Citation
Dorobantu, Victor David (2023) Geometry and Dynamical Systems in Machine Learning and Control. Dissertation (Ph.D.), California Institute of Technology. doi:10.7907/x271-r088. https://resolver.caltech.edu/CaltechTHESIS:06012023-194820518
Abstract
For many problems of interest in machine learning and control, we have access to rich information about underlying geometry and dynamics; we can leverage this information to build robust and performant solutions in new algorithms, optimizations, and designs. In this thesis we study four problem settings to stress this central assumption. First, we study conformal generative modeling, using computational geometry techniques to simplify and register complex 2D surfaces and enabling the use of a variety of flow-based generative models as plug-and-play subroutines. Second, we study data-driven robust optimization problems in control, modeling the precise impact of dynamics uncertainty in several control frameworks using convex geometry. Third, we study compactly-restrictable policy optimization, constraining the available states and actions in reinforcement learning and optimal control problems to be consistent with the inherent dynamics of the systems to be controlled. Finally, we study nonlinear model predictive control on Lie groups as applied to a 3D hopping robot platform, developing a control methodology compatible with nontrivial state space geometry and hybrid system dynamics.
Item Type: | Thesis (Dissertation (Ph.D.)) | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Subject Keywords: | Geometry; Dynamical Systems; Machine Learning; Control; Generative Modeling; Continuous Normalizing Flows; Moser Flows; Conformal Geometry; Convex Optimization; Robust Optimization; Control-Affine Systems; Convex Geometry; Optimal Control; Reinforcement Learning; Value Iteration; Lie Groups; Robotics; Model Predictive Control; Hybrid Systems; Lie Group Integrators; Sampled-Data Control; Stability; Safety | |||||||||||||||||||||
Degree Grantor: | California Institute of Technology | |||||||||||||||||||||
Division: | Engineering and Applied Science | |||||||||||||||||||||
Major Option: | Computing and Mathematical Sciences | |||||||||||||||||||||
Thesis Availability: | Public (worldwide access) | |||||||||||||||||||||
Research Advisor(s): |
| |||||||||||||||||||||
Thesis Committee: |
| |||||||||||||||||||||
Defense Date: | 25 May 2023 | |||||||||||||||||||||
Funders: |
| |||||||||||||||||||||
Record Number: | CaltechTHESIS:06012023-194820518 | |||||||||||||||||||||
Persistent URL: | https://resolver.caltech.edu/CaltechTHESIS:06012023-194820518 | |||||||||||||||||||||
DOI: | 10.7907/x271-r088 | |||||||||||||||||||||
Related URLs: |
| |||||||||||||||||||||
ORCID: |
| |||||||||||||||||||||
Default Usage Policy: | No commercial reproduction, distribution, display or performance rights in this work are provided. | |||||||||||||||||||||
ID Code: | 15260 | |||||||||||||||||||||
Collection: | CaltechTHESIS | |||||||||||||||||||||
Deposited By: | Victor Dorobantu | |||||||||||||||||||||
Deposited On: | 02 Jun 2023 15:47 | |||||||||||||||||||||
Last Modified: | 09 Jun 2023 18:53 |
Thesis Files
PDF (Complete Thesis)
- Final Version
See Usage Policy. 18MB |
Repository Staff Only: item control page