Citation
Kovachki, Nikola Borislavov (2022) Machine Learning and Scientific Computing. Dissertation (Ph.D.), California Institute of Technology. doi:10.7907/8nc5-cc67. https://resolver.caltech.edu/CaltechTHESIS:05252022-180406320
Abstract
The remarkable success of machine learning methods for tacking problems in computer vision and natural language processing has made them auspicious tools for applications to scientific computing tasks. The present work advances both machine learning techniques by using ideas from numerical analysis, inverse problems, and data assimilation and introduces new machine learning based tools for accurate and computationally efficient scientific computing. Chapters 2 and 3 introduce new methods and analyze existing methods for the optimization of deep neural networks. Chapters 4 and 5 formulate approximation architectures acting between infinite dimensional functions spaces for applications to parametric PDE problems. Chapter 6 demonstrates how to re-formulate GAN(s) so they can condition on continuous data and exhibits applications to Bayesian inverse problems. In Chapter 7, we present a novel regression-clustering method and apply it to the problem of predicting molecular activation energies.
Item Type: | Thesis (Dissertation (Ph.D.)) | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Subject Keywords: | Machine learning, scientific computing, optimization, partial differential equations, inverse problems, transport maps. | |||||||||||||||||||||
Degree Grantor: | California Institute of Technology | |||||||||||||||||||||
Division: | Engineering and Applied Science | |||||||||||||||||||||
Major Option: | Applied And Computational Mathematics | |||||||||||||||||||||
Thesis Availability: | Public (worldwide access) | |||||||||||||||||||||
Research Advisor(s): |
| |||||||||||||||||||||
Thesis Committee: |
| |||||||||||||||||||||
Defense Date: | 3 May 2022 | |||||||||||||||||||||
Record Number: | CaltechTHESIS:05252022-180406320 | |||||||||||||||||||||
Persistent URL: | https://resolver.caltech.edu/CaltechTHESIS:05252022-180406320 | |||||||||||||||||||||
DOI: | 10.7907/8nc5-cc67 | |||||||||||||||||||||
Related URLs: |
| |||||||||||||||||||||
ORCID: |
| |||||||||||||||||||||
Default Usage Policy: | No commercial reproduction, distribution, display or performance rights in this work are provided. | |||||||||||||||||||||
ID Code: | 14621 | |||||||||||||||||||||
Collection: | CaltechTHESIS | |||||||||||||||||||||
Deposited By: | Nikola Kovachki | |||||||||||||||||||||
Deposited On: | 26 May 2022 21:07 | |||||||||||||||||||||
Last Modified: | 02 Jun 2022 23:27 |
Thesis Files
PDF
- Final Version
See Usage Policy. 12MB |
Repository Staff Only: item control page