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ABSTRACT

The remarkable success of machine learning methods for tacking problems in com-
puter vision and natural language processing has made them auspicious tools for
applications to scientific computing tasks. The present work advances both machine
learning techniques by using ideas from numerical analysis, inverse problems, and
data assimilation and introduces new machine learning based tools for accurate and
computationally efficient scientific computing. Chapters 2 and 3 introduce new
methods and analyze existing methods for the optimization of deep neural networks.
Chapters 4 and 5 formulate approximation architectures acting between infinite di-
mensional functions spaces for applications to parametric PDE problems. Chapter 6
demonstrates how to re-formulate GAN(s) so they can condition on continuous data
and exhibits applications to Bayesian inverse problems. In Chapter 7, we present
a novel regression-clustering method and apply it to the problem of predicting
molecular activation energies.
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C h a p t e r 1

INTRODUCTION

With the advent of computers, the fields of machine learning and scientific computing
have developed separately but in parallel over the last eight decades. While seemingly
different the two fields have a common unifying goal: model, understand, and harness
natural and worldly phenomena through computational tools. While scientific
computing has traditionally focused on solving and understanding physics-based
models, machine learning generally operates in areas where there are no known
good models and rather tries to build them through data. Due to this difference, the
mathematical theories that underpin the two fields have developed distinctly and
resulted in the conception of diverse sets of numerical methods. Scientific computing
is based on numerical analysis where one studies model approximations through their
convergence to a continuum physical model. On the other hand, machine learning is
based on statistical learning theory where one studies model approximations through
their convergence to an unknown statistical model defined via the observed data. By
re-interpreting the problems in each field through the mathematical lens of the other,
it becomes apparent that many similar and mutually useful ideas have emerged,
opening the door for new theoretical analysis and numerical techniques that hold
the potential for revolutionizing both fields. The present work takes a step in this
direction by introducing ideas from numerical analysis to study and improve machine
learning methods while also applying approximation and optimization techniques
from machine learning to tackle computationally difficult physical problems.

In Chapter 2, we re-cast the problem of learning from data as a general inverse prob-
lem more commonly studied in the context of inferring unknown model parameters
through few physical observations. This allows us to apply the successful Ensemble
Kalman Inversion algorithm to the problem of training deep neural networks as
well as to other semi-supervised learning problems. We propose several modifica-
tions to the algorithm inspired by known optimization techniques, resulting in a
fully-parallelizable and derivative-free method for solving general learning problems.
Continuing via the lens of optimization, in Chapter 3, we study popular momentum-
based methods as applied in deep learning through a continuum interpretation. We
show that, to first order, these methods converge to a re-scaled gradient flow and all
momentum-like effects emerge at the scale of the learning rate. This gives a unified
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view of momentum methods and a precise characterization of their deviation from
the standard gradient decent.

In Chapters 4 and 5, we focus on developing architectures which approximate maps
between two functions space, i.e. operators. In particular, we exhibit methods which
can consistently operate on functions discretized arbitrarily while keeping fixed their
number of parameters. This allows for the design of architectures that are provably
consistent with an underlying physical model. While our primary application for this
endeavor is demonstrating computationally fast and accurate methods for solving
parametric PDE(s), its usability can straightforwardly be extended to video, audio,
and image data. Chapter 4 introduces the concept of operator learning and introduces
a new approximation method inspired by classical model reduction techniques.
Universal approximation theorems for the architecture are proved when mapping
between infinite-dimensional Hilbert spaces. Chapter 5 describers a natural way of
lifting standard neural networks to operators. Universal approximation theorems
for the architecture are proved when mapping between infinite-dimensional Banach
spaces. Our work conceptualizes a new type of universal approximation theorem
in which error is measured with respect to a Bochner norm, closer to the statistical
learning setting, as opposed to a uniform error over compact sets as is classically
done in approximation theory. For the problems considered, while being accurate,
the methods are also significantly faster than traditional approach for solving PDE(s).
Our methodology bridges the gap between machine learning and the approximation
of continuum physical models.

In the last two chapters, we focus on developing methods for approximating prob-
lems where the underlying model is polluted by noise or is intractable to compute.
We work in a finite-dimensional setting, leaving extensions to infinite dimensions to
future work. Chapter 6 introduces the concept of a Monotone Generate Adversarial
Network (MGAN) which is a method that approximates the pushforward map from
a known reference probability measure to a joint data measure of inputs and outputs.
The architecture is designed so that it is trivial to extract a pushforward map to
any conditional of the joint measure, realizing a GAN that is able to condition on
continuous data. Our method gives a computationally cheap way of sampling the
posterior distribution to Bayesian inverse problems or quantifying the uncertainty
in noisy forward problems. In Chapter 7, we tackle the problem of cheaply approx-
imating the ground-state activation energies of molecules from features based on
the Hartree–Fock theory. For molecules with many electrons, accurate physical
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approximations become computationally intractable, making data-driven methods
an indispensable tool. We formulate a novel regression-clustering approach based
on the observation that the data exhibits a piece-wise linear structure. Combined
with Gaussian Process regression, our method achieves state-of-the-art results on
standard benchmarks containing molecules with up to thirteen heavy atoms.

Due to the broad scope of the present work, targeting researchers in applied math-
ematics, statistics, physics, chemistry, and engineering, each chapter sets forth
separate notation outlined therein.
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C h a p t e r 2

ENSEMBLE KALMAN INVERSION FOR MACHINE LEARNING

2.1 Introduction
The Setting
The field of machine learning has seen enormous advances over the last decade.
These advances have been driven by two key elements: (i) the introduction of flexible
architectures which have the expressive power needed to efficiently represent the
input-output maps encountered in practice; (ii) the development of smart optimiza-
tion tools which train the free parameters in these input-output maps to match data.
The text (Goodfellow, Bengio, and Courville, 2016) overviews the start-of-the-art.

While there is little work in the field of derivative-free, paralellizable methods for
machine learning tasks, such advancements are greatly needed. Variants on the
Robbins-Monro algorithm (Robbins and Monro, 1951), such as stochastic gradient
descent (SGD), have become state-of-the-art for practitioners in machine learning
(Goodfellow, Bengio, and Courville, 2016) and an attendant theory (Dieuleveut,
Bach, et al., 2016; Bach and Moulines, 2013; Schmidt, Le Roux, and Bach, 2017;
Lee et al., 2016; Jordan, 2017) is emerging. However the approach faces many
challenges and limitations (Glorot and Bengio, 2010; Pascanu, Mikolov, and Bengio,
2013; Taylor et al., 2016). New directions are needed to overcome them, especially
for parallelization, as attempts to parallelize SGD have seen limited success (Zhang,
Choromanska, and LeCun, 2015).

A step in the direction of a derivative-free, parallelizable algorithm for the training
of neural networks was attempted in (Carreira-Perpinan and W. Wang, 2014) by
use of the the method of auxiliary coordinates (MAC). Another approach using
the alternating direction method of multipliers (ADMM) and a Bregman iteration
is attempted in (Taylor et al., 2016). Both methods seem successful but are only
demonstrated on supervised learning tasks with shallow, dense neural networks that
have relatively few parameters. In reinforcement learning, genetic algorithm have
seen some success (see (Such et al., 2017) and references therein), but it is not clear
how to deploy them outside of that domain.

To simultaneously address the issues of parallelizable and derivative-free optimiza-
tion, we demonstrate in this paper the potential for using ensemble Kalman methods
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to undertake machine learning tasks. Optimizing neural networks via Kalman filter-
ing has been attempted before (see (Haykin, 2001) and references therein), but most
have been through the use of extended or unscented Kalman Filters. Such methods
are plagued by inescapable computational and memory constraints and hence their
application has been restricted to small parameter models. A contemporaneous
paper (Haber, Lucka, and Ruthotto, 2018) has introduced a variant on the ensemble
Kalman filter, and applied it to the training of neural networks; our paper works with
a more standard implementations of ensemble Kalman methods for filtering and
inversion (K. Law, Andrew Stuart, and Zygalakis, 2015; M. A. Iglesias, K. J. H. Law,
and Andrew M Stuart, 2013) and demonstrates potential for these methods within a
wide range of machine learning tasks, when suitably enhanced by ideas that have
become routine in the successful implementation of SGD and its variants.

Our Contribution
The goal of this work is two-fold:

• First we show that many of the common tasks considered in machine learning
can be formulated in the unified framework of Bayesian inverse problems. The
advantage of this point of view is that it allows for the transfer of theory and
algorithms developed for inverse problems to the field of machine learning,
in a manner accessible to the inverse problems community. To this end we
give a precise, mathematical description of the most common approximation
architecture in machine learning, the neural network (and its variants); we use
the language of dynamical systems, and avoid references to the neurobiological
language and notation more common-place in the applied machine learning
literature. We do not pursue uncertainty quantification in this paper, but the
framework in which we work will allow for this in the future. Work taking the
deterministic viewpoint of inverse problems has already been pursued in (De
Vito et al., 2005).

• Secondly, adopting the inverse problem point of view, we show that variants
of ensemble Kalman methods (EKI, EnKF) can be just as effective at solving
most machine learning tasks as the plethora of gradient-based methods that
are widespread in the field. We borrow some ideas from machine learning
and optimization to modify these ensemble methods, in order to enhance their
performance. In short we develop algorithms which do not require backpropa-
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gation, but instead use an ensemble based approach to leverage sensitivities to
perform parameter estimation; the method is inherently parallelizable.

Our belief is that by formulating machine learning tasks as inverse problems, and
by demonstrating the potential for methodologies to be transferred from the field
of inverse problems to machine learning, we will open up new ways of thinking
about machine learning which may ultimately lead to deeper understanding of
the optimization tasks at the heart of the field, and to improved methodology for
addressing those tasks. To substantiate the second assertion we give examples of
the competitive application of ensemble methods to supervised, semi-supervised,
and online learning problems with deep dense, convolutional, and recurrent neural
networks. To the best of our knowledge, this is the first paper to successfully apply
ensemble Kalman methods to such a range of relatively large scale machine learning
tasks. Furthermore we explicitly demonstrate that the method may be used on
architectures for which backpropagation is not possible, for example in training a
dense neural network with Heaviside activations on FashionMNIST. Whilst we do
not attempt parallelization, ensemble methods are easily parallelizable and we give
references to relevant literature. Our work leaves many open questions and future
research directions for the inverse problems community.

Notation and Overview
We adopt the notation R for the real axis, R+ the subset of non-negative reals, and
N = {0, 1, 2, . . . } for the set of natural numbers. For any set A, we use An to denote
its n-fold Cartesian product for any n ∈ N \ {0}. For any function f : A→ B, we
use Im(f) = {y ∈ B : y = f(x), for, for, x ∈ A} to denote its image. For any
subset V ⊆ X of a linear spaceX , we let dimV denote the dimension of the smallest
subspace containing V . For any Hilbert spaceH, we adopt the notation ‖ · ‖H and
〈·, ·〉H to be its associated norm and inner-product respectively. Furthermore for any
symmetric, positive-definite operator C : D(C) ⊂ H → H, we use the notation
‖ · ‖C = ‖C− 1

2 · ‖H and 〈·, ·〉C = 〈C− 1
2 ·, C− 1

2 ·, 〉H. For any two topological spaces
X ,Y , we let C(X ,Y) denote the set of continuous functions from X to Y . We
define

Pm = {y ∈ Rm | ‖y‖1 = 1, y1, . . . , ym ≥ 0}

the set of m-dimensional probability vectors, and the subset

Pm0 = {y ∈ Rm | ‖y‖1 = 1, y1, . . . , ym > 0}.
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Section 2.2 delineates the learning problem, starting from the classical, optimization-
based framework, and shows how it can be formulated as a Bayesian inverse problem.
Section 2.3 gives a brief overview of modern neural network architectures as dynam-
ical systems. Section 2.4 outlines the state-of-the-art algorithms for fitting neural
network models, as well as the EKI method and our proposed modifications of it.
Section 2.5 presents our numerical experiments, comparing and contrasting EKI
methods with the state-of-the-art. Section 2.6 gives some concluding remarks and
possible future directions for this line of work.

2.2 Problem Formulation
Subsection 2.2 overviews the standard formulation of machine learning problems
with subsections 2.2, 2.2, and 2.2 presenting supervised, semi-supervised, and
online learning respectively. Subsection 2.2 sets forth the Bayesian inverse problem
interpretation of these tasks and gives examples for each of the previously presented
problems.

Classical Framework
The problem of supervised learning is usually formulated as minimizing an ex-
pected cost over some space of mappings relating the data (Goodfellow, Bengio,
and Courville, 2016; Vapnik, 1995; Murphy, 2012). More precisely, let X , Y be
separable Hilbert spaces and let P(x, y) be a probability measure on the product
space X × Y . Let L : Y × Y → R+ be a positive-definite function and define F
to be the set of mappings {G : X → Y} on which the composition L(G(·), ·) is
P-measurable for all G in F . Then we seek to minimize the functional

Q(G) =

∫
X×Y
L(G(x), y) dP(x, y) (2.1)

across all mappings in F . This minimization may not be well defined as there could
be infimizing sequences not converging in F . Thus further constraints (regular-
ization) are needed to obtain an unambiguous optimization problem. These are
generally introduced by working with parametric forms of G. Additional explicit
regularization is also often added to parameterized versions of (2.1).

Usually L is called the loss or cost function and acts as a metric-like function on Y;
however it is useful in applications to relax the strict properties of a metric, and we, in
particular, do not require L to be symmetric or subadditive. With this interpretation
of L as a cost, we are seeking a mapping G with lowest cost, on average with
respect to P. There are numerous choices for L used in applications (Goodfellow,
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Bengio, and Courville, 2016); some of the most common include the squared-error
loss L(y′, y) = ‖y − y′‖2

Y used for regression tasks, and the cross-entropy loss
L(y′, y) = −〈y, log y′〉Y used for classification tasks. In both these cases we often
have Y = RK , and, for classification, we may restrict the class of mappings to those
taking values in PK0 .

Most of our focus will be on parametric learning where we approximate F by a
parametric family of models {G(u|·) : X → Y} where u ∈ U is the parameter
and U is a separable Hilbert space. This allows us to work with a computable
class of functions and perform the minimization directly over U . Much of the early
work in machine learning focuses on model classes which make the associated
minimization problem convex (Boser, Guyon, and Vapnik, 1992; Hoerl and Kennard,
1970; Murphy, 2012), but the recent empirical success of neural networks has driven
research away from this direction (LeCun, Bengio, and Geoffrey E. Hinton, 2015;
Goodfellow, Bengio, and Courville, 2016). In Section 2.3, we give a brief overview
of the model space of neural networks.

While the formulation presented in (2.1) is very general, it is not directly transferable
to practical applications as, typically, we have no direct access to P(x, y). How we
choose to address this issue depends on the information known to us, usually in the
form of a data set, and defines the type of learning. Typically information about
P is accessible only through our sample data. The next three subsections describe
particular structures of such sample data sets which arise in applications, and the
minimization tasks which are constructed from them to determine the parameter u.

Supervised Learning

Suppose that we have a dataset {(xj, yj)}Nj=1 assumed to be i.i.d. samples from
P(x, y). We can thus replace the integral (2.1) with its Monte Carlo approximation,
and add a regularization term, to obtain the following minimization problem:

arg min
u∈U

Φs(u; x, y), (2.2)

Φs(u; x, y) =
1

N

N∑
j=1

L(G(u|xj), yj) +R(u). (2.3)

Here R : U → R is a regularizer on the parameters designed to prevent overfitting
or address possible ill-posedness. We use the notation x = [x1, . . . , xN ] ∈ XN , and
analogously y, for concatenation of the data in the input and output spaces X ,Y
respectively.
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A common choice of regularizer is R(u) = λ‖u‖2
U where λ ∈ R is a tunable

parameter. This choice is often called weight decay in the machine learning literature;
the regularizer promotes parameters with smaller norm, thus inducing decay when
represented in specific bases. Other choices, such as sparsity promoting norms, are
also employed; carefully selected choices of the norm can induce desired behavior in
the parameters (E. J. Candes and Tao, 2006; Vogel, 2002). We note also that Monte
Carlo approximation is itself a form of regularization of the minimization task (2.1).

This formulation is known as supervised learning. Supervised learning is perhaps
the most common type of machine learning with numerous applications includ-
ing image/video classification, object detection, and natural language processing
(Krizhevsky, Sutskever, and Geoffrey E Hinton, 2012; Manning and Schütze, 1999;
Sutskever, Vinyals, and Le, 2014).

Semi-Supervised Learning

Suppose now that we only observe a small portion of the data y in the image
space; specifically we assume that we have access to data {xj}j∈Z , {yj}j∈Z′ where
xj ∈ X , yj ∈ Y , Z = {1, . . . , N} and where Z ′ ⊂ Z with |Z ′| � |Z|. Clearly this
can be turned into supervised learning by ignoring all data indexed by Z \ Z ′, but
we would like to take advantage of all the information known to us. Often the data
in X is known as unlabeled data, and the data in Y as labeled data; in particular
the labeled data is often in the form of categories. We use the terms labeled and
unlabeled in general, regardless or whether the data in Y is categorical; however
some of our illustrative discussion below will focus on the binary classification
problem. The objective is to assign a label yj to every j ∈ Z. This problem is known
as semi-supervised learning.

One approach to the problem is to seek to minimize

arg min
u∈U

Φss(u; x, y) (2.4)

Φss(u; x, y) =
1

|Z ′|
∑
j∈Z′
L(G(u|xj), yj) +R(u; x) (2.5)

where the regularizer R(u; x) may use the unlabeled data in Z\Z ′, but the loss term
involves only labeled data in Z ′.

There are a variety of ways in which one can construct the regularizer R(u; x)

including graph-based and low-density separation methods (A. L. Bertozzi et al.,
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2017; A. Bertozzi and Flenner, 2012). In this work, we will study a nonparametric
graph approach where we think of Z as indexing the nodes on a graph. To illustrate
ideas we consider the case of binary outputs, take Y = R and restrict attention to
mappings G(u|·) which take values in {−1, 1}; we sometimes abuse notation and
simply take Y = {−1, 1}, so that Y is no longer a Hilbert space. We assume that U
comprises real-valued functions on the nodes Z of the graph, equivalently vectors
in RN . We specify that G(u|j) = sgn(u(j)) for all j ∈ Z, and take, for example,
the probit or logistic loss function (C. E. Rasmussen and C. K. Williams, 2006;
A. L. Bertozzi et al., 2017). Once we have found an optimal parameter value for
u : Z → R, application of G to u will return a labeling over all nodes j in Z. In order
to use all the unlabeled data we introduce edge weights which measure affinities
between nodes of a graph with vertices Z, by means of a weight function on X ×X .
We then compute the graph Laplacian L(x) and use it to define a regularizer in the
form

R(u; x) = 〈u, (L(x) + τ 2I)αu〉RN .

Here I is the identity operator, and τ, α ∈ R with α > 0 are tunable parameters.
Further details of this method are in the following section. Applications of semi-
supervised learning can include any situation where data in the image space Y is
hard to come by, for example because it requires expert human labeling; a specific
example is medical imaging (Litjens et al., 2017).

Online Learning

Our third and final class of learning problems concerns situations where samples of
data are presented to us sequentially and we aim to refine our choice of parameters
at each step. We thus have the supervised learning problem (2.2) and we aim to
solve it sequentially as each pair of data points {xj, yj} is delivered. To facilitate
cheap algorithms we impose a Markovian structure in which we are allowed to use
only the current data sample, as well as our previous estimate of the parameters,
when searching for the new estimate. We look for a sequence {uj}∞j=1 ⊂ U such
that uj → u∗ as j →∞ where, in the perfect scenario, u∗ will be a minimizer of the
limiting learning problem (2.1). To make the problem Markovian, we may formulate
it as the following minimization task:

uj = arg min
u∈U

Φo(u, uj−1;xj, yj) (2.6)

Φo(u, uj−1;xj, yj) = L(G(u|xj), yj) +R(u;uj−1) (2.7)
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where R is again a regularizer that could enforce a closeness condition between
consecutive parameter estimates, such as

R(u;uj−1) = λ‖u− uj−1‖2
U .

Furthermore this regularization need not be this explicit, but could rather be included
in the method chosen to solve (2.6). For example if we use an iterative method for
the minimization, we could simply start the iteration at uj−1.

This formulation of supervised learning is known as online learning. It can be viewed
as reducing computational cost as a cheaper, sequential way of estimating a solution
to (2.1); or it may be necessitated by the sequential manner in which data is acquired.

Inverse Problems
The preceding discussion demonstrates that, while the goal of learning is to find
a mapping which generalizes across the whole distribution of possible data, in
practice, we are severely restricted by only having access to a finite data set. Namely
formulations (2.2), (2.4), and (2.6) can be stated for any input-output pair data set
with no reference to P(x, y) by simply assuming that there exists some function
in our model class that will relate the two. In fact, since L is positive-definite, its
dependence also washes out when ones takes a function approximation point of
view.

To make the above precise, consider the inverse problem of finding u ∈ U such that

y = G(u|x) + η; (2.8)

here G(u|x) = [G(u|x1), . . . ,G(u|xN)] is a concatenation and η ∼ π is a YN -valued
random variable distributed according to a measure π that models possible noise in
the data, or model error. In order to facilitate a Bayesian formulation of this inverse
problem we let µ0 denote a prior probability measure on the parameters u. Then
supposing

− log(π(y − G(u|x))) ∝
N∑
j=1

L(G(u|xj), yj)

− log(µ0(u)) ∝ R(u)

we see that (2.2) corresponds to the standard MAP estimator arising from a Bayesian
formulation of (2.8). The semi-supervised learning problem (2.4) can also be viewed
as a MAP estimator by restricting (2.8) to Z ′ and using x to build µ0. This is the
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perspective we take in this work and we illustrate with an example for each type of
problem.

Example 1. Suppose that Y and U are Euclidean spaces and let π = N (0,Γ)

and µ0 = N (0,Σ) be Gaussian with positive-definite covariances Γ,Σ where Γ is

block-diagonal with N identical blocks Γ0. Computing the MAP estimator of (2.8),
we obtain that L(y′, y) = ‖y − y′‖2

Γ0
and R(u) = ‖u‖2

Σ.

Example 2. Suppose that U = RN and Y = R with the data yj = ±1 ∀j ∈ Z ′. We

will take the model class to be a single function G : RN × Z → R depending only

on the index of each data point and defined by G(u|j) = sgn(uj). As mentioned, we

think of Z as the nodes on a graph and construct the edge set E = (eij) = η(xi, xj)

where η : X × X → R+ is a symmetric function. This allows construction of

the associated graph Laplacian L(x). We shift it to remove its null space and

consider powers of this operator leading to the symmetric, positive-definite operator

C = (L(x) + τ 2I)−α from which we can define the Gaussian measure µ0 = N (0, C).

For details on why this construction defines a reasonable prior we refer to (A. L.

Bertozzi et al., 2017). Letting π = N (0, 1
γ2
I), we restrict (2.8) to the inverse problem

yj = G(u|j) + ηj ∀j ∈ Z ′.

With the given definitions, letting γ2 = |Z ′|, the associated MAP estimator has the

form of (2.4), namely

1

|Z ′|
∑
j∈Z′
|G(u|j)− yj|2 + 〈u,C−1u〉RN .

The infimum for this functional is not achieved (M. Iglesias, Lu, and A.M. Stuart,

2016), but the ensemble based methods we employ to solve the problem implicitly

apply a further regularization which circumvents this issue.

Example 3. Lastly we turn to the online learning problem (2.6). We assume that

there is some unobserved, fixed in time parameter of our model that will perfectly

match the observed data up to a noise term. Our goal is to estimate this parameter
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sequentially. Namely, we consider the stochastic dynamical system,

uj+1 = uj

yj+1 = G(uj+1|xj+1) + ηj+1

(2.9)

where the sequence {ηj} are Y-valued i.i.d. random variables that are also indepen-

dent from the data. This is an instance of the classic filtering problem considered

in data assimilation (K. Law, Andrew Stuart, and Zygalakis, 2015). We may view

this as solving an inverse problem at each fixed time with increasingly strong prior

information as time unrolls. With the appropriate assumptions on the prior and

the noise model, we may again view (2.6) as the MAP estimators of each fixed

inverse problem. Thus we may consider all problems presented here in the general

framework of (2.8).

2.3 Approximation Architectures
In this section, we outline the approximation architectures that we will use to solve
the three machine learning tasks outlined in the preceding section. For supervised
and online learning these amount to specifying the dependence of G on u; for semi-
supervised learning this corresponds to determining a basis in which to seek the
parameter u. We do not give further details for the semi-supervised case as our
numerics fit in the context of Example 2, but we refer the reader to (A. L. Bertozzi
et al., 2017) for a detailed discussion.

Subsection 2.3 details feed-forward neural networks with subsections 2.3 and 2.3
showing the parameterizations of dense and convolutional networks respectively.

Feed-Forward Neural Networks
Feed-forward neural networks are a parametric model class defined as discrete time,
nonautonomous, semi-dynamical systems of an unusual type. Each map in the
composition takes a specific parametrization and can change the dimension of its
input while the whole system is computed only up to a fixed time horizon. To make
this precise, we will assume X = Rd, Y = Rm and define a neural network with
n ∈ N hidden layers as the composition

G(u|x) = (S ◦ A ◦ Fn−1 ◦ · · · ◦ F0)(x)

where d0 = d and Fj ∈ C(Rdj ,Rdj+1), n = 0, . . . , n−1 are nonlinear maps, referred
to as layers, depending on parameters θ0, . . . , θn−1 respectively, A : Rdn → Rm

is an affine map with parameters θn, and u = [θ0, . . . , θn] is a concatenation. The
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map S : Rm → V ⊆ Rm is fixed and thought of as a projection or thresholding
done to move the output to the appropriate subset of data space. The choice of S
is dependent on the problem at hand. If we are considering a regression task and
V = Rm then S can simply be taken as the identity. On the other hand, if we are
considering a classification task and V = Pm, the set of probability vectors in Rm,
then S is often taken to be the softmax function defined as

S(w) =
1∑m

j=1 e
wj

(ew1 , . . . , ewm).

From this perspective, the neural network approximates a categorical distribution of
the input data and the softmax arises naturally as the canonical response function of
the categorical distribution (when viewed as belonging to the exponential family of
distributions) (McCullagh and Nelder, 1989; Ruck et al., 1990). If we have some
specific bounds for the output data, for example V = [−1, 1]m then S can be a
point-wise hyperbolic tangent.

What makes this dynamic unusual is the fact that each map can change the dimension
of its input unlike a standard dynamical system which operates on a fixed metric
space. However, note that the sequence of dimension changes d1, . . . , dn is simply a
modeling choice that we may alter. Thus let dmax = max{d0, . . . , dn} and consider
the solution map φ : N0 × N0 × Rdmax → Rdmax generated by the nonautonomous
difference equation

zk+1 = Fk(zk)

where each map Fk ∈ C(Rdmax ,Rdmax) is such that dim Im(Fk) ≤ dk+1; then
φ(n,m, x) is zn given that zm = x. We may then define a neural network as

G(u|x) = S ◦ A ◦ φ(n, 0,Px)

where P : Rd → Rdmax is a projection operator and A : Rdmax → Rm is again an
affine map. While this definition is mathematically satisfying and potentially useful
for theoretical analysis as there is a vast literature on nonautonomus semi-dynamical
systems (Kloeden and M. Rasmussen, 2011), in practice, it is more useful to think
of each map as changing the dimension of its input. This is because it allows us to
work with parameterizations that explicitly enforce the constraint on the dimension
of the image. We take this point of view for the rest of this section to illustrate the
practical uses of neural networks.
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Dense Networks

A key feature of neural networks is the specific parametrization of each map Fk. In
the most basic case, each Fk is an affine map followed by a point-wise nonlinearity,
in particular,

Fk(zk) = σ(Wkzk + bk)

where Wk ∈ Rdk+1×dk , bk ∈ Rdk+1 are the parameters i.e. θk = [Wk, bk] and
σ ∈ C(R,R) is non-constant and bounded; we extend σ to a function on Rd by
defining it point-wise as σ(u)j = σ(uj) for any vector u ∈ Rd. This layer type is
referred to as dense, or fully-connected, because each entry in Wk is a parameter
with no global sparsity assumptions and hence we can end up with a dense matrix. A
neural network with only this type of layer is called dense or fully-connected (DNN).

The nonlinearity σ, called the activation function, is a design choice and usually
does not vary from layer to layer. Some popular choices include the sigmoid, the
hyperbolic tangent, or the rectified linear unit (ReLU) defined by σ(q) = max{0, q}.
Note that ReLU is unbounded and hence does not satisfy the assumptions for
the classical universal approximation theorem (Hornik, 1991), but it has shown
tremendous numerical success when the associated inverse problem is solved via
backpropagation (method of adjoints) (Nair and Geoffrey E. Hinton, 2010).

Convolutional Networks

Instead of seeking the full representation of a linear operator at each time step, we
may consider looking only for the parameters associated to a pre-specified type of
operator. Namely we consider

Fk(zk) = σ(W (sk)zk + bk)

where W can be fully specified by the parameter sk. The most commonly considered
operator is the one arising from a discrete convolution (Lecun et al., 1998). The
motivation behind this choice lies in the application to natural images where we want
to exploit spatial features of the data. In particular, considering objects in an image,
a natural choice is to pick a transformation which is translation equivariant. Namely,
translations in the image result in equivalent translations in the output. This captures
the property that moving an object in an image does not change the content of that
image. Convolution then becomes the natural choice as as the set of convolutions is
in bijection with the set of equivariant functions.
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We consider the input zk as a function on the integers with period dk then we may
define W (sk) as the circulant matrix arising as the kernel of the discrete circular
convolution with convolution operator sk. Exact construction of the operator W
is a modeling choice as one can pick exactly which blocks of zk to compute the
convolution over. Usually, even with maximally overlapping blocks, the operation
is dimension reducing, but can be made dimension preserving, or even expanding,
by appending zero entries to zk. This is called padding. For brevity, we omit
exact descriptions of such details and refer the reader to (Goodfellow, Bengio,
and Courville, 2016). The parameter sk is known as the stencil. Neural networks
following this construction are called convolutional (CNN).

In practice, a CNN computes a linear combination of many convolutions at each
time step, namely

F
(j)
k (zk) = σ

(
Mk∑
m=1

W (s
(j,m)
k )z

(m)
k + b

(j)
k

)

for j = 1, 2, . . . ,Mk+1 where zk = [z
(1)
k , . . . , z

(Mk)
k ] with each entry known as a

channel and Mk = 1 if no convolutions were computed at the previous iteration.
Finally we define Fk(zk) = [F

(1)
k (zk), . . . , F

(Mk+1)
k (zk)]. The number of channels at

each time step, the integer Mk+1, is a design choice which, along with the choice
for the size of the stencils s(j,m)

k , the dimension of the input, and the design of W
determine the dimension of the image space dk+1 for the map Fk.

When employing convolutions, it is standard practice to sometimes place maps which
compute certain statistics from the convolution. These operations are commonly
referred to as pooling. They are dimension reducing and are usually thought of as a
way of extracting the most important information from a convolution. We refer the
reader to (Nagi et al., 2011; Tsai, Hamsici, and Yang, 2015; Graham, 2014; Gulcehre
et al., 2014; K. He et al., 2014) for further details.

Perhaps the most common such operation is known as max-pooling. To illustrate
suppose [F

(1)
k , . . . , F

(Mk+1)
k ] are the Mk+1 channels computed as the output of a

convolution (dropping the zk dependence for notational convenience). In this context,
it is helpful to change perspective slightly and view each F (j)

k as a matrix whose
concatenation gives the vector Fk. Each of these matrices is a two-dimensional
grid whose value at each point represents a linear combination of convolutions each
computed at that spatial location. We define a maximum-based, block-subsampling
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Convolutional Neural Network
Map Type Notation

F0 : R28×28 → R32×24×24 Conv 32x5x5 M0 = 1,M1 = 32, s
(j,m)
0 ∈ R5×5

j ∈ {1, . . . , 32},m = {1}

F1 : R32×24×24 → R32×10×10

Conv 32x5x5 M2 = 32, s
(j,m)
1 ∈ R5×5

MaxPool 2x2 j ∈ {1, . . . , 32},m ∈ {1, . . . , 32}
H1 = H2 = 2 (α = β = 2)

F2 :: R32×10×10 → R64×6×6 Conv 64x5x5 M3 = 64, s
(j,m)
2 ∈ R5×5

j ∈ {1, . . . , 64},m ∈ {1, . . . , 32}

F3 : R64×6×6 → R64

Conv 64x5x5 M4 = 64, s
(j,m)
3 ∈ R5×5

MaxPool 2x2 j ∈ {1, . . . , 64},m ∈ {1, . . . , 64}
(global) H1 = H2 = 2

F4 : R64 → R500 FC-500 W4 ∈ R500×64, b4 ∈ R500

A : R500 → R10 FC-10 W5 ∈ R10×500, b5 ∈ R10

S : R10 → R10 Softmax S(w) = 1∑10
j=1 e

wj
(ew1 , . . . , ew10)

Figure 21: A four layer convolutional neural network for classifying images in the
MNIST data set. The middle column shows a description typical of the machine
learning literature. The other two columns connect this jargon to the notation
presented here. No padding is added and the convolutions are computed over
maximally overlapping blocks (stride of one). The nonlinearity σ is the ReLU and is
the same for every layer.

operation
(p

(j)
k )il = max

q∈{1,...,H1}
max

v∈{1,...,H2}
(F

(j)
k )α(i−1)+q,β(l−1)+v

where the tuple (H1, H2) ∈ N2 is called the pooling kernel and the tuple (α, β) ∈
N2 is called the stride, each a design choice for the operation. It is common
practice to take H1 = H2 = α = β. We then define the full layer as Fk(zk) =

[p
(1)
k (zk), . . . , p

(Mk+1)
k (zk)]. There are other standard choices for pooling operations

including average pooling, `p-pooling, fractional max-pooling, and adaptive max-
pooling where each of the respective names are suggestive of the operation being
performed; details may be found in (Tsai, Hamsici, and Yang, 2015; Graham,
2014; Gulcehre et al., 2014; K. He et al., 2014). Note that pooling operations are
dimension reducing and are usually thought of as a way of extracting the most
important information from a convolution. When one chooses the kernel (H1, H2)

such that F (j)
k ∈ RH1×H2 , the per channel output of the pooling is a scalar and the

operation is called global pooling.

Designs of feed-forward neural networks usually employ both convolutional (with
and without pooling) and dense layers. While the success of convolutional networks
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Figure 22: Output of each map from left to right of the convolutional neural network
shown in Figure 21. The left most image is the input and the next three images show
a single randomly selected channel from the outputs of F0, F1, F2 respectively. The
outputs of F3, F4, A, S are vectors shown respectively in the four subsequent plots.
We see that with high probability the network determines that the image belongs to
the first class (0) which is correct.

has mostly come from image classification or object detection tasks (Krizhevsky,
Sutskever, and Geoffrey E Hinton, 2012), they can be useful for any data with
spatial correlations (Binkowski, Marti, and Donnat, 2017; Goodfellow, Bengio,
and Courville, 2016). To connect the complex notation presented in this section
with the standard in machine learning literature, we will give an example of a deep
convolutional neural network. We consider the task of classifying images of hand-
written digits given in the MNIST dataset (LeCun and Cortes, 2010). These are
28 × 28 grayscale images of which there are N = 60, 000 and 10 overall classes
{0, . . . , 9} hence we consider X = R28×28 ∼= R784 and Y the space of probability
vectors over R10. Figure 21 show a typical construction of a deep convolutional
neural network for this task. The word deep is generally reserved for models with
n > 3. Once the model has been fit, Figure 22 shows the output of each map
on an example image. Starting with the digitized digit 0, the model computes its
important features, through a sequence of operations involving convolutional layers,
culminating in the second to last plot, the output of the affine map A. This plot
shows model determining that the most likely digit is 0, but also giving substantial
probability weight on the digit 6. This makes sense, as the digits 0 and 6 can look
quite similar, especially when hand-written. Once the softmax is taken (because it
exponentiates), the probability of the image being a 6 is essentially washed out, as
shown in the last plot. This is a short-coming of the softmax as it may not accurately
retain the confidence of the model’s prediction. We stipulate that this may be a reason
for the emergence of highly-confident adversarial examples (Szegedy et al., 2014;
Goodfellow, Shlens, and Szegedy, 2015), but do not pursue suitable modifications
in this work.

Recurrent Neural Networks
Recurrent neural networks are models for time-series data defined as discrete time,
nonautonomous, semi-dynamical systems that are parametrized by feed-forward
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neural networks. To make this precise, we first define a layer of two-inputs simply
as the sum of two affine maps followed by a point-wise nonlinearity, namely for
j = 1, . . . , n define Fθj : Rdh × Rd → Rdh by

Fθj(z, q) = σ(W
(j)
h z + b

(j)
h +W (j)

x q + b(j)
x )

where W (j)
h ∈ Rdh×dh , W (j)

x ∈ Rdh×d and b
(j)
h , b

(j)
x ∈ Rdh; the parameters are

then given by the concatenation θj = [W
(j)
h ,W

(j)
x , b

(j)
h , b

(j)
x ]. The dimension dh is

a design choice that we can pick on a per-problem basis. Now define the map
Fθ : Rdh × Rd → Rdh by composing along the first component

Fθ(z, q) = Fθn(Fθn−1(. . . Fθ1(z, q), . . . q), q), q)

where θ = [θ1, . . . , θn] is a concatenation. Now suppose x0, . . . , xT−1 ∈ Rd is an
observed time series and define the dynamic

ht+1 = Fθ(ht, xt)

up to time t = T . We can think of this as a nonautonomous, semi-dynamical system
on Rdh with parameter x = [x0, . . . , xT−1]. Let φ : {0, . . . , T}×RT×d×Rdh → Rdh

be the solution map generated by this difference equation. We can finally define a
recurrent neural network G(u|·) : RT×d → V ⊆ RT×d by

G(u|x) =


S(A1 ◦ φ(1, x, h0))

S(A2 ◦ φ(2, x, h0))
...

S(AT ◦ φ(T, x, h0))


where A1, . . . , AT are affine maps, S is a thresholding (such as softmax) as previ-
ously discussed, and u a concatenation of the parameters θ as well as the parameters
for all of the affine maps. Usually ones takes h0 = 0, but randomly generated initial
conditions are also used in practice.

The construction presented here is the most basic recurrent neural network. Many
others architectures such as Long Short-Term Memory (LSTM), recursive, and
bi-recurrent networks have been proposed in the literature (Schmidhuber, 1992;
Sepp Hochreiter and Schmidhuber, 1997; S. Hochreiter et al., 2001; Goodfellow,
Bengio, and Courville, 2016), but they are all slight modifications to the above
dynamic. These architectures can be used as sequence to sequence maps, or, if we
only consider the output at the last time that is S(AT ◦ φ(T, x, h0)), as predicting xT
or classifying the sequence x0, . . . , xT−1. We refer the reader to (Sutskever, 2013)
for an overview of the applications of recurrent neural networks.



20

2.4 Algorithms
Subsection 2.4 describes the choice of loss function. Subsection 2.4 outlines the
state-of-the-art derivative based optimization, with subsection 2.4 presenting the
algorithms and subsection 2.4 presenting tricks for better convergence. Subsection
2.4 defines the EKI method, with subsequent subsections presenting our various
modifications.

Loss Function
Before delving into the specifics of optimization methods used, we discuss the
general choice of loss function L. While the machine learning literature contains a
wide variety of loss functions that are designed for specific problems, there are two
which are most commonly used and considered first when tackling any regression
and classification problems respectively, and on which we focus our work in this
paper. For regression tasks, the squared-error loss

L(y′, y) = ‖y − y′‖2
Y

is standard and is well known to the inverse problems community; it arises from an
additive Gaussian noise model. When the task at hand is classification, the standard
choice of loss is the cross-entropy

L(y′, y) = −〈y, log y′〉Y ,

with the log computed point-wise and where we consider Y = Rm. This loss is
well-defined on the space Pm0 × Pm. It is consistent with the the projection map S of
the neural network model being the softmax as Im(S) = Pm0 . A simple Lagrange
multiplier argument shows that L is indeed infimized over Pm0 by sequence y′ → y

and hence the loss is consistent with what we want our model output to be. 1 From a
modeling perspective, the choice of softmax as the output layer has some drawbacks
as it only allows us to asymptotically match the data. However it is a good choice if
the cross-entropy loss is used to solve the problem; indeed, in practice, the softmax
along with the cross-entropy loss has seen the best numerical results when compared
to other choices of thresholding/loss pairs (Goodfellow, Bengio, and Courville,
2016).

The interpretation of the cross-entropy loss is to think of our model as approximating
a categorical distribution over the input data and, to get this approximation, we want

1Note that the infimum is not, in general, attained in Pm
0 as defined, because perfectly labeled

data may take the form {y ∈ Rm | ∃!j s.t. yj = 1, yk = 0 ∀k 6= j} which is in the closure of Pm
0 but

not in Pm
0 itself.



21

to minimize its Shannon cross-entropy with respect to the data. Note, however, that
there is no additive noise model for which this loss appears in the associated MAP
estimator simply because L cannot be written purely as a function of the residual
y − y′.

Gradient Based Optimization
The Iterative Technique

The current state of the art for solving optimization problems of the form (2.2), (2.4),
(2.6) is based around the use of stochastic gradient descent (SGD) (Robbins and
Monro, 1951; Kiefer and Wolfowitz, 1952; Rumelhart, Geoffrey E. Hinton, and
R. J. Williams, 1988). We will describe these methods starting from a continuous
time viewpoint, for pedagogical clarity. In particular, we think of the unknown
parameter as the large time limit of a smooth function of time u : [0,∞)→ U . Let
Φ(u; x, y) = Φs(u; x, y) or Φss(u; x, y), then gradient descent imposes the dynamic

u̇ = −∇Φ(u; x, y), u(0) = u0 (2.10)

which moves the parameter in the steepest descent direction with respect to the
regularized loss function, and hence will converge to a local minimum for Lebesgue
almost all initial data, leading to bounded trajectories (Lee et al., 2016; Andrew
Stuart and Humphries, 1998).

For the practical implementations of this approach in machine learning, a number of
adaptations are made. First the ODE is discretized in time, typically by a forward
Euler scheme; the time-step is referred to as the learning rate. The time-step is often,
but not always, chosen to be a decreasing function of the iteration step (Dieuleveut,
Bach, et al., 2016; Robbins and Monro, 1951). Secondly, at each step of the iteration,
only a subset of the data is used to approximate the full gradient. In the supervised
case, for example,

Φs(u; x, y) ≈ 1

N ′

∑
j∈BN′

L(G(u|xj), yj) +R(u)

whereBN ′ ⊂ {1, . . . , N} is a random subset of cardinalityN ′ usually withN ′ � N .
A new BN ′ is drawn at each step of the Euler scheme without replacement until the
full dataset has been exhausted. One such cycle through all of the data is called an
epoch. The number of epochs it takes to train a model varies significantly based
on the model and data at hand but is usually within the range 10 to 500. This idea,
called mini-batching, leads to the terminology stochastic gradient descent (SGD).
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Recent work has suggested that adding this type of noise helps preferentially guide
the gradient descent towards places in parameter space which generalize better than
standard descent methods (Chaudhari, Choromanska, et al., 2016; Chaudhari and
Soatto, 2017).

A third variant on basic gradient descent is the use of momentum-augmented methods
utilized to accelerate convergence (Nesterov, 1983). The deep theory associated
with these methods relates to a clever adaptive choice of momentum which changes
with the step of the algorithm; however as used in machine lerning practice the
momentum level is typically fixed. Various continuous time dynamics associated
with the Nesterov momentum method can be found in (Su, Boyd, and E. Candes,
2014; Kovachki and Andrew M. Stuart, 2019) and take the form

mü+ γ(t)u̇ = −∇Φ(u; x, y),

u(0) = u0, u̇(0) = 0.
(2.11)

From these variants on continuous time gradient descent have come a plethora of
adaptive first-order optimization methods that attempt to solve the learning problem.
Some of the more popular include Adam, RMSProp, and Adagrad (Kingma and
J. Ba, 2014; Duchi, Hazan, and Singer, 2011). There is no consensus on which
method performs best, although some recent work has argued in favor of SGD and
momentum SGD (Wilson et al., 2017).

Lastly, the online learning problem (2.6) is also commonly solved via a gradient
descent method dubbed online gradient descent (OGD). The dynamic is

u̇j = −∇Φo(uj, uj−1;xj, yj)

uj(0) = uj−1(T )

which can be extended to the momentum case in the obvious way. It is common that
only a single step of the Euler scheme is computed. The process of letting all these
ODE(s) evolve in time is called training.

Initialization

A major challenge for the iterative methods presented here is finding a good starting
point u0 for the dynamic; a problem usually termed initialization. Historically,
initialization was first dealt with using a technique called layer-wise pretraining

(G. Hinton and Salakhutdinov, 2006). In this approach the parameters are initialized
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randomly. Then the parameters of all but first layer are held fixed and SGD is used to
find the parameters of the first layer. Then all but the parameters of the second layer
are held fixed and SGD is used to find the parameters of the second layer. Repeating
this for all layers yields an estimate u0 for all the parameters, and this is then used
as an initialization for SGD in a final step called fine-tuning. Development of new
activation functions, namely the ReLU, has allowed simple random initialization
(from a carefully designed prior measure) to work just as well, making layer-wise
pretraining essentially obsolete. There are many proposed strategies in the literature
for how one should design this prior (Glorot and Bengio, 2010; Mishkin and Matas,
2015). The main idea behind all of them is to somehow normalize the output mean
and variance of each map Fk. One constructs the product probability measure

µ0 = µ
(0)
0 ⊗ µ

(1)
0 ⊗ · · · ⊗ µ

(n−1)
0 ⊗ µ(n)

0

where each µ(k)
0 is usually a centered, isotropic probability measure with covariance

scaling γk. Each such measure corresponds to the distribution of the parameters of
each respective layer with µ(n)

0 attached to the parameters of the map A. A common
strategy called Xavier initialization (Glorot and Bengio, 2010) proposes that the
inverse covariance (precision) is determined by the average of the input and output
dimensions of each layer:

γ−1
k =

1

2

(
dk + dk+1

)
and thus

γk =
2

dk + dk+1

.

When the layer is convolutional, dk and dk+1 are instead taken to be the number of
input and output channels times the size of each stencil respectively. Usually each
µ

(k)
0 is then taken to be a centered Gaussian or uniform probability measure. Once

this prior is constructed one initializes SGD by a single draw.

As we have seen, initialization strategies aim to normalize the output distribution of
each layer. However, once SGD starts and the parameters change, this normalization
is no longer in place. This issue has been called the internal covariate shift. To
address it, normalizing parameters are introduced after the output of each layer. The
most common strategy for finding these parameters is called batch-normalization

(Ioffe and Szegedy, 2015), which, as the name implies, relies on computing a
mini-batch of the data. To illustrate the idea, suppose zm(xk1), . . . , zm(xkB) are the
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outputs of the map Fm−1 at inputs xk1 , . . . , xkB . We compute the mean and variance

νm =
1

B

B∑
j=1

zm(xkj); σ2
m =

1

B

B∑
j=1

‖zm(xkj)− νm‖2
2

and normalize these outputs so that the inputs to the map Fm are

zm(xkj)− νm√
σ2
m + ε

γ + β

where ε > 0 is used for numerical stability while γ, β are new parameters to be
estimated, and are termed the scale and shift respectively; they are found by means
of the SGD optimization process. It is not necessary to introduce the new parameters
γ, β but is common in practice and, with them, the operation is called affine batch-

normalization. When an output has multiple channels, separate normalization is done
per channel. During training a running mean of each νm, σ2

m is kept and the resulting
values are used for the final model. A clear drawback to batch normalization is
that it relies on batches of the data to be computed and hence cannot be used in
the online setting. Many similar strategies have been proposed (Ulyanov, Vedaldi,
and Lempitsky, 2016; L. J. Ba, Kiros, and Geoffrey E. Hinton, 2016) with no clear
consensus on which works best. Recently a new activation function called SeLU
(Klambauer et al., 2017) has been claimed to perform the required normalization
automatically.

Ensemble Kalman Inversion
The ensemble Kalman filter (EnKF) is a method for estimating the state of a stochas-
tic dynamical system from noisy observations (Evensen, 2003). Over the last decade
the method has been systematically developed as an iterative method for solving
general inverse problems; in this context, it is sometimes referred to as ensemble
Kalman inversion (EKI) (M. A. Iglesias, K. J. H. Law, and Andrew M Stuart, 2013).
Viewed as a sequential Monte Carlo method (Schillings and Andrew M. Stuart,
2017), it works on an ensemble of parameter estimates (particles) transforming them
from the prior into the posterior. Recent work has established, however, that unless
the forward operator is linear and the additive noise is Gaussian (Schillings and
Andrew M. Stuart, 2017), the correct posterior is not obtained (G. Ernst, Sprungk,
and Starkloff, 2015). Nevertheless there is ample numerical evidence that shows EKI
works very well as a derivative-free optimization method for nonlinear least-squares
problems (Kay and Sebastian, n.d.; Bergemann and Reich, 2010). In this paper, we
view it purely through the lens of optimization and propose several modifications to
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the method that follow from adopting this perspective within the context of machine
learning problems.

Consider the general inverse problem

y = G(u) + η

where η ∼ π = N(0,Γ) represent noise, and let µ0 be a prior measure on the
parameter u. Note that the supervised, semi-supervised, and online learning problems
(2.8), (2.9) can be put into this general framework by adjusting the number of data
points in the concatenations y, x and letting x be absorbed into the definition of G.
Let {u(j)}Jj=1 ⊂ U be an ensemble of parameter estimates which we will allow to
evolve in time through interaction with one another and with the data; this ensemble
may be initialized by drawing independent samples from µ0, for example. The
evolution of u(j) : [0,∞) → U is described by the EKI dynamic (Schillings and
Andrew M. Stuart, 2017)

u̇(j) = −Cuw(u)Γ−1(G(u(j))− y),

u(j)(0) = u
(j)
0 .

Here

Ḡ =
1

J

J∑
l=1

G(u(l)), ū =
1

J

J∑
l=1

u(l)

and Cuw(u) is the empirical cross-covariance operator

Cuw(u) =
1

J

J∑
j=1

(u(j) − ū)⊗ (G(u(j))− Ḡ).

Thus

u̇(j) = − 1

J

J∑
k=1

〈G(u(k))− Ḡ,G(u(j))− y〉Γ u(k),

u(j)(0) = u
(j)
0 .

(2.12)

Viewing the difference of G(u(k)) from its mean, appearing in the left entry of the
inner-product, as a projected approximate derivative of G, it is possible to understand
(2.12) as an approximate gradient descent.

Rigorous analysis of the long-term properties of this dynamic for a finite J are poorly
understood except in the case where G(·) = A· is linear (Schillings and Andrew M.
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Stuart, 2017). In the linear case, we obtain that u(j) → u∗ as t → ∞ where u∗

minimizes the functional

Φ(u; y) =
1

2
‖y − Au‖2

Γ

in the subspace A = span{u(j)
0 − ū}Jj=1, and where ū is the mean of the initial

ensemble {u(j)
0 }. This follows from the fact that, in the linear case, we may re-write

(2.12) as
u̇(j) = −C(u)∇uΦ(u(j); y)

where C(u) is an empirical covariance operator

C(u) =
1

J

J∑
j=1

(u(j) − ū)⊗ (u(j) − ū).

Hence each particle performs a gradient descent with respect to Φ and C(u) projects
into the subspace A.

To understand the nonlinear setting we use linearization. Note from (2.12) that

u̇(j) = − 1

J

J∑
k=1

〈G(u(k))− 1

J

J∑
l=1

G(u(l)),G(u(j))− y〉Γ u(k)

= − 1

J

J∑
k=1

〈G(u(k))− 1

J

J∑
l=1

G(u(l)),G(u(j))− y〉Γ (u(k) − ū)

= − 1

J2

J∑
k=1

J∑
l=1

〈G(u(k))− G(u(l)),G(u(j))− y〉Γ (u(k) − ū).

Now we linearize on the assumption that the particles are close to one another, so
that

G(u(k)) = G(u(j) + u(k) − u(j)) ≈ G(u(j)) +DG(u(j))(u(k) − u(j))

G(u(l)) = G(u(j) + u(l) − u(j)) ≈ G(u(j)) +DG(u(j))(u(l) − u(j)).

Here DG is the Fréchet derivative of G. With this approximation, we obtain

u̇(j) ≈ − 1

J2

J∑
k=1

J∑
l=1

〈DG∗(u(j))(G(u(j))− y), u(k) − u(l)〉Γ(u(k) − ū)

= − 1

J

J∑
k=1

〈DG∗(u(j))(G(u(j))− y), u(k) − ū〉Γ(u(k) − ū)

= −C(u)∇uΦ(u(j), y)
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where
Φ(u; y) =

1

2
‖y − G(u)‖2

Γ.

This is again just gradient descent with a projection onto the subspace A. These
arguments also motivate the interesting variants on EKI proposed in (Haber, Lucka,
and Ruthotto, 2018); indeed the paper (Haber, Lucka, and Ruthotto, 2018) inspired
the organization of the linearization calculations above.

In summary, the EKI is a methodology which behaves like gradient descent, but
achieves this without computing gradients. Instead it uses an ensemble and is hence
inherently parallelizable. In the context of machine learning this opens up the
possibility of avoiding explicit backpropagation, and doing so in a manner which is
well-adapted to emerging computer architectures.

Cross-Entropy Loss

The previous considerations demonstrate that EKI as typically used is closely related
to minimizing an `2 loss function via gradient descent. Here we propose a simple
modification to the method, allowing it to minimize any loss function instead of only
the squared-error; our primary motivation is the case of cross-entropy loss.

Let L(y′, y) be any loss function, this may, for example, be the cross entropy

L(y′, y) = − 1

N
〈y, log y′〉YN .

Now consider the dynamic

u̇(j) = −Cuw(u)∇y′L(G(u(j)), y)

= − 1

J

J∑
k=1

〈G(u(k))− Ḡ,∇y′L(G(u(j)), y)〉 u(k).
(2.13)

If L(y′, y) = 1
2
‖y − y′‖2

Γ then ∇y′L(G(u(j)), y) = Γ−1(G(u(j))− y) recovering the
original dynamic. Note that since we’ve defined the loss through the auxiliary
variable y′ which is meant to stand-in for the output of our model, the method
remains derivative-free with respect to the model parameter u, but does not allow for
adding regularization directly into the loss. However regularization could be added
directly into the dynamic; we leave such considerations for future work.

An interpretation of the original method is that it aims to make the norm of
the residual y − G(u(j)) small. Our modified version replaces this residual with
∇y′L(G(u(j)), y), but when L is the cross entropy this is in fact the same (in the `1

sense). We make this precise in the following proposition.
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Theorem 4. Let G : U → (Pm0 )N and suppose y = [ek1 , . . . , ekN ]T where ekj is the

kj-th standard basis vector of Rm. Then u∗ ∈ U is a solution to

arg min
u∈U

‖y − G(u)‖`1

if and only if u∗ is a solution to

arg min
u∈U

‖∇y′L(G(u), y)‖`1

where L(y′, y) = −〈y, log y′〉`2 is the cross-entropy loss.

Proof. Without loss of generality, we may assume N = 1 and thus let y = ek be the
k-th standard basis vector of Rm. Suppose that u∗ is a solution to arg minu∈U ‖y − G(u)‖`1 .
Then for any u ∈ U , we have∑

j 6=k

G(u∗)j + (1− G(u∗)k) ≤
∑
j 6=k

G(u)j + (1− G(u)k).

Adding 0 = G(u∗)k − G(u∗)k to the l.h.s. and 0 = G(u)k − G(u)k to the r.h.s. and
noting that ‖G(u)‖`1 = 1 for all u ∈ U since Im(G) = Pm0 we obtain

2(1− G(u∗)k) ≤ 2(1− G(u)k)

which implies
1

G(u∗)k
≤ 1

G(u)k

as required since ‖∇y′L(G(u), y)‖`1 = 1/G(u)k. The other direction follows simi-
larly.

Momentum

Continuing in the spirit of optimization, we may also add Nesterov momentum to
the EKI method. This is a simple modification to the dynamic (2.13),

ü(j) +
3

t
u̇(j) = −Cuw(u)∇y′L(G(u(j)); y)

u(j)(0) = u
(j)
0 , u̇(j)(0) = 0.

(2.14)

While we present momentum EKI in this form, in practice, we follow the standard
in machine learning by fixing a momentum factor λ ∈ (0, 1) and discretizing (2.13)
using the method shown in subsection 2.4. In standard stochastic gradient decent,
it has been observed that this discretization converges more quickly and possibly
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to a better local minima than the forward Euler discretization (Sutskever, Martens,
et al., 2013). Numerically, we discover a similar speed up for EKI. However, the
memory cost doubles as we need to keep track of an ensemble of positions and
momenta. Some experiments in the next section demonstrate the speed-up effect. We
leave analysis and possible applications to other inverse problems of the momentum
method as presented in (2.14) for future work.

Discrete Scheme

Finally we present our modified EKI method in the implementable, discrete time
setting and discuss some variants on this basic scheme which are particularly useful
for machine learning problems. In implementation, it is useful to consider the
concatenation of particles u = [u(1), . . . , u(J)] which may be viewed as a function
u : [0,∞)→ UJ . Then (2.13) becomes

u̇ = −D(u)u

where for each fixed u the operator D(u) : UJ → UJ is a linear operator. Suppose
U = RP then we may exploit symmetry and represent D(u) by a J × J matrix
instead of a JP × JP matrix. To this end, suppose the ensemble members are
stacked row-wise that is u ∈ RJ×P then D(u) has the simple representation

(D(u))kj = 〈G(u(k))− Ḡ,∇y′L(G(u(j)), y)〉

which is readily verified by (2.13). We then discretize via an adaptive forward Euler
scheme to obtain

uk+1 = uk − hkD(uk)uk.

Choosing the correct time-step has an immense impact on practical performance.
We have found that the choice

hk =
h0

‖D(uk)‖F + ε
,

where ‖ · ‖F denotes the Frobenius norm, works well in practice (Dunlop, 2017).
We aim to make h0 as large as possible without loosing stability of the dynamic.
The intuition behind this choice has to do with the fact that that D(u) measures how
close the propagated particles are to each other (left part of the inner-product) and
how close they are to the data (right part of the inner-product). When either or both
of these are small, we may take larger steps, and still retain numerical stability, by
choosing hk inversely proportional to ‖D(u)‖F ; the parameter ε is added to avoid
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floating point issues when ‖D(u)‖F is near machine precision. As k → ∞, we
typically match the data with increasing accuracy and, simultaneously, the propa-
gated particles achieve consensus and collapse on one another; as a consequence
‖D(uk)‖F → 0 which means we take larger and larger steps. Note that this is in
contrast to the Robbins-Monro implementation of stochastic gradient descent where
the sequence of time-steps are chosen to decay monotonically to zero.

Similarly, the momentum discretization of (2.13) is

uk+1 = vk − hkD(vk)vk

vk+1 = uk+1 + λ(uk+1 − uk)

with λ ∈ (0, 1) fixed, u0 = v0 where hk = h0/(‖D(vk)‖F + ε) as before and v

represent the particle momenta.

We now present a list of numerically successful heuristics that we employ when
solving practical problems.

(I) Initialization: To construct the initial ensemble, we draw an i.i.d. sequence
{u(j)

0 }Jj=1 with u(1)
0 ∼ µ0 where µ0 is selected according to the construction

discussed for initialization of the neural network model in the section outlining
SGD.

(II) Mini-batching: We borrow from SGD the idea of mini-batching where we
use only a subset of the data to compute each step of the discretized scheme,
picking randomly without replacement. As in the classical SGD context, we
call a cycle through the full dataset an epoch.

(III) Prediction: In principle, any one of the particles u(j) can be used as the pa-
rameters of the trained model. However, as analysis of Figure 27 below shows,
the spread in their performance is quite small; furthermore even though the
system is nonlinear, the mean particle ū achieves an equally good performance
as the individual particles. Thus, for computational simplicity, we choose
to use the mean particle as our final parameter estimate. This choice further
motivates one of the ways in which we randomize.

(IV) Randomization: The EKI property that all particles remain in the subspace
spanned by the initial ensemble is not desirable when J � dimU . We
break this property by introducing noise into the system. We have found two
numerically successful ways of accomplishing this.
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i. At each step of the discrete scheme, add noise to each particle,

u
(j)
k 7→ u

(j)
k + η

(j)
k

where {η(j)
k }Jj=1 is an i.i.d. sequence with η

(1)
k ∼ µk. We define µk

to be a scaled version of µ0 by scaling its covariance operator namely
Ck =

√
hkC0, where hk is the time step as previously defined. Note that

as the particles start to collapse, hk increases, hence we add more noise
to counteract this. In the momentum case, we perform the same mapping
but on the particle momenta instead

v
(j)
k 7→ v

(j)
k + η

(j)
k .

ii. At the end of each epoch, randomize the particles around their mean,

u
(j)
kT 7→ ūkT + η

(j)
kT

where T is the number of steps needed to complete a cycle through the
entire dataset and {η(j)

kT }Jj=1 is an i.i.d. sequence with η(1)
kT ∼ µ0. Note

that because this randomization is only done after a full epoch, it is
not clear how the noise should be scaled and thus we simply use the
prior. This may not be the optimal thing to do, but we have found great
numerical success with this strategy. Figure 28 shows the spread of
the ratio of the parameters to the the noise ‖ūkT‖/‖η(j)

kT ‖. We see that
relatively less noise is added as training continues. It may be possible
to achieve better results by increasing the noise with time as to combat
collapse. However, we do not perform such experiments. Furthermore
we have found that this does not work well in the momentum case; hence
all randomization for the momentum scheme is done according to the
first point.

(V) Expanding Ensemble: Numerical experiments show that using a small num-
ber of particles tends to have very good initial performance (one to two epochs)
that quickly saturates. On the other hand, using a large number of particles
does not do well to begin with but greatly outperforms small particle ensem-
bles in the long run. Thus we use the idea of an expanding ensemble where
we gradually add in new particles. This is done in the context of point (ii.) of
the randomization section. Namely, at the end of an epoch, we compute the
ensemble mean and create a new larger ensemble by randomizing around it.
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Lastly we mention that, in many inverse problem applications, it is good practice
to randomize the data for each particle at each step (K. Law, Andrew Stuart, and
Zygalakis, 2015) namely map

y 7→ y + ξ
(j)

k

where {ξ(j)
k }Jj=1 is an i.i.d. sequence with ξ(1)

k ∼ π. However we have found that
this does not work well for classification problems. This may be because the given
classifications are correct and there is no actual noise in the data. Such noise may
thus be biased in the classification setting. We have not experimented in the case
where the labels are noisy and leave this for future work.

2.5 Numerical Experiments
In the following set of experiments, we demonstrate the wide applicability of EKI
on several machine learning tasks. All forward models we consider are some type of
neural network, except for the semi-supervised learning case where we consider the
construction in Example 2. While, for the sake of brevity, we do not give details on
recurrent neural networks in this work, we refer the reader to (Goodfellow, Bengio,
and Courville, 2016) for details. We benchmark EKI against SGD and momentum
SGD and do not consider any other first-order adaptive methods. Recent work has
shown that their value is only marginal and the solutions they find may not generalize
as well (Wilson et al., 2017). Furthermore we do not employ batch normalization as
it is not clear how it should be incorporated with EKI methods. However, when batch
normalization is necessary, we instead use the SELU nonlinearity (Klambauer et al.,
2017), finding the performance to be essentially identical to batch normalization on
problems where we have been able to compare.

The next five subsections are organized as follows. Subsection 2.5 contains the
conclusions drawn from the experiments. In subsection 2.5, we describe the six
data sets used in all of our experiments as well as the metrics used to evaluate the
methods. Subsection 2.5 gives implementation details and assigns methods using
different techniques their own name. In subsections 2.5, 2.5, and 2.5 we show the
supervised, semi-supervised, and online learning experiments respectively. Since
most of our experiments are supervised, we split subsection 2.5 based on the type
of model used namely dense neural networks, convolutional neural networks, and
recurrent neural networks respectively.

Summary Of Numerical Results
The following are the primary conclusion of our numerical experiments:
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• On supervised classification problems with a feed-forward neural network,
EKI performs just as well as SGD even when the number of unknown parame-
ters is up to two order of magnitude larger than the ensemble size. Furthermore
EKI seems more numerically stable than SGD, as seen in the smaller amount
of oscillation in the test accuracy, and requires less hyper-parameter tuning. In
fact, the only parameter we vary in our experiments is the number of ensemble
members, and we do this simply to demonstrate its effect. However due to the
large number of forward passes required at each EKI iteration, we have found
the method to be significantly slower than SGD. Due to the very efficient
implementations of backpropagation a single backward-pass is comparable in
wall-clock time to single forward-pass, and EKI requires J forward-passes at
each iteration. This issue can be mitigated if each of the forward computations
is parallelized across multiple processing units, as it often is in many industrial
applications (Houtekamer, B. He, and L. Mitchell, 2014; Nino-Ruiz and
Sandu, 2015; Niño, Sandu, and Deng, 2016). We leave such computational
considerations for future work, as our current goal is simply to establish proof
of concept. Our experiments are conducted on neural networks of up to half
a million parameters which is very small compared to modern deep learning
architectures. We choose such small networks to allow for rapid parallel pro-
totyping, but note that the algorithms are inherently parallelizable and should
scale well. Furthermore, as our CNN experiments point out, EKI can handle
relatively deep, narrow architectures which are considered difficult to train
in the machine learning literature (Romero et al., 2015; Mishkin and Matas,
2015). In addition, recent work such as (Allen-Zhu, Li, and Song, 2018)
suggests that huge over-parameterization makes the associated optimization
problem easier, indicating promise for EKI when used for networks with tens
of millions of parameters. These experiments can be found in the first two
subsections of section 2.5.

• On supervised classification problems with a recurrent neural network, EKI
significantly outperforms SGD on the small problems we consider. This is
likely due to the steep barriers that occur on the loss surface of recurrent net-
works (Pascanu, Mikolov, and Bengio, 2013; Bengio et al., 2013) which EKI
may be able to avoid due to its noisy Jacobian estimates. These experiments
can be found in the last subsection of section 2.5.

• On the semi-supervised learning problem we consider, EKI does not perform
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as well as state of the art (MCMC) (A. L. Bertozzi et al., 2017), but performs
better than the naive solution. However, even with a large number of ensemble
members, EKI is much faster and computationally cheaper than MCMC,
allowing applications to large scale problems. These experiments can be found
in section 2.5.

• On online regression problems tackled with a recurrent neural network, EKI
converges significantly faster and to a better solution than SGD with O(1) en-
semble members. While the problems we consider are only simple, univariate
time-series, the results demonstrate great promise for harder problems. It has
long been known that recurrent neural networks are very hard to optimize with
gradient-based techniques (Pascanu, Mikolov, and Bengio, 2013), so we are
very hopeful that EKI can improve on current state of the art. Again, we leave
such domain specific applications to future work. These experiments can be
found in section 2.5.

Data Sets
We consider four data sets where the problem at hand is classification and two data
sets where it is regression. For classification, three of the data sets are comprised of
images and the third of voting histories. Our goal is to classify the image based on
its content or classify the voting record based on party affiliation. For regression,
both datasets are univariate time-series and our goal is to predict an unobserved part
of the series. Figure 23 shows samples from each of the data sets.

As outlined in section 2.2, the goal of learning is to find a model which generalizes
well to unobserved data. Thus, to evaluate this criterion, we split all data sets
into a training and a testing portion. The training portion is used when we let our
ODE(s) evolve in time as described in section 2.4. The testing portion is used only
to evaluate the model. In other contexts, the training set is further split to create
a validation set, but, since we perform no hyper-parameter tuning, we omit this
step. For classification, the metric we use is called test accuracy. This is the total
number of correctly classified examples divided by the total number of examples in
the test set. For regression, the metric we use is called test error. This is the average
(across the test set) squared `2-norm of the difference between the true value and our
prediction.
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Figure 23: The six data sets used in numerical experiments. The first row shows
25 samples from MNIST, FashionMNIST, and SVHN respectively. The second
row shows the spectrum of graph Lalpacian for the Voting Records data set, the
full time-series for the daily minimum temperatures in Melbourne, and the monthly
number of sunspots from Zürich respectively.

Classification

The first data set we consider is MNIST (LeCun and Cortes, 2010). It contains
70,000 images of hand-written digits. All examples are 28× 28 grayscale images
and each is given a classification in {0, . . . , 9} depending on what digit appears in
the image. Thus we consider X = R28×28 ∼= R784 and Y = P10. Each of the labels
yj is a standard basis vector of R10 with the position of the 1 indicating the digit. We
use 60,000 of the images for training and 10,000 for testing. Since grayscale values
range from 0 to 255, all images are fist normalized to the range [0, 1] by point-wise
dividing by 255. Treating all training images as a sequence of 60000 · 784 numbers,
their mean and standard deviation are computed. Each image (including the test
set) is then again normalized via point-wise subtraction by the mean and point-wise
division by the standard deviation. This data normalization technique is standard in
machine learning.

The second image data set we consider is FashionMNIST (Xiao, Rasul, and Vollgraf,
2017). It contains 70,000 images of different types of clothing items. All examples
are 28× 28 grayscale images and each is given a classification in {0, . . . , 9} depend-
ing on the type of clothing item pictured. We treat it in the exact same way that we
treat MNIST.

The third image data set we consider is SVHN (Netzer et al., 2011). It contains



36

99,289 natural images of cropped house numbers taken from Google Street View.
All examples are 32×32 RGB images and each is given a classification in {0, . . . , 9}
depending on what digit appears in the image. Thus we consider X = R3×32×32 ∼=
R3072 and Y = P10 with the labels again being basis vectors of R10. We use 73,257
of the images for training and 26,032 for testing. All values are first normalized to
be in the range [0, 1]. We then perform the same normalization as in MNIST, but this
time per channel. That is, for all training images, we treat each color channel as a
sequence of 73257 · 1024 numbers, compute the mean and standard deviation and
then normalize each channel as before.

