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ABSTRACT

For many problems of interest in machine learning and control, we have access to
rich information about underlying geometry and dynamics; we can leverage this
information to build robust and performant solutions in new algorithms, optimiza-
tions, and designs. In this thesis we study four problem settings to stress this central
assumption. First, we study conformal generative modeling, using computational
geometry techniques to simplify and register complex 2D surfaces and enabling
the use of a variety of flow-based generative models as plug-and-play subroutines.
Second, we study data-driven robust optimization problems in control, modeling the
precise impact of dynamics uncertainty in several control frameworks using convex
geometry. Third, we study compactly-restrictable policy optimization, constraining
the available states and actions in reinforcement learning and optimal control prob-
lems to be consistent with the inherent dynamics of the systems to be controlled.
Finally, we study nonlinear model predictive control on Lie groups as applied to
a 3D hopping robot platform, developing a control methodology compatible with
nontrivial state space geometry and hybrid system dynamics.
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C h a p t e r 1

INTRODUCTION

In this thesis, we study several engineering problems in generative modeling, uncer-
tainty modeling, optimal control, and reinforcement learning, and robotics. Math-
ematically, we study these problems from the lenses of geometry and dynamical
systems. Our central assumption is the following:

For many problems of interest in machine learning and control, we have
access to rich information about underlying geometry and dynamics; we
can leverage this information to build robust and performant solutions
in new algorithms, optimizations, and designs.

What observations support this assumption? For problems with physical domains,
solutions that do not respect the problem geometry are often nonphysical. We can, for
example, streamline the training of a robotic manipulation pipeline by ensuring that
our contact models are constrained to object surfaces by construction. Building off
of a strong geometric foundation can also help us build rich priors and regularizers to
guide learning and inverse problem solving, reason about symmetries, invariances,
and equivariances to build flexible models with low complexity and augment data
when we only have a partial picture, and generalize to unseen problem domains via
deformations or object registration.

Moreover, many real world problems are governed by parsimonious dynamical
systems, with simple building blocks generating complex evolution. Throughout
physics, robotics, and the control of physical systems, accurate dynamics models
are a critical piece of many theories and designs. Complicated timeseries model-
ing requires a deep understanding of dynamics. Starting from partially accurate
models that encode the correct evolutionary structure, we can develop precise and
useful uncertainty models for improved prediction and control. Reasoning about
reachability, invariance, and infinitesimal changes can help us better explore com-
plex behaviors in reinforcement learning. Moreover, at the time of this writing,
many state-of-the-art techniques in generative modeling employ dynamics models,
from differentiating through ODE solvers to evolve probability distributions (Chen,
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Rubanova, et al., 2018), to building reversible SDEs compatible with Markov Chain
Monte Carlo simulation (Song, Sohl-Dickstein, et al., 2020).

There are also intimate links between geometry and dynamical systems that can be
easily leveraged in many problem settings. Symmetries and connections are natu-
rally described in a geometric language, and correspond to powerful computational
tools that can be used for simulation, scientific discovery, and statistics. Harmonic
analysis can be employed for both data processing and dynamics modeling. Diffu-
sion and mass conservation are key elements of flexible probabilistic modeling and
manifold learning, especially for high-dimensional problems with low-dimensional
structures.

We study the connections between geometry and dynamics, and illustrate their uses
in four problem settings. In Chapter 2, we discuss conformal generative modeling,
the subject of (Dorobantu, Borcherds, and Yue, 2023). Here we use conformal
geometry to enable generative modeling on complicated 2D surfaces. Specifically,
we make use of discrete conformal equivalence to conformally uniformize data
domains in manner that transforms probability densities in understandable ways
and allows us to aggregate data from multiple sources through surface registration.
The generative models we deploy are flow-based models, transporting probability
densities via dynamical systems with trainable parameters.

In Chapter 3, we discuss data-driven robust control, the subject of (Taylor, Dorobantu,
Dean, et al., 2021). Here we model uncertainties in dynamical systems with convex
geometry, and study its interplay with robust optimization and convex outer approx-
imation. Specifically, we consider all unmodeled uncertainty that is consistent with
data, observed from trajectories of the system in action. We build such uncertainty
sets in a way that is compatible with convex optimization. Rather than collect data to
mitigate the entire gap between a nominal and a true model, we consider the precise
effect of uncertainty on key metrics for stability and safety of dynamical systems
and robustly optimize only over these effects. We also explore the need for convex
relaxations as the forms of our robust constraints get more complex.

In Chapter 4, we discuss compactly-restrictable policy optimization problems, the
subject of (Dorobantu, Azizzadenesheli, and Yue, 2023). Here, we describe suffi-
cient conditions for the well-posedness of value iteration in a context appropriate
for the control of robotic systems. We provide an overview of value iteration (a
central tool in classical reinforcement learning and optimal control) and the diffi-
culties involved in transfering the method from the tabular setting to the continuous
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state space and action space setting. We show how nonlinear control techniques to
achieve forward invariance of safe sets can be used to constrain optimal Bellman
operators to produce global maximizers. We illustrate the connection between safe
set selection and the inherent dynamics of the systems to be controlled.

In Chapter 5, we discuss nonlinear model predictive control with Lie group inte-
grators and its application to a 3D hopping robot, the subject of (Csomay-Shanklin,
Dorobantu, and Ames, 2022). In this work, we formulate a control framework based
on sequential quadratic programming, requiring a careful geometric treatment of
trajectories during optimization. Specifically, we incorporate the Lie group struc-
ture of unit quaternions (representing orientation) into our linearizations. A further
difficulty comes in the hybrid system nature of the robot, switching between classes
of dynamics at discrete impacts and necessitating further geometric considerations.
This methodology is demonstrated in simulation as well as a hardware platform.

Lastly, we detail our recent approaches to sampled data control in Appendix A. This
is the subject of (Taylor, Dorobantu, Yue, et al., 2021; Taylor, Dorobantu, Cosner,
et al., 2022), and is used in several appropriate contexts throughout the thesis.

1.1 Common Notation
Here, we specify some notation common to all works in this thesis. N denotes the
natural numbers (not including 0), Z denotes the integers, Z+ denotes the nonneg-
ative integers (including 0), R denotes the reals, R+ denotes the nonnegative reals
(including zero), R++ denotes the positive reals (not including zero), C denotes the
complex numbers, and H denotes the quaternions. For dimension 𝑑, R𝑑 denotes
𝑑-dimensional Euclidean space, and R𝑑+ denotes the corresponding nonnegative or-
thant (consisting of vectors with nonnegative entries). S𝑑 denotes the set of 𝑑 × 𝑑
symmetric matrices; S𝑑+ denotes the corresponding set of positive semi-definite ma-
trices (including those with zero eigenvalues) and S𝑑++ denotes the set of positive
definite matrices (excluding those with zero eigenvalues). Both R𝑑+ and S𝑑+ are self-
dual convex cones. 𝑆𝑑 denotes the unit 𝑑-sphere, canonically represented as the set
of unit vectors in R𝑑+1.

We will always use | · | to denote only absolute values of real numbers or magnitudes
of complex numbers or quaternions; we will use ∥ · ∥ to denote norms of vectors
(including functions). When ∥ · ∥ is not decorated, it can represent any kind of norm;
we use ∥ · ∥2 explicitly when the norm we use must be the 2-norm in Euclidean
space.
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We reserve the notation ⊂ for proper subsets only; when set equality is possible, we
always use ⊆. For a function 𝑓 : 𝑋 → 𝑌 , we call 𝑋 the domain, 𝑌 the codomain,
and the image 𝑓 (𝑋) ⊆ 𝑌 the range. When we write 𝑓 : 𝑋 → 𝑌 , we mean 𝑓 is
defined for all 𝑥 ∈ 𝑋; if we need to exclude inputs from our definition, we explicitly
make note of this with a modified domain.

A continuous function 𝛼 : [0, 𝑎) → R+, with 𝑎 > 0 is class K (𝛼 ∈ K) if 𝛼(0) = 0
and 𝛼 is strictly monotonically increasing. If 𝑎 = ∞ and lim𝑟→∞ 𝛼(𝑟) = ∞, then 𝛼
is class K∞ (𝛼 ∈ K∞). A continuous function 𝛼 : (−𝑏, 𝑎) → R, with 𝑎, 𝑏 > 0, is
extended class K (𝛼 ∈ K𝑒) if 𝛼(0) = 0 and 𝛼 is strictly monotonically increasing.
If 𝑎, 𝑏 = ∞, lim𝑟→∞ 𝛼(𝑟) = ∞, and lim𝑟→−∞ 𝛼(𝑟) = −∞, then 𝛼 is extended class
K∞ (𝛼 ∈ K∞,𝑒). A continuous function 𝛽 : [0, 𝑎) × R+ → R+ with 𝑎 > 0 is class
KL (𝛽 ∈ KL) if for each 𝑟 ∈ [0, 𝑎), the map 𝑠 ↦→ 𝛽(𝑟, 𝑠) is strictly monotonically
decreasing with 0 limit and for each 𝑠 ∈ R+, the map 𝑟 ↦→ 𝛽(𝑟, 𝑠) is class K. If
𝑎 = ∞ and for each 𝑠 ∈ R+, the map 𝑟 ↦→ 𝛽(𝑟, 𝑠) is class K∞, then 𝛽 is class
KL∞ (𝛽 ∈ KL∞). Comparison functions in K (K∞) and K𝑒 (K∞,𝑒) are invertible
and composable (the composition of class K functions is also class K). Class KL
functions often arise from differential inequalities. For example, if 𝛼 ∈ K and
𝛾 : R+ → R+ is a trajectory with 𝛾(0) in the domain of 𝛼 and:

¤𝛾(𝑡) ≤ −𝛼(𝛾(𝑡)), (1.1)

for all times 𝑡 ∈ R+, then there is some 𝛽 ∈ KL such that:

𝛾(𝑡) ≤ 𝛽(𝛾(0), 𝑡), (1.2)

for all times 𝑡 ∈ R+.
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C h a p t e r 2

CONFORMAL GENERATIVE MODELING

2.1 Introduction
The study of learning expressive generative models has seen increasing interest in
recent years, owing to the emergence of approaches such as continuous normalizing
flows (Rezende and Mohamed, 2015; Dinh, Sohl-Dickstein, and Bengio, 2016;
Papamakarios et al., 2021) and diffusion models (Sohl-Dickstein et al., 2015; Song,
Sohl-Dickstein, et al., 2020). Such models have the ability to both efficiently draw
samples from the learned distribution, as well as compute exact probabilities on the
input space, making them useful for many applications in science and engineering
from experiment design (Song, Yu, et al., 2022) to inverse problems (Gao et al.,
2021; Song, Shen, et al., 2021).

A key challenge in many domains is that the distribution to be estimated lies on a
complicated manifold, rather than in Euclidean space. Examples include modeling
molecular activity (Chen, Tu, and Lu, 2012; Shapovalov and Dunbrack Jr., 2011),

Figure 2.1: Overview of our approach. From left to right, original data samples are
gathered from multiple meshes and mapped to unit sphere via discrete conformal
transformations (red). The spheres are aligned with a reference mesh using rotations
maximizing the correlation between log conformal factors, geometric signatures of
the original meshes. Data is then aggregated on one sphere (green). A generative
model transforms the data distribution on the sphere to a noise distribution on the
sphere in the forward direction (blue). The resulting noise distribution is mapped to
the reference mesh, again via a discrete conformal transformation. Here, the noise
distribution on the reference mesh is uniform. Meshes are decimated to more clearly
distinguish distinct meshes; for full meshes see Figure 2.6.
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robotic motion (Feiten, Lang, and Hirche, 2013), high energy physics (Brehmer and
Cranmer, 2020), and brain activity (Gerber et al., 2010). Moreover, many domains
use discrete approximations of the true manifold (e.g., triangle meshes).

Our goal is to develop generative modeling approaches for complicated 2D surfaces
in the case where the training data is represented using discrete mesh approximations.
Existing work on Riemannian generative modeling typically operate on canonical
manifolds such as spheres, tori, hyperbolic spaces, and matrix Lie groups (De
Bortoli et al., 2022; Mathieu and Nickel, 2020; Lou et al., 2020; Katsman et
al., 2021) or else require uncontrolled approximations via learned implicit surface
representations (Rozen et al., 2021). The challenge of learning generative models
directly on complicated meshes remains open.

We propose conformal generative modeling, a framework for generative modeling
on Riemannian manifolds approximated by discrete triangle meshes. Our approach
is based on establishing a conformal transformation between the source mesh and
a target mesh that approximates a simple manifold such as a sphere (Springborn,
Schröder, and Pinkall, 2008). Such a transformation amounts to a diffeomorphism
between the two manifolds, subject to accounting for approximation error from
the mesh discretization. Afterwards, one can use any generative model for simple
manifolds as a plug-and-play subroutine, which we demonstrate empirically on eight
complicated manifolds (which is significantly more than has been demonstrated by
other Riemannian generative modeling approaches).

A further benefit of conformal generative modeling is that it can learn simultane-
ously using data from multiple distinct meshes of the same underlying manifold.
This benefit comes from the ability to establish alignments between the conformal
transformations of the meshes on the unit sphere (e.g., Baden, Crane, and Kazhdan
(2018) and Wang et al. (2006)), as shown in Figure 2.1. We demonstrate this ability
empirically, using data from multiple distinct meshes to train a single generative
model capable of generating data on unseen meshes.

2.2 Preliminaries & Problem Statement
Our approach uses topological equivalences to simple manifolds (e.g., closed 2D
Riemannian manifolds with no “holes” are topological spheres). We first describe
notation to describe such concepts and then the problem statement.
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2.2.1 Notation, Definitions, and Conventions
Basics. We denote the unit two-sphere by 𝑆2. For manifold M, we denote its
tangent space at any 𝑝 ∈ M by 𝑇𝑝M. For manifoldsM and N and a smooth map
𝑓 :M → N , we denote the differential of 𝑓 at 𝑝 ∈ M by 𝑑𝑓𝑝 : 𝑇𝑝M → 𝑇 𝑓 (𝑝)N ;
this is a linear map between tangent spaces.

Triangle Meshes & Vertex Embeddings. A (Euclidean) triangle mesh is described
by a triple T = (V,E, F) and a vertex embedding f : V → R𝑑 , where V is the set of
vertices, E is a set of ordered vertex pairs comprising edges, F is a set of ordered
vertex triples comprising faces, and f𝑖 ∈ R𝑑 denotes the position in space of vertex
𝑖 ∈ V. As a simplicial complex, for each face in F, each pair of vertices must belong
to the edge set E, potentially with the vertex order reversed. We will exclusively
consider manifold triangle meshes; in this case, each edge belongs to exactly two
faces, with the exception of boundary edges (if they exist), which each belong to
exactly one face. Such a triangle mesh is equipped with a discrete metric (the
discrete analogue of a Riemannian metric) ℓ : E→ R++:

ℓ𝑖 𝑗 = ∥f𝑖 − f 𝑗 ∥2. (2.1)

This discrete metric must satisfy triangle inequality:

ℓ𝑖 𝑗 + ℓ 𝑗 𝑘 ≤ ℓ𝑘𝑖, ℓ 𝑗 𝑘 + ℓ𝑘𝑖 ≤ ℓ𝑖 𝑗 , ℓ𝑘𝑖 + ℓ𝑖 𝑗 ≤ ℓ 𝑗 𝑘 , (2.2)

for each face (𝑖, 𝑗 , 𝑘) ∈ F.

Piecewise Linear Surfaces. Often we will need to consider the piecewise linear
surface generated from a vertex embedding by placing triangle vertices at the vertex
positions of each face. We will typically denote such a surface as M; we will assume
available training data belongs to such surfaces.

Topological Equivalences. The mesh T is a topological sphere if it has no boundary
and has an Euler characteristic |F| − |E| + |V| = 2 (i.e, has no “holes”). This implies
only that T has the connectivity of a sphere (topological information), though not
necessarily the geometry of one. If T is a topological sphere and f𝑖 ∈ 𝑆2 for each
vertex 𝑖 ∈ V, we will also consider spherical triangle meshes, which partition the
sphere into spherical triangles.

A Riemannian manifold is a topological sphere if it is homeomorphic to a sphere;
that is, if it admits a continuous bĳection to the sphere with a continuous inverse.
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2.2.2 Problem Statement
Consider a 2D Riemannian manifoldM that is a topological sphere. Our goal is to
estimate a probability density function 𝜌 :M → R+ using training samples gener-
ated i.i.d. from some underlying distribution onM. We are generally interested in
complicated manifolds (see Figures 2.1 and 2.5 for examples). Moreover, we assume
that the training samples are represented on triangulated mesh approximations of
M.

Concretely, suppose we have access to 𝑛 triangle meshes T(1) , . . . , T(𝑛) that ap-
proximateM, with respective vertex embeddings f(1) , . . . , f(𝑛) and piecewise linear
surfaces M(1) , . . . ,M(𝑛) . We assume the vertex embeddings place the vertices on
M. We also have access to 𝑛 datasets, D (1) ⊂ M(1) , . . . ,D (𝑛) ⊂ M(𝑛) , with each
D (𝑖) comprising samples drawn i.i.d. from the underlying distribution on M but
represented spatially on M(1) , . . . ,M(𝑛) . Figure 2.1 (Left/Red) gives a depiction of
the training data collected on two distinct meshes of the Stanford Bunny surface.

If we train a model 𝜌𝜃 : 𝑆2 → R+ on the sphere via likelihood maximization (with
parameters 𝜃), then our learning objective is:

max
𝜃

𝑛∑︁
𝑙=1

∑︁
𝑥∈�̃� (𝑙)

(
log 𝜌𝜃 (𝑥) − logΔ(𝑙) (𝑥)

)
, (2.3)

where Δ(𝑙) encodes the differential change of area from the sphere to M(𝑙) . We will
further comment on this objective in Section 2.3.2.

2.3 Conformal Generative Modeling
Our conformal generative modeling framework is predicated on the idea of identify-
ing an invertible transformation from each source mesh to the unit sphere.1 Given
such a transformation, training samples from each mesh are effectively transformed
to form a single pooled set of (weighted) training samples on the unit sphere. After-
wards, one can use any existing Riemannian generative modeling approach estimate
a probability density function on the sphere (Lou et al., 2020; Mathieu and Nickel,
2020; Rozen et al., 2021; De Bortoli et al., 2022). One can then invert the transfor-
mation to produce outputs on any of the meshes. Figure 2.1 presents a high-level
depiction of our framework.

1One could in principle compute transformations to other simple manifolds with higher Euler
numbers, such as tori. However, certain algorithmic steps in the framework become more challenging,
such as aligning the different meshes.
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We first summarize the key steps, and then develop the necessary technical tools on
conformal geometry, spherical parametrizations, and Möbius registration (Sections
2.3.1 & 2.3.2) to describe the full technical details of the approach (Algorithm 1).

Conformal Transformations & Conformal Factors. The specific type of transfor-
mations we will use are discrete conformal transformations (Springborn, Schröder,
and Pinkall, 2008). Informally, conformal transformations are maximally angle-
preserving2 maps between two meshes (e.g., the source manifold and the sphere).
In other words, for any two edges that share a vertex in common, the angle between
those two edges are preserved as much as possible. A direct consequence is that
the shape of each face on the mesh is also approximately preserved in the transfor-
mation. Importantly, however, conformal transformations may distort differential
area. In doing so, a conformal transformation rescales edge lengths via a conformal
factor at each vertex.

Aligning Multiple Meshes. In order to pool training data from multiple meshes,
it is necessary to align their transformed meshes on the sphere, which amounts to
finding a rotation of each mesh (Section 2.3.1.3). This step is skipped in the special
case where we learn with only one mesh.

Creating Training Samples on the Sphere. In order to generate proper training
examples on the sphere, two additional steps are needed. First, the conformal
transformation has stretched or shrunk various parts of the source mesh, and so one
must re-weight training samples in order to transport the original measure to the
sphere. Intuitively, data points in stretched portions should receive higher weight,
and those in shrunk portions should receive lower weight.

The second step is to transform the linear triangle surfaces into spherical triangle
surfaces. Figure 2.2 depicts this step, where the middle is a piecewise linear mesh
that is circumscribed by the unit sphere (all the edges lie inside the sphere), and the
right is a conversion of each triangle surface to a spherical one. It is straightforward
to compose this transformation with the conformal transformation. In Section
2.3.1.2, we describe spherical parameterization, and in Section 2.3.2 we derive the
additional differentiable change in area to compute an additional weighting factor
for the training samples when transforming to a spherical mesh.

2Complete angle preservation overly restricts the class of admissible transformations, yielding
only rigid isometries. See Crane (2020) for further discussion.
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Original Mesh Conformally Equivalent
Sphere-Inscribed Mesh

Spherical Triangle
Mesh (Partition)

Figure 2.2: Correspondence between piecewise linear surfaces and unit sphere, with
the original mesh on the left, the mesh after spherical parametrization in the center
(shown inscribed within the unit sphere), and the associated partition of the sphere
into spherical triangles on the right.

2.3.1 Background on Conformal Geometry
2.3.1.1 Conformal Equivalence

Conformal maps locally preserve angles and orientations. LetM and M̃ be Rie-
mannian manifolds with corresponding Riemannian metrics 𝑔 and �̃�, respectively.
A smooth local embedding 𝑓 : M → M̃ is conformal if it preserves orientations
and there exists a 𝑢 :M → R satisfying:

�̃� 𝑓 (𝑝) (𝑑𝑓𝑝 (𝑣), 𝑑𝑓𝑝 (𝑤)) = 𝑒2𝑢(𝑝) · 𝑔𝑝 (𝑣, 𝑤), (2.4)

for all points 𝑝 ∈ M and tangent vectors 𝑣, 𝑤 ∈ 𝑇𝑝M. The function 𝑢 is called the
log conformal factor. Intuitively, we can equivalently push forward 𝑣 and 𝑤 via the
differential 𝑑𝑓𝑝 and compute their inner product in the tangent space at 𝑓 (𝑝), or we
can compute the inner product of 𝑣 and 𝑤 in the tangent space at 𝑝 and scale the
product by 𝑒2𝑢(𝑝) .

Analogously, consider a Euclidean triangle mesh T = (V,E, F) with two embeddings
f and f̃ (e.g., one for the source manifold and one for the sphere), corresponding
to discrete metrics ℓ and ℓ̃, respectively. The metrics are (discretely) conformally
equivalent (Springborn, Schröder, and Pinkall, 2008) if there is a function 𝑢 : V→ R
satisfying:

ℓ̃𝑖 𝑗 = 𝑒
(𝑢𝑖+𝑢 𝑗 )/2 · ℓ𝑖 𝑗 , (2.5)

for all edges (𝑖, 𝑗) ∈ E. As in the continuous case, the function 𝑢 is also called
the log conformal factor. Intuitively, 𝑒2𝑢𝑖 ∈ R++ captures how differential area
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changes (multiplicatively) as the vertex 𝑖 ∈ V is sent from f𝑖 to f̃𝑖. Two important
properties of discrete conformal equivalence are transitivity and invariance under
Möbius transformations. First, suppose ℓ1, ℓ2, and ℓ3 are discrete metrics on the same
triangle mesh. If ℓ1 and ℓ2 are discretely conformally equivalent with log conformal
factor 𝑢1 and ℓ2 and ℓ3 are discretely conformally equivalent with log conformal
factor 𝑢2, then ℓ1 and ℓ3 are discretely conformally equivalent with log conformal
factor 𝑢1 + 𝑢2. Second, if two vertex embeddings corresponding to the same mesh
are related via a Möbius transformation (which includes Euclidean transformations,
sphere inversions, and stereographic projections), then the corresponding discrete
metrics are discretely conformally equivalent (Springborn, Schröder, and Pinkall,
2008).

2.3.1.2 Spherical Parametrizations

Consider a triangle mesh T = (V,E, F) that approximates a sphere, with vertex
embedding f and discrete metric ℓ. Typically, such a mesh is circumscribed by the
sphere, meaning the vertices lie on the sphere and the edges lie within. Our goal
here is to transform each linear triangle surface in T into a spherical triangle (Figure
2.3). We use the following procedure (Springborn, Schröder, and Pinkall, 2008;
Bobenko, Sechelmann, and Springborn, 2016), which returns a new embedding f̃ of
T that maps the vertices to the sphere 𝑆2 and corresponds to a discrete metric that is
discretely conformally equivalent to ℓ:

1. Select an arbitrary vertex 𝑖∗ ∈ V to be removed.

2. Apply a change of discrete metric, making each neighbor of 𝑖∗ equally distant
from 𝑖∗ (this metric is discretely conformally equivalent to ℓ).

3. Remove 𝑖∗ from V, and all incident edges from E and incident faces from F
(yielding a topological disk).

4. Compute a flat discretely conformally equivalent metric via convex optimiza-
tion which leaves the distances between boundary vertices unchanged.

5. Embed the vertices in the plane R2 with edge lengths determined by the new
flat metric.

6. Stereographically project the vertices onto the unit sphere 𝑆2 (through the
north pole), maintaining discrete conformal equivalence of metrics.
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7. Reinsert 𝑖∗ at the north pole, along with removed edges and faces.

8. Apply Möbius transformations that map the sphere to itself (Lorentz transfor-
mations) to move the center of the vertex positions to the sphere center, again
maintaining discrete equivalence of metrics.

To compute the flat metric, permitting a planar vertex embedding, we minimize
the convex energy in Equation 7 of (Springborn, Schröder, and Pinkall, 2008), a
function of the corresponding log conformal factor. To describe this energy, first
note that from log conformal factors 𝑢 : V → R, we can compute new lengths
ℓ̃ : E→ R. For face (𝑖, 𝑗 , 𝑘) ∈ F, let �̃�𝑖

𝑗 𝑘
, �̃� 𝑗

𝑘𝑖
, and �̃�𝑘

𝑖 𝑗
denote the interior angles at

vertices 𝑖, 𝑗 , and 𝑘 , respectively, which can be computed from ℓ̃𝑖 𝑗 , ℓ̃ 𝑗 𝑘 , and ℓ̃𝑘𝑖 using
the law of cosines. Let Θ̂ : V → R denote the desired sums of the interior angles
at each vertex (2𝜋 for interior vertices and 𝜋 for boundary vertices). The energy is
then:

𝐸 (𝑢) =
∑︁

(𝑖, 𝑗 ,𝑘)∈𝐹

(
�̃�𝑖𝑗 𝑘 log ℓ̃ 𝑗 𝑘 + �̃� 𝑗𝑘𝑖 log ℓ𝑘𝑖 + �̃�𝑘𝑖 𝑗 log ℓ̃𝑖 𝑗 −

𝜋

2
(𝑢𝑖 + 𝑢 𝑗 + 𝑢𝑘 )

−
∫ �̃�𝑖

𝑗𝑘

0
log |2 sin 𝑡 | d𝑡 −

∫ �̃�
𝑗

𝑘𝑖

0
log |2 sin 𝑡 | d𝑡 −

∫ �̃�𝑘
𝑖 𝑗

0
log |2 sin 𝑡 | d𝑡

)
, (2.6)

where the integral results from applying Milnor’s Lobachevsky function to the
interior angles. Though this energy is complicated to evaluate, we can still minimize
the energy with second-order optimization (Newton’s method), where the gradient
of the energy simply measures the defect of the sum of angles around each vertex
from 2𝜋 (or 𝜋 for boundary vertices) and the Hessian is the (cotangent) Laplacian,
computed from the transformed angles. When the gradient is 0, the sum of the
angles around each interior vertex is exactly 2𝜋, which is the required curvature of
a flat surface. The boundary edge lengths are unchanged by imposing 0 boundary
conditions during optimization.

The domain over which the convex energy is optimized includes log conformal
factors corresponding to discrete metrics that violate the triangle inequality, meaning
it is possible to find a solution which cannot be used to embed vertices in the
plane. (Springborn, Schröder, and Pinkall, 2008) propose flipping edges when such
violations are detected, and many follow-up works have investigated this problem
further, see (Gillespie, Springborn, and Crane, 2021) for a complete discussion and
solution. For the meshes in our experiments, we did not encounter such problems.
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Figure 2.3: Corrsepondence between an inscribed Euclidean triangle and its asso-
ciated spherical triangle. Points on the sphere are in blue, projected points (onto
the inscribed triangles) are in orange, and the inscribed triangle normal vector is in
green.

After computing new vertex positions on the sphere, Möbius transformations moving
the center of the vertex positions to the center of the unit sphere can be computed
using either (Bobenko, Sechelmann, and Springborn, 2016) or (Baden, Crane, and
Kazhdan, 2018); we used the latter, which adds weights to the vertex positions based
on corresponding triangle areas from the original mesh.

We denote the resulting vertex positions by f̃. Denote the discrete metric correspond-
ing to f̃ by ℓ̃. As a byproduct of this procedure, we also obtain the log conformal
factor 𝑢 which establishes discrete conformal equivalence between ℓ and ℓ̃. We refer
to f̃ as a spherical parametrization of T.

Through spherical parametrization, we establish correspondences between three
surfaces: a piecewise linear surface described by f, a piecewise linear surface
inscribed within the unit sphere and described by f̃, and the unit sphere itself. These
correspondences are illustrated in Figure 2.2. We move between the piecewise
linear surfaces via barycentric coordinates within each face (this transformation is
also piecewise linear). To move from the surface inscribed within the sphere to
the sphere itself, we simply normalize points to have unit norm. To move in the
opposite direction (from the sphere to the surface inscribed within the sphere), we
compute the intersection of the ray from the origin in the direction of a query point
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and the inscribed surface. Specifically, if 𝑥 ∈ 𝑆2 is a query point located in the
spherical triangle characterized by (𝑖, 𝑗 , 𝑘) ∈ F, then the intersection 𝛼𝑥 ∈ R3 (for
some scalar 𝛼 ∈ [0, 1]) with the inscribed surface satisfies:

(( f̃ 𝑗 − f̃𝑖) × ( f̃𝑘 − f̃𝑖))⊤(𝛼𝑥 − f̃𝑖) = 0, (2.7)

where the cross product ( f̃ 𝑗 − f̃𝑖) × ( f̃𝑘 − f̃𝑖) is perpendicular to the inscribed Euclidean
triangle characterized by (𝑖, 𝑗 , 𝑘). Rearranging terms, we have:

𝛼 =
(( f̃ 𝑗 − f̃𝑖) × ( f̃𝑘 − f̃𝑖))⊤ f̃𝑖
(( f̃ 𝑗 − f̃𝑖) × ( f̃𝑘 − f̃𝑖))⊤𝑥

=
( f̃ 𝑗 × f̃𝑘 )⊤ f̃𝑖

(( f̃ 𝑗 − f̃𝑖) × ( f̃𝑘 − f̃𝑖))⊤𝑥
. (2.8)

This latter correspondence is illustrated in Figure 2.3.

With these correspondences established, we denote the two piecewise linear surfaces
as M ⊂ R𝑑 and Minscr ⊂ R3, respectively. We also generate an interpolation of the
log conformal factor 𝑢 as a function on the sphere, �̄� : 𝑆2 → R. To compute the
interpolated value �̄�(𝑥) at a query point 𝑥 ∈ 𝑆2, we first project 𝑥 onto Minscr using
Equation (2.8); we then interpolate the values of 𝑢 at the vertices of the intersected
triangle using the corresponding barycentric coordinates as interpolation weights.

2.3.1.3 Möbius Registration

In order to completely relate two meshes of the same manifold (e.g., to pool their
training data), we must align their representations. With the result of Section 2.3.1.2,
two spherical parametrizations of the same mesh will differ only by a rotation (Baden,
Crane, and Kazhdan, 2018). The set of rotations is substantially easier to work with
than the set of Lorentz transformations. This rotation can be found via harmonic
analysis.

For two complex-valued functions on the sphere 𝑓 , 𝑔 : 𝑆2 → C, we can define a
correlation function 𝐶 : 𝑆𝑂 (3) → C on the rotation group 𝑆𝑂 (3) as:

𝐶 (𝑅) =
∫
𝑆2
𝑓 (𝑥)𝑔(𝑅⊤𝑥) d𝑥, (2.9)

for all rotation matrices 𝑅 ∈ 𝑆𝑂 (3). If 𝑓 and 𝑔 are real-valued, then so is 𝐶, and
we can seek its global maximizer. The spherical harmonic transform (Kostelec and
Rockmore, 2008) yields coefficients such that:

𝑓 (𝑥) =
∞∑︁
𝑙=0

𝑙∑︁
𝑚=−𝑙

𝑓𝑙𝑚𝑌
𝑚
𝑙 (𝑥), 𝑔(𝑥) =

∞∑︁
𝑙=0

ℓ∑︁
𝑚=−𝑙

�̂�𝑙𝑚𝑌
𝑚
𝑙 (𝑥), (2.10)
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Algorithm 1 Conformal Generative Modeling
input Triangle meshes T(1) , . . . , T(𝑛) and correpsonding piecewise linear surfaces

M(1) , . . . ,M(𝑛)
input Training sets D (1) ⊂ M(1) , . . . ,D (𝑛) ⊂ M(𝑛)
1: Compute conformal transformation from each mesh to the unit sphere (Section 2.3.1.2),

obtaining M(1)inscr, . . . ,M
(𝑛)
inscr

2: Align M(2)inscr, . . . ,M
(𝑛)
inscr to M(1)inscr with maximum correlation rotations (Equation (2.9))

3: Map data to aligned spheres, obtaining D̃ (1) , . . . , D̃ (𝑛)
4: Compute log changes of area from projection (Equation (2.16)) and triangle area ratios

for each data point in each of D̃ (1) , . . . , D̃ (𝑛)
5: Train likelihood-based generative model on sphere, subtracting log change of area from

log probability densities in loss function (Equation (2.21))
6: Return sphere generative model and inverse conformal transformations mapping to each

of M(1) , . . . ,M(𝑛)

for all 𝑥 ∈ 𝑆2, where 𝑌𝑚
𝑙

: 𝑆2 → C denotes the spherical harmonic of 𝑙 and order
𝑚. The 𝑆𝑂 (3) Fourier transform of 𝐶 can then be written in terms of the spherical
harmonic transforms of 𝑓 and 𝑔, as:

𝐶 (𝑅) =
∞∑︁
𝑙=0

𝑙∑︁
𝑚=−𝑙

𝑙∑︁
𝑚′=−𝑙

𝑓𝑙𝑚 �̂�𝑙𝑚′ · 𝐷 𝑙
𝑚𝑚′ (𝑅), (2.11)

for all rotations 𝑅 ∈ 𝑆𝑂 (3), where𝐷 𝑙
𝑚𝑚′ denotes a Wigner𝐷-function (Kostelec and

Rockmore, 2008). Intuitively, the coefficients of Equation (2.11) are degree-wise
outer products of the coefficients comprising each degree of the spherical harmonic
transforms of 𝑓 and 𝑔.

While evaluating 𝐶 at any rotation is computationally difficult, (Kostelec and Rock-
more, 2008) provide a fast method using a grid of Euler angles. This method makes
use of the fast spherical harmonic transform, sampling 𝑓 and 𝑔 onto a spherical
grid. We found a 64 × 64 spherical grid (a bandwidth of 32) to be sufficient for our
experiments.

We can now fully describe Steps 1-3 of Algorithm 1. We spherically parametrize
each of the piecewise linear surfaces, obtaining sphere-inscribed piecewise linear
surfaces M(1)inscr, . . . ,M

(𝑛)
inscr and log conformal factor interpolations �̄�(1) , . . . , �̄�(𝑛) :

𝑆2 → R. For 𝑖 ∈ {2, . . . , 𝑛}, we approximate the maximum correlation rotation
matrix 𝑅(𝑖) ∈ 𝑆𝑂 (3), maximizing the correlation function:

𝐶 (𝑖) (𝑅) =
∫
𝑆2
�̄�(1) (𝑥)�̄�(𝑖) (𝑅⊤𝑥) d𝑥, (2.12)

over all rotation matrices 𝑅 ∈ 𝑆𝑂 (3). With identity rotation 𝑅(1) = 𝐼3, we rotate each
of the inscribed surfaces by the corresponding rotation, obtaining rotated surfaces
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Figure 2.4: Tangent squares (in blue) and pushed forward parallelograms (in orange)
used in differential change of area computation.

M̃(1)inscr, . . . , M̃
(𝑛)
inscr. In Step 2, we map each data point in each D (𝑖) to M̃(𝑖)inscr and

normalize the result to lie on the unit sphere, obtaining a spherical dataset D̃ (𝑖) .

We can now aggregate the spherical datasets and train a generative model using the
resulting dataset (Step 3). However, to train such models with maximum likelihood
estimation on the original surfaces M(1) , . . . ,M(𝑛) , we require the corresponding
changes of area incurred by each of the maps to the unit sphere (Step 4).

2.3.2 Differential Change of Area
For mesh index 𝑙 ∈ {1, . . . , 𝑛}, consider a data point 𝑥 ∈ D̃ (𝑙) . The data point
𝑥 is mapped from the sphere to M(𝑙) (the inverse transformation) in three stages;
first 𝑥 is mapped onto a Euclidean triangle of M̃(𝑙)inscr, then rotated by the inverse
rotation 𝑅(𝑙)

⊤ to lie on M(𝑙)inscr, and finally moved to the point on M(𝑙) with the
same barycentric coordinates in the corresponding face. The rotation is isometric,
incurring no change of area, and the final map from M(𝑙)inscr to M(𝑙) is piecewise linear,
incurring a multiplicative change of area equal to the area ratio of corresponding
triangles (original triangle area divided by inscribed triangle area).

The first mapping, however, is nonlinear. To compute the corresponding change of
area, suppose 𝑥 is in the spherical triangle characterized by (𝑖, 𝑗 , 𝑘) ∈ F(𝑙) , where
F(𝑙) is the set of faces in T(𝑙) . Let 𝑛 denote the normalized cross product of edge
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vectors in the face. That is, consider the unit vector perpendicular to the face,
defined by:

𝑛 =
( f̃(𝑙)
𝑗
− f̃(𝑙)

𝑖
) × ( f̃(𝑙)

𝑘
− f̃(𝑙)

𝑖
)

∥( f̃(𝑙)
𝑗
− f̃(𝑙)

𝑖
) × ( f̃(𝑙)

𝑘
− f̃(𝑙)

𝑖
)∥2

. (2.13)

From Equation (2.8), we find that 𝑥 is mapped to:

𝑦 =
𝑛⊤ f̃(𝑙)

𝑖

𝑛⊤𝑥
· 𝑥, (2.14)

with Jacobian matrix given as:

d𝑦
d𝑥

=
(𝑛⊤𝑥) (𝑛⊤ f̃(𝑙)

𝑖
)𝐼3 − (𝑛⊤ f̃(𝑙)

𝑖
)𝑥𝑛⊤

(𝑛⊤𝑥)2
. (2.15)

Now, consider any tangent vector to the sphere 𝑣 ∈ R3, with 𝑥⊤𝑣 = 0. Suppose
additionally that 𝑣 has unit magnitude. The cross product 𝑥 × 𝑣 is another tangent
vector, the result of rotating 𝑣 in the tangent plane counterclockwise by a quarter
turn. The pair (𝑣, 𝑥 × 𝑣) form an orthonormal basis for the tangent plane, and the
triple (𝑣, 𝑥×𝑣, 𝑥) forms a right-handed orthonormal basis forR3. The parallelogram
spanned by 𝑣 and 𝑥 × 𝑣 is a square with area 1, so we can compute the multiplicative
change of area incurred when mapping 𝑥 to 𝑦 simply by computing the area of
the parallelogram obtained by pushing forward 𝑣 and 𝑥 × 𝑣 by the Jacobian d𝑦/d𝑥.
These tangent squares and parallelograms are shown in Figure 2.4. This area is:



(d𝑦

d𝑥
· 𝑣

)
×

(
d𝑦
d𝑥
· (𝑥 × 𝑣)

)




2

=
(𝑛⊤ f̃(𝑙)

𝑖
)2

(𝑛⊤𝑥)4
·


 (
(𝑛⊤𝑥)𝑣 − (𝑛⊤𝑣)𝑥

)
×

(
(𝑛⊤𝑥) (𝑥 × 𝑣) − 𝑛⊤(𝑥 × 𝑣)𝑥

) 


2

=
(𝑛⊤ f̃(𝑙)

𝑖
)2

|𝑛⊤𝑥 |3
·


(𝑥⊤𝑛)𝑥 + ((𝑥 × 𝑣)⊤𝑛) (𝑥 × 𝑣) + (𝑣⊤𝑛)𝑣

2 =

(𝑛⊤ f̃(𝑙)
𝑖
)2

|𝑛⊤𝑥 |3
. (2.16)

The last equality follows since the term inside the norm is just the sum of the
projections of 𝑛 onto 𝑥, 𝑥 × 𝑣, and 𝑣; since these three vectors form an orthonormal
basis, the resulting sum has unit norm. Since:

(( f̃(𝑙)
𝑗
− f̃(𝑙)

𝑖
) × ( f̃(𝑙)

𝑘
− f̃(𝑙)

𝑖
))⊤ f̃(𝑙)

𝑖
= ( f̃(𝑙)

𝑗
× f̃(𝑙)

𝑘
)⊤ f̃(𝑙)

𝑖
, (2.17)

we can write the final expression in Equation (2.16) as:

(( f̃(𝑙)
𝑗
× f̃(𝑙)

𝑘
)⊤ f̃(𝑙)

𝑖
)2 · ∥ ( f̃(𝑙)

𝑗
− f̃(𝑙)

𝑖
) × ( f̃(𝑙)

𝑘
− f̃(𝑙)

𝑖
)∥2

| ( ( f̃(𝑙)
𝑗
− f̃(𝑙)

𝑖
) × ( f̃(𝑙)

𝑘
− f̃(𝑙)

𝑖
))⊤𝑥 |3

, (2.18)



18

where the norm in the numerator is the area of the inscribed triangle characterized
by (𝑖, 𝑗 , 𝑘).

