝜓 | 𝐻 |𝜓⟩ and quan-
tum optimization (Farhi, Goldstone, and Gutmann, 2014a; Farhi, Goldstone, and
Gutmann, 2014b; Aram W Harrow and Montanaro, 2017a; Parekh and Thompson,
2020; Hallgren, E. Y. Lee, and Parekh, 2020; Anshu, Gosset, et al., 2021; Matthew
B Hastings and O’Donnell, 2022) when we consider maximizing ⟨𝜓 | 𝐻 |𝜓⟩.



248

We give a general randomized approximation algorithm in Section 6.5 for producing
a random product state |𝜓⟩ that either approximately minimizes or approximately
maximizes a 𝑘-local Hamiltonian 𝐻 with a rigorous upper/lower bound based on the
Pauli coefficients 𝛼𝑃 of 𝐻. The proposed optimization algorithm applies to various
classes of Hamiltonians and is inspired by the proofs of Littlewood’s 4/3 inequality
(Littlewood, 1930) and the Bohnenblust-Hille inequality (Bohnenblust and Hille,
1931). For classes that have been studied previously (Dinur et al., 2006; Barak
et al., 2015; Aram W Harrow and Montanaro, 2017a; Anshu, Gosset, et al., 2021),
the proposed algorithm obtains an improved bound. Our improvement crucially
stems from our construction for the random state |𝜓⟩. (Dinur et al., 2006; Barak
et al., 2015; Aram W Harrow and Montanaro, 2017a) utilize a random restriction
approach, where some random subset of qubits are fixed with some random values
and the rest of the qubits are optimized. On the other hand, we utilize a polarization
approach, where we replicate each qubit many times, randomly fix all except the last
replica, optimize the last replica, and combine using a random-signed averaging. A
detailed comparison is given in Section 6.5 and 6.5.

Two classes of Hamiltonians used in our learning applications are general 𝑘-local
Hamiltonians and bounded-degree 𝑘-local Hamiltonians. A 𝑘-local Hamiltonian
with degree at most 𝑑 is a Hermitian operator that can be written as a sum of 𝑘-qubit
observables, where each qubit is acted on by at most 𝑑 of the 𝑘-qubit observables.

Corollary 2 (Optimizing general 𝑘-local Hamiltonian). Given an 𝑛-qubit 𝑘-local
Hamiltonian

𝐻 =
∑︁

𝑃:|𝑃 |≤𝑘
𝛼𝑃𝑃. (6.16)

There is a randomized algorithm that runs in time O(𝑛𝑘 ) and produces either a
random maximizing state |𝜓⟩ = |𝜓1⟩ ⊗ . . . ⊗ |𝜓𝑛⟩ satisfying

E
|𝜓⟩

[
⟨𝜓 | 𝐻 |𝜓⟩

]
≥ E
|𝜙⟩:Haar

[
⟨𝜙 | 𝐻 |𝜙⟩

]
+ 𝐶 (𝑘)

(∑︁
𝑃≠𝐼

|𝛼𝑃 |2𝑘/(𝑘+1)
) (𝑘+1)/(2𝑘)

, (6.17)

or a random minimizing state |𝜓⟩ = |𝜓1⟩ ⊗ . . . ⊗ |𝜓𝑛⟩ satisfying

E
|𝜓⟩

[
⟨𝜓 | 𝐻 |𝜓⟩

]
≤ E
|𝜙⟩:Haar

[
⟨𝜙| 𝐻 |𝜙⟩

]
− 𝐶 (𝑘)

(∑︁
𝑃≠𝐼

|𝛼𝑃 |2𝑘/(𝑘+1)
) (𝑘+1)/(2𝑘)

, (6.18)

where 𝐶 (𝑘) = 1/exp(Θ(𝑘 log 𝑘)).
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Corollary 3 (Optimizing bounded-degree 𝑘-local Hamiltonian). Given an 𝑛-qubit
𝑘-local Hamiltonian 𝐻 =

∑
𝑃:|𝑃 |≤𝑘 𝛼𝑃𝑃 with bounded degree 𝑑, |𝛼𝑃 | ≤ 1 for all

𝑃, and 𝑘 = O(1). There is a randomized algorithm that runs in time O(𝑛𝑑) and
produces either a random maximizing state |𝜓⟩ = |𝜓1⟩ ⊗ . . . ⊗ |𝜓𝑛⟩ satisfying

E
|𝜓⟩

[
⟨𝜓 | 𝐻 |𝜓⟩

]
≥ E
|𝜙⟩:Haar

[
⟨𝜙 | 𝐻 |𝜙⟩

]
+ 𝐶
√
𝑑

∑︁
𝑃≠𝐼

|𝛼𝑃 |, (6.19)

or a random minimizing state |𝜓⟩ = |𝜓1⟩ ⊗ . . . ⊗ |𝜓𝑛⟩ satisfying

E
|𝜓⟩

[
⟨𝜓 | 𝐻 |𝜓⟩

]
≤ E
|𝜙⟩:Haar

[
⟨𝜙| 𝐻 |𝜙⟩

]
− 𝐶
√
𝑑

∑︁
𝑃≠𝐼

|𝛼𝑃 | (6.20)

for some constant 𝐶.

We note that in the above results, we cannot control whether our algorithm outputs an
approximate maximizer or minimizer. This caveat stems from the use of polarization,
where the random-signed averaging only guarantees improvement in one of the two
directions. Modifying our approach to address this issue is an interesting direction
for future work.

Norm inequalities from approximate optimization algorithms
The bridge that connects the optimization of 𝑘-local Hamiltonians and efficient
learning of quantum states and processes is a set of norm inequalites. A norm that
characterizes the efficiency of learning is the Pauli-𝑝 norm, defined as the ℓ𝑝-norm
on the Pauli coefficients of an observable/Hamiltonian 𝐻 =

∑
𝑃 𝛼𝑃𝑃,

∥𝐻∥Pauli,𝑝 ≜
©«

∑︁
𝑃∈{𝐼,𝑋,𝑌 ,𝑍}⊗𝑛

|𝛼𝑃 |𝑝ª®¬
1/𝑝

. (6.21)

The rigorous guarantees from the previous section, namely on finding a state |𝜓⟩
whose energy is higher/lower than a Haar-random state by a margin that depends on
the Pauli coefficients 𝛼𝑃, give an algorithmic proof that the spectral norm ∥𝐻∥ and
the Pauli coefficients 𝛼𝑃 are related. The proof of this relation is given in Section 6.6.
In particular, for general and bounded-degree 𝑘-local Hamiltonian, we can use the
rigorous guarantee from the approximation algorithms to obtain the following norm
inequalites. Corollary 4 proves the conjecture given in (Rouzé, Wirth, and Haonan
Zhang, 2022).
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Corollary 4 (Norm inequality for general 𝑘-local Hamiltonian). Given an 𝑛-qubit
𝑘-local Hamiltonian 𝐻. We have

1
3
𝐶 (𝑘) ∥𝐻∥Pauli, 2𝑘

𝑘+1
≤ ∥𝐻∥ , (6.22)

where 𝐶 (𝑘) = 1/exp(Θ(𝑘 log 𝑘)).

Corollary 5 (Norm inequality for bounded-degree local Hamiltonian). Given an
𝑛-qubit 𝑘-local Hamiltonian 𝐻 with a bounded degree 𝑑. We have

1
3
𝐶 (𝑘, 𝑑) ∥𝐻∥Pauli,1 ≤ ∥𝐻∥ , (6.23)

where 𝐶 (𝑘, 𝑑) = 1/(
√
𝑑 exp(Θ(𝑘 log 𝑘))).

Sample-optimal algorithm for predicting bounded-degree observables
As the first application of the above norm inequalities to learning, we consider the
basic problem of predicting many properties of an unknown 𝑛-qubit state 𝜌. Given
𝑀 observables 𝑂1, . . . , 𝑂𝑀 , after performing measurements on multiple copies of
𝜌, we would like to predict tr(𝑂𝑖𝜌) to 𝜖 error for all 𝑖 ∈ {1, . . . , 𝑀}. This is the task
known as shadow tomography (Aaronson, 2018; Aaronson and Rothblum, 2019;
Huang, Richard Kueng, and Preskill, 2020). One approach for obtaining practically-
efficient algorithms for shadow tomography is via the classical shadow formalism
(Huang, Richard Kueng, and Preskill, 2020).

We consider a physically-relevant class of observables, where the observable 𝑂𝑖 =∑
𝑗 𝑂𝑖 𝑗 is a sum of few-body observables𝑂𝑖 𝑗 and each qubit is acted on byO(1) of the

few-body observables. Despite significant recent progress in shadow tomography
(Levy, Luo, and Clark, 2021; Zhao, Rubin, and Miyake, 2021; H.-Y. Hu and You,
2021; Koh and Grewal, 2020; Senrui Chen, W. Yu, et al., 2021; Hadfield et al.,
2020; Aaronson, 2018; Struchalin et al., 2021; Huang, Sitan Chen, and Preskill,
2023; O’Gorman, 2022; Wan, Huggins, et al., 2022; Bu et al., 2022; Huang,
Broughton, J. Cotler, et al., 2022; Sitan Chen, J. Cotler, et al., 2021b; Coopmans,
Kikuchi, and Benedetti, 2022), the sample complexity (number of copies of 𝜌) for
predicting this class of observables has not been established. The central challenge
is the appearance of the Pauli-1 norm ∥𝑂𝑖∥Pauli,1 when characterizing the sample
complexity. In particular, one can bound the shadow norm ∥𝑂𝑖∥shadow (Huang,
Richard Kueng, and Preskill, 2020), which gives an upper bound on the sample
complexity in terms of the Pauli-1 norm ∥𝑂𝑖∥Pauli,1 up to a constant factor. Using
the new norm inequality established in this chapter, we give a sample-optimal
algorithm for predicting bounded-degree observables.
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The sample-optimal algorithm is equivalent to performing classical shadow to-
mography based on randomized Pauli measurements (Huang, Richard Kueng, and
Preskill, 2020; Andreas Elben, Steven T Flammia, et al., 2022), and is essentially the
ML algorithm given in Section 6.2 with a fixed input state. Consider an unknown
𝑛-qubit state 𝜌. After performing 𝑁 randomized Pauli measurements on 𝑁 copies
of 𝜌, we have a classical dataset denoted as

𝑆𝑁 (𝜌) ≜
{
|𝜓 (out)
ℓ
⟩ =

𝑛⊗
𝑖=1
|𝑠(out)
ℓ,𝑖
⟩
}𝑁
ℓ=1

, (6.24)

where |𝑠(out)
ℓ,𝑖
⟩ ∈ stab1 is a single-qubit stabilizer state. Given an observable 𝑂, the

algorithm predicts

ℎ(𝑂) = 1
𝑁

𝑁∑︁
ℓ=1

tr

(
𝑂

𝑛⊗
𝑖=1

(
3|𝑠(out)

ℓ,𝑖
⟩⟨𝑠(out)

ℓ,𝑖
| − 𝐼

))
. (6.25)

It is not hard to see that computing ℎ(𝑂) only requires O(𝑛𝑁) classical computation
time. Hence, as we show later that 𝑁 = O(log(𝑛)/𝜖2), the learning algorithm is
very efficient. Using the norm inequality for bounded-degree local Hamiltonian
∥𝐻∥Pauli,1 ≤ 𝐶 ∥𝐻∥ for a constant 𝐶 in Corollary 5, and the classical shadow
formalism (Huang, Richard Kueng, and Preskill, 2020; Andreas Elben, Steven T
Flammia, et al., 2022), we obtain the following performance guarantee.

Theorem 26 (Sample complexity upper bound). Given an unknown 𝑛-qubit state 𝜌
and any 𝑛-qubit observables 𝑂1, . . . , 𝑂𝑀 with ∥𝑂𝑖∥ ≤ 𝐵∞. Suppose each observ-
able 𝑂𝑖 is a sum of few-body observables, where each qubit is acted on by O(1) of
the few-body observables. Using a classical dataset 𝑆𝑁 (𝜌) of size

𝑁 = O
(

log
(
min(𝑀, 𝑛)

)
𝐵2
∞

𝜖2

)
, (6.26)

we have |ℎ(𝑂𝑖) − tr(𝑂𝑖𝜌) | ≤ 𝜖,∀𝑖 ∈ {1, . . . , 𝑀} with high probability. The constant
factor in theO(·) notation above scales polynomially in the degree and exponentially
in the locality of the observables.

The following theorem shows that the above algorithm achieves the optimal sample
complexity among any algorithms that can perform collective measurement on many
copies of 𝜌.



252

Theorem 27 (Sample complexity lower bound). Consider the following task. There
is an unknown 𝑛-qubit state 𝜌, and we are given 𝑀 observables 𝑂1, . . . , 𝑂𝑀 with
max𝑖 ∥𝑂𝑖∥ ≤ 𝐵∞. Each observable 𝑂𝑖 is a sum of few-body observables, where
every qubit is acted on by O(1) of the few-body observables. We would like to
estimate tr(𝑂𝑖𝜌) to 𝜖 error for all 𝑖 ∈ [𝑀] with high probability by performing
arbitrary collective measurements on 𝑁 copies of 𝜌. The number of copies 𝑁 must
be at least

𝑁 = Ω

(
log

(
min(𝑀, 𝑛)

)
𝐵2
∞

𝜖2

)
(6.27)

for any algorithm to succeed in this task.

The detailed proofs of the sample complexity stated in the above theorems are given
in Section 6.7.

Efficient algorithms for learning an unknown observable from log(𝑛) samples
As a second learning application of the norm inequalities, we consider the task
of learning an unknown 𝑛-qubit observable 𝑂 (unk) =

∑
𝑃∈{𝐼,𝑋,𝑌 ,𝑍}⊗𝑛 𝛼𝑃𝑃. We can

think of this unknown observable as E†(𝑂), i.e., the observable 𝑂 after Heisenberg
evolution under the unknown process E. Suppose we are given a training dataset of
{𝜌ℓ, tr

(
𝑂 (unk)𝜌ℓ

)
}𝑁
ℓ=1, where 𝜌ℓ is sampled from an arbitrary distribution D over

𝑛-qubit states that is invariant under single-qubit Clifford gates. Given an integer
𝑘 > 0, we define the weight-𝑘 truncation of 𝑂 (unk) to be the following Hermitian
operator

𝑂 (unk,𝑘) ≜
∑︁

𝑃∈{𝐼,𝑋,𝑌 ,𝑍}⊗𝑛:|𝑃 |≤𝑘
𝛼𝑃𝑃, (6.28)

where |𝑃 | is the number of qubits upon which 𝑃 acts nontrivially. For a small 𝑘 ,
we can think of 𝑂 (unk,𝑘) as a low-weight approximation of the unknown observable
𝑂 (unk) . By definition, 𝑂 (unk,𝑘) is a 𝑘-local Hamiltonian, hence the norm inequality
in Corollary 4 shows that

1
3
𝐶 (𝑘)

𝑂 (unk,𝑘)


Pauli, 2𝑘
𝑘+1

=
1
3
𝐶 (𝑘) ©«

∑︁
𝑃∈{𝐼,𝑋,𝑌 ,𝑍}⊗𝑛:|𝑃 |≤𝑘

|𝛼𝑃 |𝑟
ª®¬

1/𝑟

≤
𝑂 (unk,𝑘)

 ,
(6.29)

where 𝑟 = 2𝑘/(𝑘 + 1) ∈ [1, 2). An ℓ𝑟 norm bound (𝑟 < 2) on the Pauli coefficients
implies that we can remove most of the small Pauli coefficients without incurring
too much change under the ℓ2 norm. As an example, consider an 𝑀-dimensional
vector 𝑥 with ∥𝑥∥𝑟 ≤ 1. Given �̃� > 0, let �̃� be the 𝑀-dimensional vector with �̃�𝑖 = 𝑥𝑖
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if |𝑥𝑖 | > �̃� and �̃�𝑖 = 0 if |𝑥𝑖 | ≤ �̃� . We have

∥𝑥 − �̃�∥22 =
∑︁

𝑖:|𝑥𝑖 |≤�̃�
|𝑥𝑖 |2 ≤ �̃� 2−𝑟

∑︁
𝑖:|𝑥𝑖 |≤�̃�

|𝑥𝑖 |𝑟 ≤ �̃� 2−𝑟
∑︁
𝑖

|𝑥𝑖 |𝑟 ≤ �̃� 2−𝑟 . (6.30)

In Section 6.8, we show that the average error (both the mean squared error and the
mean absolute error) is characterized by the ℓ2 norm. Hence, Eq. (6.29) implies that
we can set most of the Pauli coefficients in 𝑂 (unk,𝑘) to zero without incurring too
much error on average.

Using the above reasoning, learning the low-weight truncation 𝑂 (unk,𝑘) amounts to
learning the large Pauli coefficients of𝑂 (unk,𝑘) and setting all small Pauli coefficients
to zero. This ensures that the learning can be done very efficiently. This approach is
presented in Section 6.8 with the main result stated in Lemma 45. It is inspired by the
learning algorithm of (Eskenazis and Ivanisvili, 2022) that achieves a logarithmic
sample complexity for learning classical low-degree functions.

The last step in the proof is to argue that the low-weight truncation𝑂 (unk,𝑘) is a good
surrogate for the unknown observable𝑂 (unk) when the goal is to predict tr(𝑂 (unk)𝜌).
The key insight here is that for distributions D that are invariant under single-
Clifford gates, the contribution of any Pauli term 𝑃 in𝑂 (unk) to E𝜌∼D [tr(𝑂 (unk)𝜌)2]
is exponentially decaying in the the weight |𝑃 |. This allows us to prove that
E𝜌∼D [tr((𝑂 (unk) −𝑂 (unk,𝑘))𝜌)2] is small.

Putting these ingredients together, we arrive at the following theorem. As stated in
the theorem, the learning algorithm is computationally efficient.

Theorem 28 (Learning an unknown observable). Given 𝜖, 𝜖′, 𝛿 > 0. Let 𝑘 =

⌈log1.5(1/𝜖)⌉ and 𝑟 = 2𝑘
𝑘+1 ∈ [1, 2). From training data {𝜌ℓ, tr

(
𝑂 (unk)𝜌ℓ

)
}𝑁
ℓ=1 of

size

𝑁 = log(𝑛/𝛿) min
(
2O(log( 1

𝜖
)(log log( 1

𝜖
)+log( 1

𝜖 ′ ))) , 2O(log( 1
𝜖
) log(𝑛))

)
, (6.31)

where 𝜌ℓ is sampled from D, we can learn a function ℎ(𝜌) such that

E
𝜌∼D

���ℎ(𝜌) − tr(𝑂 (unk)𝜌)
���2 ≤ (𝜖 + 𝜖 ′) 𝑂 (unk)

2
+ 𝜖′

𝑂 (unk,𝑘)
𝑟 𝑂 (unk)

2−𝑟
(6.32)

with probability at least 1−𝛿. The training and prediction time of ℎ(𝜌) are O(𝑁𝑛𝑘 ).

The factor of
𝑂 (unk)2 in the prediction error is the natural scale of the squared

error. From the theorem, we can see that we only need O(log(𝑛)) samples to obtain
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a constant prediction error relative to
𝑂 (unk)2 +

𝑂 (unk,𝑘)𝑟 𝑂 (unk)2−𝑟 . The proof
the the theorem and the detailed description of the ML algorithm are given in
Section 6.8.

Learning an unknown quantum process
The ML algorithm for learning an unknown 𝑛-qubit quantum process E is essen-
tially the combination of the two learning applications described above with a few
modifications. At a high level, we consider the following. There is an 𝑛-qubit
state 𝜌 sampled from an unknown distribution D, as well as an observable 𝑂 that
can be written as a sum of few-body observables, where each qubit is acted on
by a constant number of the few-body observables. In the first stage, we use the
sample-optimal algorithm for predicting the bounded-degree observable 𝑂, where
E(𝜌ℓ) is an unknown quantum state, thus transforming the classical dataset 𝑆𝑁 (E)
in Eq. (6.8) into a dataset,{

𝜌ℓ ≜ |𝜓 (in)ℓ
⟩⟨𝜓 (in)

ℓ
|, tr (𝑂E (𝜌ℓ))

}𝑁
ℓ=1

(6.33)

that maps quantum states to real numbers. In the second stage, we apply the efficient
algorithm for learning an unknown observable𝑂 (unk) = E†(𝑂), regarding Eq. (6.33)
as the training data for this task, thus predicting tr

(
E†(𝑂)𝜌

)
= tr (𝑂E (𝜌)) for the

state 𝜌 drawn from the distribution D. Because both stages of the algorithm run in
time polynomial in 𝑛, the overall runtime for this procedure is polynomial in 𝑛.

In our actual proofs, there are a few deviations from the above high-level design,
stemming from the fact that the input states 𝜌ℓ are tensor products of random single-
qubit stabilizer states. This specific setting allows a few simplifications to be made.
With the simplifications, we can remove an additive factor of 𝜖′ in the prediction
error. Furthermore, a surprising fact is that learning from random product states
is sufficient to predict highly-entangled states sampled from any distribution D
invariant under single-qubit Clifford unitaries. This surprising fact is a result of
the characterization of the prediction error given in Lemma 41 based on a modified
purity on subsystems of an input quantum state 𝜌 ∼ D.

By combining the five parts together, we can establish Theorem 25, the precise
sample complexity scaling in Eq. (6.13), and the prediction error bound in Eq. (6.14).
The full proof is given in Section 6.9.
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n-spin chain
Homogeneous:
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Figure 6.2: Prediction performance of ML models for learning E(𝜌) = 𝑒−𝑖𝑡𝐻𝜌𝑒𝑖𝑡𝐻
for a large time 𝑡. (a) Hamiltonians. We consider XY/Ising model with a
homogeneous/disordered 𝑍 field on an 𝑛-spin open chain. (b) Error scaling
with training set size (𝑁). We show the root-mean-square error (RMSE) for
predicting the Pauli-Z operator 𝑍𝑖 on the output state E(𝜌) for random product
states 𝜌. (c, d) Error scaling with evolution time (𝑡) and system size (𝑛). (d)
shows the RMSE for the XY model with a homogeneous 𝑍 field. The prediction
error remains similar as we exponentially increase 𝑡 and Hilbert space dimension
2𝑛.

6.4 Numerical experiments
We have conducted numerical experiments to assess the performance of ML models
in learning the dynamics of several physical systems. The results corroborate our
theoretical claims that long-time evolution over a many-body system can be learned
efficiently. While our theorem only guarantees good performance for randomly
sampled input states, we also find that the ML models work very well for structured
input states that could be of practical interest. The source code can be found on a
public GitHub repository1.

We focus on training ML models to predict output state properties after the time
dynamics of 1D 𝑛-spin XY/Ising chains with homogeneous/disordered 𝑍 fields.
Let 𝐻 be the many-body Hamiltonian. The quantum processes E is given by
E(𝜌) = 𝑒−𝑖𝑡𝐻𝜌𝑒𝑖𝑡𝐻 for a significantly long evolution time 𝑡 = 106. We consider

1https://github.com/hsinyuan-huang/learning-quantum-process

https://github.com/hsinyuan-huang/learning-quantum-process


256

<latexit sha1_base64="q2KT6yxrllfj2SmiIQBrl/kyPJg=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyqqBch4MVjBPOAZAmzk0kyZnZmmekVwpJ/8OJBEa/+jzf/xsnjoIkFDUVVN91dUSKFRd//9nIrq2vrG/nNwtb2zu5ecf+gbnVqGK8xLbVpRtRyKRSvoUDJm4nhNI4kb0TD24nfeOLGCq0ecJTwMKZ9JXqCUXRSHckNCfxOseSX/SnIMgnmpARzVDvFr3ZXszTmCpmk1rYCP8EwowYFk3xcaKeWJ5QNaZ+3HFU05jbMpteOyYlTuqSnjSuFZKr+nshobO0ojlxnTHFgF72J+J/XSrF3HWZCJSlyxWaLeqkkqMnkddIVhjOUI0coM8LdStiAGsrQBVRwIQSLLy+T+lk5uCyf31+UKroyiyMPR3AMpxDAFVTgDqpQAwaP8Ayv8OZp78V79z5mrTlvHuEh/IH3+QMQZ459</latexit>

t = 10

<latexit sha1_base64="E6yfW1vycOouEFdMqfGWB1Loxrk=">AAAB73icbVDLSgNBEOyNrxhfUY9eBoPgKeyqRC9CwIvHCOYByRpmJ7PJkNnZdaZXCEt+wosHRbz6O978GyePgyYWNBRV3XR3BYkUBl3328mtrK6tb+Q3C1vbO7t7xf2DholTzXidxTLWrYAaLoXidRQoeSvRnEaB5M1geDPxm09cGxGrexwl3I9oX4lQMIpWaiG5Jp77UOkWS27ZnYIsE29OSjBHrVv86vRilkZcIZPUmLbnJuhnVKNgko8LndTwhLIh7fO2pYpG3PjZ9N4xObFKj4SxtqWQTNXfExmNjBlFge2MKA7MojcR//PaKYZXfiZUkiJXbLYoTCXBmEyeJz2hOUM5soQyLeythA2opgxtRAUbgrf48jJpnJW9Svn87qJUjauzOPJwBMdwCh5cQhVuoQZ1YCDhGV7hzXl0Xpx352PWmnPmER7CHzifPz2mjyU=</latexit>

t = 106

<latexit sha1_base64="36RkQszLF/UGsTcc7hmxIUUpvAA=">AAAB7HicbVDLSgNBEOyNrxhfUY9eBoPgKeyqqBch4MVjBNcEkiXMTmaTIbMzy0yvEEK+wYsHRbz6Qd78GyePgyYWNBRV3XR3xZkUFn3/2yusrK6tbxQ3S1vbO7t75f2DR6tzw3jItNSmGVPLpVA8RIGSNzPDaRpL3ogHtxO/8cSNFVo94DDjUUp7SiSCUXRSiOSG+J1yxa/6U5BlEsxJBeaod8pf7a5mecoVMkmtbQV+htGIGhRM8nGpnVueUTagPd5yVNGU22g0PXZMTpzSJYk2rhSSqfp7YkRTa4dp7DpTin276E3E/7xWjsl1NBIqy5ErNluU5JKgJpPPSVcYzlAOHaHMCHcrYX1qKEOXT8mFECy+vEwez6rBZfX8/qJS07VZHEU4gmM4hQCuoAZ3UIcQGAh4hld485T34r17H7PWgjeP8BD+wPv8AaAGjkI=</latexit>

t = 0

<latexit sha1_base64="K53IKef361RZohfDEiM8GjiVdXc=">AAAB7HicbVDLSgNBEOyNrxhfUY9eBoPgKeyqqBch4MVjBNcEkiXMTmaTIbMzy0yvEEK+wYsHRbz6Qd78GyePgyYWNBRV3XR3xZkUFn3/2yusrK6tbxQ3S1vbO7t75f2DR6tzw3jItNSmGVPLpVA8RIGSNzPDaRpL3ogHtxO/8cSNFVo94DDjUUp7SiSCUXRSiOSGBJ1yxa/6U5BlEsxJBeaod8pf7a5mecoVMkmtbQV+htGIGhRM8nGpnVueUTagPd5yVNGU22g0PXZMTpzSJYk2rhSSqfp7YkRTa4dp7DpTin276E3E/7xWjsl1NBIqy5ErNluU5JKgJpPPSVcYzlAOHaHMCHcrYX1qKEOXT8mFECy+vEwez6rBZfX8/qJS07VZHEU4gmM4hQCuoAZ3UIcQGAh4hld485T34r17H7PWgjeP8BD+wPv8AaGKjkM=</latexit>

t = 1

Initial State: 
<latexit sha1_base64="CGJbxqByMmrKSKziT7I6y8W7+AA=">AAACLHicbZDLSgMxFIYzXmu9VV26CRbBVZlRUZeFblxWsBfoDCWTSdvQTDIkZyyl9IHc+CqCuLCIW5/DtB2kth4IfPn/k8v5w0RwA647cdbWNza3tnM7+d29/YPDwtFx3ahUU1ajSijdDIlhgktWAw6CNRPNSBwK1gj7lanfeGLacCUfYZiwICZdyTucErBSu1DxhbUB+5EaSKK1GvgiUmAWBOynSQaZ9bvXRHYFaxeKbsmdFV4FL4MiyqraLrzZ22kaMwlUEGNanptAMCIaOBVsnPdTwxJC+6TLWhYliZkJRrNhx/jcKhHuKG2XBDxTF0+MSGzMMA5tZ0ygZ5a9qfif10qhcxeMuExSYJLOH+qkAoPC0+RwxDWjIIYWCNXc/hXTHtGEgs03b0PwlkdehfplybspXT1cF8uqPI8jh07RGbpAHrpFZXSPqqiGKHpGr+gDTZwX5935dL7mrWtOFuEJ+lPO9w/06qo2</latexit>|# . . . #" . . . "i

Figure 6.3: Visualization of ML model’s prediction for an initial state 𝜌 = |𝜓⟩⟨𝜓 |
with a domain wall. We consider the 1D 50-spin XY chain with a homogeneous 𝑍
field. We show the expectation value of 𝑍𝑖 (𝑡) = 𝑒𝑖𝑡𝐻𝑍𝑖𝑒−𝑖𝑡𝐻 for all the 50 spins on
the initial state |𝜓⟩ = |↓ . . . ↓↑ . . . ↑⟩. The ML model is trained on 10000 random
product states. We see that the ML model performs accurately for a significantly
large range of time 𝑡.

the ML models described by Eq. (6.11). While we utilize the very simple sparsity-
enforcing strategy of setting small values to zero to prove Theorem 25, the standard
sparsity-enforcing approach is through ℓ1 regularization (R. Tibshirani, 1996). A
detailed description of applying ℓ1 regularization to enforce sparsity in 𝛼𝑃 (𝑂) is
given in Section 6.10. We find the best hyperparameters using four-fold cross-
validation to minimize root-mean-square error (RMSE) and report the predictions
on a test set.

Fig. 6.2 considers the performance for predicting the expectation of the Pauli-Z
operator 𝑍𝑖 on the output state for randomly sampled product input states not in
the training data. Fig. 6.2(a) illustrates the many-body Hamiltonian 𝐻. Fig. 6.2(b)
shows the dependence of the error on training set size 𝑁 . We can clearly see that
as training set size 𝑁 increases, the prediction error notably decreases. This ob-
servation confirms our theoretical claim that long-time quantum dynamics could be
efficiently learned. In Fig. 6.2(c), we consider how evolution time 𝑡 affects prediction
performance. From the figure, we can see that even when we exponentially increase
𝑡, the prediction performance remains similar. This matches with our theorem stat-
ing that no matter what the quantum process E is, even if E is an exponentially
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long-time dynamics, the ML model can still predict accurately and efficiently. In
Fig. 6.2(d), we consider the dependence on system size 𝑛. As 𝑛 increases linearly, the
Hilbert space dimension 2𝑛 grows exponentially. Despite the exponential growth,
even for 50-spin systems, the ML model still predicts well. This matches with the
logarithmic scaling on 𝑛 given in Theorem 25.

In Fig. 6.3, we consider predicting properties of the final state after long-time
dynamics for a highly structured input product state:

|𝜓⟩ = |↓ . . . ↓↑ . . . ↑⟩ , (6.34)

which has a single domain wall in the middle. We focus on predicting the expected
value for 𝑍𝑖 (𝑡) = 𝑒𝑖𝑡𝐻𝑍𝑖𝑒

−𝑖𝑡𝐻 on every spin in the 1D 50-spin XY chain with a
homogeneous 𝑍 field ℎ𝑖 = 0.5 and consider evolution time 𝑡 from 0 to 106. We train
the ML model using 𝑁 = 10000 random input product states. We can see that the
ML model predicts very well for this highly structured product state. The ML model
accurately predicts the collapse of the domain wall despite only seeing outcomes
from random unstructured product states. This numerical experiment suggests that
the performance of the ML model goes beyond Theorem 25, which only guarantees
accurate prediction on average.

Theorem 25 states that the ML model can predict well on highly-entangled input
states after learning only from random product state inputs. We test this claim in
Fig. 6.4 by considering an entangled input state

|𝜓𝑒⟩ =
∑︁

𝑠∈{←,→}𝑛/2
w/ even # of→

1
√

2(𝑛/2)−1
|𝑠⟩ ⊗ |→↓←↑→↓←↑ . . .⟩ . (6.35)

The left 𝑛/2 spins of the state |𝜓𝑒⟩ exhibit GHZ-like entanglement, which requires
a linear-depth 1D quantum circuit to prepare. The right 𝑛/2 spins of |𝜓𝑒⟩ form a
product state with spins rotating clockwise from left to right. Combining the left and
right spins together, the state |𝜓𝑒⟩ cannot be generated by a short-depth 1D quantum
circuit. We can see that for this entangled input state, the ML model trained on
random product states still predicts very well across a broad range of the evolution
time 𝑡.

6.5 Optimizing k-local Hamiltonian with random product states
While our goal is to design a good machine learning (ML) algorithm with low
sample complexity, this section is a detour to a different task on the optimization
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Figure 6.4: Visualization of ML model’s prediction for a highly-entangled initial
state 𝜌 = |𝜓⟩⟨𝜓 |. We consider the expected value of 𝑍𝑖 (𝑡) = 𝑒𝑖𝑡𝐻𝑍𝑖𝑒−𝑖𝑡𝐻 , where 𝐻
corresponds to the 1D 50-spin XY chain with a homogeneous 𝑍 field. The initial
state |𝜓⟩ has a GHZ-like entanglement over the left-half chain and is a product state
with spins rotating clockwise over the right-half chain. To prepare |𝜓⟩ with 1D
circuits, a depth of at least Ω(𝑛) is required. Even though the ML model is trained
only on random product states (a total of 𝑁 = 10000), it still performs accurately in
predicting the highly-entangled state over a wide range of evolution time 𝑡.

of a 𝑘-local Hamiltonian. We present an improved approximation algorithm for
optimizing any 𝑘-local Hamiltonian. The central result in this detour will become
useful for showing the low sample complexity of several ML algorithms.

Task description and main theorem

Task 1 (Optimizing quantum Hamiltonian). Given 𝑛, 𝑘 ≥ 1 and an 𝑛-qubit 𝑘-local
Hamiltonian

𝐻 =
∑︁

𝑃∈{𝐼,𝑋,𝑌 ,𝑍}⊗𝑛:|𝑃 |≤𝑘
𝛼𝑃𝑃, (6.36)

where |𝑃 | is the number of non-identity components in 𝑃. Find a state |𝜓⟩ that
maximizes/minimizes ⟨𝜓 | 𝐻 |𝜓⟩.

The task given above is related to solving ground states (Kempe, A. Kitaev,
and Regev, 2006; Sakurai and Napolitano, 2017) when we consider minimizing
⟨𝜓 | 𝐻 |𝜓⟩ and quantum optimization (Farhi, Goldstone, and Gutmann, 2014a; Farhi,
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Goldstone, and Gutmann, 2014b; Aram W Harrow and Montanaro, 2017a; Parekh
and Thompson, 2020; Hallgren, E. Y. Lee, and Parekh, 2020; Anshu, Gosset, et al.,
2021; Matthew B Hastings and O’Donnell, 2022) when we consider maximizing
⟨𝜓 | 𝐻 |𝜓⟩. The maximization and minimization are often the same problem since
maximizing ⟨𝜓 | 𝐻 |𝜓⟩ is the same as minimizing ⟨𝜓 | (−𝐻) |𝜓⟩. Without further
constraints, even for 𝑘 = 2, finding the optimal state |𝜓∗⟩ maximizing ⟨𝜓 | 𝐻 |𝜓⟩ is
known to be QMA-hard (Piddock and Montanaro, 2015), hence it is expected to
have no polynomial-time algorithm even on a quantum computer. Most existing
works consider deterministic or randomized constructions of |𝜓⟩ with rigorous up-
per/lower bound guarantees on ⟨𝜓 | 𝐻 |𝜓⟩ for minimization/maximization. Some of
these lower bounds (Parekh and Thompson, 2020; Hallgren, E. Y. Lee, and Parekh,
2020; Matthew B Hastings and O’Donnell, 2022) are based on the optimal value
OPT = sup|𝜓⟩ ⟨𝜓 | 𝐻 |𝜓⟩, while some (Farhi, Goldstone, and Gutmann, 2014b; Aram
W Harrow and Montanaro, 2017a; Anshu, Gosset, et al., 2021) are based on the
Pauli coefficients 𝛼𝑃.

Definition of expansion

In this section, we present a random product state construction for the optimization
problem, where the rigorous upper/lower bound is based on the Pauli coefficients
𝛼𝑃 and the expansion property defined below. The expansion property is defined
for any Hamiltonian 𝐻.

Definition 3 (Expansion property). Given an 𝑛-qubit Hamiltonian 𝐻 =
∑
𝑃 𝛼𝑃𝑃.

We say 𝐻 has an expansion coefficient 𝑐𝑒 and expansion dimension 𝑑𝑒 if for any
Υ ⊆ {1, . . . , 𝑛} with |Υ| = 𝑑𝑒,∑︁

𝑃∈{𝐼,𝑋,𝑌 ,𝑍}⊗𝑛
1
[
𝛼𝑃 ≠ 0 and

(
Υ ⊆ dom(𝑃) or dom(𝑃) ⊆ Υ

) ]
≤ 𝑐𝑒, (6.37)

where dom(𝑃) is the set of qubits that 𝑃 acts nontrivially on.

The expansion property captures the connectivity of the Hamiltonian. We give
two examples, general 𝑘-local Hamiltonian and geometrically-local Hamiltonian, to
provide more intuition on the expansion property.

Fact 2 (Expansion property for general 𝑘-local Hamiltonian). Any Hamiltonian
given by a sum of 𝑘-qubit observables has expansion coefficient 4𝑘 and expansion
dimension 𝑘 .
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Proof. Let 𝐻 =
∑
𝑃 𝛼𝑃𝑃. All the Pauli observables 𝑃 with nonzero 𝛼𝑃 act at most

on 𝑘 qubits. For any Υ with |Υ| = 𝑘 , all the Pauli observables with nonzero 𝛼𝑃 must
have a domain contained in Υ. There are at most 4𝑘 such Pauli observables. Hence,
the claim follows.

Fact 3 (Expansion property for bounded-degree 𝑘-local Hamiltonian). Any Hamil-
tonian given by a sum of 𝑘-qubit observables 𝐻 =

∑
𝑗 ℎ 𝑗 , where each qubit is acted

on by at most 𝑑 of the 𝑘-qubit observables ℎ 𝑗 , has expansion coefficient 𝑐𝑒 = 4𝑘𝑑
and expansion dimension 𝑑𝑒 = 1.

Proof. For every Υ with |Υ|, Υ = {𝑖} for some qubit 𝑖. For each qubit 𝑖 (corre-
sponding to Υ = {𝑖}), we have at most 𝑑 𝑘-qubit observables acting on 𝑖. Each of
the 𝑘-qubit observables can be expanded into at most 4𝑘 Pauli terms. Hence we can
set 𝑐𝑒 = 4𝑘𝑑 and 𝑑𝑒 = 1.

Fact 4 (Expansion property for geometrically-local Hamiltonian). Any Hamiltonian
given by a sum of geometrically-local observables has expansion coefficient 𝑐𝑒 =

O(1) and expansion dimension 1.

Proof. For a geometrically-local Hamiltonian 𝐻 =
∑
𝑃 𝛼𝑃𝑃, each qubit 𝑖 is acted by

at most a constant number 𝑐𝑖 = O(1) of 𝑃 with non-zero 𝛼𝑃. Hence for any qubit 𝑖,∑
𝑃∈{𝐼,𝑋,𝑌 ,𝑍}⊗𝑛 1[𝛼𝑃 ≠ 0 and (Υ ⊆ dom(𝑃) or dom(𝑃) ⊆ Υ) ] = 𝑐𝑖 . Thus, we can

set 𝑑𝑒 = 1 and 𝑐𝑒 = max𝑖 𝑐𝑖 = O(1).

Main theorem

With the expansion property defined, we can state the rigorous guarantee on the
performance of the proposed randomized approximation algorithm on optimiz-
ing an 𝑛-qubit 𝑘-local Hamiltonian 𝐻. We compare with the average energy
E|𝜙⟩:Haar

[
⟨𝜙 | 𝐻 |𝜙⟩

]
= 𝛼𝐼 over Haar random state. The randomized approximation

algorithm uses an optimization over a single-variable polynomial that guarantees
improvement in at least one direction (minimization or maximization).

Theorem 29 (Random product states for optimizing 𝑘-local Hamiltonian). Given
an 𝑛-qubit 𝑘-local Hamiltonian 𝐻 =

∑
𝑃:|𝑃 |≤𝑘 𝛼𝑃𝑃 with expansion coefficient/di-

mension 𝑐𝑒, 𝑑𝑒. Let 𝑟 = 2𝑑𝑒/(𝑑𝑒 + 1) ∈ [1, 2) and nnz(𝐻) ≜ |{𝑃 : 𝛼𝑃 ≠ 0}|. There
is a randomized algorithm that runs in time O(𝑛𝑘 +nnz(𝐻)2𝑘 ) and produces either
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a random maximizing state |𝜓⟩ = |𝜓1⟩ ⊗ . . . ⊗ |𝜓𝑛⟩ satisfying

E
|𝜓⟩

[
⟨𝜓 | 𝐻 |𝜓⟩

]
≥ E
|𝜙⟩:Haar

[
⟨𝜙 | 𝐻 |𝜙⟩

]
+ 𝐶 (𝑐𝑒, 𝑑𝑒, 𝑘)

(∑︁
𝑃≠𝐼

|𝛼𝑃 |𝑟
)1/𝑟

, (6.38)

or a random minimizing state |𝜓⟩ = |𝜓1⟩ ⊗ . . . ⊗ |𝜓𝑛⟩ satisfying

E
|𝜓⟩

[
⟨𝜓 | 𝐻 |𝜓⟩

]
≤ E
|𝜙⟩:Haar

[
⟨𝜙 | 𝐻 |𝜙⟩

]
− 𝐶 (𝑐𝑒, 𝑑𝑒, 𝑘)

(∑︁
𝑃≠𝐼

|𝛼𝑃 |𝑟
)1/𝑟

. (6.39)

The constant 𝐶 (𝑐𝑒, 𝑑𝑒, 𝑘) is given by

𝐶 (𝑐𝑒, 𝑑𝑒, 𝑘) =
√︁

2(𝑘!)
𝑐

1/(2𝑑𝑒)
𝑒 𝑘 𝑘+1.5+1/𝑟 (

√
6 + 2
√

3)𝑘
= Θ𝑘

(
1

𝑐
1/(2𝑑𝑒)
𝑒

)
, (6.40)

where Θ𝑘 considers the asymptotic scaling when 𝑘 is a constant.

Some observations can be made. First, the improvement over Haar random states
in Theorem 29 becomes larger when the expansion coefficient 𝑐𝑒 is smaller. Sec-
ond, (∑𝑃≠𝐼 |𝛼𝑃 |𝑟)1/𝑟 is the ℓ𝑟-norm on the non-identity Pauli coefficients, so by
monotonicity of ℓ𝑟-norms, (∑𝑃≠𝐼 |𝛼𝑃 |𝑟)1/𝑟 becomes smaller as 𝑟 becomes larger
(corresponding to larger 𝑑𝑒). Hence, the improvement is greater for smaller ex-
pansion dimension 𝑑𝑒. In particular, it is helpful to contrast Eqs. (6.38) and (6.39)
with the following basic estimate corresponding to 𝑟 = 2 which holds regardless of
𝑐𝑒, 𝑑𝑒, 𝑘:

sup
|𝜓⟩

��� ⟨𝜓 | 𝐻 |𝜓⟩ − E
|𝜙⟩:Haar

[
⟨𝜙 | 𝐻 |𝜙⟩

] ��� ≥ (∑︁
𝑃≠𝐼

|𝛼𝑃 |2
)1/2

. (6.41)

This holds for any Hamiltonian 𝐻 =
∑
𝑃 𝛼𝑃𝑃 because(∑︁

𝑃≠𝐼

|𝛼𝑃 |2
)1/2

=
1

2𝑛/2
∥𝐻 − 𝛼𝐼 𝐼 ∥𝐹 ≤ ∥𝐻 − 𝛼𝐼 𝐼 ∥∞ , (6.42)

where ∥·∥ denotes spectral norm, and𝛼𝐼 = E|𝜓⟩:Haar
[
⟨𝜙 | 𝐻 |𝜙⟩

]
. This basic estimate

shows that we can always find a state that improves by at least the ℓ2-norm of 𝛼𝑃,
although the optimization process can be computationally hard.

An alternative version of the main theorem

By following the proof of Theorem 29 and replacing the use of Corollary 10 by
Lemma 32, we can establish the following alternative theorem statement that does
not utilize the expansion property.
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Theorem 30 (Random product states for optimizing 𝑘-local Hamiltonian; alterna-
tive). Given an 𝑛-qubit 𝑘-local Hamiltonian 𝐻 =

∑
𝑃:|𝑃 |≤𝑘 𝛼𝑃𝑃 with 𝑘 = O(1). Let

nnz(𝐻) ≜ |{𝑃 : 𝛼𝑃 ≠ 0}|. There is a randomized algorithm that runs in time
O(𝑛𝑘 + nnz(𝐻)2𝑘 ) and produces a random state |𝜓⟩ = |𝜓1⟩ ⊗ . . . ⊗ |𝜓𝑛⟩ satisfying���� E|𝜓⟩ [ ⟨𝜓 | 𝐻 |𝜓⟩ ] − E

|𝜙⟩:Haar

[
⟨𝜙 | 𝐻 |𝜙⟩

] ���� ≥ 𝐷 ∑︁
𝑖∈[𝑛],𝑝∈{𝑋,𝑌,𝑍}

√︄ ∑︁
𝑃:𝑃𝑖=𝑝

𝛼2
𝑃
, (6.43)

for some constant 𝐷.

We can compare the above theorem with a closely related result in (Aram W
Harrow and Montanaro, 2017a). The following is a restatement of the approximation
guarantee from Theorem 2 and Lemma 3 in (Aram W Harrow and Montanaro,
2017a), which is a corollary of a powerful result in Boolean function analysis
(Dinur et al., 2006; Barak et al., 2015) relating the maximum influence and the
ability to sample a bitstring from the Boolean hypercube with a large magnitude
in the function value. We can define the influence of qubit 𝑖 under Pauli matrix
𝑝 ∈ {𝑋,𝑌, 𝑍} as 𝐼 (𝑖, 𝑝) = ∑

𝑃:𝑃𝑖=𝑝 𝛼
2
𝑃
.

Theorem 31 (Approximation guarantee from (Aram W Harrow and Montanaro,
2017a) for optimizing 𝑘-local Hamiltonian). Given an 𝑛-qubit 𝑘-local Hamiltonian

𝐻 =
∑︁

𝑃:|𝑃 |≤𝑘
𝛼𝑃𝑃 with 𝑘 = O(1). (6.44)

There is a polynomial-time randomized algorithm that produces a random state
|𝜓⟩ = |𝜓1⟩ ⊗ . . . ⊗ |𝜓𝑛⟩ satisfying���� E|𝜓⟩ [ ⟨𝜓 | 𝐻 |𝜓⟩ ] − E

|𝜙⟩:Haar

[
⟨𝜙 | 𝐻 |𝜙⟩

] ���� ≥ 𝐷 ∑︁
𝑖∈[𝑛],𝑝∈{𝑋,𝑌,𝑍}

∑
𝑃:𝑃𝑖=𝑝 𝛼

2
𝑃

max 𝑗 ,𝑞
√︃∑

𝑃:𝑃 𝑗=𝑞 𝛼
2
𝑃

,

(6.45)
for some constant 𝐷.

The guarantee from (Aram W Harrow and Montanaro, 2017a) is asymptotically
optimal when the influence 𝐼 (𝑖, 𝑝) are of a similar magnitude for different qubit 𝑖
and Pauli matrix 𝑝. However, the approximation guarantee can be far from optimal
when there is a large variation in the influence 𝐼 (𝑖, 𝑝) over different qubits 𝑖, 𝑝. As
an example, consider a 1D 𝑛-qubit nearest-neighbor chain, where |𝛼𝑃 | = 1 for only
a constant number of Pauli observables 𝑃 and |𝛼𝑃 | = 1/

√
𝑛 for the rest of the Pauli
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observables. The improvements over Haar random state by our algorithm and the
algorithm in (Aram W Harrow and Montanaro, 2017a) are respectively given by

Θ
©«

∑︁
𝑖∈[𝑛],𝑝∈{𝑋,𝑌,𝑍}

√︄ ∑︁
𝑃:𝑃𝑖=𝑝

𝛼2
𝑃

ª®¬ = Θ
(√
𝑛
)
, (6.46)

Θ
©«

∑︁
𝑖∈[𝑛],𝑝∈{𝑋,𝑌,𝑍}

∑
𝑃:𝑃𝑖=𝑝 𝛼

2
𝑃

max 𝑗 ,𝑞
√︃∑

𝑃:𝑃 𝑗=𝑞 𝛼
2
𝑃

ª®®¬ = Θ (1) . (6.47)

Hence, when there is large variation in the influence, our guarantee improves over
that of (Aram W Harrow and Montanaro, 2017a). For our machine learning appli-
cations, the removal of the dependence on the maximum influence is central. By
removing the ratio

√︁
𝐼 (𝑖, 𝑝)/max 𝑗 ,𝑞

√︁
𝐼 ( 𝑗 , 𝑞), we can obtain the ℓ𝑟 norm dependence

for an 𝑟 < 2 as given in Theorem 29. We will later see that having the ℓ𝑟 norm
bound (for 𝑟 < 2) allows a substantial reduction in the sample complexity in training
machine learning models for predicting properties.

We do want to mention that the improvement comes at a cost of a slightly worse
dependence on 𝑘 = O(1). In Theorem 31 from (Aram W Harrow and Montanaro,
2017a) based on Boolean function analysis (Dinur et al., 2006; Barak et al., 2015), the
dependence on 𝐷 is 1/2Θ(𝑘) . However, our result in Theorem 30 is 𝐷 = 1/2Θ(𝑘 log 𝑘) .
This difference stems from the construction for the random state |𝜓⟩. (Dinur et al.,
2006; Barak et al., 2015; Aram W Harrow and Montanaro, 2017a) utilize a random
restriction approach, where some random subset of variables are fixed with some
random values and the rest of the variables are optimized. On the other hand,
we utilize a polarization approach, where we replicate each variable many times,
randomly fix all except the last replica, optimize the last replica, and combine using
a random-signed averaging.

Corollaries of the main theorem
Here, we consider how the main theorem applies to certain classes of 𝑘-local
Hamiltonians and discuss the relations of the corollaries to related works.

Optimizing arbitrary 𝑘-local Hamiltonians

The first corollary considers a general 𝑘-local Hamiltonian 𝐻 =
∑
𝑃:|𝑃 |≤𝑘 𝛼𝑃𝑃. We

can combine Fact 2 and the main theorem to obtain the following corollary.

Corollary 6 (Optimizing arbitrary 𝑘-local Hamiltonian). Given an 𝑛-qubit 𝑘-local
Hamiltonian 𝐻 =

∑
𝑃:|𝑃 |≤𝑘 𝛼𝑃𝑃. There is a randomized algorithm that runs in time
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O(𝑛𝑘 ) and produces a random product state |𝜓⟩ = |𝜓1⟩ ⊗ . . . ⊗ |𝜓𝑛⟩ with���� E|𝜓⟩ [ ⟨𝜓 | 𝐻 |𝜓⟩ ] − E
|𝜙⟩:Haar

[
⟨𝜙| 𝐻 |𝜙⟩

] ���� ≥ 𝐶 (𝑘) (∑︁
𝑃≠𝐼

|𝛼𝑃 |2𝑘/(𝑘+1)
) (𝑘+1)/(2𝑘)

,

(6.48)
where 𝐶 (𝑘) =

√
2(𝑘!)

2𝑘 𝑘+1.5+(𝑘+1)/(2𝑘 ) (
√

6+2
√

3)𝑘
.

For 𝑘 = 2, we have 2𝑘/(𝑘 + 1) = 4/3 and the above result resembles Littlewood’s
4/3 inequality. Recall that Littlewood’s 4/3 inequality states that given {𝛽𝑖, 𝑗 ∈ C}𝑖, 𝑗 ,

sup

{�����∑︁
𝑖, 𝑗

𝛽𝑖, 𝑗𝑥
(1)
𝑖
𝑥
(2)
𝑗

����� : 𝑥 (𝑘)
𝑖
∈ C,

���𝑥 (𝑘)𝑖 ��� ≤ 1,∀𝑖 ∈ N, 𝑘 ∈ {1, 2}
}

(6.49)

≥ 1
√

2

(∑︁
𝑖, 𝑗

|𝛽𝑖, 𝑗 |4/3
)3/4

. (6.50)

For 𝑘 > 2, the above result resembles Bohnenblust-Hille inequality, which states
that given {𝛽𝑖1,...,𝑖𝑘 ∈ C}𝑖1,...,𝑖𝑘 ,

sup

{����� ∑︁
𝑖1,...,𝑖𝑘

𝛽𝑖1,...,𝑖𝑘𝑥
(1)
𝑖1
. . . 𝑥

(𝑘)
𝑖𝑘

����� : 𝑥 (𝜅)
𝑖𝜅
∈ C,

���𝑥 (𝜅)𝑖𝜅 ��� ≤ 1,∀𝑖𝜅 ∈ N, 𝜅 ∈ [𝑘]
}

(6.51)

≥ 𝐷𝑘

( ∑︁
𝑖1,...,𝑖𝑘

|𝛽𝑖1,...,𝑖𝑘 |2𝑘/(𝑘+1)
) (𝑘+1)/(2𝑘)

, (6.52)

for some constant𝐷𝑘 that depends on 𝑘 . For optimizing general 𝑘-local Hamiltonian,
the design of the randomized approximation algorithm is inspired by the original
proof (Bohnenblust and Hille, 1931) of Bohnenblust-Hille inequality from 1931,
which is used to study the absolute convergence of Dirichlet series.

Optimizing bounded-degree 𝑘-local Hamiltonians

Here, we consider a Hamiltonian given by a sum of 𝑘-qubit observables, where each
qubit is acted on by at most 𝑑 of the 𝑘-qubit observables. This is often referred to
as a 𝑘-local Hamiltonian with a bounded degree 𝑑. We can combine Fact 3 and the
main theorem to obtain the following corollary.

Corollary 7 (Optimizing bounded-degree 𝑘-local Hamiltonian). Given an 𝑛-qubit
𝑘-local Hamiltonian 𝐻 =

∑
𝑃:|𝑃 |≤𝑘 𝛼𝑃𝑃 with bounded degree 𝑑, |𝛼𝑃 | ≤ 1 for all

𝑃, and 𝑘 = O(1). There is a randomized algorithm that runs in time O(𝑛𝑑) and
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produces either a random maximizing state |𝜓⟩ = |𝜓1⟩ ⊗ . . . ⊗ |𝜓𝑛⟩ satisfying

E
|𝜓⟩

[
⟨𝜓 | 𝐻 |𝜓⟩

]
≥ E
|𝜙⟩:Haar

[
⟨𝜙 | 𝐻 |𝜙⟩

]
+ 𝐶
√
𝑑

∑︁
𝑃≠𝐼

|𝛼𝑃 |, (6.53)

or a random minimizing state |𝜓⟩ = |𝜓1⟩ ⊗ . . . ⊗ |𝜓𝑛⟩ satisfying

E
|𝜓⟩

[
⟨𝜓 | 𝐻 |𝜓⟩

]
≤ E
|𝜙⟩:Haar

[
⟨𝜙| 𝐻 |𝜙⟩

]
− 𝐶
√
𝑑

∑︁
𝑃≠𝐼

|𝛼𝑃 | (6.54)

for some constant 𝐶.

The task of optimizing bounded-degree 𝑘-local Hamiltonians has been considered
in previous work (Anshu, Gosset, et al., 2021).

Theorem 32 (Approximation guarantee from (Anshu, Gosset, et al., 2021)). Given
an 𝑛-qubit 2-local Hamiltonian 𝐻 =

∑
𝑃:|𝑃 |≤2 𝛼𝑃𝑃 with bounded degree 𝑑, and

|𝛼𝑃 | ≤ 1 for all 𝑃. There is a polynomial-time randomized algorithm that produces
a quantum circuit that generates a random maximizing state |𝜓⟩ satisfying

E
|𝜓⟩

[
⟨𝜓 | 𝐻 |𝜓⟩

]
≥ E
|𝜙⟩:Haar

[
⟨𝜙 | 𝐻 |𝜙⟩

]
+ 𝐶
𝑑

(∑︁
𝑃≠𝐼

|𝛼𝑃 |2
)
·

∑
𝑃≠𝐼 |𝛼𝑃 |2∑

𝑃≠𝐼 1[𝛼𝑃 ≠ 0] , (6.55)

as well as a random minimizing state |𝜓⟩ satisfying

E
|𝜓⟩

[
⟨𝜓 | 𝐻 |𝜓⟩

]
≤ E
|𝜙⟩:Haar

[
⟨𝜙| 𝐻 |𝜙⟩

]
− 𝐶
𝑑

(∑︁
𝑃≠𝐼

|𝛼𝑃 |2
)
·

∑
𝑃≠𝐼 |𝛼𝑃 |2∑

𝑃≠𝐼 1[𝛼𝑃 ≠ 0] (6.56)

for some constant 𝐶.

The result from (Anshu, Gosset, et al., 2021) considers a single-step gradient de-
scent using a shallow quantum circuit on an initial random product state. Because∑
𝑃≠𝐼 |𝛼𝑃 |2 ≤

∑
𝑃≠𝐼 1[𝛼𝑃 ≠ 0] and

∑
𝑃≠𝐼 |𝛼𝑃 | ≥

∑
𝑃≠𝐼 |𝛼𝑃 |2, our result in Corol-

lary 7 improves either the maximization problem or the minimization problem over
Theorem 32. For example, if we consider 𝛼𝑃 = Θ(1/𝑑), which sets the total inter-
action strength on each qubit to be Θ(1), then the improvement over Haar random
state by our algorithm and the algorithm in (Anshu, Gosset, et al., 2021) is given by

Θ

(
1
√
𝑑

∑︁
𝑃≠𝐼

|𝛼𝑃 |
)
= Θ

( 𝑛

𝑑1.5

)
, Θ

(
1
√
𝑑

(∑︁
𝑃≠𝐼

|𝛼𝑃 |2
)
·

∑
𝑃≠𝐼 |𝛼𝑃 |2∑

𝑃≠𝐼 1[𝛼𝑃 ≠ 0]

)
= Θ

( 𝑛

𝑑4.5

)
.

(6.57)
We can see that our algorithm gives a larger improvement for the scaling with the
degree 𝑑. As another example, consider a 1D 𝑛-qubit nearest-neighbor chain (hence
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𝑑 = 2), where |𝛼𝑃 | = 1 for only a constant number of Pauli observables 𝑃 and
|𝛼𝑃 | = 1/

√
𝑛 for the rest of the Pauli observables. The improvement over Haar

random state by our algorithm and the algorithm in (Anshu, Gosset, et al., 2021) is
given by

Θ

(
1
√
𝑑

∑︁
𝑃≠𝐼

|𝛼𝑃 |
)
= Θ

(√
𝑛
)
, Θ

(
1
√
𝑑

(∑︁
𝑃≠𝐼

|𝛼𝑃 |2
)
·

∑
𝑃≠𝐼 |𝛼𝑃 |2∑

𝑃≠𝐼 1[𝛼𝑃 ≠ 0]

)
= Θ

(
1
𝑛

)
.

(6.58)
We can see that our algorithm gives a larger improvement for the scaling with the
number 𝑛 of qubits.

Description of the randomized approximation algorithm
There are a few steps in the proposed randomized algorithm. The first step is to
choose the best slice of the 𝑘-local Hamiltonian by splitting the 𝑘-local Hamiltonian
𝐻 =

∑
𝑃:|𝑃 |≤𝑘 𝛼𝑃𝑃 as follows,

𝐻 = 𝛼𝐼 𝐼 +
𝑘∑︁
𝜅=1

𝐻𝜅, 𝐻𝜅 ≜
∑︁

𝑃:|𝑃 |=𝜅
𝛼𝑃𝑃. (6.59)

We choose 𝜅∗ ∈ {1, . . . , 𝑘} to be the 𝜅 that maximizes
∑
𝑃:|𝑃 |=𝜅 |𝛼𝑃 |𝑟 , where 𝑟 =

2𝑑𝑒/(𝑑𝑒 + 1). This step can be performed in time O(nnz(𝐻)𝑘).

In the second step, the algorithm samples (𝜅∗ − 1)𝑛 Haar-random single-qubit pure
states,

|𝜓(𝑠, 𝑗)⟩ ∈ C2, ∀𝑠 ∈ {1, . . . , 𝜅∗ − 1}, 𝑗 ∈ {1, . . . , 𝑛}. (6.60)

This step can be performed in time O(𝑛𝑘).

The third step is a local optimization on each qubit based on |𝜓(𝑠, 𝑗)⟩. For each
qubit 𝑖 and Pauli matrix 𝑝 ∈ {𝑋,𝑌, 𝑍}, we define an (𝑛 − 1)-qubit homogeneous
(𝜅∗ − 1)-local Hermitian operator,

𝐻𝜅∗,𝑖,𝑝 ≜
∑︁

𝑃∈{𝐼,𝑋,𝑌 ,𝑍}⊗𝑛:
|𝑃 |=𝜅∗,𝑃𝑖=𝑝

𝛼𝑃

(⊗
𝑗≠𝑖

𝑃 𝑗

)
, (6.61)

For each qubit 𝑖 and 𝑝 ∈ {𝑋,𝑌, 𝑍}, the algorithm computes the real value given as
follows,

𝛽𝑖,𝑝 ≜ (6.62)

E
𝜎∈{±1}𝜅∗−1

[
𝜎1 · · ·𝜎𝜅∗−1 tr

[
𝐻𝜅∗,𝑖,𝑝

⊗
𝑗≠𝑖

[
𝐼

2
+ 1
𝜅∗ − 1

𝜅∗−1∑︁
𝑠=1

𝜎𝑠

(
|𝜓(𝑠, 𝑗)⟩⟨𝜓(𝑠, 𝑗) | −

𝐼

2

)] ] ]
(6.63)
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Then for each qubit 𝑗 , we consider a single-qubit local optimization

|𝜓(𝜅∗, 𝑗)⟩ ≜ arg max
|𝜙⟩: 1-qubit state

⟨𝜙 | ©«
∑︁

𝑝∈{𝑋,𝑌,𝑍}
𝛽 𝑗 ,𝑝𝑝

ª®¬ |𝜙⟩ = 𝐼 + 𝑛𝑋𝑋 + 𝑛𝑌𝑌 + 𝑛𝑍𝑍
2

, (6.64)

where 𝑛𝑝 = 𝛽 𝑗 ,𝑝/
√︃∑

𝑞 𝛽
2
𝑗 ,𝑞

for 𝑝 ∈ {𝑋,𝑌, 𝑍}. After the optimization, the algorithm
samples random numbers 𝜎𝑠 ∈ {±1},∀𝑠 ∈ {1, . . . , 𝜅∗} to define a one-dimensional
parameterized family of 𝑛-qubit product states,

𝜌
(
𝑡; |𝜓(·,·)⟩ , 𝜎

)
≜

𝑛⊗
𝑗=1

(
𝐼

2
+ 𝑡

𝜅∗

𝜅∗∑︁
𝑠=1

𝜎𝑠

(
|𝜓(𝑠, 𝑗)⟩⟨𝜓(𝑠, 𝑗) | −

𝐼

2

))
, ∀𝑡 ∈ [−1, 1] .

(6.65)
We will denote this by 𝜌(𝑡) when |𝜓(·,·)⟩ , 𝜎 are clear from context. This concludes
the third step. The third step can be performed in time O(nnz(𝐻)2𝑘 ).

The fourth step performs a polynomial optimization over the one-dimensional family,

max
𝑡∈[−1,1]

���tr (
𝐻𝜌

(
𝑡; |𝜓(·,·)⟩ , 𝜎

) )
− 𝛼𝐼

��� . (6.66)

The function 𝑓 (𝑡) = tr(𝐻𝜌(𝑡)) is a polynomial of degree at most 𝑘 . We can compute
the function 𝑓 (𝑡) efficiently in time O(nnz(𝐻)𝑘) as 𝜌(𝑡) is a product state. The
optimization can thus be performed efficiently by sweeping through all possible
values of 𝑡 on a sufficiently fine grid. Let 𝑡∗ be the optimal 𝑡.

The final step considers the sampling of a random pure state |𝜓⟩ = |𝜓1⟩ ⊗ . . . ⊗
|𝜓𝑛⟩ from the distribution that corresponds to the mixed state 𝜌

(
𝑡∗; |𝜓(·,·)⟩ , 𝜎

)
. If

tr(𝐻𝜌
(
𝑡∗; |𝜓(·,·)⟩ , 𝜎

)
) − 𝛼𝐼 > 0, then the random product state |𝜓⟩ is a maximizing

state satisfying Eq. (6.38). Otherwise, the random product state |𝜓⟩ is a minimizing
state satisfying Eq. (6.39). This step can be performed in time O(𝑛).

Proof of Theorem 29
The first step of the algorithm considers splitting the 𝑘-local Hamiltonian 𝐻 into
homogeneous 𝜅-local Hamiltonians𝐻𝜅 defined below. In particular, a homogeneous
𝜅∗-local 𝐻𝜅∗ is chosen.

Definition 4 (Homogeneous 𝑘-local). A Hermitian operator 𝐻 is homogeneous
𝑘-local if 𝐻 =

∑
𝑃:|𝑃 |=𝑘 𝛼𝑃𝑃.

The second step is a random sampling that generates a single-qubit pure state
|𝜓(𝑠, 𝑗)⟩ for each qubit 𝑗 and each copy 𝑠 ∈ {1, . . . , 𝜅∗−1}. The third step is the most
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important part of the proof. We will devote Section 6.5, 6.5, and 6.5 to establish the
first inequality given below (Corollary 10).

E
|𝜓 ( ·, · ) ⟩

E
𝜎∈{±1}𝜅∗

��� tr (
𝐻𝜅∗𝜌

(
𝑡 = 1; |𝜓(·,·)⟩ , 𝜎

) ) ��� (6.67)

≥
√︁

2(𝑘!)

𝑐
1/(2𝑑𝑒)
𝑒 𝑘 𝑘+1.5

√
6
𝑘

©«
∑︁

𝑃:|𝑃 |=𝜅∗
|𝛼𝑃 |𝑟ª®¬

1/𝑟

(6.68)

≥
√︁

2(𝑘!)

𝑐
1/(2𝑑𝑒)
𝑒 𝑘 𝑘+1.5+1/𝑟

√
6
𝑘

(∑︁
𝑃≠𝐼

|𝛼𝑃 |𝑟
)1/𝑟

. (6.69)

The second inequality follows from

𝑘
∑︁

𝑃:|𝑃 |=𝜅∗
|𝛼𝑃 |𝑟 ≥

𝑘∑︁
𝜅=1

∑︁
𝑃:|𝑃 |=𝜅

|𝛼𝑃 |𝑟 =
∑︁
𝑃≠𝐼

|𝛼𝑃 |𝑟 . (6.70)

For the fourth step, the analysis of polynomial optimization given in Section 6.5
(Corollary 11) can be combined with the above inequality to obtain

E
|𝜓 ( ·, · ) ⟩

E
𝜎∈{±1}𝜅∗

��� tr (
𝐻𝜌

(
𝑡∗; |𝜓(·,·)⟩ , 𝜎

) )
− 𝛼𝐼

��� (6.71)

≥
√︁

2(𝑘!)
𝑐

1/(2𝑑𝑒)
𝑒 𝑘 𝑘+1.5+1/𝑟 (

√
6(1 +

√
2))𝑘

(∑︁
𝑃≠𝐼

|𝛼𝑃 |𝑟
)1/𝑟

. (6.72)

For the final step of the algorithm, using E|𝜓⟩ |𝜓⟩⟨𝜓 | = 𝜌(𝑡∗; 𝜌(𝑠, 𝑗) , 𝜎𝑠) and convexity,
we have

E
|𝜓 ( ·, · ) ⟩

E
𝜎∈{±1}𝜅∗

E
|𝜓⟩

��� ⟨𝜓 | 𝐻 |𝜓⟩ − 𝛼𝐼 ��� (6.73)

≥ E
|𝜓 ( ·, · ) ⟩

E
𝜎∈{±1}𝜅∗

��� tr (
𝐻 E
|𝜓⟩
|𝜓⟩⟨𝜓 |

)
− 𝛼𝐼

��� (6.74)

≥
√︁

2(𝑘!)
𝑐

1/(2𝑑𝑒)
𝑒 𝑘 𝑘+1.5+1/𝑟 (

√
6 + 2
√

3)𝑘

(∑︁
𝑃≠𝐼

|𝛼𝑃 |𝑟
)1/𝑟

. (6.75)

The theorem follows by noting that E|𝜙⟩:Haar
[
⟨𝜙 | 𝐻 |𝜙⟩

]
= 𝛼𝐼 .

Polarization

We justify the definition of 𝛽𝑖,𝑝 using polarization. Given an 𝑛-qubit homogeneous
𝑘-local observable 𝑂 =

∑
𝑃:|𝑃 |=𝑘 𝛼𝑃𝑃, consider the following 𝑛𝑘-qubit observable.

First, we will index the set [𝑛𝑘] using ordered tuples (𝑠, 𝑖) where 𝑠 ∈ [𝑘] and 𝑖 ∈ [𝑛].
For every Pauli operator 𝑃 on 𝑛 qubits with |𝑃 | = 𝑘 , suppose that it acts nontrivially
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on qubits 𝑖1 < · · · < 𝑖𝑘 via Pauli matrices 𝑃𝑖1 , . . . , 𝑃𝑖𝑘 . Then for any permutation
𝜋 ∈ S𝑘 , consider the 𝑛𝑘-qubit observable pol𝜋 (𝑃) which acts on the (𝜋(𝑠), 𝑖𝑠)-th
qubit via 𝑃𝑖𝑠 for all 𝑠 ∈ [𝑘]. Then define

pol(𝑃) B 1
𝑘!

∑︁
𝜋∈S𝑘

pol𝜋 (𝑃). (6.76)

We can extend pol(·) linearly and define pol(𝑂) ≜ ∑
𝑃 𝛼𝑃pol(𝑃). We refer to pol(𝑂)

as the polarization of 𝑂. The squared Frobenius norm of 𝑂 and pol(𝑂) are related
by

tr(𝑂2) = 𝑘! tr(pol(𝑂)2). (6.77)

We prove the following operator analogue of the classical polarization identity:

Lemma 28 (Polarization identity). For any 𝑛𝑘-qubit product state

𝜌 =
⊗
𝑠∈[𝑘]


⊗
𝑖∈[𝑛]

𝜌(𝑠,𝑖)

 (6.78)

and any 𝑛-qubit homogeneous 𝑘-local observable 𝑂 and any 𝑡 ∈ R, we have the
following identity

𝑡𝑘 tr(pol(𝑂)𝜌) (6.79)

=
𝑘 𝑘

𝑘!
E

𝜎∈{±1}𝑘

𝜎1 · · ·𝜎𝑘 · tr ©«𝑂
⊗
𝑖∈[𝑛]

{
𝐼

2
+ 𝑡
𝑘

𝑘∑︁
𝑠=1

𝜎𝑠

(
𝜌(𝑠,𝑖) −

𝐼

2

)}ª®¬
 , (6.80)

where the expectation is with respect to the uniform measure on {±1}𝑘 .

Proof. Let 𝑂 =
∑
𝑃:|𝑃 |=𝑘 𝛼𝑃𝑃. By the multinomial theorem, we can expand the

right-hand side to get

𝑡𝑘

𝑘!

∑︁
𝑃:|𝑃 |=𝑘

𝛼𝑃 E
𝜎

[
𝜎1 · · ·𝜎𝑘

∑︁
0≤𝑠1,...,𝑠𝑛≤𝑘

(6.81)

tr

(
𝑃

𝑛⊗
𝑖=1

{
𝐼

2
· 1[𝑠𝑖 = 0] + 𝜎𝑠𝑖

(
𝜌𝑠𝑖 ,𝑖 −

𝐼

2

)
· 1[𝑠𝑖 > 0]

}) ]
. (6.82)

For a given Pauli operator 𝑃, note that the only terms in the inner summation that are
nonzero are given by (𝑠1, . . . , 𝑠𝑛) satisfying that if 𝑠𝑖 > 0, then 𝑃 acts nontrivially on
the 𝑖-th qubit, because otherwise tr(𝜌𝑠𝑖 ,𝑖 − 𝐼/2) = 0 and the corresponding summand
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vanishes. Furthermore, for (𝑠1, . . . , 𝑠𝑛) satisfying this property, if {1, . . . , 𝑘} do not
each appear exactly once, then

𝜎1 · · ·𝜎𝑘 ·
𝑛⊗
𝑖=1

{
𝐼

2
· 1[𝑠𝑖 = 0] + 𝜎𝑠𝑖

(
𝜌𝑠𝑖 ,𝑖 −

𝐼

2

)
· 1[𝑠𝑖 > 0]

}
(6.83)

= 𝜎
𝑐1
1 · · ·𝜎

𝑐𝑘
𝑘
·

𝑛⊗
𝑖=1

{
𝐼

2
· 1[𝑠𝑖 = 0] +

(
𝜌𝑠𝑖 ,𝑖 −

𝐼

2

)
· 1[𝑠𝑖 > 0]

}
(6.84)

for 0 ≤ 𝑐1, . . . , 𝑐𝑘 ≤ 𝑘 such that 𝑐𝑠 = 1 for some 𝑠 ∈ [𝑘]. In this case, the
expectation of this term with respect to 𝜎 vanishes. Altogether, we conclude that
for 𝑃 which acts via 𝑃1, . . . , 𝑃𝑘 on qubits 1 ≤ 𝑖1 < · · · < 𝑖𝑘 ≤ 𝑛 and via identity
elsewhere, the corresponding expectation over 𝜎 in Eq. (6.82) is given by∑︁

𝜋∈S𝑘

tr

(
𝑘⊗
𝑠=1

𝑃 𝑗

(
𝜌𝜋(𝑠),𝑖𝑠 −

𝐼

2

))
=

∑︁
𝜋∈S𝑘

tr

(
𝑘⊗
𝑠=1

𝑃𝑠𝜌𝜋(𝑠),𝑖𝑠

)
=

∑︁
𝜋

tr(pol𝜋 (𝑃)𝜌),

(6.85)
from which the lemma follows.

Using the polarization identity, we can obtain the following corollary, which shows
that 𝛽𝑖,𝑝 is defined to be proportional to the expection of the polarization pol(𝐻𝜅∗,𝑖,𝑝)
of the homogeneous 𝜅∗-local observable 𝐻𝜅∗,𝑖,𝑝 on the tensor product of 𝑛(𝜅∗ − 1)
single-qubit Haar-random states. We will later study the expectation value of the
polarized observable on random product states.

Corollary 8. From the definitions given in Section 6.5, we have

tr ©«pol(𝐻𝜅∗,𝑖,𝑝)
⊗

𝑠∈[𝜅∗−1],𝑖∈[𝑛]
|𝜓(𝑠, 𝑗)⟩⟨𝜓(𝑠, 𝑗) |

ª®¬ =
(𝜅∗ − 1)𝜅∗−1

(𝜅∗ − 1)! 𝛽𝑖,𝑝 . (6.86)

Proof. The claim follows from the polarization identity in Lemma 28 and the
definition of 𝛽𝑖,𝑝 in Eq. (6.62).

Khintchine inequality for polarized observables

We recall the following basic result in high-dimensional probability.

Lemma 29 (Standard Khintchine inequality (Haagerup, 1981)). Consider 𝜀1, . . . , 𝜀𝑛

to be i.i.d. random variables with 𝑃(𝜀𝑖 = ±1) = 1/2. For any 𝑎1, . . . , 𝑎𝑛 ∈ R, we
have

1
√

2

(
𝑛∑︁
𝑖=1

𝑎2
𝑖

)1/2

≤ E
𝜀1,...𝜀𝑛

����� 𝑛∑︁
𝑖=1

𝑎𝑖𝜀𝑖

����� ≤
(
𝑛∑︁
𝑖=1

𝑎2
𝑖

)1/2

. (6.87)
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We prove an analogue of the Khintchine inequality when we replace the random ±1
variables with random product states and replace 𝑎1, . . . , 𝑎𝑛 with a homogeneous
1-local observable.

Lemma 30 (Khintchine inequality for homogeneous 1-local observables). Let 𝑛 ≥ 1.
Consider |𝜓⟩ =

⊗𝑛

𝑖=1 |𝜓𝑖⟩ where |𝜓𝑖⟩ is a single-qubit Haar-random pure state. For
any homogeneous 1-local 𝑛-qubit observable 𝑂,

1
√

6

√︁
tr(𝑂2)/2𝑛 ≤ E

|𝜓⟩
[|⟨𝜓 |𝑂 |𝜓⟩|] ≤ 1

√
3

√︁
tr(𝑂2)/2𝑛. (6.88)

Proof. A homogeneous 1-local observable 𝑂 is
∑𝑛
𝑖=1

∑3
𝑗=1 𝛼𝑖 𝑗𝑃

𝑗

𝑖
, where 𝑃 𝑗

𝑖
is the

Pauli matrix 𝜎𝑗 ∈ {𝑋,𝑌, 𝑍} on the 𝑖-th qubit. Given 𝑛 single-qubit unitaries
𝑈1, . . . ,𝑈𝑛, we consider 𝑂 under the rotated Pauli basis

𝑂 =

𝑛∑︁
𝑖=1

3∑︁
𝑗=1
𝛼𝑈𝑖 𝑗𝑈

†
𝑖
𝑃
𝑗

𝑖
𝑈𝑖 . (6.89)

Using the orthogonality of Pauli matrices, we have

√︁
tr(𝑂2)/2𝑛 = ©«

𝑛∑︁
𝑖=1

3∑︁
𝑗=1
(𝑎𝑈𝑖 𝑗 )2

ª®¬
1/2

(6.90)

under any rotated Pauli basis. We will utilize the rotated Pauli basis to establish the
claimed results.

A single-qubit Haar-random pure state |𝜓𝑖⟩ can be sampled as follows. First, we
sample a random single-qubit unitary 𝑈𝑖. Then, we consider |𝜓𝑖⟩ to be sampled
uniformly from the set of 8 pure states,

Υ𝑈𝑖 =


𝐼 + 1√

3
(𝑠𝑋
𝑖
𝑈𝑖𝑋𝑈

†
𝑖
+ 𝑠𝑌

𝑖
𝑈𝑖𝑌𝑈

†
𝑖
+ 𝑠𝑍

𝑖
𝑈𝑖𝑍𝑈

†
𝑖
)

2

����� 𝑠𝑋𝑖 , 𝑠𝑌𝑖 , 𝑠𝑍𝑖 ∈ {±1}
 . (6.91)

Using this sampling formulation and the rotated Pauli basis representation for 𝑂,
we have

E
|𝜓⟩
[|⟨𝜓 |𝑂 |𝜓⟩|] = E

𝑈𝑖
E

|𝜓𝑖⟩∼Υ𝑈𝑖

������ 𝑛∑︁
𝑖=1

3∑︁
𝑗=1
𝛼𝑈𝑖 𝑗 tr

(
𝑈
†
𝑖
𝑃
𝑗

𝑖
𝑈𝑖 |𝜓𝑖⟩⟨𝜓𝑖 |

)������ (6.92)

=
1
√

3
E
𝑈𝑖

E
𝑠𝑋
𝑖
,𝑠𝑌
𝑖
,𝑠𝑍
𝑖
∼{±1}

����� 𝑛∑︁
𝑖=1

𝛼𝑈𝑖1𝑠
𝑋
𝑖 + 𝛼𝑈𝑖2𝑠

𝑌
𝑖 + 𝛼𝑈𝑖3𝑠

𝑍
𝑖

����� . (6.93)
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Using the standard Khintchine inequality given in Lemma 29, we have

1
√

2
©«
𝑛∑︁
𝑖=1

3∑︁
𝑗=1
(𝑎𝑈𝑖 𝑗 )2

ª®¬
1/2

(6.94)

≤ E
𝑠𝑋
𝑖
,𝑠𝑌
𝑖
,𝑠𝑍
𝑖
∼{±1}

����� 𝑛∑︁
𝑖=1

𝛼𝑈𝑖1𝑠
𝑋
𝑖 + 𝛼𝑈𝑖2𝑠

𝑌
𝑖 + 𝛼𝑈𝑖3𝑠

𝑍
𝑖

����� ≤ ©«
𝑛∑︁
𝑖=1

3∑︁
𝑗=1
(𝑎𝑈𝑖 𝑗 )2

ª®¬
1/2

. (6.95)

Using Eq. (6.90), we can obtain

1
√

6
E
𝑈𝑖

√︁
tr(𝑂2)/2𝑛 ≤ E

|𝜓⟩
[|⟨𝜓 |𝑂 |𝜓⟩|] ≤ 1

√
3
E
𝑈𝑖

√︁
tr(𝑂2)/2𝑛, (6.96)

which implies the claimed result.

We prove the left half of Khintchine inequality for polarized observables. The right
half can be shown using a similar proof, but we are only going to use the left half
stated below.

Lemma 31 (Khintchine inequality for polarized observables). Given 𝑛, 𝑘 > 0.
Consider an 𝑛𝑘-qubit observable 𝑂 = pol(𝑂′), which is the polarization of an
𝑛-qubit homogeneous 𝑘-local observable 𝑂′. Consider |𝜓⟩ =

⊗
𝑠∈[𝑘],𝑖∈[𝑛] |𝜓(𝑠,𝑖)⟩

where |𝜓(𝑠,𝑖)⟩ is a single-qubit Haar-random pure state. We have(
1
√

6

) 𝑘 √︁
tr(𝑂2)/2𝑛 ≤ E

|𝜓⟩
[|⟨𝜓 |𝑂 |𝜓⟩|] . (6.97)

Proof. For ℓ ∈ [3𝑛], define 𝑃(ℓ) to be an 𝑛-qubit observable equal to the Pauli
matrix 𝜎1+(ℓmod 3) ∈ {𝑋,𝑌, 𝑍} acting on the ⌈ℓ/3⌉-th qubit. From the definition of
polarization, we can represent 𝑂 as

𝑂 =
∑︁

ℓ1,...,ℓ𝑘∈[3𝑛]
𝛼ℓ1,...,ℓ𝑘𝑃

(ℓ1) ⊗ . . . ⊗ 𝑃(ℓ𝑘) . (6.98)

For arbitrary coefficients 𝛼ℓ1,...,ℓ𝑘 ∈ R, we prove the following claim by induction on
𝑘 , (

1
√

6

) 𝑘 ©«
∑︁

ℓ1,...,ℓ𝑘∈[3𝑛]
𝛼2
ℓ1,...,ℓ𝑘

ª®¬
1/2

(6.99)

≤ E
|𝜓⟩


������⟨𝜓 | ∑︁

ℓ1,...,ℓ𝑘∈[3𝑛]
𝛼ℓ1,...,ℓ𝑘𝑃

(ℓ1) ⊗ . . . ⊗ 𝑃(ℓ𝑘) |𝜓⟩

������
 . (6.100)
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It is not hard to see that the left-hand side of Eq. (6.99) is
(

1√
6

) 𝑘 √︁
tr(𝑂2)/2𝑛 and the

right-hand side of Eq. (6.99) is E|𝜓⟩ [|⟨𝜓 |𝑂 |𝜓⟩|]. Hence, the lemma follows from
Eq. (6.99).

We now prove the base case and the inductive step. The base case of 𝑘 = 1
follows from Khintchine inequality for homogeneous 1-local observables given in
Lemma 30. Assume by induction hypothesis that the claim holds for 𝑘 − 1. By
denoting |𝜓 (𝑘)⟩ to be a product of 𝑛 Haar-random single-qubit states, we can then
apply Khintchine inequality for homogeneous 1-local observables (Lemma 30) to
obtain (

1
√

6

) 𝑘 ©«
∑︁

ℓ1,...,ℓ𝑘∈[3𝑛]
𝛼2
ℓ1,...,ℓ𝑘

ª®¬
1/2

(6.101)

=

©«
∑︁

ℓ1,...,ℓ𝑘−1∈[3𝑛]

©«
©«

∑︁
ℓ𝑘∈[3𝑛]

𝛼2
ℓ1,...,ℓ𝑘

ª®¬
1/2ª®®¬

2ª®®®¬
1/2

(6.102)

≤
©«

∑︁
ℓ1,...,ℓ𝑘−1∈[3𝑛]

©« E|𝜓 (𝑘 ) ⟩
������⟨𝜓 (𝑘) | ∑︁

ℓ𝑘∈[3𝑛]
𝛼ℓ1,...,ℓ𝑘𝑃

(ℓ𝑘) |𝜓 (𝑘)⟩

������ª®¬
2ª®®¬

1/2

. (6.103)

We can then apply Minkowski’s integral inequality to upper bound the above and
yield (

1
√

6

) 𝑘 ©«
∑︁

ℓ1,...,ℓ𝑘∈[3𝑛]
𝛼2
ℓ1,...,ℓ𝑘

ª®¬
1/2

(6.104)

≤ E
|𝜓 (𝑘 ) ⟩

©«
∑︁

ℓ1,...,ℓ𝑘−1∈[3𝑛]

©«⟨𝜓 (𝑘) |
∑︁

ℓ𝑘∈[3𝑛]
𝛼ℓ1,...,ℓ𝑘𝑃

(ℓ𝑘) |𝜓 (𝑘)⟩ª®¬
2ª®®¬

1/2

(6.105)

≤ E
|𝜓 (𝑘 ) ⟩

E
|𝜓 (1,...,𝑘−1) ⟩

����� ⟨𝜓 (1,...,𝑘−1) | ⟨𝜓 (𝑘) | (6.106)

∑︁
ℓ1,...,ℓ𝑘∈[3𝑛]

𝛼ℓ1,...,ℓ𝑘𝑃
(ℓ1) ⊗ . . . ⊗ 𝑃(ℓ𝑘) |𝜓 (1,...,𝑘−1)⟩ |𝜓 (𝑘)⟩

�����. (6.107)

The last line considers ⟨𝜓 (𝑘) |∑ℓ𝑘∈[3𝑛] 𝛼ℓ1,...,ℓ𝑘𝑃
(ℓ𝑘) |𝜓 (𝑘)⟩ to be a scalar indexed

by ℓ1, . . . , ℓ𝑘−1 and uses the induction hypothesis. We have thus established the
induction step. The claim in Eq. (6.99) follows.
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Khintchine inequality for polarized observable allows us to show that the average
magnitude of pol(𝐻𝜅∗,𝑖,𝑝) for the tensor product of single-qubit Haar-random states
is at least as large as the Frobenius norm of 𝐻𝜅∗,𝑖,𝑝 up to a constant depending on 𝜅∗.
Using the definitions from the design of the approximate optimization algorithm,
we can obtain the following corollary.

Corollary 9. From the definitions given in Section 6.5, we have

E
|𝜓 ( ·, · ) ⟩

������tr ©«pol(𝐻𝜅∗,𝑖,𝑝)
⊗

𝑠∈[𝜅∗−1],𝑖∈[𝑛]
|𝜓(𝑠, 𝑗)⟩⟨𝜓(𝑠, 𝑗) |

ª®¬
������ ≥

(
1
√

6

) 𝜅∗−1
√︄

tr(𝐻2
𝜅∗,𝑖,𝑝)

2𝑛 (𝜅∗ − 1)! .

(6.108)

Proof. The claim follows immediately from Lemma 31 and Eq. (6.77).

Characterization of the locally optimized random state

Recall that 𝜌
(
1; |𝜓(·,·)⟩ , 𝜎

)
is created by sampling random product states and per-

forming local single-qubit optimizations. The locally optimized random state satis-
fies the following inequality.

Lemma 32 (Characterization of 𝜌(𝑡) for 𝑡 = 1). From the definitions given in
Section 6.5, we have

E
|𝜓 ( ·, · ) ⟩

E
𝜎∈{±1}𝜅∗

��� tr (
𝐻𝜅∗𝜌

(
1; |𝜓(·,·)⟩ , 𝜎

) ) ��� (6.109)

≥
√︁

2(𝜅∗!)

(𝜅∗)𝜅∗+1.5
√

6
𝜅∗

∑︁
𝑖∈[𝑛],𝑝∈{𝑋,𝑌,𝑍}

√√√√ ∑︁
𝑃∈{𝐼,𝑋,𝑌 ,𝑍}⊗𝑛:
|𝑃 |=𝜅∗,𝑃𝑖=𝑝

𝛼2
𝑃
. (6.110)

Proof. From the polarization identity given in Lemma 28, we have

(𝜅∗)𝜅∗

𝜅∗!
E

𝜎∈{±1}𝜅∗
[
𝜎1 · · ·𝜎𝜅∗ tr

(
𝐻𝜅∗𝜌

(
1; |𝜓(·,·)⟩ , 𝜎

) ) ]
(6.111)

= tr ©«pol(𝐻𝜅∗)
⊗

𝑠∈[𝜅∗], 𝑗∈[𝑛]
|𝜓(𝑠, 𝑗)⟩⟨𝜓(𝑠, 𝑗) |

ª®¬ . (6.112)

Next, using the definition of 𝐻𝜅∗,𝑖,𝑝 in Eq. (6.61), we have

pol(𝐻𝜅∗) =
(

1
𝜅∗

)2 ∑︁
𝑖∈[𝑛]

∑︁
𝑝∈{𝑋,𝑌,𝑍}

pol(𝐻𝜅∗,𝑖,𝑝) ⊗ (𝐼⊗𝑖−1 ⊗ 𝑝 ⊗ 𝐼⊗𝑛−𝑖). (6.113)
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We can see this by considering the case when 𝐻𝜅∗ is a single Pauli observable
𝑃 ∈ {𝐼, 𝑋,𝑌 , 𝑍}⊗𝑛 with |𝑃 | = 𝜅∗, and then extending linearly to any homogeneous
𝜅∗-local Hamiltonian 𝐻𝜅∗ . Eq. (6.111) and (6.113) give

(𝜅∗)𝜅∗

𝜅∗!
E

𝜎∈{±1}𝜅∗
[
𝜎1 · · ·𝜎𝜅∗ tr

(
𝐻𝜅∗𝜌

(
1; |𝜓(·,·)⟩ , 𝜎

) ) ]
(6.114)

=
1
(𝜅∗)2

∑︁
𝑖∈[𝑛],

𝑝∈{𝑋,𝑌,𝑍}

⟨𝜓(𝜅∗,𝑖) | 𝑝 |𝜓(𝜅∗,𝑖)⟩ tr ©«pol(𝐻𝜅∗,𝑖,𝑝)
⊗

𝑠∈[𝜅∗−1], 𝑗∈[𝑛]
|𝜓(𝑠, 𝑗)⟩⟨𝜓(𝑠, 𝑗) |

ª®¬ .
(6.115)

From Corollary 8, we can rewrite the right hand side as

1
(𝜅∗)2

(𝜅∗ − 1)𝜅∗−1

(𝜅∗ − 1)!
∑︁
𝑖∈[𝑛]
⟨𝜓(𝜅∗,𝑖) |

©«
∑︁

𝑝∈{𝑋,𝑌,𝑍}
𝛽𝑖,𝑝𝑝

ª®¬ |𝜓(𝜅∗,𝑖)⟩ . (6.116)

From the local optimization of |𝜓(𝜅∗,𝑖)⟩ given in Eq. (6.64), we have that for every
𝑖 ∈ [𝑛],

⟨𝜓(𝜅∗,𝑖) |
©«

∑︁
𝑝∈{𝑋,𝑌,𝑍}

𝛽𝑖,𝑝𝑝
ª®¬ |𝜓(𝜅∗,𝑖)⟩ =

√︄ ∑︁
𝑝∈{𝑋,𝑌,𝑍}

𝛽2
𝑖,𝑝
≥ 1
√

3

∑︁
𝑝∈{𝑋,𝑌,𝑍}

��𝛽𝑖,𝑝 �� . (6.117)

Using Corollary 8 yields the following lower bound,

(𝜅∗)𝜅∗

𝜅∗!
E
|𝜓 ( ·, · ) ⟩

E
𝜎∈{±1}𝜅∗

[
𝜎1 · · ·𝜎𝜅∗ tr

(
𝐻𝜅∗𝜌

(
1; |𝜓(·,·)⟩ , 𝜎

) ) ]
(6.118)

≥ 1
√

3(𝜅∗)2
∑︁

𝑖∈[𝑛],𝑝∈{𝑋,𝑌,𝑍}
E
|𝜓 ( ·, · ) ⟩

������tr ©«pol(𝐻𝜅∗,𝑖,𝑝)
⊗

𝑠∈[𝜅∗−1], 𝑗∈[𝑛]
|𝜓(𝑠, 𝑗)⟩⟨𝜓(𝑠, 𝑗) |

ª®¬
������ .

(6.119)

From Corollary 9, we can further obtain

(𝜅∗)𝜅∗

𝜅∗!
E
|𝜓 ( ·, · ) ⟩

E
𝜎∈{±1}𝜅∗

[
𝜎1 · · ·𝜎𝜅∗ tr

(
𝐻𝜅∗𝜌

(
1; |𝜓(·,·)⟩ , 𝜎

) ) ]
(6.120)

≥ 1
√

3(𝜅∗)2
∑︁

𝑖∈[𝑛],𝑝∈{𝑋,𝑌,𝑍}

(
1
√

6

) 𝜅∗−1
√︄

tr(𝐻2
𝜅∗,𝑖,𝑝)

2𝑛 (𝜅∗ − 1)! . (6.121)

The definition of 𝐻𝜅∗,𝑖,𝑝, the above inequality, and the following inequality

E
|𝜓 ( ·, · ) ⟩

E
𝜎∈{±1}𝜅∗

��� tr (
𝐻𝜅∗𝜌

(
1; |𝜓(·,·)⟩ , 𝜎

) ) ��� (6.122)

≥ E
|𝜓 ( ·, · ) ⟩

E
𝜎∈{±1}𝜅∗

[
𝜎1 · · ·𝜎𝜅∗ tr

(
𝐻𝜅∗𝜌

(
1; |𝜓(·,·)⟩ , 𝜎

) ) ]
, (6.123)

can be used to establish the claim.
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Given the expansion property, we are going to use the following implication, which
considers an arbitrary ordering 𝜋 of the 𝑛 qubits. The inequality allows us to control
the growth for the number of Pauli observables that act on qubits before the 𝑖-th
qubit under the ordering 𝜋. The precise statement is given below.

Lemma 33 (A characterization of expansion). Given an 𝑛-qubit Hamiltonian 𝐻 =∑
𝑃 𝛼𝑃𝑃 with expansion coefficient 𝑐𝑒 and expansion dimension 𝑑𝑒. Consider any

permutation 𝜋 ∈ 𝑆𝑛 over 𝑛 qubits. For any 𝑖 ∈ [𝑛],∑︁
𝑃∈{𝐼,𝑋,𝑌 ,𝑍}⊗𝑛

1[𝛼𝑃 ≠ 0]1[𝑃𝜋(𝑖) ≠ 𝐼]1[𝑃𝜋( 𝑗) = 𝐼,∀ 𝑗 > 𝑖] ≤ 𝑐𝑒𝑖𝑑𝑒−1, (6.124)

Proof. Given a permutation 𝜋 ∈ 𝑆𝑛 over 𝑛 qubits and an 𝑖 ∈ [𝑛]. We sepa-
rately consider two cases: (1) 𝑖 < 𝑑𝑒 and (2) 𝑖 ≥ 𝑑𝑒. For the first case, let
Υ = {𝜋(1), . . . , 𝜋(𝑑𝑒)}, we have∑︁

𝑃∈{𝐼,𝑋,𝑌 ,𝑍}⊗𝑛
1[𝛼𝑃 ≠ 0]1[𝑃𝜋(𝑖) ≠ 𝐼]1[𝑃𝜋( 𝑗) = 𝐼,∀ 𝑗 > 𝑖] (6.125)

≤
∑︁

𝑃∈{𝐼,𝑋,𝑌 ,𝑍}⊗𝑛
1
[
𝛼𝑃 ≠ 0 and

(
dom(𝑃) ⊆ Υ

) ]
≤ 𝑐𝑒 . (6.126)

The second inequality follows from the definition of the expansion coefficient 𝑐𝑒.
For the second case, we consider all subset Υ ⊆ 𝜋( [𝑖]) ≜ {𝜋(1), 𝜋(2), . . . , 𝜋(𝑖)}
with |Υ| = 𝑑𝑒 − 1 and 𝜋(𝑖) ∈ Υ,∑︁

𝑃∈{𝐼,𝑋,𝑌 ,𝑍}⊗𝑛
1[𝛼𝑃 ≠ 0]1[𝑃𝜋(𝑖) ≠ 𝐼]1[𝑃𝜋( 𝑗) = 𝐼,∀ 𝑗 > 𝑖] (6.127)

≤
∑︁

𝑃∈{𝐼,𝑋,𝑌 ,𝑍}⊗𝑛

∑︁
Υ⊆𝜋( [𝑖]),
|Υ|=𝑑𝑒,𝜋(𝑖)∈Υ

1
[
𝛼𝑃 ≠ 0 and

(
dom(𝑃) ⊆ Υ or Υ ⊆ dom(𝑃)

) ]
(6.128)

≤
∑︁

Υ⊆𝜋( [𝑖]),
|Υ|=𝑑𝑒,𝜋(𝑖)∈Υ

𝑐𝑒 ≤ 𝑐𝑒 (𝑖 − 1)𝑑𝑒−1 ≤ 𝑐𝑒𝑖𝑑𝑒−1. (6.129)

The second inequality again follows from the definition of 𝑐𝑒.

Using the above implication of the expansion property, we can obtain the following
inequality relating two norms. Basically, we can use the limit on the growth of the
number of Pauli observables to turn the sum of ℓ2-norm into an ℓ𝑟-norm, where 𝑟
depends on the expansion dimension 𝑑𝑒.
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Lemma 34 (Norm inequality using expansion property). Given an 𝑛-qubit Hamil-
tonian 𝐻 =

∑
𝑃 𝛼𝑃𝑃 with an expansion coefficient 𝑐𝑒 and expansion dimension 𝑑𝑒.

Let 𝑟 = 2𝑑𝑒/(𝑑𝑒 + 1). For any 𝜅∗ ≥ 1, we have

∑︁
𝑖∈[𝑛]

©«
∑︁

𝑃∈{𝐼,𝑋,𝑌 ,𝑍}⊗𝑛:
|𝑃 |=𝜅∗,𝑃𝑖≠𝐼

𝛼2
𝑃

ª®®®¬
1/2

≥ 1
𝑐

1/(2𝑑𝑒)
𝑒

©«
∑︁

𝑃∈{𝐼,𝑋,𝑌 ,𝑍}⊗𝑛:
|𝑃 |=𝜅∗

|𝛼𝑃 |𝑟
ª®®®¬

1/𝑟

. (6.130)

Proof. We begin by considering a permutation 𝜋 over 𝑛 qubits, such that√√√√ ∑︁
𝑃∈{𝐼,𝑋,𝑌 ,𝑍}⊗𝑛:
|𝑃 |=𝜅∗,𝑃𝜋 (𝑖)≠𝐼

𝛼2
𝑃
≤

√√√√ ∑︁
𝑃∈{𝐼,𝑋,𝑌 ,𝑍}⊗𝑛:
|𝑃 |=𝜅∗,𝑃𝜋 ( 𝑗 )≠𝐼

𝛼2
𝑃
, ∀𝑖 < 𝑗 ∈ [𝑛] . (6.131)

The permutation 𝜋 can be obtained by sorting the 𝑛 qubits. The above ensures that
for all 𝑖 ∈ [𝑛],

𝑖

√√√√ ∑︁
𝑃∈{𝐼,𝑋,𝑌 ,𝑍}⊗𝑛:
|𝑃 |=𝜅∗,𝑃𝜋 (𝑖)≠𝐼

𝛼2
𝑃
≤

∑︁
𝑗∈[𝑛]

√√√√ ∑︁
𝑃∈{𝐼,𝑋,𝑌 ,𝑍}⊗𝑛:
|𝑃 |=𝜅∗,𝑃𝜋 ( 𝑗 )≠𝐼

𝛼2
𝑃
. (6.132)

By going through the 𝑛 qubits based on the permutation 𝜋, we have the following
identity,∑︁

𝑃:|𝑃 |=𝜅∗
|𝛼𝑃 |𝑟 =

𝑛∑︁
𝑖=1

∑︁
𝑝∈{𝑋,𝑌,𝑍}

∑︁
𝑃∈{𝐼,𝑋,𝑌 ,𝑍}⊗𝑛:
|𝑃 |=𝜅∗,𝑃𝜋 (𝑖)=𝑝

|𝛼𝑃 |𝑟 1[𝛼𝑃 ≠ 0]1[𝑃𝜋( 𝑗) = 𝐼,∀ 𝑗 > 𝑖] .

(6.133)
Holder’s inequality and 1/(𝑑𝑒 +1) = 1− 𝑟/2 allows us to obtain the following upper
bound on

∑
𝑃:|𝑃 |=𝜅∗ |𝛼𝑃 |𝑟 ,

𝑛∑︁
𝑖=1

©«
∑︁

𝑃∈{𝐼,𝑋,𝑌 ,𝑍}⊗𝑛:
|𝑃 |=𝜅∗,𝑃𝜋 (𝑖)≠𝐼

𝛼2
𝑃

ª®®®®¬
𝑟/2

× (6.134)

©«
∑︁

𝑃∈{𝐼,𝑋,𝑌 ,𝑍}⊗𝑛:
|𝑃 |=𝜅∗

1[𝛼𝑃 ≠ 0]1[𝑃𝜋(𝑖) ≠ 𝐼]1[𝑃𝜋( 𝑗) = 𝐼,∀ 𝑗 > 𝑖]
ª®®®¬

1/(𝑑𝑒+1)

. (6.135)

We can then use Lemma 33 to obtain

∑︁
𝑃:|𝑃 |=𝜅∗

|𝛼𝑃 |𝑟 ≤
𝑛∑︁
𝑖=1

©«
∑︁

𝑃∈{𝐼,𝑋,𝑌 ,𝑍}⊗𝑛:
|𝑃 |=𝜅∗,𝑃𝜋 (𝑖)≠𝐼

𝛼2
𝑃

ª®®®®¬
𝑟/2 (

𝑐𝑒𝑖
𝑑𝑒−1

)1/(𝑑𝑒+1)
. (6.136)
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Using 𝑟 − 1 = (𝑑𝑒 − 1)/(𝑑𝑒 + 1) ≥ 0, we have

∑︁
𝑃:|𝑃 |=𝜅∗

|𝛼𝑃 |𝑟 ≤ 𝑐1/(𝑑𝑒+1)
𝑒

𝑛∑︁
𝑖=1

©«
𝑖

√√√√ ∑︁
𝑃∈{𝐼,𝑋,𝑌 ,𝑍}⊗𝑛:
|𝑃 |=𝜅∗,𝑃𝜋 (𝑖)≠𝐼

𝛼2
𝑃

ª®®®®¬
𝑟−1 √√√√ ∑︁

𝑃∈{𝐼,𝑋,𝑌 ,𝑍}⊗𝑛:
|𝑃 |=𝜅∗,𝑃𝜋 (𝑖)≠𝐼

𝛼2
𝑃

(6.137)

The choice of 𝜋 ensures Eq. (6.132), which gives rise to

∑︁
𝑃:|𝑃 |=𝜅∗

|𝛼𝑃 |𝑟 ≤ 𝑐1/(𝑑𝑒+1)
𝑒

©«
∑︁
𝑖∈[𝑛]

©«
∑︁

𝑃∈{𝐼,𝑋,𝑌 ,𝑍}⊗𝑛:
|𝑃 |=𝜅∗,𝑃𝑖≠𝐼

𝛼2
𝑃

ª®®®¬
1/2ª®®®®¬

𝑟

. (6.138)

The claim follows from 1/(𝑟 (𝑑𝑒 + 1)) = 1/(2𝑑𝑒).

Together, we can obtain the ℓ𝑟-norm lower bound for the expectation of the homo-
geneous 𝜅∗-local Hamiltonian 𝐻𝜅∗ on the product state 𝜌

(
1; |𝜓(·,·)⟩ , 𝜎

)
.

Corollary 10. From the definitions given in Section 6.5, we have

E
|𝜓 ( ·, · ) ⟩

E
𝜎∈{±1}𝜅∗

��� tr (
𝐻𝜅∗𝜌

(
1; |𝜓(·,·)⟩ , 𝜎

) ) ��� (6.139)

≥
√︁

2(𝜅∗!)

𝑐
1/(2𝑑𝑒)
𝑒 (𝜅∗)𝜅∗+1.5

√
6
𝜅∗

©«
∑︁

𝑃∈{𝐼,𝑋,𝑌 ,𝑍}⊗𝑛:
|𝑃 |=𝜅∗

|𝛼𝑃 |𝑟
ª®®®¬

1/𝑟

(6.140)

≥
√︁

2(𝑘!)

𝑐
1/(2𝑑𝑒)
𝑒 𝑘 𝑘+1.5

√
6
𝑘

©«
∑︁

𝑃∈{𝐼,𝑋,𝑌 ,𝑍}⊗𝑛:
|𝑃 |=𝜅∗

|𝛼𝑃 |𝑟
ª®®®¬

1/𝑟

. (6.141)

Proof. From Lemma 32, we have

E
|𝜓 ( ·, · ) ⟩

E
𝜎∈{±1}𝜅∗

��� tr (
𝐻𝜅∗𝜌

(
1; |𝜓(·,·)⟩ , 𝜎

) ) ��� (6.142)

≥
√︁

2(𝜅∗!)

(𝜅∗)𝜅∗+1.5
√

6
𝜅∗

∑︁
𝑖∈[𝑛],𝑝∈{𝑋,𝑌,𝑍}

√√√√ ∑︁
𝑃∈{𝐼,𝑋,𝑌 ,𝑍}⊗𝑛:
|𝑃 |=𝜅∗,𝑃𝑖=𝑝

𝛼2
𝑃
. (6.143)

By the elementary inequality
√
𝑥 + √𝑦 + √𝑧 ≥ √𝑥 + 𝑦 + 𝑧 for nonnegative 𝑥, 𝑦, 𝑧,∑︁

𝑖∈[𝑛],𝑝∈{𝑋,𝑌,𝑍}

√√√√ ∑︁
𝑃∈{𝐼,𝑋,𝑌 ,𝑍}⊗𝑛:
|𝑃 |=𝜅∗,𝑃𝑖=𝑝

𝛼2
𝑃
≥

∑︁
𝑖∈[𝑛]

√√√√ ∑︁
𝑝∈{𝑋,𝑌,𝑍}

∑︁
𝑃∈{𝐼,𝑋,𝑌 ,𝑍}⊗𝑛:
|𝑃 |=𝜅∗,𝑃𝑖=𝑝

𝛼2
𝑃
. (6.144)

Combining with Lemma 34 and the fact that 𝑘 ≥ 𝜅∗ yields the stated result.
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Homogeneous to inhomogeneous through polynomial optimization

We need the following basic result from real analysis:

Lemma 35 (Markov brothers’ inequality, see e.g. p. 248 of (Borwein and Erdélyi,
1995)). For any real polynomial 𝑝(𝑡) = ∑𝑘

𝜅=1 𝑎𝜅𝑥
𝜅,

|𝑎𝜅 | ≤ (1 +
√

2)𝑘 sup
|𝑡 |≤1
|𝑝(𝑡) | (6.145)

for all 1 ≤ 𝜅 ≤ 𝑘 .

Using the Markov brothers’ inequality, we can show that performing the one-
dimensional polynomial optimization over 𝑡 achieves a good advantage over

𝛼𝐼 = E
|𝜓⟩:Haar

⟨𝜓 | 𝐻 |𝜓⟩ , (6.146)

the average energy.

Corollary 11. From the definitions given in Section 6.5, we have��� tr (
𝐻𝜌

(
𝑡∗; |𝜓(·,·)⟩ , 𝜎

) )
− 𝛼𝐼

��� ≥ 1
(1 +
√

2)𝑘
��� tr (

𝐻𝜅∗𝜌
(
1; |𝜓(·,·)⟩ , 𝜎

) ) ���. (6.147)

Proof. Recall that 𝐻 = 𝛼𝐼 𝐼 +
∑𝑘
𝜅=1 𝐻𝜅 from Eq. (6.59). We can use the polarization

identity given in Lemma 28 to see that the function 𝑓 (𝑡) = tr
(
𝐻𝜌

(
𝑡; |𝜓(·,·)⟩ , 𝜎

) )
is

a polynomial,

tr
(
𝐻𝜌

(
𝑡; |𝜓(·,·)⟩ , 𝜎

) )
= 𝛼𝐼 +

𝑘∑︁
𝜅=1

tr
(
𝐻𝜅𝜌

(
1; |𝜓(·,·)⟩ , 𝜎

) )
𝑡𝜅 . (6.148)

Recall that 𝑡∗ is chosen based on the optimization

max
𝑡∈[−1,1]

���tr (
𝐻𝜌

(
𝑡; |𝜓(·,·)⟩ , 𝜎

) )
− 𝛼𝐼

��� . (6.149)

By considering Lemma 35 with 𝑎𝜅 = tr
(
𝐻𝜅𝜌

(
1; |𝜓(·,·)⟩ , 𝜎

) )
, we have

(1 +
√

2)𝑘
���tr (

𝐻𝜌
(
𝑡∗; |𝜓(·,·)⟩ , 𝜎

) )
− 𝛼𝐼

��� ≥ ��tr (
𝐻𝜅𝜌

(
1; |𝜓(·,·)⟩ , 𝜎

) ) �� . (6.150)

This concludes the proof of this corollary.
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6.6 Norm inequalities from approximate optimization algorithm
The approximate optimization algorithm described in the previous section is not used
directly in the ML algorithm, but used to derive norm inequalities, i.e., inequalities
relating different norms over Hermitian operators. An important norm that we will
use in the ML algorithms is the Pauli-𝑝 norm defined below. The Pauli-𝑝 norm is
equivalent to the vector-𝑝 norm on the Pauli coefficient of an observable 𝐻.

Definition 5 (Pauli-𝑝 norm). Given𝐻 =
∑
𝑃∈{𝐼,𝑋,𝑌 ,𝑍}⊗𝑛 𝛼𝑃𝑃 and 𝑝 ≥ 1. The Pauli-𝑝

norm of 𝐻 is

∥𝐻∥Pauli,𝑝 =

(∑︁
𝑃

|𝛼𝑃 |𝑝
)1/𝑝

. (6.151)

Recall that the spectral norm ∥𝐻∥ = max|𝜓⟩ | ⟨𝜓 | 𝐻 |𝜓⟩ | = max𝜌 | tr(𝐻𝜌) |. In this
section, we will use the approximate optimization algorithm to derive several norm
inequalities relating the Pauli-𝑝 norm ∥·∥Pauli,𝑝 to the spectral norm ∥·∥ for common
classes of observables.

We begin with a well-known fact that equates the Frobenius norm and the Pauli-
2 norm. This proposition follows directly from the orthonormality of the Pauli
observables {𝐼, 𝑋,𝑌 , 𝑍}⊗𝑛.

Proposition 13 (Frobenius norm). Given any 𝑛-qubit Hermitian operator 𝐻. We
have

1
√

2𝑛
∥𝐻∥𝐹 = ∥𝐻∥Pauli,2 ≤ ∥𝐻∥ . (6.152)

Proof. Let 𝑛 be the number of qubits 𝐻 act on and 𝜆1, . . . , 𝜆2𝑛 be the eigenvalues
of 𝑂. From the fact that tr(𝑃𝑄) = 2𝑛𝛿𝑃=𝑄 , we have

∥𝐻∥2𝐹 = tr(𝐻2) =
∑︁
𝑃

|𝛼𝑃 |22𝑛 = 2𝑛 ∥𝐻∥2Pauli,2 . (6.153)

Since ∥𝐻∥2𝐹 =
∑2𝑛
𝑖=1 |𝜆𝑖 |2 ≤ 2𝑛 max𝑖 |𝜆𝑖 |2 = 2𝑛 ∥𝐻∥2∞, we have∑︁

𝑃

|𝛼𝑃 |2 = ∥𝐻∥2𝐹 /2𝑛 ≤ ∥𝐻∥2∞ , (6.154)

which establishes the claim.

We now utilize Theorem 29 to obtain the following useful norm inequality.
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Theorem 33 (Norm inequality from Theorem 29). Given an 𝑛-qubit 𝑘-local Hamil-
tonian 𝐻 with expansion coefficient/dimension 𝑐𝑒, 𝑑𝑒. Let 𝑟 = 2𝑑𝑒/(𝑑𝑒 +1) ∈ [1, 2).
We have

1
3
𝐶 (𝑐𝑒, 𝑑𝑒, 𝑘) ∥𝐻∥Pauli,𝑟 ≤ ∥𝐻∥ , (6.155)

where 𝐶 (𝑐𝑒, 𝑑𝑒, 𝑘) =
√

2(𝑘!)
𝑐

1/(2𝑑𝑒 )
𝑒 𝑘 𝑘+1.5+1/𝑟 (

√
6+2
√

3)𝑘
is the same as Theorem 29.

Proof. Consider the Pauli representation 𝐻 =
∑
𝑃:|𝑃 |≤𝑘 𝛼𝑃𝑃. If we consider 𝜌 =

𝐼/2𝑛, then we have

∥𝐻∥ ≥ |tr(𝐻)/2𝑛 | ≥
���� E|𝜙⟩:Haar

[
⟨𝜙| 𝐻 |𝜙⟩

] ���� = |𝛼𝐼 | . (6.156)

If we consider the random product state |𝜓⟩ from Theorem 29, then we have

E
|𝜓⟩

����⟨𝜓 | 𝐻 |𝜓⟩ − E
|𝜙⟩:Haar

[
⟨𝜙 | 𝐻 |𝜙⟩

] ���� ≥ 𝐶 (𝑐𝑒, 𝑑𝑒, 𝑘) (∑︁
𝑃≠𝐼

|𝛼𝑃 |𝑟
)1/𝑟

. (6.157)

Using E|𝜙⟩:Haar
[
⟨𝜙 | 𝐻 |𝜙⟩

]
= 𝛼𝐼 and E|𝜓⟩ |⟨𝜓 | 𝐻 |𝜓⟩ − 𝛼𝐼 | ≤ E|𝜓⟩ |⟨𝜓 | 𝐻 |𝜓⟩| + |𝛼𝐼 |,

we have

∥𝐻∥ ≥ E
|𝜓⟩
|⟨𝜓 | 𝐻 |𝜓⟩| ≥ 𝐶 (𝑐𝑒, 𝑑𝑒, 𝑘)

(∑︁
𝑃≠𝐼

|𝛼𝑃 |𝑟
)1/𝑟

− |𝛼𝐼 | . (6.158)

Next, we utilize the following inequality

max(𝑥1, 𝑐𝑥2 − 𝑥1) ≥
𝑐

𝑐 + 2
(𝑥1 + 𝑥2),∀𝑥1, 𝑥2, 𝑐 ≥ 0, (6.159)

which can be shown by considering the two cases: 𝑥1 ≥ (𝑐/2)𝑥2 and 𝑥1 < (𝑐/2)𝑥2,
as well as the lower bounds on ∥𝐻∥ to show that

∥𝐻∥ ≥ 𝐶 (𝑐𝑒, 𝑑𝑒, 𝑘)
𝐶 (𝑐𝑒, 𝑑𝑒, 𝑘) + 2

©«|𝛼𝐼 | +
(∑︁
𝑃≠𝐼

|𝛼𝑃 |𝑟
)1/𝑟ª®¬ (6.160)

≥ 𝐶 (𝑐𝑒, 𝑑𝑒, 𝑘)
3

©«|𝛼𝐼 | +
(∑︁
𝑃≠𝐼

|𝛼𝑃 |𝑟
)1/𝑟ª®¬ . (6.161)

The second inequality uses 𝑘, 𝑐𝑒, 𝑑𝑒 ≥ 1, which implies 𝐶 (𝑐𝑒, 𝑑𝑒, 𝑘) ∈ [0, 1].
Finally, the inequality

|𝛼𝐼 | +
(∑︁
𝑃≠𝐼

|𝛼𝑃 |𝑟
)1/𝑟

≥
(∑︁
𝑃

|𝛼𝑃 |𝑟
)1/𝑟

, (6.162)

can be used to establish the claim.
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Using Fact 2 and Fact 3 that characterize the expansion property for general 𝑘-local
Hamiltonians and bounded degree 𝑘-local Hamiltonians (i.e., each qubit is acted on
by at most 𝑑 of the 𝑘-qubit observables), we can establish the following corollaries.