The last data set for classification we consider contains the voting record of the 435
U.S. House of Representatives members; see (A. Bertozzi and Flenner, 2012) and
references therein. The votes were recorded in 1984 from the 98th United States
Congress, 2nd session. Each record is tied to a particular representative and is a vector
in X = R16 with each entry being +1, −1, or 0 indicating a vote for, against, or
abstain respectively. The labels live in Y = R and are +1 or−1 indicating Democrat
or Republican respectively. We use this data set only for semi-supervised learning
and thus pick the amount of observed labels |Z ′| = 5 with 2 Republicans and 3
Democrats. No normalization is performed. When computing the test accuracy, we
do so over the entire data sets—namely we do not remove the 5 observed records.

Regression

The first data set we consider for regression is a time series of the daily minimum
temperatures (in Celsius) in the Melbourne, Australia from January 1st 1981 to
December 31st 1990 (Gil-Alana, 2006). It contains 3650 total observations of which
we use the first 3001 for training (up to March 22nd 1989) and the rest for testing.
We consider X = Y = R by letting (in the training set) the data be the first 3000
observations and the labels be the 2nd to 3001st observations i.e. a one-step-ahead
split. The same is done for the testing set. The minimum and maximum values xmin,
xmax over the training set are computed and all data is transformed via

xj 7→
xj − xmin

xmax − xmin
.

This ensures the training set is in the range [0, 1] and the testing set will also be close
to that range.

The second data set for regression is a time series containing the number of observed
sunspots from Zürich, Switzerland during each month from January 1749 to Decem-
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ber 1983 (Andrews and Herzberg, 1985). It contains 2820 observations of which we
use the first 2301 for training (up to September 1915) and the rest for testing. The
data is treated in exactly the same way as the temperatures data set.

Implementation Details
Having outlined many different strategies for performing EKI , we give methods
using different techniques their own name so they are easily distinguishable. We
refer to the techniques listed in section 2.4. All methods are initialized in the same
way (with the prior constructed based on the model) and all use mini-batching.
We refer to the forward Euler discretization of equation (2.13) as EKI and the
momentum discretization, presented in section 2.4, of equation (2.13) as MEKI.
When randomizing around the mean at the end of each epoch, we refer to the method
as EKI(R). When randomizing the momenta at each step, we refer to the method as
MEKI(R). Similarly, we call momentum SGD, MSGD. All methods use the time
step described in section 2.4 with hyper-parameters h0 = 2 and ε = 0.5 fixed. For
any classification problem (except the Voting Records data set), all methods use
the cross-entropy loss whose gradient is implemented with a slight correction for
numerical stability. Namely, in the case of a single data point, we implement

(∇y′L(G(u), y))k = − yk
(G(u))k + δ

where the constant δ := 0.005 is fixed for all our numerical experiments. Otherwise
the mean squared-error loss is used. All implementations are done using the PyTorch
framework (Paszke et al., 2017) on a single machine with an NVIDIA GTX 1080 Ti
GPU.

Supervised Learning
Dense Neural Networks

In this section, we benchmark all of our proposed methods on the MNIST problem
using four dense neural networks of increasing complexity. The four network
architectures are outlined in Figure 24. This will allow us to compare the methods
and pick a front runner for later experiments. Furthermore we address scalability
by finding the minimum number of ensemble members required to reach a certain
accuracy on a dataset (standard set by SGD) for networks with increasing number
of parameters. These experiments are performed with a two-layer dense network
on MNIST and FashionMNIST. Lastly, we train a dense network with Heaviside
activations (impossible with SGD) on FashionMNIST and compare to the equivalent
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Dense Neural Networks
Name Architecture Parameters

DNN 1 784-10 7,850
DNN 2 784-100-10 79,510
DNN 3 784-300-100-10 266,610
DNN 4 784-500-300-100-10 573,910

Figure 24: Architectures of the four dense neural networks considered. All networks
use a softmax thresholding and a ReLU nonlinearity.

DNN 1 DNN 2 DNN 3 DNN 4
SGD 0.9199 0.9735 0.9798 0.9818
MSGD 0.9257 0.9807 0.9830 0.9840
EKI ū 0.9092

u(j∗) 0.9114
ū 0.9398
u(j∗) 0.9416

ū 0.9424
u(j∗) 0.9432

ū 0.9404
u(j∗) 0.9418

MEKI ū 0.9094
u(j∗) 0.9107

ū 0.9320
u(j∗) 0.9332

n/a n/a

EKI(R) ū 0.9252
u(j∗) 0.9260

ū 0.9721
u(j∗) 0.9695

ū 0.9738
u(j∗) 0.9716

ū 0.9741
u(j∗) 0.9691

MEKI(R) ū 0.9142
u(j∗) 0.9162

ū 0.9509
u(j∗) 0.9511

n/a n/a

Figure 25: Final test accuracies of six training methods on four dense neural net-
works, solving the MNIST classification problem. Each bold number is the maximum
across the column. For each EKI method we report the accuracy of the mean particle
ū and of the best performing particle in the ensemble u(j∗).

ReLU network.

We fix the ensemble size of all methods to J = 2000 and the batch size to 600. SGD
uses a learning rate of 0.1 and all momentum methods use the constant λ = 0.9.
Figure 25 shows the final test accuracies for all methods while Figure 26 shows the
accuracies at the end of each epoch. Due to memory constrains, we do not implement
MEKI for DNN-(3,4). In general momentum SGD performs best, but EKI(R) trails
closely. The momentum EKI methods have good initial performance but saturate.
We make this clearer in a later experiment. Overall, we see that for networks with
a relatively small number of parameters all EKI methods are comparable to SGD.
However with a large number of parameters, randomization is needed. This effect is
particularly dominant when the ensemble size is relatively small; as we later show,
larger ensemble sizes can perform significantly better.

Figure 27 shows the test accuracies for each of the particles when using EKI on
DNN-(1,2). We see that, the mean particle achieves roughly the average of the
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(a) DNN 1 (b) DNN 2

(c) DNN 3 (d) DNN 4

Figure 26: Test accuracies per epoch of six training methods on four dense neural
networks, solving the MNIST classification problem. For each EKI method the
accuracy of the mean particle ū is shown.

spread, as previously discussed. Our choice to use it as the final parameter estimate
is simply for convenience. One may use all the particles in a carefully weighted
scheme as an ensemble of networks and possibly achieve better results. Having many
parameter estimates may also be advantageous when trying to avoid adversarial
examples (Goodfellow, Shlens, and Szegedy, 2015). We leave these considerations
to future work.

To better illustrate the effect of the ensemble size, we compare all EKI methods on
DNN 2 with an ensemble size of J = 6000. The accuracies are shown in Figure 29.
We again observe that the momentum methods perform very well initially, but fall
off with more training. This effect could be related to the specific time discretization
method we use, but needs to be studied further theoretically and we leave this for
future work. Note that with a larger ensemble, EKI is now comparable to SGD
pointing out that remaining in the subspace spanned by the initial ensemble is a
bottle neck for this method. On the other hand, when we randomize, the ensemble
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(a) DNN 1 (b) DNN 2

Figure 27: Particle accuracies of EKI on DNN-(1,2) compared to the accuracy of the
mean particle ū.

(a) DNN 1 (b) DNN 2

Figure 28: Spread of the noise ratio for EKI(R) on DNN-(1,2). At the end of every
epoch, when the noise is added, the upper bound is computed as ‖ū‖2/maxj ‖η(j)‖2.
The lower bound is computed analogously.

size is no longer so relevant. EKI(R) performs almost identically with 2,000 and
with 6,000 ensemble members. Finding it to be the best method for these tasks, all
experiments hereafter, unless stated otherwise, use EKI(R).

To address scalability, we fix a network architecture (two-layer ReLU network) and
find the smallest number of ensemble members J needed for EKI(R) to reach the
maximum accuracy that can be achieved by this network given a fixed computational
budget of 50 epochs. This accuracy is approximated via SGD on the same computa-
tional budget. We then increase the number of parameters in the network (keeping
the architecture fixed) and repeat this experiment. The results are summarized in
Figure 210 for MNIST and FashionMNIST. We see that relatively few ensemble
members are needed to reach the desired accuracy and the scaling with the number
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First Final
EKI 0.8661 0.9611
MEKI 0.9447 0.9471
EKI(R) 0.8652 0.9745
MEKI(R) 0.9373 0.9696

Figure 29: Comparison of the test accuracies of four EKI methods on DNN 2 with
ensemble size J = 6000.

(a) MNIST (b) FashionMNIST

Figure 210: Minimum number of ensemble members needed to reach network
capacity for a two-layer ReLU network within 50 epochs on MNIST and FashionM-
NIST. We increase the number of parameters in the first hidden layer and show the
minimum J as a function of P .

of parameters seems linear or sublinear. This is a promising indication that the EKI
methodology can be scaled up to industrial-sized neural networks.

Lastly, since our method is derivative-free, we train a 784-100-10 network on Fash-
ionMNIST with Heaviside activation functions. This is impossible with gradient-
based methods since the derivative of the Heaviside function is zero almost every-
where. This architecture is akin to Rosenblatt’s original multi-layered perceptron
(Rosenblatt, 1958). We achieve 85% test set accuracy on this task which is compara-
ble to the 87% achieved by the equivalent ReLU network. While our experiment is
very simple, it demonstrates the possibility of being able to train non-differentiable
neural networks which opens new avenues for network design that we hope will be
explored in the future.
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Convolutional Neural Networks

For our experiments with CNN(s), we employ both MNIST and SVHN. Since
MNIST is a fairly easy data set, we can use a simple architecture and still achieve
almost perfect accuracy. We name the model CNN-MNIST and its specifics are
given in the first column of Figure 211. SGD uses a learning rate of 0.05 while
momentum SGD uses 0.01 and a momentum factor of 0.9. EKI(R) has a fixed
ensemble size of J = 2000. Figure 212 shows the results of training. We note that
since CNN-MNIST uses ReLU and no batch normalization, SGD struggles to find
a good descent direction in the first few epochs. EKI(R), on the other hand, does
not have this issue and exhibits a smooth test accuracy curve that is consistent with
all other experiments. In only 30 epochs, we are able to achieve almost perfect
classification with EKI(R) slightly outperforming the SGD-based methods.

Recent work suggests that the effectiveness of batch normalization does not come
from dealing with the internal covariate shift, but, in fact, comes from smoothing
the loss surface (Santurkar et al., 2018). The noisy gradient estimates in EKI can
be interpreted as doing the same thing and is perhaps the reason we see smoother
test accuracy curves. The contemporaneous work of Haber et al (Haber, Lucka, and
Ruthotto, 2018) further supports this point of view.

Next we experiment on the SVHN data set with three CNN(s) of increasing complex-
ity. The architectures we use are inspired by those in (Mishkin and Matas, 2015),
and are referred to as Fit-Nets because each layer is shallow (has a relatively small
number of parameters), but the whole architecture is deep, reaching up to sixteen
layers. The details for the models dubbed CNN-(1,2,3) are given in Figure 211.
Such models are known to be difficult to train; for this reason, the papers (Romero
et al., 2015; Mishkin and Matas, 2015) present special initialization strategies to deal
with the model complexities. We find that when using the SELU nonlinearity and
no batch normalization, simple Xavier initialization works just as well. The results
of training are presented in Figure 212. We benchmark only against momentum
SGD as all previous experiments show it performs better than vanilla SGD. The
method uses a learning rate of 0.01 and a momentum factor of 0.9. EKI(R) starts
with J = 200 ensemble members and expands by 200 at end the of each epoch until
reaching a final ensemble of J = 5000. For CNN-3, memory constraints allowed
us to only expand up a final size of J = 2800. All methods use a batch size of
500. We see that, in all three cases, EKI(R) and momentum SGD perform almost
identically with EKI(R) slightly outperforming on CNN-(1,2), but falling off on
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Convolutional Neural Networks
CNN-MNIST CNN-1 CNN-2 CNN-3
Conv 16x3x3 Conv 16x3x3 Conv 16x3x3 Conv 16x3x3
Conv 16x3x3 Conv 16x3x3 Conv 16x3x3 Conv 16x3x3

Conv 16x3x3 Conv 32x3x3
Conv 32x3x3
Conv 32x3x3

MaxPool 4x4 (s = 2) MaxPool 2x2 MaxPool 2x2 MaxPool 2x2
Conv 16x3x3 Conv 16x3x3 Conv 32x3x3 Conv 48x3x3
Conv 16x3x3 Conv 16x3x3 Conv 32x3x3 Conv 48x3x3

Conv 32x3x3 Conv 48x3x3
Conv 48x3x3
Conv 48x3x3

MaxPool 4x4 (s = 2) MaxPool 2x2 MaxPool 2x2 MaxPool 2x2
Conv 12x3x3 Conv 32x3x3 Conv 48x3x3 Conv 64x3x3
Conv 12x3x3 Conv 32x3x3 Conv 48x3x3 Conv 64x3x3

Conv 64x3x3 Conv 96x3x3
Conv 96x3x3
Conv 96x3x3

MaxPool 2x2 MaxPool 8x8 MaxPool 8x8 MaxPool 8x8
FC-10 FC-500 FC-500 FC-500

FC-10 FC-10 FC-10

Figure 211: Architectures of four Convolutional Neural Networks with 6, 7, 10, and
16 layers respectively from left to right. All convolutions use a padding of 1, making
them dimension preserving since all kernel sizes are 3x3. CNN-MNIST is evaluated
on the MNIST dataset and uses the ReLU nonlinearity. CNN-(1,2,3) are evaluated
on the SVHN dataset and use the SELU nonlinearity. The convention s = 2 refers
to the stride of the max-pooling operation namely α = β = 2. All networks use a
softmax thresholding.

CNN-3. This is likely due to the fact that CNN-3 has a large number of parameters
and we were not able to provide a large enough ensemble size. This issue can be
dealt with via parallelization by splitting the ensemble among the memory banks of
separate processing units. We leave this consideration to future work.

Recurrent Neural Networks

For the classification task using a recurrent neural network, we return to the MNIST
data set. Since recurrent networks work on time series data, we split each image
along its rows, making a 28-dimensional time sequence with 28 entries, considering
time going down from the top to the bottom of the image. More complex strategies
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(a) CNN-MNIST (b) CNN-1

(c) CNN-2 (d) CNN-3

CNN-MNIST CNN-1 CNN-2 CNN-3
First Final First Final First Final First Final

SGD 0.1936 0.9878 n/a n/a n/a n/a n/a n/a
MSGD 0.1911 0.9880 0.3263 0.9150 0.2734 0.9324 0.1959 0.9414
EKI(R) 0.5708 0.9912 0.3100 0.9249 0.2874 0.9353 0.2668 0.9299

Figure 212: Comparison of the test accuracies of SGD and EKI(R) on four convolu-
tional neural networks. SGD(M) refers to momentum SGD. CNN-MNIST is trained
on the MNIST data set, while CNN-(1,2,3) are trained on the SVHN data set.

have been explored in (J. Wang et al., 2016). We use a two-layer recurrent network
with 32 hidden units and a tanh nonlinearity. Softmax thresholding is applied and
the initial hidden state is always taken to be 0.

We train with a batch size of 600 and SGD uses a learning rate of 0.05. EKI(R) starts
with an ensemble size of J = 1000 and expands by 1,000 at the end of every epoch
until J = 4000 is reached. Figure 213 shows the result of training. EKI(R) performs
significantly better than SGD and appears more reliable, overall, for this task.
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First Final
SGD 0.2825 0.9391
EKI(R) 0.4810 0.9566

Figure 213: Comparison of the test accuracies of EKI(R) and SGD on the MNIST
data set with a two layer recurrent neural network.

Semi-supervised Learning
We proceed as in the construction of Example 2, using the Voting Records data set.
For the affinity measure we pick (Zelnik-manor and Perona, 2005; A. L. Bertozzi
et al., 2017)

η(x, y) = exp
(
−‖x− y‖

2
2

2(1.25)2

)
and construct the graph Laplacian L(x). Its spectrum is shown in Figure 23. Further
we let τ = 0 and α = 1, hence the prior covariance C = (L(x))−1 is defined only on
the subspace orthogonal to the first eigenvector of L(x). The most naive clustering
algorithm that uses a graph Laplacian simply thresholds the eigenvector of L(x) that
corresponds to the smalled non-zero eigenvalue (called the Fiedler vector) (Luxburg,
2007). Its accuracy is shown in Figure 214. We found the best performing EKI
method for this problem to simply be the vanilla version of the method, i.e. no
randomization or momentum. We use J = 1000 ensemble members drawn from the
prior and the mean squared-error loss. Its performance is only slightly better than
the Fiedler vector as the particles quickly collapse to something close to the Fiedler
vector. This is likely due to the fact that the initial ensemble is an i.i.d. sequence
drawn from the prior hence EKI converges to a solution in the subspace orthogonal
to the first eigenvector of L(x) which is close to the Fiedler vector, especially if the
weights and other attendant hyper-parameters have been chosen so that the Fielder
vector already classifies the labeled nodes correctly. On the other hand, the MCMC
method detailed in (A. L. Bertozzi et al., 2017) can explore outside of this subspace
and achieve much better results. We note, however, that EKI is significantly cheaper
and faster than MCMC and thus could be applied to much larger problems where
MCMC is not computationally feasible.
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Accuracy
Fiedler vector 0.8828
MCMC (pCN) 0.9252
EKI 0.8920

Figure 214: Comparison of the test accuracies of two semi-supervised learning
algorithms to EKI on the Voting Records data set.

Online Learning
We now consider two online learning problems using a recurrent neural network.
We employ two univariate time-series data sets: minimum daily temperatures in
Melbourne, and the monthly number of sunspots observed from Zürich. For both, we
use a single layer recurrent network with 32 hidden units and the tanh nonlinearity.
The output is not thresholded i.e. S = id. At the initial time, we set the hidden
state to 0 then use the hidden state computed in the previous step to initialize for the
current step. This is an online problem as our algorithm only sees one data-label pair
at a time. For OGD, we use a learning rate of 0.001 while, for EKI, we use J = 12

ensemble members. Figure 215 shows the results of training as well as how well
each of the trained model fits the test data. Notice that EKI converges much more
quickly and to a slightly better solution than OGD in both cases. Furthermore, the
model learned by EKI is able to better capture small scale oscillations. These are
very promising results for the application of EKI to harder RNN problems.

Finally we consider an online version of the classification problem. We train a
CNN (using the architecture of CNN-MNIST given in Figure 211) on MNIST
and FashionMNIST for using only 10 training examples from each data set. The
performance of this network on the test set is taken as a baseline. We then feed in
2,000 examples from the training set sequentially one at a time (equivalent to a batch
size of one) and update our model with OGD and EKI (J = 2000), comparing their
performance in Figure 216. We see that the two methods perform similarly, with
EKI(R) trailing slightly behind in accuracy but having an overall lower variance.
These results also confirm our intuition that EKI may be viewed as approximating
gradient decent.
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Melbourne Temperatures Zürich Sunspots
First Final First Final

OGD 2.653× 10−2 8.954× 10−3 4.939× 10−2 6.480× 10−3

EKI 8.086× 10−3 7.448× 10−3 8.671× 10−3 6.006× 10−3

Figure 215: Comparison of OGD and EKI on two online learning tasks with a
recurrent neural network. The top row shows the minimum daily temperatures in
Melbourne data set, while the bottom shows the number of sunspots observed each
month from Zürich data set.

(a) MNIST (b) FashionMNIST

Figure 216: Comparison of OGD and EKI on the online classification task with
MNIST and FashionMNIST.

2.6 Conclusion and Future Directions
We have demonstrated that many machine learning problems can easily fit into the
unified framework of Bayesian inverse problems. Within this framework, we apply
ensemble Kalman inversion methods, for which we suggest suitable modifications,
to tackle machine learning tasks. Our numerical experiments suggest a wide ap-
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plicability and competitiveness against the state-of-the-art for our schemes. The
following directions for future research arise naturally from our work:

• Theoretical analysis of the momentum and general loss EKI methods as well
as their possible application to physical inverse problems.

• GPU parallelization of EKI methods and its application to large scale machine
learning tasks.

• Application of EKI methods to more difficult recurrent neural network prob-
lems as well as problems in reinforcement learning.

• Use of the entire ensemble of particle estimates to improve accuracy, perform
dimension reduction, and possibly combat adversarial examples.

• The development of Bayesian techniques to quantify uncertainty in trained
neural networks.

• The use of ensemble methods in other momentum based algorithms such as
Hamiltonian Monte Carlo.
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C h a p t e r 3

CONTINUOUS TIME ANALYSIS OF MOMENTUM METHODS

3.1 Introduction
Background and Literature Review
At the core of many machine learning tasks is solution of the optimization problem

arg min
u∈Rd

Φ(u) (3.1)

where Φ : Rd → R is an objective (or loss) function that is, in general, non-
convex and differentiable. Finding global minima of such objective functions is
an important and challenging task with a long history, one in which the use of
stochasticity has played a prominent role for many decades, with papers in the
early development of machine learning (S. Geman and D. Geman, 1987; Styblinski
and Tang, 1990), together with concomitant theoretical analyses for both discrete
(Bertsimas, Tsitsiklis, et al., 1993) and continuous problems (Harold J Kushner, 1987;
Harold Joseph Kushner and Clark, 2012). Recent successes in the training of deep
neural networks have built on this older work, leveraging the enormous computer
power now available, together with empirical experience about good design choices
for the architecture of the networks; reviews may be found in (Goodfellow, Bengio,
and Courville, 2016; LeCun, Bengio, and Geoffrey E. Hinton, 2015). Gradient
descent plays a prominent conceptual role in many algorithms, following from the
observation that the equation

du

dt
= −∇Φ(u) (3.2)

will decrease Φ along trajectories. The most widely adopted methods use stochastic
gradient decent (SGD), a concept introduced in (Robbins and Monro, 1951); the basic
idea is to use gradient decent steps based on a noisy approximation to the gradient
of Φ. Building on deep work in the convex optimization literature, momentum-
based modifications to stochastic gradient decent have also become widely used in
optimization. Most notable amongst these momentum-based methods are the Heavy
Ball Method (HB), due to (B. Polyak, 1964), and Nesterov’s method of accelerated
gradients (NAG) (Nesterov, 1983). To the best of our knowledge, the first application
of HB to neural network training appears in (Rumelhart, G. E. Hinton, and Williams,
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1986). More recent work, such as (Sutskever et al., 2013), has even argued for the
indispensability of such momentum based methods for the field of deep learning.

From these two basic variants on gradient decent, there have come a plethora of
adaptive methods, incorporating momentum-like ideas, such as Adam (Kingma and
Ba, 2014), Adagrad (Duchi, Hazan, and Singer, 2011), and RMSProp (Tieleman and
G. Hinton, 2012). There is no consensus on which method performs best and results
vary based on application. The recent work of (Ashia C Wilson et al., 2017) argues
that the rudimentary, non-adaptive schemes SGD, HB, and NAG result in solutions
with the greatest generalization performance for supervised learning applications
with deep neural network models.

There is a natural physical analogy for momentum methods, namely that they relate
to a damped second order Hamiltonian dynamic with potential Φ:

m
d2u

dt2
+ γ(t)

du

dt
+∇Φ(u) = 0. (3.3)

This perspective goes back to Polyak’s original work (B. Polyak, 1964; B. T. Polyak,
1987) and was further expanded on in (Qian, 1999), although no proof was given. For
NAG, the work of (Su, Boyd, and Candes, 2014) proves that the method approximates
a damped Hamiltonian system of precisely this form, with a time-dependent damping
coefficient. The analysis in (Su, Boyd, and Candes, 2014) holds when the momentum
factor is chosen according to the rule

λ = λn =
n

n+ 3
, (3.4)

where n is the iteration count; this choice was proposed in the original work of
(Nesterov, 1983) and results in a choice of λ which is asymptotic to 1. In the setting
where Φ is µ-strongly convex, it is proposed in (Nesterov, 2014) that the momentum
factor is fixed and chosen close to 1; specifically it is proposed that

λ =
1−
√
µh

1 +
√
µh

(3.5)

where h > 0 is the time-step (learning rate). In (Ashia C. Wilson, Recht, and
Michael I. Jordan, 2016), a limiting equation for both HB and NAG of the form

ü+ 2
√
µu̇+∇Φ(u) = 0

is derived under the assumption that λ is fixed with respect to iteration number n,
and dependent on the time-step h as specified in (3.5); convergence is obtained to
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order O(h1/2). Using insight from this limiting equation it is possible to choose the
optimal value of µ to maximize the convergence rate in the neighborhood of a locally
strongly convex objective function. Further related work is developed in (Shi et al.,
2018) where separate limiting equations for HB and NAG are derived both in the
cases of λ given by (3.4) and (3.5), obtaining convergence to order O(h3/2). Much
work has also gone into analyzing these methods in the discrete setting, without
appeal to the continuous time limits, see (Hu and Lessard, 2017; Lessard, Recht, and
Packard, 2016), as well as in the stochastic setting, establishing how the effect on
the generalization error, for example, (Gadat, Panloup, Saadane, et al., 2018; Loizou
and Richtárik, 2017; Yang, Lin, and Z. Li, 2016). In this paper, however, our focus
is on the use of continuous time limits as a methodology to explain optimization
algorithms.

In many machine learning applications, especially for deep learning, NAG and HB
are often used with a constant momentum factor λ that is chosen independently
of the iteration count n (contrary to (3.4)) and independently of the learning rate
h (contrary to (3.5)). In fact, popular books on the subject such as (Goodfellow,
Bengio, and Courville, 2016) introduce the methods in this way, and popular articles,
such as (He et al., 2016) to name one of many, simply state the value of the constant
momentum factor used in their experiments. Widely used deep learning libraries
such as Tensorflow (Martín Abadi et al., 2015) and PyTorch (Paszke et al., 2017)
implement the methods with a fixed choice of momentum factor. Momentum
based methods used in this way, with fixed momentum, have not been carefully
analyzed. We will undertake such an analysis, using ideas from numerical analysis,
and in particular the concept of modified equations (Griffiths and Sanz-Serna, 1986;
Chartier, Hairer, and Vilmart, 2007) and from the theory of attractive invariant

manifolds (Hirsch, Pugh, and Shub, 2006; Wiggins, 2013); both ideas are explained
in the text (A. Stuart and Humphries, 1998). It is noteworthy that the high resolution

ODE approximation described in (Shi et al., 2018) may be viewed as a rediscovery
of the method of modified equations. We emphasize the fact that our work is not
at odds with any previous analyses of these methods; rather, we consider a setting
which is widely adopted in deep learning applications and has not been subjected to
continuous time analysis to date.

Remark 5. Since publication of the article (Kovachki and Andrew M. Stuart, 2021),

we became aware of related, and earlier, work by (Farazmand, 2018). Farazmand

starts from the Bregman Lagrangian introduced in (Wibisono, Ashia C Wilson, and
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Michael I Jordan, 2016) and uses ideas from geometric singular perturbation theory

to derive an invariant manifold. The work leads to a more general description of the

invariant manifold than the one given by our equation (3.20). Farazmand’s work

was published in (Farazmand, 2020).

Our Contribution
We study momentum-based optimization algorithms for the minimization task (3.1),
with learning rate independent momentum, fixed at every iteration step, focusing on
deterministic methods for clarity of exposition. Our approach is to derive continuous
time approximations of the discrete algorithms; these continuous time approxima-
tions provide insights into the mechanisms at play within the discrete algorithms. We
prove three such approximations. The first shows that the asymptotic limit of the mo-
mentum methods, as learning rate approaches zero, is simply a rescaled gradient flow
(3.2). The second two approximations include small perturbations to the rescaled
gradient flow, on the order of the learning rate, and give insight into the behavior
of momentum methods when implemented with momentum and fixed learning rate.
Through these approximation theorems, and accompanying numerical experiments,
we make the following contributions to the understanding of momentum methods as
often implemented within machine learning:

• We show that momentum-based methods with a fixed momentum factor,
satisfy, in the continuous-time limit obtained by sending the learning rate to
zero, a rescaled version of the gradient flow equation (3.2).

• We show that such methods also approximate a damped Hamiltonian system
of the form (3.3), with small mass m (on the order of the learning rate)
and constant damping γ(t) = γ; this approximation has the same order of
accuracy as the approximation of the rescaled equation (3.2) but provides a
better qualitative understanding of the fixed learning rate momentum algorithm
in its transient phase.

• We also show that, for the approximate Hamiltonian system, the dynamics
admit an exponentially attractive invariant manifold, locally representable as a
graph mapping co-ordinates to their velocities. The map generating this graph
describes a gradient flow in a potential which is a small (on the order of the
learning rate) perturbation of Φ – see (3.21); the correction to the potential is
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convexifying, does not change the global minimum, and provides insight into
the fixed learning rate momentum algorithm beyond its initial transient phase.

• We provide numerical experiments which illustrate the foregoing considera-
tions, for simple linear test problems, and for the MNIST digit classification
problem; in the latter case we consider SGD and thereby demonstrate that
the conclusions of our theory have relevance for understanding the stochastic
setting as well.

Taken together our results are interesting because they demonstrate that the popular
belief that (fixed) momentum methods resemble the dynamics induced by (3.3) is
misleading. Whilst it is true, the mass in the approximating equation is small and as
a consequence understanding the dynamics as gradient flows (3.2), with modified
potential, is more instructive. In fact, in the first application of HB to neural networks
described in (Rumelhart, G. E. Hinton, and Williams, 1986), the authors state that
“[their] experience has been that [one] get[s] the same solutions by setting [the
momentum factor to zero] and reducing the size of [the learning rate].” However
our theorems should not be understood to imply that there is no practical difference
between momentum methods (with fixed learning rate) and SGD. There is indeed
a practical difference as has been demonstrated in numerous papers throughout
the machine learning literature, and our experiments in Section 3.5 further confirm
this. We show that while these methods have the same transient dynamics, they
are approximated differently. Our results demonstrate that, although momentum
methods behave like a gradient descent algorithm, asymptotically, this algorithm has
a modified potential. Furthermore, although this modified potential (3.20) is on the
order of the learning rate, the fact that the learning rate is often chosen as large as
possible, constrained by numerical stability, means that the correction to the potential
may be significant. Our results may be interpreted as indicating that the practical
success of momentum methods stems from the fact that they provide a more stable
discretization to (3.2) than the forward Euler method employed in SGD. The damped
Hamiltonian dynamic (3.11), as well the modified potential, give insight into how
this manifests. Our work gives further theoretical justification for the exploration of
the use of different numerical integrators for the purposes of optimization such as
those performed in (Scieur et al., 2017; Betancourt, Michael I. Jordan, and Ashia C.
Wilson, 2018; Zhang et al., 2018).

While our analysis is confined to the non-stochastic case to simplify the exposition,
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the results will, with some care, extend to the stochastic setting using ideas from
averaging and homogenization (Pavliotis and A. Stuart, 2008) as well as continuum
analyses of SGD as in (Q. Li, Tai, and E, 2017; Feng, L. Li, and Liu, 2018); indeed,
in the stochastic setting, sharp uniform in time error estimates are to be expected for
empirical averages (Mattingly, Andrew M Stuart, and Tretyakov, 2010; Dieuleveut,
Durmus, and Bach, 2017). To demonstrate that our analysis is indeed relevant in
the stochastic setting, we train a deep autoencoder with mini-batching (stochastic)
and verify that our convergence results still hold. The details of this experiment are
given in section 3.5. Furthermore we also confine our analysis to fixed learning rate,
and impose global bounds on the relevant derivatives of Φ; this further simplifies
the exposition of the key ideas, but is not essential to them; with considerably
more analysis the ideas exposed in this paper will transfer to adaptive time-stepping
methods and much less restrictive classes of Φ.

The paper is organized as follows. Section 3.2 introduces the optimization procedures
and states the convergence result to a rescaled gradient flow. In section 3.3 we derive
the modified, second-order equation and state convergence of the schemes to this
equation. Section 3.4 asserts the existence of an attractive invariant manifold,
demonstrating that it results in a gradient flow with respect to a small perturbation
of Φ. In section 3.5, we train a deep autoencoder, showing that our results hold in
a stochastic setting with Assumption 6 violated. We conclude in section 3.6. All
proofs of theorems are given in the appendices so that the ideas of the theorems can
be presented clearly within the main body of the text.

Notation
We use | · | to denote the Euclidean norm on Rd. We define f : Rd → Rd by f(u) :=

−∇Φ(u) for any u ∈ Rd. Given parameter λ ∈ [0, 1) we define λ̄ := (1− λ)−1.

For two Banach spaces A,B, and A0 a subset in A, we denote by Ck(A0;B) the
set of k-times continuously differentiable functions with domain A0 and range B.
For a function u ∈ Ck(A0;B), we let Dju denote its j-th (total) Fréchet derivative
for j = 1, . . . , k. For a function u ∈ Ck([0,∞),Rd), we denote its derivatives by
du
dt
, d

2u
dt2
, etc. or equivalently by u̇, ü, etc.

To simplify our proofs, we make the following assumption about the objective
function.

Assumption 6. Suppose Φ ∈ C3(Rd;R) with uniformly bounded derivatives. Namely,
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there exist constants B0, B1, B2 > 0 such that

‖Dj−1f‖ = ‖DjΦ‖ ≤ Bj−1

for j = 1, 2, 3 where ‖ · ‖ denotes any appropriate operator norm.

We again stress that this assumption is not key to developing the ideas in this work,
but is rather a simplification used to make our results global. Without Assumption 6,
and no further assumption on Φ such as convexity, one could only hope to give local
results, i.e. in the neighborhood of a critical point of Φ. Such analysis could indeed
be carried out (see for example (Carr, 2012)), but we choose not to do so here for
the sake of clarity of exposition. In section 3.5, we give a practical example where
this assumption is violated and yet the behavior is as predicted by our theory.

Finally we observe that the nomenclature “learning rate” is now prevalent in machine
learning, and so we use it in this paper; it refers to the object commonly referred to
as “time-step” in the field of numerical analysis.

3.2 Momentum Methods and Convergence to Gradient Flow
In subsection 3.2 we state Theorem 7 concerning the convergence of a class of
momentum methods to a rescaled gradient flow. Subsection 3.2 demonstrates that
the HB and NAG methods are special cases of our general class of momentum
methods, and gives intuition for proof of Theorem 7; the proof itself is given in
Appendix A. Subsection 3.2 contains a numerical illustration of Theorem 7.

Main Result
The standard Euler discretization of (3.2) gives the discrete time optimization scheme

un+1 = un + hf(un), n = 0, 1, 2, . . . . (3.6)

Implementation of this scheme requires an initial guess u0 ∈ Rd. For simplicity
we consider a fixed learning rate h > 0. Equation (3.2) has a unique solution
u ∈ C3([0,∞);Rd) under Assumption 6 and for un = u(nh)

sup
0≤nh≤T

|un − un| ≤ C(T )h;

see (A. Stuart and Humphries, 1998), for example.
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In this section we consider a general class of momentum methods for the minimiza-
tion task (3.1) which can be written in the form, for some a ≥ 0 and λ ∈ (0, 1),

un+1 = un + λ(un − un−1) + hf(un + a(un − un−1)), n = 0, 1, 2, . . . ,

u1 = u0 + hf(u0) .
(3.7)

Again, implementation of this scheme requires an an initial guess u0 ∈ Rd. The
parameter choice a = 0 gives HB and a = λ gives NAG. In Appendix A we prove
the following:

Theorem 7. Suppose Assumption 6 holds and let u ∈ C3([0,∞);Rd) be the solution

to

du

dt
= −(1− λ)−1∇Φ(u)

u(0) = u0

(3.8)

with λ ∈ (0, 1). For n = 0, 1, 2, . . . let un be the sequence given by (3.7) and define

un := u(nh). Then for any T ≥ 0, there is a constant C = C(T ) > 0 such that

sup
0≤nh≤T

|un − un| ≤ Ch.

Note that (3.8) is simply a sped-up version of (3.2): if v solves (3.2) and w solves
(3.8) then v(t) = w((1−λ)t) for any t ∈ [0,∞). This demonstrates that introduction
of momentum in the form used within both HB and NAG results in numerical
methods that do not differ substantially from gradient descent.

Link to HB and NAG
The HB method is usually written as a two-step scheme taking the form ((Sutskever
et al., 2013))

vn+1 = λvn + hf(un)

un+1 = un + vn+1

with v0 = 0, λ ∈ (0, 1) the momentum factor, and h > 0 the learning rate. We can
re-write this update as

un+1 = un + λvn + hf(un)

= un + λ(un − un−1) + hf(un)
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hence the method reads

un+1 = un + λ(un − un−1) + hf(un)

u1 = u0 + hf(u0).
(3.9)

Similarly NAG is usually written as ((Sutskever et al., 2013))

vn+1 = λvn + hf(un + λvn)

un+1 = un + vn+1

with v0 = 0. Define wn := un + λvn, then

wn+1 = un+1 + λvn+1

= un+1 + λ(un+1 − un)

and

un+1 = un + λvn + hf(un + λvn)

= un + (wn − un) + hf(wn)

= wn + hf(wn).

Hence the method may be written as

un+1 = un + λ(un − un−1) + hf(un + λ(un − un−1))

u1 = u0 + hf(u0).
(3.10)

It is clear that (3.9) and (3.10) are special cases of (3.7) with a = 0 giving HB and
a = λ giving NAG. To intuitively understand Theorem 7, re-write (3.8) as

du

dt
− λdu

dt
= f(u).

If we discretize the du/dt term using forward differences and the −λdu/dt term
using backward differences, we obtain

u(t+ h)− u(t)

h
−λu(t)− u(t− h)

h
≈ f(u(t)) ≈ f

(
u(t) + ha

u(t)− u(t− h)

h

)
with the second approximate equality coming from the Taylor expansion of f . This
can be rearranged as

u(t+ h) ≈ u(t) + λ(u(t)− u(t− h)) + hf(u(t) + a(u(t)− u(t− h)))

which has the form of (3.7) with the identification un ≈ u(nh).
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(a) HB: κ = 5 (b) HB: κ = 10 (c) HB: κ = 20

(d) NAG: κ = 5 (e) NAG: κ = 10 (f) NAG: κ = 20

Figure 31: Comparison of trajectories for HB and NAG with the gradient flow (3.8)
on the two-dimensional problem Φ(u) = 1

2
〈u,Qu〉 with λ = 0.9 fixed. We vary the

condition number of Q as well as the learning rate h.

(a) HB (b) NAG

Figure 32: The numerical rate of convergence, as a function of the learning rate h,
of HB and NAG to the gradient flow (3.8) for the problem described in Figure 31.

Numerical Illustration
Figure 31 compares trajectories of the momentum numerical method (3.7) with the
rescaled gradient flow (3.8), for the two-dimensional problem Φ(u) = 1

2
〈u,Qu〉. We

pick Q to be positive-definite so that the minimum is achieved at the point (0, 0)T

and make it diagonal so that we can easily control its condition number. In particular,
the condition number of Q is given as

κ =
max{Q11, Q22}
min{Q11, Q22}

.
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We see that, as the condition number is increased, both HB and NAG exhibit more
pronounced transient oscillations and are thus further away from the trajectory of
(3.8), however, as the learning rate h is decreased, the oscillations dampen and
the trajectories match more and more closely. This observation from Figure 31 is
quantified in Figure 32 where we estimate the rate of convergence as a function of h,
which is defined as

∆ = log2

‖u(h) − u‖∞
‖u(h/2) − u‖∞

where u(α) is the numerical solution using time-step α. The figure shows that the
rate of convergence is indeed close to 1, as predicted by our theory. In summary the
behavior of the momentum methods is precisely that of a rescaled gradient flow, but
with initial transient oscillations which capture momentum effects, but disappear as
the learning rate is decreased. We model these oscillations in the next section via
use of a modified equation.

3.3 Modified Equations
The previous section demonstrates how the momentum methods approximate a time
rescaled version of the gradient flow (3.2). In this section we show how the same
methods may also be viewed as approximations of the damped Hamiltonian system
(3.3), with mass m on the order of the learning rate, using the method of modified
equations. In subsection 3.3 we state and discuss the main result of the section,
Theorem 8. Subsection 3.3 gives intuition for proof of Theorem 8; the proof itself is
given in Appendix B. And the section also contains comments on generalizing the
idea of modified equations. In subsection 3.3 we describe a numerical illustration of
Theorem 8.

Main Result
The main result of this section quantifies the sense in which momentum methods do,
in fact, approximate a damped Hamiltonian system; it is proved in Appendix B.

Theorem 8. Fix λ ∈ (0, 1) and assume that a ≥ 0 is chosen so that α := 1
2
(1 +

λ − 2a(1 − λ)) is strictly positive. Suppose Assumption 6 holds and let u ∈
C4([0,∞);Rd) be the solution to

hα
d2u

dt2
+ (1− λ)

du

dt
= −∇Φ(u)

u(0) = u0,
du

dt
(0) = u′0.

(3.11)
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Suppose further that h ≤ (1− λ)2/2αB1. For n = 0, 1, 2, . . . let un be the sequence

given by (3.7) and define un := u(nh). Then for any T ≥ 0, there is a constant

C = C(T ) > 0 such that

sup
0≤nh≤T

|un − un| ≤ Ch.

Theorem 7 demonstrates the same order of convergence, namely O(h), to the
rescaled gradient flow equation (3.8), obtained from (3.11) simply by setting h =

0. In the standard method of modified equations the limit system (here (3.8)) is
perturbed by small terms (in terms of the assumed small learning rate) and an
increased rate of convergence is obtained to the modified equation (here (3.11)). In
our setting however, because the small modification is to a higher derivative (here
second) than appears in the limit equation (here first order), an increased rate of
convergence is not obtained. This is due to the nature of the modified equation,
whose solution has derivatives that are inversely proportional to powers of h; this
fact is quantified in Lemma 13 from Appendix B. It is precisely because the modified
equation does not lead to a higher rate of convergence that the initial parameter u′0 is
arbitrary; the same rate of convergence is obtained no matter what value it takes.

It is natural to ask, therefore, what is learned from the convergence result in Theorem
8. The answer is that, although the modified equation (3.11) is approximated at
the same order as the limit equation (3.8), it actually contains considerably more
qualitative information about the dynamics of the system, particularly in the early
transient phase of the algorithm; this will be illustrated in subsection 3.3. Indeed we
will make a specific choice of u′0 in our numerical experiments, namely

du

dt
(0) =

1− 2α

2α− λ+ 1
f(u0), (3.12)

to better match the transient dynamics.

Intuition and Wider Context
Idea Behind The Modified Equations

In this subsection, we show that the scheme (3.7) exhibits momentum, in the sense
of approximating a momentum equation, but the size of the momentum term is on
the order of the step size h. To see this intuitively, we add and subtract un − un−1 to
the right hand size of (3.7) then we can rearrange it to obtain

h
un+1 − 2un + un−1

h2
+ (1− λ)

un − un−1

h
= f(un + a(un − un−1)).
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This can be seen as a second order central difference and first order backward
difference discretization of the momentum equation

h
d2u

dt2
+ (1− λ)

du

dt
= f(u),

noting that the second derivative term has size of order h.

Higher Order Modified Equations For HB

We will now show that, for HB, we may derive higher order modified equations
that are consistent with (3.9). Taking the limit of these equations yields an operator
that agrees with with our intuition for discretizing (3.8). To this end, suppose
Φ ∈ C∞b (Rd,R) and consider the ODE(s),

p∑
k=1

hk−1(1 + (−1)kλ)

k!

dku

dtk
= f(u) (3.13)

noting that p = 1 gives (3.8) and p = 2 gives (3.11). Let u ∈ C∞([0,∞),Rd) be
the solution to (3.13) and define un := u(nh), u(k)

n := dku
dtk

(nh) for n = 0, 1, 2, . . .

and k = 1, 2, . . . , p. Taylor expanding yields

un±1 = un +

p∑
k=1

(±1)khk

k!
u(k)
n + hp+1I±n

where

I±n =
(±1)p+1

p!

∫ 1

0

(1− s)pd
p+1u

dtp+1
((n± s)h)ds.

Then

un+1 − un − λ(un − un−1) =

p∑
k=1

hk

k!
u(k)
n + λ

p∑
k=1

(−1)khk

k!
u(k)
n + hp+1(I+

n − λI−n )

= h

p∑
k=1

hk−1(1 + (−1)kλ)

k!
u(k)
n + hp+1(I+

n − λI−n )

= hf(un) + hp+1(I+
n − λI−n ),

showing consistency to order p+ 1. As is the case with (3.11) however, the I±n terms
will be inversely proportional to powers of h hence global accuracy will not improve.

We now study the differential operator on the l.h.s. of (3.13) as p→∞. Define the
sequence of differential operators Tp : C∞([0,∞),Rd)→ C∞([0,∞),Rd) by

Tpu =

p∑
k=1

hk−1(1 + (−1)kλ)

k!

dku

dtk
, ∀u ∈ C∞([0,∞),Rd)
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and suppose u, Tpu ∈ L1([0,∞);Rd). Taking the Fourier transform yields

F(Tpu)(ω) =

p∑
k=1

hk−1(1 + (−1)kλ)(iω)k

k!
F(u)(ω)

where i =
√
−1 denotes the imaginary unit. Suppose there is a limiting operator

Tp → T as p→∞ then taking the limit yields

F(Tu)(ω) =
1

h
(eihω + λe−ihω − λ− 1)F(u)(ω).

Taking the inverse transform and using the convolution theorem, we obtain

(Tu)(t) =
1

h
F−1(eihω + λe−ihω − λ− 1)(t) ∗ u(t)

=
1

h
(−(1 + λ)δ(t) + λδ(t+ h) + δ(t− h)) ∗ u(t)

=
1

h

∫ ∞
−∞

(−(1 + λ)δ(t− τ) + λδ(t− τ + h) + δ(t− τ − h))u(τ) dτ

=
1

h
(−(1 + λ)u(t) + λu(t− h) + u(t+ h))

=
u(t+ h)− u(t)

h
− λ

(
u(t)− u(t− h)

h

)
where δ(·) denotes the Dirac-delta distribution and we abuse notation by writing its
action as an integral. The above calculation does not prove convergence of Tp to T ,
but simply confirms our intuition that (3.9) is a forward and backward discretization
of (3.8).

Numerical Illustration
Figure 33 shows trajectories of (3.7) and (3.11) for different values of a and h on
the two-dimensional problem Φ(u) = 1

2
〈u,Qu〉, varying the condition number of Q.

We make the specific choice of u′0 implied by the initial condition (3.12). Figure 34
shows the numerical order of convergence as a function of h, as defined in Section
3.2, which is near 1, matching our theory. We note that the oscillations in HB are
captured well by (3.11), except for a slight shift when h and κ are large. This is due
to our choice of initial condition which cancels the maximum number of terms in the
Taylor expansion initially, but the overall rate of convergence remains O(h) due to
Lemma 13. Other choices of u′0 also result in O(h) convergence and can be picked
on a case-by-case basis to obtain consistency with different qualitative phenomena
of interest in the dynamics. Note also that α|a=λ < α|a=0. As a result the transient
oscillations in (3.11) are more quickly damped in the NAG case than in the HB case;
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(a) HB: κ = 5 (b) HB: κ = 10 (c) HB: κ = 20

(d) NAG: κ = 5 (e) NAG: κ = 10 (f) NAG: κ = 20

Figure 33: Comparison of trajectories for HB and NAG with the Hamiltonian
dynamic (3.11) on the two-dimensional problem Φ(u) = 1

2
〈u,Qu〉 with λ = 0.9

fixed. We vary the condition number of Q as well as the learning rate h.

(a) HB (b) NAG

Figure 34: The numerical rate of convergence, as a function of the learning rate h, of
HB and NAG to the momentum equation (3.11) for the problem described in Figure
33.

this is consistent with the numerical results. However panels (d)-(f) in Figure 31
show that (3.11) is not able to adequately capture the oscillations of NAG when h is
relatively large. We leave for future work the task of finding equations that are able
to appropriately capture the oscillations of NAG in the large h regime.
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3.4 Invariant Manifold
The key lessons of the previous two sections are that the momentum methods
approximate a rescaled gradient flow of the form (3.2) and a damped Hamiltonian
system of the form (3.3), with small mass m which scales with the learning rate, and
constant damping γ. Both approximations hold with the same order of accuracy, in
terms of the learning rate, and numerics demonstrate that the Hamiltonian system is
particularly useful in providing intuition for the transient regime of the algorithm. In
this section we link the two theorems from the two preceding sections by showing
that the Hamiltonian dynamics with small mass from section 3.3 has an exponentially
attractive invariant manifold on which the dynamics is, to leading order, a gradient
flow. That gradient flow is a small, in terms of the learning rate, perturbation of the
time-rescaled gradient flow from section 3.2.

Main Result
Define

vn := (un − un−1)/h (3.14)

noting that then (3.7) becomes

un+1 = un + hλvn + hf(un + havn)

and
vn+1 =

un+1 − un
h

= λvn + f(un + havn).

Hence we can re-write (3.7) as

un+1 = un + hλvn + hf(un + havn)

vn+1 = λvn + f(un + havn).
(3.15)

Note that if h = 0 then (3.15) shows that un = u0 is constant in n, and that vn
converges to (1 − λ)−1f(u0). This suggests that, for h small, there is an invariant
manifold which is a small perturbation of the relation vn = λ̄f(un) and is repre-
sentable as a graph. Motivated by this, we look for a function g : Rd → Rd such that
the manifold

v = λ̄f(u) + hg(u) (3.16)

is invariant for the dynamics of the numerical method:

vn = λ̄f(un) + hg(un)⇐⇒ vn+1 = λ̄f(un+1) + hg(un+1). (3.17)
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We will prove the existence of such a function g by use of the contraction mapping
theorem to find fixed point of mapping T defined in subsection 3.4 below. We seek
this fixed point in set Γ which we now define:

Definition 9. Let γ, δ > 0 be as in Lemmas 14, 15. Define Γ := Γ(γ, δ) to be the

closed subset of C(Rd;Rd) consisting of γ-bounded functions:

‖g‖Γ := sup
ξ∈Rd
|g(ξ)| ≤ γ, ∀g ∈ Γ

that are δ-Lipshitz:

|g(ξ)− g(η)| ≤ δ|ξ − η|, ∀g ∈ Γ, ξ, η ∈ Rd.

Theorem 10. Fix λ ∈ (0, 1). Suppose that h is chosen small enough so that Assump-

tion 16 holds. For n = 0, 1, 2, . . ., let un, vn be the sequences given by (3.15). Then

there is a τ > 0 such that, for all h ∈ (0, τ), there is a unique g ∈ Γ such that (3.17)
holds. Furthermore,

|vn − λ̄f(un)− hg(un)| ≤ (λ+ h2λδ)n|v0 − λ̄f(u0)− hg(u0)|

where λ+ h2λδ < 1.

The statement of Assumption 16, and the proof of the preceding theorem, are given
in Appendix C. The assumption appears somewhat involved at first glance but
inspection reveals that it simply places an upper bound on the learning rate h, as
detailed in Lemmas 14, 15. The proof of the theorem rests on the Lemmas 18, 19,
and 20 which establish that the operator T is well-defined, maps Γ to Γ, and is a
contraction on Γ. The operator T is defined, and expressed in a helpful form for the
purposes of analysis, in the next subsection.

In the next subsection we obtain the leading order approximation for g, given in
equation (3.31). Theorem 10 implies that the large-time dynamics are governed by
the dynamics on the invariant manifold. Substituting the leading order approximation
for g into the invariant manifold (3.16) and using this expression in the definition
(3.14) shows that

vn = −(1− λ)−1∇
(

Φ(un) +
1

2
hλ̄(λ̄− a)|∇Φ(un)|2

)
, (3.18a)

un = un−1 − h(1− λ)−1∇
(

Φ(un) +
1

2
hλ̄(λ̄− a)|∇Φ(un)|2

)
. (3.18b)
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Setting

c = λ̄

(
λ̄− a+

1

2

)
(3.19)

we see that for large time the dynamics of momentum methods, including HB and
NAG, are approximately those of the modified gradient flow

du

dt
= −(1− λ)−1∇Φh(u) (3.20)

with
Φh(u) = Φ(u) +

1

2
hc|∇Φ(u)|2. (3.21)

To see this we proceed as follows. Note that from (3.20)

d2u

dt2
= −1

2
(1− λ)−2∇|∇Φ(u)|2 +O(h)

then Taylor expansion shows that, for un = u(nh),

un = un−1 + hu̇n −
h2

2
ün +O(h3)

= un−1 − hλ̄
(
∇Φ(un) +

1

2
hc∇|∇Φ(un)|2

)
+

1

4
h2λ̄2∇|∇Φ(un)|2 +O(h3)

where we have used that

Df(u)f(u) =
1

2
∇
(
|∇Φ(u)|2

)
.

Choosing c = λ̄(λ̄− a+ 1/2) we see that

un = un−1 − h(1− λ)−1∇
(

Φ(un) +
1

2
hλ̄(λ̄− a)|∇Φ(un)|2

)
+O(h3). (3.22)

Notice that comparison of (3.18b) and (3.22) shows that, on the invariant manifold,
the dynamics are to O(h2) the same as the equation (3.20); this is because the
truncation error between (3.18b) and (3.22) is O(h3).

Thus we have proved:

Theorem 11. Suppose that the conditions of Theorem 10 hold. Then for initial data

started on the invariant manifold and any T ≥ 0, there is a constant C = C(T ) > 0

such that

sup
0≤nh≤T

|un − un| ≤ Ch2,

where un = u(nh) solves the modified equation (3.20) with c = λ̄(λ̄− a+ 1/2).
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Intuition
We will define mapping T : C(Rd;Rd)→ C(Rd;Rd) via the equations

p = ξ + hλ
(
λ̄f(ξ) + hg(ξ)

)
+ hf

(
ξ + ha

(
λ̄f(ξ) + hg(ξ)

))
λ̄f(p) + h(Tg)(p) = λ

(
λ̄f(ξ) + hg(ξ)

)
+ f
(
ξ + ha

(
λ̄f(ξ) + hg(ξ)

))
.

(3.23)

A fixed point of the mapping g 7→ Tg will give function g so that, under (3.23),
identity (3.17) holds. Later we will show that, for g in Γ and all h sufficiently small,
ξ can be found from (3.23a) for every p, and that thus (3.23b) defines a mapping
from g ∈ Γ into Tg ∈ C(Rd;Rd). We will then show that, for h sufficiently small,
T : Γ 7→ Γ is a contraction.

For any g ∈ C(Rd;Rd) and ξ ∈ Rd define

wg(ξ) := λ̄f(ξ) + hg(ξ) (3.24)

zg(ξ) := λwg(ξ) + f
(
ξ + hawg(ξ)

)
. (3.25)

With this notation the fixed point mapping (3.23) for g may be written

p = ξ + hzg(ξ),

λ̄f(p) + h(Tg)(p) = zg(ξ).
(3.26)

Then, by Taylor expansion,

f
(
ξ + ha

(
λ̄f(ξ) + hg(ξ)

))
= f

(
ξ + hawg(ξ)

)
= f(ξ) + ha

∫ 1

0

Df
(
ξ + shawg(ξ)

)
wg(ξ)ds

= f(ξ) + haI(1)
g (ξ)

(3.27)

where the last line defines I(1)
g . Similarly

f(p) = f(ξ + hzg(ξ))

= f(ξ) + h

∫ 1

0

Df
(
ξ + shzg(ξ)

)
zg(ξ)ds

= f(ξ) + hI(2)
g (ξ),

(3.28)

where the last line now defines I(2)
g . Then (3.23b) becomes

λ̄
(
f(ξ) + hI(2)

g (ξ)
)

+ h(Tg)(p) = λλ̄f(ξ) + hλg(ξ) + f(ξ) + haI(1)
g (ξ)
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and we see that
(Tg)(p) = λg(ξ) + aI(1)

g (ξ)− λ̄I(2)
g (ξ).

In this light, we can rewrite the defining equations (3.23) for T as

p = ξ + hzg(ξ), (3.29)

(Tg)(p) = λg(ξ) + aI(1)
g (ξ)− λ̄I(2)

g (ξ). (3.30)

for any ξ ∈ Rd.

Perusal of the above definitions reveals that, to leading order in h,

wg(ξ) = zg(ξ) = λ̄f(ξ), I(1)
g (ξ) = I(2)

g (ξ) = λ̄Df(ξ)f(ξ).

Thus setting h = 0 in (3.29), (3.30) shows that, to leading order in h,

g(p) = λ̄2(a− λ̄)Df(p)f(p). (3.31)

Note that since f(p) = −∇Φ(p), Df is the negative Hessian of Φ and is thus
symmetric. Hence we can write g in gradient form, leading to

g(p) =
1

2
λ̄2(a− λ̄)∇

(
|∇Φ(p)|2

)
. (3.32)

Remark 12. This modified potential (3.21) also arises in the construction of Lya-

punov functions for the one-stage theta method – see Corollary 5.6.2 in (A. Stuart

and Humphries, 1998).

Numerical Illustration
In Figure 35 panels (a),(b),(d),(e), we plot the components un and vn found by
solving (3.15) with initial conditions u0 = (1, 1)T and vn = (0, 0)T in the case
where Φ(u) = 1

2
〈u,Qu〉. These initial conditions correspond to initializing the map

off the invariant manifold. To leading order in h the invariant manifold is given by
(see equation (3.18))

v = −(1− λ)−1∇
(

Φ(u) +
1

2
hλ̄(λ̄− a)|∇Φ(u)|2

)
. (3.33)

To measure the distance of the trajectory shown in panels (a),(b),(d),(e) from the
invariant manifold we define

en =

∣∣∣∣vn + (1− λ)−1∇
(

Φ(un) +
1

2
hλ̄(λ̄− a)|∇Φ(un)|2

)∣∣∣∣ . (3.34)

Panels (c),(f) show the evolution of en as well as the (approximate) bound on it
found from substituting the leading order approximation of g into the following
upper bound from Theorem 10:

(λ+ h2λδ)n|v0 − λ̄f(u0)− hg(u0)|.
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(a) HB: un given by (3.15) (b) HB: vn given by (3.15) (c) HB: en given by (3.34)

(d) NAG: un given by (3.15) (e) NAG: vn given by (3.15) (f) NAG: en given by (3.34)

Figure 35: Invariant manifold for HB and NAG with h = 2−6 and λ = 0.9 on the
two-dimensional problem Φ(u) = 1

2
〈u,Qu〉, varying the condition number of Q.

Panels (c), (f) show the distance from the invariant manifold for the largest condition
number κ = 20.

3.5 Deep Learning Example
Our theory is developed under quite restrictive assumptions, in order to keep the
proofs relatively simple and to allow a clearer conceptual development. The purpose
of the numerical experiments in this section is twofold: firstly to demonstrate that our
theory sheds light on a stochastic version of gradient descent applied, furthermore,
to a setting in which the objective function does not satisfy the global assumptions
which facilitate our analysis; and second to show that methods implemented as we
use them here (with learning-rate independent momentum, fixed at every step of the
iteration) can out-perform other choices on specific problems.

Our numerical experiments in this section are undertaken with in the context of the
example given in (Sutskever et al., 2013). We train a deep autoencoder, using the
architecture of (Geoffrey Hinton and Salakhutdinov, 2006) on the MNIST dataset
(LeCun and Cortes, 2010). Since our work is concerned only with optimization and
not generalization, we present our results only on the training set of 60,000 images
and ignore the testing set. We fix an initialization of the autoencoder following
(Glorot and Bengio, 2010) and use it to test every optimization method. Furthermore,
we fix a batch size of 200 and train for 500 epochs, not shuffling the data set during
training so that each method sees the same realization of the noise. We use the
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h = 20 h = 2−1 h = 2−2 h = 2−3 h = 2−4 h = 2−5 h = 2−6

GF n/a 4.3948 4.5954 5.6769 7.0049 8.6468 10.6548
HB 3.6775 4.0157 4.5429 5.6447 7.0720 8.7070 10.6848
NAG 3.2808 3.7166 4.4579 5.6087 7.0557 8.6987 10.6814
Wilson 6.7395 7.5177 8.3491 9.2543 10.2761 11.3776 12.4123
HB-µ 5.7099 6.6146 7.6202 8.6629 9.7838 11.0039 12.1743
NAG-µ 5.6867 6.6033 7.6131 8.6556 9.7783 11.0015 12.1738

Figure 36: Final training errors for the autoencoder on MNIST for six training
methods over different learning rates. GF refers to equation (3.35) while HB and
NAG to (3.7) all with fixed λ = 0.9.

(a) HB, NAG to (3.35) (b) HB-µ, NAG-µ to (3.36)

Figure 37: The numerical rate of convergence for the parameters of the autoencoder,
as a function of the learning rate h, of HB and NAG to (3.35) (a), as well as of HB-µ
and NAG-µ to (3.36) (b).

mean-squared error as our loss function.

We compare HB and NAG given by (3.7) to the re-scaled gradient flow (3.8) which
we discretize in the standard way to yield the numerical method

un+1 = un −
h

(1− λ)
∇Φ(un), (3.35)

hence the momentum term λ only acts to re-scale the learning rate. We do not test
against equation (3.11) because, to discretize it faithfully, we would need to use a
time-step much lower than h (because (3.11) contains a term of order h), but doing
so would mean that we need to train for many more epochs compared to HB and
NAG so that the same final time is reached. This, in turn, implies that the methods
would see different realization of the noise. Thus, to compare them well, we would
need to perform a Monte Carlo simulation, however, since we do not state any of
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our results in a stochastic setting, we leave this for future work.

We also compare our results to those of (Ashia C. Wilson, Recht, and Michael I.
Jordan, 2016) which analyze HB and NAG in the setting where Φ is µ-strongly
convex and λ is given by (3.5) that is

λ =
1−
√
µh

1 +
√
µh
.

They obtain the limiting equation

ü+ 2
√
µu̇+∇Φ(u) = 0

which we discretize via a split-step method to yield

un+1 = un +
1

2
√
µ

(
1− e−2

√
µh
)
vn

vn+1 = e−2
√
µhvn −

√
h∇Φ(un+1)

(3.36)

where we have mapped the the time-step h in HB and NAG to
√
h as in done in

(Ashia C. Wilson, Recht, and Michael I. Jordan, 2016). We choose this discretization
because it allows us to directly solve for the linear parts of the ODE (in the enlarged
state-space), yielding a more accurate approximation than the forward-Euler method
used to obtain (3.35). A detailed derivation is given in Appendix D. We will refer
to the method in equation (3.36) as Wilson. Further we refer to equation (3.7) with
λ given by (3.5) and a = 0 as HB-µ and equation (3.7) with λ given by (3.5) and
a = λ as NAG-µ. Since deep neural networks are not strongly convex, there is no
single optimal choice of µ; we simply set µ = 1 in our experiments.

Figure 36 gives the final training errors for each method for several learning rates.
We were unable to train the autoencoder using (3.35) with h = 1 since λ = 0.9

implies an effective learning rate of 10 for which the system blows up. In general,
NAG is the best performing method for relatively large h which is an observation
that is consistently made in the deep learning literature. Further, we note that as
the learning rate decreases, the final errors become closer indicating convergence to
the appropriate limiting equations. Figure 36 showcases the practical effectiveness
of momentum methods as they provide a way of discretizing the gradient flow
(3.2) with a large effective learning rate that forward Euler cannot accommodate.
From this perspective, we can view momentum methods as providing a more stable
discretization to gradient flows in a manner illustrated by (3.20). Such a viewpoint
informs the works (Scieur et al., 2017; Betancourt, Michael I. Jordan, and Ashia C.
Wilson, 2018; Zhang et al., 2018).
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To further illustrate the point of convergence to the limiting equation, we compute
the numerical rate of convergence, defined in Section 3.2, as a function of h for the
neural network parameters between (3.35) and HB and NAG as well as between
(3.36) and HB-µ and NAG-µ. Figure 37 gives the results. We note that this rate is
around 1 as predicted by our theory while the rate for (3.36) is around 0.5 which is
also consistent with the theory in (Ashia C. Wilson, Recht, and Michael I. Jordan,
2016).

3.6 Conclusion
Together, equations (3.8), (3.11) and (3.20) describe the dynamical systems which
are approximated by momentum methods, when implemented with fixed momentum,
in a manner made precise by the four theorems in this paper. The insight obtained
from these theorems sheds light on how momentum methods perform optimization
tasks.

3.7 Proof of Theorem 7
Proof. Taylor expanding yields

un+1 = un + hλ̄f(un) +O(h2)

and
un = un−1 + hλ̄f(un) +O(h2).

Hence
(1 + λ)un − λun−1 = un + hλλ̄f(un) +O(h2).

Subtracting the third identity from the first, we find that

un+1 − ((1 + λ)un − λun−1) = hf(un) +O(h2)

by noting λ̄− λ̄λ = 1. Similarly,

a(un − un−1) = haλ̄f(un) +O(h2)

hence Taylor expanding yields

f(un + a(un − un−1)) = f(un) + aDf(un)(un − un−1)

+ a2

∫ 1

0

(1− s)D2f(un + sa(un − un−1))[un − un−1]2ds

= f(un) + haλ̄Df(un)f(un) +O(h2).
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From this, we conclude that

hf(un + a(un − un−1)) = hf(un) +O(h2)

hence

un+1 = (1 + λ)un − λun−1 + hf(un + a(un − un−1)) +O(h2).

Define the error en := un − un then

en+1 = (1 + λ)en − λen−1 + h (f(un + a(un − un−1))− f(un + a(un − un−1))) +O(h2)

= (1 + λ)en − λen−1 + hMn((1 + a)en − aen−1) +O(h2)

where, from the mean value theorem, we have

Mn =

∫ 1

0

Df
(
s
(
un + a(un − un−1)

)
+
(
1− s

)(
un + a(un − un−1)

))
ds.

Now define the concatenation En+1 := [en+1, en] ∈ R2d then

En+1 = A(λ)En + hA(a)
n En +O(h2)

where A(λ), A
(a)
n ∈ R2d×2d are the block matrices

A(λ) :=

[
(1 + λ)I −λI

I 0I

]
, A(a)

n :=

[
(1 + a)Mn −aMn

0I 0I

]

with I ∈ Rd×d the identity. We note that A(λ) has minimal polynomial

µA(λ)(z) = (z − 1)(z − λ)

and is hence diagonalizable. Thus there is a norm on ‖·‖ on R2d such that its induced
matrix norm ‖ · ‖m satifies ‖A(λ)‖m = ρ(A(λ)) where ρ : R2d×2d → R+ maps a
matrix to its spectral radius. Hence, since λ ∈ (0, 1), we have ‖A(λ)‖m = 1. Thus

‖En+1‖ ≤ (1 + h‖A(a)
n ‖m)‖En‖+O(h2).

Then, by finite dimensional norm equivalence, there is a constant α > 0, independent
of h, such that

‖A(a)
n ‖m ≤ α

∥∥∥∥∥
[

1 + a −a
0 0

]
⊗Mn

∥∥∥∥∥
2

= α
√

2a2 + 2a+ 1‖Mn‖2



82

where ‖ · ‖2 denotes the spectral 2-norm. Using Assumption 6, we have

‖Mn‖2 ≤ B1

thus, letting c := α
√

2a2 + 2a+ 1B1, we find

‖En+1‖ ≤ (1 + hc)‖En‖+O(h2).

Then, by Grönwall lemma,

‖En+1‖ ≤ (1 + hc)n‖E1‖n +
(1 + hc)n+1 − 1

ch
O(h2)

= (1 + hc)n‖E1‖n +O(h)

noting that the constant in the O(h) term is bounded above in terms of T , but
independently of h. Finally, we check the initial condition

E1 =

[
u1 − u1

u0 − u0

]
=

[
h(λ̄− 1)f(u0) +O(h2)

0

]
= O(h)

as desired.

3.8 Proof of Theorem 8
Proof. Taylor expanding yields

un±1 = un ± hu̇n +
h2

2
ün ±

h3

2
I±n

where

I±n =

∫ 1

0

(1− s)2...
u((n± s)h)ds.

Then using equation (3.11)

un+1 − un − λ(un − un−1) = h(1− λ)u̇n +
h2

2
(1 + λ)ün +

h3

2
(I+
n − λI−n )

= hf(un) + h2a(1− λ)ün +
h3

2
(I+
n − λI−n ).

(3.37)

Similarly

a(un − un−1) = hau̇n −
h2

2
aün +

h3

2
aI−n

hence

f(un+a(un−un−1)) = f(un)+haDf(un)u̇n−Df(un)

(
h2

2
aün −

h3

2
aI−n

)
+Ifn
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where

Ifn = a2

∫ 1

0

(1− s)D2f(un + sa(un − un−1))[un − un−1]2ds.

Differentiating (3.11) yields

hα
d3u

dt3
+ (1− λ)

d2u

dt2
= Df(u)

du

dt

hence

hf(un + a(un − un−1)) = hf(un) + h2a (hα
...
un + (1− λ)ün)

−Df(un)

(
h3

2
aün −

h4

2
aI−n

)
+ hIfn

= hf(un) + h2a(1− λ)ün + h3aα
...
un

−Df(un)

(
h3

2
aün −

h4

2
aI−n

)
+ hIfn .

Rearranging this we obtain an expression for hf(un) which we plug into equation
(3.37) to yield

un+1 − un − λ(un − un−1) = hf(un + a(un − un−1)) + LTn

where

LTn =
h3

2
(I+
n − λI−n )︸ ︷︷ ︸

O(hexp(− (1−λ)
2α

n))

− h3aα
...
un︸ ︷︷ ︸

O(hexp(− (1−λ)
2α

n))

+Df(un)

(
h3

2
aün −

h4

2
aI−n

)
︸ ︷︷ ︸

O(h2)

− hIfn︸︷︷︸
O(h3)

.

The bounds (in braces) on the four terms above follow from employing Assumption
6 and Lemma 13. From them we deduce the existence of constants K1, K2 > 0

independent of h such that

|LTn| ≤ hK1exp
(
−(1− λ)

2α
n

)
+ h2K2.