To summarize, the differential change of area when mapping 𝑥 from the sphere to
M(𝑙) is, as a multiplicative factor, the product of Equation (2.19) and the ratio of
areas for face (𝑖, 𝑗 , 𝑘), represented both in M(𝑙) and M(𝑙)inscr. Using the observation
about the norm from Equation (2.18), this differential change of area is:

Δ(ℓ) ≜
(( f̃(𝑙)

𝑗
× f̃(𝑙)

𝑘
)⊤ f̃(𝑙)

𝑖
)2∥(f(𝑙)

𝑗
− f(𝑙)

𝑖
) × (f(𝑙)

𝑘
− f(𝑙)

𝑖
)∥2

| ( ( f̃(𝑙)
𝑗
− f̃(𝑙)

𝑖
) × ( f̃(𝑙)

𝑘
− f̃(𝑙)

𝑖
))⊤𝑥 |3

, (2.19)

where now the norm in the numerator is instead the area of the triangle characterized
by (𝑖, 𝑗 , 𝑘) in the original mesh.

When evaluating log probability densities via a generative model on the sphere,
we must subsequently subtract the log changes of area to compute log probability
densities (corresponding to dividing density by change of area) on the original
surface.

Elaborating on this point, suppose we choose a generative model on the sphere with
density 𝜌 : 𝑆2 → R+. For a dataset D̃ (1)∪· · ·∪D̃ (𝑛) comprised of aligned spherical
datasets, the data log likelihood (under the spherical density) is:

𝑛∑︁
𝑙=1

∑︁
𝑥∈D̃ (𝑙)

log 𝜌(𝑥). (2.20)

while the corrected data log likelihood (under the corresponding mesh densities) is
simply:

𝑛∑︁
𝑙=1

∑︁
𝑥∈D̃ (𝑙)

(
log 𝜌(𝑥) − logΔ(𝑙) (𝑥)

)
, (2.21)

whereΔℓ (𝑥) denotes the change of area from Equation (2.19) for data point 𝑥 ∈ D̃ (𝑙) .
Note that the change of area terms only need to be computed once at the start of
training for such a generative model via likelihood maximization; the only terms
which cannot be precomputed include 𝜌, as this density changes throughout training.

The remaining Step 5 is to choose an appropriate generative model to train on the
sphere, which we discuss next.

2.3.3 Choosing a Base Generative Model
In principle, one could choose any Riemannian generative model that trains on
canonical manifolds such as the unit sphere. In this paper, we instantiate our frame-
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work using two approaches: Riemannian continuous normalizing flows (CNFs)
(Mathieu and Nickel, 2020) and Moser flows (Rozen et al., 2021).

In the sections that follow, for convenience we adopt the convention of diffusion and
score-based generative models (Sohl-Dickstein et al., 2015; Song, Sohl-Dickstein,
et al., 2020), for which the forward direction of a generative model maps a data
distribution to a noise distribution.

2.3.3.1 Riemannian Continuous Normalizing Flows

In the Euclidean setting, a continuous normalizing flow (CNF) (Chen, Rubanova, et
al., 2018) is characterized by a parametric time-varying vector field 𝑓 : R𝑑×[0, 1] →
R𝑑 . For an initial probability density 𝜌0 : R𝑑 → R+, the time-varying density
𝜌 : R𝑑 × [0, 1] → R+ solving (with initial condition 𝜌0) the probability mass
continuity equation:

𝜕𝜌

𝜕𝑡
+ div(𝜌 · 𝑓 ) = 0, (2.22)

describes how the probability density of a random initial condition (distributed
according to 𝜌0) evolves subject to the vector field 𝑓 . The product 𝜌 · 𝑓 is the
probability mass flux, and its divergence can be expanded as:

div(𝜌 · 𝑓 ) = ∇𝜌⊤ 𝑓 + 𝜌 · div 𝑓 . (2.23)

This form allows us to express the rate of change of (log) probability density along
deterministic trajectories governed by the vector field 𝑓 . That is, for 𝑥 ∈ R𝑑 and a
trajectory 𝛾 : [0, 1] → R𝑑 satisfying:

d𝛾
d𝑡

= 𝑓 (𝛾(𝑡), 𝑡), (2.24)

for all 𝑡 ∈ (0, 1), we also have (from Chen, Rubanova, et al. (2018)):

d
d𝑡

log 𝜌(𝛾(𝑡), 𝑡) = −div(𝜌 · 𝑓 ) (𝛾(𝑡), 𝑡). (2.25)

This ordinary differential equation represented by Equation (2.24) and Equation (2.25)
can be solved simultaneously. With this augmented system, we can map a data dis-
tribution to a noise distribution (solve forward) or a noise distribution to a data
distribution (solve backward). Training the model requires querying log likelihoods
of data; to compute likelihoods, data are propagated forward under Equation (2.24),
the log probability densities of the corresponding terminal states (under a chosen
noise distribution) are computed, and the terminal states and log probability den-
sities are propagated backward under both Equation (2.24) and Equation (2.25).
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Differentiable ODE solvers are employed to update parameters of the vector field,
maximizing data likelihood.

From Euclidean to Spherical Gradients. In the spherical setting, vector fields
specify tangent vectors. That is, at a point 𝑥 ∈ 𝑆2, a vector field specifies a tangent
vector 𝑣 ∈ R3 such that 𝑥⊤𝑣 = 0. We can compute differential operators like ∇
and div and solve ordinary differential equations by extending functions defined
on the sphere to functions defined on all of R3 \ {0} as in Rozen et al. (2021).
Specifically, for tangent vector field 𝑓 : 𝑆2 × [0, 1] → R3 and probability density
𝜌 : 𝑆2 × [0, 1] → R+, we define extensions:

𝑓 (𝑥, 𝑡) = 𝑓 (𝑥/∥𝑥∥2, 𝑡) , �̃�(𝑥, 𝑡) = 𝜌 (𝑥/∥𝑥∥2, 𝑡) , (2.26)

for all nonzero 𝑥 ∈ R3 and times 𝑡 ∈ [0, 1]. The spherical gradient of 𝑓 is the
Euclidean gradient of 𝑓 . The spherical divergences of 𝑓 and 𝜌 · 𝑓 are the respective
Euclidean divergences of 𝑓 and �̃� · 𝑓 . As in (Rozen et al., 2021), we can solve
Equation (2.24) by substituting 𝑓 with 𝑓 and deploying any differentiable (adaptive-
step) Euclidean solver. Alternatively, we can solve Equation (2.24) using charts
on the sphere (Lou et al., 2020), which locally represent the sphere and the vector
field in Euclidean space (for example, by using spherical exponential and log maps).
While this latter approach has the advantage of constructively restricting the solution
of Equation (2.24) to the sphere, in our experiments the former approach maintained
proximity to the sphere within tight tolerances while executing much faster.

2.3.3.2 Moser Flows

(Rozen et al., 2021) bypasses the need to solve ordinary differential equations to
query log likelihoods by modeling the probability mass flux directly (as opposed
to the vector field 𝑓 ) and restricting the class of vector fields used to generate data
samples. For a data density 𝜇 : 𝑆2 → R+ and a noise density 𝜈 : 𝑆2 → R+, the
probability mass flux is modeled as a parametric time-invariant tangent vector field
𝐹 : 𝑆2 → R3 for which:

𝜇(𝑥) − 𝜈(𝑥) = −div𝐹 (𝑥), (2.27)

for all 𝑥 ∈ 𝑆2. That is, when 𝜈 is selected as well as parameters for 𝐹, the modeled
data density is given by Equation (2.27). To generate data samples from noise, the
vector field:

𝑓 (𝑥, 𝑡) = 𝐹 (𝑥)
𝜈(𝑥) + (1 − 𝑡) · div𝐹 (𝑥) , (2.28)
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is used, and the probability density solving the corresponding continuity equation
is:

𝜌(𝑥, 𝑡) = (1 − 𝑡)𝜇(𝑥) + 𝑡𝜈(𝑥), (2.29)

for all 𝑥 ∈ 𝑆2 and 𝑡 ∈ [0, 1]. Note that this probability density interpolates linearly
(in time) between 𝜇 and 𝜈.

To ensure that the flux model corresponds to a valid probability density, the di-
vergence of the flux field must integrate to 0 and be greater than −𝜈 everywhere.
The first requirement follows from the divergence theorem, replacing the integral
of divergence with a boundary integral (where the boundary is empty). The second
requirement must be enforced via an integral constraint, approximated with Monte
Carlo integration (using a uniform samples from the original mesh).

2.3.3.3 Riemannian Score-Based Generative Models

While we focus on training continuous normalizing flows (including Moser flows)
with likelihood maximization, we also provide an overview of possible stochastic
differential equation-based approaches.

In the Euclidean setting again, a score-based generative model (Song, Sohl-Dickstein,
et al., 2020) is characterized by a parameterless drift-diffusion process. In this con-
text, the drift-diffusion process is specified through a stochastic differential equation
(SDE), written as:

𝑑𝑋𝑡 = 𝑓 (𝑋𝑡 , 𝑡) · 𝑑𝑡 + 𝜎(𝑡) · 𝑑𝑊𝑡 , (2.30)

where 𝑓 : R𝑑 × [0, 1] → R𝑑 is a time-varying vector field and 𝜎 : [0, 1] → R+ is
a time-varying diffusion coefficient. The stochastic process 𝑊 is a 𝑑-dimensional
Brownian motion. For an initial probability density 𝜌0 : R𝑑 → R+, the time-varying
density 𝜌 : R𝑑 × [0, 1] → R+ solving (with initial condition 𝜌0) the Fokker-Planck
equation:

𝜕𝜌

𝜕𝑡
+ div(𝜌 · 𝑓 ) − 𝜎

2

2
· Δ𝜌 = 0, (2.31)

described how the probability density of a random initial condition (distributed
according to 𝜌0) evolves under the chosen drift-diffusion process. Note that if:

1. 𝑓 is divergence-free at all times, then this equation reduces to a linear
advection-diffusion equation,

2. 𝑓 is 0 at all times, then this equation reduces to the heat equation,
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3. 𝜎 is 0 at all times, then this equation reduces to the mass continuity equation.

We choose 𝑓 and𝜎 such that the terminal condition 𝜌(·, 1) : R𝑑 → R+ approximates
a tractable noise distribution. A common choice of vector field 𝑓 is spatially
linear, yielding a time-varying Ornstein-Uhlenbeck (OU) process. When the initial
distribution is Gaussian, an OU process is a Gaussian process (Särkkä and Solin,
2019, Example 5.14), meaning at every time, 𝑋 is Gaussian-distributed. When the
OU process is time-invariant, we can characterize a steady-state distribution and
speed of convergence to this distribution (Särkkä and Solin, 2019, Example 6.8).

We can approximate the flow applied to data samples with an Euler-Maruyama
scheme, with:

𝑋𝑘+1 = 𝑋𝑘 + Δ𝑡 · 𝑓 (𝑋𝑘 , 𝑘Δ𝑡) +
√
Δ𝑡 · 𝜎(𝑘Δ𝑡) · 𝑍𝑘 (2.32)

where 𝑍𝑘 ∼ N(0, 𝐼) and Δ𝑡 ∈ R++ is a fixed time step. The noise vectors 𝑍𝑘 at each
time step are independent. Note that the product

√
Δ𝑡 · 𝜎(𝑘Δ𝑡) · 𝑍𝑘 is a Gaussian

random vector with mean 0 and covariance Δ𝑡 ·𝜎(𝑘Δ𝑡)2 · 𝐼. However, reversing the
flow is more complicated than in the ODE case. This requires modeling the (Stein)
score 𝑠 : R𝑑 × [0, 1] → R𝑑 , a vector field defined as:

𝑠(𝑥, 𝑡) = ∇ log 𝜌(𝑥, 𝑡), (2.33)

for all 𝑥 ∈ R𝑑 and 𝑡 ∈ [0, 1]. Typically, this score is modeled as a neural network
via score matching. Letting �̄� : R𝑑 × R𝑑 × [0, 1] → R+ denote a time-varying
conditional density, where �̄�(𝑥, 𝑧, 𝑡) is the probability density of 𝑥 at time 𝑡 when
the initial state is 𝑧, score matching attempts to minimize:∫ 1

0

∫
R𝑑

∫
R𝑑
∥𝑠𝜃 (𝑥, 𝑡) − ∇ log �̄�(𝑥, 𝑡)∥22 · 𝜌0(𝑧) · �̄�(𝑥, 𝑧, 𝑡) d𝑧 d𝑥 d𝑡. (2.34)

Here, 𝑠𝜃 : R𝑑 × [0, 1] → R𝑑 is the modeled score and the product 𝜌0 · �̄� is the joint
density of 𝑥 (at time 𝑡) and 𝑧. This loss is approximated via Monte Carlo integration;
each sample is drawn by selecting a data point 𝑧 uniformly at random, selecting a
time 𝑡 uniformly between 0 and 1, and drawing a noised sample 𝑥 from �̄�(·, 𝑧, 𝑡). In
general, this last step of sampling requires Euler-Maruyama simulation, but in the
OU process case, we can skip simulation and sample directly from an appropriately
conditioned Gaussian distribution (Song, Sohl-Dickstein, et al., 2020, Equation 29).

Once the score is modeled, the reverse flow is approximated via:

𝑋𝑘−1 = 𝑋𝑘 −Δ𝑡 ·
(
𝑓 (𝑋𝑘 , 𝑘Δ𝑡) − 𝜎(𝑘Δ𝑡)2 · 𝑠𝜃 (𝑋𝑘 , 𝑘Δ𝑡)

)
+
√
Δ𝑡 ·𝜎(𝑘Δ𝑡) ·𝑍𝑘 , (2.35)
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where again, the noise vectors 𝑍𝑘 ∼ N(0, 𝐼) at each time step are independently
distributed.

From Euclidean to Spherical SDEs.

To generalize this procedure to spherical generative modeling (De Bortoli et al.,
2022), Brownian motion, Euler-Maruyma schemes, and score matching must all
be appropriately modified. Isotropic Brownian motion on a sphere (or any closed
Riemannian manifold) can be described via a time-varying probability density that
solves the heat equation (with a Dirac delta initial condition). However, (De Bortoli
et al., 2022) simulate approximations of Brownian motions via geodesic random
walks, modifying an Euler-Maruyama scheme as:

𝑋𝑘+1 = exp𝑋𝑘

(
Δ𝑡 · 𝑓 (𝑋𝑘 , 𝑘Δ𝑡) +

√
Δ𝑡 · 𝜎(𝑘Δ𝑡) · 𝑍𝑘

)
, (2.36)

where 𝑍𝑘 is a standard Gaussian random vector restricted to the tangent space at 𝑋𝑘 .
In the case of 𝑓 = 0 and 𝜎 = 1 (pure diffusion), (De Bortoli et al., 2022) use the
approximate score matching loss:∫ 1

0

∫
𝑆2

∫
𝑆2





𝑠𝜃 (𝑥, 𝑡) − log𝑥 𝑧
𝑡





2

2
· 𝜌0(𝑧) · �̄�(𝑥, 𝑧, 𝑡) d𝑧 d𝑥 d𝑡. (2.37)

The question of how to properly generalize score-based generative modeling to the
manifold case is still somewhat open. For example, an entirely alternative approach
is outlined in (Huang et al., 2022).

2.4 Experiments
We first demonstrate our method without the need for spherical alignment. We
demonstrate our approach on 8 different meshes (see Table 2.1), which is signifi-
cantly more than has been empirically demonstrated by other Riemannian generative
modeling approaches. We train continuous normalizing flows and Moser flows on
each mesh. The meshes and data used are from the ContactDB dataset (Brahmb-
hatt et al., 2019). Second, we show how our approach enables the sharing of data
from distinct meshes approximating the same underlying manifold. We generate 5
similar but distinct meshes (derived from stanford-bunny) to show how a single
generative model can be trained using several meshes corresponding to the same
underlying manifold. We show that log likelihood tested on a held-out mesh im-
proves with additional data, even when the data comes from different meshes. We
also show how all 5 meshes can be used to simultaneously generate data on each of
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Figure 2.5: Showing five meshes: training data (top row), learned CNF densities
(middle row), and learned Moser flow densities (bottom row). From left to right, the
meshes are rubber-duck, elephant, cell-phone, camera, and light-bulb.

the 5 meshes. All experiments were run on a single NVIDIA RTX A6000 GPU. In
all experiments, noise distributions are uniform on the sphere. Our code is available
at github.com/vdorbs/spherical-generative-modeling.git.

2.4.1 Training Data
ContactDB (Brahmbhatt et al., 2019) is a collection of grasping and manipulation
data for applications in human-robot interaction. The data were collected by ther-
mally imaging 3D printed household objects after they were grasped by human
subjects. We study 8 objects, each handled by a single participant. The data take
the form of triangle meshes with a single feature (intensity) at each vertex, indi-
cating thermal energy transferred to the object. As in (Brahmbhatt et al., 2019),
we process the contact maps by passing the intensities through a sigmoid function,
assigning 0.999 probability to the maximum intensity and 0.001 to the minimum.
As in (Rozen et al., 2021), we average the corresponding probabilities on each face
to obtain an unnormalized probability distribution over faces. We then draw 10000
samples from each mesh, each sample generated by sampling a face according to
the unnormalized distribution, then by sampling a uniformly distributed point on
the sampled face.

https://github.com/vdorbs/spherical-generative-modeling.git


25

Table 2.1: Log likelihoods for 8 meshes (higher is better), averaged over 5 runs per
mesh, plus or minus one standard deviation.

Mesh CNF Moser Flow

camera 4 ± 0.01703 3.726 ± 0.1048
stanford-bunny 4.354 ± 0.0435 4.168 ± 0.1937
light-bulb 4.44 ± 0.04114 4.239 ± 0.07521
elephant 4.472 ± 0.01215 4.462 ± 0.0361
mouse 4.769 ± 0.009795 4.726 ± 0.06756
cell-phone 5.465 ± 0.01964 5.302 ± 0.1207
rubber-duck 5.75 ± 0.007362 5.368 ± 0.1799
banana 6.591 ± 0.02889 6.318 ± 0.1723

2.4.2 Distribution Modeling Results
We run 5 trials for each of the 8 meshes, training both a CNF and a Moser flow.
Validation results are listed in Table 2.1. In both cases we use 5000 training samples
and 5000 validation samples. The CNF vector field and Moser flow flux field are
both parametrized as 3-hidden layer neural networks with hidden dimensions of
32 and tanh nonlinearities. The inputs to both neural networks are vectors in R3,
with the CNF taking a fourth input of time. Both models are trained with the
Adam optimizer (Kingma and Ba, 2014). The CNF is trained for 100 epochs with
a batch size of 256 and a learning rate of 10−2. The Moser flow is trained for 4000
epochs with a batch size of 256 and a learning rate of 10−4. These results show that
our approach can reliably model distributions on multiple manifolds using multiple
Riemannian generative models as subroutines.

2.4.3 Spherical Alignment
We next demonstrate our method when we have access to data on distinct meshes.
For a single mesh, we sample data as in Section 2.4.1. We generate 5 distinct meshes
by sampling 5 sets of vertices at random, each with only 1% of the vertices in the
original mesh. The meshes are then obtained from Poisson surface reconstruction
(Kazhdan, Bolitho, and Hoppe, 2006) with each point cloud. As reconstruction
requires normal vectors at each point in a cloud, we use the vertex normals derived
from the original mesh at each point rather than estimate normals from nearest
neighbor tangent planes. The data from the original mesh is then partitioned into 5
equal subsets, with each subset projected onto a corresponding reconstructed mesh.
First, we hold out data from one mesh and run 20 trials training a CNF with data
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Figure 2.6: Distinct meshes (top row), training data on each mesh (second row)
and samples generated from learned model (bottom row). The same model is used
to generate data on each of the five meshes, trained using data aggregated from all
meshes.

from 1, 2, 3, and all 4 of the remaining meshes. Each mesh has 2000 training
data samples; we only use the first 1000 from each. Log likelihoods of data on
the held-out mesh are shown in Figure 2.7. The CNF used has the same training
configuration as in Section 2.4.2. Second, we train a single conformal generative
model that can generate data on each of the five meshes. We use data from each
of the five meshes to train the model, again using 1000 training samples and 1000
validation samples from each mesh. Generated samples are visualized in Figure 2.6.
The CNF used has the same training configuration. These results demonstrate that
data can be shared between distinct meshes for improved training, and that such
models can readily generate data on qualitatively similar but unseen meshes.

2.5 Other Related Work
Generative Modeling on Meshes. The concurrent work of (Chen and Lipman,
2023) adopts a flow matching approach to generative modeling on Riemannian
manifolds and, as a special case, triangle meshes. In this paradigm, a vector field
is trained to match an average (weighted by the data distribution) of conditional
vector fields, which are chosen for their relative simplicity. For triangle meshes,
the conditional vector fields are constructed using kernel functions encoding ap-
proximate spectral distances. Both training and generation with the trained model
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Figure 2.7: Performance of generative model on held-out mesh as more meshes and
data are added.

require solving ODEs directly on the meshes, which can be difficult for complicated
geometries.

Generative Modeling on Implicit Surfaces. An alternative approach to generative
modeling on complicated manifolds is to a use a learned signed distance function
(SDF) (Rozen et al., 2021), which defines an implicit surface (i.e., the SDF is zero
if the point is on the surface). In general, learning SDFs can be quite complicated,
and also lead to uncontrolled approximations of the original manifold. In contrast,
our framework sidesteps this issue by leveraging tools in computational geometery.

Conformal Embedding Flows. Conformal transformations have also been applied
to generative modeling problems in high dimensions under the manifold hypothesis
(Ross and Cresswell, 2021). In this case, a (left) invertible map from a low-
dimensional latent space to a high-dimensional data space must be learned jointly
with a normalizing flow. The embedding is required to be conformal to tractably
compute the corresponding change of density; this puts restrictions on the architec-
ture used for manifold learning. Also, as with learning SDFs, manifold learning can
be complicated with uncontrolled approximations of the original manifold.

Conformal Prediction. The term “conformal” is also used in the context of confor-
mal prediction (Shafer and Vovk, 2008). Both conformal prediction and conformal
geometry use a measure of how conformal a point is under a transformation—
the former in terms of statistical calibration and the latter in terms of geometrical
calibration. Otherwise, the two lines of research are unrelated.
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C h a p t e r 3

DATA-DRIVEN ROBUST OPTIMIZATION PROBLEMS

3.1 Introduction
Ensuring properties such as stability and safety is of significant importance in many
modern control applications, including autonomous driving, industrial robotics,
and aerospace vehicles. In practice, the models used to design these controllers
are imperfect, with model uncertainty arising due to unmodeled dynamics and
parametric errors. In the presence of such uncertainty, controllers may fail to render
systems stable or safe. As real world control systems become increasingly complex,
the potential for detrimental modeling errors increases, and thus it is critical to study
control synthesis in the presence of uncertainty.

We propose a control synthesis process using control certificate functions (CCFs)
(Dimitrova and Majumdar, 2014; Boffi et al., 2020) that incorporates a data-driven
approach for capturing model uncertainty. CCFs generalize popular tools from non-
linear control for achieving stability and safety such as Control Lyapunov Functions
(CLFs) (Artstein, 1983), Control Barrier Functions (CBFs) (Ames, Grizzle, and
Tabuada, 2014), and Control Barrier-Lyapunov Functions (Prajna and Jadbabaie,
2004). CLFs and CBFs have been successfully deployed in the context of bipedal
robotics (Ames, Galloway, et al., 2014; Nguyen et al., 2016), adaptive cruise control
(Ames, Grizzle, and Tabuada, 2014), robotic manipulators (Khansari-Zadeh and
Billard, 2014), and multi-agent systems (Pickem et al., 2017). Data-driven and ma-
chine learning based approaches have shown great promise for controlling systems
with an uncertain model or with no model at all (Kober, Bagnell, and Peters, 2013;
Shi et al., 2019; Cheng et al., 2019; Lee et al., 2020). The integration of techniques
from nonlinear control theory for achieving stability and safety with data-driven
methods has become increasingly popular (Aswani et al., 2013; Beckers, Kulić,
and Hirche, 2019; Berkenkamp and Schoellig, 2015; Gillula and Tomlin, 2012; Qu
et al., 2020), with many approaches relying on certificate functions for theoretical
guarantees (Khansari-Zadeh and Billard, 2014; Lederer, Capone, and Hirche, 2020;
Choi et al., 2020; Cohen and Belta, 2020; Castañeda et al., 2020).

Uncertainty in the effect of actuation remains a major challenge in achieving control-
theoretic guarantees with data-driven methods. Many existing approaches assume
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certainty in how actuation enters the dynamics (Fisac et al., 2018; Umlauft, Pöhler,
and Hirche, 2018; Zheng et al., 2020), use structured controllers requiring strong
characterizations of this uncertainty (Beckers, Kulić, and Hirche, 2019; Lederer,
Capone, Umlauft, et al., 2020), or require high coverage datasets with (nearly) com-
plete characterizations of the input-to-state relationship (Berkenkamp, Moriconi,
et al., 2016; Berkenkamp, Turchetta, et al., 2017). In practice, collecting such data
can be prohibitively costly or damage the system, suggesting a need for data-driven
approaches that accommodate actuation uncertainty without requiring this complete
characterization.

The contribution of this work is a novel approach for robust data-driven control
synthesis via CCFs for control-affine systems with model uncertainty, including
actuation uncertainty, which is broadly applicable in many real-world settings such
as robotic (Murray, Li, and Sastry, 1994) and automotive systems (Ioannou and
Chien, 1993). In Section 3.3 we incorporate data into a convex optimization-based
control synthesis problem as affine inequality constraints which restrict possible
model uncertainties. This enables the choice of robust control inputs over convex
uncertainty sets. Rather than requiring a full characterization of how input enters the
system, this approach utilizes the affine structure of CCF dynamics to choose inputs.
This reduces the impact of actuation uncertainty on the evolution of the certificate
function and allows for guarantees of stability and safety. The proposed approach
provides a unique perspective for unifying nonlinear control and non-parametric
machine learning that is well positioned to study both theoretical and application
oriented questions at this intersection.

We then further build towards robust control of control-affine systems in the sam-
pled data setting, in which control inputs are held constant over fixed frequency
sample periods. Here, we make use of recent work (Taylor, Dorobantu, Yue, et al.,
2021; Taylor, Dorobantu, Cosner, et al., 2022) that enables control synthesis with a
variety of approximate discrete-time models. We demonstrate how our uncertainty
modeling can be applied to these settings as well, and identify some unifying struc-
tures in all of our problem settings of interest. Through Lagrangian duality, we find
reformulations and relaxations that enable us to carry stability and safety guarantees
over from continuous-time synthesis. We conclude by demonstrating how complex
uncertainty sets can be outer approximated to simplify robust optimization while
maintaining robustness.
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3.2 Background
This section provides a review of certificate-based nonlinear control synthesis and
an overview of how model uncertainty impacts these synthesis methods.

3.2.1 Control Certificate Functions
Consider a nonlinear control affine system given by:

¤𝑥 = 𝑓 (𝑥) + 𝑔(𝑥)𝑢, (3.1)

where 𝑥 ∈ R𝑛, 𝑢 ∈ R𝑚, and 𝑓 : R𝑛 → R𝑛 and 𝑔 : R𝑛 → R𝑛×𝑚 are locally Lipschitz
continuous on R𝑛. Further assume that the origin is an equilibrium point of the
uncontrolled system ( 𝑓 (0) = 0). In this work we assume that 𝑢 may be chosen
unbounded as in (Khansari-Zadeh and Billard, 2014; Jankovic, 2018). Given a
locally Lipschitz continuous state-feedback controller 𝑘 : R𝑛 → R𝑚, the closed-
loop system dynamics are:

¤𝑥 = 𝑓cl(𝑥) ≜ 𝑓 (𝑥) + 𝑔(𝑥)𝑘 (𝑥). (3.2)

The assumption on local Lipschitz continuity of 𝑓 , 𝑔, and 𝑘 implies that 𝑓cl is locally
Lipschitz continuous. Thus for any initial condition 𝑥0 ≜ 𝑥(0) ∈ R𝑛 there exists
a maximum time interval 𝐼 (𝑥0) = [0, 𝑡max) such that 𝑥(𝑡) is the unique solution to
(3.2) on 𝐼 (𝑥0) (Perko, 2013).

The qualitative behavior (such as stability or safety) of the the closed-loop system
(3.2) can be certified via the notion of a continuously differentiable certificate
function 𝜙 : R𝑛 → R. Given a comparison function 𝛼 : R → R (specific to the
qualitative behavior of interest), certification is specified as an inequality on the
derivative of the certificate function along solutions to the closed-loop system:

¤𝜙(𝑥) = ∇𝜙(𝑥)⊤ 𝑓cl(𝑥) ≤ −𝛼(𝜙(𝑥)) . (3.3)

Synthesis of controllers that satisfy (3.3) by design motivates the following definition
of a Control Certificate Function:

Definition 1 (Control Certificate Function (CCF)). A continuously differentiable
function 𝜙 : R𝑛 → R is a Control Certificate Function (CCF) for (3.1) with
comparison function 𝛼 : R→ R if for all 𝑥 ∈ R𝑛:

inf
𝑢∈R𝑚
∇𝜙(𝑥)⊤ 𝑓 (𝑥)︸         ︷︷         ︸

𝐿 𝑓 𝜙(𝑥)

+∇𝜙(𝑥)⊤𝑔(𝑥)︸         ︷︷         ︸
𝐿𝑔𝜙(𝑥)⊤

𝑢 ≤ −𝛼(𝜙(𝑥)), (3.4)

where 𝐿 𝑓 𝜙 : R𝑛 → R and 𝐿𝑔𝜙 : R𝑛 → R𝑚.
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The control-affine nature of the system dynamics are preserved by the CCF, such
that the only component of the input that impacts the evolution of the certificate
function lies in the direction of 𝐿𝑔𝜙(𝑥). Given a CCF 𝜙 for (3.1) and a corresponding
comparison function 𝛼, we define the set-valued function of all control values that
satisfy the inequality in (3.4):

𝐾ccf(𝑥) ≜
{
𝑢 ∈ R𝑚 : 𝐿 𝑓 𝜙(𝑥) + 𝐿𝑔𝜙(𝑥)𝑢 ≤ −𝛼(𝜙(𝑥))

}
. (3.5)

Any nominal locally Lipschitz continuous controller 𝑘𝑑 : R𝑛 → R𝑚 can be modified
to take values in the set 𝐾ccf(𝑥) via the certificate-critical CCF-QP:

𝑘 (𝑥) ∈ arg min
𝑢∈R𝑚

1
2
∥𝑢 − 𝑘𝑑 (𝑥)∥22 (CCF-QP)

s.t. ∇𝜙(𝑥)⊤ ( 𝑓 (𝑥) + 𝑔(𝑥)𝑢) ≤ −𝛼(𝜙(𝑥)).

Before providing particular examples of certificate functions useful in control syn-
thesis, we review the following definitions. We denote a continuous function
𝛼 : [0, 𝑎) → R+, with 𝑎 > 0, as class K (𝛼 ∈ K) if 𝛼(0) = 0 and 𝛼 is strictly
monotonically increasing. If 𝑎 = ∞ and lim𝑟→∞ 𝛼(𝑟) = ∞, then 𝛼 is class K∞
(𝛼 ∈ K∞). A continuous function 𝛼 : (−𝑏, 𝑎) → R, with 𝑎, 𝑏 > 0, is extended
class K (𝛼 ∈ K𝑒) if 𝛼(0) = 0 and 𝛼 is strictly monotonically increasing. If
𝑎, 𝑏 = ∞, lim𝑟→∞ 𝛼(𝑟) = ∞, and lim𝑟→−∞ 𝛼(𝑟) = −∞, then 𝛼 is extended class
K∞ (𝛼 ∈ K∞,𝑒). Finally, we note that 𝑐 ∈ R is referred to as a regular value of a
continuously differentiable function ℎ : R𝑛 → R if ℎ(𝑥) = 𝑐 =⇒ ∇ℎ(𝑥) ≠ 0.

Example 1 (Stability via Control Lyapunov Functions). In the context of stabi-
lization to the origin, a control certificate function 𝑉 : R𝑛 → R with a class K
comparison function 𝛼 ∈ K that satisfies:

𝛼1(∥𝑥∥) ≤ 𝑉 (𝑥) ≤ 𝛼2(∥𝑥∥), (3.6)

for 𝛼1, 𝛼2 ∈ K, is a Control Lyapunov Function (CLF) (Artstein, 1983; Sontag,
1989a), with stabilization to the origin achieved by controllers taking values in the
set-valued function 𝐾ccf given by (3.5) (Ames, Xu, et al., 2016).

Example 2 (Safety via Control Barrier Functions). In the context of safety, defined
as forward invariance (Blanchini, 1999) of a set S, a control certificate function
ℎ : R𝑛 → R with 0 a regular value and a comparison function 𝛼 ∈ K∞,𝑒 that
satisfies:

𝑥 ∈ S =⇒ ℎ(𝑥) ≤ 0, (3.7)
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is a Control Barrier Function (CBF) (Ames, Grizzle, and Tabuada, 2014; Ames,
Xu, et al., 2016), with safety of the set S achieved by controllers taking values in
the set-valued function 𝐾ccf given by (3.5) (Ames, Coogan, et al., 2019). We adopt
the opposite sign convention for ℎ so satisfying (3.4) guarantees safety.

3.2.2 Model Uncertainty
In practice, uncertainty in the system dynamics (3.1) exists due to parametric error
and unmodeled dynamics, such that the functions 𝑓 and 𝑔 are not precisely known.
Control affine systems are a natural setting to study actuation uncertainty as the
function 𝑔 can be seen as an uncertain gain multiplying the input. In this context,
control synthesis is done with a nominal model that estimates the true system
dynamics:

¤̂𝑥 = �̂� (𝑥) + �̂�(𝑥)𝑢, (3.8)

where �̂� : R𝑛 → R𝑛 and �̂� : R𝑛 → R𝑛×𝑚 are locally Lipschitz continuous. Adding
and subtracting this expression to and from (3.1) implies the system evolution is
described by:

¤𝑥 = �̂� (𝑥) + �̂�(𝑥)𝑢 + 𝑓 (𝑥) − �̂� (𝑥)︸         ︷︷         ︸
�̃� (𝑥)

+ (𝑔(𝑥) − �̂�(𝑥))︸           ︷︷           ︸
�̃�(𝑥)

𝑢, (3.9)

where �̃� : R𝑛 → R𝑛 and �̃� : R𝑛 → R𝑛×𝑚 are the unmodeled dynamics. This
uncertainty in the dynamics additionally manifests in the time derivative of a CCF
for the system:

¤𝜙(𝑥, 𝑢) =

¤̂𝜙(𝑥,𝑢)︷                                ︸︸                                ︷
∇𝜙(𝑥)⊤ �̂� (𝑥)︸         ︷︷         ︸

𝐿
�̂�
𝜙(𝑥)

+∇𝜙(𝑥)⊤�̂�(𝑥)︸         ︷︷         ︸
𝐿𝑔𝜙(𝑥)⊤

𝑢 +∇𝜙(𝑥)⊤ �̃� (𝑥)︸         ︷︷         ︸
𝐿
�̃�
𝜙(𝑥)

+∇𝜙(𝑥)⊤�̃�(𝑥)︸         ︷︷         ︸
𝐿𝑔𝜙(𝑥)⊤

𝑢, (3.10)

where 𝐿
�̂�
𝜙, 𝐿

�̃�
𝜙 : R𝑛 → R, and 𝐿�̂�𝜙, 𝐿�̃�𝜙 : R𝑛 → R𝑚. The presence of uncertainty

in the CCF time derivative makes it impossible to verify whether a given control
input is in the set 𝐾ccf(𝑥) given in (3.5), and can lead to failure to achieve the desired
qualitative behavior.

Assumption 1. The function 𝜙 : R𝑛 → R is a valid CCF with comparison function
𝛼 : R → R for the true dynamic system (3.9). Mathematically this assumption
appears as:

inf
𝑢∈R𝑚
∇𝜙(𝑥)⊤ ( 𝑓 (𝑥) + 𝑔(𝑥)𝑢) ≤ −𝛼(𝜙(𝑥)).
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This assumption is structural in nature and can be met for feedback linearizable
systems (such as robotic systems).

Remark 1. Though many approaches to CCF design (linearization, energy-based,
numerical sums-of-squares methods) rely on knowledge of the true dynamics, it
is also possible to design CCFs without explicit knowledge of the true system
dynamics. For example, a valid CLF and comparison function for the true system
can be designed via feedback linearization assuming only knowledge of the degree
of actuation (see (Taylor, Dorobantu, Le, et al., 2019) for full details). This method
also works to specify CBFs which are defined by sublevel sets of CLFs (as in our
simulation results). We emphasize the difference between choosing a qualitative
behavior that the system can be made to satisfy (e.g. the CCF) and actually designing
the control inputs which achieve the behavior. Our work focuses on the latter: solving
the problem of choosing stable/safe inputs in the presence of uncertainty.

Assumption 2. The functions �̃� and �̃� are globally Lipschitz continuous with known
Lipschitz constants L

�̃�
and L�̃�.

Remark 2. Knowledge of minimal Lipschitz constants is not necessary, but smaller
Lipschitz constants are associated with improved performance of data-driven robust
control methods.

3.3 Data-Driven Robust Control
In this section we explore how data can be incorporated directly into an optimization-
based controller to robustly achieve a desired qualitative behavior specified via a
Control Certificate Function.

Consider a dataset consisting of 𝑁 tuples of states, inputs, and corresponding state
time derivatives, D = {(𝑥𝑖, 𝑢𝑖, ¤𝑥𝑖)}𝑁𝑖=1, with 𝑥𝑖 ∈ R𝑛, 𝑢𝑖 ∈ R𝑚, and ¤𝑥𝑖 ∈ R𝑛 for
𝑖 = 1, . . . , 𝑁 . It may not be possible to directly measure the state time derivatives ¤𝑥𝑖,
but they can approximated from sequential state observations 𝑥𝑖 (Taylor, Dorobantu,
Le, et al., 2019; Taylor, Singletary, et al., 2020). For simplicity of exposition, we
do not consider noise in this formulation. However, the resulting construction may
be modified to account for the impact of bounded noise in the data. Considering
the uncertain model (3.9) evaluated at a state and input pair (𝑥𝑖, 𝑢𝑖) in the data set
yields:

𝐹𝑖 ≜ ¤𝑥𝑖 − ( �̂� (𝑥𝑖) + �̂�(𝑥𝑖)𝑢𝑖) = �̃� (𝑥𝑖) + �̃�(𝑥𝑖)𝑢𝑖, (3.11)
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where 𝐹𝑖 ∈ R𝑛 can be interpreted as the error between the true state time derivative
and the nominal model (3.8) evaluated at the state and input pair (𝑥𝑖, 𝑢𝑖).