Corollary 12 (Norm inequality for 𝑘-local Hamiltonian). Given an 𝑛-qubit 𝑘-local
Hamiltonian 𝐻. We have

1
3
𝐶 (𝑘) ∥𝐻∥Pauli, 2𝑘

𝑘+1
≤ ∥𝐻∥ , (6.163)

where 𝐶 (𝑘) =
√

2(𝑘!)
2𝑘 𝑘+1.5+(𝑘+1)/(2𝑘 ) (

√
6+2
√

3)𝑘
is the same as Corollary 6.

Corollary 13 (Norm inequality for bounded-degree Hamiltonian). Given an 𝑛-qubit
𝑘-local Hamiltonian 𝐻 with a bounded degree 𝑑. We have

1
3
𝐶 (𝑘, 𝑑) ∥𝐻∥Pauli,1 ≤ ∥𝐻∥ , (6.164)

where 𝐶 (𝑘, 𝑑) =
√

2(𝑘!)√
𝑑𝑘 𝑘+2.5 (2

√
6+4
√

3)𝑘
.

6.7 Sample-optimal algorithms for predicting bounded-degree observables
In this section, we consider one of the most basic learning problems in quantum
information theory: predicting properties of an unknown 𝑛-qubit state 𝜌. This has
been studied extensively in the literature on shadow tomography (Aaronson, 2018;
Aaronson and Rothblum, 2019) and classical shadows (Huang, Richard Kueng, and
Preskill, 2020).

Review of classical shadow formalism
We recall the following definition and theorem from classical shadow tomogra-
phy (Huang, Richard Kueng, and Preskill, 2020) based on randomized Pauli mea-
surements. Each randomized Pauli measurement is performed on a single copy of
𝜌 and measures each qubit of 𝜌 in a random Pauli basis (𝑋,𝑌 , or 𝑍).

Definition 6 (Shadow norm from randomized Pauli measurements). Given an 𝑛-
qubit observable 𝑂. Let U be the distribution over the tensor product of 𝑛 single-
qubit random Clifford unitary, andM−1

𝑃
=

⊗𝑛

𝑖=1M−1
1 withM−1

1 (𝐴) = 3𝐴− tr(𝐴)𝐼.
The shadow norm of 𝑂 is defined as

∥𝑂∥shadow = max
𝜎:state

©« E𝑈∼U
∑︁

𝑏∈{0,1}𝑛
⟨𝑏 |𝑈𝜎𝑈† |𝑏⟩ ⟨𝑏 |𝑈M−1

𝑃 (𝑂)𝑈† |𝑏⟩
2ª®¬

1/2

. (6.165)
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Theorem 34 (Classical shadow tomography using randomized Pauli measurements
(Huang, Richard Kueng, and Preskill, 2020)). Given an unknown 𝑛-qubit state
𝜌 and 𝑀 observables 𝑂1, . . . , 𝑂𝑀 with 𝐵shadow = max𝑖∈[𝑀] ∥𝑂𝑖∥shadow. After 𝑁
randomized Pauli measurements on copies of 𝜌 satisfying

𝑁 = O
(

log(𝑀)𝐵2
shadow

𝜖2

)
, (6.166)

we can estimate tr(𝑂𝑖𝜌) to 𝜖 error for all 𝑖 ∈ [𝑀] with high probability.

We can see that the sample complexity for predicting many properties of an unknown
quantum state 𝜌 depends on the shadow norm ∥·∥shadow. The larger ∥·∥shadow is,
the more experiments is needed to estimate properties of 𝜌 accurately. From the
original classical shadow paper (Huang, Richard Kueng, and Preskill, 2020), we can
obtain the following shadow norm bounds for Pauli observables and for few-body
observables.

Lemma 36 (Shadow norm for Pauli observables (Huang, Richard Kueng, and
Preskill, 2020)). For any 𝑃 ∈ {𝐼, 𝑋,𝑌 , 𝑍}⊗𝑛, we have

∥𝑃∥shadow = 3|𝑃 |/2. (6.167)

Lemma 37 (Shadow norm for few-body observables (Huang, Richard Kueng, and
Preskill, 2020)). For any observable 𝑂 that acts nontrivially on at most 𝑘 qubits,
we have

∥𝑂∥shadow ≤ 2𝑘 ∥𝑂∥ . (6.168)

Combining the above lemmas and Theorem 34, we can see that Pauli observables
and few-body observables can both be predicted efficiently under very few number
of randomized Pauli measurements.

Upper bound for predicting bounded-degree observables
Consider an 𝑛-qubit observable𝑂 given as a sum of 𝑘-qubit observables𝑂 =

∑
𝑗 𝑂 𝑗 ,

where each qubit is acted on by at most 𝑑 of these 𝑘-qubit observables 𝑂 𝑗 . We focus
on 𝑘 = O(1) and 𝑑 = O(1), and refer to such an observable as a bounded-degree
observable. These bounded-degree observables arise frequently in quantum many-
body physics and quantum information. For example, the Hamiltonian in a quantum
spin system can often be described by a geometrically-local Hamiltonian, which
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is an instance of bounded-degree observables. For these observables, the shadow
norm is related to the Pauli-1 norm of the observable,

∥𝑂∥shadow ≤
∑︁

𝑃:|𝑃 |≤𝑘
|𝛼𝑃 | ∥𝑃∥shadow ≤ 3𝑘/2

∑︁
𝑃:|𝑃 |≤𝑘

|𝛼𝑃 | = 3𝑘/2 ∥𝑂∥pauli,1 . (6.169)

If we consider the norm inequality between ℓ1-norm and ℓ2-norm and use the
standard result relating Frobenius norm and spectral norm (Proposition 13), we
would obtain the following upper bound on shadow norm.

∥𝑂∥shadow ≤ 3𝑘/2 ∥𝑂∥pauli,1 ≤ (2
√

3)𝑘
√
𝑛𝑑 ∥𝑂∥pauli,2 = O

(√
𝑛 ∥𝑂∥

)
. (6.170)

Using Theorem 34, this shadow norm bound would give rise to a number of mea-
surements scaling as

𝑁 = O
(
𝑛 log(𝑀)𝐵2

∞
𝜖2

)
, (6.171)

where 𝐵∞ = max𝑖∈[𝑀] ∥𝑂𝑖∥∞ is an upper bound on the spectral norm ∥·∥. Due to
the linear dependence on the number 𝑛 of qubits in the unknown quantum state, this
scaling is not ideal. Furthermore, we will later show that this scaling is actually far
from optimal.

To improve the sample complexity, we will use the improved approximate opti-
mization algorithm presented in Section 6.5, and the corresponding norm inequality
presented in Section 6.6. Using the norm inequality relating Pauli-1 norm and the
spectral norm (Corollary 13), we can obtain the following shadow norm bound.

Lemma 38 (Shadow norm for bounded-degree observables). Given 𝑘, 𝑑 = O(1)
and an 𝑛-qubit observable𝑂 that is a sum of 𝑘-qubit observables, where each qubit
is acted on by at most 𝑑 of these 𝑘-qubit observables.

∥𝑂∥shadow ≤ 𝐶 ∥𝑂∥ , (6.172)

for some constant 𝐶 > 0.

Combining the above lemma with Theorem 34 allows us to establish the following
theorem. Compared to Eq. (6.171), the following theorem uses 𝑛 times fewer
measurements.

Theorem 35 (Classical shadow for bounded-degree observables). Given an un-
known 𝑛-qubit state 𝜌 and 𝑀 observables 𝑂1, . . . , 𝑂𝑀 with 𝐵∞ = max𝑖 ∥𝑂𝑖∥∞.
Suppose each observable 𝑂𝑖 is a sum of few-body observables 𝑂𝑖 =

∑
𝑗 𝑂𝑖 𝑗 , where
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every qubit is acted on by a constant number of the few-body observables𝑂𝑖 𝑗 . After
𝑁 randomized Pauli measurements on copies of 𝜌 with

𝑁 = O
(

log
(
min(𝑀, 𝑛)

)
𝐵2
∞

𝜖2

)
, (6.173)

we can estimate tr(𝑂𝑖𝜌) to 𝜖 error for all 𝑖 ∈ [𝑀] with high probability.

Proof. The upper bound of 𝑁 = O
(
log(𝑀)max𝑖∈[𝑀] ∥𝑂𝑖∥2∞ /𝜖2

)
follows immedi-

ately from Theorem 34 and Lemma 38. We can also establish an upper bound of
𝑁 = O

(
log(𝑛)max𝑖∈[𝑀] ∥𝑂𝑖∥2∞ /𝜖2

)
. To see this, consider the task of predicting

all 𝑘-qubit Pauli observables 𝑃 ∈ {𝐼, 𝑋,𝑌 , 𝑍}⊗𝑛 with |𝑃 | ≤ 𝑘 . There are at most
O(𝑛𝑘 ) such Pauli observables. To predict all of the 𝑘-qubit Pauli observables to 𝜖′

error under the unknown state 𝜌, we can combine Theorem 34 and Lemma 36 to
see that we only need

𝑁 = O
(
log(𝑛) max

𝑖∈[𝑀]
∥𝑂𝑖∥2∞ /(𝜖′)2

)
(6.174)

randomized Pauli measurements. Now, given any observable 𝑂𝑖 =
∑
𝑃 𝛼𝑃𝑃 that is

a sum of few-body observables 𝑂𝑖 =
∑
𝑗 𝑂𝑖 𝑗 , where every qubit is acted on by a

constant number of the few-body observables 𝑂𝑖 𝑗 , we can predict tr(𝑂𝑖𝜌) using the
following identity

tr(𝑂𝑖𝜌) =
∑︁

𝑃:|𝑃 |≤𝑘
𝛼𝑃 tr(𝑃𝜌), (6.175)

which incurs a prediction error of at most
∑
𝑃 |𝛼𝑃 |𝜖′. Using the norm inequality in

Corollary 13, we have

∥𝑂𝑖∥Pauli,1 =
∑︁
𝑃

|𝛼𝑃 | ≤ 𝐶 ∥𝑂𝑖∥ , (6.176)

for a constant 𝐶. Hence, by setting 𝜖′ = 𝜖/𝐶, we can predict 𝑂𝑖 to 𝜖 error.
Thus we can also establish an upper bound of 𝑁 = O

(
log(𝑛)max𝑖∈[𝑀] ∥𝑂𝑖∥2∞ /𝜖2

)
.

The claim follows by considering the corresponding prediction algorithm (use the
standard classical shadow when 𝑀 < 𝑛, and use the above algorithm when 𝑀 ≥
𝑛).

Optimality of Theorem 35
Here we prove the following lower bound on the sample complexity of shadow
tomography for bounded-degree observables demonstrating that Theorem 35 is op-
timal. The optimality holds even when we considered collective measurement
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procedure on many copies of 𝜌. This is in stark contrast to other sets of observables,
such as the collection of high-weight Pauli observables, where single-copy mea-
surements (e.g., classical shadow tomography) require exponentially more copies
than collective measurements.

Theorem 36 (Lower bound for predicting bounded-degree observables). Consider
the following task. Given any unknown 𝑛-qubit state 𝜌 and any 𝑀 observables
𝑂1, . . . , 𝑂𝑀 with 𝐵∞ = max𝑖 ∥𝑂𝑖∥. Each observable 𝑂𝑖 is a sum of few-body
observables 𝑂𝑖 =

∑
𝑗 𝑂𝑖 𝑗 , where every qubit is acted on by a constant number of

the few-body observables 𝑂𝑖 𝑗 . We would like to estimate tr(𝑂𝑖𝜌) to 𝜖 error for all
𝑖 ∈ [𝑀] with high probability by performing arbitrary collective measurements on
𝑁 copies of 𝜌. The number of copies needs to be at least

𝑁 = Ω

(
log

(
min(𝑀, 𝑛)

)
𝐵2
∞

𝜖2

)
, (6.177)

for any algorithm to succeed in this task.

To show Theorem 36, we show a lower bound for the following distinguishing task,
from which the lower bound for shadow tomography will follow readily. Given
𝑖 ∈ [𝑛], let 𝑃𝑖 denote the 𝑛-body Pauli operator that acts as 𝑍 on the 𝑖-th qubit and
trivially elsewhere, and define the mixed state

𝜌𝑖 ≜
1
2𝑛

(
𝐼 + 𝜖

𝐵∞
· 𝑃𝑖

)
. (6.178)

We will show a lower bound for distinguishing whether 𝜌 is maximally mixed or of
the form 𝜌𝑖 for some 𝑖.

Lemma 39 (Lower bound for a distinguishing task). Let 0 ≤ 𝜖 ≤ 1 and 𝛿 ≥ 2𝜖 .
Let A be an algorithm that, given access to 𝑁 copies of a mixed state 𝜌 which
is either the maximally mixed state or 𝜌𝑖 for some 𝑖 ∈ [min(𝑀, 𝑛)], correctly
determines whether or not 𝜌 is maximally mixed with probability at least 3/4. Then
𝑁 = Ω(log(min(𝑀, 𝑛))𝐵2

∞/𝜖2).

Proof of Theorem 36. Let A be an algorithm that solves the task in Theorem 36 to
error 𝜖/3. We can use this to give an algorithm for the task in Lemma 39: applying
A to the following min(𝑀, 𝑛) observables,

𝑂1 ≜ 𝐵∞𝑃1, . . . , 𝑂min(𝑀,𝑛) ≜ 𝐵∞𝑃min(𝑀,𝑛) , (6.179)
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we can produce 𝜖/3-accurate estimates for tr(𝜌𝑃 𝑗 ) for all 𝑗 ∈ [min(𝑀, 𝑛)]. Note
that if 𝜌 is maximally mixed, tr(𝜌𝑂 𝑗 ) = 0 for all 𝑗 , whereas if 𝜌 = 𝜌𝑖, then
tr(𝜌𝑂 𝑗 ) = 𝜖 · 1[𝑖 = 𝑗]. In particular, by checking whether there is a 𝑗 for which
tr(𝜌𝑃 𝑗 ) > 2𝜖/3, we can determine whether 𝜌 is maximally mixed or equal to some
𝜌𝑖. The lower bound in Lemma 39 thus implies the lower bound in Theorem 36.

For convenience, define 𝑛′ ≜ min(𝑀, 𝑛). Note that for any 𝑖 ∈ [𝑛], (𝜌𝑖)⊗𝑁 is
diagonal, so we can assume without loss of generality that A simply makes 𝑁
independent measurements in the computational basis. Proving Lemma 39 thus
amounts to showing a lower bound for a classical distribution testing task.

Note that the distribution 𝜋𝑖 over outcomes of a single measurement of 𝜌𝑖 in the
computational basis places

1 + (−1)𝑥𝑖𝜖
2𝑛

(6.180)

mass on each string 𝑥 ∈ {0, 1}𝑛. The distribution 𝜋 over outcomes of a single
measurement of the maximally mixed state in the computational basis is uniform
over all strings 𝑥 ∈ {0, 1}𝑛. The following basic result in binary hypothesis testing
lets us reduce proving Lemma 39 to upper bounding

𝑑T𝑉

(
E
𝑖
[(𝜋𝑖)⊗𝑁 ], 𝜋⊗𝑁

)
. (6.181)

Lemma 40 (Le Cam’s two-point method (LeCam, 1973)). Let 𝑝0, 𝑝1 be distributions
over a domain Ω for which there exists a distribution 𝐷 such that 𝑑T𝑉 (𝑝0, 𝑝1) <
1/3. Then there is no algorithm A that maps elements of Ω to {0, 1} for which
Pr𝑥∼𝑝𝑖 [A(𝑥) = 𝑖] ≥ 2/3 for both 𝑖 = 0, 1.

Proof of Lemma 39. To bound the expression in Eq. (6.181), it suffices to bound the
chi-squared divergence 𝜒2(E𝑖 [(𝜋𝑖)⊗𝑁 ] ∥𝜋⊗𝑁 ) because for any distributions 𝑝, 𝑞, we
have 𝑑T𝑉 (𝑝, 𝑞) ≤ 2

√︁
𝜒2(𝑝∥𝑞). For convenience, let us define the likelihood ratio

perturbation

𝜂𝑖 (𝑥) ≜ d𝜋𝑖

d𝜋
(𝑥) − 1 = (−1)𝑥𝑖𝜖 (6.182)

and observe that for any 𝑖, 𝑗 ∈ [𝑛],

E
𝑥∼𝜋
[𝜂𝑖 (𝑥) · 𝜂 𝑗 (𝑥)] = 𝜖2 · 1[𝑖 = 𝑗] . (6.183)

Also given strings 𝑥1, . . . , 𝑥𝑁 ∈ {0, 1}𝑛 and 𝑆 ⊆ [𝑁], denote

𝜂𝑖 (𝑥𝑆) ≜
∏
𝑗∈𝑆

𝜂𝑖 (𝑥 𝑗 ). (6.184)
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We then have the standard calculation, see e.g. (Wu, 2017, Lemma 22.1):

1 + 𝜒2
(
E

𝑖∼[𝑛′]
[(𝜋𝑖)⊗𝑁 ] ∥𝜋⊗𝑁

)
= E
𝑥1,...,𝑥𝑁∼𝜋⊗𝑁

 E𝑖∼[𝑛′]

𝑁∏
𝑗=1
(1 + 𝜂𝑖,𝑡 (𝑥 𝑗 ))


2 (6.185)

= E
𝑖,𝑖′∼[𝑛′]

 E
𝑥1,...,𝑥𝑁∼𝜋⊗𝑁


∑︁

𝑆,𝑇⊆[𝑁]
𝜂𝑖 (𝑥𝑆)𝜂𝑖′ (𝑥𝑇 )




(6.186)

= E
𝑖,𝑖′∼[𝑛′]

 E
𝑥1,...,𝑥𝑁∼𝜋⊗𝑁


∑︁
𝑆⊆[𝑁]

𝜂𝑖 (𝑥𝑆)𝜂𝑖′ (𝑥𝑆)


(6.187)

= E
𝑖,𝑖′∼[𝑛′]

 E
𝑥1,...,𝑥𝑁∼𝜋⊗𝑁


𝑁∏
𝑗=1
(1 + 𝜂𝑖 (𝑥 𝑗 )𝜂𝑖′ (𝑥 𝑗 ))




(6.188)

= E
𝑖,𝑖′∼[𝑛′]

[
(1 + E

𝑥∼𝜋
[𝜂𝑖 (𝑥)𝜂𝑖′ (𝑥)])𝑁

]
(6.189)

=
1
𝑛′
(1 + 𝜖2)𝑁 + 𝑛

′ − 1
𝑛′

(6.190)

We conclude that

𝜒2( E
𝑖∼[𝑛′]
[(𝜋𝑖)⊗𝑁 ] ∥𝜋⊗𝑁 ) ≤ 1

𝑛′
((1 + 𝜖2)𝑁 − 1), (6.191)

so for 𝑁 = 𝑐 log(𝑛′)/𝜖2 for sufficiently small constant 𝑐 > 0, this quantity is less
than 1/3. By applying Lemma 40 to 𝑝0 = 𝜋⊗𝑁 and 𝑝1 = E𝑖∼[𝑛′] [(𝜋𝑖)⊗𝑁 ], we obtain
the claimed lower bound.

6.8 Learning to predict an unknown observable
We begin with a definition of invariance for distribution over quantum states.

Definition 7 (Invariance under a unitary). A probability distributionD over quantum
states is invariant under a unitary 𝑈 if the probability density remains unchanged
after the action of𝑈, i.e.,

𝑓D (𝜌) = 𝑓D (𝑈𝜌𝑈†) (6.192)

for any state 𝜌.

In this section, we will utilize the norm inequalities in Section 6.6 to give a learning
algorithm that achieves the following guarantee. The learning algorithm can learn
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any unknown 𝑛-qubit observable 𝑂 (unk) even if the scale
𝑂 (unk) is unknown. The

mean squared error E𝜌∼D
���ℎ(𝜌) − tr

(
𝑂 (unk)𝜌

)���2 scales quadratically with the scale
of the unknown observable 𝑂 (unk) . We can see that the sample complexity 𝑁 has a
quasi-polynomial dependence on the error 𝜖, 𝜖′ relative to the scale of the unknown
observable𝑂 (unk) , and only depends on the system size 𝑛 and the failure probability
𝛿 logarithmically.

Theorem 37 (Learning to predict an unknown observable). Given 𝑛, 𝜖, 𝜖 ′, 𝛿 > 0.
Consider any unknown 𝑛-qubit observable 𝑂 (unk) =

∑
𝑃 𝛼𝑃𝑃 and any unknown 𝑛-

qubit state distributionD that is invariant under single-qubit 𝐻 and 𝑆 gates. Given
training data {𝜌ℓ, tr(𝑂 (unk)𝜌ℓ))}𝑁ℓ=1 of size

𝑁 = log
(𝑛
𝛿

)
min

(
2O(log( 1

𝜖
)(log log( 1

𝜖
)+log( 1

𝜖 ′ ))) , 2O(log( 1
𝜖
) log(𝑛))

)
. (6.193)

Let 𝑘 = ⌈log1.5(1/𝜖)⌉, 𝑂 (low) =
∑
|𝑃 |≤𝑘 𝛼𝑃𝑃 be the low-degree approximation

of 𝑂 (unk) , and 𝑟 = 2𝑘
𝑘+1 ∈ [1, 2). The algorithm can learn a function ℎ(𝜌) =

max(−Θ̂,min(Θ̂, tr(�̂�𝜌))) for an observable �̂� and a real number Θ̂ that achieves
a prediction error

E
𝜌∼D

���ℎ(𝜌) − tr
(
𝑂 (unk)𝜌

)���2 ≤ (
𝜖 + 𝜖′

[
1 +

( ∥𝑂 (low) ∥
∥𝑂 (unk) ∥

)𝑟 ] ) 𝑂 (unk)
2

(6.194)

with probability at least 1 − 𝛿.

Low-degree approximation under mean squared error
In order to characterize the mean squared error E𝜌∼D tr(𝑂1𝜌) − tr(𝑂2)𝜌 between
two observables 𝑂1, 𝑂2, we need the following definition of a modified purity for
quantum states.

Definition 8 (Non-identity purity). Given a 𝑘-qubit state 𝜌. The non-identity purity
of 𝜌 is

𝛾★(𝜌) ≜ 1
2𝑘

∑︁
𝑄∈{𝑋,𝑌,𝑍}⊗𝑘

tr(𝑄𝜌)2. (6.195)

Non-identity purity is bounded by purity,

𝛾★(𝜌) ≤ 𝛾(𝜌) = tr(𝜌2) = 1
2𝑘

∑︁
𝑄∈{𝐼,𝑋,𝑌 ,𝑍}⊗𝑘

tr(𝑄𝜌)2. (6.196)

Lemma 41 (Mean squared error). Given two 𝑛-qubit observables 𝑂1, 𝑂2 with

𝑂1 −𝑂2 =
∑︁

𝑃∈{𝐼,𝑋,𝑌 ,𝑍}⊗𝑛
Δ𝛼𝑃𝑃, (6.197)
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and a distributionD over quantum states that is invariant under single-qubit 𝐻 and
𝑆 gates. We have

E
𝜌∼D
|tr(𝑂1𝜌) − tr(𝑂2𝜌) |2 =

∑︁
𝑃∈{𝐼,𝑋,𝑌 ,𝑍}⊗𝑛

E
𝜌∼D

[
𝛾★

(
𝜌dom(𝑃)

) ] (
2
3

) |𝑃 |
|Δ𝛼𝑃 |2 .

(6.198)

Proof. Consider 𝑈1, . . . ,𝑈𝑛 to be independent random single-qubit Clifford uni-
taries. Because D is invariant under single-qubit Hadamard and phase gates, D is
invariant under any tensor product of single-qubit Clifford unitaries. This implies
that the distribution of the random state 𝜌 is the same as the distribution of the
random state (𝑈1 ⊗ . . . ⊗ 𝑈𝑛)𝜌(𝑈1 ⊗ . . . ⊗ 𝑈𝑛)†. Using this fact, we expand the
mean squared error as

E
𝜌∼D
|tr(𝑂1𝜌) − tr(𝑂2𝜌) |2 (6.199)

= E
𝜌∼D

E
𝑈1,...,𝑈𝑛

∑︁
𝑃,𝑄

Δ𝛼𝑃Δ𝛼𝑄 tr

((
𝑛⊗
𝑖=1

𝑈
†
𝑖
𝑃𝑖𝑈𝑖

)
⊗

(
𝑛⊗
𝑖=1

𝑈
†
𝑖
𝑄𝑖𝑈𝑖

)
(𝜌 ⊗ 𝜌)

)
.

(6.200)

Using the unitary 2-design property of random Clifford unitary and SWAP =

1
2
∑
𝑃∈{𝐼,𝑋,𝑌 ,𝑍} 𝑃 ⊗ 𝑃, we have

E
𝑈𝑖

[
𝑈
†
𝑖
𝑃𝑖𝑈𝑖 ⊗ 𝑈†𝑖 𝑄𝑖𝑈𝑖

]
=


𝐼 ⊗ 𝐼, 𝑃𝑖 = 𝑄𝑖 = 𝐼,

1
3 (𝑋 ⊗ 𝑋 + 𝑌 ⊗ 𝑌 + 𝑍 ⊗ 𝑍) , 𝑃𝑖 = 𝑄𝑖 ≠ 𝐼,

0, 𝑃𝑖 ≠ 𝑄𝑖 .

(6.201)

We can now write the target value as

E
𝜌∼D
|tr(𝑂1𝜌) − tr(𝑂2𝜌) |2 (6.202)

= E
𝜌∼D

∑︁
𝑃∈{𝐼,𝑋,𝑌 ,𝑍}⊗𝑛

1
3|𝑃 |
|Δ𝛼𝑃 |2

∑︁
𝑄∈{𝑋,𝑌,𝑍}⊗|𝑃 |

tr(𝑄𝜌dom(𝑃))2. (6.203)

The claim follows from Definition 8 on non-identity purity 𝛾★.

The following lemma tells us that the mean absolute error can be upper bounded
by the root mean squared error. Hence, both the mean absolute error and the mean
squared error are characterized by the ℓ2 distance between the Pauli coefficients (as
well as the average non-identity purity). Due to the following relation, we will focus
on the mean squared error throughout the text.
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Lemma 42 (Mean absolute error). Given two 𝑛-qubit observables 𝑂1, 𝑂2 with

𝑂1 −𝑂2 =
∑︁

𝑃∈{𝐼,𝑋,𝑌 ,𝑍}⊗𝑛
Δ𝛼𝑃𝑃, (6.204)

and a distributionD over quantum states that is invariant under single-qubit 𝐻 and
𝑆 gates. We have

E
𝜌∼D
|tr(𝑂1𝜌) − tr(𝑂2𝜌) | ≤ ©«

∑︁
𝑃∈{𝐼,𝑋,𝑌 ,𝑍}⊗𝑛

E
𝜌∼D

[
𝛾★

(
𝜌dom(𝑃)

) ] (
2
3

) |𝑃 |
|Δ𝛼𝑃 |2ª®¬

1/2

.

(6.205)

Proof. Jensen’s inequality gives

E
𝜌∼D
|tr(𝑂1𝜌) − tr(𝑂2𝜌) | ≤

(
E
𝜌∼D
|tr(𝑂1𝜌) − tr(𝑂2𝜌) |2

)1/2
. (6.206)

Combining with Lemma 41 yields the stated result.

From Lemma 41, we can construct a low-degree approximation by removing all
high-weight Pauli terms for any observable 𝑂. The approximation error decays
exponentially with the weight of the Pauli terms.

Corollary 14 (Low-degree approximation). Given an 𝑛-qubit observable 𝑂 =∑
𝑃∈{𝐼,𝑋,𝑌 ,𝑍}⊗𝑛 𝛼𝑃𝑃 and a distributionD over quantum states that is invariant under

single-qubit 𝐻 and 𝑆 gates. For 𝑘 > 0, consider 𝑂 (𝑘) =
∑
𝑃:|𝑃 |<𝑘 𝛼𝑃𝑃. We have

E
𝜌∼D

���tr(𝑂𝜌) − tr(𝑂 (𝑘)𝜌)
���2 ≤ (

2
3

) 𝑘
∥𝑂∥2 . (6.207)

Proof. Using Lemma 41 and the fact that 𝛾★(𝜚) ≤ 𝛾(𝜚) ≤ 1 for any state 𝜚, we
have

E
𝜌∼D

���tr(𝑂𝜌) − tr(𝑂 (𝑘)𝜌)
���2 ≤ ∑︁

𝑃:|𝑃 |≥𝑘

(
2
3

) |𝑃 |
|𝛼𝑃 |2 ≤

(
2
3

) 𝑘 ∑︁
𝑃

|𝛼𝑃 |2. (6.208)

The norm inequality given in Prop. 13 establishes the claim.

Tools for extracting and filtering Pauli coefficients
In order to learn the low-degree approximation of an arbitrary observable 𝑂, we
need to be able to extract the relevant 𝛼𝑃. Furthermore, we will impose criteria for
filtering out uninfluential Pauli observables 𝑃 to prevent them from increasing the
noise and leading to a higher prediction error.
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Extracting Pauli coefficient

Lemma 43 (Extracting Pauli coefficient). Given an 𝑛-qubit observable

𝑂 =
∑︁

𝑃∈{𝐼,𝑋,𝑌 ,𝑍}⊗𝑛
𝛼𝑃𝑃 (6.209)

and a distributionD over quantum states that is invariant under single-qubit 𝐻 and
𝑆 gates. For any Pauli observable 𝑃 ∈ {𝐼, 𝑋,𝑌 , 𝑍}⊗𝑛, we have

E
𝜌∼D

tr(𝑂𝜌) tr(𝑃𝜌) =
(
2
3

) |𝑃 |
𝛼𝑃 E

𝜌∼D
𝛾∗(𝜌dom(𝑃)). (6.210)

Proof. Using the invariance of D, we have

E
𝜌∼D

tr(𝑂𝜌) tr(𝑃𝜌) (6.211)

= E
𝜌∼D

E
𝑈1,...,𝑈𝑛

∑︁
𝑄∈{𝐼,𝑋,𝑌 ,𝑍}⊗𝑛

𝛼𝑄 tr

((
𝑛⊗
𝑖=1

𝑈
†
𝑖
𝑃𝑖𝑈𝑖

)
⊗

(
𝑛⊗
𝑖=1

𝑈
†
𝑖
𝑄𝑖𝑈𝑖

)
(𝜌 ⊗ 𝜌)

)
.

(6.212)

Using Eq. (6.201), we can rewrite the above expression as

E
𝜌∼D

tr(𝑂𝜌) tr(𝑃𝜌) = E
𝜌∼D

1
3|𝑃 |

𝛼𝑃

∑︁
𝑄∈{𝑋,𝑌,𝑍}⊗|𝑃 |

tr(𝑄𝜌dom(𝑃))2. (6.213)

The claim follows from the definition of the non-identity purity 𝛾∗.

For each Pauli observable 𝑃 ∈ {𝐼, 𝑋,𝑌 , 𝑍}⊗𝑛, define the quantity we can extract
using the lemma to be

𝑥𝑃 =

(
2
3

) |𝑃 |
𝛼𝑃 E

𝜌∼D
𝛾∗(𝜌dom(𝑃)). (6.214)

We can obtain an estimate 𝑥𝑃 for 𝑥𝑃 by averaging tr(𝑂𝜌) tr(𝑃𝜌) over the train-
ing data. However, to obtain an estimate �̂�𝑃 for 𝛼𝑃, we need to divide 𝑥 by(

2
3

) |𝑃 |
E𝜌∼D 𝛾∗(𝜌dom(𝑃)). The error in the estimate �̂�𝑃 could be arbitrarily large if(

2
3

) |𝑃 |
E𝜌∼D 𝛾∗(𝜌dom(𝑃)) is close to zero. Hence, we present a filter in Section 6.8 to

handle this issue. In addition to this filter, the norm inequalities given in Section 6.6
show that most 𝛼𝑃 would be close to zero. Hence, when 𝛼𝑃 is small, we could simply
set them to zero to avoid noise build-up. This gives rise to the second filtering layer
given in Section 6.8.
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Filtering small weight factor

The first filter sets the estimate �̂�𝑃 to be zero when the average non-identity purity
E𝜌∼D 𝛾∗(𝜌dom(𝑃)) is close to zero. We define the weight factor for a Pauli observable
𝑃 to be

𝛽𝑃 =

(
2
3

) |𝑃 |
E
𝜌∼D

𝛾∗(𝜌dom(𝑃)). (6.215)

The weight factor 𝛽𝑃 depends on the distributionD, which may be unknown. Hence,
we can only obtain an estimate 𝛽𝑃 for 𝛽𝑃 by utilizing the training data. Recall from
Lemma 43, we can only obtain an estimate 𝑥𝑃 for 𝑥𝑃 = 𝛼𝑃𝛽𝑃. The mean squared
error (Lemma 41) shows that the contribution from error in �̂�𝑃 is

𝛽𝑃 |�̂�𝑃 − 𝛼𝑃 |2 . (6.216)

The presence of 𝛽𝑃 in the mean squared error is very useful since it counteracts the
fact that we cannot estimate �̂�𝑃 accurately when 𝛽𝑃 is close to zero. The following
lemma shows that estimates for 𝛽𝑃 and 𝑥𝑃 are sufficient to perform filtering and
achieve a small mean squared error.

Lemma 44 (Filtering small weight factor). Given 𝜖, 𝜂 > 0. Consider 𝛼 ∈ [−𝜂, 𝜂],
and 𝛽 ∈ [0, 1]. Let 𝑥 = 𝛼𝛽 ∈ [−𝜂, 𝜂]. Given estimates 𝑥 and 𝛽 with |𝑥 − 𝑥 | < 𝜂𝜖
and |𝛽 − 𝛽 | < 𝜖 . If we define the estimate

�̂� =


0, 𝛽 ≤ 2𝜖,

𝑥/𝛽, 𝛽 > 2𝜖,
(6.217)

then we have 𝛽 |�̂� − 𝛼 |2 ≤ 3𝜂2𝜖 .

Proof. Consider the first case of 𝛽 ≤ 2𝜖 . We have

𝛽 |�̂� − 𝛼 |2 = 𝛽𝛼2 ≤ 𝜂2𝛽 ≤ 𝜂2𝛽 + 𝜂2𝜖 ≤ 3𝜂2𝜖 . (6.218)

For the second case of 𝛽 > 2𝜖 , we have 𝛽 > 𝜖 . By applying triangle inequality, we
have ���√︁𝛽�̂� − √︁

𝛽𝛼

��� ≤ √𝛽
𝛽
|𝑥 − 𝑥 | +

���√︁𝛽𝑥��� ����1
𝛽
− 1
𝛽

���� . (6.219)

The first term can be bounded as
√
𝛽

𝛽
|𝑥 − 𝑥 | ≤ 𝜂

√
𝛽

𝛽
𝜖 . The second term can be

bounded by the same expression���√︁𝛽𝑥��� ����1
𝛽
− 1
𝛽

���� = 𝛽3/2 |𝛼 | |𝛽 − 𝛽 |
𝛽𝛽

≤ 𝜂
√
𝛽

𝛽
𝜖 . (6.220)
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Using the fact that
√
𝑧 + 𝜖/𝑧 is monotonically decreasing for 𝑧 > 0, we have

√
𝛽

𝛽
𝜖 ≤

√︃
𝛽 + 𝜖

𝛽
𝜖 ≤

√︂
3
4
𝜖 . (6.221)

Together,
��√𝛽�̂� − √𝛽𝛼��2 ≤ 3𝜂2𝜖 and the claim is established.

Filtering uninfluential Pauli observables

Consider a set 𝑆 ⊆ {𝐼, 𝑋,𝑌 , 𝑍}⊗𝑛 that contains the Pauli observables of interest. For
example, we will later consider 𝑆 to be the set of all few-body Pauli observables.
Using the norm inequalities given in Section 6.6, we can filter out more 𝛼𝑃 to achieve
an improved mean squared error. Below is the filtering lemma that combines both
the filtering of Pauli observables with a small weight factor (Lemma 44) and the
filtering of those with a small contribution (characterized by |𝑥𝑃 |/𝛽1/2

𝑃
).

Lemma 45 (Filtering lemma). Given 𝜖, 𝜂 > 0, and a set 𝑆 ⊆ {𝐼, 𝑋,𝑌 , 𝑍}⊗𝑛.
Consider 𝛼𝑃 ∈ [−𝜂, 𝜂], 𝛽𝑃 ∈ [0, 1], 𝑥𝑃 = 𝛼𝑃𝛽𝑃 ∈ [−𝜂, 𝜂] for all 𝑃 ∈ 𝑆. Suppose
there exists 𝐴 > 0 and 1 ≤ 𝑟 < 2, such that∑︁

𝑃∈𝑆
|𝛼𝑃 |𝑟 ≤ 𝐴𝑟 . (6.222)

Given 𝑥𝑃 and 𝛽𝑃 with |𝑥𝑃 − 𝑥𝑃 | < 𝜂𝜖 and |𝛽𝑃 − 𝛽𝑃 | < 𝜖 for all 𝑃 ∈ 𝑆. If we define

�̂�𝑃 =


0, 𝛽𝑃 ≤ 2𝜖,

0, 𝛽𝑃 > 2𝜖, |𝑥𝑃 |/𝛽1/2
𝑃
≤ 2𝜂
√
𝜖,

𝑥𝑃/𝛽𝑃, 𝛽𝑃 > 2𝜖, |𝑥𝑃 |/𝛽1/2
𝑃

> 2𝜂
√
𝜖,

(6.223)

then we have
∑
𝑃∈𝑆 𝛽𝑃 |�̂�𝑃 − 𝛼𝑃 |2 ≤ 6𝐴𝑟𝜂2−𝑟𝜖1−(𝑟/2) . We also have 𝛽𝑃 |�̂�𝑃 − 𝛼𝑃 |2 ≤

9𝜂2𝜖,∀𝑃 ∈ 𝑆.

Proof. We first define 𝑆𝑢 ⊆ 𝑆 to be the set of Pauli observables 𝑃 with 𝛽𝑃 >

2𝜖, |𝑥𝑃 |/𝛽1/2
𝑃

> 2𝜂
√
𝜖 . The set 𝑆𝑢 contains all the unfiltered Pauli observables. We

define 𝑆 𝑓 to be 𝑆 \ 𝑆𝑢, which contains all the filtered Pauli observables. We separate
the contribution of 𝑆𝑢 and 𝑆 𝑓 in the mean squared error

∑
𝑃∈𝑆 𝛽𝑃 |�̂�𝑃 − 𝛼𝑃 |2,∑︁

𝑃∈𝑆
𝛽𝑃 |�̂�𝑃 − 𝛼𝑃 |2 =

∑︁
𝑃∈𝑆𝑢

𝛽𝑃 |�̂�𝑃 − 𝛼𝑃 |2 +
∑︁
𝑃∈𝑆 𝑓

𝛽𝑃 |�̂�𝑃 − 𝛼𝑃 |2. (6.224)
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A key quantity for the analysis is 𝛽1/2
𝑃
𝛼𝑃 = 𝑥𝑃/𝛽1/2

𝑃
. For Pauli 𝑃 with 𝛽𝑃 ≤ 2𝜖 , we

have
|𝛽1/2
𝑃
𝛼𝑃 | ≤ 𝜂

√︃
𝛽𝑃 + 𝜖 ≤ 𝜂

√
3𝜖 . (6.225)

For Pauli 𝑃 with 𝛽𝑃 > 2𝜖 , we have����� 𝑥𝑃𝛽1/2
𝑃

− 𝑥𝑃

𝛽
1/2
𝑃

����� ≤ 1
𝛽

1/2
𝑃

|𝑥𝑃 − 𝑥𝑃 |+|𝑥𝑃 |
����� 1
𝛽

1/2
𝑃

− 1
𝛽

1/2
𝑃

����� ≤ 𝜂
√︂
𝜖

2
+𝜂

����� 𝛽𝑃𝛽1/2
𝑃

− 𝛽1/2
𝑃

����� ≤ 𝜂√𝜖 .
(6.226)

The last inequality uses the fact that 𝛽𝑃 > 𝜖 , 𝛽𝑃/𝛽𝑃 > 2, and hence����� 𝛽𝑃𝛽1/2
𝑃

− 𝛽1/2
𝑃

����� =
��𝛽𝑃 − 𝛽𝑃��

𝛽
1/2
𝑃

(
1 +

(
𝛽𝑃
𝛽𝑃

)1/2
) ≤ √

𝜖

2 +
√

2
. (6.227)

We are now ready to analyze the contributions of 𝑆𝑢 and 𝑆 𝑓 .

For the unfiltered Pauli observables (those in set 𝑆𝑢), we can use Lemma 44 to obtain∑︁
𝑃∈𝑆𝑢

𝛽𝑃 |�̂�𝑃 − 𝛼𝑃 |2 ≤ 3𝜂2𝜖 |𝑆𝑢 |. (6.228)

Eq. (6.226) shows that for Pauli observable 𝑃 with 𝛽𝑃 > 2𝜖 and |𝑥𝑃 |/𝛽1/2
𝑃

> 2𝜂
√
𝜖 ,

we have |𝑥𝑃 |/𝛽1/2
𝑃

> 2𝜂
√
𝜖 − 𝜂

√
𝜖 . We will use this fact to bound the size of the set

|𝑆𝑢 |,

|𝑆𝑢 | ≤
∑︁
𝑃∈𝑆𝑢

( |𝑥𝑃 |/𝛽1/2
𝑃
)𝑟(

2𝜂
√
𝜖 − 𝜂

√
𝜖

)𝑟 =
1

𝜂𝑟𝜖𝑟/2

∑︁
𝑃∈𝑆𝑢
|𝛼𝑃 |𝑟𝛽𝑟/2𝑃 ≤

1
𝜂𝑟𝜖𝑟/2

∑︁
𝑃∈𝑆
|𝛼𝑃 |𝑟 =

𝐴𝑟

𝜂𝑟𝜖𝑟/2
.

(6.229)
Together, we have the following upper bound,∑︁

𝑃∈𝑆𝑢
𝛽𝑃 |�̂�𝑃 − 𝛼𝑃 |2 ≤ 3𝜂2−𝑟𝐴𝑟𝜖1−(𝑟/2) . (6.230)

For the filtered Pauli observables (those in set 𝑆 𝑓 ), we have∑︁
𝑃∈𝑆 𝑓

𝛽𝑃 |�̂�𝑃 − 𝛼𝑃 |2 =
∑︁
𝑃∈𝑆 𝑓

���𝛽1/2
𝑃
𝛼𝑃

���𝑟 ���𝛽1/2
𝑃
𝛼𝑃

���2−𝑟 . (6.231)

There are two types of Pauli observables in 𝑆 𝑓 .

1. For 𝑃 with 𝛽𝑃 ≤ 2𝜖 , we have
���𝛽1/2
𝑃
𝛼𝑃

��� ≤ 𝜂√3𝜖 from Eq. (6.225).
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2. For 𝑃 with 𝛽𝑃 > 2𝜖 and |𝑥𝑃 |/𝛽1/2
𝑃
≤ 𝜂2
√
𝜖 , we have

���𝛽1/2
𝑃
𝛼𝑃

��� = |𝑥𝑃 |/𝛽1/2
𝑃
≤

2𝜂
√
𝜖 + 𝜂
√
𝜖 from Eq. (6.226).

Together, we have the following upper bound,∑︁
𝑃∈𝑆 𝑓

𝛽𝑃 |�̂�𝑃 − 𝛼𝑃 |2 ≤ (3𝜂
√
𝜖)2−𝑟

∑︁
𝑃∈𝑆 𝑓

𝛽
𝑟/2
𝑃
|𝛼𝑃 |𝑟 ≤ 𝐴𝑟 (3𝜂

√
𝜖)2−𝑟 ≤ 3𝐴𝑟𝜂2−𝑟𝜖1−(𝑟/2) .

(6.232)
Combining the contribution of 𝑆𝑢 and 𝑆 𝑓 yields∑︁

𝑃∈𝑆
𝛽𝑃 |�̂�𝑃 − 𝛼𝑃 |2 ≤ 6𝐴𝑟𝜂2−𝑟𝜖1−(𝑟/2) . (6.233)

Thus we have established the first statement of the lemma.

We now focus on the second statement of the lemma. For Pauli observable 𝑃 that
satisfies the first and the third cases of Eq. (6.223), we can use Lemma 44 to obtain
𝛽𝑃 |�̂�𝑃 − 𝛼𝑃 |2 ≤ 3𝜂2𝜖 < 9𝜂2𝜖 . For the second case of Eq. (6.223), we can use
Eq. (6.226) to see that

𝛽𝑃 |�̂�𝑃 − 𝛼𝑃 |2 =

(
𝑥𝑃

𝛽
1/2
𝑃

)2

≤
(
|𝑥𝑃 |
𝛽

1/2
𝑃

+
����� 𝑥𝑃𝛽1/2
𝑃

− 𝑥𝑃

𝛽
1/2
𝑃

�����
)2

≤ 9𝜂2𝜖 . (6.234)

Hence, for all 𝑃 ∈ 𝑆, we have 𝛽𝑃 |�̂�𝑃 − 𝛼𝑃 |2 ≤ 9𝜂2𝜖 .

Learning algorithm
In this section, we present a learning algorithm satisfying the guarantee given in
Theorem 37. Consider the full training data {𝜌ℓ, 𝑦ℓ = tr(𝑂 (unk)𝜌ℓ))}𝑁ℓ=1 of size 𝑁 .
The learning algorithm splits the full data into a smaller training set of size 𝑁tr and
a validation set of size 𝑁val with 𝑁 = 𝑁tr + 𝑁val. The training set is used to extract
Pauli coefficients and perform filtering with a hyperparameter 𝜂. The validation
set is used to choose the best hyperparameter 𝜂. We can set 𝑁tr = (4/5)𝑁 and
𝑁val = (1/5)𝑁 .

We consider two slightly different learning algorithms for the sample complexity
scaling of

𝑁 = log
(𝑛
𝛿

)
2O(log( 1

𝜖
)(log log( 1

𝜖
)+log( 1

𝜖 ′ ))) and 𝑁 = log
(𝑛
𝛿

)
2O(log( 1

𝜖
) log(𝑛)) .

(6.235)
We can simply look at which sample complexity is smaller and select the corre-
sponding learning algorithm.
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We begin with the learning algorithm for achieve the sample complexity on the left
of Eq. (6.235). First, the algorithm computes the sample maximum over the training
set,

Θ̂ = max
ℓ∈{1,...,𝑁tr}

|𝑦ℓ | = max
ℓ∈{1,...,𝑁tr}

���tr(𝑂 (unk)𝜌ℓ))
��� ≤ 𝑂 (unk)

 . (6.236)

to obtain a scale for the function value. Let 𝐶 (𝑘) be the constant from Corollary 12.
We define

𝜖 ≜

(
𝜖′

12

) 𝑘+1 (
𝐶 (𝑘)

3

)2𝑘
. (6.237)

Next, we consider the following grid of hyperparameters,

𝜂 ∈
{
20Θ̂, 21Θ̂, 22Θ̂ . . . , 2𝑅Θ̂

}
, (6.238)

where 𝑅 = log2⌈1/𝜖⌉. For each hyperparameter 𝜂, the learning algorithm runs
the following. The learning algorithm considers every Pauli observable 𝑃 ∈
{𝐼, 𝑋,𝑌 , 𝑍}⊗𝑛 with |𝑃 | ≤ log1.5(1/𝜖). We define the set that contains the Pauli
observables of interest,

𝑆 =
{
𝑃 : |𝑃 | ≤ log1.5(1/𝜖)

}
, (6.239)

and 𝑘 = ⌈log1.5(1/𝜖)⌉. For each 𝑃 ∈ 𝑆, the algorithm computes

𝑥𝑃 =
1
𝑁tr

𝑁tr∑︁
ℓ=1

tr(𝑃𝜌ℓ)𝑦ℓ, (6.240)

𝛽𝑃 =
1
𝑁tr

𝑁tr∑︁
ℓ=1

tr(𝑃𝜌ℓ) tr(𝑃𝜌ℓ), (6.241)

using the training set {(𝜌ℓ, 𝑦ℓ = tr(𝑂unk𝜌ℓ ))}𝑁tr
ℓ=1. By definition of 𝑥𝑃 and Θ̂, we have

|𝑥𝑃 | ≤ Θ̂, ∀𝑃 ∈ 𝑆. (6.242)

Then, for each 𝑃 ∈ 𝑆, the algorithm computes

�̂�𝑃 (𝜂) =


0, 𝛽𝑃 ≤ 2𝜖,

0, 𝛽𝑃 > 2𝜖, |𝑥𝑃 |/𝛽1/2
𝑃
≤ 2𝜂
√
𝜖,

𝑥𝑃/𝛽𝑃, 𝛽𝑃 > 2𝜖, |𝑥𝑃 |/𝛽1/2
𝑃

> 2𝜂
√
𝜖,

(6.243)

The algorithm considers the function ℎ(𝜌; 𝜂) = max(−Θ̂,min(Θ̂, tr(�̂� (𝜂)𝜌))),
where the observable �̂� (𝜂) is defined as follows,

�̂� (𝜂) =
∑︁
𝑃∈𝑆

�̂�𝑃 (𝜂)𝑃. (6.244)
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The best 𝜂 is selected using the validation set,

𝜂∗ = arg min
𝜂∈{20Θ̂,...,2𝑅Θ̂}

1
𝑁val

𝑁tr+𝑁val∑︁
ℓ=𝑁tr+1

|ℎ(𝜌ℓ; 𝜂) − 𝑦ℓ |2 . (6.245)

The learning algorithm outputs ℎ(𝜌; 𝜂∗) as the learned function.

We now present the learning algorithm for achieving the sample complexity on the
right of Eq. (6.235). We define the set that contains the Pauli observables of interest,

𝑆′ =
{
𝑃 : |𝑃 | ≤ log1.5(2/𝜖)

}
, (6.246)

and 𝑘′ = ⌈log1.5(2/𝜖)⌉. For each 𝑃 ∈ 𝑆′, the algorithm computes

𝑥′𝑃 =
1
𝑁

𝑁∑︁
ℓ=1

tr(𝑃𝜌ℓ)𝑦ℓ, (6.247)

𝛽′𝑃 =
1
𝑁

𝑁∑︁
ℓ=1

tr(𝑃𝜌ℓ) tr(𝑃𝜌ℓ), (6.248)

using the full dataset {(𝜌ℓ, 𝑦ℓ = tr(𝑂unk𝜌ℓ ))}𝑁
ℓ=1. The algorithm uses the following

hyperparameter
𝜖′ ≜

𝜖

6𝑛𝑘 ′
. (6.249)

Then, for each 𝑃 ∈ 𝑆′, the algorithm computes

�̂�′𝑃 =


0, 𝛽′

𝑃
≤ 2𝜖′,

𝑥′
𝑃
/𝛽′

𝑃
, 𝛽′

𝑃
> 2𝜖′.

(6.250)

The algorithm outputs the function ℎ′(𝜌) = tr(�̂�′𝜌), where the observable �̂�′ is
defined as �̂�′ =

∑
𝑃∈𝑆′ �̂�

′
𝑃
𝑃.

Here, we assume that tr(𝑃𝜌ℓ) can be obtained from the training data. However, for
each tr(𝑃𝜌ℓ), we only need to be able to obtain an unbiased estimator for tr(𝑃𝜌ℓ)
and for tr(𝑃𝜌ℓ)2. Recall that an unbiased estimator for 𝑎 is a random variable with
expectation value equal to 𝑎. For example, an unbiased estimator for tr(𝑃𝜌ℓ)2 can
be obtained by performing two quantum measurements on two individual copies
of 𝜌ℓ using the observable 𝑃 and multiplying the results, or by utilizing classical
shadow formalism (Huang, Richard Kueng, and Preskill, 2020) and randomized
measurement (Andreas Elben, Steven T Flammia, et al., 2022).
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Rigorous performance guarantee
In this section, we prove that the learning algorithm presented in the last section
satisfies Theorem 37. We separate the proof for achieving the sample complexity
on the left and right of Eq. (6.235).

The proof for the sample complexity stated on the left of Eq. (6.235) consists of
three parts: (1) a characterization of the prediction error, (2) the existence of a good
hyperparamter 𝜂△ that achieves a small prediction error, (3) the hyperparameter 𝜂∗

found through grid search on the validation set has a small prediction error.

The proof for the sample complexity stated on the right of Eq. (6.235) is simpler
and is given at the end.

Characterization of the prediction error

We begin with a lemma about the sample maximum.

Lemma 46 (Sample maximum). Given 1 > 𝜖, 𝛿 > 0. Consider an arbitrary real-
valued random variable 𝑋 . Let 𝑋1, . . . , 𝑋𝑁 be 𝑁 independent samples of 𝑋 with
𝑁 = ⌈log(1/𝛿)/𝜖⌉ and let Θ̂ = max𝑖 𝑋𝑖. Then

Pr
[
𝑋 ≤ Θ̂

]
≥ 1 − 𝜖 . (6.251)

with probability at least 1 − 𝛿.

Proof. Recall that the cumulative distribution function is defined as

𝐹 (𝜃) = Pr [𝑋 ≤ 𝜃] . (6.252)

We define the approximate maximum as follows,

Θ ≜ inf
𝜃:𝐹 (𝜃)≥1−𝜖

𝜃. (6.253)

Using the right-continuity of 𝐹 (𝜃) = Pr [𝑋 ≤ 𝜃], we have

𝐹 (Θ) = Pr [𝑋 ≤ Θ] ≥ 1 − 𝜖 . (6.254)

Furthermore, from the definition of Θ, we have

Pr [𝑋 ≥ Θ] ≥ 𝜖 . (6.255)

To see the above inequality, suppose that Pr [𝑋 ≥ Θ] < 𝜖 . Then from the left-
continuity of 𝐹′(𝜃) = Pr [𝑋 ≥ 𝜃], we can find Θ′ < Θ, such that Pr [𝑋 ≥ Θ′] ≤ 𝜖 .
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Thus, there exists Θ′ < Θ with Pr [𝑋 ≤ Θ′] ≥ 1 − 𝜖 , which is a contradiction to the
definition of Θ. Together, we have

Pr [𝑋𝑖 < Θ,∀𝑖 ∈ [𝑁]] ≤ (1 − 𝜖)𝑁 . (6.256)

By choosing 𝑁 = ⌈log(1/𝛿)/𝜖⌉, we have

Pr
[
max
𝑖
𝑋𝑖 ≥ Θ

]
≥ 1 − (1 − 𝜖)log(1/𝛿)/𝜖 ≥ 1 − 𝛿. (6.257)

Thus with probability at least 1 − 𝛿, we have Θ̂ ≥ Θ. Using the monotonicity of
𝐹 (𝜃), we have

Pr
[
𝑋 ≤ Θ̂

]
= 𝐹 (Θ̂) ≥ 𝐹 (Θ) ≥ 1 − 𝜖, (6.258)

which establishes this lemma.

Using the above lemma, we can show that given a training set of size

𝑁tr ≥
12 log(3/𝛿)

𝜖′
, (6.259)

the real value Θ̂ ≤
𝑂 (unk) obtained by the algorithm satisfies

Pr
𝜌∼D

[���tr(𝑂 (unk)𝜌)
��� ≤ Θ̂

]
≥ 1 − 𝜖

′

12
(6.260)

with probability at least 1 − (𝛿/3). Hence, with probability at least 1 − (𝛿/3), we
have

E
𝜌∼D

���ℎ(𝜌; 𝜂) − tr(𝑂 (unk)𝜌)
���2 ≤ E

𝜌∼D

���tr(�̂� (𝜂)𝜌) − tr(𝑂 (unk)𝜌)
���2+ 𝜖 ′12

���Θ̂ + 𝑂 (unk)
���2 .

(6.261)
Using Lemma 41 on mean squared error and Corollary 14 on low-degree approxi-
mation, we have

E
𝜌∼D

���ℎ(𝜌; 𝜂) − tr(𝑂 (unk)𝜌)
���2 (6.262)

≤ (2/3)𝑘
𝑂 (unk)

2︸               ︷︷               ︸
≤∥𝑂 (unk) ∥2

𝜖

+
∑︁
𝑃∈𝑆
E
𝜌∼D

[
𝛾∗(𝜌dom(𝑃))

] (
2
3

) |𝑃 |
|�̂�𝑃 (𝜂) − 𝛼𝑃 |2 +

𝜖′

3

𝑂 (unk)
2

(6.263)

with probability at least 1 − (𝛿/3).
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Let us define the following variables,

𝑥𝑃 ≜ E
𝜌∼D

[
𝛾∗(𝜌dom(𝑃))

] (
2
3

) |𝑃 |
𝛼𝑃, 𝛽𝑃 ≜ E

𝜌∼D

[
𝛾∗(𝜌dom(𝑃))

] (
2
3

) |𝑃 |
, ∀𝑃 ∈ 𝑆.

(6.264)
Then, with probability at least 1 − (𝛿/3) over the sampling of the training set, we
have the following characterization of the prediction error for all 𝜂 > 0,

E
𝜌∼D

���ℎ(𝜌; 𝜂) − tr(𝑂 (unk)𝜌)
���2 ≤ 𝜖 𝑂 (unk)

2
+ 𝜖
′

3

𝑂 (unk)
2
+

∑︁
𝑃∈𝑆

𝛽𝑃 |�̂�𝑃 (𝜂) − 𝛼𝑃 |2 .

(6.265)
We will utilize this form to show the existence of a good hyperparameter 𝜂△.

Existence of a good hyperparamter 𝜂△

By considering the training set size to be

𝑁tr = Ω

(
log(1/𝛿)

𝜖′
+ log( |𝑆 |/𝛿)

𝜖2

)
, (6.266)

we can guarantee Eq. (6.265) with probability at least 1 − (𝛿/3). Furthermore,
utilizing Hoeffding’s inequality and union bound, we could also guarantee that

|𝑥𝑃 − 𝑥𝑃 | ≤
𝑂 (unk)

 𝜖, ��𝛽𝑃 − 𝛽𝑃�� ≤ 𝜖, ∀𝑃 ∈ 𝑆 (6.267)

with probability at least 1− (𝛿/3). The norm inequality given in Corollary 12 shows
that ∑︁

𝑃∈𝑆
|𝛼𝑃 |𝑟 ≤

(
3

𝐶 (𝑘)

)𝑟 𝑂 (low)
𝑟 (6.268)

for a constant given by

𝐶 (𝑘) =
√︁

2(𝑘!)
2𝑘 𝑘+1.5+(𝑘+1)/(2𝑘) (

√
6 + 2
√

3)𝑘
. (6.269)

We now condition on the event that Eq. (6.265) and Eq. (6.267) both hold, which
happens with probability at least 1 − (2/3)𝛿. We are now ready to define the good
hyperparameter 𝜂△.

Let hyperparameter 𝜂△ belonging to the grid in Eq. (6.238) be defined as follows,

𝜂△ = 2min(𝑅,⌈log2(∥𝑂 (unk) ∥/Θ̂)⌉)Θ̂. (6.270)

We separately consider two cases: (1) 𝜂△ = 2𝑅Θ̂, (2) 𝜂△ < 2𝑅Θ̂. For the first case
𝜂△ = 2𝑅Θ̂, we can use |𝑥𝑃 | ≤ Θ̂ in Eq. (6.242) and the definition of 𝑅 to see that

�̂�𝑃 (𝜂△) = 0, ∀𝑃 ∈ 𝑆. (6.271)
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Since 𝜂△ = 2𝑅Θ̂, we have 𝑅 ≤
⌈
log2

(𝑂 (unk) /Θ̂)⌉
. This yields 𝜂△ ≤ 2

𝑂 (unk),
which implies that

�̂�𝑃

(
2
𝑂 (unk)

) = 0, ∀𝑃 ∈ 𝑆. (6.272)

Hence, the reconstructed Pauli coefficients �̂�𝑃 (·) are the same for 𝜂△ and 2
𝑂 (unk).

The filtering lemma given in Lemma 45 shows that∑︁
𝑃∈𝑆
E
𝜌∼D

[
𝛾∗(𝜌dom(𝑃))

] (
2
3

) |𝑃 | ���̂�𝑃 (𝜂△) − 𝛼𝑃��2 (6.273)

=
∑︁
𝑃∈𝑆
E
𝜌∼D

[
𝛾∗(𝜌dom(𝑃))

] (
2
3

) |𝑃 | ����̂�𝑃 (
2
𝑂 (unk)

) − 𝛼𝑃���2 (6.274)

≤ 12
(

3
𝐶 (𝑘)

)𝑟 𝑂 (unk)
2−𝑟 𝑂 (low)

𝑟 𝜖1−(𝑟/2) . (6.275)

For the second case 𝜂△ < 2𝑅Θ̂, we have the following bound on 𝜂△,

𝜂△ = 2⌈log2(∥𝑂 (unk) ∥/Θ̂)⌉Θ̂ ∈
[𝑂 (unk)

 , 2 𝑂 (unk)
] . (6.276)

The filtering lemma given in Lemma 45 shows that∑︁
𝑃∈𝑆
E
𝜌∼D

[
𝛾∗(𝜌dom(𝑃))

] (
2
3

) |𝑃 | ���̂�𝑃 (𝜂△) − 𝛼𝑃��2 (6.277)

≤ 6(𝜂△)𝑟
(

3
𝐶 (𝑘)

)𝑟 𝑂 (low)
𝑟 𝜖1−(𝑟/2) (6.278)

≤ 12
(

3
𝐶 (𝑘)

)𝑟 𝑂 (unk)
2−𝑟 𝑂 (low)

𝑟 𝜖1−(𝑟/2) . (6.279)

In both case (1) and case (2), using the definition 𝑟 = 2𝑘/(𝑘 + 1) and 𝜖 =(
𝜖 ′

12

) 𝑘+1 (
𝐶 (𝑘)

3

)2𝑘
, we have

∑︁
𝑃∈𝑆
E
𝜌∼D

[
𝛾∗(𝜌dom(𝑃))

] (
2
3

) |𝑃 | ���̂�𝑃 (𝜂△) − 𝛼𝑃��2 ≤ 𝜖′ 𝑂 (unk)
2−𝑟 𝑂 (low)

𝑟 . (6.280)

Combining with Eq. (6.265), we have

E
𝜌∼D

���ℎ(𝜌; 𝜂△) − tr(𝑂 (unk)𝜌)
���2 ≤ 𝜖 𝑂 (unk)

2
+ 𝜖
′

3

𝑂 (unk)
2
+𝜖′

𝑂 (unk)
2−𝑟 𝑂 (low)

𝑟
(6.281)

with probability at least 1 − (2/3)𝛿.
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The prediction performance of the hyperparameter 𝜂∗

From the definition of ℎ(𝜌; 𝜂), for any quantum state 𝜌, we have���ℎ(𝜌; 𝜂) − tr(𝑂 (unk)𝜌))
���2 ≤ ���Θ̂ + 𝑂 (unk)

���2 ≤ 4
𝑂 (unk)

2
(6.282)

Using Hoeffding’s inequality and union bound, we can show that given a validation
set of size

𝑁val = Ω

(
log(𝑅/𝛿)
(𝜖′)2

)
, (6.283)

with probability at least 1 − (𝛿/3), we have����� 1
𝑁val

𝑁tr+𝑁val∑︁
ℓ=𝑁tr+1

���ℎ(𝜌ℓ; 𝜂) − tr(𝑂 (unk)𝜌ℓ))
���2 − E

𝜌∼D

���ℎ(𝜌; 𝜂) − tr(𝑂 (unk)𝜌))
���2����� (6.284)

≤
𝑂 (unk)

2 𝜖′

3
, (6.285)

for all 𝜂 ∈ {20Θ̂, . . . , 2𝑅Θ̂}. Using the definition of 𝜂∗ and 𝜂△, we have

E
𝜌∼D

���ℎ(𝜌; 𝜂∗) − tr(𝑂 (unk)𝜌))
���2 (6.286)

≤ 1
𝑁val

𝑁tr+𝑁val∑︁
ℓ=𝑁tr+1

���ℎ(𝜌ℓ; 𝜂∗) − tr(𝑂 (unk)𝜌ℓ))
���2 + 𝑂 (unk)

2 𝜖′

3
(6.287)

≤ 1
𝑁val

𝑁tr+𝑁val∑︁
ℓ=𝑁tr+1

���ℎ(𝜌ℓ; 𝜂△) − tr(𝑂 (unk)𝜌ℓ))
���2 + 𝑂 (unk)

2 𝜖′

3
(6.288)

≤ E
𝜌∼D

���ℎ(𝜌; 𝜂△) − tr(𝑂 (unk)𝜌))
���2 + 𝑂 (unk)

2 2𝜖′

3
(6.289)

with probability at least 1−(𝛿/3) over the sampling of the validation set. Combining
with Eq. (6.281) and employing union bound, we have

E
𝜌∼D

���ℎ(𝜌; 𝜂∗) − tr(𝑂 (unk)𝜌))
���2 (6.290)

≤ 𝜖
𝑂 (unk)

2
+ 𝜖′

𝑂 (unk)
2
+ 𝜖′

𝑂 (unk)
2−𝑟 𝑂 (low)

𝑟 (6.291)

with probability at least 1 − 𝛿, as claimed in Eq. (6.194).

Finally, by noting that |𝑆 | = O(𝑛𝑘 ) and 𝑘 = log1.5(1/𝜖) and recalling the definition
of 𝜖 in Eq .(6.237) on the right-hand side of Eq. (6.266), we have

log(1/𝛿)
𝜖′

+ log( |𝑆 |/𝛿)
𝜖2 = log

(𝑛
𝛿

) (
1
𝜖′

) 𝑘+1
2O(𝑘 log 𝑘) (6.292)
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= log
(𝑛
𝛿

)
2O(log( 1

𝜖
)(log log( 1

𝜖
)+log( 1

𝜖 ′ ))) . (6.293)

So it suffices to have

𝑁val = log
(𝑛
𝛿

)
2Ω(log( 1

𝜖
)(log log( 1

𝜖
)+log( 1

𝜖 ′ ))) . (6.294)

Furthermore, by noting that 𝑅 = log2⌈1/𝜖⌉ = O(𝑘 log(𝜖′) + 𝑘 log2 𝑘) in Eq. (6.283),
we see that it suffices to have

𝑁val = Ω

(
log log(𝜖) + log log(𝜖′) + log(1/𝛿)

(𝜖′)2

)
. (6.295)

Recall that the full data size 𝑁 = 𝑁tr + 𝑁val, and the quantity in Eq. (6.295) is
dominated by the one in Eq. (6.294), yielding one argument in the minimum of the
sample complexity claimed in Theorem 37.

Establishing sample complexity on the right of Eq. (6.235)

By considering the full dataset size to be

𝑁 = Ω

(
log( |𝑆′|/𝛿)
(𝜖′)2

)
, (6.296)

Hoeffding’s inequality and union bound can be used to guarantee that��𝑥′𝑃 − 𝑥𝑃�� ≤ 𝑂 (unk)
 𝜖′, ��𝛽′𝑃 − 𝛽𝑃�� ≤ 𝜖′, ∀𝑃 ∈ 𝑆′ (6.297)

with probability at least 1− 𝛿. Using Lemma 44 on filtering small-weight factor, we
have

𝛽𝑃
���̂�′𝑃 − 𝛼𝑃��2 ≤ 3

𝑂 (unk)
2
𝜖′. (6.298)

Using Lemma 41 on mean squared error and Corollary 14 on low-degree approxi-
mation, we have

E
𝜌∼D

���tr(�̂�′𝜌) − tr(𝑂 (unk)𝜌)
���2 ≤ (2/3)𝑘 𝑂 (unk)

2
+

∑︁
𝑃∈𝑆′

𝛽𝑃
���̂�′𝑃 − 𝛼𝑃��2 (6.299)

≤
𝑂 (unk)

2 𝜖

2
+ 3𝑛𝑘

′
𝑂 (unk)

2
𝜖′. (6.300)

From the definition of 𝜖′ in Eq. (6.249), we have

E
𝜌∼D

���tr(�̂�′𝜌) − tr(𝑂 (unk)𝜌)
���2 ≤ 𝜖 𝑂 (unk)

2
. (6.301)

The sample complexity is

𝑁 = O
(
log( |𝑆′|/𝛿)
(𝜖′)2

)
= log(𝑛/𝛿) 2O(log(1/𝜖) log(𝑛)) , (6.302)

which completes the sample complexity claimed in Theorem 37.
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6.9 Learning quantum evolutions from randomized experiments
We recall the following definitions pertaining to classical shadows for quantum states
and quantum evolutions, based on randomized Pauli measurements and random input
states.

Definition 9 (Single-qubit stabilizer state). We define

stab1 ≜ {|0⟩ , |1⟩ , |+⟩ , |−⟩ , |𝑦+⟩ , |𝑦−⟩} (6.303)

to be the set of single-qubit stabilizer states.

We define randomized Pauli measurements as follows.

Definition 10 (Randomized Pauli measurement). Given 𝑛 > 0. A randomized Pauli
measurement on an 𝑛-qubit state is given by a 6𝑛-outcome POVM

F (Pauli) ≜

{
1
3𝑛

𝑛⊗
𝑖=1
|𝑠𝑖⟩⟨𝑠𝑖 |

}
𝑠1,...,𝑠𝑛∈stab1

, (6.304)

which corresponds to measuring every qubit under a random Pauli basis (𝑋,𝑌, 𝑍).
The outcome of F (Pauli) is an 𝑛-qubit state |𝜓⟩ =

⊗𝑛

𝑖=1 |𝑠𝑖⟩ , where |𝑠𝑖⟩ ∈ stab1 is a
single-qubit stabilizer state.

In the following, we define the classical shadow of a quantum state based on ran-
domized Pauli measurements. Classical shadows could also be defined based on
other randomized measurements (Huang, Richard Kueng, and Preskill, 2020).

Definition 11 (Classical shadow of a quantum state). Given 𝑛, 𝑁 > 0. Consider an
𝑛-qubit state 𝜌. A size-𝑁 classical shadow 𝑆𝑁 (𝜌) of quantum state 𝜌 is a random
set given by

𝑆𝑁 (𝜌) ≜ {|𝜓ℓ⟩}𝑁ℓ=1 , (6.305)

where |𝜓ℓ⟩ =
⊗𝑛

𝑖=1 |𝑠ℓ,𝑖⟩ is the outcome of the ℓ-th randomized Pauli measurement
on a single copy of 𝜌.

We can generalize classical shadows from quantum states to quantum processes by
considering random product input states and randomized Pauli measurements. A
similar generalization has been studied in (Levy, Luo, and Clark, 2021).
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Definition 12 (Classical shadow of a quantum process). Given an 𝑛-qubit CPTP
map E. A size-𝑁 classical shadow 𝑆𝑁 (E) of quantum evolution E is a random set
given by

𝑆𝑁 (E) ≜
{
|𝜓 (in)
ℓ
⟩ , |𝜓 (out)

ℓ
⟩
}𝑁
ℓ=1

, (6.306)

where |𝜓 (in)
ℓ
⟩ =

⊗𝑛

𝑖=1 |𝑠
(in)
ℓ,𝑖
⟩ is a random input state with |𝑠(in)

ℓ,𝑖
⟩ ∈ stab1 sampled

uniformly, and |𝜓 (out)
ℓ
⟩ =

⊗𝑛

𝑖=1 |𝑠
(out)
ℓ,𝑖
⟩ is the outcome of performing randomized

Pauli measurement on E(|𝜓 (in)
ℓ
⟩⟨𝜓 (in)

ℓ
|).

After obtaining the outcome from 𝑁 randomized experiments, we can design a
learning algorithm that learns a model of the unknown CPTP map E, such that
given an input state 𝜌 and an observable 𝑂, the algorithm could predict tr(𝑂E(𝜌)).
The rigorous guarantee is given in the following theorem.

Theorem 38 (Learning to predict a quantum evolution). Given 𝑛, 𝜖, 𝜖 ′, 𝛿 > 0.
Consider any unknown 𝑛-qubit CPTP map E. Given a classical shadow 𝑆𝑁 (E) of
E obtained by 𝑁 randomized experiments with

𝑁 = log
(𝑛
𝛿

)
min

(
2O(log( 1

𝜖
)(log log( 1

𝜖
)+log( 1

𝜖 ′ ))) , 2O(log(1/𝜖) log(𝑛))
)
. (6.307)

With probability ≥ 1− 𝛿, the algorithm learns a function ℎ, s.t. for any 𝑛-qubit state
distribution D invariant under single-qubit 𝐻 and 𝑆 gates, and any observable 𝑂
given as a sum of few-body observables, where each qubit is acted on by O(1) of
the few-body observables,

E
𝜌∼D
|ℎ(𝜌, 𝑂) − tr (𝑂E(𝜌)) |2 ≤

(
𝜖 + 𝜖′

[ ∥𝑂 (low) ∥
∥𝑂∥

] 2⌈log1.5 (1/𝜖 ) ⌉
⌈log1.5 (1/𝜖 ) ⌉+1

)
∥𝑂∥2 . (6.308)

Here,𝑂 (low) is the low-degree approximation of𝑂 after Heisenberg evolution under
E.

The scaling given in the main text corresponds to the additional assumption that
∥𝑂∥ ≤ 1. By noting that 2⌈log1.5 (1/𝜖)⌉

⌈log1.5 (1/𝜖)⌉+1
∈ [1, 2), we have

[ ∥𝑂 (low) ∥
∥𝑂∥

] 2⌈log1.5 (1/𝜖 ) ⌉
⌈log1.5 (1/𝜖 ) ⌉+1 ∥𝑂∥2 ≤

𝑂 (low)
 2⌈log1.5 (1/𝜖 ) ⌉
⌈log1.5 (1/𝜖 ) ⌉+1 ≤ max

(𝑂 (low)
2
, 1

)
. (6.309)

Theorem 25 follows by considering 𝜖′→ 0.
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Learning algorithm
Recall that a size-𝑁 classical shadow 𝑆𝑁 (E) of the CPTP map E is a set given by

𝑆𝑁 (E) ≜
{
|𝜓 (in)
ℓ
⟩ =

𝑛⊗
𝑖=1
|𝑠(in)
ℓ,𝑖
⟩ , |𝜓 (out)

ℓ
⟩ =

𝑛⊗
𝑖=1
|𝑠(out)
ℓ,𝑖
⟩
}𝑁
ℓ=1

. (6.310)

Given an observable 𝑂 that can be written as a sum of 𝜅-qubit observables, where
each qubit is acted on by at most 𝑑 of the 𝜅-qubit observables with 𝜅, 𝑑 = O(1). We
have

𝑂 =
∑︁

𝑄∈{𝐼,𝑋,𝑌 ,𝑍}⊗𝑛:|𝑄 |≤𝜅
𝑎𝑄𝑄, (6.311)

where
∑
𝑄:|𝑄 |≤𝜅 1[𝑎𝑄 ≠ 0] = O(𝑛). The algorithm creates a dataset,𝜌ℓ = |𝜓 (in)ℓ

⟩⟨𝜓 (in)
ℓ
|, 𝑦ℓ (𝑂) =

∑︁
𝑄:|𝑄 |≤𝜅

𝑎𝑄 tr

(
𝑄

𝑛⊗
𝑖=1

(
3|𝑠(out)

ℓ,𝑖
⟩⟨𝑠(out)

ℓ,𝑖
| − 𝐼

))
𝑁

ℓ=1
(6.312)

from the classical shadow 𝑆𝑁 (E), which requires O(𝑛𝑁) computational time. We
also define the parameter

𝜂 ≜
∑︁

𝑄:|𝑄 |≤𝜅
|𝑎𝑄 | = ∥𝑂∥Pauli,1 (6.313)

based on the given observable 𝑂.

The sample complexity in Eq. (6.307) is the minimum of two arguments. Each
of the two corresponds to a hyperparameter setting for 𝑘 and 𝜖 . Let 𝐶 (𝑘) be the
function from Corollary 12 and𝐶 (𝑘, 𝑑) be the function from Corollary 13. The first
hyperparameter setting considers

𝑘 = ⌈log1.5(1/𝜖)⌉, 𝜖 =

(
𝜖′

6 · 2𝑘

) 𝑘+1 (
𝐶 (𝜅, 𝑑)

3

)2 (
𝐶 (𝑘)

3

)2𝑘
. (6.314)

The second hyperparameter setting considers

𝑘 = ⌈log1.5(2/𝜖)⌉, 𝜖 =
𝜖

9 · 2𝑘+1 · 𝑛𝑘

(
𝐶 (𝜅, 𝑑)

3

)2
. (6.315)

For every Pauli observable 𝑃 ∈ {𝐼, 𝑋,𝑌 , 𝑍}⊗𝑛 with |𝑃 | ≤ 𝑘 , the algorithm computes

𝑥𝑃 (𝑂) =
1
𝑁

𝑁∑︁
ℓ=1

tr(𝑃𝜌ℓ)𝑦ℓ (𝑂), (6.316)

𝛽𝑃 =

(
1
3

) |𝑃 |
, (6.317)
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�̂�𝑃 (𝑂) =


0, 𝛽𝑃 ≤ 2𝜖,

0, 𝛽𝑃 > 2𝜖, |𝑥𝑃 (𝑂) |/𝛽1/2
𝑃
≤ 2𝜂
√
𝜖,

𝑥𝑃 (𝑂)/𝛽𝑃, 𝛽𝑃 > 2𝜖, |𝑥𝑃 (𝑂) |/𝛽1/2
𝑃

> 2𝜂
√
𝜖,

(6.318)

which requires O(𝑘𝑁) time per Pauli observable 𝑃. Finally, given an 𝑛-qubit state
𝜌, the algorithm outputs

ℎ(𝜌, 𝑂) ≜
∑︁

𝑃:|𝑃 |≤𝑘
�̂�𝑃 (𝑂) tr(𝑃𝜌), (6.319)

which uses a computational time of O(𝑛𝑘 ).

Rigorous performance guarantee
In this section, we prove that the learning algorithm presented in the last section
satisfies Theorem 38. The proof uses the tools presented in Section 6.8 and is similar
to the proof of Theorem 37.

Definitions

For a given observable that is a sum of 𝜅-qubit observables, where 𝜅 = O(1) and
each qubit is acted on by 𝑑 = O(1) of the 𝜅-qubit observables, we can write

𝑂 =
∑︁

𝑄∈{𝐼,𝑋,𝑌 ,𝑍}⊗𝑛:|𝑄 |≤𝜅
𝑎𝑄𝑄. (6.320)

We define a few variables based on 𝑂 as follows. We consider the unknown
observable to be

𝑂 (unk) ≜ E†(𝑂) ≜
∑︁

𝑃∈{𝐼,𝑋,𝑌 ,𝑍}⊗𝑛
𝛼𝑃 (𝑂)𝑃, (6.321)

and the low-degree approximation of 𝑂 (unk) to be

𝑂 (low) ≜
∑︁

𝑃∈{𝐼,𝑋,𝑌 ,𝑍}⊗𝑛:|𝑃 |≤𝑘
𝛼𝑃 (𝑂)𝑃. (6.322)

Then for all Pauli observables 𝑃 ∈ {𝐼, 𝑋,𝑌 , 𝑍}⊗𝑛, we define

𝑥𝑃 (𝑂) ≜
(
1
3

) |𝑃 |
𝛼𝑃 (𝑂), 𝛽𝑃 ≜

(
1
3

) |𝑃 |
. (6.323)

We also define the standard 𝑛-qubit input state distribution D0 to be the uniform
distribution over the tensor product of 𝑛 single-qubit stabilizer states. A nice property
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of D0 is that for any state 𝜌 in the support of D0, the non-identity purity for a
subsystem 𝐴 of size 𝐿 is

𝛾∗(𝜌𝐴) =
1

2𝐿
. (6.324)

Using this property and Lemma 43 on extracting Pauli coefficients, we have the
following identities

𝑥𝑃 (𝑂) = E
𝜌∼D0

tr(𝑃𝜌) tr
(
E†(𝑂)𝜌

)
, (6.325)

𝛽𝑃 = E
𝜌∼D0

tr(𝑃𝜌)2 = E
𝜌∼D0

[
𝛾∗(𝜌dom(𝑃))

] (
2
3

) |𝑃 |
. (6.326)

We are now ready to prove Theorem 38.

Prediction error under standard distribution D0 (first set of
hyperparameters)

We begin the proof by considering the first set of hyperparameters 𝑘, 𝜖 as given in
Eq. (6.314). For a Pauli observable 𝑄 ∈ {𝐼, 𝑋,𝑌 , 𝑍}⊗𝑛 with |𝑄 | ≤ 𝜅 = O(1), we
consider the random variable

𝑥𝑃 (𝑄) =
1
𝑁

𝑁∑︁
ℓ=1

tr(𝑃𝜌ℓ)𝑦ℓ (𝑄) =
1
𝑁

𝑁∑︁
ℓ=1

tr(𝑃𝜌ℓ) tr
(
𝑄

𝑛⊗
𝑖=1

(
3|𝑠(out)

ℓ,𝑖
⟩⟨𝑠(out)

ℓ,𝑖
| − 𝐼

))
.

(6.327)
Because |𝑄 | = O(1), we have

���tr (
𝑄

⊗𝑛

𝑖=1

(
3|𝑠(out)

ℓ,𝑖
⟩⟨𝑠(out)

ℓ,𝑖
| − 𝐼

))��� = O(1) with
probability one. By considering the size of the classical shadow 𝑆𝑁 (E) to be

𝑁 = Ω

(
log(𝑛𝑘+𝜅/𝛿)

𝜖2

)
, (6.328)

we can utilize Hoeffding’s inequality and union bound to guarantee that

|𝑥𝑃 (𝑄) − 𝑥𝑃 (𝑄) | ≤ 𝜖, ∀𝑃,𝑄 ∈ {𝐼, 𝑋,𝑌 , 𝑍}⊗𝑛, |𝑃 | ≤ 𝑘, |𝑄 | ≤ 𝜅 (6.329)

with probability at least 1−𝛿. In the following proof, we will condition on the above
event.

Using triangle inequality, we have

|𝑥𝑃 (𝑂) − 𝑥𝑃 (𝑂) | ≤ ∥𝑂∥Pauli,1 𝜖 = 𝜂𝜖,
��𝛽𝑃 − 𝛽𝑃�� = 0, ∀𝑃 : |𝑃 | ≤ 𝑘. (6.330)

The norm inequality given in Corollary 12 shows that∑︁
𝑃:|𝑃 |≤𝑘

|𝛼𝑃 (𝑂) |𝑟 ≤
(

3
𝐶 (𝑘)

)𝑟 𝑂 (low)
𝑟 (6.331)
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for the constant 𝐶 (𝑘) defined in (6).

The filtering lemma given in Lemma 45 shows that∑︁
𝑃:|𝑃 |≤𝑘

E
𝜌∼D0

[
𝛾∗(𝜌dom(𝑃))

] (
2
3

) |𝑃 |
|�̂�𝑃 (𝑂) − 𝛼𝑃 (𝑂) |2 (6.332)

≤ 6𝜂2−𝑟
(

3
𝐶 (𝑘)

)𝑟 𝑂 (low)
𝑟 𝜖1−(𝑟/2) . (6.333)

From the norm inequality and the constant 𝐶 (𝑘, 𝑑) given in Corollary 13, we have

𝜂 = ∥𝑂∥Pauli,1 ≤
3

𝐶 (𝜅, 𝑑) ∥𝑂∥ . (6.334)

Combining with the definition of 𝜖 given in Eq. (6.314), we have∑︁
𝑃:|𝑃 |≤𝑘

E
𝜌∼D0

[
𝛾∗(𝜌dom(𝑃))

] (
2
3

) |𝑃 |
|�̂�𝑃 (𝑂) − 𝛼𝑃 (𝑂) |2 ≤

[ ∥𝑂 (low) ∥
∥𝑂∥

]𝑟 𝜖′
2𝑘
· ∥𝑂∥2 .

(6.335)
Using Lemma 41 on mean squared error and Corollary 14 on low-degree approxi-
mation, we have

E
𝜌∼D0

���ℎ(𝜌, 𝑂) − tr(𝑂 (unk)𝜌)
���2 (6.336)

≤ (2/3)𝑘
𝑂 (unk)

2︸               ︷︷               ︸
≤∥𝑂 (unk) ∥2

𝜖

+
∑︁

𝑃:|𝑃 |≤𝑘
E

𝜌∼D0

[
𝛾∗(𝜌dom(𝑃))

] (
2
3

) |𝑃 |
|�̂�𝑃 (𝑂) − 𝛼𝑃 (𝑂) |2 .

(6.337)

Using the definition of𝑂 (unk) , we have𝑂 (unk) = E†(𝑂) and
𝑂 (unk) ≤ ∥𝑂∥. Hence

E
𝜌∼D0

|ℎ(𝜌, 𝑂) − tr(𝑂E(𝜌)) |2 ≤
(
𝜖 + 𝜖

′

2𝑘
[ ∥𝑂 (low) ∥
∥𝑂∥

]𝑟 )
∥𝑂∥2 , (6.338)

which establishes a prediction error bound for distribution D0.

Prediction error under general distribution D (first set of hyperparameters)

We now consider an arbitrary 𝑛-qubit state distribution D invariant under single-
qubit 𝐻 and 𝑆 gates. Using Lemma 41 on mean squared error and Corollary 14 on
low-degree approximation, we have

E
𝜌∼D

���ℎ(𝜌, 𝑂) − tr(𝑂 (unk)𝜌)
���2 (6.339)



311

≤ 𝜖 ∥𝑂∥2 +
∑︁

𝑃:|𝑃 |≤𝑘
E
𝜌∼D

[
𝛾∗(𝜌dom(𝑃))

] (
2
3

) |𝑃 |
|�̂�𝑃 (𝑂) − 𝛼𝑃 (𝑂) |2 . (6.340)

Recall that 𝛾∗(𝜌dom(𝑃)) ≤ 1, hence

E
𝜌∼D

[
𝛾∗(𝜌dom(𝑃))

] (
2
3

) |𝑃 |
≤ 2𝑘

(
1
3

) |𝑃 |
, ∀𝑃 ∈ {𝐼, 𝑋,𝑌 , 𝑍}⊗𝑛, |𝑃 | ≤ 𝑘. (6.341)

Furthermore, we have E𝜌∼D0

[
𝛾∗(𝜌dom(𝑃))

] (
2
3

) |𝑃 |
= (1/3) |𝑃 |. Together, we have

E
𝜌∼D

���ℎ(𝜌, 𝑂) − tr(𝑂 (unk)𝜌)
���2 (6.342)

≤ 𝜖 ∥𝑂∥2 + 2𝑘
∑︁

𝑃:|𝑃 |≤𝑘
E

𝜌∼D0

[
𝛾∗(𝜌dom(𝑃))

] (
2
3

) |𝑃 |
|�̂�𝑃 (𝑂) − 𝛼𝑃 (𝑂) |2 . (6.343)

Combining the above with Eq. (6.335), we have

E
𝜌∼D
|ℎ(𝜌, 𝑂) − tr(𝑂E(𝜌)) |2 ≤

(
𝜖 + 𝜖′

[ ∥𝑂 (low) ∥
∥𝑂∥

]𝑟 )
∥𝑂∥2 , (6.344)

which is the prediction error under distribution D.

Putting everything together (first set of hyperparameters)

From Eq. (6.314), we have set the parameter 𝜖 to be

𝜖 =

(
𝜖′

6

) 𝑘+1 (
𝐶 (𝜅, 𝑑)

3

)2 (
𝐶 (𝑘)

3

)2𝑘
. (6.345)

Furthermore, given the classical shadow 𝑆𝑁 (E) of size

𝑁 = O
(
log(𝑛𝑘+𝜅/𝛿)

𝜖2

)
= log

(𝑛
𝛿

)
2O(log( 1

𝜖
)(log log( 1

𝜖
)+log( 1

𝜖 ′ ))) , (6.346)

we can guarantee that with probability at least 1 − 𝛿, the following holds. For any
observable𝑂 that is a sum of 𝜅-qubit observables, where 𝜅 = O(1) and each qubit is
acted on by 𝑑 = O(1) of the 𝜅-qubit observables, and any 𝑛-qubit state distribution
D invariant under single-qubit 𝐻 and 𝑆 gates, we have

E
𝜌∼D
|ℎ(𝜌, 𝑂) − tr(𝑂E(𝜌)) |2 ≤

(
𝜖 + 𝜖′

[ ∥𝑂 (low) ∥
∥𝑂∥

]𝑟 )
∥𝑂∥2 . (6.347)

This establishes one of the argument for the sample complexity stated in Theorem 38.
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Prediction error under standard distribution D0 (second set of
hyperparameters)

In the following proof, we consider the second set of hyperparameters 𝑘, 𝜖 as given
in Eq. (6.315). By considering the size of the classical shadow 𝑆𝑁 (E) to be

𝑁 = Ω

(
log(𝑛𝑘+𝜅/𝛿)

𝜖2

)
, (6.348)

we can utilize Hoeffding’s inequality and union bound to guarantee that

|𝑥𝑃 (𝑄) − 𝑥𝑃 (𝑄) | ≤ 𝜖, ∀𝑃,𝑄 ∈ {𝐼, 𝑋,𝑌 , 𝑍}⊗𝑛, |𝑃 | ≤ 𝑘, |𝑄 | ≤ 𝜅 (6.349)

with probability at least 1−𝛿. In the following proof, we will condition on the above
event. Using triangle inequality, we have

|𝑥𝑃 (𝑂) − 𝑥𝑃 (𝑂) | ≤ ∥𝑂∥Pauli,1 𝜖 = 𝜂𝜖,
��𝛽𝑃 − 𝛽𝑃�� = 0, ∀𝑃 : |𝑃 | ≤ 𝑘. (6.350)

The filtering lemma given in Lemma 45 shows that∑︁
𝑃:|𝑃 |≤𝑘

E
𝜌∼D0

[
𝛾∗(𝜌dom(𝑃))

] (
2
3

) |𝑃 |
|�̂�𝑃 (𝑂) − 𝛼𝑃 (𝑂) |2 ≤ 9𝜂2𝜖2. (6.351)

From the norm inequality and the function 𝐶 (𝑘, 𝑑) given in Corollary 13, we have

𝜂 = ∥𝑂∥Pauli,1 ≤
3

𝐶 (𝜅, 𝑑) ∥𝑂∥ . (6.352)

Combining with the definition of 𝜖 given in Eq. (6.315), we have∑︁
𝑃:|𝑃 |≤𝑘

E
𝜌∼D0

[
𝛾∗(𝜌dom(𝑃))

] (
2
3

) |𝑃 |
|�̂�𝑃 (𝑂) − 𝛼𝑃 (𝑂) |2 ≤

𝜖

2𝑘+1
· ∥𝑂∥2 . (6.353)

Using Lemma 41 on mean squared error and Corollary 14 on low-degree approxi-
mation, we have

E
𝜌∼D0

���ℎ(𝜌, 𝑂) − tr(𝑂 (unk)𝜌)
���2 (6.354)

≤ (2/3)𝑘
𝑂 (unk)

2
+

∑︁
𝑃:|𝑃 |≤𝑘

E
𝜌∼D0

[
𝛾∗(𝜌dom(𝑃))

] (
2
3

) |𝑃 |
|�̂�𝑃 (𝑂) − 𝛼𝑃 (𝑂) |2

(6.355)

≤ 𝜖
2

𝑂 (unk)
2
+

∑︁
𝑃:|𝑃 |≤𝑘

E
𝜌∼D0

[
𝛾∗(𝜌dom(𝑃))

] (
2
3

) |𝑃 |
|�̂�𝑃 (𝑂) − 𝛼𝑃 (𝑂) |2 . (6.356)

Using the definition of𝑂 (unk) , we have𝑂 (unk) = E†(𝑂) and
𝑂 (unk) ≤ ∥𝑂∥. Hence

E
𝜌∼D0

|ℎ(𝜌, 𝑂) − tr(𝑂E(𝜌)) |2 ≤ 1
2

(
𝜖 + 𝜖

2𝑘
)
∥𝑂∥2 , (6.357)

which establishes a prediction error bound for distribution D0.
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Prediction error under general distribution D (second set of
hyperparameters)

We now consider an arbitrary 𝑛-qubit state distribution D invariant under single-
qubit 𝐻 and 𝑆 gates. Using Lemma 41 on mean squared error, Corollary 14 on
low-degree approximation, 𝑘 = ⌈log1.5(2/𝜖)⌉, the fact that 𝛾∗(𝜌dom(𝑃)) ≤ 1, and

E𝜌∼D0

[
𝛾∗(𝜌dom(𝑃))

] (
2
3

) |𝑃 |
= (1/3) |𝑃 |, we have

E
𝜌∼D

���ℎ(𝜌, 𝑂) − tr(𝑂 (unk)𝜌)
���2 (6.358)

≤ 𝜖
2
∥𝑂∥2 + 2𝑘

∑︁
𝑃:|𝑃 |≤𝑘

E
𝜌∼D0

[
𝛾∗(𝜌dom(𝑃))

] (
2
3

) |𝑃 |
|�̂�𝑃 (𝑂) − 𝛼𝑃 (𝑂) |2 . (6.359)

Combining the above with Eq. (6.353), we have

E
𝜌∼D
|ℎ(𝜌, 𝑂) − tr(𝑂E(𝜌)) |2 ≤ 𝜖 ∥𝑂∥2 , (6.360)

which is the prediction error under distribution D.

Putting everything together (second set of hyperparameters)

From Eq. (6.315), we have set the parameter 𝜖 to be

𝜖 =
𝜖

9 · 2𝑘+1 · 𝑛𝑘

(
𝐶 (𝜅, 𝑑)

3

)2
. (6.361)

Furthermore, given the classical shadow 𝑆𝑁 (E) of size

𝑁 = O
(
log(𝑛𝑘+𝜅/𝛿)

𝜖2

)
= log

(𝑛
𝛿

)
2O(log( 1

𝜖
) log(𝑛)) , (6.362)

we can guarantee that with probability at least 1 − 𝛿, the following holds. For any
observable𝑂 that is a sum of 𝜅-qubit observables, where 𝜅 = O(1) and each qubit is
acted on by 𝑑 = O(1) of the 𝜅-qubit observables, and any 𝑛-qubit state distribution
D invariant under single-qubit 𝐻 and 𝑆 gates, we have

E
𝜌∼D
|ℎ(𝜌, 𝑂) − tr(𝑂E(𝜌)) |2 ≤ 𝜖 ∥𝑂∥2 . (6.363)

This completes the proof of Theorem 38.
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6.10 Details of numerical experiments
In the numerical experiments, we consider the two classes of Hamiltonians,

𝐻 =
1
4

∑︁
𝑖

(𝑋𝑖𝑋𝑖+1 + 𝑌𝑖𝑌𝑖+1) +
1
2

∑︁
𝑖

ℎ𝑖𝑍𝑖, (XY model) (6.364)

𝐻 =
1
2

∑︁
𝑖

𝑋𝑖𝑋𝑖+1 +
1
2

∑︁
𝑖

ℎ𝑖𝑍𝑖, (Ising model) (6.365)

where ℎ𝑖 = 0.5 for the homogeneous Z field, and ℎ𝑖 is sampled uniformly at random
from [−5, 5] for the disordered Z field. We solve for the time-evolved properties
using the Jordan-Wigner transform to map the spin chains to a free fermion model
and the technique described in (E. Lieb, Schultz, and Mattis, 1961) to solve the free
fermion model.

We consider the training set to be a collection of 𝑁 random product states |𝜓ℓ⟩ , ℓ =
1, . . . , 𝑁 and their associated measured properties 𝑦ℓ corresponding to measuring
an observable 𝑂 after evolving under 𝑈 (𝑡) = exp(−𝑖𝑡𝐻). The measured properties
are averaged over 500 measurements. Hence 𝑦ℓ is a noisy estimate of the true
expectation value tr(𝑂𝑈 (𝑡) |𝜓ℓ⟩⟨𝜓ℓ |𝑈 (𝑡)†). We consider essentially the same ML
algorithm as described in Section 6.2, but utilize a more sophisticated approach to
enforce sparsity in �̂�𝑃. We also consider 𝛼𝑃 for Pauli operator 𝑃 that is geometrically
local. For ease of analysis, we consider a simple strategy of setting small values to
zero. The standard approach that is often used in practice is LASSO (R. Tibshirani,
1996).

In the numerical experiments, we perform a simple grid search for the two hyperpa-
rameters using two-fold cross-validation on the training set:

𝑘 = 1, 2, 3, 4, (6.366)

𝑎 = 2−15, 2−14, 2−13, . . . , 2−4, 2−3, (6.367)

where 𝑘 corresponds to the maximum number of qubits that the Pauli operators 𝑃 act
on, and 𝑎 is a hyperparameter corresponding to the strength of the ℓ1 regularization
term in LASSO. In particular, the optimization problem of LASSO is given by

min
�̂�𝑃

1
2𝑁

𝑁∑︁
ℓ=1

������𝑦ℓ − ∑︁
𝑃:|𝑃 |≤𝑘

�̂�𝑃 tr(𝑃 |𝜓ℓ⟩⟨𝜓ℓ |)

������
2

+ 𝑎
∑︁

𝑃:|𝑃 |≤𝑘
|�̂�𝑃 |, (6.368)

where |𝑃 | is the number of qubits that the Pauli observable 𝑃 acts nontrivially on.
We then use the values �̂�𝑃 found by the above optimization to form a succinct
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Figure 6.5: Visualization of ML model’s prediction for a highly-entangled initial
state 𝜌 = |𝜓⟩⟨𝜓 |. We consider the expected value of 𝑍𝑖 (𝑡) = 𝑒𝑖𝑡𝐻𝑍𝑖𝑒−𝑖𝑡𝐻 , where 𝐻
corresponds to the 1D 50-spin XY chain with a homogeneous 𝑍 field. The initial
state |𝜓⟩ has a GHZ-like entanglement over the first 18-spin chain and is a product
state with spins rotating clockwise over the latter 32-spin chain. To prepare |𝜓⟩
with 1D circuits, a depth of at least Ω(𝑛) is required. Even though the ML model
is trained only on random product states (a total of 𝑁 = 10000), it still performs
accurately in predicting the highly-entangled state over a wide range of evolution
time 𝑡.

approximate model ∑︁
𝑃:|𝑃 |≤𝑘

�̂�𝑃𝑃 (6.369)

of the time-evolved observable 𝑂 (𝑡) = 𝑈 (𝑡)†𝑂𝑈 (𝑡). Given a new initial state 𝜌, we
would predict the time-evolved property tr(𝑂 (𝑡)𝜌) = tr(𝑂𝑈 (𝑡)𝜌𝑈 (𝑡)†) using∑︁

𝑃:|𝑃 |≤𝑘
�̂�𝑃 tr(𝑃𝜌). (6.370)

In addition to the figures given in the main text, Fig. 6.5 shows another example for
predicting a highly entangled initial state. Even though the ML model is trained
with random product states, it still performs very well on a structured entangled
initial state.
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C h a p t e r 7

INFORMATION-THEORETIC BOUNDS ON QUANTUM
ADVANTAGE

The widespread applications of machine learning (ML) to problems of practical
interest have fueled interest in machine learning using quantum platforms (Biamonte
et al., 2017; Schuld and Killoran, 2019; Havlicek et al., 2019). Though many
potential applications of quantum ML have been proposed, so far the prospect for
quantum advantage in solving purely classical problems remains unclear (E. Tang,
2019; E. Tang, 2018; Gilyén, Lloyd, and E. Tang, 2018; Arrazola et al., 2019).
On the other hand, it seems plausible that quantum ML can be fruitfully applied
to problems faced by quantum scientists, such as characterizing the properties of
quantum systems and predicting the outcomes of quantum experiments (Carleo
and Troyer, 2017a; Van Nieuwenburg, Y.-H. Liu, and Sebastian D Huber, 2017;
Carrasquilla and Roger G Melko, 2017a; Gilmer et al., 2017; Melnikov et al., 2018;
Sharir et al., 2020; Aharonov, J. S. Cotler, and Qi, 2021).

Here we focus on an important class of learning problems motivated by quantum
mechanics. Namely, we are interested in predicting functions of the form

𝑓 (𝑥) = tr(𝑂E(|𝑥⟩⟨𝑥 |)), (7.1)

where 𝑥 is a classical input, E is an arbitrary (possibly unknown) completely positive
and trace preserving (CPTP) map, and 𝑂 is a known observable. Equation (7.1)
encompasses any physical process that takes a classical input and produces a real
number as output. The goal is to construct a function ℎ(𝑥) that accurately ap-
proximates 𝑓 (𝑥) after accessing the physical process E as few times as possible.

A particularly important special case of setup (7.1) is training an ML model to
predict what would happen in physical experiments (Melnikov et al., 2018). Such
experiments might explore, for instance, the outcome of a reaction in quantum
chemistry (Z. Zhou, Xiaocheng Li, and Zare, 2017), ground state properties of a
novel molecule or material (Parr, 1980; Car and Parrinello, 1985; Becke, 1993;
Steven R White, 1993a; Peruzzo et al., 2014; Kandala et al., 2017; Gilmer et al.,
2017), or the behavior of neutral atoms in an analog quantum simulator (Buluta and
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Figure 7.1: Illustration of classical and quantum machine learning settings: The
goal is to learn about an unknown CPTP map E by performing physical experiments.
(Left) In the learning phase of the classical ML setting, a measurement is performed
after each query to E; the classical measurement outcomes collected during the
learning phase are consulted during the prediction phase. (Right) In the learning
phase of the quantum ML setting, multiple queries to E may be included in a single
coherent quantum circuit, yielding an output state stored in a quantum memory; this
stored quantum state is consulted during the prediction phase.

Nori, 2009; Levine et al., 2018; Bernien et al., 2017). In these cases, the input 𝑥
subsumes parameters that characterize the process, e.g., chemicals involved in the
reaction, a description of the molecule, or the intensity of lasers that control the
neutral atoms. The map E characterizes a quantum evolution happening in the lab.
Depending on the parameter 𝑥, it produces the quantum state E(|𝑥⟩⟨𝑥 |). Finally, the
experimentalist measures a certain observable 𝑂 at the end of the experiment. The
goal is to predict the measurement outcome for new physical experiments with new
values of 𝑥 that have not been encountered during the training process.

Motivated by these concrete applications, we want to understand the power of
classical and quantum ML models in predicting functions of the form given in
Equation (7.1). On the one hand, we consider classical ML models that can gather
classical measurement data {(𝑥𝑖, 𝑜𝑖)}𝑁C

𝑖=1, where 𝑜𝑖 is the outcome when we perform
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a POVM measurement on the state E(|𝑥𝑖⟩⟨𝑥𝑖 |). We denote by 𝑁C the number of such
experiments performed during training in the classical ML setting. On the other
hand, we consider quantum ML models in which multiple runs of the CPTP map E
can be composed coherently to collect quantum data, and predictions are produced
by a quantum computer with access to the quantum data. We denote by 𝑁Q the
number of times E is used during training in the quantum setting. The classical and
quantum ML settings are illustrated in Figure 7.1.

We focus on the question of whether quantum ML can have a large advantage over
classical ML: to achieve a small prediction error, can the optimal 𝑁Q in the quantum
ML setting be much less than the optimal 𝑁C in the classical ML setting? For the
purpose of this comparison, we disregard the runtime of the classical or quantum
ML models that generate the predictions; we are only interested in how many times
the process E must run during the learning phase in the quantum and classical
settings.

The main result of this chapter addresses small average prediction error, i.e., the
prediction error |ℎ(𝑥)− 𝑓 (𝑥) |2 averaged over some specified input distributionD(𝑥).
We rigorously show that, for any E, 𝑂, and D, and for any quantum ML model,
one can always design a classical ML model achieving a similar average prediction
error such that 𝑁C is larger than 𝑁Q by at worst a small polynomial factor. Hence,
there is no exponential advantage of quantum ML over classical ML if the goal is
to achieve a small average prediction error and if the efficiency is quantified by the
number of times E is used in the learning process. This statement holds for existing
quantum ML models running on near-term devices (Havlicek et al., 2019; Schuld
and Killoran, 2019; Huang, Broughton, Masoud Mohseni, Babbush, Boixo, Neven,
and Jarrod R McClean, 2021a) and future quantum ML models yet to be conceived.
We note, though, that while there is no large advantage in query complexity, a
substantial quantum advantage in computational complexity is possible (Servedio
and Gortler, 2004).

7.1 Machine learning settings
We assume that the observable 𝑂 (with ∥𝑂∥ ≤ 1) is known and the physical
experiment E is an unknown CPTP map that belongs to a set of CPTP maps F .
Apart from E ∈ F , the process can be arbitrary — a common assumption in
statistical learning theory (Leslie G Valiant, 1984; Blumer et al., 1989; Bartlett and
Mendelson, 2002; Vapnik, 2013; Arunachalam and Wolf, 2017). For the sake of
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concreteness, we assume that E is a CPTP map from a Hilbert space of 𝑛 qubits
to a Hilbert space of 𝑚 qubits. Regarding inputs, we consider bit-strings of size 𝑛:
𝑥 ∈ {0, 1}𝑛. This is not a severe restriction, since floating-point representations of
continuous parameters can always be truncated to a finite number of digits. We now
give precise definitions for classical and quantum ML settings; see Fig. 7.1 for an
illustration.

Classical (C) ML: The ML model consists of two phases: learning and prediction.
During the learning phase, a randomized algorithm selects classical inputs 𝑥𝑖 and
we perform a (quantum) experiment that results in an outcome 𝑜𝑖 from performing
a POVM measurement on E(|𝑥𝑖⟩⟨𝑥𝑖 |). A total of 𝑁C experiments give rise to the
classical training data {(𝑥𝑖, 𝑜𝑖)}𝑁C

𝑖=1. After obtaining this training data, the ML model
executes a randomized algorithm A to learn a prediction model

𝑠C = A
(
{(𝑥1, 𝑜1), . . . (𝑥𝑁C , 𝑜𝑁C)}

)
, (7.2)

where 𝑠C is stored in the classical memory. In the prediction phase, a sequence of
new inputs 𝑥1, 𝑥2, . . . ∈ {0, 1}𝑛 is provided. The ML model will use 𝑠C to evaluate
predictions ℎC(𝑥1), ℎC(𝑥2), . . . that approximate 𝑓 (𝑥1), 𝑓 (𝑥2), . . . up to small errors.

Restricted classical ML: We will also consider a restricted version of the classical
setting. Rather than performing arbitrary POVM measurements, we restrict the
ML model to measure the target observable 𝑂 on the output state E|𝑥𝑖⟩⟨𝑥𝑖 | to
obtain the measurement outcome 𝑜𝑖. In this case, we always have 𝑜𝑖 ∈ R and
E[𝑜𝑖] = tr(𝑂E(|𝑥𝑖⟩⟨𝑥𝑖 |)).

Quantum (Q) ML: During the learning phase, the model starts with an initial
state 𝜌0 in a Hilbert space of arbitrarily high dimension. Subsequently, the quantum
ML model accesses the unknown CPTP map E a total of 𝑁Q times. These queries
are interleaved with quantum data processing steps:

𝜌E = C𝑁Q (E ⊗ I)C𝑁Q−1 . . . C1(E ⊗ I)(𝜌0), (7.3)

where each C𝑖 is an arbitrary but known CPTP map, and we write E⊗I to emphasize
that E acts on an 𝑛-qubit subsystem of a larger quantum system. The final state
𝜌E , encoding the prediction model learned from the queries to the unknown CPTP
map E, is stored in a quantum memory. In the prediction phase, a sequence of
new inputs 𝑥1, 𝑥2, . . . ∈ {0, 1}𝑛 is provided. A quantum computer with access to
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the stored quantum state 𝜌E executes a computation to produce prediction values
ℎQ(𝑥1), ℎQ(𝑥2), . . . that approximate 𝑓 (𝑥1), 𝑓 (𝑥2), . . . up to small errors1.

The quantum ML setting is strictly more powerful than the classical ML setting.
During the prediction phase, classical ML models are restricted to processing clas-
sical data, albeit data obtained by measuring a quantum system during the learning
phase. In contrast, quantum ML models can work directly with the quantum data
and perform quantum data processing. A quantum ML model can have an exponen-
tial advantage relative to classical ML models for some tasks, as we demonstrate in
Chapter 9.

7.2 Average-case prediction error
For a prediction model ℎ(𝑥), we consider the average-case prediction error∑︁

𝑥∈{0,1}𝑛
D(𝑥) |ℎ(𝑥) − tr(𝑂E(|𝑥⟩⟨𝑥 |)) |2, (7.4)

with respect to a fixed distribution D over inputs. This could, for instance, be the
uniform distribution.

Although learning from quantum data is strictly more powerful than learning from
classical data, there are fundamental limitations. The following rigorous statement
limits the potential for quantum advantage.

Theorem 39. Fix an 𝑛-bit probability distribution D, an 𝑚-qubit observable 𝑂
(∥𝑂∥ ≤ 1) and a set F of CPTP maps with 𝑛 input qubits and 𝑚 output qubits.
Suppose there is a quantum ML model which accesses the map E ∈ F 𝑁Q times,
producing with high probability a function ℎQ(𝑥) that achieves∑︁

𝑥∈{0,1}𝑛
D(𝑥)

��ℎQ(𝑥) − tr(𝑂E(|𝑥⟩⟨𝑥 |))
��2 ≤ 𝜖 . (7.5)

Then there is an ML model in the restricted classical setting which accesses E
𝑁C = O(𝑚𝑁Q/𝜖) times and produces with high probability a function ℎ𝐶 that
achieves ∑︁

𝑥∈{0,1}𝑛
D(𝑥) |ℎC(𝑥) − tr(𝑂E(|𝑥⟩⟨𝑥 |)) |2 = O(𝜖). (7.6)

1Due to non-commutativity of quantum measurements, the ordering of new inputs matters. For
instance, the two lists 𝑥1, 𝑥2 and 𝑥2, 𝑥1 can lead to different outcome predictions ℎQ (𝑥𝑖). Our main
results do not depend on this subtletey — they are valid, irrespective of prediction input ordering.
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Proof sketch. The proof consists of two parts. First, we cover the entire set of CPTP
maps F with a maximal packing net, i.e. the largest subset S = {E𝑠} |S|𝑠=1 ⊂ F such
that the functions 𝑓E𝑠 (𝑥) = tr(𝑂E𝑠 ( |𝑥⟩⟨𝑥 |)) obey∑︁

𝑥∈{0,1}𝑛
D(𝑥)

�� 𝑓E𝑠 (𝑥) − 𝑓E𝑠′ (𝑥)��2 > 4𝜖 (7.7)

whenever 𝑠 ≠ 𝑠′. We then set up a communication protocol as follows. Alice
chooses an element 𝑠 of the packing net uniformly at random, records her choice 𝑠,
and then applies E𝑠 𝑁𝑄 times to prepare a quantum state 𝜌E𝑠 as in Eq. (7.3). Alice’s
random ensemble of quantum states is thus given by

𝜌E𝑠 with probability 𝑝𝑠 =
1
|S| (7.8)

for 𝑠 = 1, . . . , |S|. Alice then sends the randomly sampled quantum state 𝜌E𝑠 to
Bob, hoping that Bob can decode the state 𝜌E𝑠 to recover her chosen message 𝑠.
Using the quantum ML model, Bob can produce the function ℎ𝑄,𝑠 (𝑥). Because
by assumption the function ℎ𝑄,𝑠 (𝑥) achieves a small average-case prediction error
with high probability, and because the packing net has been constructed so that the
functions { 𝑓E𝑠 } are sufficiently distinguishable, Bob can determine 𝑠 successfully
with high probability. Because Alice chose from among |S| possible messages,
the mutual information of the chosen message 𝑠 and Bob’s measurement outcome
must be at least of order log |S| bits. According to Holevo’s theorem, the Holevo 𝜒
quantity of Alice’s ensemble Eq. (7.8) upper bounds this mutual information, and
therefore must also be 𝜒 = Ω(log |S) |. Furthermore, we can analyze how 𝜒 depends
on 𝑁𝑄 , finding that each additional application of E𝑠 can increase 𝜒 by at mostO(𝑚).
We conclude that 𝜒 = O(𝑚𝑁Q), yielding the lower bound 𝑁Q = Ω(log( |S|)/𝑚).
The lower bound applies to any quantum ML model, where the size |S| of the
packing net depends on the average-case prediction error 𝜖 . This completes the first
part of the proof.

In the second part, we explicitly construct an ML model in the restricted classical
setting that achieves a small average-case prediction error using a modest number
of experiments. In this ML model, an input 𝑥𝑖 is selected by sampling from the
probability distributionD, and an experiment is performed in which the observable
𝑂 is measured in the output quantum state E(|𝑥𝑖⟩⟨𝑥𝑖 |), obtaining measurement
outcome 𝑜𝑖 which has expectation value tr(𝑂E(|𝑥𝑖⟩⟨𝑥𝑖 |)). A total of 𝑁C such
experiments are conducted. Then, the ML model minimizes the least-squares error
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to find the best fit within the aforementioned maximal packing net S:

ℎC = arg min
𝑓 ∈S

1
𝑁C

𝑁C∑︁
𝑖=1
| 𝑓 (𝑥𝑖) − 𝑜𝑖 |2. (7.9)

Because the measurement outcome 𝑜𝑖 fluctuates about the expectation value of
𝑂, it may be impossible to achieve zero training error. Yet it is still possible for
ℎC to achieve a small average-case prediction error, potentially even smaller than
the training error. We use properties of maximal packing nets and of quantum
fluctuations of measurement outcomes to perform a tight statistical analysis of the
average-case prediction error, finding that with a high probability,∑︁

𝑥∈{0,1}𝑛
D(𝑥) |ℎC(𝑥) − tr(𝑂E(|𝑥⟩⟨𝑥 |)) |2 = O(𝜖), (7.10)

provided that 𝑁C is of order log( |S|)/𝜖 .

Finally, we combine the two parts to conclude 𝑁C = O(𝑚𝑁Q/𝜖). The full proof is
in Appendix 7.3.

Theorem 39 shows that all problems that are approximately learnable by a quantum
ML model are also approximately learnable by some restricted classical ML model
which executes the quantum process E a comparable number of times. This applies
in particular, to predicting outputs of quantum-mechanical processes. The relation
𝑁C = O(𝑚𝑁Q/𝜖) is tight. We give an example in Appendix 7.4 with 𝑁C =

Ω(𝑚𝑁Q/𝜖).

For the task of learning classical Boolean circuits, fundamental limits on quantum
advantage have been established in previous work (Servedio and Gortler, 2004; C.
Zhang, 2010; Arunachalam and Wolf, 2016; Arunachalam and Wolf, 2017; K.-M.
Chung and H.-H. Lin, 2018; Arunachalam, Grilo, and Yuen, 2020). Theorem 39
generalizes these existing results to the task of learning outcomes of quantum pro-
cesses.

7.3 Proof of the information-theoretic bounds
This section contains a thorough treatment of average prediction errors. We consider
related setups for the classical and quantum learning settings.