We proceed similarly to the proof of Theorem 7, but with a different truncation error
structure, and find the error satsifies

‖En+1‖ ≤ (1 + hc)‖En‖+ hK1exp
(
−(1− λ)

2α
n

)
+ h2K2

where we abuse notation and continue to write K1, K2 when, in fact, the constants
have changed by use of finite-dimensional norm equivalence. Define K3 := K2/c
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then summing this error, we find

‖En+1‖ ≤ (1 + hc)n‖E1‖+ hK3((1 + hc)n+1 − 1)

+ hK1

n∑
j=0

(1 + hc)jexp
(
−(1− λ)

2α
(n− j)

)
= (1 + hc)n‖E1‖+ hK3((1 + hc)n+1 − 1) + hK1Sn

where

Sn = exp
(
−(1− λ)

2α
n

)(1 + hc)n+1exp
(

(1−λ)
2α

(n+ 1)
)
− 1

(1 + hc)exp
(

1−λ
2α

)
− 1

 .

Let T = nh then

Sn ≤
(1 + hc)n+1exp

(
1−λ
2α

)
(1 + hc)exp

(
1−λ
2α

)
− 1

≤
2exp

(
cT + 1−λ

2α

)
exp

(
1−λ
2α

)
− 1

.

From this we deduce that

‖En+1‖ ≤ (1 + hc)n‖E1‖+O(h)

noting that the constant in the O(h) term is bounded above in terms of T , but
independently of h. For the initial condition, we check

u1 − u1 = h(u′0 − f(u0)) +
h2

2
ü0 +

h3

2
I+

0

which is O(h) by Lemma 13. Putting the bounds together we obtain

sup
0≤nh≤T

‖En‖ ≤ C(T )h.

Lemma 13. Suppose Assumption 6 holds and let u ∈ C3([0,∞);Rd) be the solution

to

hα
d2u

dt2
+ (1− λ)

du

dt
= f(u)

u(0) = u0,
du

dt
(0) = v0
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for some u0, v0 ∈ Rd and α > 0 independent of h. Suppose h ≤ (1 − λ)2/2αB1

then there are constants C(1), C
(2)
1 , C

(2)
2 , C

(3)
1 , C

(3)
2 > 0 independent of h such that

for any t ∈ [0,∞),

|u̇(t)| ≤ C(1),

|ü(t)| ≤ C
(2)
1

h
exp
(
−(1− λ)

2hα
t

)
+ C

(2)
2 ,

|...u(t)| ≤ C
(3)
1

h2
exp
(
−(1− λ)

2hα
t

)
+ C

(3)
2 .

Proof. Define v := u̇ then

v̇ = − 1

hα
((1− λ)v − f(u)) .

Define w := (1 − λ)v − f(u) hence v̇ = −(1/hα)w and u̇ = v = λ̄(w + f(u)).
Thus

ẇ = (1− λ)v̇ −Df(u)u̇

= −(1− λ)

hα
w −Df(u)(λ̄(w + f(u))).

Hence we find

1

2

d

dt
|w|2 = −(1− λ)

hα
|w|2 − λ̄〈w,Df(u)w〉 − λ̄〈w,Df(u)f(u)〉

≤ −(1− λ)

hα
|w|2 + λ̄|〈w,Df(u)w〉|+ λ̄|〈w,Df(u)f(u)〉|

≤ −(1− λ)

hα
|w|2 + λ̄B1|w|2 + λ̄B0B1|w|

≤ −(1− λ)

hα
|w|2 +

(1− λ)

2hα
|w|2 + λ̄B0B1|w|

= −(1− λ)

2hα
|w|2 + λ̄B0B1|w|

by noting that our assumption h ≤ (1 − λ)2/2αB1 implies λ̄B1 ≤ (1 − λ)/2hα.
Hence

d

dt
|w| ≤ −(1− λ)

2hα
|w|+ λ̄B0B1

so, by Grönwall lemma,

|w(t)| ≤ exp
(
−(1− λ)

2hα
t

)
|w(0)|+ 2hλ̄2αB0B1

(
1− exp

(
−(1− λ)

2hα
t

))
≤ exp

(
−(1− λ)

2hα
t

)
|w(0)|+ hβ1
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where we define β1 := 2λ̄2αB0B1. Hence

|ü(t)| = |v̇(t)|

=
1

hα
|w(t)|

≤ 1

hα
exp

(
−(1− λ)

2hα
t

)
|w(0)|+ β1

α

=
|(1− λ)v0 − f(u0)|

hα
exp

(
−(1− λ)

2hα
t

)
+
β1

α
,

thus setting C(2)
1 = |(1− λ)v0 − f(u0)|/α and C(2)

1 = β1/α gives the desired result.
Further,

|u̇(t)| = |v(t)|

≤ λ̄(|w(t)|+ |f(u(t))|)

≤ λ̄(|w(0)|+ hβ1 +B0),

hence we deduce the existence of C(1). Now define z := ẇ then

ż = −(1− λ)

hα
z − λ̄Df(u)z +G(u, v, w)

where we define

G(u, v, w) := −λ̄(Df(u)(Df(u)v) +D2f(u)[v, w] +D2f(u)[Df(u)v, f(u)]).

Using Assumption 6 and our bounds on w and v, we deduce that there is a constant
C > 0 independent of h such that

|G(u, v, w)| ≤ C,

hence

1

2

d

dt
|z|2 = −(1− λ)

hα
|z|2 − λ̄〈z,Df(u)z〉+ 〈z,G(u, v, w)〉

≤ −(1− λ)

hα
|z|2 + λ̄B1|z|2 + C|z|

≤ −(1− λ)

2hα
|z|2 + C|z|

as before. Thus we find

d

dt
|z| ≤ −(1− λ)

2hα
|z|+ C
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so, by Grönwall lemma,

|z(t)| ≤ exp
(
−(1− λ)

2hα
t

)
|z(0)|+ hβ2

where we define β2 := 2λ̄αC. Recall that

...
u = v̈ = − 1

hα
ẇ = − 1

hα
z

and note
|z(0)| ≤ (1− λ)|(1− λ)v0 − f(u0)|

hα
+B1|v0|,

hence we find

|...u(t)| ≤
(

(1− λ)|(1− λ)v0 − f(u0)

h2α2
+
B1|v0|
hα

)
exp

(
−(1− λ)

2hα
t

)
+
β2

α
.

Thus we deduce that there is a constant C(3)
1 > 0 independent of h such that

|...u(t)| ≤ C
(3)
1

h2
exp

(
−(1− λ)

2hα
t

)
+ C

(3)
2

as desired where C(3)
2 = β2/α.

One readily verifies that the result of Lemma 13 is tight by considering the one-
dimensional case with f(u) = −u. This implies that the result of Theorem 8 cannot
be improved without further assumptions.

3.9 Proof of Theorem 10
For the results of Section 3.4 we make the following assumption on the size of h.
Recall first that by Assumption 6 there are constants B0, B1, B2 > 0 such that

‖Dj−1f‖ = ‖DjΦ‖ ≤ Bj−1

for j = 1, 2, 3.

Lemma 14. Suppose h > 0 is small enough such that

λ+ hB1(a+ λλ̄) < 1

then there is a τ1 > 0 such that for any γ ∈ [τ1,∞)

(λ+ hB1(a+ λλ̄))γ + λ̄B0B1(a+ λ̄) ≤ γ. (3.38)
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Using Lemma 14 fix γ ∈ [τ1,∞) and define the constants

K1 := λ̄B0 + hγ

K3 := B0 + λK1

α2 := h2(λ+ haB1),

α1 := λ− 1 + h
(
B1(λ̄+ a(1 + hλ̄B1)

)
+ λλ̄(B1 + hB2K3)

+ ha
(
aB2K1 +B1λ̄(B1 + hB2K3)

)
,

α0 := aB2K1(1 + haλ̄B1) + λ̄(aB2
1 +B2K3) + λ̄2B1(1 + haB1)(B1 + hB2K3).

(3.39)

Lemma 15. Suppose h > 0 is small enough such that

α2
1 > 4α2α0, α1 < 0

then there are τ±2 > 0 such that for any δ ∈ (τ−2 , τ
+
2 ]

α2δ
2 + α1δ + α0 ≤ 0. (3.40)

Using Lemma 15 fix δ ∈ (τ−2 , τ
+
2 ]. We make the following assumption on the size

of the learning rate h which is achievable since λ ∈ (0, 1).

Assumption 16. Let Assumption 6 hold and suppose h > 0 is small enough such

that the assumptions of Lemmas 14, 15 hold. Define K2 := λ̄B1 + hδ and suppose

h > 0 is small enough such that

c := h(λK2 +B1(1 + haK2)) < 1. (3.41)

Define constants

Q1 := λδ + a(B1K2 +B2K1(1 + haK2))

+ λ̄((B1 + hB2K3)(λK2 +B1(1 + haK2)) +B2K3),

Q2 := h(a(B1 + haB2K1) + λ̄(λ+ haB1)(B1 + hB2K3)),

Q3 := h(λK2 +B1(1 + haK2)),

µ := λ+Q2 +
h2(λ+ haB1)Q1

1−Q3

.

(3.42)

Suppose h > 0 is small enough such that

Q3 < 1, µ < 1. (3.43)

Lastly assume h > 0 is small enough such that

λ+ h2λδ < 1. (3.44)
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We now prove Lemma 14.

Proof. Since λ+ hB1(a+ λλ̄) < 1 and λ̄B0B1(a+ λ̄) > 0 the line defined by

(λ+ hB1(a+ λλ̄))γ + λ̄B0B1(a+ λ̄)

will intersect the identity line at a positive γ and lie below it thereafter. Hence setting

τ1 =
λ̄B0B1(a+ λ̄)

1− λ+ hB1(a+ λλ̄)

completes the proof.

We now prove Lemma 15.

Proof. Note that since α2 > 0, the parabola defined by

α2δ
2 + α1δ + α0

is upward-pointing and has roots

ζ± =
−α1 ±

√
α2

1 − 4α2α0

2α2

.

Since α2
1 > 4α2α0, ζ± ∈ R with ζ+ 6= ζ−. Since α1 < 0, ζ+ > 0 hence setting

τ+
2 = ζ+ and τ−2 = max{0, ζ−} completes the proof.

We now prove Theorem 10. The proof refers to four lemmas whose statements and
proofs follow it.

Proof. Define τ > 0 as the maximum h such that Assumption 16 holds. The
contraction mapping principle together with Lemmas 18, 19, and 20 show that the
operator T defined by (3.29) and (3.30) has a unique fixed point in Γ. Hence, from
its definition and equation (3.23b), we immediately obtain the existence result. We
now show exponential attractivity. Recall the definition of the operator T namely
equations (3.29), (3.30):

p = ξ + hzg(ξ)

(Tg)(p) = λg(ξ) + aI(1)
g (ξ)− λ̄I(2)

g (ξ).
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Let g ∈ Γ be the fixed point of T and set

p = un + hzg(un)

g(p) = λg(un) + aI(1)
g (un)− λ̄I(2)

g (un).

Then

|vn+1 − λ̄f(un+1)− hg(un+1)| ≤ |vn+1 − λ̄f(un+1)− hg(p)|+ h|g(p)− g(un+1)|

≤ |vn+1 − λ̄f(un+1)− hg(p)|+ hδ|p− un+1|

since g ∈ Γ. Since, by definition,

vn+1 = λvn + f(un + havn)

we have,

|vn+1 − λ̄f(un+1)− hg(p)| = |λvn + f(un + havn)− λ̄f(un+1)

− h(λg(un) + aI(1)
g (un)− λ̄I(2)

g (un))|

= λ|vn − λ̄f(un)− hg(un)|

by noting that

f(un + havn) = f(un) + haI(1)
g (un)

f(un+1) = f(un) + hI(2)
g (un).

From definition,
un+1 = un + hλvn + hf(un + havn),

thus

|p− un+1| = |un + hzg(un)− un − hλvn − hf(un + havn)|

= h|λ(λ̄f(un) + hg(un)) + f(un + havn)− λvn − f(un + havn)|

= hλ|vn − λ̄f(un)− hg(un)|.

Hence

|vn+1 − λ̄f(un+1)− hg(un+1)| ≤ (λ+ h2λδ)|vn − λ̄f(un)− hg(un)|

as desired. By Assumption 16, λ+ h2λδ < 1.

The following lemma gives basic bounds which are used in the proofs of Lemmas
18, 19, 20.
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Lemma 17. Let g, q ∈ Γ and ξ, η ∈ Rd then the quantities defined by (3.24), (3.25),
(3.27), and (3.28) satisfy the following:

|wg(ξ)| ≤ K1,

|wg(ξ)− wg(η)| ≤ K2|ξ − η|,

|wg(ξ)− wq(ξ)| ≤ h|g(ξ)− q(ξ)|,

|zg(ξ)| ≤ K3,

|zg(ξ)− zg(η)| ≤ (λK2 +B1 (1 + haK2)) |ξ − η|,

|zg(ξ)− zq(ξ)| ≤ h (λ+ haB1) |g(ξ)− q(ξ)|,

|I(1)
g (ξ)| ≤ B1K1,

|I(1)
g (ξ)− I(1)

g (η)| ≤ (B1K2 +B2K1(1 + haK2))|ξ − η|,

|I(1)
g (ξ)− I(1)

q (ξ)| ≤ h(B1 + haB2K1)|g(ξ)− q(ξ)|,

|I(2)
g (ξ)| ≤ B1K3

|I(2)
g (ξ)− I(2)

g (η)| ≤ ((B1 + hB2K3)(λK2 +B1(1 + haK2)) +B2K3)|ξ − η|,

|I(2)
g (ξ)− I(2)

q (ξ)| ≤ h(λ+ hB1a)(B1 + hB2K3)|g(ξ)− q(ξ)|.

Proof. These bounds relay on applications of the triangle inequality together with
boundedness of f and its derivatives as well as the fact that functions in Γ are bounded
and Lipschitz. To illustrate the idea, we will prove the bounds for wg, wq, I

(1)
g , and

I
(1)
q . To that end,

|wg(ξ)| = |λ̄f(ξ) + hg(ξ)|

≤ λ̄|f(ξ)|+ h|g(ξ)|

≤ λ̄B0 + hγ

= K1,

establishing the first bound. For the second,

|wg(ξ)− wg(η)| ≤ λ̄|f(ξ)− f(η)|+ h|g(ξ)− g(η)|

≤ λ̄B1|ξ − η|+ hδ|ξ − η|

= K2|ξ − η|

as desired. Finally,

|wg(ξ)− wq(ξ)| = |λ̄f(ξ) + hg(ξ)− λ̄f(ξ)− hq(ξ)|

= h|g(ξ)− q(ξ)|
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as desired. We now turn to the bounds for I(1)
g , I

(1)
q ,

|I(1)
g (ξ)| ≤

∫ 1

0

|Df(ξ + shawg(ξ))||wg(ξ)|ds

≤
∫ 1

0

B1K1ds

= B1K1,

establishing the first bound. For the second bound,

|I(1)
g (ξ)− I(1)

g (η)| ≤
∫ 1

0

|Df(ξ + shawg(ξ))wg(ξ)−Df(η + shawg(η))wg(ξ)|ds

+

∫ 1

0

|Df(η + shawg(η))wg(ξ)−Df(η + shawg(η))wg(η)|ds

≤ K1B2

∫ 1

0

(|ξ − η|+ sha|wg(ξ)− wg(η)|)ds+B1|wg(ξ)− wg(η)|

≤ K1B2(|ξ − η|+ haK2|ξ − η|) +B1K2|ξ − η|

= (B1K2 +B2K1(1 + haK2))|ξ − η|

as desired. Finally

|I(1)
g (ξ)− I(1)

q (ξ)| ≤
∫ 1

0

|Df(ξ + shawg(ξ))wg(ξ)−Df(ξ + shawg(ξ))wq(ξ)|ds

+

∫ 1

0

|Df(ξ + shawg(ξ))wq(ξ)−Df(ξ + shawq(ξ))wq(ξ)|ds

≤ B1

∫ 1

0

|wg(ξ)− wq(ξ)|ds

+K1B2

∫ 1

0

|ξ + shawg(ξ)− ξ − shawq(ξ)|ds

≤ hB1|g(ξ)− q(ξ)|+ h2aB2K1|g(ξ)− q(ξ)|

= h(B1 + haB2K1)|g(ξ)− q(ξ)|

as desired. The bounds for zg, zq, I
(2)
g , and I(2)

q follow similarly.

We also need the following three lemmas.

Lemma 18. Suppose Assumption 16 holds. For any g ∈ Γ and p ∈ Rd there exists a

unique ξ ∈ Rd satisfying (3.29).

Proof. Consider the iteration of the form

ξk+1 = p− hzg(ξk).
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For any two sequences {ξk}, {ηk} generated by this iteration we have, by Lemma
17,

|ξk+1 − ηk+1| ≤ h|zg(ηk)− zg(ξk)|

≤ h(λK2 +B1(1 + haK2))|ξk − ηk|

= c|ξk − ηk|

which is a contraction by (3.41).

Lemma 19. Suppose Assumption 16 holds. The operator T defined by (3.30) satisfies

T : Γ→ Γ.

Proof. Let g ∈ Γ and p ∈ Rd then by Lemma 18 there is a unique ξ ∈ Rd such that
(3.29) is satisfied. Then

|(Tg)(p)| ≤ λ|g(ξ)|+ a|I(1)
g (ξ)|+ λ̃|I(2)

g (ξ)|

≤ λγ + aB1(λ̃B0 + hγ) + λ̃B1(λ(λ̃B0 + hγ) +B0)

= (λ+ hB1(a+ λλ̃))γ + λ̃B0B1(a+ λ̃)

≤ γ

with the last inequality following from (3.38).

Let p1, p2 ∈ Rd then, by Lemma 18, there exist ξ1, ξ2 ∈ Rd such that (3.29) is
satisfied with p = {p1, p2}. Hence, by Lemma 17,

|(Tg)(p1)− (Tg)(p2)| ≤ λ|g(ξ1)− g(ξ2)|+ a|I(1)
g (ξ1)− I(1)

g (ξ2)|+ λ̃|I(2)
g (ξ1)− I(2)

g (ξ2)|

≤ K|ξ1 − ξ2|

where we define

K := λδ+a(B1K2+B2K1(1+haK2))+λ̃((B1+hB2K3)(λK2+B1(1+haK2))+B2K3).

Now, using (3.29) and the proof of Lemma 18,

|ξ1 − ξ2| ≤ |p1 − p2|+ h|zg(ξ1)− zg(ξ2)|

≤ |p1 − p2|+ c|ξ1 − ξ2|.

Since c < 1 by (3.41), we obtain

|ξ1 − ξ2| ≤
1

1− c
|p1 − p2|
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thus
|(Tg)(p1)− (Tg)(p2)| ≤ K

1− c
|p1 − p2| ≤ δ|p1 − p2|.

To see the last inequality, we note that

K

1− c
≤ δ ⇐⇒ K − δ(1− c) ≤ 0

and K − δ(1− c) = α2δ
2 + α1δ + α0 by (3.39), and thus (3.40) gives the desired

result.

Lemma 20. Suppose Assumption 16 holds. For any g1, g2 ∈ Γ, we have

‖Tg1 − Tg2‖Γ ≤ µ‖g1 − g2‖Γ

where µ < 1.

Proof. By Lemma 18, for any p ∈ Rd and g1, g2 ∈ Γ, there are ξ1, ξ2 ∈ Rd such that

p = ξj + hzgj(ξj)

(Tgj)(p) = λgj(ξj) + aI(1)
gj

(ξj)− λ̃I(2)
gj

(ξj)

for j = 1, 2. Then

|(Tg1)(p)−(Tg2)(p)| ≤ λ|g1(ξ1)−g2(ξ2)|+a|I(1)
g1

(ξ1)−I(1)
g2

(ξ2)|+λ̃|I(2)
g1

(ξ1)−I(2)
g2

(ξ2)|.

Note that

|g1(ξ1)− g2(ξ2)| = |g1(ξ1)− g2(ξ2)− g2(ξ1) + g2(ξ1)|

≤ |g1(ξ1)− g2(ξ1)|+ δ|ξ1 − ξ2|.

Similarly, by Lemma 17,

|I(1)
g1

(ξ1)− I(1)
g2

(ξ2)| = |I(1)
g1

(ξ1)− I(1)
g2

(ξ2)− I(1)
g2

(ξ1) + I(1)
g2

(ξ1)|

≤ |I(1)
g1

(ξ1)− I(1)
g2

(ξ1)|+ |I(1)
g2

(ξ1)− I(1)
g2

(ξ2)|

≤ h(B1 + haB2K1)|g1(ξ1)− g2(ξ1)|

+ (B1K2 +B2K1(1 + haK2))|ξ1 − ξ2|.

Finally,

|I(2)
g1

(ξ1)− I(2)
g2

(ξ2)| = |I(2)
g1

(ξ1)− I(2)
g2

(ξ2)− I(2)
g2

(ξ1) + I(2)
g2

(ξ1)|

≤ |I(2)
g1

(ξ1)− I(2)
g2

(ξ1)|+ |I(2)
g2

(ξ1)− I(2)
g2

(ξ2)|

≤ h(λ+ hB1a)(B1 + hB2K3)|g1(ξ1)− g2(ξ1)|+

+ ((B1 + hB2K3)(λK2 +B1(1 + haK2)) +B2K3)|ξ1 − ξ2|.
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Putting these together and using (3.42), we obtain

|(Tg1)(p)− (Tg2)(p)| ≤ (λ+Q2)|g1(ξ1)− g2(ξ1)|+Q1|ξ1 − ξ2|.

Now, by Lemma 17,

|ξ1 − ξ2| ≤ h|zg1(ξ1)− zg2(ξ2)− zg2(ξ1) + zg2(ξ1)|

≤ h(|zg1(ξ1)− zg2(ξ1)|+ |zg2(ξ1)− zg2(ξ2)|)

≤ h2(λ+ haB1)|g1(ξ)− g2(ξ1)|+ h(λK2 +B1(1 + haK2))|ξ1 − ξ2|

= h2(λ+ haB1)|g1(ξ)− g2(ξ1)|+Q3|ξ1 − ξ2|

using (3.42). Since, by (3.43), Q3 < 1, we obtain

|ξ1 − ξ2| ≤
h2(λ+ haB1)

1−Q3

|g1(ξ1)− g2(ξ1)|

and thus

|(Tg1)(p)− (Tg2)(p)| ≤
(
λ+Q2 +

h2(λ+ haB1)Q1

1−Q3

)
|g1(ξ1)− g2(ξ1)|

= µ|g1(ξ1)− g2(ξ1)|

by (3.42). Taking the supremum over ξ1 then over p gives the desired result. Since
µ < 1 by (3.43), we obtain that T is a contraction on Γ.

3.10 Derivation of Split-step Method
We consider the equation

ü+ 2
√
µu̇+∇Φ(u) = 0

u(0) = u0, u̇(0) = v0.

Set v = u̇ then we have [
u̇

v̇

]
=

[
v

−2
√
µv −∇Φ(u)

]
.

Define the maps

f1(u, v) :=

[
v

−2
√
µv

]
, f2(u, v) :=

[
0

−∇Φ(u)

]
and then [

u̇

v̇

]
= f1(u, v) + f2(u, v).
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We first solve the system [
u̇

v̇

]
= f1(u, v).

Clearly
v(t) = e−2

√
µtv0,

hence

u(t) = u0 +

∫ t

0

e−2
√
µsv0 ds

= u0 +
1

2
√
µ

(
1− e−2

√
µt
)
v0.

This gives us the flow map

ψ1(u, v; t) =

[
u + 1

2
√
µ

(
1− e−2

√
µt
)
v

e−2
√
µtv

]
.

We now solve the system [
u̇

v̇

]
= f2(u, v).

Clearly
u(t) = u0,

hence
v(t) = v0 − t∇Φ(u0).

This gives us the flow map

ψ2(u, v; t) =

[
u

v − t∇Φ(u)

]
.

The composition of the flow maps is then

(ψ2 ◦ ψ1)(u, v; t) =

 u + 1
2
√
µ

(
1− e−2

√
µt
)
v

e−2
√
µtv − t∇Φ

(
u + 1

2
√
µ

(
1− e−2

√
µt
)
v
) .

Mapping t to the time-step
√
h gives the numerical method (3.36).
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C h a p t e r 4

NEURAL NETWORKS AND MODEL REDUCTION FOR
PARAMETRIC PDE(S)

4.1 Introduction
At the core of many computational tasks arising in science and engineering is the
problem of repeatedly evaluating the output of an expensive forward model for
many statistically similar inputs. Such settings include the numerical solution of
parametric partial differential equations (PDEs), time-stepping for evolutionary
PDEs and, more generally, the evaluation of input-output maps defined by black-box
computer models. The key idea in this paper is the development of a new data-
driven emulator which is defined to act between the infinite-dimensional input and
output spaces of maps such as those defined by PDEs. By defining approximation
architectures on infinite-dimensional spaces, we provide the basis for a methodology
which is robust to the resolution of the finite-dimensionalizations used to create
implementable algorithms.

This work is motivated by the recent empirical success of neural networks in machine
learning applications such as image classification, aiming to explore whether this
success has any implications for algorithm development in different applications
arising in science and engineering. We further wish to compare the resulting new
methods with traditional algorithms from the field of numerical analysis for the
approximation of infinite-dimensional maps, such as the maps defined by parametric
PDEs or the solution operator for time-dependent PDEs. We propose a method for
approximation of such solution maps purely in a data-driven fashion by lifting the
concept of neural networks to produce maps acting between infinite-dimensional
spaces. Our method exploits approximate finite-dimensional structure in maps
between Banach spaces of functions through three separate steps: (i) reducing the
dimension of the input, (ii) reducing the dimension of the output, and (iii) finding a
map between the two resulting finite-dimensional latent spaces. Our approach takes
advantage of the approximation power of neural networks while allowing for the use
of well-understood, classical dimension reduction (and reconstruction) techniques.
Our goal is to reduce the complexity of the input-to-output map by replacing it with
a data-driven emulator. In achieving this goal we design an emulator which enjoys
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mesh-independent approximation properties, a fact which we establish through a
combination of theory and numerical experiments; to the best of our knowledge,
these are the first such results in the area of neural networks for PDE problems.

To be concrete, and to guide the literature review which follows, consider the
following prototypical parametric PDE

(Pxy)(s) = 0, ∀s ∈ D,

where D ⊂ Rd is a bounded open set, Px is a differential operator depending on a
parameter x ∈ X and y ∈ Y is the solution to the PDE (given appropriate boundary
conditions). The Banach spaces X and Y are assumed to be spaces of real-valued
functions on D. Here, and in the rest of this paper, we consistently use s to denote
the independent variable in spatially dependent PDEs, and reserve x and y for the
input and output of the PDE model of interest. We adopt this idiosyncratic notation
(from the PDE perspective) to keep our exposition in line with standard machine
learning notation for input and output variables.

Example 21. Consider second order elliptic PDEs of the form

−∇ · (a(s)∇u(s)) = f(s), s ∈ D

u(s) = 0, s ∈ ∂D
(4.1)

which are prototypical of many scientific applications. As a concrete example of

a mapping defined by this equation, we restrict ourselves to the setting where the

forcing term f is fixed, and consider the diffusion coefficient a as the input parameter

x and the PDE solution u as output y. In this setting, we have X = L∞(D;R+),

Y = H1
0 (D;R), and Px = −∇s · (a∇s·)− f , equipped with homogeneous Dirichlet

boundary conditions. This is the Darcy flow problem which we consider numerically

in Section 4.4.

Literature Review
The recent success of neural networks on a variety of high-dimensional machine
learning problems (LeCun, Bengio, and Hinton, 2015) has led to a rapidly growing
body of research pertaining to applications in scientific problems (Adler and Oktem,
2017; Bhatnagar et al., 2019; Cheng et al., 2019; E and Yu, 2018; Gilmer et al.,
2017; Holland, Baeder, and Duraisamy, 2019; Raissi, Perdikaris, and George E
Karniadakis, 2019; Zhu and Zabaras, 2018; Smith, Azizzadenesheli, and Ross, 2020).
In particular, there is a substantial number of articles which investigate the use of
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neural networks as surrogate models, and more specifically for obtaining the solution
of (possibly parametric) PDEs.

We summarize the two most prevalent existing neural network based strategies in
the approximation of PDEs in general, and parametric PDEs specifically. The first
approach can be thought of as image-to-image regression. The goal is to approximate
the parametric solution operator mapping elements of X to Y . This is achieved
by discretizing both spaces to obtain finite-dimensional input and output spaces of
dimension K. We assume to have access to data in the form of observations of input
x and output y discretized on K-points within the domain D. The methodology then
proceeds by defining a neural network F : RK → RK and regresses the input-to-
output map by minimizing a misfit functional defined using the point values of x and
y on the discretization grid. The articles (Adler and Oktem, 2017; Bhatnagar et al.,
2019; Holland, Baeder, and Duraisamy, 2019; Zhu and Zabaras, 2018; Geist et al.,
2020) apply this methodology for various forward and inverse problems in physics
and engineering, utilizing a variety of neural network architectures in the regression
step; the related paper (Khoo, J. Lu, and Ying, 2017) applies a similar approach,
but the output space is R. This innovative set of papers demonstrate some success.
However, from the perspective of the goals of our work, their approaches are not
robust to mesh-refinement: the neural network is defined as a mapping between two
Euclidean spaces of values on mesh points. The rates of approximation depend on
the underlying discretization and an overhaul of the architecture would be required
to produce results consistent across different discretizations. The papers (L. Lu, Jin,
and George Em Karniadakis, 2019; L. Lu, Jin, Pang, et al., 2020) make a conceptual
step in the direction of interest to us in this paper, as they introduce an architecture
based on a neural network approximation theorem for operators from (T. Chen and
H. Chen, 1995); but as implemented the method still results in parameters which
depend on the mesh used. Applications of this methodology may be found in (Cai
et al., 2020; Mao et al., 2020; C. Lin et al., 2020).

The second approach does not directly seek to find the parametric map from X
to Y but rather is thought of, for fixed x ∈ X , as being a parametrization of the
solution y ∈ Y by means of a deep neural network (Dockhorn, 2019; E and Yu,
2018; Hsieh et al., 2019; Lagaris, Likas, and Fotiadis, 1998; Raissi, Perdikaris, and
George E Karniadakis, 2019; Shin, Darbon, and George Em Karniadakis, 2020).
This methodology parallels collocation methods for the numerical solution of PDEs
by searching over approximation spaces defined by neural networks. The solution of
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the PDE is written as a neural network approximation in which the spatial (or, in
the time-dependent case, spatio-temporal) variables in D are inputs and the solution
is the output. This parametric function is then substituted into the PDE and the
residual is made small by optimization. The resulting neural network may be thought
of as a novel structure which composes the action of the operator Px, for fixed
x, with a neural network taking inputs in D (Raissi, Perdikaris, and George E
Karniadakis, 2019). While this method leads to an approximate solution map defined
on the input domain D (and not on a K−point discretization of the domain), the
parametric dependence of the approximate solution map is fixed. Indeed for a new
input parameter x, one needs to re-train the neural network by solving the associated
optimization problem in order to produce a new map y : D → R; this may be
prohibitively expensive when parametric dependence of the solution is the target
of analysis. Furthermore the approach cannot be made fully data-driven as it needs
knowledge of the underlying PDE, and furthermore the operations required to apply
the differential operator may interact poorly with the neural network approximator
during the back-propagation (adjoint calculation) phase of the optimization.

The work (Ruthotto and Haber, 2019) examines the forward propagation of neural
networks as the flow of a time-dependent PDE, combining the continuous time
formulation of ResNet (Haber and Ruthotto, 2017; Weinan, 2017) with the idea of
neural networks acting on spaces of functions: by considering the initial condition
as a function, this flow map may be thought of as a neural network acting between
infinite-dimensional spaces. The idea of learning PDEs from data using neural
networks, again generating a flow map between infinite dimensional spaces, was
studied in the 1990s in the papers (Krischer et al., 1993; Gonzalez-Garcia, Rico-
Martinez, and Kevrekidis, 1998) with the former using a PCA methodology, and the
latter using the method of lines. More recently the works (J. Hesthaven and Ubbiali,
2018; Wang, Jan S. Hesthaven, and Ray, 2019) also employ a PCA methodology for
the output space but only consider very low dimensional input spaces. Furthermore
the works (Lee and Carlberg, 2020; Fresca, Dede, and Manzoni, 2020; Gonzalez and
Balajewicz, 2018; Fresca, Dede, and Manzoni, 2020) proposed a model reduction
approach for dynamical systems by use of dimension reducing neural networks
(autoencoders). However only a fixed discretization of space is considered, yielding
a method which does not produce a map between two infinite-dimensional spaces.

The development of numerical methods for parametric problems is not, of course,
restricted to the use of neural networks. Earlier works in the engineering literature
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started in the 1970s focused on computational methods which represent PDE solu-
tions in terms of known basis functions that contain information about the solution
structure (Almroth, Stern, and Brogan, 1978; Nagy, 1979). This work led to the
development of the reduced basis method (RBM) which is widely adopted in en-
gineering; see (Barrault et al., 2004; Jan S Hesthaven, Rozza, Stamm, et al., 2016;
Quarteroni, Manzoni, and Negri, 2015) and the references therein. The methodology
was also used for stochastic problems, in which the input space X is endowed with a
probabilistic structure, in (Boyaval et al., 2010). The study of RBMs led to broader
interest in the approximation theory community focusing on rates of convergence
for the RBM approximation of maps between Banach spaces, and in particular maps
defined through parametric dependence of PDEs; see (R. A. DeVore, 2014) for an
overview of this work.

Ideas from model reduction have been combined with data-driven learning in the
sequence of papers (Peherstorfer and Willcox, 2016; McQuarrie, Huang, and Willcox,
2020; Benner et al., 2020; Peherstorfer, 2019; Qian et al., 2020). The setting is the
learning of data-driven approximations to time-dependent PDEs. Model reduction is
used to find a low-dimensional approximation space and then a system of ordinary
differential equations (ODEs) is learned in this low-dimensional latent space. These
ODEs are assumed to have vector fields from a known class with unknown linear
coefficients; learning is thus reduced to a least squares problem. The known vector
fields mimic properties of the original PDE (for example are restricted to linear
and quadratic terms for the equations of geophysical fluid dynamics); additionally
transformations may be used to render the original PDE in a desirable form (such as
having only quadratic nonlinearities.)

The development of theoretical analyses to understand the use of neural networks to
approximate PDEs is currently in its infancy, but interesting results are starting to
emerge (Herrmann, Ch Schwab, and Zech, 2020; Kutyniok et al., 2019; Christoph
Schwab and Jakob Zech, 2019; Laakmann and Petersen, 2020). A recurrent theme
in the analysis of neural networks, and in these papers in particular, is that the
work typically asserts the existence of a choice of neural network parameters which
achieve a certain approximation property; because of the non-convex optimization
techniques used to determine the network parameters, the issue of finding these
parameters in practice is rarely addressed. Recent works take a different perspective
on data-driven approximation of PDEs, motivated by small-data scenarios; see the
paper (Albert Cohen, Dahmen, and Ron DeVore, 2020) which relates, in part, to
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earlier work focused on the small-data setting (Binev et al., 2017; Maday et al.,
2015). These approaches are more akin to data assimilation (Reich and Cotter, 2015;
Law, Andrew Stuart, and Zygalakis, 2015) where the data is incorporated into a
model.

Our Contribution
The primary contributions of this paper are as follows:

1. we propose a novel data-driven methodology capable of learning mappings
between Hilbert spaces;

2. the proposed method combines model reduction with neural networks to obtain
algorithms with controllable approximation errors as maps between Hilbert
spaces;

3. as a result of this approximation property of maps between Hilbert spaces, the
learned maps exhibit desirable mesh-independence properties;

4. we prove that our architecture is sufficiently rich to contain approximations of
arbitrary accuracy, as a mapping between function spaces;

5. we present numerical experiments that demonstrate the efficacy of the pro-
posed methodology, demonstrate desirable mesh-indepence properties, eluci-
date its properties beyond the confines of the theory, and compare with other
methods for parametric PDEs.

Section 4.2 outlines the approximation methodology, which is based on use of prin-

cipal component analysis (PCA) in a Hilbert space to finite-dimensionalize the input
and output spaces, and a neural network between the resulting finite-dimensional
spaces. Section 4.3 contains statement and proof of our main approximation result,
which invokes a global Lipschitz assumption on the map to be approximated. In
Section 4.4 we present our numerical experiments, some of which relax the global
Lipschitz assumption, and others which involve comparisons with other approaches
from the literature. Section 4.5 contains concluding remarks, including directions
for further study. We also include auxiliary results in the appendix that complement
and extend the main theoretical developments of the article. Appendix 4.6 extends
the analysis of Section 4.3 from globally Lipschitz maps to locally Lipschitz maps
with controlled growth rates. Appendix 4.7 contains supporting lemmas that are
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used throughout the paper while Appendix 4.8 proves an analyticity result pertaining
to the solution map of the Poisson equation that is used in one of the numerical
experiments in Section 4.4.

4.2 Proposed Method
Our method combines PCA-based dimension reduction on the input and output
spaces X ,Y with a neural network that maps the dimension-reduced spaces. After
a pre-amble in Subsection 4.2, giving an overview of our approach, we continue
in Subsection 4.2 with a description of PCA in the Hilbert space setting, including
intuition about its approximation quality. Subsection 4.2 gives the background on
neural networks needed for this paper, and Subsection 4.2 compares our methodology
to existing methods.

Overview
Let X , Y be separable Hilbert spaces and Ψ : X → Y be some, possibly nonlinear,
map. Our goal is to approximate Ψ from a finite collection of evaluations {xj, yj}Nj=1

where yj = Ψ(xj). We assume that the xj are i.i.d. with respect to (w.r.t.) a
probability measure µ supported on X . Note that with this notation the output
samples yj are i.i.d. w.r.t. the push-forward measure Ψ]µ. The approximation of
Ψ from the data {xj, yj}Nj=1 that we now develop should be understood as being
designed to be accurate with respect to norms defined by integration with respect to
the measures µ and Ψ]µ on the spaces X and Y respectively.

Instead of attempting to directly approximate Ψ, we first try to exploit possible
finite-dimensional structure within the measures µ and Ψ]µ. We accomplish this
by approximating the identity mappings IX : X → X and IY : Y → Y by a
composition of two maps, known as the encoder and the decoder in the machine
learning literature (Hinton and Salakhutdinov, 2006; Goodfellow, Bengio, and
Courville, 2016), which have finite-dimensional range and domain, respectively. We
will then interpolate between the finite-dimensional outputs of the encoders, usually
referred to as the latent codes. Our approach is summarized in Figure 41.

Here, FX and FY are the encoders for the spaces X ,Y respectively, whilst GX and
GY are the decoders, and ϕ is the map interpolating the latent codes. The intuition
behind Figure 41, and, to some extent, the main focus of our analysis, concerns the



108

X RdX X

Y RdY Y

FX

Ψ

GX

ϕ Ψ

FY GY

Figure 41: A diagram summarizing various maps of interest in our proposed approach
for the approximation of input-output maps between infinite-dimensional spaces.

quality of the the approximations

GX ◦ FX ≈ IX , (4.2a)

GY ◦ FY ≈ IY , (4.2b)

GY ◦ ϕ ◦ FX ≈ Ψ. (4.2c)

In order to achieve (4.2c) it is natural to choose ϕ as

ϕ := FY ◦Ψ ◦GX ; (4.3)

then the approximation (4.2c) is limited only by the approximations (4.2a), (4.2b)
of the identity maps on IX and IY . We further label the approximation in (4.2c) by

ΨPCA := GY ◦ ϕ ◦ FX , (4.4)

since we later choose PCA as our dimension reduction method. We note that ΨPCA

is not used in practical computations since ϕ is generally unknown. To make it
practical we replace ϕ with a data-driven approximation χ ≈ ϕ obtaining,

ΨNN := GY ◦ χ ◦ FX . (4.5)

Later we choose χ to be a neural network, hence the choice of the subscript NN.
The combination of PCA for the encoding/decoding along with the neural network
approximation χ for ϕ, forms the basis of our computational methodology.

The compositions GX ◦ FX and GY ◦ FY are commonly referred to as autoen-

coders. There is a large literature on dimension-reduction methods (Pearson, 1901;
Schölkopf, Smola, and Müller, 1998; Coifman et al., 2005; Belkin and Niyogi, 2003;
Hinton and Salakhutdinov, 2006) both classical and rooted in neural networks. In
this work, we will focus on PCA which is perhaps one of the simplest such methods
known (Pearson, 1901). We make this choice due to its simplicity of implementation,
excellent numerical performance on the problems we study in Section 4.4, and its
amenability to analysis. The dimension reduction in the input and output spaces
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is essential, as it allows for function space algorithms that make use of powerful
finite-dimensional approximation methods, such as the neural networks we use here.

Many classical dimension reduction methods may be seen as encoders. But not all
are as easily inverted as PCA—often there is no unambiguous, or no efficient, way to
obtain the decoder. Whilst neural network based methods such as deep autoencoders
(Hinton and Salakhutdinov, 2006) have shown empirical success in finite dimensional
applications they currently lack theory and practical implementation in the setting of
function spaces, and are therefore not currently suitable in the context of the goals
of this paper.

Nonetheless methods other than PCA are likely to be useful within the general
goals of high or infinite-dimensional function approximation. Indeed, with PCA, we
approximate the solution manifold (image space) of the operator Ψ by the linear

space defined in equation (4.8). We emphasize however that, usually, Ψ is a nonlinear
operator and our approximation succeeds by capturing the induced nonlinear input-
output relationship within the latent codes by using a neural network. We will
show in Section 4.3 that the approximation error of the linear space to the solution
manifold goes to zero as the dimension increases, however, this decay may be very
slow (Albert Cohen and Ronald DeVore, 2015; R. A. DeVore, 1998). Therefore,
it may be beneficial to construct nonlinear dimension reducing maps such as deep
autoencoders on function spaces. We leave this as an interesting direction for future
work.

Regarding the approximation of ϕ by neural networks, we acknowledge that there
is considerable scope for the construction of the neural network, within different
families and types of networks, and potentially by using other approximators. For
our theory and numerics however we will focus on relatively constrained families of
such networks, described in the following Subsection 4.2.

PCA On Function Space
Since we will perform PCA on both X and Y , and since PCA requires a Hilbert
space setting, the development here is in a generic real, separable Hilbert space
H with inner-product and norm denoted by 〈·, ·〉 and ‖ · ‖ respectively. We let ν
denote a probability measure supported onH, and make the assumption of a finite
fourth moment: Eu∼ν‖u‖4 < ∞. We denote by {uj}Nj=1 a finite collection of N
i.i.d. draws from ν that will be used as the training data on which PCA is based.
Later we apply the PCA methodology in two distinct settings where the spaceH is



110

taken to be the input space X and the data {uj} are the input samples {xj} drawn
from the input measure µ, orH is taken to be the output space Y and the data {uj}
are the corresponding outputs {yj = Ψ(xj)} drawn from the push-forward measure
Ψ]µ. The following exposition, and the subsequent analysis in Section 4.3, largely
follows the works (Blanchard, Bousquet, and Zwald, 2007; J. Shawe-Taylor et al.,
2005; John Shawe-Taylor et al., 2002). We will consider the standard version of
non-centered PCA, although more sophisticated versions such as kernel PCA have
been widely used and analyzed (Schölkopf, Smola, and Müller, 1998) and could be
of potential interest within the overall goals of this work. We choose to work in the
non-kernelized setting as there is an unequivocal way of producing the decoder.

For any subspace V ⊆ H, denote by ΠV : H → V the orthogonal projection
operator and define the empirical projection error,

RN(V ) :=
1

N

N∑
j=1

‖uj − ΠV uj‖2. (4.6)

PCA consists of projecting the data onto a finite-dimensional subspace of H for
which this error is minimal. To that end, consider the empirical, non-centered

covariance operator

CN :=
1

N

N∑
j=1

uj ⊗ uj (4.7)

where ⊗ denotes the outer product. It may be shown that CN is a non-negative,
self-adjoint, trace-class operator on H, of rank at most N (Zeidler, 2012). Let
φ1,N , . . . φN,N denote the eigenvectors of CN and λ1,N ≥ λ2,N ≥ · · · ≥ λN,N ≥ 0

its corresponding eigenvalues in decreasing order. Then for any d ≥ 1 we define the
PCA subspaces

Vd,N = span{φ1,N , φ2,N , . . . , φd,N} ⊂ H. (4.8)

It is well known (Murphy, 2012, Thm. 12.2.1) that Vd,N solves the minimization
problem

min
V ∈Vd

RN(V ),

where Vd denotes the set of all d-dimensional subspaces ofH. Furthermore

RN(Vd,N) =
N∑

j=d+1

λj,N , (4.9)

hence the approximation is controlled by the rate of decay of the spectrum of CN .
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With this in mind, we define the PCA encoder FH : H → Rd as the mapping from
H to the coefficients of the orthogonal projection onto Vd,N namely,

FH(u) = (〈u, φ1,N〉, . . . , 〈u, φd,N〉)T ∈ Rd. (4.10)

Correspondingly, the PCA decoder GH : Rd → H constructs an element of H by
taking as its input the coefficients constructed by FH and forming an expansion in
the empirical basis by zero-padding the PCA basis coefficients, that is

GH(s) =
d∑
j=1

sjφj,N ∀s ∈ Rd. (4.11)

In particular,

(GH ◦ FH)(u) =
d∑
j=1

〈u, φj,N〉φj,N , equivalently GH ◦ FH =
d∑
j=1

φj,N ⊗ φj,N .

Hence GH ◦ FH = ΠVd,N , a d-dimensional approximation to the identity IH.

We will now give a qualitative explanation of this approximation to be made quanti-
tative in Subsection 4.3. It is natural to consider minimizing the infinite data analog
of (4.6), namely the projection error

R(V ) := Eu∼ν‖u− ΠV u‖2, (4.12)

over Vd for d ≥ 1. Assuming ν has a finite second moment, there exists a unique,
self-adjoint, non-negative, trace-class operator C : H → H termed the non-centered

covariance such that 〈v, Cz〉 = Eu∼ν [〈v, u〉〈z, u〉], ∀v, z ∈ H (see (Baxendale,
1976)). From this, one readily finds the form of C by noting that

〈v,Eu∼ν [u⊗ u]z〉 = Eu∼ν [〈v, (u⊗ u)z〉] = Eu∼ν [〈v, u〉〈z, u〉], (4.13)

implying that C = Eu∼ν [u⊗ u]. Moreover, it follows that

tr C = Eu∼ν [tr u⊗ u] = Eu∼ν‖u‖2 <∞.

Let φ1, φ2, . . . denote the eigenvectors of C and λ1 ≥ λ2 ≥ . . . the corresponding
eigenvalues. In the infinite data setting (N =∞) it is natural to think of C and its
first d eigenpairs as known. We then define the optimal projection space

Vd = span{φ1, φ2, . . . , φd}. (4.14)
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It may be verified that Vd solves the minimization problem minV ∈Vd R(V ) and that
R(Vd) =

∑∞
j=d+1 λj.

With this infinite data perspective in mind observe that PCA makes the approximation
Vd,N ≈ Vd from a finite dataset. The approximation quality of Vd,N w.r.t. Vd is related
to the approximation quality of φj by φj,N for j = 1, . . . , N and therefore to the
approximation quality of C by CN . Another perspective is via the Karhunen-Loeve
Theorem (KL) (Lord, Powell, and Shardlow, 2014). For simplicity, assume that ν is
mean zero, then u ∼ ν admits an expansion of the form u =

∑∞
j=1

√
λjξjφj where

{ξj}∞j=1 is a sequence of scalar-valued, mean zero, pairwise uncorrelated random
variables. We can then truncate this expansion and make the approximations

u ≈
d∑
j=1

√
λjξjφj ≈

d∑
j=1

√
λj,Nξjφj,N ,

where the first approximation corresponds to using the optimal projection subspace
Vd while the second approximation replaces Vd with Vd,N . Since it holds that
ECN = C, we expect λj ≈ λj,N and φj ≈ φj,N . These discussions suggest that the
quality of the PCA approximation is controlled, on average, by the rate of decay of
the eigenvalues of C, and the approximation of the eigenstructure of C by that of
CN .

Neural Networks
A neural network is a nonlinear function χ : Rn → R defined by a sequence of
compositions of affine maps with point-wise nonlinearities. In particular,

χ(s) = Wtσ(. . . σ(W2σ(W1s+ b1) + b2)) + bt, s ∈ Rn, (4.15)

whereW1, . . . ,Wt are weight matrices (that are not necessarily square) and b1, . . . , bt

are vectors, referred to as biases. We refer to t ≥ 1 as the depth of the neural network.
The function σ : Rd → Rd is a monotone, nonlinear activation function that is
defined from a monoton function σ : R→ R applied entrywise to any vector in Rd

with d ≥ 1. Note that in (4.15) the input dimension of σ may vary between layers
but regardless of the input dimension the function σ applies the same operations
to all entries of the input vector. We primarily consider the Rectified Linear Unit
(ReLU) activation functions, i.e.,

σ(s) := (max{0, s1},max{0, s2}, . . . ,max{0, sd})T ∈ Rd ∀s ∈ Rd. (4.16)

The weights and biases constitute the parameters of the network. In this paper we
learn these parameters in the following standard way (LeCun, Bengio, and Hinton,
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2015): given a set of data {xj, yj}Nj=1 we choose the parameters of χ to solve an ap-
propriate regression problem by minimizing a data-dependent cost functional, using
stochastic gradient methods. Neural networks have been demonstrated to constitute
an efficient class of regressors and interpolators for high-dimensional problems
empirically, but a complete theory of their efficacy is elusive. For an overview of
various neural network architectures and their applications, see (Goodfellow, Bengio,
and Courville, 2016). For theories concerning their approximation capabilities see
(Maiorov and Pinkus, 1999; Yarotsky, 2017; Christoph Schwab and Jakob Zech,
2019; Daubechies et al., 2019; Kutyniok et al., 2019).

For the approximation results given in Section 4.3, we will work with a specific class
of neural networks, following (Yarotsky, 2017); we note that other approximation
schemes could be used, however, and that we have chosen a proof setting that aligns
with, but is not identical to, what we implement in the computations described in
Section 4.4. We will fix σ ∈ C(R;R) to be the ReLU function (4.16) and consider
the set of neural networks mapping Rn to R

M(n; t, r) :=


χ(s) = Wtσ(. . . σ(W2σ(W1s+ b1) + b2)) + bt ∈ R,

for all s ∈ Rn and such that
t∑

k=1

|Wk|0 + |bk|0 ≤ r.


Here | · |0 gives the number of non-zero entries in a matrix so that r ≥ 0 denotes the
number of active weights and biases in the network while t ≥ 1 is the total number
of layers. Moreover, we define the class of stacked neural networks mapping Rn to
Rm:

M(n,m; t, r) :=

{
χ(s) = (χ(1)(s), . . . , χ(m)(s))T ∈ Rm,

where χ(j) ∈M(n; t(j), r(j)), with t(j) ≤ t, r(j) ≤ r.

}

From this, we build the set of zero-extended neural networks

M(n,m; t, r,M) :=

{
χ =

{
χ̃(s), s ∈ [−M,M ]n

0, s 6∈ [−M,M ]n

}
, for some χ̃ ∈M(n,m, t, r)

}
,

where the new parameter M > 0 is the side length of the hypercube in Rn within
which χ can be non-zero. This construction is essential to our approximation as
it allows us to handle non-compactness of the latent spaces after PCA dimension
reduction.
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Comparison to Existing Methods
In the general setting of arbitrary encoders, the formula (4.2c) for the approximation
of Ψ yields a complicated map, the representation of which depends on the dimension
reduction methods being employed. However, in the setting where PCA is used, a
clear representation emerges which we now elucidate in order to highlight similarities
and differences between our methodology and existing methods appearing in the
literature.

Let FX : X → RdX be the PCA encoder w.r.t. the data {xj}Nj=1 given by (4.10)
and, in particular, let φX1,N , . . . , φ

X
dX ,N

be the eigenvectors of the resulting empirical
covariance. Similarly let φY1,N , . . . , φ

Y
dY ,N

be the eigenvectors of the empirical co-
variance w.r.t. the data {y}Nj=1. For the function ϕ defined in (4.3), or similarly for
approximations χ thereof found through the use of neural networks, we denote the
components by ϕ(s) = (ϕ1(s), . . . , ϕdY (s)) for any s ∈ RdX . Then (4.2c) becomes
Ψ(x) ≈

∑dY
j=1 αj(x)φYj,N with coefficients

αj(x) = ϕj
(
FX (x)

)
= ϕj

(
〈x, φX1,N〉X , . . . , 〈x, φXdX ,N〉X

)
, ∀x ∈ X .

The solution data {y}Nj=1 fixes a basis for the output space, and the dependence of
Ψ(x) on x is captured solely via the scalar-valued coefficients αj . This parallels the
formulation of the classical reduced basis method (R. A. DeVore, 2014) where the
approximation is written as

Ψ(x) ≈
m∑
j=1

αj(x)φj. (4.17)

Many versions of the method exist, but two particularly popular ones are: (i) when
m = N and φj = yj; and (ii) when, as is done here, m = dY and φj = φYj,N .
The latter choice is also referred to as the reduced basis with a proper orthogonal
decomposition.

The crucial difference between our method and the RBM is in the formation of the co-
efficients αj . In RBM these functions are obtained in an intrusive manner by approx-
imating the PDE within the finite-dimensional reduced basis and as a consequence
the method cannot be used in a setting where a PDE relating inputs and outputs is not
known, or may not exist. In contrast, our proposed methodology approximates ϕ by
regressing or interpolating the latent representations {FX (xj), FY(yj)}Nj=1. Thus our
proposed method makes use of the entire available dataset and does not require ex-
plicit knowledge of the underlying PDE mapping, making it a non-intrusive method
applicable to black-box models.
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The form (4.17) of the approximate solution operator can also be related to the
Taylor approximations developed in (Chkifa et al., 2013; Albert Cohen, Ronald
DeVore, and Christoph Schwab, 2010) where a particular form of the input x is
considered, namely x = x̄+

∑
j≥1 ajx̃j where x̄ ∈ X is fixed, {aj}j≥1 ∈ `∞(N;R)

are uniformly bounded, and {x̃j}j≥1 ∈ X have some appropriate norm decay. Then,
assuming that the solution operator Ψ : X → Y is analytic (Cohen, DeVore, and
Schwab, 2011), it is possible to make use of the Taylor expansion

Ψ(x) =
∑
h∈F

αh(x)ψh,

where F = {h ∈ N∞ : |h|0 <∞} is the set of multi-indices and

αh(x) =
∏
j≥1

a
hj
j ∈ R, ψh =

1

h!
∂hΨ(0) ∈ Y ;

here the differentiation ∂h is with respect to the sequence of coefficients {aj}j≥1.
Then Ψ is approximated by truncating the Taylor expansion to a finite subset of
F . For example this may be done recursively, by starting with h = 0 and building
up the index set in a greedy manner. The method is not data-driven, and requires
knowledge of the PDE to define equations to be solved for the ψh.

4.3 Approximation Theory
In this section, we prove our main approximation result: given any ε > 0, we can
find an ε−approximation ΨNN of Ψ. We achieve this by making the appropriate
choice of PCA truncation parameters, by choosing sufficient amounts of data, and
by choosing a sufficiently rich neural network architecture to approximate ϕ by χ.

In what follows we define FX to be a PCA encoder given by (4.10), using the input
data {xj}Nj=1 drawn i.i.d. from µ, and GY to be a PCA decoder given by (4.11),
using the data {yj = Ψ(xj)}Nj=1. We also define

eNN(x) = ‖(GY ◦ χ ◦ FX )(x)−Ψ(x)‖Y
= ‖ΨNN(x)−Ψ(x)‖Y .

We prove the following theorem:

Theorem 22. Let X , Y be real, separable Hilbert spaces and let µ be a probability

measure supported on X such that Ex∼µ‖x‖4
X < ∞. Suppose Ψ : X → Y is

a µ-measurable, globally Lipschitz map. For any ε > 0, there are dimensions

dX = dX (ε) ∈ N, dY = dY(ε) ∈ N, a requisite amount of dataN = N(dX , dY) ∈ N,
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parameters t, r,M depending on dX , dY and ε, and a zero-extended stacked neural

network χ ∈M(dX , dY ; t, r,M) such that

E{xj}∼µEx∼µ
(
eNN(x)2

)
< ε.

Remark 23. This theorem is a consequence of Theorem 26 which we state and prove

below. For clarity and ease of exposition we state and prove Theorem 26 in a setting

where Ψ is globally Lipschitz. With a more stringent moment condition on µ, the

result can also be proven when Ψ is locally Lipschitz; we state and prove this result

in Theorem 27.

Remark 24. The neural network χ ∈M(dX , dY ; t, r,M) has maximum number of

layers t ≤ c[log(M2dY/ε)+1], with the number of active weights and biases in each

component of the network r ≤ c(ε/4M2)−dX /2[log(M2dY/ε) + 1], with an appro-

priate constant c = c(dX , dY) ≥ 0 and support side-length M = M(dX , dY) > 0.

These bounds on t and r follow from Theorem 26 with τ = ε
1
2 . Note, however,

that in order to achieve error ε, the dimensions dX , dY must be chosen to grow as

ε→ 0; thus the preceding statements do not explicitly quantify the needed number

of parameters, and depth, for error ε; to do so would require quantifying the de-

pendence of c,M on dX , dY (a property of neural networks) and the dependence of

dX , dY on ε (a property of the measure µ and spaces X ,Y – see Theorem 25). The

theory in (Yarotsky, 2017), which we employ for the existence result for the neural

network produces the constant c which depends on the dimensions dX and dY in an

unspecified way.

The double expectation reflects averaging over all possible new inputs x drawn from
µ (inner expectation) and over all possible realizations of the i.i.d. dataset {xj, yj =

Ψ(xj)}Nj=1 (outer expectation). The theorem as stated above is a consequence of
Theorem 26 in which the error is broken into multiple components that are then
bounded separately. Note that the theorem does not address the question of whether
the optimization technique used to fit the neural network actually finds the choice
which realizes the theorem; this gap between theory and practice is difficult to
overcome, because of the non-convex nature of the training problem, and is a
standard feature of theorems in this area (Kutyniok et al., 2019; Christoph Schwab
and Jakob Zech, 2019).

The idea of the proof is to quantify the approximationsGX ◦FX ≈ IX andGY ◦FY ≈
IY and χ ≈ ϕ so that ΨNN given by (4.5) is close to Ψ. The first two approximations,



117

which show that ΨPCA given by (4.4) is close to Ψ, are studied in Subsection 4.3
(see Theorem 25). Then, in Subsection 4.3, we find a neural network χ able to
approximate ϕ to the desired level of accuracy; this fact is part of the proof of
Theorem 26. The zero-extension of the neural network arises from the fact that we
employ a density theorem for a class of neural networks within continuous functions
defined on compact sets. Since we cannot guarantee that FX is bounded, we simply
set the neural network output to zero on the set outside a hypercube with side-length
2M . We then use the fact that this set has small µ-measure, for sufficiently large M.

PCA And Approximation
We work in the general notation and setting of Subsection 4.2 so as to obtain
approximation results that are applicable to both using PCA on the inputs and on
the outputs. In addition, denote by (HS(H), 〈·, ·〉HS, ‖ · ‖HS) the space of Hilbert-
Schmidt operators over H. We are now ready to state the main result of this
subsection. Our goal is to control the projection error R(Vd,N) when using the finite-
data PCA subspace in place of the optimal projection space since the PCA subspace
is what is available in practice. Theorem 25 accomplishes this by bounding the
error R(Vd,N) by the optimal error R(Vd) plus a term related to the approximation
Vd,N ≈ Vd. While previous results such as (Blanchard, Bousquet, and Zwald, 2007;
J. Shawe-Taylor et al., 2005; John Shawe-Taylor et al., 2002) focused on bounds
for the excess error in probability w.r.t. the data, we present bounds in expectation,
averaging over the data. Such bounds are weaker, but allow us to remove strict
conditions on the data distribution to obtain more general results; for example, our
theory allows for ν to be a Gaussian measure.

Theorem 25. Let R be given by (4.12) and Vd,N , Vd by (4.8), (4.14) respectively.

Then there exists a constant Q ≥ 0, depending only on the data generating measure

ν, such that

E{uj}∼ν [R(Vd,N)] ≤
√
Qd

N
+R(Vd),

where the expectation is over the dataset {uj}Nj=1
iid∼ ν.

The proof generalizes that employed in (Blanchard, Bousquet, and Zwald, 2007,
Thm. 3.1). We first find a bound on the average excess error E[R(Vd,N)−RN(Vd,N)]

using Lemma 29. Then using Fan’s Theorem (Fan, 1949) (Lemma 28), we bound
the average sum of the tail eigenvalues of CN by the sum of the tail eigenvalues of
C, in particular, E[RN(Vd,N)] ≤ R(Vd).
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Proof. For brevity we simply write E instead of E{uj}∼ν throughout the proof. For
any subspace V ⊆ H, we have

R(V ) = Eu∼ν [‖u‖2 − 2〈u,ΠV u〉+ 〈ΠV u,ΠV u〉] = Eu∼ν [tr (u⊗ u)− 〈ΠV u,ΠV u〉]

= Eu∼ν [tr (u⊗ u)− 〈ΠV , u⊗ u〉HS] = tr C − 〈ΠV , C〉HS

where we used two properties of the fact that ΠV is an orthogonal projection operator,
namely Π2

V = ΠV = Π∗V and

〈ΠV , v ⊗ z〉HS = 〈v,ΠV z〉 = 〈ΠV v,ΠV z〉 ∀v, z ∈ H.

Repeating the above arguments for RN(V ) in place of R(V ), with the expectation
replaced by the empirical average, yields RN(V ) = tr CN−〈ΠV , CN〉HS. By noting
that E[CN ] = C we then write

E[R(Vd,N)−RN(Vd,N)] = E〈ΠVd,N , CN − C〉HS ≤
√
d E‖CN − C‖HS

≤
√
d
√
E‖CN − C‖2

HS

where we used Cauchy-Schwarz twice along with the fact that ‖ΠVd,N‖HS =
√
d

since Vd,N is d-dimensional. Now by Lemma 29, which quantifies the Monte Carlo
error between C and CN in the Hilbert-Schmidt norm, we have that

E[R(Vd,N)−RN(Vd,N)] ≤
√
Qd

N
,

for a constant Q ≥ 0. Hence by(4.9),

E[R(Vd,N)] ≤
√
Qd

N
+ E

N∑
j=d+1

λj,N .

It remains to estimate the second term above. Letting Sd denote the set of subspaces
of d orthonormal elements inH, Fan’s Theorem (Proposition 28) gives

d∑
j=1

λj = max
{v1,...,vd}∈Sd

d∑
j=1

〈Cvj, vj〉 = max
{v1,...,vd}∈Sd

Eu∼ν
d∑
j=1

|〈u, vj〉|2

= max
{v1,...,vd}∈Sd

Eu∼ν
d∑
j=1

‖Πspan{vj}u‖2 = max
V ∈Vd

Eu∼ν‖ΠV u‖2

= Eu∼ν‖u‖2 − min
V ∈Vd

Eu∼ν‖ΠV ⊥u‖2.

Observe that
∑∞

j=1 λj = tr C = Eu∼ν‖u‖2 and so

∞∑
j=d+1

λj = Eu∼ν‖u‖2 −
d∑
j=1

λj = min
V ∈Vd

Eu∼ν‖ΠV ⊥u‖2.
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We now repeat the above calculations for λj,N , the eigenvalues of CN , by replacing
the expectation with the empirical average to obtain

N∑
j=d+1

λj,N = min
V ∈Vd

1

N

N∑
k=1

‖ΠV ⊥uk‖2,

and so

E
N∑

j=d+1

λj,N ≤ min
V ∈Vd

E
1

N

N∑
k=1

‖ΠV ⊥uk‖2 = min
V ∈Vd

Eu∼µ‖ΠV ⊥u‖2 =
∞∑

j=d+1

λj.

Finally, we conclude that

E[R(Vd,N)] ≤
√
Qd

N
+

∞∑
j=d+1

λj =

√
Qd

N
+R(Vd).

Neural Networks And Approximation
In this subsection we study the approximation of ϕ given in (4.3) by neural networks,
combining the analysis with results from the preceding subsection to prove our main
approximation result, Theorem 26. We will work in the notation of Section 4.2.
We assume that (X , 〈·, ·〉X , ‖ · ‖X ) and (Y , 〈·, ·〉Y , ‖ · ‖Y) are real, separable Hilbert
spaces; µ is a probability measure supported on X with a finite fourth moment
Ex∼µ‖x‖4

X < ∞, and Ψ : X → Y is measurable and globally L-Lipschitz: there
exists a constant L > 0 such that

∀x, z ∈ X ‖Ψ(x)−Ψ(z)‖Y ≤ L‖x− z‖X .

Note that this implies that Ψ is linearly bounded: for any x ∈ X

‖Ψ(x)‖Y ≤ ‖Ψ(0)‖Y + ‖Ψ(x)−Ψ(0)‖Y ≤ ‖Ψ(0)‖Y + L‖x‖X .

Hence we deduce existence of the fourth moment of the pushforward Ψ]µ:

Ey∼Ψ]µ‖y‖4
Y =

∫
X
‖Ψ(x)‖4

Ydµ(x) ≤
∫
X

(‖Ψ(0)‖Y + L‖x‖X )4dµ(x) <∞

since we assumed Ex∼µ‖x‖4
X <∞.

Let us recall some of the notation from Subsections 4.2 and 4.2. Let V XdX be the
dX -dimensional optimal projection space given by (4.14) for the measure µ and
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V XdX ,N be the dX -dimensional PCA subspace given by (4.8) with respect to the input
dataset {xj}Nj=1. Similarly let V YdY be the dY-dimensional optimal projection space
for the pushforward measure Ψ]µ and V YdY ,N be the dY-dimensional PCA subspace
with respect to the output dataset {yj = Ψ(xj)}Nj=1. We then define the input PCA
encoder FX : X → RdX by (4.10) and the input PCA decoder GX : RdX → X by
(4.11) both with respect to the orthonormal basis used to construct V XdX ,N . Similarly
we define the output PCA encoder FY : Y → RdY and decoder GY : RdY → Y
with respect to the orthonormal basis used to construct V YdY ,N . Finally we recall
ϕ : RdX → RdY the map connecting the two latent spaces defined in (4.3). The
approximation ΨPCA to Ψ based only on the PCA encoding and decoding is given by
(4.4). In the following theorem, we prove the existence of a neural network giving
an ε-close approximation to ϕ for fixed latent code dimensions dX , dY and quantify
the error of the full approximation ΨNN , given in (4.5), to Ψ. We will be explicit
about which measure the projection error is defined with respect to. In particular, we
will write (4.12) as

Rµ(V ) = Ex∼µ‖x− ΠV x‖2
X

for any subspace V ⊆ X and similarly

RΨ]µ(V ) = Ey∼Ψ]µ‖y − ΠV y‖2
Y

for any subspace V ⊆ Y .

Theorem 26. Let X , Y be real, separable Hilbert spaces and let µ be a probability

measure supported on X such that Ex∼µ‖x‖4
X < ∞. Suppose Ψ : X → Y is a µ-

measurable, globally Lipschitz map. Fix dX , dY , N ≥ max{dX , dY}, δ ∈ (0, 1) and

τ > 0. DefineM =
√

Ex∼µ‖x‖2
X/δ. Then there exists a constant c = c(dX , dY) ≥ 0

and a zero-extended stacked neural network χ ∈ M(dX , dY ; t, r,M) with t ≤
c(dX , dY)[log(M

√
dY/τ) + 1] and r ≤ c(dX , dY)(τ/2M)−dX [log(M

√
dY/τ) + 1],

so that

E{xj}∼µEx∼µ
(
eNN(x)

)2 ≤ C

(
τ 2 +

√
δ +

√
dX
N

+Rµ(V XdX ) +

√
dY
N

+RΨ]µ(V YdY )

)
,

(4.18)
where C > 0 is independent of dX , dY , N, δ, and τ .

The first two terms on the r.h.s. arise from the neural network approximation of ϕ
while the last two pairs of terms are from the finite-dimensional approximation of
X and Y respectively as prescribed by Theorem 25. The way to interpret the result
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is as follows: first choose dX , dY so that Rµ(V XdX ) and RΨ]µ(V YdY ) are small—these
are intrinsic properties of the measures µ and Ψ]µ; secondly, choose the amount of
data N large enough to make max{dX , dY}/N small, essentially controlling how
well we approximate the intrinsic covariance structure of µ and Ψ]µ using samples;
thirdly choose δ small enough to control the error arising from restricting the domain
of ϕ; and finally choose τ sufficiently small to control the approximation of ϕ by
a neural network restricted to a compact set. Note that the size and values of the
parameters of the neural network χ will depend on the choice of δ as well as dX , dY
and N in a manner which we do not specify. In particular, the dependence of c
on dX , dY is not explicit in the theorem of (Yarotsky, 2017) which furnishes the
existence of the requisite neural network χ. The parameter τ specifies the error
tolerance between χ and ϕ on [−M,M ]dX . Intuitively, as (δ, τ) → 0, we expect
the number of parameters in the network to also grow (Maiorov and Pinkus, 1999).
Quantifying this growth would be needed to fully understand the computational
complexity of our method.

Proof. Recall the constant Q from Theorem 25. In what follows we take Q to be the
maximum of the two such constants when arising from application of the theorem
on the two different probability spaces (X , µ) and (Y ,Ψ]µ). Through the proof we
use E to denote E{xj}∼µ the expectation with respect to the dataset {xj}Nj=1.