Considering a state 𝑥 ∈ R𝑛 (not necessarily present in the dataset D), the second
equality in (3.11) implies:

�̃� (𝑥) + �̃�(𝑥)𝑢𝑖 − 𝐹𝑖 = �̃� (𝑥) − �̃� (𝑥𝑖) + (�̃�(𝑥) − �̃�(𝑥𝑖)) 𝑢𝑖 . (3.12)

This expression provides a relationship between the possible values of the unmodeled
dynamics �̃� and �̃� at the state 𝑥 and the values of the unmodeled dynamics at the data
point 𝑥𝑖. Using the local Lipschitz continuity of the unmodeled dynamics yields the
following bound:


 �̃� (𝑥) + �̃�(𝑥)𝑢𝑖 − 𝐹𝑖




2
=




 �̃� (𝑥) − �̃� (𝑥𝑖) + (�̃�(𝑥) − �̃�(𝑥𝑖)) 𝑢𝑖



2
,

≤
(
L
�̃�
+ L�̃�∥𝑢𝑖∥2

)
∥𝑥 − 𝑥𝑖∥2 ≜ 𝜀𝑖 (𝑥). (3.13)

We see that the bound grows with the magnitude of the Lipschitz constants L
�̃�

and
L�̃� and distance of the state 𝑥 from the data point 𝑥𝑖. The values of L

�̃�
and L�̃� are

not explicitly data dependent, and thus the bound can be improved for a given data
set by reducing the possible model uncertainty through improved modeling. Given
this construction we may define the uncertainty set-valued function:

U𝑖 (𝑥) ≜
{
(𝐴, 𝑏) ∈ R𝑛×𝑚 × R𝑛 :




𝑏 + 𝐴𝑢𝑖 − 𝐹𝑖



2
≤ 𝜖𝑖 (𝑥)

}
, (3.14)

noting that (�̃�(𝑥), �̃� (𝑥)) ∈ U𝑖 (𝑥) andU𝑖 (𝑥) is convex. Considering this construction
over the entire data set D we define:

U(𝑥) ≜
𝑁⋂
𝑖=1
U𝑖 (𝑥) ⊂ R𝑛×𝑚 × R𝑛, (3.15)

noting that (�̃�(𝑥), �̃� (𝑥)) ∈ U(𝑥) andU(𝑥) is convex. Therefore, U(𝑥) consists of
all possible model errors that are consistent with the observed data. This allows us
to pose the following data robust control problem:

Definition 2 (Data Robust Control Certificate Function Optimization Problem).

𝑘rob(𝑥) ∈ arg min
𝑢∈R𝑚

1
2
∥𝑢 − 𝑘𝑑 (𝑥)∥22 (DR-CCF-OP)

s.t. ¤̂𝜙(𝑥, 𝑢) + ∇𝜙(𝑥)⊤ (𝑏 + 𝐴𝑢) ≤ −𝛼(𝜙(𝑥)) for all (𝐴, 𝑏) ∈ U(𝑥).

By construction we have that (�̃�(𝑥), �̃� (𝑥)) ∈ U(𝑥), implying that 𝑘rob(𝑥) ∈ 𝐾ccf(𝑥)
when the problem is feasible. Thus the closed-loop system (3.2) under 𝑘rob satisfies
inequality (3.3).



35

3.4 Data-Driven Robust Sampled Data Control
We next consider the setting in which control inputs are held constant for fixed
frequency sample periods, referred to as the sampled data setting. We developed
approaches for sampled data stability in (Taylor, Dorobantu, Yue, et al., 2021) and
sampled data safety in (Taylor, Dorobantu, Cosner, et al., 2022); both approaches
are outlined in Appendix A.

We can use the same uncertainty model and uncertainty set functions developed
in the previous section, even in the sampled data setting. However, the inequality
constraints will need to be modified, and since sampled data stability and safety
currently comprise two separate mathematical approaches, we will not consider the
case of a sampled data “certificate.”

Unlike the continuous-time case, the type of approximate map used and Lya-
punov/barrier function used must be chosen in a compatible manner to yield a
tractable optimization problem. Specifically, we will consider quadratic Lyapunov
functions, affine barrier functions, and quadratic configuration barrier functions.
We refer to a barrier function as a configuration barrier function if it is purely a
function of the configuration of a robotic system (not the velocity). In the first two
cases, we use the approximate Euler family (Equation (A.5)), and in the last case we
use the “midpoint” two-stage Runge-Kutta family (Equation (A.11)).

3.4.1 Constraint Equations without Uncertainty
The constraint equations are derived from Equation (A.95) and Equation (A.98).
Without uncertainty, the sampled data stability constraint is:

ℎ( 𝑓 (𝑥) + 𝑔(𝑥)𝑢)⊤𝑃( 𝑓 (𝑥) + 𝑔(𝑥)𝑢) + 2𝑥⊤𝑃( 𝑓 (𝑥) + 𝑔(𝑥)𝑢) ≤ −𝑐𝜆min(𝑄)∥𝑥∥22,
(3.16)

for all 𝑥 ∈ R𝑛 and 𝑢 ∈ R𝑚, where 𝑃 ∈ S𝑛++ is the matrix characterizing a Lya-
punov function for linear closed-loop dynamics (obtained from full-state feedback
linearization), 𝑄 ∈ S𝑛++ and 𝑐 ∈ (0, 1) are user choices, and ℎ ∈ R++ is the sample
period. Together with the closed-loop dynamics, 𝑃 should solve the continuous time
Lyapunov equation (with right hand side −𝑄).

A affine barrier function 𝑠 : R𝑛 → R of the form:

𝑠(𝑥) = 𝑐⊤𝑥 + 𝑑, (3.17)
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for all states 𝑥 ∈ R𝑛 generates a corresponding sampled data safety constraint (again
without uncertainty) as:

𝑐⊤(𝑥 + ℎ( 𝑓 (𝑥) + 𝑔(𝑥)𝑢)) + 𝑑 − (𝑐⊤𝑥 + 𝑑) ≥ −ℎ𝛼(𝑐⊤𝑥 + 𝑑), (3.18)

or:
𝑐⊤( 𝑓 (𝑥) + 𝑔(𝑥)𝑢) ≥ −𝛼(𝑐⊤𝑥 + 𝑑), (3.19)

for all 𝑥 ∈ R𝑛 and 𝑢 ∈ R𝑚, where 𝛼 ∈ K.

Consider a quadratic configuration barrier 𝑠 : Rℓ → R (where ℓ is the dimension of
the configuration space and 𝑛 = 2ℓ) of the form:

𝑠(𝑞) = 𝑐 − 𝑞⊤𝑃𝑞, (3.20)

for all configurations 𝑞 ∈ Rℓ, where 𝑐 is a constant and 𝑃 ∈ Sℓ++ characterizes
ellipsoidal sublevel sets. This function generates a corresponding sampled data
safety constraint (again without uncertainty) as:

𝑠

(
𝑞 + ℎ ¤𝑞 + ℎ

2

2
¥𝑞
)
− 𝑠(𝑞) ≥ −ℎ𝛼(𝑠(𝑞)), (3.21)

for all 𝑞, ¤𝑞 ∈ Rℓ and 𝑢 ∈ R𝑚, where 𝛼 ∈ K. The acceleration ¥𝑞 has a control affine
form, with:

¥𝑞 = 𝑓2(𝑞, ¤𝑞) + 𝑔2(𝑞, ¤𝑞)𝑢. (3.22)

3.4.2 Constraint Equations with Uncertainty
To introduce our uncertainty model and perform robust optimization, note that:

𝑓 (𝑥) + 𝑔(𝑥)𝑢 =

[
𝑢1𝐼 · · · 𝑢𝑚 𝐼 𝐼

] 
𝑔1(𝑥)
...

𝑔𝑚 (𝑥)
𝑓 (𝑥)


, (3.23)

for all states 𝑥 ∈ R𝑛 and control inputs 𝑢 ∈ R𝑚, where 𝑔1, . . . , 𝑔𝑚 denote the columns
of 𝑔 and 𝑢1, . . . , 𝑢𝑚 denote the coordinates of 𝑢. As such, define the affine functions
𝑈 : R𝑚 → 𝑅𝑛×(𝑚+1)𝑛 and the nonlinear functions 𝑧, 𝑧, 𝑧 : R𝑛 → R(𝑚+1)𝑛 as:

𝑈 (𝑢) =
[
𝑢1𝐼 · · · 𝑢𝑚 𝐼 𝐼

]
, (3.24)

𝑧(𝑥) =


𝑔1(𝑥)
...

𝑔𝑚 (𝑥)
𝑓 (𝑥)


, �̂�(𝑥) =


�̂�1(𝑥)
...

�̂�𝑚 (𝑥)
�̂� (𝑥)


, �̃�(𝑥) =


�̃�1(𝑥)
...

�̃�𝑚 (𝑥)
�̃� (𝑥)


, (3.25)
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for all states 𝑥 ∈ R𝑛 and control inputs 𝑢 ∈ R𝑚. Note that:

𝑓 (𝑥) + 𝑔(𝑥)𝑢 = 𝑈 (𝑢)𝑧(𝑥), (3.26)

�̂� (𝑥) + �̂�(𝑥)𝑢 = 𝑈 (𝑢) �̂�(𝑥), (3.27)

�̃� (𝑥) + �̃�(𝑥)𝑢 = 𝑈 (𝑢) �̃�(𝑥), (3.28)

for all states 𝑥 ∈ R𝑛 and control inputs 𝑢 ∈ R𝑚. We can now write our uncertainty
set-valued function as:

U(𝑥) =
{
𝜃 ∈ R(𝑚+1)𝑛 : ∥𝑈 (𝑢𝑖)𝜃 − ( ¤𝑥𝑖 −𝑈 (𝑢𝑖) �̂�(𝑥𝑖))∥2 ≤ 𝜀𝑖 (𝑥), 𝑖 = 1, . . . , 𝑁

}
,

(3.29)
for all query states 𝑥 ∈ R𝑛. We can now rewrite every sampled data constraint as:

ℎ𝑧(𝑥)⊤𝑈 (𝑢)⊤𝑃𝑈 (𝑢)𝑧(𝑥) + 2𝑥⊤𝑃𝑈 (𝑢)𝑧(𝑥) ≤ −𝑐𝜆min(𝑄)∥𝑥∥22, (3.30)

𝑐⊤𝑈 (𝑢)𝑧(𝑥) ≥ −𝛼(𝑐⊤𝑥 + 𝑑), (3.31)

𝑠

(
𝑞 + ℎ ¤𝑞 + ℎ

2

2
𝑈 (𝑢)𝑧2(𝑞, ¤𝑞)

)
− 𝑠(𝑞) ≥ −ℎ𝛼(𝑠(𝑞)), (3.32)

where 𝑧2 is defined analogously to 𝑧. In this form, we can more easily make use of
the fact that 𝑧(𝑥) = �̂�(𝑥) + �̃�(𝑥). In particular, at a query state 𝑥 ∈ R𝑛, we know that
there is some ground truth uncertainty vector 𝜃 ∈ U(𝑥) such that 𝑧(𝑥) = �̂�(𝑥) + 𝜃.
Therefore, we can write:

ℎ( �̂�(𝑥) + 𝜃)⊤𝑈 (𝑢)⊤𝑃𝑈 (𝑢) ( �̂�(𝑥) + 𝜃) + 2𝑥⊤𝑃𝑈 (𝑢) ( �̂�(𝑥) + 𝜃) ≤ −𝑐𝜆min(𝑄)∥𝑥∥22

(3.33)

𝑐⊤𝑈 (𝑢) ( �̂�(𝑥) + 𝜃) ≥ −𝛼(𝑐⊤𝑥 + 𝑑), (3.34)

𝑠

(
𝑞 + ℎ ¤𝑞 + ℎ

2

2
𝑈 (𝑢) ( �̂�2(𝑞, ¤𝑞) + 𝜃)

)
− 𝑠(𝑞) ≥ −ℎ𝛼(𝑠(𝑞)). (3.35)

To solve robust optimization problems with these constraints, we will have to com-
pute global extrema of the constraint equations over all possible values of 𝜃 that
are consistent with the data. Therefore, we rewrite the constraint equations to more
clearly expose their quadratic and affine (in 𝜃) forms. First, in the sampled data
stabilization case, we have:

𝜃⊤(ℎ𝑈 (𝑢)⊤𝑃𝑈 (𝑢))𝜃 + 2(𝑈 (𝑢)⊤𝑃(𝑥 + �̂�(𝑥)))⊤𝜃
+ ℎ�̂�(𝑥)⊤𝑈 (𝑢)⊤𝑃𝑈 (𝑢) �̂�(𝑥) + 2𝑥⊤𝑃𝑈 (𝑢) �̂�(𝑥) + 𝑐𝜆min(𝑄)∥𝑥∥22 ≤ 0. (3.36)

Note that the constant (in 𝜃) term is simply Equation (3.30) when the nominal model
is assumed to be perfect. For the affine barrier, we have:

(𝑈 (𝑢)⊤𝑐)⊤𝜃 + 𝑐⊤𝑈 (𝑢) �̂�(𝑥) + 𝛼(𝑐⊤𝑥 + 𝑑) ≤ 0. (3.37)
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For the quadratic configuration barrier, we have:

− 𝜃⊤
(
ℎ4

4
𝑈 (𝑢)⊤𝑃𝑈 (𝑢)

)
𝜃 − 2

(
ℎ2

2
𝑈 (𝑢)⊤𝑃

(
𝑞 + ℎ ¤𝑞 + ℎ

2

2
𝑈 (𝑢) �̂�2(𝑞, ¤𝑞)

))⊤
𝜃

−
(
𝑞 + ℎ ¤𝑞 + ℎ

2

2
𝑈 (𝑢) �̂�2(𝑞, ¤𝑞)

)⊤
𝑃

(
𝑞 + ℎ ¤𝑞 + ℎ

2

2
𝑈 (𝑢) �̂�2(𝑞, ¤𝑞)

)
+ 𝑞⊤𝑃𝑞 ≥ −ℎ𝛼(𝑐 − 𝑞⊤𝑃𝑞). (3.38)

By negating this inequality and factoring out ℎ, we obtain:

𝜃⊤
(
ℎ3

4
𝑈 (𝑢)⊤𝑃𝑈 (𝑢)

)
𝜃 + 2

(
ℎ

2
𝑈 (𝑢)⊤𝑃

(
𝑞 + ℎ ¤𝑞 + ℎ

2

2
𝑈 (𝑢) �̂�2(𝑞, ¤𝑞)

))⊤
𝜃

+ ℎ
(
¤𝑞 + ℎ

2
𝑈 (𝑢) �̂�2(𝑞, ¤𝑞)

)⊤
𝑃

(
¤𝑞 + ℎ

2
𝑈 (𝑢) �̂�2(𝑞, ¤𝑞)

)
+ 2𝑞⊤𝑃

(
¤𝑞 + ℎ

2
𝑈 (𝑢) �̂�2(𝑞, ¤𝑞)

)
− 𝛼(𝑐 − 𝑞⊤𝑃𝑞) ≤ 0. (3.39)

3.4.3 Control Certificate Functions Revisited
To help unify constraint equation structures, note that:

∇𝜙(𝑥)⊤( 𝑓 (𝑥) + 𝑔(𝑥)𝑢) = ∇𝜙(𝑥)⊤(𝑈 (𝑢) �̂�(𝑥) + 𝜃), (3.40)

for some 𝜃 ∈ U(𝑥), so we can rewrite the corresponding inequality constraint as:

(𝑈 (𝑢)⊤∇𝜙(𝑥))⊤𝜃 + ∇𝜙(𝑥)⊤𝑈 (𝑢) �̂�(𝑥) + 𝛼(𝜙(𝑥)) ≤ 0. (3.41)

Note that this structure mirrors that of the sampled data affine barrier.

3.4.4 Unifying Structures
Ultimately, the constraints we consider are either affine or quadratic in the uncertainty
and affine or quadratic in the control input. Specifically, letting 𝑝 ∈ N denote the
uncertainty vector dimension, we either consider constraints of the form:

𝑎(𝑥, 𝑢)⊤𝜃 + 𝑏(𝑥, 𝑢) ≤ 0, (3.42)

where 𝑎 : R𝑛 ×R𝑚 → R𝑝 and 𝑏 : R𝑛 ×R𝑚 → R are affine in their second argument,
or:

𝜃⊤𝑃(𝑥, 𝑢)𝜃 + 2𝑞(𝑥, 𝑢)⊤𝜃 + 𝑟 (𝑥, 𝑢) ≤ 0, (3.43)

where 𝑃 : R𝑛 × R𝑚 → S𝑝+ , 𝑞 : R𝑛 × R𝑚 → R𝑝 and 𝑟 : R𝑛 × R𝑚 → R are quadratic
in their second arguments.
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3.5 Robust Optimization
We now outline how to extremize (in particular, maximize) the constraint equations
over all possible uncertainties in their unified forms. In both cases, for fixed state
𝑥 ∈ R𝑛 and control input 𝑢 ∈ R𝑚, the constraint equations are convex in the
uncertainty 𝜃. For affine constraints (Equation (3.42)), this maximization is still
realizable as a convex program, but quadratic constraints (Equation (3.43)) will
necessitate a convex relaxation and a reformulation of the uncertainty set. We
therefore outline the robust optimization procedures separately.

3.5.1 Affine Constraints
For affine constraints (Equation (3.42)), we write the uncertainty set as:

U(𝑥) = {𝜃 ∈ R𝑝 : ∥𝐴𝑖𝜃 + 𝑏𝑖∥2 ≤ 𝑑𝑖 (𝑥), 𝑖 = 1, . . . , 𝑁}, (3.44)

where for each 𝑖 ∈ {1, . . . , 𝑁}, 𝐴𝑖 ∈ R𝑘×𝑝, 𝑏𝑖 ∈ R𝑘 , and 𝑑𝑖 (𝑥) ∈ R+. Here, 𝑘 ∈ N is
the dimension of a second-order cone.

In a state 𝑥 ∈ R𝑛, an input 𝑢 ∈ R𝑚 is robustly feasible if the optimal value of the
optimization problem:

sup
𝜃∈R𝑝

𝑎(𝑥, 𝑢)⊤𝜃 + 𝑏(𝑥, 𝑢)

s.t. ∥𝐴𝑖𝜃 + 𝑏𝑖∥2 ≤ 𝑑𝑖 (𝑥), 𝑖 = 1, . . . , 𝑁, (3.45)

is nonpositive. The corresponding Lagrangian is:

L(𝜃, (𝜆1, 𝜈1), . . . , (𝜆𝑁 , 𝜈𝑁 ); 𝑥, 𝑢) = 𝑎(𝑥, 𝑢)⊤𝜃 + 𝑏(𝑥, 𝑢) +
𝑁∑︁
𝑖=1

[
𝜆𝑖

𝜈𝑖

]⊤ [
𝐴𝑖𝜃 + 𝑏𝑖
𝑑𝑖 (𝑥)

]
=

(
𝑎(𝑥, 𝑢) +

𝑁∑︁
𝑖=1

𝐴⊤𝑖 𝜆𝑖

)⊤
𝜃 + 𝑏(𝑥, 𝑢) +

𝑁∑︁
𝑖=1
(𝜆⊤𝑖 𝑏𝑖 + 𝜈𝑖𝑑𝑖 (𝑥)), (3.46)

where for each 𝑖 ∈ {1, . . . , 𝑁}, the Lagrange multiplier vector (𝜆𝑖, 𝜈𝑖) ∈ R𝑘+1 is in
the 𝑘-dimensional second order cone, with ∥𝜆𝑖∥2 ≤ 𝜈𝑖. To formulate upper bounds
on the optimal value of the optimization problem (through weak duality), for every
choice of Lagrange multipliers, we maximize the Lagrangian over 𝜃. These upper
bounds are vacuously infinite unless 𝑎(𝑥, 𝑢) + ∑𝑁

𝑖=1 𝐴
⊤
𝑖
𝜆𝑖 = 0. The minimal upper
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bound we can determine is given by the optimal value of the optimization problem:

inf
𝜆1,...,𝜆𝑁 ∈R𝑘

𝜈∈R𝑁

𝑏(𝑥, 𝑢) +
𝑁∑︁
𝑖=1
(𝜆⊤𝑖 𝑏𝑖 + 𝜈𝑖𝑑𝑖 (𝑥))

s.t. 𝑎(𝑥, 𝑢) +
𝑁∑︁
𝑖=1

𝐴⊤𝑖 𝜆𝑖 = 0,

∥𝜆𝑖∥2 ≤ 𝜈𝑖, 𝑖 = 1, . . . , 𝑁. (3.47)

We can simplify this problem further by noting that for each 𝑖 ∈ {1, . . . , 𝑁}, since
𝑑𝑖 (𝑥) ≥ 0, there is no reason to choose 𝜈𝑖 any greater than ∥𝜆𝑖∥2. Therefore, our
minimal upper bound is given by the optimal value of:

inf
𝜆1,...,𝜆𝑁 ∈R𝑘

𝑏(𝑥, 𝑢) +
𝑁∑︁
𝑖=1
(𝜆⊤𝑖 𝑏𝑖 + ∥𝜆𝑖∥2𝑑𝑖 (𝑥))

s.t. 𝑎(𝑥, 𝑢) +
𝑁∑︁
𝑖=1

𝐴⊤𝑖 𝜆𝑖 = 0. (3.48)

With a cost function 𝑐 : R𝑛 ×R𝑚 → R that is convex in its second argument, we can
instantiate the following robust optimization problem:

inf
𝑢∈R𝑚

𝜆1,...,𝜆𝑁 ∈R𝑘
𝑐(𝑥, 𝑢)

s.t. 𝑏(𝑥, 𝑢) +
𝑁∑︁
𝑖=1
(𝜆⊤𝑖 𝑏𝑖 + ∥𝜆𝑖∥2𝑑𝑖 (𝑥)) ≤ 0

𝑎(𝑥, 𝑢) +
𝑁∑︁
𝑖=1

𝐴⊤𝑖 𝜆𝑖 = 0. (3.49)

This robust optimization problem is a generalization of that in (Taylor, Dorobantu,
Dean, et al., 2021). Note that because 𝑐 is convex in 𝑢 and 𝑎 and 𝑏 are affine in 𝑢,
this is a convex problem and can be solved efficiently.

3.5.2 Quadratic Constraints
The quadratic constraint case (Equation (3.43)) provides additional challenges. In
a state 𝑥 ∈ R𝑛, an input 𝑢 ∈ R𝑚 is robustly feasible if the optimal value of the
optimization problem:

sup
𝜃∈R𝑝

𝜃⊤𝑃(𝑥, 𝑢)𝜃 + 2𝑞(𝑥, 𝑢)⊤𝜃 + 𝑟 (𝑥, 𝑢)

s.t. ∥𝐴𝑖𝜃 + 𝑏𝑖∥2 ≤ 𝑑𝑖 (𝑥), 𝑖 = 1, . . . , 𝑁, (3.50)
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is nonpositive. As previously mentioned, since 𝑃 takes positive semidefinite values,
this is a nonconvex problem. However, we can still search for upper bounds via
weak duality. To facilitate this, we slightly modify the above optimization problem
to:

sup
𝜃∈R𝑝

𝜃⊤𝑃(𝑥, 𝑢)𝜃 + 2𝑞(𝑥, 𝑢)⊤𝜃 + 𝑟 (𝑥, 𝑢)

s.t. 𝜃⊤𝐴⊤𝑖 𝐴𝑖𝜃 + 2(𝐴⊤𝑖 𝑏𝑖)⊤𝜃 + ∥𝑏𝑖∥22 − 𝑑𝑖 (𝑥)
2 ≤ 0, 𝑖 = 1, . . . , 𝑁. (3.51)

While this modification does not affect the optimal value, it does affect the dual
optimization problem. The corresponding Lagrangian is:

L(𝜃, 𝜆; 𝑥, 𝑢) = 𝜃⊤𝑃(𝑥, 𝑢)𝜃 + 2𝑞(𝑥, 𝑢)⊤𝜃 + 𝑟 (𝑥, 𝑢)

−
𝑁∑︁
𝑖=1

𝜆𝑖

(
𝜃⊤𝐴⊤𝑖 𝐴𝑖𝜃 + 2(𝐴⊤𝑖 𝑏𝑖)⊤𝜃 + ∥𝑏𝑖∥22 − 𝑑

2
𝑖

)
= 𝜃⊤

(
𝑃(𝑥, 𝑢) −

𝑁∑︁
𝑖=1

𝜆𝑖𝐴
⊤
𝑖 𝐴𝑖

)
𝜃 + 2

(
𝑞(𝑥, 𝑢) −

𝑁∑︁
𝑖=1

𝜆𝑖𝐴
⊤
𝑖 𝑏𝑖

)⊤
𝜃

+ 𝑟 (𝑥, 𝑢) −
𝑁∑︁
𝑖=1

𝜆𝑖 (∥𝑏𝑖∥22 − 𝑑𝑖 (𝑥)
2), (3.52)

where 𝜆 ∈ R𝑁+ is a vector of nonnegative Lagrange multipliers. For every choice
of Lagrange multipliers, we maximize the Lagrangian over 𝜃. These upper bounds
are vacuously infinite if the symmetric matrix 𝑃(𝑥, 𝑢) − ∑𝑁

𝑖=1 𝜆𝑖𝐴
⊤
𝑖
𝐴𝑖 has a sin-

gle positive eigenvalue. Even if this matrix has any zero eigenvalues, the corre-
sponding upper bound can still be vacuously infinite if 𝑞(𝑥, 𝑢) − ∑𝑁

𝑖=1 𝜆𝑖𝐴
⊤
𝑖
𝑏𝑖 has

any component in the nullspace of 𝑃(𝑥, 𝑢) − ∑𝑁
𝑖=1 𝜆𝑖𝐴

⊤
𝑖
𝐴𝑖. Therefore, we require

𝑃(𝑥, 𝑢) − ∑𝑁
𝑖=1 𝜆𝑖𝐴

⊤
𝑖
𝐴𝑖 to be negative semidefinite and 𝑞(𝑥, 𝑢) − ∑𝑁

𝑖=1 𝜆𝑖𝐴
⊤
𝑖
𝑏𝑖 to

be orthogonal to its nullspace. Since this matrix is symmetric, its range is the
orthogonal complement of the nullspace. To maximize the Lagrangian over 𝜃, we
differentiate with respect to 𝜃 and obtain:

∇𝜃L(𝜃, 𝜆; 𝑥, 𝑢) = 2

(
𝑃(𝑥, 𝑢) −

𝑁∑︁
𝑖=1

𝜆𝑖𝐴
⊤
𝑖 𝐴𝑖

)
𝜃 + 2

(
𝑞(𝑥, 𝑢) −

𝑁∑︁
𝑖=1

𝜆𝑖𝐴
⊤
𝑖 𝑏𝑖

)
. (3.53)

Since we require 𝑞(𝑥, 𝑢) − ∑𝑁
𝑖=1 𝜆𝑖𝐴

⊤
𝑖
𝑏 to be in the range of the matrix 𝑃(𝑥, 𝑢) −∑𝑁

𝑖=1 𝜆𝑖𝐴
⊤
𝑖
𝐴𝑖, we can make use of the left inverse of the matrix (with reciprocals of

nonzero eigenvalues), yielding critical 𝜃∗:

𝜃∗ = −
(
𝑃(𝑥, 𝑢) −

𝑁∑︁
𝑖=1

𝜆𝑖𝐴
⊤
𝑖 𝐴𝑖

)† (
𝑞(𝑥, 𝑢) −

𝑁∑︁
𝑖=1

𝜆𝑖𝐴
⊤
𝑖 𝑏𝑖

)
. (3.54)
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Our minimal upper bound is given by the optimal value of:

inf
𝜆∈R𝑁

L(𝜃∗, 𝜆; 𝑥, 𝑢)

s.t. 𝑃(𝑥, 𝑢) −
𝑁∑︁
𝑖=1

𝜆𝑖𝐴
⊤
𝑖 𝐴𝑖 ⪯ 0

𝑞(𝑥, 𝑢) −
𝑁∑︁
𝑖=1

𝜆𝑖𝐴
⊤
𝑖 𝑏𝑖 ∈ range

(
𝑃(𝑥, 𝑢) −

𝑁∑︁
𝑖=1

𝜆𝑖𝐴
⊤
𝑖 𝐴𝑖

)
𝜆1, . . . , 𝜆𝑁 ≥ 0,

where ⪯ denotes the positive semidefinite partial order. With a cost function
𝑐 : R𝑛 × R𝑚 → R that is convex in its second argument, we can write the following
robust optimization problem:

inf
𝑢∈R𝑚
𝜆∈R𝑁

𝑐(𝑥, 𝑢)

s.t. L(𝜃∗, 𝜆; 𝑥, 𝑢) ≤ 0

𝑃(𝑥, 𝑢) −
𝑁∑︁
𝑖=1

𝜆𝑖𝐴
⊤
𝑖 𝐴𝑖 ⪯ 0

𝑞(𝑥, 𝑢) −
𝑁∑︁
𝑖=1

𝜆𝑖𝐴
⊤
𝑖 𝑏𝑖 ∈ range

(
𝑃(𝑥, 𝑢) −

𝑁∑︁
𝑖=1

𝜆𝑖𝐴
⊤
𝑖 𝐴𝑖

)
𝜆1, . . . , 𝜆𝑁 ≥ 0. (3.55)

We can make use of the generalized Schur complement (Boyd and Vandenberghe,
2004, Section A.5.5) to simplify the form of this problem, as:

inf
𝑢∈R𝑚
𝜆∈R𝑁

𝑐(𝑥, 𝑢)

s.t.

[
𝑃(𝑥, 𝑢) 𝑞(𝑥, 𝑢)
𝑞(𝑥, 𝑢)⊤ 𝑟 (𝑥, 𝑢)

]
−

𝑁∑︁
𝑖=1

𝜆𝑖

[
𝐴⊤
𝑖
𝐴𝑖 𝐴⊤

𝑖
𝑏𝑖

𝑏⊤
𝑖
𝐴𝑖 ∥𝑏𝑖∥22 − 𝑑𝑖 (𝑥)

]
⪯ 0

𝜆1, . . . , 𝜆𝑁 ≥ 0. (3.56)

We can show that this robust optimization problem is convex using generalized
convexity of symmetric matrix-valued functions. However, such problems remain
difficult to solve computationally. The central difficulty lies in the terms that are
purely quadratic in 𝑢. To mitigate this issue, we note that the particular cases of
quadratic constraints we consider have even more structure. There are functions
𝑃aff : R𝑛 × R𝑚 → S𝑝+ , 𝑞aff : R𝑛 × R𝑚 → R𝑝, and 𝑟aff : R𝑛 × R𝑚 → R that are each
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affine in their second arguments, as well as pure functions of the state 𝑏 : R𝑛 → R𝑝

and 𝑃0R
𝑛 → S𝑝++ such that:

𝑃(𝑥, 𝑢) = 𝑈 (𝑢)⊤𝑃0𝑈 (𝑢) + 𝑃aff (𝑥, 𝑢), (3.57)

𝑞(𝑥, 𝑢) = 𝑈 (𝑢)⊤𝑃0𝑈 (𝑢)𝑏(𝑥) + 𝑞aff (𝑥, 𝑢), (3.58)

𝑟 (𝑥, 𝑢) = 𝑏(𝑥)⊤𝑈 (𝑢)⊤𝑃0𝑈 (𝑢)𝑏(𝑥) + 𝑟aff (𝑥, 𝑢), (3.59)

for all states 𝑥 ∈ R𝑛 and inputs 𝑢 ∈ R𝑚. This allows us to write:[
𝑃(𝑥, 𝑢) 𝑞(𝑥, 𝑢)
𝑞(𝑥, 𝑢)⊤ 𝑟 (𝑥, 𝑢)

]
=

[
𝑃aff (𝑥, 𝑢) 𝑞aff (𝑥, 𝑢)
𝑞aff (𝑥, 𝑢)⊤ 𝑟aff (𝑥, 𝑢)

]
+
[

𝐿 𝐿𝑏(𝑥)
𝑏(𝑥)⊤𝐿 𝑏(𝑥)⊤𝐿𝑏(𝑥)

]
, (3.60)

where 𝐿 = 𝑈 (𝑢)⊤𝑃0(𝑥)𝑈 (𝑢). It is straightforward to see that any matrix 𝑀 ⪰ 𝐿
causes: [

𝑀 𝑀𝑏(𝑥)
𝑏(𝑥)⊤𝑀 𝑏(𝑥)⊤𝑀𝑏(𝑥)

]
⪰

[
𝐿 𝐿𝑏(𝑥)

𝑏(𝑥)⊤𝐿 𝑏(𝑥)⊤𝐿𝑏(𝑥)

]
, (3.61)

since: [
𝛼

𝛽

]⊤ [
𝑀 𝑀𝑏(𝑥)

𝑏(𝑥)⊤𝑀 𝑏(𝑥)⊤𝑀𝑏(𝑥)

] [
𝛼

𝛽

]
= 𝛼⊤𝑀𝛼 + 𝛼⊤𝑀𝑏(𝑥)𝛽 + 𝛽𝑏(𝑥)⊤𝑀𝛼 + 𝛽𝑏(𝑥)⊤𝑀𝑏(𝑥)𝛽
= (𝛼 + 𝑏(𝑥)𝛽)⊤𝑀 (𝛼 + 𝑏(𝑥)𝛽) (3.62)

≥ (𝛼 + 𝑏(𝑥)𝛽)⊤𝐿 (𝛼 + 𝑏(𝑥)𝛽)

=

[
𝛼

𝛽

]⊤ [
𝐿 𝐿𝑏(𝑥)

𝑏(𝑥)⊤𝐿 𝑏(𝑥)⊤𝐿𝑏(𝑥)

] [
𝛼

𝛽

]
, (3.63)

for any vector (𝛼, 𝛽) ∈ R𝑝×R. Therefore, instead of imposing 𝐿 = 𝑈 (𝑢)⊤𝑃0(𝑥)𝑈 (𝑢)
in our robust optimization problem, we can relax this equality constraint to 𝐿 ⪰
𝑈 (𝑢)⊤𝑃0(𝑥)𝑈 (𝑢). Again using the Schur complement, this is equivalent to:[

𝐿 𝑈 (𝑢)⊤

𝑈 (𝑢) 𝑃0(𝑥)−1

]
⪰ 0, (3.64)



44

so we can finally instantiate the convex robust optimization problem:

inf
𝑢∈R𝑚
𝜆∈R𝑁

𝐿∈S𝑝

𝑐(𝑥, 𝑢)

s.t.

[
𝑃aff (𝑥, 𝑢) 𝑞aff (𝑥, 𝑢)
𝑞aff (𝑥, 𝑢)⊤ 𝑟aff (𝑥, 𝑢)

]
+

[
𝐿 𝐿𝑏(𝑥)

𝑏(𝑥)⊤𝐿 𝑏(𝑥)⊤𝐿𝑏(𝑥)

]
−

𝑁∑︁
𝑖=1

𝜆𝑖

[
𝐴⊤
𝑖
𝐴𝑖 𝐴⊤

𝑖
𝑏𝑖

𝑏⊤
𝑖
𝐴𝑖 ∥𝑏𝑖∥22 − 𝑑𝑖 (𝑥)

]
⪯ 0[

𝐿 𝑈 (𝑢)⊤

𝑈 (𝑢) 𝑃0(𝑥)−1

]
⪰ 0

𝜆1, . . . , 𝜆𝑁 ≥ 0. (3.65)

In general, we should not expect strong duality to hold for the maximization over
uncertainty. Therefore, this convex robust optimization problem may be more
conservative than necessary. However, a feasible solution to this problem certainly
satisfies the desired constraint under the ground truth uncertainty.

3.6 Outer Bounding Uncertainty Sets
When the number of data points 𝑁 is very large, the robust optimization problems
in Equation (3.49) and Equation (3.65) can still be slow to solve; ultimately, this
is due to the complexity of the uncertainty set description. If we can instead find
simple outer bounding uncertainty sets, incorporating more potential uncertainties
but with fewer necessary Lagrange multipliers, we can trade off solution speed with
conservativeness. Note that if we are too conservative, the resulting optimization
problem may be infeasible.

We will briefly study the computation of appropriate outer bounds for uncertainty
sets of the form:

U(𝑥) = {𝜃 ∈ R𝑝 : ∥𝐴𝑖𝜃 + 𝑏𝑖∥22 ≤ 𝑑𝑖 (𝑥)
2, 𝑖 = 1, . . . , 𝑁}. (3.66)

This is our uncertainty set represented as the intersection of𝑁 ellipsoids inR𝑝. When
𝑝 > 𝑘 (as is true in our case, where 𝑝 = (𝑚+1)𝑛 and 𝑘 = 𝑛), the matrices 𝐴𝑖 ∈ R𝑘×𝑝

are wide with nontrivial nullspaces. Therefore, each ellipsoid is degenerate, with
directions of infinite extent.

However, if the intersection of all such degenerate ellipsoids is bounded, then we can
compute an outer bounding ellipsoid via semidefinite programming (Calafiore and
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Figure 3.1: Data-driven robust sampled data controller for a pendulum system.
Here, 𝑞 = 𝜃 and ¤𝑞 = 𝜔. Uncertainty is only modeled in the acceleration. (Left) An
example of the uncertainty set and outer approximating ellipsoid. The green cross
shows the ground truth uncertainty. (Right) Control inputs evaluated on a grid, with
smaller inputs indicating better costs. The blue surface is the control profile of the
robust controller using all 3888 data points. The orange surface is the control profile
of the robust controller using the outer approximating ellipsoid.

El Ghaoui, 2014, Section 11.4.2.5). The resulting bounding ellipsoid is a suboptimal
approximation of the minimum volume outer bounding ellipsoid, circumscribing the
intersection of ellipsoids. To compute the outer bound, we make use of an extension
of the 𝑆-proceduce (Calafiore and El Ghaoui, 2014, p. 11.3.3.1), which provides a
sufficient condition for a quadratic sublevel set (at level 0) to contain the intersection
of 𝑁 quadratic sublevel sets (all also at level 0).

First, we write 𝑓1, . . . , 𝑓𝑁 : R𝑝 → R as:

𝑓𝑖 (𝜃; 𝑥) = 𝜃⊤𝐴⊤𝑖 𝐴𝑖𝜃 + 2(𝐴⊤𝑖 𝑏𝑖)⊤𝜃 + ∥𝑏𝑖∥22 − 𝑑𝑖 (𝑥)
2

=

[
𝜃

1

]⊤ [
𝐴⊤
𝑖
𝐴𝑖 𝐴⊤

𝑖
𝑏𝑖

𝑏⊤
𝑖
𝐴𝑖 ∥𝑏𝑖∥22 − 𝑑𝑖 (𝑥)

2

] [
𝜃

1

]
, (3.67)

for all 𝜃 ∈ R𝑝 and 𝑖 ∈ {1, . . . , 𝑁}. The 𝑖th degenerate ellipsoid is the 0-sublevel
set of 𝑓𝑖. Similary, for 𝐹0 ∈ S𝑝, 𝑔0 ∈ R𝑝, and ℎ0 ∈ R (to be determined), define
𝑓0 : R𝑝 → R as:

𝑓0(𝜃) =
[
𝜃

1

]⊤ [
𝐹0 𝑔0

𝑔⊤0 ℎ0

] [
𝜃

1

]
, (3.68)
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for all 𝜃 ∈ R𝑝. A sufficient (but not neccesary) condition for the 0-sublevel set of 𝑓0
to contain the intersection of degenerate ellipsoids is the existence of some 𝜏 ∈ R𝑁+
with: [

𝐹0 𝑔0

𝑔⊤0 ℎ0

]
⪯

𝑁∑︁
𝑖=1

𝜏𝑖

[
𝐴⊤
𝑖
𝐴𝑖 𝐴⊤

𝑖
𝑏𝑖

𝑏⊤
𝑖
𝐴𝑖 ∥𝑏𝑖∥22 − 𝑑𝑖 (𝑥)

2

]
. (3.69)

If we prescribe that the 0-sublevel set of 𝑓0 is:

{𝜃 ∈ R𝑝 : ∥𝐴0𝜃 + 𝑏0∥2 ≤ 1}, (3.70)

for some 𝐴0 ∈ S𝑝++ and 𝑏0 ∈ R𝑝 (again, to be determined), then we obtain:[
𝐴2

0 𝐴0𝑏0

𝑏⊤0 𝐴0 ∥𝑏0∥22 − 1

]
⪯

𝑁∑︁
𝑖=1

𝜏𝑖

[
𝐴⊤
𝑖
𝐴𝑖 𝐴⊤

𝑖
𝑏𝑖

𝑏⊤
𝑖
𝐴𝑖 ∥𝑏𝑖∥22 − 𝑑𝑖 (𝑥)

2

]
, (3.71)

which we can rearrange as:[
𝐴2

0 𝐴0𝑏0

𝑏⊤0 𝐴0 −1

]
−

𝑁∑︁
𝑖=1

𝜏𝑖

[
𝐴⊤
𝑖
𝐴𝑖 𝐴⊤

𝑖
𝑏𝑖

𝑏⊤
𝑖
𝐴𝑖 ∥𝑏𝑖∥22 − 𝑑𝑖 (𝑥)

2

]
−

[
0

𝑏⊤0 𝐴0

]
(−𝐴−1

0 )
[
0 𝐴0𝑏0

]
⪯ 0.