The learning problem is defined by a set of CPTP maps F , an input distribution
D, and an observable 𝑂 with ∥𝑂∥ ≤ 1. Each CPTP map E ∈ F maps a 𝑛-qubit
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quantum state to 𝑚-qubit state. This collection defines a function

𝑓E (𝑥) = tr(𝑂E(|𝑥⟩⟨𝑥 |)) : {0, 1}𝑛 → R (7.11)

The goal is to learn a function 𝑓 : {0, 1}𝑛 → R such that with high probability

E𝑥∼D | 𝑓 (𝑥) − 𝑓E (𝑥) |2 is small. (7.12)

A bit of additional context is appropriate here: we are studying the existence of
learning algorithms under a fixed learning problem defined by input distributionD,
observable𝑂, and set of CPTP maps F . In turn, the actual learning algorithms may
and, in general, will depend on these mathematical objects.

One of our main technical contributions – Theorem 39 – highlights that a substantial
quantum advantage is impossible for this setting (small average-case prediction
error). This is in stark contrast to the setting of achieving small worst-case prediction
error. The proof consists of two parts. Section 7.3 establishes a lower bound for the
query complexity of any quantum ML model. Subsequently, Section 7.3 provides
an upper bound for the query complexity achieved by certain classical ML models.
Finally, a combination of these two results establishes Theorem 39, see Section 7.3.

Information-theoretic lower bound for quantum machine learning models
The quantum machine learning model consists of learning phase and prediction
phase. In the learning phase, the quantum ML model accesses the quantum experi-
ment characterized by the CPTP map E for 𝑁Q times to learn a model. We consider
the quantum ML model to be a mixed state quantum computation algorithm (a gen-
eralization of unitary quantum computation). Starting point is an initial state 𝜌0 on
any number of qubits. Subsequently, arbitrary quantum operations C𝑡 (CPTP maps)
are interleaved with in total 𝑁Q invocations E ⊗I of the unknown (black box) CPTP
map and produce a final state

𝜌E = C𝑁Q (E ⊗ I)C𝑁Q−1 . . . C1(E ⊗ I)(𝜌0). (7.13)

In this model, we can assume without loss that E always acts on the first 𝑛 qubits,
because the quantum operations C𝑡 are unrestricted. In particular, they could contain
certain SWAP operations that permute the qubits around. The final state 𝜌E is the
quantum memory that stores the prediction model learned from the CPTP map E
using the quantum ML algorithm. Obtaining 𝜌E concludes the quantum learning
phase.
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In the prediction phase, we assume that new inputs are provided as part of a sequence

𝑥1, 𝑥2, 𝑥3, . . . ∈ {0, 1}𝑛. (7.14)

For each sequence member 𝑥𝑖, the quantum ML model accesses the input 𝑥𝑖, as well
as the current quantum memory. It produces an outcome by performing a POVM
measurement on the quantum memory 𝜌E . We emphasize that this can, and in
general will, affect the quantum memory nontrivially. The quantum ML outputs
ℎQ(𝑥𝑖) depend on the entire sequence 𝑥1, . . . , 𝑥𝑖. And different sequence orderings
will produce different predictions. For example, when 𝑛 = 2, the following ordering
may result in the prediction

𝑥1 = 00, 𝑥2 = 01, 𝑥3 = 10, 𝑥4 = 11 (7.15)

→ ℎQ(00) = −0.3, ℎQ(01) = 0.5, ℎQ(10) = 0.2, ℎQ(11) = −0.7, (7.16)

but a different ordering may result in a slightly different prediction, such as

𝑥1 = 11, 𝑥2 = 01, 𝑥3 = 10, 𝑥4 = 00 (7.17)

→ ℎQ(00) = −0.2, ℎQ(01) = 0.5, ℎQ(10) = 0.2, ℎQ(11) = −0.6. (7.18)

Also, note that ℎQ(𝑥𝑖) can be randomized because a quantum measurement is
performed to produce the prediction outcome. The ordering does not affect the
theorem we want to prove. In the following, we will fix the input ordering to be
an arbitrary ordering. For example, we can use the input ordering such that the
quantum ML model has the smallest prediction error.

After fixing an input ordering, we can treat the entire prediction phase (taking a
sequence of inputs 𝑥1, 𝑥2, . . . and producing ℎQ(𝑥1), ℎQ(𝑥2), . . .) as an enormous
POVM measurement on the output state 𝜌E obtained from the learning phase.
Each outcome 𝑎 from the enormous POVM measurement on the output state 𝜌E
corresponds to a function ℎQ,𝑎 (𝑥) : {0, 1}𝑛 → R. Using Naimark’s dilation theorem,
every POVM measurement is a projective measurements on a larger Hilbert space.
Since the quantum memory that the quantum ML model can operate on contains
an arbitrary amount of qubits, we can use Naimark’s dilation theorem to restrict the
enormous POVM measurement to a projective measurement {𝑃𝑎}𝑎. Hence, for any
CPTP map E ∈ F , when we ask the quantum ML model to produce the prediction
for an ordering of inputs 𝑥1, 𝑥2, . . ., the output values ℎQ(𝑥1), ℎQ(𝑥2), . . . will be
given by

ℎQ,𝑎 (𝑥) w. pr. tr(𝑃𝑎𝜌E) = (7.19)
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tr(𝑃𝑎C𝑁Q (E ⊗ I)C𝑁Q−1 . . . C2(E ⊗ I)C1(E ⊗ I)C0(𝜌0)), (7.20)

for a projective measurement {𝑃𝑎}𝑎 with
∑
𝑎 𝑃𝑎 = 𝐼.

Finally, we will assume that the produced function ℎQ(𝑥) achieves small prediction
error

E
𝑥∼D

��ℎQ(𝑥) − tr(𝑂E(|𝑥⟩⟨𝑥 |))
��2 ≤ 𝜖 with probability at least 2/3. (7.21)

for any CPTP map E ∈ F . This assumption asserts that

𝐴∑︁
𝑎=1

tr(𝑃𝑎𝜌E)1
[
E
𝑥∼D

��ℎQ,𝑎 (𝑥) − tr(𝑂E(|𝑥⟩⟨𝑥 |))
��2 ≤ 𝜖 ] ≥ 2/3, (7.22)

where 1[𝑧] denotes the indicator function of event 𝑧. That is, 1[𝑧] = 1 if 𝑧 is true
and 1[𝑧] = 0 otherwise.

Maximal packing net

We emphasize that Rel. (7.22) must be valid for any E ∈ F . Because we only need
to output a function ℎQ(𝑥) that approximates 𝑓 (𝑥) = tr(𝑂E(|𝑥⟩⟨𝑥 |)) on average, the
task will not be hard when there are only a few qualitatively different CPTP maps
in F . However, the problem could become harder when F contains a large amount
of very different CPTP maps. The task is now to transform this requirement into a
stringent lower bound on 𝑁Q – the number of black-box uses of the unknown CPTP
map E ⊗I within the quantum computation (7.13). As a starting point, we equip the
set of target functions F𝑓 = { 𝑓E (𝑥) = tr(𝑂E(|𝑥⟩⟨𝑥 |)) |E ∈ F } with a packing net.
Packing nets are discrete subsets whose elements are guaranteed to have a certain
minimal pairwise distance (think of spheres that must not overlap with each other).
We choose points (functions) 𝑓E𝑖 ∈ F𝑓 and demand

E
𝑥∼D
| 𝑓E𝑖 (𝑥) − 𝑓E 𝑗 (𝑥) |2 > 4𝜖 whenever 𝑖 ≠ 𝑗 . (7.23)

We denote the resulting packing net of F𝑓 by 𝑀 𝑝

4𝜖 (F𝑓 ) and note that every such set
has finitely many elements (F𝑓 is a compact set). We also assume that 𝑀 𝑝

4𝜖 (F𝑓 )
is maximal in the sense that no other 4𝜖-packing net can contain more points
(functions).

It is possible to utilize packing nets to derive a query complexity lower bound for
the quantum machine learning model. In fact, we will present two different proof
strategies. The first proof is inspired by (Steven T Flammia et al., 2012; Haah et al.,
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2017; Huang, Richard Kueng, and Preskill, 2020) and analyzes a communication
protocol. The second proof uses a proof technique that depends on an analysis
of polynomials similar to (Beals et al., 2001). While it is somewhat weaker than
the information-theoretic bound in the first proof, we include the derivation for
completeness as we believe that it may be insightful for the interested reader.

Proof strategy I: mutual information analysis

Let us define a communication protocol between two parties, say Alice and Bob.
They use the packing net𝑀 𝑝

4𝜖 (F𝑓 ) as a dictionary to communicate randomly selected
classical messages. More precisely, Alice samples an integer 𝑋 uniformly at random
from 1, 2, . . . , |𝑀 𝑝

4𝜖 (F𝑓 ) | and chooses the corresponding CPTP map E𝑋 ∈ 𝑀 𝑝

4𝜖 (F𝑓 ).
When Bob wants to access the unknown CPTP map E𝑋 , he will ask Alice to apply
the CPTP map E𝑋 . Bob will then execute the quantum machine learning model
(7.13) to obtain a prediction model ℎQ,𝑎 (𝑥), where 𝑎 parameterizes the prediction
model. Subsequently, Bob solves the following optimization problem

�̃� = arg min
𝑋 ′=1,...,|𝑀 𝑝

4𝜖 (F𝑓 ) |
E
𝑥∼D

��ℎQ,𝑎 (𝑥) − tr(𝑂E𝑋 ′ ( |𝑥⟩⟨𝑥 |))
��2 (7.24)

to obtain an integer �̃� . This decoding procedure seems adequate, provided that the
prediction model ℎQ approximately reproduces the true underlying function. More
precisely, assumption (7.21) asserts

E
𝑥∼D

��ℎQ,𝑎 (𝑥) − tr(𝑂E𝑋 ( |𝑥⟩⟨𝑥 |))
��2 ≤ 𝜖 with probability at least 2/3. (7.25)

Here is where the choice of dictionary matters: 𝑀
𝑝

4𝜖 (F𝑓 ) is a packing net, see
Equation (7.23). For 𝑋′ ≠ 𝑋 this necessarily implies

E
𝑋∼D

��ℎQ,𝑎 (𝑥) − 𝑓E𝑋′ (𝑥)
��2 (7.26)

≥
((
E

𝑋∼D

�� 𝑓E𝑋 (𝑥) − 𝑓E𝑋′ (𝑥)��2 )1/2
−

(
E

𝑋∼D

��ℎQ,𝑎 (𝑥) − 𝑓E𝑋 (𝑥)
��2 )1/2

)2
(7.27)

>
(
2
√
𝜖 −
√
𝜖
)2

= 𝜖 . (7.28)

This allows us to conclude that Bob’s decoding strategy (7.24) succeeds perfectly if

E
𝑥∼D

��ℎQ,𝑎 (𝑥) − tr(𝑂E𝑋 ( |𝑥⟩⟨𝑥 |))
��2 ≤ 𝜖 . (7.29)

In turn, Assumption 7.21 ensures �̃� = 𝑋 (perfect decoding) with probability at least
2/3.
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Now, we use the fact that Alice samples her message 𝑋 uniformly at random from a
total of |𝑀 𝑝

4𝜖 (F𝑓 ) | integers. Because �̃� = 𝑋 (perfect decoding) with probability at
least 2/3, Fano’s inequality implies that

𝐻 (𝑋 | �̃�) ≤ 𝐻 (1/3) + log( |𝑀 𝑝

4𝜖 (F𝑓 ) |)/3, (7.30)

where 𝐻 (𝑥) = −𝑥 log 𝑥 − (1− 𝑥) log(1− 𝑥) is the binary entropy. This gives a lower
bound on the mutual information between sent and decoded message, namely

𝐼 (𝑋 : �̃�) = 𝐻 (𝑋)−𝐻 (𝑋 | �̃�) ≥ 2
3

log( |𝑀 𝑝

4𝜖 (F𝑓 ) |) −𝐻 (1/3) = Ω

(
log( |𝑀 𝑝

4𝜖 (F𝑓 ) |)
)
.

(7.31)
Next, note that �̃� is obtained by classically processing a measurement outcome
𝑎 of the quantum state 𝜌E𝑋 The data processing inequality and Holevo’s theorem
(Alexander Semenovich Holevo, 1973; Horodecki et al., 2009; Bengtsson and
Życzkowski, 2017; Araki and Elliott H Lieb, 2002) then imply

𝐼 (𝑋 : �̃�) ≤ 𝐼 (𝑋 : 𝑎) ≤ 𝜒(𝑋 : 𝜌E𝑋 ). (7.32)

The Holevo 𝜒 quantity between the classical random variable 𝑋 and the quantum
state 𝜌E𝑋 is

𝜒(𝑋 : 𝜌E𝑋 ) = 𝑆
(
E
𝑋
𝜌E𝑋

)
− E
𝑋
𝑆

(
𝜌E𝑋

)
, (7.33)

where 𝑆(𝜌) = tr(−𝜌 log 𝜌) is the von Neumann entropy. Throughout this work, we
refer to log with base e. Recall that Bob produces 𝜌E𝑋 by utilizing a total of 𝑁Q

channel copies obtained from Alice. We can use the specific layout (7.13) of Bob’s
quantum computation to produce an upper bound on the Holevo-𝜒:

𝜒(𝑋 : 𝜌E𝑋 ) ≤ O(𝑚𝑁Q) (7.34)

This bound follows from induction over a sample-resolved variant of Bob’s quantum
computation. For 𝑡 = 0, 1, . . . , 𝑁Q, we will show that

𝜌𝑡E = C𝑡 (E ⊗ I)C𝑡−1 . . . C1(E ⊗ I)C0(𝜌0) obeys 𝜒(𝑋 : 𝜌𝑡E𝑋 ) ≤ (2 log 2)𝑚𝑡.
(7.35)

Bound (7.34) then follows from recognizing that setting 𝑡 = 𝑁Q reproduces Bob’s
complete computation, see Equation (7.13).

The base case (𝑡 = 0) is simple, because 𝜌0
E𝑋 = C0(𝜌0) does not depend on 𝑋 at all.

This ensures

𝜒

(
𝑋 : 𝜌0

E𝑋

)
= 𝑆

(
E
𝑋
𝜌0
E𝑋

)
− E
𝑋
𝑆

(
𝜌0
E𝑋

)
(7.36)
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= 𝑆

(
𝜌0
E𝑋

)
− 𝑆

(
𝜌0
E𝑋

)
= 0 ≤ (2 log 2)𝑚𝑡 (𝑡 = 0). (7.37)

Now, let us move to the induction step (𝑡 > 0). The induction hypothesis provides
us with

𝜒(𝑋 : 𝜌𝑡−1
E𝑋 ) ≤ (2 log 2)𝑚(𝑡 − 1) (7.38)

and we must relate 𝜒(𝑋 : 𝜌𝑡E𝑋 ) to 𝜒(𝑋 : 𝜌𝑡−1
E𝑋 ). To achieve this goal, we use the

fact that the Holevo-𝜒 is closely related to the quantum relative entropy 𝐷 (𝜌 | |𝜎) =
tr (𝜌(log 𝜌 − log𝜎)) (Horodecki et al., 2009; Bengtsson and Życzkowski, 2017;
Araki and Elliott H Lieb, 2002). Indeed,

𝜒(𝑋 : 𝜌𝑡E𝑋 ) = E𝑋

[
tr

(
𝜌𝑡E𝑋 log 𝜌𝑡𝑐𝐸𝑋 − 𝜌

𝑡
E𝑋 log

(
E
𝑋 ′
𝜌𝑡𝑐𝐸𝑋′

))]
= E
𝑋
𝐷

(
𝜌𝑡E𝑋 | | E𝑋 ′ 𝜌

𝑡
𝑐𝐸𝑋′

)
,

(7.39)
and monotonicity of the quantum relative entropy asserts

E
𝑋
𝐷

(
𝜌𝑡E𝑋 | | E𝑋 ′ 𝜌

𝑡
𝑐𝐸𝑋′

)
=E
𝑋
𝐷

(
C𝑡

(
(E𝑋 ⊗ I)

(
𝜌𝑡−1
E𝑋

))
| | C𝑡

(
E
𝑋 ′
(E𝑋 ′ ⊗ I)

(
𝜌𝑡−1
E𝑋′

)))
≤ E
𝑋
𝐷

(
(E𝑋 ⊗ I)

(
𝜌𝑡−1
E𝑋

)
| | E

𝑋 ′
(E𝑋 ′ ⊗ I)

(
𝜌𝑡−1
E𝑋′

))
=𝑆

(
E
𝑋
(E𝑋 ⊗ I) (𝜌𝑡−1

E𝑋 )
)
− E
𝑋
𝑆

(
(E𝑋 ⊗ I) (𝜌𝑡−1

E𝑋 )
)
.

This effectively allows us to ignore the 𝑡-th quantum operation C𝑡 and instead exposes
the 𝑡-th invocation of E ⊗ I.

We analyze the two remaining terms separately. Let use define the notation tr≤𝑚 as
the partial trace over the first 𝑚 qubits, and tr>𝑚 as the partial trace over the rest of
the qubits. Subadditivity of the von Neumann entropy 𝑆(𝜌) (Horodecki et al., 2009;
Bengtsson and Życzkowski, 2017; Araki and Elliott H Lieb, 2002) implies

𝑆

(
E
𝑋
(E𝑋 ⊗ I) (𝜌𝑡−1

E𝑋 )
)

(7.40)

≤ 𝑆
(
tr≤𝑚 E

𝑋
(E𝑋 ⊗ I) (𝜌𝑡−1

E𝑋 )
)
+ 𝑆

(
tr>𝑚 E

𝑋
(E𝑋 ⊗ I) (𝜌𝑡−1

E𝑋 )
)
, (7.41)

≤ 𝑆
(
tr≤𝑚 E

𝑋
(E𝑋 ⊗ I) (𝜌𝑡−1

E𝑋 )
)
+ 𝑚 log 2 (7.42)

= 𝑆

(
tr≤𝑛 E

𝑋
𝜌𝑡−1
E𝑋

)
+ 𝑚 log 2. (7.43)

The second inequality uses the fact that the maximum entropy for an𝑚-qubit system
is at most 𝑚 log 2. The last equality is due to the following technical observation
(the action of a CPTP map can be traced out).
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Lemma 47. Fix a CPTP mapE from 𝑛 qubits to𝑚 qubits and letI denote the identity
map on 𝑛′ ≥ 0 qubits. Then, tr≤𝑚 [(E ⊗ I)𝜌] = tr≤𝑛 [𝜌] for any (𝑛 + 𝑛′)-qubit state
𝜌.

Proof. Let E(𝜌) = ∑
𝑖 𝐾𝑖𝜌𝐾

†
𝑖

be a Kraus representation of the CP (completely-
positive) map E. TP (trace-preserving) moreover implies

∑
𝑖 𝐾
†
𝑖
𝐾𝑖 = 𝐼. For any

input state 𝜌, Linearity and (partial) cyclicity of the partial trace then ensure

tr≤𝑚 ((E ⊗ I)𝜌) =
∑︁
𝑖

tr≤𝑚
(
𝐾𝑖 ⊗ 𝐼𝜌𝐾†𝑖 ⊗ 𝐼

)
=

∑︁
𝑖

tr≤𝑚
(
𝜌(𝐾†

𝑖
𝐾𝑖) ⊗ 𝐼

)
= tr≤𝑚 (𝜌𝐼 ⊗ 𝐼) = tr≤𝑚 (𝜌) .

This concludes the proof of the lemma.

Similarly, the second term can be lower bounded by

E
𝑋
𝑆

(
(E𝑋 ⊗ I) (𝜌𝑡−1

E𝑋 )
)

(7.44)

≥ E
𝑋
𝑆

(
tr≤𝑚 (E𝑋 ⊗ I) (𝜌𝑡−1

E𝑋 )
)
− E
𝑋
𝑆

(
tr>𝑚 (E𝑋 ⊗ I) (𝜌𝑡−1

E𝑋 )
)
, (7.45)

≥ E
𝑋
𝑆

(
tr≤𝑚 (E𝑋 ⊗ I) (𝜌𝑡−1

E𝑋 )
)
− 𝑚 log 2, (7.46)

= E
𝑋
𝑆

(
tr≤𝑛 𝜌𝑡−1

E𝑋

)
− 𝑚 log 2. (7.47)

We can combine these two bounds with the monotonicity of the quantum relative
entropy to obtain

𝜒(𝑋 : 𝜌𝑡E𝑋 ) ≤ 𝑆
(
E
𝑋
(E𝑋 ⊗ I) (𝜌𝑡−1

E𝑋 )
)
− E
𝑋
𝑆

(
(E𝑋 ⊗ I) (𝜌𝑡−1

E𝑋 )
)

(7.48)

≤ 𝑆
(
tr≤𝑛 E

𝑋
𝜌𝑡−1
E𝑋

)
− E
𝑋
𝑆

(
tr≤𝑛 𝜌𝑡−1

E𝑋

)
+ (2 log 2)𝑚 (7.49)

= E
𝑋
𝐷

(
tr≤𝑛 𝜌𝑡−1

E𝑋 | | tr≤𝑛 E𝑋 ′ 𝜌
𝑡−1
E𝑋′

)
+ (2 log 2)𝑚 (7.50)

≤ E
𝑋
𝐷

(
𝜌𝑡−1
E𝑋 | | E𝑋 ′ 𝜌

𝑡−1
E𝑋′

)
+ (2 log 2)𝑚 (7.51)

= 𝜒(𝑋 : 𝜌𝑡−1
E𝑋 ) + (2 log 2)𝑚. (7.52)

Plug in the induction hypothesis (7.38) to complete the argument:

𝜒(𝑋 : 𝜌𝑡E𝑋 ) ≤ 𝜒(𝑋 : 𝜌𝑡−1
E𝑋 ) + (2 log 2)𝑚 (7.53)

≤ (2 log 2)𝑚(𝑡 − 1) + (2 log 2)𝑚 = (2 log 2)𝑚𝑡. (7.54)
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It is worthwhile to pause and recapitulate the main insights from this section: i.)
a lower bound on the mutual information in terms of packing net cardinality, see
Equation (7.31); ii.) Holevo’s theorem, see Equation (7.32); and, (iii) an upper
bound on the Holevo-𝜒 in terms of query complexity, see Equation (7.54) for
𝑡 = 𝑁Q. Combining all of them yields

Ω

(
log( |𝑀 𝑝

4𝜖 (F𝑓 ) |)
)
≤ 𝐼

(
𝑋 : �̃�

)
≤ 𝜒

(
𝑋 : 𝜌E𝑋

)
≤ (2 log 2)𝑚𝑁Q.

Rearranging this display yields a lower bound on the minimal query complexity in
terms of packing net size:

𝑁Q ≥ Ω

(
log( |𝑀 𝑝

4𝜖 (F𝑓 ) |)
𝑚

)
. (7.55)

Proof strategy II: polynomial method

The second proof uses a proof technique that depends on analysis of polynomi-
als (Beals et al., 2001). It leads to somewhat weaker results that only apply if𝑚 ≤ 𝑛.
We include this derivation for completeness as we believe that it may be insightful
for the interested reader.

Let us start by recalling that we may embed a 4𝜖-packing net 𝑀 𝑝

4𝜖 (F𝑓 ) within the set
of target functions F𝑓 . Geometrically, this means that each E ∈ 𝑀 𝑝

4𝜖 (F𝑓 ) describes
the center of a 2𝜖-ball (this radius is defined with respect to average prediction error
squared). And, according to the defining property Equation (7.23), these balls do
not overlap. We can use these disjoint balls to cluster different quantum machine
learning solutions. Define

F Q
E =

{
𝑎 ∈ 𝐴 : E

𝑥∼D

��ℎQ,𝑎 (𝑥) − 𝑓E (𝑥)
��2 ≤ 𝜖} , (7.56)

where 𝐴 is a placeholder for all possible answers the quantum machine learning
model can provide. See the definition given in Equation (7.19). The packing net
condition (7.23) ensures that different clusters are completely disjoint. For distinct
E1, E2 ∈ F and 𝑎1 ∈ F Q

E1
, 𝑎2 ∈ F Q

E2
, two triangle inequalities and Equation (7.23)

yield √︂
E
𝑥∼D

��ℎQ,𝑎1 (𝑥) − ℎQ,𝑎2 (𝑥)
��2 (7.57)

≥
√︂
E
𝑥∼D

�� 𝑓E1 (𝑥) − ℎQ,𝑎2 (𝑥)
��2 −√︂

E
𝑥∼D

��ℎQ,𝑎1 (𝑥) − 𝑓E1 (𝑥)
��2 (7.58)
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≥
√︂
E
𝑥∼D

�� 𝑓E1 (𝑥) − 𝑓E2 (𝑥)
��2 −√︂

E
𝑥∼D

��ℎQ,𝑎2 (𝑥) − 𝑓E2 (𝑥)
��2 (7.59)

−
√︂
E
𝑥∼D

��ℎQ,𝑎1 (𝑥) − 𝑓E1 (𝑥)
��2 (7.60)

> 2
√
𝜖 −
√
𝜖 −
√
𝜖 = 0. (7.61)

This implies 𝑓 𝑄𝑎1 ≠ 𝑓
𝑄
𝑎2 and, more importantly, F𝑄E1

∩ F𝑄E2
= ∅ whenever 𝑓E1 ≠ 𝑓E2 .

We will use this insight to reason about an auxiliar matrix 𝑃 of size |𝑀 𝑝

4𝜖 (F𝑓 ) | ×
|𝑀 𝑝

4𝜖 (F𝑓 ) |. We label rows and columns by packing net elements 𝑓E𝑖 with 𝑖 = 1
(rows) or 𝑖 = 2 (columns). For each pair 𝑓E1 , 𝑓E2 , let 𝑃E1,E2 denote the probability
of a mix-up between E1 and E2. Such mix-ups occur if the underlying CPTP map
is E2, but the quantum ML model outputs an answer 𝑎 ∈ F Q

E1
that belongs to the

cluster associated with E1:

𝑃E1,E2 =

𝐴∑︁
𝑎=1

tr(𝑃𝑎𝜌E2)1
[
E
𝑥∼D

��ℎQ,𝑎 (𝑥) − 𝑓E1 (𝑥)
��2 ≤ 𝜖 ] =

∑︁
𝑎:ℎQ,𝑎∈F𝑄E1

tr(𝑃𝑎𝜌E2).

(7.62)

Here, 𝜌𝜖2 is the outcome state of the quantum ML model (trained on CPTP map E2)
and 𝑃𝑎 is the POVM element associated with predicting 𝑎1. Recall that the main
assumption on the quantum ML model is that it predicts accurately with probability
at least 2/3. This implies

𝑃E1,E1 ≥ 2/3 for each E1 ∈ 𝑀 𝑝

4𝜖 (F𝑓 ), (7.63)

while each row sum over off-diagonal matrix elements is strictly smaller. For
𝑓E2 ∈ 𝑀

𝑝

4𝜖 (F𝑓 ),∑︁
𝑓E1∈𝑀

𝑝

4𝜖 (F𝑓 )
𝑓E1≠ 𝑓E2

𝑃E1,E2 =
∑︁

𝑓E1∈𝑀
𝑝

4𝜖 (F𝑓 )
𝑓E1≠ 𝑓E2

∑︁
𝑎:ℎQ,𝑎∈F𝑄E1

tr(𝑃𝑎𝜌E2) (7.64)

=
∑︁

𝑓E1∈𝑀
𝑝

4𝜖 (F𝑓 )

∑︁
𝑎:ℎQ,𝑎∈F𝑄E1

tr(𝑃𝑎𝜌E2) −
∑︁

𝑎:ℎQ,𝑎∈F𝑄E2

tr(𝑃𝑎𝜌E2) (7.65)

=
∑︁

𝑎:∃ 𝑓E1∈𝑀
𝑝

4𝜖 (F𝑓 )
ℎQ,𝑎∈F𝑄E1

tr(𝑃𝑎𝜌E2) −
∑︁

𝑎:ℎQ,𝑎∈F𝑄E2

tr(𝑃𝑎𝜌E2) (7.66)

≤
𝐴∑︁
𝑎=1

tr(𝑃𝑎𝜌E2) −
∑︁

𝑎:ℎQ,𝑎∈F𝑄E2

tr(𝑃𝑎𝜌E2) (7.67)
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= 1 − 𝑃E2,E2 ≤ 1/3. (7.68)

The first equality uses the definition of matrix 𝑃. The third equality follows from
the observation that distinct clusters are also disjoint (F𝑄E1

∩F𝑄E2
= ∅). We conclude

that the |𝑀 𝑝

4𝜖 (F𝑓 ) | × |𝑀
𝑝

4𝜖 (F𝑓 ) |-matrix 𝑃 is diagonally dominant. Such matrices are
guaranteed to be non-singular, i.e. they have full rank.

This is a suitable starting point for analyzing the probability tr(𝑃𝑎𝜌E) via a polyno-
mial method (Beals et al., 2001). Let {𝐾E

𝑖
}2𝑛2𝑚
𝑖=1 ,

E(𝜌) =
∑︁
𝑖

𝐾E𝑖 𝜌(𝐾
E
𝑖 )
†, (7.69)

with 𝐾E
𝑖
∈ C2𝑚×2𝑛 be the Kraus representation of a fixed CPTP map E ∈ F .

This representation is parametrized by (at most) 2𝑛2𝑚 × 2𝑚2𝑛 = 22(𝑛+𝑚) complex
parameters:

(𝐾E𝑖 ) 𝑗 𝑘 = 𝑧
E
𝑖×2𝑛+𝑚+ 𝑗×2𝑛+𝑘 defines 𝑧E ∈ C22(𝑛+𝑚)

.

On a high level, we parametrize inputs to the quantum ML model by vectors. After
training, the probability of obtaining answer 𝑎 ∈ 𝐴 corresponds to a homogeneous
polynomial of degree 𝑁Q in 𝑧E and of degree 𝑁Q in 𝑧E :

tr(𝑃𝑎𝜌E) = tr(𝑃𝑎C𝑁Q (E ⊗ I)C𝑁Q−1 . . . C2(E ⊗ I)C1(E ⊗ I)C0(𝜌0)) (7.70)

= 𝑤†𝑎 (𝑧E ⊗ 𝑧E) ⊗ · · · ⊗ (𝑧E ⊗ 𝑧E︸                              ︷︷                              ︸)
𝑁Q times

, (7.71)

where 𝑤†𝑎 is a dual tensor product vector with compatible dimension

𝑁 = 22(𝑛+𝑚)2𝑁Q = 24(𝑛+𝑚)𝑁Q . (7.72)

Every matrix element 𝑃E1,E2 of 𝑃 defined in Equation (7.62) can be expressed as a
sum of homogeneous polynoials in (𝑧E2 ⊗ 𝑧E2) ⊗ · · · ⊗ (𝑧E2 ⊗ 𝑧E2). Collecting all
𝑀 = |𝑀 𝑝

4𝜖 (F𝑓 ) | possible tensor products as rows of the matrix

𝑍 =

[
(𝑧E1 ⊗ 𝑧E1) ⊗ · · · ⊗ (𝑧E1 ⊗ 𝑧E1) · · · (𝑧E𝑀 ⊗ 𝑧E𝑀 ) ⊗ · · · ⊗ (𝑧E𝑀 ⊗ 𝑧E𝑀 )

]
(7.73)

∈ C𝑁×𝑀 (7.74)

allows us to present the multilinear characterization of all entries of 𝑃 in a single
display:

𝑃 = 𝑊𝑍 with 𝑊 =


∑
ℎQ,𝑎∈F𝑄E1

𝑤
†
𝑎

...∑
ℎQ,𝑎∈F𝑄E𝑀

𝑤
†
𝑎


∈ C𝑀×2𝑁
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Above, we have shown that the 𝑀 × 𝑀-matrix 𝑃 must have full column rank. This
is only possible if

|𝑀 𝑝

4𝜖 (F𝑓 ) | = 𝑀 ≤ 𝑁 = 22(𝑛+𝑚)2𝑁Q = 24(𝑛+𝑚)𝑁Q . (7.75)

Rearranging these terms and assuming 𝑛 ≤ 𝑚 implies the following lower bound on
quantum query complexity 𝑁Q:

𝑁Q ≥
log( |𝑀 𝑝

4𝜖 (F𝑓 ) |)
4(𝑛 + 𝑚) ≥

log( |𝑀 𝑝

4𝜖 (F𝑓 ) |)
8𝑚

. (7.76)

Information-theoretic upper bound for restricted classical machine learning
models
We will focus on restricted classical ML models that can select inputs 𝑥𝑖 ∈ {0, 1}𝑛

and obtain the corresponding outcome 𝑜𝑖 ∈ R. This outcome is obtained by perform-
ing a single-shot measurement (the projective measurement given by the eigenbasis
of 𝑂) of observable 𝑂 on the output quantum state E(|𝑥𝑖⟩⟨𝑥𝑖 |). This ensures

E[𝑜𝑖] = tr(𝑂E(|𝑥𝑖⟩⟨𝑥𝑖 |) = 𝑓E (𝑥𝑖) and, moreover, |𝑜𝑖 | ≤ 1 with probability one,
(7.77)

because observables are bounded in spectral norm (∥𝑂∥ ≤ 1). By using the
obtained training data {(𝑥𝑖, 𝑜𝑖)}𝑖, the restricted classical ML model will produce
a prediction model ℎC(𝑥) that allows accurate prediction of 𝑓E (𝑥) = tr(𝑂E(|𝑥⟩⟨𝑥 |)).
The restricted classical ML model should provide accurate prediction model for any
CPTP map E ∈ F .

Classical machine learning model for a given learning problem

We consider the following classical machine learning model. First, we sample
𝑁 classical inputs 𝑥1, . . . , 𝑥𝑁 according to the distribution D. Then, we obtain an
associated quantum measurement outcome 𝑜𝑖 for each input 𝑥𝑖.That is, 𝑜𝑖 is a random
variable that reproduces the target function in expectation only, see Equation (7.77).
We denote the underlying distribution byD𝑜 (𝑂, E(|𝑥𝑖⟩⟨𝑥𝑖 |)) to delineate dependence
on input 𝑥𝑖 and CPTP map E. After obtaining the training data {(𝑥𝑖, 𝑜𝑖)}𝑁𝑖=1, the
model performs the following optimization to minimize the empirical training error

𝑓∗ = arg min
𝑓 ∈𝑀 𝑝

4𝜖 (F𝑓 )

1
𝑁

𝑁∑︁
𝑖=1
| 𝑓 (𝑥𝑖) − 𝑜𝑖 |2. (7.78)

Here, 𝑀 𝑝

4𝜖 (F𝑓 ) is the maximal packing net defined in Section 7.3. The packing
net is a subset of the set F𝑓 that contains functions that are sufficiently different
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from one another. By “empirical training error” we mean the deviation of the
function 𝑓 (𝑥𝑖) from the actual measurement outcome 𝑜𝑖, averaged over𝑁 data points:
1
𝑁

∑𝑁
𝑖=1 | 𝑓 (𝑥𝑖) − 𝑜𝑖 |2. In the later discussion, we will also refer to the ideal training

error, meaning the average deviation of the function 𝑓 (𝑥𝑖) from the expectation value
𝑓E (𝑥𝑖) = tr(𝑂E(|𝑥𝑖⟩⟨𝑥𝑖 |)): 1

𝑁

∑𝑁
𝑖=1 | 𝑓 (𝑥𝑖) − 𝑓E (𝑥𝑖) |2. This distinction is important;

the ideal training error could be close to zero as long as the maximal packing net
𝑀
𝑝

4𝜖 (F𝑓 ) is closely packed, but because of the statistical fluctuation in the quantum
measurements, the outcomes {𝑜𝑖} can deviate substantially from the expectation
value 𝑓E (𝑥𝑖). Therefore we might not be able to achieve small empirical training
error even if 𝑓 = 𝑓E .

In the following, we will provide a tight statistical analysis for bounding the predic-
tion error

E
𝑥∼D
| 𝑓∗(𝑥) − 𝑓E (𝑥) |2. (7.79)

The statistical analysis relies crucially on the distance measure used to define the
packing net 𝑀 𝑝

4𝜖 (F𝑓 ). Recall that this is the average squared distance over the input
distributionD, and the statistical fluctuation in performing quantum measurements
to obtain 𝑜𝑖, see Equation (7.23). In particular, we will show that a data size of
𝑁 = Θ(log( |𝑀 𝑝

4𝜖 (F𝑓 ) |)/𝜖) suffices to achieve prediction errors of order O(𝜖) only.

We find it worthwhile to point out that this scaling is better than one might ex-
pect. Standard results in statistical learning theory (Bartlett and Mendelson, 2002;
Mohri, Rostamizadeh, and Talwalkar, 2018) usually yield a data size of order
log( |𝑀 𝑝

4𝜖 (F𝑓 ) |)/𝜖
2, which is worse than our result by an additional 1/𝜖 factor.

Concentration results I: Ideal training error

We begin by considering the concentration of the ideal training error for an arbitrary
function 𝑓 from the maximal packing net 𝑀 𝑝

4𝜖 (F𝑓 ):

1
𝑁

𝑁∑︁
𝑖=1
| 𝑓 (𝑥𝑖) − 𝑓E (𝑥𝑖) |2, (7.80)

which only depends on the inputs 𝑥1, . . . , 𝑥𝑁 and is independent of the observable
measurement outcome 𝑜𝑖. We use the quantifier ideal because we compare directly
with the expectation value 𝑓E (𝑥𝑖) rather than the measurement outcome 𝑜𝑖.

As a first step, view | 𝑓 (𝑥) − 𝑓E (𝑥) |2 with 𝑥 D∼ {0, 1}𝑛 as a random variable and check
that it is bounded: | 𝑓 (𝑥) − 𝑓E (𝑥) |2 ≤ (| 𝑓 (𝑥) | + | 𝑓E (𝑥) |)2 ≤ 4 for all 𝑥 ∈ {0, 1}𝑛.
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This implies the following bound on the variance:

Var[| 𝑓 (𝑥) − 𝑓E (𝑥) |2] ≤ E
𝑥∼D
| 𝑓 (𝑥) − 𝑓E (𝑥) |4 ≤ 4 E

𝑥∼D
| 𝑓 (𝑥) − 𝑓E (𝑥) |2. (7.81)

We see that the ideal training error is a sum of independent random variables with
bounded variance. Bernstein’s inequality implies for 𝑡 > 0

Pr

[����� 1
𝑁

𝑁∑︁
𝑖=1
| 𝑓 (𝑥𝑖) − 𝑓E (𝑥𝑖) |2 − E

𝑥∼D
| 𝑓 (𝑥) − 𝑓E (𝑥) |2

����� ≥ 𝑡
]

(7.82)

≤ 2 exp

(
−1

2
𝑁𝑡2

4E𝑥∼D | 𝑓 (𝑥) − 𝑓E (𝑥) |2 + 8
3 𝑡

)
. (7.83)

Assigning 𝑡 = 1
4 E𝑥∼D | 𝑓 (𝑥) − 𝑓E (𝑥) |

2 allows us to conclude

Pr

[����� 1
𝑁

𝑁∑︁
𝑖=1
| 𝑓 (𝑥𝑖) − 𝑓E (𝑥𝑖) |2 − E

𝑥∼D
| 𝑓 (𝑥) − 𝑓E (𝑥) |2

����� ≥ 1
4
E
𝑥∼D
| 𝑓 (𝑥) − 𝑓E (𝑥) |2

]
(7.84)

≤2 exp
(
− 3

448
𝑁 E
𝑥∼D
| 𝑓 (𝑥) − 𝑓E (𝑥) |2

)
(7.85)

On the other hand, if E𝑥∼D | 𝑓 (𝑥) − 𝑓E (𝑥) |2 ≤ 4𝜖 , we instead assign 𝑡 = 𝜖 to obtain

Pr

[����� 1
𝑁

𝑁∑︁
𝑖=1
| 𝑓 (𝑥𝑖) − 𝑓E (𝑥𝑖) |2 − E

𝑥∼D
| 𝑓 (𝑥) − 𝑓E (𝑥) |2

����� ≥ 𝜖
]
≤ 2 exp

(
− 3

112
𝑁𝜖

)
.

(7.86)

These two tail bounds (that cover different regimes) and a union bound then imply

Pr

[
∀ 𝑓 ∈ 𝑀 𝑝

4𝜖 (F𝑓 ),
����� 1
𝑁

𝑁∑︁
𝑖=1
| 𝑓 (𝑥𝑖) − 𝑓E (𝑥𝑖) |2 − E

𝑥∼D
| 𝑓 (𝑥) − 𝑓E (𝑥) |2

����� (7.87)

≥ 1
4

max
(
4𝜖, E

𝑥∼D
| 𝑓 (𝑥) − 𝑓E (𝑥) |2

) ]
≤ 2

∑︁
𝑓 ∈𝑀 𝑝

4𝜖 (F𝑓 )
exp

(
− 3

448
𝑁 max

(
4𝜖, E

𝑥∼D
| 𝑓 (𝑥) − 𝑓E (𝑥) |2

))
(7.88)

≤ 2
��𝑀 𝑝

4𝜖 (F𝑓 )
�� exp

(
− 3

112
𝑁𝜖

)
. (7.89)

Intuitively, this can be understood as follows. The functions 𝑓 close to 𝑓E will be
distorted by at most 𝜖 , while the functions 𝑓 that are further away from 𝑓E will be
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distorted by a value proportional to the distance E𝑥∼D | 𝑓 (𝑥)− 𝑓E (𝑥) |2. For 𝛿 ∈ (0, 1)
(confidence), we set

𝑁 ≥
38 log(2

��𝑀 𝑝

4𝜖 (F𝑓 )
�� /𝛿)

𝜖
. (7.90)

(Throughout this paper, log has base e unless otherwise indicated.) Then, with
probability at least 1 − 𝛿, we have

∀ 𝑓 ∈ 𝑀 𝑝

4𝜖 (F𝑓 ),
����� 1
𝑁

𝑁∑︁
𝑖=1
| 𝑓 (𝑥𝑖) − 𝑓E (𝑥𝑖) |2 − E

𝑥∼D
| 𝑓 (𝑥) − 𝑓E (𝑥) |2

����� (7.91)

<
1
4

max
(
4𝜖, E

𝑥∼D
| 𝑓 (𝑥) − 𝑓E (𝑥) |2

)
. (7.92)

We note that the training data size 𝑁 in Equation (7.90) scales as 1/𝜖 rather than 1/𝜖2,
an improvement over the standard scaling typically encountered in statistical learning
theory (Bartlett and Mendelson, 2002; Mohri, Rostamizadeh, and Talwalkar, 2018).
The 1/𝜖2 comes naturally when we sample over the different inputs 𝑥𝑖 and apply
a concentration inequality on the ideal training error 1

𝑁

∑𝑁
𝑖=1 | 𝑓 (𝑥𝑖) − 𝑓E (𝑥𝑖) |2 to

guarantee an O(𝜖) statistical fluctuation around the prediction error E𝑥∼D | 𝑓 (𝑥) −
𝑓E (𝑥) |2. The main reason for the improved scaling is that any function 𝑓 with a
small prediction error E𝑥∼D | 𝑓 (𝑥) − 𝑓E (𝑥) |2 ≤ 4𝜖 also has a small variance (e.g., a
highly biased coin that almost always come out heads has a variance close to zero,
which is much smaller than for an unbiased coin), so we need only 𝑁 = O(1/𝜖) to
achieve O(𝜖) statistical fluctuations. Furthermore, by examining Equation (7.91),
we see that if function 𝑓 has a large prediction error then the statistical fluctuations
in the training data may also be large. This is a price we pay to avoid a training set
with size 𝑁 scaling as 1/𝜖2. The increased statistical fluctuations for a function 𝑓

with a large prediction error are not problematic, because the statistical fluctuation
are still smaller than the prediction error in that case. We find that functions with
small prediction error have small ideal training error, while functions with large
prediction error have large ideal training error, which is adequate for our purposes.

We condition on the event that the display Equation (7.91) holds true and proceed
to the second step.

Concentration results II: Shifted empirical training error

In the second step, we will condition on a set of inputs 𝑥1, . . . , 𝑥𝑁 and study the
concentration of statistical fluctuations in the observable measurement outcome 𝑜𝑖.
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Let us define a new quantity, which we call the shifted empirical training error:

1
𝑁

𝑁∑︁
𝑖=1

[
| 𝑓 (𝑥𝑖) − 𝑜𝑖 |2 − | 𝑓E (𝑥𝑖) − 𝑜𝑖 |2

]
, (7.93)

where 𝑓 can be any function in the packing net 𝑀 𝑝

4𝜖 (F𝑓 ). The expectation value of
the shifted empirical training error can be computed by means of direct expansion.
Use 𝑓E (𝑥𝑖) = E𝑜∼D𝑜 (𝑂,E(|𝑥𝑖⟩⟨𝑥𝑖 |)) [𝑜] to rewrite

| 𝑓 (𝑥𝑖) − 𝑓E (𝑥𝑖) |2 = E
𝑜∼D𝑜 (𝑂,E(|𝑥𝑖⟩⟨𝑥𝑖 |))

| 𝑓 (𝑥𝑖) − 𝑜 |2 − | 𝑓E (𝑥𝑖) − 𝑜 |2, (7.94)

and for fixed input 𝑥𝑖, we can also bound the variance:

Var𝑜∼D𝑜 (𝑂,E(|𝑥𝑖⟩⟨𝑥𝑖 |)) | 𝑓 (𝑥𝑖) − 𝑜 |2 − | 𝑓E (𝑥𝑖) − 𝑜 |2 (7.95)

= E
𝑜∼D𝑜 (𝑂,E(|𝑥𝑖⟩⟨𝑥𝑖 |))

4( 𝑓 (𝑥𝑖) − 𝑓E (𝑥𝑖))2(𝑜 − 𝑓E (𝑥𝑖))2 (7.96)

= 4( 𝑓 (𝑥𝑖) − 𝑓E (𝑥𝑖))2 Var𝑜∼D𝑜 (𝑂,E(|𝑥𝑖⟩⟨𝑥𝑖 |)) [𝑜] (7.97)

≤ 4| 𝑓 (𝑥𝑖) − 𝑓E (𝑥𝑖) |2. (7.98)

The last inequality is contingent on ∥𝑂∥ ≤ 1 which implies 𝑜 ∈ [−1, 1] with prob-
ability one. Now, we apply Bernstein’s inequality again. The 𝑜𝑖’s are independent,
bounded random variables with small variance. So, we obtain

Pr

[����� 1
𝑁

𝑁∑︁
𝑖=1

[
| 𝑓 (𝑥𝑖) − 𝑜𝑖 |2 − | 𝑓E (𝑥𝑖) − 𝑜𝑖 |2

]
− 1
𝑁

𝑁∑︁
𝑖=1
| 𝑓 (𝑥𝑖) − 𝑓E (𝑥𝑖) |2

����� ≥ 𝑡
]

(7.99)

≤2 exp

(
−1

2
𝑁𝑡2

4
𝑁

∑𝑁
𝑖=1 | 𝑓 (𝑥𝑖) − 𝑓E (𝑥𝑖) |2 +

8
3 𝑡

)
for 𝑡 > 0. (7.100)

Assigning 𝑡 = 1
4𝑁

∑𝑁
𝑖=1 | 𝑓 (𝑥𝑖) − 𝑓E (𝑥𝑖) |2 ensures

Pr

[ ����� 1
𝑁

𝑁∑︁
𝑖=1

[
| 𝑓 (𝑥𝑖) − 𝑜𝑖 |2 − | 𝑓E (𝑥𝑖) − 𝑜𝑖 |2

]
− 1
𝑁

𝑁∑︁
𝑖=1
| 𝑓 (𝑥𝑖) − 𝑓E (𝑥𝑖) |2]

����� (7.101)

≥ 1
4𝑁

𝑁∑︁
𝑖=1
| 𝑓 (𝑥𝑖) − 𝑓E (𝑥𝑖) |2

]
(7.102)

≤2 exp

(
− 3

448

𝑁∑︁
𝑖=1
| 𝑓 (𝑥𝑖) − 𝑓E (𝑥𝑖) |2

)
. (7.103)

If 1
𝑁

∑𝑁
𝑖=1 | 𝑓 (𝑥𝑖) − 𝑓E (𝑥𝑖) |2 ≤ 4𝜖 , we instead assign 𝑡 = 𝜖 to obtain

Pr

[����� 1
𝑁

𝑁∑︁
𝑖=1

[
| 𝑓 (𝑥𝑖) − 𝑜𝑖 |2 − | 𝑓E (𝑥𝑖) − 𝑜𝑖 |2

]
− 1
𝑁

𝑁∑︁
𝑖=1
| 𝑓 (𝑥𝑖) − 𝑓E (𝑥𝑖) |2]

����� ≥ 𝜖
]

(7.104)
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≤ 2 exp
(
− 3

112
𝑁𝜖

)
. (7.105)

These results are conditioned on 𝑥1, . . . , 𝑥𝑁 already being sampled (the result of
first step) where the event given in Equation (7.91) holds.

Prediction error for functions in the maximal packing net

Before bounding the prediction error of 𝑓★ obtained by the restricted classical ML
model, we need to show that the following events happen simultaneously with high
probability.

• Event 1: There exists a function 𝑓 ∈ 𝑀 𝑝

4𝜖 (F𝑓 ) with small prediction error
that results in an empirical training error that is upper bounded by a certain
threshold. In particular, we will set out to show that

1
𝑁

𝑁∑︁
𝑖=1
| 𝑓 (𝑥𝑖) − 𝑜𝑖 |2 ≤

1
𝑁

𝑁∑︁
𝑖=1
| 𝑓E (𝑥𝑖) − 𝑜𝑖 |2 +

25
4
𝜖 . (7.106)

• Event 2: All functions 𝑓 ∈ 𝑀 𝑝

4𝜖 (F𝑓 ) that have a large prediction error will
result in an empirical training error lower bounded by a certain threshold. In
particular, we define the event to be: for all models 𝑓 ∈ 𝑀 𝑝

4𝜖 (F𝑓 ) such that
E𝑥∼𝐷 | 𝑓 (𝑥) − 𝑓E (𝑥) |2 ≥ 12𝜖 will have:

1
𝑁

𝑁∑︁
𝑖=1
| 𝑓 (𝑥𝑖) − 𝑜𝑖 |2 ≥

1
𝑁

𝑁∑︁
𝑖=1
| 𝑓E (𝑥𝑖) − 𝑜𝑖 |2 +

27
4
𝜖 . (7.107)

Then, we can combine these statements to obtain a bound on the prediction error of
𝑓★. Let us first relate the packing net to another useful concept.

Lemma 48 (Maximal packing nets are covering nets). For all 𝑓E ∈ F𝑓 , there exists
𝑓 ∈ 𝑀 𝑝

4𝜖 (F𝑓 ), such that

E
𝑥∼𝐷
| 𝑓 (𝑥) − 𝑓E (𝑥) |2 ≤ 4𝜖 . (7.108)

The proof is standard, see e.g. (Vershynin, 2018a), and based on contradicting the
assumption that 𝑀 𝑝

4𝜖 (F𝑓 ) is a maximal packing net. Since it is short and insightful,
we include the full proof for completeness.
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Proof of Lemma 48. If there exists 𝑓E ∈ F , such that for all 𝑓 ∈ 𝑀 𝑝

4𝜖 (F𝑓 ), we have

E
𝑥∼D
| 𝑓 (𝑥) − 𝑓E (𝑥) |2 > 4𝜖, (7.109)

then we can add 𝑓E into the packing net 𝑀 𝑝

4𝜖 (F𝑓 ). Hence 𝑀 𝑝

4𝜖 (F𝑓 ) is not the
maximal packing net.

For Event 1 in Equation (7.106), we want to show the existence of a function 𝑓 that
has a small prediction error as well as an empirical training error upper bounded by
a threshold. Because 𝑀 𝑝

4𝜖 (F𝑓 ) is a maximal packing net, using Lemma 48, there
exists a function 𝑓 such that the prediction error

E
𝑥∼𝐷
| 𝑓 (𝑥) − 𝑓E (𝑥) |2 ≤ 4𝜖 . (7.110)

We now condition on Equation (7.91) being true, which happens with probability at
least 1 − 𝛿. Therefore, we have the following bound on the ideal training error

1
𝑁

𝑁∑︁
𝑖=1
| 𝑓 (𝑥𝑖) − 𝑓E (𝑥𝑖) |2 ≤ 5𝜖 . (7.111)

We can now use this insight to control the shifted empirical training error. Use a
combination of Eqs. (7.103) and (7.105) to conclude

Pr

[����� 1
𝑁

𝑁∑︁
𝑖=1

[
| 𝑓 (𝑥𝑖) − 𝑜𝑖 |2 − | 𝑓E (𝑥𝑖) − 𝑜𝑖 |2

]
− 1
𝑁

𝑁∑︁
𝑖=1
| 𝑓 (𝑥𝑖) − 𝑓E (𝑥𝑖) |2]

����� ≥ 5
4
𝜖

]
(7.112)

≤2 exp
(
− 3

112
𝑁𝜖

)
≤ 𝛿

|𝑀 𝑝

4𝜖 (F𝑓 ) |
. (7.113)

The first inequality comes from separately analyzing the two cases: 1
𝑁

∑𝑁
𝑖=1 | 𝑓 (𝑥𝑖) −

𝑓E (𝑥𝑖) |2 ≤ 4𝜖 or 4𝜖 < 1
𝑁

∑𝑁
𝑖=1 | 𝑓 (𝑥𝑖) − 𝑓E (𝑥𝑖) |2 ≤ 5𝜖 , then take the looser statement.

The second inequality arises from inserting the (lower bound) on training data size
𝑁 from Equation (7.90). Therefore, if the display from Equation (7.91) is true
(which happens with probability at least 1 − 𝛿), then

1
𝑁

𝑁∑︁
𝑖=1
| 𝑓 (𝑥𝑖) − 𝑜𝑖 |2 (7.114)

≤ 1
𝑁

𝑁∑︁
𝑖=1
| 𝑓E (𝑥𝑖) − 𝑜𝑖 |2 +

1
𝑁

𝑁∑︁
𝑖=1
| 𝑓 (𝑥𝑖) − 𝑓E (𝑥𝑖) |2 +

5
4
𝜖 (7.115)
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≤ 1
𝑁

𝑁∑︁
𝑖=1
| 𝑓E (𝑥𝑖) − 𝑜𝑖 |2 +

25
4
𝜖 with probability at least 1 − 𝛿/|𝑀 𝑝

4𝜖 (F𝑓 ) |.

(7.116)

The second inequality is contingent on using Equation (7.111). This is Event 1 that
we have set out to establish. And it is guaranteed to happen with high probability.

We now move on to Event 2 given in Equation (7.107). For any 𝑓 ∈ 𝑀 𝑝

4𝜖 (F𝑓 ) with
a large prediction error

E
𝑥∼𝐷
| 𝑓 (𝑥) − 𝑓E (𝑥) |2 ≥ 12𝜖, (7.117)

we want to show that the training error 1
𝑁

∑𝑁
𝑖=1 | 𝑓 (𝑥𝑖) − 𝑜𝑖 |2 will also be large. We

again condition on the event displayed by Equation (7.91) (which happens with
probability at least 1 − 𝛿). This relation implies the following bound on the ideal
training error

1
𝑁

𝑁∑︁
𝑖=1
| 𝑓 (𝑥𝑖) − 𝑓E (𝑥𝑖) |2 ≥

3
4
E
𝑥∼𝐷
| 𝑓 (𝑥) − 𝑓E (𝑥) |2 ≥ 9𝜖 . (7.118)

Using the concentration result from Equation (7.103), we have

Pr

[ ����� 1
𝑁

𝑁∑︁
𝑖=1

[
| 𝑓 (𝑥𝑖) − 𝑜𝑖 |2 − | 𝑓E (𝑥𝑖) − 𝑜𝑖 |2

]
− 1
𝑁

𝑁∑︁
𝑖=1
| 𝑓 (𝑥𝑖) − 𝑓E (𝑥𝑖) |2]

����� (7.119)

≥ 1
4𝑁

𝑁∑︁
𝑖=1
| 𝑓 (𝑥𝑖) − 𝑓E (𝑥𝑖) |2

]
(7.120)

≤ 2 exp

(
− 3

448

𝑁∑︁
𝑖=1
| 𝑓 (𝑥𝑖) − 𝑓E (𝑥𝑖) |2

)
≤ 2 exp

(
− 3

448
𝑁 (9𝜖)

)
≤ 𝛿

|𝑀 𝑝

4𝜖 (F𝑓 ) |
.

(7.121)

The last inequality uses the training data size bound from Equation (7.90). This
ensures

1
𝑁

𝑁∑︁
𝑖=1
| 𝑓 (𝑥𝑖) − 𝑜𝑖 |2 (7.122)

≥ 1
𝑁

𝑁∑︁
𝑖=1
| 𝑓E (𝑥𝑖) − 𝑜𝑖 |2 +

3
4

1
𝑁

𝑁∑︁
𝑖=1
| 𝑓 (𝑥𝑖) − 𝑓E (𝑥𝑖) |2 (7.123)

≥ 1
𝑁

𝑁∑︁
𝑖=1
| 𝑓E (𝑥𝑖) − 𝑜𝑖 |2 +

9
16
E
𝑥∼𝐷
| 𝑓 (𝑥) − 𝑓E (𝑥) |2 (7.124)
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≥ 1
𝑁

𝑁∑︁
𝑖=1
| 𝑓E (𝑥𝑖) − 𝑜𝑖 |2 +

27
4
𝜖 with probability at least 1 − 𝛿/|𝑀 𝑝

4𝜖 (F𝑓 ) |.

(7.125)

We can combine these insights by applying union bound to obtain that all the desired
events given in Equation (7.106) and (7.107) happen simultaneously with probability
at least 1 − 𝛿 if we condition on Equation (7.91) to be true. Furthermore, because
the event in display (7.91) happens with probability 1 − 𝛿, we can guarantee that
the the desired events given in Equation (7.106) and (7.107) happen simultaneously
with a probability at least (1− 𝛿)2 ≥ 1−2𝛿. This statement uses the following basic
fact from elementary probability theory: Let 𝑝(𝐴|𝐵) be the probability of event 𝐴
when we condition on event 𝐵. And let 𝑝(𝐵) be the probability of event 𝐵. Then
the probability of event 𝐴, 𝑝(𝐴), is larger or equal to the probability that 𝐴, 𝐵 both
happens, 𝑝(𝐴, 𝐵) = 𝑝(𝐴|𝐵)𝑝(𝐵).

To conclude, we have shown that using a training data of size

𝑁 ≥ 38 log(2
��𝑀 𝑝

4𝜖 (F𝑓 )
�� /𝛿)/𝜖 (7.126)

guarantees that the relations given in Equation (7.106) and (7.107) happen with
probability at least 1 − 2𝛿.

Prediction error for functions produced by restricted classical ML

Let us choose a data of size 𝑁 ≥ 38 log(4
��𝑀 𝑝

4𝜖 (F𝑓 )
�� /𝛿)/𝜖 such that the two relations

in Equation (7.106) and (7.107) are both true with probability 1−𝛿. We now combine
these with two other concepts from the previous subsections. Let 𝑓E (𝑥) be the
actual target function and recall that (at least) one packing net element 𝑓 ∈ 𝑀 𝑝

4𝜖 (F𝑓 )
is guaranteed to be close (E𝑥∼D | 𝑓 (𝑥) − 𝑓E (𝑥) |2 ≤ 4𝜖 according to Lemma 48).
The restricted classical ML model tries to identify such a packing net element by
minimizing the empirical training error: 𝑓∗ = arg min 𝑓 ∈𝑀 𝑝

4𝜖 (F𝑓 )
1
𝑁

∑𝑁
𝑖=1 | 𝑓 (𝑥𝑖) − 𝑜𝑖 |2

according to Equation (7.78). This setup ensures

1
𝑁

𝑁∑︁
𝑖=1
| 𝑓∗(𝑥𝑖) − 𝑜𝑖 |2 = min

𝑓 ∈𝑀 𝑝

4𝜖 (F𝑓 )

1
𝑁

𝑁∑︁
𝑖=1
| 𝑓 (𝑥𝑖) − 𝑜𝑖 |2 ≤

1
𝑁

𝑛∑︁
𝑖=1

�� 𝑓 (𝑥𝑖) − 𝑜𝑖��2 .
(7.127)

The first relation in Equation (7.106) allows us to take it from there. Indeed,

1
𝑁

𝑛∑︁
𝑖=1

�� 𝑓 (𝑥𝑖) − 𝑜𝑖��2 ≤ 1
𝑁

𝑁∑︁
𝑖=1
| 𝑓E (𝑥𝑖) − 𝑜𝑖 |2 +

25
4
𝜖 <

1
𝑁

𝑁∑︁
𝑖=1
| 𝑓E (𝑥𝑖) − 𝑜𝑖 |2 +

27
4
𝜖,



343

where the strict inequality is completely trivial. Apply the second relation in
Equation (7.107) to complete the chain of arguments:

1
𝑁

𝑁∑︁
𝑖=1
| 𝑓∗(𝑥𝑖) − 𝑜𝑖 |2 < min

𝑓 ∈𝑀 𝑝

4𝜖 (F𝑓 ): E𝑥∼D | 𝑓 (𝑥)− 𝑓E (𝑥) |2≥12𝜖

1
𝑁

𝑁∑︁
𝑖=1
| 𝑓 (𝑥𝑖) − 𝑜𝑖 |2 .

(7.128)

In words, this display implies that the empirical training error achieved by 𝑓∗ – the
output of the restricted classical ML model – is strictly smaller than any empir-
ical training error that could be achieved by any packing net function that has a
comparatively large prediction error (at least 12𝜖). Therefore if 𝑓∗ has a prediction
error of at least 12𝜖 , then this leads to a contradiction that 1

𝑁

∑𝑁
𝑖=1 | 𝑓∗(𝑥𝑖) − 𝑜𝑖 |2 <

1
𝑁

∑𝑁
𝑖=1 | 𝑓∗(𝑥𝑖) − 𝑜𝑖 |2. By contradiction, this claim implies that the prediction error

achieved by 𝑓∗ cannot be too bad.

Proposition 14. Let 𝑓∗ : {0, 1}𝑛 → R be the packing net element that minimizes the
empirical training error in Equation (7.78). Then, for 𝛿 ∈ (0, 1), training data of
size 𝑁 ≥ 38 log(4

��𝑀 𝑝

4𝜖 (F𝑓 )
�� /𝛿)/𝜖 implies:

E
𝑥∼D
| 𝑓 ∗(𝑥) − 𝑓E (𝑥) |2 < 12𝜖 with probability at least 1 − 𝛿. (7.129)

Combining the upper and lower bound
If a quantum ML model produces a prediction ℎQ achieving average prediction error

E
𝑥∼D

��ℎQ(𝑥) − tr(𝑂E(|𝑥⟩⟨𝑥 |))
��2 ≤ 𝜖, (7.130)

with probability at least 2/3 for any CPTP map E ∈ F , then, as proven in Equa-
tion (7.55), the quantum ML must access the map E at least 𝑁Q times, where

𝑁Q = Ω

(
log( |𝑀 𝑝

4𝜖 (F𝑓 ) |)
𝑚

)
. (7.131)

On the other hand, from Proposition 14, we know there is a restricted classical ML
model producing prediction ℎC achieving average prediction error

E
𝑥∼D
|ℎC(𝑥) − tr(𝑂E(|𝑥⟩⟨𝑥 |)) |2 ≤ 12𝜖 = O(𝜖), (7.132)

with high probability for any CPTP map E ∈ F , such that the restricted classical
ML accesses the map 𝑁C times, where

𝑁C = O
(

log( |𝑀 𝑝

4𝜖 (F𝑓 ) |)
𝜖

)
= O

(
𝑚𝑁Q

𝜖

)
. (7.133)

This concludes the proof of Theorem 39.
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7.4 Examples saturating the maximum information-theoretic advantage
Proposition 15. For any 𝜖 ∈ (0, 1/3), and positive integer𝑚, there exists a learning
problem (7.1) – specified by an 𝑚-qubit observable𝑂, a set F of CPTP maps and a
distribution D on 𝑛-bit inputs, where 𝑛 = 𝑚−1, – with the following property: Any
restricted classical ML model that can learn a function ℎC(𝑥) that achieves

E
𝑥∼D
|ℎC(𝑥) − tr(𝑂E(|𝑥⟩⟨𝑥 |)) |2 ≤ 𝜖, (7.134)

must use classical training data of size 𝑁C = Ω(𝑚𝑁Q/𝜖), where 𝑁Q is the number
of queries in the best quantum ML model.

This statement follows from constructing a stylized learning problem that admits the
largest possible separation (albeit only a small polynomial factor). We first introduce
the problem and discuss quantum and classical strategies (and their limitations)
afterwards. We will focus on restricted classical ML models, because Theorem 39
also considers restricted classical ML models. We leave open the question of
whether the separation between unrestricted classical ML and quantum ML is tight
or not.

Learning problem formulation Fix 𝜖 ∈ (0, 1/3), let 𝑚 be the integer in the
statement of Proposition 15 and set 𝑛 = 𝑚 − 1. We consider a set of CPTP maps
F = {E𝑎 : 𝑎 ∈ {0, 1}𝑛} containing 2𝑛 elements, where each map in the set takes an
𝑛-qubit input to an (𝑛+1)-qubit output. The map E𝑎, labeled by bit string 𝑎 ∈ {0, 1}𝑛,
is comprised of 2 × 2𝑛 Kraus operators:

E𝑎 (𝜌) =
∑︁

𝑧∈{0,1}𝑛

2∑︁
𝑖=1

𝐾 𝑧,𝑖𝑎 𝜌(𝐾 𝑧,𝑖𝑎 )† with

𝐾
𝑧,1
𝑎 =

√︃
1+
√

3𝜖
2 (𝐼 ⊗ 𝐼⊗𝑛) |𝑎 ⊙ 𝑧, 𝑎⟩⟨𝑧 |,

𝐾
𝑧,2
𝑎 =

√︃
1−
√

3𝜖
2 (𝑋 ⊗ 𝐼⊗𝑛) |𝑎 ⊙ 𝑧, 𝑎⟩⟨𝑧 |.

(7.135)
Here, 𝑋 is a single-qubit bit flip and 𝑎 ⊙ 𝑧 ∈ {0, 1} denotes the inner product of
bit-strings in Z2. We also choose the (𝑛+1)-qubit observable 𝑂 = 𝑍 ⊗ 𝐼⊗𝑛, i.e.
we measure the first qubit in the 𝑍-basis and trace out the rest of the system. By
construction, the resulting function admits a closed-form expression:

𝑓𝑎 (𝑥) = tr (𝑂E𝑎 ( |𝑥⟩⟨𝑥 |)) =
√

3𝜖 (1 − 2𝑎 ⊙ 𝑥) . (7.136)

We consider D to be the uniform distribution over the 𝑛-bit inputs.
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Upper bound on the quantum query complexity The above learning prob-
lem is easy to solve in the quantum realm. Since the set of CPTP maps F =

{E𝑎 : 𝑎 ∈ {0, 1}𝑛} is known, it suffices to extract the label 𝑎 ∈ {0, 1}𝑛 of the un-
derlying CPTP map. Once 𝑎 is known, the closed-form expression (7.136) allows
to predict future function values 𝑓𝑎 (𝑥) efficiently with perfect accuracy – regardless
of the input 𝑥 ∈ {0, 1}𝑛.

Quantum computers are well equipped to extract the label 𝑎. In fact, a single query
of the unknown CPTP map E𝑎 suffices to extract the label by executing the following
simple procedure:

1. prepare the all-zero state on 𝑛 qubits: 𝜌0 = |0, . . . , 0⟩⟨0, . . . , 0|;

2. query E and apply it to 𝜌0: 𝜌1 = 1
2 (𝐼 +

√
3𝜖𝑍) ⊗ |𝑎⟩⟨𝑎 |, according to Equa-

tion (7.135);

3. throw away (trace out) the first qubit to obtain the 𝑛 remaining ones: 𝜌2 =

|𝑎⟩⟨𝑎 |;

4. perform a computational basis measurement to extact 𝑎 ∈ {0, 1}𝑛 with prob-
ability one.

We see that a single quantum query (𝑁Q = 1) suffices to extract the label 𝑎 with
certainty. Subsequently, we can make efficient and perfect predictions via the
closed-form expression (7.136):

E𝑥∼D
��ℎQ(𝑥) − tr (𝑂E𝑎 ( |𝑥⟩⟨𝑥 |))

��2 = 0 ≤ 𝜖 ⇐ 𝑁Q = 1. (7.137)

In words, 𝑁Q = 1 allows for training a quantum ML model ℎQ(𝑥) that achieves zero
prediction error for all input distributions (perfect prediction). This concrete ML
model is also optimal, because 𝑁Q = 1 is the smallest number of queries conceivable
(𝑁Q = 0 would not reveal any information about the underlying CPTP map).

Lower bound on the classical query complexity Let us now turn to potential
classical strategies for solving the above learning problem. In contrast to the previous
paragraph, we will not construct an explicit strategy. Instead, we will use ideas
similar to Appendix 7.3 to establish a fundamental lower bound.

Recall that the input distribution D is taken to be the uniform distribution. Also,
for each E𝑎 ∈ F , the underlying function 𝑓𝑎 (𝑥) = tr (𝑂E𝑎 ( |𝑥⟩⟨𝑥 |)) admits a closed
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form expression, see Equation (7.136). For 𝑎, 𝑏 ∈ {0, 1}𝑛,

E
𝑥∼D
| 𝑓𝑎 (𝑥) − 𝑓𝑏 (𝑥) |2 =

1
2𝑛

∑︁
𝑥∈{0,1}𝑛

���√3𝜖2(𝑎 − 𝑏) ⊙ 𝑥
���2 =


0 if 𝑎 = 𝑏,

6𝜖 else,
(7.138)

because 2−𝑛
∑
𝑥∈{0,1}𝑛 |𝑐 ⊙ 𝑥 |2 = 1/2 for all 𝑛-bit strings 𝑐 ≠ (0, . . . , 0). Now, sup-

pose that a restricted classical ML model can utilize training data T = {(𝑥𝑖, 𝑜𝑖)}𝑁C
𝑖=1

to learn a function ℎC(𝑥) that obeys E𝑥∼D |ℎC(𝑥) − tr (𝑂E𝑎 ( |𝑥⟩⟨𝑥 |)) |2 ≤ 𝜖 with high
probability for any label 𝑎 ∈ {0, 1}𝑛. Then, this model would also allow us to
identify the underlying label. Indeed E𝑥∼D |ℎC(𝑥) − 𝑓𝑏 |2 ≤ 𝜖 if 𝑏 = 𝑎, while for
𝑏 ≠ 𝑎, by the triangle inequality,

E
𝑥∼D
|ℎC(𝑥) − 𝑓𝑏 (𝑥) |2 ≥

(√︂
E
𝑥∼D
| 𝑓𝑎 (𝑥) − 𝑓𝑏 (𝑥) |2 −

√︂
E
𝑥∼D
|ℎC(𝑥) − 𝑓𝑎 (𝑥) |2

)2

(7.139)

≥
(√

6𝜖 −
√
𝜖

)2
> 𝜖. (7.140)

By checking E𝑥∼𝐷 |ℎC(𝑥) − 𝑓𝑏 (𝑥) |2 ≤ 𝜖 for every possible value 𝑏 ∈ {0, 1}𝑛, the
restricted classical ML model allows us to recover the underlying bit-string label
𝑎 ∈ {0, 1}𝑛 with high probability. For this part of the argument, what’s essential is
that the right-hand-side of the inequality Equation (7.139) is greater than 𝜖 . If we
replace 3𝜖 in Equation (7.135) by 𝛼𝜖 , where 𝛼 is a constant, we require

√
2𝛼−1 > 1,

or 𝛼 > 2. We chose 𝛼 = 3 merely for convenience.

For any random hidden bitstring 𝑎 ∈ {0, 1}𝑛, we can use the restricted classical ML
to obtain the training data {(𝑥𝑖, 𝑜𝑖)}𝑁C

𝑖=1 and determine the underlying bitstring 𝑎.
We assume that the restricted classical ML first query 𝑥1 obtains 𝑜1, then query 𝑥2

obtains 𝑜2, and so on. We also have

𝑜𝑖 =


+1 with probability 𝑝+ = 1

2

(
1 +
√

3𝜖 (1 − 2𝑎 ⊙ 𝑥𝑖)
)
,

−1 with probability 𝑝− = 1
2

(
1 −
√

3𝜖 (1 − 2𝑎 ⊙ 𝑥𝑖)
)
,

(7.141)

which is a single-shot outcome for measuring the observable 𝑂 on the state

E𝑎 ( |𝑥𝑖⟩⟨𝑥𝑖 |) (7.142)

in the eigenbasis of 𝑂 = 𝑍 ⊗ 𝐼⊗𝑛. Because we can use the training data {(𝑥𝑖, 𝑜𝑖)}𝑁C
𝑖=1

to determine 𝑎 with high probability (by the assumption of the restricted classical
ML model), Fano’s inequality and the data processing inequality then imply a bound
on the mutual information between the training data and the CPTP map label 𝑎:

𝐼
(
𝑎 : {(𝑥𝑖, 𝑜𝑖)}𝑁C

𝑖=1
)
= Ω(𝑛). (7.143)
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Next, using chain rule of mutual information based on conditional mutual informa-
tion, we have

𝐼
(
𝑎 : {(𝑥𝑖, 𝑜𝑖)}𝑁C

𝑖=1
)
=

𝑁C∑︁
𝑖=1

𝐼 (𝑎 : (𝑥𝑖, 𝑜𝑖) |{(𝑥 𝑗 , 𝑜 𝑗 )}𝑖−1
𝑗=1) (7.144)

=

𝑁C∑︁
𝑖=1

𝐼 (𝑎 : 𝑜𝑖 |{(𝑥 𝑗 , 𝑜 𝑗 )}𝑖−1
𝑗=1, 𝑥𝑖). (7.145)

The second equality follows from the fact that 𝑥𝑖 is chosen by the restricted classical
ML using only the information of {(𝑥 𝑗 , 𝑜 𝑗 )}𝑖−1

𝑗=1, hence the input 𝑥𝑖 does not provide
any additional information about 𝑎, i.e., 𝐼 (𝑎 : 𝑥𝑖 |{(𝑥 𝑗 , 𝑜 𝑗 )}𝑖−1

𝑗=1) = 0. We now upper
bound each term:

𝐼 (𝑎 : 𝑜𝑖 |{(𝑥 𝑗 , 𝑜 𝑗 )}𝑖−1
𝑗=1, 𝑥𝑖) = 𝐻 (𝑜𝑖 |{(𝑥 𝑗 , 𝑜 𝑗 )}

𝑖−1
𝑗=1, 𝑥𝑖) − 𝐻 (𝑜𝑖 |{(𝑥 𝑗 , 𝑜 𝑗 )}

𝑖−1
𝑗=1, 𝑥𝑖, 𝑎)

(7.146)
Because 𝑜𝑖 is a two-outcome random variable, 𝐻 (𝑜𝑖 |{(𝑥 𝑗 , 𝑜 𝑗 )}𝑖−1

𝑗=1, 𝑥𝑖) ≤ 𝐻 (𝑜𝑖) ≤
log2(2) = 1. We now consider the distribution of 𝑜𝑖 when we condition on
{(𝑥 𝑗 , 𝑜 𝑗 )}𝑖−1

𝑗=1, 𝑥𝑖, 𝑎. A closer inspection of Equation (7.141) reveals that the probabil-

ity of one outcome is 𝑝 = 1
2

(
1 +
√

3𝜖
)

and the other is 1− 𝑝 (the value 𝑎⊙𝑥𝑖 ∈ {0, 1}
only ever permutes the outcome sign). This ensures

𝐻 (𝑜𝑖 |{(𝑥 𝑗 , 𝑜 𝑗 )}𝑖−1
𝑗=1, 𝑥𝑖, 𝑎) = −𝑝 log2(𝑝) − (1− 𝑝) log2(1− 𝑝) ≥ log2(2) − (2𝑝−1)2,

(7.147)
and we conclude

𝐼 (𝑎 : 𝑜𝑖 |{(𝑥 𝑗 , 𝑜 𝑗 )}𝑖−1
𝑗=1, 𝑥𝑖) ≤ (2𝑝 − 1)2 = 3𝜖 . (7.148)

Finally, we combine Eqs. (7.143), (7.145) and (7.148) to conclude

Ω(𝑛) ≤ 𝐼
(
𝑎 : {(𝑥𝑖, 𝑜𝑖)}𝑁C

𝑖=1
)
≤

𝑁C∑︁
𝑖=1

𝐼 (𝑎 : 𝑜𝑖 |{(𝑥 𝑗 , 𝑜 𝑗 )}𝑖−1
𝑗=1, 𝑥𝑖) ≤ 3𝜖𝑁C.

Therefore, recalling that the output size of our set of maps is 𝑚 = 𝑛+1, we have for
a restricted classical ML model with small average prediction error:

E
𝑥∼D
|ℎC(𝑥) − tr (𝑂E𝑎 ( |𝑥⟩⟨𝑥 |)) |2 ≤ 𝜖 with high probability⇒ 𝑁C = Ω (𝑚/𝜖) .

(7.149)
Proposition 15 follows from combining this assertion with the fact that the under-
lying learning problem does admit a perfect quantum solution with 𝑁Q = 1, see
Equation (7.137).
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C h a p t e r 8

POWER OF DATA AND QUANTUM ADVANTAGE

As quantum technologies continue to advance rapidly, it becomes increasingly
important to understand which applications can benefit from the power of these
devices. At the same time, machine learning on classical computers has made great
strides, revolutionizing applications in image recognition, text translation, and even
physics applications, with more computational power leading to ever-increasing
performance Halevy, Norvig, and Pereira, 2009. As such, if quantum computers
could accelerate machine learning, the potential for impact is enormous.

At least two paths towards quantum enhancement of machine learning have been
considered. First, motivated by quantum applications in optimization Grover, 1996;
Durr and Hoyer, 1996; Farhi, Goldstone, Gutmann, et al., 2001, the power of
quantum computing could, in principle, be used to help improve the training process
of existing classical models Neven et al., 2009; Rebentrost, Masoud Mohseni, and
Lloyd, 2014, or enhance inference in graphical models Leifer and Poulin, 2008. This
could include finding better optima in a training landscape or finding optima with
fewer queries. However, without more structure known in the problem, the advantage
along these lines may be limited to quadratic or small polynomial speedups Aaronson
and Ambainis, 2009; Jarrod R McClean, Harrigan, et al., 2020.

The second vein of interest is the possibility of using quantum models to generate
correlations between variables that are inefficient to represent through classical com-
putation. The recent success both theoretically and experimentally for demonstrating
quantum computations beyond classical tractability can be taken as evidence that
quantum computers can sample from probability distributions that are exponentially
difficult to sample from classically Boixo et al., 2018; Arute et al., 2019. If these
distributions were to coincide with real-world distributions, this would suggest the
potential for significant advantage. This is typically the type of advantage that has
been sought in recent work on both quantum neural networks Peruzzo et al., 2014;
Jarrod R McClean, Romero, et al., 2016; Farhi and Neven, 2018, which seek to
parameterize a distribution through some set of adjustable parameters, and quantum
kernel methods Havlicek et al., 2019 that use quantum computers to define a feature
map that maps classical data into the quantum Hilbert space. The justification for
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Figure 8.1: Illustration of the relation between complexity classes and a flowchart
for understanding and pre-screening potential quantum advantage. (a) We cartoon
the separation between problem complexities that are created by the addition of data
to a problem. Classical algorithms that can learn from data define a complexity class
that can solve problems beyond classical computation (BPP), but it is still expected
that quantum computation can efficiently solve problems that classical ML algorithm
with data cannot. Rigorous definition and proof for the separation between classical
algorithms that can learn from data and BPP / BQP is given in Section 3.1. (b)
The flowchart we develop for understanding the potential for quantum prediction
advantage. 𝑁 samples of data from a potentially infinite depth QNN made with
encoding and function circuits 𝑈enc and 𝑈QNN are provided as input along with
quantum and classical methods with associated kernels. Tests are given as functions
of 𝑁 to emphasize the role of data in the possibility of a prediction advantage.
One can first evaluate a geometric quantity 𝑔CQ that measures the possibility of an
advantageous quantum/classical prediction separation without yet considering the
actual function to learn. We show how one can efficiently construct an adversarial
function that saturates this limit if the test is passed, otherwise the classical approach
is guaranteed to match performance for any function of the data. To subsequently
consider the actual function provided, a label/function specific test may be run using
the model complexities 𝑠𝐶 and 𝑠𝑄 . If one specifically uses the quantum kernel (QK)
method, the red dashed arrows can evaluate if all possible choices of 𝑈QNN lead to
an easy classical function for the chosen encoding of the data.

the capability of these methods to exceed classical models often follows similar
lines as Refs Boixo et al., 2018; Arute et al., 2019 or quantum simulation results.
That is, if the model leverages a quantum circuit that is hard to sample results from
classically, then there is potential for a quantum advantage.

In this work, we show quantitatively how this picture is incomplete in machine
learning (ML) problems where some training data is provided. The provided data can
elevate classical models to rival quantum models, even when the quantum circuits
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generating the data are hard to compute classically. We begin with a motivating
example and complexity-theoretic argument showing how classical algorithms with
data can match quantum output. Following this, we provide rigorous prediction error
bounds for training classical and quantum ML methods based on kernel functions
Cortes and Vapnik, 1995; Schölkopf, Alexander J Smola, Bach, et al., 2002; Mohri,
Rostamizadeh, and Talwalkar, 2018; Jacot, Gabriel, and Hongler, 2018; Novak, L.
Xiao, Hron, J. Lee, Alexander A Alemi, et al., 2019; Arora et al., 2019; Havlicek
et al., 2019; Blank et al., 2020; Bartkiewicz et al., 2020; Y. Liu, Arunachalam, and
Temme, 2020 to learn quantum mechanical models. We focus on kernel methods, as
they not only provide provable guarantees, but are also very flexible in the functions
they can learn. For example, recent advancements in theoretical machine learning
show that training neural networks with large hidden layers is equivalent to training
an ML model with a particular kernel, known as the neural tangent kernel Jacot,
Gabriel, and Hongler, 2018; Novak, L. Xiao, Hron, J. Lee, Alexander A Alemi,
et al., 2019; Arora et al., 2019. Throughout, when we refer to classical ML models
related to our theoretical developments, we will be referring to ML models that
can be easily associated with a kernel, either explicitly as in kernel methods, or
implicitly as in the neural tangent kernels. However, in the numerical section, we
will also include performance comparisons to methods where direct association of a
kernel is challenging, such as random forest methods. In the quantum case, we will
also show how quantum ML based on kernels can be made equivalent to training an
infinite depth quantum neural network.

We use our prediction error bounds to devise a flowchart for testing potential quantum
prediction advantage, the separation between prediction errors of quantum and
classical ML models for a fixed amount of training data. The most important test is
a geometric difference between kernel functions defined by classical and quantum
ML. Formally, the geometric difference is defined by the closest efficient classical
ML model. In practice, one should consider the geometric difference with respect
to a suite of optimized classical ML models. If the geometric difference is small,
then a classical ML method is guaranteed to provide similar or better performance
in prediction on the data set, independent of the function values or labels. Hence
this represents a powerful, function independent pre-screening that allows one to
evaluate if there is any possibility of better performance. On the other hand, if the
geometry differs greatly, we show both the existence of a data set that exhibits large
prediction advantage using the quantum ML model and how one can construct it
efficiently. While the tools we develop could be used to compare and construct
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hard classical models like hash functions, we enforce restrictions that allow us to
say something about a quantum separation. In particular, the feature map will be
white box, in that a quantum circuit specification is available for the ideal feature
map, and that feature map can be made computationally hard to evaluate classically.
A constructive example of this is a discrete log feature map, where a provable
separation for our kernel is given in Section 8.13. Additionally, the minimum over
classical models means that classical hash functions are reproduced formally by
definition.

Moreover, application of these tools to existing models in the literature rules many
of them out immediately, providing a powerful sieve for focusing development of
new data encodings. Following these constructions, in numerical experiments, we
find that a variety of common quantum models in the literature perform similarly
or worse than classical ML on both classical and quantum data sets due to a small
geometric difference. The small geometric difference is a consequence of the expo-
nentially large Hilbert space employed by existing quantum models, where all inputs
are too far apart. To circumvent the setback, we propose an improvement, which
enlarges the geometric difference by projecting quantum states embedded from clas-
sical data back to approximate classical representation Huang, Richard Kueng, and
Preskill, 2020; J. Cotler and Wilczek, 2020b; Paini and Kalev, 2019. With the
large geometric difference endowed by the projected quantum model, we are able
to construct engineered data sets to demonstrate large prediction advantage over
common classical ML models in numerical experiments up to 30 qubits. Despite
our constructions being based on methods with associated kernels, we find empiri-
cally that the prediction advantage remains robust across tested classical methods,
including those without an easily determined kernel. This opens the possibility to
use a small quantum computer to generate efficiently verifiable machine learning
problems that could be challenging for classical ML models.

8.1 Setup and motivating example
We begin by setting up the problems and methods of interest for classical and
quantum models, and then provide a simple motivating example for studying how
data can increase the power of classical models on quantum data. The focus will
be a supervised learning task with a collection of 𝑁 training examples {(𝑥𝑖, 𝑦𝑖)},
where 𝑥𝑖 is the input data and 𝑦𝑖 is an associated label or value. We assume that 𝑥𝑖
are sampled independently from a data distribution D.
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In our theoretical analysis, we will consider 𝑦𝑖 ∈ R to be generated by some
quantum model. In particular, we consider a continuous encoding unitary that maps
a classical input data 𝑥𝑖 into quantum state |𝑥𝑖⟩ = 𝑈enc(𝑥𝑖) |0⟩⊗𝑛 and refer to the
corresponding density matrix as 𝜌(𝑥𝑖). The expressive power of these embeddings
have been investigated from a functional analysis point of view Lloyd, Schuld,
et al., 2020; Schuld, Sweke, and Meyer, 2020, however the setting where data is
provided requires special attention. The encoding unitary is followed by a unitary
𝑈QNN(𝜃). We then measure an observable𝑂 after the quantum neural network. This
produces the label/value for input 𝑥𝑖 given as 𝑦𝑖 = 𝑓 (𝑥𝑖) = ⟨𝑥𝑖 |𝑈†QNN𝑂𝑈QNN |𝑥𝑖⟩.
The quantum model considered here is also referred to as a quantum neural network
(QNN) in the literature Farhi and Neven, 2018; Jarrod R McClean, Boixo, et al.,
2018. The goal is to understand when it is easy to predict the function 𝑓 (𝑥) by
training classical/quantum machine learning models.

With notation in place, we turn to a simple motivating example to understand how
the availability of data in machine learning tasks can change computational hardness.
Consider data points {x𝑖}𝑁𝑖=1 that are 𝑝-dimensional classical vectors with ∥x𝑖∥2 = 1,
and use amplitude encoding Grant et al., 2019; Schuld, Bocharov, et al., 2020;
LaRose and Coyle, 2020 to encode the data into an 𝑛-qubit state |x𝑖⟩ =

∑𝑝

𝑘=1 𝑥
𝑘
𝑖
|𝑘⟩,

where 𝑥𝑘
𝑖

is the individual coordinate of the vector x𝑖. If 𝑈QNN is a time-evolution
under a many-body Hamiltonian, then the function 𝑓 (x) = ⟨x|𝑈†QNN𝑂𝑈QNN |x⟩ is in
general hard to compute classically Aram W Harrow and Montanaro, 2017b , even
for a single input state. In particular, we have the following proposition showing
that if a classical algorithm can compute 𝑓 (x) efficiently, then quantum computers
will be no more powerful than classical computers; see Section 3.1 for proof.

Proposition 16. If a classical algorithm without training data can compute 𝑓 (x)
efficiently for any𝑈QNN and 𝑂, then BPP=BQP.

Nevertheless, it is incorrect to conclude that training a classical model from data to
learn this evolution is hard. To see this, we write out the expectation value as

𝑓 (𝑥𝑖) =
(
𝑝∑︁
𝑘=1

𝑥𝑘∗𝑖 ⟨𝑘 |
)
𝑈
†
QNN𝑂𝑈QNN

(
𝑝∑︁
𝑙=1

𝑥𝑙𝑖 |𝑙⟩
)

=

𝑝∑︁
𝑘=1

𝑝∑︁
𝑙=1

𝐵𝑘𝑙𝑥
𝑘∗
𝑖 𝑥

𝑙
𝑖 , (8.1)

which is a quadratic function with 𝑝2 coefficients 𝐵𝑘𝑙 = ⟨𝑘 |𝑈†QNN𝑂𝑈QNN |𝑙⟩. Using
the theory developed later in this work, we can show that, for any 𝑈QNN and 𝑂,
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training a specific classical ML model on a collection of 𝑁 training examples
{(x𝑖, 𝑦𝑖 = 𝑓 (x𝑖))} would give rise to a prediction model ℎ(x𝑖) with

E
x∼D
|ℎ(x) − 𝑓 (x) | ≤ 𝑐

√︂
𝑝2

𝑁
, (8.2)

for a constant 𝑐 > 0. We refer to Section 3.1 for the proof of this result. Hence, with
𝑁 ∝ 𝑝2/𝜖2 training data, one can train a classical ML model to predict the function
𝑓 (x) up to an additive prediction error 𝜖 . This elevation of classical models through
some training samples is illustrative of the power of data. In Section 3.1, we give
a rigorous complexity-theoretic argument on the computational power provided by
data. A cartoon depiction of the complexity separation induced by data is provided
in Figure 8.1(a).

While this simple example makes the basic point that sufficient data can change
complexity considerations, it perhaps opens more questions than it answers. For
example, it uses a rather weak encoding into amplitudes and assumes one has access
to an amount of data that is on par with the dimension of the model. The more
interesting cases occur if we strengthen the data encoding, include modern classical
ML models, and consider number of data 𝑁 much less than the dimension of the
model. These more interesting cases are the ones we quantitatively answer.

Our primary interest will be ML algorithms that are much stronger than fitting a
quadratic function and the input data is provided in more interesting ways than an
amplitude encoding. In this work, we focus on both classical and quantum ML
models based on kernel functions 𝑘 (𝑥𝑖, 𝑥 𝑗 ). At a high level, a kernel function can be
seen as a measure of similarity, if 𝑘 (𝑥𝑖, 𝑥 𝑗 ) is large when 𝑥𝑖 and 𝑥 𝑗 are close. When
considered for finite input data, a kernel function may be represented as a matrix
𝐾𝑖 𝑗 = 𝑘 (𝑥𝑖, 𝑥 𝑗 ) and the conditions required for kernel methods are satisfied when
the matrix representation is Hermitian and positive semi-definite.

A given kernel function corresponds to a nonlinear feature mapping 𝜙(𝑥) that maps
𝑥 to a possibly infinite-dimensional feature space, such that 𝑘 (𝑥𝑖, 𝑥 𝑗 ) = 𝜙(𝑥𝑖)†𝜙(𝑥 𝑗 ).
This is the basis of the so-called “kernel trick” where intricate and powerful
maps 𝜙(𝑥𝑖) can be implemented through the evaluation of relatively simple ker-
nel functions 𝑘 . As a simple case, in the example above, using a kernel of
𝑘 (𝑥𝑖, 𝑥 𝑗 ) = | ⟨𝑥𝑖⟩ 𝑥 𝑗 |2 corresponds to a feature map 𝜙(𝑥𝑖) =

∑
𝑘𝑙 𝑥

𝑘∗
𝑖
𝑥𝑙
𝑖
|𝑘⟩ ⊗ |𝑙⟩

which is capable of learning quadratic functions in the amplitudes. In kernel based
ML algorithms, the trained model can always be written as ℎ(𝑥) = w†𝜙(𝑥) where w
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Figure 8.2: Cartoon of the geometry (kernel function) defined by classical and
quantum ML models. The letters A, B, ... represent data points {𝑥𝑖} in different
spaces with arrows representing the similarity measure (kernel function) between
data. The geometric difference 𝑔 is a difference between similarity measures (ar-
rows) in different ML models and 𝑑 is an effective dimension of the data set in the
quantum Hilbert space.

is a vector in the feature space defined by the kernel. For example, training a convo-
lutional neural network with large hidden layers Jacot, Gabriel, and Hongler, 2018;
Z. Li et al., 2019 is equivalent to using a corresponding neural tangent kernel 𝑘CNN.
The feature map 𝜙CNN for the kernel 𝑘CNN is a nonlinear mapping that extracts all
local properties of 𝑥 Z. Li et al., 2019. In quantum mechanics, similarly a kernel
function can be defined using the native geometry of the quantum state space |𝑥⟩.
For example, we can define the kernel function as ⟨𝑥𝑖⟩ 𝑥 𝑗 or | ⟨𝑥𝑖⟩ 𝑥 𝑗 |2. Using the
output from this kernel in a method like a classical support vector machine Cortes
and Vapnik, 1995 defines the quantum kernel method.

A wide class of functions can be learned with a sufficiently large amount of data by
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using the right kernel function 𝑘 . For example, in contrast to the perhaps more natural
kernel, ⟨𝑥𝑖⟩ 𝑥 𝑗 , the quantum kernel 𝑘Q(𝑥𝑖, 𝑥 𝑗 ) = | ⟨𝑥𝑖⟩ 𝑥 𝑗 |2 = tr(𝜌(𝑥𝑖)𝜌(𝑥 𝑗 )) can
learn arbitrarily deep quantum neural network𝑈QNN that measures any observable𝑂
(shown in Section 8.5), and the Gaussian kernel, 𝑘𝛾 (𝑥𝑖, 𝑥 𝑗 ) = exp(−𝛾 | |𝑥𝑖−𝑥 𝑗 | |2)with
hyper-parameter 𝛾, can learn any continuous function in a compact space Micchelli,
Xu, and Haizhang Zhang, 2006, which includes learning any QNN. Nevertheless,
the required amount of data 𝑁 to achieve a small prediction error could be very
large in the worst case. Although we will work with other kernels defined through
a quantum space, due both to this expressive property and terminology of past
work, we will refer to 𝑘Q(𝑥𝑖, 𝑥 𝑗 ) = tr

[
𝜌(𝑥𝑖)𝜌(𝑥 𝑗 )

]
as the quantum kernel method

throughout this work, which is also the definition given in Havlicek et al., 2019.

8.2 Testing quantum advantage
We now construct our more general framework for assessing the potential for quan-
tum prediction advantage in a machine learning task. Beginning from a general
result, we build both intuition and practical tests based on the geometry of the
learning spaces. This framework is summarized in Figure 8.1.

Our foundation is a general prediction error bound for training classical/quantum ML
models to predict some quantum model defined by 𝑓 (𝑥) = tr(𝑂𝑈𝜌(𝑥)) derived from
concentration inequalities, where𝑂𝑈 = 𝑈

†
QNN𝑂𝑈QNN. Suppose we have obtained 𝑁

training examples {(𝑥𝑖, 𝑦𝑖 = 𝑓 (𝑥𝑖))}. After training on this data, there exists an ML
algorithm that outputs ℎ(𝑥) = w†𝜙(𝑥) using kernel 𝑘 (𝑥𝑖, 𝑥 𝑗 ) = 𝐾𝑖 𝑗 = 𝜙(𝑥𝑖)†𝜙(𝑥 𝑗 )
which has a simplified prediction error bounded by

E𝑥∼D |ℎ(𝑥) − 𝑓 (𝑥) | ≤ 𝑐
√︂
𝑠𝐾 (𝑁)
𝑁

(8.3)

for a constant 𝑐 > 0 and 𝑁 independent samples from the data distribution D. We
note here that this and all subsequent bounds have a key dependence on the quantity
of data 𝑁 , reflecting the role of data to improve prediction performance. Due to
a scaling freedom between 𝛼𝜙(𝑥) and w/𝛼, we have assumed

∑𝑁
𝑖=1 𝜙(𝑥𝑖)†𝜙(𝑥𝑖) =

tr(𝐾) = 𝑁 . A derivation of this result is given in Section 8.6.

Given this core prediction error bound, we now seek to understand its implications.
The main quantity that determines the prediction error is

𝑠𝐾 (𝑁) =
𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1
(𝐾−1)𝑖 𝑗 tr(𝑂𝑈𝜌(𝑥𝑖)) tr(𝑂𝑈𝜌(𝑥 𝑗 )). (8.4)
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The quantity 𝑠𝐾 (𝑁) is equal to the model complexity of the trained function
ℎ(𝑥) = w†𝜙(𝑥), where 𝑠𝐾 (𝑁) = ∥w∥2 = w†w after training. A smaller value
of 𝑠𝐾 (𝑁) implies better generalization to new data 𝑥 sampled from the distribution
D. Intuitively, 𝑠𝐾 (𝑁) measures whether the closeness between 𝑥𝑖, 𝑥 𝑗 defined by the
kernel function 𝑘 (𝑥𝑖, 𝑥 𝑗 ) matches well with the closeness of the observable expecta-
tion for the quantum states 𝜌(𝑥𝑖), 𝜌(𝑥 𝑗 ), recalling that a larger kernel value indicates
two points are closer. The computation of 𝑠𝐾 (𝑁) can be performed efficiently on
a classical computer by inverting an 𝑁 × 𝑁 matrix 𝐾 after obtaining the 𝑁 values
tr(𝑂𝑈𝜌(𝑥𝑖)) by performing order 𝑁 experiments on a physical quantum device. The
time complexity scales at most as order 𝑁3. Due to the connection between w†w
and the model complexity, a regularization term w†w is often added to the opti-
mization problem during the training of ℎ(𝑥) = w†𝜙(𝑥), see e.g., Krogh and Hertz,
1992; Cortes and Vapnik, 1995; Suykens and Vandewalle, 1999. Regularization
prevents 𝑠𝐾 (𝑁) from becoming too large at the expense of not completely fitting
the training data. A detailed discussion and proof under regularization is given in
Section 8.6 and 8.8.

The prediction error upper bound can often be shown to be asymptotically tight by
proving a matching lower bound. As an example, when 𝑘 (𝑥𝑖, 𝑥 𝑗 ) is the quantum
kernel tr(𝜌(𝑥𝑖)𝜌(𝑥 𝑗 )), we can deduce that 𝑠𝐾 (𝑁) ≤ tr(𝑂2) hence one would need
a number of data 𝑁 scaling as tr(𝑂2). In Section 8.10, we give a matching lower
bound showing that a scaling of tr(𝑂2) is unavoidable if we assume a large Hilbert
space dimension. This lower bound holds for any learning algorithm and not only for
quantum kernel methods. The lower bound proof uses mutual information analysis
and could easily extend to other kernels. This proof strategy is also employed
extensively in a follow-up work Huang, Richard Kueng, and Preskill, 2021 to devise
upper and lower bounds for classical and quantum ML in learning quantum models.
Furthermore, not only are the bounds asymptotically tight, in numerical experiments
given in Section 8.15 we find that the prediction error bound also captures the
performance of other classical ML models not based on kernels where the constant
factors are observed to be quite modest.

Given some set of data, if 𝑠𝐾 (𝑁) is found to be small relative to 𝑁 after training for
a classical ML model, this quantum model 𝑓 (𝑥) can be predicted accurately even if
𝑓 (𝑥) is hard to compute classically for any given 𝑥. In order to formally evaluate
the potential for quantum prediction advantage generally, one must take 𝑠𝐾 (𝑁) to
be the minimal over efficient classical models. However, we will be more focused
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on minimally attainable values over a reasonable set of classical methods with
tuned hyperparameters. This prescribes an effective method for evaluating potential
quantum advantage in practice, and already rules out a considerable number of
examples from the literature.

From the bound, we can see that the potential advantage for one ML algorithm
defined by 𝐾1 to predict better than another ML algorithm defined by 𝐾2 depends
on the largest possible separation between 𝑠𝐾1 and 𝑠𝐾2 for a data set. The separation
can be characterized by defining an asymmetric geometric difference that depends
on the dataset, but is independent of the function values or labels. Hence evaluating
this quantity is a good first step in understanding if there is a potential for quantum
advantage, as shown in Figure 8.1. This quantity is defined by

𝑔12 = 𝑔(𝐾1 | |𝐾2) =
√︂√︁𝐾2(𝐾1)−1

√︁
𝐾2


∞
, (8.5)

where ∥.∥∞ is the spectral norm of the resulting matrix and we assume tr(𝐾1) =
tr(𝐾2) = 𝑁 . One can show that 𝑠𝐾1 ≤ 𝑔2

12𝑠𝐾2 , which implies the prediction error
bound 𝑐

√︁
𝑠𝐾1/𝑁 ≤ 𝑐𝑔12

√︁
𝑠𝐾2/𝑁 . A detailed derivation is given in Section 8.8

and an illustration of 𝑔12 can be found in Figure 8.2. The geometric difference
𝑔(𝐾1 | |𝐾2) can be computed on a classical computer by performing a singular value
decomposition of the 𝑁 × 𝑁 matrices 𝐾1 and 𝐾2. Standard numerical analysis
packages E. Anderson et al., 1999 provide highly efficient computation of a singular
value decomposition in time at most order 𝑁3. Intuitively, if𝐾1(𝑥𝑖, 𝑥 𝑗 ) is small/large
when 𝐾2(𝑥𝑖, 𝑥 𝑗 ) is small/large, then the geometric difference 𝑔12 is a small value
∼ 1, where 𝑔12 grows as the kernels deviate.

To see more explicitly how the geometric difference allows one to make state-
ments about the possibility for one ML model to make different predictions from
another, consider the geometric difference 𝑔CQ = 𝑔(𝐾C | |𝐾Q) between a clas-
sical ML model with kernel 𝑘C(𝑥𝑖, 𝑥 𝑗 ) and a quantum ML model, e.g., with
𝑘Q(𝑥𝑖, 𝑥 𝑗 ) = tr(𝜌(𝑥𝑖)𝜌(𝑥 𝑗 )). If 𝑔CQ is small, because

𝑠C ≤ 𝑔2
CQ𝑠Q, (8.6)

the classical ML model will always have a similar or better model complexity 𝑠𝐾 (𝑁)
compared to the quantum ML model. This implies that the prediction performance
for the classical ML will likely be competitive or better than the quantum ML model,
and one is likely to prefer using the classical model. This is captured in the first step
of our flowchart in Figure 8.1.
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(a) (b)
Dataset (Q, E2)

Dataset (C)Dataset (Q, E3)

Dataset (Q, E1)

Figure 8.3: Relation between dimension 𝑑, geometric difference 𝑔, and prediction
performance. The shaded regions are the standard deviation over 10 independent
runs and 𝑛 is the number of qubits in the quantum encoding and dimension of the
input for the classical encoding. (a) The approximate dimension 𝑑 and the geometric
difference 𝑔with classical ML models for quantum kernel (Q) and projected quantum
kernel (PQ) under different embeddings and system sizes 𝑛. (b) Prediction error
(lower is better) of the quantum kernel method (Q), projected quantum kernel
method (PQ), and classical ML models on classical (C) and quantum (Q) data sets
with number of data 𝑁 = 600. As 𝑑 grows too large, the geometric difference 𝑔 for
quantum kernel becomes small. We see that small geometric difference 𝑔 always
results in classical ML being competitive or outperforming the quantum ML model.
When 𝑔 is large, there is a potential for improvement over classical ML. For example,
projected quantum kernel improves upon the best classical ML in Dataset (Q, E3).

In contrast, if 𝑔CQ is large we show that there exists a data set with 𝑠C = 𝑔2
CQ𝑠Q with

the quantum model exhibiting superior prediction performance. An efficient method
to explicitly construct such a maximally divergent data set is given in Section 8.9
and a numerical demonstration of the stability of this separation is provided in the
next section. While a formal statement about classical methods generally requires
defining it over all efficient classical methods, in practice, we consider 𝑔CQ to be the
minimum geometric difference among a suite of optimized classical ML models.
Our engineered approach minimizes this value as a hyperparameter search to find the
best classical adversary, and shows remarkable robustness across classical methods
including those without an associated kernel, such as random forests Breiman, 2001.

In the specific case of the quantum kernel method with

𝐾
𝑄

𝑖 𝑗
= 𝑘Q(𝑥𝑖, 𝑥 𝑗 ) = tr(𝜌(𝑥𝑖)𝜌(𝑥 𝑗 )), (8.7)

we can gain additional insights into the model complexity 𝑠𝐾 , and sometimes make
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conclusions about classically learnability for all possible 𝑈QNN for the given en-
coding of the data. Let us define vec(𝑋) for a Hermitian matrix 𝑋 to be a vector
containing the real and imaginary part of each entry in 𝑋 . In this case, we find
𝑠𝑄 = vec(𝑂𝑈)𝑇𝑃𝑄vec(𝑂𝑈), where 𝑃𝑄 is the projector onto the subspace formed by
{vec(𝜌(𝑥1)), . . . , vec(𝜌(𝑥𝑁 ))}. We highlight

𝑑 = dim(𝑃𝑄) = rank(𝐾Q) ≤ 𝑁, (8.8)

which defines the effective dimension of the quantum state space spanned by the
training data. An illustration of the dimension 𝑑 can be found in Figure 8.1. Because
𝑃𝑄 is a projector and has eigenvalues 0 or 1, 𝑠Q ≤ min(𝑑, vec(𝑂𝑈)𝑇vec(𝑂𝑈)) =
min(𝑑, tr(𝑂2)) assuming ∥𝑂∥∞ ≤ 1. Hence in the case of the quantum kernel
method, the prediction error bound may be written as

E𝑥∈D |ℎ(𝑥) − 𝑓 (𝑥) | ≤ 𝑐
√︂

min(𝑑, tr(𝑂2))
𝑁

. (8.9)

A detailed derivation is given in Section 8.7. We can also consider the approximate
dimension 𝑑, where small eigenvalues in 𝐾Q are truncated, by incurring a small
training error. After obtaining 𝐾Q from a quantum device, the dimension 𝑑 can
be computed efficiently on a classical machine by performing a singular value
decomposition on the 𝑁 × 𝑁 matrix 𝐾Q. Estimation of tr(𝑂2) can be performed
by sampling random states |𝜓⟩ from a quantum 2-design, measuring 𝑂 on |𝜓⟩, and
performing statistical analysis on the measurement data Huang, Richard Kueng,
and Preskill, 2020. This prediction error bound shows that a quantum kernel
method can learn any 𝑈QNN when the dimension of the training set space 𝑑 or the
squared Frobenius norm of observable tr(𝑂2) is much smaller than the amount of
data 𝑁 . In Section 8.10, we show that quantum kernel methods are optimal for
learning quantum models with bounded tr(𝑂2) as they saturate the fundamental
lower bound. However, in practice, most observables, such as Pauli operators,
will have exponentially large tr(𝑂2), so the central quantity is the dimension 𝑑.
Using the prediction error bound for the quantum kernel method, if both 𝑔CQ and
min(𝑑, tr(𝑂2)) are small, then a classical ML would also be able to learn any𝑈QNN.
In such a case, one must conclude that the given encoding of the data is classically
easy, and this cannot be affected by an arbitrarily deep 𝑈QNN. This constitutes the
bottom left part of our flowchart in Figure 8.1.

Ultimately, to see a prediction advantage in a particular data set with specific function
values/labels, we need a large separation between 𝑠C and 𝑠Q. This happens when
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the inputs 𝑥𝑖, 𝑥 𝑗 considered close in a quantum ML model are actually close in the
target function 𝑓 (𝑥), but are far in classical ML. This is represented as the final test
in Figure 8.1 and the methodology here outlines how this result can be achieved in
terms of its more essential components.

8.3 Projected quantum kernels
In addition to analyzing existing quantum models, the analysis approach introduced
also provides suggestions for new quantum models with improved properties, which
we now address here. For example, if we start with the original quantum kernel,
when the effective dimension 𝑑 is large, kernel tr(𝜌(𝑥𝑖)𝜌(𝑥 𝑗 )), which is based on
a fidelity-type metric, will regard all data to be far from each other and the kernel
matrix 𝐾Q will be close to identity. This results in a small geometric difference 𝑔CQ

leading to classical ML models being competitive or outperforming the quantum
kernel method. In Section 8.11, we present a simple quantum model that requires
an exponential amount of samples to learn using the quantum kernel tr(𝜌(𝑥𝑖)𝜌(𝑥 𝑗 )),
but only needs a linear number of samples to learn using a classical ML model.

To circumvent this setback, we propose a family of projected quantum kernels as a
solution. These kernels work by projecting the quantum states to an approximate
classical representation, e.g., using reduced physical observables or classical shad-
ows Gosset and J. Smolin, 2019; Aaronson, 2020; Aaronson and Rothblum, 2019;
Paini and Kalev, 2019; Huang, Richard Kueng, and Preskill, 2020. Even if the
training set space has a large dimension 𝑑 ∼ 𝑁 , the projection allows us to reduce
to a low-dimensional classical space that can generalize better. Furthermore, by go-
ing through the exponentially large quantum Hilbert space, the projected quantum
kernel can be challenging to evaluate without a quantum computer. In numerical
experiments, we find that the classical projection increases rather than decreases
the geometric difference with classical ML models. These constructions will be the
foundation of our best performing quantum method later.

One of the simplest forms of projected quantum kernel is to measure the one-particle
reduced density matrix (1-RDM) on all qubits for the encoded state, 𝜌𝑘 (𝑥𝑖) =

tr 𝑗≠𝑘 [𝜌(𝑥𝑖)], then define the kernel as

𝑘PQ(𝑥𝑖, 𝑥 𝑗 ) = exp

(
−𝛾

∑︁
𝑘

𝜌𝑘 (𝑥𝑖) − 𝜌𝑘 (𝑥 𝑗 )2
𝐹

)
. (8.10)

This kernel defines a feature map function in the 1-RDM space that is capable of
expressing arbitrary functions of powers of the 1-RDMs of the quantum state. From
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Figure 8.4: Prediction accuracy (higher the better) on engineered data sets. A
label function is engineered to match the geometric difference 𝑔(C| |PQ) between
projected quantum kernel and classical approaches, demonstrating a significant gap
between quantum and the best classical models up to 30 qubits when 𝑔 is large. We
consider the best performing classical ML models among Gaussian SVM, linear
SVM, Adaboost, random forest, neural networks, and gradient boosting. We only
report the accuracy of the quantum kernel method up to system size 𝑛 = 28 due to
the high simulation cost and the inferior performance.

non-intuitive results in density functional theory, we know even one body densities
can be sufficient for determining exact ground state Pierre Hohenberg and Walter
Kohn, 1964 and time-dependent Runge and E. K. Gross, 1984 properties of many-
body systems under modest assumptions. In Section 8.12, we provide examples of
other projected quantum kernels. This includes an efficient method for computing a
kernel function that contains all orders of RDMs using local randomized measure-
ments and the formalism of classical shadows Huang, Richard Kueng, and Preskill,
2020. The classical shadow formalism allows efficient construction of RDMs from
very few measurements. In Section 8.13, we show that projected versions of quan-
tum kernels lead to a simple and rigorous quantum speed-up in a recently proposed
learning problem based on discrete logarithms Y. Liu, Arunachalam, and Temme,
2020.

8.4 Numerical experiments
We now provide numerical evidence up to 30 qubits that supports our theory on the
relation between the dimension 𝑑, the geometric difference 𝑔, and the prediction per-
formance. Using the projected quantum kernel, the geometric difference 𝑔 is much
larger and we see the strongest empirical advantage of a scalable quantum model on
quantum data sets to date. These are the largest combined simulation and analysis in
digital quantum machine learning that we are aware of, and make use of the Tensor-
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Flow and TensorFlow-Quantum package Broughton, Verdon, McCourt, Antonio J
Martinez, et al., 2020, reaching a peak throughput of up to 1.1 quadrillion floating
point operations per second (petaflop/s). Trends of approximately 300 teraflop/s for
quantum simulation and 800 teraflop/s for classical analysis were observed up to
the maximum experiment size with the overall floating point operations across all
experiments totalling approximately 2 quintillion (exaflop).

In order to mimic a data distribution that pertains to real-world data, we conduct
our experiments around the fashion-MNIST data set H. Xiao, Rasul, and Vollgraf,
2017, which is an image classification for distinguishing clothing items, and is more
challenging than the original digit-based MNIST source LeCun, Cortes, and Burges,
2010. We pre-process the data using principal component analysis Jolliffe, 1986
to transform each image into an 𝑛-dimensional vector. The same data is provided
to the quantum and classical models, where in the classical case the data is the
𝑛-dimensional input vector, and the quantum case uses a given circuit to embed
the 𝑛-dimensional vector into the space of 𝑛 qubits. For quantum embeddings, we
explore three options, E1 is a separable rotation circuit Schuld and Killoran, 2019;
Schuld, Bocharov, et al., 2020; Skolik et al., 2020, E2 is an IQP-type embedding
circuit Havlicek et al., 2019, and E3 is a Hamiltonian evolution circuit, with explicit
constructions in Section 8.14.

For the classical ML task (C), the goal is to correctly identify the images as shirts
or dresses from the original data set. For the quantum ML tasks, we use the
same fashion-MINST source data and embeddings as above, but take as function
values the expectation value of a local observable that has been evolved under a
quantum neural network resembling the Trotter evolution of 1D-Heisenberg model
with random couplings. In these cases, the embedding is taken as part of the
ground truth, so the resulting function will be different depending on the quantum
embedding. For these ML tasks, we compare against the best performing model
from a list of standard classical ML algorithms with properly tuned hyper-parameters
(see Section 8.14 for details).

In Figure 8.3, we give a comparison between the prediction performance of classical
and quantum ML models. One can see that not only do classical ML models perform
best on the original classical dataset, the prediction performance for the classical
methods on the quantum datasets is also very competitive and can even outperform
existing quantum ML models despite the quantum ML models having access to the
training embedding while the classical methods do not. The performance of the
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classical ML model is especially strong on Dataset (Q, E1) and Dataset (Q, E2). This
elevation of the classical performance is evidence of the power of data. Moreover,
this intriguing behavior and the lack of quantum advantage may be explained by
considering the effective dimension 𝑑 and the geometric difference 𝑔 following our
theoretical constructions. From Figure 8.3a, we can see that the dimension 𝑑 of
the original quantum state space grows rather quickly, and the geometric difference
𝑔 becomes small as the dimension becomes too large (𝑑 ∝ 𝑁) for the standard
quantum kernel. The saturation of the dimension coincides with the decreasing
and statistical fluctuations in performance seen in Figure 8.4. Moreover, given
poor ML performance a natural instinct is to throw more resources at the problem,
e.g. more qubits, but as demonstrated here, doing this for naïve quantum kernel
methods is likely to lead to tiny inner products and even worse performance. In
contrast, the projected quantum space has a low dimension even when 𝑑 grows, and
yields a higher geometric difference 𝑔 for all embeddings and system sizes. Our
methodology predicts that, when 𝑔 is small, classical ML model will be competitive
or outperform the quantum ML model. This is verified in Figure 8.3b for both the
original and projected quantum kernel, where a small geometric difference 𝑔 leads
to a very good performance of classical ML models and no large quantum advantage
can be seen. Only when the geometric difference 𝑔 is large (projected kernel method
with embedding E3) can we see some mild advantage over the best classical method.
This result holds disregarding any detail of the quantum evolution we are trying to
learn, even for ones that are hard to simulate classically.

In order to push the limits of separation between quantum and classical approaches in
a learning setting, we now consider a set of engineered data sets with function values
designed to saturate the geometric inequality 𝑠C ≤ 𝑔(𝐾C | |𝐾PQ)2𝑠PQ between clas-
sical ML models with associated kernels and the projected quantum kernel method.
In particular, we design the data set such that 𝑠PQ = 1 and 𝑠C = 𝑔(𝐾C | |𝐾PQ)2. Recall
from Eq. (8.3), this data set will hence show the largest separation in the prediction
error bound

√︁
𝑠(𝑁)/𝑁 . The engineered data set is constructed via a simple eigen-

value problem with the exact procedure described in Section 8.9 and the results are
shown in Figure8.4. As the quantum nature of the encoding increases from E1 to E3,
corresponding to increasing 𝑔, the performance of both the best classical methods
and the original quantum kernel decline precipitously. The advantage of projected
quantum kernel closely follows the geometric difference 𝑔 and reaches more than
20% for large sizes. Despite the optimization of 𝑔 only being possible for classical
methods with an associated kernel, the performance advantage remains stable across
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other common classical methods. Note that we also constructed engineered data sets
saturating the geometric inequality between classical ML and the original quantum
kernel, but the small geometric difference 𝑔 presented no empirical advantage at
large system size (see Section 8.15).