We begin by approximating the error incurred by using ΨPCA given by (4.4):

EEx∼µ‖ΨPCA(x)−Ψ(x)‖2
Y

= EEx∼µ‖(GY ◦ FY ◦Ψ ◦GX ◦ FX )(x)−Ψ(x)‖2
Y

= EEx∼µ
∥∥∥ΠV YdY ,N

Ψ(ΠV XdX ,N
x)−Ψ(x)

∥∥∥2

Y

≤ 2EEx∼µ
∥∥∥ΠV YdY ,N

Ψ(ΠV XdX ,N
x)− ΠV YdY ,N

Ψ(x)
∥∥∥2

Y

+ 2EEx∼µ
∥∥∥ΠV YdY ,N

Ψ(x)−Ψ(x)
∥∥∥2

Y

≤ 2L2EEx∼µ
∥∥∥ΠV XdX ,N

x− x
∥∥∥2

X
+ 2EEy∼Ψ]µ

∥∥∥ΠV YdY ,N
y − y

∥∥∥2

Y

= 2L2E[Rµ(V XdX ,N)] + 2E[RΨ]µ(V YdY ,N)]

(4.19)

noting that the operator norm of an orthogonal projection is 1. Theorem 25 allows
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us to control this error, and leads to

EEx∼µ
(
eNN(x)2

)
= EEx∼µ‖ΨNN(x)−Ψ(x)‖2

Y

≤ 2EEx∼µ‖ΨNN(x)−ΨPCA(x)‖2
Y + 2EEx∼µ‖ΨPCA(x)−Ψ(x)‖2

Y

≤ 2Ex∼µ‖ΨNN(x)−ΨPCA(x)‖2
Y

+ 4L2

(√
QdX
N

+Rµ(V XdX )

)
+ 4

(√
QdY
N

+RΨ]µ(V YdY )

)
.

(4.20)

We now approximateϕ by a neural network χ as a step towards estimating ‖ΨNN(x)−
ΨPCA(x)‖Y . To that end we first note from Lemma 30 that ϕ is Lipschitz, and
hence continuous, as a mapping from RdX into RdY . Identify the components
ϕ(s) = (ϕ(1)(s), . . . , ϕ(dY )(s)) where each function ϕ(j) ∈ C(RdX ;R). We consider
the restriction of each component function to the set [−M,M ]dX . Let us now change
variables by defining ϕ̃(j) : [0, 1]dX → R by ϕ̃(j)(s) = (1/2M)ϕ(j)(2Ms−M) for
any s ∈ [0, 1]dX . Note that equivalently we have ϕ(j)(s) = 2Mϕ̃(j)((s+M)/2M)

for any s ∈ [−M,M ]dX and further ϕ(j) and ϕ̃(j) have the same Lipschitz constants
on their respective domains. Applying (Yarotsky, 2017, Thm. 1) to the ϕ̃(j)(s) then
yields existence of neural networks χ̃(1), . . . , χ̃(dY ) : [0, 1]dX → R such that

|χ̃(j)(s)− ϕ̃(j)(s)| < τ

2M
√
dY

∀s ∈ [0, 1]dX ,

for any j ∈ {1, . . . , dY}. In fact, each neural network χ̃(j) ∈M(dX ; t(j), r(j)) with
parameters t(j) and r(j) satisfying

t(j) ≤ c(j)
[
log(M

√
dY/τ) + 1

]
, r(j) ≤ c(j)

( τ

2M

)−dX [
log(M

√
dY/τ) + 1

]
,

with constants c(j)(dX ) > 0. Hence defining χ(j) : RdX → R by χ(j)(s) :=

2Mχ̃(j)((s+M)/2M) for any s ∈ [−M,M ]dX , we have that∣∣(χ(1)(s), . . . , χ(dY )(s)
)
− ϕ(s)

∣∣
2
< τ ∀s ∈ [−M,M ]dX .

We can now simply define χ : RdX → RdY as the stacked network (χ(1), . . . , χdY )

extended by zero outside of [−M,M ]dX to immediately obtain

sup
s∈[−M,M ]dX

∣∣χ(s)− ϕ(s)
∣∣
2
< τ. (4.21)

Thus, by construction χ ∈ M(dX , dY , t, r,M) with at most t ≤ maxj t
(j) many

layers and r ≤ r(j) many active weights and biases in each of its components.
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Let us now define the set A = {x ∈ X : FX (x) ∈ [−M,M ]dX }. By Lemma 31,
µ(A) ≥ 1− δ and µ(Ac) ≤ δ. Define the approximation error

ePCA(x) = ‖ΨNN(x)−ΨPCA(x)‖Y

and decompose its expectation as

Ex∼µ
(
ePCA(x)2

)
=

∫
A

ePCA(x)2dµ(x)︸ ︷︷ ︸
:=IA

+

∫
Ac
ePCA(x)2dµ(x)︸ ︷︷ ︸

:=IAc

.

For the first term,

IA ≤
∫
A

‖(GY ◦ χ ◦ FX )(x)− (GY ◦ ϕ ◦ FX )(x)‖2
Ydµ(x) ≤ τ 2, (4.22)

by using the fact, established in Lemma 30, that GY is Lipschitz with Lipschitz
constant 1, the τ -closeness of χ to ϕ from (4.21), and µ(A) ≤ 1. For the second
term we have, using that GY has Lipschitz constant 1 and that χ vanishes on Ac,

IAc ≤
∫
Ac
‖(GY ◦ χ ◦ FX )(x)− (GY ◦ ϕ ◦ FX )(x)‖2

Ydµ(x)

≤
∫
Ac
|χ(FX (x))− ϕ(FX (x))|22dµ(x) =

∫
Ac
|ϕ(FX (x))|22dµ(x).

(4.23)

Once more from Lemma 30, we have that

|FX (x)|2 ≤ ‖x‖X ; |ϕ(x)|2 ≤ |ϕ(0)|2 + L|x|2,

so that

IAc ≤ 2
(
µ(Ac)|ϕ(0)|22 + µ(Ac)

1
2L2(Ex∼µ‖x‖4

X )
1
2

)
,

≤ 2
(
δ|ϕ(0)|22 + δ

1
2L2(Ex∼µ‖x‖4

X )
1
2

)
.

(4.24)

Combining (4.20), (4.22), and (4.24), we obtain the desired result.

4.4 Numerical Results
We now present a series of numerical experiments that demonstrate the effectiveness
of our proposed methodology in the context of the approximation of parametric
PDEs. We work in settings which both verify our theoretical results and show
that the ideas work outside the confines of the theory. The key idea underlying
our work is to construct the neural network architecture so that it is defined as a

map between Hilbert spaces and only then to discretize and obtain a method that
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(a) µG (b) µL (c) µP (d) µB

Figure 42: Representative samples for each of the probability measures µG, µL, µP,
and µB defined in Subsection 4.4. µG and µP are used in Subsection 4.4 to model the
inputs, µL and µP are used in Subsection 4.4, and µB is used in Subsection 4.4.

is implementable in practice; prevailing methodologies first discretize and then
apply a standard neural network. Our approach leads, when discretized, to methods
that have properties which are uniform with respect to the mesh size used. We
demonstrate this through our numerical experiments. In practice, we obtain an
approximation Ψnum to ΨNN , reflecting the numerical discretization used, and the
fact that µ and its pushforward under Ψ are only known to us through samples and,
in particular, samples of the pushforward of µ under the numerical approximation of
the input-output map. However since, as we will show, our method is robust to the
discretization used, we will not explicitly reflect the dependence of the numerical
method in the notation that appears in the remainder of this section.

In Subsection 4.4 we introduce a class of parametric elliptic PDEs arising from the
Darcy model of flow in porous media, as well as the time-dependent, parabolic,
Burgers’ equation, that define a variety of input-output maps for our numerical
experiments; we also introduce the probability measures that we use on the input
spaces. Subsection 4.4 presents numerical results for a Lipschitz map. Subsections
4.4, 4.4 present numerical results for the Darcy flow problem and the flow map
for the Burgers’ equation; this leads to non-Lipschitz input-output maps, beyond
our theoretical developments. We emphasize that while our method is designed for
approximating nonlinear operators Ψ, we include some numerical examples where
Ψ is linear. Doing so is helpful for confirming some of our theory and comparing
against other methods in the literature. Note that when Ψ is linear, each piece in the
approximate decomposition (4.4) is also linear, in particular, ϕ is linear. Therefore
it is sufficient to parameterize ϕ as a linear map (matrix of unknown coefficients)
instead of a neural network. We include such experiments in Section 4.4 revealing
that, while a neural network approximating ϕ arbitrarily well exists, the optimization
methods used for training the neural network fail to find it. It may therefore be
beneficial to directly build into the parametrization known properties of ϕ, such as
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(a) Input (b) Ground Truth (c) Approximation (d) Error

(e) Input (f) Ground Truth (g) Approximation (h) Error

(i) Input (j) Ground Truth (k) Approximation (l) Error

(m) Input (n) Ground Truth (o) Approximation (p) Error

(q) Input (r) Ground Truth (s) Approximation (t) Error

Figure 43: Randomly chosen examples from the test set for each of the five con-
sidered problems. Each row is a different problem: linear elliptic, Poisson, Darcy
flow with log-normal coefficients, Darcy flow with piecewise constant coefficients,
and Burgers’ equation respectively from top to bottom. The approximations are
constructed with our best performing method (for N = 1024): Linear d = 150,
Linear d = 150, NN d = 70, NN d = 70, and NN d = 15 respectively from top to
bottom.

linearity, when they are known. We emphasize that, for general nonlinear maps,
linear methods significantly underperform in comparison with our neural network
approximation and we will demonstrate this for the Darcy flow problem, and for
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Burgers’ equation.

We use standard implementations of PCA, with dimensions specified for each compu-
tational example below. All computational examples use an identical neural network
architecture: a 5-layer dense network with layer widths 500, 1000, 2000, 1000, 500,
ordered from first to last layer, and the SELU nonlinearity (Klambauer et al., 2017).
We note that Theorem 26 requires greater depth for greater accuracy but that we
have found our 5-layer network to suffice for all of the examples described here.
Thus we have not attempted to optimize the architecture of the neural network. We
use stochastic gradient descent with Nesterov momentum (0.99) to train the network
parameters (Goodfellow, Bengio, and Courville, 2016), each time picking the largest
learning rate that does not lead to blow-up in the error. While the network must be
re-trained for each new choice of reduced dimensions dX , dY , initializing the hidden
layers with a pre-trained network can help speed up convergence.

PDE Setting
We will consider a variety of solution maps defined by second order elliptic PDEs
of the form (4.1). which are prototypical of many scientific applications. We
take D = (0, 1)2 to be the unit box, a ∈ L∞(D;R+), f ∈ L2(D;R), and let
u ∈ H1

0 (D;R) be the unique weak solution of (4.1). Note that, since D is bounded,
L∞(D;R+) is continuously embedded within the Hilbert space L2(D;R+). We will
consider two variations of the input-output map generated by the solution operator
for (4.1); in one, it is Lipschitz and lends itself to the theory of Subsection 4.3 and,
in the other, it is not Lipschitz. We obtain numerical results which demonstrate our
theory as well as demonstrating the effectiveness of our proposed methodology in
the non-Lipschitz setting.

Furthermore, we consider the one-dimensional viscous Burgers’ equation on the
torus given as

∂

∂t
u(s, t) +

1

2

∂

∂s
(u(s, t))2 = β

∂2

∂s2
u(s, t), (s, t) ∈ T1 × (0,∞)

u(s, 0) = u0(s), s ∈ T1

(4.25)

where β > 0 is the viscosity coefficient and T1 is the one dimensional unit torus
obtained by equipping the interval [0, 1] with periodic boundary conditions. We take
u0 ∈ L2(T1;R) and have that, for any t > 0, u(·, t) ∈ Hr(T1;R) for any r > 0 is
the unique weak solution to (4.25) (Temam, 2012). In Subsection 4.4, we consider
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the input-output map generated by the flow map of (4.25) evaluated at a fixed time
which is a locally Lipschitz operator.

We make use of four probability measures which we now describe. The first,
which will serve as a base measure in two dimensions, is the Gaussian µG =

N (0, (−∆ + 9I)−2) with a zero Neumann boundary condition on the operator ∆.
Then we define µL to be the log-normal measure defined as the push-forward of µG

under the exponential map, i.e. µL = exp] µG. Furthermore, we define µP = T]µG to
be the push-forward of µG under the piecewise constant map

T (s) =

{
12 s ≥ 0,

3 s < 0.

Lastly, we consider the Gaussian µB = N (0, 74(− d2

ds2
+ 72I)−2.5) defined on T1.

Figure 42 shows an example draw from each of the above measures. We will use
as µ one of these four measures in each experiment we conduct. Such probability
measures are commonly used in the stochastic modeling of physical phenomenon
(Lord, Powell, and Shardlow, 2014). For example, µP may be thought of as modeling
the permeability of a porous medium containing two different constituent parts
(Iglesias, K. Lin, and A.M. Stuart, 2014). Note that it is to be expected that a good
choice of architecture will depend on the probability measure used to generate the
inputs. Indeed good choices of the reduced dimensions dX and dY are determined
by the input measure and its pushforward under Ψ, respectively.

For each subsequently described problem we use, unless stated otherwise, N = 1024

training examples from µ and its pushforward under Ψ, from which we construct
ΨNN , and then 5000 unseen testing examples from µ in order to obtain a Monte
Carlo estimate of the relative test error:

Ex∼µ
‖(G2 ◦ χ ◦ F1)(x)−Ψ(x)‖Y

‖Ψ(x)‖Y
.

For problems arising from (4.1), all data is collected on a uniform 421× 421 mesh
and the PDE is solved with a second order finite-difference scheme. For problems
arising from (4.25), all data is collected on a uniform 4096 point mesh and the PDE is
solved using a pseudo-spectral method. Data for all other mesh sizes is sub-sampled
from the original. We refer to the size of the discretization in one direction e.g. 421,
as the resolution. We fix dX = dY (the dimensions after PCA in the input and output
spaces) and refer to this as the reduced dimension. We experiment with using a
linear map as well as a dense neural network for approximating ϕ; in all figures we
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(a) (b) (c)

Figure 44: Relative test errors on the linear elliptic problem. Using N = 1024
training examples, panel (a) shows the errors as a function of the resolution while
panel (b) fixes a 421× 421 mesh and shows the error as a function of the reduced
dimension. Panel (c) only shows results for our method using a neural network,
fixing a 421×421 mesh and showing the error as a function of the reduced dimension
for different amounts of training data.

distinguish between these by referring to Linear or NN approximations respectively.
When parameterizing with a neural network, we use the aforementioned stochastic
gradient based method for training, while, when parameterizing with a linear map,
we simply solve the linear least squares problem by the standard normal equations.

We also compare all of our results to the work of (Zhu and Zabaras, 2018) which
utilizes a 19-layer fully-connected convolutional neural network, referencing this
approach as Zhu within the text. This is done to show that the image-to-image
regression approach that many such works utilize yields approximations that are not
consistent in the continuum, and hence across different discretizations; in contrast,
our methodology is designed as a mapping between Hilbert spaces and as a conse-
quence is robust across different discretizations. For some problems in Subsection
4.4, we compare to the method developed in (Chkifa et al., 2013), which we refer
to as Chkifa. For the problems in Subsection 4.4, we also compare to the reduced
basis method (R. A. DeVore, 2014; Quarteroni, Manzoni, and Negri, 2015) when
instantiated with PCA. We note that both Chkifa and the reduced basis method
are intrusive, i.e., they need knowledge of the governing PDE. Furthermore the
method of Chkifa needs full knowledge of the generating process of the inputs. We
re-emphasize that our proposed method is fully data-driven.

Globally Lipschitz Solution Map
We consider the input-output map Ψ : L2(D;R) → H1

0 (D;R) mapping f 7→ u

in (4.1) with the coefficient a fixed. Since (4.1) is a linear PDE, Ψ is linear and
therefore Lipschitz. We study two instantiations of this problem. In the first, we
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(a) (b) (c)

Figure 45: Relative test errors on the Poisson problem. Using N = 1024 training
examples, panel (a) shows the errors as a function of the resolution while panel (b)
fixes a 421× 421 mesh and shows the error as a function of the reduced dimension.
Panel (c) only shows results for our method using a neural network, fixing a 421×421
mesh and showing the error as a function of the reduced dimension for different
amounts of training data.

(a) (b) (c)

Figure 46: Panel (a) shows a sample drawn from the model (4.26) while panel (b)
shows the solution of the Poisson equation with the sample from (a) as the r.h.s.
Panel (c) shows the relative test error as a function of the amount of PDE solves/
training data for the method of Chkifa and our method respectively. We use the
reduced dimension d = N .

draw a single a ∼ µP and fix it. We then solve (4.1) with data f ∼ µG. We refer to
this as the linear elliptic problem. See row 1 of Figure 43 for an example. In the
second, we set a(w) = 1 ∀w ∈ D, in which case (4.1) becomes the Poisson equation
which we solve with data f ∼ µ = µG. We refer to this as the Poisson problem. See
row 2 of Figure 43 for an example.

Figure 44 (a) shows the relative test errors as a function of the resolution on the
linear elliptic problem, while Figure 45 (a) shows them on the Poisson problem. The
primary observation to make about panel (a) in these two figures is that it shows
that the error in our proposed method does not change as the resolution changes.
In contrast, it also shows that the image-to-image regression approach of Zhu (Zhu
and Zabaras, 2018), whilst accurate at low mesh resolution, fails to be invariant
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to the size of the discretization and errors increase in an uncontrolled fashion as
greater resolution is used. The fact that our dimension reduction approach achieves
constant error as we refine the mesh, reflects its design as a method on Hilbert space
which may be approximated consistently on different meshes. Since the operator
Ψ here is linear, the true map of interest ϕ given by (4.3) is linear since FY and
GX are, by the definition of PCA, linear. It is therefore unsurprising that the linear
approximation consistently outperforms the neural network, a fact also demonstrated
in panel (a) of the two figures. While it is theoretically possible to find a neural
network that can, at least, match the performance of the linear map, in practice,
the non-convexity of the associated optimization problem can cause non-optimal
behavior. Panels (b) of Figures 44 and 45 show the relative error as a function of
the reduced dimension for a fixed mesh size. We see that while the linear maps
consistently improve with the reduced dimension, the neural networks struggle as the
complexity of the optimization problem is increased. This problem can usually be
alleviated with the addition of more data as shown in panels (c), but there are still no
guarantees that the optimal neural network is found. Since we use a highly-nonlinear
5-layer network to represent the linear ϕ, this issue is exacerbated for this problem
and the addition of more data only slightly improves the accuracy as seen in panels
(c). In Appendix 4.9, we show the relative test error during the training process and
observe that some overfitting occurs, indicating that the optimization problem is
stuck in a local minima away from the optimal linear solution. This is an issue that
is inherent to most deep neural network based methods. Our results suggest that
building in a priori information about the solution map, such as linearity, can be
very beneficial for the approximation scheme as it can help reduce the complexity of
the optimization.

To compare to the method of Chkifa (Chkifa et al., 2013), we will assume the
following model for the inputs,

f =
∞∑
j=1

ξjφj (4.26)

where ξj ∼ U(−1, 1) is an i.i.d. sequence, and φj =
√
λjψj where λj, ψj are

the eigenvalues and eigenfunctions of the operator (−∆ + 100I)−4.1 with a zero
Neumann boundary. This construction ensures that there exists p ∈ (0, 1) such that
(‖φj‖L∞)j≥1 ∈ `p(N;R) which is required for the theory in (Cohen, DeVore, and
Schwab, 2011). We assume this model for f , the r.h.s. of the Poisson equation, and
consider the solution operator Ψ : `∞(N;R) → H1

0 (D;R) mapping (ξj)j≥1 7→ u.
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Figure 46 panels (a)-(b) show an example input from (4.26) and its corresponding
solution u. Since this operator is linear, its Taylor series representation simply
amounts to

Ψ((ξj)j≥1) =
∞∑
j=1

ξjηj (4.27)

where ηj ∈ H1
0 (D;R) satisfy

−∆ηj = φj.

This is easily seen by plugging in our model (4.26) for f into the Poisson equa-
tion and formally inverting the Laplacian. We further observe that the `1(N;R)

summability of the sequence (‖ηj‖H1
0
)j≥1 (inherited from (‖φj‖L∞)j≥1 ∈ `p(N;R))

implies that our power series (4.27) is summable in H1
0 (D;R). Combining the two

observations yields analyticity of Ψ with the same rates as in (Cohen, DeVore, and
Schwab, 2011) obtained via Stechkin’s inequality. For a proof, see Theorem 32.

We employ the method of Chkifa simply by truncation of (4.27) to d elements, noting
that in this simple linear setting there is no longer a need for greedy selection of the
index set. We note that this truncation requires d PDE solves of the Poisson equation
hence we compare to our method when using N = d data points, since this also
counts the number of PDE solves. Since the problem is linear, we use a linear map
to interpolate the PCA latent spaces and furthermore set the reduced dimension of
our PCA(s) to N . Panel (c) of Figure 46 shows the results. We see that the method
of Chkifa outperforms our method for any fixed number of PDE solves, although the
empirical rate of convergence appears very similar for both methods. Furthermore
we highlight that while our method appears to have a larger error constant than that
of Chkifa, it has the advantage that it requires no knowledge of the model 4.26 or of
the Poisson equation; it is driven entirely by the training data.

Darcy Flow
We now consider the input-output map Ψ : L∞(D;R+) → H1

0 (D;R) mapping
a 7→ u in (4.1) with f(s) = 1 ∀s ∈ D fixed. In this setting, the solution operator
is nonlinear and is locally Lipschitz as a mapping from L∞(D;R+) to H1

0 (D;R)

(Dashti, Harris, and A.M. Stuart, 2012). However our results require a Hilbert
space structure, and we view the solution operator as a mapping from L2(D;R+) ⊃
L∞(D;R+) into H1

0 (D;R+), noting that we will choose the probability measure
µ on L2(D;R+) to satisfy µ(L∞(D;R+)) = 1. In this setting, Ψ is not locally
Lipschitz and hence Theorem 26 is not directly applicable. Nevertheless, our
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(a) (b) (c)

Figure 47: Relative test errors on the Darcy flow problem with log-normal coeffi-
cients. Using N = 1024 training examples, panel (a) shows the errors as a function
of the resolution while panel (b) fixes a 421 × 421 mesh and shows the error as a
function of the reduced dimension. Panel (c) only shows results for our method
using a neural network, fixing a 421× 421 mesh and showing the error as a function
of the reduced dimension for different amounts of training data.

(a) (b) (c)

Figure 48: Relative test errors on the Darcy flow problem with piecewise constant
coefficients. Using N = 1024 training examples, panel (a) shows the errors as a
function of the resolution while panel (b) fixes a 421 × 421 mesh and shows the
error as a function of the reduced dimension. Panel (c) only shows results for our
method using a neural network, fixing a 421× 421 mesh and showing the error as a
function of the reduced dimension for different amounts of training data.

methodology exhibits competitive numerical performance. See rows 3 and 4 of
Figure 43 for an example.

Figure 47 (a) shows the relative test errors as a function of the resolution when
a ∼ µ = µL is log-normal while Figure 48 (a) shows them when a ∼ µ = µP is
piecewise constant. In both settings, we see that the error in our method is invariant
to mesh-refinement. Since the problem is nonlinear, the neural network outperforms
the linear map. However we see the same issue as in Figure 44 where increasing
the reduced dimension does not necessarily improve the error due to the increased
complexity of the optimization problem. Panels (b) of Figures 47 and 48 confirm
this observation. This issue can be alleviated with additional training data. Indeed,
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(a) Online (b) Offline

Figure 49: The online and offline computation times for the Darcy flow problem
with piecewise constant coefficients. The number of training examples N = 1024
and grid resolution 421× 421 are fixed. The results are reported in seconds and all
computations are done on a single GTX 1080 Ti GPU.

(a) µL (b) µP

Figure 410: Relative test errors on both Darcy flow problems with reduced dimension
d = 70, training on a single mesh and transferring the solution to other meshes.
When the training mesh is smaller than the desired output mesh, the PCA basis are
interpolated using cubic splines. When the training mesh is larger than the desired
output mesh, the PCA basis are sub-sampled.

panels (c) of Figures 47 and 48 show that the error curve is flattened with more data.
We highlight that these results are consistent with our interpretation of Theorem 22:
the reduced dimensions dX , dY are determined first by the properties of the measure
µ and its pushforward, and then the amount of data necessary is obtained to ensure
that the finite data approximation error is of the same order of magnitude as the
finite-dimensional approximation error. In summary, the size of the training dataset
N should increase with the number of reduced dimensions.
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For this problem, we also compare to the reduced basis method (RB) when instanti-
ated with PCA. We implement this by a standard Galerkin projection, expanding the
solution in the PCA basis and using the weak form of (4.1) to find the coefficients.
We note that the errors of both methods are very close, but we find that the online
runtime of our method is significantly better. Letting K denote the mesh-size and
d the reduced dimension, the reduced basis method has a runtime of O(d2K + d3)

while our method has the runtime O(dK) plus the runtime of the neural network
which, in practice, we have found to be negligible. We show the online inference
time as well as the offline training time of the methods in Figure 49. While the
neural network has the highest offline cost, its small online cost makes it a more
practical method. Indeed, without parallelization when d = 150, the total time
(online and offline) to compute all 5000 test solutions is around 28 hours for the
RBM. On the other hand, for the neural network, it is 28 minutes. The difference
is pronounced when needing to compute many solutions in parallel. Since most
modern architectures are able to internally parallelize matrix-matrix multiplication,
the total time to train and compute the 5000 examples for the neural network is only
4 minutes. This issue can however be slightly alleviated for the reduced basis method
with more stringent multi-core parallelization. We note that the linear map has the
lowest online cost and only a slightly worse offline cost than the RBM. This makes
it the most suitable method for linear operators such as those presented in Section
4.4 or for applications where larger levels of approximation error can be tolerated.

We again note that the image-to-image regression approach of (Zhu and Zabaras,
2018) does not scale with the mesh size. We do however acknowledge that for
the small meshes for which the method was designed, it does outperform all other
approaches. This begs the question of whether one can design neural networks
that match the performance of image-to-image regression but remain invariant with
respect to the size of the mesh. The contemporaneous work (Li et al., 2020) takes a
step in this direction.

Lastly, we show that our method also has the ability to transfer a solution learned on
one mesh to another. This is done by interpolating or sub-sampling both of the input
and output PCA basis from the training mesh to the desired mesh. Justifying this
requires a smoothness assumption on the PCA basis; we are, however, not aware
of any such results and believe this is an interesting future direction. The neural
network is fixed and does not need to be re-trained on a new mesh. We show this in
Figure 410 for both Darcy flow problems. We note that when training on a small
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(a) (b) (c)

Figure 411: Relative test errors on the Burgers’ Equation problem. Using N = 1024
training examples, panel (a) shows the errors as a function of the resolution while
panel (b) fixes a 4096 mesh and shows the error as a function of the reduced
dimension. Panel (c) only shows results for our method using a neural network,
fixing a 4096 mesh and showing the error as a function of the reduced dimension for
different amounts of training data.

mesh, the error increases as we move to larger meshes, reflecting the interpolation
error of the basis. Nevertheless, this increase is rather small: as shown in Figure
410, we obtain a 3% and a 1% relative error increasing when transferring solutions
trained on a 61× 61 grid to a 421× 421 grid on each respective Darcy flow problem.
On the other hand, when training on a large mesh, we see almost no error increase
on the small meshes. This indicates that the neural network learns a property that is
intrinsic to the solution operator and independent of the discretization.

Burgers’ Equation
We now consider the input-output map Ψ : L2(T1;R) → Hr(T1;R) mapping
u0 7→ u|t=1 in (4.25) with β = 10−2 fixed. In this setting, Ψ is nonlinear and locally
Lipschitz but since we do not know the precise Lipschitz constant as defined in
Appendix 4.6, we cannot verify that the assumptions of Theorem 27 hold; neverthe-
less the numerical results demonstrate the effectiveness of our methodology. We
take u0 ∼ µ = µB; see rows 5 of Figure 43 for an example. Figure 411 (a) shows
the relative test errors as a function of the resolution again demonstrating that our
method is invariant to mesh-refinement. We note that, for this problem, the linear
map does significantly worse than the neural network in contrast to the Darcy flow
problem where the results were comparable. This is likely attributable to the fact that
the solution operator for Burgers’ equation is more strongly nonlinear. As before, we
observe from Figure 411 panel (b) that increasing the reduced dimension does not
necessarily improve the error due to the increased complexity of the optimization
problem. This can again be mitigated by increasing the volume of training data, as
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indicated in Figure 411(c); the curve of error versus reduced dimension is flattened
as N increases.

4.5 Conclusion
In this paper, we proposed a general data-driven methodology that can be used to
learn mappings between separable Hilbert spaces. We proved consistency of the
approach when instantiated with PCA in the setting of globally Lipschitz forward
maps. We demonstrated the desired mesh-independent properties of our approach on
parametric PDE problems, showing good numerical performance even on problems
outside the scope of the theory.

This work leaves many interesting directions open for future research. To understand
the interplay between the reduced dimension and the amount of data needed requires
a deeper understanding of neural networks and their interaction with the optimization
algorithms used to produce the approximation architecture. Even if the optimal
neural network is found by that optimization procedure, the question of the number
of parameters needed to achieve a given level of accuracy, and how this interacts
with the choice of reduced dimensions dX and dY (choice of which is determined
by the input space probability measure), warrants analysis in order to reveal the
computational complexity of the proposed approach. Furthermore, the use of PCA
limits the scope of problems that can be addressed to Hilbert, rather than general
Banach spaces; even in Hilbert space, PCA may not be the optimal choice of
dimension reduction. The development of autoenconders on function space is a
promising direction that has the potential to address these issues; it also has many
potential applications that are not limited to deployment within the methodology
proposed here. Finally we also wish to study the use of our methodology in more
challenging PDE problems, such as those arising in materials science, as well as
for time-dependent problems such as multi-phase flow in porous media. Broadly
speaking we view our contribution as a first step in the development of methods
that generalize the ideas and applications of neural networks by operating on, and
between, spaces of functions.

4.6 Neural Networks And Approximation (Locally Lipschitz Case)
This extends the approximation theory of Subsection 4.3 to the case of solution maps
Ψ : X → Y that are µ-measurable and locally Lipschitz in the following sense

∀x, z ∈ X ‖Ψ(x)−Ψ(z)‖Y ≤ L(x, z)‖x− z‖X . (4.28)
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where the function L : X × X → R+ is symmetric in its arguments, i.e., L(x, z) =

L(z, x), and for any fixed w ∈ X the function L(·, w) : X → R+ is µ-measurable
and non-decreasing in the sense that L(s, w) ≤ L(x,w) if ‖x‖X ≥ ‖w‖X . Note that
this implies that Ψ is locally bounded: for any x ∈ X

‖Ψ(x)‖Y ≤ ‖Ψ(0)‖Y + ‖Ψ(x)−Ψ(0)‖Y ≤ ‖Ψ(0)‖Y + L(x, 0)‖x‖X .

Hence we deduce that the pushforward Ψ]µ has bounded fourth moments provided
that Ex∼µ(L(x, 0)‖x‖X )4 < +∞:

Ey∼Ψ]µ‖y‖4
Y =

∫
X
‖Ψ(x)‖4

Ydµ(x) ≤
∫
X

(‖Ψ(0)‖Y + L(x, 0)‖x‖X )4dµ(x)

≤ 23

(
‖Ψ(0)‖Y +

∫
X
L(x, 0)4‖x‖4

Xdµ(x)

)
<∞,

where we used a generalized triangle inequality proven in (Takahasi et al., 2010, Cor.
3.1).

Theorem 27. Let X , Y be real, separable Hilbert spaces, Ψ a mapping from X into

Y and let µ be a probability measure supported on X such that

Ex∼µL(x, x)2 < +∞, Ex∼µL(x, 0)2‖x‖2
X <∞,

where L(·, ·) is given in (4.28). Fix dX , dY , N ≥ max{dX , dY}, δ ∈ (0, 1), τ > 0

and define M =
√

Ex∼µ‖x‖2
X/δ. Then there exists a constant c(dX , dY) ≥ 0 and

neural network χ ∈ M(dX , dY ; t, r,M) with t ≤ c(log(
√
dY/τ) + 1) layers and

r ≤ c(ε−dX log(
√
dY/τ) + 1) active weights and biases in each component, so that

E{xj}∼µEx∼µ
(
eNN(x)

)
≤ C

(
τ +
√
δ

+

(√
dX
N

+Rµ(V XdX )

)1/2

+

(√
dY
N

+RΨ]µ(V YdY )

)1/2)
,

(4.29)
where eNN(x) := ‖ΨNN(x)−Ψ(x)‖Y and C > 0 is independent of dX , dY , N, δ and

ε.

Proof. Our method of proof is similar to the proof of Theorem 26 and for this
reason we shorten some of the arguments. Recall the constant Q from Theorem
25. In what follows we take Q to be the maximum of the two such constants when
arising from application of the theorem on the two different probability spaces (X , µ)
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and (Y ,Ψ]µ). As usual we employ the shorthand notation E to denote E{xj}∼µ the
expectation with respect to the dataset {xj}Nj=1.

We begin by approximating the error incurred by using ΨPCA given by (4.4):

EEx∼µ‖ΨPCA(x)−Ψ(x)‖Y = EEx∼µ‖(GY ◦ FY ◦Ψ ◦GX ◦ FX )(x)−Ψ(x)‖Y

= EEx∼µ
∥∥∥ΠV YdY ,N

Ψ(ΠV XdX ,N
x)−Ψ(x)

∥∥∥
Y

≤ EEx∼µ
∥∥∥ΠV YdY ,N

Ψ(ΠV XdX ,N
x)− ΠV YdY ,N

Ψ(x)
∥∥∥
Y

+ EEx∼µ
∥∥∥ΠV YdY ,N

Ψ(x)−Ψ(x)
∥∥∥
Y

≤ EEx∼µL(ΠV XdX ,N
x, x)

∥∥∥ΠV XdX ,N
x− x

∥∥∥
X

+ EEy∼Ψ]µ

∥∥∥ΠV YdY ,N
y − y

∥∥∥
Y
,

(4.30)

noting that the operator norm of an orthogonal projection is 1. Now since L(·, x)

is non-decreasing we infer that L(ΠV XdX ,N
x, x) ≤ L(x, x) and then using Cauchy-

Schwarz we obtain

EEx∼µ‖ΨPCA(x)−Ψ(x)‖Y ≤
(
Ex∼µ|L(x, x)|2

)1/2
(
EEx∼µ

∥∥∥ΠV XdX ,N
x− x

∥∥∥2

X

)1/2

+ EEy∼Ψ]µ

∥∥∥ΠV YdY ,N
y − y

∥∥∥
Y
,

= L′
(
ERµ(V XdX ,N)

)1/2
+
(
E[RΨ]µ(V YdY ,N)]

)1/2

(4.31)

where we used Hölder’s inequality in the last line and defined the new constant
L′ := (Ex∼µ|L(x, x)|2)

1/2
. Theorem 25 allows us to control this error, and leads to

EEx∼µeNN ≤ EEx∼µ‖ΨNN(x)−ΨPCA(x)‖Y + EEx∼µ‖ΨPCA(x)−Ψ(x)‖Y
≤ Ex∼µ‖ΨNN(x)−ΨPCA(x)‖Y

+ L′

(√
QdX
N

+Rµ(V XdX )

)1/2

+

(√
QdY
N

+RΨ]µ(V YdY )

)1/2

.

(4.32)

We now approximate ϕ by a neural network χ as before. To that end we first note
from Lemma 30 that ϕ is locally Lipschitz, and hence continuous, as a mapping
from RdX into RdY . Identify the components ϕ(s) = (ϕ(1)(s), . . . , ϕ(dY )(s)) where
each function ϕ(j) ∈ C(RdX ;R). We consider the restriction of each component
function to the set [−M,M ]dX .

By (Yarotsky, 2017, Thm. 1) and using the same arguments as in the proof of Theo-
rem 26 there exist neural networks χ(1), . . . , χ(dY ) : RdX → R, χ(j) ∈M(dX ; t(j), r(j)),
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with layer and active weight parameters t(j) and r(j) satisfying

t(j) ≤ c(j)[log(M
√
dY/τ) + 1],

and
r(j) ≤ c(j)(τ/2M)−dX [log(M

√
dY/τ) + 1]

with constants c(j)(dX ) > 0, so that∣∣(χ(1)(s), . . . , χ(dY )(s)
)
− ϕ(s)

∣∣
2
< τ ∀s ∈ [−M,M ]dX .

We now simply define χ : RdX → RdY as the stacked network (χ(1), . . . , χdY )

extended by zero outside of [−M,M ]dX to immediately obtain

sup
s∈[−M,M ]dX

∣∣χ(s)− ϕ(s)
∣∣
2
< τ. (4.33)

Thus, by construction χ ∈ M(dX , dY , t, r,M) with at most t ≤ maxj t
(j) many

layers and r ≤ r(j) many active weights and biases in each of its components.

Define the set A = {x ∈ X : FX (x) ∈ [−M,M ]dX }. By Lemma 31 below, µ(A) ≥
1 − δ and µ(Ac) ≤ δ. Define the approximation error ePCA(x) := ‖ΨNN(x) −
ΨPCA(x)‖Y and decompose its expectation as

Ex∼µ[ePCA(x)] =

∫
A

ePCA(x)dµ(x) +

∫
Ac
ePCA(x)dµ(x) =: IA + IAc .

For the first term,

IA ≤
∫
A

‖(GY ◦ χ ◦ FX )(x)− (GY ◦ ϕ ◦ FX )(x)‖Ydµ(x) ≤ τ, (4.34)

by using the fact, established in Lemma 30, that GY is Lipschitz with Lipschitz
constant 1, the τ -closeness of χ to ϕ from (4.33), and µ(A) ≤ 1. For the second
term we have, using that GY has Lipschitz constant 1 and that χ takes value zero on
Ac,

IAc ≤
∫
Ac
‖(GY ◦ χ ◦ FX )(x)− (GY ◦ ϕ ◦ FX )(x)‖Ydµ(x)

≤
∫
Ac
|χ(FX (x))− ϕ(FX (x))|2dµ(x) =

∫
Ac
|ϕ(FX (x))|2dµ(x).

(4.35)

Once more from Lemma 30 we have that

|FX (x)|2 ≤ ‖x‖X ; |ϕ(v)|2 ≤ |ϕ(0)|2 + L(GX (v), 0)|v|2
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so that, using the hypothesis on L and global Lipschitz property of FX and GX we
can write

IAc ≤ µ(Ac)|ϕ(0)|2 +

∫
Ac
L(x, 0)|FX (x)|2dµ(x)

≤ µ(Ac)|ϕ(0)|2 +

∫
Ac
L(x, 0)‖x‖Xdµ(x)

≤ µ(Ac)|ϕ(0)|2 + µ(Ac)
1
2

(
Ex∼µL(x, 0)2‖x‖2

X
)1/2

≤ δ|ϕ(0)|2 + δ
1
2L′′

≤
√
δ(|ϕ(0)|2 + L′′)

(4.36)

where L′′ := (Ex∼µL(x, 0)2‖x‖2
X )

1/2. Combining (4.20), (4.22), and (4.24) we
obtain the desired result.

4.7 Supporting Lemmas
In this Subsection we present and prove auxiliary lemmas that are used throughout
the proofs in the article. The proof of Theorem 25 made use of the following
proposition, known as Fan’s Theorem, proved originally in (Fan, 1949). We state
and prove it here in the infinite-dimensional setting as this generalization may be
of independent interest. Our proof follows the steps of Fan’s original proof in the
finite-dimensional setting. The work (Overton and Womersley, 1992), through which
we first became aware of Fan’s result, gives an elegant generalization; however it
is unclear whether that approach is easily applicable in infinite dimensions due to
issues of compactness.

Lemma 28 (Fan (Fan, 1949)). Let (H, 〈·, ·〉, ‖ · ‖) be a separable Hilbert space

and C : H → H a non-negative, self-adjoint, compact operator. Denote by

λ1 ≥ λ2 ≥ . . . the eigenvalues of C and, for any d ∈ N \ {0}, let Sd denote the set

of collections of d orthonormal elements ofH. Then

d∑
j=1

λj = max
{u1,...,ud}∈Sd

d∑
j=1

〈Cuj, uj〉.

Proof. Let φ1, φ2, . . . denote the orthonormal eigenfunctions of C corresponding to
the eigenvalues λ1, λ2, . . . respectively. Note that for {φ1, . . . , φd} ∈ Sd, we have

d∑
j=1

〈Cφj, φj〉 =
d∑
j=1

λj‖φj‖2 =
d∑
j=1

λj.
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Now let {u1, . . . , ud} ∈ Sd be arbitrary. Then for any j ∈ {1, . . . , d}, we have
uj =

∑∞
k=1〈uj, φk〉φk and thus

〈Cuj, uj〉 =
∞∑
k=1

λk|〈uj, φk〉|2

= λd

∞∑
k=1

|〈uj, φk〉|2 +
∞∑

k=d+1

(λk − λd)|〈uj, φk〉|2 +
d∑

k=1

(λk − λd)|〈uj, φk〉|2.

Since ‖uj‖2 = 1, we have ‖uj‖2 =
∑∞

k=1 |〈uj, φk〉|2 = 1 therefore

λd

∞∑
k=1

|〈uj, φk〉|2 +
∞∑

k=d+1

(λk − λd)|〈uj, φk〉|2 = λd

d∑
k=1

|〈uj, φk〉|2 +
∞∑

k=d+1

λk|〈uj, φk〉|2

≤ λd

∞∑
k=1

|〈uj, φk〉|2 = λd

using the fact that λk ≤ λd, ∀k > d. We have shown 〈Cuj, uj〉 ≤ λd +
∑d

k=1(λk −
λd)|〈uj, φk〉|2. Thus

d∑
j=1

(λj − 〈Cuj, uj〉) ≥
d∑
j=1

(
λj − λd −

d∑
k=1

(λk − λd)|〈uj, φk〉|2
)

=
d∑
j=1

(λj − λd)

(
1−

d∑
k=1

|〈uk, φj〉|2
)
.

We now extend the finite set of {uk}dk=1 from a d−dimensional orthonormal set to
an orthonormal basis {uk}∞k=1 forH. Note that λj ≥ λd, ∀j ≤ d and that

d∑
k=1

|〈uk, φj〉|2 ≤
∞∑
k=1

|〈uk, φj〉|2 = ‖φj‖2 = 1

therefore
∑d

j=1(λj − 〈Cuj, uj〉) ≥ 0 concluding the proof.

Theorem 25 relies on a Monte Carlo estimate of the Hilbert-Schmidt distance
between C and CN that we state and prove below.

Lemma 29. Let C be given by (4.13) and CN by (4.7) then there exists a constant

Q ≥ 0, depending only on ν, such that

E{uj}∼ν‖CN − C‖2
HS =

Q

N
.
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Proof. Define C(uj) := uj ⊗ uj for any j ∈ {1, . . . , N} and C(u) := u⊗ u for any
u ∈ H, noting that Eu∼ν [C(u)] = C = Euj∼ν [C(uj)]. Further we note that

Eu∼ν‖C(u)‖2
HS = Eu∼ν‖u‖4 <∞

and, by Jensen’s inequality, ‖C‖2
HS ≤ Eu∼ν‖C(u)‖2

HS <∞. Once again using the
shorthand notation E in place of E{uj}∼ν we compute,

E‖CN − C‖2
HS = E‖ 1

N

N∑
j=1

C(uj) − C‖2
HS = E‖ 1

N

N∑
j=1

C(uj)‖2
HS − ‖C‖2

HS

=
1

N
Eu∼ν‖C(u)‖2

HS +
1

N2

N∑
j=1

N∑
k 6=j

〈E[C(uj)],E[C(uk)]〉HS − ‖C‖2
HS

=
1

N
Eu∼ν‖C(u)‖2

HS +
N2 −N
N2

‖C‖2
HS − ‖C‖2

HS

=
1

N

(
Eu∼ν‖C(u)‖2

HS − ‖C‖2
HS

)
=

1

N
Eu∼ν‖C(u) − C‖2

HS.

Setting Q = Eu∼ν‖C(u) − C‖2
HS completes the proof.

The following lemma, used in the proof of Theorem 26, estimates Lipschitz constants
of various maps required in the proof.

Lemma 30. The maps FX , FY , GX and GY are globally Lipschitz:

|FX (v)− FX (z)|2 ≤ ‖v − z‖X , ∀v, z ∈ X

|FY(v)− FY(v)|2 ≤ ‖v − z‖Y , ∀v, z ∈ Y

‖GX (v)−GX (z)‖X ≤ |v − z|2, ∀v, z ∈ RdX

‖GY(v)−GY(z)‖X ≤ |v − z|2, ∀v, z ∈ RdY .

Furthermore, if Ψ is locally Lipschitz and satisfies

∀x,w ∈ X ‖Ψ(x)−Ψ(w)‖Y ≤ L(x,w)‖x− w‖X ,

with L : X × X → R+ that is symmetric with respect to its arguments, and

increasing in the sense that L(s, w) ≤ L(x,w), if ‖x‖X ≥ ‖s‖X . Then ϕ is also

locally Lipschitz and

|ϕ(v)− ϕ(z)|2 ≤ L(GX (v), GX (z))|v − z|2, ∀v, z ∈ RdX .
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Proof. We establish that FY and GX are Lipschitz and estimate the Lipschitz con-
stants; the proofs for FX and GY are similar. Let φY1,N , . . . , φ

Y
dY ,N

denote the eigen-
vectors of the empirical covariance with respect to the data {yj}Nj=1 which span
V YdY ,N and let φYdY+1,N , φ

Y
dY+2,N , . . . be an orthonormal extension to Y . Then, by

Parseval’s identity,

|FY(v)− FY(z)|22 =

dY∑
j=1

〈v − z, φYj,N〉2Y ≤
∞∑
j=1

〈v − z, φYj,N〉2Y = ‖v − z‖2
Y .

A similar calculation forGX , using φX1,N , . . . , φ
X
dX ,N

the eigenvectors of the empirical
covariance of the data {xj}Nj=1 yields

‖GX (v)−GX (z)‖2
X = ‖

dX∑
j=1

(vj − zj)φXj,N‖2
X =

dX∑
j=1

|vj − zj|2 = |v − z|22

for any v, z ∈ RdX , using the fact that the empirical eigenvectors can be extended to
an orthonormal basis for X . Recalling that ϕ = FY ◦Ψ ◦GX , the above estimates
immediately yield

|ϕ(v)− ϕ(z)|2 ≤ L(GX (v), GX (z))|v − z|2, ∀v, z ∈ RdX .

The following lemma establishes a bound on the size of the set A that was defined in
the proof of Theorems 26 and 27.

Lemma 31. Fix 0 < δ < 1, let x ∼ µ be a random variable and set M =√
Ex∼µ‖x‖2

X/δ. Define FX using the random dataset {xj}Nj=1 ∼ µ then,

P
(
FX (x) 6∈ [−M,M ]dX

)
≤ δ,

where the probability is computed with respect to both x and the xj’s.

Proof. Denote by φX1,N , . . . , φ
X
dX ,N

the orthonormal set used to define V XdX ,N (4.8)
and let φXdX+1,N , φ

X
dX+2,N , . . . be an orthonormal extension of this basis to X . For

any j ∈ {1, . . . , dX}, by Chebyshev’s inequality, we have

Px∼µ(|〈x, φXj,N〉X | ≥M) ≤
Ex∼µ|〈x, φXj,N〉X |2

M2
.
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Note that the expectation is taken only with respect to the randomness in x and
not φX1,N , . . . , φ

X
dX ,N

, so the right hand side is itself a random variable. We further
compute

Px∼µ(|〈x, φX1,N〉X | ≥M, . . . , |〈x, φXdX ,N〉X | ≥M)

≤ 1

M2
Ex∼µ

dX∑
j=1

|〈x, φXj,N〉X |2 ≤
1

M2
Ex∼µ

∞∑
j=1

|〈x, φXj,N〉X |2 =
1

M2
Ex∼µ‖x‖2

X

noting that ‖x‖2
X =

∑∞
j=1 |〈x, ξj〉X |2 for any orthonormal basis {ξj}∞j=1 of X hence

the randomness in φX1,N , φ
X
2,N , . . . is inconsequential. Thus we find that, with P

denoting probability with respect to both x ∼ µ and the random data used to define
FX ,

P(|〈x, φX1,N〉X | ≤M, . . . , |〈x, φXdX ,N〉X | ≤M) ≥ 1− 1

M2
Ex∼µ‖x‖2

X ,= 1− δ

the desired result.

4.8 Analyticity of the Poisson Solution Operator
Define X = {ξ ∈ `∞(N;R) : ‖ξ‖`∞ ≤ 1} and let {φj}∞j=1 be some sequence
of functions with the property that (‖φj‖L∞)j≥1 ∈ `p(N;R) for some p ∈ (0, 1).
Define Ψ : X → H1

0 (D;R) as mapping a set of coefficients ξ = (ξ1, ξ2, . . . ) ∈ X
to u ∈ H1

0 (D;R) the unique weak solution of

−∆u =
∞∑
j=1

ξjφj in D, u|∂D = 0.

Note that since D is a bounded domain and ξ ∈ X , we have that
∑∞

j=1 ξjφj ∈
L2(Ω;R) since our assumption implies (‖φj‖L∞)j≥1 ∈ `1(N;R). Therefore u is
indeed the unique weak-solution of the Poisson equation (Evans, 2010, Chap. 6) and
Ψ is well-defined.

Theorem 32. Suppose that there exists p ∈ (0, 1) such that (‖φj‖L∞)j≥1 ∈ `p(N;R).

Then

lim
K→∞

sup
ξ∈X
‖Ψ(ξ)−

K∑
j=1

ξjηj‖H1
0

= 0

where, for each j ∈ N, ηj ∈ H1
0 (D;R) satisfies

−∆ηj = φj in D, u|∂D = 0.
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Proof. By linearity and Poincaré inequality, we obtain the Lipschitz estimate

‖Ψ(ξ(1))−Ψ(ξ(2))‖H1
0
≤ C‖

∞∑
j=1

(ξ
(1)
j − ξ

(2)
j )φj‖L2 , ∀ξ(1), ξ(2) ∈ X

for some C > 0. Now let ξ = (ξ1, ξ2, . . . ) ∈ X be arbitrary and define the sequence
ξ(1) = (ξ1, 0, 0, . . . ), ξ

(2) = (ξ1, ξ2, 0, . . . ), . . .. Note that, by linearity, for any
K ∈ N, Ψ(ξ(K)) =

∑K
j=1 ξjηj. Then, using our Lipschitz estimate,

‖Ψ(ξ)−Ψ(ξK)‖H1
0
. ‖

∞∑
j=K+1

ξjφj‖L2 .
∞∑

j=K+1

‖φj‖L∞ ≤ K1− 1
p‖(‖φj‖L∞)j≥1‖`p

where the last line follows by Stechkin’s inequality (Cohen, DeVore, and Schwab,
2011, Sec. 3.3). Taking the supremum over ξ ∈ X and the limit K →∞ completes
the proof.

4.9 Error During Training
Figures 412 and 413 show the relative test error computed during the training
process for the problems presented in Section 4.4. For both problems, we observe a
slight amount of overfitting when more training samples are used and the reduced
dimension is sufficiently large. This is because the true map of interest ϕ is linear
while the neural network parameterization is highly non-linear hence more prone to
overfitting larger amounts of data. While this suggests that simpler neural networks
might perform better on this problem, we do not carry out such experiments as our
goal is simply to show that building in a priori information about the problem (here
linearity) can be beneficial as show in Figures 44 and 45.
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(a) N = 1000 (b) N = 2000

(c) N = 4000 (d) N = 5000

Figure 412: Relative test errors as a function of the training epoch on the linear
elliptic problem. The amount of training examples used is varied in each panel.
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(a) N = 1000 (b) N = 2000

(c) N = 4000 (d) N = 5000

Figure 413: Relative test errors as a function of the training epoch on the Poisson
problem. The amount of training examples used is varied in each panel.
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C h a p t e r 5

NEURAL OPERATORS: APPROXIMATING MAPS BETWEEN
FUNCTION SPACES

5.1 Introduction
Learning mappings between infinite-dimensional function spaces is a challenging
problem with widespread potential application across various disciplines. Examples
include numerous differential equation models in science and engineering, in robotics
and in computer vision. Of particular interest are cases where the inputs and/or
outputs are themselves functions over a domain in Euclidean space. The possibility
of learning such mappings opens up a new class of problems in the design of
neural networks with widespread applicability. New ideas are required to build
upon traditional neural networks which are mappings between finite-dimensional
Euclidean spaces and/or sets of finite cardinality.

A naive approach to this problem is simply to discretize the (input or output) function
spaces and apply standard ideas from neural networks. Instead we formulate a
new class of deep neural network based models, called neural operators, which
directly map between spaces of functions on bounded domains D ⊂ Rd, D′ ⊂
Rd′; once designed on function space these maps can be discretized by a variety
of different methods, and at different levels of resolution, to produce families of
finite dimensional networks. Such models, once trained, have the property of
being discretization invariant: it is possible to share the same network parameters
between different discretizations of the underlying functional data. In contrast, the
naive approach leads to neural network architectures which depend heavily on this
discretization: new architectures with new parameters are needed to achieve the same
error for differently discretized data. We demonstrate, numerically, that the same
neural operator can achieve a constant error for any discretization of the data while
standard feed-forward and convolutional neural networks cannot. In the context
of partial differential equations (PDEs) we demonstrate numerically that, at fixed
resolution, the resulting methods are highly competitive when compared with other
neural networks and are orders of magnitude faster than the PDE solvers used to
generate data. Finally we establish a universal approximation theorem for the neural
operators we introduce, proving their ability to approximate linear and non-linear
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operators arbitrary well.

In this paper we study various solution operators or flow maps arising from PDE
models; in particular, we investigate mappings between function spaces where
the input data can be, for example, the initial condition, boundary condition, or
coefficient function, and the output data is the respective solution. We perform
numerical experiments with operators arising from the one-dimensional Poisson
equation (Evans, 2010), the time-dependent one-space-dimensional Burgers’ Equa-
tion (Evans, 2010), two-dimensional steady Darcy Flow (Bear and Corapcioglu,
2012) and the time-dependent two-space dimensional incompressible Navier-Stokes
Equation (Constantin and Foias, 1988; Lemarié-Rieusset, 2018; Temam, 2001).

Subsection 5.1 contains background and context for our work. Subsection 5.1
details our contributions and outlines the contents of the paper. We conclude this
introduction in Subsection 5.1 which provides a literature review.

Background and Context
PDEs. “Differential equations [...] represent the most powerful tool humanity has
ever created for making sense of the material world.” Strogatz (2009). Over the past
few decades, significant progress has been made on formulating (Gurtin, 1982) and
solving (Johnson, 2012) the governing PDEs in many scientific fields from micro-
scale problems (e.g., quantum and molecular dynamics) to macro-scale applications
(e.g., civil and marine engineering). Despite the success in the application of PDEs
to solve real-world problems, two significant challenges remain:

• identifying the governing model for complex systems;

• efficiently solving large-scale nonlinear systems of equations.

Identifying/formulating the underlying PDEs appropriate for modeling a specific
problem usually requires extensive prior knowledge in the corresponding field
which is then combined with universal conservation laws to design a predictive
model. For example, modeling the deformation and failure of solid structures
requires detailed knowledge of the relationship between stress and strain in the
constituent material. For complicated systems such as living cells, acquiring such
knowledge is often elusive and formulating the governing PDE for these systems
remains prohibitive, or the models proposed are too simplistic to be informative.
The possibility of acquiring such knowledge from data can revolutionize these
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fields. Second, solving complicated nonlinear PDE systems (such as those arising
in turbulence and plasticity) is computationally demanding and can often make
realistic simulations intractable. Again the possibility of using instances of data
from such computations to design fast approximate solvers holds great potential for
accelerating numerous problems in computational science and engineering and for
revolutionizing scientific discovery.

Learning PDE Solution Operators. Supervised learning has the potential to
address these challenges when designed in a way that allows for the emulation of
mappings between function spaces (Khoo, J. Lu, and L. Ying, 2017; L. Lu, Jin, and
George Em Karniadakis, 2019; Bhattacharya et al., 2020; Nelsen and Andrew M
Stuart, 2021; Z. Li, Kovachki, et al., 2020a; Z. Li, Kovachki, et al., 2020b; Z. Li,
Kovachki, et al., 2020c; Patel et al., 2021; Opschoor, Christoph Schwab, and Jakob
Zech, 2020; Christoph Schwab and Jakob Zech, 2019; O’Leary-Roseberry et al.,
2020; Wu and Xiu, 2020). In PDE applications, the governing equations are by
definition local, whilst the solution operator exhibits non-local properties. Such non-
local effects can be described by integral operators explicitly in the spatial domain,
or by means of spectral domain multiplication; convolution is an archetypal example.
For integral equations, the graph approximations of Nyström type (Belongie et al.,
2002) provide a consistent way of connecting different grid or data structures arising
in computational methods and understanding their continuum limits (Von Luxburg,
Belkin, and Bousquet, 2008; Trillos and Slepvcev, 2018; Trillos, Gerlach, et al.,
2020). For spectral domain calculations, there are well-developed tools that exist
for approximating the continuum (Boyd, 2001; Trefethen, 2000). For these reasons,
neural networks that incorporate non-locality via integral operators or spectral
domain calculations are natural. This is the governing principle underlying our work
aimed at designing mesh invariant neural network approximations for the solution
operators of PDEs.

Our Contributions and Outline of The Paper
Neural Operators. We introduce the concept of neural operators by generaliz-
ing standard feed-forward neural networks to learn mappings between infinite-
dimensional spaces of functions defined on bounded domains of Rd. The non-local
component of the architecture is instantiated through either a parameterized integral
operator or through multiplication in the spectral domain. We make the following
contributions.
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Figure 51: Zero-shot super-resolution. Vorticity field of the solution to the two-
dimensional Navier-Stokes equation with viscosity 104 (Re=O(200)); Ground truth
on top and prediction on bottom. The model is trained on data that is discretized
on a uniform 64 × 64 spatial grid and on a 20-point uniform temporal grid. The
model is evaluated with a different initial condition that is discretized on a uniform
256× 256 spatial grid and a 80-point uniform temporal grid (see Section 5.7).

1. We propose neural operators, generalizing neural networks that map between
finite-dimensional Euclidean spaces to neural networks that map between
infinite-dimensional function spaces.

2. By construction, our architectures share the same parameters irrespective
of the discretization used on the input and output spaces for the purposes
of computation. Consequently, neural operators are capable of zero-shot
super-resolution as demonstrated in Figure 51.

3. We propose four practical methods for implementing the neural operator
framework: graph-based operators, low-rank operators, multipole graph-based
operators, and Fourier operators. Specifically, we develop a Nyström extension
to connect the integral operator formulation of the neural operator to families
of graph neural networks (GNNs) on arbitrary grids. Furthermore, we study
the spectral domain formulation of the neural operator which leads to efficient
algorithms in settings where fast transform methods are applicable. We include
an exhaustive numerical study of the four formulations.

4. Numerically, we show that the proposed methodology consistently outper-
forms all existing deep learning methods even on the resolutions for which
the standard neural networks were designed. For the two-dimensional Navier-
Stokes equation, when learning the entire flow map, the method achieves



152

< 1% error for a Reynolds number of 20 and 8% error for a Reynolds number
of 200.

5. The Fourier neural operator (FNO) has an inference time that is three orders of
magnitude faster than the pseudo-spectral method used to generate the data for
the Navier-Stokes problem (Chandler and Kerswell, 2013) – 0.005s compared
to the 2.2s on a 256 × 256 uniform spatial grid. Despite its tremendous
speed advantage, the method does not suffer from accuracy degradation when
used in downstream applications such as solving Bayesian inverse problems.
Furthermore, we demonstrate that FNO is robust to noise on the testing
problems we consider here.

In Section 5.2, we define the general operator learning problem, which is not limited
to PDEs. In Section 5.3, we define the general framework in terms of kernel integral
operators and relate our proposed approach to existing methods in the literature.

In Section 5.5, we define four different ways of efficiently computing with neural
operators: graph-based operators (GNO), low-rank operators (LNO), multipole
graph-based operators (MGNO), and Fourier operators (FNO). In Section 5.6 we
define four partial differential equations which serve as a test-bed of various problems
which we study numerically. In Section 4.4, we show the numerical results for our
four approximation methods on the four test problems, and on two linear operators
defined by linear PDEs, and we discuss and compare the properties, including
robustness, of each method. In Section 4.5 we conclude the work, discuss potential
limitations and outline directions for future work.

Literature Review
We outline the major neural network-based approaches for the solution of PDEs. To
make the discussion concrete, we will consider the family of PDEs in the form

(Lau)(x) = f(x), x ∈ D,

u(x) = 0, x ∈ ∂D,
(5.1)

for some a ∈ A, f ∈ U∗ and D ⊂ Rd a bounded domain. We assume that the
solution u : D → R lives in the Banach space U and La : A → L(U ;U∗) is a
mapping from the parameter Banach space A to the space of (possibly unbounded)
linear operators mapping U to its dual U∗. A natural operator which arises from this
PDE is G† := L−1

a f : A → U defined to map the parameter to the solution a 7→ u. A
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simple example that we study further in Section 5.6 is when La is the weak form of the
second-order elliptic operator−∇·(a∇) subject to homogeneous Dirichlet boundary
conditions. In this setting,A = L∞(D;R+), U = H1

0 (D;R), and U∗ = H−1(D;R).
When needed, we will assume that the domain D is discretized into K ∈ N points
and that we observe N ∈ N pairs of coefficient functions and (approximate) solution
functions {aj, uj}Nj=1 that are used to train the model (see Section 5.2). We assume
that aj are i.i.d. samples from a probability measure µ supported on A and yj are
the pushforwards under G†.

Finite-dimensional Operators. An immediate approach to approximate G† is to
parameterize it as a deep convolutional neural network (CNN) between the finite-
dimensional Euclidean spaces on which the data is discretized i.e. G : RK×Θ→ RK

(Guo, W. Li, and Iorio, 2016; Zhu and Zabaras, 2018; Adler and Oktem, 2017;
Bhatnagar et al., 2019). Khoo, J. Lu, and L. Ying (2017) concerns a similar setting,
but with output space R. Such approaches are, by definition, not mesh independent
and need modifications to the architecture for different resolution and discretization
of D in order to achieve consistent error (if at all possible). We demonstrate this
issue numerically in Section 4.4. Furthermore, these approaches are limited to the
discretization size and geometry of the training data and hence it is not possible
to query solutions at new points in the domain. In contrast for our method, we
show in Section 4.4 both invariance of the error to grid resolution, and the ability to
transfer the solution between meshes. The work Ummenhofer et al. (2020) proposed
a continuous convolution network for fluid problems, where off-grid points are
sampled and linearly interpolated. However the continuous convolution method
is still constrained by the underlying grid which prevents generalization to higher
resolutions. Similarly, to get finer resolution solution, Jiang et al. (2020) proposed
learning super-resolution with a U-Net structure for fluid mechanics problems.
However fine-resolution data is needed for training, while neural operators are
capable of zero-shot super-resolution with no new data.

DeepONet A novel operator regression architecture, named DeepONet, was re-
cently proposed by L. Lu, Jin, and George Em Karniadakis, 2019; L. Lu, Jin, Pang,
et al., 2021; it builds an iterated or deep structure on top of the shallow architecture
proposed in T. Chen and H. Chen, 1995. The architecture consists of two neural
networks: a branch net applied on the input functions and a trunk net applied on
the querying locations in the output space. The original work of T. Chen and H.
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Chen, 1995 provides a universal approximation theorem, and more recently Lan-
thaler, Mishra, and George Em Karniadakis, 2021 developed an error estimate for
DeepONet itself. The standard DeepONet structure is a linear approximation of the
target operator, where the trunk net and branch net learn the coefficients and basis.
On the other hand, the neural operator is a non-linear approximation, which makes it
constructively more expressive. We include an detailed discussion of DeepONet in
Section 5.3 and as well as a numerical comparison to DeepONet in Section 5.7.

Physics Informed Neural Networks (PINNs), Deep Ritz Method (DRM), and
Deep Galerkin Method (DGM). A different approach is to directly parameterize
the solution u as a neural network u : D̄ × Θ → R (E and Yu, 2018; Raissi,
Perdikaris, and George E Karniadakis, 2019; Sirignano and Spiliopoulos, 2018; Bar
and Sochen, 2019; Smith, Azizzadenesheli, and Ross, 2020; Pan and Duraisamy,
2020). This approach is designed to model one specific instance of the PDE, not
the solution operator. It is mesh-independent, but for any given new parameter
coefficient function a ∈ A, one would need to train a new neural network ua which
is computationally costly and time consuming. Such an approach closely resembles
classical methods such as finite elements, replacing the linear span of a finite set of
local basis functions with the space of neural networks.

ML-based Hybrid Solvers Similarly, another line of work proposes to enhance
existing numerical solvers with neural networks by building hybrid models (Pathak
et al., 2020; Um, Holl, et al., 2020; Greenfeld et al., 2019). These approaches
suffer from the same computational issue as classical methods: one needs to solve
an optimization problem for every new parameter similarly to the PINNs setting.
Furthermore, the approaches are limited to a setting in which the underlying PDE
is known. Purely data-driven learning of a map between spaces of functions is not
possible.

Reduced Basis Methods. Our methodology most closely resembles the classical
reduced basis method (RBM) (R. A. DeVore, 2014) or the method of Cohen and R.
DeVore (2015). The method introduced here, along with the contemporaneous work
introduced in the papers (Bhattacharya et al., 2020; Nelsen and Andrew M Stuart,
2021; Opschoor, Christoph Schwab, and Jakob Zech, 2020; Christoph Schwab and
Jakob Zech, 2019; O’Leary-Roseberry et al., 2020; L. Lu, Jin, and George Em
Karniadakis, 2019), is, to the best of our knowledge, amongst the first practical
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supervised learning methods designed to learn maps between infinite-dimensional
spaces. It addresses the mesh-dependent nature of the approach in the papers (Guo,
W. Li, and Iorio, 2016; Zhu and Zabaras, 2018; Adler and Oktem, 2017; Bhatnagar
et al., 2019) by producing a single set of network parameters that can be used with
different discretizations. Furthermore, it has the ability to transfer solutions between
meshes and indeed between different discretization methods. Moreover, it need
only be trained once on the equation set {aj, uj}Nj=1. Then, obtaining a solution
for a new a ∼ µ only requires a forward pass of the network, alleviating the major
computational issues incurred in (E and Yu, 2018; Raissi, Perdikaris, and George E
Karniadakis, 2019; Herrmann, Ch Schwab, and Zech, 2020; Bar and Sochen, 2019)
where a different network would need to be trained for each input parameter. Lastly,
our method requires no knowledge of the underlying PDE: it is purely data-driven
and therefore non-intrusive. Indeed the true map can be treated as a black-box,
perhaps to be learned from experimental data or from the output of a costly computer
simulation, not necessarily from a PDE.

Continuous Neural Networks. Using continuity as a tool to design and interpret
neural networks is gaining currency in the machine learning community, and the
formulation of ResNet as a continuous time process over the depth parameter is a
powerful example of this (Haber and Ruthotto, 2017; Weinan, 2017). The concept
of defining neural networks in infinite-dimensional spaces is a central problem that
long been studied (Williams, 1996; Neal, 1996; Roux and Bengio, 2007; Globerson
and Livni, 2016; Guss, 2016). The general idea is to take the infinite-width limit
which yields a non-parametric method and has connections to Gaussian Process
Regression (Neal, 1996; Matthews et al., 2018; Garriga-Alonso, Rasmussen, and
Aitchison, 2018), leading to the introduction of deep Gaussian processes (Damianou
and Lawrence, 2013; Dunlop et al., 2018). Thus far, such methods have not yielded
efficient numerical algorithms that can parallel the success of convolutional or
recurrent neural networks for the problem of approximating mappings between finite
dimensional spaces. Despite the superficial similarity with our proposed work, this
body of work differs substantially from what we are proposing: in our work we are
motivated by the continuous dependence of the data, in the input or output spaces, in
spatial or spatio-temporal variables; in contrast the work outlined in this paragraph
uses continuity in an artificial algorithmic depth or width parameter to study the
network architecture when the depth or width approaches infinity, but the input and
output spaces remain of fixed finite dimension.
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Nyström Approximation, GNNs, and Graph Neural Operators (GNOs). The
graph neural operators (Section 5.5) has an underlying Nyström approximation
formulation (Nyström, 1930) which links different grids to a single set of network
parameters. This perspective relates our continuum approach to Graph Neural
Networks (GNNs). GNNs are a recently developed class of neural networks that
apply to graph-structured data; they have been used in a variety of applications.
Graph networks incorporate an array of techniques from neural network design
such as graph convolution, edge convolution, attention, and graph pooling (Kipf
and Welling, 2016; Hamilton, Z. Ying, and Leskovec, 2017; Gilmer et al., 2017;
Veličković et al., 2017; Murphy et al., 2018). GNNs have also been applied to
the modeling of physical phenomena such as molecules (C. Chen et al., 2019) and
rigid body systems (Battaglia et al., 2018) since these problems exhibit a natural
graph interpretation: the particles are the nodes and the interactions are the edges.
The work (Alet et al., 2019) performs an initial study that employs graph networks
on the problem of learning solutions to Poisson’s equation, among other physical
applications. They propose an encoder-decoder setting, constructing graphs in
the latent space, and utilizing message passing between the encoder and decoder.
However, their model uses a nearest neighbor structure that is unable to capture non-
local dependencies as the mesh size is increased. In contrast, we directly construct a
graph in which the nodes are located on the spatial domain of the output function.
Through message passing, we are then able to directly learn the kernel of the network
which approximates the PDE solution. When querying a new location, we simply
add a new node to our spatial graph and connect it to the existing nodes, avoiding
interpolation error by leveraging the power of the Nyström extension for integral
operators.

Low-rank Kernel Decomposition and Low-rank Neural Operators (LNOs).
Low-rank decomposition is a popular method used in kernel methods and Gaussian
process (Kulis, Sustik, and Dhillon, 2006; Bach, 2013; Lan et al., 2017; Gardner et
al., 2018). We present the low-rank neural operator in Section 5.5 where we structure
the kernel network as a product of two factor networks inspired by Fredholm theory.
The low-rank method, while simple, is very efficient and easy to train especially
when the target operator is close to linear. Khoo and L. Ying (2019) proposed
a related neural network with low-rank structure to approximate the inverse of
differential operators. The framework of two factor networks is also similar to the
trunk and branch network used in DeepONet (L. Lu, Jin, and George Em Karniadakis,
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2019). But in our work, the factor networks are defined on the physical domain
and non-local information is accumulated through integration with respect to the
Lebesgue measure. In contrast, DeepONet(s) integrate against delta measures at a
set of pre-defined nodal points that are usually taken to be the grid on which the data
is given. See section 5.3 for further discussion.