(3.72)
Again, we can employ the Schur complement to equivalently write:

𝐴2
0 −

∑𝑁
𝑖=1 𝜏𝑖𝐴

⊤
𝑖
𝐴𝑖 𝐴0𝑏0 −

∑𝑁
𝑖=1 𝜏𝑖𝐴

⊤
𝑖
𝑏𝑖 0

𝑏⊤0 𝐴0 −
∑𝑁
𝑖=1 𝜏𝑖𝑏

⊤
𝑖
𝐴𝑖 −1 −∑𝑁

𝑖=1 𝜏𝑖 (∥𝑏𝑖∥22 − 𝑑𝑖 (𝑥)
2) 𝑏⊤0 𝐴0

0 𝐴0𝑏0 −𝐴−1
0

 ⪯ 0, (3.73)

which is equivalent provided that 𝐴0 ⪰ 0.

The volume of an ellipsoid characterized by 𝐴0 and 𝑏0 is det 𝐴−1
0 ·Vol(𝐵R𝑛), where

𝐵R𝑛 is the Euclidean unit ball in R𝑛. Therefore, for a fixed state 𝑥 ∈ R𝑛, we can
approximate the minimum volume ellipsoid containing the uncertainty set U(𝑥)
with the solution to following convex optimization problem:

inf
𝐴0∈S𝑝
𝑏0∈R𝑝

− log det 𝐴0

s.t.


𝐴2

0 −
∑𝑁
𝑖=1 𝜏𝑖𝐴

⊤
𝑖
𝐴𝑖 𝐴0𝑏0 −

∑𝑁
𝑖=1 𝜏𝑖𝐴

⊤
𝑖
𝑏𝑖 0

𝑏⊤0 𝐴0 −
∑𝑁
𝑖=1 𝜏𝑖𝑏

⊤
𝑖
𝐴𝑖 −1 −∑𝑁

𝑖=1 𝜏𝑖 (∥𝑏𝑖∥22 − 𝑑𝑖 (𝑥)
2) 𝑏⊤0 𝐴0

0 𝐴0𝑏0 −𝐴−1
0

 ⪯ 0

𝐴0 ⪰ 0. (3.74)

A smaller volume outer bounding ellipsoid may exist that does not admit a certificate
vector 𝜏 ∈ R𝑁+ ; this optimization problem will not find such an ellipsoid.
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Computing the solution to this optimization problem is still similarly difficult to
solving the robust optimization problems to begin with. However, by solving
such problems offline and training parametric models to approximate such outer
bounds, the corresponding simplified robust optimization solvers can be accelerated.
Moreover, differentiable convex optimization solvers (like those in (Agrawal et al.,
2019)) can be employed to update parameters based on the optimal cost attained in
the robust optimization problem when the outer bound approximators are employed.
Example behavior is shown on a pendulum system in Figure 3.1, where the exact
outer approximating ellipsoids are employed.
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C h a p t e r 4

COMPACTLY-RESTRICTABLE POLICY OPTIMIZATION
PROBLEMS

4.1 Introduction
Policy optimization is a cornerstone in planning, control and reinforcement learn-
ing. Classic approaches include value iteration and policy iteration (Dynkin and
Yushkevich, 1979; Puterman, 2014; Bertsekas, 2011; Bertsekas, 2019; Sutton and
Barto, 2018). From a theoretical standpoint, a key step is establishing when policy
optimization is well-posed, i.e., when optimal policies exist, and when they can be
found algorithmically. While such results for value and policy iteration are well
established for discrete systems with finitely many states and actions (also known
as the tabular setting), relatively few foundational results have been established for
continuous control.

We study Metric Policy Optimization Problems (MPOPs), which come endowed
with metric state and action spaces. Compared to tabular MDPs, several new chal-
lenges arise in the continuous setting. Even for deterministic problems, rewards may
be unbounded, maxima of functions (over actions) may not exist, and the domains
of value functions may be different for different policies. Without addressing these
challenges, optimal policies need not exist and value iteration or policy iteration
may be impossible.

In order to establish well-posedness of dynamic programming approaches, we define
the class of Compactly Restrictable MPOPs (CR-MPOPs). We show that CR-
MPOPs arise naturally when imposing forward-invariance constraints on the policy
class one optimizes over. As such, CR-MPOPs are well suited for characterizing
many systems which rely on forward-invariance for controller design.

Sampled-data design (Nešić, Teel, and Kokotović, 1999) allows us to synthesize
policies for continuous-time systems when inputs are passed through a zero-order
hold (held constant over fixed frequency time intervals), as is realistic for many
physical systems. We leverage recent results (Taylor, Dorobantu, Yue, et al., 2021;
Taylor, Dorobantu, Cosner, et al., 2022) to certify the existence of a compact
subset of the state space that can be rendered forward-invariant through control.
These results are readily applicable to feedback linearizable control affine systems,
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allowing us to design CR-MPOPs for a wide array of complex systems.

Many frameworks extend the theory of discrete MDPs to general state and action
spaces. Most relevant for our work, (Dynkin and Yushkevich, 1979) develops semi-
continuous MDPs with Borel measurable policy classes, (Blackwell, Freedman, and
Orkin, 1974) and (Bertsekas and Shreve, 1996) develop results for analyticially and
universally measurable policy classes, respectively, and (Feinberg, Kasyanov, and
Zadoianchuk, 2012) refines conditions for the well-posedness of value iteration.
For a more complete summary, see (Yu and Bertsekas, 2015). A relevant concur-
rent work is (Feinberg and Kasyanov, 2021), which makes use of inf-compactness
of cost function action sections to demonstrate well-posedness for problems with
unbounded state and action spaces and unbounded rewards. Our work focuses on
developing classes of policy optimization problems that can naturally connect theo-
retical results from reinforcement learning with nonlinear continuous-time control,
and can be directly translated to checking certain properties in control systems that
arise naturally in synthesis, such as forward-invariance of sets.

Methods that maintain the forward-invariance of subsets of the state space of interest
have been well-studied (Blanchini, 1999; Prajna, 2005; Ames, Xu, et al., 2016).
These and related methods have recently found applications in safe reinforcement
learning (Berkenkamp, Turchetta, et al., 2017; Rosolia and Borrelli, 2017; Cheng
et al., 2019; Choi et al., 2020). Physical systems and robotic platforms have been
popular applications for reinforcement learning methods recently, with the majority
of methods employing function approximation, discretizations (such as fixed or
adaptive gridding or state aggregation), or direct policy search (Kober, Bagnell, and
Peters, 2013; Levine et al., 2016; Lillicrap et al., 2015). While policy search methods
generally have no guarantees of global optimality, they have received much attention
due to the scalability problems of dynamic programming methods (especially after
discretization) and convergence problems of approximate dynamic programming
(for a more complete discussion of the relative merits of these methods, see (Kober,
Bagnell, and Peters, 2013, Section 2.3)). In contrast, our goal is to identify settings
that are compatible with value iteration and to use control theoretic tools to guide
solution methods so we can expect good performance.

We develop our results in the following phases:

1. We describe a generic property (Assumption 3) that admits the well-posedness
of value iteration for MPOPs (Theorem 1).
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2. We leverage the forward-invariance of compact sets to design MPOPs and
policy classes that satisfy Assumption 3, allowing us to prove well-posedness
of a large class of policy optimization problems (Theorem 2). Such problem
settings are called CR-MPOPs.

3. We apply our results on CR-MPOPs to analyze control affine systems with
time-sampled control inputs.

4. We further apply our results to analyze robotic systems with time-sampled
control inputs, which comprise a large class of control affine systems. These
results translate the generic requirements for well-posedness to concrete re-
quirements on the robotic system.

5. We finally show that full-state feedback linearizable control affine systems
can render a compact subset of the state space forward invariant with con-
tinuous controllers (thus satisfying conditions of Theorem 2), demonstrating
practically relevant instances of CR-MPOPs.

4.1.1 Notation, Conventions, and Definitions
We consider nonempty metric spaces throughout this chapter and endow each such
space with the 𝜎-algebra generated by its topology, called the Borel 𝜎-algebra. In
this case, open sets and closed sets are measurable sets and continuous functions are
measurable functions. A metric space is separable if it contains a countable dense
subset. Finite or countable sets can be regarded as separable metric spaces when
equipped with the discrete metric (Kechris, 2012, Section 3.A). For nonempty
metric spaces 𝑋 and 𝑌 , the set of measurable functions from 𝑋 to 𝑌 is denoted
L0(𝑋;𝑌 ). The set of bounded measurable functions from 𝑋 to R is denoted L0

𝑏
(𝑋),

which is a Banach space when equipped with the norm ∥ · ∥sup : L0
𝑏
(𝑋) → R,

defined as:
∥ 𝑓 ∥sup = sup

𝑥∈𝑋
| 𝑓 (𝑥) |, (4.1)

for all bounded measurable functions 𝑓 : 𝑋 → R. A bounded measurable function
𝑓 : 𝑋 → R is upper semicontinuous if for any 𝑐 ∈ R, the preimage 𝑓 −1( [𝑐,∞)) =
{𝑥 ∈ 𝑋 : 𝑓 (𝑥) ≥ 𝑐} is closed. The set of bounded upper semicontinuous functions
from 𝑋 to R is denoted C𝑢

𝑏
(𝑋), the set of bounded continuous functions from 𝑋 to

R is denoted C0
𝑏
(𝑋), and note that C0

𝑏
(𝑋) ⊆ C𝑢

𝑏
(𝑋) ⊆ L0

𝑏
(𝑋).
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The set of all subsets of𝑌 is the powerset of𝑌 , denoted P(𝑌 ). A set-valued function
𝐶 : 𝑋 → P(𝑌 ) is called a correspondence. The graph of 𝐶 is defined as:

Graph(𝐶) = {(𝑥, 𝑦) ∈ 𝑋 × 𝑌 : 𝑦 ∈ 𝐶 (𝑥)}. (4.2)

If 𝐶 (𝑥) ≠ ∅ for all 𝑥 ∈ 𝑋 , then a selector of 𝐶 is a function 𝑓 : 𝑋 → 𝑌 satisfying
𝑓 (𝑥) ∈ 𝐶 (𝑥) for all 𝑥 ∈ 𝑋 . For any set 𝐵 ⊆ 𝑌 , the lower preimage of 𝐵 under 𝐶 is
defined as:

𝐶ℓ (𝐵) = {𝑥 ∈ 𝑋 : 𝐶 (𝑥) ∩ 𝐵 ≠ ∅}. (4.3)

The correspondence𝐶 is upper hemicontinuous1 if the lower preimage of each closed
set is a closed set (Aliprantis and Border, 2006, Lemma 17.4). 𝐶 is measurable if the
lower preimage of each closed set is a measurable set, and 𝐶 is weakly measurable
if the lower preimage of each open set is a measurable set. If 𝐶 is measurable, then
it is weakly measurable (Aliprantis and Border, 2006, Lemma 18.2).

The product 𝑋 × 𝑌 is a metric space, with a topology generated by the basis
{𝑈 × 𝑉 : 𝑈 ⊆ 𝑋 and 𝑉 ⊆ 𝑌 are open}, and, if 𝑋 and 𝑌 are separable, a 𝜎-algebra
generated by the collection {𝐴 × 𝐵 : 𝐴 ⊆ 𝑋 and 𝐵 ⊆ 𝑌 are measurable sets}
(Billingsley, 1999, Appendix M).

A nonempty subset 𝑋0 ⊆ 𝑋 is a metric space when equipped with the restriction of
the metric on 𝑋 to 𝑋0 × 𝑋0. For any open set 𝑈 ⊆ 𝑋0, there is an open set 𝑉 ⊆ 𝑋
such that 𝑈 = 𝑋0 ∩ 𝑉 . For any continuous function 𝑓 : 𝑋 → 𝑌 , the restriction
𝑓 |𝑋0 : 𝑋0 → 𝑌 is continuous. Similarly, for any measurable set 𝐴 ⊆ 𝑋0, there is
a measurable set 𝐵 ⊆ 𝑋 such that 𝐴 = 𝑋0 ∩ 𝐵, and for any measurable function
𝑓 : 𝑋 → 𝑌 , the restriction 𝑓 |𝑋0 is measurable.

Consider a nonempty metric space 𝑍 and a function 𝑓 : 𝑋 ×𝑌 → 𝑍 . For 𝑥 ∈ 𝑋 and
𝑦 ∈ 𝑌 , the 𝑥-section 𝑓𝑥 : 𝑌 → 𝑍 and the 𝑦-section 𝑓 𝑦 : 𝑋 → 𝑍 are defined as:

𝑓𝑥 (𝑦′) = 𝑓 (𝑥, 𝑦′), 𝑓 𝑦 (𝑥′) = 𝑓 (𝑥′, 𝑦), (4.4)

for all 𝑥′ ∈ 𝑋 and 𝑦′ ∈ 𝑌 . If 𝑓 is continuous, then 𝑓 has continuous sections, and if
𝑓 is measurable, then 𝑓 has measurable sections. If 𝑓𝑥 is continuous for each 𝑥 ∈ 𝑋
and 𝑓 𝑦 is measurable for each 𝑦 ∈ 𝑌 , then 𝑓 is called a Carathéodory function;
if 𝑌 is also separable, then 𝑓 is measurable (Aliprantis and Border, 2006, Lemma
4.51). We also define sections for functions on graphs. Consider a correspondence
𝐶 : 𝑋 → P(𝑌 ) with 𝐶 (𝑥) ≠ ∅ for all 𝑥 ∈ 𝑋 , and a function 𝑓 : Graph(𝐶) → 𝑍 .
For 𝑥 ∈ 𝑋 , we define the 𝑥-section 𝑓𝑥 : 𝐶 (𝑥) → 𝑍 as above.

1Some authors call such correspondences upper semicontinuous; we use hemicontinuous to
distinguish correspondences from real-valued functions.
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4.2 Finite State and Action Spaces
We first outline deterministic Markov Decision Processes (MDPs) for finite state
and action spaces. An MDP with finite state action action spaces is also referred
to as tabular. Consider a system characterized by a finite set of states S. An agent
interacts with this system; at each time step, the agent observes the system state and
specifies an action from a finite set of actionsA. The actions available to the agent
may depend on the state, and the state and specified action determine the next state
of the system. Specifically, in each state 𝑠 ∈ S, there is a nonempty subsetA𝑠 ⊆ A
of actions available to the agent. We define a correspondence 𝐶 : S → P(A) with:

𝐶 (𝑠) = A𝑠, (4.5)

for all states 𝑠 ∈ S. The transition dynamics of the system 𝑓 : Graph(𝐶) → S tell
us how the system state and specified action determine the next system state; when
the system is in state 𝑠 ∈ S and the agent specifies action 𝑎 ∈ 𝐶 (𝑠), the system
transitions to state 𝑓 (𝑠, 𝑎) ∈ S.

Given an initial state 𝑠0 ∈ S, a sequence of actions {𝑎𝑡 ∈ A : 𝑡 ∈ Z+} is admissible
if there is a corresponding sequence of states {𝑠𝑡 ∈ S : 𝑡 ∈ N} such that:

𝑎𝑡 ∈ 𝐶 (𝑠𝑡), 𝑠𝑡+1 = 𝑓 (𝑠𝑡 , 𝑎𝑡), (4.6)

for all 𝑡 ∈ Z+. Such a sequence may admit a corresponding sequence of rewards.
Specifically, let 𝑟 : Graph(𝐶) → R be a reward function, giving a reward 𝑟 (𝑠, 𝑎) to
the agent when the system is in state 𝑠 ∈ S and the agent takes action 𝑎 ∈ 𝐶 (𝑠). The
sequence of rewards corresponding to the above sequences of states and actions is
simply {𝑟 (𝑠𝑡 , 𝑎𝑡) ∈ R : 𝑡 ∈ Z+}. Note that while this reward function only depends
on a current state and a current action, it can also encode a reward that depends on
the next state since the transition dynamics are deterministic.

The total reward accumulated over 𝑇 ∈ N steps is:
𝑇−1∑︁
𝑡=0

𝑟 (𝑠𝑡 , 𝑎𝑡). (4.7)

SinceS andA are finite, so is Graph(𝐶) ⊆ S×A, as is the image 𝑟 (Graph(𝐶)) ⊂ R.
This means the reward sequence is bounded. However, the sequence need not
converge to 0, which is necessary for convergence of the accumulated reward as
𝑇 → ∞. Therefore, we make use of a discount factor 𝛾 ∈ [0, 1), and consider the
total discounted reward accumulated over an infinite horizon:

∞∑︁
𝑡=0

𝛾𝑡𝑟 (𝑠𝑡 , 𝑎𝑡). (4.8)
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At a high level, we aim to select actions that maximize this quantity. The tuple
(S,A, 𝐶, 𝑓 , 𝑟, 𝛾) is called a (deterministic) Markov decision process (MDP).

One way we can simplify the maximization total accumulated discounted reward is
by introducing state-feedback policies. Specifically, we consider memoryless and
time-invariant policies 𝜋 : S → A that satisfy 𝜋(𝑠) ∈ 𝐶 (𝑠) for all states 𝑠 ∈ S.
Such functions are selectors of 𝐶. When the agent follows the policy 𝜋, whenever
the system is in state 𝑠 ∈ S, the agent specifies action 𝜋(𝑠) ∈ A. The value function
under a policy 𝜋 specifies the total discounted reward accumulated by the agent from
any initial state of the system. Specifically, define the closed-loop transition map
𝑓𝜋 : S → S and single-step reward function 𝑟𝜋 : S → R as:

𝑓𝜋 (𝑠) = 𝑓 (𝑠, 𝜋(𝑠)), 𝑟𝜋 (𝑠) = 𝑟 (𝑠, 𝜋(𝑠)), (4.9)

for all states 𝑠 ∈ S. For any 𝑡 ∈ Z+, let 𝑓 𝑡𝜋 : S → S denote the 𝑡-iterated composition
of 𝑓𝜋. The value function 𝑉𝜋 : S → R is then defined as:

𝑉𝜋 (𝑠) =
∞∑︁
𝑡=0

𝛾𝑡𝑟𝜋 ( 𝑓 𝑡𝜋 (𝑠)), (4.10)

for all states 𝑠 ∈ S. Importantly, 𝑉𝜋 satisfies the implicit equation:

𝑉𝜋 (𝑠) = 𝑟𝜋 (𝑠) + 𝛾𝑉𝜋 ( 𝑓𝜋 (𝑠)) = 𝑟 (𝑠, 𝜋(𝑠)) + 𝛾𝑉𝜋 ( 𝑓 (𝑠, 𝜋(𝑠))), (4.11)

for all states 𝑠 ∈ S.

The set of all policies Π is partially ordered by value functions. Specifically, if
𝜋, 𝜋′ ∈ Π satisfy:

𝑉𝜋 (𝑠) ≥ 𝑉𝜋′ (𝑠), (4.12)

for all states 𝑠 ∈ S, then 𝜋 ⪰ 𝜋′. Since S and A are finite, there are finitely many
policies, with no more than

∏
𝑠∈S |𝐶 (𝑠) | ≤ |S| · |A| policies total, so we can define

the optimal value function 𝑉∗ : S → R as:

𝑉∗(𝑠) = max
𝜋∈Π

𝑉𝜋 (𝑠), (4.13)

for all states 𝑠 ∈ S. An optimal policy 𝜋∗ ∈ Π satisfies:

𝑉𝜋∗ (𝑠) = 𝑉∗(𝑠), (4.14)

for all states 𝑠 ∈ S. From the definition of 𝑉∗, this means 𝜋∗ ⪰ 𝜋 for all policies
𝜋 ∈ Π.
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Two classical methods for finding optimal policies are value iteration and policy
iteration. Since its generalization beyond finite state and action spaces is more
straightforward, we focus on value iteration. Intuitively, value iteration produces a
sequence of approximations of the optimal value function, converging to the optimal
value function itself. The set of all functions from S to R is a real vector space of
dimension |S|. The optimal Bellman operator is defined on this space as:

[T (𝑉)] (𝑠) = max
𝑎∈𝐶 (𝑠)

(𝑟 (𝑠, 𝑎) + 𝛾𝑉 ( 𝑓 (𝑠, 𝑎))) , (4.15)

for all state 𝑠 ∈ S, for all 𝑉 : S → R. Value iteration simply starts from any initial
approximation 𝑉0 : S → R and produces the sequence {𝑉𝑛 : 𝑛 ∈ N} via:

𝑉𝑛+1 = T (𝑉𝑛), (4.16)

for each 𝑛 ∈ Z+. To show that value iteration converges to the optimal value function,
it is sufficient to show that:

1. For an appropriate choice of norm, the space of functions from S to R is a
Banach space and T is a 𝛾-contraction, so value iteration always converges
to a unique fixed point 𝑉∞, and

2. 𝑉∞ = 𝑉∗.

We will illustrate this in detail for infinite state and action spaces.

4.3 Metric Policy Optimization Problems
In the general case, we will still characterize a deterministic MDP by a tuple
(S,A, 𝐶, 𝑓 , 𝑟, 𝛾), with state space S, action space A, action-admissibility cor-
respondence 𝐶 : S → P(A) satisfying 𝐶 (𝑠) ≠ ∅ for each state 𝑠 ∈ S, transition
map 𝑓 : Graph(𝐶) → S, reward function 𝑟 : Graph(𝐶) → R, and discount factor
𝛾 ∈ [0, 1). Note while 𝑟 may be unbounded, 𝑟 cannot assume the values ±∞. We
refer to an MDP as a metric MDP if S andA are nonempty separable metric spaces
and 𝑓 and 𝑟 are measurable functions. We will focus solely on metric MDPs, and
often refer to them simply as MDPs for brevity.

We will limit our consideration to deterministic, Markovian (memoryless), and
stationary (time-invariant) policies. In this case, a policy 𝜋 : S → A is a selector
of 𝐶; that is, 𝜋(𝑠) ∈ 𝐶 (𝑠) for all states 𝑠 ∈ S. The corresponding closed-loop
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transition map 𝑓𝜋 : S → S and single-step reward function 𝑟𝜋 : S → R are defined
as before. Define the subset S𝜋 ⊆ S as:

S𝜋 =
{
𝑠 ∈ S :

∞∑︁
𝑡=0

𝛾𝑡𝑟𝜋 ( 𝑓 𝑡𝜋 (𝑠)) converges absolutely

}
. (4.17)

If 𝑟𝜋 is bounded, then S𝜋 = S. If 𝛾 > 0, then 𝑓𝜋 (S𝜋) ⊆ S𝜋, as a convergent series
still converges after the first term is removed. If S𝜋 ≠ ∅, then the corresponding
value function𝑉𝜋 : S𝜋 → R is defined explicitly and implicitly, for all states 𝑠 ∈ S𝜋,
as:

𝑉𝜋 (𝑠) =
∞∑︁
𝑡=0

𝛾𝑡𝑟𝜋 ( 𝑓 𝑡𝜋 (𝑠)) = 𝑟𝜋 (𝑠) + 𝛾𝑉𝜋 ( 𝑓𝜋 (𝑠)). (4.18)

A set of policies Π admits a partial order if S𝜋 = S for all policies 𝜋 ∈ Π. In this
case, for policies 𝜋, 𝜋′ ∈ Π, if 𝑉𝜋 (𝑠) ≥ 𝑉𝜋′ (𝑠) for all states 𝑠 ∈ S, then 𝜋 ⪰ 𝜋′.

Definition 3 (Metric Policy Optimization Problem). We refer to the pair of an MDP
(S,A, 𝐶, 𝑓 , 𝑟, 𝛾) and a policy class Π admitting a partial order as a metric policy
optimization problem (MPOP). We call an MPOP well-posed if there is an optimal
policy 𝜋∗ ∈ Π with 𝜋∗ ⪰ 𝜋 for all policies 𝜋 ∈ Π.

Our goal in this section is to analyze well-posedness of policy optimization for
MDPs. We first describe sufficient conditions for well-posedness of value iteration
(Theorem 1). We then establish conditions under which ill-posed MPOPs can be
restricted to well-posed problems by only considering policies that render the same
subset of the state space forward-invariant (Theorem 2), resulting in CR-MPOPs.
We will show how to apply our results on value iteration to control affine systems
in Section 4.4.

Throughout this section, we refer to and modify the following example to ground
our presentation:

Example 3. Consider the state space S = R, action space A = R, and the constant
action-admissibility correspondence 𝐶 = A. Additionally, consider the transition
function 𝑓 : Graph(𝐶) → S and reward function 𝑟 : Graph(𝐶) → R defined as:

𝑓 (𝑠, 𝑎) = 𝑠 + tanh (𝑎), 𝑟 (𝑠, 𝑎) = −𝑠2 − (tanh (𝑎))2, (4.19)

for all state-action pairs (𝑠, 𝑎) ∈ Graph(𝐶), and a discount factor 𝛾 ∈ [0, 1). Note
that | 𝑓 (𝑠, 𝑎) | ≤ |𝑠 | + | tanh (𝑎) | ≤ |𝑠 | +1 for all state-action pairs (𝑠, 𝑎) ∈ Graph(𝐶).
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Consider any policy 𝜋 : S → A. By induction, we have | 𝑓 𝑡𝜋 (𝑠) | ≤ |𝑠 | + 𝑡 for all
states 𝑠 ∈ S and 𝑡 ∈ Z+. For any state 𝑠 ∈ S and 𝑇 ∈ Z+, we have:

𝑇∑︁
𝑡=0

𝛾𝑡𝑟𝜋 ( 𝑓 𝑡𝜋 (𝑠)) ≥ −
∞∑︁
𝑡=0

𝛾𝑡 (( 𝑓 𝑡𝜋 (𝑠))2 + (tanh (𝜋( 𝑓 𝑡𝜋 (𝑠))))2)

≥ −
∞∑︁
𝑡=0

𝛾𝑡 (𝑠2 + 2|𝑠 |𝑡 + 𝑡2 + 1)

= − 𝑠
2 + 1

1 − 𝛾 −
2𝛾 |𝑠 |
(1 − 𝛾)2

− 𝛾(𝛾 + 1)
(1 − 𝛾)3

. (4.20)

The sequence of partial sums as 𝑇 →∞ is monotone and bounded below, so 𝑉𝜋 (𝑠)
is well-defined. As 𝑠 was arbitrary, we have S𝜋 = S.

4.3.1 Value Iteration
Consider a policy class Π withS𝜋 = S for each policy 𝜋 ∈ Π and sup𝜋∈Π 𝑉𝜋 (𝑠) < ∞
for each state 𝑠 ∈ S. Accordingly, we define the optimal (with respect to Π) value
function 𝑉∗ : S → R as:

𝑉∗(𝑠) = sup
𝜋∈Π

𝑉𝜋 (𝑠), (4.21)

for all states 𝑠 ∈ S. If a policy 𝜋∗ ∈ Π satisfies 𝑉𝜋∗ = 𝑉∗, then 𝜋∗ is optimal and the
policy optimization problem is well-posed.

As with value iteration for finite state and action spaces, given an initial guess
𝑉0 : S → R, we seek a sequence of real-valued functions {𝑉𝑛 : 𝑛 ∈ N} satisfying:

𝑉𝑛+1(𝑠) = sup
𝑎∈𝐶 (𝑠)

{𝑟 (𝑠, 𝑎) + 𝛾𝑉𝑛 ( 𝑓 (𝑠, 𝑎))}, (4.22)

for all states 𝑠 ∈ S and 𝑛 ∈ Z+.

We now describe conditions under which MPOPs are well-posed and can be solved
with value iteration (Theorem 1). When assumptions are strengthened by requir-
ing S and A to be Polish spaces, we can make use of (Feinberg, Kasyanov, and
Zadoianchuk, 2012, Theorem 4.1) (the setting of this theorem is called a semicon-
tinuous model in (Dynkin and Yushkevich, 1979, Section 6.7)).

Assumption 3. The action admissibility correspondence 𝐶 has compact values and
is upper hemicontinuous, the transition function 𝑓 is continuous, the reward function
𝑟 is upper semicontinuous and bounded, and the policy class Π is the set of all
measurable selectors of 𝐶. Moreover, for each state-action pair (𝑠, 𝑎) ∈ Graph(𝐶),
there is a corresponding policy 𝜋𝑠,𝑎 ∈ Π satisfying 𝜋𝑠,𝑎 (𝑠) = 𝑎.
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Remark 3. If the projection of Graph(𝐶) onto the action space is compact, then
the assumption that for any state-action pair (𝑠, 𝑎) ∈ Graph(𝐶), there exists a policy
𝜋𝑠,𝑎 ∈ Π with 𝜋𝑠,𝑎 (𝑠) = 𝑎 can be removed. See Lemma 2.

Remark 4 (Tabular MDP). IfS andA are finite sets equipped with discrete metrics
and Π is the set of all selectors of 𝐶, then these assumptions are immediately met.
This follows since the discrete metric renders all sets are open, closed, and compact,
and all functions defined on such sets are continuous (and bounded if real-valued).

Example 4. Consider the MDP (S,A, 𝐶, 𝑓 , 𝑟, 𝛾) from Example 3. While 𝐶 is
upper hemicontinuous, it is not compact-valued. While 𝑓 and 𝑟 are continuous, 𝑟
is unbounded. Consider the constant correspondence 𝐶′ = [−1, 1], and the reward
𝑟′ : Graph(𝐶′) → R:

𝑟′(𝑠) = 𝑒−𝑠2 − (tanh (𝑎))2, (4.23)

for all state-action pairs (𝑠, 𝑎) ∈ Graph(𝐶′). Note that Graph(𝐶′) = S × [−1, 1], so
𝑟′ is bounded. Since 𝑓 is continuous, its restriction to Graph(𝐶′) is as well. With Π

the set of all measurable selectors of 𝐶′, note that for every pair (𝑠, 𝑎) ∈ Graph(𝐶′),
the constant policy 𝜋𝑠,𝑎 = 𝑎 is a measurable selector of 𝐶′, so 𝜋𝑠,𝑎 ∈ Π. Thus, the
MPOP defined by the MDP (S,A, 𝐶′, 𝑓 |Graph(𝐶′) , 𝑟

′, 𝛾) and policy class Π satisfies
Assumption 3.

The remainder of this section is dedicated to demonstrating well-posedness under
Assumption 3, as stated in the following theorem.

Theorem 1. Consider an MPOP characterized by an MDP (S,A, 𝐶, 𝑓 , 𝑟, 𝛾) and
a policy class Π that satisfies Assumption 3. There is an optimal policy 𝜋∗ ∈ Π

satisfying 𝑉𝜋∗ = 𝑉∗, and 𝑉∗ is the limit of value iteration when the initial guess is
bounded and upper semicontinuous.

4.3.1.1 Measurability and Boundedness

To establish the measurability of the value function under a policy 𝜋 ∈ Π, we begin
by establishing measurability of the corresponding closed-loop transition map 𝑓𝜋

and single-step reward function 𝑟𝜋. To this end, we define 𝑧 : S → S × A as:

𝑧(𝑠) = (𝑠, 𝜋(𝑠)), (4.24)

for all states 𝑠 ∈ S. Consider measurable sets 𝐴 ⊆ S and 𝐵 ⊆ A; the preimage
of the product 𝐴 × 𝐵 under 𝑧 is 𝑧−1(𝐴 × 𝐵) = {𝑠 ∈ S : 𝑠 ∈ 𝐴, 𝜋(𝑠) ∈ 𝐵} =
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𝐴 ∩ 𝜋−1(𝐵), which is a measurable set since 𝜋 is a measurable function. Since
measurable products generate the 𝜎-algebra on S × A, 𝑧 is measurable, implying
the compositions 𝑓𝜋 = 𝑓 ◦ 𝑧 and 𝑟𝜋 = 𝑟 ◦ 𝑧 are measurable functions. It follows
that for any 𝑡 ∈ Z+, the 𝑡-iterated composition 𝑓 𝑡𝜋 is a measurable function, as is the
composition 𝑟𝜋 ◦ 𝑓 𝑡𝜋. Note that S𝜋 = S since 𝑟𝜋 is bounded (by the same bound on
𝑟); therefore, the corresponding value function 𝑉𝜋 : S → R is well-defined on all
of S. Moreover, 𝑉𝜋 is measurable since it is the pointwise limit of a sequence of
partial sums of measurable functions. Finally, 𝑉𝜋 is bounded by (1− 𝛾)−1 times the
bound on 𝑟 , so 𝑉𝜋 ∈ L0

𝑏
(S).

4.3.2 Bellman Operators
The Bellman operator T𝜋 : L0

𝑏
(S) → L0

𝑏
(S) under policy 𝜋 generalizes the implicit

structure of the value function 𝑉𝜋, satisfying:

[T𝜋 (𝑔)] (𝑠) = 𝑟𝜋 (𝑠) + 𝛾𝑔( 𝑓𝜋 (𝑠)), (4.25)

for all states 𝑠 ∈ S, for all bounded measurable functions 𝑔 : S → R. Indeed, for
any bounded measurable function 𝑔 : S → R, the function T𝜋 (𝑔) = 𝑟𝜋 + 𝛾𝑔 ◦ 𝑓𝜋 is
bounded and measurable. The Bellman operator T𝜋 is a 𝛾-contraction (Bertsekas,
2011, Section 1.4.1), so by the contraction mapping principle (Aliprantis and Border,
2006, Theorem 3.48),𝑉𝜋 is the only bounded measurable function withT𝜋 (𝑉𝜋) = 𝑉𝜋.

We use Bellman operators to characterize the optimal Bellman operator. Since each
value function corresponding to a policy in Π is bounded by (1 − 𝛾)−1 times the
bound on 𝑟, the optimal value function 𝑉∗ is well-defined and bounded by the same
bound. The optimal Bellman operator T : C𝑢

𝑏
(S) → C𝑢

𝑏
(S) satisfies:

[T (𝑔)] (𝑠) = sup
𝜋∈Π
[T𝜋 (𝑔)] (𝑠) = sup

𝑎∈𝐶 (𝑠)
(𝑟 (𝑠, 𝑎) + 𝛾𝑔( 𝑓 (𝑠, 𝑎))), (4.26)

for all states 𝑠 ∈ S, for all bounded upper semicontinuous functions 𝑔 : S → R. We
cannot define T on all of L0

𝑏
(S), and ensuring that T is well-defined (the suprema

are finite and equal) and has codomain C𝑢
𝑏
(S) is the subject of the following lemma.

Lemma 1. Suppose an MDP (S,A, 𝐶, 𝑓 , 𝑟, 𝛾) and policy class Π satisfy Assump-
tion 3. Let 𝜑 : Graph(𝐶) → R be upper semicontinuous and bounded. The function
𝑔𝜑 : S → R specified as:

𝑔𝜑 (𝑠) = max
𝑎∈𝐶 (𝑠)

𝜑(𝑠, 𝑎), (4.27)
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for all states 𝑠 ∈ S is well-defined, upper semicontinuous, and bounded. Moreover,
there is a policy 𝜋𝜑 ∈ Π satisfying:

𝜑(𝑠, 𝜋𝜑 (𝑠)) = 𝑔𝜑 (𝑠), (4.28)

for all states 𝑠 ∈ S.

This lemma resembles Theorem 2.5.A of (Dynkin and Yushkevich, 1979), in which
the function being maximized is only a function of actions. We will follow the proof
carefully, making the necessary modifications where they are needed. Equipped
with Lemma 1, we will then only need to show that the suprema in (4.26) are equal.

Proof. The function 𝑔𝜑 is well-defined and upper semicontinuous by (Aliprantis
and Border, 2006, Lemma 17.30) and is bounded by the bound on 𝜑.

Define the correspondence 𝐶𝜑 : S → P(A) as:

𝐶𝜑 (𝑠) = arg max
𝑎∈𝐶 (𝑠)

𝜑(𝑠, 𝑎) ⊆ 𝐶 (𝑠), (4.29)

for all states 𝑠 ∈ S. For any state 𝑠 ∈ S, since 𝑔𝜑 is well-defined, we have𝐶𝜑 (𝑠) ≠ ∅.
The singleton set {𝑠} and the set of admissible actions 𝐶 (𝑠) are both compact,
implying the product {𝑠} ×𝐶 (𝑠) is compact. Therefore, the set of maximizing state-
action pairs arg max(𝑠′,𝑎′)∈{𝑠}×𝐶 (𝑠) 𝜑(𝑠′, 𝑎′) is nonempty and compact (Aliprantis and
Border, 2006, Theorem 2.43). Since:

𝐶𝜑 (𝑠) = 𝑝A

(
arg max

(𝑠′,𝑎′)∈{𝑠}×𝐶 (𝑠)
𝜑(𝑠′, 𝑎′)

)
, (4.30)

where 𝑝A : S × A → A is the continuous function projecting S × A onto A, the
set of maximizing actions 𝐶𝜑 (𝑠) is compact.

The remainder of the proof is a modification of the proof of (Dynkin and Yushke-
vich, 1979, Theorem 2.5.A). Since 𝐶 is upper hemicontinuous, it is measurable.
Therefore, 𝐶 is weakly measurable (Aliprantis and Border, 2006, Lemma 18.2).
Let 𝜌A : A × A → R+ denote the metric on A, and define the distance function
𝜌𝐶 : S × A → R+ as:

𝜌𝐶 (𝑠, 𝑎) = inf
𝑎′∈𝐶 (𝑠)

𝜌A (𝑎, 𝑎′), (4.31)

for all states 𝑠 ∈ S and actions 𝑎 ∈ A. Since 𝐶 is weakly measurable, 𝜌𝐶 is a
Carathéodory function (Aliprantis and Border, 2006, Theorem 18.5); that is, for



60

every state 𝑠 ∈ S, the 𝑠-section (𝜌𝐶)𝑠 is continuous, and for every action 𝑎 ∈ A, the
𝑎-section (𝜌𝐶)𝑎 is a measurable function.

Since𝐶 is upper hemicontinuous and compact valued andA is a Hausdorff space (as
it is a metric space), Graph(𝐶) is a closed subset of S × A (Aliprantis and Border,
2006, Theorem 17.10). As in (K, n.d., (https://mathoverflow.net/users/117299/m-
reza-k)) (and in a similar manner to the proof of (Askoura, 2008, Corollary 2)), let
𝑀 ∈ R+ denote the bound on 𝜑, and define the extension �̄� : S × A → R as:

�̄�(𝑠, 𝑎) =

𝜑(𝑠, 𝑎) (𝑠, 𝑎) ∈ Graph(𝐶),

−𝑀 (𝑠, 𝑎) ∈ (S × A) \ Graph(𝐶),
(4.32)

for all states 𝑠 ∈ S and actions 𝑎 ∈ A. To see that �̄� is upper semicontinuous,
consider any real number 𝑐 ∈ R. If 𝑐 > −𝑀 , then �̄�−1( [𝑐,∞)) = 𝜑−1( [𝑐,∞)).
Since 𝜑 is upper semicontinuous, there is a closed set 𝐹𝑐 ⊆ S × A satisfying
𝜑−1( [𝑐,∞)) = Graph(𝐶) ∩ 𝐹𝑐, making �̄�−1( [𝑐,∞)) a closed subset of S × A.
Otherwise, if 𝑐 ≤ −𝑀 , then �̄�−1( [𝑐,∞)) = S × A, which is a closed set.