In keeping with our arguments about the role of data, when we increase the number
of training data 𝑁 , all methods improve, and the advantage will gradually diminish.
While this data set is engineered, it shows the strongest empirical separation on the
largest system size to date. We conjecture that this procedure could be used with
a quantum computer to create challenging data sets that are easy to learn with a
quantum device, hard to learn classically while still being easy to verify classically
given the correct labels. Moreover, the size of the margin implies that this separation
may even persist under moderate amounts of noise in a quantum device.

8.5 Relation between quantum kernels and quantum neural networks
In this section, we demonstrate the formal equivalence of an arbitrary depth neural
network with a quantum kernel method built from the original quadratic quantum
kernel. This connection helps demonstrate the feature map induced by this kernel
to motivate its use as opposed to the simpler inner product. While this equivalence
shows the flexibility of this quantum kernel, it does not imply that it allows learning
with a parsimonious amount of data. Indeed, in many cases, it requires both an
exponential amount of data and exponential precision in the evaluation due to the
fidelity type metric. In later sections, we show simple cases where it fails for
illustration purposes.

Proposition 17. Training an arbitrarily deep quantum neural network 𝑈QNN with
a trainable observable 𝑂 is equivalent to training a quantum kernel method with
kernel 𝑘𝑄 (𝑥𝑖, 𝑥 𝑗 ) = tr(𝜌(𝑥𝑖)𝜌(𝑥 𝑗 )).

Proof. Let us define 𝜌𝑖 = 𝜌(𝑥𝑖) = 𝑈enc(𝑥𝑖) |0𝑛⟩⟨0𝑛 |𝑈enc(𝑥𝑖)† to be the correspond-
ing quantum states for the classical input 𝑥𝑖. The training of a quantum neural
network can be written‘ as

min
𝑈∈C⊂𝑈 (2𝑛)

𝑁∑︁
𝑖=1

𝑙 (tr(𝑂𝑈𝜌𝑖𝑈†), 𝑦𝑖), (8.11)

where 𝑙 ( �̃�, 𝑦) is a loss function that measures how close the prediction �̃� is to the
true label 𝑦, C is the space of all possible unitaries considered by the parameterized
quantum circuit, 𝑂 is some predefined observable that we measure after evolving
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with𝑈. Let us denote the optimal𝑈 to be𝑈∗, then the prediction for a new input 𝑥
is given by tr(𝑂𝑈∗𝜌(𝑥) (𝑈∗)†).

On the other hand, the training of the quantum kernel method under the implied
feature map is equivalent to training𝑊 ∈ C2𝑛×2𝑛 under the optimization

min
𝑊∈C2𝑛×2𝑛

𝑁∑︁
𝑖=1

𝑙 (tr(𝑊𝜌𝑖), 𝑦𝑖) + 𝜆 tr(𝑊†𝑊), (8.12)

where 𝜆 ≥ 0 is the regularization parameter and 𝑙 ( �̃�, 𝑦) is the loss function. Let
us denote the optimal 𝑊 to be 𝑊∗, then the prediction for a new input 𝑥 is given
by tr(𝑊∗𝜌(𝑥)). The well-known kernel trick allows efficient implementation of this
machine learning model, and connects the original quantum kernel to the derivation
here. Using the fact that 𝜌𝑖 is Hermitian and set 𝜆 = 0, the quantum kernel method
can be expressed as

min
𝑈∈𝑈 (2𝑛),

𝑂∈C2𝑛×2𝑛 ,𝑂=𝑂†

𝑁∑︁
𝑖=1

𝑙 (tr(𝑂𝑈𝜌𝑖𝑈†), 𝑦𝑖). (8.13)

This is equivalent to training an arbitrarily deep quantum neural network 𝑈 with a
trainable observable 𝑂.

8.6 Proof of a general form of prediction error bound
This section is dedicated to deriving the precise statement for the core prediction
error bound from which we base our methodology: E𝑥 |ℎ(𝑥) − 𝑓 (𝑥) | ≤ O(

√︁
𝑠/𝑁)

given by the first inequality in Equation (8.3). We will provide a detailed proof
for the following general theorem when we include the regularization parameter 𝜆.
The regularization parameter 𝜆 will be used to improve prediction performance by
limiting the complexity of the machine learning model.

Theorem 40. Consider an observable 𝑂 with ∥𝑂∥∞ ≤ 1, a quantum unitary 𝑈
(e.g., a quantum neural network or a general Hamiltonian evolution), a mapping of
classical input 𝑥 to quantum system 𝜌(𝑥), and a training set of 𝑁 data {(𝑥𝑖, 𝑦𝑖 =
tr(𝑂𝑈𝜌(𝑥𝑖)))}𝑁𝑖=1, with 𝑂𝑈 = 𝑈†𝑂𝑈 being the Heisenberg evolved observable. The
training set is sampled from some unknown distribution over the input 𝑥. Suppose
that 𝑘 (𝑥, 𝑥′) can be evaluated efficiently, and the kernel function is re-scaled to
satisfy

∑𝑁
𝑖=1 𝑘 (𝑥𝑖, 𝑥𝑖) = 𝑁 . Define the Gram matrix 𝐾𝑖 𝑗 = 𝑘 (𝑥𝑖, 𝑥 𝑗 ). For any 𝜆 ≥ 0,

with probability at least 1 − 𝛿 over the sampling of the training data, we can learn
a model ℎ(𝑥) from the training data, such that the expected prediction error is
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bounded by

E𝑥 |ℎ(𝑥) − tr(𝑂𝑈𝜌(𝑥)) | (8.14)

≤ O ©«
√︂

tr(𝐴tra𝑂𝑈 ⊗ 𝑂𝑈)
𝑁

+

√︄
tr(𝐴gen𝑂𝑈 ⊗ 𝑂𝑈)

𝑁
+

√︂
log(1/𝛿)

𝑁

ª®¬ , (8.15)

where the two operators 𝐴tra, 𝐴gen are given as

𝐴tra = 𝜆
2
𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1
((𝐾 + 𝜆𝐼)−2)𝑖 𝑗 𝜌(𝑥𝑖) ⊗ 𝜌(𝑥 𝑗 ), (8.16)

𝐴gen =

𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1
((𝐾 + 𝜆𝐼)−1𝐾 (𝐾 + 𝜆𝐼)−1)𝑖 𝑗 𝜌(𝑥𝑖) ⊗ 𝜌(𝑥 𝑗 ). (8.17)

This is a data-dependent bound as 𝐴tra and 𝐴gen both depend on the 𝑁 training data.

When we take the limit of 𝜆→ 0, we have 𝐴tra = 0 and

𝐴gen =

𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1
(𝐾−1)𝑖 𝑗 𝜌(𝑥𝑖) ⊗ 𝜌(𝑥 𝑗 ). (8.18)

Thus with probability at least 0.99 = 1 − 𝛿, we have

E𝑥 |ℎ(𝑥) − tr(𝑂𝑈𝜌(𝑥)) | ≤ O
(√︂

𝑠𝐾 (𝑁)
𝑁

)
, (8.19)

where 𝑠𝐾 (𝑁) =
∑𝑁
𝑖=1

∑𝑁
𝑗=1(𝐾−1)𝑖 𝑗 tr(𝑂𝑈𝜌(𝑥𝑖)) tr(𝑂𝑈𝜌(𝑥 𝑗 )). This is the formula

stated in the main text. However, in practice, we would recommend the use of
regularization 𝜆 > 0 to prevent numerical instability and to obtain prediction error
bound when we use a regularized ML model.

In Section 8.6, we will present the definition of the machine learning models used
to prove Theorem 40. In Section 8.6 and 8.6, we will analyze the training error
and generalization error of the machine learning models we consider to prove the
prediction error bound given in Theorem 40.

Definition and training of machine learning models
We consider a class of machine learning models, including Gaussian kernel regres-
sion, infinite-width neural networks, and quantum kernel methods. These mod-
els are equivalent to training a linear function mapping from a (possibly infinite-
dimensional) Hilbert spaceH to R. The linear function can be written as ⟨w, 𝜙(𝑥)⟩,
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where w parameterizes the linear function, ⟨·, ·⟩ : H ×H → R is an inner product,
and 𝜙(𝑥) is a nonlinear mapping from the classical input 𝑥 to the Hilbert space H .
For example, in quantum kernel method, we use the space of 2𝑛 × 2𝑛 Hermitian
matrices as the Hilbert space H . This yields a natural definition of inner product
⟨𝜌, 𝜎⟩ = tr(𝜌𝜎) ∈ R.

Because the output 𝑦 = tr(𝑈†𝑂𝑈𝜌(𝑥)) of the quantum model satisfies 𝑦 ∈ [−1, 1],
we confine the output of the machine learning model to the interval [−1, 1]. The
resulting machine learning model would be

ℎ𝑤 (𝑥) = min(1,max(−1, ⟨w, 𝜙(𝑥)⟩)). (8.20)

For efficient optimization of w, we consider minimization of the following loss
function

min
w
𝜆⟨w,w⟩ +

𝑁∑︁
𝑖=1

(
⟨w, 𝜙(𝑥)⟩ − tr(𝑈†𝑂𝑈𝜌(𝑥𝑖))

)2
, (8.21)

where 𝜆 ≥ 0 is a hyper-parameter. We define Φ = (𝜙(𝑥1), . . . , 𝜙(𝑥𝑁 )). The kernel
matrix 𝐾 = Φ†Φ is an 𝑁 × 𝑁 matrix that defines the geometry between all pairs of
the training data. We see that 𝐾𝑖 𝑗 = ⟨𝜙(𝑥𝑖), 𝜙(𝑥 𝑗 )⟩ = 𝑘 (𝑥𝑖, 𝑥 𝑗 ) ∈ R. Without loss of
generality, we consider tr(𝐾) = 𝑁 , which can be done by rescaling 𝑘 (𝑥𝑖, 𝑥 𝑗 ). The
optimal w can be written down explicitly as

w =

𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1

𝜙(𝑥𝑖) ((𝐾 + 𝜆𝐼)−1)𝑖 𝑗 tr(𝑈†𝑂𝑈𝜌(𝑥 𝑗 )). (8.22)

Hence the trained machine learning model would be

ℎ𝑤 (𝑥) = min ©«1,max ©«−1,
𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1

𝑘 (𝑥𝑖, 𝑥) ((𝐾 + 𝜆𝐼)−1)𝑖 𝑗 tr(𝑈†𝑂𝑈𝜌(𝑥 𝑗 ))ª®¬ª®¬ .
(8.23)

This is an analytic representation for various trained machine learning models, in-
cluding least-square support vector machine Suykens and Vandewalle, 1999, kernel
regression Nadaraya, 1964; N. S. Altman, 1992, and infinite-width neural networks
Jacot, Gabriel, and Hongler, 2018. We will now analyze the prediction error of
these machine learning models:

𝜖𝑤 (𝑥) = |ℎ𝑤 (𝑥) − tr(𝑈†𝑂𝑈𝜌(𝑥)) |, (8.24)

which is uniquely determined by the kernel matrix 𝐾 and the hyper-parameter 𝜆. In
particular, we will focus on providing an upper bound on the expected prediction
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error

E𝑥 𝜖𝑤 (𝑥) =
1
𝑁

𝑁∑︁
𝑖=1

𝜖𝑤 (𝑥𝑖)︸          ︷︷          ︸
Training error

+E𝑥 𝜖𝑤 (𝑥) −
1
𝑁

𝑁∑︁
𝑖=1

𝜖𝑤 (𝑥𝑖)︸                          ︷︷                          ︸
Generalization error

, (8.25)

which is the sum of training error and generalization error.

Training error
We will now relate the training error to the optimization problem, i.e., Equa-
tion (8.21), for obtaining the machine learning model ℎ𝑤 (𝑥). Because ∥𝑂∥ ≤ 1,
we have tr(𝑈†𝑂𝑈𝜌(𝑥)) ∈ [−1, 1], and hence 𝜖𝑤 (𝑥) = |ℎ𝑤 (𝑥) − tr(𝑈†𝑂𝑈𝜌(𝑥)) | ≤
|⟨w, 𝜙(𝑥)⟩ − tr(𝑈†𝑂𝑈𝜌(𝑥)) |. Using the convexity of 𝑥2 and Jensen’s inequality, we
obtain

1
𝑁

𝑁∑︁
𝑖=1

𝜖𝑤 (𝑥𝑖) ≤

√√√
1
𝑁

𝑁∑︁
𝑖=1

(
⟨w, 𝜙(𝑥)⟩ − tr(𝑈†𝑂𝑈𝜌(𝑥𝑖))

)2
. (8.26)

We can plug in the expression for the optimal w given in Equation (8.22) to yield

1
𝑁

𝑁∑︁
𝑖=1

𝜖𝑤 (𝑥𝑖) ≤
√︂

tr(𝐴tra(𝑈†𝑂𝑈) ⊗ (𝑈†𝑂𝑈))
𝑁

, (8.27)

where 𝐴tra = 𝜆2 ∑𝑁
𝑖=1

∑𝑁
𝑗=1((𝐾 + 𝜆𝐼)−2)𝑖 𝑗 𝜌(𝑥𝑖) ⊗ 𝜌(𝑥 𝑗 ). When 𝐾 is invertible and

𝜆 = 0, we can see that the training error is zero. However, in practice, we often set
𝜆 > 0.

Generalization error
A basic theorem in statistics and learning theory is presented below. This theorem
provides an upper bound on the largest (one-sided) deviation from expectation over
a family of functions. The following theorem has been introduced in Chapter 2.2.
Here, we restate the theorem for convenience.

Theorem 41 (See Theorem 3.3 in Mohri, Rostamizadeh, and Talwalkar, 2018). Let
G be a family of function mappings from a setZ to [0, 1]. Then for any 𝛿 > 0, with
probability at least 1 − 𝛿 over identical and independent draw of 𝑁 samples from
Z: 𝑧1, . . . , 𝑧𝑁 , we have for all 𝑔 ∈ G,

E𝑧 [𝑔(𝑧)] ≤
1
𝑁

𝑁∑︁
𝑖=1

𝑔(𝑧𝑖) + 2E𝜎

[
sup
𝑔∈G

1
𝑁

𝑁∑︁
𝑖=1

𝜎𝑖𝑔(𝑧𝑖)
]
+ 3

√︂
log(2/𝛿)

2𝑁
, (8.28)

where 𝜎1, . . . 𝜎𝑁 are independent and uniform random variables over ±1.
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For our purpose, we will consider Z to be the space of classical input with 𝑧𝑖 = 𝑥𝑖
drawn from some input distribution. Each function 𝑔 would be equal to 𝜖𝑤/2 for
some w, where 𝜖𝑤 is defined in Equation (8.24). The reason that we divide by
2 is because the range of 𝜖𝑤 is [0, 2]. And ∀𝛾 = 1, 2, 3, . . ., we define G𝛾 to be
{𝜖𝑤/2 | ∀ ∥w∥ ≤ 𝛾}. The definition of an infinite sequence of family of functions
G𝛾 is useful for proving a prediction error bound for an unbounded class of machine
learning models ℎ𝑤 (𝑥), where ∥w∥ could be arbitrarily large. Using Theorem 3 and
multiplying the entire inequality by 2, we can show that the following inequality
holds for any w with ∥w∥ ≤ 𝛾,

E𝑥 [𝜖𝑤 (𝑥)] −
1
𝑁

𝑁∑︁
𝑖=1

𝜖𝑤 (𝑥𝑖) ≤ 2E𝜎

[
sup
∥v∥≤𝛾

1
𝑁

𝑁∑︁
𝑖=1

𝜎𝑖𝜖v(𝑥𝑖)
]
+ 6

√︂
log(4𝛾2/𝛿)

2𝑁
, (8.29)

with probability at least 1 − 𝛿/2𝛾2. This probabilistic statement holds for any
𝛾 = 1, 2, 3, . . ., but this does not yet guarantee that the inequality holds for all
𝛾 with high probability. We need to apply a union bound over all 𝛾 to achieve
this, which shows that Inequality (8.29) holds for all 𝛾 with probability at least
1 −∑∞

𝛾=1 𝛿/2𝛾2 ≥ 1 − 𝛿.

Together we have shown that, for any w ∈ H , the generalization error E𝑥 [𝜖𝑤 (𝑥)] −
1
𝑁

∑𝑁
𝑖=1 𝜖𝑤 (𝑥𝑖) is upper bounded by

2E𝜎

[
sup

∥v∥≤⌈∥w∥⌉

1
𝑁

𝑁∑︁
𝑖=1

𝜎𝑖𝜖v(𝑥𝑖)
]
+ 6

√︂
log(4⌈∥w∥⌉2/𝛿)

2𝑁
, (8.30)

with probability at least 1 − 𝛿, where we consider the particular inequality with
𝛾 = ⌈∥w∥⌉. We will now analyze the above inequality using Talagrand’s contraction
lemma.

Lemma 49 (Talagrand’s contraction lemma; See Lemma 5.7 in Mohri, Ros-
tamizadeh, and Talwalkar, 2018). Let G be a family of function from a set Z to
R. Let 𝑙1, . . . , 𝑙𝑁 be Lipschitz-continuous function from R → R with Lipschitz
constant 𝐿. Then

E𝜎

[
sup
𝑔∈G

1
𝑁

𝑁∑︁
𝑖=1

𝜎𝑖𝑙𝑖 (𝑔(𝑧𝑖))
]
≤ 𝐿E𝜎

[
sup
𝑔∈G

1
𝑁

𝑁∑︁
𝑖=1

𝜎𝑖𝑔(𝑧𝑖)
]
. (8.31)

We consider 𝑙𝑖 (𝑠) = |min(1,max(−1, 𝑠)) − tr(𝑈†𝑂𝑈𝜌(𝑥𝑖)) |, 𝑧𝑖 = 𝑥𝑖, and G =

{𝑔𝑣 (𝑧𝑖) = ⟨v, 𝑧𝑖⟩ | ∥v∥ ≤ ⌈∥w∥⌉}. This choice of functions gives 𝜖𝑣 (𝑥𝑖) = 𝑙𝑖 (𝑔(𝑧𝑖)).
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Furthermore, 𝑙𝑖 is Lipschitz-continuous with Lipschitz constant 1. Talagrand’s
contraction lemma then allows us to bound the formula in Equation (8.30) by

2E𝜎

[
sup

∥v∥≤⌈∥w∥⌉

1
𝑁

𝑁∑︁
𝑖=1

𝜎𝑖 ⟨v, 𝜙(𝑥𝑖)⟩
]
+ 6

√︂
log(4⌈∥w∥⌉2/𝛿)

2𝑁
(8.32)

≤ 2E𝜎

[
sup

∥v∥≤⌈∥w∥⌉

1
𝑁
∥v∥

 𝑁∑︁
𝑖=1

𝜎𝑖𝜙(𝑥𝑖)

]
+ 6

√︂
log(4⌈∥w∥⌉2/𝛿)

2𝑁
(8.33)

≤ 2⌈∥w∥⌉E𝜎

[
1
𝑁

 𝑁∑︁
𝑖=1

𝜎𝑖𝜙(𝑥𝑖)

]
+ 6

√︂
log(4⌈∥w∥⌉2/𝛿)

2𝑁
(8.34)

≤ 2
⌈∥w∥⌉
𝑁

√√√
E𝜎

𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1
𝜎𝑖𝜎𝑗 𝑘 (𝑥𝑖, 𝑥 𝑗 ) + 6

√︂
log(4⌈∥w∥⌉2/𝛿)

2𝑁
(8.35)

≤ 2
√︁
⌈∥w∥⌉2 tr(𝐾)

𝑁
+ 6

√︂
log(4⌈∥w∥⌉2/𝛿)

2𝑁
(8.36)

≤ 2
√︂
⌈∥w∥⌉2
𝑁

+ 6
√︂

log(⌈∥w∥⌉)
𝑁

+ 6
√︂

log(4/𝛿)
2𝑁

(8.37)

≤ 8
√︂
⌈∥w∥⌉2
𝑁

+ 6
√︂

log(4/𝛿)
2𝑁

. (8.38)

The first inequality uses Cauchy’s inequality. The second inequality uses the fact that
∥v∥ ≤ ⌈∥w∥⌉. The third inequality uses a Jensen’s inequality to move E𝜎 into the
square-root. The fourth inequality uses the fact that 𝜎𝑖 are independent and uniform
random variable taking+1,−1. The fifth inequality uses√𝑥 + 𝑦 ≤

√
𝑥+√𝑦,∀𝑥, 𝑦 ≥ 0

and our assumption that we rescale 𝐾 such that tr(𝐾) = 𝑁 . The sixth inequality
uses the fact that 𝑥2 ≥ log(𝑥),∀𝑥 ∈ N.

Finally, we plug in the optimal w given in Equation (8.22). This allows us to obtain
an upper bound of the generalization error:

E𝑥 [𝜖𝑤 (𝑥)] −
1
𝑁

𝑁∑︁
𝑖=1

𝜖𝑤 (𝑥𝑖) ≤ 8
⌈
√︃

tr(𝐴gen(𝑈†𝑂𝑈) ⊗ (𝑈†𝑂𝑈))⌉
√
𝑁

+ 6
√︂

log(4/𝛿)
2𝑁

,

(8.39)
where 𝐴gen =

∑𝑁
𝑖=1

∑𝑁
𝑗=1((𝐾 + 𝜆𝐼)−1𝐾 (𝐾 + 𝜆𝐼)−1)𝑖 𝑗 𝜌(𝑥𝑖) ⊗ 𝜌(𝑥 𝑗 ). When 𝐾 is

invertible and 𝜆 = 0, we have 𝐴gen =
∑𝑁
𝑖=1

∑𝑁
𝑗=1(𝐾−1)𝑖 𝑗 𝜌(𝑥𝑖) ⊗ 𝜌(𝑥 𝑗 ).

8.7 Prediction error bound based on dimension and geometric difference
In this section, we will show that for quantum kernel methods, we have

E𝑥 |ℎQ(𝑥) − tr(𝑂𝑈𝜌(𝑥)) | ≤ O
(√︂

min(𝑑, tr(𝑂2))
𝑁

)
, (8.40)
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where 𝑑 is the dimension of the training set space 𝑑 = dim(span(𝜌(𝑥1), . . . , 𝜌(𝑥𝑁 ))).
If we use the quantum kernel method as a reference point, then the prediction error
of another machine learning algorithm that produces ℎ(𝑥) using kernel matrix 𝐾
can be bounded by

E𝑥 |ℎ(𝑥) − tr(𝑂𝑈𝜌(𝑥)) | ≤ O
(
𝑔

√︂
min(𝑑, tr(𝑂2))

𝑁

)
, (8.41)

where 𝑔 =

√︂√𝐾Q𝐾−1
√
𝐾Q


∞

assuming the normalization condition tr(𝐾Q) =
tr(𝐾) = 𝑁 .

Quantum kernel method
In quantum kernel method, the kernel function that will be used to train the model
is defined using the quantum Hilbert space 𝑘𝑄 (𝑥, 𝑥′) = tr(𝜌(𝑥)𝜌(𝑥′)). Correspond-
ingly, we define the kernel matrix 𝐾𝑄

𝑖 𝑗
= 𝑘𝑄 (𝑥𝑖, 𝑥 𝑗 ). We will focus on 𝜌(𝑥) being

a pure state, so the scaling condition tr(𝐾Q) = ∑𝑁
𝑖=1 𝑘𝑄 (𝑥𝑖, 𝑥𝑖) = 𝑁 is immediately

satisfied. We also denote the trained model as ℎQ for the quantum kernel method.
We now consider an orthonormal basis {𝜎1, . . . , 𝜎𝑑} for the 𝑑-dimensional quan-
tum state space formed by the training data span{𝜌(𝑥1), . . . , 𝜌(𝑥𝑁 )} under the inner
product ⟨𝜌, 𝜎⟩ = tr(𝜌𝜎). We have 𝜎𝑝 is Hermitian, tr(𝜎2

𝑝) = 1, but 𝜎𝑝 may not be
positive semi-definite.

We consider an expansion of 𝜌(𝑥𝑖) in terms of 𝜎𝑝:

𝜌(𝑥𝑖) =
𝑑∑︁
𝑝=1

𝛼𝑖𝑝𝜎𝑝, (8.42)

where 𝛼 ∈ R𝑁×𝑑 . The coefficient 𝛼 is real as the vector space of Hermitian matrices
is over real numbers. Note that multiplying a Hermitian matrix with an imaginary
number will not generally result in a Hermitian matrix, hence Hermitian matrices
are not a vector space over complex numbers. We can perform a singular value
decomposition on 𝛼 = 𝑈Σ𝑉†, where 𝑈 ∈ C𝑁×𝑑 , Σ, 𝑉 ∈ C𝑑×𝑑 with 𝑈†𝑈 = 𝐼, Σ is
diagonal and Σ ≻ 0, 𝑉†𝑉 = 𝑉𝑉† = 𝐼. Then 𝐾Q = 𝛼𝛼† = 𝑈Σ2𝑈†. This allows us to
explicitly evaluate 𝐴tra and 𝐴gen given in Equation (8.16) and (8.17):

𝐴tra = 𝜆
2

𝑑∑︁
𝑝=1

𝑑∑︁
𝑞=1

(
𝑉

Σ2

(Σ2 + 𝜆𝐼)2
𝑉†

)
𝑝𝑞

𝜎𝑝 ⊗ 𝜎𝑞, (8.43)

𝐴gen =

𝑑∑︁
𝑝=1

𝑑∑︁
𝑞=1

(
𝑉

Σ4

(Σ2 + 𝜆𝐼)2
𝑉†

)
𝑝𝑞

𝜎𝑝 ⊗ 𝜎𝑞, (8.44)
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which can be done by expanding 𝜌(𝑥𝑖) in terms of 𝜎𝑝. Because Σ ≻ 0, when we
take the limit of 𝜆 → 0, we have 𝐴tra = 0 and 𝐴gen =

∑𝑑
𝑝=1

∑𝑑
𝑞=1 𝛿𝑝𝑞𝜎𝑝 ⊗ 𝜎𝑞 =∑𝑑

𝑝=1 𝜎𝑝⊗𝜎𝑝. Hence tr(𝐴tra𝑂
𝑈⊗𝑂𝑈) = 0 and tr(𝐴gen𝑂

𝑈⊗𝑂𝑈) = ∑𝑑
𝑝=1 tr(𝜎𝑝𝑂𝑈)2.

From Equation (8.14) with 𝜆→ 0, we have

E𝑥 |ℎ𝑄 (𝑥) − tr(𝑂𝑈𝜌(𝑥)) | ≤ O
©«
√︄∑𝑑

𝑝=1 tr(𝑂𝑈𝜎𝑝)2

𝑁
+

√︂
log(1/𝛿)

𝑁

ª®®¬ . (8.45)

Because {𝜎1, . . . , 𝜎𝑘 } forms an orthonormal set in the space of 2𝑛 × 2𝑛 Hermitian
matrices,

∑𝑑
𝑝=1 tr(𝑂𝑈𝜎𝑝)2 is the Frobenius norm of the observable 𝑂𝑈 restricted to

the subspace span{𝜎1, . . . , 𝜎𝑘 }.

We now focus on obtaining an informative upper bound on how large
𝑑∑︁
𝑝=1

tr(𝑂𝑈𝜎𝑝)2 (8.46)

could be. First, because we can extend the subspace span{𝜎1, . . . , 𝜎𝑘 } to the full
Hilbert space span{𝜎1, . . . 𝜎4𝑛}, we have

𝑑∑︁
𝑝=1

tr(𝑂𝑈𝜎𝑝)2 ≤
4𝑛∑︁
𝑝=1

tr(𝑂𝑈𝜎𝑝)2 = tr((𝑂𝑈)2) =
𝑂𝑈2

𝐹
. (8.47)

Next, we will show that
∑𝑑
𝑝=1 tr(𝑂𝑈𝜎𝑝)2 ≤ 𝑑

𝑂𝑈2
∞ ≤ 𝑑, where

𝑂𝑈
∞ is the spec-

tral norm of the observable 𝑂𝑈 . We pick a linearly-independent set of {𝜌1, . . . , 𝜌𝑘 }
from {𝜌(𝑥1), . . . 𝜌(𝑥𝑁 )}. We assume that all the quantum states are pure, hence
we have 𝜌𝑖 = |𝜓𝑖⟩⟨𝜓𝑖 | ,∀𝑖 = 1, . . . , 𝑑. The pure states {|𝜓1⟩ , . . . , |𝜓𝑘⟩} may
not be orthogonal, so we perform a Gram-Schmidt process to create an orthonor-
mal set of quantum states {|𝜙1⟩ , . . . , |𝜙𝑘⟩}. Because 𝜌𝑖 are linear combination of
|𝜙𝑞⟩ ⟨𝜙𝑟 | ,∀𝑞, 𝑟 = 1, . . . , 𝑑, we have

𝜎𝑝 =

𝑑∑︁
𝑞=1

𝑑∑︁
𝑟=1

𝑠𝑝𝑞𝑟 |𝜙𝑞⟩⟨𝜙𝑟 | ,∀𝑝 = 1, . . . , 𝑑. (8.48)

The condition tr(𝜎𝑝𝜎𝑝′) = 𝛿𝑝𝑝′ implies that
∑𝑑
𝑞=1

∑𝑑
𝑟=1 𝑠𝑝𝑞𝑟 𝑠𝑝′𝑞𝑟 = 𝛿𝑝𝑝′ . If we

view 𝑠 as a vector s of size 𝑑2, then ⟨s𝑝, s𝑝′⟩ = 𝛿𝑝𝑝′ . Thus {s1, . . . , s𝑘 } forms a
set of orthonormal vectors in R𝑑2 , which implies

∑𝑑
𝑝=1 s𝑝s†𝑝 ⪯ 𝐼. Let us define the

projection operator 𝑃 =
∑𝑑
𝑞=1 |𝜙𝑞⟩⟨𝜙𝑞 |. We will also consider a vector o ∈ R𝑑2 ,

where o𝑞𝑟 = ⟨𝜙𝑟 |𝑂𝑈 |𝜙𝑞⟩. We have

𝑑∑︁
𝑝=1

tr(𝑂𝑈𝜎𝑝)2 =

𝑑∑︁
𝑝=1

©«
𝑑∑︁
𝑞=1

𝑑∑︁
𝑟=1

𝑠𝑝𝑞𝑟 ⟨𝜙𝑟 |𝑂𝑈 |𝜙𝑞⟩ª®¬
2

=

𝑑∑︁
𝑝=1

o†s𝑝s†𝑝o (8.49)
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≤ o†o =
©«
𝑑∑︁
𝑞=1

𝑑∑︁
𝑟=1
⟨𝜙𝑟 |𝑂𝑈 |𝜙𝑞⟩ª®¬

2

=
𝑃𝑂𝑈𝑃2

𝐹
. (8.50)

The inequality comes from the fact that
∑𝑑
𝑝=1 s𝑝s†𝑝 ⪯ 𝐼. With a proper choice of ba-

sis, one could view 𝑃𝑂𝑈𝑃 as an 𝑑× 𝑑 matrix. Hence
𝑃𝑂𝑈𝑃

𝐹
≤
√
𝑑
𝑃𝑂𝑈𝑃∞ ≤√

𝑑
𝑂𝑈

∞. This established the fact that
∑𝑑
𝑝=1 tr(𝑂𝑈𝜎𝑝)2 ≤ 𝑑

𝑂𝑈2
∞ ≤ 𝑑. Com-

bining with Equation (8.45), we have

E𝑥 |ℎ𝑄 (𝑥) − tr(𝑂𝑈𝜌(𝑥)) | ≤ O
©«
√︄

min(𝑑,
𝑂𝑈2

𝐹
)

𝑁
+

√︂
log(1/𝛿)

𝑁

ª®®¬ . (8.51)

This elucidates the fact that the prediction error of a quantum kernel method is
bounded by minimum of the dimension of the quantum subspace formed by the
training set and the Frobenius norm of the observable 𝑂𝑈 .

Choosing a small but non-zero 𝜆 allows us to consider an approximate space of
span{𝜌(𝑥1), . . . , 𝜌(𝑥𝑁 )} formed by the training set. The training error√︁

tr(𝐴tra𝑂𝑈 ⊗ 𝑂𝑈)/𝑁 (8.52)

would increase slightly, and the generalization error
√︁

tr(𝐴gen𝑂𝑈 ⊗ 𝑂𝑈)/𝑁 would
reflect the Frobenius norm of 𝑂𝑈 restricted to a smaller subspace, which only
contains the principal components of the space formed by the training set. This
would be a better choice when most states lie in low-dimensional subspace with
small random fluctuations. One may also consider training a machine learning
model with truncated kernel matrix 𝐾𝜆, where all singular values below 𝜆 are
truncated. This makes the act of restricting to an approximate subspace more
explicit.

Another machine learning method compared to quantum kernel
We now consider an upper bound on the prediction error using the quantum kernel
method as a reference point for some machine learning algorithm. For the following
discussion, we consider classical neural networks with large hidden sizes. The
function generated by a classical neural network with large hidden size after training
is equivalent to the function ℎ(𝑥) given in Equation (8.22) with 𝜆 = 0 and with
a special kernel function 𝑘NTK(𝑥, 𝑥′) known as the neural tangent kernel (NTK)
Jacot, Gabriel, and Hongler, 2018. The precise definition of 𝑘NTK(𝑥, 𝑥′) depends
on the architecture of the neural network. For example, a two-layer feedforward
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neural network (FNN), a three-layer FNN, or some particular form of convolutional
neural network (CNN) all correspond to different 𝑘NTK(𝑥, 𝑥′). Given the kernel
𝑘NTK(𝑥, 𝑥′), we can define the kernel matrix �̃�𝑖 𝑗 = 𝑘NTK(𝑥𝑖, 𝑥 𝑗 ). For neural tangent
kernel, the scaling condition tr(�̃�) = ∑𝑁

𝑖=1 𝑘NTK(𝑥𝑖, 𝑥𝑖) = 𝑁 may not be satisfied.
Hence, we define a normalized kernel matrix 𝐾 = 𝑁�̃�/tr(�̃�). When 𝜆 = 0, the
trained machine learning model (given in Equation (8.22)) under the normalized
matrix 𝐾 and the original matrix �̃� are the same. In order to apply Theorem 40,
we will use the normalized kernel matrix 𝐾 for the following discussion. From
Equation (8.14) with 𝜆 = 0, we have

E𝑥 |ℎ(𝑥) − tr(𝑂𝑈𝜌(𝑥)) | ≤ O
(√︂

tr(𝐴𝑂𝑈 ⊗ 𝑂𝑈)
𝑁

+
√︂

log(1/𝛿)
𝑁

)
, (8.53)

where 𝐴 =
∑𝑁
𝑖=1

∑𝑁
𝑗=1(𝐾−1)𝑖 𝑗 𝜌(𝑥𝑖) ⊗ 𝜌(𝑥 𝑗 ). Using Equation (8.42) on the expansion

of 𝜌(𝑥𝑖), we have

𝐴 =

𝑑∑︁
𝑝=1

𝑑∑︁
𝑞=1

𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1
(𝐾−1)𝑖 𝑗𝛼𝑖𝑝𝛼 𝑗𝑞𝜎𝑝 ⊗ 𝜎𝑞 (8.54)

=

𝑑∑︁
𝑝=1

𝑑∑︁
𝑞=1
(𝛼†𝐾−1𝛼)𝑝𝑞𝜎𝑝 ⊗ 𝜎𝑞 . (8.55)

Using the definition of spectral norm, we have

tr(𝐴𝑂𝑈 ⊗ 𝑂𝑈) =
𝑑∑︁
𝑝=1

𝑑∑︁
𝑞=1
(𝛼†𝐾−1𝛼)𝑝𝑞 tr(𝜎𝑝𝑂𝑈) tr(𝜎𝑞𝑂𝑈) (8.56)

≤
𝛼†𝐾−1𝛼


∞

𝑑∑︁
𝑝=1

tr(𝑂𝑈𝜎𝑝)2. (8.57)

Recall from the definition below Equation (8.42), we have

𝛼 = 𝑈Σ𝑉†, 𝐾Q = 𝛼𝛼† = 𝑈Σ2𝑈†. (8.58)

Using the fact that orthogonal transformation do not change the spectral norm,𝛼†𝐾−1𝛼

∞ =

Σ𝑈†𝐾−1𝑈Σ

∞ =

𝑈Σ𝑈†𝐾−1𝑈Σ𝑈†

∞ =

√︁𝐾Q𝐾−1
√︁
𝐾Q


∞
.

(8.59)
Hence

tr(𝐴𝑂𝑈 ⊗ 𝑂𝑈) ≤
√︁𝐾Q𝐾−1

√︁
𝐾Q


∞

𝑑∑︁
𝑝=1

tr(𝑂𝑈𝜎𝑝)2. (8.60)
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Together with Equation (8.53), we have the following prediction error bound

E𝑥 |ℎ(𝑥) − tr(𝑂𝑈𝜌(𝑥)) | ≤ O
©«𝑔

√︄∑𝑑
𝑝=1 tr(𝑂𝑈𝜎𝑝)2

𝑁
+

√︂
log(1/𝛿)

𝑁

ª®®¬ , (8.61)

where 𝑔 =

√︂√𝐾Q𝐾−1
√
𝐾Q


∞

. The scalar 𝑔 measures the closeness of the geome-

try between the training data points defined by classical neural network and quantum
state space. Note that without the geometric scalar 𝑔, this prediction error bound is
the same as Equation (8.45) for the quantum kernel method. Hence, if 𝑔 is small,
classical neural network could predict as well (or potentially better) as the quantum
kernel method. The same analysis in Section 8.7 allows us to arrive at the following
result

E𝑥 |ℎ(𝑥) − tr(𝑂𝑈𝜌(𝑥)) | ≤ O
©«𝑔

√︄
min(𝑑,

𝑂𝑈2
𝐹
)

𝑁
+

√︂
log(1/𝛿)

𝑁

ª®®¬ . (8.62)

The same analysis holds for other machine learning algorithms, such as Gaussian
kernel regression.

8.8 Detailed discussion on the relevant quantities s, d, and g
There are some important aspects on the three relevant quantities 𝑠, 𝑑, 𝑔 that were not
fully discussed in the main text, including the limit when we have infinite amount of
data and the effect of regularization. While in practice one always has a finite amount
of data, constructing these formal limits both clarifies the construction and provides
another perspective through which to understand the finite data constructions. This
section will provide a detailed discussion of these aspects.

Model complexity s
While we have used 𝑠𝐾 (𝑁) =

∑𝑁
𝑖=1

∑𝑁
𝑗=1(𝐾−1)𝑖 𝑗 tr(𝑂𝑈𝜌(𝑥𝑖)) tr(𝑂𝑈𝜌(𝑥 𝑗 )) in the

main text, this is a simplified quantity when we do not apply regularization. The
model complexity 𝑠𝐾 (𝑁) under regularization is given by

𝑠𝐾 (𝑁) = ∥w∥2 = tr(𝐴gen𝑂
𝑈 ⊗ 𝑂𝑈) (8.63)

=

𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1
((𝐾 + 𝜆𝐼)−1𝐾 (𝐾 + 𝜆𝐼)−1)𝑖 𝑗 tr(𝑂𝑈𝜌(𝑥𝑖)) tr(𝑂𝑈𝜌(𝑥 𝑗 )) (8.64)

=

𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1
(
√
𝐾 (𝐾 + 𝜆𝐼)−2√𝐾)𝑖 𝑗 tr(𝑂𝑈𝜌(𝑥𝑖)) tr(𝑂𝑈𝜌(𝑥 𝑗 )). (8.65)
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Training machine learning model with regularization is often desired when we have
a finite number 𝑁 of training data. ∥w∥2 has been used extensively in regularizing
machine learning models, see e.g., Krogh and Hertz, 1992; Cortes and Vapnik, 1995;
Suykens and Vandewalle, 1999. This is because we can often significantly reduce
generalization error

√︁
tr(𝐴gen𝑂𝑈 ⊗ 𝑂𝑈)/𝑁 by slightly increasing the training error√︁

tr(𝐴tra𝑂𝑈 ⊗ 𝑂𝑈)/𝑁 . In practice, we should choose the regularization parameter
𝜆 to be a small number such that the training error plus the generalization error is
minimized.

The model complexity 𝑠𝐾 (𝑁) we have been calculating can be seen as an approx-
imation to the true model complexity when we have a finite number 𝑁 of training
data. If we have exact knowledge about the input distribution given as a probability
measure 𝜇𝑥 , we can also write down the precise model complexity in the reproducing
kernel Hilbert space 𝜙(𝑥) where 𝑘 (𝑥, 𝑦) = 𝜙(𝑥)†𝜙(𝑦). Starting from

min
w
𝜆w†w +

∫ w†𝜙(𝑥) − tr(𝑂𝑈𝜌(𝑥))
2
𝑑𝜇𝑥 , (8.66)

we can obtain

w =

(
𝜆𝐼 +

∫
𝜙(𝑥)𝜙(𝑥)†𝑑𝜇𝑥

)−1 ∫
tr(𝑂𝑈𝜌(𝑥))𝜙(𝑥)𝑑𝜇𝑥 . (8.67)

Hence the true model complexity is

∥w∥2 (8.68)

=

∫ ∫
𝑑𝜇𝑥1𝑑𝜇𝑥2 tr(𝑂𝑈𝜌(𝑥1)) tr(𝑂𝑈𝜌(𝑥2)) (8.69)

𝜙(𝑥1)†
(
𝜆𝐼 +

∫
𝜙(𝜉)𝜙(𝜉)†𝑑𝜇𝜉

)−2
𝜙(𝑥2) (8.70)

= tr(𝐴gen𝑂
𝑈 ⊗ 𝑂𝑈), (8.71)

where the operator

𝐴gen =

∫ ∫
𝑑𝜇𝑥1𝑑𝜇𝑥2𝜙(𝑥1)†

(
𝜆𝐼 +

∫
𝜙(𝜉)𝜙(𝜉)†𝑑𝜇𝜉

)−2
𝜙(𝑥2) 𝜌(𝑥1) ⊗ 𝜌(𝑥2).

(8.72)
If we replace the integration over the probability measure with 𝑁 random sam-
ples and apply the fact that 𝑘 (𝑥, 𝑦) = 𝜙(𝑥)†𝜙(𝑦), then we can obtain the original
expression given in Equation (8.17).
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Dimension d
The dimension we considered in the main text is the effective dimension of the
training set quantum state space. This can be seen as the rank of the quantum kernel
matrix𝐾𝑄

𝑖 𝑗
= tr(𝜌(𝑥𝑖)𝜌(𝑥 𝑗 )). However, it will often be the case that most of the states

lie in some low-dimensional subspace, but have negligible contributions in a much
higher dimensional subspace. In this case, the dimension of the low-dimensional
subspace is the better characterization. More generally, we can perform a singular
value decomposition of 𝐾Q

𝐾Q =

𝑁∑︁
𝑖=1

𝑡𝑖𝑢𝑖𝑢
†
𝑖
, (8.73)

with 𝑡1 ≥ 𝑡2 ≥ . . . ≥ 𝑡𝑁 . We define 𝜎𝑖 =
∑𝑁
𝑗=1 𝑢𝑖 𝑗 𝜌(𝑥 𝑗 )/

∑𝑁
𝑗=1 𝑢𝑖 𝑗 𝜌(𝑥 𝑗 )


𝐹
, where

∥·∥𝐹 is the Frobenius norm. 𝜎𝑖 is the 𝑖-th principal component of the quantum
state space. Recall the normalization condition tr(𝐾Q) = 𝑁 , so

∑𝑁
𝑖=1 𝑡𝑖 = 𝑁 . If the

training set quantum state space is one-dimensional (𝑑 = 1), then

𝑡1 = 𝑁, 𝑡𝑖 = 0,∀𝑖 > 1. (8.74)

If all the quantum states in the training set are orthogonal (𝑑 = 𝑁), then

𝑡𝑖 = 1,∀𝑖 = 1, . . . , 𝑁. (8.75)

By the Eckart-Young-Mirsky theorem, for any 𝑘 ≥ 1, the first 𝑘 principal compo-
nents 𝜎1, . . . , 𝜎𝑘 form the best 𝑘-dimensional subspace for approximating

span{𝜌(𝑥1), . . . , 𝜌(𝑥𝑁 )}. (8.76)

The approximation error is given by

𝑁∑︁
𝑖=1

𝜌(𝑥𝑖) − 𝑘∑︁
𝑗=1

√︁
𝑡 𝑗𝑢 𝑗𝑖𝜎𝑗


2

𝐹

=

𝑁∑︁
𝑙=𝑘+1

𝑡𝑙 . (8.77)

As we can see, when the spectrum is flatter, the dimension is larger. The error
decreases at most as

∑𝑁
𝑙=𝑘 𝑡𝑙 ≤ 𝑁 − 𝑘 , where the equality holds when all states are

orthogonal. In the numerical experiment, we choose the following measure as the
approximate dimension

1 ≤
𝑁∑︁
𝑘=1

(
1

𝑁 − 𝑘

𝑁∑︁
𝑙=𝑘

𝑡𝑙

)
≤ 𝑁 (8.78)
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due to the independence to any hyperparameter. Alternatively, we can also define
approximate dimension by choosing the smallest 𝑘 such that

∑𝑁
𝑙=𝑘+1 𝑡𝑙/𝑁 < 𝜖 for

some 𝜖 > 0. Both give similar trend, but the actual value of the dimension would
be different.

From the discussion, we can see that in the above definitions, the dimension will
always be upper bounded by the number 𝑁 of training data. Similar to the case
of model complexity, we can also define the dimension 𝑑 when we have the exact
knowledge about the input distribution given by probability measure 𝜇𝑥 . For a
quantum state space representing 𝑛 qubits, we simply consider the spectrum 𝑡1 ≥
𝑡2 ≥ . . . ≥ 𝑡2𝑛 of the following operator∫

vec(𝜌(𝑥))vec(𝜌(𝑥))𝑇𝑑𝜇𝑥 . (8.79)

When we replace the integration by a finite number of training samples, the spectrum
would be equivalent to the spectrum given in Equation (8.73) except for the additional
zeros.

Remark 3. The same definition of dimension can be used for any kernels, such
as projected quantum kernels or neural tangent kernels (under the normalization
tr(𝐾) = 𝑁).

Geometric difference g
The geometric difference is defined between two kernel functions 𝐾1, 𝐾2 and the
corresponding reproducing kernel Hilbert space 𝜙1(𝑥), 𝜙2(𝑥). If we have a function
represented by the first kernel w†𝜙1(𝑥), what would be the model complexity for
the second kernel? We consider the ideal case where we know the input distribution
𝜇𝑥 exactly. The optimization for training the first kernel method with regularization
𝜆 > 0 is

min
v
𝜆v†v +

∫ v†𝜙2(𝑥) − w†𝜙1(𝑥)
2
𝑑𝜇𝑥 . (8.80)

The solution is given by

v =

(
𝜆𝐼 +

∫
𝜙2(𝑥)𝜙2(𝑥)†𝑑𝜇𝑥

)−1 ∫
w†𝜙1(𝑥)𝜙2(𝑥)𝑑𝜇𝑥 . (8.81)

Hence the model complexity for the optimized v is

∥v∥2 (8.82)

= w†
∫ ∫

𝑑𝜇𝑥1𝑑𝜇𝑥2𝜙1(𝑥1)𝜙2(𝑥1)†
(
𝜆𝐼 +

∫
𝜙2(𝜉)𝜙2(𝜉)†𝑑𝜇𝜉

)−2
𝜙2(𝑥2)𝜙1(𝑥2)†w

(8.83)
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≤ 𝑔2
gen ∥w∥2 , (8.84)

where the geometric difference is

𝑔gen = (8.85)√√√∫ ∫
𝑑𝜇𝑥1𝑑𝜇𝑥2𝜙1(𝑥1)𝜙2(𝑥1)†

(
𝜆𝐼 +

∫
𝜙2(𝜉)𝜙2(𝜉)†𝑑𝜇𝜉

)−2
𝜙2(𝑥2)𝜙1(𝑥2)†


∞
.

(8.86)

The subscript in 𝑔gen is added because when 𝜆 > 0, there will also be a contribution
from training error. When we only have a finite number 𝑁 of training samples, we
can use the fact that 𝑘 (𝑥, 𝑦) = 𝜙(𝑥)†𝜙(𝑦) and the definition that 𝐾𝑖 𝑗 = 𝑘 (𝑥𝑖, 𝑥 𝑗 ) to
obtain

𝑔gen =

√︂√︁𝐾1
√︁
𝐾2 (

𝐾2 + 𝜆𝐼
)−2

√︁
𝐾2

√︁
𝐾1


∞
. (8.87)

This formula differs from the main text due to the regularization parameter 𝜆. If
𝜆 = 0, then the above formula for 𝑔gen reduces to the formula

𝑔gen =

√︂√︁𝐾1(𝐾2)−1
√︁
𝐾1


∞
. (8.88)

When 𝜆 is non-zero, the geometric difference can become much smaller. This is the
same as the discussion on model complexity 𝑠 in Section 8.8. However, a nonzero
𝜆 induces a small amount of training error. For a finite number 𝑁 of samples, the
training error can always be upper bounded:

1
𝑁

𝑁∑︁
𝑖=1

v†𝜙2(𝑥𝑖) − w†𝜙1(𝑥𝑖)
2 ≤ 𝜆2

√︁𝐾1(𝐾2 + 𝜆𝐼)−2
√︁
𝐾1


∞
∥w∥2 = 𝑔2

tra ∥w∥2 ,

(8.89)

where 𝑔tra = 𝜆

√︂√𝐾1(𝐾2 + 𝜆𝐼)−2
√
𝐾1


∞

. This upper bound can be obtained

by plugging the solution for v in Equation (8.80) under finite samples into the
training error 1

𝑁

∑𝑁
𝑖=1

v†𝜙2(𝑥𝑖) − w†𝜙1(𝑥𝑖)
2 and utilizing the fact that w†𝐴w ≤

∥𝐴∥∞ ∥w∥2. In the numerical experiment, we report 𝑔gen given in Equation (8.87)
with the largest 𝜆 such that the training error 𝑔tra ≤ 0.045.

8.9 Constructing dataset to separate quantum and classical model
In the main text, our central quantity of interest is the geometric difference 𝑔, which
provides a quantification for a given data set, how large the prediction gap can be for
possibly function or labels associated with that data. Here we detail how one can
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efficiently construct a function that saturates this bound for a given data set. This
is the approach that is used in the main text to engineer the data set with maximal
performance.

Given a (projected) quantum kernel 𝑘Q(𝑥𝑖, 𝑥 𝑗 ) = 𝜙Q(𝑥𝑖)†𝜙Q(𝑥 𝑗 ) and a classical
kernel 𝑘C(𝑥𝑖, 𝑥 𝑗 ) = 𝜙C(𝑥𝑖)†𝜙C(𝑥 𝑗 ), our goal is to construct a dataset that would best
separate the two models. Consider a dataset (𝑥𝑖, 𝑦𝑖),∀𝑖 = 1, . . . , 𝑁 . We use the
model complexity 𝑠 =

∑𝑁
𝑖=1

∑𝑁
𝑗=1(𝐾−1)𝑖 𝑗 𝑦𝑖𝑦 𝑗 to quantify the generalization error

of the model. The model complexity has been introduced in the main text, where
a detailed proof relating 𝑠 to prediction error is given in Section 8.6. To separate
between quantum and classical model, we consider 𝑠Q = 1 and 𝑠C is as large as
possible for a particular choice of targets 𝑦1, . . . , 𝑦𝑁 . To achieve this, we solve the
optimization

min
𝑦∈R𝑁

∑𝑁
𝑖=1

∑𝑁
𝑗=1((𝐾C)−1)𝑖 𝑗 𝑦𝑖𝑦 𝑗∑𝑁

𝑖=1
∑𝑁
𝑗=1((𝐾Q)−1)𝑖 𝑗 𝑦𝑖𝑦 𝑗

(8.90)

which has an exact solution given by a generalized eigenvalue problem. The solution
is given by 𝑦 =

√
𝐾Qv, where v is the eigenvector of

√
𝐾Q(𝐾C)−1

√
𝐾Q corresponding

to the eigenvalue 𝑔2 =

√𝐾Q(𝐾C)−1
√
𝐾Q


∞

. This guarantees that 𝑠C = 𝑔2𝑠Q = 𝑔2,
and note that by definition of 𝑔, 𝑠C ≤ 𝑔2𝑠Q. Hence this dataset fully utilized the
geometric difference between the quantum and classical space.

We should also include regularization parameter 𝜆 when constructing the dataset.
Detailed discussion on model complexity 𝑠 and geometric difference 𝑔 with regu-
larization is given in Section 8.8. Recall that for 𝜆 > 0,

𝑠𝜆𝐶 = 𝑦†(
√︁
𝐾C

(
𝐾C + 𝜆𝐼

)−2 √︁
𝐾C)𝑖 𝑗 𝑦, (8.91)

which is the model complexity that we want to maximize. Similar to the unregu-
larized case, we consider the (unregularized) model complexity 𝑠Q = 𝑦†(𝐾Q)−1𝑦 to
be one. Solving the generalized eigenvector problem yields the target 𝑦 =

√
𝐾Qv,

where v is the eigenvector of√︁
𝐾Q

√︁
𝐾C

(
𝐾C + 𝜆𝐼

)−2 √︁
𝐾C

√︁
𝐾Q (8.92)

with the corresponding eigenvalue

𝑔2
gen =

√︁𝐾Q
√︁
𝐾C

(
𝐾C + 𝜆𝐼

)−2 √︁
𝐾C

√︁
𝐾Q


∞
. (8.93)

The larger 𝜆 is, the smaller 𝑔2
gen would be. In practice, one should choose a 𝜆 such

that the training error bound 𝑔2
tra𝑠Q = 𝜆2

√𝐾Q(𝐾C + 𝜆𝐼)−2
√
𝐾Q


∞

for the classical
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ML model is small enough. In the numerical experiment, we choose a 𝜆 such that
the training error bound 𝑔2

tra𝑠Q ≤ 0.002 and 𝑔gen is as large as possible. Finally, we
can turn this dataset, which maps input 𝑥 to a real value 𝑦, into a classification task by
replacing 𝑦 with +1 if 𝑦 > median(𝑦1, . . . , 𝑦𝑁 ) and −1 if 𝑦 ≤ median(𝑦1, . . . , 𝑦𝑁 ).

The constructed dataset will yield the largest separation between quantum and
classical models from a learning-theoretic sense, as the model complexity fully
saturates the geometric difference. If there is no quantum advantage in this dataset,
there will likely be none. We believe this construction procedure will eventually
lead to the first quantum advantage in machine learning problems (classification
problems to be more specific).

8.10 Lower bound on learning quantum models
In this section, we will prove a fundamental lower bound for learning quantum
models stated in Theorem 42. This result says that in the worst case, the number
𝑁 of training data has to be at least Ω(tr(𝑂2)/𝜖2) when the input quantum state
can be distributed across a sufficiently large Hilbert space. Quantum kernel method
matches this lower bound. When the data spans over the entire Hilbert space, the
dimension 𝑑 will be large and the prediction error of the quantum kernel method
given in Equation (8.40) becomes

E𝑥 |ℎQ(𝑥) − tr(𝑂𝑈𝜌(𝑥)) | ≤ O
(√︂

tr(𝑂2)
𝑁

)
. (8.94)

Hence we can achieve 𝜖 error using 𝑁 ≤ O(tr(𝑂2)/𝜖2) matching the fundamental
lower bound.

Theorem 42. Consider any learning algorithm A. Suppose for any unknown
unitary evolution 𝑈, any unknown observable 𝑂 with bounded Frobenius norm
tr(𝑂2) ≤ 𝐵, and any distribution 𝐷 over the input quantum states, the learning
algorithm A could learn a function ℎ such that

E
𝜌∼𝐷
|ℎ(𝜌) − tr(𝑂𝑈𝜌𝑈†) | ≤ 𝜖, (8.95)

from 𝑁 training data (𝜌𝑖, tr(𝑂𝑈𝜌𝑖𝑈†)),∀𝑖 = 1, . . . , 𝑁 with high probability. Then
we must have

𝑁 ≥ Ω(𝐵/𝜖2). (8.96)

Proof. We select a Hilbert space with dimension 𝑑 = 𝐵/4𝜖2 (this could be a
subspace of an exponentially large Hilbert space). We define the distribution 𝐷 to
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be the uniform distribution over the basis states |𝑥⟩⟨𝑥 | of the 𝑑-dimensional Hilbert
space. Then we consider the unknown unitary𝑈 to always be the identity, while the
possible observables are

𝑂𝑣 = 2𝜖
𝑑∑︁
𝑥=1

𝑣𝑥 |𝑥⟩⟨𝑥 | , (8.97)

with 𝑣𝑥 ∈ {±1},∀𝑥 = 1, . . . , 𝑑. There are hence 2𝑑 different choices of observables
𝑂𝑣.

We now set up a simple communication protocol to prove the lower bound on the
number of data needed. This is a simplified version of the proofs found in Refs.Haah
et al., 2017; Huang, Richard Kueng, and Preskill, 2020. Alice samples an observable
𝑂𝑣 uniformly at random from the 2𝑑 possible choices. We can treat 𝑣 as a bit-string
of 𝑑 entries. Then she samples 𝑁 quantum states |𝑥𝑖⟩⟨𝑥𝑖 | ,∀𝑖 = 1, . . . , 𝑁 . Alice
then gives Bob the following training data T = {(|𝑥𝑖⟩⟨𝑥𝑖 | , ⟨𝑥𝑖 |𝑂𝑣 |𝑥𝑖⟩) = 𝑣𝑥𝑖 ,∀𝑖 =
1, . . . , 𝑁}. Notice that the mutual information 𝐼 (𝑣,T) between 𝑣 and the training
data T satisfies

𝐼 (𝑠,T) ≤ 𝑁, (8.98)

because the training data contains at most 𝑁 values of 𝑠.

With high probability, the following is true by the requirement of the learning
algorithm A. Using the training data T , Bob can apply the learning algorithm A
to obtain a function 𝑓 such that

E
𝜌∼𝐷
|ℎ(𝜌) − tr(𝑂𝑈𝜌𝑈†) | ≤ 𝜖 . (8.99)

Using Markov’s inequality, we have

Pr[|ℎ(𝜌) − tr(𝑂𝑈𝜌𝑈†) | < 2𝜖] > 1
2
. (8.100)

For all 𝑥 = 1, . . . , 𝑑, if |ℎ( |𝑥⟩⟨𝑥 |) − tr(𝑂𝑈 |𝑥⟩⟨𝑥 |𝑈†) | < 2𝜖 , we have |ℎ( |𝑥⟩⟨𝑥 |)/2𝜖 −
𝑣𝑥 | < 1. This means that if ℎ( |𝑥⟩⟨𝑥 |) > 0, then 𝑣𝑥 = 1 and if ℎ( |𝑥⟩⟨𝑥 |) < 0, then
𝑣𝑥 = −1. Hence Bob can construct a bit-string �̃� given as �̃�𝑥 = sign(ℎ( |𝑥⟩⟨𝑥 |)),∀𝑥 =
1, . . . , 𝑑. Using Equation (8.100), we know that at least 𝑑/2 bits in �̃� will be equal
to 𝑣.

Because with high probability, �̃� and 𝑣 has at least 𝑑/2 bits in common. Fano’s
inequality tells us that 𝐼 (𝑣, �̃�) ≥ Ω(𝑑). Because the bit-string �̃� is constructed solely
from the training data T . Data processing inequality tells us that 𝐼 (𝑣, �̃�) ≤ 𝐼 (𝑣,T).
Together with Equation (8.98), we have

𝑁 ≥ 𝐼 (𝑣,T) ≥ 𝐼 (𝑣, �̃�) ≥ Ω(𝑑). (8.101)



383

Recall that 𝑑 = 𝐵/4𝜖2, we have hence obtained the desired result 𝑁 ≥ Ω(𝐵/𝜖2).

8.11 Limitations of quantum kernel methods
Even though the quantum kernel method saturates the fundamental lower bound
Ω(tr(𝑂2)/𝜖2) and can be made formally equivalent to infinite depth quantum neural
networks it has a number of limitations that hinder its practical applicability. In this
section we construct a simple example where the overhead for using the quantum
kernel method is exponential in comparison to trivial classical methods.

Specifically, it has the limitation of closely following this lower bound for any
unitary 𝑈 and observable 𝑂. This is not true for other machine learning methods,
such as classical neural networks or projected quantum kernel methods. It is possible
for classical machine learning methods to learn quantum models with exponentially
large tr(𝑂2), which is not learnable by the quantum kernel method. This can already
be seen in the numerical experiments given in the main text. In this section, we
provide a simple example that allows theoretical analysis to illustrate this limitation.

We consider a simple learning task where the input vector x ∈ {0, 𝜋}𝑛. The encoding
of the input vector x to the quantum state space is given as

|x⟩ =
𝑛∏
𝑘=1

exp(i𝑋𝑘𝑥𝑘 ) |0𝑛⟩ . (8.102)

The quantum state |x⟩ is a computational basis state. We define 𝜌(x) = |x⟩⟨x|.
The quantum model applies a unitary 𝑈 = 𝐼, and measures the observable 𝑂 =

𝐼 ⊗ . . . ⊗ 𝐼 ⊗ 𝑍 . Hence 𝑓 (x) = tr(𝑂𝜌(x)) = (2𝑥𝑛 − 𝜋). Notice that for this very
simple quantum model, the function 𝑓 (x) is an extremely simple linear model.
Hence a linear regression or a single-layer neural network can learn the function
𝑓 (x) from training data of size 𝑛 with high probability.

Despite being a very simple quantum model, the Frobenius norm of the observable
tr(𝑂2) is exponentially large, i.e., tr(𝑂2) = 2𝑛. We now show that a quantum kernel
method will need a training data of size 𝑁 ≥ Ω(2𝑛) to learn this simple function
𝑓 (x). Suppose we have obtained a training set given as {(x𝑖, tr(𝑂𝜌(x𝑖))}𝑁𝑖=1 where
each x𝑖 is selected uniformly at random from {0, 𝜋}𝑛. Recall from the analysis in
Section 8.6, the function learned by the quantum kernel method will be

ℎQ(x) = min ©«1,max ©«−1,
𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1

tr(𝜌(x𝑖)𝜌(x)) ((𝐾Q + 𝜆𝐼)−1)𝑖 𝑗 tr(𝑂𝜌(x 𝑗 ))ª®¬ª®¬ ,
(8.103)
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where 𝐾𝑄
𝑖 𝑗

= 𝑘Q(x𝑖, x 𝑗 ) = tr(𝜌(x𝑖)𝜌(x 𝑗 )). The main problem of the quantum
kernel method comes from the precise definition of the kernel function 𝑘 (x𝑖, x) =
tr(𝜌(x𝑖)𝜌(x)). For at least 2𝑛 − 𝑁 choices of x, we have tr(𝜌(x𝑖)𝜌(x)) = 0,∀𝑖 =
1, . . . , 𝑁 . This means that for at least 2𝑛 − 𝑁 choices of x, ℎQ(x) = 0. However, by
construction, 𝑓 (x) ∈ {1,−1}. Hence the prediction error can be lower bounded by

1
2𝑛

∑︁
x∈{0,𝜋}𝑛

|ℎQ(x) − 𝑓 (x) | ≥ 1 − 𝑁
2𝑛
. (8.104)

Therefore, if 𝑁 < (1 − 𝜖)2𝑛, then the prediction error will be greater than 𝜖 . Hence
we need a training set of size 𝑁 ≥ (1 − 𝜖)2𝑛 to achieve a prediction error ≤ 𝜖 .

In general, when we place the classical vectors x into an exponentially large quantum
state space, the quantum kernel function tr(𝜌(x𝑖)𝜌(x 𝑗 )) will be exponentially close
to zero for x𝑖 ≠ x 𝑗 . In this case 𝐾Q will be close to the identity matrix, but
tr(𝜌(x𝑖)𝜌(x)) will be exponentially small. For a training set of size 𝑁 ≪ 2𝑛, ℎQ(x)
will be exponentially close to zero similar to the above example. Despite ℎQ(x)
being exponentially close to zero, if we can distinguish > 0 and < 0, then ℎQ

could still be useful in classification tasks. However, due to the inherent quantum
measurement error in evaluating the kernel function tr(𝜌(x𝑖)𝜌(x 𝑗 )) on a quantum
computer, we will need an exponential number of measurements to resolve such an
exponentially small difference.

8.12 Projected quantum kernel methods
In the main text, we argue that projection back from the quantum space to a classical
one in the projected quantum kernel can greatly improve the performance of such
methods. There we focused on the simple case of a squared exponential based on
reduced 1-particle observables, however this idea is far more general. In this section
we explore some of these generalizations including a novel scheme for calculating
functions of all powers of RDMs efficiently.

From discussions on the quantum kernel method, we have seen that using the native
quantum state space to define the kernel function, e.g., 𝑘 (𝑥𝑖, 𝑥 𝑗 ) = tr(𝜌(𝑥𝑖)𝜌(𝑥 𝑗 ))
can fail to learn even a simple function when the full exponential quantum state
space is being used. We have to utilize the entire exponential quantum state space
otherwise the quantum machine learning model could be simulated efficiently clas-
sically and a large advantage could not be found. In this section, we will detail a set
of solutions that project the quantum states back to approximate classical represen-
tations and define the kernel function using the classical representation. We refer
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to these modified quantum kernels as projected quantum kernels. The projected
quantum kernels are defined in a classical vector space to circumvent the hardness
of learning due to the exponential dimension in quantum Hilbert space. However,
projected quantum kernels still use the exponentially large quantum Hilbert space
for evaluation and can be hard to simulate classically.

Some simple choices based on reduced density matrices (RDMs) of the quantum
state are given below.

1. A linear kernel function using 1-RDMs

𝑄1
𝑙 (𝑥𝑖, 𝑥 𝑗 ) =

∑︁
𝑘

Tr
[
Tr𝑚≠𝑘 [𝜌(𝑥𝑖)]Tr𝑛≠𝑘 [𝜌(𝑥 𝑗 )]

]
, (8.105)

where tr𝑚 ≠ 𝑘 (𝜌) is the partial trace of the quantum state 𝜌 over all qubits
except for the 𝑘-th qubit. It could learn any observable that can be written as
a sum of one-body terms.

2. A Gaussian kernel function using 1-RDMs

𝑄1
𝑔 (𝑥𝑖, 𝑥 𝑗 ) = exp

(
−𝛾

∑︁
𝑘

(
Tr𝑚≠𝑘 [𝜌(𝑥𝑖)] − Tr𝑛≠𝑘 [𝜌(𝑥 𝑗 )]

)2
)
, (8.106)

where 𝛾 > 0 is a hyper-parameter. It could learn any nonlinear function of
the 1-RDMs.

3. A linear kernel using 𝑘−RDMs

𝑄𝑘
𝑙 (𝑥𝑖, 𝑥 𝑗 ) =

∑︁
𝐾∈𝑆𝑘 (𝑛)

Tr
[
Tr𝑛∉𝐾 [𝜌(𝑥𝑖)]Tr𝑚∉𝐾 [𝜌(𝑥 𝑗 )]

]
(8.107)

where 𝑆𝑘 (𝑛) is the set of subsets of 𝑘 qubits from 𝑛, Tr𝑛∉𝐾 is a partial trace
over all qubits not in subset 𝐾 . It could learn any observable that can be
written as a sum of 𝑘-body terms.

The above choices have a limited function class that they can learn, e.g., 𝑄1
𝑙

can
only learn observables that are sum of single-qubit observables. It is desirable to
define a kernel that can learn any quantum models (e.g., arbitrarily deep quantum
neural networks) with sufficient amount of data similar to the original quantum
kernel 𝑘Q(𝑥𝑖, 𝑥 𝑗 ) = tr(𝜌(𝑥𝑖)𝜌(𝑥 𝑗 )) as discussed in Section 8.5.

We now define a projected quantum kernel that contains all orders of RDMs. Since
all quantum models 𝑓 (𝑥) = tr(𝑂𝑈𝜌(𝑥)𝑈†) are linear functions of the full quantum
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state, this kernel can learn any quantum models with sufficient data. A 𝑘-RDM
of a quantum state 𝜌(𝑥) for qubit indices (𝑝1, 𝑝2, . . . , 𝑝𝑘 ) can be reconstructed by
local randomized measurements using the formalism of classical shadows Huang,
Richard Kueng, and Preskill, 2020:

𝜌(𝑝1,𝑝2,...,𝑝𝑘) (𝑥) = E
[
⊗𝑘𝑟=1(3 |𝑠𝑝𝑟 , 𝑏𝑝𝑟 ⟩⟨𝑠𝑝𝑟 , 𝑏𝑝𝑟 | − 𝐼)

]
, (8.108)

where 𝑏𝑝𝑟 is a random Pauli measurement basis 𝑋,𝑌, 𝑍 on the 𝑝𝑟-th qubit, and
𝑠𝑝𝑟 is the measurement outcome ±1 on the 𝑝𝑟-th qubit of the quantum state 𝜌(𝑥)
under Pauli basis 𝑏𝑝𝑟 . The expectation is taken with respect to the randomized
measurement on 𝜌(𝑥). The inner product of two 𝑘-RDMs is equal to

Tr
[
𝜌(𝑝1,𝑝2,...,𝑝𝑘) (𝑥𝑖)𝜌(𝑝1,𝑝2,...,𝑝𝑘) (𝑥 𝑗 )]

]
= E

[
Π𝑘
𝑟=1(9𝛿𝑠𝑖𝑝𝑟 𝑠 𝑗𝑝𝑟 𝛿𝑏𝑖𝑝𝑟 𝑏 𝑗𝑝𝑟 − 4)

]
, (8.109)

where we used the fact that the randomized measurement outcomes for 𝜌(𝑥𝑖) and
𝜌(𝑥 𝑗 ) are independent. We extend this equation to the case where some indices
𝑝𝑟 , 𝑝𝑠 coincide. This would only introduce additional features in the feature map
𝜙(𝑥) that defines the kernel 𝑘 (𝑥𝑖, 𝑥 𝑗 ) = 𝜙(𝑥𝑖)†𝜙(𝑥 𝑗 ). The sum of all possible
𝑘-RDMs can be written as

𝑄𝑘 (𝜌(𝑥𝑖), 𝜌(𝑥 𝑗 )) =
𝑛∑︁

𝑝1=1
. . .

𝑛∑︁
𝑝𝑘=1

Tr
[
𝜌(𝑝1,𝑝2,...,𝑝𝑘) (𝑥𝑖)𝜌(𝑝1,𝑝2,...,𝑝𝑘) (𝑥 𝑗 )]

]
(8.110)

= E

©«
𝑛∑︁
𝑝=1
(9𝛿

𝑠𝑖𝑝𝑠
𝑗
𝑝
𝛿
𝑏𝑖𝑝𝑏

𝑗
𝑝
− 4)ª®¬

𝑘 , (8.111)

where we used Equation (8.109) and linearity of expectation. A kernel function that
contains all orders of RDMs can be evaluated as

𝑄∞𝛾 (𝜌(𝑥𝑖), 𝜌(𝑥 𝑗 )) =
∞∑︁
𝑘=0

𝛾𝑘

𝑘!𝑛𝑘
𝑄𝑘 (𝜌(𝑥𝑖), 𝜌(𝑥 𝑗 )) = E exp ©«𝛾𝑛

𝑛∑︁
𝑝=1
(9𝛿

𝑠𝑖𝑝𝑠
𝑗
𝑝
𝛿
𝑏𝑖𝑝𝑏

𝑗
𝑝
− 4)ª®¬ ,
(8.112)

where 𝛾 is a hyper-parameter. The kernel function 𝑄∞𝛾 (𝜌(𝑥𝑖), 𝜌(𝑥 𝑗 )) can be com-
puted by performing local randomized measurement on the quantum states 𝜌(𝑥𝑖)
and 𝜌(𝑥 𝑗 ) independently. First, we collect a set of randomized measurement data
for 𝜌(𝑥𝑖), 𝜌(𝑥 𝑗 ) independently:

𝜌(𝑥𝑖) → {((𝑠𝑖,𝑟1 , 𝑏
𝑖,𝑟

1 ), . . . , (𝑠
𝑖,𝑟
𝑛 , 𝑏

𝑖,𝑟
𝑛 )),∀𝑟 = 1, . . . , 𝑁𝑠}, (8.113)

𝜌(𝑥 𝑗 ) → {((𝑠 𝑗 ,𝑟1 , 𝑏
𝑗 ,𝑟

1 ), . . . , (𝑠
𝑗 ,𝑟
𝑛 , 𝑏

𝑗 ,𝑟
𝑛 )),∀𝑟 = 1, . . . , 𝑁𝑠}, (8.114)
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where 𝑁𝑠 is the number of repetition for each quantum state. For each repetition, we
will randomly sample a Pauli basis for each qubit and measure that qubit to obtain
an outcome ±1. For the 𝑟-th repetition, the Pauli basis in the 𝑘-th qubit is given as
𝑏
𝑖,𝑟

𝑘
and the measurement outcome ±1 is given as 𝑠𝑖,𝑟

𝑘
. Then we compute

1
𝑁𝑠 (𝑁𝑠 − 1)

𝑁𝑠∑︁
𝑟1=1

𝑁𝑠∑︁
𝑟2=1
𝑟2≠𝑟1

exp ©«𝛾𝑛
𝑛∑︁
𝑝=1
(9𝛿

𝑠
𝑖,𝑟1
𝑝 𝑠

𝑗 ,𝑟2
𝑝
𝛿
𝑏
𝑖,𝑟1
𝑝 𝑏

𝑗 ,𝑟2
𝑝
− 4)ª®¬ ≈ 𝑄∞𝛾 (𝜌(𝑥𝑖), 𝜌(𝑥 𝑗 )).

(8.115)
We reuse all pairs of data 𝑟1, 𝑟2 to reduce variance when estimating𝑄∞𝛾 (𝜌(𝑥𝑖), since
the resulting estimator would still be equal to the desired quantity in expectation.
This technique is known as U-statistics, which is often used to create minimum-
variance unbiased estimators. U-statistics is also applied in Huang, Richard Kueng,
and Preskill, 2020 for estimating Renyi entanglement entropy with high accuracy.

8.13 Simple and rigorous quantum advantage
In Ref.Y. Liu, Arunachalam, and Temme, 2020, the authors proposed a machine
learning problem based on discrete logarithm which is assumed to be hard for
any classical machine learning algorithm, complementing existing work studying
learnability in the context of discrete logs Servedio and Gortler, 2004; Sweke et al.,
2020. Much of the challenge in their construction Sweke et al., 2020 was related
to technicalities involved in the original quantum kernel approach. Here we present
a simple quantum machine learning algorithm using the projected quantum kernel
method. The problem is defined as follows, where 𝑝 is an exponentially large prime
number and 𝑔 is chosen such that computing log𝑔 (𝑥) in Z∗𝑝 is classically hard and
log𝑔 (𝑥) is one-to-one.

Definition 13 (Discrete logarithm-based learning problem). For all input 𝑥 ∈ Z∗𝑝,
where 𝑛 = ⌈log2(𝑝)⌉, the output is

𝑦(𝑥) =

+1, log𝑔 (𝑥) ∈ [𝑠, 𝑠 +

𝑝−3
2 ],

−1, log𝑔 (𝑥) ∉ [𝑠, 𝑠 +
𝑝−3

2 ],
(8.116)

for some 𝑠 ∈ Z∗𝑝. The goal is to predict 𝑦(𝑥) for an input 𝑥 sampled uniformly from
Z∗𝑝.

Let us consider the most straight-forward feature mapping that maps the classical
input 𝑥 into the quantum state space |log𝑔 (𝑥)⟩ using Shor’s algorithm for computing
discrete logarithms Michael A Nielsen and Isaac L Chuang, n.d.
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Training the original quantum kernel method using this feature mapping will require
training data {(𝑥𝑖, 𝑦𝑖)}𝑁𝑖=1 with 𝑁 being exponentially large to yield a small prediction
error. This is because for a new 𝑥 ∈ Z∗𝑝, such that log𝑔 (𝑥) ≠ log𝑔 (𝑥𝑖),∀𝑖 = 1, . . . , 𝑁 ,
quantum kernel method will be equivalent to random guessing. Hence the quantum
kernel method has to see most of the values in the range of log𝑔 (𝑥) (Z∗𝑝) to make
accurate predictions. This is the same as the example to demonstrate the limitation
of quantum kernel methods in Section 8.11. Since Z∗𝑝 is exponentially large, the
quantum kernel method has to use an exponentially amount number of data 𝑁 for
this straight-forward feature map. The central problem is that all the inputs 𝑥 are
maximally far apart from one another, and this impedes the ability for quantum
kernel methods to generalize.

On the other hand, we can project the quantum feature map |log𝑔 (𝑥)⟩ back to
a classical space, which is now just a number log𝑔 (𝑥) ∈ Z∗𝑝. Recall that Z∗𝑝
contains all number from 0, . . . , 𝑝−1, thus we consider mapping 𝑥 to a real number
𝑧 = log𝑔 (𝑥)/𝑝 ∈ [0, 1). Let us define 𝑡 = 𝑠/𝑝. In this projected space, we are
learning a simple classification problem where 𝑦(𝑧) = +1 if 𝑧 ∈ [𝑡, 𝑡 + 𝑝−3

2𝑝 ], and
𝑦(𝑧) = −1 if 𝑧 ∉ [𝑡, 𝑡 + 𝑝−3

2𝑝 ]. We are using a periodic boundary where 0 and
1 are the same point. If 𝑡 + 𝑝−3

2𝑝 < 1, then there exists some 𝑎, 𝑏 ∈ [0, 1) and
𝑎 < 𝑏, such that 𝑦(𝑧) = +1, if 𝑎 ≤ 𝑧 ≤ 𝑏, and 𝑦(𝑧) = −1, otherwise. In this
case we have 𝑦(𝑧) = sign((𝑏 − 𝑧) (𝑧 − 𝑎)), where sign(𝑡) = +1 if 𝑡 ≥ 0, otherwise
sign(𝑡) = −1. If 𝑡 + 𝑝−3

2𝑝 ≥ 1, then there exists some 𝑎, 𝑏 ∈ [0, 1) and 𝑎 < 𝑏, such
that 𝑦(𝑧) = −1, if 𝑎 ≤ 𝑧 ≤ 𝑏, and 𝑦(𝑧) = +1, otherwise. In this case we have
𝑦(𝑧) = sign((𝑎 − 𝑧) (𝑧 − 𝑏)). Through this analysis, we can see that we only need
to learn a simple quadratic function to perform accurate classification. Hence one
could simply define a projected quantum kernel as

𝑘PQ(𝑥𝑖, 𝑥 𝑗 ) =
(
(log𝑔 (𝑥𝑖)/𝑝) (log𝑔 (𝑥 𝑗 )/𝑝) + 1

)2
, (8.117)

where the division in (log𝑔 (𝑥𝑖)/𝑝) is performed as real number in R. This projected
quantum kernel can efficiently learn any quadratic function 𝑎𝑧2 + 𝑏𝑧 + 𝑐 with 𝑧 =
log𝑔 (𝑥𝑖)/𝑝, hence solving the above learning problem.

Theorem 43 (Corollary 3.19 in Mohri, Rostamizadeh, and Talwalkar, 2018). Let
H be a class of functions taking values in {+1,−1} with VC-dimension 𝑑. Then
with probability ≥ 1 − 𝛿 over the sampling of 𝑧1, . . . 𝑧𝑁 from some distribution D,
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we have

E
𝑧∼D

𝐼 [ℎ(𝑧) ≠ 𝑦(𝑧)] ≤ 1
𝑁

𝑁∑︁
𝑖=1

𝐼 [ℎ(𝑧𝑖) ≠ 𝑦(𝑧𝑖)] +
√︂

2𝑑 log(e𝑁/𝑑)
𝑁

+
√︂

log(1/𝛿)
𝑁

,

(8.118)
for all ℎ ∈ H , where 𝐼 [Statement] = 1 if Statement is true, otherwise 𝐼 [Statement] =
0.

A simple and rigorous statement could be made by noticing that the VC-dimension
Blumer et al., 1989; Mohri, Rostamizadeh, and Talwalkar, 2018 for the function
class {sign(𝑎𝑧2 + 𝑏𝑧 + 𝑐) |𝑎, 𝑏, 𝑐 ∈ R} is 3. Let us apply Theorem 43 with

𝑧 = log𝑔 (𝑥)/𝑝 and H = {sign(𝑎𝑧2 + 𝑏𝑧 + 𝑐) |𝑎, 𝑏, 𝑐 ∈ R}. (8.119)

This theorem bounds the prediction error for new inputs 𝑧 coming from the same
distribution as how the training data is sampled. For a given set of training data
(𝑧𝑖, 𝑦(𝑧𝑖))𝑁𝑖=1, we perform a minimization over 𝑎, 𝑏, 𝑐 ∈ R such that the training
error 1

𝑁

∑𝑁
𝑖=1 𝐼 [ℎ(𝑧𝑖) ≠ 𝑦(𝑧𝑖)] is zero. This can be achieved by applying a standard

support vector machine algorithm Chang and C.-J. Lin, 2011b using the above kernel
𝑘PQ, because 𝑦(𝑧𝑖) ∈ H , so one can always fit the training data perfectly. Using
Eq. (8.118) with 𝛿 = 0.01, we can provide a prediction error bound for the trained
projected quantum kernel method

𝑓∗(𝑥) = ℎ∗(log𝑔 (𝑥)/𝑝) = ℎ∗(𝑧) = sign(𝑎∗𝑧2 + 𝑏∗𝑧 + 𝑐∗). (8.120)

Because we fit the training data perfectly, we have

1
𝑁

𝑁∑︁
𝑖=1

𝐼 [ℎ∗(𝑧𝑖) ≠ 𝑦(𝑧𝑖)] = 0. (8.121)

With probability at least 0.99, a projected quantum kernel method

𝑓∗(𝑥) = ℎ∗(log𝑔 (𝑥)/𝑝) (8.122)

that perfectly fit a data set of size 𝑁 = O(log(1/𝜖)/𝜖2) has a prediction error

P
𝑥∼Z∗𝑝
[ 𝑓 (𝑥) ≠ 𝑦(𝑥)] ≤ 𝜖 . (8.123)

This concludes the proof showing that the discrete logarithm-based learning problem
can be solved with a projected quantum kernel method using a sample complexity
independent of the input size 𝑛.
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Despite the limitations of the quantum kernel method, the authors in Y. Liu,
Arunachalam, and Temme, 2020 have shown that a clever choice of feature mapping
𝑥 → 𝜌(𝑥) would also allow quantum kernels tr(𝜌(𝑥𝑖)𝜌(𝑥 𝑗 )) to predict well in this
learning problem.

8.14 Details of numerical experiments
Here we give the complete details for the numerical studies presented in the main
text. For the input distribution, we focused on the fashion MNIST dataset H. Xiao,
Rasul, and Vollgraf, 2017. We use principal component analysis (PCA) provided
by scikit-learn Buitinck et al., 2013 to map each image (28 × 28 grayscale) into
classical vectors x𝑖 ∈ R𝑛, where 𝑛 is the number of principal components. After
PCA, we normalize the vectors x𝑖 such that each dimension is centered at zero and
the standard deviation is one. Finally, we sub-sample 800 data points from the
dataset without replacement.

Embedding classical data into quantum states
The three approaches for embedding classical vectors x𝑖 ∈ R𝑛 into quantum states
|x𝑖⟩ are given below.

• E1: Separable encoding or qubit rotation circuit. This is a common choice in
literature, e.g., see Schuld and Killoran, 2019; Skolik et al., 2020.

|x𝑖⟩ =
𝑛⊗
𝑗=1

e−i𝑋 𝑗𝑥𝑖 𝑗 |0𝑛⟩ , (8.124)

where 𝑥𝑖 𝑗 is the 𝑗-th entry of the 𝑛-dim. vector x𝑖, 𝑋 𝑗 is the Pauli-X operator
acting on the 𝑗-th qubit.

• E2: IQP-style encoding circuit. This is an embedding proposed in Havlicek
et al., 2019 that suggests a quantum advantage.

|x𝑖⟩ = 𝑈𝑍 (x𝑖)𝐻⊗𝑛𝑈𝑍 (x𝑖)𝐻⊗𝑛 |0𝑛⟩ , (8.125)

where 𝐻⊗𝑛 is the unitary that applies Hadamard gates on all qubits in parallel,
and

𝑈𝑍 (x𝑖) = exp ©«
𝑛∑︁
𝑗=1
𝑥𝑖 𝑗𝑍 𝑗 +

𝑛∑︁
𝑗=1

𝑛∑︁
𝑗 ′=1

𝑥𝑖 𝑗𝑥𝑖 𝑗 ′𝑍 𝑗𝑍 𝑗 ′
ª®¬ , (8.126)

with 𝑍 𝑗 defined as the Pauli-Z operator acting on the 𝑗-th qubit. In the
original proposal Havlicek et al., 2019, 𝑥 ∈ [0, 2𝜋]𝑛, and they used 𝑈𝑍 (x𝑖) =



391

exp
(∑𝑛

𝑗=1 𝑥𝑖 𝑗𝑍 𝑗 +
∑𝑛
𝑗=1

∑𝑛
𝑗 ′=1(𝜋 − 𝑥𝑖 𝑗 ) (𝜋 − 𝑥𝑖 𝑗 ′)𝑍 𝑗𝑍 𝑗 ′

)
instead. Here, due to

the data pre-processing steps, x will be centered around 0 with a standard
deviation of 1, hence we made the equivalent changes to the definition of
𝑈𝑍 (x𝑖).

• E3: A Hamiltonian evolution ansatz. This ansatz has been explored in the
literature Wecker, Matthew B Hastings, and Troyer, 2015; Cade et al., 2019;
Wiersema et al., 2020 for quantum many-body problems. We consider a
Trotter formula with 𝑇 Trotter steps (we choose 𝑇 = 20) for evolving an 1D-
Heisenberg model with interactions given by the classical vector x𝑖 for a time
𝑡 proportional to the system size (we choose 𝑡 = 𝑛/3).

|x𝑖⟩ =
©«
𝑛∏
𝑗=1

exp
(
−i
𝑡

𝑇
𝑥𝑖 𝑗

(
𝑋 𝑗𝑋 𝑗+1 + 𝑌 𝑗𝑌 𝑗+1 + 𝑍 𝑗𝑍 𝑗+1

) )ª®¬
𝑇
𝑛+1⊗
𝑗=1
|𝜓 𝑗 ⟩ , (8.127)

where 𝑋 𝑗 , 𝑌 𝑗 , 𝑍 𝑗 are the Pauli operators for the 𝑗-th qubit and |𝜓 𝑗 ⟩ is a Haar-
random single-qubit quantum state. We sample and fix the Haar-random
quantum states |𝜓 𝑗 ⟩ for every qubit.

Definition of original and projected quantum kernels
We use Tensorflow-Quantum Broughton, Verdon, McCourt, Antonio J Martinez,
et al., 2020 for implementing the original/projected quantum kernel methods. This
is done by performing quantum circuit simulation for the above embeddings and
computing the kernel function 𝑘 (x𝑖, x 𝑗 ). For quantum kernel, we store the quantum
states |x𝑖⟩ as explicit amplitude vectors and compute the squared inner product

𝑘Q(x𝑖, x 𝑗 ) = | ⟨x𝑖⟩ x 𝑗 |2. (8.128)

On actual quantum computers, we obtain the quantum kernel by measuring the
expectation of the observable |0𝑛⟩⟨0𝑛 | on the quantum state𝑈emb(x 𝑗 )†𝑈emb(x𝑖) |0𝑛⟩.
For projected quantum kernel, we use the kernel function

𝑘PQ(x𝑖, x 𝑗 ) = exp ©«−𝛾
∑︁
𝑘

∑︁
𝑃∈{𝑋,𝑌,𝑍}

(
tr(𝑃𝜌(x𝑖)𝑘 ) − tr(𝑃𝜌(x 𝑗 )𝑘 )

)2ª®¬ , (8.129)

where 𝑃 is a Pauli matrix and 𝛾 > 0 is a hyper-parameter chosen to maximize
prediction accuracy. We compute the kernel matrix 𝐾 ∈ R𝑁×𝑁 with 𝐾𝑖 𝑗 = 𝑘 (x𝑖, x 𝑗 )
using the sub-sampled dataset with 𝑁 = 800 for both the original/projected quantum
kernel.
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Dimension and geometric difference
Following the discussion in Section 8.8, the approximate dimension of the origi-
nal/projected quantum space is computed by

𝑁∑︁
𝑘=1

(
1

𝑁 − 𝑘

𝑁∑︁
𝑙=𝑘

𝑡𝑙

)
, (8.130)

where 𝑁 = 800 and 𝑡1 ≥ 𝑡2 ≥ . . . ≥ 𝑡𝑁 are the singular values of the kernel
matrix 𝐾 ∈ R𝑁×𝑁 . Based on the discussion in Section 8.8, we report the minimum
geometric difference 𝑔 of the original/projected quantum space (we refer to both the
original/projected quantum kernel matrix as 𝐾P/Q)

𝑔gen =

√︂√︁𝐾P/Q
√︁
𝐾C (

𝐾C + 𝜆𝐼
)−2

√︁
𝐾C

√︁
𝐾P/Q


∞
, (8.131)

under a condition for having a small training error

𝑔tra = 𝜆

√︂√︁𝐾P/Q(𝐾C + 𝜆𝐼)−2
√︁
𝐾P/Q


∞
< 0.045. (8.132)

The actual value of 𝑔 will depend on the list of choices for 𝜆 and classical kernels
𝐾C. We consider the following list of 𝜆

𝜆 ∈ {0.00001, 0.0001, 0.001, 0.01, 0.025, 0.05, 0.1}, (8.133)

and classical kernel matrix 𝐾C being the linear kernel 𝑘ℓ (x𝑖, x 𝑗 ) = x†
𝑖
x 𝑗 or the

Gaussian kernel 𝑘𝛾 (x𝑖, x 𝑗 ) = exp(−𝛾
x𝑖 − x 𝑗

2) with hyper-parameter 𝛾 from the
list

𝛾 ∈ {0.25, 0.5, 1.0, 2.0, 4.0, 8.0, 16.0, 32.0, 64.0}/(𝑛Var[𝑥𝑖𝑘 ]) (8.134)

for estimating the minimum geometric difference. Var[𝑥𝑖𝑘 ] is the variance of all
the coordinates 𝑘 = 1, . . . , 𝑛 from all the data points 𝑥1, . . . , 𝑥𝑁 . One could add
more choices of regularization parameters 𝜆 or classical kernel functions, such as
using polynomial kernels or neural tangent kernels, which are equivalent to training
neural networks with large hidden layers (a package, called Neural Tangents Novak,
L. Xiao, Hron, J. Lee, Alexander A. Alemi, et al., 2020, is available for use). This
will provide a smaller geometric difference with the quantum state space, but all
theoretical predictions remain unchanged.

Datasets
We include a variety of classical and quantum data sets.
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1. Dataset (C): For the original classical image recognition data set, i.e., Dataset
(C) in Figure 8.3(b), we choose two classes, dresses (class 3) and shirts (class
6), to form a binary classification task. The prediction error (between 0.0 and
1.0) is equal to the portion of data that are incorrectly labeled.

2. Dataset (Q, E1/E2/E3): For the quantum data sets in Figure 8.3(b), we
consider the following quantum neural network

𝑈QNN =
©«
𝑛∏
𝑗=1

exp
(
−i
𝑡

𝑇
𝐽 𝑗

(
𝑋 𝑗𝑋 𝑗+1 + 𝑌 𝑗𝑌 𝑗+1 + 𝑍 𝑗𝑍 𝑗+1

) )ª®¬
𝑇

, (8.135)

where we choose 𝑇 = 𝑡 = 10 and 𝐽 𝑗 ∈ R are randomly sampled from the
Gaussian distribution with mean 0 and standard deviation 1. We measure 𝑍1

after the quantum neural network, hence the resulting function is

𝑓 (x) = tr(𝑍1𝑈QNN |x⟩⟨x|𝑈†QNN). (8.136)

The mapping from x to |x⟩ depends on the feature embedding (E1, E2, or
E3) discussed in Section 8.14. A different embedding |x⟩ corresponds to a
different funtion 𝑓 (x), and hence would result in a different dataset. The
prediction error for these datasets are the average absolute error with 𝑓 (x).

3. Engineered datasets: In Figure 8.4, we consider datasets that are engineered
to saturate the potential of a quantum ML model. Given the choice of classical
kernel 𝐾C that has the smallest geometric difference 𝑔 with a quantum ML
model 𝐾Q, we can create a data set that saturates 𝑠C = 𝑔2𝑠Q following the
procedure in Section 8.9. In particular, we construct the dataset such that
𝑠Q = 1 and 𝑠C = 𝑔2. We compute the eigenvector v corresponding to the
maximum eigenvalue of√︁

𝐾Q
√︁
𝐾C

(
𝐾C + 𝜆𝐼

)−2 √︁
𝐾C

√︁
𝐾Q (8.137)

and construct y′ =
√
𝐾Qv ∈ R𝑁 . 𝑦′

𝑖
corresponds to a real number for data

point x𝑖. Finally we define the label of input data point x𝑖 as

𝑦𝑖 =


sign(𝑦′

𝑖
), with prob. 0.9,

random ± 1, with prob. 0.1.
(8.138)

This data set will show the maximal separation between quantum and classical
ML model. The plots in Figure 8.4 uses engineered datasets generated by
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saturating the geometric difference of classical ML models and quantum
ML models based on projected quantum kernels in Equation (8.129) under
different embeddings (E1, E2, and E3). In Figure 8.5, we show the results for
quantum ML models based on the original quantum kernels.

Classical machine learning models
We present the list of classical machine learning models that we compared with. We
used scikit-learn Buitinck et al., 2013 for training the classical ML models.

• Neural network: We perform a grid search over two-layer feedforward neural
networks with hidden layer size

ℎ ∈ {10, 25, 50, 75, 100, 125, 150, 200}. (8.139)

For classification, we use MLPClassifier.
For regression, we use MLPRegressor.

• Linear kernel method: We perform a grid search over the regularization
parameter

𝐶 ∈ {0.006, 0.015, 0.03, 0.0625, 0.125, 0.25, 0.5, 1.0, (8.140)

2.0, 4.0, 8.0, 16.0, 32.0, 64.0, 128.0, 256, 512, 1024}. (8.141)

For classification, we use SVC with a linear kernel. For regression, we choose
the best between SVR and KernelRidge (both using linear kernel).

• Gaussian kernel method: We perform a grid search over the regularization
parameter

𝐶 ∈ {0.006, 0.015, 0.03, 0.0625, 0.125, 0.25, 0.5, 1.0, (8.142)

2.0, 4.0, 8.0, 16.0, 32.0, 64.0, 128.0, 256, 512, 1024}. (8.143)

and kernel hyper-parameter

𝛾 ∈ {0.25, 0.5, 1.0, 2.0, 3.0, 4.0, 5.0, 20.0}/(𝑛Var[𝑥𝑖𝑘 ]). (8.144)

Var[𝑥𝑖𝑘 ] is the variance of all the coordinates 𝑘 = 1, . . . , 𝑛 from all the data
points x1, . . . , x𝑁 . For classification, we use SVC with RBF kernel (equivalent
to Gaussian kernel). For regression, we choose the best between SVR and
KernelRidge (both using RBF kernel).
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• Random forest: We perform a grid search over the individual tree depth

max_depth ∈ {2, 3, 4, 5}, (8.145)

and number of trees

n_estimators ∈ {25, 50, 100, 200, 500}. (8.146)

For classification, we use RandomForestClassifier. For regression, we use
RandomForestRegressor.

• Gradient boosting: We perform a grid search over the individual tree depth

max_depth ∈ {2, 3, 4, 5}, (8.147)

and number of trees

n_estimators ∈ {25, 50, 100, 200, 500}. (8.148)

For classification, we use GradientBoostingClassifier. For regression, we use
GradientBoostingRegressor.

• Adaboost: We perform a grid search over the number of estimators

n_estimators ∈ {25, 50, 100, 200, 500}. (8.149)

For classification, we use AdaBoostClassifier.
For regression, we use AdaBoostRegressor.

Quantum machine learning models
For training quantum kernel methods, we use the kernel function 𝑘Q(x𝑖, x 𝑗 ) =

tr(𝜌(x𝑖)𝜌(x 𝑗 )). For classification, we use SVC with the quantum kernel. For
regression, we choose the best between SVR and KernelRidge (both using the
quantum kernel). We perform a grid search over

𝐶 ∈ {0.006, 0.015, 0.03, 0.0625, 0.125, 0.25, 0.5, 1.0, (8.150)

2.0, 4.0, 8.0, 16.0, 32.0, 64.0, 128.0, 256, 512, 1024}. (8.151)

For training projected quantum kernel methods, we use the kernel function

𝑘PQ(x𝑖, x 𝑗 ) = exp ©«−𝛾
∑︁
𝑘

∑︁
𝑃∈{𝑋,𝑌,𝑍}

(
tr(𝑃𝜌(x𝑖)𝑘 ) − tr(𝑃𝜌(x 𝑗 )𝑘 )

)2ª®¬ , (8.152)
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Figure 8.5: Prediction accuracy (higher the better) on engineered data sets. A
label function is engineered to match the geometric difference 𝑔(C| |QK) between
the original quantum kernel and classical approaches. No substantial advantage is
found using quantum kernel methods at large system size due to the small geometric
difference 𝑔(C| |QK). We consider the best performing classical ML models among
Gaussian SVM, linear SVM, Adaboost, random forest, neural networks, and gradient
boosting.

where 𝑃 is a Pauli matrix. For classification, we use SVC with the projected
quantum kernel 𝑘PQ(x𝑖, x 𝑗 ). For regression, we choose the best between SVR and
KernelRidge (both using the projected quantum kernel 𝑘PQ(x𝑖, x 𝑗 )). We perform a
grid search over

𝐶 ∈ {0.006, 0.015, 0.03, 0.0625, 0.125, 0.25, 0.5, 1.0, (8.153)

2.0, 4.0, 8.0, 16.0, 32.0, 64.0, 128.0, 256, 512, 1024}. (8.154)

and kernel hyper-parameter

𝛾 ∈ {0.25, 0.5, 1.0, 2.0, 3.0, 4.0, 5.0, 20.0}/(𝑛Var[tr(𝑃𝜌(x𝑖)𝑘 )]). (8.155)

Var[tr(𝑃𝜌(x𝑖)𝑘 )] is the variance of tr(𝑃𝜌(x𝑖)𝑘 ) for all 𝑃 ∈ {𝑋,𝑌, 𝑍}, all coordinates
𝑘 = 1, . . . , 𝑛, and all data points 𝑥1, . . . , 𝑥𝑁 . We report the prediction performance
under the best hyper-parameter for all classical and quantum machine learning
models.

8.15 Additional numerical experiments
In the main text, we have presented engineered data sets to saturate the geometric
inequality 𝑠C ≤ 𝑔(C| |PQ)2𝑠PQ between classical ML and projected quantum kernel.
As an additional experiment to see if the same approach can work with the original
quantum kernel method, we can create similar engineered data sets that saturate the
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n=10 n=11 n=12

Figure 8.6: Prediction error (lower the better) on quantum data set (E2) over different
training set size 𝑁 . We can see that as the number of data increases, every model
improves and the separation between them decreases.

Figure 8.7: A comparison between the prediction error bound based on classical
kernel methods (see Eq. (8.14)) and the prediction performance of the best classical
ML model on the three quantum datasets. We consider the best-performing classical
ML models among Gaussian SVM, linear SVM, Adaboost, random forest, neural
networks, and gradient boosting. While the prediction error bound is an upper
bound to the actual prediction error, the trends are very similar (a large prediction
error bound gives a large prediction error).

geometric inequality between classical ML and quantum kernel The result is given
in Figure 8.5. We can see that due to the large dimension 𝑑 and small geometric
difference 𝑔(C| |Q) between classical ML and quantum kernel at large system size,
there are no obvious advantage even for this best-case scenario. Interestingly, we
see some advantage of projected quantum kernel over classical ML even when this
data set is not constructed for projected quantum kernel.

In Figure 8.6, we show the prediction performance for learning a quantum neural
network under a wide range for the number of training data 𝑁 . We can see that
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there is a non-trivial advantage for small training size 𝑁 = 100 when comparing
projected quantum kernel and the best classical ML model. However, as training
size 𝑁 increases, every model will improve and the prediction advantage will shrink.

In Figure 8.7, we compare the prediction error bound 𝑠𝐾 (𝑁) for classical kernel
methods and the prediction performance of the best classical ML model (including
a variety of classical ML models in Section 8.14). To be more precise, we consider
different classical kernel functions and different regularization parameter 𝜆. Then
we compute

𝑠𝐾,𝜆 (𝑁) =

√︄
𝜆2 ∑𝑁

𝑖=1
∑𝑁
𝑗=1((𝐾 + 𝜆𝐼)−2)𝑖 𝑗 𝑦𝑖𝑦 𝑗

𝑁
(8.156)

+

√︄∑𝑁
𝑖=1

∑𝑁
𝑗=1((𝐾 + 𝜆𝐼)−1𝐾 (𝐾 + 𝜆𝐼)−1)𝑖 𝑗 𝑦𝑖𝑦 𝑗

𝑁
. (8.157)

This is a generalization of 𝑠𝐾 (𝑁) described in the main text, where we consider
regularized classical kernel methods with a regularization parameter 𝜆 to improve
generalization performance (setting 𝜆 = 0 reduces to 𝑠𝐾 (𝑁) given in the main text).
See Section 8.6 for a detailed proof of an upper bound to the prediction error (note
that the output label 𝑦𝑖 = tr(𝑂𝑈𝜌(x𝑖))). We can see that while the prediction error
bound and the actual prediction error has a non-negligible gap, the two figures follow
a similar trend. When the prediction error bound is small, the prediction error of
the best classical ML is also fairly small (and vice versa). It shows that 𝑠𝐾,𝜆 (𝑁)
is a good predictive metric for whether a classical ML model can learn to predict
outputs from a quantum computation model.
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C h a p t e r 9

QUANTUM ADVANTAGE IN LEARNING FROM
EXPERIMENTS

Humans learn about nature by doing experiments, but up until now, our ability
to acquire knowledge has been hindered by viewing the quantum world through a
classical lens. The rapid advance of quantum technology portends an opportunity
to observe the world in a fundamentally different and more powerful way. In-
stead of measuring physical systems and then processing the classical measurement
outcomes to infer properties of the physical systems, quantum sensors (Degen, Rein-
hard, and Cappellaro, 2017) will eventually be able to transduce (Lauk et al., 2020)
quantum information in physical systems directly to a quantum memory (Lvovsky,
Sanders, and Tittel, 2009; Dennis et al., 2002b), where it can be processed by a
quantum computer. Figure 9.1A illustrates the distinction between conventional and
quantum-enhanced experiments. For example, in a quantum-enhanced experiment,
multiple photons might be captured and stored coherently at each node of a quantum
network and then processed coherently to extract an informative signal (Gottesman,
Jennewein, and Croke, 2012; Bland-Hawthorn, Sellars, and Bartholomew, 2021;
Giovannetti, Lloyd, and Maccone, 2011). A key distinction between conventional
and quantum-enhanced settings in the language of entanglement measurements is
that the conventional setting may take arbitrary measurements, including entangled
measurements, but is restricted to a single copy of a state at a time. In contrast, the
quantum-enhanced setting may make entangled measurements between copies and
hence requires sufficient memory to hold at least two copies of a state.

Recently, we have found that there exist properties of an 𝑛-qubit system that a
quantum machine can learn efficiently, while the required number of conventional
experiments to achieve the same task is exponential in 𝑛 (Huang, Richard Kueng, and
Preskill, 2021; Aharonov, J. S. Cotler, and Qi, 2021). This exponential advantage
contrasts sharply with the quadratic advantage achieved in many previously proposed
strategies for improving sensing using quantum technology (Degen, Reinhard, and
Cappellaro, 2017). In this chapter, we analyze three classes of learning tasks with
exponential quantum advantage and report on proof-of-principle experiments using
up to 40 qubits on a Google Sycamore processor (Arute et al., 2019). These
experiments confirm that a substantial quantum advantage can be realized even
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Figure 9.1: Illustration of quantum-enhanced and conventional experiments.(a)
Quantum-enhanced experiments versus conventional experiments. Quantum-
enhanced / conventional experiments interface with a quantum / classical machine
running a quantum / classical learning algorithm that can store and process quantum
/ classical information. (b) Learning physical state 𝜌. Each experiment produces a
physical state 𝜌. In the conventional setting, we measure each 𝜌 to obtain classical
data (the measurement could depend on prior measurement outcomes) and store the
data in a classical memory. In the quantum-enhanced setting, 𝜌 can coherently alter
the quantum information stored in the memory of the quantum machine (illustrated
by the change in color). With large enough quantum memory, the quantum machine
can simply store each copy of 𝜌. After multiple rounds of experiments, quantum
processing followed by a measurement is performed on the quantum memory. (c)
Learning physical process E. Each experiment is an evolution under E. In the
conventional setting, the classical machine specifies the input state to E using a
classical bitstring and obtains classical measurement data (M. Mohseni, A. T. Reza-
khani, and D. A. Lidar, 2008). In the quantum-enhanced setting, the evolution
E coherently alters the memory of the quantum machine: the input state to E is
entangled with the quantum memory in the quantum machine, and the output state
is retrieved coherently by the quantum machine.

when the quantum memory and processor are both noisy.

To be more concrete, suppose that each experiment generates an 𝑛-qubit state 𝜌,
and our goal is to learn some property of the quantum state 𝜌 (Fig. 9.1). We depict
conventional and quantum-enhanced experiments for this scenario in Fig. 9.1(b). In
conventional experiments, each copy of 𝜌 is measured separately, the measurement
data is stored in a classical memory, and a classical computer outputs a prediction
for the property after processing the classical data. In quantum-enhanced exper-
iments, each copy of 𝜌 is stored in a quantum memory, and then the quantum
machine outputs the prediction after processing the quantum data in the quantum
memory. We proved that for some tasks, the number of experiments needed to learn
a desired property is exponential in 𝑛 using the conventional strategy, but only poly-
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nomial in 𝑛 using the quantum-enhanced strategy. While collective and entangled
measurements strategies have been used to show separations in state identification
tasks (Bennett et al., 1999), previous work focused on cases where single copies
were separated and hence actually represent a weakened form of what we consider
as conventional experiments here. This chapter further differentiates itself by ruling
out even arbitrarily adaptive single-copy strategies and making connections to more
complex learning tasks. We provide a more detailed comparison to these related
works in Section 9.3. For suitably defined tasks, we could achieve exponential
quantum advantage using a protocol as simple as storing two copies of 𝜌 in quan-
tum memory and performing an entangling measurement. We also showed that
quantum-enhanced experiments have a similar exponential advantage in a related
scenario shown in Fig. 9.1(c), in which the goal is to learn about a quantum process
E rather than a quantum state 𝜌.

We proved that for a task that entails acquiring information about a large number
of non-commuting observables, quantum-enhanced experiments could have an ex-
ponential advantage even when the measured quantum state is unentangled. This
chapter here distinguishes itself from previous work by eliminating all dependencies
on some exponential resource, a key requirement for enabling experimental demon-
stration. Conceptually, this also helps to distill the physical source of quantum
advantage by proving an exponential advantage for simpler tasks than considered
previously. Proving that an advantage exists for the simplest tasks one might consider
enables exploration under experiment in more realistic conditions and bolsters con-
fidence in future applications of these techniques. By performing experiments with
up to 40 superconducting qubits, we show that this quantum advantage persisted
even when using currently available quantum processors. We also demonstrated
quantum advantage in learning the symmetry class of a physical evolution operator,
inspired by recent theoretical advances (Aharonov, J. S. Cotler, and Qi, 2021; Sitan
Chen, J. Cotler, et al., 2021b). Finally, in a theoretical contribution, we rigorously
proved that quantum-enhanced experiments have an exponential advantage in learn-
ing about the principal component of a noisy state, as previously indicated in (Lloyd,
Masoud Mohseni, and Rebentrost, 2014).

In our proof-of-principle experiments, we directly executed the state preparation
or process to be learned within the quantum processor. In an actual application,
the quantum data analyzed by the learning algorithm might be produced by an
analog quantum simulator or a gate-based quantum computer. We also envision
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future applications in which quantum sensors equipped with quantum processors
interact coherently with the physical world. The robustness of quantum advantage
with respect to noise, validated by our experiments using a noisy superconducting
device, boosts our confidence that the quantum-enhanced strategies described here
can be exploited someday to achieve a substantial advantage in realistic applications.

9.1 Provable exponential quantum advantage
Here we present three classes of learning tasks and the associated quantum-enhanced
experiments, each yielding a provable exponential advantage over conventional ex-
periments. Each result is encapsulated by a theorem that we state informally. Precise
statements and proofs are presented later in this chapter. Our experimental demon-
strations are discussed in section Demonstrations of Quantum Advantage. The
proofs proceed by representing a classical algorithm with a decision tree depicted
at the center of the gray robot in Fig. 9.1. The tree representation encodes how
the classical memory changes as we obtain more experimental data. We then ana-
lyzed how the transitions on the tree differ for distinct measured physical systems to
provide rigorous information-theoretic lower bounds.

The first task concerns learning about a physical system described by an 𝑛-qubit state
𝜌. We suppose that each experiment generates one copy of 𝜌. In the conventional
setting, we measure each copy of 𝜌 to obtain classical data. The procedure can
be adaptive, that is, each measurement can depend on the data obtained in earlier
measurements. In the quantum-enhanced setting, a quantum computer can store
each copy of 𝜌 in a quantum memory, and act jointly on multiple copies of 𝜌.
In both scenarios, we require all quantum data to be measured at the end of the
learning phase of the procedure, so that only classical data survives. After the
learning is completed, the learner is asked to provide an accurate prediction for
the expectation value of one observable drawn from a set {𝑂1, 𝑂2, . . . } where the
number of observables in the set is exponentially large in 𝑛. The observables in the
set can be highly incompatible, that is, each observable may fail to commute with
many others in the set.

In prior work by some of the authors (Huang, Richard Kueng, and Preskill, 2021;
Sitan Chen, J. Cotler, et al., 2021b), we required the learner to predict exponentially
many observables, which is not possible in practice if the system size is large. In
order to demonstrate the advantage in an actual device, we proved that predicting
just the absolute value of one observable requires exponentially many copies in the
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conventional scenario. In contrast, predicting the entire set of observables can be
achieved with a polynomial number of copies in the quantum-enhanced scenario.
We thereby established the following constant versus exponential separation. The
proof is given in Section 9.5.

Theorem 44 (Predicting observables). There exists a distribution over 𝑛-qubit states
and a set of observables such that in the conventional scenario, at least order 2𝑛

experiments are needed to predict the absolute value of one observable selected from
the set, while a constant number of experiments suffice in the quantum-enhanced
scenario.

The exponential quantum advantage can occur even if the state 𝜌 is unentangled. For
example, in our experiments we consider 𝜌 ∝ (𝐼 + 𝛼𝑃) where 𝑃 is an 𝑛-qubit Pauli
operator and 𝛼 ∈ (−1, 1). This state can be realized as a probabilistic ensemble of
product states, each of which is an eigenstate of 𝑃 with eigenvalue 𝛼. Even if the
state is known to be of this form, but 𝑃, 𝛼 are unknown, the exponential separation
between conventional and quantum-enhanced experiments persists. Moreover, the
quantum advantage can be achieved by performing simple entangling measurements
on pairs of copies of 𝜌. That the quantum advantage applies even when correlations
among the 𝑛 qubits are classical leads us to believe that the quantum-enhanced
strategy will be beneficial in a broad class of sensing applications. In Section 9.10,
we extended this theorem, showing that a sufficiently large quantum memory is
needed to achieve this task in the quantum-enhanced scenario.

Our second machine learning task with a quantum advantage is quantum principal
component analysis (PCA) (Lloyd, Masoud Mohseni, and Rebentrost, 2014). In this
task, each experiment produces one copy of 𝜌, and our goal is to predict properties of
the (first) principal component of 𝜌, namely the eigenstate |𝜓⟩ of 𝜌 with the largest
eigenvalue. For example, we may want to predict the expectation values of a few
observables in the state |𝜓⟩. This task may become a valuable ingredient in future
quantum-sensing applications. If an imperfect quantum sensor transduces a detected
quantum state into quantum memory, the state is likely to be corrupted by noise. But
it is reasonable to expect that properties of the principal component are relatively
robust with respect to noise (Koczor, 2021b), and therefore highly informative
about the uncorrupted state. To perform quantum PCA, a learning algorithm was
introduced in Ref. (Lloyd, Masoud Mohseni, and Rebentrost, 2014) based on phase
estimation which requires fault-tolerant quantum computers. One can also obtain
information about the principal component of 𝜌 using more near-term algorithms,
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such as virtual cooling (J. Cotler and Wilczek, 2020a), virtual distillation (Huggins
et al., 2020; Koczor, 2021a), and variational algorithms (LaRose, Tikku, et al.,
2019; Marco Cerezo et al., 2021).

Although the quantum PCA algorithm in (Lloyd, Masoud Mohseni, and Reben-
trost, 2014) is exponentially faster than known algorithms based on conventional
experiments, this advantage was not proven against all possible algorithms in the
conventional scenario. Here, we rigorously established the exponential quantum
advantage for performing quantum PCA. The exponential quantum advantage also
holds in some of the near-term proposals (J. Cotler and Wilczek, 2020a; Huggins
et al., 2020). The proofs are in Section 9.6.

Theorem 45 (Performing quantum PCA). In the conventional scenario, at least
order 2𝑛/2 experiments are needed to learn a fixed property of the principal compo-
nent of an unknown 𝑛-qubit quantum state, while a constant number of experiments
suffice in the quantum-enhanced scenario.

It is worth commenting on recent results in Refs. (E. Tang, 2021; Chia, Gilyen, et
al., 2020) showing that quantum PCA can be achieved by polynomial-time classical
algorithms, which may seem to contradict Theorem 45. Those works assume the
ability to access any entry of the exponentially large matrix 𝜌 to exponentially high
precision in polynomial time. Such a capability permits solving problems that even a
quantum computer are not believed to efficiently solve (J. Cotler, Huang, and Jarrod
R McClean, 2021), and in this case, we showed accurate evaluation of elements of
𝜌𝑘 on single copies requires a precision growing with the dimension of the space.
Achieving such a high precision requires measuring exponentially many copies of
𝜌, which takes an exponential number of experiments and exponential time. Hence,
the assumptions of (E. Tang, 2021; Chia, Gilyen, et al., 2020) do not hold here.
See Ref. (J. Cotler, Huang, and Jarrod R McClean, 2021) which provides a detailed
exposition of these matters.

Another core task in quantum mechanics is understanding physical processes rather
than states. Here, each experiment implements a physical process E, and we can
interface with E through a quantum / classical machine in the quantum-enhanced
/ conventional setting; see Fig. 9.1(c). We showed that a quantum machine can
learn an approximate model of any polynomial-time quantum process E from only
a polynomial number of experiments. Given a distribution on input states, the
approximate model can predict the output state from E accurately on average. In
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Figure 9.2: Quantum advantage in learning physical states. (a) Quantum advan-
tage in the number of experiments needed to achieve ≥ 70% accuracy. Here,
(Q) corresponds to results running the best known strategy described in Section 9.5
for quantum-enhanced experiments and (C) corresponds to results running the best
known conventional strategy. The dotted line is a lower bound for any conven-
tional strategy (C, LB) as proven in Section 9.5. Even running on a noisy quantum
processor, quantum-enhanced experiments are seen to vastly outperform the best the-
oretically achievable conventional results (C, LB). (b) Supervised machine learning
(ML) model based on quantum-enhanced experiments. 𝑁 repetitions of quantum-
enhanced experiments are performed and the data is fed into a gated recurrent neural
network (GRU) (J. Chung et al., 2014; D. Tang, Qin, and T. Liu, 2015). The neu-
rons in the GRU are aggregated to predict an output. (c) Training process of the
supervised ML model. We train the supervised ML model to determine which of
two 𝑛-qubit Pauli operators has a larger magnitude for the expectation value in an
unknown state 𝜌 using noiseless simulation for small system sizes (𝑛 < 8). We
consider the cross entropy (Murphy, 2012) as the training loss. Then we use the
supervised ML model to make predictions using data from noisy quantum-enhanced
experiments running on the Sycamore processor (Arute et al., 2019) for larger sys-
tem sizes (8 ≤ 𝑛 ≤ 20). We consider the probability to predict correctly as the
prediction accuracy. The purple (Q) and gray (C) dots on the y-axis are the accuracy
of the best known quantum-enhanced and conventional strategy considered in (a).
Random guessing yields a prediction accuracy of 0.5.

contrast, we would need an exponential number of experiments to achieve the same
task in the conventional setting. The proof for general quantum processes is given
in Section 9.8.