Multipole, Multi-resolution Methods, and Multipole Graph Neural Operators
(MGNOs). To efficiently capture long-range interaction, multi-scale methods such
as the classical fast multipole methods (FMM) have been developed (Greengard and
Rokhlin, 1997). Based on the assumption that long-range interactions decay quickly,
FMM decomposes the kernel matrix into different ranges and hierarchically imposes
low-rank structures on the long-range components (hierarchical matrices) (Börm,
Grasedyck, and Hackbusch, 2003). This decomposition can be viewed as a specific
form of the multi-resolution matrix factorization of the kernel (Kondor, Teneva, and
Garg, 2014; Börm, Grasedyck, and Hackbusch, 2003). For example, the works
of Fan, Lin, et al. (2019), Fan, Feliu-Faba, et al. (2019), and J. He and Xu (2019)
propose a similar multipole expansion for solving parametric PDEs on structured
grids. However, the classical FMM requires nested grids as well as the explicit
form of the PDEs. In Section 5.5, we propose the multipole graph neural operator
(MGNO) by generalizing this idea to arbitrary graphs in the data-driven setting,
so that the corresponding graph neural networks can learn discretization-invariant
solution operators which are fast and can work on complex geometries.

Fourier Transform, Spectral Methods, and Fourier Neural Operators (FNOs).
The Fourier transform is frequently used in spectral methods for solving differential
equations since differentiation is equivalent to multiplication in the Fourier domain.
Fourier transforms have also played an important role in the development of deep
learning. They are used in theoretical work, such as the proof of the neural network
universal approximation theorem (Hornik, Stinchcombe, White, et al., 1989) and
related results for random feature methods (Rahimi and Recht, 2008); empirically,
they have been used to speed up convolutional neural networks (Mathieu, Henaff, and
LeCun, 2013). Neural network architectures involving the Fourier transform or the
use of sinusoidal activation functions have also been proposed and studied (Bengio,
LeCun, et al., 2007; Mingo et al., 2004; Sitzmann et al., 2020). Recently, some
spectral methods for PDEs have been extended to neural networks (Fan, Bohorquez,
and L. Ying, 2019; Fan, Lin, et al., 2019; Kashinath, Marcus, et al., 2020). In
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Section 5.5, we build on these works by proposing the Fourier neural operator
architecture defined directly in Fourier space with quasi-linear time complexity and
state-of-the-art approximation capabilities.

Sources of Error In this paper we will study the error resulting from approximat-
ing an operator (mapping between Banach spaces) from within a class of finitely-
parameterized operators. We show that the resulting error, expressed in terms of
universal approximation of operators over a compact set or in terms of a resulting
risk, can be driven to zero by increasing the number of parameters, and refining
the approximations inherent in the neural operator architecture. In practice there
will be two other sources of approximation error: firstly from the discretization of
the data; and secondly from the use of empirical risk minimization over a finite
data set to determine the parameters. Balancing all three sources of error is key to
making algorithms efficient. However we do not study these other two sources of
error in this work. Furthermore we do not study how the number of parameters in
our approximation grows as the error tolerance is refined. Generally, this growth
may be super-exponential as shown in (Kovachki, Lanthaler, and Mishra, 2021).
However, for certain classes of operators and related approximation methods, it is
possible to beat the curse of dimensionality; we refer the reader to the works (Lan-
thaler, Mishra, and George Em Karniadakis, 2021; Kovachki, Lanthaler, and Mishra,
2021) for detailed analyses demonstrating this. Finally we also emphasize that there
is a potential source of error from the optimization procedure which attempts to
minimize the empirical risk: it may not achieve the global minumum. Analysis of
this error in the context of operator approximation has not been undertaken.

5.2 Learning Operators
In subsection 5.2, we outline the general problem of operator learning as well as
our approach to solving it. In subsection 5.2, we discuss the functional data that is
available and how we work with it numerically.

Problem Setting
Our goal is to learn a mapping between two infinite dimensional spaces by using
a finite collection of observations of input-output pairs from this mapping. We
make this problem concrete in the following setting. Let A and U be Banach
spaces of functions defined on bounded domains D ⊂ Rd, D′ ⊂ Rd′ respectively
and G† : A → U be a (typically) non-linear map. Suppose we have observations
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{aj, uj}Nj=1 where aj ∼ µ are i.i.d. samples drawn from some probability measure µ
supported on A and uj = G†(aj) is possibly corrupted with noise. We aim to build
an approximation of G† by constructing a parametric map

Gθ : A → U , θ ∈ Rp (5.2)

with parameters from the finite-dimensional space Rp and then choosing θ† ∈ Rp so
that Gθ† ≈ G†.

We will be interested in controlling the error of the approximation on average with
respect to µ. In particular, assuming G† is µ-measurable, we will aim to control the
L2
µ(A;U) Bochner norm of the approximation

‖G†−Gθ‖2
L2
µ(A;U) = Ea∼µ‖G†(a)−Gθ(a)‖2

U =

∫
A
‖G†(a)−Gθ(a)‖2

U dµ(a). (5.3)

This is a natural framework for learning in infinite-dimensions as one could seek to
solve the associated empirical-risk minimization problem

min
θ∈Rp

Ea∼µ‖G†(a)− Gθ(a)‖2
U ≈ min

θ∈Rp
1

N

N∑
j=1

‖uj − Gθ(aj)‖2
U (5.4)

which directly parallels the classical finite-dimensional setting (Vapnik, 1998).

Discretization
Since our data aj and uj are, in general, functions, to work with them numerically,
we assume access only to their point-wise evaluations. To illustrate this, we will
continue with the example of the preceding paragraph. For simplicity, assume
D = D′ and suppose that the input and output functions are both real-valued.
Let Dj = {x(1)

j , . . . , x
(nj)
j } ⊂ D be a nj-point discretization of the domain D

and assume we have observations aj|Dj , uj|Dj ∈ Rnj , for a finite collection of
input-output pairs indexed by j. In the next section, we propose a kernel inspired
graph neural network architecture which, while trained on the discretized data, can
produce the solution u(x) for any x ∈ D given an input a ∼ µ. That is to say that
our approach is independent of the discretization Dj . We refer to this as being a
function space architecture, a mesh-invariant architecture or a discretization-invariant
architecture; this claim is verified numerically by showing invariance of the error
as nj →∞. Such a property is highly desirable as it allows a transfer of solutions
between different grid geometries and discretization sizes with a single architecture
which has a fixed number of parameters.
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We note that, while the application of our methodology is based on having point-wise
evaluations of the function, it is not limited by it. One may, for example, represent a
function numerically as a finite set of truncated basis coefficients. Invariance of the
representation would then be with respect to the size of this set. Our methodology
can, in principle, be modified to accommodate this scenario through a suitably
chosen architecture. We do not pursue this direction in the current work.

5.3 Proposed Architecture
Subsection 5.3 defines neural operators while subsections 5.3 and 5.3 compare them
to DeepONets and Transformers respectively.

Neural Operators
In this section, we outline the neural operator framework. We assume that the input
functions a ∈ A are Rda-valued and defined on the bounded domain D ⊂ Rd while
the output functions u ∈ U are Rdu-valued and defined on the bounded domain
D′ ⊂ Rd′ . The proposed architecture Gθ : A → U has the following overall
structure:

1. Lifting: Using a pointwise function Rda → Rdv0 , map the input {a : D →
Rda} 7→ {v0 : D → Rdv0} to its first hidden representation. Usually, we
choose dv0 > da and hence this is a lifting operation performed by a fully
local operator.

2. Iterative Kernel Integration: For t = 0, . . . , T − 1, map each hidden repre-
sentation to the next {vt : Dt → Rdvt} 7→ {vt+1 : Dt+1 → Rdvt+1} via the
action of the sum of a local linear operator, a non-local integral kernel operator,
and a bias function, composing the sum with a fixed, pointwise nonlinearity.
Here we set D0 = D and DT = D′ and impose that Dt ⊂ Rdt is a bounded
domain.

3. Projection: Using a pointwise function RdvT → Rdu , map the last hidden
representation {vT : D′ → RdvT } 7→ {u : D′ → Rdu} to the output function.
Analogously to the first step, we usually pick dvT > du and hence this is a
projection step performed by a fully local operator.

The outlined structure mimics that of a finite dimensional neural network where
hidden representations are successively mapped to produce the final output. In
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particular, we have

Gθ := Q ◦ σT (WT−1 +KT−1 + bT−1) ◦ · · · ◦ σ1(W0 +K0 + b0) ◦ P (5.5)

where P : Rda → Rdv0 , Q : RdvT → Rdu are the local lifting and projection
mappings respectively, Wt ∈ Rdvt+1×dvt are local linear operators (matrices), Kt :

{vt : Dt → Rdvt} → {vt+1 : Dt+1 → Rdvt+1} are integral kernel operators,
bt : Dt+1 → Rdvt+1 are bias functions, and σt are fixed activation functions acting
locally as maps Rvt+1 → Rvt+1 in each layer. The output dimensions dv0 , . . . , dvT as
well as the input dimensions d1, . . . , dT−1 and domains of definition D1, . . . , DT−1

are hyperparameters of the architecture. By local maps, we mean that the action is
pointwise, in particular, for the lifting and projection maps, we have (P(a))(x) =

P(a(x)) for any x ∈ D and (Q(vT ))(x) = Q(vT (x)) for any x ∈ D′ and similarly,
for the activation, (σ(vt+1))(x) = σ(vt+1(x)) for any x ∈ Dt+1. The maps, P ,
Q, and σt can thus be thought of as defining Nemitskiy operators (R. Dudley and
Norvaisa, 2011, Chapters 6, 7) when each of their components are assumed to be
Borel measurable. This interpretation allows us to define the general neural operator
architecture when pointwise evaluation is not well-defined in the spaces A or U , e.g.
when they are Lebesgue, Sobolev, or Besov spaces.

The crucial difference between the proposed architecture (5.5) and a standard feed-
forward neural network is that all operations are directly defined in function space
(noting that P and Q are interpreted through their extension to Nemitskiy operators)
and therefore do not depend on any discretization of the data. Intuitively, the lifting
step locally maps the data to a space where the non-local part of G† is easier to
capture. This is then learned by successively approximating using integral kernel
operators composed with a local nonlinearity. Each integral kernel operator is the
function space analog of the weight matrix in a standard feed-forward network since
they are infinite-dimensional linear operators mapping one function space to another.
We turn the biases, which are normally vectors, to functions and, using intuition from
the ResNet architecture (K. He et al., 2016), we further add a local linear operator
acting on the output of the previous layer before applying the nonlinearity. The
final projection step simply gets us back to the space of our output function. We
concatenate in θ ∈ Rp the parameters of P , Q, {bt} which are usually themselves
shallow neural networks, the parameters of the kernels representing {Kt} which are
again usually shallow neural networks, and the matrices {Wt}. We note, however,
that our framework is general and other parameterizations such as polynomials may
also be employed.
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Integral Kernel Operators We define three version of the integral kernel operator
Kt used in (5.5). For the first, let κ(t) ∈ C(Dt+1 × Dt;Rdvt+1×dvt ) and let νt be a
Borel measure on Dt. Then we define Kt by

(Kt(vt))(x) =

∫
Dt

κ(t)(x, y)vt(y) dνt(y) ∀x ∈ Dt+1. (5.6)

Normally, we take νt to simply be the Lebesgue measure on Rdt but, as discussed in
Section 5.5, other choices can be used to speed up computation or aid the learning
process by building in a priori information. The choice of integral kernel operator
in (5.6) defines the basic form of the neural operator and is the one we analyze in
Section 5.4 and study most in the numerical experiments of Section 4.4.

For the second, let κ(t) ∈ C(Dt+1 ×Dt × Rda × Rda ;Rdvt+1×dvt ). Then we define
Kt by

(Kt(vt))(x) =

∫
Dt

κ(t)(x, y, a(ΠD
t+1(x)), a(ΠD

t (y)))vt(y) dνt(y) ∀x ∈ Dt+1

(5.7)
where ΠD

t : Dt → D are fixed mappings. We have found numerically that, for cer-
tain PDE problems, the form (5.7) outperforms (5.6) due to the strong dependence of
the solution u on the parameters a. Indeed, if we think of (5.5) as a discrete time dy-
namical system, then the input a ∈ A only enters through the initial condition hence
its influence diminishes with more layers. By directly building in a-dependence into
the kernel, we ensure that it influences the entire architecture.

Lastly, let κ(t) ∈ C(Dt+1 ×Dt × Rdvt × Rdvt ;Rdvt+1×dvt ). Then we define Kt by

(Kt(vt))(x) =

∫
Dt

κ(t)(x, y, vt(Πt(x)), vt(y))vt(y) dνt(y) ∀x ∈ Dt+1 (5.8)

where Πt : Dt+1 → Dt are fixed mappings. Note that, in contrast to (5.6) and (5.7),
the integral operator (5.8) is nonlinear since the kernel can depend on the input
function vt. With this definition and a particular choice of kernel κt and measure νt,
we show in Section 5.3 that neural operators are a continuous input/output space
generalization of the popular transformer architecture (Vaswani et al., 2017).

Single Hidden Layer Construction Having defined possible choices for the inte-
gral kernel operator, we are now in a position to explicitly write down a full layer of
the architecture defined by (5.5). For simplicity, we choose the integral kernel opera-
tor given by (5.6), but note that the other definitions (5.7), (5.8) work analogously.
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We then have that a single hidden layer update is given by

vt+1(x) = σt+1

(
Wtvt(Πt(x)) +

∫
Dt

κ(t)(x, y)vt(y) dνt(y) + bt(x)

)
∀x ∈ Dt+1

(5.9)
where Πt : Dt+1 → Dt are fixed mappings. We remark that, since we often consider
functions on the same domain, we usually take Πt to be the identity.

We will now give an example of a full single hidden layer architecture, i.e. when
T = 2. We choose D1 = D, take σ2 as the identity, and denote σ1 by σ, assuming it
is any activation function. Furthermore, for simplicity, we set W1 = 0, b1 = 0, and
assume that ν0 = ν1 is the Lebesgue measure on Rd. Then (5.5) becomes

(Gθ(a))(x) =

Q
(∫

D

κ(1)(x, y)σ

(
W0P(a(y)) +

∫
D

κ(0)(y, z)P(a(z)) dz + b0(y)

)
dy
)

(5.10)

for any x ∈ D′. In this example, P ∈ C(Rda ;Rdv0 ), κ(0) ∈ C(D × D;Rdv1×dv0 ),
b0 ∈ C(D;Rdv1 ),W0 ∈ Rdv1×dv0 , κ(0) ∈ C(D′×D;Rdv2×dv1 ), andQ ∈ C(Rdv2 ;Rdu).
One can then parametrize the continuous functions P ,Q, κ(0), κ(1), b0 by standard
feed-forward neural networks (or by any other means) and the matrix W0 simply
by its entries. The parameter vector θ ∈ Rp then becomes the concatenation of the
parameters of P ,Q, κ(0), κ(1), b0 along with the entries ofW0. One can then optimize
these parameters by minimizing with respect to θ using standard gradient based
minimization techniques. To implement this minimization, the functions entering
the loss need to be discretized; but the learned parameters may then be used with
other discretizations. In Section 5.5, we discuss various choices for parametriz-
ing the kernels, picking the integration measure, and how those choices affect the
computational complexity of the architecture.

Preprocessing It is often beneficial to manually include features into the input
functions a to help facilitate the learning process. For example, instead of considering
the Rda-valued vector field a as input, we use the Rd+da-valued vector field (x, a(x)).
By including the identity element, information about the geometry of the spatial
domain D is directly incorporated into the architecture. This allows the neural
networks direct access to information that is already known in the problem and
therefore eases learning. We use this idea in all of our numerical experiments in
Section 4.4. Similarly, when learning a smoothing operator, it may be beneficial to
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include a smoothed version of the inputs aε using, for example, Gaussian convolution.
Derivative information may also be of interest and thus, as input, one may consider,
for example, the Rd+2da+dda-valued vector field (x, a(x), aε(x),∇xaε(x)). Many
other possibilities may be considered on a problem-specific basis.

DeepONets are Neural Operators
We will now draw a parallel between the recently proposed DeepONet architecture
in L. Lu, Jin, and George Em Karniadakis, 2019 and our neural operator framework.
In fact, we will show that a particular variant of functions from the DeepONets
class is a special case of a single hidden layer neural operator construction once
discretized appropriately. To that end, we work with (5.10) where we chooseW0 = 0

and denote b0 by b. For simplicity, we will consider only real-valued functions, i.e.
da = du = 1 and set dv0 = dv1 = n and dv2 = p for some n, p ∈ N. Define
P : R → Rn by P(x) = (x, . . . , x) and Q : Rp → R by Q(x) = x1 + · · · + xp.
Furthermore let κ(1) : D′ × D → Rp×n be defined by some κ(1)

jk : D′ × D → R
for j = 1, . . . , p and k = 1, . . . , n. Similarly let κ(0) : D × D → Rn×n be given
as κ(0)(x, y) = diag(κ

(0)
1 (x, y), . . . , κ

(0)
n (x, y)) for some κ(0)

1 , . . . κ
(0)
n : D×D → R.

Then (5.10) becomes

(Gθ(a))(x) =

p∑
k=1

n∑
j=1

∫
D

κ
(1)
jk (x, y)σ

(∫
D

κ
(0)
j (y, z)a(z) dz + bj(y)

)
dy

where b(y) = (b1(y), . . . , bn(y)) for some b1, . . . , bn : D → R. Let x1, . . . , xq ∈
D be the points at which the input function a is evaluated and denote by ã =(
a(x1), . . . , a(xq)

)
∈ Rq the vector of evaluations. Choose κ(0)

jj (y, z) = 1(y)wj(z)

for some w1, . . . , wn : D → R where 1 denotes the constant function taking the
value one. Let

wj(xl) =
q

|D|
w̃jl

for j = 1, . . . , n and l = 1, . . . , q where w̃jl ∈ R are some constants. Furthermore
let bj(y) = b̃j1(y) for some constants b̃j ∈ R. Then the Monte Carlo approximation
of the inner-integral yields

(Gθ(a))(x) =

p∑
k=1

n∑
j=1

∫
D

κ
(1)
jk (x, y)σ

(
〈w̃j, ã〉Rq + b̃j

)
1(y) dy

where w̃j =
(
w̃j1, . . . , w̃jq

)
. Choose κ(1)

jk (x, y) = (c̃jk/|D|)ϕk(x)1(y) for some
constants c̃jk ∈ R and functions ϕ1, . . . , ϕp : D′ → R. Then we obtain

(Gθ(a))(x) =

p∑
k=1

(
n∑
j=1

c̃jkσ
(
〈w̃j, ã〉Rq + b̃j

))
ϕk(x) =

p∑
k=1

Gk(ṽ)ϕk(x) (5.11)
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whereGk : Rq → R can be viewed as the components of a single hidden layer neural
network G : Rq → Rp with parameters w̃jl, b̃j, c̃jk. The set of maps ϕ1, . . . , ϕp form
the trunk net while G is the branch net of a DeepONet. Our construction above
can clearly be generalized to yield arbitrary depth branch nets by adding more
kernel integral layers, and, similarly, the trunk net can be chosen arbitrarily deep by
parameterizing each ϕk as a deep neural network.

Note however that parameterizing as suggested by (5.11) yields an approximation
that is inconsistent in function space since the number of parameters used to define
G is not independent of the discretization used for a. Therefore, the number of
parameters in a DeepONet grows as we refine the discretization of a, blowing up in
the continuum. This issue could be resolved for DeepONet(s) by fixing the set of
points on which the input function is evaluated independently of its discretization, by
taking local spatial averages as in (Lanthaler, Mishra, and George Em Karniadakis,
2021) or more generally by taking a set of linear functionals onA as input to a finite-
dimensional branch neural network. We demonstrate numerically in Section 4.4 that,
when applied in the standard way, the error incurred by DeepONet(s) grows with the
discretization of a while it remains constant for neural operators.

Linear Approximation and Nonlinear Approximation. We point out that
parametrizations of the form (5.11) fall within the class of linear approximation
methods since the nonlinear space G†(A) is approximated by the linear space
span{ϕ1, . . . , ϕp} (R. A. DeVore, 1998). The quality of the best possible linear
approximation to a nonlinear space is given by the Kolmogorov n-width where n is
the dimension of the linear space used in the approximation (A. Pinkus, 1985). The
rate of decay of the n-width as a function of n quantifies how well the linear space
approximates the nonlinear one. It is well know that for some problems such as the
flow maps of advection-dominated PDEs, the n-widths decay very slowly; hence
a very large n is needed for a good approximation for such problems (Cohen and
R. DeVore, 2015). This can be limiting in practice as more parameters are needed in
order to describe more basis functions ϕj and therefore more data is needed to fit
these parameters.

On the other hand, we point out that parametrizations of the form (5.5), and the
particular case (5.10), constitute (in general) a form of nonlinear approximation. The
benefits of nonlinear approximation are well understood in the setting of function
approximation, see e.g. (R. A. DeVore, 1998); however the theory for the operator
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setting is still in its infancy (Bonito et al., 2020; Cohen, Devore, et al., 2020). We
observe numerically in Section 4.4 that nonlinear parametrizations such as (5.10)
outperform linear ones such as DeepONets or the low-rank method introduced in
Section 5.5 when implemented with similar numbers of parameters.

Function Representation. An important difference between neural operators, in-
troduced here, PCA-based operator approximation, introduced in Bhattacharya et al.,
2020 and DeepONets, introduced in L. Lu, Jin, and George Em Karniadakis, 2019, is
the manner in which the output function space is finite-dimensionalized. Neural op-
erators as implemented in this paper typically use the same finite-dimensionalization
in both the input and output function spaces; however different variants of the neu-
ral operator idea use different finite-dimensionalizations. As discussed in Section
5.5, the GNO and MGNO are finite-dimensionalized using pointwise values as
the nodes of graphs; the FNO is finite-dimensionalized in Fourier space, requiring
finite-dimensionalization on a uniform grid in real space; the Low-rank neural op-
erator is finite-dimensionalized on a product space formed from the Barron space
of neural networks. The PCA approach finite-dimensionalizes in the span of PCA
modes. DeepONet, on the other hand, uses different input and output space finite-
dimensionalizations; in its basic form it uses pointwise (grid) values on the input
(branch net) whilst its output (trunk net) is represented as a function in Barron space.
There also exist POD-DeepONet variants that finite-dimensionalize the output in the
span of PCA modes L. Lu, Meng, et al., 2021, bringing them closer to the method
introduced in Bhattacharya et al., 2020, but with a different finite-dimensionalization
of the input space.

As is widely quoted, “all models are wrong, but some are useful” Box, 1976.
For operator approximation, each finite-dimensionalization has its own induced
biases and limitations, and therefore works best on a subset of problems. Finite-
dimensionalization introduces a trade-off between flexibility and representation
power of the resulting approximate architecture. The Barron space representation
(Low-rank operator and DeepONet) is usually the most generic and flexible as it
is widely applicable. However this can lead to induced biases and reduced rep-
resentation power on specific problems; in practice, DeepONet sometimes needs
problem-specific feature engineering and architecture choices as studied in L. Lu,
Meng, et al., 2021. We conjecture that these problem-specific features compensate
for the induced bias and reduced representation power that the basic form of the
method (L. Lu, Jin, and George Em Karniadakis, 2019) sometimes exhibits. The
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PCA (PCA operator, POD-DeepONet) and graph-based (GNO, MGNO) discretiza-
tions are also generic, but more specific compared to the DeepONet representation;
for this reason POD-DeepONet can outperform DeepONet on some problems (L. Lu,
Meng, et al., 2021). On the other hand, the uniform grid-based representation FNO is
the most specific of all those operator approximators considered in this paper: in its
basic form it applies by discretizing the input functions, assumed to be specified on
a periodic domain, on a uniform grid. As shown in Section 4.4 FNO usually works
out of the box on such problems. But, as a trade-off, it requires substantial additional
treatments to work well on non-uniform geometries, such as extension, interpolation
(explored in L. Lu, Meng, et al., 2021), and Fourier continuation (Bruno, Han, and
Pohlman, 2007).

Transformers are Neural Operators
We will now show that our neural operator framework can be viewed as a continuum
generalization to the popular transformer architecture (Vaswani et al., 2017) which
has been extremely successful in natural language processing tasks (Devlin et al.,
2018; Brown et al., 2020) and, more recently, is becoming a popular choice in
computer vision tasks (Dosovitskiy et al., 2020). The parallel stems from the fact that
we can view sequences of arbitrary length as arbitrary discretizations of functions.
Indeed, in the context of natural language processing, we may think of a sentence as
a “word”-valued function on, for example, the domain [0, 1]. Assuming our function
is linked to a sentence with a fixed semantic meaning, adding or removing words
from the sentence simply corresponds to refining or coarsening the discretization of
[0, 1]. We will now make this intuition precise.

We will show that by making a particular choice of the nonlinear integral kernel
operator (5.8) and discretizing the integral by a Monte-Carlo approximation, a neural
operator layer reduces to a pre-normalized, single-headed attention, transformer
block as originally proposed in (Vaswani et al., 2017). For simplicity, we assume
dvt = n ∈ N and that Dt = D for any t = 0, . . . , T , the bias term is zero, and
W = I is the identity. Further, to simplify notation, we will drop the layer index t
from (5.9) and, employing (5.8), obtain

u(x) = σ

(
v(x) +

∫
D

κv(x, y, v(x), v(y))v(y) dy
)

∀x ∈ D (5.12)

a single layer of the neural operator where v : D → Rn is the input function to the
layer and we denote by u : D → Rn the output function. We use the notation κv
to indicate that the kernel depends on the entirety of the function v as well as on
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its pointwise values v(x) and v(y). While this is not explicitly done in (5.8), it is a
straightforward generalization. We now pick a specific form for kernel, in particular,
we assume κv : Rn×Rn → Rn×n does not explicitly depend on the spatial variables
(x, y) but only on the input pair (v(x), v(y)). Furthermore, we let

κv(v(x), v(y)) = gv(v(x), v(y))R

where R ∈ Rn×n is a matrix of free parameters, i.e. its entries are concatenated in θ
so they are learned, and gv : Rn × Rn → R is defined as

gv(v(x), v(y)) =

(∫
D

exp
(
〈Av(s), Bv(y)〉√

m

)
ds
)−1

exp
(
〈Av(x), Bv(y)〉√

m

)
.

Here A,B ∈ Rm×n are again matrices of free parameters, m ∈ N is a hyperparame-
ter, and 〈·, ·〉 is the Euclidean inner-product on Rm. Putting this together, we find
that (5.12) becomes

u(x) = σ

v(x) +

∫
D

exp
(
〈Av(x),Bv(y)〉√

m

)
∫
D

exp
(
〈Av(s),Bv(y)〉√

m

)
ds
Rv(y) dy

 ∀x ∈ D. (5.13)

Equation (5.13) can be thought of as the continuum limit of a transformer block. To
see this, we will discretize to obtain the usual transformer block.

To that end, let {x1, . . . , xk} ⊂ D be a uniformly-sampled, k-point discretization
of D and denote vj = v(xj) ∈ Rn and uj = u(xj) ∈ Rn for j = 1, . . . , k.
Approximating the inner-integral in (5.13) by Monte-Carlo, we have∫

D

exp
(
〈Av(s), Bv(y)〉√

m

)
ds ≈ |D|

k

k∑
l=1

exp
(
〈Avl, Bv(y)〉√

m

)
.

Plugging this into (5.13) and using the same approximation for the outer integral
yields

uj = σ

vj +
k∑
q=1

exp
(
〈Avj ,Bvq〉√

m

)
∑k

l=1 exp
(
〈Avl,Bvq〉√

m

)Rvq
 , j = 1, . . . , k. (5.14)

Equation (5.14) can be viewed as a Nyström approximation of (5.13). Define the
vectors zq ∈ Rk by

zq =
1√
m

(〈Av1, Bvq〉, . . . , 〈Avk, Bvq〉), q = 1, . . . , k.
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Define S : Rk → ∆k, where ∆k denotes the k-dimensional probability simplex, as
the softmax function

S(w) =

(
exp(w1)∑k
j=1 exp(wj)

, . . . ,
exp(wk)∑k
j=1 exp(wj)

)
, ∀w ∈ Rk.

Then we may re-write (5.14) as

uj = σ

(
vj +

k∑
q=1

Sj(zq)Rvq

)
, j = 1, . . . , k.

Furthermore, if we re-parametrize R = RoutRval where Rout ∈ Rn×m and Rval ∈
Rm×n are matrices of free parameters, we obtain

uj = σ

(
vj +Rout

k∑
q=1

Sj(zq)R
valvq

)
, j = 1, . . . , k

which is precisely the single-headed attention, transformer block with no layer
normalization applied inside the activation function. In the language of transformers,
the matrices A, B, and Rval correspond to the queries, keys, and values functions
respectively. We note that tricks such as layer normalization (Ba, Kiros, and Hinton,
2016) can be adapted in a straightforward manner to the continuum setting and
incorporated into (5.13). Furthermore multi-headed self-attention can be realized
by simply allowing κv to be a sum of over multiple functions with form gvR all of
which have separate trainable parameters. Including such generalizations yields the
continuum limit of the transformer as implemented in practice. We do not pursue
this here as our goal is simply to draw a parallel between the two methods.

While we have not rigorously experimented with using transformer architectures
for the problems outlined in Section 5.6, we have found, in initial tests, that they
perform worse, are slower, and are more memory expensive than neural operators
using (5.6)-(5.8). Their high computational complexity is evident from (5.13) as
we must evaluate a nested integral of v for each x ∈ D. Recently more efficient
transformer architectures have been proposed, e.g. (Choromanski et al., 2020) and
some have been applied to computer vision tasks. We leave as interesting future
work experimenting and comparing these architectures to the neural operator both
on problems in scientific computing and more traditional machine learning tasks.

5.4 Approximation Theory
The paper by T. Chen and H. Chen, 1995 provides the first universal approximation
theorem for operator approximation via neural networks, and the paper by Bhat-
tacharya et al., 2020 provides an alternative architecture and approximation result.
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The analysis of T. Chen and H. Chen, 1995 was recently extended in significant
ways in the paper by Lanthaler, Mishra, and George Em Karniadakis, 2021 where,
for the first time, the curse of dimensionality is addressed, and resolved, for certain
specific operator learning problems, using the DeepOnet generalization L. Lu, Jin,
and George Em Karniadakis, 2019; L. Lu, Jin, Pang, et al., 2021 of T. Chen and
H. Chen, 1995. The paper Lanthaler, Mishra, and George Em Karniadakis, 2021
was generalized to study operator approximation, and the curse of dimensionality,
for the FNO, in Kovachki, Lanthaler, and Mishra, 2021.

Unlike the finite-dimensional setting, the choice of input and output spaces A and
U for the mapping G† play a crucial role in the approximation theory due to the
distinctiveness of the induced norm topologies. In this section, we prove universal
approximation theorems for neural operators both with respect to the topology of
uniform convergence over compact sets and with respect to the topology induced
by the Bochner norm (5.3). We focus our attention on the Lebesgue, Sobolev,
continuous, and continuously differentiable function classes as they have numerous
applications in scientific computing and machine learning problems. Unlike the
results of Bhattacharya et al., 2020; Kovachki, Lanthaler, and Mishra, 2021 which
rely on the Hilbertian structure of the input and output spaces or the results of T.
Chen and H. Chen, 1995; Lanthaler, Mishra, and George Em Karniadakis, 2021
which rely on the continuous functions, our results extend to more general Banach
spaces as specified by Assumptions 34 and 35 and are, to the best of our knowledge,
the first of their kind to apply at this level of generality.

Our method of proof proceeds by making use of the following two observations.
First we establish the Banach space approximation property Grothendieck, 1955 for
the input and output spaces of interest, which allows for a finite dimensionalization
of the problem. In particular, we prove that the Banach space approximation property
holds for various function spaces defined on Lipschitz domains; the precise result
we need, while unsurprising, seems to be missing from the functional analysis
literature and so we provide statement and proof. Details are given in Appendix A.
Second, we establish that integral kernel operators with smooth kernels can be used
to approximate linear functionals of various input spaces. In doing so, we establish
a Reisz-type representation theorem for the continuously differentiable functions.
Such a result is not surprising and mimics the well-known result for Sobolev spaces;
however in the form we need it we could not find the result in the functional analysis
literature and so we provide statement and proof. Details are given in Appendix
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B. With these two facts, we construct a neural operator which linearly maps any
input function to a finite vector then non-linearly maps this vector to a new finite
vector which is then used to form the coefficients of a basis expansion for the output
function. We reemphasize that our approximation theory uses the fact that neural
operators can be reduced to a linear method of approximation (as pointed out in
Section 5.3) and does not capture any benefits of nonlinear approximation. However
these benefits are present in the architecture and are exploited by the trained networks
we find in practice. Exploiting their nonlinear nature to potentially obtain improved
rates of approximation remains an interesting direction for future research.

The rest of this section is organized as follows. In Subsection 5.4, we define
allowable activation functions and the set of neural operators used in our theory,
noting that they constitute a subclass of the neural operators defined in Section 5.3.
In Subsection 5.4, we state and prove our main universal approximation theorems.

Neural Operators
For any n ∈ N and σ : R → R, we define the set of real-valued n-layer neural
networks on Rd by

Nn(σ;Rd) := {f : Rd → R : f(x) = Wnσ(. . .W1σ(W0x+ b0) + b1 . . . ) + bn,

W0 ∈ Rd0×d,W1 ∈ Rd0×d1 , . . . ,Wn ∈ R1×dn ,

b0 ∈ Rd0 , b1 ∈ Rd1 , . . . , bn ∈ R, d0, d1, . . . , dn ∈ N}.

We define the set of Rd′-valued neural networks simply by stacking real-valued
networks

Nn(σ;Rd,Rd′) := {f : Rd → Rd′ :

f(x) =
(
f1(x), . . . , fd′(x)

)
, f1, . . . , fd′ ∈ Nn(σ;Rd)}.

We remark that we could have defined Nn(σ;Rd,Rd′) by letting Wn ∈ Rd′×dn and
bn ∈ Rd′ in the definition of Nn(σ;Rd) because we allow arbitrary width, making the
two definitions equivalent; however the definition as presented is more convenient
for our analysis. We also employ the preceding definition with Rd and Rd′ replaced
by spaces of matrices. For any m ∈ N0, we define the set of allowable activation
functions as the continuous R → R maps which make neural networks dense in
Cm(Rd) on compacta at any fixed depth,

Am := {σ ∈ C(R) : ∃n ∈ N s.t. Nn(σ;Rd) is dense in Cm(K)∀K ⊂ Rd compact}.
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It is shown in Allan Pinkus, 1999, Theorem 4.1 that {σ ∈ Cm(R) : σ is not a polynomial}
is contained in Am with n = 1. Clearly Am+1 ⊆ Am.

We define the set of linearly bounded activations as

AL
m :=

{
σ ∈ Am : σ is Borel measurable , sup

x∈R

|σ(x)|
1 + |x|

<∞
}
,

noting that any globally Lipschitz, non-polynomial, Cm-function is contained in
AL
m. Most activation functions used in practice fall within this class, for example,

ReLU ∈ AL
0 , ELU ∈ AL

1 while tanh, sigmoid ∈ AL
m for any m ∈ N0.

For approximation in a Bochner norm, we will be interested in constructing globally
bounded neural networks which can approximate the identity over compact sets
as done in (Lanthaler, Mishra, and George Em Karniadakis, 2021; Bhattacharya
et al., 2020). This allows us to control the potential unboundedness of the support
of the input measure by exploiting the fact that the probability of an input must
decay to zero in unbounded regions. Following (Lanthaler, Mishra, and George Em
Karniadakis, 2021), we introduce the forthcoming definition which uses the notation
of the diameter of a set. In particular, the diameter of any set S ⊆ Rd is defined as,
for | · |2 the Euclidean norm on Rd,

diam2(S) := sup
x,y∈S

|x− y|2.

Definition 33. We denote by BA the set of maps σ ∈ A0 such that, for any compact

set K ⊂ Rd, ε > 0, and C ≥ diam2(K) , there exists a number n ∈ N and a neural

network f ∈ Nn(σ;Rd,Rd′) such that

|f(x)− x|2 ≤ ε, ∀x ∈ K,

|f(x)|2 ≤ C, ∀x ∈ Rd.

It is shown in Lanthaler, Mishra, and George Em Karniadakis, 2021, Lemma C.1
that ReLU ∈ AL

0 ∩ BA with n = 3.

We will now define the specific class of neural operators for which we prove a
universal approximation theorem. It is important to note that the class with which
we work is a simplification of the one given in (5.5). In particular, the lifting and
projection operators Q,P , together with the final activation function σn, are set
to the identity, and the local linear operators W0, . . . ,Wn−1 are set to zero. In our
numerical studies we have in any case typically set σn to the identity. However we
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have found that learning the local operators Q,P and W0, . . . ,Wn−1 is beneficial
in practice; extending the universal approximation theorems given here to explain
this benefit would be an important but non-trivial development of the analysis we
present here.

Let D ⊂ Rd be a domain. For any σ ∈ A0, we define the set of affine kernel integral
operators by

IO(σ;D,Rd1 ,Rd2) = {f 7→
∫
D

κ(·, y)f(y) dy+b : κ ∈ Nn1(σ;Rd × Rd,Rd2×d1),

b ∈ Nn2(σ;Rd,Rd2), n1, n2 ∈ N},

for any d1, d2 ∈ N. Clearly, since σ ∈ A0, any S ∈ IO(σ;D,Rd1 ,Rd2) acts as
S : Lp(D;Rd1) → Lp(D;Rd2) for any 1 ≤ p ≤ ∞ since κ ∈ C(D̄ × D̄;Rd2×d1)

and b ∈ C(D̄;Rd2). For any n ∈ N≥2, da, du ∈ N, D ⊂ Rd, D′ ⊂ Rd′ domains, and
σ1 ∈ AL

0 , σ2, σ3 ∈ A0, we define the set of n-layer neural operators by

NOn(σ1,σ2, σ3;D,D′,Rda ,Rdu) =

{f 7→
∫
D

κn(·, y)
(
Sn−1σ1(. . . S2σ1(S1(S0f)) . . . )

)
(y) dy :

S0 ∈ IO(σ2, D;Rda ,Rd1), . . . Sn−1 ∈ IO(σ2, D;Rdn−1 ,Rdn),

κn ∈ Nl(σ3;Rd′ × Rd,Rdu×dn), d1, . . . , dn, l ∈ N}.

When da = du = 1, we will simply write NOn(σ1, σ2, σ3;D,D′). Since σ1 is
linearly bounded, we can use a result about compositions of maps in Lp spaces
such as R.M. Dudley and Norvaiša, 2010, Theorem 7.13 to conclude that any
G ∈ NOn(σ1, σ2, σ3, D,D

′;Rda ,Rdu) acts asG : Lp(D;Rda)→ Lp(D′;Rdu). Note
that it is only in the last layer that we transition from functions defined over domain
D to functions defined over domain D′.

When the input space of an operator of interest is Cm(D̄), for m ∈ N, we will need
to take in derivatives explicitly as they cannot be learned using kernel integration as
employed in the current construction given in Lemma 55; note that this is not the
case for Wm,p(D) as shown in Lemma 53. We will therefore define the set of m-th
order neural operators by

NOm
n (σ1, σ2, σ3;D,D′,Rda ,Rdu) = {(∂α1f, . . . , ∂αJmf) 7→ G(∂α1f, . . . , ∂αJmf) :

G ∈ NOn(σ1, σ2, σ3;D,D′,RJmda ,Rdu)}

where α1, . . . , αJm ∈ Nd is an enumeration of the set {α ∈ Nd : 0 ≤ |α|1 ≤ m}.
Since we only use the m-th order operators when dealing with spaces of continuous
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Figure 52: A schematic overview of the maps used to approximate G†.

functions, each element of NOm
n can be thought of as a mapping from a product space

of spaces of the form Cm−|αj |(D̄;Rda) for all j ∈ {1, . . . , Jm} to an appropriate
Banach space of interest.

Main Theorems
Let A and U be Banach spaces of functions on the domains D ⊂ Rd and D′ ⊂ Rd′

respectively. We will work in the setting where functions in A or U are real-valued,
but note that all results generalize in a straightforward fashion to the vector-valued
setting. We are interested in the approximation of nonlinear operators G† : A → U
by neural operators. We will make the following assumptions on the spaces A and
U .

Assumption 34. Let D ⊂ Rd be a Lipschitz domain for some d ∈ N. One of the

following holds

1. A = Lp1(D) for some 1 ≤ p1 <∞.

2. A = Wm1,p1(D) for some 1 ≤ p1 <∞ and m1 ∈ N,

3. A = C(D̄).

Assumption 35. Let D′ ⊂ Rd′ be a Lipschitz domain for some d′ ∈ N. One of the

following holds

1. U = Lp2(D′) for some 1 ≤ p2 <∞, and m2 = 0,

2. U = Wm2,p2(D′) for some 1 ≤ p2 <∞ and m2 ∈ N,

3. U = Cm2(D̄′) and m2 ∈ N0.

We first show that neural operators are dense in the continuous operators G† : A → U
in the topology of uniform convergence on compacta. The proof proceeds by making
three main approximations which are schematically shown in Figure 52. First, inputs
are mapped to a finite-dimensional representation through a set of appropriate linear
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functionals on A denoted by F : A → RJ . We show in Lemmas 21 and 23 that,
whenA satisfies Assumption 34, elements ofA∗ can be approximated by integration
against smooth functions. This generalizes the idea from (T. Chen and H. Chen, 1995)
where functionals on C(D̄) are approximated by a weighted sum of Dirac measures.
We then show in Lemma 25 that, by lifting the dimension, this representation can be
approximated by a single element of IO. Second, the representation is non-linearly
mapped to a new representation by a continuous function ψ : RJ → RJ ′ which
finite-dimensionalizes the action of G†. We show, in Lemma 28, that this map
can be approximated by a neural operator by reducing the architecture to that of a
standard neural network. Third, the new representation is used as the coefficients
of an expansion onto representers of U , the map denoted G : RJ ′ → U , which we
show can be approximated by a single IO layer in Lemma 27 using density results
for continuous functions. The structure of the overall approximation is similar to
(Bhattacharya et al., 2020) but generalizes the ideas from working on Hilbert spaces
to the spaces in Assumptions 34 and 35. Statements and proofs of the lemmas used
in the theorems are given in the appendices.

Theorem 36. Let Assumptions 34 and 35 hold and suppose G† : A → U is

continuous. Let σ1 ∈ AL
0 , σ2 ∈ A0, and σ3 ∈ Am2 . Then for any compact set

K ⊂ A and 0 < ε ≤ 1, there exists a number N ∈ N and a neural operator

G ∈ NON(σ1, σ2, σ3;D,D′) such that

sup
a∈K
‖G†(a)− G(a)‖U ≤ ε.

Furthermore, if U is a Hilbert space and σ1 ∈ BA and, for some M > 0, we have

that ‖G†(a)‖U ≤M for all a ∈ A then G can be chosen so that

‖G(a)‖U ≤ 4M, ∀a ∈ A.

Proof. Lemma 51 allows us to apply Lemma 47 to find a mapping G1 : A → U such
that

sup
a∈K
‖G†(a)− G1(a)‖U ≤

ε

2

where G1 = G ◦ ψ ◦ F with F : A → RJ , G : RJ ′ → U continuous linear maps
and ψ ∈ C(RJ ;RJ ′) for some J, J ′ ∈ N. By Lemma 57, we can find a sequence of
maps Ft ∈ IO(σ2;D,R,RJ) for t = 1, 2, . . . such that

sup
a∈K

sup
x∈D̄
|
(
Ft(a)

)
(x)− F (a)|1 ≤

1

t
.
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In particular, Ft(a)(x) = wt(a)1(x) for some wt : A → RJ which is constant in
space. We can therefore identify the range of Ft(a) with RJ . Define the set

Z :=
∞⋃
t=1

Ft(K) ∪ F (K) ⊂ RJ

which is compact by Lemma 46. Since ψ is continuous, it is uniformly continuous on
Z hence there exists a modulus of continuity ω : R≥0 → R≥0 which is continuous,
non-negative, and non-decreasing on R≥0, satisfies ω(s)→ ω(0) = 0 as s→ 0 and

|ψ(z1)− ψ(z2)|1 ≤ ω(|z1 − z2|1) ∀z1, z2 ∈ Z.

We can thus find T ∈ N large enough such that

sup
a∈K

ω(|F (a)− FT (a)|1) ≤ ε

6‖G‖
.

Since FT is continuous, FT (K) is compact. Then, by Lemma 60, we can find
S1 ∈ IO(σ1;D,RJ ,Rd1), . . . , SN−1 ∈ IO(σ1;D,RdN−1 ,RJ ′) for some N ∈ N≥2

and d1, . . . , dN−1 ∈ N such that

ψ̃(f) :=
(
SN−1 ◦ σ1 ◦ · · · ◦ S2 ◦ σ1 ◦ S1

)
(f), ∀f ∈ L1(D;RJ)

satisfies
sup

q∈FT (K)

sup
x∈D̄
|ψ(q)− ψ̃(q1)(x)|1 ≤

ε

6‖G‖
.

By construction, ψ̃ maps constant functions into constant functions and is continuous
in the appropriate subspace topology of constant functions hence we can identity
it as an element of C(RJ ;RJ ′) for any input constant function taking values in RJ .
Then (ψ̃ ◦FT )(K) ⊂ RJ ′ is compact. Therefore, by Lemma 59, we can find a neural
network κ ∈ NL(σ3;Rd′ × Rd′ ,R1×J ′) for some L ∈ N such that

G̃(f) :=

∫
D′
κ(·, y)f(y) dy, ∀f ∈ L1(D;RJ ′)

satisfies
sup

y∈(ψ̃◦FT )(K)

‖G(y)− G̃(y1)‖U ≤
ε

6
.

Define

G(a) :=
(
G̃◦ψ̃◦FT

)
(a) =

∫
D′
κ(·, y)

(
(SN−1◦σ1◦. . . σ1◦S1◦FT )(a)

)
(y)dy, ∀a ∈ A,
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noting that G ∈ NON(σ1, σ2, σ3;D,D′). For any a ∈ K, define a1 := (ψ ◦ F )(a)

and ã1 := (ψ̃ ◦ FT )(a) so that G1(a) = G(a1) and G(a) = G̃(ã1) then

‖G1(a)− G(a)‖U ≤ ‖G(a1)−G(ã1)‖U + ‖G(ã1)− G̃(ã1)‖U
≤ ‖G‖|a1 − ã1|1 + sup

y∈(ψ̃◦FT )(K)

‖G(y)− G̃(y1)‖U

≤ ε

6
+ ‖G‖|(ψ ◦ F )(a)− (ψ ◦ FT )(a)|1

+ ‖G‖|(ψ ◦ FT )(a)− (ψ̃ ◦ FT )(a)|1

≤ ε

6
+ ‖G‖ω

(
|F (a)− FT (a)|1

)
+‖G‖ sup

q∈FT (K)

|ψ(q)− ψ̃(q)|1

≤ ε

2
.

Finally we have

‖G†(a)− G(a)‖U ≤ ‖G†(a)− G1(a)‖U + ‖G1(a)− G(a)‖U ≤
ε

2
+
ε

2
= ε

as desired.

To show boundedness, we will exhibit a neural operator G̃ that is ε-close to G in K
and is uniformly bounded by 4M . Note first that

‖G(a)‖U ≤ ‖G(a)− G†(a)‖U + ‖G†(a)‖U ≤ ε+M ≤ 2M, ∀a ∈ K

where, without loss of generality, we assume that M ≥ 1. By construction, we have
that

G(a) =
J ′∑
j=1

ψ̃j(FT (a))ϕj, ∀a ∈ A

for some neural network ϕ : Rd′ → RJ ′ . Since U is a Hilbert space and by linearity,
we may assume that the components ϕj are orthonormal since orthonormalizing
them only requires multiplying the last layers of ψ̃ by an invertible linear map.
Therefore

|ψ̃(FT (a))|2 = ‖G(a)‖U ≤ 2M, ∀a ∈ K.

Define the set W := (ψ̃ ◦ FT )(K) ⊂ RJ ′ which is compact as before. We have

diam2(W ) = sup
x,y∈W

|x− y|2 ≤ sup
x,y∈W

|x|2 + |y|2 ≤ 4M.

Since σ1 ∈ BA, there exists a numberR ∈ N and a neural network β ∈ NR(σ1;RJ ′ ,RJ ′)

such that

|β(x)− x|2 ≤ ε, ∀x ∈ W

|β(x)|2 ≤ 4M, ∀x ∈ RJ ′ .
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Define

G̃(a) :=
J ′∑
j=1

βj(ψ̃(FT (a)))ϕj, ∀a ∈ A.

Lemmas 59 and 60 then shows that G̃ ∈ NON+R(σ1, σ2, σ3;D,D′). Notice that

sup
a∈K
‖G(a)− G̃(a)‖U ≤ sup

w∈W
|w − β(w)|2 ≤ ε.

Furthermore,

‖G̃(a)‖U ≤ ‖G̃(a)− G(a)‖U + ‖G(a)‖U ≤ ε+ 2M ≤ 3M, ∀a ∈ K.

Let a ∈ A \K then there exists q ∈ RJ ′ \W such that ψ̃(FT (a)) = q and

‖G̃(a)‖U = |β(q)|2 ≤ 4M

as desired.

We extend this result to the case A = Cm1(D̄), showing density of the m1-th order
neural operators.

Theorem 37. Let D ⊂ Rd be a Lipschitz domain, m1 ∈ N, define A := Cm1(D̄),

suppose Assumption 35 holds and assume that G† : A → U is continuous. Let

σ1 ∈ AL
0 , σ2 ∈ A0, and σ3 ∈ Am2 . Then for any compact set K ⊂ A and 0 < ε ≤ 1,

there exists a number N ∈ N and a neural operator G ∈ NOm1
N (σ1, σ2, σ3;D,D′)

such that

sup
a∈K
‖G†(a)− G(a)‖U ≤ ε.

Furthermore, if U is a Hilbert space and σ1 ∈ BA and, for some M > 0, we have

that ‖G†(a)‖U ≤M for all a ∈ A then G can be chosen so that

‖G(a)‖U ≤ 4M, ∀a ∈ A.

Proof. The proof follows as in Theorem 36, replacing the use of Lemma 57 with
Lemma 58.

With these results in hand, we show density of neural operators in the space L2
µ(A;U)

where µ is a probability measure and U is a separable Hilbert space. The Hilbertian
structure of U allows us to uniformly control the norm of the approximation due to
the isomorphism with `2 as shown in Theorem 36. It remains an interesting future
direction to obtain similar results for Banach spaces. The proof follows the ideas
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in (Lanthaler, Mishra, and George Em Karniadakis, 2021) where similar results
are obtained for DeepONet(s) on L2(D) by using Lusin’s theorem to restrict the
approximation to a large enough compact set and exploit the decay of µ outside it.
Bhattacharya et al., 2020 also employ a similar approach but explicitly constructs
the necessary compact set after finite-dimensionalizing.

Theorem 38. Let D′ ⊂ Rd′ be a Lipschitz domain, m2 ∈ N0, and suppose Assump-

tion 34 holds. Let µ be a probability measure on A and suppose G† : A → Hm2(D)

is µ-measurable and G† ∈ L2
µ(A;Hm2(D)). Let σ1 ∈ AL

0 ∩ BA, σ2 ∈ A0, and

σ3 ∈ Am2 . Then for any 0 < ε ≤ 1, there exists a number N ∈ N and a neural

operator G ∈ NON(σ1, σ2, σ3;D,D′) such that

‖G† − G‖L2
µ(A;Hm2 (D)) ≤ ε.

Proof. Let U = Hm2(D). For any R > 0, define

G†R(a) :=

G†(a), ‖G†(a)‖U ≤ R

R
‖G†(a)‖U

G†(a), otherwise

for any a ∈ A. Since G†R → G† as R → ∞ µ-almost everywhere, G† ∈ L2
µ(A;U),

and clearly ‖G†R(a)‖U ≤ ‖G†(a)‖U for any a ∈ A, we can apply the dominated
convergence theorem for Bochner integrals to find R > 0 large enough such that

‖G†R − G
†‖L2

µ(A;U) ≤
ε

3
.

Since A and U are Polish spaces, by Lusin’s theorem Aaronson, 1997, Theorem
1.0.0 we can find a compact set K ⊂ A such that

µ(A \K) ≤ ε2

153R2

and G†R|K is continuous. Since K is closed, by a generalization of the Tietze
extension theorem Dugundji, 1951, Theorem 4.1, there exist a continuous mapping
G̃†R : A → U such that G̃†R(a) = G†R(a) for all a ∈ K and

sup
a∈A
‖G̃†R(a)‖ ≤ sup

a∈A
‖G†R(a)‖ ≤ R.

Applying Theorem 36 to G̃†R, we find that there exists a number N ∈ N and a neural
operator G ∈ NON(σ1, σ2, σ3;D,D′) such that

sup
a∈K
‖G(a)− G†R(a)‖U ≤

√
2ε

3
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and
sup
a∈A
‖G(a)‖U ≤ 4R.

We then have

‖G† − G‖L2
µ(A;U) ≤ ‖G† − G†R‖L2

µ(A;U) + ‖G†R − G‖L2
µ(A;U)

≤ ε

3
+

(∫
K

‖G†R(a)− G(a)‖2
U dµ(a)

+

∫
A\K
‖G†R(a)− G(a)‖2

U dµ(a)

) 1
2

≤ ε

3
+

(
2ε2

9
+ 2

(
sup
a∈A
‖G†R(a)‖2

U + ‖G(a)‖2
U

)
µ(A \K)

) 1
2

≤ ε

3
+

(
2ε2

9
+ 34R2µ(A \K)

) 1
2

≤ ε

3
+

(
4ε2

9

) 1
2

= ε

as desired.

We again extend this to the caseA = Cm1(D) using them1-th order neural operators.

Theorem 39. Let D ⊂ Rd be a Lipschitz domain, m1 ∈ N, define A := Cm1(D)

and suppose Assumption 35 holds. Let µ be a probability measure on Cm1(D) and

let G† : Cm1(D) → U be µ-measurable and suppose G† ∈ L2
µ(Cm1(D);U). Let

σ1 ∈ AL
0 ∩ BA, σ2 ∈ A0, and σ3 ∈ Am2 . Then for any 0 < ε ≤ 1, there exists a

number N ∈ N and a neural operator G ∈ NOm1
N (σ1, σ2, σ3;D,D′) such that

‖G† − G‖L2
µ(Cm1 (D);U) ≤ ε.

Proof. The proof follows as in Theorem 38 by replacing the use of Theorem 36 with
Theorem 37.

5.5 Parameterization and Computation
In this section, we discuss various ways of parameterizing the infinite dimensional
architecture (5.5). The goal is to find an intrinsic infinite dimensional paramterization
that achieves small error (say ε), and then rely on numerical approximation to
ensure that this parameterization delivers an error of the same magnitude (say 2ε),
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for all data discretizations fine enough. In this way the number of parameters
used to achieve O(ε) error is independent of the data discretization. In many
applications we have in mind the data discretization is something we can control,
for example when generating input/output pairs from solution of partial differential
equations via numerical simulation. The proposed approach allows us to train
a neural operator approximation using data from different discretizations, and to
predict with discretizations different from those used in the data, all by relating
everything to the underlying infinite dimensional problem.

We also discuss the computational complexity of the proposed parameterizations
and suggest algorithms which yield efficient numerical methods for approximation.
Subsections 5.5-5.5 delineate each of the proposed methods.

To simplify notation, we will only consider a single layer of (5.5), i.e. (5.9) and
choose the input and output domains to be the same. Furthermore, we will drop the
layer index t and write the single layer update as

u(x) = σ

(
Wv(x) +

∫
D

κ(x, y)v(y) dν(y) + b(x)

)
∀x ∈ D (5.15)

where D ⊂ Rd is a bounded domain, v : D → Rn is the input function and
u : D → Rm is the output function.

When the domain domains D of v and u are different, we will usually extend them
to be on a larger domain. We will consider σ to be fixed, and, for the time being,
take dν(y) = dy to be the Lebesgue measure on Rd. Equation (5.15) then leaves
three objects which can be parameterized: W , κ, and b. Since W is linear and acts
only locally on v, we will always parametrize it by the values of its associated m×n
matrix; hence W ∈ Rm×n yielding mn parameters. We have found empirically that
letting b : D → Rm be a constant function over any domain D works at least as well
as allowing it to be an arbitrary neural network. Perusal of the proof of Theorem 36
shows that we do not lose any approximation power by doing this, and we reduce the
total number of parameters in the architecutre. Therefore we will always parametrize
b by the entries of a fixed m-dimensional vector; in particular, b ∈ Rm yielding m
parameters. Notice that both parameterizations are independent of any discretization
of v.

The rest of this section will be dedicated to choosing the kernel function κ : D×D →
Rm×n and the computation of the associated integral kernel operator. For clarity of
exposition, we consider only the simplest proposed version of this operator (5.6) but
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note that similar ideas may also be applied to (5.7) and (5.8). Furthermore, in order
to focus on learning the kernel κ, here we drop σ, W , and b from (5.15) and simply
consider the linear update

u(x) =

∫
D

κ(x, y)v(y) dν(y) ∀x ∈ D. (5.16)

To demonstrate the computational challenges associated with (5.16), let {x1, . . . , xJ} ⊂
D be a uniformly-sampled J-point discretization of D. Recall that we assumed
dν(y) = dy and, for simplicity, suppose that ν(D) = 1, then the Monte Carlo
approximation of (5.16) is

u(xj) =
1

J

J∑
l=1

κ(xj, xl)v(xl), j = 1, . . . , J.

Therefore to compute u on the entire grid requires O(J2) matrix-vector multiplica-
tions. Each of these matrix-vector multiplications requires O(mn) operations; for
the rest of the discussion, we treat mn = O(1) as constant and consider only the
cost with respect to J the discretization parameter since m and n are fixed by the
architecture choice whereas J varies depending on required discretization accuracy
and hence may be arbitrarily large. This cost is not specific to the Monte Carlo
approximation but is generic for quadrature rules which use the entirety of the data.
Therefore, when J is large, computing (5.16) becomes intractable and new ideas are
needed in order to alleviate this. Subsections 5.5-5.5 propose different approaches to
the solution to this problem, inspired by classical methods in numerical analysis. We
finally remark that, in contrast, computations with W , b, and σ only require O(J)

operations which justifies our focus on computation with the kernel integral operator.

Kernel Matrix. It will often times be useful to consider the kernel matrix asso-
ciated to κ for the discrete points {x1, . . . , xJ} ⊂ D. We define the kernel matrix
K ∈ RmJ×nJ to be the J × J block matrix with each block given by the value of
the kernel, i.e.

Kjl = κ(xj, xl) ∈ Rm×n, j, l = 1, . . . , J

where we use (j, l) to index an individual block rather than a matrix element. Various
numerical algorithms for the efficient computation of (5.16) can be derived based on
assumptions made about the structure of this matrix, for example, bounds on its rank
or sparsity.
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Graph Neural Operator (GNO)
We first outline the Graph Neural Operator (GNO) which approximates (5.16) by
combining a Nyström approximation with domain truncation and is implemented
with the standard framework of graph neural networks. This construction was
originally proposed in Z. Li, Kovachki, et al., 2020c.

Nyström Approximation. A simple yet effective method to alleviate the cost of
computing (5.16) is employing a Nyström approximation. This amounts to sampling
uniformly at random the points over which we compute the output function u. In
particular, let xk1 , . . . , xkJ′ ⊂ {x1, . . . , xJ} be J ′ � J randomly selected points
and, assuming ν(D) = 1, approximate (5.16) by

u(xkj) ≈
1

J ′

J ′∑
l=1

κ(xkj , xkl)v(xkl), j = 1, . . . , J ′.

We can view this as a low-rank approximation to the kernel matrix K, in particular,

K ≈ KJJ ′KJ ′J ′KJ ′J (5.17)

where KJ ′J ′ is a J ′ × J ′ block matrix and KJJ ′ , KJ ′J are interpolation matrices, for
example, linearly extending the function to the whole domain from the random nodal
points. The complexity of this computation is O(J ′2) hence it remains quadratic but
only in the number of subsampled points J ′ which we assume is much less than the
number of points J in the original discretization.

Truncation. Another simple method to alleviate the cost of computing (5.16)
is to truncate the integral to a sub-domain of D which depends on the point of
evaluation x ∈ D. Let s : D → B(D) be a mapping of the points of D to the
Lebesgue measurable subsets of D denoted B(D). Define dν(x, y) = 1s(x)dy then
(5.16) becomes

u(x) =

∫
s(x)

κ(x, y)v(y) dy ∀x ∈ D. (5.18)

If the size of each set s(x) is smaller than D then the cost of computing (5.18)
is O(csJ

2) where cs < 1 is a constant depending on s. While the cost remains
quadratic in J , the constant cs can have a significant effect in practical computations,
as we demonstrate in Section 5.7. For simplicity and ease of implementation, we
only consider s(x) = B(x, r) ∩ D where B(x, r) = {y ∈ Rd : ‖y − x‖Rd < r}
for some fixed r > 0. With this choice of s and assuming that D = [0, 1]d, we can
explicitly calculate that cs ≈ rd.
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Furthermore notice that we do not lose any expressive power when we make this
approximation so long as we combine it with composition. To see this, consider
the example of the previous paragraph where, if we let r =

√
2, then (5.18) reverts

to (5.16). Pick r < 1 and let L ∈ N with L ≥ 2 be the smallest integer such that
2L−1r ≥ 1. Suppose that u(x) is computed by composing the right hand side of
(5.18) L times with a different kernel every time. The domain of influence of u(x)

is then B(x, 2L−1r) ∩ D = D, hence it is easy to see that there exist L kernels
such that computing this composition is equivalent to computing (5.16) for any
given kernel with appropriate regularity. Furthermore the cost of this computation is
O(LrdJ2) and therefore the truncation is beneficial if rd(log2 1/r + 1) < 1 which
holds for any r < 1/2 when d = 1 and any r < 1 when d ≥ 2. Therefore we
have shown that we can always reduce the cost of computing (5.16) by truncation
and composition. From the perspective of the kernel matrix, truncation enforces a
sparse, block diagonally-dominant structure at each layer. We further explore the
hierarchical nature of this computation using the multipole method in subsection 5.5.

Besides being a useful computational tool, truncation can also be interpreted as
explicitly building local structure into the kernel κ. For problems where such struc-
ture exists, explicitly enforcing it makes learning more efficient, usually requiring
less data to achieve the same generalization error. Many physical systems such as
interacting particles in an electric potential exhibit strong local behavior that quickly
decays, making truncation a natural approximation technique.

Graph Neural Networks. We utilize the standard architecture of message passing
graph networks employing edge features as introduced in Gilmer et al., 2017 to
efficiently implement (5.16) on arbitrary discretizations of the domain D. To do
so, we treat a discretization {x1, . . . , xJ} ⊂ D as the nodes of a weighted, directed
graph and assign edges to each node using the function s : D → B(D) which, recall
from the section on truncation, assigns to each point a domain of integration. In
particular, for j = 1, . . . , J , we assign the node xj the value v(xj) and emanate from
it edges to the nodes s(xj)∩{x1, . . . , xJ} = N (xj) which we call the neighborhood
of xj . If s(x) = D then the graph is fully-connected. Generally, the sparsity structure
of the graph determines the sparsity of the kernel matrix K, indeed, the adjacency
matrix of the graph and the block kernel matrix have the same zero entries. The
weights of each edge are assigned as the arguments of the kernel. In particular, for
the case of (5.16), the weight of the edge between nodes xj and xk is simply the
concatenation (xj, xk) ∈ R2d. More complicated weighting functions are considered
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for the implementation of the integral kernel operators (5.7) or (5.8).

With the above definition the message passing algorithm of Gilmer et al., 2017, with
averaging aggregation, updates the value v(xj) of the node xj to the value u(xj) as

u(xj) =
1

|N (xj)|
∑

y∈N (xj)

κ(xj, y)v(y), j = 1, . . . , J

which corresponds to the Monte-Carlo approximation of the integral (5.18). More
sophisticated quadrature rules and adaptive meshes can also be implemented using
the general framework of message passing on graphs, see, for example, Pfaff et al.,
2020. We further utilize this framework in subsection 5.5.

Convolutional Neural Networks. Lastly, we compare and contrast the GNO
framework to standard convolutional neural networks (CNNs). In computer vision,
the success of CNNs has largely been attributed to their ability to capture local
features such as edges that can be used to distinguish different objects in a natural
image. This property is obtained by enforcing the convolution kernel to have
local support, an idea similar to our truncation approximation. Furthermore by
directly using a translation invariant kernel, a CNN architecture becomes translation
equivariant; this is a desirable feature for many vision models, e.g. ones that perform
segmentation. We will show that similar ideas can be applied to the neural operator
framework to obtain an architecture with built-in local properties and translational
symmetries that, unlike CNNs, remain consistent in function space.

To that end, let κ(x, y) = κ(x−y) and suppose that κ : Rd → Rm×n is supported on
B(0, r). Let r∗ > 0 be the smallest radius such that D ⊆ B(x∗, r∗) where x∗ ∈ Rd

denotes the center of mass of D and suppose r � r∗. Then (5.16) becomes the
convolution

u(x) = (κ ∗ v)(x) =

∫
B(x,r)∩D

κ(x− y)v(y) dy ∀x ∈ D. (5.19)

Notice that (5.19) is precisely (5.18) when s(x) = B(x, r) ∩ D and κ(x, y) =

κ(x− y). When the kernel is parameterized by e.g. a standard neural network and
the radius r is chosen independently of the data discretization, (5.19) becomes a
layer of a convolution neural network that is consistent in function space. Indeed
the parameters of (5.19) do not depend on any discretization of v. The choice
κ(x, y) = κ(x− y) enforces translational equivariance in the output while picking r
small enforces locality in the kernel; hence we obtain the distinguishing features of
a CNN model.
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We will now show that, by picking a parameterization that is inconsistent in function
space and applying a Monte Carlo approximation to the integral, (5.19) becomes a
standard CNN. This is most easily demonstrated when D = [0, 1] and the discretiza-
tion {x1, . . . , xJ} is equispaced i.e. |xj+1−xj| = h for any j = 1, . . . , J−1. Let k ∈
N be an odd filter size and let z1, . . . , zk ∈ R be the points zj = (j−1− (k−1)/2)h

for j = 1, . . . , k. It is easy to see that {z1, . . . , zk} ⊂ B̄(0, (k − 1)h/2) which we
choose as the support of κ. Furthermore, we parameterize κ directly by its pointwise
values which are m × n matrices at the locations z1, . . . , zk, thus yielding kmn
parameters. Then (5.19) becomes

u(xj)p ≈
1

k

k∑
l=1

n∑
q=1

κ(zl)pqv(xj − zl)q, j = 1, . . . , J, p = 1, . . . ,m

where we define v(x) = 0 if x 6∈ {x1, . . . , xJ}. Up to the constant factor 1/k which
can be re-absobred into the parameterization of κ, this is precisely the update of a
stride 1 CNN with n input channels, m output channels, and zero-padding so that the
input and output signals have the same length. This example can easily be generalized
to higher dimensions and different CNN structures, we made the current choices
for simplicity of exposition. Notice that if we double the amount of discretization
points for v, i.e. J 7→ 2J and h 7→ h/2, the support of κ becomes B̄(0, (k − 1)h/4)

hence the model changes due to the discretization of the data. Indeed, if we take
the limit to the continuum J → ∞, we find B̄(0, (k − 1)h/2) → {0} hence the
model becomes completely local. To fix this, we may try to increase the filter size
k (or equivalently add more layers) simultaneously with J , but then the number of
parameters in the model goes to infinity as J →∞ since, as we previously noted,
there are kmn parameters in this layer. Therefore standard CNNs are not consistent
models in function space. We demonstrate their inability to generalize to different
resolutions in Section 5.7.

Low-rank Neural Operator (LNO)
By directly imposing that the kernel κ is of a tensor product form, we obtain a
layer with O(J) computational complexity. We term this construction the Low-rank
Neural Operator (LNO) due to its equivalence to directly parameterizing a finite-rank
operator. We start by assuming κ : D ×D → R is scalar valued and later generalize
to the vector valued setting. We express the kernel as

κ(x, y) =
r∑
j=1

ϕ(j)(x)ψ(j)(y) ∀x, y ∈ D
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for some functions ϕ(1), ψ(1), . . . , ϕ(r), ψ(r) : D → R that are normally given as
the components of two neural networks ϕ, ψ : D → Rr or a single neural network
Ξ : D → R2r which couples all functions through its parameters. With this definition,
and supposing that n = m = 1, we have that (5.16) becomes

u(x) =

∫
D

r∑
j=1

ϕ(j)(x)ψ(j)(y)v(y) dy

=
r∑
j=1

∫
D

ψ(j)(y)v(y) dy ϕ(j)(x)

=
r∑
j=1

〈ψ(j), v〉ϕ(j)(x)

where 〈·, ·〉 denotes the L2(D;R) inner product. Notice that the inner products can
be evaluated independently of the evaluation point x ∈ D hence the computational
complexity of this method is O(rJ) which is linear in the discretization.

We may also interpret this choice of kernel as directly parameterizing a rank r ∈ N
operator on L2(D;R). Indeed, we have

u =
r∑
j=1

(ϕ(j) ⊗ ψ(j))v (5.20)

which corresponds preceisely to applying the SVD of a rank r operator to the
function v. Equation (5.20) makes natural the vector valued generalization. Assume
m,n ≥ 1 and ϕ(j) : D → Rm and ψ(j) : D → Rn for j = 1, . . . , r then, (5.20)
defines an operator mapping L2(D;Rn)→ L2(D;Rm) that can be evaluated as

u(x) =
r∑
j=1

〈ψ(j), v〉L2(D;Rn)ϕ
(j)(x) ∀x ∈ D.