Consider a monotonically nonincreasing sequence of bounded real-valued contin-
uous functions {ℎ𝑛 ∈ C0(S × A) : 𝑛 ∈ N} converging pointwise to �̄�; such a
sequence is guaranteed to exist (Dynkin and Yushkevich, 1979, Section 2.4). For
each 𝑛 ∈ N, define the correspondence 𝐶𝑛 : S → P(A) as:

𝐶𝑛 (𝑠) = {𝑎 ∈ A : 𝜌𝐶 (𝑠, 𝑎) < 1/𝑛 and 𝑔𝜑 (𝑠) < ℎ𝑛 (𝑠, 𝑎) + 1/𝑛}, (4.33)

for all states 𝑠 ∈ S. Now, for any state 𝑠 ∈ S, recall that the 𝑠-section (𝜌𝐶)𝑠 is
continuous. For any 𝑛 ∈ N, since ℎ𝑛 is continuous, the corresponding 𝑠-section
(ℎ𝑛)𝑠 is continuous. Thus, 𝐶𝑛 (𝑠) is an open subset ofA, and can be represented as:

𝐶𝑛 (𝑠)
= {𝑎 ∈ A : (𝜌𝐶)𝑠 (𝑎) ∈ (−∞, 1/𝑛)} ∩

{
𝑎 ∈ A : (ℎ𝑛)𝑠 (𝑎) ∈

(
𝑔𝜑 (𝑠) − 1/𝑛,∞

)}
= ((𝜌𝐶)𝑠)−1 ((−∞, 1/𝑛)) ∩ ((ℎ𝑛)𝑠)−1 ( (

𝑔𝜑 (𝑠) − 1/𝑛,∞
) )
. (4.34)

Since the sequence of functions {ℎ𝑛 : 𝑛 ∈ N} is monotonically nonincreasing,
these correspondences satisfy 𝐶𝑛+1(𝑠) ⊆ 𝐶𝑛 (𝑠) for all states 𝑠 ∈ S and 𝑛 ∈ N.
For any state 𝑠 ∈ S and any action 𝑎 ∈ 𝐶𝜑 (𝑠), we have 𝜌𝐶 (𝑠, 𝑎) = 0 < 1/𝑛
and 𝑔𝜑 (𝑠) = 𝜑(𝑠, 𝑎) ≤ ℎ𝑛 (𝑠, 𝑎) < ℎ𝑛 (𝑠, 𝑎) + 1/𝑛 for all 𝑛 ∈ N. This implies
𝐶𝜑 (𝑠) ⊆

⋂∞
𝑛=1𝐶𝑛 (𝑠) for all states 𝑠 ∈ S.

Next, note that 𝑔𝜑 is a measurable function as it is bounded and upper semicontinu-
ous. For any action 𝑎 ∈ A, recall that the 𝑎-section (𝜌𝐶)𝑎 is a measurable function.



61

Additionally, for any 𝑛 ∈ N, since ℎ𝑛 is continuous, the corresponding 𝑎-section
(ℎ𝑛)𝑎 is a measurable function (as it is continuous). This means the following set is
measurable:

{𝑠 ∈ S : 𝑎 ∈ 𝐶𝑛 (𝑠)}
= {𝑠 ∈ S : (𝜌𝐶)𝑎 (𝑠) ∈ (−∞, 1/𝑛)} ∩

{
𝑠 ∈ S : 𝑔𝜑 (𝑠) − ((ℎ𝑛)𝑎) (𝑠) ∈ (−∞, 1/𝑛)

}
= ((𝜌𝐶)𝑎)−1 ((−∞, 1/𝑛)) ∩ (𝑔𝜑 − (ℎ𝑛)𝑎)−1 ((−∞, 1/𝑛)) . (4.35)

Lastly, for any state 𝑠 ∈ S, consider a sequence of actions {𝑎𝑛 ∈ A : 𝑛 ∈ N}
satisfying 𝑎𝑛 ∈ 𝐶𝑛 (𝑠) for all 𝑛 ∈ N. For each 𝑛 ∈ N, since 𝜌𝐶 (𝑠, 𝑎𝑛) < 1/𝑛, there
is an action 𝑎′𝑛 ∈ 𝐶 (𝑠) satisfying 𝜌A (𝑎′𝑛, 𝑎𝑛) < 2/𝑛. Since 𝐶 (𝑠) is compact, the
sequence of actions {𝑎′𝑛 ∈ 𝐶 (𝑠) : 𝑛 ∈ N} has a limit point 𝑎∗ ∈ 𝐶 (𝑠). That is, there
is a monotonically increasing sequence {𝑛𝑘 ∈ N : 𝑘 ∈ N} such that the subsequence
{𝑎′𝑛𝑘 ∈ 𝐶 (𝑠) : 𝑘 ∈ N} converges to 𝑎∗. Since 𝜌A (𝑎′𝑛𝑘 , 𝑎𝑛𝑘 ) < 2/𝑛𝑘 ≤ 2/𝑘 for all
𝑘 ∈ N, the subsequence {𝑎𝑛𝑘 ∈ A : 𝑘 ∈ N} also converges to 𝑎∗. For any 𝑘, 𝑙 ∈ N
with 𝑘 > 𝑙, we have:

ℎ𝑛𝑙 (𝑠, 𝑎𝑛𝑘 ) ≥ ℎ𝑛𝑘 (𝑠, 𝑎𝑛𝑘 ) > 𝑔𝜑 (𝑠) − 1/𝑛𝑘 ≥ 𝑔𝜑 (𝑠) − 1/𝑘, (4.36)

and since ℎ𝑛𝑙 is continuous, this means lim𝑘→∞ ℎ𝑛𝑙 (𝑠, 𝑎𝑛𝑘 ) = ℎ𝑛𝑙 (𝑠, 𝑎∗) ≥ 𝑔𝜑 (𝑠).
Since the sequence of functions {ℎ𝑛 : 𝑛 ∈ N} converges pointwise to �̄� from above,
we have lim𝑙→∞ ℎ𝑛𝑙 (𝑠, 𝑎∗) = �̄�(𝑠, 𝑎∗) = 𝜑(𝑠, 𝑎∗) ≥ 𝑔𝜑 (𝑠), implying 𝑎∗ ∈ 𝐶𝜑 (𝑠).
That is, the sequence of actions {𝑎𝑛 : 𝑛 ∈ N} has a limit point in 𝐶𝜑 (𝑠). By
the measurability criterion in (Dynkin and Yushkevich, 1979, Section 2.6), the
correspondence 𝐶𝜑 satisfies the assumptions of (Dynkin and Yushkevich, 1979,
Theorem 2.6.B); therefore, there exists a measurable selection 𝜋𝜑 : S → A of 𝐶𝜑,
implying 𝜋𝜑 ∈ Π and 𝜑(𝑠, 𝜋𝜑 (𝑠)) = 𝑔𝜑 (𝑠) for all states 𝑠 ∈ S.

To show that the suprema in (4.26) are equal, fix a bounded measurable function
𝑔 : S → R and a state 𝑠 ∈ S. For any policy 𝜋 ∈ Π, we have:

[T𝜋 (𝑔)] (𝑠) = 𝑟 (𝑠, 𝜋(𝑠)) + 𝛾𝑔( 𝑓 (𝑠, 𝜋(𝑠)))
≤ sup
𝑎∈𝐶 (𝑠)

(𝑟 (𝑠, 𝑎) + 𝛾𝑔( 𝑓 (𝑠, 𝑎))). (4.37)

Conversely, for any action 𝑎 ∈ 𝐶 (𝑠), we have:

𝑟 (𝑠, 𝑎) + 𝛾𝑔( 𝑓 (𝑠, 𝑎)) = 𝑟𝜋𝑠,𝑎 (𝑠) + 𝛾𝑔( 𝑓𝜋𝑠,𝑎 (𝑠)) = [T𝜋𝑠,𝑎 (𝑔)] (𝑠)
≤ sup
𝜋∈Π
[T𝜋 (𝑔)] (𝑠), (4.38)



62

where 𝜋𝑠,𝑎 ∈ Π satisfies 𝜋𝑠,𝑎 (𝑠) = 𝑎. Considering all policies in (4.37) and all
actions in (4.38) establishes the equality of the suprema. Since 𝑟 and 𝑔 are bounded
and upper semicontinuous and 𝑓 is continuous, the function 𝑟+𝛾𝑔◦ 𝑓 is bounded and
upper semicontinuous, so applying Lemma 1 to this function allows us to conclude
that T (𝑔) ∈ C𝑢

𝑏
(S).

To show that the MPOP is well-posed, we will show that the optimal value function
𝑉∗ is the fixed point of T ; that is T (𝑉∗) = 𝑉∗. However, though T is a 𝛾-
contraction (Bertsekas, 2011, Section 1.4.1), we cannot immediately apply the
contraction mapping principle (Aliprantis and Border, 2006, Theorem 3.48) to
show the existence of a unique fixed point of T since C𝑢

𝑏
(S) is not a closed subset

of the Banach space L0
𝑏
(S).

Instead, we consider the sequence of bounded upper semicontinuous function {𝑉𝑛 ∈
C𝑢
𝑏
(S) : 𝑛 ∈ N} generated by value iteration when the initial guess is chosen as the

constant function𝑉0 = 𝑀/(1−𝛾), where 𝑀 ∈ R+ denotes the bound on 𝑟. To verify
that the functions in this sequence are bounded and upper semicontinuous, note that
the initial guess is bounded and upper semicontinuous, and by induction, the value
iteration update can be written as:

𝑉𝑛+1 = T (𝑉𝑛), (4.39)

for all 𝑛 ∈ Z+. The sequence of functions is also monotonically nonincreasing. To
see this, note that:

𝑉1(𝑠) = [T (𝑉0)] (𝑠) = sup
𝑎∈𝐶 (𝑠)

(𝑟 (𝑠, 𝑎) + 𝛾𝑉0( 𝑓 (𝑠, 𝑎))) ≤ 𝑀 + 𝛾𝑀/(1 − 𝛾)

= 𝑀/(1 − 𝛾) ≤ 𝑉0(𝑠), (4.40)

for all states 𝑠 ∈ S. SinceT preserves ordering (Bertsekas, 2011), if for some 𝑛 ∈ Z+
we have 𝑉𝑛+1(𝑠) ≤ 𝑉𝑛 (𝑠) for all states 𝑠 ∈ S, then [T (𝑉𝑛+1)] (𝑠) ≤ [T (𝑉𝑛)] (𝑠) for
all states 𝑠 ∈ S. Equivalently, 𝑉𝑛+2(𝑠) ≤ 𝑉𝑛+1(𝑠) for all states 𝑠 ∈ S. By induction,
it follows that the sequence of functions is monotonically nonincreasing. Finally,
the sequence of functions is bounded by 𝑀/(1 − 𝛾). By definition, 𝑉0 satisfies this
bound, and since the sequence of functions is nonincreasing, it is upper bounded by
𝑀/(1 − 𝛾). To show the lower bound of −𝑀/(1 − 𝛾), note that:

𝑉1(𝑠) = sup
𝑎∈𝐶 (𝑠)

(𝑟 (𝑠, 𝑎) + 𝛾𝑉0( 𝑓 (𝑠, 𝑎))) ≥ inf
𝑎∈𝐶 (𝑠)

(𝑟 (𝑠, 𝑎) + 𝛾𝑉0( 𝑓 (𝑠, 𝑎)))

≥ −𝑀 − 𝛾

1 − 𝛾𝑀 = − 𝑀

1 − 𝛾 , (4.41)
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for all states 𝑠 ∈ S. Similarly, if for some 𝑛 ∈ Z+ we have 𝑉𝑛 (𝑠) ≥ −𝑀/(1 − 𝛾) for
all states 𝑠 ∈ S, then:

𝑉𝑛+1(𝑠) ≥ inf
𝑎∈𝐶 (𝑠)

(𝑟 (𝑠, 𝑎) + 𝛾𝑉𝑛 ( 𝑓 (𝑠, 𝑎))) ≥ −𝑀 −
𝛾

1 − 𝛾𝑀 = − 𝑀

1 − 𝛾 , (4.42)

for all states 𝑠 ∈ S. Therefore, the sequence of functions is bounded below by
induction.

The pointwise limit of a monotonically nonincreasing sequence of bounded upper
semicontinuous functions is upper semicontinuous (Dynkin and Yushkevich, 1979,
Section 2.4), and since the sequence is bounded, so is the limit. Denote the limit by
𝑔∗ ∈ C𝑢

𝑏
(S). To show that 𝑔∗ is a fixed point of T , note that:

∥T (𝑔∗) − 𝑔∗∥sup ≤ ∥T (𝑔∗) −𝑉𝑛+1∥sup + ∥𝑉𝑛+1 − 𝑔∗∥sup

= ∥T (𝑔∗) − T (𝑉𝑛)∥sup + ∥𝑉𝑛+1 − 𝑔∗∥sup

≤ 𝛾∥𝑔∗ −𝑉𝑛∥sup + ∥𝑉𝑛+1 − 𝑔∗∥sup, (4.43)

for all 𝑛 ∈ Z+. By choosing 𝑛 sufficiently large, we make ∥T (𝑔∗) −𝑔∗∥sup arbitrarily
small, implying ∥T (𝑔∗) − 𝑔∗∥sup = 0, or T (𝑔∗) = 𝑔∗. Now, consider any other
sequence of bounded upper semicontinuous functions {𝑊𝑛 ∈ C𝑢𝑏 (S) : 𝑛 ∈ N}
generated by value iteration from a bounded and upper semicontinuous initial guess
𝑊0 ∈ C𝑢𝑏 (S). Since T is a 𝛾-contraction, we have:

∥𝑊𝑛+1 − 𝑔∗∥sup = ∥T (𝑊𝑛) − T (𝑔∗)∥sup ≤ 𝛾∥𝑊𝑛 − 𝑔∗∥sup, (4.44)

for all 𝑛 ∈ Z+, or:
∥𝑊𝑛 − 𝑔∗∥sup ≤ 𝛾𝑛∥𝑊0 − 𝑔∗∥sup, (4.45)

for all 𝑛 ∈ Z+. This implies lim𝑛→∞𝑊𝑛 = 𝑔
∗.

We prove Theorem 1 by showing that 𝑉∗ = 𝑔∗.

Proof of Theorem 1. First, for any policy 𝜋 ∈ Π, we have:

𝑔∗(𝑠) = sup
𝑎∈𝐶 (𝑠)

(𝑟 (𝑠, 𝑎) + 𝛾𝑔∗( 𝑓 (𝑠, 𝑎))) ≥ 𝑟𝜋 (𝑠) + 𝛾𝑔∗( 𝑓𝜋 (𝑠)), (4.46)

for all states 𝑠 ∈ S. For any 𝑇 ∈ N, assume:

𝑔∗(𝑠) ≥
𝑇−1∑︁
𝑡=0

𝛾𝑡𝑟𝜋 ( 𝑓 𝑡𝜋 (𝑠)) + 𝛾𝑇𝑔∗( 𝑓 𝑇𝜋 (𝑠)), (4.47)
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for all states 𝑠 ∈ S. Then:

𝑔∗(𝑠) ≥
𝑇−1∑︁
𝑡=0

𝛾𝑡𝑟𝜋 ( 𝑓 𝑡𝜋 (𝑠)) + 𝛾𝑇 (𝑟𝜋 ( 𝑓 𝑇𝜋 (𝑠)) + 𝛾𝑔∗( 𝑓𝜋 ( 𝑓 𝑇𝜋 (𝑠))))

=

𝑇∑︁
𝑡=0

𝛾𝑡𝑟𝜋 ( 𝑓 𝑡𝜋 (𝑠)) + 𝛾𝑇+1𝑔∗( 𝑓 𝑇+1𝜋 (𝑠)), (4.48)

for all states 𝑠 ∈ S. By induction, (4.47) holds for all 𝑇 ∈ N, and since 𝑔∗ is
bounded, we have:

𝑔∗(𝑠) ≥
∞∑︁
𝑡=0

𝛾𝑡𝑟𝜋 ( 𝑓 𝑡𝜋 (𝑠)) = 𝑉𝜋 (𝑠), (4.49)

for all states 𝑠 ∈ S. Taking the supremum over all policies, we obtain 𝑔∗(𝑠) ≥
sup𝜋∈Π 𝑉𝜋 (𝑠) = 𝑉∗(𝑠) for all states 𝑠 ∈ S.

We show the reverse inequality by following a modification of the proof of (Put-
erman, 2014, Theorem 6.3.1). Consider the sequence of bounded upper semicon-
tinuous functions {𝑉𝑛 ∈ C𝑢𝑏 (S) : 𝑛 ∈ N} generated by value iteration from an
arbitrary initial guess 𝑉0 ∈ C𝑢𝑏 (S). Since lim𝑛→∞𝑉𝑛 = 𝑔∗, for any 𝜀 ∈ R++, there is
a corresponding 𝑁𝜀 ∈ N such that:

∥𝑉𝑛 − 𝑔∗∥sup <
1 − 𝛾
1 + 𝛾 𝜀, (4.50)

for all 𝑛 ∈ N with 𝑛 ≥ 𝑁𝜀. By Lemma 1, there is a policy 𝜋𝜀 ∈ Π satisfying:

[T𝜋𝜀 (𝑉𝑁𝜀+1)] (𝑠) = 𝑟 (𝑠, 𝜋𝜀 (𝑠)) + 𝛾𝑉𝑁𝜀+1( 𝑓 (𝑠, 𝜋𝜀 (𝑠)))
= max
𝑎∈𝐶 (𝑠)

(𝑟 (𝑠, 𝑎) + 𝛾𝑉𝑁𝜀+1( 𝑓 (𝑠, 𝑎)))

= [T (𝑉𝑁𝜀+1)] (𝑠), (4.51)

for all states 𝑠 ∈ S. Therefore:

∥𝑉𝜋𝜀 −𝑉𝑁𝜀+1∥sup ≤ ∥𝑉𝜋𝜀 − T (𝑉𝑁𝜀+1)∥sup + ∥T (𝑉𝑁𝜀+1) −𝑉𝑁𝜀+1∥sup

= ∥T𝜋𝜀 (𝑉𝜋𝜀 ) − T𝜋𝜀 (𝑉𝑁𝜀+1)∥sup + ∥T (𝑉𝑁𝜀+1) − T (𝑉𝑁𝜀
)∥sup

≤ 𝛾∥𝑉𝜋𝜀 −𝑉𝑁𝜀+1∥sup + 𝛾∥𝑉𝑁𝜀+1 −𝑉𝑁𝜀
∥sup, (4.52)

which implies:

∥𝑉𝜋𝜀 −𝑉𝑁𝜀+1∥sup ≤
𝛾

1 − 𝛾 ∥𝑉𝑁𝜀+1 −𝑉𝑁𝜀
∥sup (4.53)

≤ 𝛾

1 − 𝛾 ∥𝑉𝑁𝜀+1 − 𝑔∗∥sup +
𝛾

1 − 𝛾 ∥𝑔
∗ −𝑉𝑁𝜀

∥sup

< 2
𝛾

1 − 𝛾
1 − 𝛾
1 + 𝛾 𝜀 =

2𝛾
1 + 𝛾 𝜀. (4.54)
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Finally, we have:

∥𝑉𝜋𝜀 − 𝑔∗∥sup ≤ ∥𝑉𝜋𝜀 −𝑉𝑁𝜀+1∥sup + ∥𝑉𝑁𝜀+1 − 𝑔∗∥sup

<
2𝛾

1 + 𝛾 𝜀 +
1 − 𝛾
1 + 𝛾 𝜀 = 𝜀. (4.55)

This means:

𝑔∗(𝑠) < 𝑉𝜋𝜀 (𝑠) + 𝜀 ≤
(
sup
𝜋∈Π

𝑉𝜋 (𝑠)
)
+ 𝜀 = 𝑉∗(𝑠) + 𝜀, (4.56)

for all states 𝑠 ∈ S. Since 𝜀 was arbitrary, we have 𝑔∗(𝑠) ≤ 𝑉∗(𝑠) for all states
𝑠 ∈ S.

Since 𝑉∗ = 𝑔∗, we conclude that 𝑉∗ is bounded and upper semicontinuous. By
Lemma 1, there is a policy 𝜋∗ ∈ Π satisfying:

𝑉𝜋∗ (𝑠) = [T𝜋∗ (𝑉𝜋∗)] (𝑠) = 𝑟 (𝑠, 𝜋∗(𝑠)) + 𝛾𝑉∗( 𝑓 (𝑠, 𝜋∗(𝑠)))
= sup
𝑎∈𝐶 (𝑠)

{𝑟 (𝑠, 𝑎) + 𝛾𝑉∗( 𝑓 (𝑠, 𝑎))} = [T (𝑉∗)] (𝑠) = 𝑉∗(𝑠), (4.57)

for all states 𝑠 ∈ S. This means 𝜋∗ is an optimal policy. Moreover, since 𝑔∗ is the
limit of value iteration from any bounded and upper semicontinuous initial guess,
𝑉∗ is as well.

We conclude this section with a lemma mentioned in Remark 3, allowing Assump-
tion 3 to be relaxed slightly.

Lemma 2. Suppose an MDP (S,A, 𝐶, 𝑓 , 𝑟, 𝛾) and policy class Π satisfy Assump-
tion 3, suppose the projection of Graph(𝐶) onto A is compact, and let 𝜌A :
A×A → R+ denote the metric onA. For any state-action pair (𝑠, 𝑎) ∈ Graph(𝐶),
the function 𝜑𝑠,𝑎 : Graph(𝐶) → R defined as:

𝜑𝑠,𝑎 (𝑠′, 𝑎′) = −𝜌A (𝑎′, 𝑎), (4.58)

for all state-action pairs (𝑠′, 𝑎′) ∈ Graph(𝐶) admits a maximizing policy 𝜋𝑠,𝑎 ∈ Π

for which 𝜋𝑠,𝑎 (𝑠) = 𝑎.

Proof. Since 𝜌A is continuous, so is 𝜑𝑠,𝑎. Since the projection of Graph(𝐶) onto
A is compact, 𝜑𝑠,𝑎 is bounded. Since 𝜑𝑠,𝑎 ∈ C0

𝑏
(S) ⊆ C𝑢

𝑏
(S), Lemma 1 justifies

the existence of a policy 𝜋𝑠,𝑎 ∈ Π satisfying:

𝜑𝑠,𝑎 (𝑠′, 𝜋𝑠,𝑎 (𝑠′)) = max
𝑎′∈𝐶 (𝑠′)

𝜑𝑠,𝑎 (𝑠′, 𝑎′) = − min
𝑎′∈𝐶 (𝑠′)

𝜌A (𝑎′, 𝑎), (4.59)

for all states 𝑠′ ∈ S. In particular, we have 𝜋𝑠,𝑎 (𝑠) = 𝑎 as 𝜑𝑠,𝑎 (𝑠, 𝜋𝑠,𝑎 (𝑠)) =

−min𝑎′∈𝐶 (𝑠) 𝜌A (𝑎′, 𝑎) = 0.
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4.3.3 Compactly Restrictable MPOPs
While Assumption 3 allows us to determine when MPOPs are well-posed and can
be solved using value iteration, it is not met for many systems of interest. We now
outline an alternative assumption that not only mitigates theoretical shortcomings,
but also better fits the problem settings for physical systems. Our main result here is
Theorem 2, showing how an MPOP satisfying these new assumptions can generate
an MPOP satisfying Assumption 3 through a systematic transformation. We call
the original MPOP a CR-MPOP.

4.3.3.1 Motivation

Consider an MPOP defined by an MDP (S,A, 𝐶, 𝑓 , 𝑟, 𝛾) and a policy class Π that
satisfies Assumption 3. The proof of Theorem 1 requires a bounded reward function
𝑟 and a compact-valued action-admissibility correspondence𝐶. For many examples,
these requirements are too strict, as shown in Example 4. If 𝐶 can be modified such
that its graph is compact and if 𝑟 is continuous, then 𝑟 will be bounded over the
graph of the modified correspondence. This guides our systematic construction of
a well-posed policy optimization problem from an ill-posed one.

If the graph of the modified correspondence is compact, the projection of the graph
onto the state space must also be compact. Therefore, if the state space is not
already compact, then the modified correspondence must be defined on a compact
strict subset S0 ⊂ S; that is, the modified correspondence must have the form
𝐶0 : S0 → P(A), where 𝐶0(𝑠) ⊆ 𝐶 (𝑠) is nonempty and compact for all states
𝑠 ∈ S0. Moreover, while restricting admissible actions to compact sets is reasonable
for physical systems (as forces, voltages, currents, etc. are bounded by physical
constraints), these restrictions must be chosen carefully to enforce the nonemptiness
condition. For the restriction of 𝑓 to Graph(𝐶0) to be a well-defined transition
function, we require 𝑓 (𝑠, 𝑎) ∈ S0 for all pairs (𝑠, 𝑎) ∈ Graph(𝐶0). Finally, we must
ensure that 𝐶0 admits measurable selectors. Restricting our attention to a compact
subset S0 is also reasonable for many physical systems, as dynamics models are
often well-understood only in a bounded set around an operating condition.

4.3.3.2 Compact Restriction

For this construction, we use policies that render compact subsets of the state space
forward-invariant. A policy 𝜋 ∈ Π renders a subset S0 ⊆ S forward-invariant if
𝑓𝜋 (S0) ⊆ S0. By induction, we have 𝑓 𝑡𝜋 (S0) ⊆ S0 for any 𝑡 ∈ Z+.
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Definition 4 (Compactly Restrictable Metric Policy Optimization Problem). An
MPOP characterized by an MDP (S,A, 𝐶, 𝑓 , 𝑟, 𝛾) and a policy class Π is a com-
pactly restrictable metric policy optimization problem (CR-MPOP) if there is a
nonempty compact subset S0 ⊆ S and a continuous policy 𝜋0 ∈ Π rendering S0

forward-invariant.

Assumption 4. The action-admissibility correspondence 𝐶 has closed values and
Graph(𝐶) is closed, the transition function 𝑓 and reward function 𝑟 are continuous,
and the policy class Π is the set of all measurable selectors of 𝐶.

To show how an CR-MPOP satisfying Assumption 4 can lead to an MPOP satisfying
Assumption 3, we need the following short lemma.

Lemma 3. Consider an MDP (S,A, 𝐶, 𝑓 , 𝑟, 𝛾) and a policy class Π satisfying
Assumption 4. For any state 𝑠 ∈ S, the 𝑠-section 𝑓𝑠 : 𝐶 (𝑠) → S is continuous.
Additionally, for any state 𝑠 ∈ S and any closed set𝐺 ⊆ S, the preimage ( 𝑓𝑠)−1(𝐺)
is a closed subset of A.

Proof. Let id : S × A → S × A denote the identity function on S × A. For any
state 𝑠 ∈ S, the 𝑠-section id𝑠 : A → S × A is continuous, meaning the restriction
id𝑠 |𝐶 (𝑠) : 𝐶 (𝑠) → S ×A is continuous. We can write 𝑓𝑠 = 𝑓 ◦ ( id𝑠 |𝐶 (𝑠)), implying
𝑓𝑠 is continuous. For any closed set 𝐺 ⊆ S, there is a corresponding closed set
𝐹𝑠,𝐺 ⊆ A satisfying ( 𝑓𝑠)−1(𝐺) = 𝐶 (𝑠) ∩ 𝐹𝑠,𝐺 . Since 𝐶 (𝑠) is also a closed subset
of A, we conclude that ( 𝑓𝑠)−1(𝐺) a closed subset of A.

We now present our guarantee of the existence of a well-posed value iteration settings
under Assumption 4.

Theorem 2. Consider a CR-MPOP characterized by an MDP (S,A, 𝐶, 𝑓 , 𝑟, 𝛾) and
a policy class Π that satisfies Assumption 4. There exists an MPOP characterized
by an MDP (S0,A0, 𝐶0, 𝑓0, 𝑟0, 𝛾) and a policy class Π0 satisfying Assumption 3,
with S0 ⊆ S rendered forward-invariant by a continuous policy in Π, A0 ⊆ A,
𝐶0 : S0 → P(A0) satisfying 𝐶0(𝑠) ⊆ 𝐶 (𝑠) for all states 𝑠 ∈ S0, 𝑓0 = 𝑓 |Graph(𝐶0) ,
𝑟0 = 𝑟 |Graph(𝐶0) , and:

Π0 = {𝜋 |S0 : 𝜋 ∈ Π, 𝜋(S0) ⊆ A0, and 𝑓𝜋 (S0) ⊆ S0}. (4.60)

Proof. For some 𝑛 ∈ N, consider continuous policies 𝜋1, . . . , 𝜋𝑛 ∈ Π satisfying
𝑓𝜋𝑖 (S0) ⊆ S0 for all 𝑖 ∈ {1, . . . , 𝑛}. Such policies are guaranteed to exist by the
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existence of the continuous policy 𝜋0 ∈ Π. Consider the union of the images of S0

under each of these policies, defining the compact set A0 =
⋃𝑛
𝑖=1 𝜋𝑖 (S0). Since S

andA are separable metric spaces, so are S0 andA0 (Aliprantis and Border, 2006,
Corollary 3.5).

Define the correspondence 𝐶0 : S0 → P(A0) as:

𝐶0(𝑠) = {𝑎 ∈ 𝐶 (𝑠) ∩ A0 : 𝑓 (𝑠, 𝑎) ∈ S0} = ( 𝑓𝑠)−1(S0) ∩ A0, (4.61)

for all states 𝑠 ∈ S0. Since 𝜋1(𝑠), . . . , 𝜋𝑛 (𝑠) ∈ 𝐶0(𝑠), 𝐶0(𝑠) ≠ ∅ for all 𝑠 ∈ S0.
By Lemma 3 and since S0 is closed (it is compact in a metric space), the preimage
( 𝑓𝑠)−1(S0) is a closed subset of A. 𝐶0(𝑠) is thus compact, as it is a closed subset
of A0. For any closed set 𝐺 ⊆ A0, the lower preimage of 𝐺 under 𝐶0 satisfies:

(𝐶0)ℓ (𝐺) = {𝑠 ∈ S0 : 𝑓 (𝑠, 𝑎) ∈ S0 for some 𝑎 ∈ 𝐶 (𝑠) ∩ 𝐺}
= 𝑝S ( 𝑓 −1(S0) ∩ (S0 × 𝐺)), (4.62)

where 𝑝S : S × A → S denotes the canonical projection onto S. Since S0 is
closed and 𝑓 is continuous, there is a closed set 𝐹 ⊆ S × A satisfying 𝑓 −1(S0) =
Graph(𝐶) ∩𝐹. Since Graph(𝐶) is also closed, 𝑓 −1(S0) is a closed subset of S×A.
Since 𝐺 is a closed subset of the compact set A0, 𝐺 is compact, and since S0 is
compact, the product S0 × 𝐺 is compact. As a closed subset of a compact set,
𝑓 −1(S0) ∩ (S0 × 𝐺) is compact. Since the projection operator 𝑝S is continuous,
(𝐶0)ℓ (𝐺) is compact. Therefore, (𝐶0)ℓ (𝐺) is a closed subset of S0, and since 𝐺
was arbitrary, 𝐶0 is upper hemicontinuous.

As restrictions of continuous functions, 𝑓0 and 𝑟0 are continuous, implying 𝑟0 is
upper semicontinuous. Note that:

Graph(𝐶0) = {(𝑠, 𝑎) ∈ S0 × A0 : 𝑓 (𝑠, 𝑎) ∈ S0}
= 𝑓 −1(S0) ∩ (S0 × A0). (4.63)

Since A0 is trivially a closed subset of A0, we have already shown that 𝑓 −1(S0) ∩
(S0 × A0) is compact, meaning Graph(𝐶0) is compact. Therefore, since 𝑟0 is
continuous, it is bounded.

The policy class Π0 satisfies:

Π0 = {𝜋 |S0 : 𝜋 ∈ Π, 𝜋(𝑠) ∈ 𝐶0(𝑠) for all states 𝑠 ∈ S0}
= {𝜋 ∈ L0(S0;A0) : 𝜋(𝑠) ∈ 𝐶0(𝑠) for all states 𝑠 ∈ S0}. (4.64)
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To verify the last equality, first consider a policy 𝜋 ∈ Π satisfying 𝜋(𝑠) ∈ 𝐶0(𝑠)
for all states 𝑠 ∈ S0. The restriction 𝜋 |S0 is a measurable function from S0 to
A0 selecting from 𝐶0. Conversely, consider a measurable function 𝜋 : S0 → A0

selecting from 𝐶0. Pick any policy 𝜋𝑒 ∈ Π and define the extension �̄� : S → A as
𝜋 on S0 and 𝜋𝑒 on S \ S0. For any measurable set 𝐵 ⊆ A, we have:

�̄�−1(𝐵) = {𝑠 ∈ S0 : 𝜋(𝑠) ∈ A0 ∩ 𝐵} ∪ {𝑠 ∈ S \ S0 : 𝜋𝑒 (𝑠) ∈ 𝐵}
= 𝜋−1(A0 ∩ 𝐵) ∪ (𝜋−1

𝑒 (𝐵) \ S0), (4.65)

which is a measurable set; therefore, �̄� is a measurable function. Note that �̄�(𝑠) =
𝜋(𝑠) ∈ 𝐶0(𝑠) ⊆ 𝐶 (𝑠) for all states 𝑠 ∈ S0 and �̄�(𝑠) = 𝜋𝑒 (𝑠) ∈ 𝐶 (𝑠) for all states
𝑠 ∉ S0. Since �̄� is a measurable selector of 𝐶, we have �̄� ∈ Π, and inclusion follows
since �̄� |S0 = 𝜋.

Finally, since Graph(𝐶0) is compact, its projection onto A0 is compact. Therefore,
by Lemma 2, for every state-action pair (𝑠, 𝑎) ∈ Graph(𝐶0), there is a policy
𝜋𝑠,𝑎 ∈ Π0 satisfying 𝜋𝑠,𝑎 (𝑠) = 𝑎.

Remark 5. An MPOP characterized by an MDP (S,A, 𝐶, 𝑓 , 𝑟, 𝛾) and a policy
class Π that satisfies Assumption 3 is trivially a CR-MPOP satisfying Assumption
4 if the following sufficient conditions are met:

1. The state space S is compact,

2. The reward function 𝑟 is continuous,

3. The policy class Π contains a continuous policy.

Example 5. Consider the MDP (S,A, 𝐶, 𝑓 , 𝑟, 𝛾) defined in Example 3 with a policy
class Π comprised of measurable selectors of 𝐶, and let S0 = [−1, 1]. Note that
| 𝑓 (0, 𝑎) | = | tanh (𝑎) | < 1 for all actions 𝑎 ∈ R. Consider any state 𝑠 ∈ [−1, 0). For
any nonnegative action 𝑎 ∈ R+, we have−1 ≤ 𝑠 ≤ 𝑓 (𝑠, 𝑎) = 𝑠+tanh (𝑎) < 𝑠+1 < 1,
and 𝑓 (𝑠,−𝑎) = 𝑠+tanh (−𝑎) ∈ [−1, 𝑠) if and only if−𝑎 ∈ [tanh−1 (−1 − 𝑠), 0) since
tanh−1 is monotonically increasing. By a similar argument for states in (0, 1], we
determine that, for all 𝑠 ∈ S0 and 𝑎 ∈ A, we have 𝑓 (𝑠, 𝑎) ∈ S0 if and only if:

𝑎 ∈


[tanh−1 (−1 − 𝑠),∞) −1 ≤ 𝑠 < 0,

A 𝑠 = 0,

(−∞, tanh−1 (1 − 𝑠)] 0 < 𝑠 ≤ 1.

(4.66)
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Figure 4.1: Illustration of compact restriction. (Left) The preimage 𝑓 −1(S0) is
shown in blue, which contains all state-action pairs mapped into S0 = [−1, 1] by
𝑓 . For any state in S0, the set of actions mapping that state into S0 is unbounded,
therefore not compact. (Right) The graph of 𝜋0 is shown in orange and the graph of
𝐶0 is shown in blue. The graph of 𝐶0 is compact, and for every state 𝑠 ∈ S0, the set
𝐶0(𝑠) is compact.

A correspondence coinciding with the requirements on actions in (4.66) would not
have compact values; this is illustrated by the preimage 𝑓 −1(S0) in Figure 4.1.
Therefore, consider the continuous policy 𝜋0 ∈ Π defined as 𝜋0(𝑠) = −𝑠 for all
states 𝑠 ∈ S. For any state 𝑠 ∈ [−1, 0), we have 𝜋0(𝑠) = −𝑠 > 0 ≥ tanh−1(−1 − 𝑠).
Similarly, for any state 𝑠 ∈ (0, 1], we have 𝜋0(𝑠) < tanh−1(1 − 𝑠). Therefore,
𝑓𝜋0 (S0) ⊆ S0. The image of S0 under 𝜋0 is [−1, 1]. Therefore, we can define
A0 = [−1, 1] and 𝐶0 : S0 → P(A0) as, for all states 𝑠 ∈ S0:

𝐶0(𝑠) =


[tanh−1(−1 − 𝑠), 1] 𝑠 ≤ −1 − tanh (−1),

[−1, tanh−1(1 − 𝑠)] 𝑠 ≥ 1 − tanh (1),

[−1, 1] otherwise.

(4.67)

4.3.4 Policy Iteration
We briefly mention the difficulties of policy iteration for MPOPs, as noted in (Yu
and Bertsekas, 2015). For a well-posed MPOP, policy iteration generates a mono-
tonically nondecreasing sequence of policies. Given an initial policy 𝜋0 ∈ Π, we
seek a sequence of policies {𝜋𝑛 ∈ Π : 𝑛 ∈ N} satisfying:

𝑟 (𝑠, 𝜋𝑛+1(𝑠)) + 𝛾𝑉𝜋𝑛 ( 𝑓 (𝑠, 𝜋𝑛+1(𝑠))) = sup
𝑎∈𝐶 (𝑠)

{𝑟 (𝑠, 𝑎) + 𝛾𝑉𝜋𝑛 ( 𝑓 (𝑠, 𝑎))}, (4.68)
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Figure 4.2: The graph of 𝑓𝜋0 is shown in orange, and the rectangle S0 × S0 =

[−1, 1] × [−1, 1] is shown in blue. Importantly, the image of S0 under 𝑓𝜋0 satisfies
𝑓𝜋0 (S0); that is, 𝑓𝜋0 renders S0 forward invariant.

for all states 𝑠 ∈ S and 𝑛 ∈ Z+. If 𝑓 , 𝑟, and 𝜋0 are continuous, then so are 𝑓𝜋0

and 𝑟𝜋0 which we can show renders 𝑉𝜋0 continuous. This implies 𝑟 + 𝛾𝑉𝜋0 ◦ 𝑓 is
continuous. If 𝑟 is bounded, then so are 𝑉𝜋0 and 𝑟 + 𝛾𝑉𝜋0 ◦ 𝑓 . Since 𝑟 + 𝛾𝑉𝜋0 ◦ 𝑓
is upper semicontinuous and bounded, we can show that for any state 𝑠 ∈ S, the
optimization problem:

sup
𝑎∈𝐶 (𝑠)

{𝑟 (𝑠, 𝑎) + 𝛾𝑉𝜋0 ( 𝑓 (𝑠, 𝑎))}, (4.69)

is solved by the next policy 𝜋1, a measurable selector of 𝐶. However, we cannot
conclude that 𝑟 + 𝛾𝑉𝜋1 ◦ 𝑓 is upper semicontinuous and bounded, so the same
argument cannot be applied iteratively.

Demonstrating that policy iteration can be applied requires special knowledge that
the policy improvement step in (4.68) continues to produce policies with value
functions that permit maximization and appropriate selection (for the chosen policy
class). Such knowledge is available in linear-quadratic regulator (LQR) problems
with linear policy classes (see (Tu, 2019) for the discounted case).

4.3.5 Computation
There are 3 central difficulties in computationally implementing value iteration for
a well-posed MPOP:

1. Representing iterates during value iteration,
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2. Determining admissible actions, and

3. Approximating the update step (4.22).

Typically, iterates are represented using function approximators such as neural net-
works (Sutton and Barto, 2018) or Gaussian process regression models (Kuss and
Rasmussen, 2003). Training such approximators involves sampling sufficiently
many states from the state space region of interest. For any given state, the max-
imization in the update step (4.22) is generally a nonconvex optimization, with
possible approximations including (projected) gradient ascent from several initial
action seeds or maximization over a finite but sufficiently dense sampling of admis-
sible actions. If the function approximation and optimization approximation errors
can be controlled, approximate convergence of value iteration can be guaranteed
(Bertsekas, 2022, Proposition 2.3.2).