Theorem 46 (Learning quantum processes). Suppose we are given a polynomial-
time physical process E acting on 𝑛 qubits and a probability distribution over
𝑛-qubit input states. In the conventional scenario, at least order 2𝑛 experiments are
needed to learn an approximate model of E that predicts output states accurately on
average, while a polynomial number of experiments suffice in the quantum-enhanced
scenario.
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9.2 Demonstrations of quantum advantage
The exponential quantum advantage captured by Theorems 44, 45, and 46 applies
no matter how much classical processing power is leveraged in the conventional
experiments. The conventional strategy fails because there is just no way to access
enough classical data to perform the specified tasks, if the number of experiments is
subexponential in 𝑛. But these exponential separations apply in an idealized setting
where quantum states are stored and processed perfectly. Will access to quantum
memory unlock a substantial quantum advantage under more realistic conditions?

For two different tasks, we have investigated the robustness of the quantum advantage
by conducting experiments using a superconducting quantum processor. We
consider specialized tasks that maintain exponential quantum advantage and have
better noise robustness than the general tasks described in the previous section. The
first task we studied pertains to Theorem 44. The task is to approximately estimate
the magnitude for the expectation value of Pauli observables. The unknown state
is an unentangled 𝑛-qubit state 𝜌 = 2−𝑛 (𝐼 + 𝛼𝑃), where 𝛼 = ±0.95, 𝑃 is a Pauli
operator, and both 𝛼, 𝑃 are unknown. After all measurements are completed and
learning is terminated, two distinct Pauli operators 𝑄1 and 𝑄2 are announced, one
of which is 𝑃 and the other of which is not equal to 𝑃. We ask the machine to
determine which of |tr (𝑄1𝜌) | and |tr (𝑄2𝜌) | is larger.

In the conventional scenario, where copies of 𝜌 are measured one by one, the best
known strategy is to use randomized Clifford measurements requiring an exponential
number of copies to achieve the task with reasonable success probability (Huang,
Richard Kueng, and Preskill, 2020; Huang, Richard Kueng, and Preskill, 2021).
In the quantum-enhanced scenario, copies of 𝜌 are deposited in quantum memory
two at a time, and a Bell measurement across the two copies is performed to
extract a snapshot of the state. We consider two data analysis approaches. The
first approach considers a specialized formula for estimating |tr (𝑄𝜌) | given in
Section 9.5. Figure 9.2A depicts, as a function of the system size 𝑛, the number
of experiments needed in each scenario to achieve 70% prediction accuracy. We
show the experimental results when using conventional and quantum-enhanced
experiments, along with a theoretical lower bound on the number of experiments
needed in the conventional scenario as proven in Section 9.5. The first approach is
explicitly tailored to the problem structure, which can limit its applicability to other
problems. Instead of having a specialized formula for analyzing the snapshot, the
second approach simply feeds the snapshot to a supervised machine learning (ML)
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Figure 9.3: Quantum advantage in learning physical dynamics. (a) Unsupervised
machine learning (ML) model. We perform 500 repetitions of quantum-enhanced
experiments (each accessing E𝑘 twice) for every physical process E𝑘 , and feed the
data into an unsupervised ML model (Gaussian kernel PCA (Schölkopf, A. Smola,
and Müller, 1998)) to learn a one-dimensional representation for describing distinct
physical dynamics E1, E2, . . .. Similarly, we also consider applying unsupervised
ML to data obtained from 1000 repetitions of the best known conventional experi-
ments (each accessing E𝑘 once) for every physical process E𝑘 . (b) Representation
learned by unsupervised ML for 1D dynamics. Each point corresponds to a distinct
physical process E𝑘 . The vertical line at the bottom shows the exact 1D repre-
sentation of each E𝑘 . Half of the processes satisfy time-reversal symmetry (blue
diamonds) while the other half of them do not (red circles). When fed with data from
quantum-enhanced experiments, the ML model accurately discovers the underlying
symmetry pattern. In contrast, the ML model fails to do so when fed with data from
conventional experiments. (c) Representation learned by unsupervised ML for 2D
dynamics. (d) The geometry implemented on the Sycamore processor (Arute et al.,
2019). We consider two different classes of connectivity geometry for implementing
1D (top) and 2D (bottom) dynamics.

model based on a recurrent neural network (J. Chung et al., 2014; D. Tang, Qin,
and T. Liu, 2015; Goodfellow, Bengio, and Courville, 2016) to make a prediction,
as depicted in Figure 9.2B. The use of ML methods is designed to highlight the fact
that while a specialized formula is available for this problem, knowing or precisely
tuning to that solution is not required. Indeed, the use of an RNN trained at smaller
sizes shows that the data is so clear, the task can even be learned at smaller sizes
and automatically generalized to larger sizes, even in the presence of experimental
noise. We train the neural network using noiseless simulation data for small system
sizes (𝑛 < 8). Then we use the neural network to make predictions when we are
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provided with experimental data for large system sizes (8 ≤ 𝑛 ≤ 20). We report
the prediction accuracy, which is equal to the probability for correctly answering
whether |tr (𝑄1𝜌) | or |tr (𝑄2𝜌) | is larger. Figure 9.2C shows the performance of the
ML model as we train the neural network. Despite the noisy storage and processing
in the experimental device, we observed a significant quantum advantage using both
the specialized and the machine learning approaches.

The second task we studied, which pertains to Theorem 46, was inspired by the
recent observation that quantum-enhanced experiments can efficiently identify the
symmetry class of a quantum evolution operator, while conventional experiments
cannot (Aharonov, J. S. Cotler, and Qi, 2021; Sitan Chen, J. Cotler, et al., 2021b).
An unknown 𝑛-qubit quantum evolution operator is presented, drawn either from
the class of all unitary transformations, or from the class of time-reversal-symmetric
unitary transformations (i.e., real orthogonal transformations). We consider whether
an unsupervised ML can learn to recognize the symmetry class of the unknown evo-
lution operator based on data obtained from either quantum-enhanced experiments
or conventional experiments. An illustration is shown in Figure 9.3A.

In the conventional scenario, we repeatedly apply the unknown evolution operator to
the initial state |0⟩⊗𝑛, and then measure each qubit of the output state in the 𝑌 -basis.
Under 𝑇-symmetric evolution the output state has purely real amplitudes; hence the
expectation value of any purely imaginary observable, such as the Pauli-𝑌 operator,
is always zero. In contrast, the expectation value of𝑌 after general unitary evolution
is generically nonzero, but may be exponentially small and hence hard to distinguish
from zero. In the quantum-enhanced scenario, we make use of 𝑛 additional memory
qubits. We prepare an initial state in which the 𝑛 system qubits are entangled with the
𝑛 memory qubits, evolve the system qubits under the unknown evolution operator,
swap the system and memory qubits, evolve the system qubits again, and finally
perform 𝑛 Bell measurements, each acting on one system qubit and one memory
qubit.

Each evolution operator is a one-dimensional or two-dimensional 𝑛-qubit quantum
circuit as shown in Fig. 9.3(d). After sampling many different evolution opera-
tors from both symmetry classes (and obtaining data from each sampled evolution
multiple times), we used an unsupervised ML model (kernel PCA (Schölkopf, A.
Smola, and Müller, 1998)) to find a one-dimensional representation of the evolution
operators. The representations learned by the unsupervised ML model are shown
in Figures 9.3(b, c). The use and success of an unsupervised ML model for this
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highlights that the data from these generic two-copy measures are clear enough
to discover a previously unknown phenomena, where specialized measurements or
even training labels are not required. The desired data in the quantum-enhanced case
is so clear that it is analogous to comparing a picture of a cat to a white background
whereas the conventional scenario has access to at best blurred cat images. In
Section 9.4, we present results using the best known specialized data-processing
approach, which yield the same conclusions.

Using the quantum-enhanced data, the ML model discovers a clean separation be-
tween the two symmetry classes, while there is no discernable separation into classes
when using data from conventional experiments. The signal from the quantum-
enhanced experiments was strong enough that the two classes were easily recognized
without access to any labeled training data.

9.3 Related works
We begin with existing works that study the separation between conventional and
quantum-enhanced strategies for learning physical systems and dynamics. In
(Bubeck, Sitan Chen, and J. Li, 2020), they establish a polynomial separation
between conventional and quantum-enhanced strategies for testing if a state is max-
imally mixed or not. In (Huang, Richard Kueng, and Preskill, 2021; Aharonov,
J. S. Cotler, and Qi, 2021; Sitan Chen, J. Cotler, et al., 2021b), exponential sepa-
rations between conventional and quantum-enhanced strategies are established for
tasks regarding the learning of physical systems and dynamics. However, all the
tasks studied in (Huang, Richard Kueng, and Preskill, 2021; Aharonov, J. S. Cotler,
and Qi, 2021; Sitan Chen, J. Cotler, et al., 2021b) contain components that require
exponential resources. In order to perform a demonstration in a physical experiment,
this work shows that many of these exponential resources can actually be improved
to polynomial. For predicting highly-incompatible properties, (Huang, Richard
Kueng, and Preskill, 2021; Sitan Chen, J. Cotler, et al., 2021b) require checking an
exponential number of observables to demonstrate the exponential advantage. In
this thesis, we show that checking a constant number of carefully chosen observables
is sufficient to establish the exponential advantage. For purity testing, (Aharonov,
J. S. Cotler, and Qi, 2021; Sitan Chen, J. Cotler, et al., 2021b) requires that the target
state one would like to learn about is generated by an exponentially deep random
quantum circuit. In this thesis, we establish the exponential advantage for states that
are only of polynomial complexity by using techniques from pseudo-random state
construction. Furthermore, this work provides a new reduction from purity testing
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to quantum principal component analysis (PCA), hence establishing the exponential
advantage in quantum PCA. We also provide a new task on approximate learning of
polynomial-time quantum processes that yield exponential advantage.

We also mention some relevant works that study other classes of strategies for
learning or characterizing physical systems and dynamics. It was shown in Ref.
(M. Mohseni and D. A. Lidar, 2007) that the dynamics of open quantum systems
with dimension 𝑑𝑛, where 𝑑 is a prime, can be fully reconstructed with a quadrat-
ically fewer experiments over conventional quantum process tomography, with a
quantum-enhanced strategy consisting of 𝑛 auxiliary systems of same dimensions 𝑑
and performing generalized Bell-sate preparations and generalized Bell-state mea-
surements. The results in (Haah et al., 2017) give a polynomial separation between a
restricted class of conventional strategies and quantum-enhanced strategies for learn-
ing the complete description of a quantum state. The results in (Huang, Richard
Kueng, and Preskill, 2020) give an exponential separation between a restricted class
of conventional strategies and quantum-enhanced strategies for learning to predict
properties of a quantum state. Ref. (Senrui Chen, S. Zhou, et al., 2021) establishes
an exponential separation between ancilla-free strategies and ancilla-assisted strate-
gies for learning the eigenvalues in Pauli channels. Ref. (Sitan Chen, J. Cotler,
et al., 2021a) gives an exponential separation between restricted quantum-enhanced
strategies and quantum-enhanced strategies for learning about a quantum state.
Ref. (Anshu, Landau, and Y. Liu, 2021) considers a problem on learning two spa-
tially separated quantum states using local quantum learning algorithms and give
an exponential separation between having a quantum or a classical communication
channel between the local quantum learning algorithms. In Refs. (Coudron and
Menda, 2020; Chia, K.-M. Chung, and Lai, 2020), an exponential separation be-
tween two bounded-depth quantum learning algorithms are given for learning about
an exponential-time quantum process.

We briefly discuss how the learning problems considered in this thesis relate to
concepts in machine learning. Supervised learning, unsupervised learning, and
PAC learning (Leslie G Valiant, 1984) consider the setting when the data has already
been gathered. In this thesis, we consider a learning algorithm that can perform new
experiments to actively gather data in order to maximize its information about the
physical world. This learning setting is closer to active learning (Settles, 2009) and
reinforcement learning (Sutton and Barto, 2018). Active learning considers learning
agents that can actively gather new data (such as by doing new experiments), while
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reinforcement learning considers learning agents that can perform action to gather
information from the environment in order to maximize some reward function
(such as its knowledge about the world). Both aspects are relevant in the learning
problems we consider. For example, the exponential lower bound we established for
conventional strategies shows that any learning agent that can actively conduct new
conventional experiments can only learn about the unknown state or dynamics after
an exponential number of experiments. We believe existing techniques in active
learning and reinforcement learning will also be relevant for the future development
of this line of research.

There is also a large body of works that consider the separation between various
classes of restricted protocols for learning states and unitaries, e.g., see (Bennett
et al., 1999; Bisio et al., 2010; Slussarenko et al., 2017; Laneve et al., 2021; Sentis,
Martinez-Vargas, and Munoz-Tapia, 2022) and the references therein. (Bennett et al.,
1999) shows that given a bipartite state from a special class of states, a measurement
on the state can identify the state accurately, but any sequence of local operations
and classical communications (LOCC) between two separate observers residing the
two parts of the system cannot identify the state accurately. The result in (Bennett
et al., 1999) demonstrates the advantage of having quantum network that can bring
a multipartite quantum state that is distributed across different physical locations to
a single place and perform a measurement on the state. An experimental demon-
stration is given in (Laneve et al., 2021). In this chapter, we do not assume that the
quantum state is distributed across different physical locations. Hence, we consider
conventional experiments to be those that can conduct arbitrary measurements on
the unknown state to extract classical information. In this point of view, the LOCC
strategy is a more restricted class of conventional experiments, and (Bennett et al.,
1999) separates the more restricted class from the general class. (Slussarenko et al.,
2017) studies the ability to better distinguish different quantum states by performing
entangled measurements on multiple copies of an unknown state. (Slussarenko
et al., 2017) shows that entangled measurements (similar to our quantum-enhanced
experiments) can be better than some incoherent measurement procedures (similar
to our conventional experiments). However, (Slussarenko et al., 2017) did not es-
tablish a provable advantage over all possible incoherent measurement procedures.
(Bisio et al., 2010) considers learning unitary and shows that incoherent strategies
(similar to our conventional experiments) are optimal when the unknown unitary is
sampled uniformly from a group. So for this setting, coherent strategies (similar to
our quantum-enhanced experiments) do not provide an advantage. The argument
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in (Bisio et al., 2010) relies on the group structure and does not apply when the
unknown unitary is not uniformly sampled from a group. This work provides new
techniques to rigorously establish the exponential advantage of coherent strategies
(quantum-enhanced experiments) over incoherent strategies (conventional experi-
ments). We believe that these techniques could also be helpful for the development
of these existing research programs.

9.4 Experimental details
In this section, we present the details of the physical experiments run on the su-
perconducting processor as well as the supervised/unsupervised machine learning
models used to analyze the data.

General description
The experiments were performed on a Google Sycamore processor containing up to
53 superconducting transmon qubits. The largest error source in the Sycamore pro-
cessor (Arute et al., 2019) is qubit readout error, which ranges from 3% to 7%. The
second largest error source is the two-qubit gate with an error around 0.5% to 1.5%.
Single-qubit gates have the smallest error around 0.05% to 0.5%. The Sycamore
chip was introduced in Ref. (Arute et al., 2019), where additional details concern-
ing the hardware implementation and performance can be found. The Sycamore
chip was controlled remotely using an internal cloud interface programmed using
Cirq (Developers, 2021) and TensorFlow Quantum (Broughton, Verdon, McCourt,
Antonio J. Martinez, et al., 2021). The layout of the chip including connectivity is
depicted in Supp. Fig. 9.4(a).

For all our experiments on learning about states and dynamics, the total number
of qubits was varied from 4 to 40 qubits (where in each case half of the qubits
are used to simulate a physical system). As the system size was varied, the subset
of qubits used for the experiments was varied in order to maximize experimental
performance and minimize any overhead related to the 2D connectivity. That is, the
largest contiguous patches with low gate and measurement error rates were selected,
and swap operations were used to meet connectivity requirements when necessary.
The experimental requirements for learning states, 1D dynamics, and 2D dynamics
differ considerably in their experimental complexity.

In all experiments, the implementations of the unknown states or dynamics are
performed in the quantum processor, where the learning algorithms do not know
about them. While this is only an emulation of the process of data collection



413

from a physical system in an actual sensing experiment, it allows us to examine the
proposed pipeline for quantum data processing in a situation where data collection
is imperfect.

Experiments on learning physical states
We separate this subsection into the concrete procedure for generating the unknown
states, the conventional experiments we run, the quantum-enhanced experiments we
run, and the supervised neural network model for making prediction based on data
from quantum-enhanced experiments.

Procedure for generating the class of unknown states

The state preparation we consider is relatively simple in that the unknown state
𝜌 is unentangled, but has strong non-local classical correlations. In the exper-
imental demonstration we consider states of the form 𝜌 = 2−𝑛 (𝐼 + 𝛼𝑃), where
𝛼 ∈ {−0.95, 0.95}, 𝑃 =

⊗𝑛

𝑖=1 𝑃𝑖 is an 𝑛-qubit Pauli operator, and both 𝛼 and 𝑃
are unknown. The state 𝜌 = 2−𝑛 (𝐼 + 𝛼𝑃) is prepared by a randomized constant-
depth circuit described in the following. To generate one copy of 𝜌, we introduce a
parameter 𝜂 = sign(𝛼). Then for each qubit 𝑖 = 1, . . . , 𝑛, we do the following.

1. If 𝑃𝑖 = 𝐼, then we set qubit 𝑖 to be |0⟩⟨0| with probability 1/2, and be |1⟩⟨1|
with probability 1/2.

2. If 𝑃𝑖 ≠ 𝐼 and there exists 𝑗 > 𝑖 such that 𝑃 𝑗 ≠ 𝐼, then we set qubit 𝑖 to be
one of the two eigenstates of 𝑃𝑖 with equal probability. We multiply 𝜂 by the
eigenvalue (+1 or −1) of the selected eigenstate of 𝑃𝑖.

3. If 𝑃𝑖 ≠ 𝐼 and there does not exist 𝑗 > 𝑖 such that 𝑃 𝑗 ≠ 𝐼, then we use the
following procedure.

a) With probability 0.05, we set qubit 𝑖 to be either |0⟩⟨0| or |1⟩⟨1| with
equal probability.

b) With probability 0.95, we set qubit 𝑖 to be the positive eigenstate of 𝑃𝑖
if 𝜂 = +1, and set qubit 𝑖 to be the negative eigenstate of 𝑃𝑖 if 𝜂 = −1.

By construction, the density operator prepared by this procedure is realized as an
ensemble of pure states, where each pure state is a tensor product of Pauli operator
eigenstates. Therefore, there is no quantum entanglement across different qubits.
Furthermore, step 3 is designed to assure that | tr (𝑃𝜌) | = 0.95.



414

System qubit Memory qubitQubits Adjustable coupler

(a) (b) (c)

Figure 9.4: (a) Layout of a Google Sycamore processor. There is a total of 53
superconducting transmon qubits (the qubit corresponding to an empty cross is out
of order). The blue rectangles show the adjustable couplers that can apply the
entangling two-qubit gate SYC to neighboring qubits. (b) Layout used for learning
states and for learning 1D dynamics. We partition the 40 qubits into 20 system
qubits and 20 memory qubits. Either an unknown state of the system qubits is
prepared, or an unknown process is applied to the system qubits. (c) Layout used
for learning 2D dynamics.

Conventional experiments

In the conventional setting, the optimal strategy (up to logarithmic factors) for es-
timating expectation values of high-weight 𝑛-qubit Pauli observables uses classical
shadow tomography based on randomized Clifford measurements (Huang, Richard
Kueng, and Preskill, 2020). Using this strategy, in each experiment we randomly
sample a unitary transformation from the Clifford group, apply the sampled trans-
formation to the unknown state 𝜌, and then measure in the computational basis.
Although such randomized Clifford measurements can be executed using quantum
circuits of polynomial size, the required circuits are too large to be performed ac-
curately with today’s noisy quantum devices except for quite modest values of 𝑛.
Furthermore, the classical post-processing of the measurement results has complex-
ity exponential in 𝑛.

In our conventional experiments, because randomized Clifford measurements are
infeasible we instead use classical shadow tomography based on randomized Pauli
measurements (Huang, Richard Kueng, and Preskill, 2020). Using this strategy,
in each experiment, we randomly sample from depth-1 Clifford circuits, apply the
sampled circuit to 𝜌, and then measure in the computational basis. That is, for
each of the 𝑛 qubits, we decide uniformly at random to measure one of the three
Pauli observables 𝑋 , 𝑌 , or 𝑍 . Many such measurements are performed, each time
on a new copy of 𝜌, and the classical data collected is post-processed to predict
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expectation values of observables in the state 𝜌.

Classical shadow tomography based on randomized Pauli measurements is a pow-
erful technique that enables classical ML models to predict quantum many-body
ground states and quantum phases of matter with rigorous guarantees (Huang,
Richard Kueng, Torlai, et al., 2022). However, for the task of estimating the expec-
tation value of an 𝑛-qubit Pauli observable that is announced after all measurements
are completed, both randomized Clifford and randomized Pauli measurements re-
quire a number of experiments that scale exponentially in 𝑛, as we have proven
in Section 9.5. Likewise, exponentially many experiments are needed to perform
Task 2 defined in Section 9.5 with high success probability. In Fig. 9.2(a), we
report the number of experiments required to achieve a prediction accuracy of at
least 70% for different system sizes. We consider a maximum of 5000 experi-
ments. For system size 𝑛 ≥ 10, we are unable to achieve at least 70% prediction
accuracy with 5000 experiments. Hence we only show system size 𝑛 = 2, 4, 6, 8
for conventional experiments in Fig. 9.2(a). In Fig. 9.2(c), we report the average
prediction accuracy (the probability of performing Task 2 successfully) over system
sizes 𝑛 = 8, 10, 12, 14, 16, 18, 20. For each 𝑛-qubit state 𝜌, we conduct 1000 ex-
periments to obtain the measurement data. The prediction accuracy is indicated by
the gray point shown on the vertical axis, which is only slightly better than random
guessing (0.5). For system sizes 𝑛 ≥ 10, the prediction accuracy is very close to
0.5. Classical shadow tomography based on randomized Pauli measurements is a
statistical estimation procedure that has no training phase. Therefore, the prediction
accuracy for conventional experiments is a single point Fig. 9.2(c). The training
epoch on the horizontal axis in Fig. 9.2(c) is only for quantum-enhanced strategy.

Quantum-enhanced experiments

Quantum-enhanced experiments are executed by performing an entangling Bell
measurement across two copies of 𝜌. We prepare the state 𝜌 on the system qubits
(marked blue in Supp. Fig. 9.4), swap the state to the memory qubits (marked
red), prepare another state 𝜌 on the system qubits, then perform an entangling Bell
measurement across the two copies of 𝜌. Note that every preparation of 𝜌 generates
a random product state according to a classical probability distribution described in
Section 9.4.

For each system size 𝑛 = 2, . . . , 20, we choose 𝑛 qubits from among the 20 pairs of
qubits shown in Supp. Fig. 9.4(b); these pairs are selected to minimize errors in the
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state preparations, gates, and measurements. Because the state 𝜌 is not entangled,
no entangling gates are used during the state preparation; therefore there is no
advantage in choosing the pairs of qubits to be in proximity to one another. For each
system size 𝑛, we use the same qubits for the conventional experiments as for the
quantum-enhanced experiments, except that in conventional experiments we prepare
the unknown state 𝜌 only on the system qubits, and then perform a randomized Pauli
measurement of the system immediately after the state preparation.

While a Bell measurement on a pair of qubits can be performed via a simple circuit
containing one Hadamard gate, one CNOT gate, and two 𝑍-basis measurements,
we instead compile these operations into operations better suited for the Sycamore
processor. In particular, the native two-qubit entangling gate is the Sycamore Gate,
which has a unitary matrix representation given by

SYC = iSWAP† CPHASE(−𝜋/6) =
©«

1 0 0 0
0 0 −𝑖 0
0 −𝑖 0 0
0 0 0 𝑒−𝑖𝜋/6

ª®®®®®¬
. (9.1)

Using this gate, the Bell state measurements may be performed by the gate sequence
needed to unprepare a Bell state, which when compiled to Sycamore’s native gates
is expressed as a product of SYC gates and phased XZ gates (PhXZ𝑖). The phased
XZ gate PhXZ𝑖 on the 𝑖-th qubit is a native gate on the Sycamore device that can be
expressed as

PhXZ(𝑎, 𝑥, 𝑧)𝑖 = 𝑍 𝑧𝑖 𝑍
𝑎
𝑖 𝑋

𝑥
𝑖 𝑍
−𝑎
𝑖 . (9.2)

where 𝑋𝑖 and 𝑍𝑖 are the standard Pauli operators acting on qubit 𝑖, and the exponents
𝑎, 𝑥, 𝑧 are real numbers. The particular angles (𝑎, 𝑥, 𝑧) for each of the gates used
in our experiments were compiled numerically via a variational optimization. As
the inverse Sycamore is not a native gate of the architecture, the compilations to
hardware for inverse gates have to compensate for this difference, which we do
numerically. The full decomposition of all the gates and circuits we reference are
provided as Cirq circuits in additional supplemental material.

Each quantum-enhanced experiment generates a classical bitstring of size 2𝑛. We
collect the bitstrings from all experiments and feed them into two data processing
approaches. The first approach uses the specialized formula described in Section 9.5
to estimate | tr(𝑄1𝜌) | and | tr(𝑄2𝜌) |. The second approach is a general approach
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that simply feeds the bitstrings into a neural network model. In addition to the ex-
perimental data, the neural network model also takes in two Pauli strings𝑄1, 𝑄2 and
predicts which one of | tr(𝑄1𝜌) | and | tr(𝑄2𝜌) | is larger. In both the specialized and
the neural network approaches, we perform a basic form of measurement error mit-
igation described at the end of Section 9.4. In Fig. 9.2(a), we use the first approach
(specialized formula) and repeat the quantum-enhanced experiments for a maximum
of 500 times over different system sizes from 𝑛 = 2, 4, 6, 8, 10, 12, 14, 16, 18, 20. In
Fig. 9.2(c), we show the training process of the second approach (neural network
model) and repeat each quantum-enhanced experiments 500 times. This provides a
fair comparison with conventional experiments because two copies of the unknown
state 𝜌 are used in each quantum-enhanced experiment; therefore a total of 1000
copies are consumed in both our conventional and quantum-enhanced experiments.

A supervised neural network model using data from quantum-enhanced
experiments

We train a supervised neural network model using noiseless simulation data from
small system sizes. Then we use the trained neural network model on the noisy
experimental data obtained from performing quantum-enhanced experiments. The
neural network model has three layers. Each of the outer layers runs the preceding
inner layer multiple times. In the following, we describe each layer of the neural
network model.

1. The inner layer is a recurrent neural network based on gated recurrent unit
(GRU) (J. Chung et al., 2014; D. Tang, Qin, and T. Liu, 2015; Goodfel-
low, Bengio, and Courville, 2016). The recurrent neural network takes in a
size-2𝑛 bitstring, corresponding to the measurement outcome from a single
quantum-enhanced experiment, and an 𝑛-qubit Pauli operator 𝑄, which can
be represented as a size-2𝑛 bitstring. The recurrent neural network outputs a
two-dimensional real vector. Other popular choices of recurrent units, such
as long short-term memory (LSTM) (Hochreiter and Schmidhuber, 1997) or
transformer (Vaswani et al., 2017), could be used instead of GRU.

2. The intermediate layer is an aggregation layer. This layer runs the inner layer
for all the bitstrings obtained from each of the quantum-enhanced experiments.
For example, if we run the quantum-enhanced experiments for 100 times, we
would obtain 100 size-2𝑛 bitstring and we would run the inner layer for 100
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times over each bitstring. The intermediate layer outputs the average of the
two-dimensional output vectors from the multiple runs of the inner layers.

3. The outer layer is inspired by a Siamese neural network (twin neural network)
(Koch, Zemel, Salakhutdinov, et al., 2015). This layer runs the intermediate
layer twice, one for each of the two Pauli operators𝑄1 and𝑄2. Each interme-
diate layer generates a real-valued vector 𝑥 of dimension two, which we map
to a single real value by considering 𝑥1 − 𝑥2. The outer layer compares the
real value from the two intermediate layers and outputs 𝑄1 or 𝑄2 based on
which one of them has a higher real value.

The specific details of the above neural network structure is given in the accompa-
nying code repository at Ref. (Huang, Richard Kueng, Torlai, et al., 2021).

In the inner layer, we create a recurrent neural network with an encoding layer
that maps an integer between 0 and 15 to a vector of dimension 30, a GRU with
30 neurons, and a decoding layer that maps 30 neurons to 2 neurons. Only the
inner layer contains trainable parameters. The intermediate layer and the outer layer
are both fixed operations based on outputs from the inner layer, which will not be
updated.

Next, we discuss the process for training the neural network model. We use noiseless
simulation data (for small system sizes 𝑛 < 8) to train the recurrent neural network.
During training, we pick a state 𝜌 = 2−𝑛 (𝐼 + 𝛼𝑃) where 𝛼 ∈ {−0.95, 0.95} and
𝑃 is an 𝑛-qubit Pauli operator, and pick an 𝑛-qubit Pauli operator 𝑄 that is equal
to 𝑃 with probability 1/2 and is not equal to 𝑃 with probability 1/2. We encode
the training data into two tensors, inp and target. The encoding is defined by the
following.

• The tensor inp is of size 𝑏 × 𝑛, where 𝑏 is the number of quantum-enhanced
experiments we performed, 𝑛 is the number of qubits, and each entry of inp is
an integer from 0 to 15. The (𝑡, 𝑖)-th entry of inp encodes the component of
𝑄 on qubit 𝑖 (a choice of 4 for 𝐼, 𝑋,𝑌 , 𝑍) and the Bell measurement outcome
on qubit 𝑖 from the 𝑡-th quantum-enhanced experiment (also a choice of 4).
Each entry takes a total of 16 possible values.

• The tensor target is of size 1. The entry in target is equal to 1 if 𝑃 = 𝑄, and
is equal to 0 if 𝑃 ≠ 𝑄.
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We update the neural network model once using inp of size 𝑏 × 𝑛 and target of size
1. We are using the cross entropy loss and employ the Adam optimizer (Kingma
and Ba, 2014), which is a gradient-based optimization algorithm that adaptively
estimates lower-order moments. We generate multiple different states 𝜌 and 𝑄
corresponding to different inp and target to train the neural network model.

During the training process, we are not using the outer layer. Also, we simul-
taneously run the 𝑏 repetitions of the inner layer for each outcome from a single
quantum-enhanced experiment by leveraging parallel computing. Then, we average
over the 𝑏 repetitions of the inner layer. Also, the output of the neural network
model is a two-dimensional real vector, denoted as 𝑣 = (𝑣0, 𝑣1). When target is
𝑎 ∈ {0, 1}, the loss function is given by

− log
(

e𝑣𝑎
e𝑣0 + e𝑣1

)
. (9.3)

The two real values 𝑣0, 𝑣1 are combined to produce a probability distribution

e𝑣0

e𝑣0 + e𝑣1
= 1 − 1

e𝑣0−𝑣1 + 1
,

e𝑣1

e𝑣0 + e𝑣1
=

1
e𝑣0−𝑣1 + 1

, (9.4)

indicating which of 𝑎 = 0 and 𝑎 = 1 is more likely. If 𝑣0 − 𝑣1 is large, then 𝑎 = 0
corresponding to 𝑃 ≠ 𝑄 is more likely. On the other hand, if 𝑣0 − 𝑣1 is small, then
𝑎 = 1 corresponding to 𝑃 = 𝑄 is more likely. We compute the gradient through
back-propagation and update the model using the Adam optimizer (Kingma and Ba,
2014).

Finally, we discuss the prediction process in the neural network model. Due to the
significant amount of measurement errors, we employ a form of measurement error
mitigation. We first characterize the measurement errors for every qubit assuming
the zero state preparations and 𝑋-gates are perfect. For each qubit 𝑖, we obtain a
2 × 2 matrix specifying the probability to measure 0 or 1 if the qubit is in |0⟩⟨0| or
|1⟩⟨1|. We store that as a list of 2 × 2 matrices called calib_2x2. We then expand the
data, referred to as data in the pseudo-code, obtained from the quantum-enhanced
experiments, which is a two-dimensional array of size 𝑏×(2𝑛). Basically, we expand
each measurement to 20 measurements with a real-valued coefficient associated to
each of the expanded measurements. Therefore, data_expanded is a two-dimensional
array of size (20𝑏) × (2𝑛) and coefficients is a one-dimensional array of size 20𝑏.

def noise_inversion(data, calib_2x2 , inverse_cnt=20):

Set data_expanded as an empty array
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Set list_of_coefficients as an empty array

for t from 0 to b−1:
for r from 0 to inverse_cnt−1:

Set single_data as an empty array

Set coefficient as 1.0

for i from 0 to 2n−1:
Set p as calib_2x2[i][1, 1] if data[t][i] = 0

Set p as calib_2x2[i][0, 0] if data[t][i] = 1

With probability 1−p do:
single_data.append(1−data[t][i])
coefficient ∗= −1

Else do:

single_data.append(data[t][i])

Append single_data to data_expanded

Append coefficient to list_of_coefficients

return data_expanded , list_of_coefficients

After obtaining data_expanded, we construct two tensors inp1 and inp2 corresponding
to the same experimental data data_expanded, but different Pauli operators 𝑄1, 𝑄2.
Both inp1 and inp2 are tensors of size (20𝑏) × 𝑛, where 𝑏 is the number of quantum-
enhanced experiments we performed, 𝑛 is the number of qubits, and each entry of
inp1 and inp2 is an integer from 0 to 15 similar to the training process. Then the
neural network make a prediction using the two input tensors inp1 and inp2. In the
outer layer, the neural network model runs the intermediate layer (as well as the
multiple repetitions of inner layer) for each of the two input tensors to obtain two
2D vectors denoted as 𝑢 = (𝑢0, 𝑢1), 𝑣 = (𝑣0, 𝑣1). From the discussion given around
Eq. (9.4). If 𝑢0 − 𝑢1 is small, then it is more likely that 𝑃 = 𝑄1. If 𝑣0 − 𝑣1 is small,
then it is more likely that 𝑃 = 𝑄2. The neural network hence compare 𝑢0 − 𝑢1 and
𝑣0 − 𝑣1 to predict whether 𝑃 = 𝑄1 or 𝑃 = 𝑄2.
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Experiments on learning physical dynamics
For the task of learning about physical dynamics in 1D and 2D, we considered
unitary transformations implemented by 1D and 2D random quantum circuits. We
generated many random circuits, half of which are time-reversal symmetric (i.e., real
orthogonal), and half of which are general unitary circuits without any symmetry.
For each of these circuits, we performed both conventional and quantum-enhanced
experiments to generate classical measurement data. This data was fed to an unsu-
pervised machine learning model to learn a low-dimensional classical representation
of the physical dynamics. We wished to see whether the unsupervised ML model
could recognize the difference between time-reversal symmetric dynamics and gen-
eral dynamics. The results summarized in Fig. 9.3 were obtained in experiments
analyzing 180 different circuits in each of the the two classes, using methods de-
scribed below. The largest quantum circuits we ran on the Sycamore processor are
presented in Table 9.1.

Number of qubits Number of gates Circuit depth
1D dynamics 40 842 40
2D dynamics 40 1388 54

Table 9.1: Circuit information for the experiments on learning physical dynamics.

In (Aharonov, J. S. Cotler, and Qi, 2021), a restricted subclass of conventional
strategies was shown to require an exponential number of experiments to distinguish
between general unitary dynamics and time-reversal-symmetric dynamics. In (Sitan
Chen, J. Cotler, et al., 2021b), some of the authors of the present work have
shown that an exponential number of experiments are required for this task even
when arbitrary conventional strategies are allowed. Furthermore, it is plausible
that under appropriate cryptographic assumptions, the superpolynomial difficulty of
characterizing quantum dynamics in conventional experiments would persist even for
psuedo-random dynamical processes that can be efficiently generated on a quantum
computer. However, at present, explicit constructions of cryptographically-secure
pseudo-random unitaries are not known. In light of this, in our experiments we
resort to studying random quantum circuits similar to those used for demonstrating
quantum computational supremacy (Arute et al., 2019).

In this subsection, we provide further details regarding how our samples of 1D
dynamics and 2D dynamics are generated, how our experiments are conducted,
and how our unsupervised machine learning model works. As we will see, the
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unsupervised ML successfully learns to classify quantum circuits into symmetry
classes when provided with data from quantum-enhanced experiments, but not
when provided with data from conventional experiments.

1D dynamics

We use the layout provided in Supp. Fig. 9.4(b). A 1D circuit is implemented along
the 1D line connecting all the qubits circled in blue. For system size 𝑛 < 20, we
consider a contiguous region on the 1D line with the smallest gate/measurement
error. For general unitary dynamics, we use a 1D version of the quantum supremacy
circuit (Arute et al., 2019). The quantum supremacy circuit in 1D interleaves
between a layer of random single-qubit gates and a layer of two-qubit entangling
gates, namely SYC gates applied to neighboring qubits. We alternate the partitioning
of the two-qubit entangling gates, e.g., (1, 2), (3, 4), (5, 6) ←→ (2, 3), (4, 5) for
𝑛 = 6.

For 𝑇-symmetric (time-reversal-symmetric) dynamics, the single-qubit gates are
real orthogonal 2× 2 matrices of the form e−𝑖𝑡𝑌 , where 𝑌 is the Pauli-𝑌 matrix and 𝑡
is a randomly chosen real number. In addition, we replace the two-qubit entangling
gate SYC by a 𝑇-symmetric two-qubit entangling gate

𝑉 = (𝑈3 ⊗ 𝑈4)SYC(𝑈1 ⊗ 𝑈2), (9.5)

where 𝑈1,𝑈2,𝑈3,𝑈4 are appropriately chosen single-qubit gates. In order to find
a suitable choice of 𝑈1, . . . ,𝑈4 such that the two-qubit gate 𝑉 is time-reversal
symmetric, we employ a numerical optimization. We parameterize each of 𝑈𝑖 as
exp(i(𝑎𝑖𝑋 + 𝑏𝑖𝑌 + 𝑐𝑖𝑍)), where 𝑎𝑖, 𝑏𝑖, 𝑐𝑖 ∈ R are initialized randomly. There are a
total of 12 variables. Next, we define the loss function to be equal to the Frobenius
norm of the imaginary part of the matrix 𝑉 (after fixing the top left entry of 𝑉 to be
real). We then perform gradient descent to minimize the loss function and terminate
once we have found that the loss function is below 10−9. We then replace SYC by
𝑉 .

In the conventional experiment, we begin with |0𝑛⟩⟨0𝑛 | on the system qubits, evolve
under the 1D dynamics, and measure in the 𝑌 -basis. We also considered using
randomized Pauli measurement at the end, but the performance for measuring
in the 𝑌 -basis is slightly better. The rationale is that the output state under 𝑇-
symmetric evolution has purely real amplitudes; hence the expectation value of
any purely imaginary observable, such as the Pauli-𝑌 operator, is always zero. In
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Figure 9.5: To implement the 2D dynamics, we first move from the layout on the
left to the layout in the middle (by swapping some pairs of system and memory
qubits). Then, we iterate between the layout in the middle and the layout in the right
(by swapping all pairs of system and memory qubits).

contrast, the expectation value of 𝑌 after a general unitary evolution is non-zero.
𝑇-symmetric unitaries are nevertheless hard to distinguish from general unitaries in
the conventional setting because the expectation value of𝑌 is exponentially small for
general unitaries; therefore an exponentially large number of experiments are needed
to discern its nonzero value. Indeed, the result in (Aharonov, J. S. Cotler, and Qi,
2021; Sitan Chen, J. Cotler, et al., 2021b) shows that conventional strategies require
an exponential number of experiments for distinguishing 𝑇-symmetric unitaries
from general unitaries.

In the quantum-enhanced experiment, we prepare a Bell state 1√
2
( |00⟩ + |11⟩) for

every pair of system and memory qubits. Then we evolve the system qubits under
the unknown dynamics. After the evolution, we swap the system and the memory
qubits. Then we evolve the system qubits under the unknown dynamics again.
Finally, we measure every pair of system and memory qubits in the Bell basis.
Each quantum-enhanced experiment generates a 2𝑛-bit string. We perform gradient
descent to find our implementation of the Bell state preparation, swap operation,
and Bell measurement using the native gates in the Sycamore processor.

2D dynamics

For our 2D circuits we use the layout provided in Supp. Fig. 9.4(c) which is also
shown as the leftmost layout in Supp. Fig. 9.5. In the leftmost layout, none of the
system qubits (circled blue) are connected to one another. In order to implement
2D dynamics, we first swap some pairs of the system and memory qubits to obtain
the layout shown in the middle. In the middle layout, we can see that many of
the system qubits are connected (the light blue line). We implement a depth-4 1D
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random quantum circuit for each light blue line. Each depth-4 circuit corresponds to
1 layer of single-qubit gates, 1 layer of two-qubit gates, 1 layer of single-qubit gates,
and 1 layer of two-qubit gates. The partitioning of the two layers of two-qubit gates
are different. Then, we swap all pairs of qubits to obtain the layout shown on the
right. The right-most layout connects a different set of system qubits (the light blue
line). We again implement a depth-4 1D random quantum circuit for each light blue
line. After that, we move back to the middle layout and repeat for multiple rounds.
After sufficiently many repetitions, the 𝑛 qubits become globally entangled.

An unsupervised machine learning model

For each circuit, we create a feature vector by obtaining statistics for each bit in
the measurement outcome bitstring. In conventional experiments, each experiment
produces an 𝑛-bit measurement outcome. In quantum-enhanced experiments, each
experiment produces a 2𝑛-bit measurement outcome. In the following, we consider
ℓ = 𝑛 or 2𝑛 depending on whether we are running conventional or quantum-enhanced
experiments. For an ℓ-bit measurement outcome, we obtain a feature vector of size
2ℓ including the first and second moment of each bit. After constructing a feature
vector for each circuit, we map the feature vector to an infinite-dimensional repro-
ducing kernel Hilbert space (corresponding to a Gaussian kernel) that includes all
the polynomial expansions of the feature vector. Then, we find a low-dimensional
subspace in the infinite-dimensional Hilbert space using principal component anal-
ysis (PCA) (Schölkopf, A. Smola, and Müller, 1998). The entire procedure can be
performed efficiently using kernel PCA (Schölkopf, A. Smola, and Müller, 1998).
Kernel PCA is implemented using scikit-learn (Buitinck et al., 2013).

In Fig. 9.3 of the main text, we show a one-dimensional subspace found by the
unsupervised ML model, for both 1D and 2D random quantum circuits. We can
use this one-dimensional representation to classify the circuits into two classes (by
splitting the one-dimensional representation in the middle). Then, we can evaluate
the accuracy of the unsupervised ML model by checking the percentage of circuits
that are correctly classified as general circuits or as 𝑇-symmetric circuits. A two-
dimensional subspace found by the unsupervised ML model, and an assessment of
classification accuracy, are discussed in Section 9.4

Additional experimental results
In Supp. Fig. 9.6, we provide the one-dimensional representations using the best
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(a) (b)
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General T-symmetric

ConventionalQuantum-enhanced

1D dynamics 2D dynamics (c) (d)1D dynamics 2D dynamics

Figure 9.6: The best known human-designed one-dimensional representation for
1D and 2D dynamics. Each point in the one-dimensional space corresponds to a
distinct physical process. Half of the processes have time-reversal symmetry (blue
diamonds) while the other half do not (red circles).

(a)

Conventional

Quantum-enhanced

Conventional

Quantum-enhanced

General T-symmetric

1D Dynamics 2D Dynamics(b)

Figure 9.7: Two-dimensional representation learned by unsupervised ML for
(a) 1D dynamics and (b) 2D dynamics. Each point in the two-dimensional plane
corresponds to a distinct physical process. Half of the processes have time-reversal
symmetry (blue diamonds) while the other half do not (red circles). When fed with
data from quantum-enhanced experiments, the ML model accurately discovers the
underlying symmetry pattern. In contrast, the ML model fails to do so when fed
with data from conventional experiments.

known specialized data-processing approach for the various random quantum cir-
cuits investigated in our conventional and quantum-enhanced experiments. We
design the 1D representation based on the following facts. In noiseless quantum
enhanced experiments, the measurement outcome should be 0 for all qubits when the
evolution satisfies T-symmetry, and the measurement outcome should be a random
0 or 1 when the evolution is a general unitary dynamics. In noiseless conven-
tional experiments, the expectation value of single-qubit 𝑌 observable should be
zero for all qubits when the evolution satisfies T-symmetry, and the expectation
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value of single-qubit 𝑌 observable should be nonzero when the evolution is a gen-
eral unitary dynamics. Using these facts, we consider the representation for the
quantum-enhanced experiments to be the fraction of bits that are measured to be
0. On the other hand, the representation for the conventional experiments is the
absolute value of the expectation value of single-qubit 𝑌 observable averaged over
all qubits. In both cases, we linearly scale the 1D representation to be between −0.5
and 0.5. We can see that the highly-specialized representations are similar to the
one-dimensional representations learned by unsupervised ML (see Fig. 9.3 in the
main text).

In Supp. Fig. 9.7, we provide the two-dimensional representations learned by un-
supervised ML for the various random quantum circuits investigated in our con-
ventional and quantum-enhanced experiments. (One-dimensional representations
are presented in Fig. 9.3 in the main text.) We see that in the second dimension
found by unsupervised ML using quantum-enhanced experiments for 1D dynamics,
𝑇-symmetric dynamics are clustered into two groups. Further inspection shows that
the unsupervised ML model has learned substructure corresponding to the parity of
the depth of the evolution (recall that the depth is always an integer). In principle,
the unsupervised ML model should be able to learn a wide variety of structures in
the dynamics. Notably, we see that it places the distinction between general unitary
dynamics and 𝑇-symmetric dynamics as the major axis (the first dimension), and
places less prominent structure as the second major axis (the second dimension).

In Supp. Fig. 9.8, we provide the accuracy of the unsupervised ML model for
distinguishing between general unitary dynamics and 𝑇-symmetric dynamics. We
see a substantial advantage for using the quantum-enhanced strategy in both the
physical experiments and the noiseless simulation. We perform brute-force noiseless
simulation for conventional experiments because the system size is at most 20. The
noiseless simulation for quantum-enhanced experiments uses the fact that (𝑈 ⊗
𝑈) 1√

2𝑛
∑2𝑛−1
𝑖=0 |𝑖𝑖⟩ = (𝑈𝑈𝑇 ⊗ 𝐼) 1√

2𝑛
∑2𝑛−1
𝑖=0 |𝑖𝑖⟩, hence we can effectively reduce the

simulation to a system size at most 20.

Performance and characterization data
The performance of the device was characterized before each run. The measure-
ment data is collected explicitly and used for measurement error mitigation in the
prediction process of the supervised neural network model (see discussion in the last
part of Section 9.4). The task of learning quantum states is largely limited by the
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Figure 9.8: Accuracy of the unsupervised ML model for classifying general unitary
and 𝑇-symmetric dynamics. For each system size, we generate 100 different cir-
cuits for each of the two classes (general and 𝑇-symmetric). The one-dimensional
representation found by the unsupervised ML model is used to classify the 200
circuits into two classes. We consider both physical experiments and noiseless
simulations. Accuracy is plotted as a function of the number of experiments in
both the conventional and quantum-enhanced settings. In the noiseless simulation,
quantum-enhanced experiments has an accuracy of 1.0 for all system sizes and all
numbers of experiments we considered.

qubit measurement fidelities. A representative sample of the data from the device
is reported in Fig. 9.9, where one can see that typical readout errors (conflated with
errors in preparing zero and one states) range from 3% to 7%. For transmons, the |0⟩
preparation has a small error; hence Supp. Fig. 9.9(a) is dominated by the readout
error. Furthermore, the single-qubit gate error (shown in Supp. Fig. 9.10) is much
smaller than the error shown in Fig. 9.9(b), hence the error shown in Supp. Fig. 9.9(b)
is mostly due to readout errors rather than gate errors. During the actual run of the
experiments, we avoid using qubits with the worst readout errors by checking the
measurement errors before the experiment and selecting the layout accordingly.

The task of learning quantum dynamics involves circuits of higher complexity and
hence is limited by both measurement errors and errors in two-qubit gates. For
these experiments, we report in Supp. Fig. 9.10 the quality of the single-qubit and
two-qubit gates across the device. This data was obtained via parallel cross-entropy
benchmarking and single-qubit randomized benchmarking. The typical single-qubit
gate error is around 0.001 to 0.005, while the typical two-qubit gate error is around
0.01 to 0.05.
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(a) (b)Zero state+measurement error One state+measurement error

Figure 9.9: Sycamore state preparation and measurement error data.
(a) |0⟩ state preparation and measurement error. We prepare a noisy zero state |0⟩
and measure in the computational basis using the noisy single-qubit readout. We
show the probability of measuring |1⟩ in the qubit readout.
(b) |1⟩ state preparation and measurement error. We prepare a noisy one state |1⟩
and measure in the computational basis using the noisy single-qubit readout. We
show the probability of measuring |0⟩ in the qubit readout.
While these values change over time, we present here a representative sample of the
error. One can see that in accordance with physical expectations based on T1 errors,
the readout in the physical 1 state is substantially higher than the 0 state.

9.5 Quantum advantage in predicting highly-incompatible observables
The first task we study using the framework of the previous section involves learning
about a physical system represented by an 𝑛-qubit state 𝜌. We provide an illustration
of the task in Supp. Fig. 9.11.

• In conventional experiments, we consider algorithms that can measure each
copy of 𝜌 one at a time. The algorithm can choose to perform any POVM
measurement on each copy, where the POVM measurement can be chosen
adaptively based on the outcomes of previous experiments.

• In quantum-enhanced experiments, we consider algorithms that can use a
quantum computer to act collectively on multiple copies of 𝜌 to obtain entan-
gled measurement data.

In both scenarios, we consider all quantum data to be used during the learning phase,
and we are left only with classical measurement data. After this learning phase,
the learner is then asked to provide accurate predictions for the expectation value
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(a) (b)Single-qubit gate error Two-qubit gate error

Figure 9.10: Sycamore single- and two-qubit gate error data.
(a) Single-qubit gate error. The figure shows the error of single-qubit gates across
the chip using parallel single-qubit randomized benchmarking.
(b) Two-qubit gate error. The figure shows the error across the chip of two-qubit gates
being executed in parallel, as to account for errors that occur during simultaneous
operation of qubits. We can see that the distribution of errors varies across the chip
couplers, showing the extent to which performance is non-uniform.

of an observable 𝑂, using the classical data obtained from the experiments. The
observable 𝑂 is selected from an exponentially large set {𝑂1, 𝑂2, . . . 𝑂𝑀}, where
𝑂1, . . . , 𝑂𝑀 may not be mutually commuting and 𝑀 is exponential in 𝑛.

Note that when the observables in the set are not mutually commuting, it is im-
possible to measure all of them simultaneously. Hence, a naïve algorithm in the
conventional scenario would be to measure the exponential number of observables
individually, which would result in exponential sample complexity.

Exponential advantage in predicting absolute value of a single observable
We will prove that even predicting the absolute value of just a single observable
requires exponentially many copies in the conventional scenario. In contrast, an
algorithm with quantum memory can predict the expectation values for 𝑀 arbitrary
observables from only O(𝑛 log(𝑀)/𝜖4) copies of 𝜌 through the procedure known as
shadow tomography (Aaronson, 2019; Aaronson and Rothblum, 2019; Bădescu and
O’Donnell, 2020). Hence, even if we would like to predict an exponential number of
observables, an algorithm with quantum memory only needs a polynomial number
of copies.

In fact, for certain natural instances, we can show an even more dramatic separation.
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Figure 9.11: Illustration for the task of predicting highly-incompatible observables.
The unknown quantum state 𝜌 is represented by the green sphere. Conventional
experiments measure each copy of state 𝜌 individually, and the measurements can
depend adaptively on previous measurements. Quantum-enhanced experiments
store many copies of 𝜌 in a quantum memory, process the copies with a quantum
computer, and produce an entangled measurement outcome. The classical data
obtained from the experiments are used to predict a property of 𝜌.

Specifically, for the following states and observables, we will show how to achieve
an exponential versus constant separation.

Definition 14 (Separation instance). Consider a distribution D over 𝑛-qubit state
𝜌 and observable 𝑂.

1. With probability 1/2, the state is 𝜌 = 𝐼/2𝑛 and 𝑂 ∈ {𝐼, 𝑋,𝑌 , 𝑍}⊗𝑛 \ {𝐼⊗𝑛} is
chosen uniformly at random.

2. With probability 1/2, the state is 𝜌 = (𝐼 + 0.9𝑠𝑃)/2𝑛 and 𝑂 = 𝑃, where
𝑠 = {±1} with equal probability and 𝑃 ∈ {𝐼, 𝑋,𝑌 , 𝑍}⊗𝑛 \ {𝐼⊗𝑛} is chosen
uniformly at random.

Note that while 0.9 is used in the definition 𝜌 = (𝐼 + 0.9𝑠𝑃)/2𝑛, any constant value
smaller than 1 is sufficient to obtain the exponential separation. A technical diffi-
culty arises when we consider (𝐼 + 𝑠𝑃)/2𝑛, and it is unclear whether this difficulty
is fundamental. Interestingly, the 𝑛-qubit state 𝜌 considered in the above definition
does not contain any quantum entanglement. The state 𝜌 can be written as a clas-
sical probability distribution over tensor products of single-qubit states. Despite
the lack of quantum entanglement, we can still achieve an exponential versus con-
stant separation. This result is a substantial improvement over the result established
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in (Huang, Richard Kueng, and Preskill, 2021). In (Huang, Richard Kueng, and
Preskill, 2021), some of the authors showed an Ω(2𝑛/3) versus O(𝑛) separation be-
tween conventional and quantum-enhanced strategies, but the task was to predict an
exponential number of observables, which can only be verified using an exponential
amount of time.

Theorem 47 (Exponential advantage in predicting highly-incompatible observ-
ables). We sample an 𝑛-qubit state 𝜌 and an observable 𝑂 according to D given
in Definition 14; both of these are unknown to the algorithm. The algorithm then
learns about 𝜌 through conventional or quantum-enhanced experiments. After the
learning phase, we ask the learning algorithm to predict |tr(𝑂𝜌) |.

• Upper bound: There is an algorithm in the quantum-enhanced scenario using
only O(1) copies of 𝜌 to predict up to 0.25 additive error with probability at
least 0.8.

• Lower bound: For any algorithm in the conventional scenario, it needs at
least Ω(2𝑛) copies of 𝜌 to predict up to 0.25 additive error with probability
at least 0.8.

Here, we are using the standard Big-O and Big-Ω notations: 𝑓 = Ω(𝑔) if there is an
𝑛0, 𝐶 > 0 such that ∀𝑛 > 𝑛0, 𝑓 (𝑛) ≥ 𝐶𝑔(𝑛); and 𝑓 = O(𝑔) if there is an 𝑛0, 𝑀 > 0
such that ∀𝑛 > 𝑛0, | 𝑓 (𝑛) | ≤ 𝑀𝑔(𝑛). We separate the proof of Theorem 47 into
the following two subsections. In Section 9.5, we prove a constant upper bound for
quantum-enhanced experiments for this task. In Section 9.5, we prove an exponential
lower bound for conventional experiments for the same task.

A constant upper bound for quantum-enhanced experiments
The learning algorithm in the quantum-enhanced scenario builds on results presented
in (Huang, Richard Kueng, and Preskill, 2021). We separate the protocol into the
learning phase, where entangled measurements are performed, and the prediction
phase, where we predict the desired properties.

Learning phase

Consider 𝑁Q rounds of two-copy entangled measurements. In round

𝑡 ∈ {1, . . . , 𝑁Q}, (9.6)
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for every 𝑘 ∈ {1, . . . , 𝑛} we measure the 𝑘-th qubit from the first and second copies
of 𝜌 in the Bell basis to obtain

𝑆
(𝑡)
𝑘
∈

{
|Ψ+⟩⟨Ψ+ |, |Ψ−⟩⟨Ψ− |, |Φ+⟩⟨Φ+ |, |Φ−⟩⟨Φ− |

}
, (9.7)

where the Bell basis encompasses four maximally entangled two-qubit states. Here,
|Ω⟩ = 1√

2
( |00⟩ + |11⟩) is the Bell state, and we additionally have

|Ψ+⟩ = 𝐼 ⊗ 𝐼 |Ω⟩ = 1
√

2
( |00⟩ + |11⟩) , |Ψ−⟩ = 𝐼 ⊗ 𝑍 |Ω⟩ = 1

√
2
( |00⟩ − |11⟩) ,

|Φ+⟩ = 𝐼 ⊗ 𝑋 |Ω⟩ = 1
√

2
( |01⟩ + |10⟩) , |Φ−⟩ = i𝐼 ⊗ 𝑌 |Ω⟩ = 1

√
2
( |01⟩ − |10⟩) .

Then, we efficiently store the measurement data 𝑆(𝑡)
𝑘
,∀𝑘 = 1, . . . , 𝑛,∀𝑡 = 1, . . . , 𝑁Q

in a classical memory with 2𝑛𝑁Q classical bits.

Prediction phase

Given an observable 𝑂 drawn from {𝐼, 𝑋,𝑌 , 𝑍}⊗𝑛 \ {𝐼⊗𝑛}, we can use the block
of classical memory obtained in the learning phase to estimate | tr(𝑂𝜌) |. First let
us consider the case where 𝜌 is a single-qubit state. When we measure 𝜌 ⊗ 𝜌 in
the Bell basis, the measurement outcome 𝑆 is a projector onto one of the four Bell
states given in Eq. (9.7). Let 𝜎 ∈ {𝐼, 𝑋,𝑌 , 𝑍} be any Pauli matrix. Each Bell
state is an eigenstate of 𝜎 ⊗ 𝜎 with an eigenvalue ±1. The probability that the Bell
measurement outcome 𝑆 is an eigenstate of 𝜎 ⊗ 𝜎 with eigenvalue +1 is

Prob(+) = 1
2

tr ((𝐼 ⊗ 𝐼 + 𝜎 ⊗ 𝜎) (𝜌 ⊗ 𝜌)) , (9.8)

while the −1 eigenvalue occurs with probability

Prob(−) = 1
2

tr ((𝐼 ⊗ 𝐼 − 𝜎 ⊗ 𝜎) (𝜌 ⊗ 𝜌)) . (9.9)

Therefore, we have

E [tr ((𝜎 ⊗ 𝜎)𝑆)] = Prob(+) − Prob(−) = tr ((𝜎 ⊗ 𝜎) (𝜌 ⊗ 𝜌)) = | tr(𝜎𝜌) |2,
(9.10)

where E denotes the expectation with respect to the probability distribution over
Bell measurement outcomes. We see that the entangling Bell measurement enables
us to estimate the absolute value | tr(𝜎𝜌) | for any Pauli matrix 𝜎 ∈ {𝐼, 𝑋,𝑌 , 𝑍}.

We can generalize this observation to the case where 𝜌 is an 𝑛-qubit state, and
each pair of qubits in 𝜌 ⊗ 𝜌 is measured in the Bell basis to yield the outcomes
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{𝑆𝑘 , 𝑘 = 1, 2, . . . , 𝑛}. If 𝑂 = 𝜎1 ⊗ · · · ⊗ 𝜎𝑛 is a Pauli observable, then as in the
𝑛 = 1 case the Bell state 𝑆𝑘 is an eigenstate of 𝜎𝑘 ⊗ 𝜎𝑘 with eigenvalue ±1 for each
𝑘 . This implies that

⊗𝑛

𝑘=1 𝑆𝑘 is an eigenstate of 𝑂 ⊗ 𝑂 with an eigenvalue ±1. In
particular, let us consider the product

𝑛∏
𝑘=1

tr ((𝜎𝑘 ⊗ 𝜎𝑘 )𝑆𝑘 ) = ±1. (9.11)

This product is equal to +1 when the tensor product of the Bell measurement
outcomes

⊗𝑛

𝑘=1 𝑆𝑘 is an eigenstate of 𝑂 ⊗𝑂 with eigenvalue +1, and it is −1 when
⊗𝑛
𝑘=1𝑆𝑘 is an eigenstate of 𝑂 ⊗ 𝑂 with eigenvalue −1. We conclude that

E

[
𝑛∏
𝑘=1

tr ((𝜎𝑘 ⊗ 𝜎𝑘 )𝑆𝑘 )
]
= E

[
tr

(
(𝑂 ⊗ 𝑂)

𝑛⊗
𝑘=1

𝑆𝑘

)]
= Prob(𝑂 ⊗ 𝑂 = +1) − Prob(𝑂 ⊗ 𝑂 = −1)
= tr ((𝑂 ⊗ 𝑂) (𝜌 ⊗ 𝜌))
= | tr(𝑂𝜌) |2, (9.12)

where E denotes the expectation with respect to the probability distribution of Bell
measurement outcomes. The above derivation shows that the 𝑛-qubit entangling
Bell measurement enables us to estimate the absolute value | tr(𝑂𝜌) | for any 𝑂
considered in Definition 14.

Because Equation (9.12) relates the probability distribution of Bell measurement
outcomes to the absolute value | tr(𝑂𝜌) |, we can estimate | tr(𝑂𝜌) | accurately by
repeatedly making entangling Bell measurements on successive pairs of copies of
𝜌 sufficiently many times. Specifically, in the learning phase, we perform the en-
tangling Bell measurement on 𝑁Q pairs of copies of 𝜌, and collect the measurement
data {𝑆(𝑡)

𝑘
} in the classical memory, where 𝑘 = 1, 2, . . . , 𝑛 labels the qubit pairs, and

𝑡 = 1, 2, . . . , 𝑁Q labels the different rounds of measurements. For any given 𝑛-qubit
Pauli observable 𝑂 = 𝜎1 ⊗ · · · ⊗ 𝜎𝑛, we consider the following estimator

�̂�(𝑂) = 1
𝑁𝑄

𝑁𝑄∑︁
𝑡=1

𝑛∏
𝑘=1

tr
(
(𝜎𝑘 ⊗ 𝜎𝑘 )𝑆(𝑡)𝑘

)
, (9.13)

which can be computed efficiently in time O(𝑛𝑁Q).

Using the expectation evaluated in Equation (9.12), we can apply Hoeffding’s in-
equality to show that the estimate �̂�(𝑂) is equal to the expectation value tr((𝑂 ⊗
𝑂) (𝜌 ⊗ 𝜌)) = | tr(𝑂𝜌) |2 up to a small error with high probability. The formal
statement is given below.
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Lemma 50. Given 𝑁Q = Θ(log(1/𝛿)/𝜖2). For any observable 𝑂 considered in
Definition 14, we have ���̂�(𝑂) − | tr(𝑂𝜌) |2�� ≤ 𝜖, (9.14)

with probability at least 1 − 𝛿.

To obtain an estimate for the absolute value | tr(𝑂𝜌) |, we consider the estimate

�̂� =
√︁

max(0, �̂�). (9.15)

We can show the inequalities

| tr(𝑂𝜌) |2 − 𝜖 ≤ �̂� ≤ | tr(𝑂𝜌) |2 + 𝜖 (9.16)

=⇒ max(0,
√︃
| tr(𝑂𝜌) |2 −

√
𝜖) ≤ �̂� ≤

√︃
| tr(𝑂𝜌) |2 +

√
𝜖, (9.17)

using the fact that √𝑥 + 𝑦 ≤
√
𝑥 + √𝑦.

In the final step of the upper bound proof, we use Lemma 50 to obtain the following
result. As long as 𝑁Q = O(1), we can estimate the absolute value of tr(𝑂𝜌) for any
observable 𝑂 given in Definition 14 to an error 0.25 with probability at least 0.8.

Corollary 15. Let 𝑁Q = Θ(1). For any observable 𝑂 considered in Definition 14,
we have ���̂� − | tr(𝑂𝜌) |�� ≤ 0.25, (9.18)

with probability at least 0.8.

This concludes the constant upper bound for quantum-enhanced experiments in
Theorem 47.

An exponential lower bound for conventional experiments
The proof begins with a reduction to the partially-revealed many-versus-one distin-
guishing task followed by bounding the total variation distance.

Reduction to partially-revealed many-versus-one distinguishing task

We consider the following partially-revealed many-versus-one distinguishing task
discussed in Section 3.2, namely where:

• The null hypothesis is 𝐼/2𝑛.
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• The alternative hypothesis is (𝐼 + 0.9𝑠𝑃)/2𝑛.

The partially revealed information is the Pauli operator 𝑃. Recall the following from
Definition 14,

1. With probability 1/2, the state is 𝜌 = 𝐼/2𝑛 and 𝑂 ∈ {𝐼, 𝑋,𝑌 , 𝑍}⊗𝑛 \ {𝐼⊗𝑛} is
sampled uniformly at random. (Corresponds to the null hypothesis)

2. With probability 1/2, the state is 𝜌 = (𝐼 + 0.9𝑠𝑃)/2𝑛 and 𝑂 = 𝑃, where
𝑠 = {±1} with equal probability and 𝑃 ∈ {𝐼, 𝑋,𝑌 , 𝑍}⊗𝑛 \ {𝐼⊗𝑛} uniformly.
(Corresponds to the alternative hypothesis)

For 𝜌 = 𝐼/2𝑛, we have | tr(𝑂𝜌) | = 0. For 𝜌 = (𝐼 + 0.9𝑠𝑃)/2𝑛, we have | tr(𝑂𝜌) | =
0.9. Therefore, if an algorithm could predict | tr(𝑂𝜌) | to 0.25 error with probability
at least 1 − 𝛿, it could be used to distinguish between the null and alternative
hypotheses with success probability at least 1 − 𝛿.

Total variation distance

From the information-theoretic lower bound for partially-revealed many-versus-one
distinguishing task given in Section 3.2, if we let 𝑝𝜌 (ℓ) be the leaf probability
distribution under 𝜌, then

E
𝑃∈{𝐼,𝑋,𝑌 ,𝑍}⊗𝑛\{𝐼⊗𝑛}

TV
(
𝑝𝐼/2𝑛 , E

𝑠∈{±1}
𝑝 (𝐼+0.9𝑠𝑃)/2𝑛

)
≥ 1 − 2𝛿. (9.19)

For each leaf node ℓ, we consider the path from the root to ℓ,

𝑢0 = 𝑟
𝑠1−→ 𝑢1

𝑠2−→ 𝑢2
𝑠3−→ . . .

𝑠𝑇−1−−−→ 𝑢𝑇−1
𝑠𝑇−−→ 𝑢𝑇 = ℓ. (9.20)

At each node 𝑢, we perform a POVM measurement {𝑤𝑢𝑠 |𝜙𝑢𝑠 ⟩⟨𝜙𝑢𝑠 |}𝑠 on 𝜌 to obtain an
outcome 𝑠 with probability

𝑤𝑢𝑠 ⟨𝜙𝑢𝑠 | 𝜌 |𝜙𝑢𝑠 ⟩ . (9.21)

Hence, we can write down the probability to arrive at the leaf ℓ as

𝑝𝜌 (ℓ) =
𝑇∏
𝑡=1

𝑤
𝑢𝑡−1
𝑠𝑡 ⟨𝜙

𝑢𝑡−1
𝑠𝑡 | 𝜌 |𝜙

𝑢𝑡−1
𝑠𝑡 ⟩ . (9.22)

Recalling the definition of total variation distance, note that for any probability
distributions 𝑝𝐴, 𝑝𝐵 for which 𝑝𝐴 (ℓ) > 0 whenever 𝑝𝐵 (ℓ) > 0,

TV(𝑝𝐴, 𝑝𝐵) =
1
2

∑︁
ℓ

|𝑝𝐴 (ℓ) − 𝑝𝐵 (ℓ) | =
∑︁
ℓ

max(0, 𝑝𝐴 (ℓ) − 𝑝𝐵 (ℓ)) (9.23)
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=
∑︁
ℓ

𝑝𝐴 (ℓ) ·max
(
0, 1 − 𝑝𝐵 (ℓ)

𝑝𝐴 (ℓ)

)
, (9.24)

where the last equality follows from max(𝑎𝑥, 𝑎𝑦) = 𝑎max(𝑥, 𝑦) for all 𝑥, 𝑦 ∈ R and
all 𝑎 ≥ 0.

Observe that for leaf ℓ,

E𝑠∈{±1} 𝑝 (𝐼+0.9𝑠𝑃)/2𝑛 (ℓ)
𝑝𝐼/2𝑛 (ℓ)

=
E𝑠∈{±1}

∏𝑇
𝑡=1 𝑤

𝑢𝑡−1
𝑠𝑡 ⟨𝜙

𝑢𝑡−1
𝑠𝑡 | 𝐼+0.9𝑠𝑃2𝑛 |𝜙𝑢𝑡−1

𝑠𝑡 ⟩∏𝑇
𝑡=1 𝑤

𝑢𝑡−1
𝑠𝑡 ⟨𝜙

𝑢𝑡−1
𝑠𝑡 | 𝐼2𝑛 |𝜙

𝑢𝑡−1
𝑠𝑡 ⟩

(9.25)

= E
𝑠∈{±1}

𝑇∏
𝑡=1

(
1 + 0.9𝑠 ⟨𝜙𝑢𝑡−1

𝑠𝑡 | 𝑃 |𝜙
𝑢𝑡−1
𝑠𝑡 ⟩

)
. (9.26)

Combining (9.24) and (9.26), we can express the total variation distance inside the
expectation in (9.19) as

TV
(
𝑝𝐼/2𝑛 , E

𝑠∈{±1}
𝑝 (𝐼+0.9𝑠𝑃)/2𝑛

)
(9.27)

=
∑︁
ℓ

𝑝𝐼/2𝑛 (ℓ) max

(
0, 1 − E

𝑠∈{±1}

𝑇∏
𝑡=1

(
1 + 0.9𝑠 ⟨𝜙𝑢𝑡−1

𝑠𝑡 | 𝑃 |𝜙
𝑢𝑡−1
𝑠𝑡 ⟩

))
(9.28)

Upper bound for total variation distance

We analyze one of the terms in the total variation distance using Jensen’s inequality
(note that exp(𝑥) is a convex function in 𝑥).

E
𝑠∈{±1}

𝑇∏
𝑡=1

(
1 + 0.9𝑠 ⟨𝜙𝑢𝑡−1

𝑠𝑡 | 𝑃 |𝜙
𝑢𝑡−1
𝑠𝑡 ⟩

)
(9.29)

= E
𝑠∈{±1}

exp

[
𝑇∑︁
𝑡=1

log
(
1 + 0.9𝑠 ⟨𝜙𝑢𝑡−1

𝑠𝑡 | 𝑃 |𝜙
𝑢𝑡−1
𝑠𝑡 ⟩

) ]
(9.30)

≥ exp

[
E

𝑠∈{±1}

𝑇∑︁
𝑡=1

log
(
1 + 0.9𝑠 ⟨𝜙𝑢𝑡−1

𝑠𝑡 | 𝑃 |𝜙
𝑢𝑡−1
𝑠𝑡 ⟩

) ]
(9.31)

= exp

[
𝑇∑︁
𝑡=1

1
2

log
(
1 − 0.81 ⟨𝜙𝑢𝑡−1

𝑠𝑡 | 𝑃 |𝜙
𝑢𝑡−1
𝑠𝑡 ⟩

2
)]

(9.32)

=

𝑇∏
𝑡=1

√︃
1 − 0.81 ⟨𝜙𝑢𝑡−1

𝑠𝑡 | 𝑃 |𝜙
𝑢𝑡−1
𝑠𝑡 ⟩

2
. (9.33)

We can then upper bound the total variation distance as

TV
(
𝑝𝐼/2𝑛 , E

𝑠∈{±1}
𝑝 (𝐼+0.9𝑠𝑃)/2𝑛

)
(9.34)
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≤
∑︁
ℓ

𝑝𝐼/2𝑛 (ℓ) max

(
0, 1 −

𝑇∏
𝑡=1

√︃
1 − 0.81 ⟨𝜙𝑢𝑡−1

𝑠𝑡 | 𝑃 |𝜙
𝑢𝑡−1
𝑠𝑡 ⟩

2
)

(9.35)

=
∑︁
ℓ

𝑝𝐼/2𝑛 (ℓ)
(
1 −

𝑇∏
𝑡=1

√︃
1 − 0.81 ⟨𝜙𝑢𝑡−1

𝑠𝑡 | 𝑃 |𝜙
𝑢𝑡−1
𝑠𝑡 ⟩

2
)
. (9.36)

The last equality follows from the fact that all eigenvalues of 𝑃 are ±1, hence

1 ≥ ∏𝑇
𝑡=1

√︃
1 − 0.81 ⟨𝜙𝑢𝑡−1

𝑠𝑡 | 𝑃 |𝜙
𝑢𝑡−1
𝑠𝑡 ⟩

2.

Lower bound for the number of measurements

We can combine Eq. (9.36) and Eq. (9.19) to find

E
𝑃∈{𝐼,𝑋,𝑌 ,𝑍}⊗𝑛\{𝐼⊗𝑛}

∑︁
ℓ

𝑝𝐼/2𝑛 (ℓ)
(
1 −

𝑇∏
𝑡=1

√︃
1 − 0.81 ⟨𝜙𝑢𝑡−1

𝑠𝑡 | 𝑃 |𝜙
𝑢𝑡−1
𝑠𝑡 ⟩

2
)
≥ 1 − 2𝛿.

(9.37)

By linearity of expectation, we have∑︁
ℓ

𝑝𝐼/2𝑛 (ℓ)
(
1 − E

𝑃∈{𝐼,𝑋,𝑌 ,𝑍}⊗𝑛\{𝐼⊗𝑛}

𝑇∏
𝑡=1

√︃
1 − 0.81 ⟨𝜙𝑢𝑡−1

𝑠𝑡 | 𝑃 |𝜙
𝑢𝑡−1
𝑠𝑡 ⟩

2
)
≥ 1 − 2𝛿.

(9.38)

We analyze the expectation value term in the summand as follows:

E
𝑃∈{𝐼,𝑋,𝑌 ,𝑍}⊗𝑛\{𝐼⊗𝑛}

𝑇∏
𝑡=1

√︃
1 − 0.81 ⟨𝜙𝑢𝑡−1

𝑠𝑡 | 𝑃 |𝜙
𝑢𝑡−1
𝑠𝑡 ⟩

2 (9.39)

= E
𝑃∈{𝐼,𝑋,𝑌 ,𝑍}⊗𝑛\{𝐼⊗𝑛}

exp

[
1
2

𝑇∑︁
𝑡=1

log
(
1 − 0.81 ⟨𝜙𝑢𝑡−1

𝑠𝑡 | 𝑃 |𝜙
𝑢𝑡−1
𝑠𝑡 ⟩

2
)]

(9.40)

≥ exp

[
1
2

𝑇∑︁
𝑡=1

E
𝑃∈{𝐼,𝑋,𝑌 ,𝑍}⊗𝑛\{𝐼⊗𝑛}

log
(
1 − 0.81 ⟨𝜙𝑢𝑡−1

𝑠𝑡 | 𝑃 |𝜙
𝑢𝑡−1
𝑠𝑡 ⟩

2
)]

(9.41)

≥ exp

[
1
2

𝑇∑︁
𝑡=1

E
𝑃∈{𝐼,𝑋,𝑌 ,𝑍}⊗𝑛\{𝐼⊗𝑛}

−1.701 ⟨𝜙𝑢𝑡−1
𝑠𝑡 | 𝑃 |𝜙

𝑢𝑡−1
𝑠𝑡 ⟩

2
]

(9.42)

= exp

[
−0.8505

𝑇∑︁
𝑡=1

1
2𝑛 + 1

]
= exp

(
−0.8505𝑇

2𝑛 + 1

)
. (9.43)

The second line follows from Jensen’s inequality because exp(𝑥) is convex in 𝑥. The
third line uses log(1− 𝑥) ≥ −2.1𝑥,∀𝑥 ∈ [0, 0.82]. The fourth line uses the fact that

E
𝑃∈{𝐼,𝑋,𝑌 ,𝑍}⊗𝑛\{𝐼⊗𝑛}

𝑃 ⊗ 𝑃 =
2𝑛SWAP − 𝐼 ⊗ 𝐼

4𝑛 − 1
, (9.44)
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hence E𝑃∈{𝐼,𝑋,𝑌 ,𝑍}⊗𝑛\{𝐼⊗𝑛} ⟨𝜙𝑢𝑡−1
𝑠𝑡 | 𝑃 |𝜙

𝑢𝑡−1
𝑠𝑡 ⟩

2
= 2𝑛−1

4𝑛−1 = 1
2𝑛+1 .

Combining the analysis with Eq. (9.38), we find that∑︁
ℓ

𝑝𝐼/2𝑛 (ℓ)
(
1 − exp

(
−0.8505𝑇

2𝑛 + 1

) )
≥ 1 − 2𝛿. (9.45)

Because
∑
ℓ 𝑝𝐼/2𝑛 (ℓ) = 1, we have

1 − exp
(
−0.8505𝑇

2𝑛 + 1

)
≥ 1 − 2𝛿. (9.46)

Together, the following lower bound on the number of experiments can be obtained:

𝑇 ≥ 2𝑛 + 1
0.8505

log
(

1
2𝛿

)
. (9.47)

After setting 𝛿 = 0.2 (corresponding to a success probability of at least 0.8), we
conclude the exponential lower bound for conventional experiments in Theorem 47.

An exponential lower bound for comparing absolute values
In the physical experiment presented in the main text, we considered a slightly dif-
ferent task that also yields an exponential lower bound for conventional experiments.
This slightly different task has two main differences when compared with the task
described in Section 9.5. First, we do not consider the maximally mixed state 𝐼/2𝑛.
Second, we ask the learner to predict which of two observables 𝑂1, 𝑂2 has a larger
absolute value. The task description is given below.

Task 2 (Comparing absolute values). There is an unknown state 𝜌 = (𝐼 +0.9𝑠𝑃)/2𝑛

where 𝑠 = {±1} and 𝑃 ∈ {𝐼, 𝑋,𝑌 , 𝑍}⊗𝑛 \ {𝐼⊗𝑛} are both sampled uniformly at
random. The algorithm learns about 𝜌 through conventional or quantum-enhanced
strategies. The algorithm transforms all quantum data to classical data. After
learning, we present the learning algorithm with

𝑂1 = 𝑃, 𝑂2 = 𝑄 or 𝑂1 = 𝑄, 𝑂2 = 𝑃, (9.48)

with equal probability, where𝑄 ≠ 𝑃 ∈ {𝐼, 𝑋,𝑌 , 𝑍}⊗𝑛 \ {𝐼⊗𝑛} is sampled uniformly.
The learning algorithm succeeds if it correctly classifies whether | tr(𝑂1𝜌) | >
| tr(𝑂2𝜌) | or | tr(𝑂1𝜌) | < | tr(𝑂2𝜌) |.

Using the procedure presented in Section 9.5, it is not hard to show that quantum-
enhanced strategies could accomplish the above task with classification accuracy
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(i.e., the probability that the classification is correct) at least 1 − 𝛿 from only
O(log(1/𝛿)) experiments. In contrast, we have the following theorem for conven-
tional experiments.

Theorem 48 (Exponential lower bound for Task 2). A learning algorithm in the
conventional setting (without quantum memory) requires at least

(2𝑛 + 1)
0.8505

log
(

2
1 + 2𝛿

)
(9.49)

experiments to accomplish Task 2 with an accuracy of 1 − 𝛿, for a given 𝛿 > 0.

Lower bound for total variation distance

Here we begin the proof of Theorem 48. Task 2 is closely related to the partially-
revealed many-versus-one distinguishing task, but is not exactly the same. We will
use a slightly different information-theoretic bound for this task. Let us define the
following notation

𝜌𝑠𝑃 ≡
𝐼 + 0.9𝑠𝑃

2𝑛
. (9.50)

We consider a learning algorithm in the conventional setting. We consider the
probability distribution 𝑝𝜌 (ℓ) over the leaf node ℓ when the underlying state is 𝜌.
Recall that the leaf node ℓ is the final memory state of the learning algorithm. Any
procedure that makes the prediction based on the final memory state of the learning
algorithm must have a classification accuracy upper bounded by

1
(4𝑛 − 1) (4𝑛 − 2)

∑︁
𝑃≠𝑄∈{𝐼,𝑋,𝑌 ,𝑍}⊗𝑛\{𝐼⊗𝑛}

[
1
2
+ 1

2
TV

(
E

𝑠∈{±1}
𝑝𝜌𝑠𝑃 (ℓ), E

𝑠∈{±1}
𝑝𝜌𝑠𝑄 (ℓ)

)]
.

(9.51)

To understand why the above inequality holds, consider a fixed 𝑃 ≠ 𝑄. There is an
equal probability that the underlying state is 𝜌+𝑃, 𝜌−𝑃, 𝜌+𝑄 , or 𝜌−𝑄 because 𝑠 ∈ {±1}
with equal probability and 𝑂1 = 𝑃,𝑂2 = 𝑄 or 𝑂1 = 𝑄,𝑂2 = 𝑃 with probability
1/2. In order to distinguish the event of 𝜌+𝑃, 𝜌−𝑃 from the event 𝜌+𝑄 , 𝜌−𝑄 based on
the leaf node ℓ, we need the two distributions E𝑠∈{±1} 𝑝𝜌𝑠𝑃 (ℓ) and E𝑠∈{±1} 𝑝ℓ (𝜌𝑠𝑄)
to be sufficiently distinct. Formally, one can show that the success probability is
upper bounded by

1
2
+ 1

2
TV

(
E

𝑠∈{±1}
𝑝𝜌𝑠𝑃 (ℓ), E

𝑠∈{±1}
𝑝𝜌𝑠𝑄 (ℓ)

)
(9.52)

using LeCam’s two-point method, see e.g. Lemma 1 in (B. Yu, 1997). To achieve
the above success probability, one can use the maximum likelihood protocol that



440

outputs 𝑃 if E𝑠∈{±1} 𝑝𝜌𝑠𝑃 (ℓ) > E𝑠∈{±1} 𝑝𝜌𝑠𝑄 (ℓ) and outputs 𝑄 otherwise. Because
𝑃,𝑄 are both chosen uniformly at random (but distinct), the average classification
accuracy is given in Eq. (9.51). If the learning algorithm could achieve an accuracy
of 1 − 𝛿, we would have

(1 − 𝛿) ≤ 1
2
+ 1

2(4𝑛 − 1) (4𝑛 − 2)
∑︁

𝑃≠𝑄∈{𝐼,𝑋,𝑌 ,𝑍}⊗𝑛\{𝐼⊗𝑛}
(9.53)

TV
(
E

𝑠∈{±1}
𝑝𝜌𝑠𝑃 (ℓ), E

𝑠∈{±1}
𝑝𝜌𝑠𝑄 (ℓ)

)
. (9.54)

This implies that

1 − 2𝛿 ≤ 1
(4𝑛 − 1) (4𝑛 − 2)

∑︁
𝑃≠𝑄∈{𝐼,𝑋,𝑌 ,𝑍}⊗𝑛\{𝐼⊗𝑛}

(9.55)

TV
(
E

𝑠∈{±1}
𝑝𝜌𝑠𝑃 (ℓ), E

𝑠∈{±1}
𝑝𝜌𝑠𝑄 (ℓ)

)
. (9.56)

Upper bound for total variation distance

We now perform triangle inequalities and reuse inequalities in Section 9.5 to upper
bound the total variation distance:

TV
(
E

𝑠∈{±1}
𝑝𝜌𝑠𝑃 (ℓ), E

𝑠∈{±1}
𝑝𝜌𝑠𝑄 (ℓ)

)
(9.57)

≤ TV
(
𝑝𝐼/2𝑛 (ℓ), E

𝑠∈{±1}
𝑝𝜌𝑠𝑃 (ℓ)

)
+ TV

(
𝑝𝐼/2𝑛 (ℓ), E

𝑠∈{±1}
𝑝𝜌𝑠𝑄 (ℓ)

)
(9.58)

≤
∑︁
ℓ

𝑝𝐼/2𝑛 (ℓ)
(
1 −

𝑇∏
𝑡=1

√︃
1 − 0.81 ⟨𝜙𝑢𝑡−1

𝑠𝑡 | 𝑃 |𝜙
𝑢𝑡−1
𝑠𝑡 ⟩

2
)

+
∑︁
ℓ

𝑝𝐼/2𝑛 (ℓ)
(
1 −

𝑇∏
𝑡=1

√︃
1 − 0.81 ⟨𝜙𝑢𝑡−1

𝑠𝑡 |𝑄 |𝜙
𝑢𝑡−1
𝑠𝑡 ⟩

2
)

(9.59)

= 1 −
∑︁
ℓ

𝑝𝐼/2𝑛 (ℓ)
𝑇∏
𝑡=1

√︃
1 − 0.81 ⟨𝜙𝑢𝑡−1

𝑠𝑡 | 𝑃 |𝜙
𝑢𝑡−1
𝑠𝑡 ⟩

2

+ 1 −
∑︁
ℓ

𝑝𝐼/2𝑛 (ℓ)
𝑇∏
𝑡=1

√︃
1 − 0.81 ⟨𝜙𝑢𝑡−1

𝑠𝑡 |𝑄 |𝜙
𝑢𝑡−1
𝑠𝑡 ⟩

2
. (9.60)

The first line is triangle inequality. The second inequality uses Eq. (9.36) for both
𝑃 and 𝑄. The equality step uses

∑
ℓ 𝑝𝐼/2𝑛 (ℓ) = 1. Therefore, we have

1
(4𝑛 − 1) (4𝑛 − 2)

∑︁
𝑃≠𝑄∈{𝐼,𝑋,𝑌 ,𝑍}⊗𝑛\{𝐼⊗𝑛}

TV
(
E

𝑠∈{±1}
𝑝𝜌𝑠𝑃 (ℓ), E

𝑠∈{±1}
𝑝𝜌𝑠𝑄 (ℓ)

)
(9.61)
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≤ 1 −
∑︁
ℓ

𝑝𝐼/2𝑛 (ℓ) E
𝑃∈{𝐼,𝑋,𝑌 ,𝑍}⊗𝑛\{𝐼⊗𝑛}

𝑇∏
𝑡=1

√︃
1 − 0.81 ⟨𝜙𝑢𝑡−1

𝑠𝑡 | 𝑃 |𝜙
𝑢𝑡−1
𝑠𝑡 ⟩

2

+ 1 −
∑︁
ℓ

𝑝𝐼/2𝑛 (ℓ) E
𝑄∈{𝐼,𝑋,𝑌 ,𝑍}⊗𝑛\{𝐼⊗𝑛}

𝑇∏
𝑡=1

√︃
1 − 0.81 ⟨𝜙𝑢𝑡−1

𝑠𝑡 |𝑄 |𝜙
𝑢𝑡−1
𝑠𝑡 ⟩

2 (9.62)

= 1 −
∑︁
ℓ

𝑝𝐼/2𝑛 (ℓ) exp
(
−0.8505𝑇

2𝑛 + 1

)
+ 1 −

∑︁
ℓ

𝑝𝐼/2𝑛 (ℓ) exp
(
−0.8505𝑇

2𝑛 + 1

)
(9.63)

= 2 − 2 exp
(
−0.8505𝑇

2𝑛 + 1

)
. (9.64)

In the above inequalities, the first inequality uses Eq. (9.60). The equality thereafter
uses the following analysis,

1
(4𝑛 − 1) (4𝑛 − 2)

∑︁
𝑃≠𝑄∈{𝐼,𝑋,𝑌 ,𝑍}⊗𝑛\{𝐼⊗𝑛}

𝑓 (𝑃) (9.65)

=
1

4𝑛 − 1

∑︁
𝑃∈{𝐼,𝑋,𝑌 ,𝑍}⊗𝑛\{𝐼⊗𝑛}

𝑓 (𝑃)
©«

1
4𝑛 − 2

∑︁
𝑄∈{𝐼,𝑋,𝑌 ,𝑍}⊗𝑛\{𝐼⊗𝑛}

s.t., 𝑄≠𝑃

1
ª®®®¬ (9.66)

=
1

4𝑛 − 1

∑︁
𝑃∈{𝐼,𝑋,𝑌 ,𝑍}⊗𝑛\{𝐼⊗𝑛}

𝑓 (𝑃) (9.67)

= E
𝑃∈{𝐼,𝑋,𝑌 ,𝑍}⊗𝑛\{𝐼⊗𝑛}

𝑓 (𝑃) , (9.68)

where 𝑓 (𝑃) = ∑
ℓ 𝑝𝐼/2𝑛 (ℓ)

∏𝑇
𝑡=1

√︃
1 − 0.81 ⟨𝜙𝑢𝑡−1

𝑠𝑡 |𝑄 |𝜙
𝑢𝑡−1
𝑠𝑡 ⟩

2, as well as linearity of
expectation, i.e.

E
𝑃∈{𝐼,𝑋,𝑌 ,𝑍}⊗𝑛\{𝐼⊗𝑛}

∑︁
ℓ

𝑝𝐼/2𝑛 (ℓ) =
∑︁
ℓ

𝑝𝐼/2𝑛 (ℓ) E
𝑃∈{𝐼,𝑋,𝑌 ,𝑍}⊗𝑛\{𝐼⊗𝑛}

. (9.69)

The third step in Eq. (9.63) uses Eq. (9.39) to (9.43), and the final step uses∑
ℓ 𝑝𝐼/2𝑛 (ℓ) = 1.

Combining upper and lower bounds

We can combine the lower bound obtained in Eq. (9.55) and the upper bound in
Eq. (9.64) to find

1 − 2𝛿 ≤ 2 − 2 exp
(
−0.8505𝑇

2𝑛 + 1

)
. (9.70)

Basic algebraic manipulations give

0.8505𝑇
2𝑛 + 1

≥ − log
(
1
2
+ 𝛿

)
= log

(
2

1 + 2𝛿

)
. (9.71)
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We have thus concluded the desired lower bound

𝑇 ≥ (2
𝑛 + 1)

0.8505
log

(
2

1 + 2𝛿

)
(9.72)

stated in Theorem 48.

9.6 Quantum advantage in principal component analysis
The (first) principal component of a nonnegative Hermitian matrix 𝐴 is the eigen-
vector of 𝐴 with the largest eigenvalue. Here, we consider a well-known task called
quantum principal component analysis (PCA), which can be achieved efficiently
using the quantum algorithm given in (Lloyd, Masoud Mohseni, and Rebentrost,
2014). The formal definition of the quantum PCA task is given in the following
definition.

Task 3 (Quantum principal component analysis task). Let 𝜌 be an unknown 𝑛-
qubit mixed state whose top eigenvector |𝜙⟩ has eigenvalue larger than all other
eigenvalues by a constant factor independent of 𝑛. Given a fixed observable 𝑂, we
would like to predict ⟨𝜙 |𝑂 |𝜙⟩ up to a small additive error.

We can accomplish this task using the quantum PCA algorithm in (Lloyd, Masoud
Mohseni, and Rebentrost, 2014). In this algorithm, multiple copies of 𝜌 are used in
a protocol that approximates the unitary operator

∑
𝑡 |𝑡⟩⟨𝑡 | ⊗ exp(−𝑖𝜌𝑡), where 𝑡 is

the “time” stored in an auxiliary register. By applying this conditional exp(−𝑖𝜌𝑡)
operation to the initial state 𝜌 =

∑
𝑖 𝜆𝑖 |𝜙𝑖⟩⟨𝜙𝑖 |, performing the quantum Fourier

transform and measuring the auxiliary register, we read out an eigenvalue 𝜆𝑖 and
prepare the corresponding eigenstate |𝜙𝑖⟩ with probability 𝜆𝑖. The eigenvalue can be
measured with constant accuracy, and the eigenstate prepared with constant fidelity,
using a constant number of copies of 𝜌. Once |𝜙𝑖⟩ has been prepared, we can
measure the observable 𝑂 in this state.

By assumption, the largest eigenvalue of 𝜌 is a constant independent of 𝑛, and
furthermore is greater than all other eigenvalues by a constant. Hence by repeating
the above procedure a constant number of times, we can estimate ⟨𝜙 |𝑂 |𝜙⟩ to constant
accuracy, where |𝜙⟩ is the eigenstate of 𝜌 with the largest eigenvalue. In contrast, in
Section 9.6 we show that algorithms that can only learn about 𝜌 through conventional
experiments require an exponential number of copies of 𝜌. Bringing these arguments
all together, we establish the following theorem.
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Theorem 49 (Exponential advantage for quantum principal component analysis).
Let 𝜌 be an unknown 𝑛-qubit mixed state (for 𝑛 > 1) whose top eigenvector |𝜙⟩
has eigenvalue larger than all the other eigenvalues by a constant, and let 𝑍1 be
an observable which is equal to the Pauli-𝑍 operator on the first qubit. Algorithms
learn about 𝜌 through conventional or quantum-enhanced experiments.

• Upper bound: There is an algorithm in the quantum-enhanced scenario using
only O(1) copies of 𝜌 to predict ⟨𝜙| 𝑍1 |𝜙⟩ up to 0.25 error with probability
at least 0.8.

• Lower bound: Any algorithm in the conventional scenario needs at least
Ω(2𝑛/2) copies of 𝜌 to predict ⟨𝜙 | 𝑍1 |𝜙⟩ up to 0.25 error with probability at
least 0.8.

Instead of estimating ⟨𝜙 | 𝑍1 |𝜙⟩, we can also consider the near-term proposals (J.
Cotler and Wilczek, 2020a; Huggins et al., 2020) to obtain some information about
the principal component |𝜓⟩ of an unknown state 𝜌 as follows. The proposals
consider 𝜌𝑀/tr(𝜌𝑀), which approaches |𝜓⟩⟨𝜓 | when 𝑀 is large. In particular,
(Huggins et al., 2020) shows that one can efficiently estimate tr(𝑍1𝜌

2)/tr(𝜌2) by
performing entangling Bell measurements over at most two copies of 𝜌 at a time.
By the analysis in (Huggins et al., 2020), if the eigenvalue associated to the principal
component of 𝜌 is a constant, then tr(𝑍𝑖𝜌2)/tr(𝜌2) can be estimated to any constant
error by performing quantum-enhanced experiments over a constant number of
copies of 𝜌. In contrast, we show that if one can only measure a single copy of 𝜌 at
a time, exponentially many copies are necessary to estimate tr(𝑍𝑖𝜌2)/tr(𝜌2).

Theorem 50 (Exponential advantage for near-term quantum principal component
analysis). Suppose we are given an observable 𝑍1 which is equal to the Pauli-𝑍
operator on the first qubit, as well as an 𝑛-qubit state 𝜌 (for 𝑛 > 1) where an
eigenvector |𝜙⟩ of 𝜌 has an eigenvalue that is larger than all the other eigenvalues
by a constant. We consider algorithms which learn about 𝜌 through conventional
or quantum-enhanced experiments. Then we have the following bounds:

• Upper bound: There is an algorithm in the quantum-enhanced scenario
using only O(1) copies of 𝜌 to predict tr(𝑍1𝜌

2)/tr(𝜌2) up to 0.25 error with
probability at least 0.8.
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• Lower bound: Any algorithm in the conventional scenario needs at least
Ω(2𝑛/2) copies of 𝜌 to predict tr(𝑍1𝜌

2)/tr(𝜌2) up to 0.25 error with probability
at least 0.8.

An exponential lower bound for conventional experiments
The lower bound proofs for both Theorem 49 and Theorem 50 are essentially the
same. We first reduce quantum PCA (or near-term analogs thereof) to a many-
versus-many distinguishing task. Then we bound the total variation distance to
arrive at the exponential lower bound.

Reduction to many-versus-many distinguishing task

We begin by considering a many-versus-many distinguishing task, as discussed in
Section 3.2. The two hypotheses are given below.

• Hypothesis A: The unknown 𝑛-qubit state 𝜌 is given by

𝜌𝐴 ( |𝜓⟩) =
1
2
|0⟩⟨0| ⊗ |𝜓⟩⟨𝜓 | + 1

2
|1⟩⟨1| ⊗ 𝐼

2𝑛−1 , (9.73)

where |𝜓⟩ is an fixed (𝑛 − 1)-qubit pure state, sampled at the outset from the
Haar measure.

• Hypothesis B: The unknown 𝑛-qubit state 𝜌 is given by

𝜌𝐵 ( |𝜓⟩) =
1
2
|1⟩⟨1| ⊗ |𝜓⟩⟨𝜓 | + 1

2
|0⟩⟨0| ⊗ 𝐼

2𝑛−1 , (9.74)

where |𝜓⟩ is again a fixed (𝑛 − 1)-qubit pure state, sampled at the outset from
the Haar measure.

It is not hard to see that in hypothesis A, the principal component (largest eigenvector)
is |𝜙⟩ = |0⟩ ⊗ |𝜓⟩. On the other hand, in hypothesis B, the principal component
(largest eigenvector) is |𝜙⟩ = |1⟩ ⊗ |𝜓⟩. Hence, ⟨𝜙 | 𝑍1 |𝜙⟩ = 1 in hypothesis A, but
⟨𝜙 | 𝑍1 |𝜙⟩ = −1 in hypothesis B. If an algorithm in the conventional scenario can
predict ⟨𝜓 | 𝑍1 |𝜓⟩ up to 0.25 error with probability at least 0.8, then we can use the
output from the algorithm to distinguish between hypotheses A and B with a success
probability of at least 0.8.

Similarly, we have tr(𝑍1𝜌
2)/tr(𝜌2) = (2𝑛−1 − 1)/(2𝑛−1 + 1) in hypothesis A and

tr(𝑍1𝜌
2)/tr(𝜌2) = −(2𝑛−1 − 1)/(2𝑛−1 + 1) in hypothesis B. If an algorithm in the
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conventional scenario can predict tr(𝑍1𝜌
2)/tr(𝜌2) up to 0.25 error with probability

at least 0.8, then we can use the output from the algorithm to distinguish between
hypothesis A and B with a success probability of at least 0.8.

Together, a lower bound for distinguishing hypotheses A and B using conventional
experiments immediately implies a lower bound for both Theorem 49 and Theo-
rem 50.

Total variation distance

As in previous sections, let 𝑝𝜌 (ℓ) denote the probability to arrive at the leaf node
ℓ using the learning algorithm in the conventional setting when the unknown state
is 𝜌. If the algorithm can distinguish between hypotheses A and B with success
probability 0.8, then using Eq. (3.22) we have

TV
(
E
|𝜓⟩
𝑝𝜌𝐴( |𝜓⟩) , E|𝜓⟩

𝑝𝜌𝐵 ( |𝜓⟩)

)
≥ 0.6. (9.75)

From the triangle inequality, we have

TV
(
E
|𝜓⟩
𝑝𝜌𝐴( |𝜓⟩) , 𝑝𝐼/2𝑛

)
+ TV

(
E
|𝜓⟩
𝑝𝜌𝐵 ( |𝜓⟩) , 𝑝𝐼/2𝑛

)
≥ 0.6. (9.76)

For each leaf node ℓ, we consider the path from the root to ℓ,

𝑢0 = 𝑟
𝑠1−→ 𝑢1

𝑠2−→ 𝑢2
𝑠3−→ . . .

𝑠𝑇−1−−−→ 𝑢𝑇−1
𝑠𝑇−−→ 𝑢𝑇 = ℓ. (9.77)

At each node 𝑢, we perform a POVM measurement {𝑤𝑢𝑠 |𝜙𝑢𝑠 ⟩⟨𝜙𝑢𝑠 |}𝑠 on 𝜌 to obtain an
outcome 𝑠 with probability

𝑤𝑢𝑠 ⟨𝜙𝑢𝑠 | 𝜌 |𝜙𝑢𝑠 ⟩ . (9.78)

Hence, we can write down the probability to arrive at the leaf ℓ as

𝑝𝜌 (ℓ) =
𝑇∏
𝑡=1

𝑤
𝑢𝑡−1
𝑠𝑡 ⟨𝜙

𝑢𝑡−1
𝑠𝑡 | 𝜌 |𝜙

𝑢𝑡−1
𝑠𝑡 ⟩ . (9.79)

We will use 𝜌( |𝜓⟩) to denote either 𝜌𝐴 ( |𝜓⟩) or 𝜌𝐵 ( |𝜓⟩). Then recalling (9.24), we
have

TV
(
E
|𝜓⟩
𝑝𝜌( |𝜓⟩) , 𝑝𝐼/2𝑛

)
(9.80)

=
∑︁
ℓ

𝑝𝐼/2𝑛 (ℓ)max

(
0, 1 − E

|𝜓⟩

𝑇∏
𝑡=1

2𝑛 ⟨𝜙𝑢𝑡−1
𝑠𝑡 | 𝜌( |𝜓⟩) |𝜙

𝑢𝑡−1
𝑠𝑡 ⟩

)
. (9.81)
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Upper bound for total variation distance

The central quantity to control in our bound on the total variation distance is

E
|𝜓⟩

𝑇∏
𝑡=1

2𝑛 ⟨𝜙𝑢𝑡−1
𝑠𝑡 | 𝜌( |𝜓⟩) |𝜙

𝑢𝑡−1
𝑠𝑡 ⟩ . (9.82)

Without loss of generality, let us consider 𝜌( |𝜓⟩) = 𝜌𝐴 ( |𝜓⟩) = 1
2 |0⟩⟨0| ⊗ |𝜓⟩⟨𝜓 | +

1
2 |1⟩⟨1| ⊗

𝐼

2𝑛−1 . Suppose each |𝜙𝑢𝑡−1
𝑠𝑡 ⟩ takes the form

|𝜙𝑢𝑡−1
𝑠𝑡 ⟩ = 𝛼

𝑢𝑡−1
𝑠𝑡 |0⟩ ⊗ |𝜙

𝑢𝑡−1,0
𝑠𝑡 ⟩ + 𝛽𝑢𝑡−1

𝑠𝑡 |1⟩ ⊗ |𝜙
𝑢𝑡−1,1
𝑠𝑡 ⟩ , (9.83)

where 𝛼𝑢𝑡−1
𝑠𝑡 , 𝛽

𝑢𝑡−1
𝑠𝑡 ∈ C and

��𝛼𝑢𝑡−1
𝑠𝑡

��2 + ��𝛽𝑢𝑡−1
𝑠𝑡

��2 = 1. Then we have

E
|𝜓⟩

𝑇∏
𝑡=1

2𝑛 ⟨𝜙𝑢𝑡−1
𝑠𝑡 | 𝜌( |𝜓⟩) |𝜙

𝑢𝑡−1
𝑠𝑡 ⟩ (9.84)

= E
|𝜓⟩

𝑇∏
𝑡=1

(
2𝑛−1 ��𝛼𝑢𝑡−1

𝑠𝑡

��2 ���⟨𝜓 |𝜙𝑢𝑡−1,0
𝑠𝑡 ⟩

���2 + ��𝛽𝑢𝑡−1
𝑠𝑡

��2) (9.85)

=
∑︁

𝑆⊆{1,...,𝑇}

∏
𝑡∉𝑆

��𝛽𝑢𝑡−1
𝑠𝑡

��2 [
E
|𝜓⟩

∏
𝑡∈𝑆

2𝑛−1 ��𝛼𝑢𝑡−1
𝑠𝑡

��2 ���⟨𝜓 |𝜙𝑢𝑡−1,0
𝑠𝑡 ⟩

���2] . (9.86)

We need to lower bound the above quantity in order to upper bound the total variation
distance. In order to do so, we utilize the following lemma. The proof of the lemma
is based on Haar integration. For readers unfamiliar with Haar integration, we would
suggest skipping the proof of this lemma.

Lemma 51 (High moment bound for Haar-random state). Consider any 𝑚-qubit
pure states |𝜙1⟩ , . . . , |𝜙𝐾⟩ and an 𝑚-qubit pure state |𝜓⟩ sampled from the Haar
measure, we have

E
|𝜓⟩

𝐾∏
𝑘=1
|⟨𝜓 |𝜙𝑘⟩|2 ≥

1
(2𝑚 + 𝐾 − 1) . . . (2𝑚 + 1) (2𝑚) . (9.87)

Proof. The Haar integration over states shows that

E
|𝜓⟩
|𝜓⟩⟨𝜓 |⊗𝐾 =

1
(2𝑚 + 𝐾 − 1) . . . (2𝑚 + 1) (2𝑚)

∑︁
𝜋∈S𝐾

𝜋, (9.88)

where S𝐾 is the permutation group of 𝐾 items, and 𝜋 is the permutation operator
over the 𝐾 tensor-product space. From Lemma 5.12 in (Sitan Chen, J. Cotler, et al.,
2021b), we have ∑︁

𝜋∈S𝐾

tr

(
𝜋

𝐾⊗
𝑘=1
|𝜙𝑘⟩⟨𝜙𝑘 |

)
≥ 1. (9.89)
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Therefore, we find

E
|𝜓⟩

𝐾∏
𝑘=1
|⟨𝜓 |𝜙𝑘⟩|2 ≥

1
(2𝑚 + 𝐾 − 1) . . . (2𝑚 + 1) (2𝑚) . (9.90)

This concludes the proof.

We apply this lemma with

𝑚 ≡ 𝑛 − 1, 𝐾 ≡ |𝑆 |, |𝜙𝑘⟩ ≡ |𝜙𝑢𝑡−1,0
𝑠𝑡 ⟩ (9.91)

to obtain the following lower bound,

E
|𝜓⟩

∏
𝑡∈𝑆

2𝑛−1 ��𝛼𝑢𝑡−1
𝑠𝑡

��2 ���⟨𝜓 |𝜙𝑢𝑡−1,0
𝑠𝑡 ⟩

���2 ≥∏
𝑡∈𝑆

��𝛼𝑢𝑡−1
𝑠𝑡

��2
(1 + |𝑆 |−1

2𝑛−1 ) . . . (1 + 1
2𝑛−1 ) (1)

(9.92)

≥
∏
𝑡∈𝑆

��𝛼𝑢𝑡−1
𝑠𝑡

��2(
1 + |𝑆 |−1

2𝑛−1

) |𝑆 |−1 (9.93)

≥
(
1 + 𝑇 − 1

2𝑛−1

)−(𝑇−1)∏
𝑡∈𝑆

��𝛼𝑢𝑡−1
𝑠𝑡

��2 . (9.94)

Combining with Eq. (9.86), we have

E
|𝜓⟩

𝑇∏
𝑡=1

2𝑛 ⟨𝜙𝑢𝑡−1
𝑠𝑡 | 𝜌( |𝜓⟩) |𝜙

𝑢𝑡−1
𝑠𝑡 ⟩ (9.95)

≥
(
1 + 𝑇 − 1

2𝑛−1

)−(𝑇−1) ∑︁
𝑆⊆{1,...,𝑇}

∏
𝑡∉𝑆

��𝛽𝑢𝑡−1
𝑠𝑡

��2 ∏
𝑡∈𝑆

��𝛼𝑢𝑡−1
𝑠𝑡

��2 (9.96)

=

(
1 + 𝑇 − 1

2𝑛−1

)−(𝑇−1) 𝑇∏
𝑡=1

(��𝛽𝑢𝑡−1
𝑠𝑡

��2 + ��𝛼𝑢𝑡−1
𝑠𝑡

��2) (9.97)

=

(
1 + 𝑇 − 1

2𝑛−1

)−(𝑇−1)
. (9.98)

Next we leverage Eq. (9.81) to obtain

TV
(
E
|𝜓⟩
𝑝𝜌( |𝜓⟩) , 𝑝𝐼/2𝑛

)
≤

∑︁
ℓ

𝑝𝐼/2𝑛 (ℓ)max

(
0, 1 −

(
1 + 𝑇 − 1

2𝑛−1

)−(𝑇−1)
)

(9.99)

= 1 −
(
1 + 𝑇 − 1

2𝑛−1

)−(𝑇−1)
. (9.100)

The second line follows from
∑
ℓ 𝑝𝐼/2𝑛 (ℓ) = 1 because 𝑝𝐼/2𝑛 (ℓ) is a probability

distribution.
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Lower bound for the number of measurements

We can now utilize the lower bound on the total variation distance given in Eq. (9.76)
and the upper bound obtained above to find

2

(
1 −

(
1 + 𝑇 − 1

2𝑛−1

)−(𝑇−1)
)

(9.101)

≥ TV
(
E
|𝜓⟩
𝑝𝜌𝐴( |𝜓⟩) , 𝑝𝐼/2𝑛

)
+ TV

(
E
|𝜓⟩
𝑝𝜌𝐵 ( |𝜓⟩) , 𝑝𝐼/2𝑛

)
≥ 0.6. (9.102)

Hence, we have the inequality

0.7 ≥
(
1 + 𝑇 − 1

2𝑛−1

)−(𝑇−1)
, (9.103)

=⇒ (𝑇 − 1) log
(
1 + 𝑇 − 1

2𝑛−1

)
≥ log(10/7). (9.104)

Because log(1 + 𝑥) ≤ 𝑥 for all 𝑥 > −1, we have

(𝑇 − 1)2 ≥ 2𝑛−1 log(10/7) =⇒ 𝑇 ≥ 1 +

√√
log

(
10
7

)
2

2𝑛/2. (9.105)

Finally, we have established the lower bound 𝑇 = Ω(2𝑛/2) stated in Theorem 49.

An exponential lower bound using pseudorandomness
In our exponential lower bound in the previous subsection, we relied on a state that
was in part constructed using a Haar-random (𝑛 − 1)-qubit state |𝜓⟩. However,
preparing a Haar-random state from a simple initial state (say, a product state)
requires circuit depth exponential in 𝑛. As such, we can not prepare Haar-random
states in practice. Accordingly we cannot prepare either 𝜌𝐴 ( |𝜓⟩) or 𝜌𝐵 ( |𝜓⟩) in
realistic circumstances.

However, we could instead efficiently construct pseudorandom states |𝜓⟩ which
are (very plausibly) indistinguishable from Haar-random states if we probe with
any POVM instantiated by a poly(𝑛)-time quantum algorithm (Ji, Y.-K. Liu, and
Song, 2018). We will elaborate on this shortly. The parenthetical caveat ‘very
plausibly’ is due to the fact that the construction we use relies on cryptographic
assumptions which are not proven, but are widely believed. In particular, we need
to suppose the existence of quantum-secure one-way functions (Ji, Y.-K. Liu, and
Song, 2018); these are functions which are efficient to evaluate but are hard to invert
even with a quantum computer. Making such an assumption is standard practice in
computational complexity theory, and so we proceed apace.
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Let us recall the definition of a pseudorandom quantum state:

Definition 15 (Pseudorandom quantum states; paraphrased from Definition 3 of (Ji,
Y.-K. Liu, and Song, 2018)). Given a set K, a family of pseudorandom quantum
states on 𝑛 qubits is a family of states {|𝜙𝑘⟩}𝑘∈K and a probability distribution D
over K such that:

• There is a poly(𝑛)-time quantum algorithm that samples a single element 𝑘
from K according to D and generates the corresponding state |𝜙𝑘⟩;

• For any polynomial 𝑡 (𝑛) and any poly(𝑛)-time quantum algorithm A with
outputs in {0, 1}, we have��� Pr𝑘←K

[
A(|𝜙𝑘⟩⊗𝑡 (𝑛)) = 1

]
− Pr|𝜓⟩← Haar

[
A(|𝜓⟩⊗𝑡 (𝑛)) = 1

] ��� ≤ negl(𝑛).
(9.106)

Here negl(𝑛) is a function such that for all constants 𝑐 > 0 we have negl(𝑛) <
𝑛−𝑐 for 𝑛 sufficiently large.

We can interpret the above definition as follows. Eq. (9.106) says that if we are
given a polynomial 𝑡 (𝑛) number of copies of either (i) a fixed pseudorandom state,
or (ii) a fixed Haar random state, any polynomial time quantum algorithm with
binary outputs cannot distinguish between the two cases. Since an exponential depth
quantum algorithm can distinguish between the two cases, (9.106) describes a notion
of computational indistinguishability, i.e. we cannot distinguish with polynomial
time computational resources.

A key question is: do pseudorandom quantum states exist? We recall the following,
contingent result.

Lemma 52 (Existence of pseudorandom quantum states (Ji, Y.-K. Liu, and Song,
2018)). If there exist quantum-secure one-way functions, then they can be used to
construct pseudorandom quantum states.

Explicit details of the construction can be found in (Ji, Y.-K. Liu, and Song,
2018); there have also been refinements and generalizations in follow-up work
(see e.g. (Brakerski and Shmueli, 2019; Brakerski and Shmueli, 2020)).

Before stating the main result of this section, we require the following definition:
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Definition 16 (Polynomial-time algorithms in the conventional scenario). A poly-
time algorithmA in the conventional scenario is constructed as follows. We consider
a learning tree T in the conventional scenario with leaves ℓ, and require that the
protocol described by the learning tree can be implemented by an at most poly(𝑛)-
time quantum algorithm. (As such, the depth of T is at most polynomial in 𝑛.)
Then let D be a poly(𝑛)-time classical algorithm which, given the transcript of
measurements encoded into the leaves ℓ of T , provides a binary output 0 or 1.
We let A be a map from 𝑛-qubit density matrices 𝜌 to {0, 1}, corresponding to
instantiating the learning tree T on copies of 𝜌, followed by using D on the
measurement transcript to determine a binary outcome.

We can now leverage the putative pseudorandom states and the above definition to
establish the following result:

Theorem 51 (Lower bound many-versus-many distinguishing task using pseudo-
random states). Let {|𝜙𝑘⟩}𝑘∈K be a family of pseudorandom states on 𝑛 − 1 qubits.
Then any polynomial-time algorithm A in the conventional scenario with binary
output cannot distinguish 𝜌𝐴 ( |𝜙𝑘⟩) from 𝜌𝐵 ( |𝜙𝑘⟩) for 𝑘 sampled from the probability
distribution over K. That is:�� Pr𝑘←K

[
A(𝜌𝐴 ( |𝜙𝑘⟩)) = 1

]
− Pr𝑘←K

[
A(𝜌𝐵 ( |𝜙𝑘⟩)) = 1

] �� ≤ negl(𝑛) . (9.107)

Proof. Using the triangle inequality several times we have�� Pr𝑘←K
[
A(𝜌𝐴 ( |𝜙𝑘⟩)) = 1

]
− Pr𝑘←K

[
A(𝜌𝐵 ( |𝜙𝑘⟩)) = 1

] �� (9.108)

≤
�� Pr|𝜓⟩←Haar

[
A(𝜌𝐴 ( |𝜓⟩)) = 1

]
− Pr|𝜓⟩←Haar

[
A(𝜌𝐵 ( |𝜓⟩)) = 1

] ��
+

�� Pr𝑘←K
[
A(𝜌𝐴 ( |𝜙𝑘⟩)) = 1

]
− Pr|𝜓⟩←Haar

[
A(𝜌𝐴 ( |𝜓⟩)) = 1

] ��
+

�� Pr𝑘←K
[
A(𝜌𝐵 ( |𝜙𝑘⟩)) = 1

]
− Pr|𝜓⟩←Haar

[
A(𝜌𝐵 ( |𝜓⟩)) = 1

] �� .
Let T be the learning tree corresponding to A, and let D be the binary decision
function mapping leaves of T to {0, 1}. The depth 𝑇 of T is necessarily at most
polynomial in 𝑛; let us denote the depth by𝑇 (𝑛). Then the first term on the right-hand
side of (9.108) is upper bounded by�� Pr|𝜓⟩←Haar

[
A(𝜌𝐴 ( |𝜓⟩)) = 1

]
− Pr|𝜓⟩←Haar

[
A(𝜌𝐵 ( |𝜓⟩)) = 1

] �� (9.109)

=

������ ∑︁
ℓ ∈ leaf(T ) :D(ℓ)=1

(
E
|𝜓⟩
𝑝𝜌𝐴( |𝜓⟩) (ℓ) − E|𝜓⟩ 𝑝𝜌𝐵 ( |𝜓⟩) (ℓ)

)������
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≤
∑︁

ℓ ∈ leaf(T )

���� E|𝜓⟩ 𝑝𝜌𝐴( |𝜓⟩) (ℓ) − E|𝜓⟩ 𝑝𝜌𝐵 ( |𝜓⟩) (ℓ)����
≤ 2 TV

(
E
|𝜓⟩
𝑝𝜌𝐴( |𝜓⟩) , 𝑝𝐼/2𝑛

)
+ 2 TV

(
E
|𝜓⟩
𝑝𝜌𝐵 ( |𝜓⟩) , 𝑝𝐼/2𝑛

)
≤ 4

(
1 −

(
1 + 𝑇 (𝑛) − 1

2𝑛−1

)−(𝑇 (𝑛)−1)
)

(9.110)

where the last inequality comes from (9.101).