We again note the linear computational complexity of this parameterization. Finally,
we observe that this method can be interpreted as directly imposing a rank r structure
on the kernel matrix. Indeed,

K = KJrKrJ

where KJr, KrJ are J × r and r × J block matricies respectively. This construction
is similar to the DeepONet construction of L. Lu, Jin, and George Em Karniadakis,
2019 discussed in Section 5.3, but parameterized to be consistent in function space.
While this method enjoys a linear computational complexity, it also constitutes
a linear approximation method which may not be able to effectively capture the
solution manifold; see Section 5.3 for further discussion.
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Multipole Graph Neural Operator (MGNO)
A natural extension to directly working with kernels in a tensor product form as
in Section 5.5 is to instead consider kernels that can be well approximated by
such a form. This assumption gives rise to the fast multipole method (FMM)
which employs a multi-scale decomposition of the kernel in order to achieve linear
complexity in computing (5.16); for a detailed discussion see e.g. (E, 2011, Section
3.2). FMM can be viewed as a systematic approach to combine the sparse and low-
rank approximations to the kernel matrix. Indeed, the kernel matrix is decomposed
into different ranges and a hierarchy of low-rank structures is imposed on the long-
range components. We employ this idea to construct hierarchical, multi-scale graphs,
without being constrained to particular forms of the kernel. We will elucidate the
workings of the FMM through matrix factorization. This approach was first outlined
in Z. Li, Kovachki, et al., 2020b and is referred to as the Multipole Graph Neural
Operator (MGNO).

The key to the fast multipole method’s linear complexity lies in the subdivision of
the kernel matrix according to the range of interaction, as shown in Figure 53:

K = K1 +K2 + . . .+KL, (5.21)

where K` with ` = 1 corresponds to the shortest-range interaction, and ` = L

corresponds to the longest-range interaction; more generally index ` is ordered by
the range of interaction. While the uniform grids depicted in Figure 53 produce an
orthogonal decomposition of the kernel, the decomposition may be generalized to
arbitrary discretizations by allowing slight overlap of the ranges.

Figure 53: Hierarchical matrix decomposition. The kernel matrix K is decomposed
with respect to its interaction ranges. K1 corresponds to short-range interaction; it
is sparse but full-rank. K3 corresponds to long-range interaction; it is dense but
low-rank.

Multi-scale Discretization. We produce a hierarchy of L discretizations with a
decreasing number of nodes J1 ≥ . . . ≥ JL and increasing kernel integration radius
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r1 ≤ . . . ≤ rL. Therefore, the shortest-range interaction K1 has a fine resolution but
is truncated locally, while the longest-range interaction KL has a coarse resolution,
but covers the entire domain. This is shown pictorially in Figure 53. The number of
nodes J1 ≥ . . . ≥ JL, and the integration radii r1 ≤ . . . ≤ rL are hyperparameter
choices and can be picked so that the total computational complexity is linear in J .

A special case of this construction is when the grid is uniform. Then our formu-
lation reduces to the standard fast multipole algorithm and the kernels Kl form
an orthogonal decomposition of the full kernel matrix K. Assuming the underly-
ing discretization {x1, . . . , xJ} ⊂ D is a uniform grid with resolution s such that
sd = J , the L multi-level discretizations will be grids with resolution sl = s/2l−1,
and consequentially Jl = sdl = (s/2l−1)d . In this case rl can be chosen as 1/s

for l = 1, . . . , L. To ensure orthogonality of the discretizations, the fast multipole
algorithm sets the integration domains to be B(x, rl) \ B(x, rl−1) for each level
l = 2, . . . , L, so that the discretization on level l does not overlap with the one on
level l− 1. Details of this algorithm can be found in (Greengard and Rokhlin, 1997).

Recursive Low-rank Decomposition. The coarse discretization representation
can be understood as recursively applying an inducing points approximation (Quiñonero-
Candela and Rasmussen, 2005): starting from a discretization with J1 = J nodes,
we impose inducing points of size J2, J3, . . . , JL which all admit a low-rank kernel
matrix decomposition of the form (5.17). The original J × J kernel matrix Kl is
represented by a much smaller Jl × Jl kernel matrix, denoted by Kl,l. As shown
in Figure 53, K1 is full-rank but very sparse while KL is dense but low-rank. Such
structure can be achieved by applying equation (5.17) recursively to equation (5.21),
leading to the multi-resolution matrix factorization (Kondor, Teneva, and Garg,
2014):

K ≈ K1,1 +K1,2K2,2K2,1 +K1,2K2,3K3,3K3,2K2,1 + · · · (5.22)

where K1,1 = K1 represents the shortest range, K1,2K2,2K2,1 ≈ K2, represents
the second shortest range, etc. The center matrix Kl,l is a Jl × Jl kernel matrix
corresponding to the l-level of the discretization described above. The matrices
Kl+1,l, Kl,l+1 are Jl+1× Jl and Jl× Jl+1 wide and long respectively block transition
matrices. Denote vl ∈ RJl×n for the representation of the input v at each level of
the discretization for l = 1, . . . , L, and ul ∈ RJl×n for the output (assuming the
inputs and outputs has the same dimension). We define the matrices Kl+1,l, Kl,l+1

as moving the representation vl between different levels of the discretization via
an integral kernel that we learn. Combining with the truncation idea introduced in
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Figure 54: Left: the multi-level discretization. Right: one V-cycle iteration for the
multipole neural operator.

subsection 5.5, we define the transition matrices as discretizations of the following
integral kernel operators:

Kl,l : vl 7→ ul =

∫
B(x,rl,l)

κl,l(x, y)vl(y) dy (5.23)

Kl+1,l : vl 7→ ul+1 =

∫
B(x,rl+1,l)

κl+1,l(x, y)vl(y) dy (5.24)

Kl,l+1 : vl+1 7→ ul =

∫
B(x,rl,l+1)

κl,l+1(x, y)vl+1(y) dy (5.25)

where each kernel κl,l′ : D ×D → Rn×n is parameterized as a neural network and
learned.

V-cycle Algorithm We present a V-cycle algorithm, see Figure 54, for efficiently
computing (5.22). It consists of two steps: the downward pass and the upward pass.
Denote the representation in downward pass and upward pass by v̌ and v̂ respectively.
In the downward step, the algorithm starts from the fine discretization representation
v̌1 and updates it by applying a downward transition v̌l+1 = Kl+1,lv̌l. In the upward
step, the algorithm starts from the coarse presentation v̂L and updates it by applying
an upward transition and the center kernel matrix v̂l = Kl,l−1v̂l−1 +Kl,lv̌l. Notice
that applying one level downward and upward exactly computesK1,1+K1,2K2,2K2,1,
and a full L-level V-cycle leads to the multi-resolution decomposition (5.22).

Employing (5.23)-(5.25), we use L neural networks κ1,1, . . . , κL,L to approximate
the kernel operators associated to Kl,l, and 2(L−1) neural networks κ1,2, κ2,1, . . . to
approximate the transitions Kl+1,l, Kl,l+1. Following the iterative architecture (5.5),
we introduce the linear operator W ∈ Rn×n (denoting it by Wl for each correspond-
ing resolution) to help regularize the iteration, as well as the nonlinear activation
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function σ to increase the expensiveness. Since W acts pointwise (requiring J

remains the same for input and output), we employ it only along with the kernel Kl,l

and not the transitions. At each layer t = 0, . . . , T − 1, we perform a full V-cycle as:

• Downward Pass

For l = 1, . . . , L : v̌
(t+1)
l+1 = σ(v̂

(t)
l+1+Kl+1,lv̌

(t+1)
l )

(5.26)

• Upward Pass

For l = L, . . . , 1 : v̂
(t+1)
l = σ((Wl+Kl,l)v̌

(t+1)
l +Kl,l−1v̂

(t+1)
l−1 ).

(5.27)

Notice that one full pass of the V-cycle algorithm defines a mapping v 7→ u.

Multi-level Graphs. We emphasize that we view the discretization {x1, . . . , xJ} ⊂
D as a graph in order to facilitate an efficient implementation through the message
passing graph neural network architecture. Since the V-cycle algorithm works at
different levels of the discretization, we build multi-level graphs to represent the
coarser and finer discretizations. We present and utilize two constructions of multi-
level graphs, the orthogonal multipole graph and the generalized random graph. The
orthogonal multipole graph is the standard grid construction used in the fast multiple
method which is adapted to a uniform grid, see e.g. Greengard and Rokhlin (1997).
In this construction, the decomposition in (5.21) is orthogonal in that the finest
graph only captures the closest range interaction, the second finest graph captures
the second closest interaction minus the part already captured in the previous graph
and so on, recursively. In particular, the ranges of interaction for each kernel do
not overlap. While this construction is usually efficient, it is limited to uniform
grids which may be a bottleneck for certain applications. Our second construction
is the generalized random graph as shown in Figure 53 where the ranges of the
kernels are allowed to overlap. The generalized random graph is very flexible as
it can be applied on any domain geometry and discretization. Further it can also
be combined with random sampling methods to work on problems where J is very
large or combined with an active learning method to adaptively choose the regions
where a finer discretization is needed.
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Linear Complexity. Each term in the decomposition (5.21) is represented by
the kernel matrix Kl,l for l = 1, . . . , L, and Kl+1,l, Kl,l+1 for l = 1, . . . , L − 1

corresponding to the appropriate sub-discretization. Therefore the complexity of
the multipole method is

∑L
l=1O(J2

l r
d
l ) +

∑L−1
l=1 O(JlJl+1r

d
l ) =

∑L
l=1O(J2

l r
d
l ). By

designing the sub-discretization so that O(J2
l r

d
l ) ≤ O(J), we can obtain complexity

linear in J . For example, when d = 2, pick rl = 1/
√
Jl and Jl = O(2−lJ) such

that rL is large enough so that there exists a ball of radius rL containing D. Then
clearly

∑L
l=1O(J2

l r
d
l ) = O(J). By combining with a Nyström approximation, we

can obtain O(J ′) complexity for some J ′ � J .

Fourier Neural Operator (FNO)
Instead of working with a kernel directly on the domain D, we may consider its
representation in Fourier space and directly parameterize it there. This allows us
to utilize Fast Fourier Transform (FFT) methods in order to compute the action of
the kernel integral operator (5.16) with almost linear complexity. A similar idea
was used in (Nelsen and Andrew M Stuart, 2021) to construct random features in
function space. The method we outline was first described in Z. Li, Kovachki, et al.,
2020a and is termed the Fourier Neural Operator (FNO). We note that the theory of
Section 4 is designed for general kernels and does not apply to the FNO formulation;
however, similar universal approximation results were developed for it in (Kovachki,
Lanthaler, and Mishra, 2021) when the input and output spaces are Hilbert space.
For simplicity, we will assume that D = Td is the unit torus and all functions are
complex-valued. Let F : L2(D;Cn)→ `2(Zd;Cn) denote the Fourier transform of
a function v : D → Cn andF−1 its inverse. For v ∈ L2(D;Cn) and w ∈ `2(Zd;Cn),
we have

(Fv)j(k) = 〈vj, ψk〉L2(D;C), j ∈ {1, . . . , n}, k ∈ Zd,

(F−1w)j(x) =
∑
k∈Zd

wj(k)ψk(x), j ∈ {1, . . . , n}, x ∈ D

where, for each k ∈ Zd, we define

ψk(x) = e2πik1x1 · · · e2πikdxd , x ∈ D

with i =
√
−1 the imaginary unit. By letting κ(x, y) = κ(x− y) for some κ : D →

Cm×n in (5.16) and applying the convolution theorem, we find that

u(x) = F−1
(
F(κ) · F(v)

)
(x) ∀x ∈ D.
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Figure 55: (a) The full architecture of neural operator: start from input a. 1. Lift
to a higher dimension channel space by a neural network P . 2. Apply T (typically
T = 4) layers of integral operators and activation functions. 3. Project back to the
target dimension by a neural network Q. Output u. (b) Fourier layers: Start from
input v. On top: apply the Fourier transform F ; a linear transform R on the lower
Fourier modes which also filters out the higher modes; then apply the inverse Fourier
transform F−1. On the bottom: apply a local linear transform W .

We therefore propose to directly parameterize κ by its Fourier coefficients. We write

u(x) = F−1
(
Rφ · F(v)

)
(x) ∀x ∈ D (5.28)

where Rφ is the Fourier transform of a periodic function κ : D → Cm×n parameter-
ized by some φ ∈ Rp.

For frequency mode k ∈ Zd, we have (Fv)(k) ∈ Cn and Rφ(k) ∈ Cm×n. We pick
a finite-dimensional parameterization by truncating the Fourier series at a maximal
number of modes kmax = |Zkmax | = |{k ∈ Zd : |kj| ≤ kmax,j, for j = 1, . . . , d}|. We
thus parameterizeRφ directly as complex-valued (kmax×m×n)-tensor comprising a
collection of truncated Fourier modes and therefore drop φ from our notation. In the
case where we have real-valued v and we want u to also be real-valued, we impose
that κ is real-valued by enforcing conjugate symmetry in the parameterization, i.e.

R(−k)j,l = R∗(k)j,l ∀k ∈ Zkmax , j = 1, . . . ,m, l = 1, . . . , n.

We note that the set Zkmax is not the canonical choice for the low frequency modes
of vt. Indeed, the low frequency modes are usually defined by placing an upper-
bound on the `1-norm of k ∈ Zd. We choose Zkmax as above since it allows for
an efficient implementation. Figure 55 gives a pictorial representation of an entire
Neural Operator architecture employing Fourier layers.
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The Discrete Case and the FFT. Assuming the domain D is discretized with
J ∈ N points, we can treat v ∈ CJ×n and F(v) ∈ CJ×n. Since we convolve
v with a function which only has kmax Fourier modes, we may simply truncate
the higher modes to obtain F(v) ∈ Ckmax×n. Multiplication by the weight tensor
R ∈ Ckmax×m×n is then

(
R · (Fvt)

)
k,l

=
n∑
j=1

Rk,l,j(Fv)k,j, k = 1, . . . , kmax, l = 1, . . . ,m. (5.29)

When the discretization is uniform with resolution s1 × · · · × sd = J , F can
be replaced by the Fast Fourier Transform. For v ∈ CJ×n, k = (k1, . . . , kd) ∈
Zs1 × · · · × Zsd , and x = (x1, . . . , xd) ∈ D, the FFT F̂ and its inverse F̂−1 are
defined as

(F̂v)l(k) =

s1−1∑
x1=0

· · ·
sd−1∑
xd=0

vl(x1, . . . , xd)e
−2iπ

∑d
j=1

xjkj
sj ,

(F̂−1v)l(x) =

s1−1∑
k1=0

· · ·
sd−1∑
kd=0

vl(k1, . . . , kd)e
2iπ

∑d
j=1

xjkj
sj

for l = 1, . . . , n. In this case, the set of truncated modes becomes

Zkmax = {(k1, . . . , kd) ∈ Zs1 × · · · × Zsd | kj ≤ kmax,j or sj − kj ≤ kmax,j,

for j = 1, . . . , d}.

When implemented, R is treated as a (s1 × · · · × sd ×m× n)-tensor and the above
definition of Zkmax corresponds to the “corners” of R, which allows for a straight-
forward parallel implementation of (5.29) via matrix-vector multiplication. In
practice, we have found the choice kmax,j = 12, which yields kmax = 12d parameters
per channel, to be sufficient for all the tasks that we consider.

Choices for R. In general, R can be defined to depend on (Fa), the Fourier
transform of the input a ∈ A to parallel our construction (5.7). Indeed, we can
define Rφ : Zd × Cda → Cm×n as a parametric function that maps

(
k, (Fa)(k))

to the values of the appropriate Fourier modes. We have experimented with the
following parameterizations of Rφ:

• Direct. Define the parameters φk ∈ Cm×n for each wave number k:

Rφ

(
k, (Fa)(k)

)
:= φk.
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• Linear. Define the parameters φk1 ∈ Cm×n×da , φk2 ∈ Cm×n for each wave
number k:

Rφ

(
k, (Fa)(k)

)
:= φk1(Fa)(k) + φk2 .

• Feed-forward neural network. Let Φφ : Zd×Cda → Cm×n be a neural network
with parameters φ:

Rφ

(
k, (Fa)(k)

)
:= Φφ(k, (Fa)(k)).

We find that the linear parameterization has a similar performance to the direct

parameterization above, however, it is not as efficient both in terms of computational
complexity and the number of parameters required. On the other hand, we find that
the feed-forward neural network parameterization has a worse performance. This
is likely due to the discrete structure of the space Zd; numerical evidence suggests
neural networks are not adept at handling this structure. Our experiments in this
work focus on the direct parameterization presented above.

Invariance to Discretization. The Fourier layers are discretization-invariant be-
cause they can learn from and evaluate functions which are discretized in an arbitrary
way. Since parameters are learned directly in Fourier space, resolving the functions
in physical space simply amounts to projecting on the basis elements e2πi〈x,k〉; these
are well-defined everywhere on Cd.

Quasi-linear Complexity. The weight tensor R contains kmax < J modes, so
the inner multiplication has complexity O(kmax). Therefore, the majority of the
computational cost lies in computing the Fourier transform F(v) and its inverse.
General Fourier transforms have complexity O(J2), however, since we truncate the
series the complexity is in fact O(Jkmax), while the FFT has complexity O(J log J).
Generally, we have found using FFTs to be very efficient, however, a uniform
discretization is required.

Non-uniform and Non-periodic Geometry. Our implementation of the Fourier
neural operator relies on the fast Fourier transform which is only defined on uniform
mesh discretizations of D = Td, or for functions on the square satisfying homoge-
neous Dirichlet (fast Fourier sine transform) or homogeneous Neumann (fast Fourier
cosine transform) boundary conditions. However, the Fourier neural operator can be
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applied in more general geometries via Fourier continuations. Given any compact
manifold D =M, we can always embed it into a periodic cube (torus),

i :M→ Td

where the regular FFT can be applied. Conventionally, in numerical analysis ap-
plications, the embedding i is defined through a continuous extension by fitting
polynomials (Bruno, Han, and Pohlman, 2007). However, in the Fourier neural
operator, the idea can be applied simply by padding the input with zeros. The loss is
computed only on the original space during training. The Fourier neural operator
will automatically generate a smooth extension to the padded domain in the output
space.

Summary
We summarize the main computational approaches presented in this section and their
complexity:

• GNO: Subsample J ′ points from the J-point discretization and compute the
truncated integral

u(x) =

∫
B(x,r)

κ(x, y)v(y) dy (5.30)

at a O(JJ ′) complexity.

• LNO: Decompose the kernel function tensor product form and compute

u(x) =
r∑
j=1

〈ψ(j), v〉ϕ(j)(x) (5.31)

at a O(J) complexity.

• MGNO: Compute a multi-scale decomposition of the kernel

K = K1,1 +K1,2K2,2K2,1 +K1,2K2,3K3,3K3,2K2,1 + · · ·

u(x) = (Kv)(x)
(5.32)

at a O(J) complexity.

• FNO: Parameterize the kernel in the Fourier domain and compute the using
the FFT

u(x) = F−1
(
Rφ · F(v)

)
(x) (5.33)

at a O(J log J) complexity.
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5.6 Test Problems
A central application of neural operators is learning solution operators defined by
parametric partial differential equations. In this section, we define four test problems
for which we numerically study the approximation properties of neural operators. To
that end, let (A,U ,F) be a triplet of Banach spaces. The first two problem classes
considered are derived from the following general class of PDEs:

Lau = f (5.34)

where, for every a ∈ A, La : U → F is a, possibly nonlinear, partial differential
operator, and u ∈ U corresponds to the solution of the PDE (5.34) when f ∈ F and
appropriate boundary conditions are imposed. The second class will be evolution
equations with initial condition a ∈ A and solution u(t) ∈ U at every time t > 0.

We seek to learn the map from a to u := u(τ) for some fixed time τ > 0; we will
also study maps on paths (time-dependent solutions).

Our goal will be to learn the mappings

G† : a 7→ u or G† : f 7→ u;

we will study both cases, depending on the test problem considered. We will define a
probability measure µ on A or F which will serve to define a model for likely input
data. Furthermore, measure µ will define a topology on the space of mappings in
which G† lives, using the Bochner norm (5.3). We will assume that each of the spaces
(A,U ,F) are Banach spaces of functions defined on a bounded domain D ⊂ Rd.
All reported errors will be Monte-Carlo estimates of the relative error

Ea∼µ
‖G†(a)− Gθ(a)‖L2(D)

‖G†(a)‖L2(D)

or equivalently replacing a with f in the above display and with the assumption
that U ⊆ L2(D). The domain D will be discretized, usually uniformly, with J ∈ N
points.

Poisson Equation
First we consider the one-dimensional Poisson equation with a zero boundary condi-
tion. In particular, (5.34) takes the form

− d2

dx2
u(x) = f(x), x ∈ (0, 1)

u(0) = u(1) = 0

(5.35)
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for some source function f : (0, 1)→ R). In particular, forD(L) := H1
0 ((0, 1);R)∩

H2((0, 1);R), we have L : D(L) → L2((0, 1);R) defined as −d2/dx2, noting that
that L has no dependence on any parameter a ∈ A in this case. We will consider
the weak form of (5.35) with source function f ∈ H−1((0, 1);R) and therefore the
solution operator G† : H−1((0, 1);R)→ H1

0 ((0, 1);R) defined as

G† : f 7→ u.

We define the probability measure µ = N(0, C) where

C =
(
L + I

)−2

,

defined through the spectral theory of self-adjoint operators. Since µ charges a subset
of L2((0, 1);R), we will learn G† : L2((0, 1);R) → H1

0 ((0, 1);R) in the topology
induced by (5.3).

In this setting, G† has a closed-form solution given as

G†(f) =

∫ 1

0

G(·, y)f(y) dy

where
G(x, y) =

1

2
(x+ y − |y − x|)− xy, ∀(x, y) ∈ [0, 1]2

is the Green’s function. Note that while G† is a linear operator, the Green’s function
G is non-linear as a function of its arguments. We will consider only a single layer
of (5.5) with σ1 = Id, P = Id, Q = Id, W0 = 0, b0 = 0, and

K0(f) =

∫ 1

0

κθ(·, y)f(y) dy

where κθ : R2 → R will be parameterized as a standard neural network with
parameters θ.

The purpose of the current example is two-fold. First we will test the efficacy
of the neural operator framework in a simple setting where an exact solution is
analytically available. Second we will show that by building in the right inductive
bias, in particular, paralleling the form of the Green’s function solution, we obtain a
model that generalizes outside the distribution µ. That is, once trained, the model
will generalize to any f ∈ L2((0, 1);R) that may be outside the support of µ. For
example, as defined, the random variable f ∼ µ is a continuous function, however,
if κθ approximates the Green’s function well then the model G† will approximate the
solution to (5.35) accurately even for discontinuous inputs.
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To create the dataset used for training, solutions to (5.35) are obtained by numerical
integration using the Green’s function on a uniform grid with 85 collocation points.
We use N = 1000 training examples.

Darcy Flow
We consider the steady state of Darcy Flow in two dimensions which is the second
order elliptic equation

−∇ · (a(x)∇u(x)) = f(x), x ∈ D

u(x) = 0, x ∈ ∂D
(5.36)

where D = (0, 1)2 is the unit square. In this setting A = L∞(D;R+), U =

H1
0 (D;R), and F = H−1(D;R). We fix f ≡ 1 and consider the weak form of

(5.36) and therefore the solution operator G† : L∞(D;R+)→ H1
0 (D;R) defined as

G† : a 7→ u. (5.37)

Note that while (5.36) is a linear PDE, the solution operator G† is nonlinear. We
define the probability measure µ = T]N(0, C) where

C = (−∆ + 9I)−2

with D(−∆) defined to impose zero Neumann boundary on the Laplacian. We
extend T to be a Nemytskii operator acting on functions, defined through the map
T : R→ R+ defined as

T (x) =

12, x ≥ 0

3, x < 0
.

The random variable a ∼ µ is a piecewise-constant function with random interfaces
given by the underlying Gaussian random field. Such constructions are prototypical
models for many physical systems such as permeability in sub-surface flows and (in
a vector generalization) material microstructures in elasticity.

To create the dataset used for training, solutions to (5.36) are obtained using a
second-order finite difference scheme on a uniform grid of size 421 × 421. All
other resolutions are downsampled from this data set. We use N = 1000 training
examples.
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Burgers’ Equation
We consider the one-dimensional viscous Burgers’ equation

∂

∂t
u(x, t) +

1

2

∂

∂x

(
u(x, t)

)2
= ν

∂2

∂x2
u(x, t), x ∈ (0, 2π), t ∈ (0,∞)

u(x, 0) = u0(x), x ∈ (0, 2π)

(5.38)

with periodic boundary conditions and a fixed viscosity ν = 0.1. Let

Ψ : L2
per((0, 2π);R)× R+ → Hs

per((0, 2π);R),

for any s > 0, be the flow map associated to (5.38), in particular,

Ψ(u0, t) = u(·, t), t > 0.

We consider the solution operator defined by evaluating Ψ at a fixed time. Fix any
s ≥ 0. Then we may define G† : L2

per((0, 2π);R)→ Hs
per((0, 2π);R) by

G† : u0 7→ Ψ(u0, 1). (5.39)

We define the probability measure µ = N(0, C) where

C = 625
(
− d2

dx2
+ 25I

)−2

with domain of the Laplacian defined to impose periodic boundary conditions. We
chose the initial condition for (5.38) by drawing u0 ∼ µ, noting that µ charges a
subset of L2

per((0, 2π);R).

To create the dataset used for training, solutions to (5.38) are obtained using a
pseudo-spectral split step method where the heat equation part is solved exactly
in Fourier space and then the non-linear part is advanced using a forward Euler
method with a very small time step. We use a uniform spatial grid with 213 = 8192

collocation points and subsample all other resolutions from this data set. We use
N = 1000 training examples.

Navier-Stokes Equation
We consider the two-dimensional Navier-Stokes equation for a viscous, incompress-
ible fluid

∂tu(x, t) + u(x, t) · ∇u(x, t) +∇p(x, t) = ν∆u(x, t) + f(x), x ∈ T2, t ∈ (0,∞)

∇ · u(x, t) = 0, x ∈ T2, t ∈ [0,∞)

u(x, 0) = u0(x), x ∈ T2

(5.40)
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where T2 is the unit torus i.e. [0, 1]2 equipped with periodic boundary conditions,
and ν ∈ R+ is a fixed viscosity. Here u : T2 × R+ → R2 is the velocity field,
p : T2 × R+ → R2 is the pressure field, and f : T2 → R is a fixed forcing function.

Equivalently, we study the vorticity-streamfunction formulation of the equation

∂tw(x, t) +∇⊥ψ · ∇w(x, t) = ν∆w(x, t) + g(x), x ∈ T2, t ∈ (0,∞),

−∆ψ = ω, x ∈ T2, t ∈ (0,∞),

w(x, 0) = w0(x), x ∈ T2,

(5.41)

where w is the out-of-plane component of the vorticity field∇× u : T2×R+ → R3.
Since, when viewed in three dimensions, u =

(
u1(x1, x2), u2(x1, x2), 0

)
, it follows

that∇×u = (0, 0, ω). The stream function ψ is related to the velocity by u = ∇⊥ψ,
enforcing the divergence-free condition. Similar considerations as for the curl of u
apply to the curl of f , showing that∇× f = (0, 0, g). We define the forcing term as

g(x1, x2) = 0.1(sin(2π(x1 + x2)) + cos(2π(x1 + x2))), ∀(x1, x2) ∈ T2.

The corresponding Reynolds number is estimated as Re =
√

0.1
ν(2π)3/2

(Chandler and
Kerswell, 2013). Let Ψ : L2(T2;R)× R+ → Hs(T2;R), for any s > 0, be the flow
map associated to (5.41), in particular,

Ψ(w0, t) = w(·, t), t > 0.

Notice that this is well-defined for any w0 ∈ L2(T;R).

We will define two notions of the solution operator. In the first, we will proceed as
in the previous examples, in particular, G† : L2(T2;R)→ Hs(T2;R) is defined as

G† : w0 7→ Ψ(w0, T ) (5.42)

for some fixed T > 0. In the second, we will map an initial part of the trajec-
tory to a later part of the trajectory. In particular, we define G† : L2(T2;R) ×
C
(
(0, 10];Hs(T2;R)

)
→ C

(
(10, T ];Hs(T2;R)

)
by

G† :
(
w0,Ψ(w0, t)|t∈(0,10]

)
7→ Ψ(w0, t)|t∈(10,T ] (5.43)

for some fixed T > 10. We define the probability measure µ = N(0, C) where

C = 73/2(−∆ + 49I)−2.5
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with periodic boundary conditions on the Laplacian. We model the initial vortic-
ity w0 ∼ µ to (5.41) as µ charges a subset of L2(T2;R). Its pushforward onto
Ψ(w0, t)|t∈(0,10] is required to define the measure on input space in the second case
defined by (5.43).

To create the dataset used for training, solutions to (5.41) are obtained using a
pseudo-spectral split step method where the viscous terms are advanced using a
Crank–Nicolson update and the nonlinear and forcing terms are advanced using
Heun’s method. Dealiasing is used with the 2/3 rule. For further details on this
approach see (Chandler and Kerswell, 2013). Data is obtained on a uniform 256×256

grid and all other resolutions are subsampled from this data set. We experiment with
different viscosities ν, final times T , and amounts of training data N .

Bayesian Inverse Problem

As an application of operator learning, we consider the inverse problem of recov-
ering the initial vorticity in the Navier-Stokes equation (5.41) from partial, noisy
observations of the vorticity at a later time. Consider the first solution operator
defined in subsection 5.6, in particular, G† : L2(T2;R)→ Hs(T2;R) defined as

G† : w0 7→ Ψ(w0, 50)

where Ψ is the flow map associated to (5.41). We then consider the inverse problem

y = O
(
G†(w0)

)
+η (5.44)

of recovering w0 ∈ L2(T2;R) where O : Hs(T2;R) → R49 is the evaluation
operator on a uniform 7 × 7 interior grid, and η ∼ N(0,Γ) is observational noise
with covariance Γ = (1/γ2)I and γ = 0.1. We view (5.44) as the Bayesian inverse
problem mapping prior measure µ on w0 to posterior measure πy on w0/y. In
particular, πy has density with respect to µ, given by the Randon-Nikodym derivative

dπy

dµ
(w0) ∝ exp

(
−1

2
‖y −O

(
G†(w0)

)
‖2

Γ

)
where ‖ · ‖Γ = ‖Γ−1/2 · ‖ and ‖ · ‖ is the Euclidean norm in R49. For further
details on Bayesian inversion for functions see (Simon L Cotter et al., 2009; A. M.
Stuart, 2010), and see (S. L. Cotter et al., 2013) for MCMC methods adapted to the
function-space setting.

We solve (5.44) by computing the posterior mean Ew0∼πy [w0] using the pre-conditioned
Crank–Nicolson (pCN) MCMC method described in S. L. Cotter et al., 2013 for this
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task. We employ pCN in two cases: (i) using G† evaluated with the pseudo-spectral
method described in section 5.6, and (ii) using Gθ, the neural operator approximating
G†. After a 5,000 sample burn-in period, we generate 25,000 samples from the
posterior using both approaches and use them to compute the posterior mean.

Spectra

Because of the constant-in-time forcing term the energy reaches a non-zero equilib-
rium in time which is statistically reproducible for different initial conditions. To
compare the complexity of the solution to the Navier-Stokes problem outlined in sub-
section 5.6 we show, in Figure 56, the Fourier spectrum of the solution data at time
t = 50 for three different choices of the viscosity ν. The figure demonstrates that,
for a wide range of wavenumbers k, which grows as ν decreases, the rate of decay of
the spectrum is−5/3, matching what is expected in the turbulent regime (Kraichnan,
1967). This is a statistically stationary property of the equation, sustained for all
positive times.

Figure 56: The spectral decay of the Navier-stokes equation data. The y-axis is
represents the value of each mode; the x-axis is the wavenumber |k| = k1 + k2.
From left to right, the solutions have viscosity ν = 10−3, 10−4, 10−5 respectively.

Choice of Loss Criteria
In general, the model has the best performance when trained and tested using the
same loss criteria. If one trains the model using one norm and tests with another
norm, the model may overfit in the training norm. Furthermore, the choice of loss
function plays a key role. In this work, we use the relative L2 error to measure the
performance in all our problems. Both the L2 error and its square, the mean squared
error (MSE), are common choices of the testing criteria in the numerical analysis
and machine learning literature. We observed that using the relative error to train the
model has a good normalization and regularization effect that prevents overfitting.
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In practice, training with the relative L2 loss results in around half the testing error
rate compared to training with the MSE loss.

5.7 Numerical Results
In this section, we compare the proposed neural operator with other supervised
learning approaches, using the four test problems outlined in Section 5.6. In Sub-
section 5.7 we study the Poisson equation, and learning a Greens function; Subsec-
tion 5.7 considers the coefficient to solution map for steady Darcy flow, and the initial
condition to solution at positive time map for Burgers equation. In Subsection 5.6
we study the Navier-Stokes equation.

We compare with a variety of architectures found by discretizing the data and apply-
ing finite-dimensional approaches, as well as with other operator-based approxima-
tion methods. We do not compare against traditional solvers (FEM/FDM/Spectral),
although our methods, once trained, enable evaluation of the input to output map
orders of magnitude more quickly than by use of such traditional solvers on complex
problems. We demonstrate the benefits of this speed-up in a prototypical application,
Bayesian inversion, in Subsubection 5.7.

All the computations are carried on a single Nvidia V100 GPU with 16GB memory.
The code is available at https://github.com/zongyi-li/graph-pde
and https://github.com/zongyi-li/fourier_neural_operator.

Setup of the Four Methods: We construct the neural operator by stacking four
integral operator layers as specified in (5.5) with the ReLU activation. No batch
normalization is needed. Unless otherwise specified, we use N = 1000 training
instances and 200 testing instances. We use the Adam optimizer to train for 500

epochs with an initial learning rate of 0.001 that is halved every 100 epochs. We
set the channel dimensions dv0 = · · · = dv3 = 64 for all one-dimensional problems
and dv0 = · · · = dv3 = 32 for all two-dimensional problems. The kernel networks
κ(0), . . . , κ(3) are standard feed-forward neural networks with three layers and widths
of 256 units. We use the following abbreviations to denote the methods introduced
in Section 5.5.

• GNO: The method introduced in subsection 5.5, truncating the integral to a
ball with radius r = 0.25 and using the Nyström approximation with J ′ = 300

sub-sampled nodes.
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• LNO: The low-rank method introduced in subsection 5.5 with rank r = 4.

• MGNO: The multipole method introduced in subsection 5.5. On the Darcy
flow problem, we use the random construction with three graph levels, each
sampling J1 = 400, J2 = 100, J3 = 25 nodes nodes respectively. On the
Burgers’ equation problem, we use the orthogonal construction without sam-
pling.

• FNO: The Fourier method introduced in subsection 5.5. We set kmax,j = 16

for all one-dimensional problems and kmax,j = 12 for all two-dimensional
problems.

Remark on the Resolution. Traditional PDE solvers such as FEM and FDM
approximate a single function and therefore their error to the continuum decreases
as the resolution is increased. The figures we show here exhibit something different:
the error is independent of resolution, once enough resolution is used, but is not
zero. This reflects the fact that there is a residual approximation error, in the infinite
dimensional limit, from the use of a finite-parametrized neural operator, trained on
a finite amount of data. Invariance of the error with respect to (sufficiently fine)
resolution is a desirable property that demonstrates that an intrinsic approximation of
the operator has been learned, independent of any specific discretization; see Figure
58. Furthermore, resolution-invariant operators can do zero-shot super-resolution, as
shown in Subsubection 5.7.

Poisson Equation
Recall the Poisson equation (5.35) introduced in subsection 5.6. We use a zero
hidden layer neural operator construction without lifting the input dimension. In
particular, we simply learn a kernel κθ : R2 → R parameterized as a standard
feed-forward neural network with parameters θ. Using only N = 1000 training
examples, we obtain a relative test error of 10−7. The neural operator gives an almost
perfect approximation to the true solution operator in the topology of (5.3).

To examine the quality of the approximation in the much stronger uniform topology,
we check whether the kernel κθ approximates the Green’s function for this problem.
To see why this is enough, let K ⊂ L2([0, 1];R) be a bounded set, i.e.

‖f‖L2([0,1];R) ≤M, ∀f ∈ K
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Figure 57: Kernel for one-dimensional Green’s function, with the Nystrom approxi-
mation method. Left: learned kernel function; Right: the analytic Green’s funciton.
This is a proof of concept of the graph kernel network on 1 dimensional Poisson
equation and the comparison of learned and truth kernel.

and suppose that
sup

(x,y)∈[0,1]2
|κθ(x, y)−G(x, y)| < ε

M

for some ε > 0. Then it is easy to see that

sup
f∈K
‖G†(f)− Gθ(f)‖L2([0,1];R) < ε,

in particular, we obtain an approximation in the topology of uniform convergence
over bounded sets, while having trained only in the topology of the Bochner norm
(5.3). Figure 57 shows the results from which we can see that κθ does indeed
approximate the Green’s function well. This result implies that by constructing
a suitable architecture, we can generalize to the entire space and data that is well
outside the support of the training set.

Darcy and Burgers Equations
In the following section, we compare four methods presented in this paper, with
different operator approximation benchmarks; we study the Darcy flow problem
introduced in Subsection 5.6 and the Burgers’ equation problem introduced in
Subsection 5.6. The solution operators of interest are defined by (5.37) and (5.39).
We use the following abbreviations for the methods against which we benchmark.

• NN is a standard point-wise feedforward neural network. It is mesh-free, but
performs badly due to lack of neighbor information. We use standard fully
connected neural networks with 8 layers and width 1000.



207

Figure 58: (a) Benchmarks on Burgers equation; (b) benchmarks on Darcy Flow for
different resolutions. Train and test on the same resolution.

• FCN is the state of the art neural network method based on Fully Convolution
Network (Zhu and Zabaras, 2018). It has a dominating performance for
small grids s = 61. But fully convolution networks are mesh-dependent and
therefore their error grows when moving to a larger grid.

• PCA+NN is an instantiation of the methodology proposed in Bhattacharya et
al., 2020: using PCA as an autoencoder on both the input and output spaces and
interpolating the latent spaces with a standard fully connected neural network
with width 200. The method provably obtains mesh-independent error and
can learn purely from data, however the solution can only be evaluated on the
same mesh as the training data.

• RBM is the classical Reduced Basis Method (using a PCA basis), which
is widely used in applications and provably obtains mesh-independent error
(R. A. DeVore, 2014). This method has good performance, but the solutions
can only be evaluated on the same mesh as the training data and one needs
knowledge of the PDE to employ it.

• DeepONet is the Deep Operator network (L. Lu, Jin, and George Em Karni-
adakis, 2019) that comes equipped with an approximation theory (Lanthaler,
Mishra, and George Em Karniadakis, 2021). We use the unstacked version
with width 200 which is precisely defined in the original work (L. Lu, Jin,
and George Em Karniadakis, 2019). We use standard fully connected neural
networks with 8 layers and width 200.
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Darcy Flow

The results of the experiments on Darcy flow are shown in Figure 58 and Table 51.
All the methods, except for FCN, achieve invariance of the error with respect to the
resolution s. In the experiment, we tune each model across of range of different
widths and depth to obtain the choices used here; for DeepONet for example this
leads to 8 layers and width 200 as reported above.

Within our hyperparameter search, the Fourier neural operator (FNO) obtains the
lowest relative error. The Fourier based method likely sees this advantage because
the output functions are smooth in these test problems. We also note that is also
possible to obtain better results on each model using modified architectures and
problem specific feature engineering. For example for DeepONet, using CNN on
the branch net and PCA on the trunk net (the latter being similar to the method used
in Bhattacharya et al., 2020) can achieve 0.0232 relative L2 error, as shown in L. Lu,
Meng, et al., 2021, about half the size of the error we obtain here, but for a very
coarse grid with s = 29. In the experiments the different approximation architectures
are such their training cost are similar across all the methods considered, for given
s. Noting this, and for example comparing the graph-based neural operator methods
such as GNO and MGNO that use Nyström sampling in physical space with FNO,
we see that FNO is more accurate.

Networks s = 85 s = 141 s = 211 s = 421
NN 0.1716 0.1716 0.1716 0.1716
FCN 0.0253 0.0493 0.0727 0.1097
PCANN 0.0299 0.0298 0.0298 0.0299
RBM 0.0244 0.0251 0.0255 0.0259
DeepONet 0.0476 0.0479 0.0462 0.0487
GNO 0.0346 0.0332 0.0342 0.0369
LNO 0.0520 0.0461 0.0445 −
MGNO 0.0416 0.0428 0.0428 0.0420
FNO 0.0108 0.0109 0.0109 0.0098

Table 51: Relative error on 2-d Darcy Flow for different resolutions s.

Burgers’ Equation

The results of the experiments on Burgers’ equation are shown in Figure 58 and
Table 52. As for the Burgers’ problem, our instantiation of the Fourier neural
operator obtains nearly one order of magnitude lower relative error compared to any
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benchmarks. The Fourier neural operator has standard deviation 0.0010 and mean
training error 0.0012. If one replaces the ReLU activation by GeLU, the test error of
the FNO is further reduced from 0.0018 to 0.0007. We again observe the invariance
of the error with respect to the resolution. It is possible to improve the performance
on each model using modified architectures and problem specific feature engineering.
Similarly, the PCA-enhanced DeepONet with a proper scaling can achieve 0.0194

relative L2 error, as shown in L. Lu, Meng, et al., 2021, on a grid of resolution
s = 128.

Networks s = 256 s = 512 s = 1024 s = 2048 s = 4096 s = 8192
NN 0.4714 0.4561 0.4803 0.4645 0.4779 0.4452
GCN 0.3999 0.4138 0.4176 0.4157 0.4191 0.4198
FCN 0.0958 0.1407 0.1877 0.2313 0.2855 0.3238
PCANN 0.0398 0.0395 0.0391 0.0383 0.0392 0.0393
DeepONet 0.0569 0.0617 0.0685 0.0702 0.0833 0.0857
GNO 0.0555 0.0594 0.0651 0.0663 0.0666 0.0699
LNO 0.0212 0.0221 0.0217 0.0219 0.0200 0.0189
MGNO 0.0243 0.0355 0.0374 0.0360 0.0364 0.0364
FNO 0.0018 0.0018 0.0018 0.0019 0.0020 0.0019

Table 52: Relative errors on 1-d Burgers’ equation for different resolutions s.

Figure 59: Darcy, trained on 16× 16, tested on 241× 241. Graph kernel network
for the solution of (5.6). It can be trained on a small resolution and will generalize
to a large one. The Error is point-wise absolute squared error.

Zero-shot super-resolution.

The neural operator is mesh-invariant, so it can be trained on a lower resolution and
evaluated at a higher resolution, without seeing any higher resolution data (zero-shot
super-resolution). Figure 59 shows an example of the Darcy Equation where we
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train the GNO model on 16× 16 resolution data in the setting above and transfer to
256× 256 resolution, demonstrating super-resolution in space.

Navier-Stokes Equation
In the following section, we compare our four methods with different benchmarks
on the Navier-Stokes equation introduced in subsection 5.6. The operator of interest
is given by (5.43). We use the following abbreviations for the methods against which
we benchmark.

• ResNet: 18 layers of 2-d convolution with residual connections K. He et al.,
2016.

• U-Net: A popular choice for image-to-image regression tasks consisting of
four blocks with 2-d convolutions and deconvolutions Ronneberger, Fischer,
and Brox, 2015.

• TF-Net: A network designed for learning turbulent flows based on a combi-
nation of spatial and temporal convolutions R. Wang et al., 2020.

• FNO-2d: 2-d Fourier neural operator with an auto-regressive structure in
time. We use the Fourier neural operator to model the local evolution from
the previous 10 time steps to the next one time step, and iteratively apply the
model to get the long-term trajectory. We set and kmax,j = 12, dv = 32.

• FNO-3d: 3-d Fourier neural operator that directly convolves in space-time.
We use the Fourier neural operator to model the global evolution from the
initial 10 time steps directly to the long-term trajectory. We set kmax,j =

12, dv = 20.

As shown in Table 53, the FNO-3D has the best performance when there is sufficient
data (ν = 10−3, N = 1000 and ν = 10−4, N = 10000). For the configurations
where the amount of data is insufficient (ν = 10−4, N = 1000 and ν = 10−5, N =

1000), all methods have > 15% error with FNO-2D achieving the lowest among
our hyperparameter search. Note that we only present results for spatial resolution
64× 64 since all benchmarks we compare against are designed for this resolution.
Increasing the spatial resolution degrades their performance while FNO achieves the
same errors.
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Figure 510: The learning curves on Navier-Stokes ν = 1e−3 with different bench-
marks. Train and test on the same resolution.

Parameters Time ν = 10−3 ν = 10−4 ν = 10−4 ν = 10−5

Config per T = 50 T = 30 T = 30 T = 20
epoch N = 1000 N = 1000 N = 10000 N = 1000

FNO-3D 6, 558, 537 38.99s 0.0086 0.1918 0.0820 0.1893
FNO-2D 414, 517 127.80s 0.0128 0.1559 0.0834 0.1556
U-Net 24, 950, 491 48.67s 0.0245 0.2051 0.1190 0.1982
TF-Net 7, 451, 724 47.21s 0.0225 0.2253 0.1168 0.2268
ResNet 266, 641 78.47s 0.0701 0.2871 0.2311 0.2753

Table 53: Benchmarks on Navier Stokes (fixing resolution 64× 64 for both training
and testing).

Auto-regressive (2D) and Temporal Convolution (3D). We investigate two stan-
dard formulation to model the time evolution: the auto-regressive model (2D) and
the temporal convolution model (3D). Auto-regressive models: FNO-2D, U-Net,
TF-Net, and ResNet all do 2D-convolution in the spatial domain and recurrently
propagate in the time domain (2D+RNN). The operator maps the solution at previous
time steps to the next time step (2D functions to 2D functions). Temporal convolu-
tion models: on the other hand, FNO-3D performs convolution in space-time – it
approximation the integral in time by a convolution. FNO-3D maps the initial time
interval directly to the full trajectory (3D functions to 3D functions). The 2D+RNN
structure can propagate the solution to any arbitrary time T in increments of a fixed



212

Figure 511: The spectral decay of the predictions of different models on the Navier-
Stokes equation. The y-axis is the spectrum; the x-axis is the wavenumber. Left is
the spectrum of one trajectory; right is the average of 40 trajectories.

interval length ∆t, while the Conv3D structure is fixed to the interval [0, T ] but can
transfer the solution to an arbitrary time-discretization. We find the 2D method work
better for short time sequences while the 3D method more expressive and easier to
train on longer sequences.

Networks s = 64 s = 128 s = 256
FNO-3D 0.0098 0.0101 0.0106
FNO-2D 0.0129 0.0128 0.0126
U-Net 0.0253 0.0289 0.0344
TF-Net 0.0277 0.0278 0.0301

Table 54: Resolution study on Navier-stokes equation (ν = 10−3, N = 200, T =
20.)

Zero-shot super-resolution.

The neural operator is mesh-invariant, so it can be trained on a lower resolution and
evaluated at a higher resolution, without seeing any higher resolution data (zero-shot
super-resolution). Figure 51 shows an example where we train the FNO-3D model
on 64×64×20 resolution data in the setting above with (ν = 10−4, N = 10000) and
transfer to 256× 256× 80 resolution, demonstrating super-resolution in space-time.
The Fourier neural operator is the only model among the benchmarks (FNO-2D,
U-Net, TF-Net, and ResNet) that can do zero-shot super-resolution; the method
works well not only on the spatial but also on the temporal domain.
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Figure 512: The error of truncation in one single Fourier layer without applying the
linear transform R. The y-axis is the normalized truncation error; the x-axis is the
truncation mode kmax.

Spectral analysis

Figure 511 shows that all the methods are able to capture the spectral decay of
the Navier-Stokes equation. Notice that, while the Fourier method truncates the
higher frequency modes during the convolution, FNO can still recover the higher
frequency components in the final prediction. Due to the way we parameterize
Rφ, the function output by (5.28) has at most kmax,j Fourier modes per channel.
This, however, does not mean that the Fourier neural operator can only approximate
functions up to kmax,j modes. Indeed, the activation functions which occurs between
integral operators and the final decoder network Q recover the high frequency modes.
As an example, consider a solution to the Navier-Stokes equation with viscosity
ν = 10−3. Truncating this function at 20 Fourier modes yields an error around 2%

as shown in Figure 512, while the Fourier neural operator learns the parametric
dependence and produces approximations to an error of ≤ 1% with only kmax,j = 12

parameterized modes.

Non-periodic boundary condition.

Traditional Fourier methods work only with periodic boundary conditions. However,
the Fourier neural operator does not have this limitation. This is due to the linear
transform W (the bias term) which keeps the track of non-periodic boundary. As an
example, the Darcy Flow and the time domain of Navier-Stokes have non-periodic
boundary conditions, and the Fourier neural operator still learns the solution operator
with excellent accuracy.
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Bayesian Inverse Problem

As discussed in Section 5.6, we use the pCN method of S. L. Cotter et al., 2013 to
draw samples from the posterior distribution of initial vorticities in the Navier-Stokes
equation given sparse, noisy observations at time T = 50. We compare the Fourier
neural operator acting as a surrogate model with the traditional solvers used to
generate our train-test data (both run on GPU). We generate 25,000 samples from
the posterior (with a 5,000 sample burn-in period), requiring 30,000 evaluations of
the forward operator.

As shown in Figure 513, FNO and the traditional solver recover almost the same
posterior mean which, when pushed forward, recovers well the later-time solution of
the Navier-Stokes equation. In sharp contrast, FNO takes 0.005s to evaluate a single
instance while the traditional solver, after being optimized to use the largest possible
internal time-step which does not lead to blow-up, takes 2.2s. This amounts to 2.5

minutes for the MCMC using FNO and over 18 hours for the traditional solver. Even
if we account for data generation and training time (offline steps) which take 12

hours, using FNO is still faster. Once trained, FNO can be used to quickly perform
multiple MCMC runs for different initial conditions and observations, while the
traditional solver will take 18 hours for every instance. Furthermore, since FNO is
differentiable, it can easily be applied to PDE-constrained optimization problems in
which adjoint calculations are used as part of the solution procedure.

Discussion and Comparison of the Four methods
In this section we will compare the four methods in term of expressiveness, com-
plexity, refinabilibity, and ingenuity.

Ingenuity

First we will discuss ingenuity, in other words, the design of the frameworks. The
first method, GNO, relies on the Nyström approximation of the kernel, or the Monte
Carlo approximation of the integration. It is the most simple and straightforward
method. The second method, LNO, relies on the low-rank decomposition of the
kernel operator. It is efficient when the kernel has a near low-rank structure. The
third method, MGNO, is the combination of the first two. It has a hierarchical,
multi-resolution decomposition of the kernel. The last one, FNO, is different from
the first three; it restricts the integral kernel to induce a convolution.

GNO and MGNO are implemented using graph neural networks, which helps to
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Figure 513: Results of the Bayesian inverse problem for the Navier-Stokes equation.
The top left panel shows the true initial vorticity while the bottom left panel shows
the true observed vorticity at T = 50 with black dots indicating the locations of
the observation points placed on a 7 × 7 grid. The top middle panel shows the
posterior mean of the initial vorticity given the noisy observations estimated with
MCMC using the traditional solver, while the top right panel shows the same thing
but using FNO as a surrogate model. The bottom middle and right panels show the
vorticity at T = 50 when the respective approximate posterior means are used as
initial conditions.

define sampling and integration. The graph network library also allows sparse and
distributed message passing. The LNO and FNO don’t have sampling. They are
faster without using the graph library.

scheme graph-based kernel network
GNO Nyström approximation Yes Yes
LNO Low-rank approximation No Yes
MGNO Multi-level graphs on GNO Yes Yes
FNO Convolution theorem; Fourier features No No

Table 55: Ingenuity.

Expressiveness

We measure the expressiveness by the training and testing error of the method. The
full O(J2) integration always has the best results, but it is usually too expensive.
As shown in the experiments 5.7 and 5.7, GNO usually has good accuracy, but its
performance suffers from sampling. LNO works the best on the 1d problem (Burgers



216

equation). It has difficulty on the 2d problem because it doesn’t employ sampling to
speed-up evaluation. MGNO has the multi-level structure, which gives it the benefit
of the first two. Finally, FNO has overall the best performance. It is also the only
method that can capture the challenging Navier-Stokes equation.

Complexity

The complexity of the four methods are listed in Table 56. GNO and MGNO have
sampling. Their complexity depends on the number of nodes sampled J ′. When
using the full nodes. They are still quadratic. LNO has the lowest complexity O(J).
FNO, when using the fast Fourier transform, has complexity O(J log J).

In practice. FNO is faster then the other three methods because it doesn’t have
the kernel network κ. MGNO is relatively slower because of its multi-level graph
structure.

Complexity Time per epochs in training
GNO O(J ′2r2) 4s
LNO O(J) 20s
MGNO

∑
lO(J2

l r
2
l ) ∼ O(J) 8s

FNO (J log J) 4s

Table 56: Complexity (roundup to second on a single Nvidia V100 GPU).

Refinability

Refineability measures the number of parameters used in the framework. Table
57 lists the accuracy of the relative error on Darcy Flow with respect to different
number of parameters. Because GNO, LNO, and MGNO have the kernel networks,
the slope of their error rates are flat: they can work with a very small number of
parameters. On the other hand, FNO does not have the sub-network. It needs at a
larger magnitude of parameters to obtain an acceptable error rate.

Robustness

We conclude with experiments investigating the robustness of Fourier neural operator
to noise. We study: a) training on clean (noiseless) data and testing with clean and
noisy data, and b) training on clean (noiseless) data and testing with clean and noisy
data. When creating noisy data we map a to noisy a′ as follows: at every grid-point



217

Number of parameters 103 104 105 106

GNO 0.075 0.065 0.060 0.035
LNO 0.080 0.070 0.060 0.040
MGNO 0.070 0.050 0.040 0.030
FNO 0.200 0.035 0.020 0.015

Table 57: The relative error on Darcy Flow with respect to different number of
parameters. The errors above are approximated value roundup to 0.05. They are the
lowest test error achieved by the model, given the model’s number of parameters |θ|
is bounded by 103, 104, 105, 106 respectively.

x we set
a(x)′ = a(x) + 0.1 · ‖a‖∞ξ,

where ξ ∼ N (0, 1) is drawn i.i.d. at every grid point; this is similar to the setting
adopted in L. Lu, Meng, et al., 2021. We also study the 1d advection equation as an
additional test case, following the setting in L. Lu, Meng, et al., 2021 in which the
input data is a random square wave, defined by an R3-valued random variable.

Problems Training error Test (clean) Test (noisy)
Burgers 0.002 0.002 0.018
Advection 0.002 0.002 0.094
Darcy 0.006 0.011 0.012
Navier-Stokes 0.024 0.024 0.039
Burgers (train with noise) 0.011 0.004 0.011
Advection (train with noise) 0.020 0.010 0.019
Darcy (train with noise) 0.007 0.012 0.012
Navier-Stokes (train with noise) 0.026 0.026 0.025

Table 58: Robustness to noise of the FNO method.

As shown in the top half of Table 58 and Figure 514, we observe the Fourier neural
operator is robust with respect to the (test) noise level on all four problems. In
particular, on the advection problem, it has about 10% error with 10% noise. The
Darcy and Navier-Stokes operators are smoothing, and the Fourier neural operator
obtains lower than 10% error in all scenarios. However the FNO is less robust on the
advection equation, which is not smoothing, and on Burgers equation which, whilst
smoothing also forms steep fronts.

A straightforward approach to enhance the robustness is to train the model with
noise. As shown in the bottom half of Table 58, the Fourier neural operator has
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no gap between the clean data and noisy data when training with noise. However,
noise in training may degrade the performance on the clean data, as a trade-off. In
general, augmenting the training data with noise leads to robustness. For example,
in the auto-regressive modeling of dynamical systems, training the model with noise
will reduce error accumulation in time, and thereby help the model to predict over
longer time-horizons (Pfaff et al., 2020). We also observed that other regularization
techniques such as early-stopping and weight decay improve robustness. Using a
higher spatial resolution also helps.

The advection problem is a hard problem for the FNO since it has discontinuities;
similar issues arise when using spectral methods for conservation laws. One can
modify the architecture to address such discontinuities accordingly. For example,
Wen et al., 2021 enhance the FNO by composing a CNN or UNet branch with
the Fourier layer; the resulting composite model outperforms the basic FNO on
multiphase flow with high contrast and sharp shocks. However the CNN and UNet
take the method out of the realm of discretization-invariant methods; further work
is required to design discretization-invariant image-processing tools, such as the
identification of discontinuities.

Figure 514: Robustness on Advection and Burgers equations. (a) The input of
Advection equation (s = 40). The orange curve is the clean input; the blue curve is
the noisy input. (b) The output of Advection equation. The green curve is the ground
truth output; the orange curve is the prediction of FNO with clean input (overlapping
with the ground truth); the blue curve is the prediction on the noisy input. Figure (c)
and (d) are for Burgers’ equation (s = 1000) correspondingly.
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5.8 Conclusions
We have introduced the concept of Neural Operator, the goal being to construct a
neural network architecture adapted to the problem of mapping elements of one
function space into elements of another function space. The network is comprised of
four steps which, in turn, (i) extract features from the input functions, (ii) iterate a
recurrent neural network on feature space, defined through composition of a sigmoid
function and a nonlocal operator, and (iii) a final mapping from feature space into
the output function.

We have studied four nonlocal operators in step (iii), one based on graph kernel
networks, one based on the low-rank decomposition, one based on the multi-level
graph structure, and the last one based on convolution in Fourier space. The designed
network architectures are constructed to be mesh-free and our numerical experiments
demonstrate that they have the desired property of being able to train and generalize
on different meshes. This is because the networks learn the mapping between
infinite-dimensional function spaces, which can then be shared with approximations
at different levels of discretization. A further advantage of the integral operator
approach is that data may be incorporated on unstructured grids, using the Nyström
approximation; these methods, however, are quadratic in the number of discretization
points; we describe variants on this methodology, using low rank and multiscale ideas,
to reduce this complexity. On the other hand the Fourier approach leads directly
to fast methods, linear-log linear in the number of discretization points, provided
structured grids are used. We demonstrate that our methods can achieve competitive
performance with other mesh-free approaches developed in the numerical analysis
community. Specifically, the Fourier neural operator achieves the best numerical
performance among our experiments, potentially due to the smoothness of the
solution function and the underlying uniform grids. The methods developed in the
numerical analysis community are less flexible than the approach we introduce here,
relying heavily on the structure of an underlying PDE mapping input to output; our
method is entirely data-driven.

Future Directions
We foresee three main directions in which this work will develop: firstly as a
method to speed-up scientific computing tasks which involve repeated evaluation
of a mapping between spaces of functions, following the example of the Bayesian
inverse problem 5.7, or when the underlying model is unknown as in computer vision
or robotics; and secondly the development of more advanced methodologies beyond
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the four approximation schemes presented in Section 5.5 that are more efficient
or better in specific situations; thirdly, the development of an underpinning theory
which captures the expressive power, and approximation error properties, of the
proposed neural network, following Section 5.4, and quantifies the computational
complexity required to achieve given error.

New Applications

The proposed neural operator is a blackbox surrogate model for function-to-function
mappings. It naturally fits into solving PDEs for physics and engineering problems.
In the paper we mainly studied three partial differential equations: Darcy Flow, Burg-
ers’ equation, and Navier-Stokes equation, which cover a board range of scenarios.
Due to its blackbox structure, the neural operator is easily applied on other problems.
We foresee applications on more challenging turbulent flows, such as those arising
in subgrid models with in climate GCMs, high contrast media in geological models
generalizing the Darcy model, and general physics simulation for games and visual
effects. The operator setting leads to an efficient and accurate representation, and the
resolution-invariant properties make it possible to train on small resolution datasets
and evaluate on arbitrary resolutions.

The operator learning setting is not restricted to scientific computing. For example,
in computer vision, images can naturally be viewed as real-valued functions on 2D
domains and videos simply add a temporal structure. Our approach is therefore a
natural choice for problems in computer vision where invariance to discretization is
crucial. We leave this as an interesting future direction.

New Methodologies

Despite their excellent performance, there is still room for improvement upon
the current methodologies. For example, the full O(J2) integration method still
outperforms the FNO by about 40%, albeit at greater cost. It is of potential interest
to develop more advanced integration techniques or approximation schemes that
follows the neural operator framework. For example, one can use adaptive graph
or probability estimation in the Nyström approximation. It is also possible to use a
basis other than the Fourier basis such as the PCA basis and the Chebyshev basis.

Another direction for new methodologies is to combine the neural operator in other
settings. The current problem is set as a supervised learning problem. Instead,
one can combine the neural operator with solvers (Pathak et al., 2020; Um, Ray-
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mond, et al., 2020), augmenting and correcting the solvers to get faster and more
accurate approximation. Similarly, one can combine operator learning with physics
constraints (S. Wang, H. Wang, and Perdikaris, 2021; Z. Li, Zheng, et al., 2021).

Theory

In this work, we develop a universal approximation theory (Section 5.4) for neural
operators. As in the work of L. Lu, Jin, and George Em Karniadakis, 2019 studying
universal approximation for DeepONet, we use linear approximation techniques. The
power of non-linear approximation (R. A. DeVore, 1998), which is likely intrinsic to
the success of neural operators in some settings, is still less studied, as discussed in
Section 5.3; we note that DeepOnet is intrinsically limited by linear approximation
properties. For functions between Euclidean spaces, we clearly know, by combining
two layers of linear functions with one layer of non-linear activation function, the
neural network can approximate arbitrary continuous functions, and that deep neural
networks can be exponentially more expressive compared to shallow networks
(Poole et al., 2016). However issues are less clear when it comes to the choice of
architecture and the scaling of the number of parameters within neural operators
between Banach spaces. The approximation theory of operators is much more
complex and challenging compared to that of functions over Euclidean spaces. It is
important to study the class of neural operators with respect to their architecture, i.e.
what spaces the true solution operators lie in, and which classes of PDEs the neural
operator approximate efficiently. We leave these as exciting, but open, research
directions.

5.9 Approximation Theory Results
We write N = {1, 2, 3, . . . } and N0 = N ∪ {0}. Furthermore, we denote by | · |p
the p-norm on any Euclidean space. We say X is a Banach space if it is a Banach
space over the real field R. We denote by ‖ · ‖X its norm and by X ∗ its topological
(continuous) dual. In particular, X ∗ is the Banach space consisting of all continuous
linear functionals f : X → R with the operator norm

‖f‖X ∗ = sup
x∈X
‖x‖X=1

|f(x)| <∞.
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For any Banach space Y , we denote by L(X ;Y) the Banach space of continuous
linear maps T : X → Y with the operator norm

‖T‖X→Y = sup
x∈X
‖x‖X=1

‖Tx‖Y <∞.

We will abuse notation and write ‖ · ‖ for any operator norm when there is no
ambiguity about the spaces in question.

Let d ∈ N. We say thatD ⊂ Rd is a domain if it is a bounded and connected open set
that is topologically regular i.e. int(D̄) = D. Note that, in the case d = 1, a domain
is any bounded, open interval. For d ≥ 2, we say D is a Lipschitz domain if ∂D can
be locally represented as the graph of a Lipschitz continuous function defined on an
open ball of Rd−1. If d = 1, we will call any domain a Lipschitz domain. For any
multi-index α ∈ Nd

0, we write ∂αf for the α-th weak partial derivative of f when it
exists.

Let D ⊂ Rd be a domain. For any m ∈ N0, we define the following spaces

C(D) = {f : D → R : f is continuous},

Cm(D) = {f : D → R : ∂αf ∈ Cm−|α|1(D) ∀ 0 ≤ |α|1 ≤ m},

Cm
b (D) =

{
f ∈ Cm(D) : max

0≤|α|1≤m
sup
x∈D
|∂αf(x)| <∞

}
,

Cm(D̄) = {f ∈ Cm
b (D) : ∂αf is uniformly continuous ∀ 0 ≤ |α|1 ≤ m}

and make the equivalent definitions when D is replaced with Rd. Note that any
function in Cm(D̄) has a unique, bounded, continuous extension from D to D̄ and
is hence uniquely defined on ∂D. We will work with this extension without further
notice. We remark that when D is a Lipschitz domain, the following definition for
Cm(D̄) is equivalent

Cm(D̄) = {f : D̄ → R : ∃F ∈ Cm(Rd) such that f ≡ F |D̄},

see Whitney, 1934; A. Brudnyi and Y. Brudnyi, 2012. We define C∞(D) =⋂∞
m=0 C

m(D) and, similarly, C∞b (D) and C∞(D̄). We further define

C∞c (D) = {f ∈ C∞(D) : supp(f) ⊂ D is compact}

and, again, note that all definitions hold analogously for Rd. We denote by ‖ · ‖Cm :

Cm
b (D)→ R≥0 the norm

‖f‖Cm = max
0≤|α|1≤m

sup
x∈D
|∂αf(x)|
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which makes Cm
b (D) (also with D = Rd) and Cm(D̄) Banach spaces. For any

n ∈ N, we write C(D;Rn) for the n-fold Cartesian product of C(D) and similarly
for all other spaces we have defined or will define subsequently. We will continue to
write ‖ · ‖Cm for the norm on Cm

b (D;Rn) and Cm(D̄;Rn) defined as

‖f‖Cm = max
j∈{1,...,n}

‖fj‖Cm .

For any m ∈ N and 1 ≤ p ≤ ∞, we use the notation Wm,p(D) for the standard Lp-
type Sobolev space with m derivatives; we refer the reader to Adams and Fournier,
2003 for a formal definition. Furthermore, we, at times, use the notation W 0,p(D) =

Lp(D) and Wm,2(D) = Hm(D). Since we use the standard definitions of Sobolev
spaces that can be found in any reference on the subject, we do not give the specifics
here.

The Approximation Property
In this section we gather various results on the approximation property of Banach
spaces. The main results are Lemma 47 which states that if two Banach spaces have
the approximation property then continuous maps between them can be approxi-
mated in a finite-dimensional manner, and Lemma 51 which states the spaces in
Assumptions 34 and 35 have the approximation property.

Definition 40. A Banach spaceX has a Schauder basis if there exist some {ϕj}∞j=1 ⊂
X and {cj}∞j=1 ⊂ X ∗ such that

1. cj(ϕk) = δjk for any j, k ∈ N,

2. lim
n→∞

‖x−
∑n

j=1 cj(x)ϕj‖X = 0 for all x ∈ X .

We remark that definition 40 is equivalent to the following. The elements {ϕj}∞j=1 ⊂
X are called a Schauder basis for X if, for each x ∈ X , there exists a unique
sequence {αj}∞j=1 ⊂ R such that

lim
n→∞

‖x−
n∑
j=1

αjϕj‖X = 0.

For the equivalence, see, for example Albiac and Kalton, 2006, Theorem 1.1.3.
Throughout this paper we will simply write the term basis to mean Schauder basis.
Furthermore, we note that if {ϕ}∞j=1 is a basis then so is {ϕj/‖ϕ‖X}∞j=1, so we will
assume that any basis we use is normalized.
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Definition 41. Let X be a Banach space and U ∈ L(X ;X ). U is called a finite

rank operator if U(X ) ⊆ X is finite dimensional.

By noting that any finite dimensional subspace has a basis, we may equivalently
define a finite rank operator U ∈ L(X ;X ) to be one such that there exists a number
n ∈ N and some {ϕj}nj=1 ⊂ X and {cj}nj=1 ⊂ X ∗ such that

Ux =
n∑
j=1

cj(x)ϕj, ∀x ∈ X .

Definition 42. A Banach space X is said to have the approximation property (AP)

if, for any compact set K ⊂ X and ε > 0, there exists a finite rank operator

U : X → X such that

‖x− Ux‖X ≤ ε, ∀x ∈ K.

We now state and prove some well-known results about the relationship between
basis and the AP. We were unable to find the statements of the following lemmas in
the form given here in the literature and therefore we provide full proofs.

Lemma 43. Let X be a Banach space with a basis then X has the AP.

Proof. Let {cj}∞j=1 ⊂ X ∗ and {ϕj}∞j=1 ⊂ X be a basis for X . Note that there exists
a constant C > 0 such that, for any x ∈ X and n ∈ N,

‖
n∑
j=1

cj(x)ϕj‖X ≤ sup
J∈N
‖

J∑
j=1

cj(x)ϕj‖X ≤ C‖x‖X ,

see, for example Albiac and Kalton, 2006, Remark 1.1.6. Assume, without loss of
generality, that C ≥ 1. Let K ⊂ X be compact and ε > 0. Since K is compact, we
can find a number n = n(ε, C) ∈ N and elements y1, . . . , yn ∈ K such that for any
x ∈ K there exists a number l ∈ {1, . . . , n} with the property that

‖x− yl‖X ≤
ε

3C
.

We can then find a number J = J(ε, n) ∈ N such that

max
j∈{1,...,n}

‖yj −
J∑
k=1

ck(yj)ϕk‖X ≤
ε

3
.
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Define the finite rank operator U : X → X by

Ux =
J∑
j=1

cj(x)ϕj, ∀x ∈ X .

Triangle inequality implies that, for any x ∈ K,

‖x− U(x)‖X ≤ ‖x− yl‖X + ‖yl − U(yl)‖X + ‖U(yl)− U(x)‖X

≤ 2ε

3
+ ‖

J∑
j=1

(
cj(yl)− cj(x)

)
ϕj‖X

≤ 2ε

3
+ C‖yl − x‖X

≤ ε

as desired.

Lemma 44. Let X be a Banach space with a basis and Y be any Banach space.

Suppose there exists a continuous linear bijection T : X → Y . Then Y has a basis.

Proof. Let y ∈ Y and ε > 0. Since T is a bijection, there exists an element x ∈ X
so that Tx = y and T−1y = x. Since X has a basis, we can find {ϕj}∞j=1 ⊂ X and
{cj}∞j=1 ⊂ X ∗ and a number n = n(ε, ‖T‖) ∈ N such that

‖x−
n∑
j=1

cj(x)ϕj‖X ≤
ε

‖T‖
.