Any approximate optimization approach requires checking admissibility of actions,
which, in the case of a CR-MPOP, requires checking whether or not a state-action
pair is mapped to the correct compact set under the transition map. This necessitates
efficient set membership checking, and for nonconvex compact sets, proximity-based
membership approximations may be needed.

Finally, in Section 4.4.3, we will use the closure of a reachable set (under a specific
policy) to restrict problems with feedback linearizable control affine systems to
well-posed MPOPs. To sample a state from the reachable set, we can sample a state
from the appropriate set of initial conditions and follow the policy for a number of
steps sampled from a geometric distribution (with success probability 1 − 𝛾). The
resulting distribution is the discounted state distribution under the policy (Silver
et al., 2014), which is supported on the entirety of the reachable set (thus, on a dense
subset of its closure).

4.4 Control Affine Systems
We now show how to apply the results from Section 4.3 to a general class of control
systems called control affine systems (LaValle, 2006, Section 13.2.3). For state and
action space dimensions 𝑑, 𝑚 ∈ N, respectively, consider a set D ⊆ R𝑑 and vector
fields 𝑓0, 𝑔1, . . . , 𝑔𝑚 : D → R𝑑 . Define the matrix-valued function 𝐺 : D → R𝑑×𝑚

with columns 𝑔1, . . . , 𝑔𝑚. Define 𝐹 : D × R𝑚 → R𝑑 as:

𝐹 (𝑥, 𝑢) = 𝑓0(𝑥) + 𝐺 (𝑥)𝑢, (4.70)
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for all 𝑥 ∈ D and 𝑢 = (𝑢1, . . . , 𝑢𝑚) ∈ R𝑚. An initial value problem with constant
control input 𝑢 ∈ R𝑚 is characterized by an initial condition 𝑥 ∈ D and an open time
interval 𝐼 ⊆ R with 0 ∈ 𝐼; a corresponding solution is a differentiable function 𝜙 :
𝐼 → D satisfying 𝜙(0) = 𝑥 and ¤𝜙(𝑡) = d

d𝑡 𝜙(𝑡) = 𝐹 (𝜙(𝑡), 𝑢) = 𝑓0(𝜙(𝑡)) + 𝐺 (𝜙(𝑡))𝑢
for all times 𝑡 ∈ 𝐼.

4.4.1 Time Sampling
In contrast to continuous-time control design, we consider sampled-data control
design (see (Nešić, Teel, and Kokotović, 1999; Taylor, Dorobantu, Yue, et al., 2021;
Taylor, Dorobantu, Cosner, et al., 2022)), in which initial value problems with
constant control characterize the evolution of a system over fixed sample intervals,
resulting in control input trajectories that are piecewise constant in time. Such
assumptions are realistic for physical systems interacting with digital controllers,
which measure states and compute control inputs at nearly fixed frequencies. This
setting requires the time intervals over which solutions are defined to be sufficiently
long, uniformly for all initial conditions and control inputs under consideration.

Specifically, fix a sample period ℎ ∈ R++, and define the subset Sℎ ⊆ D and
correspondence 𝐶ℎ : Sℎ → P(R𝑚) such that the following properties are satisfied:

• For every initial condition 𝑥 ∈ Sℎ, the corresponding set of control inputs
𝐶ℎ (𝑥) ⊆ R𝑚 is nonempty,

• For every (𝑥, 𝑢) ∈ Graph(𝐶ℎ), there is a unique solution to the initial value
problem characterized by initial condition 𝑥, control input 𝑢, and open time
interval 𝐼 ⊆ R with [0, ℎ] ⊂ 𝐼, with the solution denoted 𝜙𝑥,𝑢 : 𝐼 → D,

• Sℎ and 𝐶ℎ are maximal (cannot be contained in a superset and containing
correspondence).

Define 𝑓ℎ : Graph(𝐶ℎ) → D for all pairs (𝑥, 𝑢) ∈ Graph(𝐶ℎ) as:

𝑓ℎ (𝑥, 𝑢) = 𝜙𝑥,𝑢 (ℎ). (4.71)

Example 6 (Linear System). Let D = R𝑑 . For matrices 𝐴 ∈ R𝑑×𝑑 and 𝐵 ∈ R𝑑×𝑚,
suppose 𝑓0(𝑥) = 𝐴𝑥 and 𝐺 (𝑥) = 𝐵 for all initial conditions 𝑥 ∈ R𝑑 . Then Sℎ = R𝑑

and 𝐶ℎ (𝑥) = R𝑚 for all 𝑥 ∈ R𝑑 . Moreover, 𝑓ℎ can be expressed explicitly as a linear
function in terms of the matrix exponential of 𝐴.
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Example 7 (Continuously Differentiable and Lipschitz Continuous Vector Fields).
Suppose D = R𝑑 and 𝑓0, 𝑔1, . . . , 𝑔𝑚 are continuously differentiable and (globally)
Lipschitz continuous. For a control input 𝑢 ∈ R𝑚, since the 𝑢-section 𝐹𝑢 : R𝑑 → R𝑑

is a linear combination of continuously differentiable and Lipschitz continuous
vector fields, it is continuously differentiable and Lipschitz continuous. Therefore,
for any initial condition 𝑥 ∈ R𝑑 the initial value problem characterized by initial
condition 𝑥, control input 𝑢, and time interval R has a unique solution (Perko, 2013,
Theorem 3.1.3). Therefore, Sℎ = R𝑑 and 𝐶ℎ (𝑥) = R𝑚 for all initial conditions
𝑥 ∈ R𝑑 . In general, 𝑓ℎ does not have an closed-form representation.

Assumption 5. The vector fields 𝑓0, 𝑔1, . . . , 𝑔𝑚 are locally Lipschitz continuous.
Moreover, there exist subsets S ⊆ Sℎ and A ⊆ R𝑚 and a correspondence 𝐶 : S →
P(A) such that:

• For every initial condition 𝑥 ∈ S, the set of control inputs 𝐶 (𝑥) ⊆ A is
nonempty with 𝐶 (𝑥) ⊆ 𝐶ℎ (𝑥),

• Graph(𝐶) is a closed subset of S × A,

• 𝑓ℎ (Graph(𝐶)) ⊆ S.

Both Examples 6 and 7 satisfy Assumption 5 with S = Sℎ,A = R𝑚, and 𝐶 (𝑥) = A
for all 𝑥 ∈ S. The assumption of local Lipschitz continuity in Assumption 5 ensures
that the restriction of 𝑓ℎ to Graph(𝐶) is continuous; this follows from (Khalil, 2002,
Theorem 3.5) by treating control inputs as parameters.

4.4.2 Robotic Systems
Many robotic systems can be modeled as control affine systems, and we will demon-
strate how to show that such systems can satisfy Assumption 4, establishing well-
posedness of value iteration for a large class of practically relevant MPOPs. Ex-
amples of such systems include manipulators, automobiles, aircraft, and spacecraft
(Murray, Li, and Sastry, 1994; Olfati-Saber, 2001).

4.4.2.1 Dynamics

An unconstrained robotic system with 𝑛 ∈ N degrees of freedom is characterized by
an 𝑛-dimensional C2 manifold Q called the configuration manifold. In this work, we
consider open subsets Q ⊆ R𝑛 for which we can identify the tangent bundle𝑇Q with
Q × R𝑛. The inertia matrix function 𝐷 : Q → S𝑛++ characterizes the kinetic energy
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function 𝑇 : Q × R𝑛 → R++, defined as 𝑇 (𝑞, ¤𝑞) = 1
2 ¤𝑞
⊤𝐷 (𝑞) ¤𝑞 for all configurations

𝑞 ∈ Q and velocities ¤𝑞 ∈ R𝑛. The assumption that 𝐷 takes positive definite values
ensures that no configurations exist that admit arbitrarily large velocities without
affecting the kinetic energy of the system. We require 𝐷 to be differentiable,
allowing us to express the matrix-valued function 𝐶 : Q × R𝑛 → R𝑛×𝑛 of Coriolis
and centrifugal terms2 as:

(𝐶 (𝑞, ¤𝑞))𝑖 𝑗 =
𝑛∑︁
𝑘=1

(
𝜕

𝜕𝑞 𝑗
(𝐷 (𝑞))𝑖𝑘 −

1
2
𝜕

𝜕𝑞𝑖
(𝐷 (𝑞)) 𝑗 𝑘

)
¤𝑞𝑘 , (4.72)

for all configurations 𝑞 = (𝑞1, . . . , 𝑞𝑛) ∈ Q, velocities ¤𝑞 = ( ¤𝑞1, . . . , ¤𝑞𝑛) ∈ R𝑛, and
indices 𝑖, 𝑗 ∈ {1, . . . , 𝑛} (Murray, Li, and Sastry, 1994, Equation 4.21). We also
require the potential energy function 𝑈 : Q → R𝑛 to be differentiable, and we
denote external nonconservative forces and torques applied to the system with the
vector-valued function 𝐹ext : Q × R𝑛 → R𝑛. Finally, if the system is controlled
with 𝑚 ∈ N actuators, then 𝐵 : Q → R𝑛×𝑚 denotes the actuation matrix function,
converting control inputs to forces and torques. With 𝑑 = 2𝑛 and D = Q × R𝑛, we
define 𝐹 : D × R𝑚 → R𝑑 as:

𝐹 (𝑥, 𝑢) =
[

¤𝑞
𝐷 (𝑞)−1(𝐹ext(𝑞, ¤𝑞) − 𝐶 (𝑞, ¤𝑞) ¤𝑞 − ∇𝑈 (𝑞))

]
+

[
0

𝐷 (𝑞)−1𝐵(𝑞)

]
𝑢, (4.73)

for all 𝑥 = (𝑞, ¤𝑞) ∈ Q × R𝑛 and 𝑢 ∈ R𝑚.

4.4.2.2 Regularity

We now establish regularity conditions that enable us to define a valid transition
function that can be used in an MDP. We first establish sufficient conditions such that
every initial condition and control input under consideration correspond to initial
value problems with unique solutions. We then establish sufficient conditions for
these solutions to exist for all nonnegative time.

Assumption 6. The configuration manifold satisfies Q = R𝑛. The functions 𝐷,
𝐶, ∇𝑈, 𝐹ext, and 𝐵 are each locally Lipschitz continuous. There is a strictly
positive lower bound 𝜆min such that 𝜆min𝐼𝑛 ⪯ 𝐷 (𝑞) for all configurations 𝑞 ∈ R𝑛.
There is some closed set 𝐺 ⊆ R𝑚 such that for any control input 𝑢 ∈ 𝐺 there are
corresponding constants 𝑐0 ∈ R+ and 𝑐1 ∈ R++ such that:

∥𝐹ext(𝑞, ¤𝑞) − ∇𝑈 (𝑞) + 𝐵(𝑞)𝑢∥2 ≤ 𝑐0 + 𝑐1∥ ¤𝑞∥2, (4.74)
2The use of 𝐶 for this term is standard, but we will not use it in the same context as an

action-admissibility correspondence.
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for all configurations 𝑞 ∈ R𝑛 and velocities ¤𝑞 ∈ R𝑛.

Remark 6. If the derivative of 𝐷 is locally Lipschitz continuous, then so is 𝐷 itself
as it is continuously differentiable, and so is 𝐶 as it is bilinear in the derivative of
𝐷 and the velocities. If 𝐷 is twice continuously differentiable, then the derivative
of 𝐷 is locally Lipschitz continuous, implying 𝐷 and 𝐶 are as well. If 𝑈 is twice
continuously differentiable, then ∇𝑈 is locally Lipschitz continuous.

Remark 7. If 𝐵 is bounded by some 𝑀 ∈ R+ and there are constants 𝑑0 ∈ R+ and
𝑑1 ∈ R++ such that:

∥𝐹ext(𝑞, ¤𝑞) − ∇𝑈 (𝑞)∥2 ≤ 𝑑0 + 𝑑1∥ ¤𝑞∥2, (4.75)

for all configurations 𝑞 ∈ R𝑛 and velocities ¤𝑞 ∈ R𝑛, then for any 𝑢 ∈ R𝑚, we have:

∥𝐹ext(𝑞, ¤𝑞) − ∇𝑈 (𝑞) + 𝐵(𝑞)𝑢∥2 ≤ 𝑑0 + 𝑀 ∥𝑢∥2 + 𝑑1∥ ¤𝑞∥2, (4.76)

for all configurations 𝑞 ∈ R𝑛 and velocities ¤𝑞 ∈ R𝑛. Therefore, choose 𝑐0 =

𝑑0 + 𝑀 ∥𝑢∥2 and 𝑐1 = 𝑑1, as well as 𝐺 = R𝑚.

The proof of (Rudin, 1976, Theorem 9.8b) shows that matrix inversion is locally
Lipschitz continuous. Fixing a control input 𝑢 ∈ 𝐺, the 𝑢-section 𝐹𝑢 is locally
Lipschitz continuous as it is comprised of sums and products of locally Lipschitz
continuous functions. Fix an initial configuration 𝑞0 ∈ R𝑛 and velocity ¤𝑞0 ∈ R𝑛.
There is a corresponding maximal open interval 𝐼max ⊆ R with 0 ∈ 𝐼max such that
the initial value problem characterized by initial condition (𝑞0, ¤𝑞0), control input
𝑢, and time interval 𝐼max has a unique solution 𝜙 : 𝐼max → R2𝑛 (Perko, 2013,
Theorem 2.4.1) (the proof of this theorem applies to locally Lipschitz continuous
vector fields, not just continuously differentiable vector fields). Let 𝜓 : 𝐼max → R𝑛

satisfy 𝜙(𝑡) = (𝜓(𝑡), ¤𝜓(𝑡)) for all times 𝑡 ∈ 𝐼max, and note that 𝜓(0) = 𝑞0 and
¤𝜓(0) = ¤𝑞0. Let 𝐼+max = R+ ∩ 𝐼max. The kinetic energy satisfies:

𝑇 (𝜓(𝑡), ¤𝜓(𝑡)) − 𝑇 (𝑞0, ¤𝑞0)

=

∫ 𝑡

0
¤𝜓(𝑠)⊤(𝐹 (𝜓(𝑠), ¤𝜓(𝑠)) − ∇𝑈 (𝜓(𝑠)) + 𝐵(𝜓(𝑠))𝑢) d𝑠

≤
∫ 𝑡

0
∥ ¤𝜓(𝑠)∥2(𝑐0 + 𝑐1∥ ¤𝜓(𝑠)∥2) d𝑠, (4.77)
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for all times 𝑡 ∈ 𝐼+max. Since 𝑇 (𝑞, ¤𝑞) ≥ 1
2𝜆min∥ ¤𝑞∥22 for all configurations 𝑞 ∈ R𝑛 and

velocities ¤𝑞 ∈ R𝑛, we have:

1
2

(√︁
𝜆min∥ ¤𝜓(𝑡)∥2

)2
≤ 1

2

(√︁
2𝑇 (𝑞0, ¤𝑞0)

)2

+
∫ 𝑡

0

𝑐0 + 𝑐1∥ ¤𝜓(𝑠)∥2√
𝜆min

(
√︁
𝜆min∥ ¤𝜓(𝑠)∥2) d𝑠, (4.78)

for all times 𝑡 ∈ 𝐼+max. For any upper bound 𝑡 𝑓 ∈ 𝐼+max with 𝑡 𝑓 > 0, the functions
𝜙1, 𝜙2 : [0, 𝑡 𝑓 ] → R+ defined as:

𝜙1(𝑡) =
√︁
𝜆min∥ ¤𝜓(𝑡)∥2, 𝜙2(𝑡) =

𝑐0 + 𝑐1∥ ¤𝜓(𝑡)∥2√
𝜆min

, (4.79)

for all 𝑡 ∈ [0, 𝑡 𝑓 ] are continuous and bounded, implying 𝜙2 is absolutely integrable.
Therefore, from (Ballard, 2000, Lemma 17) (originally (Brezis, 1973, Lemma A.5)),
we have: √︁

𝜆min∥ ¤𝜓(𝑡)∥2 ≤
√︁

2𝑇 (𝑞0, ¤𝑞0) +
∫ 𝑡

0

𝑐0 + 𝑐1∥ ¤𝜓(𝑠)∥2√
𝜆min

d𝑠, (4.80)

for all times 𝑡 ∈ [0, 𝑡 𝑓 ]. By the Gronwall-Bellman inequality (Khalil, 2002, Lemma
A.1), we have:

∥ ¤𝜓(𝑡)∥2 ≤
©­«
√︄

2𝑇 (𝑞0, ¤𝑞0)
𝜆min

+ 𝑐0𝑡

𝜆min

ª®¬ 𝑒
𝑐1

𝜆min
𝑡
, (4.81)

for all times 𝑡 ∈ [0, 𝑡 𝑓 ]. Since 𝑡 𝑓 was arbitrary, the bound (4.81) holds for all times
𝑡 ∈ 𝐼+max.

We now use (4.81) to show that 𝐼+max = R+. For contradiction, assume there is some
time 𝑡 𝑓 ∈ R++ with 𝑡 𝑓 ∉ 𝐼+max. By upper bounding the right-hand side of (4.81) by
its value at the time 𝑡 𝑓 , we conclude that ¤𝜓 is bounded on 𝐼+max. Also:

∥𝜓(𝑡) − 𝑞0∥2 ≤
∫ 𝑡

0
∥ ¤𝜓(𝑠)∥2 d𝑠 ≤ 𝑡 𝑓 ©­«

√︄
2𝑇 (𝑞0, ¤𝑞0)
𝜆min

+
𝑐0𝑡 𝑓

𝜆min

ª®¬ 𝑒
𝑐1

𝜆min
𝑡 𝑓 , (4.82)

for all times 𝑡 ∈ 𝐼+max; that is, 𝜓 is bounded on 𝐼+max. Therefore, 𝜙 is bounded on 𝐼+max,
contradicting (Perko, 2013, Theorem 2.4.3) (again, the proof of this theorem applies
to locally Lipschitz continuous vector fields). This implies 𝐼+max = R+, meaning for
any sample period ℎ ∈ R++, there is an open interval 𝐼 ⊆ R with [0, ℎ] ⊂ 𝐼.

Thus, any robotic system satisfying Assumption 6 also satisfies Assumption 5, no
matter which sample period ℎ is chosen.
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4.4.3 Sampled-Data Control
We now determine sufficient conditions for the existence of a continuous policy
rendering a compact subset of the state space forward-invariant. This construction
uses the methods of (Taylor, Dorobantu, Yue, et al., 2021; Taylor, Dorobantu,
Cosner, et al., 2022), based on the original work (Nešić, Teel, and Kokotović, 1999)
in sampled-data control. These methods are detailed in Appendix A.

A control affine system is full-state feedback linearizable ifD is open and there exist
a function Φ : D → R𝑑 that is a diffeomorphism between D and an open subset
of R𝑑 , a continuous controller 𝑘fbl : R𝑑 ×R𝑚 → R𝑚 that accepts an auxiliary input,
and a controllable pair (𝐴, 𝐵) ∈ R𝑑×𝑑 × R𝑑×𝑚 such that:

𝜕Φ

𝜕𝑥
𝐹 (𝑥, 𝑘fbl(𝑥, 𝑣)) = 𝐴Φ(𝑥) + 𝐵𝑣, (4.83)

for all 𝑥 ∈ D and auxiliary control inputs 𝑣 ∈ R𝑚.

Remark 8. Any robotic system satisfying Assumption 6 with 𝑛 = 𝑚 and 𝐵(𝑞)
invertible for all configurations 𝑞 ∈ R𝑛 is full-state feedback linearizable. The
feedback linearizing controller 𝑘fbl : R𝑑 × R𝑛 → R𝑛 is defined as:

𝑘fbl(𝑥, 𝑣) = 𝐵(𝑞)−1(𝐶 (𝑞, ¤𝑞) ¤𝑞 + ∇𝑈 (𝑞) − 𝐹ext(𝑞, ¤𝑞) + 𝐷 (𝑞)𝑣), (4.84)

for all 𝑥 = (𝑞, ¤𝑞) ∈ R𝑛 × R𝑛 and 𝑣 ∈ R𝑛, and:

𝐹 (𝑥, 𝑘fbl(𝑥, 𝑣)) =
[
0 𝐼

0 0

] [
𝑞

¤𝑞

]
+

[
0
𝐼

]
𝑣, (4.85)

for all 𝑥 = (𝑞, ¤𝑞) ∈ R𝑛 × R𝑛 and 𝑣 ∈ R𝑛.

Consider a full-state feedback linearizable control affine system, and suppose 0 ∈ D
and Φ(0) = 0. Consider any gain matrix 𝐾 ∈ R𝑚×𝑑 making 𝐴 − 𝐵𝐾 Hurwitz stable
with all eigenvalues having strictly negative real parts. Suppose the system satisfies
Assumption 5 and 0𝑑 ∈ int(S). Additionally, suppose 𝜋0 : S → R𝑚 defined as:

𝜋0(𝑥) = 𝑘fbl(𝑥,−𝐾Φ(𝑥)), (4.86)

for all states 𝑥 ∈ S satisfies 𝜋0(𝑥) ∈ 𝐶 (𝑥) for all states 𝑥 ∈ S. Since 𝑘fbl and Φ are
continuous, 𝜋0 is continuous.

By (Taylor, Dorobantu, Yue, et al., 2021, Lemmas 3, 4), there is a continuous (class
KL) function 𝛽 : R+ × R+ → R+ with monotonically increasing 𝑠-sections 𝛽𝑠 for
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all 𝑠 ∈ R+ and monotonically nonincreasing 𝑟-sections 𝛽𝑟 for all 𝑟 ∈ R+, as well as
some 𝑅 ∈ R++ and a bounded open set 𝑁 ⊂ R𝑑 with 0 ∈ 𝑁 and:

{𝑥 ∈ R𝑑 : ∥𝑥∥2 ≤ sup
𝑥′∈𝑁

𝛽(∥𝑥′∥2, 0) + 𝑅} ⊆ S. (4.87)

Additionally, for any 𝑅 ≤ 𝑅, if the sample period is sufficiently small, we have:

∥( 𝑓ℎ)𝑡𝜋0 (𝑥)∥2 ≤ 𝛽(∥𝑥∥2, 𝑡ℎ) + 𝑅 ≤ sup
𝑥′∈𝑁

𝛽(∥𝑥′∥2, 0) + 𝑅, (4.88)

for all 𝑥 ∈ 𝑁 and 𝑡 ∈ Z+. Let R ⊆ S denote the set of all states reachable from
𝑁 when following 𝜋0, defined as R = {( 𝑓ℎ)𝑡𝜋0 (𝑥) ∈ S : 𝑥 ∈ 𝑁, 𝑡 ∈ Z+}, and note
that ( 𝑓ℎ)𝜋0 (R) ⊆ R and cl(R) ⊆ S. Since ( 𝑓ℎ)𝜋0 (cl(R)) ⊆ cl(R) ⊆ S, we can set
S0 = cl(R). The set S0 ⊆ S is closed and bounded since:

sup
𝑥∈𝑁

𝛽(∥𝑥∥2, 0) + 𝑅 = 𝛽

(
sup
𝑥∈𝑁
∥𝑥∥2, 0

)
+ 𝑅 < ∞. (4.89)

Therefore, S0 is a compact set rendered forward-invariant by the continuous policy
𝜋0, implying the system satisfies Assumption 4.

Finally, we can construct a compact subset of the state space in a similar manner
by appealing to (Taylor, Dorobantu, Cosner, et al., 2022, Theorem 3), employing
the notion of practical safety. In this case, if a compact 0-superlevel set of a
family of sampled-data control barrier functions (Taylor, Dorobantu, Cosner, et al.,
2022, Definition 7) can be rendered forward-invariant when the transition map is
approximated by an appropriate Euler/Runge-Kutta scheme, then an enlarged (but
bounded) set can be rendered forward-invariant for the exact transition map when the
sample period is sufficiently small. The enlargement can be controlled by decreasing
the sample period.
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C h a p t e r 5

NONLINEAR MODEL PREDICTIVE CONTROL

We introduce an approach for geometric model predictive control, outlining our
construction for a 3D hopping robot in a way that facilitates generalization to other
systems evolving on Lie groups. The hopping setting is of particular interest as a
hybrid system, governed by families of ODEs, switching between ODEs at discrete
impact events.

5.1 Introduction
Hopping has been a benchmark challenge in the field of robotic locomotion dating
back to the seminal work of Marc Raibert in the 1980’s (Raibert, Brown, and
Chepponis, 1984). The control of hopping robots is particularly challenging due to
intermittent continuous and discrete dynamics, periods of extreme underactuation,
and exceptionally short ground phases during which the robot can apply forces to
regulate its global position. These pose unique difficulties for conventional control
algorithms, and necessitate the ability to decide control actions based on predictions
of where the robot will be in the future. Besides the work of Raibert, many
methods have been developed to stabilize hopping robots (Sayyad, Seth, and Seshu,
2007), including reinforcement learning based approaches (Tedrake and Seung,
2002; Maier, 2001), nonholonomic motion planning (Murray and Sastry, 1990),
a mix of offline and online hierarchical motion planning strategies (Zeglin and
Brown, 1998; Albro and Bobrow, 2001), and model predictive control of simplified
models (Zamani and Bhounsule, 2020; Rutschmann et al., 2012). Compared to the
abundance of work that exists for planar hopping robots, the literature for the control
of 3D hopping robots is comparatively sparse.

Recently, model predictive control (MPC) (Borrelli, Bemporad, and Morari, 2017)
has been used effectively for the control of dynamic robotic systems, including hy-
brid systems (systems with continuous dynamics and discrete impacts (Grizzle et al.,
2014)) like legged robots (Galliker et al., 2022; Farshidian et al., 2017; Di Carlo
et al., 2018). MPC has been brought into the realm of real-time dynamic robotic
control due to modern computing power and increased algorithmic efficiency (Car-
pentier et al., 2019); however, the implementation of MPC on hardware platforms,
as well as theoretical justifications of its performance for nonlinear systems remains
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an active area of research. As nonlinear MPC is predicated on taking local approx-
imations of system dynamics, its success heavily relies on correctly constructing
these approximations and remaining within the regions in which they are valid.

When the system states are manifold-valued, these local approximations must be
carefully constructed. We will specifically be concerned with Lie groups, groups
with smooth manifold structure whose operator and inverse are also smooth (see
(Celledoni, Marthinsen, and Owren, 2014; Kobilarov, Crane, and Desbrun, 2009)),
as they are often used in the field of robotics to model the space of orientations. Lie
groups have additionally been studied from the perspectives of discrete mechanics
(Junge, Marsden, and Ober-Blöbaum, 2005) and numerical analysis (Iserles et al.,
2000; Hairer et al., 2006). The estimation of robotic systems on Lie groups was
outlined in (Solà, Deray, and Atchuthan, 2021), and the control of legged robotic
systems on Lie groups has recently been investigated in (Teng et al., 2022). Finally,
the application of optimal control techniques over differentiable manifolds to the
control of hybrid systems was explored in (Mastalli, Budhiraja, et al., 2020) with
experimental results achieved in (Mastalli, Merkt, et al., 2022; Mastalli, Chhatoi,
et al., 2023).

We develop a framework for hybrid nonlinear MPC in a geometrically consistent
fashion via Lie group integrators. Theoretically, we consider both the manifold
structure of the configuration space and the hybrid nature of the dynamics (Sec. 5.2),
wherein an MPC problem is synthesized through the use of sequential linearizations
that leverage Lie group and Lie algebra structures (Sec. 5.3).

We experimentally demonstrated this framework on a novel 3D robot: ARCHER
(Ambrose, 2022) (which builds upon earlier generations of hopping robots (Am-
brose, Ma, and Ames, 2021; Ambrose and Ames, 2020; Ambrose, Csomay-
Shanklin, et al., 2019)). This robot has three reaction wheels for attitude control, and
one motor connected via a rope to control foot spring compression. The MPC prob-
lem was translated to hardware via a multi-rate control paradigm. Full experimental
details can be found in (Csomay-Shanklin, Dorobantu, and Ames, 2022), with ex-
amples of simulated path following and flipping, as well as the first demonstration
of 3D hopping on a hardware platform using online motion planning strategies.
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5.2 Preliminaries
5.2.1 Hybrid System Dynamics
The configuration of the hopping robot is given by 𝑞 = (𝑝, 𝑄, 𝜃, ℓ) ∈ Q, where
𝑝 ∈ R3 is the Cartesian position, 𝑄 ∈ 𝑆3 is the unit quaternion representing the
orientation, 𝜃 ∈ R3 represents the flywheel angles, and ℓ ∈ R is the foot deflection.
Next, let 𝑣 = ( ¤𝑝, 𝜔, ¤𝜃, ¤ℓ) ∈ V ≜ R3 × 𝔰3 × R3 × R, where 𝜔 ∈ 𝔰3 is a purely
imaginary quaternion representing the angular rate of the body. The complete robot
state can then be written as 𝑥 = (𝑞, 𝑣) ∈ X ≜ Q ×V.

Hopping consists of alternating sequences of continuous and discrete dynamics;
therefore, it is naturally modeled as a hybrid system. Two distinct continuous phases
of dynamics exist, the flight phase 𝑓 when the robot is in the air, and the ground
phase 𝑔 when the foot is contacting the floor. We can construct a directed graph
with vertices 𝑣 ∈ 𝑉 ≜ { 𝑓 , 𝑔} and edges 𝑒 ∈ 𝐸 ≜ { 𝑓 → 𝑔, 𝑔 → 𝑓 } to characterize
how the robot traverses the hybrid modes, as shown in Figure 5.1.

For each vertex 𝑣 ∈ 𝑉 , let D𝑣 ⊂ X represent the admissible domain in which the
system state evolves, and 𝑛𝑣 denote the number of holonomic constraints restricting
the motion of the robot. Note that 𝑛 𝑓 = 0, and 𝑛𝑔 = 3, which pin the foot to the
ground. Omitting the details for manifold value variables (which can be found in
(Abraham and Marsden, 2008)), let 𝐽𝑣 : Q → R𝑛𝑣×𝑛 denote the Jacobian of the
holonomic constraints where 𝑛 is the dimension of Q. We can define the dynamics
as:

𝐷 (𝑞) ¥𝑞 + 𝐻 (𝑞, ¤𝑞) = 𝐵𝑢 + 𝐽⊤𝑣 (𝑞)𝜆𝑣,
¤𝐽 𝑣 (𝑞, ¤𝑞) ¤𝑞 + 𝐽𝑣 (𝑞) ¥𝑞 = 0.

where 𝐷 : Q → R𝑛×𝑛 is the mass-inertia matrix, 𝐻 : X → R𝑛 contains the
Coriolis and gravity terms, 𝐵 ∈ R𝑛×𝑚 is the actuation matrix, 𝑢 ∈ R𝑚 is the control
input, and 𝜆𝑣 ∈ R𝑛𝑣 are the Lagrange variables describing the constraint forces.
These equations can be rearranged and forces 𝜆𝑣 solved for in order to produce the
constraint implicit dynamics:

¤𝑥 = 𝑓𝑣 (𝑥, 𝑢), (5.1)

where 𝑓𝑣 : X × R𝑚 → R2𝑛 is of control-affine form. Each hybrid transition 𝑒 ∈ 𝐸
occurs when the system state intersects the guard, defined as:

S 𝑓 = {𝑥 ∈ D 𝑓 : 𝑧 = 0, ¤𝑧 < 0} 𝑒 = 𝑓 → 𝑔,

S𝑔 = {𝑥 ∈ D𝑔 : ℓ = 0, ¤ℓ < 0} 𝑒 = 𝑔 → 𝑓 .
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Figure 5.1: The robot traversing the various hybrid domains.

For an edge 𝑒 = 𝑣1 → 𝑣2, upon striking the guard S𝑣1 the system undergoes a
discrete jump in states as described by:

𝑥+ = Δ𝑒 (𝑥−),

where Δ𝑒 : S𝑣1 → D𝑣2 is the reset map describing the momentum transfer though
impact, and 𝑥− ∈ D𝑣1 and 𝑥+ ∈ D𝑣2 are the pre and post-impact states, respectively.
Collecting the various objects D = {D𝑣}𝑣∈𝑉 , S = {S𝑣}𝑣∈𝑉 , Δ = {Δ𝑒}𝑒∈𝐸 and
𝐹 = { 𝑓𝑣}𝑣∈𝑉 , we can describe the hybrid control system of the hopping robot via
the tuple:

HC = (𝑉, 𝐸,D,S,Δ, 𝐹).

5.2.2 Lie Group Integrators
In this section, we focus our attention to the orientation coordinates of the robot and
discuss how to perform one form of Lie group integration. We represent the orienta-
tion of a rigid body via a unit quaternion𝑄 ∈ 𝑆3 = {𝑄 ∈ H : |𝑄 | = 1}; quaternionic
representations of orientation have been extensively explored in attitude control
of spacecrafts (Kalabić et al., 2017; Yang, 2012). As opposed to Euler angles,
quaternions do not suffer from issues of singularities, and provide a straightforward
interpolation method—this will be helpful when constructing continuous-time sig-
nals from the discrete points that MPC produces. Importantly, quaternions and their
associated quaternion multiplication define a Lie group structure on 𝑆3. The angular
rate of the body is given by an element of the associated Lie algebra 𝜔 ∈ 𝔰3, the
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Figure 5.2: A depiction of Lie groups, Lie algebras, and the log operation. a) The
trajectory 𝑄𝑘 , b) pulling the trajectory back to the a neighborhood of identity via
𝑄−1

0 , and c) taking the log map near identity to obtain elements in the Lie algebra.

tangent space of 𝑆3 at the identity quaternion 1, the elements of which are purely
imaginary quaternions.

The time rate of change of a unit quaternion at a point 𝑄 is given by an element of
the tangent space at𝑄, i.e., ¤𝑄 ∈ 𝑇𝑄𝑆3. Given the angular rate of the body 𝜔, we can
calculate ¤𝑄 as:

¤𝑄 = 𝑄𝜔, (5.2)

using standard quaternion multiplication. The formulation (5.2) is possible since the
tangent map of left multiplication by a quaternion is also given by left multiplication,
mapping from the Lie algebra to the tangent space at 𝑄.

Integrating equation (5.2) results in:

𝑄(𝑡) = 𝑄(0) exp(𝜔(𝑡)) (5.3)

where exp : 𝔰3 → 𝑆3 maps elements of the Lie algebra 𝔰3 back to the Lie group 𝑆3.
This map is injective for imaginary quaternions with magnitude less than 𝜋; over
this neighborhood, the inverse map is given by the log map. If instead of directly
integrating we take a Lie-Euler step, (5.3) becomes:

𝑄𝑘+1 = 𝑄𝑘 exp(𝜔𝑘ℎ) (5.4)

for a (small) time step ℎ ∈ R++. This is a simple example of a Lie group integrator.

5.3 Geometric MPC
5.3.1 Linearized Dynamics
To mitigate the nonlinearity present in (5.4), we propose the following change of
coordinates:

𝜉𝑘 = log(𝑄−1
0 𝑄𝑘 ), (5.5)
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which first pulls the variables back to the vicinity of 𝑄𝜀, and then to the Lie algebra
as shown in Figure 5.2. Substituting in the Lie-Euler step from (5.4) into the above
expression for the first few values of 𝑘 , we have:

𝜉0 = 0

𝜉1 = log(𝑄−1
0 𝑄1) = log(𝑄−1

0 𝑄0 exp(𝜔0ℎ))
= 𝜔0ℎ

𝜉2 = log(𝑄−1
0 𝑄2) = log(𝑄−1

0 𝑄1 exp(𝜔1ℎ))
= log(𝑄−1

0 𝑄0 exp(𝜔0ℎ) exp(𝜔1ℎ))

= 𝜔0ℎ + 𝜔1ℎ +
1
2
[𝜔0ℎ, 𝜔1ℎ] + · · ·

where [·, ·] is the Lie bracket on 𝔰3, the last line follows from the Campbell-Baker-
Hausdorff theorem Stillwell, 2008, and the higher order terms consist of linear
combinations of iterated Lie brackets, which due to linearity are multiplied by terms
of order ℎ3 or higher. This means that, neglecting terms of order ℎ2 or higher, we
are able to write our dynamics update law as:

𝜉𝑘+1 =

𝑘∑︁
𝑖=0

𝜔𝑘ℎ = 𝜉𝑘 + 𝜔𝑘ℎ,

which is linear and will therefore be straightforward to include in the MPC program.

The next challenge concerns the construction of local approximations of the accel-
eration dynamics. As most of the coordinates lie in Euclidean space and therefore
have straightforward Taylor approximations, we will limit our attention on the man-
ifold valued variables. Specifically, in a continuous domain 𝑣 consider a function
𝑓 : 𝑆3 × 𝔰3 × R𝑚 → 𝔰3 satisfying:

¤𝜔 = 𝑓 (𝑄, 𝜔, 𝑢).

In a neighborhood of 𝑄, we have a chart map given by:

𝑄′ ↦→ log(𝑄−1𝑄′). (5.6)

In this way, we can locally represent 𝑓 near (𝑄, 𝜔, 𝑢) using sufficiently small
coordinates (𝜂,Δ𝜔,Δ𝑢), where 𝜂 ∈ 𝔰3, Δ𝜔 ∈ 𝔰3 as well, and Δ𝑢 ∈ R𝑚. This local
representation is then:

𝑓 (𝜂,Δ𝜔,Δ𝑢) ≜ 𝑓 (𝑄 exp(𝜂), 𝜔 + Δ𝜔, 𝑢 + Δ𝑢). (5.7)
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This has the first-order Taylor expansion:

𝑓 (𝜂,Δ𝜔,Δ𝑢) ≈ 𝑓 (𝑄, 𝜔, 𝑢) + 𝜕 𝑓
𝜕𝜂

����
(0,0,0)

·𝜂+ 𝜕 𝑓
𝜕𝜔

����
(𝑄,𝜔,𝑢)

·Δ𝜔+ 𝜕 𝑓
𝜕𝑢

����
(𝑄,𝜔,𝑢)

·Δ𝑢. (5.8)

We can now write the continuous-time linearized dynamics of 𝜔 about the point
(𝑄, 𝜔, 𝑢) as:

d
d𝑡
𝛿𝜔 =

𝜕 𝑓

𝜕𝜂

����
(0,0,0)

· 𝜂 + 𝜕 𝑓
𝜕𝜔

����
(𝑄,𝜔,𝑢)

· 𝛿𝜔 + 𝜕 𝑓
𝜕𝑢

����
(𝑄,𝜔,𝑢)

· 𝛿𝑢, (5.9)

Next, we consider the dynamics of the variables 𝜉𝑘 around a reference trajectory
�̄�𝑘 ∈ 𝑆3, �̄�𝑘 ∈ 𝔰3, and �̄�𝑘 ∈ R𝑚. Define 𝜉𝑘 = log(�̄�−1

0 �̄�𝑘 ) with 𝜉0 = 0 and suppose
the reference trajectory satisfies the Lie-Euler step, i.e.:

𝜉𝑘+1 = 𝜉𝑘 + �̄�𝑘ℎ.