Next we turn to bounding the second term on the right-hand side of the inequality
in (9.108), namely�� Pr𝑘←K

[
A(𝜌𝐴 ( |𝜙𝑘⟩)) = 1

]
− Pr|𝜓⟩←Haar

[
A(𝜌𝐴 ( |𝜓⟩)) = 1

] �� .
First, we observe that every A takes in 𝑇 (𝑛) copies of 𝜌𝐴. Accordingly, there is a
polynomial-time algorithm Ã such that Ã(𝜌⊗𝑇 (𝑛)

𝐴
) = A(𝜌𝐴) for all inputs 𝜌𝐴; this

just amounts to a slightly different way of notating the domain of the algorithm A.
Then we can rewrite our term of interest as��� Pr𝑘←K

[
Ã(𝜌𝐴 ( |𝜙𝑘⟩)⊗𝑇 (𝑛)) = 1

]
− Pr|𝜓⟩←Haar

[
Ã(𝜌𝐴 ( |𝜓⟩)⊗𝑇 (𝑛)) = 1

] ��� . (9.111)

But now observe that for any state |𝜔⟩, there is a polynomial-time quantum algorithm
which takes |𝜔⟩ as input and produces 𝜌𝐴 ( |𝜔⟩) as output. Accordingly, repeating
this algorithm on 𝑇 (𝑛) copies of |𝜔⟩, we produce 𝑇 (𝑛) copies of 𝜌𝐴 ( |𝜔⟩); let us
denote this 𝑇 (𝑛)-copy algorithm by B. We have B(|𝜔⟩⊗𝑇 (𝑛)) = 𝜌𝐴 ( |𝜔⟩)⊗𝑇 (𝑛) ,
where B runs in polynomial time (recalling that 𝑇 (𝑛) is polynomial in 𝑛). Then we
can write (9.111) as��� Pr𝑘←K

[
(Ã ◦ B)(|𝜙𝑘⟩⊗𝑇 (𝑛)) = 1

]
− Pr|𝜓⟩←Haar

[
(Ã ◦ B)(|𝜓⟩⊗𝑇 (𝑛)) = 1

] ��� .
(9.112)

Since Ã ◦ B is itself a polynomial-time quantum algorithm, Definition 15 tells us
that (9.112) above is upper bounded by negl(𝑛). So in summary, we find�� Pr𝑘←K

[
A(𝜌𝐴 ( |𝜙𝑘⟩)) = 1

]
− Pr|𝜓⟩←Haar

[
A(𝜌𝐴 ( |𝜓⟩)) = 1

] �� ≤ negl(𝑛) . (9.113)

In an identical manner we can show that the third term on the right-hand side
of (9.108) satisfies the bound�� Pr𝑘←K

[
A(𝜌𝐵 ( |𝜙𝑘⟩)) = 1

]
− Pr|𝜓⟩←Haar

[
A(𝜌𝐵 ( |𝜓⟩)) = 1

] �� ≤ negl(𝑛) . (9.114)

Putting together the inequalities in (9.108), (9.109), (9.113) and (9.114), as well
as observing that 𝑇 (𝑛) is at most polynomially large in 𝑛, we achieve the desired
bound.
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The above Theorem immediately implies that the exponential advantage for quantum
principal component analysis in Theorem 49 has a counterpart for pseudorandom
states. We note that in the pseudorandom context the advantage is not strictly
exponential; rather, the advantage holds for arbitrary polynomial-time quantum
learning algorithms in the quantum-enhanced scenario versus in the conventional
scenario.

9.7 Quantum advantage in testing the purity of a quantum state
An exponential lower bound for conventional experiments
In this subsection, we provide an exponential lower bound for testing if a quantum
state is pure or maximally mixed. In this section, we will denote 𝑑 = 2𝑛 to be the
Hilbert space dimension.

Theorem 52 (Purity testing lower bound). Any learning algorithm without quantum
memory requires

𝑇 ≥ Ω

(
2𝑛/2

)
(9.115)

copies of 𝜌 ∈ H2𝑛×2𝑛 to distinguish between whether 𝜌 is a pure state or a maximally
mixed state with probability at least 2/3.

Proof. Let T be the tree corresponding to any given learning algorithm for this
distinguishing task. By Lemma 4 it suffices to lower bound E[𝑣] ∗ 𝑝 |𝑣⟩⟨𝑣 | (ℓ)/𝑝𝜌mm (ℓ)
for all leaves ℓ. If {𝑒𝑢𝑡 ,𝑠𝑡 }𝑇𝑡=1 are the edges on the path from root to the leaf ℓ, then

E[𝑣] ∗ 𝑝
|𝑣⟩⟨𝑣 | (ℓ)
𝑝𝜌mm (ℓ) = E[𝑣] ∗

𝑇∏
𝑡=1

𝑑 ⟨𝜓𝑢𝑡𝑠𝑡 |𝑣⟩
2 (9.116)

=
𝑑𝑇

𝑑 (𝑑 + 1) · · · (𝑑 + 𝑇 − 1) ·
∑︁
𝜋∈S𝑇

tr

(
𝜋

𝑇⊗
𝑡=1
|𝜓𝑢𝑡𝑠𝑡 ⟩⟨𝜓

𝑢𝑡
𝑠𝑡 |

)
. (9.117)

The second equality follows from Lemma 53 where 𝜋 is the permutation operator.
By Lemma 54 below, the sum in (9.117) is lower bounded by 1, so

E[𝑣] ∗ 𝑝
|𝑣⟩⟨𝑣 | (ℓ)
𝑝𝜌mm (ℓ) ≥

𝑑𝑇

𝑑 (𝑑 + 1) · · · (𝑑 + 𝑇 − 1) ≥
𝑇−1∏
𝑡=0

(
1 − 𝑡

𝑑

)−1
≥

(
1 − 𝑇

𝑑

)𝑇
.

(9.118)
Using Lemma 4, we have the probability that the given learning algorithm success-
fully distinguishes the two settings is upper bounded by 1 −

(
1 − 𝑇

𝑑

)𝑇 . Therefore,
2/3 ≤ 1 −

(
1 − 𝑇

𝑑

)𝑇 implying that 𝑇 ≥ Ω(
√
𝑑).
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Lemma 53 (Haar integration over states, see e.g. (Aram W. Harrow, 2013)).
Consider the uniform (Haar) measure over 𝑛-qubit pure states |𝜓⟩, then

E
|𝜓⟩
[|𝜓⟩⟨𝜓 |⊗𝑇 ] =

(
2𝑛 + 𝑇 − 1

𝑇

)−1 ∑︁
𝜋∈𝑆𝑇

𝜋, (9.119)

where 𝜋 is a permutation operator on a tensor product space of𝑇 𝑛-qubit pure states
and 𝑆𝑇 is the symmetric group of degree 𝑇 .

The key step in the above proof is the following technical lemma that lower bounds
the norm of the projection of any tensor product of pure states to the symmetric
subspace.

Lemma 54. For any collection of pure states |𝜓1⟩ , . . . , |𝜓𝑇 ⟩ ∈ H𝑑 ,∑︁
𝜋∈S𝑇

tr

(
𝜋

𝑇⊗
𝑡=1
|𝜓𝑡⟩⟨𝜓𝑡 |

)
≥ 1. (9.120)

Proof. Let Π denote the projector to the symmetric subspace in (C2𝑛)⊗𝑇 . Note
that (9.120) is equivalent to the statement that tr

(
Π

⊗𝑇

𝑡=1 |𝜓𝑡⟩⟨𝜓𝑡 |
)
≥ 1/𝑇!. This is

clearly true for 𝑇 = 1; we proceed by induction on 𝑇 . Let Π̃ denote the projector
to the symmetric subspace in (C2𝑛)⊗𝑇−1, and define the (unnormalized) state |𝜓⟩ ≜
Π̃

⊗𝑇

𝑡=2 |𝜓𝑡⟩.

As Π̃ is a projector, we have

⟨𝜓 |𝜓⟩ =
〈

𝑇⊗
𝑡=2

𝜓𝑡Π̃

����� Π̃ 𝑇⊗
𝑡=2

𝜓𝑡

〉
= tr

(
Π̃

𝑇⊗
𝑡=2
|𝜓𝑡⟩⟨𝜓𝑡 |

)
≥ 1
(𝑇 − 1)! , (9.121)

where the last step follows by the inductive hypothesis.

We can rewrite the left-hand side of (9.120) as
∑
𝜋∈S𝑇 tr

(
𝜋 |𝜓1⟩⟨𝜓1 | ⊗ |𝜓⟩⟨𝜓 |

)
and

decompose this sum into 𝜋 for which 𝜋(1) = 1 and all other 𝜋. Note that∑︁
𝜋∈S𝑇 :𝜋(1)=1

tr
(
𝜋 |𝜓1⟩⟨𝜓1 | ⊗ |𝜓⟩⟨𝜓 |

)
=

∑︁
�̃�∈S𝑇−1

tr
(
�̃� |𝜓⟩⟨𝜓 |

)
= (𝑇 − 1)! ⟨𝜓 |𝜓⟩ ≥ 1.

(9.122)
It remains to argue that

∑
𝜋∈S𝑇 :𝜋(1)≠1 tr

(
𝜋 |𝜓1⟩⟨𝜓1 | ⊗ |𝜓⟩⟨𝜓 |

)
≥ 0.

Consider the map which sends any 𝜋 ∈ S𝑇 for which 𝜋(1) ≠ 1 to �̌� ∈ S𝑇−1 defined
as follows. For any 2 ≤ 𝑖 ≤ 𝑇 , for which 𝜋(𝑖) ≠ 1, �̌�(𝑖 − 1) ≜ 𝜋(𝑖) − 1 and for
𝑖 = 𝜋−1(1) > 1, �̌�(𝑖 − 1) ≜ 𝜋(1). Then for any 𝜋 ∈ S𝑇 ,

tr
(
𝜋 |𝜓1⟩⟨𝜓1 | ⊗ |𝜓⟩⟨𝜓 |

)
(9.123)
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Figure 9.12: Illustration of the equality (9.124) for 𝑇 = 3, 𝜋 = (123). The
corresponding permutation �̌� = (12) can be seen on the right-hand side.

= tr
©«�̌�(Id ⊗ · · · ⊗ Id︸         ︷︷         ︸

𝜋(1)−2

⊗|𝜓1⟩⟨𝜓1 | ⊗ Id ⊗ · · · ⊗ Id︸         ︷︷         ︸
𝑇−𝜋(1)

) |𝜓⟩⟨𝜓 |
ª®®¬ (9.124)

= tr
(
(Id ⊗ · · · ⊗ Id ⊗|𝜓1⟩⟨𝜓1 | ⊗ Id ⊗ · · · ⊗ Id) |𝜓⟩⟨𝜓 |𝑃†

�̌�

)
(9.125)

= tr
(
(Id ⊗ · · · ⊗ Id ⊗|𝜓1⟩⟨𝜓1 | ⊗ Id ⊗ · · · ⊗ Id) |𝜓⟩⟨𝜓 |

)
≥ 0, (9.126)

as claimed, where the first step (9.124) is illustrated in Figure 9.12.

A constant upper bound for quantum-enhanced experiments
Here we give a simple algorithm for the above distinguishing task that matches the
lower bound in Theorem 52 up to constant factors.

Theorem 53. There is a learning algorithm without quantum memory which takes
𝑇 = 𝑂 (2𝑛/2) copies of 𝜌 to distinguish between whether 𝜌 is a pure state or maximally
mixed.

To prove this, we will use the following well-known result from classical distribution
testing:

Theorem 54 ((Chan et al., 2014; Diakonikolas, Kane, and Nikishkin, 2014; Canonne
et al., 2018)). Given 0 < 𝜖 < 1 and sample access to a distribution 𝑞 over [𝑑], there
is an algorithm TestUniformityL2(𝑞, 𝑑, 𝜖) that uses 𝑇 = 𝑂 (

√
𝑑/𝜖2) samples from 𝑞

and with probability 9/10 distinguishes whether 𝑞 is the uniform distribution over
[𝑑] or 𝜖/

√
𝑑-far in 𝐿2 distance from the uniform distribution.

We will also need the following standard moment calculation:

Lemma 55 (Lemma 6.4 in (Sitan Chen, J. Li, and O’Donnell, 2021)). For Haar-
random U ∈ 𝑈 (2𝑛) and 𝜌 ∈ H2𝑛×2𝑛 , let 𝑍 denote

∑2𝑛
𝑖=1

(
⟨𝑖 |U†MU |𝑖⟩

)2. Then

E 𝑍 =
1

2𝑛 + 1

(
tr(M)2 + ∥M∥2HS

)
. (9.127)

If in addition we have that tr(M) = 0, then

E 𝑍2 ≤ 1 + 𝑜(1)
4𝑛

∥M∥4HS . (9.128)
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We are now ready to prove Theorem 53.

Proof of Theorem 53. Sample a Haar-random basis {U |𝑖⟩}𝑖∈[2𝑛] and measure every
copy of 𝜌 in this basis. If 𝜌 is maximally mixed, note that the distribution over
outcomes from a single measurement is the uniform distribution 𝑢 over [2𝑛]. On the
other hand, if 𝜌 is a pure state, let 𝑍 denote the random variable

𝑞U − 𝑢
2

2, where 𝑞U

is the distribution over outcomes from a single measurement. Note that 𝑍 is precisely
the random variable 𝑍 defined in Lemma 55 for M = 𝜌 − 𝜌mm, so we conclude that
E 𝑍 = 1

2𝑛+1 · ∥𝜌 − 𝜌mm∥2HS and E 𝑍2 ≤ 1+𝑜(1)
16𝑛 · ∥𝜌 − 𝜌mm∥4HS, so by Paley-Zygmund,

there is an absolute constant 𝑐 > 0 for which Pr |𝑍 | ≥ 𝑐 ∥𝜌 − 𝜌mm∥2HS ≥ 9/10. Note
that ∥𝜌 − 𝜌mm∥2HS = 1− 1/2𝑛, so with probability at least 9/10 over the randomness
of U,

𝑞U − 𝑢


2 ≥ Ω(2−𝑛/2).

So by Theorem 54, TestUniformityL2(𝑞U, 2𝑛,Θ(2−𝑛/2)) will take 𝑇 = 𝑂 (2𝑛/2)
samples from 𝑞 and correctly distinguish whether 𝑞 is uniform or far from uniform
with probability at least 4/5 over the randomness of the algorithm and of U.

9.8 Quantum advantage in learning a polynomial-time quantum process
Here we consider the problem of learning a polynomial-time quantum process and
provide a rigorous exponential separation between the conventional and quantum-
enhanced learning settings.

Problem setting
We consider an unknown quantum process E on 𝑛 qubits generated as follows.

• An 𝑛-qubit input state 𝜎 is accompanied by an 𝑚 ancillary qubits initialized
at |0𝑚⟩⟨0𝑚 |.

• 𝑝 unknown two-qubit unitary gates are applied on the (𝑛 + 𝑚)-qubit system
𝜎 ⊗ |0𝑚⟩⟨0𝑚 |.

• The ancillary qubits are hidden, resulting in an 𝑛-qubit mixed state E(𝜎)

When 𝑚, 𝑝 = poly(𝑛), we refer to E as a polynomial-time quantum process. Next,
we consider an input probability distribution D over 𝑛-qubit mixed states 𝜎. The
goal is to learn an approximate model Ẽ of E, such that we can accurately predict
the output state on average:

E
𝜎∼D

Ẽ (𝜎) − E(𝜎)1 ≤ 𝜖 . (9.129)
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In the above, ∥𝑋 ∥1 = max𝑂:∥𝑂∥∞≤1 | tr(𝑂𝑋) | is the trace norm.

Rigorous statements
We have the following theorem for quantum-enhanced experiments showing that
they can efficiently learn a polynomial-time quantum process. We will prove the
theorem later in Section 9.8.

Theorem 55 (Approximate learning of quantum processes – polynomial upper
bound). For any distribution D and any 𝜖, 𝛿 > 0, there exists a learning algorithm
in the quantum-enhanced setting that can learn an approximate model Ẽ such that
with probability at least 1 − 𝛿,

E
𝜎∼D

Ẽ (𝜎) − E(𝜎)1 ≤ 𝜖 (9.130)

from at most Õ(poly(𝑛) log(1/𝛿)/𝜖4) accesses to E, where Õ(·) hides factors of
log(1/𝜖).

In contrast, our hardness results for predicting properties of physical states in the
conventional setting (see Theorem 47 in Section 9.5) immediately implies the fol-
lowing exponential lower bound.

Corollary 16 (Approximate learning of quantum processes – exponential lower
bound). Let D be any distribution and E be the quantum process that always
generates a state 𝜌 considered in Def. 14. Any algorithm in the conventional setting
that learns an approximate model Ẽ such that

E
𝜎∼D

Ẽ (𝜎) − E(𝜎)1 ≤ 0.25, (9.131)

must use at least Ω(2𝑛) accesses to E.

Proof. We consider 𝑚 = 2𝑛. The two-qubit gates swap the input state 𝜎 to the first
𝑛 ancillary qubits. Then we use the rest of the 𝑛 ancillary qubits and the 𝑛 system
qubits (i.e. the qubits in the input state 𝜌) to prepare a state 𝜌 considered in Def. 14.
To prepare the maximally mixed state 𝐼/2𝑛, we entangle each of the system qubits
with the corresponding ancillary qubit to prepare a Bell state 1√

2
( |00⟩ + |11⟩). To

prepare the alternative state (𝐼 + 0.9𝑠𝑃)/2𝑛, we perform the following procedure.

1. For qubit 𝑖, where 𝑃𝑖 is not the last non-identity Pauli operator (i.e. last in
terms of having the largest index 𝑖), we entangle the 𝑖-th system qubit with the
corresponding ancillary qubit to prepare a Bell state 1√

2
( |00⟩ + |11⟩).
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2. For the last remaining qubit 𝑖, which corresponds to the index 𝑖 such that 𝑃𝑖
is the last non-identity Pauli operator, we apply a sequence of two-qubit gates
entangling qubit 𝑖 to qubit 𝑗 with 𝑃 𝑗 ≠ 𝐼. The sequence of two-qubit gates
stores the parity (or 1 − parity) of all qubits 𝑗 with 𝑃 𝑗 ≠ 𝐼. After this step,
when we trace over the ancillary qubits, we have generated (𝐼 + 𝑠𝑃(𝑍))/2𝑛,
where 𝑃(𝑍) =

⊗𝑛

𝑖=1 𝐹 (𝑃𝑖) and 𝐹 (𝐼) = 𝐼, 𝐹 (𝑋) = 𝑍, 𝐹 (𝑌 ) = 𝐼, 𝐹 (𝑍) = 𝐼.
Then, we rotate the corresponding ancillary qubit for qubit 𝑖 from |0⟩ to√

0.95 |0⟩ +
√

0.05 |1⟩ and apply a controlled-not gate from the ancillary qubit
(control) to qubit 𝑖. The system qubits are now in the state (𝐼 + 0.9𝑠𝑃(𝑍))/2𝑛.

3. Finally, for each qubit 𝑖 with 𝑃𝑖 = 𝑋 , we rotate the system qubit from |0⟩ to
|+⟩ = 1√

2
( |0⟩ + |1⟩) and from |1⟩ to |−⟩ = 1√

2
( |0⟩ − |1⟩). For each qubit 𝑖 with

𝑃𝑖 = 𝑌 , we rotate from 0 to 𝑦+ and from 1 to 𝑦−. Tracing over the ancillary
qubits, the system qubits are now in the state (𝐼 + 0.9𝑠𝑃)/2𝑛.

We can see that the number of gates 𝑝 is O(𝑛). Furthermore, no matter what the
input state 𝜎 is, the above quantum process always produces a state 𝜌 considered in
Def. 14.

When an algorithm in the conventional setting has learned an approximate model Ẽ
with

E
𝜎∼D

Ẽ (𝜎) − E(𝜎)1 ≤ 0.25, (9.132)

we can use Jensen’s inequality to conclude E
𝜎∼D
Ẽ (𝜎) − 𝜌


1
≤ E
𝜎∼D

Ẽ (𝜎) − E(𝜎)1 ≤ 0.25. (9.133)

Because ∥𝑋 ∥1 = max𝑂:∥𝑂∥∞≤1 | tr(𝑂𝑋) |, the above implies that the algorithm can
predict tr(𝑂𝜌) up to an error of 0.25. From Theorem 47, we conclude that the
learning algorithm must use at least Ω(2𝑛) copies of 𝜌, which corresponds to Ω(2𝑛)
accesses to E.

Proof of polynomial upper bound in Theorem 55
Theorem 55 establishes an upper bound on the number of times we must access the
unknown process E in the quantum-enhanced setting to construct an approximate
model of E. Note that the theorem only concerns the number of times we run
the process E; it does not address the computational complexity of the learning
procedure. Our strategy for proving the theorem is as follows. First we find an
upper bound on the number of elements of an 𝜖′-covering net for the set of all
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Convering net

Quantum hypothesis selection
using quantum-enhanced experiments

: A physical process
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Figure 9.13: Illustration for the proof of Theorem 55 on learning polynomial-time
quantum processes. We first form a covering net (all dark blue dots) for the space
of all polynomial-time quantum processes (the cloud shape). Any polynomial-time
quantum process is close to an element in the covering net. Then we perform
quantum hypothesis selection (Bădescu and O’Donnell, 2020) using a quantum
dataset stored in the quantum memory to find the approximate physical process.

quantum processes that can be constructed using up to 𝑝 two-qubit quantum gates,
with distance defined by the diamond norm. Next we explain how to use a quantum
hypothesis testing algorithm to find a process Ẽ in the covering net that approximates
E as specified in (9.130), if 𝜖′ is appropriately chosen. This quantum hypothesis
testing method can be carried out in the quantum-enhanced setting, but not in the
conventional setting. The number of times we must access E depends on the size of
the covering net, and can be shown to scale polynomially with the number of gates
𝑝, proving the theorem. An illustration is given in Supp. Fig. 9.13.

Covering net

First, we construct the covering net for the set S of quantum processes with a fixed
𝑛, 𝑚, 𝑝. An 𝜖-covering net of a set S is a subset N𝜖 ⊆ S such that for every point
𝑥 ∈ S, there exists a point 𝑦 ∈ N with ∥𝑥 − 𝑦∥ ≤ 𝜖 in an appropriate norm.

Recall that a unitary𝑈 corresponds to a unitary channelU defined as

U(𝜌) = 𝑈𝜌𝑈†. (9.134)

Because two-qubit unitary channels form a bounded set in a finite-dimensional
space, the 𝜖-covering net for two-qubit unitary channels has a size of at most(𝑐1

𝜖

)𝑐2
, (9.135)
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where 𝑐1, 𝑐2 are two constants (see, e.g., Section 4.2 in (Vershynin, 2018b)). Here,
we consider the norm to be the diamond norm ∥·∥⋄ (see Section 3.3 in (Watrous,
2018)). The bound in (9.135) only pertains to the covering net size when the unitary
acts on a fixed set of two qubits. Let us now consider two-qubit unitary channels
that can act on any two of the 𝑛 + 𝑚 qubits. Because there are

(𝑛+𝑚
2

)
pairs of qubits

that the unitary could act on, the size of the 𝜖-covering net N𝜖,𝑛+𝑚 of all two-qubit
gates on an (𝑛 + 𝑚)-qubit system is upper bounded as follows,��N𝜖,𝑛+𝑚 �� ≤ (

𝑛 + 𝑚
2

) (𝑐1
𝜖

)𝑐2
. (9.136)

To construct an 𝜖-covering net for the composed quantum process E, we need to
consider 𝜖 = 𝜖′/𝑝 in N𝜖,𝑛+𝑚. Consider any sequence of two-qubit unitary channels
U1, . . . ,U𝑝 on an (𝑛 + 𝑚)-qubit system. For each 𝑈𝑖 in the sequence, we find the
closest unitary channel Ũ𝑖 in N𝜖,𝑛+𝑚, hence

U𝑖 − Ũ𝑖⋄ ≤ 𝜖 . Then we can use a
telescoping sum and the triangle inequality to see thattr𝑛+1,...,𝑛+𝑚

(
U𝑝 . . .U1(𝜌 ⊗ |0𝑚⟩⟨0𝑚 |)

)
− tr𝑛+1,...,𝑛+𝑚

(
Ũ𝑝 . . . Ũ1(𝜌 ⊗ |0𝑚⟩⟨0𝑚 |)

)
1

(9.137)

≤
U𝑝 . . .U1(𝜌 ⊗ |0𝑚⟩⟨0𝑚 |) − Ũ𝑝 . . . Ũ1(𝜌 ⊗ |0𝑚⟩⟨0𝑚 |)


1 (9.138)

≤
U𝑝 . . .U1(𝜌 ⊗ |0𝑚⟩⟨0𝑚 |) − U𝑝Ũ𝑝−1 . . . Ũ1(𝜌 ⊗ |0𝑚⟩⟨0𝑚 |)


1

+
U𝑝Ũ𝑝−1 . . .U1(𝜌 ⊗ |0𝑚⟩⟨0𝑚 |) − Ũ𝑝Ũ𝑝−1 . . . Ũ1(𝜌 ⊗ |0𝑚⟩⟨0𝑚 |)


1

(9.139)

≤
U𝑝−1 . . .U1(𝜌 ⊗ |0𝑚⟩⟨0𝑚 |) − Ũ𝑝−1 . . . Ũ1(𝜌 ⊗ |0𝑚⟩⟨0𝑚 |)


1 +

U𝑝 − Ũ𝑝


⋄

(9.140)

≤ . . . (9.141)

≤
𝑝∑︁
𝑖=1

U𝑖 − Ũ𝑖⋄ (9.142)

≤ 𝑝𝜖 = 𝜖′. (9.143)

The first inequality uses the fact that taking partial trace does not increase the
trace norm. The second inequality uses ∥𝐴 − 𝐵∥ ≤ ∥𝐴 − 𝐶∥ + ∥𝐶 − 𝐵∥. The
third inequality uses ∥E(𝑋)∥1 ≤ ∥𝑋 ∥1 for any CPTP map E, and ∥E(𝜌)∥1 ≤
∥E∥⋄ ∥𝜌∥1 = ∥E∥⋄. The fourth inequality considers the same steps taken in the
second and third inequality. Then, using induction, we obtain the formula given in
the second-to-last line. The last line uses the fact that

U𝑖 − Ũ𝑖⋄ ≤ 𝜖 for all 𝑖 and
𝜖 = 𝜖′/𝑝.
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From the above analysis, we can see that we can find an 𝜖 ′-covering netN𝜖 ′,𝑛,𝑚,𝑝 for
the space of E with an 𝑛-qubit input state, 𝑚 ancillary qubits, and 𝑝 two-qubit gates
that satisfies ��N𝜖 ′,𝑛,𝑚,𝑝 �� ≤ [(

𝑛 + 𝑚
2

) ( 𝑝𝑐1
𝜖′

)𝑐2
] 𝑝
. (9.144)

For any E in the space, we can find an Ẽ ∈ N𝜖 ′,𝑛,𝑚,𝑝 such that for all 𝑛-qubit input
states 𝜌 we have E(𝜌) − Ẽ (𝜌)1 ≤ 𝜖

′. (9.145)

We will then utilize the 𝜖-covering net N𝜖 ′,𝑛,𝑚,𝑝 in the subsequent proof. An 𝜖-
covering net of quantum processes have also been used in (Huang, Richard Kueng,
and Preskill, 2021) to establish an information-theoretic bound on quantum advan-
tage in (Caro, Huang, Cerezo, et al., 2021) to analyze generalization performance
of quantum neural networks.

Learning via Hypothesis Selection: Protocol and Analysis

We will sample 𝑁in input states 𝜌1, . . . , 𝜌𝑁in from the distribution D. For each
𝑖 ∈ [𝑁in] and every Ẽ𝑘 ∈ N𝜖 ′,𝑛,𝑚,𝑝 (for 𝜖′ to be tuned later), we will access the true
process E a number of times 𝑁out using 𝜌𝑖 as the input state, obtaining 𝑁out copies
of E(𝜌𝑖). We will store these 𝑁in · 𝑁out states in the quantum memory and run a
known algorithm for quantum hypothesis selection (Bădescu and O’Donnell, 2020)
to determine for which 𝑘 the product state

⊗𝑁in
𝑖=1 Ẽ𝑘 (𝜌𝑖) is approximately closest to⊗𝑁in

𝑖=1 E(𝜌𝑖). We will argue that if 𝜖′ is sufficiently small and 𝑁in sufficiently large,
then the index 𝑘 that we find will satisfy

E
𝜌∼D

[E(𝜌) − Ẽ𝑘 (𝜌)
1

]
≤ 𝜖 , (9.146)

as desired.

We now proceed to the analysis of this protocol. We begin with an estimate for the
distance between product states whose components are pairwise far from each other.

Lemma 56. If 𝜌1, . . . , 𝜌𝑁 and 𝜌′1, . . . , 𝜌
′
𝑁

satisfy 1
𝑁

∑𝑁
𝑖=1

𝜌𝑖 − 𝜌′𝑖1 ≥ 𝜖 , then⊗
𝑖

𝜌𝑖 −
⊗
𝑖

𝜌′𝑖


1

≥ 2
(
1 − (1 − 𝜖2/4)𝑁/2

)
. (9.147)
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Proof. For convenience, denote 𝜖𝑖 :=
𝜌𝑖 − 𝜌′𝑖1. We have that 𝐹 (𝜌𝑖, 𝜌′𝑖) ≤ 1−𝜖2

𝑖
/4,

so ⊗
𝑖

𝜌𝑖 −
⊗
𝑖

𝜌′𝑖


1

≥ 2 ©«1 −

√√√
𝐹

(⊗
𝑖

𝜌𝑖,
⊗
𝑖

𝜌′
𝑖

)ª®¬ (9.148)

≥ 2 ©«1 −

√√√
𝑁∏
𝑖=1
(1 − 𝜖2

𝑖
/4)ª®¬ (9.149)

≥ 2 ©«1 −
(

1
𝑁

∑︁
𝑖

(1 − 𝜖2
𝑖 /4)

)𝑁/2ª®¬ (9.150)

= 2
(
1 − (1 − 𝜖2/4)𝑁/2

)
(9.151)

where the first step follows by the standard inequality ∥𝜌 − 𝜌′∥1 ≥ 2
√︁

1 − 𝐹 (𝜌, 𝜌′) ,
the second step follows by tensorization of fidelity, the third step follows by AM-
GM and the fact that 𝜖𝑖 =

𝜌𝑖 − 𝜌′𝑖1 ≤ 2, and the last step follows from the
assumption.

Next, we elaborate on how to select 𝑁in. Consider any Ẽ ∈ N𝜖 ′,𝑛,𝑚,𝑝. By Ho-
effding’s inequality, because 𝜌1, . . . , 𝜌𝑁in are sampled independently and identically
distribued from the distribution D, and ∥𝜌 − 𝜌′∥ ≤ 2 for all density matrices 𝜌, 𝜌′

we have ����� 1
𝑁in

𝑁in∑︁
𝑖=1

Ẽ (𝜌𝑖) − E(𝜌𝑖)
1
− E
𝜌∼D

Ẽ (𝜌) − E(𝜌)
1

����� ≤ 𝜖/2 (9.152)

with probability at least 1 − 𝛿′ provided 𝑁in = Ω(log(1/𝛿′)/𝜖2). By a union bound
over N𝜖 ′,𝑛,𝑚,𝑝, the above bound holds simultaneously for all Ẽ ∈ N𝜖 ′,𝑛,𝑚,𝑝 with
probability at least 1− |N𝜖 ′,𝑛,𝑚,𝑝 |𝛿′. Henceforth, we condition on this event holding.

The following shows that it suffices to find Ẽ ∈ N𝜖 ′,𝑛,𝑚,𝑝 for which the product state⊗𝑁in
𝑖=1 Ẽ (𝜌𝑖) is sufficiently close to

⊗𝑁in
𝑖=1 E(𝜌𝑖).

Lemma 57. If (9.152) holds for all Ẽ ∈ N𝜖 ′,𝑛,𝑚,𝑝, then if 𝑁in⊗
𝑖=1
Ẽ (𝜌𝑖) −

𝑁in⊗
𝑖=1
E(𝜌𝑖)


1

≤ 2
(
1 − (1 − 𝜖2/16)𝑁in/2

)
(9.153)

for some Ẽ ∈ N𝜖 ′,𝑛,𝑚,𝑝, we have that E𝜌∼D
Ẽ (𝜌) − E(𝜌)

1
≤ 𝜖 .
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Proof. We prove the contrapositive. Suppose E𝜌∼D
Ẽ (𝜌) − E(𝜌)

1
> 𝜖 . Then by

(9.152), we have
1
𝑁in

𝑁in∑︁
𝑖=1

Ẽ (𝜌𝑖) − E(𝜌𝑖)
1
≥ 𝜖/2. (9.154)

The lemma follows from Lemma 56.

As we show in the next lemma, there exists an Ẽ ∈ N𝜖 ′,𝑛,𝑚,𝑝, namely the process
in the covering net which is closest to E, for which (9.153) holds, provided 𝜖′ is
sufficiently small.

Lemma 58. For any 𝜖′ > 0, there exists an Ẽ ∈ N𝜖 ′,𝑛,𝑚,𝑝 for which 𝑁in⊗
𝑖=1
Ẽ (𝜌𝑖) −

𝑁in⊗
𝑖=1
E(𝜌𝑖)


1

≤ 𝑁in𝜖
′. (9.155)

Proof. Take Ẽ ∈ N𝜖 ′,𝑛,𝑚,𝑝 satisfying
Ẽ (𝜌) − E(𝜌)

1
≤ 𝜖′ for all 𝜌. For conve-

nience, let 𝜎𝑖 := E(𝜌𝑖), 𝜎′𝑖 := Ẽ (𝜌𝑖), and 𝛿𝑖 := 𝜎′
𝑖
− 𝜎𝑖 for all 𝑖 ∈ {1, . . . , 𝑁in}.

Then

𝑁in⊗
𝑖=1

𝜎′𝑖 −
𝑁in⊗
𝑖=1

𝜎𝑖 =

𝑁in∑︁
𝑖=1

©«
𝑖−1⊗
𝑗=1

𝜎′𝑗
ª®¬ ⊗ (𝜎′𝑖 − 𝜎𝑖) ⊗ ©«

𝑁in⊗
𝑗=𝑖+1

𝜎𝑗
ª®¬
 , (9.156)

so by the triangle inequality we conclude that
⊗

𝑖 𝜎
′
𝑖
−

⊗
𝑖 𝜎𝑖


1 ≤ 𝑁in𝜖

′ as claimed.

Lemma 57 and Lemma 58 guarantee the existence of a process inN𝜖 ′,𝑛,𝑚,𝑝 satisfying
the desired bound of (9.146). To complete the proof of Theorem 55, we will use
the following special case of a result from (Bădescu and O’Donnell, 2020) to find a
process in the covering net which performs comparably.

Theorem 56 ((Bădescu and O’Donnell, 2020), Theorem 1.5). Suppose we are
given 𝑚 fixed hypothesis states 𝜎1, . . . , 𝜎𝑀 ∈ C𝑑×𝑑 , parameters 0 < 𝜖, 𝛿 < 1/2, and
access to copies of a state 𝜌 ∈ C𝑑×𝑑 . Then there is an algorithm that uses

𝑁 = O
(

1
𝜖2

(
log3 𝑀 + 𝛼 log𝑀

)
· 𝛼

)
(9.157)

copies of 𝜌 for 𝛼 := log(log(1/𝜂)/𝛿) and 𝜂 := min𝑖 ∥𝜌 − 𝜎𝑖∥1 such that with proba-
bility at least 1−𝛿 the algorithm outputs a 𝑘 ∈ {1, . . . , 𝑀} for which ∥𝜌 − 𝜎𝑘 ∥1 ≤ 4𝜂.
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We can now put together the ingredients assembled in this section to complete the
proof of Theorem 55.

Proof of Theorem 55. We first prove the theorem for constant 𝛿. Take 𝜖′ = 𝑐/𝑁in for
a sufficiently small constant 𝑐 > 0, 𝛿′ = 1/(10|N𝜖 ′,𝑛,𝑚,𝑝 |), and𝑁in = Õ(𝑝/𝜖2), where
Õ(·) hides factors of log 𝑛, log𝑚, log 𝑝, log 1/𝜖 , so that 𝑁in ≥ Ω(log(1/𝛿′)/𝜖2) and
(9.152) holds for all Ẽ ∈ N𝜖 ′,𝑛,𝑚,𝑝 with probability at least 4/5. Note that for some
absolute constant 𝐶 > 0,

1 − (1 − 𝜖2/16)𝑁in/2 ≥ 1 − 𝑒−𝑁in𝜖
2/32 = 1 − 𝛿′𝐶 ≥ Ω(1) . (9.158)

In contrast, by Lemma 58 and our choice of 𝜖 ′, there exists some Ẽ ∈ N𝜖 ′,𝑛,𝑚,𝑝 for
which  𝑁in⊗

𝑖=1
Ẽ (𝜌𝑖) −

𝑁in⊗
𝑖=1
E(𝜌𝑖)


1

≤ 𝑐 . (9.159)

Applying Theorem 56 to 𝜎𝑘 =
⊗

𝑖 Ẽ𝑘 (𝜌𝑖) where Ẽ𝑘 is the 𝑘-th element ofN𝜖 ′,𝑛,𝑚,𝑝,
using 𝑁out copies of 𝜌 =

⊗
𝑖 E(𝜌𝑖) where

𝑁out = O
(

1
𝜖2

(
log3 |N𝜖 ′,𝑛,𝑚,𝑝 | + 𝛼 log |N𝜖 ′,𝑛,𝑚,𝑝 |

)
· 𝛼

)
, 𝛼 := O(log log(1/𝑐)),

(9.160)
we can output a 𝑘 for which ∥𝜎𝑘 − 𝜌∥1 ≤ 4𝑐 with probability 4/5. By taking the
constant 𝑐 sufficiently small, we can leverage (9.158) and Lemma 57 to conclude
that

E
𝜌∼D

[E(𝜌) − Ẽ𝑘 (𝜌)
1

]
≤ 𝜖 . (9.161)

Note that 𝑁out in (9.160) is dominated by the 𝜖−2 log |N𝜖 ′,𝑛,𝑚,𝑝 | term since 𝛼 = O(1),
and so recalling (9.144) and our choice of 𝜖′ = 𝑐/𝑁in we obtain

𝑁out = O
(
𝑝3

𝜖2 log3 ((𝑛 + 𝑚)𝑝𝑁in)
)
= O

(
𝑝3

𝜖2 log3 ((𝑛 + 𝑚)𝑝𝑁in)
)
= Õ

(
𝑝3

𝜖2

)
,

(9.162)
where again Õ(·) hides logarithmic factors in 𝑛, 𝑚, 𝑝, 1/𝜖 .

As we require 𝑁out copies of
⊗𝑁in

𝑖=1 E(𝜌𝑖), we must make 𝑁out · 𝑁in = Õ(𝑝4/𝜖4)
accesses to E. By union bounding over (9.152) holding for all Ẽ ∈ N𝜖 ′,𝑛,𝑚,𝑝 and
over the success of the algorithm in Theorem 56, we obtain Theorem 55 for 𝛿 = 2/5
from the assumption that 𝑝 = poly(𝑛).

We now describe how to extend this result to general 𝛿 by a standard clustering
argument. We can run 𝑟 := Θ(log(1/𝛿)) independent copies of the above proto-
col, resulting in indices 𝑘1, . . . , 𝑘𝑟 into N𝜖 ′,𝑛,𝑚,𝑝 such that for any fixed 𝑖 ∈ [𝑟],
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for which

𝜎𝑘𝑖 − 𝜌1 ≤ 4𝑐, then by a Chernoff bound, |𝑆 | ≥ 𝑟/2 with probability
at least 1 − 𝛿 provided the constant factor in the definition of 𝑟 is sufficiently large.
Condition on the event that |𝑆 | ≥ 𝑟/2.

Let 𝑘 be an index into N𝜖 ′,𝑛,𝑚,𝑝 for which there are at least 𝑟/2 indices 𝑖 ∈ [𝑟] for
which

𝜎𝑘 − 𝜎𝑘𝑖1 ≤ 8𝑐, and output the channel Ẽ𝑘 . Such a 𝑘 certainly exists: take
any 𝑖 ∈ 𝑆 and note that by triangle inequality, for any other 𝑗 ∈ 𝑆 we have𝜎𝑘𝑖 − 𝜎𝑘 𝑗1 ≤

𝜎𝑘𝑖 − 𝜌1 +
𝜎𝑘 𝑗 − 𝜌1 ≤ 8𝑐. (9.163)

Now observe that regardless of which 𝑘 we choose that meets the criterion that at
least 𝑟/2 indices 𝑖 ∈ [𝑟] satisfy

𝜎𝑘 − 𝜎𝑘𝑖1 ≤ 8𝑐, we must have

∥𝜎𝑘 − 𝜌∥1 ≤ 12𝑐. (9.164)

Indeed, suppose to the contrary. Then for any 𝑖 ∈ 𝑆,𝜎𝑘 − 𝜎𝑘𝑖1 ≥ ∥𝜎𝑘 − 𝜌∥1 −
𝜎𝑘𝑖 − 𝜌1 > 12𝑐 − 4𝑐 = 8𝑐, (9.165)

where the second step is by the definition of 𝑆 and the assumption that (9.164) does
not hold. As |𝑆 | ≥ 𝑟/2, this yields a contradiction of the fact that there are at least
𝑟/2 indices 𝑖 ∈ [𝑟] for which

𝜎𝑘 − 𝜎𝑘𝑖1 ≤ 8𝑐.

If we take the constant 𝑐 sufficiently small, then (9.164) together with (9.158) and
Lemma 57 allow us to conclude that E𝜌∼D

[E(𝜌) − Ẽ𝑘 (𝜌)
1

]
≤ 𝜖 . As we ran

𝑟 := Θ(log(1/𝛿)) independent copies of the protocol that we used for constant
failure probability 𝛿, we merely incur an additional Θ(log(1/𝛿)) multiplicative
overhead in the number of access to E we must make for general failure probability
𝛿.

9.9 Quantum advantage in testing properties of quantum channels
Prerequisites
We begin by generalizing the tree representation for learning quantum states to the
setting of learning quantum channels. First let us state the idea of the definition
intuitively before delving into its technical description. There is some quantum
channel C which we wish to learn about; we have the ability to apply the channel to
a state of our choice and then to completely measure the resulting state. The resulting
measurement outcome can be recorded in a classical memory. The procedure of
preparing a state, applying the channel, and then making a measurement is repeated
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over multiple rounds, wherein the measurement outcomes of previous rounds can
inform the states prepared in future rounds, as well as the choice of measurement
in future rounds. That is, the protocol is adaptive. At the end, we have gained a
list of measurement outcomes with which we can judiciously infer properties of the
channel C under investigation.

Now we provide the full technical definition:

Definition 17 (Tree representation for learning channels). Consider a fixed quantum
channel C acting on an 𝑛-qubit subsystem of a Hilbert space H ≃ H main ⊗ H aux

whereH main ≃ (C2)⊗𝑛 is the ‘main system’ comprising 𝑛 qubits andH aux ≃ (C2)⊗𝑛′

is an ‘auxiliary system’ of 𝑛′ qubits. It is convenient to define 𝑑 = 2𝑛 and 𝑑′ = 2𝑛′ .
A learning algorithm without quantum memory can be represented as a rooted tree
T of depth 𝑇 such that each node encodes all measurement outcomes the algorithm
has received thus far. The tree has the following properties:

• Each node 𝑢 has an associated probability 𝑝C (𝑢).

• The root of the tree 𝑟 has an associated probability 𝑝C (𝑟) = 1.

• At each non-leaf node 𝑢, we prepare a state |𝜙𝑢⟩ on H , apply the channel C
onto the 𝑛-qubit subsystem, and measure a rank-1 POVM {

√︁
𝑤𝑢𝑠 𝑑𝑑

′ |𝜓𝑢𝑠 ⟩⟨𝜓𝑢𝑠 |}𝑠
(which can depend on 𝑢) on the entire system to obtain a classical outcome
𝑠. Each child node 𝑣 of the node 𝑢 corresponds to a particular POVM
outcome 𝑠 and is connected by the edge 𝑒𝑢,𝑠. We refer to the set of child
node of the node 𝑢 as child(𝑢). Accordingly, we can relabel the POVM as
{
√
𝑤𝑣𝑑𝑑

′ |𝜓𝑣⟩⟨𝜓𝑣 |}𝑣∈child(𝑢) .

• If 𝑣 is a child node of 𝑢, then

𝑝C (𝑣) = 𝑝C (𝑢) 𝑤𝑣𝑑𝑑′ ⟨𝜓𝑣 | (C ⊗ Iaux) [|𝜙𝑢⟩⟨𝜙𝑢 |] |𝜓𝑣⟩ . (9.166)

• Each root-to-leaf path is of length 𝑇 . For a leaf of corresponding to node
ℓ, 𝑝C (ℓ) is the probability that the classical memory is in state ℓ after the
learning procedure.

Each node 𝑢 in the tree represents the state of the classical memory at one time
step of the learning process. The associated probability 𝑝C (𝑢) for a node 𝑢 is the
probability that the classical memory enters the state 𝑢 during the learning process.
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Each time we perform one experiment, we transition from a node 𝑢 to a child node
of 𝑢.

There are several features of the definition which we will remark on. First and
foremost, an important feature of the definition is that we have access to an auxiliary
Hilbert spaceHaux for each state preparation and measurement. In particular, even
though the channel C only acts on 𝑛 qubits, we can apply it to the first 𝑛 qubits of
a state |𝜙⟩ ∈ Hmain ⊗ Haux which can be entangled between the 𝑛 qubits and the
auxiliary system. Moreover, we can measure the resulting state (C ⊗ Iaux) [|𝜙⟩⟨𝜙|]
using POVM’s which are entangled between the 𝑛 qubits and the auxiliary system.
The presence of the auxiliary system will render our proofs somewhat elaborate;
moreover, the presence of the auxiliary system renders our results stronger than
previous ones for adaptive incoherent access QUALMs (Aharonov, J. S. Cotler, and
Qi, 2021). In this particular QUALM setting, the notion of learning algorithm is
similar, except that there is no auxiliary system.

We consider quantum channel learning tasks which were first studied in the QUALM
setting without an auxiliary Hilbert space (Aharonov, J. S. Cotler, and Qi, 2021).
They are:

Definition 18 (Fixed unitary task). Suppose that an 𝑛-qubit quantum channel C is
one of the following with equal probability:

• C is the completely depolarizing channel D.

• C is the unitary channel C[𝜌] = 𝑈𝜌𝑈† for𝑈 a fixed, Haar-random unitary.

The fixed unitary task is to distinguish between the two above possibilities. We can
also consider analogous versions of the problem where𝑈 is instead a Haar-random
orthogonal matrix, or a Haar-random symplectic matrix.

Note that instead of considering the completely depolarizing channel D can be
thought of in a different way which makes the fixed unitary task more illuminating.
Specifically, we can equivalently think of D as an 𝑛-qubit unitary channel which
applies an i.i.d. random Haar unitary each time the channel is applied. From this
perspective, D implements time-dependent random unitary dynamics (i.e. a new
unitary is selected for each application of the channel); the task is then to distinguish
this from time-independent random unitary dynamics wherein the channel applies
a single fixed random unitary. Said more simply, from this point of view the task is
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to distinguish a type of time-dependent dynamics from a type of time-independent
dynamics.

We also consider another task from (Aharonov, J. S. Cotler, and Qi, 2021) with a
slightly different flavor:

Definition 19 (Symmetry distinction task). Suppose that an 𝑛-qubit quantum chan-
nel C is one of the following with equal probability:

• C[𝜌] = 𝑈𝜌𝑈† for𝑈 a fixed, Haar-random unitary matrix.

• C[𝜌] = 𝑂𝜌𝑂† for 𝑂 a fixed, Haar-random orthogonal matrix.

• C[𝜌] = 𝑆𝜌𝑆† for 𝑆 a fixed, Haar-random symplectic matrix.

The symmetry distinction task is to distinguish between the three above possibilities.

Unitary, orthogonal, and symplectic matrices manifest three different forms of what
is called time-reversal symmetry (Dyson, 1962). In this terminology, the symmetry
distinction task is to determine the time-reversal symmetry class of C. The task
belongs to a class of problems of determining the symmetries of an uncharacterized
system, which are important in experimental physics.

In the above distinguishing tasks, we will always reduce them to two-hypothesis
distinguishing problem. We define a two-hypothesis distinguishing problem as
follows.

Definition 20 (Two-hypothesis channel distinction task). The following two events
happen with equal probability:

• The channel C is sampled from a probability distribution 𝐷𝐴 over channels.

• The channel C is sampled from a probability distribution 𝐷𝐵 over channels.

The goal is to distinguish whether C is sampled from 𝐷𝐴 or 𝐷𝐵.

For any two-hypothesis distinguishing problem, we can always apply the two-point
method similar to Lemma 3 in learning quantum states.
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Lemma 59 (Le Cam’s two-point method, see e.g. Lemma 1 in (B. Yu, 1997)).
Consider a learning algorithm without quantum memory that is described by a
rooted tree T . The probability that the learning algorithm solves the two-hypothesis
channel distinction task correctly is upper bounded by

1
2

∑︁
ℓ∈leaf (T )

����( EC∼D𝐴 𝑝C (ℓ)) − (
E
C∼D𝐵

𝑝C (ℓ)
)���� . (9.167)

Review of the Weingarten calculus
Here we will review Haar measures on unitary, orthogonal, and symplectic matrices,
and present several key lemmas that we will leverage in the later proofs. First we
recall the definitions of orthogonal and symplectic matrices. Denoting the set of
unitary matrices on (C2)⊗𝑛 by

𝑈 (𝑑) = {𝑈 ∈ Mat𝑑×𝑑 (C) : 𝑈† = 𝑈−1} , (9.168)

the set of orthogonal matrices on is given by

𝑂 (𝑑) = {𝑂 ∈ 𝑈 (𝑑) : 𝑂𝑡 = 𝑂−1} , (9.169)

and the set of symplectic matrices is given by

Sp(𝑑/2) = {𝑆 ∈ 𝑈 (𝑑) : 𝐽𝑆𝑡𝐽−1 = 𝑆−1} . (9.170)

Here 𝐽 is the symplectic form

𝐽 =

[
0𝑑/2×𝑑/2 1𝑑/2×𝑑/2

−1𝑑/2×𝑑/2 0𝑑/2×𝑑/2

]
, (9.171)

where 0𝑑/2×𝑑/2 is the 𝑑/2 × 𝑑/2 matrix of all zeroes and 1𝑑/2×𝑑/2 is the 𝑑/2 × 𝑑/2
identity matrix. The quantity 𝐽𝑆𝑡𝐽−1 is sometimes called the “symplectic transpose”
and denoted by 𝑆𝐷 .

Note that Sp(𝑑/2) is sometimes called the “symplectic unitary group” to distinguish
it from the group of symplectic matrices which need not be unitary. For the
orthogonal group, the matrices 𝑂 will necessarily be real. For the symplectic
unitary group, the matrices 𝑆 could be complex numbers. For our purposes, we
will adopt standard terminology by dropping the word ‘unitary’ since the context is
clear.

Since𝑈 (𝑑), 𝑂 (𝑑), Sp(𝑑/2) are each compact Lie groups, they admit canonical Haar
measures which are right and left-invariant under group multiplication. For instance,
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for𝑈 (𝑑), the Haar measure satisfies∫
𝑈 (𝑑)

𝑑𝑈 𝑓 (𝑈) =
∫
𝑈 (𝑑)

𝑑𝑈 𝑓 (𝑉𝑈) =
∫
𝑈 (𝑑)

𝑑𝑈 𝑓 (𝑈𝑉) (9.172)

for any𝑉 ∈ 𝑈 (𝑑) and any 𝑓 (𝑈). Analogous expressions hold for the Haar measures
corresponding to 𝑂 (𝑑) and Sp(𝑑/2). Such Haar integrals will be essential for our
proofs, and so here we catalog important properties.

Now we turn to discussing more detailed properties of the Haar integrals. Our short
overview will be based on (Collins and Matsumoto, 2017; Y. Gu, 2013; Matsumoto,
2013; Aharonov, J. S. Cotler, and Qi, 2021). Instead of using the integral notation,
we will often use expectation values E𝑈∼Haar [ · ].

Haar averaging over𝑈 (𝑑)

For our purposes it will be useful to study moments of the Haar ensemble, in
particular

E𝑈∼Haar

[
𝑈𝑖1 𝑗1𝑈𝑖2 𝑗2 · · ·𝑈𝑖𝑘 𝑗𝑘𝑈𝑖′1 𝑗 ′1𝑈𝑖′2 𝑗 ′2 · · ·𝑈𝑖′𝑘 𝑗 ′𝑘

]
(9.173)

=
∑︁
𝜎,𝜏∈𝑆𝑘

𝛿𝜎(𝐼),𝐼′𝛿𝜏(𝐽),𝐽′Wg𝑈 (𝜎𝜏−1, 𝑑) . (9.174)

This equation requires some unpacking. On the left-hand side, the bar denotes
complex conjugation; for instance 𝑈𝑖 𝑗 = 𝑈

†
𝑗𝑖
. On the right-hand side, 𝑆𝑘 is the

symmetric group on 𝑘 elements, 𝐼 is a multi-index 𝐼 = (𝑖1, ..., 𝑖𝑘 ) and similarly for
𝐼′, 𝐽, 𝐽′, and

𝛿𝜎(𝐼),𝐼′ := 𝛿𝑖𝜎 (1) ,𝑖′1𝛿𝑖𝜎 (2) ,𝑖′2 · · · 𝛿𝑖𝜎 (𝑘 ) ,𝑖′𝑘 . (9.175)

Finally, Wg𝑈 ( · , 𝑑) is a map 𝑆𝑘 → R called the unitary Weingarten function to be
specified shortly. To further compress notation, it will be convenient to fully commit
to multi-index notation and write𝑈⊗𝑘

𝐼𝐽
= 𝑈𝑖1 𝑗1𝑈𝑖2 𝑗2 · · ·𝑈𝑖𝑘 𝑗𝑘 so that (9.173) becomes

E𝑈∼Haar

[
𝑈⊗𝑘
𝐼𝐽
𝑈
† ⊗𝑘
𝐽′ 𝐼′

]
=

∑︁
𝜎,𝜏∈𝑆𝑘

𝛿𝜎(𝐼),𝐼′𝛿𝜏(𝐽),𝐽′Wg𝑈 (𝜎𝜏−1, 𝑑) . (9.176)

The utility of (9.176) is that it allows us to compute EHaar [𝑈⊗𝑘 ⊗𝑈†⊗𝑘 ], and matrix
elements thereof, in terms of data of the symmetric group on𝑇 elements. We remark
that EHaar [𝑈⊗𝑘 ⊗ 𝑈†⊗ℓ] vanishes for 𝑘 ≠ ℓ, so (9.176) covers all non-trivial cases.

It still remains to specify the unitary Weingarten function Wg𝑈 ( · , 𝑑). In fact, it can
be regarded as the inverse of an easily specified matrix. To this end, in a slight abuse
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of notation, we will let permutations 𝜏, 𝜎 in 𝑆𝑘 also label their representations on
H⊗𝑘 . That is, 𝜏 will denote a unitary 𝑑𝑘 × 𝑑𝑘 matrix on H⊗𝑘 which permutes the
𝑘 copies of H according to the permutation specified by the label 𝜏. Now we can
readily define

𝐺𝑈 (𝜎𝜏−1, 𝑑) := tr(𝜎𝜏−1) = 𝑑#(𝜎𝜏−1) (9.177)

such that #(𝜎𝜏−1) counts the number of cycles of 𝜎𝜏−1. Now Wg𝑈 ( · , 𝑑) is defined
by the identity ∑︁

𝜏∈𝑆𝑘
Wg𝑈 (𝜎−1𝜏, 𝑑)𝐺𝑈 (𝜏−1𝜋, 𝑑) = 𝛿𝜎,𝜋 (9.178)

for all 𝜎, 𝜋 ∈ 𝑆𝑘 . This equation expresses that Wg𝑈 and 𝐺𝑈 are in fact inverses as
𝑘!× 𝑘! matrices. To see this more readily, we can use the notation Wg𝑈 (𝜎−1𝜏, 𝑑) =
Wg𝑈𝜎,𝜏 and 𝐺𝑈 (𝜏−1𝜋, 𝑑) = 𝐺𝑈𝜏,𝜋 so that (9.178) is simply

∑
𝜏 Wg𝑈𝜎,𝜏 𝐺𝑈𝜏,𝜋 = 𝛿𝜎,𝜋.

We conclude by presenting a theorem, corollary, and lemma which will be used in
our proofs.

Theorem 3.2 of (Collins and Matsumoto, 2017). For any 𝜎 ∈ 𝑆𝑘 and 𝑑 >
√

6𝑘7/4,

1
1 − 𝑘−1

𝑑2

≤ (−1)𝑘−#(𝜎)𝑑2𝑘−#(𝜎) Wg𝑈 (𝜎, 𝑑)∏
𝑖
(2ℓ𝑖−2)!
(ℓ𝑖−1)!ℓ𝑖!

≤ 1
1 − 6𝑘7/2

𝑑2

(9.179)

where the left-hand side inequality is valid for any 𝑑 ≥ 𝑘 . Note that 𝜎 ∈ 𝑆𝑘 has
cycle type (ℓ1, ℓ2, ...).

An immediate corollary is:

Corollary 17. | Wg𝑈 (1, 𝑑) − 𝑑−𝑘 | ≤ O(𝑘7/2𝑑−(𝑘+2)) .

We also recapitulate a useful result from (Aharonov, J. S. Cotler, and Qi, 2021):

Lemma 6 of (Aharonov, J. S. Cotler, and Qi, 2021).
∑
𝜏∈𝑆𝑘 | Wg𝑈 (𝜏, 𝑑) | = (𝑑−𝑘)!

𝑑! .

Haar averaging over 𝑂 (𝑑)

Just as Haar averaging over 𝑈 (𝑑) is intimately related to the permutation group
𝑆𝑘 , Haar averaging over 𝑂 (𝑑) (and likewise Sp(𝑑/2)) is intimately related to pair
partitions 𝑃2(2𝑘). Accordingly, we will begin with discussing pair partitions.

Informally, a pair partition on 2𝑘 is a way of pairing off 2𝑘 elements (e.g., pairing
off people in a ballroom dance class). There are in fact (2𝑘)!2𝑘 𝑘! = (2𝑘 − 1)!! possible
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pairings of 2𝑘 elements. More formally, a pair partition 𝔪 ∈ 𝑃2(2𝑘) is a function
𝔪 : [2𝑘] → [2𝑘] satisfying 𝔪(2𝑖 − 1) < 𝔪(2𝑖) for 1 ≤ 𝑖 ≤ 𝑘 and 𝔪(1) < 𝔪(3) <
· · · < 𝔪(2𝑘 − 1). The pair permutation is often notated as

𝔪 = {𝔪(1),𝔪(2)}{𝔪(3),𝔪(4)} · · · {𝔪(2𝑘 − 1),𝔪(2𝑘)} (9.180)

where the brackets denote individual pairs, and the constraints on 𝔪 order the pairs
in a canonical (and unique) manner. In words, within each pair the ‘left’ element is
always less than the ‘right’ element, and the pairs themselves are ordered according
to the ‘left’ element of each pair.

It is natural to endow pair permutations with a group structure so that they form a
subgroup 𝑀2𝑘 of the permutation group 𝑆2𝑘 . We simply define 𝑀2𝑘 by

𝑀2𝑘 := {𝜎 ∈ 𝑆2𝑘 : 𝜎(2𝑖 − 1) < 𝜎(2𝑖) for 1 ≤ 𝑖 ≤ 𝑘 , (9.181)

𝜎(1) < 𝜎(3) < · · · < 𝜎(2𝑘 − 1)} (9.182)

and it is readily checked that 𝑀2𝑘 forms a group. We will often leverage the natural
bĳection between 𝑃2(2𝑘), namely 𝔪 ↦→ 𝜎𝔪 where 𝔪(𝑖) = 𝜎𝔪 (𝑖) for all 𝑖. The
identity pairing is denoted by 𝔢, and by the above bĳection maps to the identity
permutation 𝜎𝔢 = 1.

Pair permutations also have a notion of cycles, which differs from that of the
symmetric group. That is, the cycle type of 𝜎𝔪 as an element of 𝑀2𝑘 is different
from the cycle type of 𝜎𝔪 thought of as an element of 𝑆2𝑘 . To construct the pair
partition cycles 𝜎𝔪 (we will also refer to this as the cycle type of 𝔪), consider the
function 𝑓𝔪 : [2𝑘] → [2𝑘] defined by

𝑓𝔪 (𝑖) =

𝔪(2 𝑗) if 𝑖 = 𝔪(2 𝑗 − 1)

𝔪(2 𝑗 − 1) if 𝑖 = 𝔪(2 𝑗)
. (9.183)

This function maps 𝑖 to the integer it is paired with under 𝔪. The function 𝑓𝔢

corresponds to the identity pairing. We can construct the cycles of 𝔪 as follows.
Consider the sequence

(1, 𝑓𝔪 (1), 𝑓𝔢 ◦ 𝑓𝔪 (1), 𝑓𝔪 ◦ 𝑓𝔢 ◦ 𝑓𝔪 (1), ...) . (9.184)

This sequence is periodic, and so we truncate it at its period so that no element is
repeated. We call this truncated list 𝐵1, and view it is a cyclically ordered list (i.e.,
the list is regarded as the same if it is cyclically permuted). If 𝐵1 contains all of
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[2𝑘], then 𝔪 contains only one cycle, namely 𝐵1. Otherwise, let 𝑗 be the smallest
integer in [2𝑘] with is not in 𝐵1, and construct

( 𝑗 , 𝑓𝔪 ( 𝑗), 𝑓𝔢 ◦ 𝑓𝔪 ( 𝑗), 𝑓𝔪 ◦ 𝑓𝔢 ◦ 𝑓𝔪 ( 𝑗), ...) . (9.185)

This is likewise periodic, and we truncate it at its period to get the cyclically ordered
list 𝐵2. If 𝐵1 and 𝐵2 do not contain all of [2𝑘], then we construct a 𝐵3, etc. When the
procedure terminates, we have 𝐵1, 𝐵2, ... which contain all of [2𝑘]. The 𝐵1, 𝐵2, ...

are the pair partition cycles of 𝔪. Their corresponding lengths 𝑏1, 𝑏2, ... are all
even, and the cycle type (also called the coset type) of 𝔪 is given by

(𝜇1, 𝜇2, ...) = (𝑏1/2, 𝑏2/2, ...) (9.186)

which is often listed in descending order of cycle size.

Using our notation for pair partitions as well as the multi-index notation we es-
tablished previously, we have the following formula for a Haar integral over the
orthogonal group

E𝑂∼Haar
[
𝑂 𝐼𝐽𝑂

𝑡
𝐽′ 𝐼′

]
=

∑︁
𝔪,𝔫∈𝑃2 (2𝑘)

Δ𝔪 (𝐼 𝐼′) Δ𝔫 (𝐽𝐽′)Wg𝑂 (𝜎−1
𝔪 𝜎𝔫) (9.187)

where 𝐼 𝐼′ merges the multi-indices 𝐼 and 𝐼′ as 𝐼 𝐼′ = (𝑖1, 𝑖′1, ..., 𝑖𝑘 , 𝑖
′
𝑘
) and likewise

for 𝐽𝐽′. Letting 𝐼 𝐼′ = I = (i1, i2, ..., i2𝑘 ) we define

Δ𝔪 (I) :=
𝑘∏
𝑠=1

𝛿i𝔪 (2𝑠−1) ,i𝔪 (2𝑠) . (9.188)

Similar to before, Wg𝑂 ( · , 𝑑) is a map 𝑀2𝑘 → R called the orthogonal Weingarten
function. Although we have written (9.188) in a way that emulates (9.176), the
formula (9.188) has a different character to it. Specifically, examining the left-hand
side, we can equivalently write it as EHaar [𝑂 𝐼 𝐼′,𝐽𝐽′] where we have simply used the
equivalence 𝑂𝑡

𝐽′ 𝐼′ = 𝑂 𝐼′𝐽′ . That is, (9.188) tells us how to compute EHaar [𝑂⊗2𝑘 ]
and matrix elements thereof for 2𝑘 even; this integral vanishes if we replace 2𝑘 by
an odd number. By contrast with the Haar unitary setting where we needed as many
𝑈’s as 𝑈†’s to get a non-trivial integral, here we just need an even number of 𝑂’s,
essentially because 𝑂† = 𝑂𝑡 .

Analogous to the unitary setting discussed above, we can define the orthogonal
Weingarten function Wg𝑂 ( · , 𝑑) in terms of a simpler function

𝐺𝑂 (𝜎−1
𝔪 𝜎𝔫, 𝑑) := 𝑑#𝑂 (𝜎−1

𝔪 𝜎𝔫) (9.189)
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where #𝑂 (𝜎−1
𝔪 𝜎𝔫) counts the number of 𝑀2𝑘 -cycles of 𝜎−1

𝔪 𝜎𝔫. We have the identity∑︁
𝔫∈𝑃2 (2𝑘)

Wg𝑂 (𝜎−1
𝔪 𝜎𝔫, 𝑑)𝐺𝑂 (𝜎−1

𝔫 𝜎𝔭, 𝑑) = 𝛿𝔪,𝔭 . (9.190)

which expresses that Wg𝑂 and 𝐺𝑂 are inverses as (2𝑘 − 1)!! × (2𝑘 − 1)!! matrices.

Finally, we present a theorem, corollary, and lemma which we will leverage in our
proofs about the symmetry distinction problem:

Theorem 4.11 of (Collins and Matsumoto, 2017). For any 𝜎𝔪 ∈ 𝑀2𝑘 and 𝑑 >
12𝑘7/2,

1 − 24𝑘7/2

𝑑

1 − 144𝑘7

𝑑2

≤ (−1)𝑘−#𝑂 (𝜎𝔪)𝑑2𝑘−#𝑂 (𝜎𝔪) Wg𝑂 (𝜎𝔪, 𝑑)∏
𝑖
(2𝜇𝑖−2)!
(𝜇𝑖−1)!𝜇𝑖!

≤ 1
1 − 144𝑘7

𝑑2

(9.191)

where 𝜎𝔪 has 𝑀2𝑘 -cycle type (𝜇1, 𝜇2, ...).

We have the immediate corollary

Corollary 18. | Wg𝑂 (𝜎𝔢, 𝑑) − 𝑑−𝑘 | ≤ O(𝑘7𝑑−(𝑘+2)) .

Analogous to Lemma 6 of (Aharonov, J. S. Cotler, and Qi, 2021) written above, we
have (Aharonov, J. S. Cotler, and Qi, 2021):

Lemma 8 of (Aharonov, J. S. Cotler, and Qi, 2021).
∑

𝔪∈𝑃2 (2𝑘) | Wg𝑂 (𝜎𝔪, 𝑑) | =
(𝑑−2𝑘)!!
𝑑!! .

Haar averaging over Sp(𝑑/2)

Haar averaging over the Sp(𝑑/2) is very similar to the orthogonal setting. We have
the identity

E𝑆∼Haar
[
𝑆𝐼𝐽𝑆

𝑡
𝐽′ 𝐼′

]
=

∑︁
𝔪,𝔫∈𝑃2 (2𝑘)

Δ′𝔪 (𝐼 𝐼′)Δ′𝔫 (𝐽𝐽′)WgSp(𝜎−1
𝔪 𝜎𝔫, 𝑑/2) (9.192)

where

Δ′𝔪 (I) :=
𝑘∏
𝑠=1

𝐽i𝔪 (2𝑠−1) ,i𝔪 (2𝑠) . (9.193)

Here 𝐽 is the canonical symplectic form defined in (9.171). The symplectic Wein-
garten function WgSp( · , 𝑑/2) taking 𝑀2𝑘 → R is a small modification of the
orthogonal Weingarten function, namely

WgSp(𝜎𝔪, 𝑑/2) = (−1)𝑘𝜖 (𝜎𝔫)Wg𝑂 (𝜎𝔪,−𝑑) (9.194)
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where 𝜖 (𝜎𝔪) is the signature of 𝜎𝔪 thought of as an element of 𝑆2𝑘 .

We give a theorem, corollary and lemma analogous to the ones for the orthogonal
group above.

Theorem 4.10 of (Collins and Matsumoto, 2017). For any 𝜎𝔪 ∈ 𝑀2𝑘 and 𝑑 >
6𝑘7/2, we have

1
1 − 𝑘−1

(𝑑/2)2
≤ 𝑑

2𝑘−# Sp (𝜎𝔪) | Wg Sp(𝜎𝔪, 𝑑/2) |∏
𝑖
(2𝜇𝑖−2)!
(𝜇𝑖−1)!𝜇𝑖!

≤ 1
1 − 6𝑘7/2

(𝑑/2)2
(9.195)

where 𝜎𝔪 has 𝑀2𝑘 -cycle type (𝜇1, 𝜇2, ...) and # Sp(𝜎𝔪) = #𝑂 (𝜎𝔪).

This has the direct corollary

Corollary 19. | Wg Sp(𝜎𝔢, 𝑑/2) − 𝑑−𝑘 | ≤ O(𝑘7/2𝑑−(𝑘+2)) .

From (Aharonov, J. S. Cotler, and Qi, 2021) we borrow the useful lemma:

Lemma 10 of (Aharonov, J. S. Cotler, and Qi, 2021).∑︁
𝔪∈𝑃2 (2𝑘)

| Wg Sp(𝜎𝔪, 𝑑/2) | =
𝑘−1∏
𝑗=0

1
𝑑 + 2 𝑗

. (9.196)

Depolarizing channel versus random unitary
In this subsection, we look at the task of distinguishing between the depolarizing
channel and a random unitary.

Lower bound without quantum memory

We are now prepared to establish the following results:

Theorem 57 (Exponential hardness of fixed unitary task without quantum memory).
Any learning algorithm without quantum memory requires

𝑇 ≥ Ω

(
𝑑1/3

)
, (9.197)

to correctly distinguish between the completely depolarizing channelD on 𝑛 qubits
from a fixed, Haar-random unitary channelU[𝜌] = 𝑈𝜌𝑈† on 𝑛 qubits with proba-
bility at least 2/3.
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Theorem 58 (Exponential hardness of fixed orthogonal matrix task without quantum
memory). Any learning algorithm without quantum memory requires

𝑇 ≥ Ω

(
𝑑2/7

)
, (9.198)

to correctly distinguish between the completely depolarizing channelD on 𝑛 qubits
from a fixed, Haar-random orthogonal matrix channel U[𝜌] = 𝑂𝜌𝑂𝑡 on 𝑛 qubits
with probability at least 2/3.

Theorem 59 (Exponential hardness of fixed symplectic matrix task without quantum
memory). Any learning algorithm without quantum memory requires

𝑇 ≥ Ω

(
𝑑1/3

)
, (9.199)

to correctly distinguish between the completely depolarizing channelD on 𝑛 qubits
from a fixed, Haar-random symplectic matrix channel U[𝜌] = 𝑆𝜌𝑆𝐷 on 𝑛 qubits
with probability at least 2/3.

Hence, we established an exponential lower bound when the algorithms do not have
a quantum memory. The proofs of Theorems 57, 58, and 59 have many similarities;
however, the first involves heavy use of the combinatorics of permutations, whereas
the latter two involve heavy use of the combinatorics of pair permutations. As such,
we will prove Theorems 57 first, followed by a simultaneous proof of Theorems 58
and 59.

We now turn to a proof of Theorem’s 57, 58, and 59 which are our main result about
the fixed unitary problem. We note that a special case of these theorems were proved
in (Aharonov, J. S. Cotler, and Qi, 2021), namely where the learning protocol (see
Definition 17) does not have an auxiliary system, i.e.Haux is a trivial Hilbert space.
The inclusion of anHaux of arbitrary size 𝑑′ = 2𝑛′ is our main technical contribution
here; our proof will follow the same contours as that of (Aharonov, J. S. Cotler,
and Qi, 2021), but with substantive modifications and generalizations. Indeed, the
original proof strategy leads to 𝑇 bounds like (9.197), (9.198), and (9.199), but
reduced by factors of 𝑑′𝑇 , rendering the bounds useless even when 𝑑′ ∼ O(1) (but
non-zero).

Proof of Theorem 57

Let us begin with a proof of Theorem 57:
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Proof. The proof begins by utilizing Lemma 59, which gives

2
3
≤ 1

2

∑︁
ℓ∈leaf (T )

����𝑝D (ℓ) − (
E
U
𝑝U (ℓ)

)���� . (9.200)

The goal now would be to obtain an upper bound right hand side. It is convenient
to establish some notation. Each root-to-leaf path in T is specified by a sequence of
vertices 𝑣0, 𝑣1, ..., 𝑣𝑇 where 𝑣0 = 𝑟 is the root and 𝑣𝑇 = ℓ is a leaf. Moreover, the leaf
ℓ determines the entire root-to-leaf path: it is the shortest path from that leaf to the
root. So knowing ℓ is the same as knowing the entire path 𝑣0 = 𝑟, 𝑣1, ..., 𝑣𝑇−1, 𝑣𝑇 = ℓ.
Recall from Eq. (9.166) and following the root-to-leaf path 𝑣0 = 𝑟, 𝑣1, ..., 𝑣𝑇−1, 𝑣𝑇 =

ℓ, the probability of the leaf ℓ under the channel C is

𝑝C (ℓ) =
𝑇∏
𝑡=1

(
𝑤𝑣𝑡 𝑑𝑑

′ ⟨𝜓𝑣𝑡 | (C ⊗ Iaux) [|𝜙𝑣𝑡−1⟩⟨𝜙𝑣𝑡−1 |] |𝜓𝑣𝑡 ⟩
)
, (9.201)

where each |𝜙𝑣𝑡−1⟩ , |𝜓𝑣𝑡−1⟩ lives in (𝑑𝑑′)-dimensional Hilbert space H ≃ Hmain ⊗
H aux from Definition 17. To analyze the probability, we let

|Φℓ⟩ = |𝜙𝑣0⟩ ⊗ |𝜙𝑣1⟩ ⊗ · · · ⊗ |𝜙𝑣𝑇−1⟩ (9.202)

|Ψℓ⟩ = |𝜓𝑣1⟩ ⊗ |𝜓𝑣2⟩ ⊗ · · · ⊗ |𝜓𝑣𝑇 ⟩ (9.203)

𝑊ℓ = 𝑤𝑣1𝑤𝑣2 · · ·𝑤𝑣𝑇 (9.204)

where 𝑣0 = 𝑟 and 𝑣𝑇 = ℓ. Notice that |Φℓ⟩ and |Ψℓ⟩ each live in H⊗𝑇 . Recall
from Definition 17, for any node 𝑢, the set {

√
𝑤𝑣𝑑𝑑

′ |𝜓𝑣⟩⟨𝜓𝑣 |}𝑣∈child(𝑢) is a POVM.
Hence, we have

∑
𝑣∈child(𝑢) 𝑤𝑣𝑑𝑑

′ |𝜓𝑣⟩⟨𝜓𝑣 | = 1main ⊗ 1aux. It is not hard to use this
fact to derive the following identity∑︁

ℓ ∈ leaf(T )
(𝑑𝑑′)𝑇𝑊ℓ |Ψℓ⟩⟨Ψℓ | = (1main ⊗ 1aux)⊗𝑇 (9.205)

and so accordingly
∑
ℓ ∈ leaf(T )𝑊ℓ = 1.

With these notations at hand, we can write 𝑝D (ℓ) diagrammatically as

. (9.206)

For E Haar [𝑝U (ℓ)], we utilize the Haar averaging of unitary group discussed in
Section 9.9 to obtain

(9.207)
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where the solid lines correspond toH⊗𝑇main and the dotted lines correspond toH⊗𝑇aux .
It is convenient to let 𝑝𝜎,𝜏 (ℓ) denote the summand of (9.207). We now use the
triangle inequality in combination with the Cauchy-Schwarz inequality to write

1
2

∑︁
ℓ ∈ leaf(T )

|𝑝D (ℓ) − EHaar [𝑝U (ℓ)] |

≤ 1
2

∑︁
ℓ ∈ leaf(T )

|𝑝D (ℓ) − 𝑝1,1(ℓ) | +
1
2

∑︁
ℓ ∈ leaf(T )

∑︁
𝜎≠1

|𝑝𝜎,1(ℓ) | (9.208)

+ 1
2

∑︁
ℓ ∈ leaf(T )

∑︁
𝜏≠1, 𝜎

|𝑝𝜎,𝜏 (ℓ) | . (9.209)

We will bound each term in turn.

First term

Applying Cauchy-Schwarz to the first term in (9.208) we find that it is less than or
equal to

(9.210)

We can remove the absolute values on the diagrammatic term since it is strictly
positive; this enables us to perform the sum over leaves

∑
ℓ∈leaf (T ) and via the

identity given in (9.205). The first term in (9.208) can now be written as

𝑑𝑇

2

����Wg𝑈 (1, 𝑑) − 1
𝑑𝑇

���� . (9.211)

Since by Corollary 17 we have |Wg𝑈 (1, 𝑑) − 1
𝑑𝑇
| ≤ O(𝑇7/2/𝑑𝑇+2) for 𝑇 <

(
𝑑√
6

)4/7
,

Eqn. (9.211) is O(𝑇7/2/𝑑2) and so

1
2

∑︁
ℓ ∈ leaf(T )

|𝑝D (ℓ) − 𝑝1,1(ℓ) | ≤ O
(
𝑇7/2

𝑑2

)
. (9.212)

Second term

Next we treat the second term in (9.208), namely 1
2
∑
ℓ ∈ leaf(T )

∑
𝜎≠1 |𝑝𝜎,1(ℓ) |. Uti-

lizing the Cauchy-Schwarz inequality, this term is less than or equal to

(9.213)
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We can dissect the middle term in the summand using the Hölder inequality

(9.214)

and notice that ∥𝜎∥∞ = 1. Furthermore, using the fact that the matrix inside the
1-norm on the right-hand side is positive semi-definite, we can replace the 1-norm
with the trace and find the bound

(9.215)

Thus (9.213) is upper bounded by

(9.216)

Then applying the identity (9.205) we are left with

𝑑𝑇

2

∑︁
𝜎≠1

|Wg𝑈 (𝜎−1, 𝑑) | (9.217)

which is less than or equal to O(𝑇2/𝑑) by Lemma 6 of (Aharonov, J. S. Cotler, and
Qi, 2021). In summary, we have

1
2

∑︁
ℓ ∈ leaf(T )

∑︁
𝜎≠1

|𝑝𝜎,1(ℓ) | ≤ O
(
𝑇2

𝑑

)
. (9.218)

Third term

Finally we treat the third term in (9.208), namely 1
2
∑
ℓ ∈ leaf(T )

∑
𝜏≠1, 𝜎 |𝑝𝜎,𝜏 (ℓ) |,

which is the most difficult case. Leveraging the Cauchy-Schwarz inequality, this
term is upper bounded by

(9.219)

Applying the Hölder inequality to the second term in the summand as before, we
find

(9.220)
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where ∥𝜎∥∞ = 1. We also use the convenient inequality

(9.221)

to reorganize the order of the tensor legs; we have used the Hölder inequality to go
from the middle term to the last term, and the fact that ∥𝜏∥∞ = 1.

For a fixed permutation 𝜏−1, we can decompose it into cycles 𝐶1𝐶2 · · ·𝐶#(𝜏−1) . We
say that 𝑖 → 𝑗 is in the 𝑚th cycle 𝐶𝑚 if 𝐶𝑚 = (· · · 𝑖 𝑗 · · · ). Using this notation, for
fixed 𝜏−1 = 𝐶1𝐶2 · · ·𝐶#(𝜏−1) and letting 𝑣0 = 𝑟, 𝑣1, ..., 𝑣𝑇−1, 𝑣𝑇 = ℓ be the root-to-leaf
path terminating in ℓ, we have

Lemma 60. We have the following identity represented using tensor network dia-
grams.

(9.222)

Proof. Take any cycle 𝐶𝑚 and any 𝑖 → 𝑗 ∈ 𝐶𝑚. The solid leg of ⟨𝜙𝑣𝑖−1 | is dangling
and the dotted leg connects to ⟨𝜓𝑣𝑖 |. Similarly, the solid leg of |𝜙𝑣 𝑗−1⟩ is dangling
and the dotted leg connects to |𝜓𝑣 𝑗 ⟩. Lastly, the solid leg of ⟨𝜓𝑣𝑖 | connects to |𝜓𝑣 𝑗 ⟩.
This accounts for all legs among 𝜙𝑣𝑖−1 , 𝜓𝑣𝑖 , 𝜙𝑣 𝑗−1 , and 𝜓𝑣 𝑗 , so the part of the diagram
on the left of (9.222) that corresponds to these four states is not connected to the
rest of the diagram. In this fashion, we conclude that the diagram on the left is a
tensor product of the diagrams on the left for all 𝑚 and 𝑖 → 𝑗 ∈ 𝐶𝑚, from which the
lemma follows.

We would like to convert the product of trace norms in (9.222) into a product of
traces. We do so via the following basic estimate. First, for any 𝑖 ∈ [𝑇], define the
unnormalized density operator �̃�𝑣𝑖 ∈ Mat𝑑×𝑑 (C) by

(9.223)

Lemma 61. For any 𝑖 → 𝑗 ∈ 𝐶𝑚, the corresponding term on the right-hand side of
(9.222) is upper bounded by tr( �̃�𝑣𝑖 �̃�𝑣 𝑗 ). In particular, (9.222) is at most

#(𝜏−1)∏
𝑚=1

∏
𝑖→ 𝑗∈𝐶𝑚

√︃
tr( �̃�𝑣𝑖 �̃�𝑣 𝑗 ). (9.224)
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Proof. Using the relations ∥𝐴∥1 = ∥𝐴 ⊗ 𝐴†∥1/21 ≤ ∥SWAP · (𝐴 ⊗ 𝐴†)∥1/21 , we find

Since the operator inside the 1-norm on the right-hand side is clearly positive semi-
definite, we can replace the 1-norm with a trace, namely
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|

<latexit sha1_base64="Xfqt+lOgpZHMR3x/Sr9FOTZom0g=">AAACAHicbVBNS8NAEN3Ur1q/oh48eFksghdLUkQ9Fr14rGA/oClhs522SzebsLsplJiLf8WLB0W8+jO8+W/ctjlo64OBx3szzMwLYs6Udpxvq7Cyura+UdwsbW3v7O7Z+wdNFSWSQoNGPJLtgCjgTEBDM82hHUsgYcChFYxup35rDFKxSDzoSQzdkAwE6zNKtJF8+8jjRAw4YC8eMj8d+yk7d7Ps0bfLTsWZAS8TNydllKPu219eL6JJCEJTTpTquE6suymRmlEOWclLFMSEjsgAOoYKEoLqprMHMnxqlB7uR9KU0Him/p5ISajUJAxMZ0j0UC16U/E/r5Po/nU3ZSJONAg6X9RPONYRnqaBe0wC1XxiCKGSmVsxHRJJqDaZlUwI7uLLy6RZrbiXler9Rbl2k8dRRMfoBJ0hF12hGrpDddRAFGXoGb2iN+vJerHerY95a8HKZw7RH1ifP8s3los=</latexit>h�vi�1
| <latexit sha1_base64="GJciD3m4wtGiVjpOULylD79jD5A=">AAAB/3icbVDLSsNAFL2pr1pfUcGNm2AR3FiSIuqy6MZlBfuAJoTJdNKOnUzCzKRQ0iz8FTcuFHHrb7jzb5w+Ftp64MLhnHu5954gYVQq2/42Ciura+sbxc3S1vbO7p65f9CUcSowaeCYxaIdIEkY5aShqGKknQiCooCRVjC4nfitIRGSxvxBjRLiRajHaUgxUlryzaOxm/Spnw397PHcyXNXIN5jxDfLdsWewlomzpyUYY66b3653RinEeEKMyRlx7ET5WVIKIoZyUtuKkmC8AD1SEdTjiIivWx6f26daqVrhbHQxZU1VX9PZCiSchQFujNCqi8XvYn4n9dJVXjtZZQnqSIczxaFKbNUbE3CsLpUEKzYSBOEBdW3WriPBMJKR1bSITiLLy+TZrXiXFaq9xfl2s08jiIcwwmcgQNXUIM7qEMDMIzhGV7hzXgyXox342PWWjDmM4fwB8bnD3zblmg=</latexit>|�vj�1

i
<latexit sha1_base64="u1Wf5EfAYpqclcsmIfzkgPwzpYw=">AAAB/nicbVBNS8NAEJ3Ur1q/quLJy2IRPJWkiHosevFYwX5AE8Jmu2nXbjZhd1MoseBf8eJBEa/+Dm/+G7dtDtr6YODx3gwz84KEM6Vt+9sqrKyurW8UN0tb2zu7e+X9g5aKU0lok8Q8lp0AK8qZoE3NNKedRFIcBZy2g+HN1G+PqFQsFvd6nFAvwn3BQkawNpJfPnI5Fn1OkZso5mcjP3uYTB79csWu2jOgZeLkpAI5Gn75y+3FJI2o0IRjpbqOnWgvw1Izwumk5KaKJpgMcZ92DRU4osrLZudP0KlReiiMpSmh0Uz9PZHhSKlxFJjOCOuBWvSm4n9eN9XhlZcxkaSaCjJfFKYc6RhNs0A9JinRfGwIJpKZWxEZYImJNomVTAjO4svLpFWrOhfV2t15pX6dx1GEYziBM3DgEupwCw1oAoEMnuEV3qwn68V6tz7mrQUrnzmEP7A+fwD1dJYl</latexit>h vj

|

<latexit sha1_base64="hV9ObCPJSOo1I+qKZHZU8p22WMU=">AAAB/3icbVBNS8NAEN34WetXVPDiJVgEL5akiHosevFYwX5AE8JmO2mXbjZhd1MoaQ7+FS8eFPHq3/Dmv3Hb5qCtDwYe780wMy9IGJXKtr+NldW19Y3N0lZ5e2d3b988OGzJOBUEmiRmsegEWAKjHJqKKgadRACOAgbtYHg39dsjEJLG/FGNE/Ai3Oc0pAQrLfnm8cRNBtTPRn5GL5w8dwXmfQa+WbGr9gzWMnEKUkEFGr755fZikkbAFWFYyq5jJ8rLsFCUMMjLbiohwWSI+9DVlOMIpJfN7s+tM630rDAWuriyZurviQxHUo6jQHdGWA3kojcV//O6qQpvvIzyJFXAyXxRmDJLxdY0DKtHBRDFxppgIqi+1SIDLDBROrKyDsFZfHmZtGpV56pae7is1G+LOEroBJ2ic+Sga1RH96iBmoigCXpGr+jNeDJejHfjY966YhQzR+gPjM8fe0yWZw==</latexit>|�vi�1
i

<latexit sha1_base64="xVV+K6NfDXOd1tyjeqHbcB2g3+4=">AAACAHicbVDLSsNAFJ3UV62vqAsXbgaL4MaSFFGXRTcuK9gHNCFMprft2MkkzEwKJWbjr7hxoYhbP8Odf+P0sdDqgQuHc+7l3nvChDOlHefLKiwtr6yuFddLG5tb2zv27l5Txamk0KAxj2U7JAo4E9DQTHNoJxJIFHJohcPrid8agVQsFnd6nIAfkb5gPUaJNlJgH3iciD4H7CUDFmSjILs/dfP8IbDLTsWZAv8l7pyU0Rz1wP70ujFNIxCacqJUx3US7WdEakY55CUvVZAQOiR96BgqSATKz6YP5PjYKF3ci6UpofFU/TmRkUipcRSazojogVr0JuJ/XifVvUs/YyJJNQg6W9RLOdYxnqSBu0wC1XxsCKGSmVsxHRBJqDaZlUwI7uLLf0mzWnHPK9Xbs3Ltah5HER2iI3SCXHSBaugG1VEDUZSjJ/SCXq1H69l6s95nrQVrPrOPfsH6+AbMwJaM</latexit>h�vj�1
|

<latexit sha1_base64="iOc4Zss/PnFVMQgmdlriSdAe4pI=">AAAB/XicbVDLSsNAFJ3UV62v+Ni5CRbBVUmKqMuiG5cV7AOaECbTm3boZBJmJoUag7/ixoUibv0Pd/6N0zYLbT1w4XDOvdx7T5AwKpVtfxulldW19Y3yZmVre2d3z9w/aMs4FQRaJGax6AZYAqMcWooqBt1EAI4CBp1gdDP1O2MQksb8Xk0S8CI84DSkBCst+ebRo5tI6mdjP6N57grMBwx8s2rX7BmsZeIUpIoKNH3zy+3HJI2AK8KwlD3HTpSXYaEoYZBX3FRCgskID6CnKccRSC+bXZ9bp1rpW2EsdHFlzdTfExmOpJxEge6MsBrKRW8q/uf1UhVeeRnlSaqAk/miMGWWiq1pFFafCiCKTTTBRFB9q0WGWGCidGAVHYKz+PIyaddrzkWtfndebVwXcZTRMTpBZ8hBl6iBblETtRBBD+gZvaI348l4Md6Nj3lryShmDtEfGJ8/pvqWAA==</latexit>| vi
i

(9.225)

Observe that we can equivalently rewrite (9.225) as
√︃

tr( �̃�𝑣𝑖 �̃�𝑣 𝑗 ) , where �̃�𝑣𝑖 is the
component of the diagram denoted in red and �̃�𝑣 𝑗 is the one in blue, yielding the
first part of the lemma. The second follows from plugging this into the right-hand
side of Eqn. (9.222).

To bound (9.224), it is convenient to develop some notation for cycles 𝐶𝑚 . The
usual notation for a cycle of length 𝑝 (which for us is less than or equal to 𝑇) is
𝐶𝑚 = (𝑎1𝑎2 · · · 𝑎𝑝) where in our setting {𝑎1, 𝑎2, ..., 𝑎𝑝} ⊆ {1, 2, ..., 𝑇}. We will
decorate each 𝑎𝑖 by an additional subscript as 𝑎𝑚,𝑖 to remember that it that belongs to
the 𝑚th cycle 𝐶𝑚. Similarly, we will sometimes write 𝑝 = |𝐶𝑚 | to remind ourselves
that it depends on 𝑚. In this notation, we can write (9.224) as a product of√︃

tr( �̃�𝑣𝑎𝑚,1 �̃�𝑣𝑎𝑚,2 )
√︃

tr( �̃�𝑣𝑎𝑚,2 �̃�𝑣𝑎𝑚,3 ) · · ·
√︃

tr( �̃�𝑣𝑎𝑚,𝑝−1
�̃�𝑣𝑎𝑚,𝑝 )

√︃
tr( �̃�𝑣𝑎𝑚,𝑝 �̃�𝑣𝑎𝑚,1 )

(9.226)
over the different 𝑚 = 1, . . . , #(𝜏−1). We can further process the above expression
for a given 𝑚. We proceed by analyzing two cases: (i) 𝑝 = |𝐶𝑚 | is even, and (ii)
𝑝 = |𝐶𝑚 | is odd.

Case 1: 𝑝 is even. Each term in Eqn. (9.226) has the form
√︃

tr( �̃�𝑣𝑎𝑚,𝑖 �̃�𝑣𝑎𝑚,𝑖+1 )
except for the last term; however, if we treat the 𝑖 subscripts of 𝑎𝑚,𝑖 modulo 𝑝, then
we can write the last term as

√︃
tr( �̃�𝑣𝑎𝑚,𝑝 �̃�𝑣𝑎𝑚,𝑝+1 ) . We elect to use this notation.

Then we can rearrange and group the terms in Eqn. (9.226) as follows(∏
𝑖 odd

√︃
tr( �̃�𝑣𝑎𝑚,𝑖 �̃�𝑣𝑎𝑚,𝑖+1 )

) ( ∏
𝑗 even

√︃
tr( �̃�𝑣𝑎𝑚, 𝑗 �̃�𝑣𝑎𝑚, 𝑗+1 )

)
. (9.227)
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Using the inequality 𝑎𝑏 ≤ 1
2 (𝑎

2 + 𝑏2), the above is upper bounded by

1
2

∏
𝑖 odd

tr( �̃�𝑣𝑎𝑚,𝑖 �̃�𝑣𝑎𝑚,𝑖+1 ) +
1
2

∏
𝑗 even

tr( �̃�𝑣𝑎𝑚, 𝑗 �̃�𝑣𝑎𝑚, 𝑗+1 ) . (9.228)

We will call the first term 1
2 𝑅𝑚,− and the second term 1

2 𝑅𝑚, + .

Case 2: 𝑝 is odd. Again consider the product in Eqn. (9.226). We can rearrange
and group terms as

√︃
tr( �̃�𝑣𝑎𝑚,𝑝 �̃�𝑣𝑎𝑚,1 )

©«
∏
𝑖 odd

1≤𝑖≤𝑝−2

√︃
tr( �̃�𝑣𝑎𝑚,𝑖 �̃�𝑣𝑎𝑚,𝑖+1 )

ª®®®¬
( ∏
𝑗 even

√︃
tr( �̃�𝑣𝑎𝑚, 𝑗 �̃�𝑣𝑎𝑚, 𝑗+1 )

)
.

(9.229)
If two matrices 𝐴, 𝐵 are Hermitian and positive semi-definite, then using Cauchy-
Schwarz combined with operator norm inequalities we have tr(𝐴𝐵) ≤ ∥𝐴∥2 ∥𝐵∥2 ≤
∥𝐴∥1 ∥𝐵∥1 ≤ tr(𝐴) tr(𝐵). Accordingly, we have√︃

tr( �̃�𝑣𝑎𝑚,𝑝 �̃�𝑣𝑎𝑚,1 ) ≤
√︃

tr( �̃�𝑣𝑎𝑚,𝑝 ) tr( �̃�𝑣𝑎𝑚,1 ) (9.230)

and so (9.229) is upper bounded by

©«
√︃

tr( �̃�𝑣𝑎𝑚,𝑝 )
∏
𝑖 odd

1≤𝑖≤𝑝−2

√︃
tr( �̃�𝑣𝑎𝑚,𝑖 �̃�𝑣𝑎𝑚,𝑖+1 )

ª®®®¬
(√︃

tr( �̃�𝑣𝑎𝑚,1 )
∏
𝑗 even

√︃
tr( �̃�𝑣𝑎𝑚, 𝑗 �̃�𝑣𝑎𝑚, 𝑗+1 )

)
.

(9.231)
Again using the inequality 𝑎𝑏 ≤ 1

2 (𝑎
2 + 𝑏2), we have the upper bound

1
2

tr( �̃�𝑣𝑎𝑚,𝑝 )
∏
𝑖 odd

1≤𝑖≤𝑝−2

tr( �̃�𝑣𝑎𝑚,𝑖 �̃�𝑣𝑎𝑚,𝑖+1 ) +
1
2

tr( �̃�𝑣𝑎𝑚,1 )
∏
𝑗 even

tr( �̃�𝑣𝑎𝑚, 𝑗 �̃�𝑣𝑎𝑚, 𝑗+1 ) (9.232)

where we analogously call the first term 1
2 𝑅𝑚,− and the second term 1

2 𝑅𝑚, + .

In both cases, note that 𝑅𝑚,− and 𝑅𝑚, + implicitly depend on the leaf ℓ, so we will
denote them by 𝑅ℓ𝑚,− and 𝑅ℓ𝑚, + when we wish to make this dependence explicit.

Putting together our notation and bounds from Case 1 and Case 2, we find that
Eqn. (9.224) is upper bounded by

#(𝜏−1)∏
𝑚=1

∏
𝑖→ 𝑗 ∈𝐶𝑚

√︃
tr( �̃�𝑣𝑖 �̃�𝑣 𝑗 ) ≤

1
2#(𝜏−1)

#(𝜏−1)∏
𝑚=1

(
𝑅𝑚,− + 𝑅𝑚,+

)
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=
1

2#(𝜏−1)

∑︁
𝑖1,...,𝑖#(𝜏−1 )=±

𝑅1,𝑖1𝑅2,𝑖2 · · · 𝑅#(𝜏−1),𝑖#(𝜏−1 )
.

(9.233)

Each term in the sum in the last line of (9.233) is a product of terms like tr( �̃�𝑣𝑖 )
and tr( �̃�𝑣 𝑗 �̃�𝑣𝑘 ). But the key point is that we have arranged the equations so that
each term in the sum has �̃�𝑣𝑖 for each 𝑖 = 1, ..., 𝑇 appear exactly once. This has the
following highly useful consequence.

Lemma 62. Fix any 𝑖1, ..., 𝑖#(𝜏−1) ∈ {+,−}. Then∑︁
ℓ ∈ leaf(T )

(𝑑𝑑′)𝑇 𝑊ℓ 𝑅
ℓ
1,𝑖1𝑅

ℓ
2,𝑖2 · · · 𝑅

ℓ

#(𝜏−1),𝑖#(𝜏−1 )
≤ 𝑑

𝑇−
⌊
𝐿 (𝜏−1 )

2

⌋
(9.234)

where 𝐿 (𝜏−1) is the length of the longest cycle in 𝜏−1.

Proof. For ease of notation, we will let 𝑅ℓ
𝑗
≜ 𝑅ℓ

𝑗 ,𝑖 𝑗
. Recall from (9.204) that

𝑊ℓ = 𝑤𝑣1𝑤𝑣2 · · ·𝑤𝑣𝑇 and note that∑︁
𝑣: depth(𝑣)=𝑖

𝑑𝑑′𝑤𝑣 �̃�𝑣 = ⟨𝜙parent(𝑣) |𝜙parent(𝑣)⟩ 1𝑑×𝑑 = 1𝑑×𝑑 . (9.235)

Accordingly we have that for any 𝜌 ∈ Mat𝑑×𝑑 (C),∑︁
𝑣: depth(𝑣)=𝑖

𝑑𝑑′𝑤𝑣 tr( �̃�𝑣 𝜌) = tr(𝜌) , (9.236)

and in particular, for 𝜌 = 1, ∑︁
𝑣: depth(𝑣)=𝑖

𝑑𝑑′𝑤𝑣 tr( �̃�𝑣) = 𝑑. (9.237)

We now turn to bounding the left-hand side of (9.234). Recalling that
∏

𝑗 𝑅
ℓ
𝑗

as
a product of terms like tr( �̃�𝑣𝑖 ) and tr( �̃�𝑣𝑖 �̃�𝑣𝑖′ ), we will define some sets of indices
encoding this data. Let 𝑆(𝑇)1 ⊆ [𝑇] denote the indices 𝑖 for which tr( �̃�𝑣𝑖 ) appears
in

∏
𝑗 𝑅

ℓ
𝑗
, and let 𝑆(𝑇)2 ⊆ [𝑇] × [𝑇] denote the set of (unordered) pairs (𝑖, 𝑖′) for

which tr( �̃�𝑣𝑖 �̃�𝑣𝑖′ ) appears, so that for any root-to-leaf path in T consisting of nodes
𝑣1, . . . , 𝑣𝑇 = ℓ, we have∏

𝑗

𝑅ℓ𝑗 =
∏
𝑖∈𝑆 (𝑇 )1

tr( �̃�𝑣𝑖 ) ·
∏

(𝑖,𝑖′)∈𝑆 (𝑇 )2

tr( �̃�𝑣𝑖 �̃�𝑣𝑖′ ) (9.238)

by definition. Now construct 𝑆(𝑡)1 ⊆ [𝑡] and 𝑆
(𝑡)
2 ⊆ [𝑡] × [𝑡] for 1 ≤ 𝑡 < 𝑇

inductively as follows. If 𝑡 ∈ 𝑆(𝑡)1 then define 𝑆(𝑡−1)
1 ≜ 𝑆(𝑡)1 \{𝑡} and 𝑆(𝑡−1)

2 ≜ 𝑆(𝑡)2 .
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Otherwise if (𝑡, 𝑡′) ∈ 𝑆(𝑡)2 for some 𝑡′ < 𝑡, then define 𝑆(𝑡−1)
1 ≜ 𝑆

(𝑡−1)
1 ∪ {𝑡′} and

𝑆
(𝑡−1)
2 ≜ 𝑆

(𝑡)
2 \{(𝑡, 𝑡

′)}. We collect some basic observations about these two set
sequences:

Observation 1. For every 𝑖 ∈ 𝑆(𝑇)1 , we have that 𝑖 ∈ 𝑆(𝑖)1 .

Observation 2. For every (𝑖, 𝑖′) ∈ 𝑆(𝑇)2 , if 𝑖 ≤ 𝑖′ then 𝑖 ∈ 𝑆(𝑖)1 while 𝑖′ ∉ 𝑆(𝑖
′)

1 .

The reason for defining these set sequences is that we can extract �̃�𝑣𝑇 from the
product on the right-hand side of (9.238) and apply (9.237) (resp. (9.236)) if
𝑇 ∈ 𝑆(𝑇)1 (resp. (𝑇, 𝑡′) ∈ 𝑆(𝑇)2 for some 𝑡′ < 𝑇) to obtain∑︁

ℓ∈leaf (T )
(𝑑𝑑′)𝑇𝑊ℓ

∏
𝑗

𝑅ℓ𝑗 (9.239)

= 𝑑1[𝑇∈𝑆
(𝑇 )
1 ]

∑︁
𝑢: depth(𝑢)=𝑇−1

(𝑑𝑑′)𝑇−1𝑊𝑢

∏
𝑖∈𝑆 (𝑇−1)

1

tr( �̃�𝑣𝑖 ) ·
∏

(𝑖,𝑖′)∈𝑆 (𝑇−1)
2

tr( �̃�𝑣𝑖 �̃�𝑣𝑖′ ),

(9.240)

where𝑊𝑢 = 𝑤𝑣1 · · ·𝑤𝑣𝑇−1 if the path from root to 𝑢 inT consists of 𝑣1, . . . , 𝑣𝑇−1 = 𝑢.
Proceeding inductively, we can express the right-hand side of (9.239) as

𝑑
∑𝑇
𝑡=1 1[𝑡∈𝑆

(𝑡 )
1 ] . (9.241)

By Observations 1 and 2,
∑𝑇
𝑡=1 1[𝑡 ∈ 𝑆

(𝑡)
1 ] = |𝑆

(𝑇)
1 | + |𝑆

(𝑇)
2 |. Because every even

cycle𝐶𝑚 of 𝜏−1 contributes |𝐶𝑚 |/2 pairs to 𝑆(𝑇)2 , and every odd cycle𝐶𝑚 contributes
⌊|𝐶𝑚 |/2⌋ pairs to 𝑆(𝑇)2 and one element to 𝑆(𝑇)1 , we conclude that∑︁

ℓ∈leaf (T )
(𝑑𝑑′)𝑇𝑊ℓ

∏
𝑗

𝑅ℓ𝑗 = 𝑑

∑#(𝜏−1 )
𝑚=1

⌈
|𝐶𝑚 |

2

⌉

= 𝑑
𝑇−∑#(𝜏−1 )

𝑚=1

⌊
|𝐶𝑚 |

2

⌋

≤ 𝑑
𝑇−

⌊
𝐿 (𝜏−1 )

2

⌋
(9.242)

as claimed.

Putting our previous analysis together, in particular by combining Eqn.’s (9.220),
(9.221), (9.222), (9.224), (9.233), and (9.234), we arrive at∑︁

ℓ ∈ leaf(T )

∑︁
𝜏≠1, 𝜎

|𝑝𝜎,𝜏 (ℓ) | ≤ 𝑑𝑇
∑︁
𝜎

|Wg𝑈 (𝜎−1, 𝑑) |
∑︁
𝜏≠1

𝑑
−
⌊
𝐿 (𝜏−1 )

2

⌋
. (9.243)
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The first sum on the right-hand side is bounded by

𝑑𝑇
∑︁
𝜎

|Wg𝑈 (𝜎−1, 𝑑) | ≤ 1 + O
(
𝑇2

𝑑

)
. (9.244)

Considering the second sum on the right-hand side, let 𝑁 (𝑇, ℓ) be the number of
permutations in 𝑆𝑇 where the length of the longest cycle is ℓ. Then the second sum
can be written as

𝑇∑︁
ℓ=2

𝑁 (𝑇, ℓ) 𝑑−⌊ ℓ2⌋ (9.245)

where we omit 𝑘 = 1 from the sum since it corresponds to the identity permutation.
Since 𝑁 (𝑇, ℓ) ≤

(𝑇
ℓ

)
ℓ! = 𝑇!

(𝑇−ℓ)! < 𝑇
ℓ, (9.245) is upper bounded by

∞∑︁
ℓ=2

𝑇 ℓ 𝑑−⌊ ℓ2⌋ =
(1 + 𝑇) 𝑇2

𝑑

1 − 𝑇2

𝑑

=
𝑇3

𝑑
+ 𝑇

2

𝑑
+ O

(
𝑇5

𝑑2

)
. (9.246)

Now if 𝑇 ≤ 𝑜(𝑑1/3), then this quantity is 𝑜(1) for some absolute constant 𝑐 > 0.
Altogether, we find

1
2

∑︁
ℓ ∈ leaf(T )

∑︁
𝜏≠1, 𝜎

|𝑝𝜎,𝜏 (ℓ) | ≤ 𝑜(1) . (9.247)

Proof of Theorems 58 and 59

As discussed above, we will present proof of Theorems 58 and 59, making heavy
use of pair partitions.