Note that

‖y−
n∑
j=1

cj(T
−1y)Tϕj‖Y = ‖Tx−T

n∑
j=1

cj(x)ϕj‖ ≤ ‖T‖‖x−
n∑
j=1

cj(x)ϕj‖X ≤ ε

hence {Tϕj}∞j=1 ⊂ Y and {cj(T−1·)}∞j=1 ⊂ Y∗ form a basis for Y by linearity and
continuity of T and T−1.

Lemma 45. Let X be a Banach space with the AP and Y be any Banach space.

Suppose there exists a continuous linear bijection T : X → Y . Then Y has the AP.

Proof. Let K ⊂ Y be a compact set and ε > 0. The set R = T−1(K) ⊂ X is
compact since T−1 is continuous. Since X has the AP, there exists a finite rank
operator U : X → X such that

‖x− Ux‖X ≤
ε

‖T‖
, ∀x ∈ R.
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Define the operator W : Y → Y by W = TUT−1. Clearly W is a finite rank
operator since U is a finite rank operator. Let y ∈ K then, since K = T (R), there
exists x ∈ R such that Tx = y and x = T−1y. Then

‖y −Wy‖Y = ‖Tx− TUx‖Y ≤ ‖T‖‖x− Ux‖X ≤ ε,

hence Y has the AP.

The following lemma shows than the infinite union of compact sets is compact if each
set is the image of a fixed compact set under a convergent sequence of continuous
maps. The result is instrumental in proving Lemma 47.

Lemma 46. Let X ,Y be Banach spaces and F : X → Y be a continuous map. Let

K ⊂ X be a compact set in X and {Fn : X → Y}∞n=1 be a sequence of continuous

maps such that

lim
n→∞

sup
x∈K
‖F (x)− Fn(x)‖Y = 0.

Then the set

W :=
∞⋃
n=1

Fn(K) ∪ F (K)

is compact in Y .

Proof. Let ε > 0 then there exists a number N = N(ε) ∈ N such that

sup
x∈K
‖F (x)− Fn(x)‖Y ≤

ε

2
, ∀n ≥ N.

Define the set

WN =
N⋃
n=1

Fn(K) ∪ F (K)

which is compact since F and each Fn are continuous. We can therefore find
a number J = J(ε,N) ∈ N and elements y1, . . . , yJ ∈ WN such that, for any
z ∈ WN , there exists a number l = l(z) ∈ {1, . . . , J} such that

‖z − yl‖Y ≤
ε

2
.

Let y ∈ W \WN then there exists a number m > N and an element x ∈ K such
that y = Fm(x). Since F (x) ∈ WN , we can find a number l ∈ {1, . . . , J} such that

‖F (x)− yl‖Y ≤
ε

2
.
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Therefore,

‖y − yl‖Y ≤ ‖Fm(x)− F (x)‖Y + ‖F (x)− yl‖Y ≤ ε,

hence {yj}Jj=1 forms a finite ε-net for W , showing that W is totally bounded.

We will now show that W is closed. To that end, let {pn}∞n=1 be a convergent
sequence in W , in particular, pn ∈ W for every n ∈ N and pn → p ∈ Y as
n → ∞. We can thus find convergent sequences {xn}∞n=1 and {αn}∞n=1 such that
xn ∈ K, αn ∈ N0, and pn = Fαn(xn) where we define F0 := F . Since K is closed,
lim
n→∞

xn = x ∈ K thus, for each fixed n ∈ N,

lim
j→∞

Fαn(xj) = Fαn(x) ∈ W

by continuity of Fαn . Since uniform convergence implies point-wise convergence

p = lim
n→∞

Fαn(x) = Fα(x) ∈ W

for some α ∈ N0 thus p ∈ W , showing that W is closed.

The following lemma shows that any continuous operator acting between two Banach
spaces with the AP can be approximated in a finite-dimensional manner. The
approximation proceeds in three steps which are shown schematically in Figure 41.
First an input is mapped to a finite-dimensional representation via the action of a set
of functionals on X . This representation is then mapped by a continuous function to
a new finite-dimensional representation which serves as the set of coefficients onto
representers of Y . The resulting expansion is an element of Y that is ε-close to the
action of G on the input element. A similar finite-dimensionalization was used in
(Bhattacharya et al., 2020) by using PCA on X to define the functionals acting on
the input and PCA on Y to define the output representers. However the result in
that work is restricted to separable Hilbert spaces; here, we generalize it to Banach
spaces with the AP.

Lemma 47. Let X ,Y be two Banach spaces with the AP and let G : X → Y be

a continuous map. For every compact set K ⊂ X and ε > 0, there exist numbers

J, J ′ ∈ N and continuous linear maps FJ : X → RJ , GJ ′ : RJ ′ → Y as well as

ϕ ∈ C(RJ ;RJ ′) such that

sup
x∈K
‖G(x)− (GJ ′ ◦ ϕ ◦ FJ)(x)‖Y ≤ ε.
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Furthermore there exist w1, . . . , wJ ∈ X ∗ such that FJ has the form

FJ(x) =
(
w1(x), . . . , wJ(x)

)
, ∀x ∈ X

and there exist β1, . . . , βJ ′ ∈ Y such that GJ ′ has the form

GJ ′(v) =
J ′∑
j=1

vjβj, ∀v ∈ RJ ′ .

If Y admits a basis then {βj}J
′
j=1 can be picked so that there is an extension

{βj}∞j=1 ⊂ Y which is a basis for Y .

Proof. Since X has the AP, there exists a sequence of finite rank operators {UXn :

X → X}∞n=1 such that

lim
n→∞

sup
x∈K
‖x− UXn x‖X = 0.

Define the set

Z =
∞⋃
n=1

UXn (K) ∪K

which is compact by Lemma 46. Therefore, G is uniformly continuous on Z hence
there exists a modulus of continuity ω : R≥0 → R≥0 which is non-decreasing and
satisfies ω(t)→ ω(0) = 0 as t→ 0 as well as

‖G(z1)− G(z2)‖Y ≤ ω
(
‖z1 − z2‖X

)
∀z1, z2 ∈ Z.

We can thus find, a number N = N(ε) ∈ N such that

sup
x∈K

ω
(
‖x− UXN x‖X

)
≤ ε

2
.

Let J = dim UXN (X ) <∞. There exist elements {αj}Jj=1 ⊂ X and {wj}Jj=1 ⊂ X ∗

such that

UXN x =
J∑
j=1

wj(x)αj, ∀x ∈ X.

Define the maps FXJ : X → RJ and GXJ : RJ → X by

FXJ (x) = (w1(x), . . . , wJ(x)), ∀x ∈ X ,

GXJ (v) =
J∑
j=1

vjαj, ∀v ∈ RJ ,
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noting that UXN = GXJ ◦ FXJ . Define the set W = (G ◦ UXN )(X ) ⊆ Y which is
clearly compact. Since Y has the AP, we can similarly find a finite rank operator
UYJ ′ : Y → Y with J ′ = dim UYJ ′(Y) <∞ such that

sup
y∈W
‖y − UYJ ′y‖Y ≤

ε

2
.

Analogously, define the maps FYJ ′ : Y → RJ ′ and GYJ ′ : RJ ′ → Y by

FYJ ′(y) = (q1(y), . . . , qJ ′(y)), ∀y ∈ Y ,

GYJ ′(v) =
J ′∑
j=1

vjβj, ∀v ∈ RJ ′

for some {βj}J
′
j=1 ⊂ Y and {qj}J

′
j=1 ⊂ Y∗ such that UYJ ′ = GYJ ′ ◦ F

Y
J ′ . Clearly if Y

admits a basis then we could have defined FYJ ′ and GYJ ′ through it instead of through
UYJ ′ . Define ϕ : RJ → RJ ′ by

ϕ(v) = (FYJ ′ ◦ G ◦G
X
J )(v), ∀v ∈ RJ

which is clearly continuous and note thatGYJ ′ ◦ϕ◦FXJ = UYJ ′ ◦G ◦UXN . Set FJ = FXJ
and GJ ′ = GYJ ′ then, for any x ∈ K,

‖G(x)− (GJ ′ ◦ ϕ ◦ FJ)(x)‖Y ≤ ‖G(x)− G(UXN x)‖Y
+ ‖G(UXN x)− (UYJ ′ ◦ G ◦ U

X
N )(x)‖Y

≤ ω
(
‖x− UXN x‖X

)
+ sup

y∈W
‖y − UYJ ′y‖Y

≤ ε

as desired.

We now state and prove some results about isomorphisms of function spaces defined
on different domains. These results are instrumental in proving Lemma 51.

Lemma 48. Let D,D′ ⊂ Rd be domains. Suppose that, for some m ∈ N0, there

exists a Cm-diffeomorphism τ : D̄′ → D̄. Then the mapping T : Cm(D̄)→ Cm(D̄′)

defined as

T (f)(x) = f(τ(x)), ∀f ∈ Cm(D̄), x ∈ D̄′

is a continuous linear bijection.
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Proof. Clearly T is linear since the evaluation functional is linear. To see that it is
continuous, note that by the chain rule we can find a constant Q = Q(m) > 0 such
that

‖T (f)‖Cm ≤ Q‖τ‖Cm‖f‖Cm , ∀f ∈ Cm(D̄).

We will now show that it is bijective. Let f, g ∈ Cm(D̄) so that f 6= g. Then
there exists a point x ∈ D̄ such that f(x) 6= g(x). Then T (f)(τ−1(x)) = f(x) and
T (g)(τ−1(x)) = g(x) hence T (f) 6= T (g) thus T is injective. Now let g ∈ Cm(D̄′)

and define f : D̄ → R by f = g ◦ τ−1. Since τ−1 ∈ Cm(D̄; D̄′), we have that
f ∈ Cm(D̄). Clearly, T (f) = g hence T is surjective.

Corollary 49. Let M > 0 and m ∈ N0. There exists a continuous linear bijection

T : Cm([0, 1]d)→ Cm([−M,M ]d).

Proof. Let 1 ∈ Rd denote the vector in which all entries are 1. Define the map
τ : Rd → Rd by

τ(x) =
1

2M
x+

1

2
1, ∀x ∈ Rd. (5.45)

Clearly τ is a C∞-diffeomorphism between [−M,M ]d and [0, 1]d hence Lemma 48
implies the result.

Lemma 50. Let M > 0 and m ∈ N. There exists a continuous linear bijection

T : Wm,1((0, 1)d)→ Wm,1((−M,M)d).

Proof. Define the map τ : Rd → Rd by (5.45). We have that τ((−M,M)d) =

(0, 1)d. Define the operator T by

Tf = f ◦ τ, ∀f ∈ Wm,1((0, 1)d).

which is clearly linear since composition is linear. We compute that, for any 0 ≤
|α|1 ≤ m,

∂α(f ◦ τ) = (2M)−|α|1(∂αf) ◦ τ,

hence, by the change of variables formula,

‖Tf‖Wm,1((−M,M)d) =
∑

0≤|α|1≤m

(2M)d−|α|1‖∂αf‖L1((0,1)d).

We can therefore find numbers C1, C2 > 0, depending on M and m, such that

C1‖f‖Wm,1((0,1)d) ≤ ‖Tf‖Wm,1((−M,M)d) ≤ C2‖f‖Wm,1((0,1)d).
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This shows that T : Wm,1((0, 1)d)→ Wm,1((−M,M)d) is continuous and injective.
Now let g ∈ Wm,1((−M,M)d) and define f = g ◦ τ−1. A similar argument shows
that f ∈ Wm,1((0, 1)d) and, clearly, Tf = g hence T is surjective.

We now show that the spaces in Assumptions 34 and 35 have the AP. While the
result is well-known when the domain is (0, 1)d or Rd, we were unable to find any
results in the literature for Lipschitz domains and we therefore give a full proof
here. The essence of the proof is to either exhibit an isomorphism to a space that
is already known to have AP or to directly show AP by embedding the Lipschitz
domain into an hypercube for which there are known basis constructions. Our proof
shows the stronger result that Wm,p(D) for m ∈ N0 and 1 ≤ p <∞ has a basis, but,
for Cm(D̄), we only establish the AP and not necessarily a basis. The discrepancy
comes from the fact that there is an isomorphism between Wm,p(D) and Wm,p(Rd)

while there is not one between Cm(D̄) and Cm(Rd).

Lemma 51. Let Assumptions 34 and 35 hold. Then A and U have the AP.

Proof. It is enough to show that the spaces Wm,p(D), and Cm(D̄) for any 1 ≤ p <

∞ and m ∈ N0 with D ⊂ Rd a Lipschitz domain have the AP. Consider first the
spaces W 0,p(D) = Lp(D). Since the Lebesgue measure on D is σ-finite and has no
atoms, Lp(D) is isometrically isomorphic to Lp((0, 1)) (see, for example, Albiac and
Kalton, 2006, Chapter 6). Hence by Lemma 45, it is enough to show that Lp((0, 1))

has the AP. Similarly, consider the spaces Wm,p(D) for m > 0 and p > 1. Since
D is Lipschitz, there exists a continuous linear operator Wm,p(D) → Wm,p(Rd)

Stein, 1970, Chapter 6, Theorem 5 (this also holds for p = 1). We can therefore
apply Pełczyński and Wojciechowski, 2001, Corollary 4 (when p > 1) to conclude
that Wm,p(D) is isomorphic to Lp((0, 1)). By Albiac and Kalton, 2006, Proposition
6.1.3, Lp((0, 1)) has a basis hence Lemma 43 implies the result.

Now, consider the spaces Cm(D̄). Since D is bounded, there exists a number
M > 0 such that D̄ ⊆ [−M,M ]d. Hence, by Corollary 49, Cm([0, 1]d) is iso-
morphic to Cm([−M,M ]d). Since Cm([0, 1]d) has a basis Ciesielski and Dom-
sta, 1972, Theorem 5, Lemma 44 then implies that Cm([−M,M ]d) has a ba-
sis. By Fefferman, 2007, Theorem 1, there exists a continuous linear operator
E : Cm(D̄) → Cm

b (Rd) such that E(f)|D̄ = f for all f ∈ C(D̄). Define the re-
striction operators RM : Cm

b (Rd)→ Cm([−M,M ]d) and RD : Cm([−M,M ]d)→
Cm(D̄) which are both clearly linear and continuous and ‖RM‖ = ‖RD‖ = 1.
Let {cj}∞j=1 ⊂

(
Cm([−M,M ]d)

)∗ and {ϕj}∞j=1 ⊂ Cm([−M,M ]d) be a basis for
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Cm([−M,M ]d). As in the proof of Lemma 43, there exists a constant C1 > 0 such
that, for any n ∈ N and f ∈ Cm([−M,M ]d),

‖
n∑
j=1

cj(f)ϕj‖Cm([−M,M ]d) ≤ C1‖f‖Cm([−M,M ]d).

Suppose, without loss of generality, that C1‖E‖ ≥ 1. LetK ⊂ Cm(D̄) be a compact
set and ε > 0. SinceK is compact, we can find a number n = n(ε) ∈ N and elements
y1, . . . , yn ∈ K such that, for any f ∈ K there exists a number l ∈ {1, . . . , n} such
that

‖f − yl‖Cm(D̄) ≤
ε

3C1‖E‖
.

For every l ∈ {1, . . . , n}, define gl = RM(E(yl)) and note that gl ∈ Cm([−M,M ]d)

hence there exists a number J = J(ε, n) ∈ N such that

max
l∈{1,...,n}

‖gl −
J∑
j=1

cj(gl)ϕj‖Cm([−M,M ]d) ≤
ε

3
.

Notice that, since yl = RD(gl), we have

max
l∈{1,...,n}

‖yl −
J∑
j=1

cj
(
RM(E(yl))

)
RD(ϕj)‖Cm(D̄) ≤

‖RD‖ max
l∈{1,...,n}

‖gl −
J∑
j=1

cj(gl)ϕj‖Cm([−M,M ]d)

≤ ε

3
.

Define the finite rank operator U : Cm(D̄)→ Cm(D̄) by

Uf =
J∑
j=1

cj
(
RM(E(f))

)
RD(ϕj), ∀f ∈ Cm(D̄).

We then have that, for any f ∈ K,

‖f − Uf‖Cm(D̄) ≤ ‖f − yl‖Cm(D̄) + ‖yl − Uyl‖Cm(D̄) + ‖Uyl − Uf‖Cm(D̄)

≤ 2ε

3
+ ‖

J∑
j=1

cj
(
RM(E(yl − f))

)
ϕj‖Cm([−M,M ]d)

≤ 2ε

3
+ C1‖RM(E(yl − f))‖Cm([−M,M ]d)

≤ 2ε

3
+ C1‖E‖‖yl − f‖Cm(D̄)

≤ ε,
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hence Cm(D̄) has the AP.

We are left with the case Wm,1(D). A similar argument as for the Cm(D̄) case holds.
In particular the basis from Ciesielski and Domsta, 1972, Theorem 5 is also a basis
for Wm,1((0, 1)d). Lemma 50 gives an isomorphism between Wm,1((0, 1)d) and
Wm,1((−M,M)d) hence we may use the extension operatorWm,1(D)→ Wm,1(Rd)

from Stein, 1970, Chapter 6, Theorem 5 to complete the argument. In fact, the same
construction yields a basis for Wm,1(D) due to the isomorphism with Wm,1(Rd),
see, for example Pełczyński and Wojciechowski, 2001, Theorem 1.

Representation Theorems
In this section, we prove various results about the approximation of linear functionals
by kernel integral operators. Lemma 52 establishes a Reisz-representation theorem
for Cm. The proof proceeds exactly as in the well-known result for Wm,p but, since
we did not find it in the literature, we give full details here. Lemma 53 shows that
linear functionals on Wm,p can be approximated uniformly over compact set by
integral kernel operators with a C∞ kernel. Lemmas 55 and 56 establish similar
results for C and Cm respectively by employing Lemma 52. These lemmas are
crucial in showing that NO(s) are universal since they imply that the functionals
from Lemma 47 can be approximated by elements of IO.

Lemma 52. Let D ⊂ Rd be a domain and m ∈ N0. For every L ∈
(
Cm(D̄)

)∗ there

exist finite, signed, Radon measures {λα}0≤|α|1≤m such that

L(f) =
∑

0≤|α|1≤m

∫
D̄

∂αf dλα, ∀f ∈ Cm(D̄).

Proof. The case m = 0 follow directly from Leoni, 2009, Theorem B.111, so we
assume that m > 0. Let α1, . . . , αJ be an enumeration of the set {α ∈ Nd : |α|1 ≤
m}. Define the mapping T : Cm(D̄)→ C(D̄;RJ) by

Tf =
(
∂α0f, . . . , ∂αJf), ∀f ∈ Cm(D̄).

Clearly ‖Tf‖C(D̄;RJ ) = ‖f‖Cm(D̄) hence T is an injective, continuous linear operator.
Define W := T (Cm(D̄)) ⊂ C(D̄;RJ) then T−1 : W → Cm(D̄) is a continuous
linear operator since T preserves norm. Thus W =

(
T−1

)−1
(Cm(D̄)) is closed as

the pre-image of a closed set under a continuous map. In particular, W is a Banach
space since C(D̄;RJ) is a Banach space and T is an isometric isomorphism between
Cm(D̄) and W . Therefore, there exists a continuous linear functional L̃ ∈ W ∗ such
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that
L(f) = L̃(Tf), ∀f ∈ Cm(D̄).

By the Hahn-Banach theorem, L̃ can be extended to a continuous linear functional
L̄ ∈

(
C(D̄;RJ)

)∗ such that ‖L‖(Cm(D̄))∗ = ‖L̃‖W ∗ = ‖L̄‖(C(D̄;RJ ))∗ . We have that

L(f) = L̃(Tf) = L̄(Tf), ∀f ∈ Cm(D̄).

Since (
C(D̄;RJ)

)∗∼= J×
j=1

(
C(D̄)

)∗∼= J⊕
j=1

(
C(D̄)

)∗
,

we have, by applying Leoni, 2009, Theorem B.111 J times, that there exist finite,
signed, Radon measures {λα}0≤|α|1≤m such that

L̄(Tf) =
∑

0≤|α|1≤m

∫
D̄

∂αf dλα, ∀f ∈ Cm(D̄)

as desired.

Lemma 53. Let D ⊂ Rd be a bounded, open set and L ∈ (Wm,p(D))∗ for some

m ≥ 0 and 1 ≤ p <∞. For any closed and bounded set K ⊂ Wm,p(D) (compact

if p = 1) and ε > 0, there exists a function κ ∈ C∞c (D) such that

sup
u∈K
|L(u)−

∫
D

κu dx| < ε.

Proof. First consider the case m = 0 and 1 ≤ p <∞. By the Reisz Representation
Theorem Conway, 2007, Appendix B, there exists a function v ∈ Lq(D) such that

L(u) =

∫
D

vu dx.

Since K is bounded, there is a constant M > 0 such that

sup
u∈K
‖u‖Lp ≤M.

Suppose p > 1, so that 1 < q < ∞. Density of C∞c (D) in Lq(D) Adams and
Fournier, 2003, Corollary 2.30 implies there exists a function κ ∈ C∞c (D) such that

‖v − κ‖Lq <
ε

M
.

By the Hölder inequality,

|L(u)−
∫
D

κu dx| ≤ ‖u‖Lp‖v − κ‖Lq < ε.
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Suppose that p = 1 then q =∞. Since K is totally bounded, there exists a number
n ∈ N and functions g1, . . . , gn ∈ K such that, for any u ∈ K,

‖u− gl‖L1 <
ε

3‖v‖L∞

for some l ∈ {1, . . . , n}. Let ψη ∈ C∞c (D) denote a standard mollifier for any η > 0.
We can find η > 0 small enough such that

max
l∈{1,...,n}

‖ψη ∗ gl − gl‖L1 <
ε

9‖v‖L∞

Define f = ψη ∗ v ∈ C(D) and note that ‖f‖L∞ ≤ ‖v‖L∞ . By Fubini’s theorem,
we find

|
∫
D

(f − v)gl dx| =
∫
D

v(ψη ∗ gl − gl) dx ≤ ‖v‖L∞‖ψη ∗ gl − gl‖L1 <
ε

9
.

Since gl ∈ L1(D), by Lusin’s theorem, we can find a compact set A ⊂ D such that

max
l∈{1,...,n}

∫
D\A
|gl| dx <

ε

18‖v‖L∞
.

Since C∞c (D) is dense in C(D) over compact sets Leoni, 2009, Theorem C.16, we
can find a function κ ∈ C∞c (D) such that

sup
x∈A
|κ(x)− f(x)| ≤ ε

9M

and ‖κ‖L∞ ≤ ‖f‖L∞ ≤ ‖v‖L∞ . We have

|
∫
D

(κ− v)gl dx| ≤
∫
A

|(κ− v)gl| dx+

∫
D\A
|(κ− v)gl| dx

≤
∫
A

|(κ− f)gl| dx+

∫
D

|(f − v)gl| dx+ 2‖v‖L∞
∫
D\A
|gl| dx

≤ sup
x∈A
|κ(x)− f(x)|‖gl‖L1 +

2ε

9

<
ε

3
.
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Finally,

|L(u)−
∫
D

κu dx| ≤ |
∫
D

vu dx−
∫
D

vgl dx|+ |
∫
D

vgl dx−
∫
D

κu dx|

≤ ‖v‖L∞‖u− gl‖L1 + |
∫
D

κu dx−
∫
D

κgl dx|

+ |
∫
D

κgl dx−
∫
D

vgl dx|

≤ ε

3
+ ‖κ‖L∞‖u− gl‖L1 + |

∫
D

(κ− v)gl dx|

≤ 2ε

3
+ ‖v‖L∞‖u− gl‖L1

< ε.

Suppose m ≥ 1. By the Reisz Representation Theorem Adams and Fournier,
2003, Theorem 3.9, there exist elements (vα)0≤|α|1≤m of Lq(D) where α ∈ Nd is a
multi-index such that

L(u) =
∑

0≤|α|1≤m

∫
D

vα∂αu dx.

Since K is bounded, there is a constant M > 0 such that

sup
u∈K
‖u‖Wm,p ≤M.

Suppose p > 1, so that 1 < q <∞. Density of C∞0 (D) in Lq(D) implies there exist
functions (fα)0≤|α|1≤m in C∞c (D) such that

‖fα − vα‖Lq <
ε

MJ

where J = |{α ∈ Nd : |α|1 ≤ m}|. Let

κ =
∑

0≤|α|1≤m

(−1)|α|1∂αfα

then, by definition of a weak derivative,∫
D

κu dx =
∑

0≤|α|1≤m

(−1)|α|1
∫
D

∂αfαu dx =
∑

0≤|α|1≤m

∫
D

fα∂αu dx.

By the Hölder inequality,

|L(u)−
∫
D

κu dx| ≤
∑

0≤|α|1≤m

‖∂αu‖Lp‖fα − vα‖Lq < M
∑

0≤|α|1≤m

ε

MJ
= ε.
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Suppose that p = 1 then q =∞. Define the constant Cv > 0 by

Cv =
∑

0≤|α|1≤m

‖vα‖L∞ .

Since K is totally bounded, there exists a number n ∈ N and functions g1, . . . , gn ∈
K such that, for any u ∈ K,

‖u− gl‖Wm,1 <
ε

3Cv

for some l ∈ {1, . . . , n}. Let ψη ∈ C∞c (D) denote a standard mollifier for any η > 0.
We can find η > 0 small enough such that

max
α

max
l∈{1,...,n}

‖ψη ∗ ∂αgl − ∂αgl‖L1 <
ε

9Cv
.

Define fα = ψη∗vα ∈ C(D) and note that ‖fα‖L∞ ≤ ‖vα‖L∞ . By Fubini’s theorem,
we find∑

0≤|α|1≤m

|
∫
D

(fα − vα)∂αgl dx| =
∑

0≤|α|1≤m

|
∫
D

vα(ψη ∗ ∂αgl − ∂αgl) dx|

≤
∑

0≤|α|1≤m

‖vα‖L∞‖ψη ∗ ∂αgl − ∂αgl‖L1

<
ε

9
.

Since ∂αgl ∈ L1(D), by Lusin’s theorem, we can find a compact set A ⊂ D such
that

max
α

max
l∈{1,...,n}

∫
D\A
|∂αgl| dx <

ε

18Cv
.

Since C∞c (D) is dense in C(D) over compact sets, we can find functions wα ∈
C∞c (D) such that

sup
x∈A
|wα(x)− fα(x)| ≤ ε

9MJ
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where J = |{α ∈ Nd : |α|1 ≤ m}| and ‖wα‖L∞ ≤ ‖fα‖L∞ ≤ ‖vα‖L∞ . We have,∑
0≤|α|1≤m

∫
D

|(wα − vα)∂αgl| =
∑

0≤|α|1≤m

(∫
A

|(wα − vα)∂αgl|dx

+

∫
D\A
|(wα − vα)∂αgl|dx

)
≤

∑
0≤|α|1≤m

(∫
A

|(wα − fα)∂αgl| dx

+

∫
D

|(fα − vα)∂αgl| dx+ 2‖vα‖L∞
∫
D\A
|∂αgl| dx

)
≤

∑
0≤|α|1≤m

sup
x∈A
|wα(x)− fα(x)|‖∂αgl‖L1 +

2ε

9

<
ε

3
.

Let
κ =

∑
0≤|α|1≤m

(−1)|α|1∂αwα.

then, by definition of a weak derivative,∫
D

κu dx =
∑

0≤|α|1≤m

(−1)|α|1
∫
D

∂αwαu dx =
∑

0≤|α|1≤m

∫
D

wα∂αu dx.

Finally,

|L(u)−
∫
D

κu dx| ≤
∑

0≤|α|1≤m

∫
D

|vα∂αu− wα∂αu| dx

≤
∑

0≤|α|1≤m

(∫
D

|vα(∂αu− ∂αgl)| dx

+

∫
D

|vα∂αgl − wα∂αu| dx
)

≤
∑

0≤|α|1≤m

(
‖vα‖L∞‖u− gl‖Wm,1 +

∫
D

|(vα − wα)∂αgl| dx

+

∫
D

|(∂αgl − ∂αu)wα| dx
)

<
2ε

3
+

∑
0≤|α|1≤m

‖wα‖L∞‖u− gl‖Wm,1

< ε.
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Lemma 54. Let D ⊂ Rd be a domain and L ∈
(
Cm(D̄)

)∗ for some m ∈
N0. For any compact set K ⊂ Cm(D̄) and ε > 0, there exists distinct points

y11, . . . , y1n1 , . . . , yJnJ ∈ D and numbers c11, . . . , c1n1 , . . . , cJnJ ∈ R such that

sup
u∈K
|L(u)−

J∑
j=1

nj∑
k=1

cjk∂
αju(yjk)| ≤ ε

where α1, . . . , αJ is an enumeration of the set {α ∈ Nd
0 : 0 ≤ |α|1 ≤ m}.

Proof. By Lemma 52, there exist finite, signed, Radon measures {λα}0≤|α|1≤m such
that

L(u) =
∑

0≤|α|1≤m

∫
D̄

∂αu dλα, ∀u ∈ Cm(D̄).

Let α1, . . . , αJ be an enumeration of the set {α ∈ Nd
0 : 0 ≤ |α|1 ≤ m}. By weak

density of the Dirac measures Bogachev, 2007, Example 8.1.6, we can find points
y11, . . . , y1n1 , . . . , yJ1, . . . , yJnJ ∈ D̄ as well as numbers c11, . . . , cJnJ ∈ R such
that

|
∫
D̄

∂αju dλαj −
nj∑
k=1

cjk∂
αju(yjk)| ≤

ε

4J
, ∀u ∈ Cm(D̄)

for any j ∈ {1, . . . , J}. Therefore,

|
J∑
j=1

∫
D̄

∂αju dλαj −
J∑
j=1

nj∑
k=1

cjk∂
αju(yjk)| ≤

ε

4
, ∀u ∈ Cm(D̄).

Define the constant

Q :=
J∑
j=1

nj∑
k=1

|cjk|.

Since K is compact, we can find functions g1, . . . , gN ∈ K such that, for any u ∈ K,
there exists l ∈ {1, . . . , N} such that

‖u− gl‖Ck ≤
ε

4Q
.

Suppose that some yjk ∈ ∂D. By uniform continuity, we can find a point ỹjk ∈ D
such that

max
l∈{1,...,N}

|∂αjgl(yjk)− ∂αjgl(ỹjk)| ≤
ε

4Q
.

Denote

S(u) =
J∑
j=1

nj∑
k=1

cjk∂
αju(yjk)
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and by S̃(u) the sum S(u) with yjk replaced by ỹjk. Then, for any u ∈ K, we have

|L(u)− S̃(u)| ≤ |L(u)− S(u)|+ |S(u)− S̃(u)|

≤ ε

4
+ |cjk∂αju(ỹjk)− cjk∂αju(yjk)|

≤ ε

4
+ |cjk∂αju(ỹjk)− cjk∂αjgl(ỹjk)|

+ |cjk∂αjgl(ỹjk)− cjk∂αju(yjk)|

≤ ε

4
+ |cjk|‖u− gl‖Cm + |cjk∂αjgl(ỹjk)− cjk∂αjgl(yjk)|

+ |cjk∂αjgl(yjk)− cjk∂αju(yjk)|

≤ ε

4
+ 2|cjk|‖u− gl‖Cm + |cjk||∂αjgl(ỹjk)− ∂αjgl(yjk)|

≤ ε.

Since there are a finite number of points, this implies that all points yjk can be
chosen in D. Suppose now that yjk = yqp for some (j, k) 6= (q, p). As before, we
can always find a point ỹjk distinct from all others such that

max
l∈{1,...,N}

|∂αjgl(yjk)− ∂αjgl(ỹjk)| ≤
ε

4Q
.

Repeating the previous argument then shows that all points yjk can be chosen
distinctly as desired.

Lemma 55. Let D ⊂ Rd be a domain and L ∈
(
C(D̄)

)∗. For any compact set

K ⊂ C(D̄) and ε > 0, there exists a function κ ∈ C∞c (D) such that

sup
u∈K
|L(u)−

∫
D

κu dx| < ε.

Proof. By Lemma 54, we can find points distinct points y1, . . . , yn ∈ D as well as
numbers c1, . . . , cn ∈ R such that

sup
u∈K
|L(u)−

n∑
j=1

cju(yj)| ≤
ε

3
.

Define the constants

Q :=
n∑
j=1

|cj|.

Since K is compact, there exist functions g1, . . . , gJ ∈ K such that, for any u ∈ K,
there exists some l ∈ {1, . . . , J} such that

‖u− gl‖C ≤
ε

6nQ
.
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Let r > 0 be such that the open balls Br(yj) ⊂ D and are pairwise disjoint. Let
ψη ∈ C∞c (Rd) denote the standard mollifier with parameter η > 0, noting that
supp ψr = Br(0). We can find a number 0 < γ ≤ r such that

max
l∈{1,...,J}
j∈{1,...,n}

|
∫
D

ψγ(x− yj)gl(x) dx− gl(yj)| ≤
ε

3nQ
.

Define κ : Rd → R by

κ(x) =
n∑
j=1

cjψγ(x− yj), ∀x ∈ Rd.

Since supp ψγ(· − yj) ⊆ Br(yj), we have that κ ∈ C∞c (D). Then, for any u ∈ K,

|L(u)−
∫
D

κu dx| ≤ |L(u)−
n∑
j=1

cju(yj)|+ |
n∑
j=1

cju(yj)−
∫
D

κu dx|

≤ ε

3
+

n∑
j=1

|cj||u(yj)−
∫
D

ψη(x− yj)u(x) dx|

≤ ε

3
+Q

n∑
j=1

|u(yj)− gl(yj)|+ |gl(yj)−
∫
D

ψη(x− yj)u(x) dx|

≤ ε

3
+ nQ‖u− gl‖C +Q

n∑
j=1

|gl(yj)−
∫
D

ψη(x− yj)gl(x) dx|

+ |
∫
D

ψη(x− yj)
(
gl(x)− u(x)

)
dx|

≤ ε

3
+ nQ‖u− gl‖C + nQ

ε

3nQ

+Q‖gl − u‖C
n∑
j=1

∫
D

ψγ(x− yj) dx

=
2ε

3
+ 2nQ‖u− gl‖C

= ε

where we use the fact that mollifiers are non-negative and integrate to one.

Lemma 56. Let D ⊂ Rd be a domain and L ∈
(
Cm(D̄)

)∗. For any compact set

K ⊂ Cm(D̄) and ε > 0, there exist functions κ1, . . . , κJ ∈ C∞c (D) such that

sup
u∈K
|L(u)−

J∑
j=1

∫
D

κj∂
αju dx| < ε

where α1, . . . , αJ is an enumeration of the set {α ∈ Nd
0 : 0 ≤ |α|1 ≤ m}.
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Proof. By Lemma 54, we find distinct points y11, . . . , y1n1 , . . . , yJnJ ∈ D and
numbers c11, . . . , cJnJ ∈ R such that

sup
u∈K
|L(u)−

J∑
j=1

nj∑
k=1

cjk∂
αju(yjk)| ≤

ε

2
.

Applying the proof of Lemma 56 J times to each of the inner sums, we find functions
κ1, . . . , κJ ∈ C∞c (D) such that

max
j∈{1,...,J}

|
∫
D

κj∂
αju dx−

nj∑
k=1

cjk∂
αju(yjk)| ≤

ε

2J
.

Then, for any u ∈ K,

|L(u)−
J∑
j=1

∫
D

κj∂
αju dx|

≤ |L(u)−
J∑
j=1

nj∑
k=1

cjk∂
αju(yjk)|

+
J∑
j=1

|
∫
D

κj∂
αju dx−

nj∑
k=1

cjk∂
αju(yjk)|

≤ ε

as desired.

NO Approximation
The following lemmas show that the three pieces used in constructing the approxi-
mation from Lemma 47, which are schematically depicted in Figure 41, can all be
approximated by NO(s). Lemma 57 shows that FJ : A → RJ can be approximated
by an element of IO by mapping to a vector-valued constant function. Similarly,
Lemma 59 shows that GJ ′ : RJ ′ → U can be approximated by an element of IO by
mapping a vector-valued constant function to the coefficients of a basis expansion.
Finally, Lemma 60 shows that NO(s) can exactly represent any standard neural
network by viewing the inputs and outputs as vector-valued constant functions.

Lemma 57. Let Assumption 34 hold. Let {cj}nj=1 ⊂ A∗ for some n ∈ N. Define the

map F : A → Rn by

F (a) =
(
c1(a), . . . , cn(a)

)
, ∀a ∈ A.
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Then, for any compact set K ⊂ A, σ ∈ A0, and ε > 0, there exists a number L ∈ N
and neural network κ ∈ NL(σ;Rd × Rd,Rn×1) such that

sup
a∈K

sup
y∈D̄
|F (a)−

∫
D

κ(y, x)a(x) dx|1 ≤ ε.

Proof. Since K is bounded, there exists a number M > 0 such that

sup
a∈K
‖a‖A ≤M.

Define the constant

Q :=

M, A = Wm,p(D)

M |D|, A = C(D̄)

and let p = 1 if A = C(D̄). By Lemma 53 and Lemma 55, there exist functions
f1, . . . , fn ∈ C∞c (D) such that

max
j∈{1,...,n}

sup
a∈K
|cj(a)−

∫
D

fja dx| ≤
ε

2n
1
p

.

Since σ ∈ A0, there exits some L ∈ N and neural networks ψ1, . . . , ψn ∈ NL(σ;Rd)

such that
max

j∈{1,...,n}
‖ψj − fj‖C ≤

ε

2Qn
1
p

.

By setting all weights associated to the first argument to zero, we can modify each
neural network ψj to a neural network ψj ∈ NL(σ;Rd × Rd) so that

ψj(y, x) = ψj(x)1(y), ∀y, x ∈ Rd.

Define κ ∈ NL(σ;Rd × Rd,Rn×1) by

κ(y, x) = [ψ1(y, x), . . . , ψn(y, x)]T .

Then for any a ∈ K and y ∈ D̄, we have

|F (a)−
∫
D

κ(y, x)a dx|pp =
n∑
j=1

|cj(a)−
∫
D

1(y)ψj(x)a(x) dx|p

≤ 2p−1

n∑
j=1

|cj(a)−
∫
D

fja dx|p + |
∫
D

(fj − ψj)a dx|p

≤ εp

2
+ 2p−1nQp‖fj − ψj‖pC

≤ εp

and the result follows by finite dimensional norm equivalence.
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Lemma 58. Suppose D ⊂ Rd is a domain and let {cj}nj=1 ⊂
(
Cm(D̄)

)∗ for some

m,n ∈ N. Define the map F : A → Rn by

F (a) =
(
c1(a), . . . , cn(a)

)
, ∀a ∈ Cm(D̄).

Then, for any compact set K ⊂ Cm(D̄), σ ∈ A0, and ε > 0, there exists a number

L ∈ N and neural network κ ∈ NL(σ;Rd × Rd,Rn×J) such that

sup
a∈K

sup
y∈D̄
|F (a)−

∫
D

κ(y, x)
(
∂α1a(x), . . . , ∂αJa(x)

)
dx|1 ≤ ε

where α1, . . . , αJ is an enumeration of the set {α ∈ Nd : 0 ≤ |α|1 ≤ m}.

Proof. The proof follows as in Lemma 57 by replacing the use of Lemmas 53 and
55 by Lemma 56.

Lemma 59. Let Assumption 35 hold. Let {ϕj}nj=1 ⊂ U for some n ∈ N. Define the

map G : Rn → U by

G(w) =
n∑
j=1

wjϕj, ∀w ∈ Rn.

Then, for any compact set K ⊂ Rn, σ ∈ Am2 , and ε > 0, there exists a number

L ∈ N and a neural network κ ∈ NL(σ;Rd′ × Rd′ ,R1×n) such that

sup
w∈K
‖G(w)−

∫
D′
κ(·, x)w1(x) dx‖U ≤ ε.

Proof. Since K ⊂ Rn is compact, there is a number M > 1 such that

sup
w∈K
|w|1 ≤M.

If U = Lp2(D′), then density of C∞c (D′) implies there are functions ψ̃1, . . . , ψ̃n ∈
C∞(D̄′) such that

max
j∈{1,...,n}

‖ϕj − ψ̃j‖U ≤
ε

2nM
.

Similarly if U = Wm2,p2(D′), then density of the restriction of functions in C∞c (Rd′)

to D′ Leoni, 2009, Theorem 11.35 implies the same result. If U = Cm2(D̄′) then
we set ψ̃j = ϕj for any j ∈ {1, . . . , n}. Define κ̃ : Rd′ × Rd′ → R1×n by

κ̃(y, x) =
1

|D′|
[ψ̃1(y), . . . , ψ̃n(y)].
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Then, for any w ∈ K,

‖G(w)−
∫
D′
κ̃(·, x)w1(x) dx‖U = ‖

n∑
j=1

wjϕj −
n∑
j=1

wjψ̃j‖U

≤
n∑
j=1

|wj|‖ϕj − ψ̃j‖U

≤ ε

2
.

Since σ ∈ Am2 , there exists neural networks ψ1, . . . , ψn ∈ N1(σ;Rd′) such that

max
j∈{1,...,n}

‖ψ̃j − ψj‖Cm2 ≤
ε

2nM(J |D′|)
1
p2

where, if U = Cm2(D̄′), we set J = 1/|D′| and p2 = 1, and otherwise J = |{α ∈
Nd : |α|1 ≤ m2}|. By setting all weights associated to the second argument to zero,
we can modify each neural network ψj to a neural network ψj ∈ N1(σ;Rd′ × Rd′)

so that
ψj(y, x) = ψj(y)1(x), ∀y, x ∈ Rd′ .

Define κ ∈ N1(σ;Rd′ × Rd′ ,R1×n) as

κ(y, x) =
1

|D′|
[ψ1(y, x), . . . , ψn(y, x)].

Then, for any w ∈ Rn,∫
D′
κ(y, x)w1(x) dx =

n∑
j=1

wjψj(y).

We compute that, for any j ∈ {1, . . . , n},

‖ψj − ψ̃j‖U ≤


|D′|

1
p2 ‖ψj − ψ̃j‖Cm2 , U = Lp2(D′)

(J |D′|)
1
p2 ‖ψj − ψ̃j‖Cm2 , U = Wm2,p2(D′)

‖ψj − ψ̃j‖Cm2 , U = Cm2(D̄′)

hence, for any w ∈ K,

‖
∫
D′
κ(y, x)w1(x) dx−

n∑
j=1

wjψ̃j‖U ≤
n∑
j=1

|wj|‖ψj − ψ̃j‖U ≤
ε

2
.
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By triangle inequality, for any w ∈ K, we have

‖G(w)−
∫
D

κ(·, x)w1(x) dx‖U ≤ ‖G(w)−
∫
D

κ̃(·, x)w1(x) dx‖U

+ ‖
∫
D

κ̃(·, x)w1(x) dx−
∫
D

κ(·, x)w1(x) dx‖U

≤ ε

2
+ ‖

∫
D

κ(·, x)w1(x)−
n∑
j=1

wjψ̃n‖U

≤ ε

as desired.

Lemma 60. Let N, d, d′, p, q ∈ N, m,n ∈ N0, D ⊂ Rp and D′ ⊂ Rq be domains

and σ1 ∈ AL
m. For any ϕ ∈ NN(σ1;Rd,Rd′) and σ2, σ3 ∈ An, there exists a

G ∈ NON(σ1, σ2, σ3;D,D′,Rd,Rd′) such that

ϕ(w) = G(w1)(x), ∀w ∈ Rd, ∀x ∈ D′.

.

Proof. We have that

ϕ(x) = WNσ1(. . .W1σ1(W0x+ b0) + b1 . . . ) + bN , ∀x ∈ Rd

where W0 ∈ Rd0×d,W1 ∈ Rd1×d0 , . . . ,WN ∈ Rd′×dN−1 and b0 ∈ Rd0 , b1 ∈
Rd1 , . . . , bN ∈ Rd′ for some d0, . . . , dN−1 ∈ N. By setting all parameters to zero
except for the last bias term, we can find κ(0) ∈ N1(σ2;Rp × Rp,Rd0×d) such that

κ0(x, y) =
1

|D|
W0, ∀x, y ∈ Rp.

Similarly, we can find b̃0 ∈ N1(σ2;Rp,Rd0) such that

b̃0(x) = b0, ∀x ∈ Rp.

Then∫
D

κ0(y, x)w1(x) dx+ b̃(y) = (W0w + b0)1(y), ∀w ∈ Rd, ∀y ∈ D.

Continuing a similar construction for all layers clearly yields the result.



247

References

Aaronson, J. (1997). An Introduction to Infinite Ergodic Theory. Mathematical
surveys and monographs. American Mathematical Society. ISBN: 9780821804940.

Adams, R. A. and J. J. Fournier (2003). Sobolev Spaces. Elsevier Science.

Adler, Jonas and Ozan Oktem (Nov. 2017). “Solving ill-posed inverse problems using
iterative deep neural networks”. In: Inverse Problems. DOI: 10.1088/1361-
6420/aa9581.

Albiac, Fernando and Nigel J. Kalton (2006). Topics in Banach space theory. 1st ed.
Graduate Texts in Mathematics. Springer.

Alet, Ferran et al. (2019). “Graph Element Networks: adaptive, structured compu-
tation and memory”. In: 36th International Conference on Machine Learning.
PMLR. URL: http://proceedings.mlr.press/v97/alet19a.
html.

Ba, Jimmy Lei, Jamie Ryan Kiros, and Geoffrey E Hinton (2016). “Layer normaliza-
tion”. In: arXiv preprint arXiv:1607.06450.

Bach, Francis (2013). “Sharp analysis of low-rank kernel matrix approximations”.
In: Conference on Learning Theory, pp. 185–209.

Bar, Leah and Nir Sochen (2019). “Unsupervised deep learning algorithm for PDE-
based forward and inverse problems”. In: arXiv preprint arXiv:1904.05417.

Battaglia, Peter W et al. (2018). “Relational inductive biases, deep learning, and
graph networks”. In: arXiv preprint arXiv:1806.01261.

Bear, Jacob and M Yavuz Corapcioglu (2012). Fundamentals of transport phenom-
ena in porous media. Springer Science & Business Media.

Belongie, Serge et al. (2002). “Spectral partitioning with indefinite kernels using the
Nyström extension”. In: European conference on computer vision. Springer.

Bengio, Yoshua, Yann LeCun, et al. (2007). “Scaling learning algorithms towards
AI”. In: Large-scale kernel machines 34.5, pp. 1–41.

Bhatnagar, Saakaar et al. (2019). “Prediction of aerodynamic flow fields using
convolutional neural networks”. In: Computational Mechanics, pp. 1–21. DOI:
10.1007/s00466-019-01740-0.

Bhattacharya, Kaushik et al. (2020). “Model reduction and neural networks for
parametric PDEs”. In: arXiv preprint arXiv:2005.03180.

Bogachev, V. I. (2007). Measure Theory. Vol. 2. Springer-Verlag Berlin Heidelberg.

Bonito, Andrea et al. (2020). “Nonlinear methods for model reduction”. In: arXiv
preprint arXiv:2005.02565.

Börm, Steffen, Lars Grasedyck, and Wolfgang Hackbusch (2003). “Hierarchical
matrices”. In: Lecture notes 21, p. 2003.



248

Box, George EP (1976). “Science and statistics”. In: Journal of the American Statis-
tical Association 71.356, pp. 791–799.

Boyd, John P (2001). Chebyshev and Fourier spectral methods. Courier Corporation.

Brown, Tom B et al. (2020). “Language models are few-shot learners”. In: arXiv
preprint arXiv:2005.14165.

Brudnyi, Alexander and Yuri Brudnyi (2012). Methods of Geometric Analysis in
Extension and Trace Problems. Vol. 1. Birkhäuser Basel.

Bruno, Oscar P, Youngae Han, and Matthew M Pohlman (2007). “Accurate, high-
order representation of complex three-dimensional surfaces via Fourier continua-
tion analysis”. In: Journal of computational Physics 227.2, pp. 1094–1125.

Chandler, Gary J. and Rich R. Kerswell (2013). “Invariant recurrent solutions em-
bedded in a turbulent two-dimensional Kolmogorov flow”. In: Journal of Fluid
Mechanics 722, pp. 554–595.

Chen, Chi et al. (2019). “Graph networks as a universal machine learning framework
for molecules and crystals”. In: Chemistry of Materials 31.9, pp. 3564–3572.

Chen, Tianping and Hong Chen (1995). “Universal approximation to nonlinear
operators by neural networks with arbitrary activation functions and its application
to dynamical systems”. In: IEEE Transactions on Neural Networks 6.4, pp. 911–
917.

Choromanski, Krzysztof et al. (2020). “Rethinking attention with performers”. In:
arXiv preprint arXiv:2009.14794.

Ciesielski, Z. and J. Domsta (1972). “Construction of an Orthonormal Basis in
Cm(Id) and Wmp(Id)”. In: Studia Mathematica 41, pp. 211–224.

Cohen, Albert and Ronald DeVore (2015). “Approximation of high-dimensional para-
metric PDEs”. In: Acta Numerica. DOI: 10.1017/S0962492915000033.

Cohen, Albert, Ronald Devore, et al. (2020). “Optimal Stable Nonlinear Approxima-
tion”. In: arXiv preprint arXiv:2009.09907.

Constantin, Peter and Ciprian Foias (1988). Navier-stokes equations. University of
Chicago Press.

Conway, J. B. (2007). A Course in Functional Analysis. Springer-Verlag New York.

Cotter, S. L. et al. (Aug. 2013). “MCMC Methods for Functions: Modifying Old
Algorithms to Make Them Faster”. In: Statistical Science 28.3, pp. 424–446. ISSN:
0883-4237. DOI: 10.1214/13-sts421. URL: http://dx.doi.org/10.
1214/13-STS421.

Cotter, Simon L et al. (2009). “Bayesian inverse problems for functions and applica-
tions to fluid mechanics”. In: Inverse problems 25.11, p. 115008.

Damianou, Andreas and Neil Lawrence (2013). “Deep gaussian processes”. In:
Artificial Intelligence and Statistics, pp. 207–215.



249

Devlin, Jacob et al. (2018). “Bert: Pre-training of deep bidirectional transformers for
language understanding”. In: arXiv preprint arXiv:1810.04805.

DeVore, Ronald A. (1998). “Nonlinear approximation”. In: Acta Numerica 7, pp. 51–
150.

– (2014). “The Theoretical Foundation of Reduced Basis Methods”. In: Model Re-
duction and Approximation. SIAM, Philadelphia. DOI: 10.1137/1.9781611974829.
ch3.

Dosovitskiy, Alexey et al. (2020). “An image is worth 16x16 words: Transformers
for image recognition at scale”. In: arXiv preprint arXiv:2010.11929.

Dudley, R. and Rimas Norvaisa (Jan. 2011). Concrete Functional Calculus. Vol. 149.
ISBN: 978-1-4419-6949-1.

Dudley, R.M. and R. Norvaiša (2010). Concrete Functional Calculus. Springer
Monographs in Mathematics. Springer New York.

Dugundji, J. (1951). “An extension of Tietze’s theorem”. In: Pacific Journal of
Mathematics 1.3, pp. 353–367.

Dunlop, Matthew M et al. (2018). “How deep are deep Gaussian processes?” In: The
Journal of Machine Learning Research 19.1, pp. 2100–2145.

E, Weinan (2011). Principles of Multiscale Modeling. Cambridge: Cambridge Uni-
versity Press.

E, Weinan and Bing Yu (Mar. 2018). “The Deep Ritz Method: A Deep Learning-
Based Numerical Algorithm for Solving Variational Problems”. English (US).
In: Communications in Mathematics and Statistics. ISSN: 2194-6701. DOI: 10.
1007/s40304-018-0127-z.

Evans, Lawrence C (2010). Partial Differential Equations. Vol. 19. American Math-
ematical Soc.

Fan, Yuwei, Cindy Orozco Bohorquez, and Lexing Ying (2019). “BCR-Net: A neural
network based on the nonstandard wavelet form”. In: Journal of Computational
Physics 384, pp. 1–15.

Fan, Yuwei, Jordi Feliu-Faba, et al. (2019). “A multiscale neural network based on
hierarchical nested bases”. In: Research in the Mathematical Sciences 6.2, p. 21.

Fan, Yuwei, Lin Lin, et al. (2019). “A multiscale neural network based on hierarchical
matrices”. In: Multiscale Modeling & Simulation 17.4, pp. 1189–1213.

Fefferman, Charles (2007). “Cm extension by linear operators”. In: Annals of Math-
ematics 166, pp. 779–835.

Gardner, Jacob R et al. (2018). “Product kernel interpolation for scalable Gaussian
processes”. In: arXiv preprint arXiv:1802.08903.



250

Garriga-Alonso, Adrià, Carl Edward Rasmussen, and Laurence Aitchison (Aug.
2018). “Deep Convolutional Networks as shallow Gaussian Processes”. In: arXiv e-
prints, arXiv:1808.05587, arXiv:1808.05587. arXiv: 1808.05587 [stat.ML].

Gilmer, Justin et al. (2017). “Neural message passing for quantum chemistry”. In:
Proceedings of the 34th International Conference on Machine Learning. URL:
http://proceedings.mlr.press/v70/gilmer17a.html.

Globerson, Amir and Roi Livni (2016). “Learning Infinite-Layer Networks: Beyond
the Kernel Trick”. In: CoRR abs/1606.05316. arXiv: 1606.05316. URL: http:
//arxiv.org/abs/1606.05316.

Greenfeld, Daniel et al. (2019). “Learning to optimize multigrid PDE solvers”. In:
International Conference on Machine Learning. PMLR, pp. 2415–2423.

Greengard, Leslie and Vladimir Rokhlin (1997). “A new version of the fast multipole
method for the Laplace equation in three dimensions”. In: Acta numerica 6,
pp. 229–269.

Grothendieck, A (1955). Produits tensoriels topologiques et espaces nucléaires.
Vol. 16. American Mathematical Society Providence.

Guo, Xiaoxiao, Wei Li, and Francesco Iorio (2016). “Convolutional neural networks
for steady flow approximation”. In: Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining.

Gurtin, Morton E (1982). An introduction to continuum mechanics. Academic press.

Guss, William H. (Dec. 2016). “Deep Function Machines: Generalized Neural Net-
works for Topological Layer Expression”. In: arXiv e-prints, arXiv:1612.04799,
arXiv:1612.04799. arXiv: 1612.04799 [stat.ML].

Haber, Eldad and Lars Ruthotto (2017). “Stable architectures for deep neural net-
works”. In: Inverse Problems 34.1, p. 014004.

Hamilton, Will, Zhitao Ying, and Jure Leskovec (2017). “Inductive representation
learning on large graphs”. In: Advances in neural information processing systems,
pp. 1024–1034.

He, Juncai and Jinchao Xu (2019). “MgNet: A unified framework of multigrid and
convolutional neural network”. In: Science china mathematics 62.7, pp. 1331–
1354.

He, Kaiming et al. (2016). “Deep residual learning for image recognition”. In:
Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778.

Herrmann, L, Ch Schwab, and J Zech (2020). “Deep ReLU Neural Network Ex-
pression Rates for Data-to-QoI Maps in Bayesian PDE Inversion”. URL: https:
//www.sam.math.ethz.ch/sam_reports/reports_final/
reports2020/2020-02.pdf.



251

Hornik, Kurt, Maxwell Stinchcombe, Halbert White, et al. (1989). “Multilayer
feedforward networks are universal approximators.” In: Neural networks 2.5,
pp. 359–366.

Jiang, Chiyu Max et al. (2020). “MeshfreeFlowNet: A Physics-Constrained Deep
Continuous Space-Time Super-Resolution Framework”. In: arXiv preprint arXiv:2005.01463.

Johnson, Claes (2012). Numerical solution of partial differential equations by the
finite element method. Courier Corporation.

Kashinath, Karthik, Philip Marcus, et al. (2020). “Enforcing Physical Constraints in
CNNs through Differentiable PDE Layer”. In: ICLR 2020 Workshop on Integration
of Deep Neural Models and Differential Equations.

Khoo, Yuehaw, Jianfeng Lu, and Lexing Ying (2017). “Solving parametric PDE
problems with artificial neural networks”. In: arXiv preprint arXiv:1707.03351.

Khoo, Yuehaw and Lexing Ying (2019). “SwitchNet: a neural network model for for-
ward and inverse scattering problems”. In: SIAM Journal on Scientific Computing
41.5, A3182–A3201.

Kipf, Thomas N and Max Welling (2016). “Semi-supervised classification with
graph convolutional networks”. In: arXiv preprint arXiv:1609.02907.

Kondor, Risi, Nedelina Teneva, and Vikas Garg (2014). “Multiresolution matrix
factorization”. In: International Conference on Machine Learning, pp. 1620–1628.

Kovachki, Nikola, Samuel Lanthaler, and Siddhartha Mishra (2021). “On universal
approximation and error bounds for Fourier Neural Operators”. In: arXiv preprint
arXiv:2107.07562.

Kraichnan, Robert H. (1967). “Inertial Ranges in Two-Dimensional Turbulence”. In:
The Physics of Fluids 10.7, pp. 1417–1423.

Kulis, Brian, Mátyás Sustik, and Inderjit Dhillon (2006). “Learning low-rank kernel
matrices”. In: Proceedings of the 23rd international conference on Machine
learning, pp. 505–512.

Lan, Liang et al. (2017). “Low-rank decomposition meets kernel learning: A gener-
alized Nyström method”. In: Artificial Intelligence 250, pp. 1–15.

Lanthaler, Samuel, Siddhartha Mishra, and George Em Karniadakis (2021). “Error
estimates for DeepOnets: A deep learning framework in infinite dimensions”. In:
arXiv preprint arXiv:2102.09618.

Lemarié-Rieusset, Pierre Gilles (2018). The Navier-Stokes problem in the 21st
century. CRC Press.

Leoni, G. (2009). A First Course in Sobolev Spaces. Graduate studies in mathematics.
American Mathematical Soc.

Li, Zongyi, Nikola Kovachki, et al. (2020a). Fourier Neural Operator for Parametric
Partial Differential Equations. arXiv: 2010.08895 [cs.LG].



252

Li, Zongyi, Nikola Kovachki, et al. (2020b). Multipole Graph Neural Operator for
Parametric Partial Differential Equations. arXiv: 2006.09535 [cs.LG].

– (2020c). “Neural operator: Graph kernel network for partial differential equations”.
In: arXiv preprint arXiv:2003.03485.

Li, Zongyi, Hongkai Zheng, et al. (2021). “Physics-Informed Neural Operator for
Learning Partial Differential Equations”. In: arXiv preprint arXiv:2111.03794.

Lu, Lu, Pengzhan Jin, and George Em Karniadakis (2019). “DeepONet: Learning
nonlinear operators for identifying differential equations based on the universal
approximation theorem of operators”. In: arXiv preprint arXiv:1910.03193.

Lu, Lu, Pengzhan Jin, Guofei Pang, et al. (2021). “Learning nonlinear operators
via DeepONet based on the universal approximation theorem of operators”. In:
Nature Machine Intelligence 3.3, pp. 218–229.

Lu, Lu, Xuhui Meng, et al. (2021). “A comprehensive and fair comparison of
two neural operators (with practical extensions) based on FAIR data”. In: arXiv
preprint arXiv:2111.05512.

Mathieu, Michael, Mikael Henaff, and Yann LeCun (2013). Fast Training of Convo-
lutional Networks through FFTs. arXiv: 1312.5851 [cs.CV].

Matthews, Alexander G. de G. et al. (Apr. 2018). “Gaussian Process Behaviour in
Wide Deep Neural Networks”. In:

Mingo, Luis et al. (2004). “Fourier neural networks: An approach with sinusoidal
activation functions”. In:

Murphy, Ryan L et al. (2018). “Janossy pooling: Learning deep permutation-invariant
functions for variable-size inputs”. In: arXiv preprint arXiv:1811.01900.

Neal, Radford M. (1996). Bayesian Learning for Neural Networks. Springer-Verlag.
ISBN: 0387947248.

Nelsen, Nicholas H and Andrew M Stuart (2021). “The random feature model
for input-output maps between banach spaces”. In: SIAM Journal on Scientific
Computing 43.5, A3212–A3243.

Nyström, Evert J (1930). “Über die praktische Auflösung von Integralgleichungen
mit Anwendungen auf Randwertaufgaben”. In: Acta Mathematica.

O’Leary-Roseberry, Thomas et al. (2020). “Derivative-Informed Projected Neural
Networks for High-Dimensional Parametric Maps Governed by PDEs”. In: arXiv
preprint arXiv:2011.15110.

Opschoor, Joost A.A., Christoph Schwab, and Jakob Zech (2020). “Deep learning in
high dimension: ReLU network Expression Rates for Bayesian PDE inversion”.
In: SAM Research Report 2020-47.

Pan, Shaowu and Karthik Duraisamy (2020). “Physics-informed probabilistic learn-
ing of linear embeddings of nonlinear dynamics with guaranteed stability”. In:
SIAM Journal on Applied Dynamical Systems 19.1, pp. 480–509.



253

Patel, Ravi G et al. (2021). “A physics-informed operator regression framework
for extracting data-driven continuum models”. In: Computer Methods in Applied
Mechanics and Engineering 373, p. 113500.

Pathak, Jaideep et al. (2020). Using Machine Learning to Augment Coarse-Grid Com-
putational Fluid Dynamics Simulations. arXiv: 2010.00072 [physics.comp-ph].

Pełczyński, Aleksander and Michał Wojciechowski (2001). “Contribution to the
isomorphic classification of Sobolev spaces Lpk(Omega)”. In: Recent Progress in
Functional Analysis 189, pp. 133–142.

Pfaff, Tobias et al. (2020). Learning Mesh-Based Simulation with Graph Networks.
arXiv: 2010.03409 [cs.LG].

Pinkus, A. (1985). N-Widths in Approximation Theory. Springer-Verlag Berlin Hei-
delberg.

Pinkus, Allan (1999). “Approximation theory of the MLP model in neural networks”.
In: Acta Numerica 8, pp. 143–195.

Poole, Ben et al. (2016). “Exponential expressivity in deep neural networks through
transient chaos”. In: Advances in neural information processing systems 29,
pp. 3360–3368.

Quiñonero-Candela, Joaquin and Carl Edward Rasmussen (2005). “A Unifying View
of Sparse Approximate Gaussian Process Regression”. In: J. Mach. Learn. Res. 6,
pp. 1939–1959.

Rahimi, Ali and Benjamin Recht (2008). “Uniform approximation of functions with
random bases”. In: 2008 46th Annual Allerton Conference on Communication,
Control, and Computing. IEEE, pp. 555–561.

Raissi, Maziar, Paris Perdikaris, and George E Karniadakis (2019). “Physics-informed
neural networks: A deep learning framework for solving forward and inverse
problems involving nonlinear partial differential equations”. In: Journal of Com-
putational Physics 378, pp. 686–707. DOI: 10.1016/j.jcp.2018.10.045.

Ronneberger, Olaf, Philipp Fischer, and Thomas Brox (2015). “U-net: Convolutional
networks for biomedical image segmentation”. In: International Conference on
Medical image computing and computer-assisted intervention. Springer, pp. 234–
241.

Roux, Nicolas Le and Yoshua Bengio (2007). “Continuous Neural Networks”. In:
Proceedings of the Eleventh International Conference on Artificial Intelligence
and Statistics. Ed. by Marina Meila and Xiaotong Shen.

Schwab, Christoph and Jakob Zech (2019). “Deep learning in high dimension:
Neural network expression rates for generalized polynomial chaos expansions
in UQ”. In: Analysis and Applications 17.01, pp. 19–55. DOI: 10 . 1142 /
S0219530518500203.



254

Sirignano, Justin and Konstantinos Spiliopoulos (2018). “DGM: A deep learning
algorithm for solving partial differential equations”. In: Journal of computational
physics 375, pp. 1339–1364.

Sitzmann, Vincent et al. (2020). “Implicit neural representations with periodic
activation functions”. In: arXiv preprint arXiv:2006.09661.

Smith, Jonathan D, Kamyar Azizzadenesheli, and Zachary E Ross (2020). “EikoNet:
Solving the Eikonal equation with Deep Neural Networks”. In: arXiv preprint
arXiv:2004.00361.

Stein, Elias M. (1970). Singular Integrals and Differentiability Properties of Func-
tions. Princeton University Press.

Strogatz, Steven (2009). “Loves Me, Loves Me Not (Do the Math)”. In:

Stuart, A. M. (2010). “Inverse problems: A Bayesian perspective”. In: Acta Numerica
19, pp. 451–559.

Temam, Roger (2001). Navier-Stokes equations: theory and numerical analysis.
Vol. 343. American Mathematical Soc.

Trefethen, Lloyd N (2000). Spectral methods in MATLAB. Vol. 10. Siam.

Trillos, Nicolas Garcia, Moritz Gerlach, et al. (2020). “Error estimates for spectral
convergence of the graph Laplacian on random geometric graphs toward the
Laplace–Beltrami operator”. In: Foundations of Computational Mathematics 20.4,
pp. 827–887.

Trillos, Nicolas Garcia and Dejan Slepvcev (2018). “A variational approach to the
consistency of spectral clustering”. In: Applied and Computational Harmonic
Analysis 45.2, pp. 239–281.

Um, Kiwon, Philipp Holl, et al. (2020). “Solver-in-the-Loop: Learning from Dif-
ferentiable Physics to Interact with Iterative PDE-Solvers”. In: arXiv preprint
arXiv:2007.00016.

Um, Kiwon, Raymond, et al. (2020). Solver-in-the-Loop: Learning from Differ-
entiable Physics to Interact with Iterative PDE-Solvers. arXiv: 2007.00016
[physics.comp-ph].

Ummenhofer, Benjamin et al. (2020). “Lagrangian fluid simulation with continuous
convolutions”. In: International Conference on Learning Representations.

Vapnik, Vladimir N. (1998). Statistical Learning Theory. Wiley-Interscience.

Vaswani, Ashish et al. (2017). “Attention is All you Need”. In: Advances in Neural
Information Processing Systems. Ed. by I. Guyon et al. Vol. 30. Curran Associates,
Inc.
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C h a p t e r 6

CONDITIONAL SAMPLING WITH MONOTONE GAN(S)

6.1 Introduction
Consider inputs x ∈ Rn and outputs y ∈ Rm distributed according to a joint
probability measure ν(dx, dy). We introduce a method called monotone generative

adversarial networks (MGANs) to sample the conditional measure ν(dy|x∗) given
any input x∗ ∈ Rn, by constructing a map F(x∗, ·) that pushes forward a reference
measure η(dy) to ν(dy|x∗).

Conditional sampling is a fundamental task for machine learning and statistics
as it provides a way of quantifying uncertainty in predicted outputs. Standard
supervised learning (SL) algorithms approximate the conditional expectation of y
given x, for instance via regression Hastie, Tibshirani, and Friedman, 2009, but
do not fully characterize the uncertainty in the output. Probabilistic methods, in
particular Bayesian techniques, improve on this by characterizing the distribution
of y|x. To do so, most Bayesian approaches require prior information about the
process generating x and y, such as a (parametric) model for the distribution of
y|x. These prior assumptions are often impossible to verify in practice, and hence
model selection techniques are often employed to choose the “best” model within a
specified class.

In contrast, recent unsupervised learning methods such as generative adversarial
networks (GANs) Goodfellow et al., 2014; Nowozin, Cseke, and Tomioka, 2016;
Arjovsky, Chintala, and Bottou, 2017; Gui et al., 2020, normalizing flows (NFs)
Kobyzev, Prince, and Brubaker, 2020; Papamakarios, Nalisnick, et al., 2019 and
variational autoencoders (VAEs) Doersch, 2016 have been remarkably successful
at sampling complex and high-dimensional probability distributions under minimal
assumptions on the underlying models for the data. Put simply, these generative
methods train a map T that pushes forward a reference measure η to the target
distribution ν. (In some cases, such as VAEs and GANs, the measure η is usually
supported on a lower-dimensional space than ν.) The map T is often parameterized
with a neural network and is trained using a data set consisting of samples from ν,
without any explicit assumptions on the relationship between y and x. Generative
models are typically not designed with conditional sampling in mind, however,
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and to our knowledge—with a few recent exceptions (e.g., Lindgren, Whang, and
Dimakis (2020), as discussed in Section 6.3)—it is not possible to utilize the map T

constructed by GANs or VAEs to provably sample the conditionals ν(dy|x∗) from
the joint measure.

Here we propose a method that bridges the gap between SL and generative modeling.
We train a map T without any model assumptions between y and x, but we enforce
sufficient constraints that allow us to extract another map F from T so that F(x∗, ·)
can be used to sample exactly from ν(dy|x∗) for any x∗ ∈ Rn. This idea has been
explored in the uncertainty quantification (UQ) and inverse problems communities Y.
Marzouk et al., 2016; El Moselhy and Y. M. Marzouk, 2012; Spantini, Baptista, and
Y. Marzouk, 2019; Siahkoohi et al., 2021 for Bayesian inference and within machine
learning Papamakarios, Pavlakou, and Murray, 2017; Jaini, Selby, and Yu, 2019;
Brennan et al., 2020, by constructing monotone triangular maps T that approximate
the well-known triangular Knothe–Rosenblatt (KR) rearrangement Santambrogio,
2015. By construction, the components of the KR map push forward the reference
conditionals to the target conditionals, which is precisely what is desired for condi-
tional sampling. Working with the KR map can be restrictive, however, since we
must first choose a variable ordering and then employ a specific parameterization
that ensures the map is triangular and monotone. Here, we relax the triangularity
assumption to a block triangularity assumption and prove that this relaxed constraint
is sufficient for correct conditional sampling. We then impose block triangularity
and strict monotonicity of T as constraints in the GAN framework, to learn a map T

from which the desired map F can be extracted easily, hence the name MGAN.

We summarize our main contributions as follows:

• We generalize triangular maps for conditional sampling by proving that block-
triangular structure is sufficient to guarantee the exactness of conditionals.

• We propose an adversarial training procedure (MGAN) for learning correct
conditional generative models.

• We compare the performance of MGANs to that of several approximate
conditional sampling procedures, and show that MGANs yield more accurate
conditional distributions in practice.

• We demonstrate the efficacy of MGANs on large-scale Bayesian inference
and image in-painting examples.