For a trajectory 𝜉𝑘 ∈ 𝔰3 similarly satisfying the Lie-Euler step, and vectors 𝜔𝑘 ∈ 𝔰3,
and 𝑢𝑘 ∈ R𝑚, we have:

(𝜉𝑘+1 − 𝜉𝑘+1) = (𝜉𝑘 − 𝜉𝑘 ) + (𝜔𝑘 − �̄�𝑘 )ℎ + 𝜉𝑘 + �̄�𝑘ℎ − 𝜉𝑘+1︸              ︷︷              ︸
=0

,

yielding continuous-time linearized dynamics:

d
d𝑡
𝛿𝜉 = 𝛿𝜔. (5.10)

Combining expressions (5.9) and (5.10), we obtain:

d
d𝑡

[
𝛿𝜉

𝛿𝜔

]
=


0 𝐼

𝜕 𝑓

𝜕𝜂

���
(0,0,0)

𝜕 𝑓

𝜕𝜔

���
(𝑄,𝜔,𝑢)

︸                        ︷︷                        ︸
≜𝐴

[
𝛿𝜉

𝛿𝜔

]
+


0

𝜕 𝑓

𝜕𝑢

���
(𝑄,𝜔,𝑢)

︸        ︷︷        ︸
≜𝐵

𝛿𝑢. (5.11)

For base trajectories 𝜉, �̄�, and �̄� and perturbed trajectories 𝜉, 𝜔 and 𝑢, our lineariza-
tion yields:

d
d𝑡

([
𝜉

𝜔

]
−

[
𝜉

�̄�

])
≈ 𝐴

([
𝜉

𝜔

]
−

[
𝜉

�̄�

])
+ 𝐵(𝑢 − �̄�), (5.12)

or:
d
d𝑡

[
𝜉

𝜔

]
≈ 𝐴

[
𝜉

𝜔

]
+ 𝐵𝑢 + 𝑓 (0, 0, 0) −

[
𝜉

�̄�

]
− 𝐵�̄�︸                      ︷︷                      ︸

≜𝐶

. (5.13)
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The extra 𝐶 term is needed since we are not linearizing about an equilibrium.

We can similarly construct local approximations of the impact maps. On an edge 𝑒,
consider a function Δ : S → 𝔰3 which satisfies:

𝜔+ = Δ(𝑄−, 𝜔−). (5.14)

Here,S represents the guard as a submanifold of 𝑆3×𝔰3 (though the guard is actually
a submanifold of Q). As defined, this reset map is the restriction of the momentum
transfer of the system at impact to the guard. Therefore, we can naturally extend
the domain of the reset map by considering the same momentum transfer applied
anywhere in the state space, yielding Δext : 𝑆3 × 𝔰3 → 𝔰3. This is needed because in
our Talyor expansion of the discrete dynamics, we consider perturbations of the full
system state (not just perturbations tangent to the guard). As before, we can locally
represent the function Δext as:

Δ̃ext(𝜂,Δ𝜔−) ≜ Δext(𝑄− exp(𝜂), 𝜔− + Δ𝜔−), (5.15)

which has first-order Taylor expansion:

Δ̃ext(𝜂,Δ𝜔−) ≈ Δext(𝑄−, 𝜔−) +
𝜕Δ̃ext
𝜕𝜂

����
(0,0)
· 𝜂 + 𝜕Δext

𝜕𝜔−

����
(𝑄− ,𝜔−)

· Δ𝜔−. (5.16)

Noting that the 𝑄+ = 𝑄−, we can represent the linearization of the discrete map as:[
𝛿𝜉+

𝛿𝜔+

]
=


𝐼 0

𝜕Δ̃ext
𝜕𝜂

���
(0,0)

𝜕Δext
𝜕𝜔−

���
(𝑄− ,𝜔−)

︸                           ︷︷                           ︸
≜𝐷

[
𝛿𝜉−

𝛿𝜔−

]
. (5.17)

For base pre-impact states 𝜉− and �̄�− and perturbed pre-impact states 𝜉− and 𝜔−,
we have: [

𝜉+

𝜔+

]
−

[
𝜉+

�̄�+

]
≈ 𝐷

([
𝜉−

𝜔−

]
−

[
𝜉−

�̄�−

])
, (5.18)

or: [
𝜉+

𝜔+

]
≈ 𝐷

[
𝜉−

𝜔−

]
+ Δ̃ext(0, 0) − 𝐷

[
𝜉−

�̄�−

]
︸                   ︷︷                   ︸

≜𝐸

. (5.19)

5.3.2 Sequential Quadratic Programming
We now detail our solution using sequential quadratic programming (SQP). Plan-
ning optimal state and action trajectories directly, ensuring that the states and actions
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all satisfy exact discrete-time dynamics, is computationally intractable. However,
suppose we have access to a finite-horizon (length 𝑁) state trajectory 𝑥0, . . . , 𝑥𝑁 and
input trajectory �̄�0, . . . , �̄�𝑁−1. We can formulate a single stage of a sequential opti-
mization procedure by optimizing perturbations of these states and inputs, ensuring
that the perturbed dynamics satisfy linearized dynamics (that is, agree with the true
dynamics up to first order) at each of the pairs (𝑥𝑘 , �̄�𝑘 ), 𝑘 = 0, . . . , 𝑁 − 1.

At time index 𝑘 , consider the state 𝑥𝑘 , with:

𝑥𝑘 = (𝑝𝑘 , �̄�𝑘 , 𝜃𝑘 , ℓ̄𝑘 , ¤̄𝑝𝑘 , �̄�𝑘 , ¤̄𝜃𝑘 , ¤̄ℓ𝑘 ). (5.20)

Define 𝑧𝑘 as:
𝑧𝑘 = (𝑝𝑘 , log (�̄�−1

0 �̄�𝑘 ), 𝜃𝑘 , ℓ̄𝑘 , ¤̄𝑝𝑘 , �̄�𝑘 , ¤̄𝜃𝑘 , ¤̄ℓ𝑘 ), (5.21)

simply replacing �̄�𝑘 with 𝜉𝑘 ≜ log(�̄�−1
0 �̄�𝑘 ).

We decide a priori which times will correspond to flight and ground phases. We
estimate impact times assuming ballistic trajectories in the vertical direction. If the
flight (or ground) phase is selected for the entire horizon, we obtain the following
quadratic program:

min
𝑧0,...,𝑧𝑁
𝑢0,...,𝑢𝑁−1

𝑁−1∑︁
𝑘=0
(𝑧𝑘 − 𝑧ref)⊤𝑆(𝑧𝑘 − 𝑧ref) + 𝑢⊤𝑘 𝑅𝑢𝑘 + (𝑧𝑁 − 𝑧ref)⊤𝑃(𝑧𝑁 − 𝑧ref)

s.t. 𝑧𝑘+1 = 𝐴𝑘 𝑧𝑘 + 𝐵𝑘𝑢𝑘 + 𝐶𝑘 , 𝑘 = 0, . . . , 𝑁 − 1

𝑢𝑘 ∈ U, 𝑘 = 0, . . . , 𝑁 − 1

𝑧0 given (5.22)

where 𝑆, 𝑅, and 𝑄 are positive definite cost matrices penalizing deviation from a
reference state 𝑧ref , control usage, and terminal deviation from the reference, respec-
tively, and U is a set specifying control input bounds. The matrices 𝐴𝑘 , 𝐵𝑘 , and
𝐶𝑘 are obtained from discretized linearizations about (𝑥𝑘 , �̄�𝑘 ). The discretization
can be based on forward Euler steps or evolution via the matrix exponential (we
used the former in experiments). The resulting optimal trajectories 𝑧∗0, . . . , 𝑧

∗
𝑁

and
𝑢∗0, . . . , 𝑢

∗
𝑁−1 seed the next stage of SQP. Specifically, the corresponding trajectory

𝑥∗0, . . . , 𝑥
∗
𝑁

is attained by replacing 𝜉∗
𝑘

with 𝑄0 exp(𝜉∗
𝑘
) for each 𝑘 = 0, . . . , 𝑁 . We

then replace 𝑥𝑘 ← 𝑥∗
𝑘

and �̄�𝑘 ← 𝑢∗
𝑘
, and repeat the optimization.
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Figure 5.3: Dynamic motions explored in simulation, including flipping (above)
and disturbance rejection (below).

If the phase changes during the horizon, we modify the quadratic program as:

min
𝑧0,...,𝑧𝑁
𝑢0,...,𝑢𝑁−1

𝑁−1∑︁
𝑘=0
(𝑧𝑘 − 𝑧ref)⊤𝑆(𝑧𝑘 − 𝑧ref) + 𝑢⊤𝑘 𝑅𝑢𝑘 + (𝑧𝑁 − 𝑧ref)⊤𝑃(𝑧𝑁 − 𝑧ref)

s.t. 𝑧𝑘+1 =


𝐴𝑘 𝑧𝑘 + 𝐵𝑘𝑢𝑘 + 𝐶𝑘 no impact

𝐷𝑘 𝑧𝑘 + 𝐸𝑘 impact
𝑘 = 0, . . . , 𝑁 − 1

𝑢𝑘 ∈ U, 𝑘 = 0, . . . , 𝑁 − 1

𝑧0 given (5.23)

where impact or no impact indicate whether of not we expect a transition from time
index 𝑘 to index 𝑘 + 1.

After sufficiently many iterations of optimization (this is typically user-specified
or based on time constraints), the first action 𝑢∗0 is supplied to the actuators. The
system undergoes its true transition, likely evolving to a state different than 𝑥∗1.
Subsequently, the initial seed of SQP at the next time step is selected as 𝑥𝑘 ← 𝑥∗

𝑘+1
and �̄�𝑘 ← 𝑢𝑘+1 for all 𝑘 = 1, . . . , 𝑁 − 1. The final state 𝑥𝑁 can be chosen based on a
reference state or via linearization at the penultimate state and action. Experimental
details are given in (Csomay-Shanklin, Dorobantu, and Ames, 2022); in this case,
we used a horizon length of 𝑁 = 20, a time step ℎ = 0.01 for flight and ℎ = 0.001
for ground phases, and 2 SQP iterations per time step.

Ultimately, this methodology can be adopted for other types of hybrid systems evolv-
ing on Lie groups. Possible future directions of work include a closer connection
with discrete mechanics and variational integrators, mixed-integer optimization to
plan impacts, pulling manifold states back only to the previous state in a trajectory
(not all the way to the initial state), and further hardware validation. Of note, despite
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pulling each manifold state back to the initial state (which would expectedly cause
problems when pulling back almost antipodal points), our method was still able to
realize extreme dynamic motions such as flipping (Figure 5.3).
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A p p e n d i x A

SAMPLED-DATA CONTROL

We now cover the theoretical foundations of our approach to sampled-data control
(Taylor, Dorobantu, Yue, et al., 2021; Taylor, Dorobantu, Cosner, et al., 2022), in
which we synthesize discrete-time controllers for continuous-time systems. Specif-
ically, we assume that control inputs must be held constant over fixed-frequency
sample periods. Moreover, we assume that sensors can only measure system states
at a fixed frequency; for simplicity, we assume that these frequencies are the same.
The resulting discrete-time evolution arises from sensing the system state, choosing
a control input, holding the input constant while the state evolves under the flow of
the governing ODE, and sensing the terminal state at the end of the sample period.

Precisely, consider a nonlinear control system governed by the differential equation:

¤𝑥 = 𝑓 (𝑥) + 𝑔(𝑥)𝑢, (A.1)

for state signal 𝑥 and control input signal 𝑢 taking values in R𝑛 and R𝑚, respectively,
drift dynamics 𝑓 : R𝑛 → R𝑛, and actuation matrix function 𝑔 : R𝑛 → R𝑛×𝑚.
Consider an open subset Z ⊆ R𝑛 × R𝑚 and its projection onto the state space
X ≜ {𝑥 ∈ R𝑛 : ∃ 𝑢 ∈ R𝑚 s.t. (𝑥, 𝑢) ∈ Z} ⊆ R𝑛. Assume there exists 𝑇max ∈ R++
such that for every state-input pair (𝑥, 𝑢) ∈ Z, there exists a unique solution 𝛾 :
[0, 𝑇max] → R𝑛 satisfying:

¤𝛾(𝑡) = 𝑓 (𝛾(𝑡)) + 𝑔(𝛾(𝑡))𝑢, 𝛾(0) = 𝑥, (A.2)

for all 𝑡 ∈ (0, 𝑇max). Given an ℎ ∈ (0, 𝑇max], a controller 𝑘 : X → R𝑚 is ℎ-
admissible if for any 𝑥 ∈ X, the state-input pair (𝑥, 𝑘 (𝑥)) satisfies (𝑥, 𝑘 (𝑥)) ∈ Z
and the corresponding solution 𝛾 satisfies 𝛾(𝑡) ∈ X for all 𝑡 ∈ [0, ℎ].

A.1 Families of Controller-Map Pairs
Our sampled-data approach uses families of discrete-time dynamics rules and con-
trollers, each adapted for specific sample periods. Denote the set of possible sample
periods by 𝐼 = (0, 𝑇max]. Given a sample period ℎ ∈ 𝐼 and an ℎ-admissible controller
𝑘 : X → R𝑚, the state and control input signals in (A.1) satisfy:

𝑢(𝑡) = 𝑘 (𝑥(𝑡𝑖)) ∀𝑡 ∈ [𝑡𝑖, 𝑡𝑘+𝑖), (A.3)
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with sample times satisfying 𝑡𝑖+1 − 𝑡𝑖 = ℎ for all 𝑖 ∈ Z+. The evolution of the system
over a sample period is given by the exact map 𝐹𝑒

ℎ
: Z → R𝑛:

𝐹𝑒ℎ (𝑥, 𝑢) = 𝑥 +
∫ ℎ

0
( 𝑓 (𝛾(𝜏)) + 𝑔(𝛾(𝜏))𝑢) d𝜏, (A.4)

for all state-input pairs (𝑥, 𝑢) ∈ Z. We call {(𝑘ℎ : X → R𝑚) : ℎ ∈ 𝐼} a family
of admissible controllers if there is an ℎ∗ ∈ 𝐼 such that for each ℎ ∈ (0, ℎ∗), 𝑘ℎ is
ℎ-admissible. This enables the following definition:

Definition 5 (Exact Family). We define the exact family of maps {𝐹𝑒
ℎ

: ℎ ∈ 𝐼}, and
for a family of admissible controllers {𝑘ℎ : ℎ ∈ 𝐼}, we define the exact family of
controller-map pairs {(𝑘ℎ, 𝐹𝑒ℎ ) : ℎ ∈ 𝐼}.

For all ℎ ∈ 𝐼 such that 𝑘ℎ is ℎ-admissible, the recursion 𝑥𝑘+1 = 𝐹𝑒
ℎ
(𝑥𝑘 , 𝑘ℎ (𝑥𝑘 )) ∈ X

is well-defined for all 𝑥0 ∈ X and 𝑘 ∈ Z+. Closed-form expressions for the exact
family of maps are rarely obtainable, suggesting the use of approximations in control
synthesis. While there are many approaches to approximating this family of maps,
we will use the following common class of approximations:

Definition 6 (Euler Approximation Family). For every sample period ℎ ∈ 𝐼, define
the map 𝐹𝑎

ℎ
: Z → R𝑛 as:

𝐹𝑎ℎ (𝑥0, 𝑢0) = 𝑥0 + ℎ( 𝑓 (𝑥0) + 𝑔(𝑥0)𝑢0), (A.5)

for all (𝑥0, 𝑢0) ∈ Z. For a family of admissible controllers {𝑘ℎ : X → R𝑚 : ℎ ∈ 𝐼},
the corresponding Euler approximation family of controller-map pairs is:

{(𝑘ℎ, 𝐹𝑎ℎ ) : ℎ ∈ 𝐼}. (A.6)

We also consider the following higher-order class of approximations:

Definition 7 (Runge-Kutta Approximation Family). Let 𝑝 ∈ N. We define the
Runge-Kutta approximation family of maps {𝐹𝑎,𝑝

ℎ
: ℎ ∈ 𝐼}, where for every sample

period ℎ ∈ 𝐼, define 𝐹𝑎,𝑝
ℎ

: Z → R𝑛 recursively as:

𝐹
𝑎,𝑝

ℎ
(𝑥, 𝑢) = 𝑥 + ℎ

𝑝∑︁
𝑖=1

𝑏𝑖 ( 𝑓 (𝑧𝑖) + 𝑔(𝑧𝑖)𝑢), (A.7)

𝑧𝑖 = 𝑥 + ℎ
𝑖−1∑︁
𝑗=1
𝑎𝑖, 𝑗 ( 𝑓 (𝑧 𝑗 ) + 𝑔(𝑧 𝑗 )𝑢), (A.8)



104

for all pairs (𝑥, 𝑢) ∈ Z, with 𝑧1 = 𝑥. Here, 𝑏1, . . . , 𝑏𝑝 ∈ R+ satisfy
∑𝑝

𝑖=1 𝑏𝑖 = 1 and
𝑎𝑖, 𝑗 ∈ R for each 𝑖 ∈ {1, . . . 𝑝} and 𝑗 ∈ {1, . . . , 𝑖 − 1}. For a family of admissible
controllers {𝑘ℎ : ℎ ∈ 𝐼}, we may define the Runge-Kutta approximation family of
controller-map pairs {(𝑘ℎ, 𝐹𝑎,𝑝ℎ ) : ℎ ∈ 𝐼}.

Note that the Euler approximation family corresponds to the unique Runge-Kutta
approximation family when 𝑝 = 1. Note further that for our work, there are
no requirements on the coefficients 𝑎𝑖, 𝑗 (additional requirements on Runge-Kutta
coefficients are typically needed for higher-order accuracy ODE solves). However,
in practice, we use a standard midpoint rule scheme when needed for robotic systems,
with:

𝑧1 = 𝑥, (A.9)

𝑧2 = 𝑥 + ℎ
2
( 𝑓 (𝑧1) + 𝑔(𝑧1)𝑢) = 𝑥 +

ℎ

2
( 𝑓 (𝑥) + 𝑔(𝑥)𝑢), (A.10)

𝐹
𝑎,𝑝

ℎ
(𝑥, 𝑢) = 𝑥 + ℎ( 𝑓 (𝑧2) + 𝑔(𝑧2)𝑢)

= 𝑥 + ℎ
(
𝑓

(
𝑥 + ℎ

2
( 𝑓 (𝑥) + 𝑔(𝑥)𝑢)

)
+ 𝑔

(
𝑥 + ℎ

2
( 𝑓 (𝑥) + 𝑔(𝑥)𝑢)

)
𝑢

)
,

(A.11)

for all pairs (𝑥, 𝑢) ∈ Z. When the system in question is governed by:

𝐷 (𝑞) ¥𝑞 + 𝐻 (𝑞, ¤𝑞) = 𝐵𝑢, (A.12)

with:
d
d𝑡

[
𝑞

¤𝑞

]
=

[
¤𝑞

−𝐷 (𝑞)−1𝐻 (𝑞, ¤𝑞)

]
︸                   ︷︷                   ︸

𝑓 (𝑥)

+
[

0
𝐷 (𝑞)−1𝐵

]
︸        ︷︷        ︸

𝑔(𝑥)

𝑢, (A.13)

we obtain:

𝑧1 =

[
𝑞

¤𝑞

]
, (A.14)

𝑧2 =

[
𝑞 + ℎ

2 ¤𝑞
¤𝑞 + ℎ

2𝐷 (𝑞)
−1(𝐵𝑢 − 𝐻 (𝑞, ¤𝑞))

]
, (A.15)

𝐹
𝑎,𝑝

ℎ
(𝑥, 𝑢)

=


𝑞 + ℎ ¤𝑞 + ℎ2

2 𝐷 (𝑞)
−1(𝐵𝑢 − 𝐻 (𝑞, ¤𝑞))

¤𝑞 + ℎ𝐷
(
𝑞 + ℎ

2 ¤𝑞
)−1 (

𝐵𝑢 − 𝐻
(
𝑞 + ℎ

2 ¤𝑞, ¤𝑞 +
ℎ
2𝐷 (𝑞)

−1(𝐵𝑢 − 𝐻 (𝑞, ¤𝑞))
))

=

[
𝑞 + ℎ ¤𝑞 + ℎ2

2 ¥𝑞
· · ·

]
. (A.16)
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Note that the first block of 𝐹𝑎,𝑝
ℎ
(𝑥, 𝑢) is simply the second-order Taylor approxima-

tion of the configuration 𝑞 at the next time step.

The following definition characterizes how accurately an approximate map captures
the exact map:

Definition 8 (One-Step Consistency). A family {(𝑘ℎ, 𝐹ℎ) : ℎ ∈ 𝐼} is one-step
consistent with {(𝑘ℎ, 𝐹𝑒ℎ ) : ℎ ∈ 𝐼} over a set 𝐴 ⊆ X if there exist 𝜌 ∈ K∞ and
ℎ∗ ∈ 𝐼 such that for all 𝑥 ∈ 𝐴 and ℎ ∈ (0, ℎ∗), we have:

∥𝐹𝑒ℎ (𝑥, 𝑘ℎ (𝑥)) − 𝐹ℎ (𝑥, 𝑘ℎ (𝑥))∥ ≤ ℎ𝜌(ℎ). (A.17)

We simply say one-step consistent if this is true over every compact subset of X,
where 𝜌 and ℎ∗ are allowed to vary for each compact set.

To demonstrate a condition under which one-step consistency is attained, we first
need a short lemma (we will refer to this lemma again on occasion).

Lemma 4. For any compact set 𝐾 ⊂ X, there is an 𝜀 ∈ R++ such that 𝐾 + 𝐵𝜀 ⊂ X1

and 𝐾 + 𝐵𝜀 is compact, where 𝐵𝜀 is the closed norm-ball of radius 𝜀.

Proof. AsX is open, for every 𝑥 ∈ 𝐾 , there is a corresponding open ball centered at
𝑥 with radius 𝛿𝑥 ∈ R++ that is contained in X. Let 𝐵𝑥 ⊂ X be the open ball centered
at 𝑥 of radius 𝛿𝑥/2. Consider the collection {𝐵𝑥 : 𝑥 ∈ 𝐾}; this is an open cover for
the compact set 𝐾 , so some finite collection 𝐵𝑥1 , . . . , 𝐵𝑥𝑁 for some 𝑥1, . . . , 𝑥𝑁 ∈ 𝐾 ,
respectively, also covers 𝐾 . Let 𝛿 = min𝑖 𝛿𝑥𝑖 , and consider any 𝑧 ∈ 𝐾 + 𝐵𝛿/4.
There is some 𝑥 ∈ 𝐾 such that ∥𝑧 − 𝑥∥ ≤ 𝛿/4 and some 𝑖 ∈ {1, . . . , 𝑁} such that
∥𝑥 − 𝑥𝑖∥ < 𝛿𝑥𝑖/2. Thus, ∥𝑧 − 𝑥𝑖∥ < 𝛿/4 + 𝛿𝑥𝑖/2 < 𝛿𝑥𝑖 , so 𝑧 ∈ X. As 𝑧 was arbitrary,
𝐾 + 𝐵𝛿/4 ⊆ X, so pick 𝜀 ≤ 𝛿/4. The set 𝐾 + 𝐵𝜀 is compact as 𝐾 × 𝐵𝜀 is compact
and (𝑥, 𝑦) ↦→ 𝑥 + 𝑦 is continuous.

Theorem 3. Suppose 𝑓 and 𝑔 are locally Lipschitz continuous over X. Let 𝐾 ⊂ X
be compact, consider a family of admissible controllers {𝑘ℎ : ℎ ∈ 𝐼}, and suppose
there exists ℎ1 ∈ 𝐼 and a bound 𝑀𝐾 ∈ R+ such that for every sample period
ℎ ∈ (0, ℎ1), the controller 𝑘ℎ is bounded in norm by 𝑀𝐾 over 𝐾 . Then the family
{(𝑘ℎ, 𝐹𝑎,𝑝ℎ ) : ℎ ∈ 𝐼} is one-step consistent with {(𝑘ℎ, 𝐹𝑒ℎ ) : ℎ ∈ 𝐼} over 𝐾 .

Proof. Consider a compact set 𝐾 ⊂ X and corresponding ℎ1 ∈ 𝐼 and 𝑀𝐾 ∈ R++,
and fix a sample period ℎ ∈ (0, ℎ1). By Lemma 4, there exists an 𝜀 ∈ R++ such that

1Here, + denotes the Minkowski sum.
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the compact set 𝑁 = 𝐾 + 𝐵𝜀 satisfies 𝑁 ⊂ X. By assumption, 𝑘ℎ is bounded on 𝐾 ,
and 𝑓 and 𝑔 are bounded on 𝑁 by continuity, implying there exists an 𝑀 ∈ R++ such
that:

∥ 𝑓 (𝑧) + 𝑔(𝑧)𝑘ℎ (𝑦)∥ ≤ 𝑀, (A.18)

for all 𝑦 ∈ 𝐾 and 𝑧 ∈ 𝑁 . As 𝑓 and 𝑔 are locally Lipschitz over X, they are globally
Lipschitz over 𝑁 . Therefore:

∥ 𝑓 (𝑧) + 𝑔(𝑧)𝑘ℎ (𝑦) − ( 𝑓 (𝑦) + 𝑔(𝑦)𝑘ℎ (𝑦))∥ (A.19)

≤ ∥ 𝑓 (𝑧) − 𝑓 (𝑦)∥ + ∥𝑔(𝑧) − 𝑔(𝑦)∥∥𝑘ℎ (𝑦)∥
≤ (𝐿 𝑓 + 𝐿𝑔𝑀𝐾)∥𝑧 − 𝑦∥ = 𝜌(∥𝑧 − 𝑦∥),

for all 𝑦 ∈ 𝐾 and 𝑧 ∈ 𝑁 , with 𝐿 𝑓 , 𝐿𝑔 ∈ R++ Lipschitz constants of 𝑓 and 𝑔,
respectively, and 𝜌 ∈ K∞ satisfying 𝜌(𝑟) = (𝐿 𝑓 + 𝐿𝑔𝑀𝐾)𝑟 for all 𝑟 ∈ R+. Let
𝑥 ∈ 𝐾 . Then:

𝐹𝑒ℎ (𝑥, 𝑘ℎ (𝑥)) − 𝐹
𝑎,𝑝

ℎ
(𝑥, 𝑘ℎ (𝑥)) (A.20)

=

∫ ℎ

0
( 𝑓 (𝛾(𝑡)) + 𝑔(𝛾(𝑡))𝑘ℎ (𝑥)) d𝑡 − ℎ

𝑝∑︁
𝑖=1

𝑏𝑖 ( 𝑓 (𝑧𝑖) + 𝑔(𝑧𝑖)𝑘ℎ (𝑥))

=

∫ ℎ

0
( 𝑓 (𝛾(𝑡)) + 𝑔(𝛾(𝑡))𝑘ℎ (𝑥) − ( 𝑓 (𝑥) + 𝑔(𝑥)𝑘ℎ (𝑥))) d𝑡

+ ℎ
𝑝∑︁
𝑖=1

𝑏𝑖 ( 𝑓 (𝑥) + 𝑔(𝑥)𝑘ℎ (𝑥) − ( 𝑓 (𝑧𝑖) + 𝑔(𝑧𝑖)𝑘ℎ (𝑥))) ,

where we make use of the fact
∑𝑝

𝑖=1 𝑏𝑖 = 1.

To bound the first term in (A.20), let ℎ2 ∈ (0, ℎ1) satisfy ℎ2 < 𝜀/𝑀 . By continuity, if
𝛾(𝑡0) ∉ 𝑁 for any 𝑡0 ∈ 𝐼, then there is a minimal 𝑡∗ ∈ (0, 𝑡0) such that ∥𝛾(𝑡) −𝑥∥ < 𝜀
for all 𝑡 ∈ [0, 𝑡∗) and ∥𝛾(𝑡∗) − 𝑥∥ = 𝜀. We have:

∥𝛾(𝑡) − 𝑥∥ ≤
∫ 𝑡

0
∥ 𝑓 (𝛾(𝑠)) + 𝑔(𝛾(𝑠))𝑘ℎ (𝑥)∥ d𝑠 ≤ 𝑀𝑡, (A.21)

for all 𝑡 ∈ [0, 𝑡∗]. Since 𝜀 = ∥𝛾(𝑡∗) − 𝑥∥ ≤ 𝑀𝑡∗, we know that 𝑡∗ ≥ 𝜀/𝑀 > ℎ2.
Thus if ℎ ∈ (0, ℎ2), then:

∥𝛾(𝑡) − 𝑥∥ ≤ 𝑀𝑡 ≤ 𝑀ℎ < 𝑀ℎ2 < 𝜀, (A.22)

for all 𝑡 ∈ [0, ℎ], implying 𝛾(𝑡) ∈ 𝑁 for all 𝑡 ∈ [0, ℎ].

To bound the second term in (A.20), we show by induction that if ℎ is sufficiently
small, then 𝑧𝑖 ∈ 𝑁 for all 𝑖 ∈ {1, . . . , 𝑝}. First, since 𝑧1 = 𝑥, we have 𝑧1 ∈ 𝑁 .



107

Next, for 𝑖 ∈ {1, . . . , 𝑝}, suppose 𝑧 𝑗 ∈ 𝑁 for all 𝑗 ∈ {1, . . . , 𝑖 − 1}. Considering the
definition of 𝑧𝑖 in (A.8) and the bound (A.18):

∥𝑧𝑖 − 𝑥∥ ≤ ℎ
𝑖−1∑︁
𝑗=1
|𝑎𝑖, 𝑗 |∥ 𝑓 (𝑧 𝑗 ) + 𝑔(𝑧 𝑗 )𝑘ℎ (𝑥)∥ (A.23)

≤ 𝑀ℎ
𝑖−1∑︁
𝑗=1
|𝑎𝑖, 𝑗 | ≤ 𝑀ℎ(𝑝 − 1)max

𝑗 ,𝑘
|𝑎 𝑗 ,𝑘 | ≜ 𝐿ℎ.

Let ℎ∗ ∈ (0, ℎ2) satisfy ℎ∗ < 𝜀/𝐿. Then for ℎ ∈ (0, ℎ∗), we have ∥𝑧𝑖 − 𝑥∥ < 𝜀, or
𝑧𝑖 ∈ 𝑁 . Since this choice of ℎ∗ does not depend on 𝑖, we can conclude by induction
that if ℎ ∈ (0, ℎ∗), then 𝑧𝑖 ∈ 𝑁 for all 𝑖 ∈ {1, . . . , 𝑝}.

We have shown that if ℎ ∈ (0, ℎ∗), then 𝛾(𝑡) ∈ 𝑁 for all 𝑡 ∈ [0, ℎ], and 𝑧𝑖 ∈ 𝑁 for
𝑖 ∈ {1, . . . , 𝑝}. Thus, using the bound (A.19) in (A.20), we have that:

∥𝐹𝑒ℎ (𝑥, 𝑘ℎ (𝑥)) − 𝐹
𝑎,𝑝

ℎ
(𝑥, 𝑘ℎ (𝑥))∥ ≤

∫ ℎ

0
𝜌(∥𝛾(𝑡) − 𝑥∥) d𝑡 + ℎ

𝑝∑︁
𝑖=1

𝑏𝑖𝜌(∥𝑧𝑖 − 𝑥∥)

≤ ℎ𝜌(𝑀ℎ) + ℎ
𝑝∑︁
𝑖=1

𝑏𝑖𝜌(𝐿ℎ) ≤ ℎ�̃�(ℎ), (A.24)

and �̃� ∈ K satisfies �̃�(𝑟) = 𝜌(𝑀𝑟) + 𝜌(𝐿𝑟) for all 𝑟 ∈ R+.

A.2 Practical Stability and Safety
With sampled-and-held control inputs, we will typically be unable to certify stability
(marginal, asymptotic, or exponential) or safety (forward invariance of a safe set). In
this section, we describe graceful degredations of these properties that yield useful
design criteria while maintaining much of our desired behaviors.

A.2.1 Practical Stability

Definition 9 (Practical Stability). Let 𝛽 ∈ KL∞ and 𝑁 ⊆ R𝑛 be an open set
containing the origin. A family {(𝑘ℎ, 𝐹ℎ) : ℎ ∈ 𝐼} is (𝛽, 𝑁)-practically stable if for
each 𝑅 ∈ R++, there exists an ℎ∗ ∈ 𝐼 such that for each sample period ℎ ∈ (0, ℎ∗),
initial state 𝑥0 ∈ 𝑁 , and number of steps 𝑘 ∈ Z+, the recursion 𝑥𝑖+1 = 𝐹ℎ (𝑥𝑖, 𝑘ℎ (𝑥𝑖))
is well-defined and:

∥𝑥𝑖∥ ≤ 𝛽(∥𝑥0∥, 𝑖ℎ) + 𝑅. (A.25)

If this property were true for 𝑅 = 0 and a particular sample period ℎ, this would mean
the origin can be asymptotically stabilized and reached from any initial condition in
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𝑁 , even when control inputs are held constant for periods of time ℎ. Practical stability
relaxes the condition of asymptotic convergence to the origin; only asymptotic
convergence to a neighborhood of the origin is required, but we must be able to
reduce the size of the neighborhood arbitrarily by reducing the interval of acceptable
sample periods accordingly.

We now establish practical stability of an exact family of controller-map pairs
through a Lyapunov-type construction.

Theorem 4. Consider an open set 𝑁 ⊆ X containing the origin, a family of
admissible controllers {𝑘ℎ : ℎ ∈ 𝐼}, and a corresponding family of controller-map
pairs {(𝑘ℎ, 𝐹ℎ) : ℎ ∈ 𝐼}. Suppose that for any compact set 𝐾 ⊆ 𝑁 , we can find a
family of function {(𝑉ℎ : R𝑛 → R+) : ℎ ∈ 𝐼}, some ℎ∗ ∈ 𝐼, comparison functions
𝛼1, 𝛼2 ∈ K∞ and 𝛼3 ∈ K, and a Lipschitz constant 𝑀 ∈ R++ such that:

𝛼1(∥𝑥1∥) ≤ 𝑉ℎ (𝑥1) ≤ 𝛼2(∥𝑥1∥), (A.26)

𝑉ℎ (𝐹ℎ (𝑥2, 𝑘ℎ (𝑥2))) −𝑉ℎ (𝑥2) ≤ −ℎ𝛼3(∥𝑥2∥), (A.27)

|𝑉ℎ (𝑥3) −𝑉ℎ (𝑥4) | ≤ 𝑀 |𝑥3 − 𝑥4 |, (A.28)

for all states 𝑥1 ∈ R𝑛, 𝑥2 ∈ 𝑁 , and 𝑥3, 𝑥4 ∈ 𝐾 , and sample periods ℎ ∈ (0, ℎ∗). If
the family {(𝑘ℎ, 𝐹ℎ) : ℎ ∈ 𝐼} is one-step consistent with the exact family {(𝑘ℎ, 𝐹𝑒ℎ ) :
ℎ ∈ 𝐼}, then there is some 𝛽 ∈ KL∞ and bounded open set 𝑈 ⊆ X containing
the origin such that the exact family is (𝛽, 𝑁′)-practically stable for any open set
𝑁′ ⊆ 𝑈 containing the origin.

Proof. This theorem is a local variant of (Nešić, Teel, and Kokotović, 1999, Theorem
2). Let 𝐾 ⊂ 𝑁 be a compact set containing the origin. There exist a 𝜌 ∈ K∞, a
Lipschitz constant 𝑀 ∈ R+, and an ℎ∗0 ∈ 𝐼 such that for all ℎ ∈ (0, ℎ∗0), (A.17),
(A.26), (A.27), and (A.28) hold for all states 𝑥, 𝑥1, . . . , 𝑥4 ∈ 𝐾 . There exists a radius
𝑅 ∈ R++ such that the closed norm-ball around the origin of radius 𝑅 is contained
in 𝐾 . We modify the claim of (Nešić, Teel, and Kokotović, 1999, Equation 37) for
the local setting in this work as follows:

For any 𝑑, 𝐷 ∈ R++ with 𝐷 ≤ 𝛼−1
2 (𝛼1( 𝑅2 )) and 𝑑 ≤ 2𝛼2(𝑅), there exists an

ℎ∗ ∈ (0, ℎ∗0) such that for every state 𝑥 ∈ X and sample period ℎ ∈ (0, ℎ∗), if
∥𝑥∥ ≤ 𝐷 and max {𝑉ℎ (𝐹𝑒ℎ (𝑥, 𝑘ℎ (𝑥))), 𝑉ℎ (𝑥)} ≥ 𝑑, then:

𝑉ℎ (𝐹𝑒ℎ (𝑥, 𝑘ℎ (𝑥))) −𝑉ℎ (𝑥) ≤ −
ℎ

2
𝛼3(∥𝑥∥). (A.29)
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We follow the proof closely, adding additional clarification where we deem appro-
priate. To prove this claim, as in (Nešić, Teel, and Kokotović, 1999), we define:

𝛿 =
1
2
𝛼−1

2

(
𝑑

2

)
, Δ = 𝛼−1

1 (𝛼2(𝐷)) +
1
2
𝛼−1

2

(
𝑑

2

)
. (A.30)

By our assumptions on 𝑑 and 𝐷, we have:

Δ ≤ 𝛼−1
1

(
𝛼2

(
𝛼−1

2

(
𝛼1

(
𝑅

2

))))
+ 1

2
𝛼−1

2

(
2𝛼2(𝑅)

2

)
=
𝑅

2
+ 𝑅

2
= 𝑅. (A.31)

Pick ℎ∗1 ≤ ℎ
∗
0 sufficiently small such that:

𝑀𝜌(ℎ∗1) ≤
1
2
𝛼3(𝛼−1

2 (𝛼1(𝛿))), (A.32)

and pick ℎ∗2 ≤ ℎ
∗
1 sufficiently small such that:

ℎ∗2𝜌(ℎ
∗
2) ≤

1
2
𝛼−1

2

(
𝑑

2

)
. (A.33)

We now work with any ℎ ≤ ℎ∗2 ≤ ℎ
∗
0. Consider any 𝑥 ∈ X with ∥𝑥∥ ≤ 𝐷. We first

show that both 𝐹ℎ (𝑥, 𝑘ℎ (𝑥)) and 𝐹𝑒
ℎ
(𝑥, 𝑘ℎ (𝑥)) have norm less thanΔ ≤ 𝑅, indicating

that both are contained in 𝐾 and enabling the use of Equation (A.28). Since:

𝛼1(∥𝐹ℎ (𝑥, 𝑘ℎ (𝑥))∥) ≤ 𝑉ℎ (𝐹ℎ (𝑥, 𝑘ℎ (𝑥))), (A.34)

we have:

∥𝐹ℎ (𝑥, 𝑘ℎ (𝑥))∥ ≤ 𝛼−1
1 (𝑉ℎ (𝐹ℎ (𝑥, 𝑘ℎ (𝑥))))

≤ 𝛼−1
1 (𝑉ℎ (𝑥))

≤ 𝛼−1
1 (𝛼2(∥𝑥∥))

≤ 𝛼−1
1 (𝛼2(𝐷)) ≤ Δ. (A.35)

We can then use Equation (A.17) to conclude that:

∥𝐹𝑒ℎ (𝑥, 𝑘ℎ (𝑥))∥ ≤ ∥𝐹ℎ (𝑥, 𝑘ℎ (𝑥))∥ + ℎ𝜌(ℎ)
≤ 𝛼−1

1 (𝛼2(𝐷)) + ℎ∗2𝜌(ℎ
∗
2)

≤ 𝛼−1
1 (𝛼2(𝐷)) +

1
2
𝛼−1

2

(
𝑑

2

)
≤ Δ. (A.36)

We now know that both 𝐹ℎ (𝑥, 𝑘ℎ (𝑥)) and 𝐹𝑒
ℎ
(𝑥, 𝑘ℎ (𝑥)) are contained in 𝐾 , so we

can conclude that:

|𝑉ℎ (𝐹ℎ (𝑥, 𝑘ℎ (𝑥))) −𝑉ℎ (𝐹𝑒ℎ (𝑥, 𝑘ℎ (𝑥))) | ≤ 𝑀 ∥𝐹ℎ (𝑥, 𝑘ℎ (𝑥)) − 𝐹
𝑒
ℎ (𝑥, 𝑘ℎ (𝑥))∥

≤ 𝑀ℎ𝜌(ℎ). (A.37)
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We now consider both terms in the maximum of the claim. Supposing that
𝑉ℎ (𝐹𝑒ℎ (𝑥, 𝑘ℎ (𝑥))) ≥ 𝑑/2 (this is stricter than we need), we have:

𝑑

2
≤ 𝑉ℎ (𝐹𝑒ℎ (𝑥, 𝑘ℎ (𝑥))) ≤ 𝛼2(∥𝐹𝑒ℎ (𝑥, 𝑘ℎ (𝑥))∥), (A.38)

so:
∥𝐹𝑒ℎ (𝑥, 𝑘ℎ (𝑥))∥ ≥ 𝛼

−1
2 (𝑉ℎ (𝐹ℎ (𝑥, 𝑘ℎ (𝑥)))) ≥ 𝛼

−1
2

(
𝑑

2

)
= 2𝛿. (A.39)

Since:
∥𝐹ℎ (𝑥, 𝑘ℎ (𝑥)) − 𝐹𝑒ℎ (𝑥, 𝑘ℎ (𝑥))∥ ≤ ℎ𝜌(ℎ) ≤ 𝛿, (A.40)

we have:
∥𝐹ℎ (𝑥, 𝑘ℎ (𝑥))∥ ≥ ∥𝐹𝑒ℎ (𝑥, 𝑘ℎ (𝑥))∥ − 𝛿 ≥ 2𝛿 − 𝛿 = 𝛿. (A.41)

From Equation (A.35), this means:

𝛼−1
1 (𝛼2(∥𝑥∥)) ≥ ∥𝐹ℎ (𝑥, 𝑘ℎ (𝑥))∥ ≥ 𝛿, (A.42)

so:
𝛼−1

2 (𝛼1(𝛿)) ≤ ∥𝑥∥. (A.43)

We use this in:

𝑉ℎ (𝐹𝑒ℎ (𝑥, 𝑘ℎ (𝑥))) −𝑉ℎ (𝑥) = 𝑉ℎ (𝐹ℎ (𝑥, 𝑘ℎ (𝑥))) −𝑉ℎ (𝑥)
+𝑉ℎ (𝐹ℎ (𝑥, 𝑘ℎ (𝑥))) −𝑉ℎ (𝐹𝑒ℎ (𝑥, 𝑘ℎ (𝑥)))

≤ −ℎ𝛼3(∥𝑥∥) + 𝑀ℎ𝜌(ℎ)

≤ −ℎ𝛼3(∥𝑥∥) +
ℎ

2
𝛼3(𝛼−1

2 (𝛼1(𝛿)))

≤ −ℎ𝛼3(∥𝑥∥) +
ℎ

2
𝛼3(∥𝑥∥) = −

ℎ

2
𝛼3(∥𝑥∥). (A.44)

If instead𝑉ℎ (𝐹𝑒ℎ (𝑥, 𝑘ℎ (𝑥))) < 𝑑/2, we consider the case when𝑉ℎ (𝑥) ≥ 𝑑. Negating
Equation (A.27), we obtain:

𝑉ℎ (𝑥) ≥ 𝑉ℎ (𝑥) −𝑉ℎ (𝐹ℎ (𝑥, 𝑘ℎ (𝑥))) ≥ ℎ𝛼3(∥𝑥∥), (A.45)

so:

𝑉ℎ (𝐹𝑒ℎ (𝑥, 𝑘ℎ (𝑥))) −𝑉ℎ (𝑥) ≤
𝑑

2
−𝑉ℎ (𝑥)

=
𝑑 −𝑉ℎ (𝑥)

2
− 1

2
𝑉ℎ (𝑥)

≤ −1
2
𝑉ℎ (𝑥) ≤ −

ℎ

2
𝛼3(∥𝑥∥). (A.46)
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This verifies the claim.