Proof. The probability distribution 𝑝D (ℓ) is notated the same way as before. We
can depict E Haar [𝑝O (ℓ)] diagrammatically by

<latexit sha1_base64="eBU40pP8UOpygATfYtwAL1WujFA=">AAAB/HicbVBNS8NAEN3Ur1q/oj16WSyCp5IUUY9FLx4r2A9oQthsp+3SzSbsboQQ61/x4kERr/4Qb/4bt20O2vpg4PHeDDPzwoQzpR3n2yqtrW9sbpW3Kzu7e/sH9uFRR8WppNCmMY9lLyQKOBPQ1kxz6CUSSBRy6IaTm5nffQCpWCzudZaAH5GRYENGiTZSYFcfsdcas8ADzrEniRhxCOyaU3fmwKvELUgNFWgF9pc3iGkagdCUE6X6rpNoPydSM8phWvFSBQmhEzKCvqGCRKD8fH78FJ8aZYCHsTQlNJ6rvydyEimVRaHpjIgeq2VvJv7n9VM9vPJzJpJUg6CLRcOUYx3jWRJ4wCRQzTNDCJXM3IrpmEhCtcmrYkJwl19eJZ1G3b2oN+7Oa83rIo4yOkYn6Ay56BI10S1qoTaiKEPP6BW9WU/Wi/VufSxaS1YxU0V/YH3+ACcVlHY=</latexit>|�`i
<latexit sha1_base64="Lj+rbwQ7YPdCjgaMhI70JVBeGwI=">AAAB/HicbVBNS8NAEN3Ur1q/oj16WSyCp5IUUY9FLx4r2A9oQthsp+3SzSbsboQQ61/x4kERr/4Qb/4bt20O2vpg4PHeDDPzwoQzpR3n2yqtrW9sbpW3Kzu7e/sH9uFRR8WppNCmMY9lLyQKOBPQ1kxz6CUSSBRy6IaTm5nffQCpWCzudZaAH5GRYENGiTZSYFcfsddSLPCAc+xJIkYcArvm1J058CpxC1JDBVqB/eUNYppGIDTlRKm+6yTaz4nUjHKYVrxUQULohIygb6ggESg/nx8/xadGGeBhLE0Jjefq74mcREplUWg6I6LHatmbif95/VQPr/yciSTVIOhi0TDlWMd4lgQeMAlU88wQQiUzt2I6JpJQbfKqmBDc5ZdXSadRdy/qjbvzWvO6iKOMjtEJOkMuukRNdItaqI0oytAzekVv1pP1Yr1bH4vWklXMVNEfWJ8/OFuUgQ==</latexit>| `i

<latexit sha1_base64="orZyd1BmuNf8/9NMgA5NPFio3ek=">AAAB+3icbVBNS8NAEN3Ur1q/Yj16WSyCp5IUUY9FLx4r2A9oQthsJ+3SzSbsbsQS+1e8eFDEq3/Em//GbZuDtj4YeLw3w8y8MOVMacf5tkpr6xubW+Xtys7u3v6BfVjtqCSTFNo04YnshUQBZwLammkOvVQCiUMO3XB8M/O7DyAVS8S9nqTgx2QoWMQo0UYK7KrHiRhywF5LscADzp8Cu+bUnTnwKnELUkMFWoH95Q0SmsUgNOVEqb7rpNrPidSMcphWvExBSuiYDKFvqCAxKD+f3z7Fp0YZ4CiRpoTGc/X3RE5ipSZxaDpjokdq2ZuJ/3n9TEdXfs5EmmkQdLEoyjjWCZ4FgQdMAtV8YgihkplbMR0RSag2cVVMCO7yy6uk06i7F/XG3XmteV3EUUbH6ASdIRddoia6RS3URhQ9omf0it6sqfVivVsfi9aSVcwcoT+wPn8A1V6UUQ==</latexit>h `|

<latexit sha1_base64="Uur6U+NHdyQAsQxrB5ZKDojw/No=">AAAB+3icbVBNS8NAEN3Ur1q/Yj16WSyCp5IUUY9FLx4r2A9oQthsJ+3SzSbsbsQS+1e8eFDEq3/Em//GbZuDtj4YeLw3w8y8MOVMacf5tkpr6xubW+Xtys7u3v6BfVjtqCSTFNo04YnshUQBZwLammkOvVQCiUMO3XB8M/O7DyAVS8S9nqTgx2QoWMQo0UYK7KrHiRhywF5rxAIPOH8K7JpTd+bAq8QtSA0VaAX2lzdIaBaD0JQTpfquk2o/J1IzymFa8TIFKaFjMoS+oYLEoPx8fvsUnxplgKNEmhIaz9XfEzmJlZrEoemMiR6pZW8m/uf1Mx1d+TkTaaZB0MWiKONYJ3gWBB4wCVTziSGESmZuxXREJKHaxFUxIbjLL6+STqPuXtQbd+e15nURRxkdoxN0hlx0iZroFrVQG1H0iJ7RK3qzptaL9W59LFpLVjFzhP7A+vwBxGWURg==</latexit>h�`|
<latexit sha1_base64="XMRTYDZw780OPg6jDDvip7iH6n8="></latexit>

EHaar[p
O(`)] = (dd0)T

X

m,n2P2(2T )

W`

<latexit sha1_base64="ulYkTQOuQaB7OhqZ3vRRq3WNedM=">AAAB/nicbVDLSsNAFJ3UV62vqLhyM1gEVyUpoi6LunBZwT6gCWEynbRDZyZhZiKUEPBX3LhQxK3f4c6/cdJmoa0HBg7n3Ms9c8KEUaUd59uqrKyurW9UN2tb2zu7e/b+QVfFqcSkg2MWy36IFGFUkI6mmpF+IgniISO9cHJT+L1HIhWNxYOeJsTnaCRoRDHSRgrsI++WMI2CzONIjyOJJhnP88CuOw1nBrhM3JLUQYl2YH95wxinnAiNGVJq4DqJ9jMkNcWM5DUvVSRBeIJGZGCoQJwoP5vFz+GpUYYwiqV5QsOZ+nsjQ1ypKQ/NZBFSLXqF+J83SHV05WdUJKkmAs8PRSmDOoZFF3BIJcGaTQ1BWFKTFeIxkghr01jNlOAufnmZdJsN96LRvD+vt67LOqrgGJyAM+CCS9ACd6ANOgCDDDyDV/BmPVkv1rv1MR+tWOXOIfgD6/MHBtuWMA==</latexit>

�m

<latexit sha1_base64="5lFka3DOysX/K2PVZdtGtWKfv2g=">AAAB/nicbVDLSsNAFJ3UV62vqLhyEyyCq5IUUZdFXbisYB/QhHAznbRDJ5MwMxFKCPgrblwo4tbvcOffOGmz0NYDA4dz7uWeOUHCqFS2/W1UVlbX1jeqm7Wt7Z3dPXP/oCvjVGDSwTGLRT8ASRjlpKOoYqSfCAJRwEgvmNwUfu+RCElj/qCmCfEiGHEaUgxKS7555N4SpsDP3AjUOBQwyXie+2bdbtgzWMvEKUkdlWj75pc7jHEaEa4wAykHjp0oLwOhKGYkr7mpJAngCYzIQFMOEZFeNoufW6daGVphLPTjypqpvzcyiKScRoGeLELKRa8Q//MGqQqvvIzyJFWE4/mhMGWWiq2iC2tIBcGKTTUBLKjOauExCMBKN1bTJTiLX14m3WbDuWg078/rreuyjio6RifoDDnoErXQHWqjDsIoQ8/oFb0ZT8aL8W58zEcrRrlziP7A+PwBCGGWMQ==</latexit>

�n

<latexit sha1_base64="C4HN9p4HWAaBxI5y5Fu9RDFAsBY=">AAACK3icbVBNSwMxEM3W7/pV9eglWoQKWnZF1GOpF28qWCt025JNszU0yS7JrFiW/T9e/Cse9OAHXv0fprUHbX0w8Hhvhpl5QSy4Add9d3JT0zOzc/ML+cWl5ZXVwtr6tYkSTVmNRiLSNwExTHDFasBBsJtYMyIDwepB73Tg1++YNjxSV9CPWVOSruIhpwSs1C5UfWD3kNa7Wevc3yr5hnclaae+JHAbatJLVZbhSVVmWSvd97I93NltF4pu2R0CTxJvRIpohIt24dnvRDSRTAEVxJiG58bQTIkGTgXL8n5iWExoj3RZw1JFJDPNdPhrhnes0sFhpG0pwEP190RKpDF9GdjOwbVm3BuI/3mNBMKTZspVnABT9GdRmAgMER4EhztcMwqibwmhmttbMb0lmlCw8eZtCN74y5Pk+qDsHZUPLg+Lleoojnm0ibZRCXnoGFXQGbpANUTRA3pCr+jNeXRenA/n86c154xmNtAfOF/fEOeoww==</latexit>

WgO(�n�
�1
m , d)

(9.248)

where 𝑝O𝔪,𝔫 (ℓ) denotes the summand. Similarly E Haar [𝑝S (ℓ)] is given by
<latexit sha1_base64="eBU40pP8UOpygATfYtwAL1WujFA=">AAAB/HicbVBNS8NAEN3Ur1q/oj16WSyCp5IUUY9FLx4r2A9oQthsp+3SzSbsboQQ61/x4kERr/4Qb/4bt20O2vpg4PHeDDPzwoQzpR3n2yqtrW9sbpW3Kzu7e/sH9uFRR8WppNCmMY9lLyQKOBPQ1kxz6CUSSBRy6IaTm5nffQCpWCzudZaAH5GRYENGiTZSYFcfsdcas8ADzrEniRhxCOyaU3fmwKvELUgNFWgF9pc3iGkagdCUE6X6rpNoPydSM8phWvFSBQmhEzKCvqGCRKD8fH78FJ8aZYCHsTQlNJ6rvydyEimVRaHpjIgeq2VvJv7n9VM9vPJzJpJUg6CLRcOUYx3jWRJ4wCRQzTNDCJXM3IrpmEhCtcmrYkJwl19eJZ1G3b2oN+7Oa83rIo4yOkYn6Ay56BI10S1qoTaiKEPP6BW9WU/Wi/VufSxaS1YxU0V/YH3+ACcVlHY=</latexit>|�`i
<latexit sha1_base64="Lj+rbwQ7YPdCjgaMhI70JVBeGwI=">AAAB/HicbVBNS8NAEN3Ur1q/oj16WSyCp5IUUY9FLx4r2A9oQthsp+3SzSbsboQQ61/x4kERr/4Qb/4bt20O2vpg4PHeDDPzwoQzpR3n2yqtrW9sbpW3Kzu7e/sH9uFRR8WppNCmMY9lLyQKOBPQ1kxz6CUSSBRy6IaTm5nffQCpWCzudZaAH5GRYENGiTZSYFcfsddSLPCAc+xJIkYcArvm1J058CpxC1JDBVqB/eUNYppGIDTlRKm+6yTaz4nUjHKYVrxUQULohIygb6ggESg/nx8/xadGGeBhLE0Jjefq74mcREplUWg6I6LHatmbif95/VQPr/yciSTVIOhi0TDlWMd4lgQeMAlU88wQQiUzt2I6JpJQbfKqmBDc5ZdXSadRdy/qjbvzWvO6iKOMjtEJOkMuukRNdItaqI0oytAzekVv1pP1Yr1bH4vWklXMVNEfWJ8/OFuUgQ==</latexit>| `i

<latexit sha1_base64="orZyd1BmuNf8/9NMgA5NPFio3ek=">AAAB+3icbVBNS8NAEN3Ur1q/Yj16WSyCp5IUUY9FLx4r2A9oQthsJ+3SzSbsbsQS+1e8eFDEq3/Em//GbZuDtj4YeLw3w8y8MOVMacf5tkpr6xubW+Xtys7u3v6BfVjtqCSTFNo04YnshUQBZwLammkOvVQCiUMO3XB8M/O7DyAVS8S9nqTgx2QoWMQo0UYK7KrHiRhywF5LscADzp8Cu+bUnTnwKnELUkMFWoH95Q0SmsUgNOVEqb7rpNrPidSMcphWvExBSuiYDKFvqCAxKD+f3z7Fp0YZ4CiRpoTGc/X3RE5ipSZxaDpjokdq2ZuJ/3n9TEdXfs5EmmkQdLEoyjjWCZ4FgQdMAtV8YgihkplbMR0RSag2cVVMCO7yy6uk06i7F/XG3XmteV3EUUbH6ASdIRddoia6RS3URhQ9omf0it6sqfVivVsfi9aSVcwcoT+wPn8A1V6UUQ==</latexit>h `|

<latexit sha1_base64="Uur6U+NHdyQAsQxrB5ZKDojw/No=">AAAB+3icbVBNS8NAEN3Ur1q/Yj16WSyCp5IUUY9FLx4r2A9oQthsJ+3SzSbsbsQS+1e8eFDEq3/Em//GbZuDtj4YeLw3w8y8MOVMacf5tkpr6xubW+Xtys7u3v6BfVjtqCSTFNo04YnshUQBZwLammkOvVQCiUMO3XB8M/O7DyAVS8S9nqTgx2QoWMQo0UYK7KrHiRhywF5rxAIPOH8K7JpTd+bAq8QtSA0VaAX2lzdIaBaD0JQTpfquk2o/J1IzymFa8TIFKaFjMoS+oYLEoPx8fvsUnxplgKNEmhIaz9XfEzmJlZrEoemMiR6pZW8m/uf1Mx1d+TkTaaZB0MWiKONYJ3gWBB4wCVTziSGESmZuxXREJKHaxFUxIbjLL6+STqPuXtQbd+e15nURRxkdoxN0hlx0iZroFrVQG1H0iJ7RK3qzptaL9W59LFpLVjFzhP7A+vwBxGWURg==</latexit>h�`|
<latexit sha1_base64="Mnc2ItdJRLFmUQbW8AwVVr9KFa0="></latexit>

EHaar[p
S(`)] = (dd0)T

X

m,n2P2(2T )

W`

<latexit sha1_base64="DuC0p3/1W0KQz1786meYPFNYdJ4="></latexit>

WgSp(�n�
�1
m , d/2)

<latexit sha1_base64="0KLlXTeeZYYWxAta7LJxE4SWMeI=">AAAB8XicbVDLSgNBEJyNrxhfUY9eBoPgKewGUY9BL+IpgnlgEsLspDcZMju7zPSKYclfePGgiFf/xpt/4yTZgyYWNBRV3XR3+bEUBl3328mtrK6tb+Q3C1vbO7t7xf2DhokSzaHOIxnpls8MSKGgjgIltGINLPQlNP3R9dRvPoI2IlL3OI6hG7KBEoHgDK300EF4Qj9Ibye9YsktuzPQZeJlpEQy1HrFr04/4kkICrlkxrQ9N8ZuyjQKLmFS6CQGYsZHbABtSxULwXTT2cUTemKVPg0ibUshnam/J1IWGjMOfdsZMhyaRW8q/ue1Ewwuu6lQcYKg+HxRkEiKEZ2+T/tCA0c5toRxLeytlA+ZZhxtSAUbgrf48jJpVMreeblyd1aqXmVx5MkROSanxCMXpEpuSI3UCSeKPJNX8uYY58V5dz7mrTknmzkkf+B8/gDjMZEQ</latexit>

J

<latexit sha1_base64="mfqHNzI7qjrRiGPV6K0EN650HpI=">AAAB83icbVDLSgNBEJyNrxhfUY9eBoPgKewGUY9BL+IpgnlAdg2zk95kyOyDmV4xLPkNLx4U8erPePNvnCR70MSChqKqm+4uP5FCo21/W4WV1bX1jeJmaWt7Z3evvH/Q0nGqODR5LGPV8ZkGKSJookAJnUQBC30JbX90PfXbj6C0iKN7HCfghWwQiUBwhkZyXYQn9IPsdvKAvXLFrtoz0GXi5KRCcjR65S+3H/M0hAi5ZFp3HTtBL2MKBZcwKbmphoTxERtA19CIhaC9bHbzhJ4YpU+DWJmKkM7U3xMZC7Ueh77pDBkO9aI3Ff/zuikGl14moiRFiPh8UZBKijGdBkD7QgFHOTaEcSXMrZQPmWIcTUwlE4Kz+PIyadWqznm1dndWqV/lcRTJETkmp8QhF6RObkiDNAknCXkmr+TNSq0X6936mLcWrHzmkPyB9fkDdDmR9g==</latexit>

Jt

<latexit sha1_base64="ut6Y7RHCGDB9jeGLR9o+YjWzppA=">AAAB/3icbVDLSsNAFJ3UV62vqODGTbCIrkpSRF0WdeGygn1AE8pkOmmHTiZh5kYoMQt/xY0LRdz6G+78GydtFtp6YOBwzr3cM8ePOVNg299GaWl5ZXWtvF7Z2Nza3jF399oqSiShLRLxSHZ9rChngraAAafdWFIc+px2/PF17nceqFQsEvcwiakX4qFgASMYtNQ3D9wbygH3UzfEMAokHqciy076ZtWu2VNYi8QpSBUVaPbNL3cQkSSkAgjHSvUcOwYvxRIY4TSruImiMSZjPKQ9TQUOqfLSaf7MOtbKwAoiqZ8Aa6r+3khxqNQk9PVknlLNe7n4n9dLILj0UibiBKggs0NBwi2IrLwMa8AkJcAnmmAimc5qkRGWmICurKJLcOa/vEja9ZpzXqvfnVUbV0UdZXSIjtApctAFaqBb1EQtRNAjekav6M14Ml6Md+NjNloyip199AfG5w9xVZZi</latexit>

�0
n

<latexit sha1_base64="dLtegMNnEskgaMQqiydWX4w336Y=">AAAB/3icbVDLSgMxFM3UV62vUcGNm2ARXZWZIuqyqAuXFewDOkPJpJk2NMkMSUYo4yz8FTcuFHHrb7jzb8y0s9DWA4HDOfdyT04QM6q043xbpaXlldW18nplY3Nre8fe3WurKJGYtHDEItkNkCKMCtLSVDPSjSVBPGCkE4yvc7/zQKSikbjXk5j4HA0FDSlG2kh9+8C7IUyjfupxpEehROOUZ9lJ3646NWcKuEjcglRBgWbf/vIGEU44ERozpFTPdWLtp0hqihnJKl6iSIzwGA1Jz1CBOFF+Os2fwWOjDGAYSfOEhlP190aKuFITHpjJPKWa93LxP6+X6PDST6mIE00Enh0KEwZ1BPMy4IBKgjWbGIKwpCYrxCMkEdamsoopwZ3/8iJp12vuea1+d1ZtXBV1lMEhOAKnwAUXoAFuQRO0AAaP4Bm8gjfryXqx3q2P2WjJKnb2wR9Ynz9vzpZh</latexit>

�0
m

(9.249)
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where here 𝑝S𝔪,𝔫 (ℓ) denotes the summand. Moreover, J := 𝐽⊗𝑡 . As before, we use
the triangle inequality in combination with the Cauchy-Schwarz inequality to write
the two inequalities

1
2

∑︁
ℓ ∈ leaf(T )

|𝑝D (ℓ) − EHaar [𝑝O (ℓ)] |

≤ 1
2

∑︁
ℓ ∈ leaf(T )

|𝑝D (ℓ) − 𝑝O𝔢,𝔢 (ℓ) | +
1
2

∑︁
ℓ ∈ leaf(T )

∑︁
𝔪≠𝔢

|𝑝O𝔪,𝔢 (ℓ) | (9.250)

+ 1
2

∑︁
ℓ ∈ leaf(T )

∑︁
𝔪≠𝔢, 𝔫

|𝑝O𝔪,𝔫 (ℓ) | . (9.251)

and

1
2

∑︁
ℓ ∈ leaf(T )

|𝑝D (ℓ) − EHaar [𝑝S (ℓ)] |

≤ 1
2

∑︁
ℓ ∈ leaf(T )

|𝑝D (ℓ) − 𝑝S𝔢,𝔢 (ℓ) | +
1
2

∑︁
ℓ ∈ leaf(T )

∑︁
𝔪≠𝔢

|𝑝S𝔪,𝔢 (ℓ) | (9.252)

+ 1
2

∑︁
ℓ ∈ leaf(T )

∑︁
𝔪≠𝔢, 𝔫

|𝑝S𝔪,𝔫 (ℓ) | . (9.253)

We will bound the right-hand sides of (9.250) and (9.252) term by term.

First term for 𝑂 (𝑑) case

We apply the Cauchy-Schwarz inequality to the first term in (9.250) to find the upper
bound

<latexit sha1_base64="eBU40pP8UOpygATfYtwAL1WujFA=">AAAB/HicbVBNS8NAEN3Ur1q/oj16WSyCp5IUUY9FLx4r2A9oQthsp+3SzSbsboQQ61/x4kERr/4Qb/4bt20O2vpg4PHeDDPzwoQzpR3n2yqtrW9sbpW3Kzu7e/sH9uFRR8WppNCmMY9lLyQKOBPQ1kxz6CUSSBRy6IaTm5nffQCpWCzudZaAH5GRYENGiTZSYFcfsdcas8ADzrEniRhxCOyaU3fmwKvELUgNFWgF9pc3iGkagdCUE6X6rpNoPydSM8phWvFSBQmhEzKCvqGCRKD8fH78FJ8aZYCHsTQlNJ6rvydyEimVRaHpjIgeq2VvJv7n9VM9vPJzJpJUg6CLRcOUYx3jWRJ4wCRQzTNDCJXM3IrpmEhCtcmrYkJwl19eJZ1G3b2oN+7Oa83rIo4yOkYn6Ay56BI10S1qoTaiKEPP6BW9WU/Wi/VufSxaS1YxU0V/YH3+ACcVlHY=</latexit>|�`i
<latexit sha1_base64="Lj+rbwQ7YPdCjgaMhI70JVBeGwI=">AAAB/HicbVBNS8NAEN3Ur1q/oj16WSyCp5IUUY9FLx4r2A9oQthsp+3SzSbsboQQ61/x4kERr/4Qb/4bt20O2vpg4PHeDDPzwoQzpR3n2yqtrW9sbpW3Kzu7e/sH9uFRR8WppNCmMY9lLyQKOBPQ1kxz6CUSSBRy6IaTm5nffQCpWCzudZaAH5GRYENGiTZSYFcfsddSLPCAc+xJIkYcArvm1J058CpxC1JDBVqB/eUNYppGIDTlRKm+6yTaz4nUjHKYVrxUQULohIygb6ggESg/nx8/xadGGeBhLE0Jjefq74mcREplUWg6I6LHatmbif95/VQPr/yciSTVIOhi0TDlWMd4lgQeMAlU88wQQiUzt2I6JpJQbfKqmBDc5ZdXSadRdy/qjbvzWvO6iKOMjtEJOkMuukRNdItaqI0oytAzekVv1pP1Yr1bH4vWklXMVNEfWJ8/OFuUgQ==</latexit>| `i

<latexit sha1_base64="orZyd1BmuNf8/9NMgA5NPFio3ek=">AAAB+3icbVBNS8NAEN3Ur1q/Yj16WSyCp5IUUY9FLx4r2A9oQthsJ+3SzSbsbsQS+1e8eFDEq3/Em//GbZuDtj4YeLw3w8y8MOVMacf5tkpr6xubW+Xtys7u3v6BfVjtqCSTFNo04YnshUQBZwLammkOvVQCiUMO3XB8M/O7DyAVS8S9nqTgx2QoWMQo0UYK7KrHiRhywF5LscADzp8Cu+bUnTnwKnELUkMFWoH95Q0SmsUgNOVEqb7rpNrPidSMcphWvExBSuiYDKFvqCAxKD+f3z7Fp0YZ4CiRpoTGc/X3RE5ipSZxaDpjokdq2ZuJ/3n9TEdXfs5EmmkQdLEoyjjWCZ4FgQdMAtV8YgihkplbMR0RSag2cVVMCO7yy6uk06i7F/XG3XmteV3EUUbH6ASdIRddoia6RS3URhQ9omf0it6sqfVivVsfi9aSVcwcoT+wPn8A1V6UUQ==</latexit>h `|

<latexit sha1_base64="Uur6U+NHdyQAsQxrB5ZKDojw/No=">AAAB+3icbVBNS8NAEN3Ur1q/Yj16WSyCp5IUUY9FLx4r2A9oQthsJ+3SzSbsbsQS+1e8eFDEq3/Em//GbZuDtj4YeLw3w8y8MOVMacf5tkpr6xubW+Xtys7u3v6BfVjtqCSTFNo04YnshUQBZwLammkOvVQCiUMO3XB8M/O7DyAVS8S9nqTgx2QoWMQo0UYK7KrHiRhywF5rxAIPOH8K7JpTd+bAq8QtSA0VaAX2lzdIaBaD0JQTpfquk2o/J1IzymFa8TIFKaFjMoS+oYLEoPx8fvsUnxplgKNEmhIaz9XfEzmJlZrEoemMiR6pZW8m/uf1Mx1d+TkTaaZB0MWiKONYJ3gWBB4wCVTziSGESmZuxXREJKHaxFUxIbjLL6+STqPuXtQbd+e15nURRxkdoxN0hlx0iZroFrVQG1H0iJ7RK3qzptaL9W59LFpLVjFzhP7A+vwBxGWURg==</latexit>h�`|<latexit sha1_base64="dVM3nR1DbkMyTbIDGyKcdjrMa6o="></latexit>

1

2

X

`2 leaf(T )

(dd0)T W`

<latexit sha1_base64="e8vNYkzFGHcOdb6LTgyZMp67obE="></latexit>����WgO(�e, d) � 1

dT

���� . (9.254)

As in the unitary setting, we remove the absolute values on the diagrammatic term
by virtue of its positivity, and sum over leaves to get

𝑑𝑇

2

����Wg𝑂 (𝜎𝔢, 𝑑) −
1
𝑑𝑇

���� . (9.255)

Using Corollary 18 which gives us |Wg𝑂 (𝜎𝔢, 𝑑) − 1
𝑑𝑇
| ≤ O(𝑇7/𝑑𝑇+2) for 𝑇 <(

𝑑
12

)2/7
, we immediately find

1
2

∑︁
ℓ ∈ leaf(T )

|𝑝D (ℓ) − 𝑝O𝔢,𝔢 (ℓ) | ≤ O
(
𝑇7

𝑑2

)
. (9.256)
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First term for Sp(𝑑/2) case

We recapitulate the same manipulations in the symplectic case. Applying the
Cauchy-Schwarz inequality to the first term in (9.252) gives us the upper bound

<latexit sha1_base64="eBU40pP8UOpygATfYtwAL1WujFA=">AAAB/HicbVBNS8NAEN3Ur1q/oj16WSyCp5IUUY9FLx4r2A9oQthsp+3SzSbsboQQ61/x4kERr/4Qb/4bt20O2vpg4PHeDDPzwoQzpR3n2yqtrW9sbpW3Kzu7e/sH9uFRR8WppNCmMY9lLyQKOBPQ1kxz6CUSSBRy6IaTm5nffQCpWCzudZaAH5GRYENGiTZSYFcfsdcas8ADzrEniRhxCOyaU3fmwKvELUgNFWgF9pc3iGkagdCUE6X6rpNoPydSM8phWvFSBQmhEzKCvqGCRKD8fH78FJ8aZYCHsTQlNJ6rvydyEimVRaHpjIgeq2VvJv7n9VM9vPJzJpJUg6CLRcOUYx3jWRJ4wCRQzTNDCJXM3IrpmEhCtcmrYkJwl19eJZ1G3b2oN+7Oa83rIo4yOkYn6Ay56BI10S1qoTaiKEPP6BW9WU/Wi/VufSxaS1YxU0V/YH3+ACcVlHY=</latexit>|�`i
<latexit sha1_base64="Lj+rbwQ7YPdCjgaMhI70JVBeGwI=">AAAB/HicbVBNS8NAEN3Ur1q/oj16WSyCp5IUUY9FLx4r2A9oQthsp+3SzSbsboQQ61/x4kERr/4Qb/4bt20O2vpg4PHeDDPzwoQzpR3n2yqtrW9sbpW3Kzu7e/sH9uFRR8WppNCmMY9lLyQKOBPQ1kxz6CUSSBRy6IaTm5nffQCpWCzudZaAH5GRYENGiTZSYFcfsddSLPCAc+xJIkYcArvm1J058CpxC1JDBVqB/eUNYppGIDTlRKm+6yTaz4nUjHKYVrxUQULohIygb6ggESg/nx8/xadGGeBhLE0Jjefq74mcREplUWg6I6LHatmbif95/VQPr/yciSTVIOhi0TDlWMd4lgQeMAlU88wQQiUzt2I6JpJQbfKqmBDc5ZdXSadRdy/qjbvzWvO6iKOMjtEJOkMuukRNdItaqI0oytAzekVv1pP1Yr1bH4vWklXMVNEfWJ8/OFuUgQ==</latexit>| `i

<latexit sha1_base64="orZyd1BmuNf8/9NMgA5NPFio3ek=">AAAB+3icbVBNS8NAEN3Ur1q/Yj16WSyCp5IUUY9FLx4r2A9oQthsJ+3SzSbsbsQS+1e8eFDEq3/Em//GbZuDtj4YeLw3w8y8MOVMacf5tkpr6xubW+Xtys7u3v6BfVjtqCSTFNo04YnshUQBZwLammkOvVQCiUMO3XB8M/O7DyAVS8S9nqTgx2QoWMQo0UYK7KrHiRhywF5LscADzp8Cu+bUnTnwKnELUkMFWoH95Q0SmsUgNOVEqb7rpNrPidSMcphWvExBSuiYDKFvqCAxKD+f3z7Fp0YZ4CiRpoTGc/X3RE5ipSZxaDpjokdq2ZuJ/3n9TEdXfs5EmmkQdLEoyjjWCZ4FgQdMAtV8YgihkplbMR0RSag2cVVMCO7yy6uk06i7F/XG3XmteV3EUUbH6ASdIRddoia6RS3URhQ9omf0it6sqfVivVsfi9aSVcwcoT+wPn8A1V6UUQ==</latexit>h `|

<latexit sha1_base64="Uur6U+NHdyQAsQxrB5ZKDojw/No=">AAAB+3icbVBNS8NAEN3Ur1q/Yj16WSyCp5IUUY9FLx4r2A9oQthsJ+3SzSbsbsQS+1e8eFDEq3/Em//GbZuDtj4YeLw3w8y8MOVMacf5tkpr6xubW+Xtys7u3v6BfVjtqCSTFNo04YnshUQBZwLammkOvVQCiUMO3XB8M/O7DyAVS8S9nqTgx2QoWMQo0UYK7KrHiRhywF5rxAIPOH8K7JpTd+bAq8QtSA0VaAX2lzdIaBaD0JQTpfquk2o/J1IzymFa8TIFKaFjMoS+oYLEoPx8fvsUnxplgKNEmhIaz9XfEzmJlZrEoemMiR6pZW8m/uf1Mx1d+TkTaaZB0MWiKONYJ3gWBB4wCVTziSGESmZuxXREJKHaxFUxIbjLL6+STqPuXtQbd+e15nURRxkdoxN0hlx0iZroFrVQG1H0iJ7RK3qzptaL9W59LFpLVjFzhP7A+vwBxGWURg==</latexit>h�`|<latexit sha1_base64="dVM3nR1DbkMyTbIDGyKcdjrMa6o=">AAACNHicbVDBShxBEO3RxOgm0Y0ec2ldQlaQZWYJiUeJFyEXA7uusL0ZenpqtLGnZ+iuCS7NfJQXPyQXETwokmu+IT3rHqKmoJvHe/WoqpeUSloMw+tgYfHFy6VXyyut12/erq61360f2aIyAoaiUIU5TrgFJTUMUaKC49IAzxMFo+Rsv9FHP8FYWegBTkuY5PxEy0wKjp6K299YZrhwUe36NbNVHjsGSrEdJrX/EM7RKeBZ3WU5x1PBlRvU2zVlm2yzm6Yft38MKNuho7hxxe1O2AtnRZ+DaA46ZF6HcfsXSwtR5aBRKG7tOApLnDhuUAoFdYtVFkouzvgJjD3UPAc7cbOja/rBMynNCuOfRjpj/3U4nls7zRPf2axun2oN+T9tXGG2O3FSlxWCFg+DskpRLGiTIE2lAYFq6gEXRvpdqTjlPkX0Obd8CNHTk5+Do34v+tzrf//U2fs6j2OZvCdbpEsi8oXskQNySIZEkAtyRW7JXXAZ3AT3we+H1oVg7tkgjyr48xc7pKp2</latexit>

1

2

X

`2 leaf(T )

(dd0)T W`

<latexit sha1_base64="API8GPCI67d0qLAklahspvNVymQ=">AAACWnicbZDLbhMxFIad4damXFLKrhtDhFSkEmYiBCwr2HTZiqapFE8jj+fMxIrnIvtMRWT8dDxFJdZIbNsXqCfJgrYcydKv/1z9JbWSBsPwshM8ePjo8ZONze7W02fPX/S2X56aqtECRqJSlT5LuAElSxihRAVntQZeJArGyfxbmx9fgDayKk9wUUNc8LyUmRQcvTXtxUxBhj8Zwg+049yd25X8XjvHXu+xguNMcGWZkXnB3dQunUzzuQXn9mn6YfiOvqfMO8JGzqbnJ45pmc/8zP3BtNcPB+Ey6H0RrUWfrONo2vvD0ko0BZQoFDdmEoU1xpZrlEKB67LGQM3FnOcw8bLkBZjYLjE4+tY7Kc0q7V+JdOn+22F5YcyiSHxl+wlzN9ea/8tNGsy+xFaWdYNQitWirFEUK9oypanUIFAtvOBCS38rFTPuiaAnf2tLatrTXNeDie5iuC9Oh4Po02B4/LF/8HWNaIPskjdkj0TkMzkgh+SIjIggv8hfckWuO7+DINgMtlalQWfds0NuRfDqBlS8uIE=</latexit>����WgSp(�e, d/2) � 1

dT

���� . (9.257)

We again remove the absolute values around the diagrammatic term, and sum over
leaves to find

𝑑𝑇

2

����WgSp(𝜎𝔢, 𝑑/2) −
1
𝑑𝑇

���� . (9.258)

Using the analogous Corollary 19 which provides the bound |Wg𝑂 (𝜎𝔢, 𝑑) − 1
𝑑𝑇
| ≤

O(𝑇7/2/𝑑𝑇+2) for 𝑇 <
(
𝑑
6

)2/7
, we have

1
2

∑︁
ℓ ∈ leaf(T )

|𝑝D (ℓ) − 𝑝S𝔢,𝔢 (ℓ) | ≤ O
(
𝑇7/2

𝑑2

)
. (9.259)

Second term for 𝑂 (𝑑) case

Applying Cauchy-Schwarz to the second term in (9.250), we find the upper bound
<latexit sha1_base64="eBU40pP8UOpygATfYtwAL1WujFA=">AAAB/HicbVBNS8NAEN3Ur1q/oj16WSyCp5IUUY9FLx4r2A9oQthsp+3SzSbsboQQ61/x4kERr/4Qb/4bt20O2vpg4PHeDDPzwoQzpR3n2yqtrW9sbpW3Kzu7e/sH9uFRR8WppNCmMY9lLyQKOBPQ1kxz6CUSSBRy6IaTm5nffQCpWCzudZaAH5GRYENGiTZSYFcfsdcas8ADzrEniRhxCOyaU3fmwKvELUgNFWgF9pc3iGkagdCUE6X6rpNoPydSM8phWvFSBQmhEzKCvqGCRKD8fH78FJ8aZYCHsTQlNJ6rvydyEimVRaHpjIgeq2VvJv7n9VM9vPJzJpJUg6CLRcOUYx3jWRJ4wCRQzTNDCJXM3IrpmEhCtcmrYkJwl19eJZ1G3b2oN+7Oa83rIo4yOkYn6Ay56BI10S1qoTaiKEPP6BW9WU/Wi/VufSxaS1YxU0V/YH3+ACcVlHY=</latexit>|�`i
<latexit sha1_base64="Lj+rbwQ7YPdCjgaMhI70JVBeGwI=">AAAB/HicbVBNS8NAEN3Ur1q/oj16WSyCp5IUUY9FLx4r2A9oQthsp+3SzSbsboQQ61/x4kERr/4Qb/4bt20O2vpg4PHeDDPzwoQzpR3n2yqtrW9sbpW3Kzu7e/sH9uFRR8WppNCmMY9lLyQKOBPQ1kxz6CUSSBRy6IaTm5nffQCpWCzudZaAH5GRYENGiTZSYFcfsddSLPCAc+xJIkYcArvm1J058CpxC1JDBVqB/eUNYppGIDTlRKm+6yTaz4nUjHKYVrxUQULohIygb6ggESg/nx8/xadGGeBhLE0Jjefq74mcREplUWg6I6LHatmbif95/VQPr/yciSTVIOhi0TDlWMd4lgQeMAlU88wQQiUzt2I6JpJQbfKqmBDc5ZdXSadRdy/qjbvzWvO6iKOMjtEJOkMuukRNdItaqI0oytAzekVv1pP1Yr1bH4vWklXMVNEfWJ8/OFuUgQ==</latexit>| `i

<latexit sha1_base64="orZyd1BmuNf8/9NMgA5NPFio3ek=">AAAB+3icbVBNS8NAEN3Ur1q/Yj16WSyCp5IUUY9FLx4r2A9oQthsJ+3SzSbsbsQS+1e8eFDEq3/Em//GbZuDtj4YeLw3w8y8MOVMacf5tkpr6xubW+Xtys7u3v6BfVjtqCSTFNo04YnshUQBZwLammkOvVQCiUMO3XB8M/O7DyAVS8S9nqTgx2QoWMQo0UYK7KrHiRhywF5LscADzp8Cu+bUnTnwKnELUkMFWoH95Q0SmsUgNOVEqb7rpNrPidSMcphWvExBSuiYDKFvqCAxKD+f3z7Fp0YZ4CiRpoTGc/X3RE5ipSZxaDpjokdq2ZuJ/3n9TEdXfs5EmmkQdLEoyjjWCZ4FgQdMAtV8YgihkplbMR0RSag2cVVMCO7yy6uk06i7F/XG3XmteV3EUUbH6ASdIRddoia6RS3URhQ9omf0it6sqfVivVsfi9aSVcwcoT+wPn8A1V6UUQ==</latexit>h `|

<latexit sha1_base64="Uur6U+NHdyQAsQxrB5ZKDojw/No=">AAAB+3icbVBNS8NAEN3Ur1q/Yj16WSyCp5IUUY9FLx4r2A9oQthsJ+3SzSbsbsQS+1e8eFDEq3/Em//GbZuDtj4YeLw3w8y8MOVMacf5tkpr6xubW+Xtys7u3v6BfVjtqCSTFNo04YnshUQBZwLammkOvVQCiUMO3XB8M/O7DyAVS8S9nqTgx2QoWMQo0UYK7KrHiRhywF5rxAIPOH8K7JpTd+bAq8QtSA0VaAX2lzdIaBaD0JQTpfquk2o/J1IzymFa8TIFKaFjMoS+oYLEoPx8fvsUnxplgKNEmhIaz9XfEzmJlZrEoemMiR6pZW8m/uf1Mx1d+TkTaaZB0MWiKONYJ3gWBB4wCVTziSGESmZuxXREJKHaxFUxIbjLL6+STqPuXtQbd+e15nURRxkdoxN0hlx0iZroFrVQG1H0iJ7RK3qzptaL9W59LFpLVjFzhP7A+vwBxGWURg==</latexit>h�`|
<latexit sha1_base64="ulYkTQOuQaB7OhqZ3vRRq3WNedM=">AAAB/nicbVDLSsNAFJ3UV62vqLhyM1gEVyUpoi6LunBZwT6gCWEynbRDZyZhZiKUEPBX3LhQxK3f4c6/cdJmoa0HBg7n3Ms9c8KEUaUd59uqrKyurW9UN2tb2zu7e/b+QVfFqcSkg2MWy36IFGFUkI6mmpF+IgniISO9cHJT+L1HIhWNxYOeJsTnaCRoRDHSRgrsI++WMI2CzONIjyOJJhnP88CuOw1nBrhM3JLUQYl2YH95wxinnAiNGVJq4DqJ9jMkNcWM5DUvVSRBeIJGZGCoQJwoP5vFz+GpUYYwiqV5QsOZ+nsjQ1ypKQ/NZBFSLXqF+J83SHV05WdUJKkmAs8PRSmDOoZFF3BIJcGaTQ1BWFKTFeIxkghr01jNlOAufnmZdJsN96LRvD+vt67LOqrgGJyAM+CCS9ACd6ANOgCDDDyDV/BmPVkv1rv1MR+tWOXOIfgD6/MHBtuWMA==</latexit>

�m
<latexit sha1_base64="3VAnehVtkhU/cDTUJaEQ1K2ZQbw="></latexit>

|WgO(��1
m , d)| .

<latexit sha1_base64="cPiSmIZxTiJJelHKn4cjSs6Z19U="></latexit>

1

2

X

`2 leaf(T )

X

m6=e

(dd0)T W` (9.260)

Let us define the matrix

<latexit sha1_base64="MHhFKOfChiPPlssZutP9OdHKwc0=">AAAB/HicbVBNS8NAEJ34WetXtEcvi0XwVJIi6rHoxWMF+wFtCJvtpl262YTdTSHE+le8eFDEqz/Em//GbZuDtj4YeLw3w8y8IOFMacf5ttbWNza3tks75d29/YND++i4reJUEtoiMY9lN8CKciZoSzPNaTeRFEcBp51gfDvzOxMqFYvFg84S6kV4KFjICNZG8u1Kn2Mx5BT1E8X8fOKz6aNvV52aMwdaJW5BqlCg6dtf/UFM0ogKTThWquc6ifZyLDUjnE7L/VTRBJMxHtKeoQJHVHn5/PgpOjPKAIWxNCU0mqu/J3IcKZVFgemMsB6pZW8m/uf1Uh1eezkTSaqpIItFYcqRjtEsCTRgkhLNM0MwkczcisgIS0y0yatsQnCXX14l7XrNvazV7y+qjZsijhKcwCmcgwtX0IA7aEILCGTwDK/wZj1ZL9a79bFoXbOKmQr8gfX5AyHTlRg=</latexit>h vi
|

<latexit sha1_base64="Xfqt+lOgpZHMR3x/Sr9FOTZom0g=">AAACAHicbVBNS8NAEN3Ur1q/oh48eFksghdLUkQ9Fr14rGA/oClhs522SzebsLsplJiLf8WLB0W8+jO8+W/ctjlo64OBx3szzMwLYs6Udpxvq7Cyura+UdwsbW3v7O7Z+wdNFSWSQoNGPJLtgCjgTEBDM82hHUsgYcChFYxup35rDFKxSDzoSQzdkAwE6zNKtJF8+8jjRAw4YC8eMj8d+yk7d7Ps0bfLTsWZAS8TNydllKPu219eL6JJCEJTTpTquE6suymRmlEOWclLFMSEjsgAOoYKEoLqprMHMnxqlB7uR9KU0Him/p5ISajUJAxMZ0j0UC16U/E/r5Po/nU3ZSJONAg6X9RPONYRnqaBe0wC1XxiCKGSmVsxHRJJqDaZlUwI7uLLy6RZrbiXler9Rbl2k8dRRMfoBJ0hF12hGrpDddRAFGXoGb2iN+vJerHerY95a8HKZw7RH1ifP8s3los=</latexit>h�vi�1
|

<latexit sha1_base64="iOc4Zss/PnFVMQgmdlriSdAe4pI=">AAAB/XicbVDLSsNAFJ3UV62v+Ni5CRbBVUmKqMuiG5cV7AOaECbTm3boZBJmJoUag7/ixoUibv0Pd/6N0zYLbT1w4XDOvdx7T5AwKpVtfxulldW19Y3yZmVre2d3z9w/aMs4FQRaJGax6AZYAqMcWooqBt1EAI4CBp1gdDP1O2MQksb8Xk0S8CI84DSkBCst+ebRo5tI6mdjP6N57grMBwx8s2rX7BmsZeIUpIoKNH3zy+3HJI2AK8KwlD3HTpSXYaEoYZBX3FRCgskID6CnKccRSC+bXZ9bp1rpW2EsdHFlzdTfExmOpJxEge6MsBrKRW8q/uf1UhVeeRnlSaqAk/miMGWWiq1pFFafCiCKTTTBRFB9q0WGWGCidGAVHYKz+PIyaddrzkWtfndebVwXcZTRMTpBZ8hBl6iBblETtRBBD+gZvaI348l4Md6Nj3lryShmDtEfGJ8/pvqWAA==</latexit>| vi
i

<latexit sha1_base64="hV9ObCPJSOo1I+qKZHZU8p22WMU=">AAAB/3icbVBNS8NAEN34WetXVPDiJVgEL5akiHosevFYwX5AE8JmO2mXbjZhd1MoaQ7+FS8eFPHq3/Dmv3Hb5qCtDwYe780wMy9IGJXKtr+NldW19Y3N0lZ5e2d3b988OGzJOBUEmiRmsegEWAKjHJqKKgadRACOAgbtYHg39dsjEJLG/FGNE/Ai3Oc0pAQrLfnm8cRNBtTPRn5GL5w8dwXmfQa+WbGr9gzWMnEKUkEFGr755fZikkbAFWFYyq5jJ8rLsFCUMMjLbiohwWSI+9DVlOMIpJfN7s+tM630rDAWuriyZurviQxHUo6jQHdGWA3kojcV//O6qQpvvIzyJFXAyXxRmDJLxdY0DKtHBRDFxppgIqi+1SIDLDBROrKyDsFZfHmZtGpV56pae7is1G+LOEroBJ2ic+Sga1RH96iBmoigCXpGr+jNeDJejHfjY966YhQzR+gPjM8fe0yWZw==</latexit>|�vi�1
i

<latexit sha1_base64="NNz3Cckz5hcD8Ustyl0dcL8tJjs=">AAAB9HicbVBNS8NAEJ3Ur1q/qh69LBahgpYkiIogFHvxWMF+QBvKZrttl242cXdTKKG/w4sHRbz6Y7z5b9y2OWjrg4HHezPMzPMjzpS27W8rs7K6tr6R3cxtbe/s7uX3D+oqjCWhNRLyUDZ9rChngtY005w2I0lx4HPa8IeVqd8YUalYKB71OKJegPuC9RjB2khepeiyc+fMZafo5raTL9glewa0TJyUFCBFtZP/andDEgdUaMKxUi3HjrSXYKkZ4XSSa8eKRpgMcZ+2DBU4oMpLZkdP0IlRuqgXSlNCo5n6eyLBgVLjwDedAdYDtehNxf+8Vqx7117CRBRrKsh8US/mSIdomgDqMkmJ5mNDMJHM3IrIAEtMtMkpZ0JwFl9eJnW35FyW3IeLQvkujSMLR3AMRXDgCspwD1WoAYEneIZXeLNG1ov1bn3MWzNWOnMIf2B9/gBsOI/u</latexit>

C(2i � 1, 2i) := (9.261)

where the 2𝑖 − 1 and 2𝑖 are just labels (i.e. they are not matrix indices). We will
further define𝐶 (2𝑖, 2𝑖−1) := 𝐶 (2𝑖−1, 2𝑖)𝑡 . Then the diagrammatic term in (9.260)
is equivalent to �����tr

(
Δ𝔪

𝑇⊗
𝑖=1

𝐶 (2𝑖 − 1, 2𝑖)
)����� . (9.262)

This can be expressed more explicitly as the absolute value of a product of traces of
the 𝐶’s, namely����tr(𝐶 (2, 1)𝐶 ( 𝑓𝔪 (1), 𝑓𝔢 ◦ 𝑓𝔪 (1))𝐶 ( 𝑓𝔪 ◦ 𝑓𝔢 ◦ 𝑓𝔪 (1), 𝑓𝔢 ◦ 𝑓𝔪 ◦ 𝑓𝔢 ◦ 𝑓𝔪 (1)) · · ·

(9.263)
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𝐶 ( 𝑓𝔢 ◦ 𝑓𝔪−𝟞 (2), 𝑓𝔪−𝟞 (2))
)

· tr
(
· · ·

)
· · · tr

(
· · ·

) ���� (9.264)

where we have used the definition of 𝑓𝔪 and 𝑓𝔢 as per (9.183). Each trace corresponds
to a particular 𝑀2𝑇 -cycle of 𝔪. Using the 1-norm inequality

∥𝐴1𝐴2 · · · 𝐴𝑘 ∥1 ≤
𝑘∏
𝑖=1
∥𝐴𝑖∥1, (9.265)

Eqn. (9.263) is upper bounded by

𝑇∏
𝑖=1
∥𝐶 (2𝑖 − 1, 2𝑖)∥1 (9.266)

where we have used ∥𝐶 (2𝑖 − 1, 2𝑖)∥1 = ∥𝐶 (2𝑖, 2𝑖 − 1)∥1. Since each 𝐶 (2𝑖 − 1, 2𝑖)
is positive semi-definite, ∥𝐶 (2𝑖 − 1, 2𝑖)∥1 = tr(𝐶 (2𝑖 − 1, 2𝑖)) and so (9.260) has the
upper bound

<latexit sha1_base64="eBU40pP8UOpygATfYtwAL1WujFA=">AAAB/HicbVBNS8NAEN3Ur1q/oj16WSyCp5IUUY9FLx4r2A9oQthsp+3SzSbsboQQ61/x4kERr/4Qb/4bt20O2vpg4PHeDDPzwoQzpR3n2yqtrW9sbpW3Kzu7e/sH9uFRR8WppNCmMY9lLyQKOBPQ1kxz6CUSSBRy6IaTm5nffQCpWCzudZaAH5GRYENGiTZSYFcfsdcas8ADzrEniRhxCOyaU3fmwKvELUgNFWgF9pc3iGkagdCUE6X6rpNoPydSM8phWvFSBQmhEzKCvqGCRKD8fH78FJ8aZYCHsTQlNJ6rvydyEimVRaHpjIgeq2VvJv7n9VM9vPJzJpJUg6CLRcOUYx3jWRJ4wCRQzTNDCJXM3IrpmEhCtcmrYkJwl19eJZ1G3b2oN+7Oa83rIo4yOkYn6Ay56BI10S1qoTaiKEPP6BW9WU/Wi/VufSxaS1YxU0V/YH3+ACcVlHY=</latexit>|�`i
<latexit sha1_base64="Lj+rbwQ7YPdCjgaMhI70JVBeGwI=">AAAB/HicbVBNS8NAEN3Ur1q/oj16WSyCp5IUUY9FLx4r2A9oQthsp+3SzSbsboQQ61/x4kERr/4Qb/4bt20O2vpg4PHeDDPzwoQzpR3n2yqtrW9sbpW3Kzu7e/sH9uFRR8WppNCmMY9lLyQKOBPQ1kxz6CUSSBRy6IaTm5nffQCpWCzudZaAH5GRYENGiTZSYFcfsddSLPCAc+xJIkYcArvm1J058CpxC1JDBVqB/eUNYppGIDTlRKm+6yTaz4nUjHKYVrxUQULohIygb6ggESg/nx8/xadGGeBhLE0Jjefq74mcREplUWg6I6LHatmbif95/VQPr/yciSTVIOhi0TDlWMd4lgQeMAlU88wQQiUzt2I6JpJQbfKqmBDc5ZdXSadRdy/qjbvzWvO6iKOMjtEJOkMuukRNdItaqI0oytAzekVv1pP1Yr1bH4vWklXMVNEfWJ8/OFuUgQ==</latexit>| `i

<latexit sha1_base64="orZyd1BmuNf8/9NMgA5NPFio3ek=">AAAB+3icbVBNS8NAEN3Ur1q/Yj16WSyCp5IUUY9FLx4r2A9oQthsJ+3SzSbsbsQS+1e8eFDEq3/Em//GbZuDtj4YeLw3w8y8MOVMacf5tkpr6xubW+Xtys7u3v6BfVjtqCSTFNo04YnshUQBZwLammkOvVQCiUMO3XB8M/O7DyAVS8S9nqTgx2QoWMQo0UYK7KrHiRhywF5LscADzp8Cu+bUnTnwKnELUkMFWoH95Q0SmsUgNOVEqb7rpNrPidSMcphWvExBSuiYDKFvqCAxKD+f3z7Fp0YZ4CiRpoTGc/X3RE5ipSZxaDpjokdq2ZuJ/3n9TEdXfs5EmmkQdLEoyjjWCZ4FgQdMAtV8YgihkplbMR0RSag2cVVMCO7yy6uk06i7F/XG3XmteV3EUUbH6ASdIRddoia6RS3URhQ9omf0it6sqfVivVsfi9aSVcwcoT+wPn8A1V6UUQ==</latexit>h `|

<latexit sha1_base64="Uur6U+NHdyQAsQxrB5ZKDojw/No=">AAAB+3icbVBNS8NAEN3Ur1q/Yj16WSyCp5IUUY9FLx4r2A9oQthsJ+3SzSbsbsQS+1e8eFDEq3/Em//GbZuDtj4YeLw3w8y8MOVMacf5tkpr6xubW+Xtys7u3v6BfVjtqCSTFNo04YnshUQBZwLammkOvVQCiUMO3XB8M/O7DyAVS8S9nqTgx2QoWMQo0UYK7KrHiRhywF5rxAIPOH8K7JpTd+bAq8QtSA0VaAX2lzdIaBaD0JQTpfquk2o/J1IzymFa8TIFKaFjMoS+oYLEoPx8fvsUnxplgKNEmhIaz9XfEzmJlZrEoemMiR6pZW8m/uf1Mx1d+TkTaaZB0MWiKONYJ3gWBB4wCVTziSGESmZuxXREJKHaxFUxIbjLL6+STqPuXtQbd+e15nURRxkdoxN0hlx0iZroFrVQG1H0iJ7RK3qzptaL9W59LFpLVjFzhP7A+vwBxGWURg==</latexit>h�`|
<latexit sha1_base64="3VAnehVtkhU/cDTUJaEQ1K2ZQbw="></latexit>

|WgO(��1
m , d)| .

<latexit sha1_base64="cPiSmIZxTiJJelHKn4cjSs6Z19U="></latexit>

1

2

X

`2 leaf(T )

X

m6=e

(dd0)T W` (9.267)

Summing over leaves we arrive at

𝑑𝑇

2

∑︁
𝔪≠𝔢

|Wg𝑂 (𝜎−1
𝔪 , 𝑑) | (9.268)

which is upper bounded by O(𝑇7/𝑑2) +O(𝑇2/𝑑) using Corollary 18 in combination
with Lemma 8 of (Aharonov, J. S. Cotler, and Qi, 2021). The ultimate result is

1
2

∑︁
ℓ ∈ leaf(T )

∑︁
𝔪≠1

|𝑝O𝔪,𝔢 (ℓ) | ≤ O
(
𝑇7

𝑑2

)
+ O

(
𝑇2

𝑑

)
. (9.269)

Second term for Sp(𝑑/2) case

A similar proof holds in the symplectic setting. We likewise apply Cauchy-Schwarz
to the second term in (9.252) to obtain the upper bound

<latexit sha1_base64="eBU40pP8UOpygATfYtwAL1WujFA=">AAAB/HicbVBNS8NAEN3Ur1q/oj16WSyCp5IUUY9FLx4r2A9oQthsp+3SzSbsboQQ61/x4kERr/4Qb/4bt20O2vpg4PHeDDPzwoQzpR3n2yqtrW9sbpW3Kzu7e/sH9uFRR8WppNCmMY9lLyQKOBPQ1kxz6CUSSBRy6IaTm5nffQCpWCzudZaAH5GRYENGiTZSYFcfsdcas8ADzrEniRhxCOyaU3fmwKvELUgNFWgF9pc3iGkagdCUE6X6rpNoPydSM8phWvFSBQmhEzKCvqGCRKD8fH78FJ8aZYCHsTQlNJ6rvydyEimVRaHpjIgeq2VvJv7n9VM9vPJzJpJUg6CLRcOUYx3jWRJ4wCRQzTNDCJXM3IrpmEhCtcmrYkJwl19eJZ1G3b2oN+7Oa83rIo4yOkYn6Ay56BI10S1qoTaiKEPP6BW9WU/Wi/VufSxaS1YxU0V/YH3+ACcVlHY=</latexit>|�`i
<latexit sha1_base64="Lj+rbwQ7YPdCjgaMhI70JVBeGwI=">AAAB/HicbVBNS8NAEN3Ur1q/oj16WSyCp5IUUY9FLx4r2A9oQthsp+3SzSbsboQQ61/x4kERr/4Qb/4bt20O2vpg4PHeDDPzwoQzpR3n2yqtrW9sbpW3Kzu7e/sH9uFRR8WppNCmMY9lLyQKOBPQ1kxz6CUSSBRy6IaTm5nffQCpWCzudZaAH5GRYENGiTZSYFcfsddSLPCAc+xJIkYcArvm1J058CpxC1JDBVqB/eUNYppGIDTlRKm+6yTaz4nUjHKYVrxUQULohIygb6ggESg/nx8/xadGGeBhLE0Jjefq74mcREplUWg6I6LHatmbif95/VQPr/yciSTVIOhi0TDlWMd4lgQeMAlU88wQQiUzt2I6JpJQbfKqmBDc5ZdXSadRdy/qjbvzWvO6iKOMjtEJOkMuukRNdItaqI0oytAzekVv1pP1Yr1bH4vWklXMVNEfWJ8/OFuUgQ==</latexit>| `i

<latexit sha1_base64="orZyd1BmuNf8/9NMgA5NPFio3ek=">AAAB+3icbVBNS8NAEN3Ur1q/Yj16WSyCp5IUUY9FLx4r2A9oQthsJ+3SzSbsbsQS+1e8eFDEq3/Em//GbZuDtj4YeLw3w8y8MOVMacf5tkpr6xubW+Xtys7u3v6BfVjtqCSTFNo04YnshUQBZwLammkOvVQCiUMO3XB8M/O7DyAVS8S9nqTgx2QoWMQo0UYK7KrHiRhywF5LscADzp8Cu+bUnTnwKnELUkMFWoH95Q0SmsUgNOVEqb7rpNrPidSMcphWvExBSuiYDKFvqCAxKD+f3z7Fp0YZ4CiRpoTGc/X3RE5ipSZxaDpjokdq2ZuJ/3n9TEdXfs5EmmkQdLEoyjjWCZ4FgQdMAtV8YgihkplbMR0RSag2cVVMCO7yy6uk06i7F/XG3XmteV3EUUbH6ASdIRddoia6RS3URhQ9omf0it6sqfVivVsfi9aSVcwcoT+wPn8A1V6UUQ==</latexit>h `|

<latexit sha1_base64="Uur6U+NHdyQAsQxrB5ZKDojw/No=">AAAB+3icbVBNS8NAEN3Ur1q/Yj16WSyCp5IUUY9FLx4r2A9oQthsJ+3SzSbsbsQS+1e8eFDEq3/Em//GbZuDtj4YeLw3w8y8MOVMacf5tkpr6xubW+Xtys7u3v6BfVjtqCSTFNo04YnshUQBZwLammkOvVQCiUMO3XB8M/O7DyAVS8S9nqTgx2QoWMQo0UYK7KrHiRhywF5rxAIPOH8K7JpTd+bAq8QtSA0VaAX2lzdIaBaD0JQTpfquk2o/J1IzymFa8TIFKaFjMoS+oYLEoPx8fvsUnxplgKNEmhIaz9XfEzmJlZrEoemMiR6pZW8m/uf1Mx1d+TkTaaZB0MWiKONYJ3gWBB4wCVTziSGESmZuxXREJKHaxFUxIbjLL6+STqPuXtQbd+e15nURRxkdoxN0hlx0iZroFrVQG1H0iJ7RK3qzptaL9W59LFpLVjFzhP7A+vwBxGWURg==</latexit>h�`|<latexit sha1_base64="cPiSmIZxTiJJelHKn4cjSs6Z19U="></latexit>

1

2

X

`2 leaf(T )

X

m6=e

(dd0)T W`

<latexit sha1_base64="CAzVba8gpWOtWXj7/8wFDHzzpCU="></latexit>

|WgSp(��1
m , d/2)| .

<latexit sha1_base64="mfqHNzI7qjrRiGPV6K0EN650HpI=">AAAB83icbVDLSgNBEJyNrxhfUY9eBoPgKewGUY9BL+IpgnlAdg2zk95kyOyDmV4xLPkNLx4U8erPePNvnCR70MSChqKqm+4uP5FCo21/W4WV1bX1jeJmaWt7Z3evvH/Q0nGqODR5LGPV8ZkGKSJookAJnUQBC30JbX90PfXbj6C0iKN7HCfghWwQiUBwhkZyXYQn9IPsdvKAvXLFrtoz0GXi5KRCcjR65S+3H/M0hAi5ZFp3HTtBL2MKBZcwKbmphoTxERtA19CIhaC9bHbzhJ4YpU+DWJmKkM7U3xMZC7Ueh77pDBkO9aI3Ff/zuikGl14moiRFiPh8UZBKijGdBkD7QgFHOTaEcSXMrZQPmWIcTUwlE4Kz+PIyadWqznm1dndWqV/lcRTJETkmp8QhF6RObkiDNAknCXkmr+TNSq0X6936mLcWrHzmkPyB9fkDdDmR9g==</latexit>

Jt
<latexit sha1_base64="dLtegMNnEskgaMQqiydWX4w336Y=">AAAB/3icbVDLSgMxFM3UV62vUcGNm2ARXZWZIuqyqAuXFewDOkPJpJk2NMkMSUYo4yz8FTcuFHHrb7jzb8y0s9DWA4HDOfdyT04QM6q043xbpaXlldW18nplY3Nre8fe3WurKJGYtHDEItkNkCKMCtLSVDPSjSVBPGCkE4yvc7/zQKSikbjXk5j4HA0FDSlG2kh9+8C7IUyjfupxpEehROOUZ9lJ3646NWcKuEjcglRBgWbf/vIGEU44ERozpFTPdWLtp0hqihnJKl6iSIzwGA1Jz1CBOFF+Os2fwWOjDGAYSfOEhlP190aKuFITHpjJPKWa93LxP6+X6PDST6mIE00Enh0KEwZ1BPMy4IBKgjWbGIKwpCYrxCMkEdamsoopwZ3/8iJp12vuea1+d1ZtXBV1lMEhOAKnwAUXoAFuQRO0AAaP4Bm8gjfryXqx3q2P2WjJKnb2wR9Ynz9vzpZh</latexit>

�0
m

(9.270)

Using the same notation for𝐶 (2𝑖−1, 2𝑖) as in Eqn. (9.263) above, we further define

𝐶 (2𝑖 − 1, 2𝑖) := 𝐶 (2𝑖 − 1, 2𝑖) · 𝐽𝑡 (9.271)
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and similarly 𝐶 (2𝑖, 2𝑖 − 1) := 𝐶 (2𝑖 − 1, 2𝑖)𝑡 . Then the diagrammatic term in
Eqn. (9.270) can be written as�����tr

(
Δ′𝔪

𝑇⊗
𝑖=1

𝐶 (2𝑖 − 1, 2𝑖)
)����� . (9.272)

This can be expanded analogously to (9.263), namely as����tr(𝐶 (2, 1) 𝐽 𝐶 ( 𝑓𝔪 (1), 𝑓𝔢 ◦ 𝑓𝔪 (1)) 𝐽 · · · 𝐽 𝐶 ( 𝑓𝔢 ◦ 𝑓𝔪−𝟞 (2), 𝑓𝔪−𝟞 (2)) 𝐽) (9.273)

tr
(
· · ·

)
· · · tr

(
· · ·

) ���� . (9.274)

Using the same 1-norm inequality as the orthogonal case, Eqn. (9.273) is upper
bounded by

𝑇∏
𝑖=1
∥𝐶 (2𝑖 − 1, 2𝑖) 𝐽∥1 ≤

𝑇∏
𝑖=1
∥𝐶 (2𝑖 − 1, 2𝑖)∥1 ∥𝐽∥∞ ∥𝐽𝑡 ∥∞

=

𝑇∏
𝑖=1

tr(𝐶 (2𝑖 − 1, 2𝑖)) . (9.275)

In the first line we have used the Hölder inequality, and in the second line we used
∥𝐽∥∞ = ∥𝐽𝑡 ∥∞ = 1 as well as ∥𝐶 (2𝑖 − 1, 2𝑖)∥1 = tr(𝐶 (2𝑖 − 1, 2𝑖)). Thus we arrive
at an upper bound for (9.270):

<latexit sha1_base64="eBU40pP8UOpygATfYtwAL1WujFA=">AAAB/HicbVBNS8NAEN3Ur1q/oj16WSyCp5IUUY9FLx4r2A9oQthsp+3SzSbsboQQ61/x4kERr/4Qb/4bt20O2vpg4PHeDDPzwoQzpR3n2yqtrW9sbpW3Kzu7e/sH9uFRR8WppNCmMY9lLyQKOBPQ1kxz6CUSSBRy6IaTm5nffQCpWCzudZaAH5GRYENGiTZSYFcfsdcas8ADzrEniRhxCOyaU3fmwKvELUgNFWgF9pc3iGkagdCUE6X6rpNoPydSM8phWvFSBQmhEzKCvqGCRKD8fH78FJ8aZYCHsTQlNJ6rvydyEimVRaHpjIgeq2VvJv7n9VM9vPJzJpJUg6CLRcOUYx3jWRJ4wCRQzTNDCJXM3IrpmEhCtcmrYkJwl19eJZ1G3b2oN+7Oa83rIo4yOkYn6Ay56BI10S1qoTaiKEPP6BW9WU/Wi/VufSxaS1YxU0V/YH3+ACcVlHY=</latexit>|�`i
<latexit sha1_base64="Lj+rbwQ7YPdCjgaMhI70JVBeGwI=">AAAB/HicbVBNS8NAEN3Ur1q/oj16WSyCp5IUUY9FLx4r2A9oQthsp+3SzSbsboQQ61/x4kERr/4Qb/4bt20O2vpg4PHeDDPzwoQzpR3n2yqtrW9sbpW3Kzu7e/sH9uFRR8WppNCmMY9lLyQKOBPQ1kxz6CUSSBRy6IaTm5nffQCpWCzudZaAH5GRYENGiTZSYFcfsddSLPCAc+xJIkYcArvm1J058CpxC1JDBVqB/eUNYppGIDTlRKm+6yTaz4nUjHKYVrxUQULohIygb6ggESg/nx8/xadGGeBhLE0Jjefq74mcREplUWg6I6LHatmbif95/VQPr/yciSTVIOhi0TDlWMd4lgQeMAlU88wQQiUzt2I6JpJQbfKqmBDc5ZdXSadRdy/qjbvzWvO6iKOMjtEJOkMuukRNdItaqI0oytAzekVv1pP1Yr1bH4vWklXMVNEfWJ8/OFuUgQ==</latexit>| `i

<latexit sha1_base64="orZyd1BmuNf8/9NMgA5NPFio3ek=">AAAB+3icbVBNS8NAEN3Ur1q/Yj16WSyCp5IUUY9FLx4r2A9oQthsJ+3SzSbsbsQS+1e8eFDEq3/Em//GbZuDtj4YeLw3w8y8MOVMacf5tkpr6xubW+Xtys7u3v6BfVjtqCSTFNo04YnshUQBZwLammkOvVQCiUMO3XB8M/O7DyAVS8S9nqTgx2QoWMQo0UYK7KrHiRhywF5LscADzp8Cu+bUnTnwKnELUkMFWoH95Q0SmsUgNOVEqb7rpNrPidSMcphWvExBSuiYDKFvqCAxKD+f3z7Fp0YZ4CiRpoTGc/X3RE5ipSZxaDpjokdq2ZuJ/3n9TEdXfs5EmmkQdLEoyjjWCZ4FgQdMAtV8YgihkplbMR0RSag2cVVMCO7yy6uk06i7F/XG3XmteV3EUUbH6ASdIRddoia6RS3URhQ9omf0it6sqfVivVsfi9aSVcwcoT+wPn8A1V6UUQ==</latexit>h `|

<latexit sha1_base64="Uur6U+NHdyQAsQxrB5ZKDojw/No=">AAAB+3icbVBNS8NAEN3Ur1q/Yj16WSyCp5IUUY9FLx4r2A9oQthsJ+3SzSbsbsQS+1e8eFDEq3/Em//GbZuDtj4YeLw3w8y8MOVMacf5tkpr6xubW+Xtys7u3v6BfVjtqCSTFNo04YnshUQBZwLammkOvVQCiUMO3XB8M/O7DyAVS8S9nqTgx2QoWMQo0UYK7KrHiRhywF5rxAIPOH8K7JpTd+bAq8QtSA0VaAX2lzdIaBaD0JQTpfquk2o/J1IzymFa8TIFKaFjMoS+oYLEoPx8fvsUnxplgKNEmhIaz9XfEzmJlZrEoemMiR6pZW8m/uf1Mx1d+TkTaaZB0MWiKONYJ3gWBB4wCVTziSGESmZuxXREJKHaxFUxIbjLL6+STqPuXtQbd+e15nURRxkdoxN0hlx0iZroFrVQG1H0iJ7RK3qzptaL9W59LFpLVjFzhP7A+vwBxGWURg==</latexit>h�`|<latexit sha1_base64="cPiSmIZxTiJJelHKn4cjSs6Z19U="></latexit>

1

2

X

`2 leaf(T )

X

m6=e

(dd0)T W`

<latexit sha1_base64="CAzVba8gpWOtWXj7/8wFDHzzpCU="></latexit>

|WgSp(��1
m , d/2)| . (9.276)

As before we sum over leaves, giving us
𝑑𝑇

2

∑︁
𝔪≠𝔢

|WgSp(𝜎−1
𝔪 , 𝑑/2) | . (9.277)

This is is upper bounded by O(𝑇7/2/𝑑2) + O(𝑇2/𝑑) using Corollary 19 in combi-
nation with Lemma 10 of (Aharonov, J. S. Cotler, and Qi, 2021), and so in the end
we obtain

1
2

∑︁
ℓ ∈ leaf(T )

∑︁
𝔪≠1

|𝑝S𝔪,𝔢 (ℓ) | ≤ O
(
𝑇7/2

𝑑2

)
+ O

(
𝑇2

𝑑

)
. (9.278)

Third term for 𝑂 (𝑑) case

The third term in (9.250) is 1
2
∑
ℓ ∈ leaf(T )

∑
𝔫≠𝔢,𝔪 |𝑝O𝔪,𝔫 (ℓ) |. Applying the Cauchy-

Schwarz inequality we obtain the upper bound
<latexit sha1_base64="eBU40pP8UOpygATfYtwAL1WujFA=">AAAB/HicbVBNS8NAEN3Ur1q/oj16WSyCp5IUUY9FLx4r2A9oQthsp+3SzSbsboQQ61/x4kERr/4Qb/4bt20O2vpg4PHeDDPzwoQzpR3n2yqtrW9sbpW3Kzu7e/sH9uFRR8WppNCmMY9lLyQKOBPQ1kxz6CUSSBRy6IaTm5nffQCpWCzudZaAH5GRYENGiTZSYFcfsdcas8ADzrEniRhxCOyaU3fmwKvELUgNFWgF9pc3iGkagdCUE6X6rpNoPydSM8phWvFSBQmhEzKCvqGCRKD8fH78FJ8aZYCHsTQlNJ6rvydyEimVRaHpjIgeq2VvJv7n9VM9vPJzJpJUg6CLRcOUYx3jWRJ4wCRQzTNDCJXM3IrpmEhCtcmrYkJwl19eJZ1G3b2oN+7Oa83rIo4yOkYn6Ay56BI10S1qoTaiKEPP6BW9WU/Wi/VufSxaS1YxU0V/YH3+ACcVlHY=</latexit>|�`i
<latexit sha1_base64="Lj+rbwQ7YPdCjgaMhI70JVBeGwI=">AAAB/HicbVBNS8NAEN3Ur1q/oj16WSyCp5IUUY9FLx4r2A9oQthsp+3SzSbsboQQ61/x4kERr/4Qb/4bt20O2vpg4PHeDDPzwoQzpR3n2yqtrW9sbpW3Kzu7e/sH9uFRR8WppNCmMY9lLyQKOBPQ1kxz6CUSSBRy6IaTm5nffQCpWCzudZaAH5GRYENGiTZSYFcfsddSLPCAc+xJIkYcArvm1J058CpxC1JDBVqB/eUNYppGIDTlRKm+6yTaz4nUjHKYVrxUQULohIygb6ggESg/nx8/xadGGeBhLE0Jjefq74mcREplUWg6I6LHatmbif95/VQPr/yciSTVIOhi0TDlWMd4lgQeMAlU88wQQiUzt2I6JpJQbfKqmBDc5ZdXSadRdy/qjbvzWvO6iKOMjtEJOkMuukRNdItaqI0oytAzekVv1pP1Yr1bH4vWklXMVNEfWJ8/OFuUgQ==</latexit>| `i

<latexit sha1_base64="orZyd1BmuNf8/9NMgA5NPFio3ek=">AAAB+3icbVBNS8NAEN3Ur1q/Yj16WSyCp5IUUY9FLx4r2A9oQthsJ+3SzSbsbsQS+1e8eFDEq3/Em//GbZuDtj4YeLw3w8y8MOVMacf5tkpr6xubW+Xtys7u3v6BfVjtqCSTFNo04YnshUQBZwLammkOvVQCiUMO3XB8M/O7DyAVS8S9nqTgx2QoWMQo0UYK7KrHiRhywF5LscADzp8Cu+bUnTnwKnELUkMFWoH95Q0SmsUgNOVEqb7rpNrPidSMcphWvExBSuiYDKFvqCAxKD+f3z7Fp0YZ4CiRpoTGc/X3RE5ipSZxaDpjokdq2ZuJ/3n9TEdXfs5EmmkQdLEoyjjWCZ4FgQdMAtV8YgihkplbMR0RSag2cVVMCO7yy6uk06i7F/XG3XmteV3EUUbH6ASdIRddoia6RS3URhQ9omf0it6sqfVivVsfi9aSVcwcoT+wPn8A1V6UUQ==</latexit>h `|

<latexit sha1_base64="Uur6U+NHdyQAsQxrB5ZKDojw/No=">AAAB+3icbVBNS8NAEN3Ur1q/Yj16WSyCp5IUUY9FLx4r2A9oQthsJ+3SzSbsbsQS+1e8eFDEq3/Em//GbZuDtj4YeLw3w8y8MOVMacf5tkpr6xubW+Xtys7u3v6BfVjtqCSTFNo04YnshUQBZwLammkOvVQCiUMO3XB8M/O7DyAVS8S9nqTgx2QoWMQo0UYK7KrHiRhywF5rxAIPOH8K7JpTd+bAq8QtSA0VaAX2lzdIaBaD0JQTpfquk2o/J1IzymFa8TIFKaFjMoS+oYLEoPx8fvsUnxplgKNEmhIaz9XfEzmJlZrEoemMiR6pZW8m/uf1Mx1d+TkTaaZB0MWiKONYJ3gWBB4wCVTziSGESmZuxXREJKHaxFUxIbjLL6+STqPuXtQbd+e15nURRxkdoxN0hlx0iZroFrVQG1H0iJ7RK3qzptaL9W59LFpLVjFzhP7A+vwBxGWURg==</latexit>h�`|
<latexit sha1_base64="ulYkTQOuQaB7OhqZ3vRRq3WNedM=">AAAB/nicbVDLSsNAFJ3UV62vqLhyM1gEVyUpoi6LunBZwT6gCWEynbRDZyZhZiKUEPBX3LhQxK3f4c6/cdJmoa0HBg7n3Ms9c8KEUaUd59uqrKyurW9UN2tb2zu7e/b+QVfFqcSkg2MWy36IFGFUkI6mmpF+IgniISO9cHJT+L1HIhWNxYOeJsTnaCRoRDHSRgrsI++WMI2CzONIjyOJJhnP88CuOw1nBrhM3JLUQYl2YH95wxinnAiNGVJq4DqJ9jMkNcWM5DUvVSRBeIJGZGCoQJwoP5vFz+GpUYYwiqV5QsOZ+nsjQ1ypKQ/NZBFSLXqF+J83SHV05WdUJKkmAs8PRSmDOoZFF3BIJcGaTQ1BWFKTFeIxkghr01jNlOAufnmZdJsN96LRvD+vt67LOqrgGJyAM+CCS9ACd6ANOgCDDDyDV/BmPVkv1rv1MR+tWOXOIfgD6/MHBtuWMA==</latexit>

�m

<latexit sha1_base64="5lFka3DOysX/K2PVZdtGtWKfv2g=">AAAB/nicbVDLSsNAFJ3UV62vqLhyEyyCq5IUUZdFXbisYB/QhHAznbRDJ5MwMxFKCPgrblwo4tbvcOffOGmz0NYDA4dz7uWeOUHCqFS2/W1UVlbX1jeqm7Wt7Z3dPXP/oCvjVGDSwTGLRT8ASRjlpKOoYqSfCAJRwEgvmNwUfu+RCElj/qCmCfEiGHEaUgxKS7555N4SpsDP3AjUOBQwyXie+2bdbtgzWMvEKUkdlWj75pc7jHEaEa4wAykHjp0oLwOhKGYkr7mpJAngCYzIQFMOEZFeNoufW6daGVphLPTjypqpvzcyiKScRoGeLELKRa8Q//MGqQqvvIzyJFWE4/mhMGWWiq2iC2tIBcGKTTUBLKjOauExCMBKN1bTJTiLX14m3WbDuWg078/rreuyjio6RifoDDnoErXQHWqjDsIoQ8/oFb0ZT8aL8W58zEcrRrlziP7A+PwBCGGWMQ==</latexit>

�n

<latexit sha1_base64="aDSA+LdzGKAhB3Ywcs7gV6QLvGk="></latexit>

|WgO(�n�
�1
m , d)| .

<latexit sha1_base64="UAsr1TcSuG5SeNmaxEb7wpJl7Oo="></latexit>

1

2

X

`2 leaf(T )

X

n6=e, m

(dd0)T W` (9.279)
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Here we generalize our notation for the 𝐶 matrices by writing

<latexit sha1_base64="MHhFKOfChiPPlssZutP9OdHKwc0=">AAAB/HicbVBNS8NAEJ34WetXtEcvi0XwVJIi6rHoxWMF+wFtCJvtpl262YTdTSHE+le8eFDEqz/Em//GbZuDtj4YeLw3w8y8IOFMacf5ttbWNza3tks75d29/YND++i4reJUEtoiMY9lN8CKciZoSzPNaTeRFEcBp51gfDvzOxMqFYvFg84S6kV4KFjICNZG8u1Kn2Mx5BT1E8X8fOKz6aNvV52aMwdaJW5BqlCg6dtf/UFM0ogKTThWquc6ifZyLDUjnE7L/VTRBJMxHtKeoQJHVHn5/PgpOjPKAIWxNCU0mqu/J3IcKZVFgemMsB6pZW8m/uf1Uh1eezkTSaqpIItFYcqRjtEsCTRgkhLNM0MwkczcisgIS0y0yatsQnCXX14l7XrNvazV7y+qjZsijhKcwCmcgwtX0IA7aEILCGTwDK/wZj1ZL9a79bFoXbOKmQr8gfX5AyHTlRg=</latexit>h vi
|

<latexit sha1_base64="Xfqt+lOgpZHMR3x/Sr9FOTZom0g=">AAACAHicbVBNS8NAEN3Ur1q/oh48eFksghdLUkQ9Fr14rGA/oClhs522SzebsLsplJiLf8WLB0W8+jO8+W/ctjlo64OBx3szzMwLYs6Udpxvq7Cyura+UdwsbW3v7O7Z+wdNFSWSQoNGPJLtgCjgTEBDM82hHUsgYcChFYxup35rDFKxSDzoSQzdkAwE6zNKtJF8+8jjRAw4YC8eMj8d+yk7d7Ps0bfLTsWZAS8TNydllKPu219eL6JJCEJTTpTquE6suymRmlEOWclLFMSEjsgAOoYKEoLqprMHMnxqlB7uR9KU0Him/p5ISajUJAxMZ0j0UC16U/E/r5Po/nU3ZSJONAg6X9RPONYRnqaBe0wC1XxiCKGSmVsxHRJJqDaZlUwI7uLLy6RZrbiXler9Rbl2k8dRRMfoBJ0hF12hGrpDddRAFGXoGb2iN+vJerHerY95a8HKZw7RH1ifP8s3los=</latexit>h�vi�1
|

<latexit sha1_base64="bieu9MFH7f6/fioFpIRxPWW4Jlw=">AAAB9XicbVBNS8NAEJ3Ur1q/qh69LBahgpYkiIogFHvxWMF+QBvLZrtt1242YXejlND/4cWDIl79L978N27bHLT6YODx3gwz8/yIM6Vt+8vKLCwuLa9kV3Nr6xubW/ntnboKY0lojYQ8lE0fK8qZoDXNNKfNSFIc+Jw2/GFl4jceqFQsFLd6FFEvwH3BeoxgbaS7StFlx84Rcu8P0cVlJ1+wS/YU6C9xUlKAFNVO/rPdDUkcUKEJx0q1HDvSXoKlZoTTca4dKxphMsR92jJU4IAqL5lePUYHRumiXihNCY2m6s+JBAdKjQLfdAZYD9S8NxH/81qx7p17CRNRrKkgs0W9mCMdokkEqMskJZqPDMFEMnMrIgMsMdEmqJwJwZl/+S+puyXntOTenBTKV2kcWdiDfSiCA2dQhmuoQg0ISHiCF3i1Hq1n6816n7VmrHRmF37B+vgGxYyQGQ==</latexit>

C(2i � 1, 2j) :=

<latexit sha1_base64="GJciD3m4wtGiVjpOULylD79jD5A=">AAAB/3icbVDLSsNAFL2pr1pfUcGNm2AR3FiSIuqy6MZlBfuAJoTJdNKOnUzCzKRQ0iz8FTcuFHHrb7jzb5w+Ftp64MLhnHu5954gYVQq2/42Ciura+sbxc3S1vbO7p65f9CUcSowaeCYxaIdIEkY5aShqGKknQiCooCRVjC4nfitIRGSxvxBjRLiRajHaUgxUlryzaOxm/Spnw397PHcyXNXIN5jxDfLdsWewlomzpyUYY66b3653RinEeEKMyRlx7ET5WVIKIoZyUtuKkmC8AD1SEdTjiIivWx6f26daqVrhbHQxZU1VX9PZCiSchQFujNCqi8XvYn4n9dJVXjtZZQnqSIczxaFKbNUbE3CsLpUEKzYSBOEBdW3WriPBMJKR1bSITiLLy+TZrXiXFaq9xfl2s08jiIcwwmcgQNXUIM7qEMDMIzhGV7hzXgyXox342PWWjDmM4fwB8bnD3zblmg=</latexit>|�vj�1
i

<latexit sha1_base64="WDA/sE5PYT7kKXefEoJNc7/3lEs=">AAAB/XicbVDLSsNAFL2pr1pf8bFzEyyCq5KIqMuiG5cV7AOaECbTSTt2Mgkzk0KNwV9x40IRt/6HO//GaZuFth64cDjnXu69J0gYlcq2v43S0vLK6lp5vbKxubW9Y+7utWScCkyaOGax6ARIEkY5aSqqGOkkgqAoYKQdDK8nfntEhKQxv1PjhHgR6nMaUoyUlnzz4NFNJPWzkZ/d57krEO8z4ptVu2ZPYS0SpyBVKNDwzS+3F+M0IlxhhqTsOnaivAwJRTEjecVNJUkQHqI+6WrKUUSkl02vz61jrfSsMBa6uLKm6u+JDEVSjqNAd0ZIDeS8NxH/87qpCi+9jPIkVYTj2aIwZZaKrUkUVo8KghUba4KwoPpWCw+QQFjpwCo6BGf+5UXSOq0557XT27Nq/aqIowyHcAQn4MAF1OEGGtAEDA/wDK/wZjwZL8a78TFrLRnFzD78gfH5A6iHlgE=</latexit>| vj
i

<latexit sha1_base64="hV9ObCPJSOo1I+qKZHZU8p22WMU=">AAAB/3icbVBNS8NAEN34WetXVPDiJVgEL5akiHosevFYwX5AE8JmO2mXbjZhd1MoaQ7+FS8eFPHq3/Dmv3Hb5qCtDwYe780wMy9IGJXKtr+NldW19Y3N0lZ5e2d3b988OGzJOBUEmiRmsegEWAKjHJqKKgadRACOAgbtYHg39dsjEJLG/FGNE/Ai3Oc0pAQrLfnm8cRNBtTPRn5GL5w8dwXmfQa+WbGr9gzWMnEKUkEFGr755fZikkbAFWFYyq5jJ8rLsFCUMMjLbiohwWSI+9DVlOMIpJfN7s+tM630rDAWuriyZurviQxHUo6jQHdGWA3kojcV//O6qQpvvIzyJFXAyXxRmDJLxdY0DKtHBRDFxppgIqi+1SIDLDBROrKyDsFZfHmZtGpV56pae7is1G+LOEroBJ2ic+Sga1RH96iBmoigCXpGr+jNeDJejHfjY966YhQzR+gPjM8fe0yWZw==</latexit>|�vi�1
i

<latexit sha1_base64="GJciD3m4wtGiVjpOULylD79jD5A=">AAAB/3icbVDLSsNAFL2pr1pfUcGNm2AR3FiSIuqy6MZlBfuAJoTJdNKOnUzCzKRQ0iz8FTcuFHHrb7jzb5w+Ftp64MLhnHu5954gYVQq2/42Ciura+sbxc3S1vbO7p65f9CUcSowaeCYxaIdIEkY5aShqGKknQiCooCRVjC4nfitIRGSxvxBjRLiRajHaUgxUlryzaOxm/Spnw397PHcyXNXIN5jxDfLdsWewlomzpyUYY66b3653RinEeEKMyRlx7ET5WVIKIoZyUtuKkmC8AD1SEdTjiIivWx6f26daqVrhbHQxZU1VX9PZCiSchQFujNCqi8XvYn4n9dJVXjtZZQnqSIczxaFKbNUbE3CsLpUEKzYSBOEBdW3WriPBMJKR1bSITiLLy+TZrXiXFaq9xfl2s08jiIcwwmcgQNXUIM7qEMDMIzhGV7hzXgyXox342PWWjDmM4fwB8bnD3zblmg=</latexit>|�vj�1
i

<latexit sha1_base64="WDA/sE5PYT7kKXefEoJNc7/3lEs=">AAAB/XicbVDLSsNAFL2pr1pf8bFzEyyCq5KIqMuiG5cV7AOaECbTSTt2Mgkzk0KNwV9x40IRt/6HO//GaZuFth64cDjnXu69J0gYlcq2v43S0vLK6lp5vbKxubW9Y+7utWScCkyaOGax6ARIEkY5aSqqGOkkgqAoYKQdDK8nfntEhKQxv1PjhHgR6nMaUoyUlnzz4NFNJPWzkZ/d57krEO8z4ptVu2ZPYS0SpyBVKNDwzS+3F+M0IlxhhqTsOnaivAwJRTEjecVNJUkQHqI+6WrKUUSkl02vz61jrfSsMBa6uLKm6u+JDEVSjqNAd0ZIDeS8NxH/87qpCi+9jPIkVYTj2aIwZZaKrUkUVo8KghUba4KwoPpWCw+QQFjpwCo6BGf+5UXSOq0557XT27Nq/aqIowyHcAQn4MAF1OEGGtAEDA/wDK/wZjwZL8a78TFrLRnFzD78gfH5A6iHlgE=</latexit>| vj
i<latexit sha1_base64="iOc4Zss/PnFVMQgmdlriSdAe4pI=">AAAB/XicbVDLSsNAFJ3UV62v+Ni5CRbBVUmKqMuiG5cV7AOaECbTm3boZBJmJoUag7/ixoUibv0Pd/6N0zYLbT1w4XDOvdx7T5AwKpVtfxulldW19Y3yZmVre2d3z9w/aMs4FQRaJGax6AZYAqMcWooqBt1EAI4CBp1gdDP1O2MQksb8Xk0S8CI84DSkBCst+ebRo5tI6mdjP6N57grMBwx8s2rX7BmsZeIUpIoKNH3zy+3HJI2AK8KwlD3HTpSXYaEoYZBX3FRCgskID6CnKccRSC+bXZ9bp1rpW2EsdHFlzdTfExmOpJxEge6MsBrKRW8q/uf1UhVeeRnlSaqAk/miMGWWiq1pFFafCiCKTTTBRFB9q0WGWGCidGAVHYKz+PIyaddrzkWtfndebVwXcZTRMTpBZ8hBl6iBblETtRBBD+gZvaI348l4Md6Nj3lryShmDtEfGJ8/pvqWAA==</latexit>| vi

i

<latexit sha1_base64="fSs/hJRzCYL1SjSrRLsrxRL3om8=">AAACAnicbVDLSsNAFJ3UV62vqCtxM1gEN5akiLosunFZwT6gKWEyvWnHTiZhZlIosbjxV9y4UMStX+HOv3H6WGjrgQuHc+7l3nuChDOlHefbyi0tr6yu5dcLG5tb2zv27l5dxamkUKMxj2UzIAo4E1DTTHNoJhJIFHBoBP3rsd8YgFQsFnd6mEA7Il3BQkaJNpJvH3iciC4H7CU95mcDP7vHp9gdjR58u+iUnAnwInFnpIhmqPr2l9eJaRqB0JQTpVquk+h2RqRmlMOo4KUKEkL7pAstQwWJQLWzyQsjfGyUDg5jaUpoPFF/T2QkUmoYBaYzIrqn5r2x+J/XSnV42c6YSFINgk4XhSnHOsbjPHCHSaCaDw0hVDJzK6Y9IgnVJrWCCcGdf3mR1Msl97xUvj0rVq5mceTRITpCJ8hFF6iCblAV1RBFj+gZvaI368l6sd6tj2lrzprN7KM/sD5/AIfcluA=</latexit>h�vj�1
|

<latexit sha1_base64="AGh689R+iDdxcVFNAA40THnvvBk=">AAACAnicbVDLSsNAFL3xWeur6krcDBbBjSUpoi6LblxWsA9oQphMJ+3QySTMTAolBjf+ihsXirj1K9z5N04fC209cOFwzr3ce0+QcKa0bX9bS8srq2vrhY3i5tb2zm5pb7+p4lQS2iAxj2U7wIpyJmhDM81pO5EURwGnrWBwM/ZbQyoVi8W9HiXUi3BPsJARrI3klw5djkWPU+QmfeZnQz9j6Aw5ef7gl8p2xZ4ALRJnRsowQ90vfbndmKQRFZpwrFTHsRPtZVhqRjjNi26qaILJAPdox1CBI6q8bPJCjk6M0kVhLE0JjSbq74kMR0qNosB0Rlj31bw3Fv/zOqkOr7yMiSTVVJDpojDlSMdonAfqMkmJ5iNDMJHM3IpIH0tMtEmtaEJw5l9eJM1qxbmoVO/Oy7XrWRwFOIJjOAUHLqEGt1CHBhB4hGd4hTfryXqx3q2PaeuSNZs5gD+wPn8AhlGW3w==</latexit>h�vi�1
|

<latexit sha1_base64="TXs5MB4e11pMrn/slkITGWcPVSs=">AAAB/nicbVBNS8NAEJ34WetXVDx5WSyCp5IUUY9FLx4r2A9oQthst+3SzSbsbgolBvwrXjwo4tXf4c1/47bNQVsfDDzem2FmXphwprTjfFsrq2vrG5ulrfL2zu7evn1w2FJxKgltkpjHshNiRTkTtKmZ5rSTSIqjkNN2OLqd+u0xlYrF4kFPEupHeCBYnxGsjRTYxx7HYsAp8hLFgmwcZCzPHwO74lSdGdAycQtSgQKNwP7yejFJIyo04Viprusk2s+w1Ixwmpe9VNEEkxEe0K6hAkdU+dns/BydGaWH+rE0JTSaqb8nMhwpNYlC0xlhPVSL3lT8z+umun/tZ0wkqaaCzBf1U450jKZZoB6TlGg+MQQTycytiAyxxESbxMomBHfx5WXSqlXdy2rt/qJSvyniKMEJnMI5uHAFdbiDBjSBQAbP8Apv1pP1Yr1bH/PWFauYOYI/sD5/APPtliQ=</latexit>h vi
| <latexit sha1_base64="u1Wf5EfAYpqclcsmIfzkgPwzpYw=">AAAB/nicbVBNS8NAEJ3Ur1q/quLJy2IRPJWkiHosevFYwX5AE8Jmu2nXbjZhd1MoseBf8eJBEa/+Dm/+G7dtDtr6YODx3gwz84KEM6Vt+9sqrKyurW8UN0tb2zu7e+X9g5aKU0lok8Q8lp0AK8qZoE3NNKedRFIcBZy2g+HN1G+PqFQsFvd6nFAvwn3BQkawNpJfPnI5Fn1OkZso5mcjP3uYTB79csWu2jOgZeLkpAI5Gn75y+3FJI2o0IRjpbqOnWgvw1Izwumk5KaKJpgMcZ92DRU4osrLZudP0KlReiiMpSmh0Uz9PZHhSKlxFJjOCOuBWvSm4n9eN9XhlZcxkaSaCjJfFKYc6RhNs0A9JinRfGwIJpKZWxEZYImJNomVTAjO4svLpFWrOhfV2t15pX6dx1GEYziBM3DgEupwCw1oAoEMnuEV3qwn68V6tz7mrQUrnzmEP7A+fwD1dJYl</latexit>h vj

|

<latexit sha1_base64="xwRmHUeGZ9SVVetZZMSx6aDcNVc=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBahgpQkiIogFHvxWMF+QBvKZrtp1242YXcjlNC/4cWDIl79M978N27bHLT1wcDjvRlm5vkxZ0rb9reVW1ldW9/Ibxa2tnd294r7B00VJZLQBol4JNs+VpQzQRuaaU7bsaQ49Dlt+aPa1G89UalYJB70OKZeiAeCBYxgbaRureyyM+Q+nqLrm16xZFfsGdAycTJSggz1XvGr249IElKhCcdKdRw71l6KpWaE00mhmygaYzLCA9oxVOCQKi+d3TxBJ0bpoyCSpoRGM/X3RIpDpcahbzpDrIdq0ZuK/3mdRAdXXspEnGgqyHxRkHCkIzQNAPWZpETzsSGYSGZuRWSIJSbaxFQwITiLLy+TpltxLiru/XmpepvFkYcjOIYyOHAJVbiDOjSAQAzP8ApvVmK9WO/Wx7w1Z2Uzh/AH1ucP5+aPpw==</latexit>

C(2i, 2j) :=

<latexit sha1_base64="50Wf6595whm9989fvEt5P7GA2iY=">AAAB+XicbVDLSgNBEOz1GeNr1aOXwSBEMGF3ERVBCObiMYJ5QLKE2clsMmb2wcxsICz5Ey8eFPHqn3jzb5wke9DEgoaiqpvuLi/mTCrL+jZWVtfWNzZzW/ntnd29ffPgsCGjRBBaJxGPRMvDknIW0rpiitNWLCgOPE6b3rA69ZsjKiSLwkc1jqkb4H7IfEaw0lLXNKtFh5Xsc+Q8lewzdHPbNQtW2ZoBLRM7IwXIUOuaX51eRJKAhopwLGXbtmLlplgoRjid5DuJpDEmQ9ynbU1DHFDpprPLJ+hUKz3kR0JXqNBM/T2R4kDKceDpzgCrgVz0puJ/XjtR/rWbsjBOFA3JfJGfcKQiNI0B9ZigRPGxJpgIpm9FZIAFJkqHldch2IsvL5OGU7Yvy87DRaFyl8WRg2M4gSLYcAUVuIca1IHACJ7hFd6M1Hgx3o2PeeuKkc0cwR8Ynz8cMZC8</latexit>

C(2i � 1, 2j � 1) :=

<latexit sha1_base64="kYDYybqqsz/9sBreyO5kjNBnPk4=">AAAB8XicbVBNS8NAEJ3Ur1q/oh69LBbBg5SkiHrwUPTisYL9wDaUzWbTrt1s4u5GKKH/wosHRbz6b7z5b9y2OWjrg4HHezPMzPMTzpR2nG+rsLS8srpWXC9tbG5t79i7e00Vp5LQBol5LNs+VpQzQRuaaU7biaQ48jlt+cPrid96olKxWNzpUUK9CPcFCxnB2kj3J93HFAeIXT707LJTcaZAi8TNSRly1Hv2VzeISRpRoQnHSnVcJ9FehqVmhNNxqZsqmmAyxH3aMVTgiCovm148RkdGCVAYS1NCo6n6eyLDkVKjyDedEdYDNe9NxP+8TqrDCy9jIkk1FWS2KEw50jGavI8CJinRfGQIJpKZWxEZYImJNiGVTAju/MuLpFmtuGeV6u1puXaVx1GEAziEY3DhHGpwA3VoAAEBz/AKb5ayXqx362PWWrDymX34A+vzB671kEc=</latexit>

, i < j

<latexit sha1_base64="kYDYybqqsz/9sBreyO5kjNBnPk4=">AAAB8XicbVBNS8NAEJ3Ur1q/oh69LBbBg5SkiHrwUPTisYL9wDaUzWbTrt1s4u5GKKH/wosHRbz6b7z5b9y2OWjrg4HHezPMzPMTzpR2nG+rsLS8srpWXC9tbG5t79i7e00Vp5LQBol5LNs+VpQzQRuaaU7biaQ48jlt+cPrid96olKxWNzpUUK9CPcFCxnB2kj3J93HFAeIXT707LJTcaZAi8TNSRly1Hv2VzeISRpRoQnHSnVcJ9FehqVmhNNxqZsqmmAyxH3aMVTgiCovm148RkdGCVAYS1NCo6n6eyLDkVKjyDedEdYDNe9NxP+8TqrDCy9jIkk1FWS2KEw50jGavI8CJinRfGQIJpKZWxEZYImJNiGVTAju/MuLpFmtuGeV6u1puXaVx1GEAziEY3DhHGpwA3VoAAEBz/AKb5ayXqx362PWWrDymX34A+vzB671kEc=</latexit>

, i < j

(9.280)

where as before 𝐶 ( 𝑗 , 𝑖) := 𝐶 (𝑖, 𝑗)𝑡 . Then the diagrammatic term in (9.279) can be
written as����tr(𝐶 ( 𝑓𝔫 ◦ 𝑓𝔢 (1), 1)𝐶 ( 𝑓𝔪 (1), 𝑓𝔫 ◦ 𝑓𝔢 ◦ 𝑓𝔪 (1)) (9.281)

𝐶 ( 𝑓𝔪 ◦ 𝑓𝔫 ◦ 𝑓𝔢 ◦ 𝑓𝔪 (1), 𝑓𝔫 ◦ 𝑓𝔢 ◦ 𝑓𝔪 ◦ 𝑓𝔫 ◦ 𝑓𝔢 ◦ 𝑓𝔪 (1)) · · ·
)

· tr
(
· · ·

)
· · · tr

(
· · ·

) ���� (9.282)

and so using the same 1-norm bound as before we obtain the upper bound

𝑇∏
𝑖=1
∥𝐶 (𝔫(2𝑖), 𝔫(2𝑖 − 1))∥1 . (9.283)

To simplify (9.283), we define the unnormalized density operator �̃�𝑣𝑖 ∈ Mat𝑑×𝑑 (C):

(9.284)

for any 𝑖 ∈ [𝑇]. Then we have the following Lemma:

Lemma 63. For any 𝑖, 𝑗 ∈ [𝑇],

∥𝐶 (2𝑖 − 1, 2 𝑗)∥1 ≤
√︃

tr( �̃�𝑣𝑖 �̃�𝑣 𝑗 ) (9.285)
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∥𝐶 (2𝑖, 2 𝑗)∥1 ≤
√︃

tr( �̃�𝑣𝑖 �̃� 𝑡𝑣 𝑗 ) (9.286)

∥𝐶 (2𝑖 − 1, 2 𝑗 − 1)∥1 ≤
√︃

tr( �̃�𝑣𝑖 �̃� 𝑡𝑣 𝑗 ) . (9.287)

Proof. First consider ∥𝐶 (2𝑖−1, 2 𝑗)∥1. Since ∥𝐴∥1 = ∥𝐴⊗ 𝐴†∥1/21 ≤ ∥SWAP · (𝐴⊗
𝐴†)∥1/21 , we have

<latexit sha1_base64="j/Rq0f4mTAMIJZo6NBDMO0H6DOM=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRahp7JbRD2WevFYwX5Au5Rsmt3GZpMlyQpl6X/w4kERr/4fb/4b03YP2vpg4PHeDDPzgoQzbVz32ylsbG5t7xR3S3v7B4dH5eOTjpapIrRNJJeqF2BNORO0bZjhtJcoiuOA024wuZ373SeqNJPiwUwT6sc4EixkBBsrdQZNFkXVYbni1twF0DrxclKBHK1h+WswkiSNqTCEY637npsYP8PKMMLprDRINU0wmeCI9i0VOKbazxbXztCFVUYolMqWMGih/p7IcKz1NA5sZ4zNWK96c/E/r5+a8MbPmEhSQwVZLgpTjoxE89fRiClKDJ9agoli9lZExlhhYmxAJRuCt/ryOunUa95VrX5/WWk08ziKcAbnUAUPrqEBd9CCNhB4hGd4hTdHOi/Ou/OxbC04+cwp/IHz+QP0EI66</latexit> <latexit sha1_base64="nqpNFtP0KxR9svc72Oi8Xlhv5Og=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRZBL2W3iHos9eKxgv2AdinZNLuNzSZLkhXK0v/gxYMiXv0/3vw3pu0etPXBwOO9GWbmBQln2rjut1NYW9/Y3Cpul3Z29/YPyodHbS1TRWiLSC5VN8CaciZoyzDDaTdRFMcBp51gfDvzO09UaSbFg5kk1I9xJFjICDZWavcbLIouBuWKW3XnQKvEy0kFcjQH5a/+UJI0psIQjrXueW5i/Awrwwin01I/1TTBZIwj2rNU4JhqP5tfO0VnVhmiUCpbwqC5+nsiw7HWkziwnTE2I73szcT/vF5qwhs/YyJJDRVksShMOTISzV5HQ6YoMXxiCSaK2VsRGWGFibEBlWwI3vLLq6Rdq3pX1dr9ZaXeyOMowgmcwjl4cA11uIMmtIDAIzzDK7w50nlx3p2PRWvByWeO4Q+czx/1lI67</latexit>!<latexit sha1_base64="tK4BalyGcCRU9kB0n5zsUZNLc0E=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4qkkR9Vj04rGi/YA2lM120y7dbMLuRCihP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LR7dRvPXFtRKwecZxwP6IDJULBKFrpwTuv9kplt+LOQJaJl5My5Kj3Sl/dfszSiCtkkhrT8dwE/YxqFEzySbGbGp5QNqID3rFU0YgbP5udOiGnVumTMNa2FJKZ+nsio5Ex4yiwnRHFoVn0puJ/XifF8NrPhEpS5IrNF4WpJBiT6d+kLzRnKMeWUKaFvZWwIdWUoU2naEPwFl9eJs1qxbusVO8vyrWbPI4CHMMJnIEHV1CDO6hDAxgM4Ble4c2Rzovz7nzMW1ecfOYI/sD5/AFaVY0x</latexit>

1/2

<latexit sha1_base64="/kl/J/MrbFHXr+CghOKY6aWWQz0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0iKqMeiF48t2FpoQ9lsJ+3azSbsboRS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8MBVcG8/7dgpr6xubW8Xt0s7u3v5B+fCopZNMMWyyRCSqHVKNgktsGm4EtlOFNA4FPoSj25n/8IRK80Tem3GKQUwHkkecUWOlhtsrVzzXm4OsEj8nFchR75W/uv2EZTFKwwTVuuN7qQkmVBnOBE5L3UxjStmIDrBjqaQx6mAyP3RKzqzSJ1GibElD5urviQmNtR7Hoe2MqRnqZW8m/ud1MhNdBxMu08ygZItFUSaIScjsa9LnCpkRY0soU9zeStiQKsqMzaZkQ/CXX14lrarrX7rVxkWldpPHUYQTOIVz8OEKanAHdWgCA4RneIU359F5cd6dj0VrwclnjuEPnM8feFuMuQ==</latexit>.<latexit sha1_base64="NMJZGt9VBElp6Eu4UuV95yQhQZg=">AAAB+3icbVBNS8NAEN3Ur1q/Yj16CRbBU0mKqMeiF48V7Ac0IWy2k3btZhN2N8US81e8eFDEq3/Em//GbZuDtj4YeLw3w8y8IGFUKtv+Nkpr6xubW+Xtys7u3v6BeVjtyDgVBNokZrHoBVgCoxzaiioGvUQAjgIG3WB8M/O7ExCSxvxeTRPwIjzkNKQEKy35ZvXJTST1s4n/kLsC8yED36zZdXsOa5U4BamhAi3f/HIHMUkj4IowLGXfsRPlZVgoShjkFTeVkGAyxkPoa8pxBNLL5rfn1qlWBlYYC11cWXP190SGIymnUaA7I6xGctmbif95/VSFV15GeZIq4GSxKEyZpWJrFoQ1oAKIYlNNMBFU32qRERaYKB1XRYfgLL+8SjqNunNRb9yd15rXRRxldIxO0Bly0CVqolvUQm1E0CN6Rq/ozciNF+Pd+Fi0loxi5gj9gfH5A9V3lPU=</latexit>| vj
i<latexit sha1_base64="MHhFKOfChiPPlssZutP9OdHKwc0=">AAAB/HicbVBNS8NAEJ34WetXtEcvi0XwVJIi6rHoxWMF+wFtCJvtpl262YTdTSHE+le8eFDEqz/Em//GbZuDtj4YeLw3w8y8IOFMacf5ttbWNza3tks75d29/YND++i4reJUEtoiMY9lN8CKciZoSzPNaTeRFEcBp51gfDvzOxMqFYvFg84S6kV4KFjICNZG8u1Kn2Mx5BT1E8X8fOKz6aNvV52aMwdaJW5BqlCg6dtf/UFM0ogKTThWquc6ifZyLDUjnE7L/VTRBJMxHtKeoQJHVHn5/PgpOjPKAIWxNCU0mqu/J3IcKZVFgemMsB6pZW8m/uf1Uh1eezkTSaqpIItFYcqRjtEsCTRgkhLNM0MwkczcisgIS0y0yatsQnCXX14l7XrNvazV7y+qjZsijhKcwCmcgwtX0IA7aEILCGTwDK/wZj1ZL9a79bFoXbOKmQr8gfX5AyHTlRg=</latexit>h vi

|

<latexit sha1_base64="Xfqt+lOgpZHMR3x/Sr9FOTZom0g=">AAACAHicbVBNS8NAEN3Ur1q/oh48eFksghdLUkQ9Fr14rGA/oClhs522SzebsLsplJiLf8WLB0W8+jO8+W/ctjlo64OBx3szzMwLYs6Udpxvq7Cyura+UdwsbW3v7O7Z+wdNFSWSQoNGPJLtgCjgTEBDM82hHUsgYcChFYxup35rDFKxSDzoSQzdkAwE6zNKtJF8+8jjRAw4YC8eMj8d+yk7d7Ps0bfLTsWZAS8TNydllKPu219eL6JJCEJTTpTquE6suymRmlEOWclLFMSEjsgAOoYKEoLqprMHMnxqlB7uR9KU0Him/p5ISajUJAxMZ0j0UC16U/E/r5Po/nU3ZSJONAg6X9RPONYRnqaBe0wC1XxiCKGSmVsxHRJJqDaZlUwI7uLLy6RZrbiXler9Rbl2k8dRRMfoBJ0hF12hGrpDddRAFGXoGb2iN+vJerHerY95a8HKZw7RH1ifP8s3los=</latexit>h�vi�1
| <latexit sha1_base64="GJciD3m4wtGiVjpOULylD79jD5A=">AAAB/3icbVDLSsNAFL2pr1pfUcGNm2AR3FiSIuqy6MZlBfuAJoTJdNKOnUzCzKRQ0iz8FTcuFHHrb7jzb5w+Ftp64MLhnHu5954gYVQq2/42Ciura+sbxc3S1vbO7p65f9CUcSowaeCYxaIdIEkY5aShqGKknQiCooCRVjC4nfitIRGSxvxBjRLiRajHaUgxUlryzaOxm/Spnw397PHcyXNXIN5jxDfLdsWewlomzpyUYY66b3653RinEeEKMyRlx7ET5WVIKIoZyUtuKkmC8AD1SEdTjiIivWx6f26daqVrhbHQxZU1VX9PZCiSchQFujNCqi8XvYn4n9dJVXjtZZQnqSIczxaFKbNUbE3CsLpUEKzYSBOEBdW3WriPBMJKR1bSITiLLy+TZrXiXFaq9xfl2s08jiIcwwmcgQNXUIM7qEMDMIzhGV7hzXgyXox342PWWjDmM4fwB8bnD3zblmg=</latexit>|�vj�1

i
<latexit sha1_base64="u1Wf5EfAYpqclcsmIfzkgPwzpYw=">AAAB/nicbVBNS8NAEJ3Ur1q/quLJy2IRPJWkiHosevFYwX5AE8Jmu2nXbjZhd1MoseBf8eJBEa/+Dm/+G7dtDtr6YODx3gwz84KEM6Vt+9sqrKyurW8UN0tb2zu7e+X9g5aKU0lok8Q8lp0AK8qZoE3NNKedRFIcBZy2g+HN1G+PqFQsFvd6nFAvwn3BQkawNpJfPnI5Fn1OkZso5mcjP3uYTB79csWu2jOgZeLkpAI5Gn75y+3FJI2o0IRjpbqOnWgvw1Izwumk5KaKJpgMcZ92DRU4osrLZudP0KlReiiMpSmh0Uz9PZHhSKlxFJjOCOuBWvSm4n9eN9XhlZcxkaSaCjJfFKYc6RhNs0A9JinRfGwIJpKZWxEZYImJNomVTAjO4svLpFWrOhfV2t15pX6dx1GEYziBM3DgEupwCw1oAoEMnuEV3qwn68V6tz7mrQUrnzmEP7A+fwD1dJYl</latexit>h vj

|

<latexit sha1_base64="hV9ObCPJSOo1I+qKZHZU8p22WMU=">AAAB/3icbVBNS8NAEN34WetXVPDiJVgEL5akiHosevFYwX5AE8JmO2mXbjZhd1MoaQ7+FS8eFPHq3/Dmv3Hb5qCtDwYe780wMy9IGJXKtr+NldW19Y3N0lZ5e2d3b988OGzJOBUEmiRmsegEWAKjHJqKKgadRACOAgbtYHg39dsjEJLG/FGNE/Ai3Oc0pAQrLfnm8cRNBtTPRn5GL5w8dwXmfQa+WbGr9gzWMnEKUkEFGr755fZikkbAFWFYyq5jJ8rLsFCUMMjLbiohwWSI+9DVlOMIpJfN7s+tM630rDAWuriyZurviQxHUo6jQHdGWA3kojcV//O6qQpvvIzyJFXAyXxRmDJLxdY0DKtHBRDFxppgIqi+1SIDLDBROrKyDsFZfHmZtGpV56pae7is1G+LOEroBJ2ic+Sga1RH96iBmoigCXpGr+jNeDJejHfjY966YhQzR+gPjM8fe0yWZw==</latexit>|�vi�1
i

<latexit sha1_base64="xVV+K6NfDXOd1tyjeqHbcB2g3+4=">AAACAHicbVDLSsNAFJ3UV62vqAsXbgaL4MaSFFGXRTcuK9gHNCFMprft2MkkzEwKJWbjr7hxoYhbP8Odf+P0sdDqgQuHc+7l3nvChDOlHefLKiwtr6yuFddLG5tb2zv27l5Txamk0KAxj2U7JAo4E9DQTHNoJxJIFHJohcPrid8agVQsFnd6nIAfkb5gPUaJNlJgH3iciD4H7CUDFmSjILs/dfP8IbDLTsWZAv8l7pyU0Rz1wP70ujFNIxCacqJUx3US7WdEakY55CUvVZAQOiR96BgqSATKz6YP5PjYKF3ci6UpofFU/TmRkUipcRSazojogVr0JuJ/XifVvUs/YyJJNQg6W9RLOdYxnqSBu0wC1XxsCKGSmVsxHRBJqDaZlUwI7uLLf0mzWnHPK9Xbs3Ltah5HER2iI3SCXHSBaugG1VEDUZSjJ/SCXq1H69l6s95nrQVrPrOPfsH6+AbMwJaM</latexit>h�vj�1
|

<latexit sha1_base64="iOc4Zss/PnFVMQgmdlriSdAe4pI=">AAAB/XicbVDLSsNAFJ3UV62v+Ni5CRbBVUmKqMuiG5cV7AOaECbTm3boZBJmJoUag7/ixoUibv0Pd/6N0zYLbT1w4XDOvdx7T5AwKpVtfxulldW19Y3yZmVre2d3z9w/aMs4FQRaJGax6AZYAqMcWooqBt1EAI4CBp1gdDP1O2MQksb8Xk0S8CI84DSkBCst+ebRo5tI6mdjP6N57grMBwx8s2rX7BmsZeIUpIoKNH3zy+3HJI2AK8KwlD3HTpSXYaEoYZBX3FRCgskID6CnKccRSC+bXZ9bp1rpW2EsdHFlzdTfExmOpJxEge6MsBrKRW8q/uf1UhVeeRnlSaqAk/miMGWWiq1pFFafCiCKTTTBRFB9q0WGWGCidGAVHYKz+PIyaddrzkWtfndebVwXcZTRMTpBZ8hBl6iBblETtRBBD+gZvaI348l4Md6Nj3lryShmDtEfGJ8/pvqWAA==</latexit>| vi
i

Since the tensor network in the trace is positive semi-definite, we can compute the
1-norm by taking to trace and find

<latexit sha1_base64="3yzzMpLGc+AxOVeOSUfkgMSIBJg=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKqMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlptcvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bHzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1ITXfsZlkhqUbLEoTAUxMZl9TQZcITNiYgllittbCRtRRZmx2ZRsCN7yy6ukXat6l9Va86JSv8njKMIJnMI5eHAFdbiDBrSAAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPfOeMvA==</latexit>

1

<latexit sha1_base64="tK4BalyGcCRU9kB0n5zsUZNLc0E=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4qkkR9Vj04rGi/YA2lM120y7dbMLuRCihP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LR7dRvPXFtRKwecZxwP6IDJULBKFrpwTuv9kplt+LOQJaJl5My5Kj3Sl/dfszSiCtkkhrT8dwE/YxqFEzySbGbGp5QNqID3rFU0YgbP5udOiGnVumTMNa2FJKZ+nsio5Ex4yiwnRHFoVn0puJ/XifF8NrPhEpS5IrNF4WpJBiT6d+kLzRnKMeWUKaFvZWwIdWUoU2naEPwFl9eJs1qxbusVO8vyrWbPI4CHMMJnIEHV1CDO6hDAxgM4Ble4c2Rzovz7nzMW1ecfOYI/sD5/AFaVY0x</latexit>

1/2

<latexit sha1_base64="tK4BalyGcCRU9kB0n5zsUZNLc0E=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4qkkR9Vj04rGi/YA2lM120y7dbMLuRCihP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LR7dRvPXFtRKwecZxwP6IDJULBKFrpwTuv9kplt+LOQJaJl5My5Kj3Sl/dfszSiCtkkhrT8dwE/YxqFEzySbGbGp5QNqID3rFU0YgbP5udOiGnVumTMNa2FJKZ+nsio5Ex4yiwnRHFoVn0puJ/XifF8NrPhEpS5IrNF4WpJBiT6d+kLzRnKMeWUKaFvZWwIdWUoU2naEPwFl9eJs1qxbusVO8vyrWbPI4CHMMJnIEHV1CDO6hDAxgM4Ble4c2Rzovz7nzMW1ecfOYI/sD5/AFaVY0x</latexit>

1/2

<latexit sha1_base64="/Bea2bJ4lLR+YtvqMNazsjIsE/4=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0mKqMeiF48V7Ae0oWy2k3bpZhN3N0IJ/QtePCji1T/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHssHM0nQj+hQ8pAzamZST+Bjv1xxq+4cZJV4OalAjka//NUbxCyNUBomqNZdz02Mn1FlOBM4LfVSjQllYzrErqWSRqj9bH7rlJxZZUDCWNmShszV3xMZjbSeRIHtjKgZ6WVvJv7ndVMTXvsZl0lqULLFojAVxMRk9jgZcIXMiIkllClubyVsRBVlxsZTsiF4yy+vklat6l1Wa/cXlfpNHkcRTuAUzsGDK6jDHTSgCQxG8Ayv8OZEzovz7nwsWgtOPnMMf+B8/gAXS45H</latexit>
<latexit sha1_base64="/kl/J/MrbFHXr+CghOKY6aWWQz0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0iKqMeiF48t2FpoQ9lsJ+3azSbsboRS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8MBVcG8/7dgpr6xubW8Xt0s7u3v5B+fCopZNMMWyyRCSqHVKNgktsGm4EtlOFNA4FPoSj25n/8IRK80Tem3GKQUwHkkecUWOlhtsrVzzXm4OsEj8nFchR75W/uv2EZTFKwwTVuuN7qQkmVBnOBE5L3UxjStmIDrBjqaQx6mAyP3RKzqzSJ1GibElD5urviQmNtR7Hoe2MqRnqZW8m/ud1MhNdBxMu08ygZItFUSaIScjsa9LnCpkRY0soU9zeStiQKsqMzaZkQ/CXX14lrarrX7rVxkWldpPHUYQTOIVz8OEKanAHdWgCA4RneIU359F5cd6dj0VrwclnjuEPnM8feFuMuQ==</latexit>.<latexit sha1_base64="NMJZGt9VBElp6Eu4UuV95yQhQZg=">AAAB+3icbVBNS8NAEN3Ur1q/Yj16CRbBU0mKqMeiF48V7Ac0IWy2k3btZhN2N8US81e8eFDEq3/Em//GbZuDtj4YeLw3w8y8IGFUKtv+Nkpr6xubW+Xtys7u3v6BeVjtyDgVBNokZrHoBVgCoxzaiioGvUQAjgIG3WB8M/O7ExCSxvxeTRPwIjzkNKQEKy35ZvXJTST1s4n/kLsC8yED36zZdXsOa5U4BamhAi3f/HIHMUkj4IowLGXfsRPlZVgoShjkFTeVkGAyxkPoa8pxBNLL5rfn1qlWBlYYC11cWXP190SGIymnUaA7I6xGctmbif95/VSFV15GeZIq4GSxKEyZpWJrFoQ1oAKIYlNNMBFU32qRERaYKB1XRYfgLL+8SjqNunNRb9yd15rXRRxldIxO0Bly0CVqolvUQm1E0CN6Rq/ozciNF+Pd+Fi0loxi5gj9gfH5A9V3lPU=</latexit>| vj

i
<latexit sha1_base64="MHhFKOfChiPPlssZutP9OdHKwc0=">AAAB/HicbVBNS8NAEJ34WetXtEcvi0XwVJIi6rHoxWMF+wFtCJvtpl262YTdTSHE+le8eFDEqz/Em//GbZuDtj4YeLw3w8y8IOFMacf5ttbWNza3tks75d29/YND++i4reJUEtoiMY9lN8CKciZoSzPNaTeRFEcBp51gfDvzOxMqFYvFg84S6kV4KFjICNZG8u1Kn2Mx5BT1E8X8fOKz6aNvV52aMwdaJW5BqlCg6dtf/UFM0ogKTThWquc6ifZyLDUjnE7L/VTRBJMxHtKeoQJHVHn5/PgpOjPKAIWxNCU0mqu/J3IcKZVFgemMsB6pZW8m/uf1Uh1eezkTSaqpIItFYcqRjtEsCTRgkhLNM0MwkczcisgIS0y0yatsQnCXX14l7XrNvazV7y+qjZsijhKcwCmcgwtX0IA7aEILCGTwDK/wZj1ZL9a79bFoXbOKmQr8gfX5AyHTlRg=</latexit>h vi

|

<latexit sha1_base64="Xfqt+lOgpZHMR3x/Sr9FOTZom0g=">AAACAHicbVBNS8NAEN3Ur1q/oh48eFksghdLUkQ9Fr14rGA/oClhs522SzebsLsplJiLf8WLB0W8+jO8+W/ctjlo64OBx3szzMwLYs6Udpxvq7Cyura+UdwsbW3v7O7Z+wdNFSWSQoNGPJLtgCjgTEBDM82hHUsgYcChFYxup35rDFKxSDzoSQzdkAwE6zNKtJF8+8jjRAw4YC8eMj8d+yk7d7Ps0bfLTsWZAS8TNydllKPu219eL6JJCEJTTpTquE6suymRmlEOWclLFMSEjsgAOoYKEoLqprMHMnxqlB7uR9KU0Him/p5ISajUJAxMZ0j0UC16U/E/r5Po/nU3ZSJONAg6X9RPONYRnqaBe0wC1XxiCKGSmVsxHRJJqDaZlUwI7uLLy6RZrbiXler9Rbl2k8dRRMfoBJ0hF12hGrpDddRAFGXoGb2iN+vJerHerY95a8HKZw7RH1ifP8s3los=</latexit>h�vi�1
| <latexit sha1_base64="GJciD3m4wtGiVjpOULylD79jD5A=">AAAB/3icbVDLSsNAFL2pr1pfUcGNm2AR3FiSIuqy6MZlBfuAJoTJdNKOnUzCzKRQ0iz8FTcuFHHrb7jzb5w+Ftp64MLhnHu5954gYVQq2/42Ciura+sbxc3S1vbO7p65f9CUcSowaeCYxaIdIEkY5aShqGKknQiCooCRVjC4nfitIRGSxvxBjRLiRajHaUgxUlryzaOxm/Spnw397PHcyXNXIN5jxDfLdsWewlomzpyUYY66b3653RinEeEKMyRlx7ET5WVIKIoZyUtuKkmC8AD1SEdTjiIivWx6f26daqVrhbHQxZU1VX9PZCiSchQFujNCqi8XvYn4n9dJVXjtZZQnqSIczxaFKbNUbE3CsLpUEKzYSBOEBdW3WriPBMJKR1bSITiLLy+TZrXiXFaq9xfl2s08jiIcwwmcgQNXUIM7qEMDMIzhGV7hzXgyXox342PWWjDmM4fwB8bnD3zblmg=</latexit>|�vj�1

i
<latexit sha1_base64="NMJZGt9VBElp6Eu4UuV95yQhQZg=">AAAB+3icbVBNS8NAEN3Ur1q/Yj16CRbBU0mKqMeiF48V7Ac0IWy2k3btZhN2N8US81e8eFDEq3/Em//GbZuDtj4YeLw3w8y8IGFUKtv+Nkpr6xubW+Xtys7u3v6BeVjtyDgVBNokZrHoBVgCoxzaiioGvUQAjgIG3WB8M/O7ExCSxvxeTRPwIjzkNKQEKy35ZvXJTST1s4n/kLsC8yED36zZdXsOa5U4BamhAi3f/HIHMUkj4IowLGXfsRPlZVgoShjkFTeVkGAyxkPoa8pxBNLL5rfn1qlWBlYYC11cWXP190SGIymnUaA7I6xGctmbif95/VSFV15GeZIq4GSxKEyZpWJrFoQ1oAKIYlNNMBFU32qRERaYKB1XRYfgLL+8SjqNunNRb9yd15rXRRxldIxO0Bly0CVqolvUQm1E0CN6Rq/ozciNF+Pd+Fi0loxi5gj9gfH5A9V3lPU=</latexit>| vj

i
<latexit sha1_base64="MHhFKOfChiPPlssZutP9OdHKwc0=">AAAB/HicbVBNS8NAEJ34WetXtEcvi0XwVJIi6rHoxWMF+wFtCJvtpl262YTdTSHE+le8eFDEqz/Em//GbZuDtj4YeLw3w8y8IOFMacf5ttbWNza3tks75d29/YND++i4reJUEtoiMY9lN8CKciZoSzPNaTeRFEcBp51gfDvzOxMqFYvFg84S6kV4KFjICNZG8u1Kn2Mx5BT1E8X8fOKz6aNvV52aMwdaJW5BqlCg6dtf/UFM0ogKTThWquc6ifZyLDUjnE7L/VTRBJMxHtKeoQJHVHn5/PgpOjPKAIWxNCU0mqu/J3IcKZVFgemMsB6pZW8m/uf1Uh1eezkTSaqpIItFYcqRjtEsCTRgkhLNM0MwkczcisgIS0y0yatsQnCXX14l7XrNvazV7y+qjZsijhKcwCmcgwtX0IA7aEILCGTwDK/wZj1ZL9a79bFoXbOKmQr8gfX5AyHTlRg=</latexit>h vi

|

<latexit sha1_base64="Xfqt+lOgpZHMR3x/Sr9FOTZom0g=">AAACAHicbVBNS8NAEN3Ur1q/oh48eFksghdLUkQ9Fr14rGA/oClhs522SzebsLsplJiLf8WLB0W8+jO8+W/ctjlo64OBx3szzMwLYs6Udpxvq7Cyura+UdwsbW3v7O7Z+wdNFSWSQoNGPJLtgCjgTEBDM82hHUsgYcChFYxup35rDFKxSDzoSQzdkAwE6zNKtJF8+8jjRAw4YC8eMj8d+yk7d7Ps0bfLTsWZAS8TNydllKPu219eL6JJCEJTTpTquE6suymRmlEOWclLFMSEjsgAOoYKEoLqprMHMnxqlB7uR9KU0Him/p5ISajUJAxMZ0j0UC16U/E/r5Po/nU3ZSJONAg6X9RPONYRnqaBe0wC1XxiCKGSmVsxHRJJqDaZlUwI7uLLy6RZrbiXler9Rbl2k8dRRMfoBJ0hF12hGrpDddRAFGXoGb2iN+vJerHerY95a8HKZw7RH1ifP8s3los=</latexit>h�vi�1
| <latexit sha1_base64="GJciD3m4wtGiVjpOULylD79jD5A=">AAAB/3icbVDLSsNAFL2pr1pfUcGNm2AR3FiSIuqy6MZlBfuAJoTJdNKOnUzCzKRQ0iz8FTcuFHHrb7jzb5w+Ftp64MLhnHu5954gYVQq2/42Ciura+sbxc3S1vbO7p65f9CUcSowaeCYxaIdIEkY5aShqGKknQiCooCRVjC4nfitIRGSxvxBjRLiRajHaUgxUlryzaOxm/Spnw397PHcyXNXIN5jxDfLdsWewlomzpyUYY66b3653RinEeEKMyRlx7ET5WVIKIoZyUtuKkmC8AD1SEdTjiIivWx6f26daqVrhbHQxZU1VX9PZCiSchQFujNCqi8XvYn4n9dJVXjtZZQnqSIczxaFKbNUbE3CsLpUEKzYSBOEBdW3WriPBMJKR1bSITiLLy+TZrXiXFaq9xfl2s08jiIcwwmcgQNXUIM7qEMDMIzhGV7hzXgyXox342PWWjDmM4fwB8bnD3zblmg=</latexit>|�vj�1

i
<latexit sha1_base64="u1Wf5EfAYpqclcsmIfzkgPwzpYw=">AAAB/nicbVBNS8NAEJ3Ur1q/quLJy2IRPJWkiHosevFYwX5AE8Jmu2nXbjZhd1MoseBf8eJBEa/+Dm/+G7dtDtr6YODx3gwz84KEM6Vt+9sqrKyurW8UN0tb2zu7e+X9g5aKU0lok8Q8lp0AK8qZoE3NNKedRFIcBZy2g+HN1G+PqFQsFvd6nFAvwn3BQkawNpJfPnI5Fn1OkZso5mcjP3uYTB79csWu2jOgZeLkpAI5Gn75y+3FJI2o0IRjpbqOnWgvw1Izwumk5KaKJpgMcZ92DRU4osrLZudP0KlReiiMpSmh0Uz9PZHhSKlxFJjOCOuBWvSm4n9eN9XhlZcxkaSaCjJfFKYc6RhNs0A9JinRfGwIJpKZWxEZYImJNomVTAjO4svLpFWrOhfV2t15pX6dx1GEYziBM3DgEupwCw1oAoEMnuEV3qwn68V6tz7mrQUrnzmEP7A+fwD1dJYl</latexit>h vj

|

<latexit sha1_base64="hV9ObCPJSOo1I+qKZHZU8p22WMU=">AAAB/3icbVBNS8NAEN34WetXVPDiJVgEL5akiHosevFYwX5AE8JmO2mXbjZhd1MoaQ7+FS8eFPHq3/Dmv3Hb5qCtDwYe780wMy9IGJXKtr+NldW19Y3N0lZ5e2d3b988OGzJOBUEmiRmsegEWAKjHJqKKgadRACOAgbtYHg39dsjEJLG/FGNE/Ai3Oc0pAQrLfnm8cRNBtTPRn5GL5w8dwXmfQa+WbGr9gzWMnEKUkEFGr755fZikkbAFWFYyq5jJ8rLsFCUMMjLbiohwWSI+9DVlOMIpJfN7s+tM630rDAWuriyZurviQxHUo6jQHdGWA3kojcV//O6qQpvvIzyJFXAyXxRmDJLxdY0DKtHBRDFxppgIqi+1SIDLDBROrKyDsFZfHmZtGpV56pae7is1G+LOEroBJ2ic+Sga1RH96iBmoigCXpGr+jNeDJejHfjY966YhQzR+gPjM8fe0yWZw==</latexit>|�vi�1
i<latexit sha1_base64="xVV+K6NfDXOd1tyjeqHbcB2g3+4=">AAACAHicbVDLSsNAFJ3UV62vqAsXbgaL4MaSFFGXRTcuK9gHNCFMprft2MkkzEwKJWbjr7hxoYhbP8Odf+P0sdDqgQuHc+7l3nvChDOlHefLKiwtr6yuFddLG5tb2zv27l5Txamk0KAxj2U7JAo4E9DQTHNoJxJIFHJohcPrid8agVQsFnd6nIAfkb5gPUaJNlJgH3iciD4H7CUDFmSjILs/dfP8IbDLTsWZAv8l7pyU0Rz1wP70ujFNIxCacqJUx3US7WdEakY55CUvVZAQOiR96BgqSATKz6YP5PjYKF3ci6UpofFU/TmRkUipcRSazojogVr0JuJ/XifVvUs/YyJJNQg6W9RLOdYxnqSBu0wC1XxsCKGSmVsxHRBJqDaZlUwI7uLLf0mzWnHPK9Xbs3Ltah5HER2iI3SCXHSBaugG1VEDUZSjJ/SCXq1H69l6s95nrQVrPrOPfsH6+AbMwJaM</latexit>h�vj�1

|
<latexit sha1_base64="iOc4Zss/PnFVMQgmdlriSdAe4pI=">AAAB/XicbVDLSsNAFJ3UV62v+Ni5CRbBVUmKqMuiG5cV7AOaECbTm3boZBJmJoUag7/ixoUibv0Pd/6N0zYLbT1w4XDOvdx7T5AwKpVtfxulldW19Y3yZmVre2d3z9w/aMs4FQRaJGax6AZYAqMcWooqBt1EAI4CBp1gdDP1O2MQksb8Xk0S8CI84DSkBCst+ebRo5tI6mdjP6N57grMBwx8s2rX7BmsZeIUpIoKNH3zy+3HJI2AK8KwlD3HTpSXYaEoYZBX3FRCgskID6CnKccRSC+bXZ9bp1rpW2EsdHFlzdTfExmOpJxEge6MsBrKRW8q/uf1UhVeeRnlSaqAk/miMGWWiq1pFFafCiCKTTTBRFB9q0WGWGCidGAVHYKz+PIyaddrzkWtfndebVwXcZTRMTpBZ8hBl6iBblETtRBBD+gZvaI348l4Md6Nj3lryShmDtEfGJ8/pvqWAA==</latexit>| vi

i

(9.288)

We have colored the tensor diagram suggestively so that it is transparent how to
rewrite it as

√︃
tr( �̃�𝑣𝑖 �̃�𝑣 𝑗 ) .