We can now return to the original proof. First, let 𝑈 be the open ball of radius
𝛼−1

2 (𝛼1(𝛼−1
2 (𝛼1(𝑅/2)))). Since 𝑉ℎ is bounded both below and above by 𝛼1 and 𝛼2,

respectively, we have:

𝛼1(𝑟) ≤ 𝛼2(𝑟) =⇒ 𝛼−1
2 (𝛼1(𝑟)) ≤ 𝑟, (A.47)

so the radius of𝑈 is no more than 𝑅/2. This means𝑈 is completely contained in 𝐾 ,
and we can employ Equation (A.17), Equation (A.27), and Equation (A.28) over𝑈.

Pick an open set 𝑁′ ⊆ 𝑈 containing the origin. Pick 𝐷 as:

𝐷 = sup
𝑥∈𝑁 ′

𝛼−1
1 (𝛼2(∥𝑥∥))

≤ sup
𝑥∈𝑈

𝛼−1
1 (𝛼2(∥𝑥∥))

≤ 𝛼−1
1 (𝛼2(𝛼−1

2 (𝛼1(𝛼−1
2 (𝛼1(𝑅/2))))))

= 𝛼−1
2 (𝛼1(𝑅/2)), (A.48)

satisfying our requirement on the choice of 𝐷. We can freely pick 𝑑 ∈ (0, 𝛼1(𝐷)),
since:

𝑑 ≤ 𝛼1(𝐷) ≤ 𝛼2(𝐷) ≤ 𝛼2(𝛼−1
2 (𝛼1(𝑅/2))) ≤ 𝛼1(𝑅/2) ≤ 𝛼2(𝑅/2) ≤ 2𝛼2(𝑅),

(A.49)
again, satisfying our requirement on the choice of 𝑑. We can now make use of the
claim. For any ℎ ≤ ℎ∗2 ≤ ℎ∗0, from an initial condition 𝑥0 ∈ 𝑁′, we generate the
exact sequence of states:

𝑥𝑖+1 = 𝐹𝑒ℎ (𝑥𝑖, 𝑘ℎ (𝑥𝑖)), (A.50)

for all 𝑖 ∈ Z+. By induction, we show that:

𝑉ℎ (𝑥𝑖) ≤ max {𝑉ℎ (𝑥0), 𝑑}. (A.51)

Assume this is true; we then have:

∥𝑥𝑖∥ ≤ 𝛼−1
1 (𝑉ℎ (𝑥𝑖))

≤ max {𝛼−1
1 (𝑉ℎ (𝑥0)), 𝛼−1

1 (𝑑)}
≤ max{𝛼−1

1 (𝛼2(∥𝑥0∥)), 𝛼−1
1 (𝛼1(𝐷))} ≤ 𝐷. (A.52)

Since ∥𝑥𝑖∥ ≤ 𝐷, if 𝑉ℎ (𝑥𝑖+1) = 𝑉ℎ (𝐹𝑒ℎ (𝑥, 𝑘ℎ (𝑥))) ≥ 𝑑, then we can employ the claim
to show that:

𝑉ℎ (𝑥𝑖+1) ≤ −
ℎ

2
𝛼3(∥𝑥𝑖∥) +𝑉ℎ (𝑥𝑖) ≤ 𝑉ℎ (𝑥𝑖) ≤ max{𝑉ℎ (𝑥0), 𝑑}. (A.53)
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Otherwise, if 𝑉ℎ (𝑥𝑖+1) < 𝑑, then simply 𝑉ℎ (𝑥𝑖+1) ≤ max{𝑉ℎ (𝑥0), 𝑑}.

We can also define a new comparison function 𝛼 ∈ K with some additional manip-
ulation. If:

max{𝑉ℎ (𝑥𝑖+1), 𝑉ℎ (𝑥𝑖)} = max{𝑉ℎ (𝐹𝑒ℎ (𝑥𝑖, 𝑘ℎ (𝑥𝑖))), 𝑉ℎ (𝑥𝑖)} ≥ 𝑑, (A.54)

then we can again employ the claim to show that:

𝑉ℎ (𝑥𝑖+1) −𝑉ℎ (𝑥𝑖) ≤ −
ℎ

2
𝛼3(∥𝑥∥) ≤ −

ℎ

2
𝛼3(𝛼−1

2 (𝑉ℎ (𝑥𝑖))). (A.55)

As such, define 𝛼 ∈ K as:

𝛼(𝑟) = 1
2
𝛼3(𝛼−1

2 (𝑟)). (A.56)

Letting 𝑦ℎ : R+ → R denote the linear interpolation of values 𝑉ℎ (𝑥𝑖), note that:

¤𝑦ℎ (𝑡) =
𝑉ℎ (𝑥𝑖+1) −𝑉ℎ (𝑥𝑖)

ℎ
, (A.57)

for all 𝑡 ∈ (𝑖ℎ, 𝑖ℎ + ℎ). We can now analyze 𝑦ℎ with continuous-time tools. Specifi-
cally, whenever 𝑦ℎ (𝑡) ≥ 𝑑, we have:

max{𝑉ℎ (𝑥𝑖+1), 𝑉ℎ (𝑥𝑖)} ≥ 𝑑, (A.58)

for whichever 𝑖 ∈ Z+ satisfies 𝑡 ∈ [𝑖ℎ, 𝑖ℎ + ℎ]. This means:

¤𝑦ℎ (𝑡) =
𝑉ℎ (𝑥𝑖+1) −𝑉ℎ (𝑥𝑖)

ℎ
≤ −ℎ𝛼(𝑉ℎ (𝑥𝑖))

ℎ
= −𝛼(𝑉ℎ (𝑥𝑖)). (A.59)

Moreover, since:

𝑉ℎ (𝑥𝑖+1) −𝑉ℎ (𝑥𝑖) ≥ −ℎ𝛼(𝑉ℎ (𝑥𝑖)) ≥ 0 =⇒ 𝑉ℎ (𝑥𝑖) = min{𝑉ℎ (𝑥𝑖+1), 𝑉ℎ (𝑥𝑖)},
(A.60)

we know 𝑦ℎ (𝑡) ≥ 𝑉ℎ (𝑥𝑖) and:

¤𝑦ℎ (𝑡) ≤ −𝛼(𝑦ℎ (𝑡)). (A.61)

Essentially, whenever 𝑦ℎ sufficiently large, its rate of change is large and negative,
indicating that we can reason about 𝑦ℎ using concepts like input-to-state stability
(Sontag, 1989b). In particular, there is some 𝛽 ∈ KL satisfying:

𝑦ℎ (𝑡) ≤ max{𝛽(𝑦ℎ (0), 𝑡), 𝑑} (A.62)
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for all 𝑡 ∈ R+. Since Equation (A.61) is no longer explicitly dependent on the sample
period (the same inequality holds for all sufficiently small sample periods), we can
choose 𝛽 independent of the sample period.

We use this result to show that:

𝛼1(∥𝑥𝑖∥) ≤ 𝑉ℎ (𝑥𝑖) ≤ max{𝛽(𝑉ℎ (𝑥0), 𝑖ℎ), 𝑑}, (A.63)

for all 𝑖 ∈ Z+, so:

∥𝑥𝑖∥ ≤ max{𝛼−1
1 (𝛽(𝑉ℎ (𝑥0), 𝑖ℎ)), 𝛼−1

1 (𝑑)}
≤ 𝛼−1

1 (𝛽(𝑉ℎ (𝑥0), 𝑖ℎ)) + 𝛼−1
1 (𝑑). (A.64)

The composition 𝛼−1
1 ◦ 𝛽 ∈ KL does not depend on 𝑑, so choosing 𝑑 however small

is necessary, we achieve (𝛼−1
1 ◦ 𝛽, 𝑁

′)-practical stability.

A.2.2 Practical Safety
We first adapt a definition of forward invariance for a controller-map pairs.

Definition 10 (Forward Invariance). A set C ⊆ X is forward invariant for a
controller-map pair (𝑘, 𝐹) if for every 𝑥0 ∈ C and number of steps 𝑖 ∈ Z+, the
recursion 𝑥𝑖+1 = 𝐹 (𝑥𝑖, 𝑘 (𝑥𝑖)) is well-defined and satisfies 𝑥𝑖 ∈ C.

The following definition will describe the safety properties of the exact family of
controller-map pairs when design uses approximations:

Definition 11 (Practical Safety). A family {(𝑘ℎ, 𝐹ℎ) : ℎ ∈ 𝐼} is practically safe
with respect to a set C ⊆ X if for each 𝑅 ∈ R++, there exists an ℎ∗ ∈ 𝐼 such that for
each sample period ℎ ∈ (0, ℎ∗), there is a corresponding set Cℎ ⊆ X that is forward
invariant for the controller-map pair (𝑘ℎ, 𝐹ℎ) and satisfies C ⊆ Cℎ ⊆ C + 𝐵𝑅.

Again, if this property were true for 𝑅 = 0 and a particular sample period ℎ, this
would mean C ⊆ Cℎ ⊆ C, so Cℎ = C is forward invariant, even when control inputs
are held constant for periods of time ℎ. Practical safety relaxes the condition of
forward invariance; only forward invariance of an expanded set is required, but we
must be able to reduce the size of the expansion arbitrarily by reducing the interval
of acceptable sample periods accordingly. Note further that the burden of proof lies
with small values of 𝑅. If 𝑅′ ≥ 𝑅 and Cℎ is a forward invariant subset of C + 𝐵𝑅,
then it is automatically a forward invariant subset of C + 𝐵𝑅′ .

We now establish practical safety of an exact family of controller-map pairs through
a barrier-type construction.
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Theorem 5. Consider a set C ⊆ X, a family of functions {(𝑠ℎ : X → R) : ℎ ∈ 𝐼},
some ℎ∗ ∈ 𝐼, a comparison function 𝛼 ∈ K𝑒, a radius 𝜀 ∈ R++, and a Lipschitz
constant 𝑀 ∈ R++ such that:

𝑠ℎ (𝑥1) > 0, 𝑠ℎ (𝑥2) = 0, 𝑠ℎ (𝑥3) < 0, (A.65)

ℎ𝛼(𝑠ℎ (𝑥4)) ≤ 𝑠ℎ (𝑥4), (A.66)

|𝑠ℎ (𝑥5) − 𝑠ℎ (𝑥6) | ≤ 𝑀 ∥𝑥5 − 𝑥6∥, (A.67)

for all states 𝑥1 ∈ int C, 𝑥2 ∈ 𝜕C, 𝑥3 ∈ X \ C, 𝑥4 ∈ C, 𝑥5, 𝑥6 ∈ X ∩ (C + 𝐵𝜀), and
sample periods ℎ ∈ (0, ℎ∗). Additionally, we require that for each 𝜂 ∈ R++, there is
a corresponding 𝛿 ∈ R++ such that:

𝑑C (𝑥) ≜ inf
𝑦∈C
∥𝑦 − 𝑥∥ > 𝜂 =⇒ 𝑠ℎ (𝑥) < −𝛿, (A.68)

for all 𝑥 ∈ X ∩ (C + 𝐵𝜀) and ℎ ∈ (0, ℎ∗). For admissible controllers {𝑘ℎ : ℎ ∈ 𝐼}
and a corresponding family of controller-map pairs {(𝑘ℎ, 𝐹ℎ) : ℎ ∈ 𝐼}, suppose:

𝑠ℎ (𝐹ℎ (𝑥, 𝑘ℎ (𝑥))) − 𝑠ℎ (𝑥) ≥ −ℎ𝛼(𝑠ℎ (𝑥)), (A.69)

for all states 𝑥 ∈ X and sample times ℎ ∈ (0, ℎ∗). If there is a radius 𝜀′ ∈ R++
such that the family {(𝑘ℎ, 𝐹ℎ) : ℎ ∈ 𝐼} is one-step consistent with the exact family
{(𝑘ℎ, 𝐹𝑒ℎ ) : ℎ ∈ 𝐼} over the set X ∩ (C + 𝐵𝜀′), then the exact family is practically
safe with respect to C.

Proof. By assumption, there exists an ℎ∗2 ∈ 𝐼 and 𝜌 ∈ K∞ such that (A.17) holds
for all 𝑥 ∈ X ∩ (C + 𝐵𝜀′) and ℎ ∈ (0, ℎ∗2). As the family of controllers is assumed
admissible, there is an ℎ∗3 ∈ 𝐼 such that 𝑘ℎ is ℎ-admissible for each ℎ ∈ (0, ℎ∗3).

Let 𝑅 ∈ R++, and pick 𝑅′ ∈ R++ such that 𝑅′ ≤ min{𝜀, 𝜀′, 𝑅}. By (A.68), there
exist 𝛿,Δ ∈ R++ such that:

𝑑C (𝑥) > 𝑅′/2 =⇒ 𝑠ℎ (𝑥) < −𝛿, (A.70)

𝑑C (𝑥) > 𝛿/(2𝑀) =⇒ 𝑠ℎ (𝑥) < −Δ, (A.71)

for all 𝑥 ∈ X ∩ (C + 𝐵𝜀) and ℎ ∈ (0, ℎ∗1). Fix ℎ ∈ 𝐼 with ℎ < min {ℎ∗1, ℎ
∗
2, ℎ
∗
3}. For

any 𝑐 ∈ R, we denote the 𝑐-superlevel set of 𝑠ℎ as:

Ω𝑐,ℎ = {𝑥 ∈ X | 𝑠ℎ (𝑥) ≥ 𝑐}. (A.72)

For any state 𝑥 ∈ Ω−𝛿,ℎ, we have 𝑑C (𝑥) ≤ 𝑅′/2, and thus C ⊆ Ω−𝛿,ℎ ⊆ X ∩ (C +
𝐵𝑅′/2) ⊆ C + 𝐵𝑅.
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Figure A.1: A visual representation of the main sets and three cases discussed in
the proof of Theorem 5.

We will prove that for small enough ℎ, the set Ω−𝛿,ℎ is forward invariant for the
controller-map pair (𝑘ℎ, 𝐹𝑒ℎ ). We denote three cases (see Fig. A.1), considering a
state 𝑥 ∈ X such that either

1. 𝑥 ∈ C,

2. 𝑥 ∈ Ω−𝛿,ℎ \ C and 𝑑C (𝑥) ≤ 𝛿/(2𝑀), or

3. 𝑥 ∈ Ω−𝛿,ℎ \ C and 𝑑C (𝑥) > 𝛿/(2𝑀).

Case 1: Suppose 𝑥 ∈ C. From (A.69) and (A.66), we have:

𝑠ℎ (𝐹ℎ (𝑥, 𝑘ℎ (𝑥))) − 𝑠ℎ (𝑥) ≥ −ℎ𝛼(𝑠ℎ (𝑥)) ≥ −𝑠ℎ (𝑥), (A.73)

so 𝑠ℎ (𝐹ℎ (𝑥, 𝑘ℎ (𝑥))) ≥ 0, or 𝐹ℎ (𝑥, 𝑘ℎ (𝑥)) ∈ C. By one-step consistency, we have:

∥𝐹𝑒ℎ (𝑥, 𝑘ℎ (𝑥)) − 𝐹ℎ (𝑥, 𝑘ℎ (𝑥))∥ ≤ ℎ𝜌(ℎ), (A.74)

so if ℎ𝜌(ℎ) ≤ 𝜀, then 𝐹𝑒
ℎ
(𝑥, 𝑘ℎ (𝑥)) ∈ X ∩ (C + 𝐵𝜀). Thus:

|𝑠ℎ (𝐹𝑒ℎ (𝑥, 𝑘ℎ (𝑥))) − 𝑠ℎ (𝐹ℎ (𝑥, 𝑘ℎ (𝑥))) | ≤ 𝑀ℎ𝜌(ℎ), (A.75)

and if 𝑀ℎ𝜌(ℎ) ≤ 𝛿 as well, then:

𝑠ℎ (𝐹𝑒ℎ (𝑥, 𝑘ℎ (𝑥))) ≥ 𝑠ℎ (𝐹ℎ (𝑥, 𝑘ℎ (𝑥))) − 𝑀ℎ𝜌(ℎ) ≥ −𝛿, (A.76)

giving us 𝐹𝑒
ℎ
(𝑥, 𝑘ℎ (𝑥)) ∈ Ω−𝛿,ℎ. The analysis of this case gives us the requirement

ℎ𝜌(ℎ) ≤ min{𝜀, 𝛿/𝑀}.
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Before continuing to cases 2 and 3, we establish some additional properties. First,
note that the superlevel sets have the containment property Ω−𝛿/2,ℎ ⊆ Ω−𝛿,ℎ. Next,
for any 𝜂 ∈ R++ and any 𝑥 ∈ X ∩ (C + 𝐵𝜀) with 𝑥 ∉ C, there is a state 𝑦 ∈ C such
that ∥𝑥 − 𝑦∥ < 𝑑C (𝑥) + 𝜂. Therefore:

𝑠ℎ (𝑥) ≥ 𝑠ℎ (𝑦) − 𝑀 ∥𝑥 − 𝑦∥ ≥ −𝑀𝑑C (𝑥) − 𝑀𝜂, (A.77)

since 𝑠ℎ (𝑦) ≥ 0. Since 𝜂 can be chosen arbitrarily small, we have 𝑠ℎ (𝑥) ≥ −𝑀𝑑C (𝑥).
If 𝑑C (𝑥) ≤ 𝛿/(2𝑀), then 𝑠ℎ (𝑥) ≥ −𝛿/2, so X ∩ (C + 𝐵𝛿/(2𝑀)) ⊆ Ω−𝛿/2,ℎ ⊆ Ω−𝛿,ℎ.

Next, consider 𝑥 ∈ Ω−𝛿,ℎ \ C. Since 𝑥 ∉ C, meaning 𝑠ℎ (𝑥) < 0 and thus 𝛼(𝑠ℎ (𝑥)) <
0, we have from (A.69) that:

𝑠ℎ (𝐹ℎ (𝑥, 𝑘ℎ (𝑥))) ≥ 𝑠ℎ (𝑥) − ℎ𝛼(𝑠ℎ (𝑥)) > −𝛿. (A.78)

Thus 𝐹ℎ (𝑥, 𝑘ℎ (𝑥)) ∈ Ω−𝛿,ℎ ⊆ X ∩ (C + 𝐵𝑅′/2) so we can apply one step consistency
to achieve:

∥𝐹𝑒ℎ (𝑥, 𝑘ℎ (𝑥)) − 𝐹ℎ (𝑥, 𝑘ℎ (𝑥))∥ ≤ ℎ𝜌(ℎ). (A.79)

If ℎ𝜌(ℎ) ≤ 𝑅′/2, then 𝐹𝑒
ℎ
(𝑥, 𝑘ℎ (𝑥)) ∈ X ∩ (C + 𝐵𝑅′), in which case the Lipschitz

property of 𝑠ℎ yields the bound:

|𝑠ℎ (𝐹𝑒ℎ (𝑥, 𝑘ℎ (𝑥))) − 𝑠ℎ (𝐹ℎ (𝑥, 𝑘ℎ (𝑥))) | ≤ 𝑀ℎ𝜌(ℎ). (A.80)

Note that because 𝑅′/2 < 𝜀, the requirement from Case 1 can be replaced by
ℎ𝜌(ℎ) ≤ min {𝑅′/2, 𝛿/𝑀}.

Case 2: Suppose 𝑥 ∈ Ω−𝛿,ℎ \ C and 𝑑C (𝑥) ≤ 𝛿/(2𝑀). Since 𝑥 ∉ C and
X ∩ (C + 𝐵𝛿/(2𝑀)) ⊆ Ω−𝛿/2,ℎ, we have −𝛿/2 ≤ 𝑠ℎ (𝑥) < 0. Therefore:

𝑠ℎ (𝐹ℎ (𝑥, 𝑘ℎ (𝑥))) ≥ 𝑠ℎ (𝑥) − ℎ𝛼(𝑠ℎ (𝑥)) ≥ −𝛿/2, (A.81)

so 𝐹ℎ (𝑥, 𝑘ℎ (𝑥)) ∈ Ω−𝛿/2,ℎ. By adding and subtracting 𝑠ℎ (𝐹𝑒ℎ (𝑥, 𝑘ℎ (𝑥))) and using
(A.80), we have:

𝑠ℎ (𝐹𝑒ℎ (𝑥, 𝑘ℎ (𝑥))) ≥ −𝑀ℎ𝜌(ℎ) − 𝛿/2, (A.82)

when ℎ𝜌(ℎ) ≤ 𝑅′/2. If 𝑀ℎ𝜌(ℎ) ≤ 𝛿/2 as well, then 𝑠ℎ (𝐹𝑒ℎ (𝑥, 𝑘ℎ (𝑥))) ≥ −𝛿,
or 𝐹𝑒

ℎ
(𝑥, 𝑘ℎ (𝑥)) ∈ Ω−𝛿,ℎ. Thus we update the requirements to be ℎ𝜌(ℎ) ≤

min {𝑅′/2, 𝛿/(2𝑀)}.

Case 3: Suppose 𝑥 ∈ Ω−𝛿,ℎ \ C and 𝑑C (𝑥) > 𝛿/(2𝑀). From (A.71), we have:

𝑠ℎ (𝐹ℎ (𝑥, 𝑘ℎ (𝑥))) − 𝑠ℎ (𝑥) > −ℎ𝛼(−Δ). (A.83)
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Adding and subtracting 𝑠ℎ (𝐹𝑒ℎ (𝑥, 𝑘ℎ (𝑥))) and (A.80) yield:

𝑠ℎ (𝐹𝑒ℎ (𝑥, 𝑘ℎ (𝑥))) > 𝑠ℎ (𝑥) − 𝑀ℎ𝜌(ℎ) − ℎ𝛼(−Δ),
= 𝑠ℎ (𝑥) − ℎ(𝑀𝜌(ℎ) + 𝛼(−Δ)), (A.84)

when ℎ𝜌(ℎ) ≤ 𝑅′/2. If 𝑀𝜌(ℎ) ≤ −𝛼(−Δ) as well, then 𝑠ℎ (𝐹𝑒ℎ (𝑥, 𝑘ℎ (𝑥))) >
𝑠ℎ (𝑥) ≥ −𝛿, or 𝐹𝑒

ℎ
(𝑥, 𝑘ℎ (𝑥)) ∈ Ω−𝛿,ℎ.

To conclude, if both:

1. ℎ < min
{
ℎ∗1, ℎ

∗
2, ℎ
∗
3, 𝜌
−1(−𝛼(−Δ)/𝑀)

}
,

2. ℎ𝜌(ℎ) ≤ min {𝑅′/2, 𝛿/(2𝑀)},

then the set Cℎ ≜ Ω−𝛿,ℎ ⊆ C + 𝐵𝑅 is forward invariant for the controller-map pair
(𝑘ℎ, 𝐹𝑒ℎ ), and thus the family {(𝑘ℎ, 𝐹𝑒ℎ ) : ℎ ∈ 𝐼} is practically safe with respect to
C.

A.3 Controller Synthesis
A.3.1 Stabilization
The nonlinear control system is full-state feedback linearizable if there is a choice
of control 𝑘fbl : X × R𝑚 → R𝑚 (with an auxiliary input) such that:

𝑓 (𝑥) + 𝑔(𝑥)𝑘fbl(𝑥, 𝑣) = 𝐴𝑥 + 𝐵𝑣, (A.85)

for all 𝑥 ∈ X and auxiliary inputs 𝑣 ∈ R𝑚, where 𝐴 ∈ R𝑛×𝑛 and 𝐵 ∈ R𝑛×𝑚 form a
controllable pair (𝐴, 𝐵). With (𝐴, 𝐵) controllable, we can find an auxiliary control
gain matrix 𝐾 ∈ R𝑚×𝑛 such that 𝐴 − 𝐵𝐾 is Hurwitz (all eigenvalues have negative
real parts). Choosing the controller 𝑘fbl,𝐾 : X → R𝑚 as:

𝑘fbl,𝐾 (𝑥) = 𝑘fbl(𝑥,−𝐾𝑥), (A.86)

the closed-loop dynamics of the system are stable linear dynamics:

¤𝑥 = (𝐴 − 𝐵𝐾)𝑥 ≜ 𝐴cl𝑥. (A.87)

With sampled-and-held control inputs, we may be unable to achieve these closed-
loop dynamics, but we can still use the closed-loop dynamics to generate a family
of functions to use with Theorem 4. Specifically, for any positive definite matrix
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𝑄 ∈ S𝑛++, there is a unique solution 𝑃 ∈ S𝑛++ to the continuous time Lyapunov
equation:

𝐴⊤cl𝑃 + 𝑃𝐴cl = −𝑄. (A.88)

We can then define {(𝑉ℎ : R𝑛 → R+) : ℎ ∈ 𝐼} with:

𝑉ℎ (𝑥) = 𝑥⊤𝑃𝑥, (A.89)

for all states 𝑥 ∈ R𝑛. Note that these functions do not actually vary with the sample
period ℎ. Immediately, we have:

𝜆min(𝑃)∥𝑥∥22 ≤ 𝑉ℎ (𝑥) ≤ 𝜆max(𝑃)∥𝑥∥22, (A.90)

for all states 𝑥 ∈ R𝑛 and sample period ℎ ∈ 𝐼, where 𝜆min and 𝜆max denote minimum
and maximum eigenvalues. Moreover, for each sample period ℎ ∈ 𝐼, the function𝑉ℎ
is continuously differentiable, therefore locally Lipschitz continuous. This means
over any compact set, we can find a global Lipschitz constant for 𝑉ℎ. Finally, we
show that the Euler approximate family with feedback linearizing control satisfies
Equation (A.27):

𝑉ℎ (𝐹𝑎ℎ (𝑥, 𝑘fbl,𝐾 (𝑥))) −𝑉ℎ (𝑥) = 𝑉ℎ (𝑥 + ℎ · 𝐴cl𝑥) −𝑉ℎ (𝑥)
= 𝑥⊤(𝐼 + ℎ𝐴cl)⊤𝑃(𝐼 + ℎ𝐴cl)𝑥 − 𝑥⊤𝑃𝑥

= 𝑥⊤
(
ℎ(𝐴⊤cl𝑃 + 𝑃𝐴cl) + ℎ2𝐴⊤cl𝑃𝐴cl

)
𝑥

= −ℎ𝑥⊤
(
𝑄 − ℎ𝐴⊤cl𝑃𝐴cl

)
𝑥

≤ −ℎ(𝜆min(𝑄) − ℎ𝜆max(𝐴⊤cl𝑃𝐴cl))∥𝑥∥22, (A.91)

for all states 𝑥 ∈ R𝑛. For any 𝑐 ∈ (0, 1), we know that if:

ℎ ≤ (1 − 𝑐) 𝜆min(𝑄)
𝜆max(𝐴⊤cl𝑃𝐴cl)

, (A.92)

we have:

𝑉ℎ (𝐹𝑎ℎ (𝑥, 𝑘fbl,𝐾 (𝑥))) −𝑉ℎ (𝑥) ≤ −ℎ(𝜆min(𝑄) − (1 − 𝑐)𝜆min(𝑄))∥𝑥∥22
= −ℎ𝑐𝜆min(𝑄)∥𝑥∥22. (A.93)

This condition can be incorporated into a convex optimization problem if we wish
to add additional constraints or regularizers. Consider the following stabilization
optimization problem, in a state 𝑥 ∈ R𝑛 with a sample period ℎ ∈ 𝐼:

inf
𝑢∈R𝑚

∥𝑢∥22

s.t. 𝑉ℎ (𝑥 + ℎ( 𝑓 (𝑥) + 𝑔(𝑥)𝑢)) −𝑉ℎ (𝑥) ≤ −ℎ𝑐𝜆min(𝑄)∥𝑥∥22. (A.94)
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Expanding𝑉ℎ and dividing by ℎ, we obtain the following stabilization quadratically-
constrained quadratic program (QCQP):

inf
𝑢∈R𝑚

∥𝑢∥22

s.t. 𝑢⊤(ℎ𝑔(𝑥)⊤𝑃𝑔(𝑥))𝑢 + 2(𝑔(𝑥)⊤𝑃(𝑥 + ℎ 𝑓 (𝑥)))⊤𝑢
+ ℎ 𝑓 (𝑥)⊤𝑃 𝑓 (𝑥) + 2𝑥⊤𝑃 𝑓 (𝑥) + 𝑐𝜆min(𝑄)∥𝑥∥22 ≤ 0. (A.95)

Extensions requiring a change of variables for feedback linearization and/or systems
with exponentially stable zero dynamics can be found in (Taylor, Dorobantu, Yue,
et al., 2021).

A.3.2 Safety
The following result establishes how for a system with a block integrator structure,
a Runge-Kutta approximation family of maps of the appropriate order can preserve
a convexity property of a family {𝑠ℎ : ℎ ∈ 𝐼}:

Theorem 6. Consider ℓ, 𝛾, 𝑞 ∈ N such that 𝑛 = ℓ𝛾 and 𝑞 ≤ 𝛾. Suppose the system
dynamics have the form:

¤𝑥 =


0 𝐼

. . .
. . .

0 𝐼

0

︸               ︷︷               ︸
𝐴

𝑥 +


0
...

0
𝑓𝛾 (𝑥) + 𝑔𝛾 (𝑥)𝑢

︸                ︷︷                ︸
𝑟 (𝑥,𝑢)

, (A.96)

where 𝑓𝛾 : R𝑛 → Rℓ and 𝑔𝛾 : R𝑛 → Rℓ×𝑚. For each ℎ ∈ 𝐼, consider a function
𝑠ℎ : R𝑛 → R, and suppose there exists a function 𝑠ℎ : (Rℓ)𝑞 → R satisfying:

𝑠ℎ (𝑥) = 𝑠ℎ (𝜁1, . . . , 𝜁𝑞), (A.97)

for all 𝑥 = (𝜁1, . . . , 𝜁𝛾) ∈ (Rℓ)𝛾 ≃ R𝑛. If the function 𝑠ℎ is concave with respect to
its last argument and 𝑝 = 𝛾 − 𝑞 + 1, then for 𝛼 ∈ K𝑒, the function 𝜙ℎ : Z → R
defined as:

𝜙ℎ (𝑥, 𝑢) = −𝑠ℎ (𝐹𝑎,𝑝ℎ (𝑥, 𝑢)) + 𝑠ℎ (𝑥) − ℎ𝛼(𝑠ℎ (𝑥)), (A.98)

is convex in its second argument.

Proof. For all (𝑥, 𝑢) ∈ Z, denote:

𝐹
𝑎,𝑝

ℎ
(𝑥, 𝑢) = ((𝐹1)𝑎,𝑝ℎ (𝑥, 𝑢), . . . , (𝐹𝛾)

𝑎,𝑝

ℎ
(𝑥, 𝑢)), (A.99)
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where (𝐹𝑖)𝑎,𝑝ℎ : Z → Rℓ for all 𝑖 ∈ {1, . . . , 𝛾}. For (𝑥, 𝑢) ∈ Z, the block vector
𝑟 (𝑥, 𝑢) can be nonzero only in the last (𝛾th) block. Noting the block chain-of-
integrators structure of 𝐴, for any degree 𝑑 ∈ {0, . . . , 𝛾 − 1}, 𝐴𝑑𝑟 (𝑥, 𝑢) can be
nonzero only in the (𝛾− 𝑑)th block, and for a degree 𝑑 polynomial 𝜌𝑑 , 𝜌𝑑 (𝐴)𝑟 (𝑥, 𝑢)
can be nonzero only in the last 𝑑 + 1 blocks (that is, blocks 𝛾 − 𝑑 through 𝛾).

Consider a state-input pair (𝑥, 𝑢) ∈ Z. We have:

𝐹
𝑎,𝑝

ℎ
(𝑥, 𝑢) = 𝑥 + ℎ

𝑝∑︁
𝑖=1

𝑏𝑖 (𝐴𝑧𝑖 + 𝑟 (𝑧𝑖, 𝑢)), (A.100)

𝑧𝑖 = 𝑥 + ℎ
𝑖−1∑︁
𝑗=1
𝑎𝑖, 𝑗 (𝐴𝑧 𝑗 + 𝑟 (𝑧 𝑗 , 𝑢)), (A.101)

with 𝑧1 = 𝑥. By induction, for any 𝑖 ∈ {1, . . . , 𝑝}, we show:

𝑧𝑖 = 𝜌𝑖,𝑖−1(𝐴)𝑥 +
𝑖−1∑︁
𝑗=1
𝜎𝑖,𝑖− 𝑗−1(𝐴)𝑟 (𝑧 𝑗 , 𝑢), (A.102)

where 𝜌𝑖,𝑖−1 is a degree 𝑖 − 1 polynomial, and for 𝑗 ∈ {1, . . . , 𝑖 − 1}, 𝜎𝑖,𝑖− 𝑗−1 is a
degree 𝑖 − 𝑗 − 1 polynomial. Indeed, 𝑧1 = 𝐼 · 𝑥, and assuming (A.102) holds for
0, . . . , 𝑖 − 1, substituting (A.102) into (A.101) yields the following:

𝑧𝑖 =

degree 𝑖−1︷                             ︸︸                             ︷(
𝐼 + ℎ

𝑖−1∑︁
𝑗=1
𝑎𝑖, 𝑗

degree 𝑗︷        ︸︸        ︷
𝐴𝜌 𝑗 , 𝑗−1(𝐴)

)
︸                             ︷︷                             ︸

≜𝜌𝑖,𝑖−1 (𝐴)

𝑥 + ℎ
𝑖−1∑︁
𝑗=1
𝑎𝑖, 𝑗𝑟 (𝑧 𝑗 , 𝑢)

+ ℎ
𝑖−1∑︁
𝑘=1

𝑘−1∑︁
𝑗=1
𝑎𝑖,𝑘𝐴𝜎𝑘,𝑘− 𝑗−1(𝐴)𝑟 (𝑧 𝑗 , 𝑢), (A.103)

which we may further manipulate to obtain:

𝑧𝑖 − 𝜌𝑖,𝑖−1(𝐴)𝑥 =
𝑖−1∑︁
𝑗=1

ℎ

(
𝑎𝑖, 𝑗 +

𝑖−1∑︁
𝑘= 𝑗+1

𝑎𝑖,𝑘 𝐴𝜎𝑘,𝑘− 𝑗−1(𝐴)︸           ︷︷           ︸
degree 𝑘− 𝑗

)
︸                                      ︷︷                                      ︸

degree 𝑖− 𝑗−1

𝑟 (𝑧 𝑗 , 𝑢), (A.104)

≜
𝑖−1∑︁
𝑗=1
𝜎𝑖,𝑖− 𝑗−1(𝐴)𝑟 (𝑧 𝑗 , 𝑢), (A.105)
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establishing (A.102) holds for 𝑖. Substituting the expression (A.102) into (A.100)
and following a similar sequence of steps, we find a degree 𝑝 polynomial �̃�𝑝, and
for each 𝑖 ∈ {1, . . . , 𝑝}, a degree 𝑝 − 𝑖 polynomial �̃�𝑝−𝑖 such that:

𝐹
𝑎,𝑝

ℎ
(𝑥, 𝑢) = �̃�𝑝 (𝐴)𝑥 +

𝑝∑︁
𝑖=1

�̃�𝑝−𝑖 (𝐴)𝑟 (𝑧𝑖, 𝑢). (A.106)

For 𝑖 ∈ {1, . . . , 𝑝}, the term �̃�𝑝−𝑖 (𝐴)𝑟 (𝑧𝑖, 𝑢) can be nonzero only in blocks 𝛾 −
(𝑝 − 𝑖) = 𝑞 + 𝑖 − 1 through 𝛾. The highest-order polynomial multiplying the
block vectors 𝑟 (𝑧1, 𝑢), . . . , 𝑟 (𝑧𝑝, 𝑢) is �̃�𝑝−1 = �̃�𝛾−𝑞. Therefore, the functions
(𝐹1)𝑎,𝑝ℎ , . . . , (𝐹𝑞−1)𝑎,𝑝ℎ are independent of their second argument (they depend only
on state). Moreover, (𝐹𝑞)𝑎,𝑝ℎ (𝑥, 𝑢) depends on the block vector 𝑟 (𝑧1, 𝑢) = 𝑟 (𝑥, 𝑢),
which depends on 𝑢 affinely, and does not depend on 𝑟 (𝑧2, 𝑢), . . . , 𝑟 (𝑧𝑝, 𝑢), which
may depend on 𝑢 nonlinearly.

The composition 𝑠ℎ ◦ 𝐹𝑎,𝑝ℎ : Z → R satisfies:

𝑠ℎ (𝐹𝑎,𝑝ℎ (𝑥, 𝑢)) = 𝑠ℎ ((𝐹1)𝑎,𝑝ℎ (𝑥, 𝑢), · · · , (𝐹𝑞)
𝑎,𝑝

ℎ
(𝑥, 𝑢)),

for all (𝑥, 𝑢) ∈ Z. The composition of concave and affine functions is concave, so
𝑠ℎ ◦ 𝐹𝑎,𝑝ℎ is concave in its second argument, and 𝜙ℎ in (A.98) is convex in its second
argument.

We can leverage this result to formulate a safe convex optimization, in a state 𝑥 ∈ R𝑛

with a sample period ℎ ∈ 𝐼:

inf
𝑢∈R𝑚

𝑐(𝑢)

s.t. − 𝑠ℎ (𝐹𝑎,𝑝ℎ (𝑥, 𝑢)) + 𝑠ℎ (𝑥) − ℎ𝛼(𝑠ℎ (𝑥)) ≤ 0, (A.107)

where 𝑐 : R𝑚 → R is a convex cost function.
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