Now consider ∥𝐶 (2𝑖, 2 𝑗)∥1. Using the same inequality ∥𝐴∥1 = ∥𝐴 ⊗ 𝐴†∥1/21 ≤
∥SWAP · (𝐴 ⊗ 𝐴†)∥1/21 , we find the upper bound

<latexit sha1_base64="j/Rq0f4mTAMIJZo6NBDMO0H6DOM=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRahp7JbRD2WevFYwX5Au5Rsmt3GZpMlyQpl6X/w4kERr/4fb/4b03YP2vpg4PHeDDPzgoQzbVz32ylsbG5t7xR3S3v7B4dH5eOTjpapIrRNJJeqF2BNORO0bZjhtJcoiuOA024wuZ373SeqNJPiwUwT6sc4EixkBBsrdQZNFkXVYbni1twF0DrxclKBHK1h+WswkiSNqTCEY637npsYP8PKMMLprDRINU0wmeCI9i0VOKbazxbXztCFVUYolMqWMGih/p7IcKz1NA5sZ4zNWK96c/E/r5+a8MbPmEhSQwVZLgpTjoxE89fRiClKDJ9agoli9lZExlhhYmxAJRuCt/ryOunUa95VrX5/WWk08ziKcAbnUAUPrqEBd9CCNhB4hGd4hTdHOi/Ou/OxbC04+cwp/IHz+QP0EI66</latexit> <latexit sha1_base64="nqpNFtP0KxR9svc72Oi8Xlhv5Og=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRZBL2W3iHos9eKxgv2AdinZNLuNzSZLkhXK0v/gxYMiXv0/3vw3pu0etPXBwOO9GWbmBQln2rjut1NYW9/Y3Cpul3Z29/YPyodHbS1TRWiLSC5VN8CaciZoyzDDaTdRFMcBp51gfDvzO09UaSbFg5kk1I9xJFjICDZWavcbLIouBuWKW3XnQKvEy0kFcjQH5a/+UJI0psIQjrXueW5i/Awrwwin01I/1TTBZIwj2rNU4JhqP5tfO0VnVhmiUCpbwqC5+nsiw7HWkziwnTE2I73szcT/vF5qwhs/YyJJDRVksShMOTISzV5HQ6YoMXxiCSaK2VsRGWGFibEBlWwI3vLLq6Rdq3pX1dr9ZaXeyOMowgmcwjl4cA11uIMmtIDAIzzDK7w50nlx3p2PRWvByWeO4Q+czx/1lI67</latexit>!<latexit sha1_base64="tK4BalyGcCRU9kB0n5zsUZNLc0E=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4qkkR9Vj04rGi/YA2lM120y7dbMLuRCihP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LR7dRvPXFtRKwecZxwP6IDJULBKFrpwTuv9kplt+LOQJaJl5My5Kj3Sl/dfszSiCtkkhrT8dwE/YxqFEzySbGbGp5QNqID3rFU0YgbP5udOiGnVumTMNa2FJKZ+nsio5Ex4yiwnRHFoVn0puJ/XifF8NrPhEpS5IrNF4WpJBiT6d+kLzRnKMeWUKaFvZWwIdWUoU2naEPwFl9eJs1qxbusVO8vyrWbPI4CHMMJnIEHV1CDO6hDAxgM4Ble4c2Rzovz7nzMW1ecfOYI/sD5/AFaVY0x</latexit>

1/2
<latexit sha1_base64="hV9ObCPJSOo1I+qKZHZU8p22WMU=">AAAB/3icbVBNS8NAEN34WetXVPDiJVgEL5akiHosevFYwX5AE8JmO2mXbjZhd1MoaQ7+FS8eFPHq3/Dmv3Hb5qCtDwYe780wMy9IGJXKtr+NldW19Y3N0lZ5e2d3b988OGzJOBUEmiRmsegEWAKjHJqKKgadRACOAgbtYHg39dsjEJLG/FGNE/Ai3Oc0pAQrLfnm8cRNBtTPRn5GL5w8dwXmfQa+WbGr9gzWMnEKUkEFGr755fZikkbAFWFYyq5jJ8rLsFCUMMjLbiohwWSI+9DVlOMIpJfN7s+tM630rDAWuriyZurviQxHUo6jQHdGWA3kojcV//O6qQpvvIzyJFXAyXxRmDJLxdY0DKtHBRDFxppgIqi+1SIDLDBROrKyDsFZfHmZtGpV56pae7is1G+LOEroBJ2ic+Sga1RH96iBmoigCXpGr+jNeDJejHfjY966YhQzR+gPjM8fe0yWZw==</latexit>|�vi�1

i
<latexit sha1_base64="GJciD3m4wtGiVjpOULylD79jD5A=">AAAB/3icbVDLSsNAFL2pr1pfUcGNm2AR3FiSIuqy6MZlBfuAJoTJdNKOnUzCzKRQ0iz8FTcuFHHrb7jzb5w+Ftp64MLhnHu5954gYVQq2/42Ciura+sbxc3S1vbO7p65f9CUcSowaeCYxaIdIEkY5aShqGKknQiCooCRVjC4nfitIRGSxvxBjRLiRajHaUgxUlryzaOxm/Spnw397PHcyXNXIN5jxDfLdsWewlomzpyUYY66b3653RinEeEKMyRlx7ET5WVIKIoZyUtuKkmC8AD1SEdTjiIivWx6f26daqVrhbHQxZU1VX9PZCiSchQFujNCqi8XvYn4n9dJVXjtZZQnqSIczxaFKbNUbE3CsLpUEKzYSBOEBdW3WriPBMJKR1bSITiLLy+TZrXiXFaq9xfl2s08jiIcwwmcgQNXUIM7qEMDMIzhGV7hzXgyXox342PWWjDmM4fwB8bnD3zblmg=</latexit>|�vj�1

i
<latexit sha1_base64="WDA/sE5PYT7kKXefEoJNc7/3lEs=">AAAB/XicbVDLSsNAFL2pr1pf8bFzEyyCq5KIqMuiG5cV7AOaECbTSTt2Mgkzk0KNwV9x40IRt/6HO//GaZuFth64cDjnXu69J0gYlcq2v43S0vLK6lp5vbKxubW9Y+7utWScCkyaOGax6ARIEkY5aSqqGOkkgqAoYKQdDK8nfntEhKQxv1PjhHgR6nMaUoyUlnzz4NFNJPWzkZ/d57krEO8z4ptVu2ZPYS0SpyBVKNDwzS+3F+M0IlxhhqTsOnaivAwJRTEjecVNJUkQHqI+6WrKUUSkl02vz61jrfSsMBa6uLKm6u+JDEVSjqNAd0ZIDeS8NxH/87qpCi+9jPIkVYTj2aIwZZaKrUkUVo8KghUba4KwoPpWCw+QQFjpwCo6BGf+5UXSOq0557XT27Nq/aqIowyHcAQn4MAF1OEGGtAEDA/wDK/wZjwZL8a78TFrLRnFzD78gfH5A6iHlgE=</latexit>| vj

i<latexit sha1_base64="iOc4Zss/PnFVMQgmdlriSdAe4pI=">AAAB/XicbVDLSsNAFJ3UV62v+Ni5CRbBVUmKqMuiG5cV7AOaECbTm3boZBJmJoUag7/ixoUibv0Pd/6N0zYLbT1w4XDOvdx7T5AwKpVtfxulldW19Y3yZmVre2d3z9w/aMs4FQRaJGax6AZYAqMcWooqBt1EAI4CBp1gdDP1O2MQksb8Xk0S8CI84DSkBCst+ebRo5tI6mdjP6N57grMBwx8s2rX7BmsZeIUpIoKNH3zy+3HJI2AK8KwlD3HTpSXYaEoYZBX3FRCgskID6CnKccRSC+bXZ9bp1rpW2EsdHFlzdTfExmOpJxEge6MsBrKRW8q/uf1UhVeeRnlSaqAk/miMGWWiq1pFFafCiCKTTTBRFB9q0WGWGCidGAVHYKz+PIyaddrzkWtfndebVwXcZTRMTpBZ8hBl6iBblETtRBBD+gZvaI348l4Md6Nj3lryShmDtEfGJ8/pvqWAA==</latexit>| vi
i<latexit sha1_base64="TXs5MB4e11pMrn/slkITGWcPVSs=">AAAB/nicbVBNS8NAEJ34WetXVDx5WSyCp5IUUY9FLx4r2A9oQthst+3SzSbsbgolBvwrXjwo4tXf4c1/47bNQVsfDDzem2FmXphwprTjfFsrq2vrG5ulrfL2zu7evn1w2FJxKgltkpjHshNiRTkTtKmZ5rSTSIqjkNN2OLqd+u0xlYrF4kFPEupHeCBYnxGsjRTYxx7HYsAp8hLFgmwcZCzPHwO74lSdGdAycQtSgQKNwP7yejFJIyo04Viprusk2s+w1Ixwmpe9VNEEkxEe0K6hAkdU+dns/BydGaWH+rE0JTSaqb8nMhwpNYlC0xlhPVSL3lT8z+umun/tZ0wkqaaCzBf1U450jKZZoB6TlGg+MQQTycytiAyxxESbxMomBHfx5WXSqlXdy2rt/qJSvyniKMEJnMI5uHAFdbiDBjSBQAbP8Apv1pP1Yr1bH/PWFauYOYI/sD5/APPtliQ=</latexit>h vi

|
<latexit sha1_base64="u1Wf5EfAYpqclcsmIfzkgPwzpYw=">AAAB/nicbVBNS8NAEJ3Ur1q/quLJy2IRPJWkiHosevFYwX5AE8Jmu2nXbjZhd1MoseBf8eJBEa/+Dm/+G7dtDtr6YODx3gwz84KEM6Vt+9sqrKyurW8UN0tb2zu7e+X9g5aKU0lok8Q8lp0AK8qZoE3NNKedRFIcBZy2g+HN1G+PqFQsFvd6nFAvwn3BQkawNpJfPnI5Fn1OkZso5mcjP3uYTB79csWu2jOgZeLkpAI5Gn75y+3FJI2o0IRjpbqOnWgvw1Izwumk5KaKJpgMcZ92DRU4osrLZudP0KlReiiMpSmh0Uz9PZHhSKlxFJjOCOuBWvSm4n9eN9XhlZcxkaSaCjJfFKYc6RhNs0A9JinRfGwIJpKZWxEZYImJNomVTAjO4svLpFWrOhfV2t15pX6dx1GEYziBM3DgEupwCw1oAoEMnuEV3qwn68V6tz7mrQUrnzmEP7A+fwD1dJYl</latexit>h vj

|

<latexit sha1_base64="xVV+K6NfDXOd1tyjeqHbcB2g3+4=">AAACAHicbVDLSsNAFJ3UV62vqAsXbgaL4MaSFFGXRTcuK9gHNCFMprft2MkkzEwKJWbjr7hxoYhbP8Odf+P0sdDqgQuHc+7l3nvChDOlHefLKiwtr6yuFddLG5tb2zv27l5Txamk0KAxj2U7JAo4E9DQTHNoJxJIFHJohcPrid8agVQsFnd6nIAfkb5gPUaJNlJgH3iciD4H7CUDFmSjILs/dfP8IbDLTsWZAv8l7pyU0Rz1wP70ujFNIxCacqJUx3US7WdEakY55CUvVZAQOiR96BgqSATKz6YP5PjYKF3ci6UpofFU/TmRkUipcRSazojogVr0JuJ/XifVvUs/YyJJNQg6W9RLOdYxnqSBu0wC1XxsCKGSmVsxHRBJqDaZlUwI7uLLf0mzWnHPK9Xbs3Ltah5HER2iI3SCXHSBaugG1VEDUZSjJ/SCXq1H69l6s95nrQVrPrOPfsH6+AbMwJaM</latexit>h�vj�1
|

<latexit sha1_base64="Xfqt+lOgpZHMR3x/Sr9FOTZom0g=">AAACAHicbVBNS8NAEN3Ur1q/oh48eFksghdLUkQ9Fr14rGA/oClhs522SzebsLsplJiLf8WLB0W8+jO8+W/ctjlo64OBx3szzMwLYs6Udpxvq7Cyura+UdwsbW3v7O7Z+wdNFSWSQoNGPJLtgCjgTEBDM82hHUsgYcChFYxup35rDFKxSDzoSQzdkAwE6zNKtJF8+8jjRAw4YC8eMj8d+yk7d7Ps0bfLTsWZAS8TNydllKPu219eL6JJCEJTTpTquE6suymRmlEOWclLFMSEjsgAOoYKEoLqprMHMnxqlB7uR9KU0Him/p5ISajUJAxMZ0j0UC16U/E/r5Po/nU3ZSJONAg6X9RPONYRnqaBe0wC1XxiCKGSmVsxHRJJqDaZlUwI7uLLy6RZrbiXler9Rbl2k8dRRMfoBJ0hF12hGrpDddRAFGXoGb2iN+vJerHerY95a8HKZw7RH1ifP8s3los=</latexit>h�vi�1
|

(9.289)

which is clearly equal to
√︃

tr( �̃�𝑣𝑖 �̃� 𝑡𝑣 𝑗 ). The upper bound on ∥𝐶 (2𝑖 − 1, 2 𝑗 − 1)∥1 is
given by an identical argument.

It will be convenient to define the underline notation

𝑖 :=

𝑖+1
2 for 𝑖 odd
𝑖
2 for 𝑖 even

(9.290)

and analogously for 𝑗 . We will say that 𝑖, 𝑗 have same parity if they are equal
modulo 2, and have different parity otherwise. Then using the above Lemma, we



491

can upper bound (9.283) by

#𝑂 (𝔫)∏
𝑚=1

©«
∏

𝑖↔ 𝑗∈𝐵𝑚
𝑖, 𝑗 opposite parity

√︃
tr( �̃�𝑣𝑖 �̃�𝑣 𝑗 )

∏
𝑘↔ℓ∈𝐵𝑚

𝑘,ℓ same parity

√︃
tr( �̃�𝑣𝑘 �̃� 𝑡𝑣ℓ )

ª®®®¬ . (9.291)

Now we turn to bounding (9.291). We begin by developing some notation for cycles
𝐵𝑚 . Standard notation for an 𝑀2𝑇 cycle of “length 𝑝” is 𝐵𝑚 = (𝑎1𝑎2 · · · 𝑎2𝑝) where
for us {𝑎1, 𝑎2, ..., 𝑎2𝑝} ⊆ [2𝑇]. Since the number of elements in an 𝑀2𝑇 -cycle is
always even, by convention we define the length as half the number of elements
(i.e. 𝑝 instead of 2𝑝). We decorate each 𝑎𝑖 by an additional subscript as 𝑎𝑚,𝑖 to
remember that it that belongs to the 𝑚th cycle 𝐵𝑚. We sometimes write 𝑝 = |𝐵𝑚 |
to remind ourselves that it depends on 𝑚. Let us also define

tr( �̃�𝑣𝑖 �̃�
𝑡 (𝑖, 𝑗)
𝑣 𝑗 ) :=


tr( �̃�𝑣𝑖 �̃�𝑣 𝑗 ) if 𝑖, 𝑗 have different parities

tr( �̃�𝑣𝑖 �̃� 𝑡𝑣 𝑗 ) if 𝑖, 𝑗 have the same parity
. (9.292)

With these notations in mind, we can write (9.291) as a product over√︂
tr( �̃�𝑣𝑎𝑚,1 �̃�

𝑡 (𝑎𝑚,1,𝑎𝑚,2)
𝑣𝑎𝑚,2

) · · ·
√︂

tr( �̃�𝑣𝑎𝑚,2𝑝−1
�̃�
𝑡 (𝑎𝑚,2𝑝−1,𝑎𝑚,2𝑝)
𝑣𝑎𝑚,2𝑝

)
√︂

tr( �̃�𝑣𝑎𝑚,2𝑝 �̃�
𝑡 (𝑎𝑚,2𝑝 ,𝑎𝑚,1)
𝑣𝑎𝑚,1

)
(9.293)

over 𝑚 = 1, . . . , #(𝔫); here we drop the 𝑂 superscript on #𝑂 since we are only
discussing pair permutation here. We will further analyze the above for fixed 𝑚 in
two cases: (i) 𝑝 = |𝐵𝑚 | is even, and (ii) 𝑝 = |𝐵𝑚 | is odd.

It will be convenient to prove a Lemma which is slightly more general than what
we need for the orthogonal case; the advantage of this generality is that it will
immediately apply to the symplectic case. The Lemma is as follows:

Lemma 64. Let tr( �̃�𝑣𝑖 �̃�
𝑓 (𝑖, 𝑗)
𝑣 𝑗 ) equal either tr( �̃�𝑣𝑖 �̃�𝑣 𝑗 ), tr( �̃�𝑣𝑖 �̃� 𝑡𝑣 𝑗 ), tr( �̃�𝑣𝑖J �̃� 𝑡𝑣 𝑗J

−1),
depending on the value of 𝑖, 𝑗 . Defining

𝑅𝑚,− := tr( �̃�𝑣𝑎𝑚,𝑝 )
∏
𝑖 odd

1≤𝑖≤2𝑝−2

tr( �̃�𝑣𝑎𝑚,𝑖 �̃�
𝑓 (𝑎𝑚,𝑖 ,𝑎𝑚,𝑖+1)
𝑣𝑎𝑚,𝑖+1

) (9.294)

𝑅𝑚,+ := tr( �̃�𝑣𝑎𝑚,1 )
∏
𝑗 even

tr( �̃�𝑣𝑎𝑚, 𝑗 �̃�
𝑓 (𝑎𝑚, 𝑗 ,𝑎𝑚, 𝑗+1)
𝑣𝑎𝑚, 𝑗+1

) , (9.295)

we have the inequality
#(𝔫)∏
𝑚=1

∏
𝑖↔ 𝑗 ∈𝐵𝑚

√︂
tr( �̃�𝑣𝑖 �̃�

𝑓 (𝑖, 𝑗)
𝑣 𝑗 ) ≤ 1

2#(𝔫)

∑︁
𝑖1,...,𝑖#(𝔫)=±

𝑅1,𝑖1𝑅2,𝑖2 · · · 𝑅#(𝔫),𝑖#(𝔫) . (9.296)

Proof. Similar to the unitary setting, the argument proceeds in two cases.
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Case 1: 𝑝 is even. Every term in Eqn. (9.293) has the form√︂
tr( �̃�𝑣𝑎𝑚,𝑖 �̃�

𝑓 (𝑎𝑚,𝑖 ,𝑎𝑚,𝑖+1)
𝑣𝑎𝑚,𝑖+1

) (9.297)

except the last term. The 𝑖 subscripts of �̃�𝑚,𝑖 will be treated modulo 2𝑝, and√︂
tr( �̃�𝑣𝑎𝑚,2𝑝 �̃�

𝑓 (𝑎𝑚,2𝑝 ,𝑎𝑚,2𝑝+1)
𝑣𝑎𝑚,2𝑝+1

) . With this notation at hand, we organize Eqn. (9.293)
as (∏

𝑖 odd

√︂
tr( �̃�𝑣𝑎𝑚,𝑖 �̃�

𝑓 (𝑎𝑚,𝑖 ,𝑎𝑚,𝑖+1)
𝑣𝑎𝑚,𝑖+1

)
) ( ∏

𝑗 even

√︂
tr( �̃�𝑣𝑎𝑚, 𝑗 �̃�

𝑓 (𝑎𝑚, 𝑗 ,𝑎𝑚, 𝑗+1)
𝑣𝑎𝑚, 𝑗+1

)
)
. (9.298)

Since 𝑎𝑏 ≤ 1
2 (𝑎

2 + 𝑏2), the expression above is upper bounded by

1
2

∏
𝑖 odd

tr( �̃�𝑣𝑎𝑚,𝑖 �̃�
𝑓 (𝑎𝑚,𝑖 ,𝑎𝑚,𝑖+1)
𝑣𝑎𝑚,𝑖+1

) + 1
2

∏
𝑗 even

tr( �̃�𝑣𝑎𝑚, 𝑗 �̃�
𝑓 (𝑎𝑚, 𝑗 ,𝑎𝑚, 𝑗+1)
𝑣𝑎𝑚, 𝑗+1

) . (9.299)

We will call the first term 1
2 𝑅𝑚,− and the second term 1

2 𝑅𝑚, + .

Case 2: 𝑝 is odd. In this setting we can arrange the terms in Eqn. (9.226) as

√︂
tr( �̃�𝑣𝑎𝑚,𝑝 �̃�

𝑓 (𝑎𝑚,𝑝 ,𝑎𝑚,1)
𝑣𝑎𝑚,1

)
©«

∏
𝑖 odd

1≤𝑖≤2𝑝−2

√︂
tr( �̃�𝑣𝑎𝑚,𝑖 �̃�

𝑓 (𝑎𝑚,𝑖 ,𝑎𝑚,𝑖+1)
𝑣𝑎𝑚,𝑖+1

)
ª®®®¬ (9.300)

( ∏
𝑗 even

√︂
tr( �̃�𝑣𝑎𝑚, 𝑗 �̃�

𝑓 (𝑎𝑚, 𝑗 ,𝑎𝑚, 𝑗+1)
𝑣𝑎𝑚, 𝑗+1

)
)
. (9.301)

Since for 𝐴, 𝐵 Hermitian and positive semi-definite we have tr(𝐴𝐵) ≤ ∥𝐴∥2 ∥𝐵∥2 ≤
∥𝐴∥1 ∥𝐵∥1 ≤ tr(𝐴) tr(𝐵) it follows that√︂

tr( �̃�𝑣𝑎𝑚,𝑝 �̃�
𝑓 (𝑎𝑚,𝑝 ,𝑎𝑚,1)
𝑣𝑎𝑚,1

) ≤
√︂

tr( �̃�𝑣𝑎𝑚,𝑝 ) tr( �̃�
𝑓 (𝑎𝑚,𝑝 ,𝑎𝑚,1)
𝑣𝑎𝑚,1

) =
√︃

tr( �̃�𝑣𝑎𝑚,𝑝 ) tr( �̃�𝑣𝑎𝑚,1 ) .
(9.302)

Using the above inequality, (9.300) has the upper bound

©«
√︃

tr( �̃�𝑣𝑎𝑚,𝑝 )
∏
𝑖 odd

1≤𝑖≤2𝑝−2

√︂
tr( �̃�𝑣𝑎𝑚,𝑖 �̃�

𝑓 (𝑎𝑚,𝑖 ,𝑎𝑚,𝑖+1)
𝑣𝑎𝑚,𝑖+1

)
ª®®®¬ (9.303)

(√︃
tr( �̃�𝑣𝑎𝑚,1 )

∏
𝑗 even

√︂
tr( �̃�𝑣𝑎𝑚, 𝑗 �̃�

𝑓 (𝑎𝑚, 𝑗 ,𝑎𝑚, 𝑗+1)
𝑣𝑎𝑚, 𝑗+1

)
)
. (9.304)
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Further using 𝑎𝑏 ≤ 1
2 (𝑎

2 + 𝑏2), we find the upper bound

1
2

tr( �̃�𝑣𝑎𝑚,𝑝 )
∏
𝑖 odd

1≤𝑖≤2𝑝−2

tr( �̃�𝑣𝑎𝑚,𝑖 �̃�
𝑓 (𝑎𝑚,𝑖 ,𝑎𝑚,𝑖+1)
𝑣𝑎𝑚,𝑖+1

) + 1
2

tr( �̃�𝑣𝑎𝑚,1 ) (9.305)

∏
𝑗 even

tr( �̃�𝑣𝑎𝑚, 𝑗 �̃�
𝑓 (𝑎𝑚, 𝑗 ,𝑎𝑚, 𝑗+1
𝑣𝑎𝑚, 𝑗+1

) (9.306)

where the first term is called 1
2 𝑅𝑚,− and the second term is called 1

2 𝑅𝑚, + .

Since 𝑅𝑚,− and 𝑅𝑚, + implicitly depend on the leaf ℓ, sometimes we will denote
them by 𝑅ℓ𝑚,− and 𝑅ℓ𝑚, + to be explicit.
Taking Case 1 and Case 2 together, we find that Eqn. (9.291) has the upper bound

#(𝔫)∏
𝑚=1

∏
𝑖↔ 𝑗 ∈𝐵𝑚

√︂
tr( �̃�𝑣𝑖 �̃�

𝑓 (𝑖, 𝑗)
𝑣 𝑗 ) ≤ 1

2#(𝔫)

#(𝔫)∏
𝑚=1

(
𝑅𝑚,− + 𝑅𝑚,+

)
=

1
2#(𝔫)

∑︁
𝑖1,...,𝑖#(𝔫)=±

𝑅1,𝑖1𝑅2,𝑖2 · · · 𝑅#(𝔫),𝑖#(𝔫) . (9.307)

This is the desired bound.

Observe that each term in the sum in the last line of (9.307) is a product of terms like
tr( �̃�𝑣𝑖 ) and tr( �̃�𝑣 𝑗 �̃�

𝑓 ( 𝑗 ,𝑘)
𝑣𝑘 ). As before, the key point is that we arranged the equations

so that each term in the sum has �̃�𝑣𝑖 for each 𝑖 = 1, ..., 𝑇 appear exactly once. This
allows us to prove the following lemma, which is akin to Lemma 62 above:

Lemma 65. Fix any 𝑖1, ..., 𝑖#(𝔫) ∈ {+,−}. Then∑︁
ℓ ∈ leaf(T )

(𝑑𝑑′)𝑇 𝑊ℓ 𝑅
ℓ
1,𝑖1𝑅

ℓ
2,𝑖2 · · · 𝑅

ℓ

#(𝜏−1),𝑖#(𝔫)
≤ 𝑑𝑇−

⌊
𝐿 (𝔫)

2

⌋
(9.308)

where 𝐿 (𝔫) is the length of the longest cycle in 𝔫 (where we recall that the length of
an 𝑀2𝑇 cycle is defined as half the number of integers in that cycle).

Proof. To ease notation, let 𝑅ℓ
𝑗
≜ 𝑅ℓ

𝑗 ,𝑖 𝑗
. Recall that 𝑊ℓ = 𝑤𝑣1𝑤𝑣2 · · ·𝑤𝑣𝑇 and note

that ∑︁
𝑣: depth(𝑣)=𝑖

𝑑𝑑′𝑤𝑣 �̃�𝑣 = ⟨𝜙parent(𝑣) |𝜙parent(𝑣)⟩ 1𝑑×𝑑 = 1𝑑×𝑑 (9.309)

∑︁
𝑣: depth(𝑣)=𝑖

𝑑𝑑′𝑤𝑣 �̃�
𝑡
𝑣 = ⟨𝜙parent(𝑣) |𝜙parent(𝑣)⟩ 1𝑑×𝑑 = 1𝑑×𝑑 (9.310)
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∑︁
𝑣: depth(𝑣)=𝑖

𝑑𝑑′𝑤𝑣 𝐽 �̃�
𝑡
𝑣𝐽
−1 = ⟨𝜙parent(𝑣) |𝜙parent(𝑣)⟩ 1𝑑×𝑑 = 1𝑑×𝑑 . (9.311)

Taking the traces of the above equations against any 𝜌 ∈ Mat𝑑×𝑑 (C), we find∑︁
𝑣: depth(𝑣)=𝑖

𝑑𝑑′𝑤𝑣 tr(𝜌 �̃�𝑣) = tr(𝜌) (9.312)

∑︁
𝑣: depth(𝑣)=𝑖

𝑑𝑑′𝑤𝑣 tr(𝜌 �̃� 𝑡𝑣) = tr(𝜌) (9.313)

∑︁
𝑣: depth(𝑣)=𝑖

𝑑𝑑′𝑤𝑣 tr(𝜌 𝐽 �̃� 𝑡𝑣𝐽−1) = tr(𝜌) . (9.314)

In particular, for 𝜌 = 1 we have∑︁
𝑣: depth(𝑣)=𝑖

𝑑𝑑′𝑤𝑣 tr( �̃�𝑣) = 𝑑. (9.315)

With these various identities in mind, we can now turn to bounding (9.308). As we
discussed, above

∏
𝑗 𝑅

ℓ
𝑗

is a product of terms like tr( �̃�𝑣𝑖 ) and tr( �̃�𝑣𝑖 �̃�
𝑓 (𝑖,𝑖′)
𝑣𝑖′ ). It is

convenient to define some sets of indices to encode this data. Let 𝑆(𝑇)1 ⊆ [𝑇] denote
the indices 𝑖 for which tr( �̃�𝑣𝑖 ) appears in

∏
𝑗 𝑅

ℓ
𝑗
, and also let 𝑆(𝑇)2 ⊆ [𝑇] × [𝑇] denote

the set of (unordered) pairs (𝑖, 𝑖′) for which tr( �̃�𝑣𝑖 �̃�
𝑓 (𝑖,𝑖′)
𝑣𝑖′ ) appears, so that for any

root-to-leaf path in T consisting of nodes 𝑣1, . . . , 𝑣𝑇 = ℓ, we have∏
𝑗

𝑅ℓ𝑗 =
∏
𝑖∈𝑆 (𝑇 )1

tr( �̃�𝑣𝑖 ) ·
∏

(𝑖,𝑖′)∈𝑆 (𝑇 )2

tr( �̃�𝑣𝑖 �̃�
𝑓 (𝑖,𝑖′)
𝑣𝑖′ ) . (9.316)

Next we construct 𝑆(𝑡)1 ⊆ [𝑡] and 𝑆(𝑡)2 ⊆ [𝑡] × [𝑡] for 1 ≤ 𝑡 < 𝑇 by the following
inductive procedure. If 𝑡 ∈ 𝑆(𝑡)1 then we define 𝑆(𝑡−1)

1 ≜ 𝑆(𝑡)1 \{𝑡} and 𝑆(𝑡−1)
2 ≜ 𝑆(𝑡)2 .

Otherwise if (𝑡, 𝑡′) ∈ 𝑆(𝑡)2 for some 𝑡′ < 𝑡, then we define 𝑆(𝑡−1)
1 ≜ 𝑆(𝑡−1)

1 ∪ {𝑡′} and
𝑆
(𝑡−1)
2 ≜ 𝑆(𝑡)2 \{(𝑡, 𝑡

′)}. We recall two key observations about such sequences, which
we also leveraged in Lemma 62:

Observation 3. For every 𝑖 ∈ 𝑆(𝑇)1 , we have that 𝑖 ∈ 𝑆(𝑖)1 .

Observation 4. For every (𝑖, 𝑖′) ∈ 𝑆(𝑇)2 , if 𝑖 ≤ 𝑖′ then 𝑖 ∈ 𝑆(𝑖)1 while 𝑖′ ∉ 𝑆(𝑖
′)

1 .

We have defined this set of sequences in order to extract �̃�𝑣𝑇 from the product on
the right-hand side of (9.316) and apply (9.315) (respectively (9.312)) if 𝑇 ∈ 𝑆(𝑇)1



495

(respectively (𝑇, 𝑡′) ∈ 𝑆(𝑇)2 for some 𝑡′ < 𝑇) to obtain∑︁
ℓ∈leaf (T )

(𝑑𝑑′)𝑇𝑊ℓ

∏
𝑗

𝑅ℓ𝑗 (9.317)

= 𝑑1[𝑇∈𝑆
(𝑇 )
1 ]

∑︁
𝑢: depth(𝑢)=𝑇−1

(𝑑𝑑′)𝑇−1𝑊𝑢

∏
𝑖∈𝑆 (𝑇−1)

1

tr( �̃�𝑣𝑖 ) ·
∏

(𝑖,𝑖′)∈𝑆 (𝑇−1)
2

tr( �̃�𝑣𝑖 �̃�
𝑓 (𝑖,𝑖′)
𝑣𝑖′ ) ,

(9.318)

with𝑊𝑢 = 𝑤𝑣1 · · ·𝑤𝑣𝑇−1 if the path from root to 𝑢 in T is given by 𝑣1, . . . , 𝑣𝑇−1 = 𝑢.
We can proceed inductively by expressing the right-hand side of (9.317) as

𝑑
∑𝑇
𝑡=1 1[𝑡∈𝑆

(𝑡 )
1 ] . (9.319)

By virtue of Observations 3 and 4,
∑𝑇
𝑡=1 1[𝑡 ∈ 𝑆

(𝑡)
1 ] = |𝑆

(𝑇)
1 | + |𝑆

(𝑇)
2 |. Since every

𝑀2𝑇 -cycle 𝐵𝑚 of 𝔫 contributes |𝐵𝑚 |/2 pairs to 𝑆(𝑇)2 , and every 𝑀2𝑇 -cycle 𝐵𝑚 with
|𝐵𝑚 | even contributes ⌊|𝐵𝑚 |/2⌋ pairs to 𝑆(𝑇)2 and one element to 𝑆(𝑇)1 , we conclude
the formula ∑︁

ℓ∈leaf (T )
(𝑑𝑑′)𝑇𝑊ℓ

∏
𝑗

𝑅ℓ𝑗 = 𝑑

∑#(𝔫)
𝑚=1

⌈
|𝐵𝑚 |

2

⌉

= 𝑑
𝑇−∑#(𝔫)

𝑚=1

⌊
|𝐵𝑚 |

2

⌋
≤ 𝑑𝑇−

⌊
𝐿 (𝔫)

2

⌋
(9.320)

as we desired.

Putting all our previous bounds together, in particular Eqn.’s (9.279), (9.291),
(9.307), and (9.308), we arrive at∑︁

ℓ ∈ leaf(T )

∑︁
𝔫≠𝔢,𝔪

|𝑝O𝜎,𝜏 (ℓ) | ≤ 𝑑𝑇
∑︁
𝔪

|Wg𝑂 (𝜎−1
𝔪 , 𝑑) |

∑︁
𝔫≠𝔢

𝑑
−
⌊
𝐿𝑂 (𝔫)

2

⌋
. (9.321)

The first sum on the right-hand side is bounded by 𝑑𝑇
∑

𝔪 |Wg𝑂 (𝜎−1
𝔪 , 𝑑) | ≤ 1 +

O
(
𝑇2

𝑑

)
. Considering the second sum on the right-hand side, let 𝑁𝑂 (𝑇, ℓ) be the

number of permutations in 𝑆𝑇 where the length of the longest 𝑀2𝑇 -cycle is 2ℓ. Then
the second sum can be written as

𝑇∑︁
ℓ=2

𝑁𝑂 (𝑇, ℓ) 𝑑−⌊ ℓ2⌋ (9.322)
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where we omit ℓ = 1 from the sum since it corresponds to the identity pair permuta-
tion. Since 𝑁𝑂 (𝑇, ℓ) ≤

(2𝑇
2ℓ

)
(2ℓ−1)!! = (2𝑇)!

(2𝑇−2ℓ)! 2ℓℓ! < 𝑇
ℓ, (9.322) is upper bounded

by
∞∑︁
ℓ=2

𝑇 ℓ 𝑑−⌊ ℓ2⌋ =
(1 + 𝑇) 𝑇2

𝑑

1 − 𝑇2

𝑑

=
𝑇3

𝑑
+ 𝑇

2

𝑑
+ O

(
𝑇5

𝑑2

)
. (9.323)

Now if 𝑇 ≤ 𝑜(𝑑1/3), then this quantity is 𝑜(1) for some absolute constant 𝑐 > 0.
Altogether, we find

1
2

∑︁
ℓ ∈ leaf(T )

∑︁
𝔫≠𝔢,𝔪

|𝑝O𝔪,𝔫 (ℓ) | ≤ 𝑜(1) . (9.324)

Third term for Sp(𝑑/2) case

The third term in (9.252) is 1
2
∑
ℓ ∈ leaf(T )

∑
𝔫≠𝔢,𝔪 |𝑝S𝔪,𝔫 (ℓ) |. Applying the Cauchy-

Schwarz inequality we obtain the upper bound
<latexit sha1_base64="eBU40pP8UOpygATfYtwAL1WujFA=">AAAB/HicbVBNS8NAEN3Ur1q/oj16WSyCp5IUUY9FLx4r2A9oQthsp+3SzSbsboQQ61/x4kERr/4Qb/4bt20O2vpg4PHeDDPzwoQzpR3n2yqtrW9sbpW3Kzu7e/sH9uFRR8WppNCmMY9lLyQKOBPQ1kxz6CUSSBRy6IaTm5nffQCpWCzudZaAH5GRYENGiTZSYFcfsdcas8ADzrEniRhxCOyaU3fmwKvELUgNFWgF9pc3iGkagdCUE6X6rpNoPydSM8phWvFSBQmhEzKCvqGCRKD8fH78FJ8aZYCHsTQlNJ6rvydyEimVRaHpjIgeq2VvJv7n9VM9vPJzJpJUg6CLRcOUYx3jWRJ4wCRQzTNDCJXM3IrpmEhCtcmrYkJwl19eJZ1G3b2oN+7Oa83rIo4yOkYn6Ay56BI10S1qoTaiKEPP6BW9WU/Wi/VufSxaS1YxU0V/YH3+ACcVlHY=</latexit>|�`i
<latexit sha1_base64="Lj+rbwQ7YPdCjgaMhI70JVBeGwI=">AAAB/HicbVBNS8NAEN3Ur1q/oj16WSyCp5IUUY9FLx4r2A9oQthsp+3SzSbsboQQ61/x4kERr/4Qb/4bt20O2vpg4PHeDDPzwoQzpR3n2yqtrW9sbpW3Kzu7e/sH9uFRR8WppNCmMY9lLyQKOBPQ1kxz6CUSSBRy6IaTm5nffQCpWCzudZaAH5GRYENGiTZSYFcfsddSLPCAc+xJIkYcArvm1J058CpxC1JDBVqB/eUNYppGIDTlRKm+6yTaz4nUjHKYVrxUQULohIygb6ggESg/nx8/xadGGeBhLE0Jjefq74mcREplUWg6I6LHatmbif95/VQPr/yciSTVIOhi0TDlWMd4lgQeMAlU88wQQiUzt2I6JpJQbfKqmBDc5ZdXSadRdy/qjbvzWvO6iKOMjtEJOkMuukRNdItaqI0oytAzekVv1pP1Yr1bH4vWklXMVNEfWJ8/OFuUgQ==</latexit>| `i

<latexit sha1_base64="orZyd1BmuNf8/9NMgA5NPFio3ek=">AAAB+3icbVBNS8NAEN3Ur1q/Yj16WSyCp5IUUY9FLx4r2A9oQthsJ+3SzSbsbsQS+1e8eFDEq3/Em//GbZuDtj4YeLw3w8y8MOVMacf5tkpr6xubW+Xtys7u3v6BfVjtqCSTFNo04YnshUQBZwLammkOvVQCiUMO3XB8M/O7DyAVS8S9nqTgx2QoWMQo0UYK7KrHiRhywF5LscADzp8Cu+bUnTnwKnELUkMFWoH95Q0SmsUgNOVEqb7rpNrPidSMcphWvExBSuiYDKFvqCAxKD+f3z7Fp0YZ4CiRpoTGc/X3RE5ipSZxaDpjokdq2ZuJ/3n9TEdXfs5EmmkQdLEoyjjWCZ4FgQdMAtV8YgihkplbMR0RSag2cVVMCO7yy6uk06i7F/XG3XmteV3EUUbH6ASdIRddoia6RS3URhQ9omf0it6sqfVivVsfi9aSVcwcoT+wPn8A1V6UUQ==</latexit>h `|

<latexit sha1_base64="Uur6U+NHdyQAsQxrB5ZKDojw/No=">AAAB+3icbVBNS8NAEN3Ur1q/Yj16WSyCp5IUUY9FLx4r2A9oQthsJ+3SzSbsbsQS+1e8eFDEq3/Em//GbZuDtj4YeLw3w8y8MOVMacf5tkpr6xubW+Xtys7u3v6BfVjtqCSTFNo04YnshUQBZwLammkOvVQCiUMO3XB8M/O7DyAVS8S9nqTgx2QoWMQo0UYK7KrHiRhywF5rxAIPOH8K7JpTd+bAq8QtSA0VaAX2lzdIaBaD0JQTpfquk2o/J1IzymFa8TIFKaFjMoS+oYLEoPx8fvsUnxplgKNEmhIaz9XfEzmJlZrEoemMiR6pZW8m/uf1Mx1d+TkTaaZB0MWiKONYJ3gWBB4wCVTziSGESmZuxXREJKHaxFUxIbjLL6+STqPuXtQbd+e15nURRxkdoxN0hlx0iZroFrVQG1H0iJ7RK3qzptaL9W59LFpLVjFzhP7A+vwBxGWURg==</latexit>h�`|
<latexit sha1_base64="ulYkTQOuQaB7OhqZ3vRRq3WNedM=">AAAB/nicbVDLSsNAFJ3UV62vqLhyM1gEVyUpoi6LunBZwT6gCWEynbRDZyZhZiKUEPBX3LhQxK3f4c6/cdJmoa0HBg7n3Ms9c8KEUaUd59uqrKyurW9UN2tb2zu7e/b+QVfFqcSkg2MWy36IFGFUkI6mmpF+IgniISO9cHJT+L1HIhWNxYOeJsTnaCRoRDHSRgrsI++WMI2CzONIjyOJJhnP88CuOw1nBrhM3JLUQYl2YH95wxinnAiNGVJq4DqJ9jMkNcWM5DUvVSRBeIJGZGCoQJwoP5vFz+GpUYYwiqV5QsOZ+nsjQ1ypKQ/NZBFSLXqF+J83SHV05WdUJKkmAs8PRSmDOoZFF3BIJcGaTQ1BWFKTFeIxkghr01jNlOAufnmZdJsN96LRvD+vt67LOqrgGJyAM+CCS9ACd6ANOgCDDDyDV/BmPVkv1rv1MR+tWOXOIfgD6/MHBtuWMA==</latexit>

�m

<latexit sha1_base64="5lFka3DOysX/K2PVZdtGtWKfv2g=">AAAB/nicbVDLSsNAFJ3UV62vqLhyEyyCq5IUUZdFXbisYB/QhHAznbRDJ5MwMxFKCPgrblwo4tbvcOffOGmz0NYDA4dz7uWeOUHCqFS2/W1UVlbX1jeqm7Wt7Z3dPXP/oCvjVGDSwTGLRT8ASRjlpKOoYqSfCAJRwEgvmNwUfu+RCElj/qCmCfEiGHEaUgxKS7555N4SpsDP3AjUOBQwyXie+2bdbtgzWMvEKUkdlWj75pc7jHEaEa4wAykHjp0oLwOhKGYkr7mpJAngCYzIQFMOEZFeNoufW6daGVphLPTjypqpvzcyiKScRoGeLELKRa8Q//MGqQqvvIzyJFWE4/mhMGWWiq2iC2tIBcGKTTUBLKjOauExCMBKN1bTJTiLX14m3WbDuWg078/rreuyjio6RifoDDnoErXQHWqjDsIoQ8/oFb0ZT8aL8W58zEcrRrlziP7A+PwBCGGWMQ==</latexit>

�n

<latexit sha1_base64="aDSA+LdzGKAhB3Ywcs7gV6QLvGk="></latexit>

|WgO(�n�
�1
m , d)| .

<latexit sha1_base64="UAsr1TcSuG5SeNmaxEb7wpJl7Oo="></latexit>

1

2

X

`2 leaf(T )

X

n6=e, m

(dd0)T W` (9.325)

To bound the diagrammatic term, we introduce the tilde notation 𝐶 (2𝑖 − 1, 2 𝑗) :=
𝐶 (2𝑖 − 1, 2 𝑗), 𝐶 (2𝑖 − 1, 2 𝑗 − 1) := 𝐶 (2𝑖 − 1, 2 𝑗 − 1) as well as

<latexit sha1_base64="hV9ObCPJSOo1I+qKZHZU8p22WMU=">AAAB/3icbVBNS8NAEN34WetXVPDiJVgEL5akiHosevFYwX5AE8JmO2mXbjZhd1MoaQ7+FS8eFPHq3/Dmv3Hb5qCtDwYe780wMy9IGJXKtr+NldW19Y3N0lZ5e2d3b988OGzJOBUEmiRmsegEWAKjHJqKKgadRACOAgbtYHg39dsjEJLG/FGNE/Ai3Oc0pAQrLfnm8cRNBtTPRn5GL5w8dwXmfQa+WbGr9gzWMnEKUkEFGr755fZikkbAFWFYyq5jJ8rLsFCUMMjLbiohwWSI+9DVlOMIpJfN7s+tM630rDAWuriyZurviQxHUo6jQHdGWA3kojcV//O6qQpvvIzyJFXAyXxRmDJLxdY0DKtHBRDFxppgIqi+1SIDLDBROrKyDsFZfHmZtGpV56pae7is1G+LOEroBJ2ic+Sga1RH96iBmoigCXpGr+jNeDJejHfjY966YhQzR+gPjM8fe0yWZw==</latexit>|�vi�1
i

<latexit sha1_base64="GJciD3m4wtGiVjpOULylD79jD5A=">AAAB/3icbVDLSsNAFL2pr1pfUcGNm2AR3FiSIuqy6MZlBfuAJoTJdNKOnUzCzKRQ0iz8FTcuFHHrb7jzb5w+Ftp64MLhnHu5954gYVQq2/42Ciura+sbxc3S1vbO7p65f9CUcSowaeCYxaIdIEkY5aShqGKknQiCooCRVjC4nfitIRGSxvxBjRLiRajHaUgxUlryzaOxm/Spnw397PHcyXNXIN5jxDfLdsWewlomzpyUYY66b3653RinEeEKMyRlx7ET5WVIKIoZyUtuKkmC8AD1SEdTjiIivWx6f26daqVrhbHQxZU1VX9PZCiSchQFujNCqi8XvYn4n9dJVXjtZZQnqSIczxaFKbNUbE3CsLpUEKzYSBOEBdW3WriPBMJKR1bSITiLLy+TZrXiXFaq9xfl2s08jiIcwwmcgQNXUIM7qEMDMIzhGV7hzXgyXox342PWWjDmM4fwB8bnD3zblmg=</latexit>|�vj�1
i

<latexit sha1_base64="WDA/sE5PYT7kKXefEoJNc7/3lEs=">AAAB/XicbVDLSsNAFL2pr1pf8bFzEyyCq5KIqMuiG5cV7AOaECbTSTt2Mgkzk0KNwV9x40IRt/6HO//GaZuFth64cDjnXu69J0gYlcq2v43S0vLK6lp5vbKxubW9Y+7utWScCkyaOGax6ARIEkY5aSqqGOkkgqAoYKQdDK8nfntEhKQxv1PjhHgR6nMaUoyUlnzz4NFNJPWzkZ/d57krEO8z4ptVu2ZPYS0SpyBVKNDwzS+3F+M0IlxhhqTsOnaivAwJRTEjecVNJUkQHqI+6WrKUUSkl02vz61jrfSsMBa6uLKm6u+JDEVSjqNAd0ZIDeS8NxH/87qpCi+9jPIkVYTj2aIwZZaKrUkUVo8KghUba4KwoPpWCw+QQFjpwCo6BGf+5UXSOq0557XT27Nq/aqIowyHcAQn4MAF1OEGGtAEDA/wDK/wZjwZL8a78TFrLRnFzD78gfH5A6iHlgE=</latexit>| vj
i<latexit sha1_base64="iOc4Zss/PnFVMQgmdlriSdAe4pI=">AAAB/XicbVDLSsNAFJ3UV62v+Ni5CRbBVUmKqMuiG5cV7AOaECbTm3boZBJmJoUag7/ixoUibv0Pd/6N0zYLbT1w4XDOvdx7T5AwKpVtfxulldW19Y3yZmVre2d3z9w/aMs4FQRaJGax6AZYAqMcWooqBt1EAI4CBp1gdDP1O2MQksb8Xk0S8CI84DSkBCst+ebRo5tI6mdjP6N57grMBwx8s2rX7BmsZeIUpIoKNH3zy+3HJI2AK8KwlD3HTpSXYaEoYZBX3FRCgskID6CnKccRSC+bXZ9bp1rpW2EsdHFlzdTfExmOpJxEge6MsBrKRW8q/uf1UhVeeRnlSaqAk/miMGWWiq1pFFafCiCKTTTBRFB9q0WGWGCidGAVHYKz+PIyaddrzkWtfndebVwXcZTRMTpBZ8hBl6iBblETtRBBD+gZvaI348l4Md6Nj3lryShmDtEfGJ8/pvqWAA==</latexit>| vi

i

<latexit sha1_base64="kYDYybqqsz/9sBreyO5kjNBnPk4=">AAAB8XicbVBNS8NAEJ3Ur1q/oh69LBbBg5SkiHrwUPTisYL9wDaUzWbTrt1s4u5GKKH/wosHRbz6b7z5b9y2OWjrg4HHezPMzPMTzpR2nG+rsLS8srpWXC9tbG5t79i7e00Vp5LQBol5LNs+VpQzQRuaaU7biaQ48jlt+cPrid96olKxWNzpUUK9CPcFCxnB2kj3J93HFAeIXT707LJTcaZAi8TNSRly1Hv2VzeISRpRoQnHSnVcJ9FehqVmhNNxqZsqmmAyxH3aMVTgiCovm148RkdGCVAYS1NCo6n6eyLDkVKjyDedEdYDNe9NxP+8TqrDCy9jIkk1FWS2KEw50jGavI8CJinRfGQIJpKZWxEZYImJNiGVTAju/MuLpFmtuGeV6u1puXaVx1GEAziEY3DhHGpwA3VoAAEBz/AKb5ayXqx362PWWrDymX34A+vzB671kEc=</latexit>

, i < j

<latexit sha1_base64="5KFYdF1sLPkKqmgk1JGSaRE54ps=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKewGUY9BL+IponlAsobZySQZMju7zPQKYcknePGgiFe/yJt/4yTZgyYWNBRV3XR3BbEUBl3328mtrK6tb+Q3C1vbO7t7xf2DhokSzXidRTLSrYAaLoXidRQoeSvWnIaB5M1gdD31m09cGxGpBxzH3A/pQIm+YBStdH/7iN1iyS27M5Bl4mWkBBlq3eJXpxexJOQKmaTGtD03Rj+lGgWTfFLoJIbHlI3ogLctVTTkxk9np07IiVV6pB9pWwrJTP09kdLQmHEY2M6Q4tAselPxP6+dYP/ST4WKE+SKzRf1E0kwItO/SU9ozlCOLaFMC3srYUOqKUObTsGG4C2+vEwalbJ3Xq7cnZWqV1kceTiCYzgFDy6gCjdQgzowGMAzvMKbI50X5935mLfmnGzmEP7A+fwBK+2Nuw==</latexit>

J t

<latexit sha1_base64="qBERi2vwBV9zyL0MG16jPvdM3kE=">AAACAXicbVDJSgNBEO2JW4zbqBfBS2MQIkiYGURFEIK5eIxgFkiG0NNTSdr0LHT3KGGIF3/FiwdFvPoX3vwbO8tBEx8UPN6roqqeF3MmlWV9G5mFxaXllexqbm19Y3PL3N6pySgRFKo04pFoeEQCZyFUFVMcGrEAEngc6l6/PPLr9yAki8JbNYjBDUg3ZB1GidJS29xrPTAfFOM+pOVhwWHH2Lk7wheXbTNvFa0x8DyxpySPpqi0za+WH9EkgFBRTqRs2las3JQIxSiHYa6VSIgJ7ZMuNDUNSQDSTccfDPGhVnzciYSuUOGx+nsiJYGUg8DTnQFRPTnrjcT/vGaiOuduysI4URDSyaJOwrGK8CgO7DMBVPGBJoQKpm/FtEcEoUqHltMh2LMvz5OaU7RPi87NSb50NY0ji/bRASogG52hErpGFVRFFD2iZ/SK3own48V4Nz4mrRljOrOL/sD4/AEf3ZVf</latexit> eC(2i, 2j) := (9.326)

where as usual 𝐶 ( 𝑗 , 𝑖) = 𝐶 (𝑖, 𝑗)𝑡 . Then the diagrammatic term in (9.325) can be
written as����tr(𝐶 ( 𝑓𝔫 ◦ 𝑓𝔢 (1), 1) 𝐽 𝐶 ( 𝑓𝔪 (1), 𝑓𝔫 ◦ 𝑓𝔢 ◦ 𝑓𝔪 (1)) (9.327)

𝐽 𝐶 ( 𝑓𝔪 ◦ 𝑓𝔫 ◦ 𝑓𝔢 ◦ 𝑓𝔪 (1), 𝑓𝔫 ◦ 𝑓𝔢 ◦ 𝑓𝔪 ◦ 𝑓𝔫 ◦ 𝑓𝔢 ◦ 𝑓𝔪 (1)) 𝐽 · · ·
)

· tr
(
· · ·

)
· · · tr

(
· · ·

) ���� (9.328)

which is upper bounded in the 1-norm by

𝑇∏
𝑖=1
∥𝐶 (𝔫(2𝑖), 𝔫(2𝑖 − 1) 𝐽)∥1 ≤

𝑇∏
𝑖=1
∥𝐶 (𝔫(2𝑖), 𝔫(2𝑖 − 1))∥1 ∥𝐽∥∞
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≤
𝑇∏
𝑖=1
∥𝐶 (𝔫(2𝑖), 𝔫(2𝑖 − 1))∥1 . (9.329)

We now have the following Lemma, analogous to Lemma 63:

Lemma 66. For any 𝑖, 𝑗 ∈ [𝑇],

∥𝐶 (2𝑖 − 1, 2 𝑗)∥1 ≤
√︃

tr( �̃�𝑣𝑖 �̃�𝑣 𝑗 ) (9.330)

∥𝐶 (2𝑖, 2 𝑗)∥1 ≤
√︃

tr( �̃�𝑣𝑖 �̃� 𝐷𝑣 𝑗 ) (9.331)

∥𝐶 (2𝑖 − 1, 2 𝑗 − 1)∥1 ≤
√︃

tr( �̃�𝑣𝑖 �̃� 𝑡𝑣 𝑗 ) (9.332)

where we recall that 𝐴𝐷 := 𝐽𝐴𝑡𝐽−1 is the symplectic transpose.

Proof. The first and third inequalities follow from Lemma 63 since 𝐶 (2𝑖 − 1, 2 𝑗) =
𝐶 (2𝑖 − 1, 2 𝑗) and 𝐶 (2𝑖 − 1, 2 𝑗 − 1) = 𝐶 (2𝑖 − 1, 2 𝑗 − 1). For the second inequality,
we again use ∥𝐴∥1 = ∥𝐴 ⊗ 𝐴†∥1/21 ≤ ∥SWAP · (𝐴 ⊗ 𝐴†)∥1/21 to find the upper bound

<latexit sha1_base64="j/Rq0f4mTAMIJZo6NBDMO0H6DOM=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRahp7JbRD2WevFYwX5Au5Rsmt3GZpMlyQpl6X/w4kERr/4fb/4b03YP2vpg4PHeDDPzgoQzbVz32ylsbG5t7xR3S3v7B4dH5eOTjpapIrRNJJeqF2BNORO0bZjhtJcoiuOA024wuZ373SeqNJPiwUwT6sc4EixkBBsrdQZNFkXVYbni1twF0DrxclKBHK1h+WswkiSNqTCEY637npsYP8PKMMLprDRINU0wmeCI9i0VOKbazxbXztCFVUYolMqWMGih/p7IcKz1NA5sZ4zNWK96c/E/r5+a8MbPmEhSQwVZLgpTjoxE89fRiClKDJ9agoli9lZExlhhYmxAJRuCt/ryOunUa95VrX5/WWk08ziKcAbnUAUPrqEBd9CCNhB4hGd4hTdHOi/Ou/OxbC04+cwp/IHz+QP0EI66</latexit> <latexit sha1_base64="nqpNFtP0KxR9svc72Oi8Xlhv5Og=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRZBL2W3iHos9eKxgv2AdinZNLuNzSZLkhXK0v/gxYMiXv0/3vw3pu0etPXBwOO9GWbmBQln2rjut1NYW9/Y3Cpul3Z29/YPyodHbS1TRWiLSC5VN8CaciZoyzDDaTdRFMcBp51gfDvzO09UaSbFg5kk1I9xJFjICDZWavcbLIouBuWKW3XnQKvEy0kFcjQH5a/+UJI0psIQjrXueW5i/Awrwwin01I/1TTBZIwj2rNU4JhqP5tfO0VnVhmiUCpbwqC5+nsiw7HWkziwnTE2I73szcT/vF5qwhs/YyJJDRVksShMOTISzV5HQ6YoMXxiCSaK2VsRGWGFibEBlWwI3vLLq6Rdq3pX1dr9ZaXeyOMowgmcwjl4cA11uIMmtIDAIzzDK7w50nlx3p2PRWvByWeO4Q+czx/1lI67</latexit>!<latexit sha1_base64="tK4BalyGcCRU9kB0n5zsUZNLc0E=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4qkkR9Vj04rGi/YA2lM120y7dbMLuRCihP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LR7dRvPXFtRKwecZxwP6IDJULBKFrpwTuv9kplt+LOQJaJl5My5Kj3Sl/dfszSiCtkkhrT8dwE/YxqFEzySbGbGp5QNqID3rFU0YgbP5udOiGnVumTMNa2FJKZ+nsio5Ex4yiwnRHFoVn0puJ/XifF8NrPhEpS5IrNF4WpJBiT6d+kLzRnKMeWUKaFvZWwIdWUoU2naEPwFl9eJs1qxbusVO8vyrWbPI4CHMMJnIEHV1CDO6hDAxgM4Ble4c2Rzovz7nzMW1ecfOYI/sD5/AFaVY0x</latexit>

1/2
<latexit sha1_base64="hV9ObCPJSOo1I+qKZHZU8p22WMU=">AAAB/3icbVBNS8NAEN34WetXVPDiJVgEL5akiHosevFYwX5AE8JmO2mXbjZhd1MoaQ7+FS8eFPHq3/Dmv3Hb5qCtDwYe780wMy9IGJXKtr+NldW19Y3N0lZ5e2d3b988OGzJOBUEmiRmsegEWAKjHJqKKgadRACOAgbtYHg39dsjEJLG/FGNE/Ai3Oc0pAQrLfnm8cRNBtTPRn5GL5w8dwXmfQa+WbGr9gzWMnEKUkEFGr755fZikkbAFWFYyq5jJ8rLsFCUMMjLbiohwWSI+9DVlOMIpJfN7s+tM630rDAWuriyZurviQxHUo6jQHdGWA3kojcV//O6qQpvvIzyJFXAyXxRmDJLxdY0DKtHBRDFxppgIqi+1SIDLDBROrKyDsFZfHmZtGpV56pae7is1G+LOEroBJ2ic+Sga1RH96iBmoigCXpGr+jNeDJejHfjY966YhQzR+gPjM8fe0yWZw==</latexit>|�vi�1

i
<latexit sha1_base64="GJciD3m4wtGiVjpOULylD79jD5A=">AAAB/3icbVDLSsNAFL2pr1pfUcGNm2AR3FiSIuqy6MZlBfuAJoTJdNKOnUzCzKRQ0iz8FTcuFHHrb7jzb5w+Ftp64MLhnHu5954gYVQq2/42Ciura+sbxc3S1vbO7p65f9CUcSowaeCYxaIdIEkY5aShqGKknQiCooCRVjC4nfitIRGSxvxBjRLiRajHaUgxUlryzaOxm/Spnw397PHcyXNXIN5jxDfLdsWewlomzpyUYY66b3653RinEeEKMyRlx7ET5WVIKIoZyUtuKkmC8AD1SEdTjiIivWx6f26daqVrhbHQxZU1VX9PZCiSchQFujNCqi8XvYn4n9dJVXjtZZQnqSIczxaFKbNUbE3CsLpUEKzYSBOEBdW3WriPBMJKR1bSITiLLy+TZrXiXFaq9xfl2s08jiIcwwmcgQNXUIM7qEMDMIzhGV7hzXgyXox342PWWjDmM4fwB8bnD3zblmg=</latexit>|�vj�1

i
<latexit sha1_base64="WDA/sE5PYT7kKXefEoJNc7/3lEs=">AAAB/XicbVDLSsNAFL2pr1pf8bFzEyyCq5KIqMuiG5cV7AOaECbTSTt2Mgkzk0KNwV9x40IRt/6HO//GaZuFth64cDjnXu69J0gYlcq2v43S0vLK6lp5vbKxubW9Y+7utWScCkyaOGax6ARIEkY5aSqqGOkkgqAoYKQdDK8nfntEhKQxv1PjhHgR6nMaUoyUlnzz4NFNJPWzkZ/d57krEO8z4ptVu2ZPYS0SpyBVKNDwzS+3F+M0IlxhhqTsOnaivAwJRTEjecVNJUkQHqI+6WrKUUSkl02vz61jrfSsMBa6uLKm6u+JDEVSjqNAd0ZIDeS8NxH/87qpCi+9jPIkVYTj2aIwZZaKrUkUVo8KghUba4KwoPpWCw+QQFjpwCo6BGf+5UXSOq0557XT27Nq/aqIowyHcAQn4MAF1OEGGtAEDA/wDK/wZjwZL8a78TFrLRnFzD78gfH5A6iHlgE=</latexit>| vj

i<latexit sha1_base64="iOc4Zss/PnFVMQgmdlriSdAe4pI=">AAAB/XicbVDLSsNAFJ3UV62v+Ni5CRbBVUmKqMuiG5cV7AOaECbTm3boZBJmJoUag7/ixoUibv0Pd/6N0zYLbT1w4XDOvdx7T5AwKpVtfxulldW19Y3yZmVre2d3z9w/aMs4FQRaJGax6AZYAqMcWooqBt1EAI4CBp1gdDP1O2MQksb8Xk0S8CI84DSkBCst+ebRo5tI6mdjP6N57grMBwx8s2rX7BmsZeIUpIoKNH3zy+3HJI2AK8KwlD3HTpSXYaEoYZBX3FRCgskID6CnKccRSC+bXZ9bp1rpW2EsdHFlzdTfExmOpJxEge6MsBrKRW8q/uf1UhVeeRnlSaqAk/miMGWWiq1pFFafCiCKTTTBRFB9q0WGWGCidGAVHYKz+PIyaddrzkWtfndebVwXcZTRMTpBZ8hBl6iBblETtRBBD+gZvaI348l4Md6Nj3lryShmDtEfGJ8/pvqWAA==</latexit>| vi
i<latexit sha1_base64="TXs5MB4e11pMrn/slkITGWcPVSs=">AAAB/nicbVBNS8NAEJ34WetXVDx5WSyCp5IUUY9FLx4r2A9oQthst+3SzSbsbgolBvwrXjwo4tXf4c1/47bNQVsfDDzem2FmXphwprTjfFsrq2vrG5ulrfL2zu7evn1w2FJxKgltkpjHshNiRTkTtKmZ5rSTSIqjkNN2OLqd+u0xlYrF4kFPEupHeCBYnxGsjRTYxx7HYsAp8hLFgmwcZCzPHwO74lSdGdAycQtSgQKNwP7yejFJIyo04Viprusk2s+w1Ixwmpe9VNEEkxEe0K6hAkdU+dns/BydGaWH+rE0JTSaqb8nMhwpNYlC0xlhPVSL3lT8z+umun/tZ0wkqaaCzBf1U450jKZZoB6TlGg+MQQTycytiAyxxESbxMomBHfx5WXSqlXdy2rt/qJSvyniKMEJnMI5uHAFdbiDBjSBQAbP8Apv1pP1Yr1bH/PWFauYOYI/sD5/APPtliQ=</latexit>h vi

|
<latexit sha1_base64="u1Wf5EfAYpqclcsmIfzkgPwzpYw=">AAAB/nicbVBNS8NAEJ3Ur1q/quLJy2IRPJWkiHosevFYwX5AE8Jmu2nXbjZhd1MoseBf8eJBEa/+Dm/+G7dtDtr6YODx3gwz84KEM6Vt+9sqrKyurW8UN0tb2zu7e+X9g5aKU0lok8Q8lp0AK8qZoE3NNKedRFIcBZy2g+HN1G+PqFQsFvd6nFAvwn3BQkawNpJfPnI5Fn1OkZso5mcjP3uYTB79csWu2jOgZeLkpAI5Gn75y+3FJI2o0IRjpbqOnWgvw1Izwumk5KaKJpgMcZ92DRU4osrLZudP0KlReiiMpSmh0Uz9PZHhSKlxFJjOCOuBWvSm4n9eN9XhlZcxkaSaCjJfFKYc6RhNs0A9JinRfGwIJpKZWxEZYImJNomVTAjO4svLpFWrOhfV2t15pX6dx1GEYziBM3DgEupwCw1oAoEMnuEV3qwn68V6tz7mrQUrnzmEP7A+fwD1dJYl</latexit>h vj

|

<latexit sha1_base64="xVV+K6NfDXOd1tyjeqHbcB2g3+4=">AAACAHicbVDLSsNAFJ3UV62vqAsXbgaL4MaSFFGXRTcuK9gHNCFMprft2MkkzEwKJWbjr7hxoYhbP8Odf+P0sdDqgQuHc+7l3nvChDOlHefLKiwtr6yuFddLG5tb2zv27l5Txamk0KAxj2U7JAo4E9DQTHNoJxJIFHJohcPrid8agVQsFnd6nIAfkb5gPUaJNlJgH3iciD4H7CUDFmSjILs/dfP8IbDLTsWZAv8l7pyU0Rz1wP70ujFNIxCacqJUx3US7WdEakY55CUvVZAQOiR96BgqSATKz6YP5PjYKF3ci6UpofFU/TmRkUipcRSazojogVr0JuJ/XifVvUs/YyJJNQg6W9RLOdYxnqSBu0wC1XxsCKGSmVsxHRBJqDaZlUwI7uLLf0mzWnHPK9Xbs3Ltah5HER2iI3SCXHSBaugG1VEDUZSjJ/SCXq1H69l6s95nrQVrPrOPfsH6+AbMwJaM</latexit>h�vj�1
|

<latexit sha1_base64="Xfqt+lOgpZHMR3x/Sr9FOTZom0g=">AAACAHicbVBNS8NAEN3Ur1q/oh48eFksghdLUkQ9Fr14rGA/oClhs522SzebsLsplJiLf8WLB0W8+jO8+W/ctjlo64OBx3szzMwLYs6Udpxvq7Cyura+UdwsbW3v7O7Z+wdNFSWSQoNGPJLtgCjgTEBDM82hHUsgYcChFYxup35rDFKxSDzoSQzdkAwE6zNKtJF8+8jjRAw4YC8eMj8d+yk7d7Ps0bfLTsWZAS8TNydllKPu219eL6JJCEJTTpTquE6suymRmlEOWclLFMSEjsgAOoYKEoLqprMHMnxqlB7uR9KU0Him/p5ISajUJAxMZ0j0UC16U/E/r5Po/nU3ZSJONAg6X9RPONYRnqaBe0wC1XxiCKGSmVsxHRJJqDaZlUwI7uLLy6RZrbiXler9Rbl2k8dRRMfoBJ0hF12hGrpDddRAFGXoGb2iN+vJerHerY95a8HKZw7RH1ifP8s3los=</latexit>h�vi�1
|

<latexit sha1_base64="5KFYdF1sLPkKqmgk1JGSaRE54ps=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKewGUY9BL+IponlAsobZySQZMju7zPQKYcknePGgiFe/yJt/4yTZgyYWNBRV3XR3BbEUBl3328mtrK6tb+Q3C1vbO7t7xf2DhokSzXidRTLSrYAaLoXidRQoeSvWnIaB5M1gdD31m09cGxGpBxzH3A/pQIm+YBStdH/7iN1iyS27M5Bl4mWkBBlq3eJXpxexJOQKmaTGtD03Rj+lGgWTfFLoJIbHlI3ogLctVTTkxk9np07IiVV6pB9pWwrJTP09kdLQmHEY2M6Q4tAselPxP6+dYP/ST4WKE+SKzRf1E0kwItO/SU9ozlCOLaFMC3srYUOqKUObTsGG4C2+vEwalbJ3Xq7cnZWqV1kceTiCYzgFDy6gCjdQgzowGMAzvMKbI50X5935mLfmnGzmEP7A+fwBK+2Nuw==</latexit>

J t
<latexit sha1_base64="5KFYdF1sLPkKqmgk1JGSaRE54ps=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKewGUY9BL+IponlAsobZySQZMju7zPQKYcknePGgiFe/yJt/4yTZgyYWNBRV3XR3BbEUBl3328mtrK6tb+Q3C1vbO7t7xf2DhokSzXidRTLSrYAaLoXidRQoeSvWnIaB5M1gdD31m09cGxGpBxzH3A/pQIm+YBStdH/7iN1iyS27M5Bl4mWkBBlq3eJXpxexJOQKmaTGtD03Rj+lGgWTfFLoJIbHlI3ogLctVTTkxk9np07IiVV6pB9pWwrJTP09kdLQmHEY2M6Q4tAselPxP6+dYP/ST4WKE+SKzRf1E0kwItO/SU9ozlCOLaFMC3srYUOqKUObTsGG4C2+vEwalbJ3Xq7cnZWqV1kceTiCYzgFDy6gCjdQgzowGMAzvMKbI50X5935mLfmnGzmEP7A+fwBK+2Nuw==</latexit>

J t

which evidently equals
√︃

tr( �̃�𝑣𝑖 �̃� 𝐷𝑣 𝑗 ).

Leveraging the above Lemma, we can upper bound (9.329) by

#𝑂 (𝔫)∏
𝑚=1

©«
∏

𝑖↔ 𝑗∈𝐵𝑚
𝑖, 𝑗 opposite parity

√︃
tr( �̃�𝑣𝑖 �̃�𝑣 𝑗 )

∏
𝑘↔ℓ∈𝐵𝑚

𝑘,ℓ both odd

√︃
tr( �̃�𝑣𝑘 �̃� 𝑡𝑣ℓ )

∏
𝑝↔𝑞∈𝐵𝑚

𝑝,𝑞 both even

√︃
tr( �̃�𝑣𝑝 �̃� 𝐷𝑣𝑞 )

ª®®®¬ .
(9.333)

Defining

tr( �̃�𝑣𝑖 �̃�
𝐷 (𝑖, 𝑗)
𝑣 𝑗 ) :=


tr( �̃�𝑣𝑖 �̃�𝑣 𝑗 ) if 𝑖, 𝑗 have different parities

tr( �̃�𝑣𝑖 �̃� 𝑡𝑣 𝑗 ) if 𝑖, 𝑗 are both odd

tr( �̃�𝑣𝑖 �̃� 𝐷𝑣 𝑗 ) if 𝑖, 𝑗 are both even

, (9.334)

we can write (9.333) as a product over√︂
tr( �̃�𝑣𝑎𝑚,1 �̃�

𝐷 (𝑎𝑚,1,𝑎𝑚,2)
𝑣𝑎𝑚,2

) · · ·
√︂

tr( �̃�𝑣𝑎𝑚,𝑝−1
�̃�
𝐷 (𝑎𝑚,𝑝−1,𝑎𝑚,𝑝)
𝑣𝑎𝑚,𝑝

) (9.335)
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tr( �̃�𝑣𝑎𝑚,𝑝 �̃�

𝐷 (𝑎𝑚,𝑝 ,𝑎𝑚,𝑝−1)
𝑣𝑎𝑚,1

) (9.336)

over 𝑚 = 1, . . . , #Sp(𝔫). Leveraging Lemmas 64 and 65 in the same exact was as in
the orthogonal case, we obtain∑︁

ℓ ∈ leaf(T )

∑︁
𝔫≠𝔢,𝔪

|𝑝S𝜎,𝜏 (ℓ) | ≤ 𝑑𝑇
∑︁
𝔪

|WgSp(𝜎−1
𝔪 , 𝑑/2) |

∑︁
𝔫≠𝔢

𝑑
−
⌊
𝐿 (𝔫)

2

⌋
. (9.337)

The first sum on the right-hand side is bounded by 𝑑𝑇
∑

𝔪 |WgSp(𝜎−1
𝔪 , 𝑑/2) | ≤

1 + O
(
𝑇2

𝑑

)
. Considering the second sum on the right-hand side, let 𝑁Sp(𝑇, ℓ) be

the number of permutations in 𝑆𝑇 where the length of the longest 𝑀2𝑇 -cycle is 2ℓ.
Since 𝑁Sp(𝑇, ℓ) = 𝑁𝑂 (𝑇, ℓ), the second sum can be written as

𝑇∑︁
ℓ=2

𝑁Sp(𝑇, ℓ) 𝑑−⌊ ℓ2⌋ ≤ 𝑇
3

𝑑
+ 𝑇

2

𝑑
+ O

(
𝑇5

𝑑2

)
. (9.338)

Now if 𝑇 ≤ 𝑜(𝑑1/3), then this quantity is 𝑜(1) for some absolute constant 𝑐 > 0.
Altogether, we find

1
2

∑︁
ℓ ∈ leaf(T )

∑︁
𝔫≠𝔢,𝔪

|𝑝S𝔪,𝔫 (ℓ) | ≤ 𝑜(1) . (9.339)

This concludes the proof.

Corollaries involving state distinction

Here we remark on some immediate corollaries of Theorems 57, 58, and 59. We
begin with a corollary essentially identical to one from (Aharonov, J. S. Cotler, and
Qi, 2021):

Corollary 20. Any learning algorithm without quantum memory requires

𝑇 ≥ Ω

(
2𝑛/3

)
, (9.340)

to correctly distinguish between the maximally mixed state 1/2𝑛 on 𝑛 qubits and a
fixed, Haar-random state |Ψ⟩⟨Ψ| on 𝑛 qubits with probability at least 2/3.

Proof. Suppose by contradiction that a learning algorithm could distinguish between
1/𝑑 and a fixed, Haar-random |Ψ⟩⟨Ψ| with probability at least 2/3 using 𝑇 <

O(𝑑1/3). Then we could use this learning algorithm to solve the unitary distinction
problem by taking the channel C and applying it to |0⟩⊗𝑛; if C = D then we would
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get the maximally mixed state, and if C = U we would get a fixed Haar random
state. Moreover we could distinguish the two cases in using𝑇 < O(𝑑1/3) by running
the alleged state distinction algorithm. But this is impossible since it contradicts
Theorem 57, so such a state distinction algorithm can not exist.

While the above corollary is weaker than Theorem 52 for which 𝑇 ≥ Ω(𝑑1/2), it is
emblematic of a general strategy for using learning bounds on channel distinction
problems to derive corresponding learning bounds on state distinction problems.
Further leveraging this strategy, we can prove the following two additional corollar-
ies:

Corollary 21. Any learning algorithm without quantum memory requires

𝑇 ≥ Ω

(
2𝑛/3

)
, (9.341)

to correctly distinguish between the maximally mixed state 1/2𝑛 on 𝑛 qubits and a
fixed, real Haar random state |Ψ⟩⟨Ψ| on 𝑛 qubits with probability at least 2/3.

To prove this corollary, we observe that |Ψ⟩⟨Ψ| = 𝑂 ( |0⟩⟨0|)⊗𝑛𝑂𝑡 for a fixed,
Haar-random orthogonal matrix; alternatively, it is also the case that |Ψ⟩⟨Ψ| =
𝑆 ( |0⟩⟨0|)⊗𝑛 𝑆𝐷 for a fixed, Haar-random symplectic matrix. Leveraging the sym-
plectic version (in particular since Theorem 58 has a stronger bound than The-
orem 59), the corollary follows by the same arguments as the proof of Corol-
lary 20 in combination with Theorem 59. Corollary 21 also follow from the results
in (Aharonov, J. S. Cotler, and Qi, 2021), although the corollary was not stated
there.

Upper bound without quantum memory

The upper bound without quantum memory can be obtained by reducing the problem
to purity testing and utilizing Theorem 53. This results in the following corollary.

Corollary 22. There is a learning algorithm without quantum memory which takes
𝑇 = 𝑂 (2𝑛/2) accesses to the unknown quantum channel C to distinguish between
whether C is a fixed Haar-random unitary channel or a completely depolarizing
channel D.

Proof. We perform 𝑇 repeated experiments given by the following. Input the all-
zero state |0𝑛⟩ to the unknown quantum channel C to obtain the output state 𝜌out.
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When C is a scrambling unitary channel, 𝜌out is a fixed pure state. When C is
a completely depolarizing channel, 𝜌out is the completely mixed state. We then
measure the output state 𝜌out in the computational basis to obtain the classical data.
The collection of classical data given by the computational basis measurements
can be used to classify if 𝜌out is a fixed pure state or the completely mixed state.
Theorem 53 tells us that 𝑇 = 𝑂 (2𝑛/2) is sufficient to distinguish between the two
cases. Hence, we can distinguish between whether C is a scrambling unitary channel
or a completely depolarizing channel using 𝑇 = 𝑂 (2𝑛/2).

Upper bound with quantum memory

The exponential lower bound for algorithms without quantum memory is in stark
contrast to those with quantum memory. The following result from (Aharonov,
J. S. Cotler, and Qi, 2021) states that a linear number of channel applications 𝑇 and
quantum gates suffices if we use a learning algorithm with quantum memory.

Theorem 60 (Fixed unitary task is easy with an 𝑛 qubit quantum memory (Aharonov,
J. S. Cotler, and Qi, 2021)). There exists a learning algorithm with 𝑛 qubits of
quantum memory which, with constant probability, can distinguish a completely
depolarizing channel D from a fixed, Haar-randomU (either unitary, orthogonal,
or symplectic) using only 𝑇 = O(1) applications of the channel. Moreover, the
algorithm is gate efficient and has O(𝑛) gate complexity.

The protocol is simply a swap test; the basic idea is that for a pure state |𝜙⟩ on
𝑛 qubits we have tr(D[|𝜙⟩⟨𝜙 |]2) = 1

𝑑
whereas tr(U[|𝜙⟩⟨𝜙 |]2) = 1. The ability

to obtain quantum interference between D[|𝜙⟩⟨𝜙|] and a copy of itself D[|𝜙⟩⟨𝜙|]
(or U[|𝜙⟩⟨𝜙|] and a copy of itself U[|𝜙⟩⟨𝜙 |]) is enabled by the 𝑛 qubit quantum
memory which can store a single copy of the state.

Symmetry distinction problem
Lower bound

Using Theorem 57, 58, and 59, we can show the hardness of distinguishing be-
tween unitary channel, orthogonal matrix channel, and symplectic matrix channel
for learning algorithms without quantum memory. This multiple-hypothesis distin-
guishing task is equivalent to uncovering what symmetry is encoded in a quantum
evolution. Orthogonal matrix channel and symplectic matrix channel are quantum
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evolutions with different type of time-reversal symmetry, while unitary channel is a
general evolution without additional symmetry.

Theorem 61. Any learning algorithm without quantum memory requires

𝑇 ≥ Ω

(
22𝑛/7

)
, (9.342)

to correctly distinguish between a fixed, Haar-random unitary channel C𝑈 , orthogo-
nal matrix channel C𝑂 , or symplectic matrix channel C𝑆 on 𝑛 qubits with probability
at least 2/3.

Proof. Given a tree representation T of the learning algorithm without quantum
memory. The probability that the algorithm correctly identifies the class of channels
is equal to

1
3

∑︁
C∈{C𝑈 ,C𝑂 ,C𝑆}

∑︁
ℓ∈leaf (T )

𝑝C (ℓ) I[Υ(ℓ) = C], (9.343)

where Υ(ℓ) is an element in the set {C𝑈 , C𝑂 , C𝑆} equal to the output when the
algorithm arrives at the leaf ℓ. It is not hard to see that the success probability is
upper bounded by

1
3

∑︁
ℓ∈leaf (T )

max
(
𝑝C

𝑈 (ℓ), 𝑝C𝑂 (ℓ), 𝑝C𝑆 (ℓ)
)

(9.344)

≤ 1
3

∑︁
ℓ∈leaf (T )

𝑝D (ℓ) + max
C∈{C𝑈 ,C𝑂 ,C𝑆}

(��𝑝C (ℓ) − 𝑝D (ℓ)��) (9.345)

≤ 1
3
+ 1

3

∑︁
C∈{C𝑈 ,C𝑂 ,C𝑆}

©«
∑︁

ℓ∈leaf (T )

��𝑝C (ℓ) − 𝑝D (ℓ)��ª®¬ . (9.346)

From the proof of Theorem 57, 58, and 59, we have when 𝑇 = 𝑜(22𝑛/7), we have∑︁
ℓ∈leaf (T )

��𝑝C (ℓ) − 𝑝D (ℓ)�� = 𝑜(1), ∀C ∈ {C𝑈 , C𝑂 , C𝑆}. (9.347)

Therefore, when 𝑇 = 𝑜(22𝑛/7), the success probability will be upper bounded by
1/3 + 𝑜(1). Hence to achieve a success probability of at least 2/3, we must have
𝑇 = Ω(22𝑛/7).

Upper bound

We present an upper bound for algorithms without quantum memory. There is still
a gap between the lower and upper bounds, which we leave as an open question.
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Theorem 62. There is an algorithm without quantum memory that uses

𝑇 = O (2𝑛) , (9.348)

to correctly distinguish between a fixed, Haar-random unitary channel C𝑈 , orthogo-
nal matrix channel C𝑂 , or symplectic matrix channel C𝑆 on 𝑛 qubits with probability
at least 2/3.

We will perform three sets of experiments. Each set of experiments is a quantum
state tomography based on random Clifford measurements (Richard Kueng, Rauhut,
and Terstiege, 2017; Guţă et al., 2020b) on the output state C(|𝜓𝑖⟩⟨𝜓𝑖 |) for an input
pure state |𝜓𝑖⟩, for 𝑖 = 1, 2, 3. We will take |𝜓1⟩ = |0𝑛⟩, |𝜓2⟩ = 1√

2
( |0⟩+ |1⟩) ⊗ |0𝑛−1⟩,

and |𝜓3⟩ = 1√
2
( |0⟩ − |1⟩) ⊗ |0𝑛−1⟩. Note that for each 𝑖, C(|𝜓𝑖⟩⟨𝜓𝑖 |) is a pure state,

which we will denote by 𝜙𝑖 ∈ C2𝑛 .

We will use the following guarantee:

Lemma 67 (State tomography, see (Richard Kueng, Rauhut, and Terstiege, 2017;
Guţă et al., 2020b)). There is an algorithm which for any 𝜖 > 0, given copies of an
unknown pure state |𝜙⟩ with density matrix 𝜌 ∈ H2𝑛×2𝑛 , makes O(2𝑛/𝜖2) random
Clifford measurements and outputs the density matrix �̂� of some pure state for which
∥𝜌 − �̂�∥tr ≤ 𝜖 with probability at least 14/15.

Corollary 23. Suppose 𝜌𝑖 = |𝜙𝑖⟩⟨𝜙𝑖 | is the output of applying the algorithm in
Lemma 67 to 𝜌 = |𝜙𝑖⟩⟨𝜙𝑖 |. Then provided the algorithm succeeds, we have that for
any matrix 𝑀 ∈ C2𝑛×2𝑛 and any 𝑖, 𝑗 ∈ {1, 2, 3}������𝜙𝑡𝑖𝑀𝜙 𝑗 ��� − ��𝜙𝑡𝑖𝑀𝜙����� ≤ 2𝜖 ∥𝑀 ∥∞ . (9.349)

Proof. Because ∥𝜌𝑖 − 𝜌𝑖∥𝐹 ≤ ∥𝜌𝑖 − 𝜌𝑖∥tr ≤ 𝜖 , we have that
𝜙𝑖 − 𝜁 · 𝜙𝑖 ≤ 𝜖 for

some choice of phase 𝜁𝑖 ∈ C. As |𝜁𝑖𝜁 𝑗 · 𝜙𝑡𝑖𝑀𝜙 𝑗 | = |𝜙𝑡𝑖𝑀𝜙 𝑗 |, we may assume without
loss of generality that 𝜁𝑖, 𝜁 𝑗 = 1. Now note that

|𝜙𝑡𝑖𝑀𝜙 𝑗 | ≤ |𝜙𝑡𝑖𝑀𝜙 𝑗 | + 𝜖 ∥𝑀 ∥∞ ≤ |𝜙𝑡𝑖𝑀𝜙 𝑗 | + 2𝜖 ∥𝑀 ∥∞ (9.350)

by triangle inequality, from which the claim follows.

Henceforth, let 𝜙𝑖 denote the pure state obtained by applying state tomography to
copies of 𝜙𝑖 with 𝜖 = 1/5. We collect the following basic facts about 𝜙𝑖, which will
allow us to distinguish among the three types of channels.
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Lemma 68 (See e.g. (G. W. Anderson, Guionnet, and Zeitouni, 2009), Corollary
4.4.28). For 𝐺 = 𝑂 (𝑑),𝑈 (𝑑), let 𝑓 : 𝐺 → R be 𝐿-Lipschitz with respect to the
Frobenius norm. There is an absolute constant 𝑐 > 0 such that for 𝑥 sampled from
the Haar measure on 𝐺, Pr | 𝑓 (𝑥) − E 𝑓 (𝑥) | > 𝑐 · 𝐿

√︁
log(1/𝛿)/𝑑 ≤ 𝛿.

Lemma 69. Condition on the outcome of Lemma 67. If C is a Haar-random
symplectic matrix channel, then |𝜙𝑡2𝐽𝜙3 | > 1/2. If C is a Haar-random unitary or
orthogonal channel, then |𝜙𝑡2𝐽𝜙3 | < 1/2 with probability at least 14/15 over the
randomness of the channel.

Proof. By definition of the symplectic matrix channel, 𝜙𝑡2𝐽𝜙3 = 𝜓𝑡2𝑆
𝑡𝐽𝑆𝜓3 =

𝜓𝑡2𝐽𝜓3 = −1. The first part of the lemma follows by Corollary 23 and the fact
that ∥𝐽∥∞ = 1. For the second part, note that the joint distribution on (𝜙2, 𝜙3)
is invariant under the transformation (𝜙2,−𝜙3) when C is a Haar-random unitary
(resp. orthogonal) transformation, because conditioned on 𝜙2, 𝜙3 is a Haar-random
in the subspace in C2𝑛 (resp. R2𝑛) orthogonal to 𝜙2. So in either case,

E ∗𝜙𝑡2𝐽𝜙3 =
1
2
E ∗𝜙𝑡2𝐽𝜙3 + E ∗𝜙𝑡2𝐽 (−𝜙3) = 0. (9.351)

Note that the function 𝐹 : 𝑂 ↦→ 𝜓𝑡2𝑂
𝑡𝐽𝑂𝜓3 is 2-Lipschitz:

|𝐹 (𝑂1)−𝐹 (𝑂2) | ≤
��𝜓𝑡2(𝑂1 −𝑂2)𝑡𝐽𝑂1𝜓3

��+��𝜓𝑡2𝑂𝑡2𝐽 (𝑂1 −𝑂2)𝜓3
�� ≤ 2 ∥𝑂1 −𝑂2∥𝐹 .

(9.352)
So by Lemma 68, with probability at least 9/10 over the randomness of the channel,
we have that |𝜙𝑡2𝐽𝜙3 | ≤ O(1/2𝑛/2). The second part of the lemma then follows from
Corollary 23.

Lemma 70. Condition on the outcome of Lemma 67. If C is a Haar-random
orthogonal matrix channel, then |𝜙𝑡1𝜙1 | = 1. If C is a Haar-random unitary matrix
channel, then |𝜙𝑡1𝜙1 | < 1/2 with probability at least 14/15 over the randomness of
the channel.

Proof. Because 𝜙1 is a unit vector with only real entries, 𝜙𝑡1𝜙1 = 1, so the first part
of the claim follows by Corollary 23. For the second part, if the channel is Haar-
random unitary, then 𝜙1 is a Haar-random complex unit vector, so E 𝜙𝑡1𝜙1 = 0. The
function 𝐹 : 𝑈 ↦→ 𝜓𝑡1𝑈

𝑡𝑈𝜓1 is 2-Lipschitz by a calculation completely analogous
to (9.352). So by Lemma 68, with probability at least 9/10 over the randomness of
the channel, we have that |𝜙𝑡1𝜙1 | ≤ O(1/2𝑛/2). The second part of the lemma then
follows from Corollary 23.
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We are now ready to prove Theorem 62.

Proof of Theorem 62. The algorithm will be to apply the state tomography algorithm
of Lemma 67 to the outputs of {|𝜓𝑖⟩} under the channel, yielding pure states {|𝜙𝑖⟩}.
By a union bound, with probability 2/3 we have that the state tomography algorithm
succeeds for all 𝑖 = 1, 2, 3, and Lemmas 69 and 70 hold. We form the quantity
|𝜙𝑡2𝐽𝜙3 | and check whether it exceeds 1/2. If so, we conclude by Lemma 69 that
C is symplectic. Otherwise, we form the quantity |𝜙𝑡1𝜙1 | and check whether it
exceeds 1/2. If so, we conclude by Lemma 70 that C is orthogonal, otherwise it is
unitary.

9.10 Predicting observables with bounded quantum memory
Here we will substantively generalize our results for predicting highly-incompatible
observables, given in Section 9.5. We show an exponential lower bound on the
number of experiments when the size of the additional quantum memory is not large
enough.

Background and statement of results
Let us first recapitulate the setting of our previous results so as to draw a contrast
with our generalization. We have so far considered an experimentalist who is given
sequential access to copies of an unknown state 𝜌. In each measurement round, the
experimentalist receives a copy of 𝜌 and can measure with a POVM. The residual
post-measurement state is then discarded, and only the classical data of the POVM
outcome is kept. This classical data can be used to inform the choice of POVM
measurement employed in subsequent rounds, i.e. the protocol can be adaptive. This
kind of protocol is emblematic of most contemporary and historical experiments in
physics.

Note that the information maintained and processed from round to round in the
protocols described above is solely classical. With the advent of quantum comput-
ers and more flexible quantum memory architectures, a new possibility emerges.
Suppose that the unknown state 𝜌 in question is an 𝑛-qubit state. Moreover, suppose
we have 𝑛 + 𝑘 qubit registers under our control. Then we can use those registers
however we please, including performing arbitrary quantum information process-
ing. Our only constraint is that each time we receive a new copy of 𝜌, we must
necessarily use 𝑛 qubits of our registers to hold it. It is thus appropriate to say that
we have 𝑘 qubits of quantum memory, since even when we receive a new state 𝜌
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we can still maintain 𝑘 qubits worth of quantum data. We further allow ourselves
to maintain and process an arbitrary amount of classical data, thought of as being
stored in a classical device external to our quantum system.

A new question immediately presents itself: are there experimental tasks which are
exponentially hard with only 𝑘 qubits of quantum memory, but easy with 𝑘′ > 𝑘

qubits of quantum memory? In (Sitan Chen, J. Cotler, et al., 2021b) this question
was answered in the affirmative, but only in the sense of query complexity. That is,
it was shown that there is an experimental task that requires Ω(2(𝑛−𝑘)/3) copies of
𝜌 if there are only 𝑘 qubits of quantum memory; however, the gate complexity of
achieving the task is always exponential regardless of the size of 𝑘 . Let us unpack
this result. Note that if 𝑘 = 𝑛, the bound Ω(2(𝑛−𝑘)/3) becomes trivial; indeed, it
can be shown that one only requires a modest number of copies of 𝜌 to achieve the
specified task if 𝑛 = 𝑘 . But even in this case, the total number of quantum operations
required is exponentially large in 𝑛. Nonetheless, the result is an interesting one: it
means that unless 𝑘 goes as 𝑛− 𝑐 log(𝑛) (i.e. unless 𝑘 is logarithmically close to 𝑛),
the task is exponentially hard. When 𝑘 ∼ 𝑛− 𝑐 log(𝑛), the task is only polynomially
hard in the sense of query complexity.

While the aforementioned result is theoretically interesting, it does not correspond to
a quantum memory advantage that could be realized by a quantum device on account
of the exponential gate complexity required to achieve the task for a quantum memory
of any size. Here we ameliorate this issue and present the first example of a quantum
memory advantage in the sense of both query and gate complexity, and as such,
it can be realized on a quantum device. Moreover, we have realized this quantum
advantage in our experiments on the Sycamore quantum computer.

Our experimental task has the form of a partially-revealed many-versus-one distin-
guishing task, closely related to the one in Section 9.5. A statement of the new task
is as follows:

Task 4 (Expectation value with bounded quantum memory). There is an unknown
state 𝜌 which is either

1. A maximally mixed state 𝐼/2𝑛 on 𝑛 qubits, or

2. The state (𝐼 + 𝑃)/2𝑛 where 𝑃 ∈ {𝐼, 𝑋,𝑌 , 𝑍}⊗𝑛 \ {𝐼⊗𝑛} is a random but fixed
Pauli string.
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State of the
classical memory State of the bounded 

quantum memory

Algorithm with
only classical memory 

Algorithm with
bounded quantum memory

State of the
classical memory 

Figure 9.14: Illustration of learning tree representation for algorithms with bounded
quantum memory. We consider algorithms with unlimited classical memory and
a bounded quantum memory consisting of 𝑘 qubits. To each node in the tree
(corresponding to the state of the classical memory), we associate the 𝑘-qubit state
of the bounded quantum memory.

The choice of whether case 1 or case 2 is instantiated is made with equal probability
at the outset, and is not revealed. The experimentalist is given access to 𝑇 copies
of the unknown state 𝜌 for a 𝑇 decided by the experimentalist, and after this an
observable 𝑂 is revealed. The task of the experimentalist is to determine the value
of | tr(𝑂𝜌) | using the final state of the 𝑛+ 𝑘 qubit registers, along with any classical
information that has been stored or processed along the way. In case 1 the operator
𝑂 is chosen uniformly at random from the non-identity Pauli strings; in case 2 the
𝑂 is chosen to be the Pauli operator 𝑃 if the state 𝜌 is (𝐼 + 𝑃)/2𝑛.

Note that if 𝑘 = 𝑛 so that the total number of registers is 2𝑛, then the task can be
readily solved using the algorithm given in Section 9.5. This algorithm is both query
and gate efficient: we only require a constant number of copies of 𝜌 (i.e. the number
of copies is independent of 𝑛) and 𝑂 (𝑛) gate complexity.

What is difficult is to show that if 𝑘 < 𝑛, then the number of copies of 𝜌 we require
to determine |tr(𝑂𝜌) | as per the task above is Θ(2(𝑛−𝑘)/3). We will establish this in
the subsections which follow below.

Review of learning tree framework for bounded quantum memories
Here we provide an exposition of the learning tree framework for bounded quantum
memories in (Sitan Chen, J. Cotler, et al., 2021b). As explained above, suppose we
have 𝑛 + 𝑘 qubit registers, where we designate 𝑘 as the quantum memory. Suppose
for the moment that 𝑘 < 𝑛. At each round in the protocol, we receive an 𝑛-qubit state
𝜌, which we must hold on the 𝑛 non-memory registers. (Note that we cannot receive
more than one copy of 𝜌, since we do not have enough registers to hold additional
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copies on account of 𝑘 < 𝑛.) Then upon receiving and holding 𝜌, the state of all of
our registers can be written as 𝜌 ⊗ 𝚺, where 𝚺 is the density matrix of the 𝑘-qubit
quantum memory. The most general operation we can perform on the joint system is
a quantum process, followed by a POVM measurement; we can then apply another
quantum process followed by another POVM measurement, and so on. However, we
can rewrite an alternating sequence of quantum processes and POVM measurements
as a single POVM measurement, which we denote by {𝐹𝑖}𝑁−1

𝑖=1 . Writing 𝐹𝑖 = 𝑀†𝑖 𝑀𝑖,
suppose our measurement outputs the 𝑖th POVM element. Defining

𝐴
𝜌

𝑀𝑖
(𝚺) := tr1,...,𝑛

(
𝑀𝑖 (𝜌 ⊗ 𝚺)𝑀†

𝑖

)
, (9.353)

the reduced density matrix of our quantum memory is

𝐴
𝜌

𝑀𝑖
(𝚺)

tr(𝐴𝜌
𝑀𝑖
(𝚺))

(9.354)

with probability tr(𝐴𝜌
𝑀𝑖
(𝚺)). In the next round, we can leverage our measurement

output 𝑖 to adaptively inform our choice of POVM on

𝜌 ⊗
𝐴
𝜌

𝑀𝑖
(𝚺)

tr(𝐴𝜌
𝑀𝑖
(𝚺))

. (9.355)

Indeed, we can use the information of all of our previous POVM outcomes to inform
the choice of our next POVM. An illustration is given in Supp. Fig. 9.14.

The above description is ripe for being cast in the learning tree framework, which
we presently articulate. The definition below is the same as Definition 6.1 of (Sitan
Chen, J. Cotler, et al., 2021b), albeit with slightly different notation.

Definition 6.1 of (Sitan Chen, J. Cotler, et al., 2021b) (Tree representation of
learning states with bounded quantum memory). Let 𝜌 be a fixed, unknown quantum
density matrix on 𝑛 qubits. Suppose we have access to 𝑛 + 𝑘 qubit registers. A
learning algorithm with a quantum memory of size 𝑘 can be expressed as a rooted
treeT of depth𝑇 , where each node encodes the current state of the quantum memory
in addition to the transcript of measurement outcomes the algorithm has seen so far.
In particular, the tree satisfies the following properties:

1. Each note 𝑢 is associated with a 𝑘-qubit unnormalized density matrix 𝚺𝜌 (𝑢)
corresponding to the current state of the quantum memory.

2. For the root 𝑟 of the tree, 𝚺𝜌 (𝑟) is an initial state denoted by 𝚺0.
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3. At each note 𝑢, we apply a POVM measurement {𝐹𝑢𝑠 }𝑠 on 𝜌 ⊗𝚺𝜌 (𝑢) to obtain
a classical outcome 𝑠. Each child node 𝑣 of 𝑢 is connected through the edge
𝑒𝑢,𝑠.

4. If 𝑣 is the child note of 𝑢 connected through the edge 𝑒𝑢,𝑠, then letting 𝐹𝑢𝑠 =

𝑀
𝑢 †
𝑠 𝑀𝑢

𝑠 we have
𝚺𝜌 (𝑣) := 𝐴𝑀𝑢

𝑠
(𝚺𝜌 (𝑢)) . (9.356)

5. Note that for any node 𝑢 we have that 𝑝𝜌 (𝑢) := tr(𝚺𝜌 (𝑢)) is the probability
that the transcript of measurement outcomes observed by the learning algo-
rithm is described by 𝑢. Moreover, 𝚺𝜌 (𝑢)/𝑝𝜌 (𝑢) is the (normalized) state of
the 𝑘-qubit memory at the node 𝑢.

Let us unpack the ingredients of this definition. The initial state of our quantum
memory is 𝚺0, and we apply some initial choice of POVM {𝐹𝑟𝑠 }𝑠 (where 𝑟 denotes
the ‘root’ of the tree). If we measure the 𝑠th POVM outcome, then the quantum
memory is in the unnormalized state 𝐴𝑀𝑟

𝑠
(𝚺0) with probability tr(𝐴𝑀𝑟

𝑠
(𝚺0)). Each

outcome 𝑠 of the POVM corresponds to a child note of the root; thus at the next level
of the tree, each node is labeled by the POVM outcome 𝑠 and the corresponding
state of the quantum memory 𝐴𝑀𝑟

𝑠
(𝚺0) := 𝚺𝜌 (𝑠). For the next measurement, we can

leverage our knowledge of the previous POVM to craft a new POVM to be applied
to the present state of the quantum memory. This type of procedure is repeated for
many rounds.

To be explicit, suppose that the present state of the quantum memory is Σ𝜌 (𝑢), where
the node 𝜌 reflects a sequence or transcript of POVM outcomes which brought us
to the present state by an adaptive protocol. We can use this transcript of previous
outcomes to choose a new POVM {𝐹𝑢𝑠 }𝑠 that we use to measure 𝜌 ⊗ 𝚺𝑢 (𝜌), which
will result in the output 𝐴𝑀𝑢

𝑠
(𝚺𝜌 (𝑢)) with probability tr(𝐴𝑀𝑢

𝑠
(𝚺𝜌 (𝑢))). The nodes

𝑣 in the next layer encode the data of the previous measurement outcomes and the
latest outcome (i.e., determined by the location of 𝑣 in the tree), as well as the new
(conveniently unnormalized) state of the quantum memory 𝐴𝑀𝑢

𝑠
(𝚺𝜌 (𝑢)) := 𝚺𝜌 (𝑣),

where here 𝑣 is connected to 𝑢 by an edge 𝑒𝑢,𝑠 (designating that 𝑣 is the consequence
of the 𝑠th measurement outcome starting from the configuration in 𝑢).

Hardness result for small quantum memories
We will prove the following result using the learning tree framework:
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Theorem 63 (Shadow tomography with partial reveal using a bounded quantum
memory). Consider Task 4 for learning an expectation value with a bounded
quantum memory. Any learning algorithm with 𝑛 + 𝑘 qubit registers needs 𝑇 ≥
Ω(2(𝑛−𝑘)/3) copies of 𝜌 to determine | tr(𝑂𝜌) | with probability at least 2/3.

On account of (3.27), it suffices to upper bound E𝑃
[
TV(𝑝𝐼/2𝑛 , 𝑝 (𝐼+𝑃)/2𝑛)

]
. To do

so, we will leverage a key technical result coming from Theorem 1.4 of (Sitan Chen,
J. Cotler, et al., 2021b). But in order to state this technical result, we first need to
introduce the notion of good Paulis and bad Paulis. While details are provided in
Definition 6.4 of (Sitan Chen, J. Cotler, et al., 2021b), here we describe the essential
intuition and key properties.

In the learning protocol, we are trying to distinguish between the maximally mixed
state 𝐼/2𝑛 and states of the form (𝐼 + 𝑃)/2𝑛. The intuition is that if the size of our
quantum memory 𝑘 is small relative to 𝑛, then it is hard to tell the two kinds of
states apart. If this was the case, then any round of the protocol should only reveal
a very small amount of distinguishing information. In particular, suppose we are at
node 𝑢 in the learning tree, and so the state of the quantum memory at that node
is either 𝚺𝐼/2𝑛 (𝑢) or 𝚺(𝐼+𝑃)/2𝑛 (𝑢) for some Pauli string 𝑃. If we consider a POVM
{𝐹𝑢𝑠 }𝑠 where 𝐹𝑢𝑠 = 𝑀

𝑢 †
𝑠 𝑀𝑢

𝑠 , then if we measure some fixed outcome 𝑠 the new state
of the quantum memory will be either 𝐴𝐼/2

𝑛

𝑀𝑢
𝑠
(𝚺𝐼/2𝑛 (𝑢)) or 𝐴(𝐼+𝑃)/2

𝑛

𝑀𝑢
𝑠

(𝚺(𝐼+𝑃)/2𝑛 (𝑢)).
We would like for

𝐴𝐼/2𝑛
𝑀𝑢
𝑠
(𝚺𝐼/2𝑛 (𝑢)) − 𝐴(𝐼+𝑃)/2

𝑛

𝑀𝑢
𝑠

(𝚺(𝐼+𝑃)/2𝑛 (𝑢))


1
to be exponentially

small in 𝑛−𝑘 , in particular relative to some distinguishing measure between𝚺𝐼/2𝑛 (𝑢)
and 𝚺(𝐼+𝑃)/2𝑛 (𝑢). This would mean that starting from node 𝑢, the next POVM mea-
surement will not significantly change our ability to distinguish the two possibilities
for the resulting memory registers. While we cannot guarantee that such a property
holds for all states (𝐼 + 𝑃)/2𝑛, such a property will hold for some 𝑃’s. Given a node
𝑢, the set of good Paulis 𝑃[𝑢] is the set of all Pauli operators satisfying a particular
version of the above property for all edges from the root of the tree to 𝑢 (see Defini-
tion 6.4 of (Sitan Chen, J. Cotler, et al., 2021b) for details). The residual Paulis are
called the set of bad Paulis. In other words, the good Paulis 𝑃[𝑢] designate the states
(𝐼 + 𝑃)/2𝑛 which are hard to distinguish from 𝐼/2𝑛 for a particular instantiation of
the learning tree, specifically for the sequence of POVMs that get us from the root
of said learning tree to the node 𝑢. By contrast, the bad Paulis reveal too much
information.

We have the following useful Lemma about bad Paulis, which we will soon leverage
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in the proof of Theorem 63:

Lemma 71 (Fact 6.5 of (Sitan Chen, J. Cotler, et al., 2021b)). For any edge 𝑒𝑢,𝑠,
there are at most 2−(𝑛−𝑘)/3 · (4𝑛 − 1) bad Paulis 𝑃. In particular, along any root-to-
leaf path of the learning tree, there are at most 𝑇 · 2−(𝑛−𝑘)/3 · (4𝑛 − 1) Paulis which
are bad for some edge along the path.

Equipped with our discussion of good and bad Paulis, we can now state the following
technical result from (Sitan Chen, J. Cotler, et al., 2021b):

Lemma 72 (Following from the proof of Theorem 1.4 of (Sitan Chen, J. Cotler,
et al., 2021b)). We have the inequality

1
4𝑛 − 1

∑︁
ℓ∈ leaf(T )

∑︁
𝑃∈𝑃[ℓ]

𝚺𝐼/2𝑛 (ℓ) − 𝚺(𝐼+𝑃)/2𝑛 (ℓ)1 ≤ 𝑇 · 2
−(𝑛−𝑘)/3 ·

√︂
22𝑛

22𝑛 − 1
.

(9.357)

We are finally ready to prove Theorem 63.

Proof of Theorem 63. Let us upper bound E𝑃
[
TV(𝑝𝐼/2𝑛 , 𝑝 (𝐼+𝑃)/2𝑛)

]
. We have the

inequalities

E𝑃
[
TV(𝑝𝐼/2𝑛 , 𝑝 (𝐼+𝑃)/2𝑛)

]
(9.358)

≤ E𝑃

[∑︁
ℓ

max
(
0, 𝑝𝐼/2𝑛 (ℓ) − 𝑝 (𝐼+𝑃)/2𝑛 (ℓ)

) ]
(9.359)

≤ E𝑃

[∑︁
ℓ

min
(
𝑝𝐼/2𝑛 (ℓ), |𝑝𝐼/2𝑛 (ℓ) − 𝑝 (𝐼+𝑃)/2𝑛 (ℓ) |

) ]
(9.360)

≤ E𝑃

[∑︁
ℓ

min
(
𝑝𝐼/2𝑛 (ℓ),

𝚺𝐼/2𝑛 (ℓ) − 𝚺(𝐼+𝑃)/2𝑛 (ℓ)1

)]
(9.361)

≤
∑︁
ℓ

Pr[𝑃 ∉ 𝑃[ℓ]] 𝑝𝐼/2𝑛 (ℓ) +
1

4𝑛 − 1

∑︁
𝑃∈𝑃[ℓ]

𝚺𝐼/2𝑛 (ℓ) − 𝚺(𝐼+𝑃)/2𝑛 (ℓ)1 .

(9.362)

In the first line, we have used that TV(𝑝, 𝑞) = 1
2
∑
𝑖 |𝑝𝑖 − 𝑞𝑖 | =

∑
𝑖 : 𝑝𝑖≥𝑞𝑖 (𝑝𝑖 − 𝑞𝑖) =∑

𝑖 max(0, 𝑝𝑖 − 𝑞𝑖). To go from (9.359) to (9.360) we used max(0, 𝑎 − 𝑏) ≤
min(𝑎, |𝑎 − 𝑏 |). In going from (9.360) to (9.361) we leveraged that |𝑝𝐼/2𝑛 (ℓ) −
𝑝 (𝐼+𝑃)/2𝑛 (ℓ) | = |tr(𝚺𝐼/2𝑛 (ℓ) − 𝚺(𝐼+𝑃)/2𝑛 (ℓ)) | ≤ ∥𝚺𝐼/2𝑛 (ℓ) − 𝚺(𝐼+𝑃)/2𝑛 (ℓ)∥1. Finally,
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to go from (9.361) to (9.362) we used
∑
𝑖∈𝑆 min(𝑎𝑖, 𝑏𝑖) ≤

∑
𝑖∈𝑆\𝑅 𝑎𝑖 +

∑
𝑖∈𝑅 𝑏𝑖 for

any 𝑅 ⊆ 𝑆.

By Lemma 71 and the fact that
∑
ℓ 𝑝𝐼/2𝑛 (ℓ) = 1, we have the simple bound∑︁

ℓ

Pr[𝑃 ∉ 𝑃[ℓ]] 𝑝𝐼/2𝑛 (ℓ) ≤ 𝑇 · 2−(𝑛−𝑘)/3 (9.363)

and Lemma 72 gives us

1
4𝑛 − 1

∑︁
𝑃∈𝑃[ℓ]

𝚺𝐼/2𝑛 (ℓ) − 𝚺(𝐼+𝑃)/2𝑛 (ℓ)1 ≤ 𝑇 · 2
−(𝑛−𝑘)/3 ·

√︂
22𝑛

22𝑛 − 1
. (9.364)

Then in total, we have

E𝑃
[
TV(𝑝𝐼/2𝑛 , 𝑝 (𝐼+𝑃)/2𝑛)

]
≤ 𝑇 · 2−(𝑛−𝑘)/3

(
1 +

√︂
22𝑛

22𝑛 − 1

)
. (9.365)

If the left-hand side is Ω(1), then we must thus have 𝑇 ≥ Ω(2(𝑛−𝑘)/3), as claimed.
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