258

6.2 Conditional sampling with block triangular maps
We now outline our approach for constructing block triangular maps for conditional
sampling, beginning with the theoretical foundations of our framework followed by
the details of our training and sampling strategies.

Guarantees for conditional sampling and density estimation
Following the notation of Section 6.1, we consider input and output pairs x ∈ Rn

and y ∈ Rm and define their concatenation z ≡ (x,y) ∈ Rd with d = n+m. We
then consider the measure transport problem (Villani, 2009) of pushing the reference

measure η(dz) to the joint target measure ν(dz) ≡ ν(dx, dy) by finding a map
T : Rd → Rd so that T]η = ν. For brevity, we henceforth assume that ν(dz) is
absolutely continuous with respect to the Lebesgue measure on Rd with full support,
i.e., its Lebesgue density is strictly positive. Also, we take the reference measure
η to be of the form η(dx, dy) = ν(dx) ⊗ N(0, Im) where Im denotes the m ×m
identity matrix and ν(dx) denotes the marginal of ν on the x variable.

We require the map T to be of a particular block triangular form, that is,

T(x,y) =

[
Id(x)

G(x,y)

]
, Id : Rn → Rn, G : Rd → Rm, (6.1)

where Id denotes the identity map. The existence of such a map can be guaranteed
under very general conditions, for example by assuming that η and ν have no atoms
Santambrogio, 2015. Furthermore, we say T is strictly monotone (Zeidler, 2013)
if 〈T(z) − T(z′), z − z′〉 > 0, for all z, z′ ∈ Rd, z 6= z′, with 〈·, ·〉 denoting the
Euclidean inner product, and it is coercive if lim‖z‖→∞

〈T(z),z〉
‖z‖ = +∞. We use

T (Rd) to denote the space of block triangular maps from Rd into Rd of the form
(6.1) that are bounded, continuous, strictly monotone, and coercive. It follows that
such maps are surjective and that their inverses are well defined. We then formulate
the optimization problem:

min
T
D(T]η‖ν) s.t. T ∈ T (Rd), (6.2)

where D denotes an appropriate statistical divergence (J. Lin, 1991; Goodfellow
et al., 2014), i.e., a functional that measures the difference between probability
measures satisfying D(µ1‖µ2) ≥ 0 and D(µ1‖µ2) = 0 if and only if µ1 = µ2.

Under the above assumptions, we obtain the following theorem, which is the foun-
dation of our algorithm for conditional sampling. This result states that the map
G extracted from any global minimizer of (6.2) can be used to map the marginal
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reference η(dy) = N(0, Im) to any target conditional ν(dy|x∗) for a new input x∗

in the support of ν(dx). The following theorem generalizes Lemma 1 of Y. Marzouk
et al. (2016).

Theorem 61. Let T be a global minimizer of (6.2) achieving D(T]η, ν) = 0. Then

for any new input x∗ ∈ supp ν(dx) it holds that G(x∗, ·)]η(dy) = ν(dy|x∗).

Proof. First, let us recall some notation. For y ∈ Rm and x ∈ Rn we let πη(y) and
πν(x) denote the Lebesgue densities of the marginals η(dy) and ν(dx), respectively.
Finally, let πν(y|x) denote the Lebesgue density of the conditional ν(dy|dx).

Fix x∗ ∈ Rn as the new input. Since T is monotone and hence invertible, by the
change of variables formula we have

G(x∗, ·)]πη(y) = πη(G−1(x∗,y))| det∇yG−1(x∗,y)|

=
πν(x

∗)πη(G−1(x∗,y))

πν(x∗)
| det∇yG−1(x∗,y)|.

For the reference measure η(dx, dy) = ν(dx)⊗ η(dy), its Lebesgue density has the
form πη(x,y) = πν(x)πη(y). Therefore, the pushforward density can be written as

G(x∗, ·)]πη(y) =
πη(x

∗,G−1(x∗,y))

πν(x∗)
| det∇yG−1(x∗,y)|

=
T]πη(x

∗,y)

πν(x∗)
,

where we have used the change of variables formula once more together with the
fact that the first component of T is an identity map with respect to x. For a global
minimizer T that satisfies T]πη(x,y) = πν(x,y), the numerator is equal to the
Lebesgue density of ν(dx, dy). Thus, by the definition of the conditional density

G(x∗, ·)]πη(y) =
πν(x

∗,y)

πν(x∗)
= πν(y|x∗).

Note that by the above theorem, any member of T (Rd) that achieves D(T]η, ν) = 0

can be used for conditioning and so the uniqueness of the minimizer is not pertinent
to the conditional sampling task. The existence of such minimizers can be guaranteed
under mild conditions following the construction of the KR map pushing η(dz) to
ν(dz) (Santambrogio, 2015) although the KR map is by definition fully triangular
and so satisfies stricter constraints than required by the class T (Rd).
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(a) T(x) (b) GAN (c) MGAN

Figure 61: Comparison between GANs and MGANs for pushing N(0, 1) to
U(−3, 3). (a) The map T obtained from GANs, MGANs, and the analytically
computed KR map demonstrating that the KR and MGAN maps are invertible while
the GAN map is not. (b, c) Histogram of GAN and MGAN pushforward samples
demonstrating that both methods approximate the uniform distribution U(−3, 3).

The monotonicity constraint on T (Rd) is the most important constraint in problem
(6.2), as it ensures the invertibility of T (see the proof of Theorem 61 in the supple-
mentary material) which in turn enables conditional sampling with the map G(x∗, ·).
Eliminating the monotonicity constraint can easily result in a non-invertible T, as
depicted in Figure 61 where we consider the problem of pushing forward a standard
normal distribution N(0, 1) to the uniform measure U(−3, 3). As demonstrated
in Figure 61(a), the map found by a standard GAN without monotonicity is not
invertible, while the MGAN map is monotone and hence invertible; in fact, the
MGAN map precisely coincides with the KR map in this case. We also note that
Theorem 61 holds in the setting where the monotonicity constraint on T (Rd) is
replaced with the requirement that T is surjective. We do not pursue this direction
here, however, since the monotonicity constraints allow for more flexibility in the
parameterization of T.

Note that, from the GAN perspective, T would be the generator map, but our
construction differs from standard GAN generators that typically map reference
measures on a low-dimensional latent space to high-dimensional target measures.
The existence of a transport map satisfying T]η = ν cannot be guaranteed in that
case unless ν is supported on a low-dimensional manifold embedded in Rd whose
intrinsic dimension is at most the dimension of the latent space. We do not make
this manifold assumption here, as we are interested in the general problem of ν with
full support, and in extracting conditionals of arbitrary size from ν. Moreover, it is
unclear how to define the necessary notions of monotonicity and invertibility without
more specific knowledge of the manifold geometry.
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We also note that global minimizers of (6.2) can also be used for conditional
density estimation: Let πν(y|x∗) and πη(y) denote the probability density func-
tions of ν(dy|x∗) and η(dy) respectively. The change of variables formula yields
πν(y|x∗) = πη ◦ F−1(x∗,y)| det∇yF

−1(x∗,y)|, where F−1(x∗, ·) is the inverse
of the map ξξξ 7→ F(x∗, ξξξ). The inverse map F−1(x∗, ·) can be evaluated with
standard root-finding methods (Y. Marzouk et al., 2016) or parameterized and
trained via regression. In fact, if density estimation is the primary goal, then
estimating directly the inverse map F−1(x∗,y) := S(x∗,y) yields πν(y|x∗) =

πη ◦ S(x∗,y)| det∇yS(x∗,y)|, which eliminates the need for inverting G altogether.
Since we are focused here on efficient conditional sampling procedures, we leave
this conditional density estimation direction for future research.

The training and sampling procedures
We now outline a practical procedure for solving (6.2) and for sampling the condi-
tional ν(dy|x∗). Further details regarding the practical algorithm are summarized in
the supplementary material. We consider (6.2) with a GAN loss functional for D. In
particular we use either the least-squares GAN (LSGAN) loss of Mao et al. (2017)
or the Wasserstein GAN with gradient penalty (WGAN-GP) loss of Gulrajani et al.
(2017) for our numerical experiments in Section 6.4.

We approximate the G component of T with a neural network and replace the strict
monotonicity constraint on T with an average monotonicity penalty. We also discard
the coercivity constraint as it pertains to the behavior of the map in the tails, which
is not relevant in practice where only a finite number of samples from the reference
and target are available. Then, assuming T is in the form (6.1), we consider the
optimization problem:

min
T

max
f

DGAN(T, f)

− λEw∼ηEw′∼η〈T(w)− T(w′),w −w′〉,
(6.3)

where f : Rd → R denotes the discriminator, DGAN is an appropriate GAN loss
measuring the quality of the map T and the discriminator f , and λ > 0 is a multiplier
controlling the weight of the average monotonicity penalty. While this condition
does not ensure that T is monotone everywhere on the support of η, numerically
we find that it is sufficient to ensure that T is monotone with high probability, i.e.,
on most of the support of η. Indeed, the probability that T is monotone can easily
be tracked during training to certify the invertibility of the minimizer. Furthermore,
note that in contrast to training procedures for flow models based on minimizing
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Kullback–Leibler (KL) divergence (or maximizing a log-likelihood), solving (6.3)
does not require computing any Jacobian determinants of T; this permits complete
flexibility in the choice of neural network parameterization.

Once the map T is trained, we proceed to generate new approximate samples from
the conditional measure ν(dy|x∗) as follows: we generate a set of i.i.d. samples
ui ∼ η(dy) drawn from the reference marginal and simply set yi = F(x∗,ui).
Assuming that the components of T are good approximations to a global minimizer
of (6.2), we expect the yi to be approximately distributed according to ν(dy|x∗).
These new samples can then be used to compute statistics and uncertainty estimates.

6.3 Related work
Conditional generative models. Various architectures and learning algorithms have
been proposed to sample approximately from conditional distributions. Conditional
GANs and VAEs (Mirza and Osindero, 2014; Ivanov, Figurnov, and Vetrov, 2019)
append inputs x to their models and train using samples from the joint distribution.
These models have been shown to be effective at approximating multi-modal distri-
butions on the output variables y, for instance when modes correspond to different
values of a discrete class label x. Similarly, in the imaging setting, recent work (e.g.,
Zhu et al. (2017) and Isola et al. (2017)) employs modifications of GANs to solve
image-to-image translation problems. In general, these models do not offer any guar-
antees for obtaining the correct conditionals. In comparison, MGAN uses a similar
architecture but captures the true conditional distribution under the assumptions of
Theorem 61 (e.g., monotonicity of T). Recent techniques have also addressed the
harder task of learning all the conditionals of a joint distribution, i.e., for arbitrary
subsets of conditioning variables. To this end, Ivanov, Figurnov, and Vetrov (2019)
uses a conditional VAE model, while Belghazi et al. (2019) proposes an adversarial
training approach for better performance. Both constructions employ a weighted
loss over all possible choices of conditionals, but, similar to conditional GANs,
this loss does not guarantee that any particular conditional is obtained correctly. In
contrast, Lindgren, Whang, and Dimakis (2020) focuses on the problem of correctly
extracting a single conditional from a fixed pre-trained flow model. The method
uses a variational inference objective (Rezende and Mohamed, 2015), but must be
re-trained for each new value of the observations or conditioning variables. On the
other hand, MGAN enables sampling from the conditional ν(y|x∗) for any new
value of x∗ without retraining.
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Conditional posterior sampling. Generative models have also been proposed
specifically for sampling posterior distributions in Bayesian inference, often in the
context of inverse problems. Perhaps the closest approach to MGAN is the deep
posterior sampling method (Adler and Öktem, 2018), which uses the Wasserstein-1
cost function instead of the LSGAN or WGAN-GP losses and does not impose
monotonicity on the map G. Adler and Öktem (2018) also propose a special dis-
criminator to help avoid mode collapse, but our empirical results below suggest
that the method does not correctly characterize the posterior. For inverse problems,
Ardizzone, Kruse, et al. (2018) propose to sample from the conditional distribution of
the unknown parameters y by learning a map from the observed data x, augmented
with some latent variables, to y. The authors prove that their approach is consistent
for conditional sampling in the specific setting when x is a deterministic function of
y. This is in contrast to the more general setting considered here, where (x,y) have
an absolutely continuous joint measure ν with minimal modelling assumptions.

Invertible normalizing flows. Given samples from a target measure, normalizing
flows compose bijective transformations to define a map S that pushes forward
the target to a reference (e.g., standard Gaussian) measure of the same dimension.
These flows are learned by maximizing the likelihood of the samples under the
approximate density provided by the model, which in turn requires computing the
Jacobian determinant of S. As a result, specific structural choices are imposed to
define transformations that allow tractable density evaluation without affecting the
expressiveness of the approximations (Papamakarios, Nalisnick, et al., 2019). These
flows can be repurposed for conditional modeling and simulation-based inference
by appending inputs to the maps, representing the conditioning variables (Cranmer,
Brehmer, and Louppe, 2020; Ardizzone, Lüth, et al., 2019; Y. Marzouk et al., 2016).
In this context, MGAN can be seen as a flow-based model that is instead trained
using a GAN loss function. In comparison to normalizing flows, MGAN does not
require evaluations of the pushforward density or of any Jacobian determinants
during training. Hence, MGAN is not constrained to any specific parameterizations
or structure, only block triangularity, and it is not necessary to compose many maps
to define an expressive flow. Furthermore, sampling from the target density using
MGAN does not require inverting the map at each sample—a costly step for many
other flow parameterizations.

Conditional density estimation. Another relevant body of work estimates and
selects models for the conditional density directly. Examples include mixture models
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that are parameterized with neural networks (Bishop, 1994; Rothfuss et al., 2019),
or more flexible nonparametric models Arbel and Gretton, 2018; Shiga, Tangkaratt,
and Sugiyama, 2015; Ambrogioni et al., 2017. However, parametric methods
impose structural constraints on the target conditional densities and do not focus on
conditional sampling as we do here, while nonparametric methods typically have
growing sampling costs with the size of the data set and require careful regularization
to avoid overfitting.

6.4 Experiments
We now present a series of numerical experiments that demonstrate the effectiveness
of MGANs in various conditional sampling applications, ranging from inverse prob-
lems to image in-painting. We compare MGANs to other methods in the literature
and perform ablation studies to demonstrate the importance of various constraints
in our formulation. Complete details on each experiment, such as the choice of
architectures and training hyperparameters, can be found in the supplementary
material.

Synthetic examples
We start with an example in two dimensions where the map T can be computed
explicitly. Consider the following input-to-output maps,

y = tanh(x) + γ, γ ∼ Γ(1, 0.3), (6.4)

y = tanh(x+ γ), γ ∼ N(0, 0.05), (6.5)

y = γ tanh(x), γ ∼ Γ(1, 0.3), (6.6)

where x ∼ U [−3, 3] in all cases. We choose tanh as our regression function since it
is nonlinear and can be used as a continuum model for classification problems.

We consider the problem of conditioning y on x and compare MGAN to the method
of Adler and Öktem (2018), henceforth referred to as “Adler,” as well as the solution
of (6.3) with the parameter λ = 0 which we refer to as CGANs. The latter compari-
son is made to highlight the importance of the monotonicity constraint, and the label
CGAN is chosen as this approach resembles Conditional GANs Mirza and Osindero,
2014.

Figure 62 compares all methods on each of the above problems with N = 50000

training points, the LSGAN loss, and λ = 0.01. The upper rows of Figure 62
demonstrate the ability of MGANs to capture the true joint measures ν(dx, dy),
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while the Adler and CGAN methods represent these joint measures poorly: in
particular, both methods overestimate the correlation between input and output,
which manifests as regions of higher density in the 2D plane. In the last row
of Figure 62 we also compare several conditional histograms of MGAN to the
true conditional PDFs, explicitly showing MGAN’s ability to capture the correct
conditionals. In Table 61 we compare the relative L2 distance and the KL divergence
between the density of the true joint measure ν(dx, dy) and the estimated densities
obtained from samples of the three methods. The errors are computed on the joint
distribution in order to measure the errors across all of the conditionals ν(dy|x).
Similarly to the figure above, these results highlight MGAN’s superior performance
at correctly capturing the conditional distributions.

MGAN Adler CGAN

R
el

.L
2 (6.4) .910 (.212) 2.89 (1.51) 4.73 (1.22)

(6.5) .766 (.276) 1.83 (.542) 1.37 (1.08)
(6.6) .997 (.264) 4.53 (1.43) 6.89 (2.63)

K
L

(6.4) .513 (.225) 5.10 (7.34) 17.2 (13.5)
(6.5) .481 (.502) 3.03 (2.33) 1.75 (1.63)
(6.6) .656 (.278) 18.0 (16.0) 53.8 (39.4)

Table 61: Distributional errors between the joint measure ν(dx, dy) and the MGAN,
Adler, and CGAN approximations for problems (6.4), (6.5) and (6.6). We present the
mean errors computed over the last 10 epochs of training with standard deviations
reported within brackets. Smallest mean in each column is highlighted in bold.
Reported relative L2 errors are scaled by 10 while KL errors are scaled by 103 for
readability.

Block triangular versus triangular maps
We now perform an ablation study to highlight the benefits of using block triangular
rather than triangular maps T. In this example, we consider a two-dimensional target
distribution for y = (y1, y2) with no conditioning variables where y1 ∼ N (0, 1)

and y2|y1 ∼ N (y2
1 + 1, 0.52). This joint density of y can be represented exactly as

the push-forward of η(dy) through the map G(y) = [y1; y2
1 + 1 + 0.5y2]. Hence, G

can be easily approximated by a triangular map of this form. However, when the
ordering of y1, y2 is reversed—i.e., when the first component of G depends on y2

instead of y1—the map is more challenging to approximate. To resolve this issue,
one common approach is to compose many maps to define an expressive normalizing
flow (see Papamakarios, Pavlakou, and Murray (2017) for a similar application). We
now demonstrate that by using a block triangular parameterization we can avoid
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Figure 62: The columns correspond to problems (6.4), (6.5), and (6.6) respectively.
The top four rows compare the true joint densities πν(x, y) to kernel density estimates
(KDEs) from MGAN, Adler, and CGAN samples. The bottom row compares
histograms of conditional samples from MGAN to the true conditional densities
(solid lines) for all three problems.

issues pertaining to the ordering of the variables and achieve a more robust map in
practice.

We use N = 104 training samples, λ = 0.01, and the LSGAN loss function to train
an MGAN with either fully triangular or block triangular structure. Both maps have
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the same total number of parameters. Figure 63 compares the samples generated
by the triangular and block triangular maps to the true density. We observe that
the block triangular map is able to capture the target density independent of the
ordering of the variables, unlike the triangular map. In Table 62 we report the
KL divergence between the true and approximated distributions for both variable
orderings. While the block triangular map has similar performance under both the
favorable and reverse orderings, the performance of the triangular map degrades
significantly depending on the ordering. This suggests that block triangular maps
are less sensitive to variable order, a major advantage of MGANs in comparison to
autoregressive models where it is necessary to specify a variable ordering in advance.
See Section 6.3 for additional discussion relating MGANs to other invertible flow-
based models.

(a) True density (b) Block triangular (c) Triangular

Figure 63: (a) The true density of (y1, y2) considered in Section 6.4. (b) Samples
generated by MGAN using a block triangular map with the reverse ordering of the
variables. (c) Samples generated by a fully triangular MGAN also with reverse
ordering.

Block triangular Triangular
Favorable order 0.056 (0.003) 0.039 (0.002)
Reverse order 0.058 (0.002) 0.102 (0.004)

Table 62: KL divergence errors for block triangular and triangular MGANs computed
usingN = 104 training samples. The approximate densities are estimated using KDE
with an optimal bandwidth parameter that is chosen using 5-fold cross-validation.
Each KL divergence is based on 5× 104 test samples and is reported together with
its 95% standard error within brackets.
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Biochemical oxygen demand model
We now turn to an inference problem for modeling biochemical oxygen demand
(BOD), often used as a test case for sampling schemes (Y. Marzouk et al., 2016;
Parno and Youssef M Marzouk, 2018; Bardsley et al., 2014). Consider the time-
dependent model B(t) = A(1 − e−Bt) + γ, where A and B are unknown pa-
rameters and γ ∼ N(0, 10−3) is the observational noise. We model the param-
eters as A = 0.4 + 0.4

(
1 + erf

(
ρ1√

2

))
and B = 0.01 + 0.15

(
1 + erf

(
ρ1√

2

))
where (ρ1, ρ2) ∼ N(0, I2). Our goal is to recover y = (ρ1, ρ2) from observa-
tions of the forward map B(t) at times t = 1, 2, 3, 4, 5. Hence, our training data
is in the form of i.i.d. realizations of y ∼ N(0, I2) along with a simulated vector
x = (B(1), . . . ,B(5)) for each y.

Following Y. Marzouk et al. (2016), we sample the conditional at

x∗ = (0.18, 0.32, 0.42, 0.49, 0.54).

Table 63 shows the relative L2, KL, and MMD distances between the estimated
conditionals and the true conditional ρ|x∗, where the latter is characterized using
a long MCMC chain. We train an MGAN using the LSGAN loss with λ = 0.01,
and compare it to the method of Adler. We show comparisons where both maps are
trained with eitherN = 5000 orN = 50000 samples. In both settings, MGAN yields
better approximations of the conditional according to all three performance metrics.
Figure 64 compares the density estimates of the MGAN and Adler conditionals to
MCMC. Once again, we observe that the Adler method overestimates the dependence
between ρ1, ρ2, while MGAN does not. Further numerical results, including a
comparison between MGAN and the method presented in Y. Marzouk et al. (2016),
are available in the supplementary material.

MCMC MGAN Adler

Figure 64: KDE of y|x∗ samples for the BOD problem obtained from 30,000
MCMC samples as a benchmark, compared with 30,000 samples from the MGAN
and Adler maps, trained with 50000 data points.
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N Rel. L2 KL MMD

Adler
5000 5.52 (1.49) 38.0 (22.5) 26.7 (23.6)
50000 6.93 (1.61) 65.6 (16.1) 24.0 (18.8)

MGAN
5000 3.72 (1.30) 16.8 (10.0) 19.5 (23.5)
50000 1.77 (.576) 3.28 (1.85) 4.84 (5.25)

Table 63: Conditional distributional errors for the BOD problem, comparing a
reference MCMC approximation of ν(dy|x∗) with MGAN or Adler. Mean errors
computed over the last 10 epochs of training are reported with standard deviations
within the brackets. Smallest mean for each amount of training data is highlighted in
bold. Relative L2 errors are scaled by 10 while KL and MMD errors are scaled by
103 to improve readability.

Darcy flow
Next, we consider a benchmark inverse problem from subsurface flow modeling
Iglesias, K. Lin, and Stuart, 2014 and electrical impedance tomography Kaipio and
Somersalo, 2005. Consider the partial differential equation (PDE)

−∇ · (a(s)∇p(s)) = f(s), s ∈ (0, 1)2,

p(s) = 0, s ∈ ∂(0, 1)2.
(6.7)

We interpret p(s) as the pressure field of subsurface flow in a reservoir with per-
meability coefficients a(s) under the forcing f(s). We further consider a two-scale
model for the permeability field a(s) = A1ΩA(s) + B1ΩB(s) where ΩA,ΩB ⊂
[0, 1]2 are disjoint and such that ΩA ∪ ΩB = [0, 1]2, and we let A ∼ U(3, 5) and
B ∼ U(12, 16). Figure 65(a) shows the sets ΩA (yellow) and ΩB (blue) that we use
in our experiments. We consider the inverse problem of recovering the permeability
parameters y = (A,B) from noisy measurements of the point values of the pressure
field p, i.e., x = (p(s1), . . . , p(s16)) + γ, where γ ∼ N(0, 10−7I16). Figure 65(b)
shows an example of a pressure field along with the measurement locations sj (red
dots).

We train an MGAN with LSGAN loss and N = 105 training points by sampling
A,B and solving the PDE (6.7) using finite differences. We then test the MGAN
conditional samples at new inputs x∗j for j = 1, 2, 3, generated by solving the
PDE (6.7) with (A,B) = (3.5, 13), (4, 14), and (4.5, 15), respectively; hence we
expect y|x∗ to concentrate around these prescribed values. Figures 65(c, d) show
conditional KDEs computed with 30,000 MCMC samples and 30,000 MGAN
samples. We observe that while MGAN captures the general shape of the conditionals
away from the constraints imposed by the prior, it struggles to capture the sharp
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boundaries of the conditionals at the edges of the prior support. Future work will
investigate how to embed such constraints into the generative model, in order to
mitigate these boundary effects.

(a) ΩA,ΩB (b) x∗2

(c) MCMC (d) MGAN

Figure 65: Setup and results for the Darcy flow inverse problem. (a) shows the
sets ΩA,ΩB across which the permeability field varies. Blue regions have small
permeability while yellow regions have large permeability. (b) depicts an example
of the pressure field p as well the measurement locations. (c) and (d) show scatter
plots of 30,000 MCMC and MGAN samples of y|x∗j , for j = 1, 2, 3.

Image in-painting
For our final set of experiments, we consider the image in-painting problem, in which
an image is reconstructed after having some sections removed. We view this problem
as an image-to-image regression problem where the input x is the incomplete image
and the output y is the in-painting.

We consider the MNIST and CelebA data sets. MNIST consists of 28× 28 images
of handwritten digits, and as input x we remove the middle 14× 14 pixels by setting
their values to zero, so that x ∈ R588 and the output y ∈ R14×14 corresponds to the
removed pixels. CelebA consists of 64 × 64 × 3 RGB images of celebrity faces
(converted to a standard size using bi-cubic interpolation). The input x ∈ R32×64×3
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consists of the top half of each image, and the output y ∈ R32×64×3 consists of the
bottom half.

We train an MGAN on the MNIST training set using the LSGAN loss, with λ = 0.01.
Then, for each of 800 randomly selected images x∗ from the MNIST test set, we
generate 1000 possible in-paintings. Figure 66 shows our in-painting results for
the digits 9, 7, 2, 0, 1, 5, where we present conditional samples as well as mean
and variances of the corresponding in-paintings. We note that the MGAN can
produce different digits given the same corrupted input image, hence capturing
multi-modal conditionals. We further label the conditional samples using the pre-
trained LeNet classifier of Lecun et al. (1998) to obtain classification probabilities
for the in-paintings, also reported in Figure 66. Interestingly, we observe that in
most cases the labels with highest probabilities correspond to visual inspection of
the means. We further tested the quality of the MGAN map T by computing the
Fréchet inception distance (FID) Heusel et al., 2017 over the test set and achieved a
score of approximately 3.5.

In the case of CelebA, we trained an MGAN on the training set of 162,770 images
using the WGAN-GP loss, with λ = 10−4. We added Gaussian white noise with
standard deviation 0.05 to further corrupt the training set, as we found this to be
crucial in countering conditional mode collapse. We also noticed that the trained
MGAN map T was monotone even with a relatively small monotonicity penalty λ
in this example. In general, however, we emphasize that monotonicity of the map
should always be monitored during training.

Our results are summarized in Figure 67, where we show conditional samples of
in-paintings for images in the CelebA test set together with pixelwise means and
variances of the image intensities. We note the variability of the MGAN samples,
producing different smiles, hair styles, jawlines, outfits, and backgrounds as one
would expect from a distributional in-painting method. We also computed an FID
score of approximately 35 for the full MGAN map T in this example. While FID is
a good metric for photorealism, it fails to capture variability in the conditionals. For
example, we noticed that models which collapse conditionally, i.e., which produce
the same in-painting G(x∗,y) for any realization of y ∼ η(dy), can still obtain
similarly good FID scores while clearly not being able to capture the true conditional.
To our knowledge, distributional in-painting on the CelebA data set has not been
explored in the literature, and thus we cannot compare the FID of our result to others.
The closest to the state of the art is an FID of 30 reported in Lindgren, Whang, and
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Dimakis (2020) for the CelebA-HQ data set.

truth x∗ y|x∗ samples E[y|x∗] V[y|x∗] label|x∗

Figure 66: Example in-paintings using MGAN from the MNIST test set. The first
column shows the ground truth images. The second column shows x∗ along with
the block to be in-painted. The third, fourth, and fifth columns show random in-
paintings generated from the conditional y|x∗. The sixth and seventh columns show
the pixel-wise conditional mean and variance computed from 1000 samples. The last
column shows the label probabilities of samples from y|x∗ classified using LeNet.

6.5 Conclusion
We presented MGANs, a model-agnostic method for conditional sampling of out-
puts given new inputs—i.e., conditional generative modeling—with a theoretical
guarantee for exact recovery of these conditionals. Our method adds monotonicity
constraints and block triangular structure to a GAN with a full-dimensional latent
space, and can also be seen as an easily parameterized invertible flow model trained
with a GAN loss. Numerical experiments elucidate the effectiveness and versatility
of MGANs, with applications in supervised learning and inverse problems. In future
research, the interplay between the quality of the full MGAN map obtained from
(6.3) and the accuracy of the derived conditionals warrants theoretical investigation.
Relatedly, approximation results characterizing the expressiveness of block triangu-
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Figure 67: Example in-paintings using MGAN from the CelebA test set. First row
depicts the ground truth image, second row shows the observed image x∗ while the
next four columns are random samples from the conditional y|x∗. The bottom two
rows show the pointwise means and variances of the intensities of the conditional
samples generated by the MGAN.

lar maps would be of interest. The extension of MGANs to conditional sampling on
infinite-dimensional function spaces is another exciting research direction, pertinent
to inverse problems.
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6.6 Discussion
Here, we collect further discussions surrounding conditional sampling, MGANs, and
other topics in statistics, machine learning, and applied mathematics. Section 6.6
discusses the connections between conditional sampling and supervised learning
(SL) as well as the importance of UQ for SL. In Section 6.6, we present MGANs
as a method for likelihood-free inference. In Section 6.6 we outline applications of
MGANs in the solution of inverse problems with black-box forward maps.

A model agnostic approach to SL and UQ
Conditional sampling can be viewed as the problem of generating samples from
certain “slices” of a probability measure ν(dx, dy). As demonstrated in Figure 68,
conditioning the output y on a new point x∗ amounts to restricting ν(dx, dy) along
the hyperplane x = x∗, renormalizing, and then generating samples from the
resulting distribution.

(a) ν(dx, dy)
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(b) ν(dy|x∗ = 1)

Figure 68: Schematic of conditional sampling. (a) The probability density function
of the joint input and output measure ν(dx, dy). (b) The probability density function
of the conditional measure ν(dy|x∗ = 1) as a normalized slice of the joint measure.

As we briefly mentioned in Section 6.1, conditional sampling problems are ubiqui-
tous in statistics, applied mathematics, and engineering. For example, most inference
problems reduce to conditional sampling where one wishes to characterize an output
parameter y at a new input parameter x∗. In regression, we often wish to estimate
y(x∗) for x∗ ∈ X ⊂ Rn, i.e., a certain subset of the input parameter space. As
we also mentioned in Section 6.1, most SL algorithms such as ridge, LASSO, or
neural network regression assume a functional relationship y = G(x) and estimate
G within certain parametric function spaces.

A core assumption at the heart of classic point estimation methods is the existence
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of a ground truth function G that could predict y at any new input x∗. If a good
approximation Ĝ to G can be computed, then one can predict the output y at the new
input x∗ simply by setting y = Ĝ(x∗). However, the estimate Ĝ is dependent on the
training data and the approximation power of the chosen parameterization in relation
to the ground truth G.

With this issue in mind, it is natural to resort to a statistical model that characterizes
Ĝ as a random variable, leading to the statistical or probabilistic perspective on SL
Hastie, Tibshirani, and Friedman, 2009; Gressmann et al., 2019. Such probabilistic
formulations, be they frequentist or Bayesian, have a major advantage over determin-
istic methods: the ability to characterize “uncertainties” in the predicted output y|x∗.
Loosely speaking, the word “uncertainty” here refers to meaningful statistics of y|x∗

that characterize the variability of the predicted output, e.g., its mean and covariance.
In the Bayesian setting, such statistics can be approximated using sampling methods
such as MCMC C. Robert and Casella, 2013, variational techniques Fox and Roberts,
2012, or in simpler cases, via closed-form conjugacy relationships Gelman et al.,
2013. In this regard, the MGANs approach introduced in the article belongs to
the category of sampling techniques such as MCMC, whose goal is to generate
independent samples from the law of y|x∗, as opposed to assuming some structural
form of the probability measure directly.

However, a major advantage of MGANs (and also the flow-based models discussed
in Section 6.3) is that the method is model-agnostic: the MGAN approach does
not require prior knowledge of the form of G or any specific parameterization of Ĝ.
This is “in principle,” of course, and under the assumption that the neural networks
used to describe the transport maps in MGANs are expressive enough to capture the
ground truth transport maps pushing the reference η to the target ν. The synthetic
example in Section 6.4 demonstrates this feature of MGANs clearly: the joint target
ν as well as the conditionals ν(dy|x∗) are computed accurately for three different
choices of G, but using the same architecture and training procedure within the
MGAN approach. Differences among the three models in that example are due only

to the training sets.

It is important to note that while model-agnostic approaches such as MGANs and
normalizing flows appear to be extremely flexible and general tools for inference,
their theoretical properties—in particular the sample complexities needed to ap-
proximate the transport maps to a given accuracy—are largely open questions. A
large body of theoretical research is dedicated to studying the consistency of classic



276

statistical SL procedures from the Bayesian and frequentist perspectives, focusing on
conditions and asymptotic regimes under which the estimated probability measure
on y|x∗ or Ĝ contracts around a certain “ground truth” at a certain rate depending
on the size and quality of training data Ghosal, Ghosh, Van Der Vaart, et al., 2000;
Giné and Nickl, 2016. To the best of our knowledge, such detailed analysis has not
been performed for measure transport techniques such as MGANs.

MGANs and likelihood-free Bayesian inference
Due to model agnosticism and the fact that the training process relies only on samples
from the joint distribution ν(dy, dx), MGANs can be readily applied for likelihood-
free inference Grelaud et al., 2009; Gutmann and Corander, 2016; Papamakarios
and Murray, 2016; Papamakarios, Sterratt, and Murray, 2019; Cranmer, Brehmer,
and Louppe, 2020 and approximate Bayesian computation tasks, i.e., problems
where the likelihood function is intractable or expensive to evaluate. Our numerical
experiments in Sections 6.4 and 6.4 illustrate these applications, where evaluation
of the likelihood may require the solution of a complicated ODE or PDE model.
However, the training of MGANs does not require any likelihood evaluations or
evaluations of the differential equations during training; once the training data set is
given, the MGAN can be trained independently. This makes the MGAN approach
particularly attractive in applications where the input-to-output map involves an
stochastic process, differential equation, PDE, or a black-box expensive computer
model. Furthermore, similarly to other conditional generative models, the training
process amortizes the cost of inference by building a single model that can be used
to sample from any conditional ν(y|x∗) given a realization of the inputs x∗.

MGANs and Bayesian inverse problems
One specific application area for MGANs in the context of likelihood-free inference
is inverse problems Kabanikhin, 2011; Stuart, 2010. Broadly speaking, inverse
problems can be viewed as SL algorithms where the input and output parameters
belong to high or possibly infinite-dimensional Banach spaces. More precisely, a
prototypical inverse problem takes the form

L(y)u = 0, x = g(u), (6.8)

where (x,y,u) ∈ X × Y × U with Banach spaces X, Y, U . For any fixed y, L(y)

is a known map which is assumed to be invertible, although the inverse map need not
have a closed form expression; in the Darcy flow example L is a differential operator.
The function g : U → X is the observation map that extracts the “measurements” x
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from u; in the Darcy flow example this map is given by the pointwise evaluation
function on the pressure field. Then, solving the inverse problem refers to estimation
of y given a fixed observation x∗ possibly polluted by some noise. The main
challenge in solving inverse problems is ill-posedness, i.e., the mapping from y 7→ x

is not stably invertible. Hence, regularization is needed. Note that our notation
is at odds with the standard notation in statistics and inverse problems where y
often denotes the data and x often denotes the input parameters. We choose this
idiosyncratic notation to remain consistent with machine learning notation where x
denotes the input data and y denotes the output to be estimated.

A popular method for regularization of inverse problems, and in turn their solution, is
to employ Bayes’ rule Stuart, 2010 by imposing a prior on y along with a likelihood
function extracted from (6.8) leading to a posterior measure on ν(dy|x∗). However,
since the spaces X, Y are possibly high or infinite-dimensional and the forward
map y 7→ x is often nonlinear, it is usually not possible to characterize ν(dy|x∗)
analytically. Thus, sampling techniques such as MCMC are employed to estimate
moments and other attributes of the posterior measure, and in turn to characterize
the true value of y given x∗ and its uncertainty.

In high dimensions, methods such as Metropolis-Hastings require us to solve (6.8)
many times to evaluate likelihood functions as part of the accept/reject step, which
can be computationally demanding. This is the juncture where MGANs, and simi-
larly the triangular maps of Y. Marzouk et al., 2016, offer an interesting alternative
for sampling Bayesian posteriors. One can proceed to generate a fixed number of
samples from the prior on y, say y1, . . . ,yN and solve (6.8) to obtain measurements
x1, . . . ,xN . The pairs {xj,yj}Nj=1 can now be used as training data within the
MGANs procedure to obtain a transport map that can push the reference η(dy) to
the Bayesian posterior ν(dy|x∗) at the new observed data x∗. Note that we readily
employed this approach in the BOD and Darcy flow examples in Section 6.4. While
the works Y. Marzouk et al., 2016; Brennan et al., 2020; El Moselhy and Y. M. Mar-
zouk, 2012; Spantini, Baptista, and Y. Marzouk, 2019 explore the use of triangular
maps for solving inverse problems, it is interesting to study possible improvements
and contributions of the MGANs procedure in this direction.

6.7 The MGAN training procedure
Here we present further details on the MGAN training procedure used in our numer-
ical experiments.
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Recall the measure transport problem (6.2) with the divergence D replaced with an
appropriate GAN functional Nowozin, Cseke, and Tomioka, 2016

min
T

sup
f∈F

DGAN(T, f),

s.t. 〈T(w)− T(w′),w −w′〉 > 0, ∀w,w′ ∈ supp η,

T(x,y) =

[
Id(x)

F(x,y)

]
where we have explicitly outlined the parameterization and constraints imposed on
T. In practice, we work with either the LSGAN functional, which can be written as

DGAN(T, f) =
1

2

(
Df (f) +DT(T)

)
where

Df (f) = Ez∼ν [(f(z)− 1)2] + Ew∼η[(f(T(w)))2],

DT(T) = Ew∼η[(f(T(w))− 1)2],

or the WGAN-GP functional, which can be written as

DGAN(T, f) = Ew∼η[f(T(w))]− Ez∼ν [f(z)]

+ γEẑ∼ν̂ [(‖∇ẑf(ẑ)‖2 − 1)2].

In the WGAN-GP functional, the gradient penalty on f is a relaxation of the 1-
Lipschitz constraint in the Wasserstein metric. The measure ν̂ := Law[ẑ] where
ẑ = αz + (1 − α)T(w) with α ∼ U [0, 1], z ∼ ν, w ∼ η and α, z,w are
mutually independent. We note that during the alternating optimization procedure
for minimizing the WGAN-GP divergence, the map T is taken to be fixed when the
gradient penalty on f is estimated. The same is also true for the LSGAN divergence
pertaining to the second term in Df (f). Throughout our numerical experiments we
take γ = 10, as done in the original paper Gulrajani et al., 2017.

The function class F is currently arbitrary and denotes the space of discriminators;
for example one can choose F = C(Rd), the space of continuous functions on Rd.
We now approximate this optimization problem in three stages.

First, let F̂(·;θ) : Rd → Rm be a neural network that approximates the component F
of the map T, with θ denoting the network parameters. We define the neural network
T̂(·;θ) : Rd → Rd that approximates T by

T̂(x,y;θ) =

[
Id(x)

F̂(x,y;θ)

]
. (6.9)



279

Moreover, we parameterize f as a neural network with weights θ′, thereby taking F
to be the space of functions spanned by the discriminator network architecture for
admissible choices of the weights θ′.

Next, we relax the strict monotonicity constraint on T by replacing it with an average
monotonicity condition on T̂. More precisely, we require

Ew∼ηEw′∼η〈T̂(w;θ)− T̂(w′;θ),w −w′〉 > 0. (6.10)

While this condition does not ensure that T̂ is monotone everywhere (or at least on
the support of η), numerically we find that it is sufficient to ensure that T̂ is monotone
with high probability. In particular, we compute a numerical approximation of

Pw,w′∼η
[
〈T̂(w;θ)− T̂(w′;θ),w −w′〉 > 0

]
, (6.11)

that we refer to as the monotonicity probability of the map during the training
procedure in our numerical experiments below (see Table 66). We find that tracking
this probability is helpful during training as it reveals how T̂ satisfies the sufficient
constraints for the existence of the push-forward conditional measure and is a good
indicator of the quality of the trained map.

In the third and final stage of approximation, we replace the expectations in DGAN

with empirical averages over training data and mini-batch samples from the reference
η as in the standard GAN training procedure Goodfellow et al., 2014. We point out
that since the reference η contains the x-marginal of ν(x,y), we sample the data
each time we sample from η independently from sampling ν. In particular, each time
the parameters (θ,θ′) are updated, three mini-batches are sampled from the training
set: one for z ∼ ν, one for w ∼ η, and one for w′ ∼ η. When using LSGAN,
the parameters θ and θ′ are updated an equal number of times, while, when using
WGAN-GP, θ is updated once for every five updates of θ′, as is standard practice.
Hyperparameters are given in Section 6.9 for each numerical experiment.

6.8 Non-existence of certain transport maps
In this section we consider a simple example where the reference η is supported on a
lower dimensional space than the target ν, and show that in this setting there does
not exist a transport map pushing η to ν. Let η = N(0, 1) and ν = N(0, I2) and
suppose that there exists a continuous map T : R→ R2 such that T]η = ν. Without
loss of generality, we may express T as

T(x) =

[
T(1)(x)

T(2)(x)

]
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for some T(1),T(2) ∈ C(R;R). Let ν1 = N(0, 1), ν2 = N(0, 1) denote the two
marginals of ν. Since, by assumption, T]η = ν, we must have that T(1)

] η = ν1.
Therefore, by continuity, T(1)(x) = ±x. By definition of a marginal, x2 ∼ ν2

is independent of T 1(x) ∼ ν1. However T(2) depends solely on x = ±T(1)(x).
Therefore ν2 must have constant density, which is a contradiction with the fact that,
by construction, ν2 = N(0, 1).

Note that the above construction can be generalized to include discontinuous maps.
We show it in the continuous case only for simplicity, as there can exist an infinite
number of discontinuous maps T with the property that T]N(0, 1) = N(0, I2),
which complicates the proof. The choice of the Gaussian is also innocuous. We
could have chosen any atomless measure η and set ν = η ⊗ η. In general, even
when the target distribution is not a product of one-dimensional marginals, i.e., it
has correlations, we still cannot guarantee existence of a transport map as we will
always need “more noise” than the reference distribution can provide.

The goal of this simple example is to demonstrate that, in general, we cannot expect
the existence of maps pushing low dimensional measures to high dimensional ones.
Therefore, GANs and VAEs that employ low-dimensional latent spaces are not well
suited for generic SL tasks unless we assume the data lie on a low dimensional
manifold. This assumption is hard to check in practice and it becomes unclear how
to create consistent algorithms without knowledge of the manifold geometry. We
do note, however, that the massive empirical success of GANs and VAEs for image
generation indicates that the manifold hypothesis, or some approximation of it, likely
holds in imaging tasks.

6.9 Details on the numerical experiments
In this section we give further details regarding the numerical experiments presented
in the main article, including the architectures and hyperparameter choices during
training. The extra details are presented in the same order as in Section 6.4, with the
addition of Section 6.9 where we discuss the average monotonicity constraints and
their level of violation within the experiments.

Unless otherwise stated, in all experiments we use the Adam optimizer with the
learning rate 2×10−4, and parameters β1 = 0.5, β2 = 0.999. Apart from Section 6.4
and the image in-painting problems, the remaining examples use three-layer, fully-
connected neural networks with hidden layer sizes 256− 512− 128 and the Leaky
ReLU non-linearity with parameter α = 0.2. We use a batch size of 100 and train
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for 300 epochs. Apart from image in-painting with the CelebA data set, we use the
monotonicity penalty λ = 0.01 and the LSGAN loss functional. For the CelebA
data set, we use the WGAN-GP loss functional with λ = 10−4.

Synthetic examples
Since this example is two-dimensional, our parameterization (6.9) is automatically
triangular and so we expect T̂ to approximate the KR map as it is a global mini-
mizer of (6.2); further constraints can ensure that the KR map is indeed the unique
minimizer Y. Marzouk et al., 2016. Figure 69 shows the true KR map as well as
our transport map T̂ for each of the three problems. Interestingly, we observe that
MGAN approximates the true KR map in all three cases.

(6.4)

KR map T̂ Error

(6.5)

(6.6)

Figure 69: Each row corresponds to the problems (6.4), (6.5), and (6.6), respectively.
The first column shows the true KR map on [−3, 3]2, the second column shows our
transport map T̂, and the last column shows the absolute error between them.

Block-triangular versus triangular maps
To demonstrate the effect of constraining the map structure, we consider limited
capacity neural networks in this example. We use three-layer, fully-connected neural
networks with hidden layer sizes 32 − 64 − 32 for the block triangular maps and
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neural networks with hidden layer sizes 22 − 46 − 22 for each component of the
triangular map. In total, the block triangular and triangular maps have about the
same number of parameters. Lastly, we train the models with a learning rate of
0.5× 10−4 and normalize the samples before optimizing the map.

Biochemical oxygen demand model
Following our discussion in Sections 6.6 and 6.6 we note that the BOD problem
as presented in Section 6.4 is an instance of a likelihood-free Bayesian inference
problem. Indeed the state variable B(t) is the solution to an ODE with model
parameters y = (A,B). The input x is then chosen as noisy observations of the
state B at certain time steps. Thus, in the language of inverse problems, the MGAN
sampling procedure amounts to sampling the posterior distribution of the unknown
model parameters (A,B) conditioned on limited observations of the state B(t).

A standard Bayesian procedure might require formulating a likelihood function of
the form

Φ(x;y) = (5× 102)
5∑
j=1

|xj − B(j;y)|2,

where we used the notation B(j;y) to highlight the dependence of B on the param-
eters (A,B). Then a prior π0(y) should be chosen for the unknown parameters,
yielding a posterior measure of the form

πν(y|x∗) ∝ exp(−Φ(x∗;y))π0(y).

In Section 6.4 we chose the prior π0 = N(0, I2). The main difference between
MGANs and standard sampling techniques such as MCMC is that MGANs does not
require explicit evaluations of the likelihood function Φ. In the MGAN procedure
we simply sample yj ∼ π0, and compute xj by solving the ODE with yj as the input
and adding simulated observational noise to the outputs xj to construct the training
set, the size of which will be limited by our computational budget. Once the training
set is available, the training of MGANs and the subsequent sampling of the posterior
is done independently of the likelihood function or the ODE model.

Table 64 compares various empirically computed moments of the posterior to those
found by the method in Y. Marzouk et al., 2016 which employs triangular transport
maps that are parameterized using polynomials.
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Table 64: Various moments for the BOD problem. Reported as the mean over the
last 10 epochs of training. Closest result to MCMC for each amount of training data
is in bold.

Statistic MCMC MGAN Y. Marzouk et al., 2016
5,000 50,000 5,000 50,000

Mean ρ1 .058 .050 .048 .090 .034
ρ2 .915 .911 .918 .908 .902

Variance ρ1 .170 .153 .177 .180 .206
ρ2 .405 .368 .419 .490 .457

Skewness ρ1 1.81 1.54 1.83 2.97 1.63
ρ2 .681 .489 .630 .707 .872

Kurtosis ρ1 7.37 5.62 7.64 29.6 7.57
ρ2 3.60 3.21 3.19 16.3 3.88

Darcy flow
The Darcy flow example of Section 6.4 is another example of the likelihood-free
solution of a Bayesian inverse problem. The main difference between this example
and the BOD example above is the that the input-output map involves the solution
of an elliptic PDE. From the likelihood-free inference viewpoint, however, this
modification has little effect on the MGAN training procedure beyond generation of
the training data. In fact, MGANs can readily be applied to the solution of Bayesian
inverse problems with black-box forward maps.

We now present complimentary numerical results for the Darcy flow problem. Ta-
ble 65 shows further conditional statistics for the three test problems for various sizes
of training points in comparison to statistics computed with MCMC as a benchmark.
We observe that even with the smallest training set (size N = 5, 000), the mean and
variance statistics are within acceptable range of the MCMC. While larger sample
sizes help in most cases we observe a few outliers, especially in the skewness, where
even with N = 100, 000 the MGAN estimates are quite different from MCMC.

Figure 610 shows further kernel density estimates of the conditional measures
approximated from MGANs samples versus MCMC samples for different training set
sizes. As expected, the quality of the MGAN sample KDE approximation improves
as N increases. Another interesting feature is the fact that in the N = 100, 000 case
with ground truth x∗1, the MGAN starts to detect the hard constraint that is imposed
by the uniform prior. Note that this constraint appears sharply in the MCMC samples
since it is explicitly enforced within the procedure; however, this the constraint is
not explicitly implemented in the MGAN and is hence difficult to capture, especially
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in the case of the x∗3 input.

Map type y|x∗ Mean Variance
A B A B

MCMC y|x∗1 3.531 12.507 .0103 .1124
y|x∗2 3.748 14.555 .0159 .2565
y|x∗3 4.792 14.059 .0191 .2715

MGAN y|x∗1 3.559 12.580 .0109 .1384
N = 100000 y|x∗2 3.752 14.538 .0170 .2557

y|x∗3 4.772 14.086 .0216 .3436
MGAN y|x∗1 3.533 12.531 .0102 .1001

N = 50000 y|x∗2 3.757 14.562 .0135 .2952
y|x∗3 4.784 14.048 .0153 .2991

MGAN y|x∗1 3.593 12.534 .0058 .1394
N = 5000 y|x∗2 3.738 14.617 .0126 .1863

y|x∗3 4.794 14.053 .0193 .2857

Table 65: Various statistical moments for the conditional distributions in the Darcy
flow problem that are estimated using MCMC and MGAN.

Image in-painting
In this section we present the details of the in-painting experiments in Section 6.4.
For MNIST, we follow the simple convolutional architectures of DCGAN Radford,
Metz, and Chintala, 2015. We view the digit with the middle part removed x ∈ R588

as a 28× 28 image with its middle 14× 14 section taking the value zero as shown in
Figure 611. This allows us to directly employ the convolutional architectures since
we can view the noise vector y ∈ R196 as a 14 × 14 image and embed it into the
middle section of x, hence viewing the pair (x,y) as a 28× 28 image. Figure 611
presents examples of in-painting samples from MNIST along with uncertainty
estimates for all digits. We bias the presented results towards images with higher
variance, i.e., where more than one posterior label is likely to appear.

For the CelebA data set, we use the convolutional architectures in Pathak et al., 2016
suitably modified for the right input and output sizes. Since real images are thought
to lie on a low dimensional manifold, we define η(dy) = A]N(0, I100) where
A ∈ R6144×100 is a matrix whose entries we learn along with the neural network
parameters θ. We view the noise vector y ∈ R6144 as a 3 × 32 × 64 image and
concatenate it along the channel dimension of the input top half image x ∈ R3×32×64

and hence view the pair (x,y) as a 6× 32× 64 image. Furthermore, during training,
we view the x-marginal of ν(dx, dy) as ν(dx) +N(0, (0.05)2I6114), i.e., we add a
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(a) MCMC y|x∗1 (b) MCMC y|x∗2 (c) MCMC y|x∗3 (d) MCMC samples

(e) F](x
∗
1, ·)η (f) F](x

∗
2, ·)η (g) F](x

∗
3, ·)η (h) F samples

(i) F](x
∗
1, ·)η (j) F](x

∗
2, ·)η (k) F](x

∗
3, ·)η (l) F samples

(m) F](x
∗
1, ·)η (n) F](x

∗
2, ·)η (o) F](x

∗
3, ·)η (p) F samples

Figure 610: KDEs of the conditionals y|x∗j for the Darcy flow problem with j =
1, 2, 3. Each density is obtained by using 30,000 representative samples shown in
the last column. The first row represents the ground truth obtained by MCMC.
Each subsequent row shows the MGAN results when training with N = 100, 000,
N = 50, 000, and N = 5, 000 data samples respectively.

small amount of Gaussian noise to each input image. This is a similar mechanism
to the one employed in Karras, Laine, and Aila, 2019. We have found that it helps
significantly in battling conditional mode collapse.

Average monotonicity violations
Our final set of results pertain to all of the numerical experiments above. Ta-
ble 66 summarizes an approximation to the monotonicity probabilities of the trained
MGANs in each experiment computed over samples from the reference. These prob-
abilities were tracked during training using the mini-batch samples and averaged
at each epoch. Here we report only the estimates computed at the final epoch as
they constitute the approximate monotonicity probability of the trained model.We
observe that even though the monotonicity constraint is only imposed in expectation,
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Figure 611: Example in-painted images using MGANs. The first column shows
the ground truth images. The second column shows x∗, the image to be in-painted.
The third, fourth, and fifth columns show random in-paintings generated from the
conditional y|x∗. The sixth and seventh columns show the pixel-wise conditional
mean and variance computed from 1000 samples. The last column shows the label
probabilities of samples from y|x∗ classified using LeNet Lecun et al., 1998.

it still holds with high probability for the trained MGAN. The BOD experiment has
the lowest monotonicity probability at 89.36% while the Darcy flow example has
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Figure 612: Example in-paintings using MGAN from the CelebA test set. First row
depicts the ground truth image, second row shows the observed image x∗ while the
next four columns are random samples from the conditional y|x∗. The bottom two
rows show the pointwise means and variances of the intensities of the conditional
samples generated by the MGAN.

the highest probability at 100%.

Further theoretical and numerical analysis of this expected monotonicity constraint
is needed to better understand the reason for this good performance of the trained
maps and also to understand the regularizing effects of this constraint in providing
stability to the trained neural networks.
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Problem Monotonicity Probability
(6.4) 95.83%
(6.5) 92.71%
(6.6) 98.60%

BT favorable 99.96%
BT reverse 99.95%
T favorable 95.23%
T reverse 99.77%

BOD 89.36%
Darcy 100.0%

MNIST 98.84%
CelebA 99.99%

Table 66: Final approximate probability that T̂ is monotone for each problem.
We denote block triangular and triangular maps by BT and T for the example in
Section 6.4, respectively.
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C h a p t e r 7

REGRESSION-CLUSTERING FOR MOLECULAR PREDICTIONS

7.1 Introduction
Machine-learning (ML) continues to emerge as a versatile strategy in the chemical
sciences, with applications to drug discovery (Lavecchia, 2015; Gawehn, Hiss, and
Schneider, 2016; Popova, Olexandr Isayev, and Tropsha, 2018; Kearnes et al., 2016;
Mater and Coote, 2019), materials design (Kim et al., 2017; Ren et al., 2018; Butler
et al., 2018; Sanchez-Lengeling and Aspuru-Guzik, 2018; Mater and Coote, 2019),
and reaction prediction (Wei, Duvenaud, and Aspuru-Guzik, 2016; Raccuglia et al.,
2016; Ulissi et al., 2017; Segler and Waller, 2017; Segler, Preuss, and Waller, 2018;
Mater and Coote, 2019). An increasing number of ML methods have focused on
the prediction of molecular properties, including quantum mechanical electronic
energies (J. S. Smith, O. Isayev, and Roitberg, 2017; Justin S Smith et al., 2019;
Lubbers, Justin S. Smith, and Barros, 2018; Bartók et al., 2010; Rupp et al., 2012;
Montavon, Rupp, Gobre, Vazquez-Mayagoitia, Hansen, Tkatchenko, Müller, and
von Lilienfeld, 2013; Hansen et al., 2013; Ramakrishnan, Dral, et al., 2015; Jörg
Behler, 2016; Paesani, 2016; Schütt et al., 2017; Wu et al., 2018; Nguyen et al.,
2018; Fujikake et al., 2018; Li et al., 2018; Zhang et al., 2018; Nandy et al., 2018),
densities, and spectra (Ramakrishnan, Hartmann, et al., 2015; Gastegger, Jörg Behler,
and Marquetand, 2017; Yao et al., 2018; Anders S. Christensen, Felix A. Faber, and
O. Anatole von Lilienfeld, 2019; Ghosh et al., 2019). Most of this work has focused
on ML in the representation of atom- or geometry-specific features, although more
abstract representations are gaining increased attention(Brockherde et al., 2017;
McGibbon et al., 2017; Nudejima et al., 2019; Townsend and Vogiatzis, 2019;
Welborn, Cheng, and Miller, 2018; Cheng et al., 2019).

We recently introduced a rigorous factorization of the post-Hartree-Fock corre-
lation energy into contributions from pairs of occupied molecular orbitals and
showed that these pair contributions could be compactly represented in the space of
molecular-orbital-based (MOB) features to allow for straightforward ML regression
(Welborn, Cheng, and Miller, 2018; Cheng et al., 2019). This MOB-ML method
was demonstrated to accurately predict second-order Møller-Plessett perturbation
theory (MP2)(Møller and Plesset, 1934; Saebo and Pulay, 1993) and coupled clus-
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ter with singles, doubles and perturbative triples (CCSD(T))(Bartlett et al., 1990;
Schütz, 2000) energies of different benchmark systems, including the QM7b-T and
GDB-13-T datasets of thermalized drug-like organic molecules. While providing
good accuracy with a modest amount of training data, the accuracy of MOB-ML in
these initial studies was limited by the high computational cost (O(N3)) of applying
Gaussian Process Regression (GPR) to the full set of training data (Cheng et al.,
2019).

In this work, we combine MOB-ML with regression clustering (RC) to overcome
this bottleneck in computational cost and accuracy. The training data are clustered
via RC to discover locally linear structures. By independently regressing these
subsets of the data, we obtain MOB-ML models with greatly reduced training costs
while preserving prediction accuracy and transferability.

7.2 Theory
Molecular-orbital based machine learning (MOB-ML)
The MOB-ML method is based on the observation that the correlation energy for
any post-Hartree-Fock wavefunction theory can be exactly decomposed as a sum
over occupied molecular orbitals (MOs) via Nesbet’s theorem (Nesbet, 1958; Szabo
and Ostlund, 1996),

Ec =
occ∑
ij

εij, (7.1)

whereEc is the correlation energy and εij is the pair correlation energy corresponding
to occupied MOs i and j. The pair correlation energies can be expressed as a
functional of the set of (occupied and unoccupied) MOs, appropriately indexed by i
and j, such that

εij = ε
[
{φp}ij

]
. (7.2)

The functional εmaps the Hartree-Fock MOs to the pair correlation energy, regardless
of the molecular composition or geometry, such that it is a universal functional for all
chemical systems. To bypass the expensive post-Hartree-Fock evaluation procedure,
MOB-ML approximates εij by machine learning two functionals, εML

d and εML
o ,

which correspond to diagonal and off-diagonal terms of the sum in Eq. 7.1.

εij ≈

εML
d [fi] if i = j

εML
o [fij] if i 6= j

(7.3)
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The MOB-ML feature vectors fi and fij are comprised of unique elements of the
Fock, Coulomb and exchange matrices between φi, φj , and the set of virtual orbitals.
Without loss of generality, we perform MOB-ML using localized MOs (LMOs) to
improve transferability across chemical systems.(Welborn, Cheng, and Miller, 2018)
Detailed descriptions of feature design are provided in our previous work (Cheng
et al., 2019; Welborn, Cheng, and Miller, 2018), and the features employed here are
unchanged from those detailed in Ref. (Cheng et al., 2019).

Local linearity of MOB feature space
It has been previously emphasized that MOB-ML facilitates transferability across
chemical systems, even allowing for predictions involving molecules with elements
that do not appear in the training set (Welborn, Cheng, and Miller, 2018), due to
the fact that MOB features provide a compact and highly abstracted representation
of the electronic structure. However, it is worth additionally emphasizing that this
transferability benefits from the smooth variation and local linearity of the pair
correlation energies as a function of MOB feature values associated with different
molecular geometries and even different molecules.

Figure 71 illustrates these latter properties for a σ-bonding orbital in a series of
simple molecules. On the y-axis, we plot the diagonal contribution to the correlation
energy associated with this orbital (εii), computed at the MP2/cc-pvTZ level of
theory. On the x-axis, we plot the value of a particular MOB feature, the Fock
matrix element for the that localized orbital, Fii. For each molecule, a range of
geometries is sampled from the Boltzmann distribution at 350 K, with each plotted
point corresponding to a different sampled geometry.

It is immediately clear from the figure that the pair correlation energy varies smoothly
and linearly as a function of the MOB feature value. Moreover, the slope of the
linear curve is remarkably consistent across molecules. This illustration suggests that
MOB features may lead to accurate regression of correlation energies using simple
machine learning models (even linear models), and it also indicates the basis for the
robust transferability of MOB-ML across diverse chemical systems, including those
with elements that do not appear in the training set.

Regression clustering with a greedy algorithm
To take advantage of the local linearity of pair correlation energies as a function
of MOB features, we propose a strategy to discover optimally linear clusters using
regression clustering (RC).Späth (1979b) consider the set of M datapoints {ft, εt}
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Figure 71: The diagonal pair correlation energy (εii) for a localized σ-bond in four
different molecules at thermally sampled geometries (at 350 K), computed at the
MP2/cc-pvTZ level of theory. The diagonal pair correlation energies for HF, NH3,
and CH4 are shifted vertically downward relative to those of HF by 3.407, 6.289,
and 7.772 kcal/mol for H2O, NH3 and CH4. Illustrative σ-bond LMOs are shown for
each molecule.

⊂ Rd×R, where d is the length of the MOB feature vector and where each datapoint
is indexed by t and corresponds to a MOB feature vector and the associated reference
value (i.e., label) for the pair correlation energy. To separate these datapoints into
locally linear clusters, S1, . . . , SN , we seek a solution to the optimization problem

min
S1,...,SN

N∑
k=1

∑
t∈Sk

|A(Sk) · ft + b(Sk)− εt|2 (7.4)

where A(Sk) ∈ Rd and b(Sk) ∈ R are obtained via ordinary least squares (OLS)
solution, 

fTt1 1
...

...
fTt|Sk|

1


[
A(Sk)

b(Sk)

]
=


εt1
...

εt|Sk|

 . (7.5)
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Each resulting Sk is the set of indices t assigned to cluster k comprised of |Sk|
datapoints. To perform the optimization in Eq. 7.4, we employ a modified version
of the greedy algorithm proposed in Ref. (Späth, 1979a) (Algorithm 1). In general,
solutions to Eq. 7.4 may overlap, such that Sk ∩ Sl 6= ∅ for k 6= l; however, the
proposed algorithm enforces that clusters remain pairwise-disjoint.

Input: Initial clusters: S1, . . . , SN
Output: Data clusters S1, . . . , SN
for k ← 1 to N do

A(Sk), b(Sk)← OLS solution of Eq. 7.5;
end
while not converged do

for k ← 1 to N do
Sk ← {t ∈ {1, . . . ,M} : arg min

n∈{1,...,N}
|A(Sn) · ft + b(Sn)− εt|2 = k}

end
for k ← 1 to N do

A(Sk), b(Sk)← OLS solution of Eq. 7.5
end

end
Algorithm 1: Greedy algorithm for the solution of Eq. 7.4.

Algorithm 1 has a per-iteration runtime of O(Md2), since we compute N OLS
solutions each with runtime O(|Sk|d2) and since

∑N
k=1 |Sk| = M . However, the

algorithm can be trivially parallelized to reach a runtime of O(max(|Sk|)d2). A key
operational step in this algorithm is line 1, which can be explained in simple terms as
follows: we assign each datapoint, indexed by t, to the cluster to which it is closest,
as measured by the squared linear regression distance metric,

|Dn,t|2 = |A(Sn) · ft + b(Sn)− εt|2 (7.6)

where Dn,t is the distance of this point to cluster n. In principle, a datapoint could
be equidistant to two or more different clusters by this metric; in such cases, we
randomly assign the datapoint to only one of those equidistant clusters to enforce the
pairwise-disjointness of the resulting clusters. Convergence of the greedy algorithm
is measured by the decrease in the objective function of Eq. 7.4.

Figure 72 illustrates RC in a simple one-dimensional example for which unsupervised
clustering approaches will fail to reveal the underlying linear structure. To create
two clusters of nearly linear data that overlap in feature space, the interval of
feature values on [0, 1] is uniformly discretized, such that ft = (t − 1)/(M − 1)
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Figure 72: Comparison of clustering algorithms for (a) a dataset comprised of
two cluster of nearly linear data that overlap in feature space, using (b-d) RC and
(e) standard K-means clustering. (b) Random initialization of the clusters for the
greedy algorithm, with datapoint color indicating cluster assignment. (c) Cluster
assignments after one iteration of the greedy algorithm. (d) Converged cluster
assignments after four iterations of the greedy algorithm. For panels (b-d), two
linear regression lines at each iteration are shown in black. (e) Converged cluster
assignments obtained using K-means clustering, which fails to reveal the underlying
linear structure of the clusters.
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for t = 1, . . . ,M . Then, M/2 of the feature values are randomly chosen without
replacement for cluster S1 while the remainder are placed in S2; the energy labels
associated with each feature value are then generated using

εt = ft + ξt,1, t ∈ S1

and
εt = −ft + 1 + ξt,2, t ∈ S2

where ξt,k ∼ N (0, 0.12) is an i.d.d. sequence. The resulting dataset is shown in
Fig. 72a.

Application of the RC method to this example is illustrated in Figs. 72(b-d). The
greedy algorithm is initialized by randomly assigning each datapoint to either S1

or S2 (Fig. 72b). Then, with only a small number of iterations (Figs. 72c and
d), the algorithm converges to clusters that reflect the underlying linear character.
For comparison, Fig. 72e shows the clustering that is obtained upon convergence
of the standard K-means algorithm,(Lloyd, 1982) initialized with random cluster
assignments. Unlike RC, the K-means algorithm prioritizes the compactness of
clusters, resulting in a final clustering that is far less amenable to simple regression.
While we recognize that the correct clustering could potentially be obtained using
K-means when the dimensions of ft and εt are comparable, this is not the case for
MOB-ML applications since ft is typically at least 10-dimensional and εt is a scalar;
the RC approach does not suffer from this issue. Finally, we have confirmed that
initialization of RC from the clustering in Fig. 72e rapidly returns to the results in
Fig. 72d, requiring only a couple of iterations of the greedy algorithm.

7.3 Calculation Details
Results are presented for QM7b-T,(Cheng et al., 2019) a thermalized version of
the QM7b set(Montavon, Rupp, Gobre, Vazquez-Mayagoitia, Hansen, Tkatchenko,
Müller, and O Anatole von Lilienfeld, 2013) of 7211 molecules with up to seven C, O,
N, S, and Cl heavy atoms, as well as for GDB-13-T,(Cheng et al., 2019) a thermalized
version of the GDB-13 set(Blum and Reymond, 2009) of molecules with thirteen
C, O, N, S, and Cl heavy atoms. The MOB-ML features employed in the current
study are identical to those previously provided.(Cheng et al., 2019) Reference
pair correlation energies are computed using MP2(Møller and Plesset, 1934) and
using CCSD(T).(Bartlett et al., 1990; Schütz, 2000) The MP2 reference data were
obtained with the cc-pVTZ basis set,(Dunning, 1989) whereas the CCSD(T) data
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Figure 73: The MOB-ML clustering/regression/classification workflow. (a) Clus-
tering of the training dataset of MOB-ML feature vectors and energy labels using
RC to obtain optimized linear clusters and to provide the cluster labels for the fea-
ture vectors. (b) Regression of each cluster of training data (using LR or GPR), to
obtain the ensemble of cluster-specific regression models. (c) Training a classifier
(RFC) from the MOB-ML feature vectors and cluster labels for the training data.
(d) Evaluating the predicted MOB-ML pair correlation energy from a test feature
vector is performed by first classifying the feature vector into one of the clusters,
and then evaluating the cluster-specific regression model. In each panel, blue boxes
indicate input quantities, orange boxes indicate training intermediates, and green
boxes indicate the resulting labels, models, and pair correlation energy predictions.

were obtained using the cc-pVDZ basis set.(Dunning, 1989) All employed training
and test datasets are provided in Ref. (Cheng et al., 2019).

Regression Clustering (RC)
RC is performed using the ordinary least square linear regression implementation in
the SCIKIT-LEARN package (Pedregosa et al., 2011). Unless otherwise specified,
we initialize the greedy algorithm from the results of K-means clustering, also
implemented in SCIKIT-LEARN; K-means initialization was found to improve the
subsequent training of the random forest classifier (RFC) in comparison to random
initialization. It is found that neither L1 nor L2 regularization had significant effect
on the rate of convergence of the greedy algorithm, so neither is employed in the
results presented here. It is found that a convergence threshold of 10−8 kcal2/mol2

for the loss function of the greedy algorithm (Eq. 7.4) leads to no degradation in the
final MOB-ML regression accuracy (Fig. S2); this value is employed throughout.
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Regression
Two different regression models are employed in the current work. The first is ordi-
nary least-squares linear regression (LR), as implemented in SCIKIT-LEARN. The
second is Gaussian Process Regression, as implemented in the GPY 1.9.6 software
package (GPy: A Gaussian process framework in python since 2012). Regression is
independently performed for the training data associated with each cluster, yielding
a local regression model for each cluster. Also, as in our previous work,(Welborn,
Cheng, and Miller, 2018; Cheng et al., 2019) regression is independently performed
for the diagonal and off-diagonal pair correlation energies (εML

d and εML
o ) yielding

independent regression models for each (Eq. 7.3).

GPR is performed using a negative log marginal likelihood objective. As in our
previous work,(Cheng et al., 2019) the Matérn 5/2 kernel is used for regression
of the diagonal pair correlation energies and the Matérn 3/2 kernel is used for
the off-diagonal pair correlation energies; in both cases, white noise regulariza-
tion(Rasmussen and Williams, 2006) is employed, and the GPR is initialized with
unit lengthscale and variance.

Classification
An RFC is trained on MOB-ML features and cluster labels for a training set and
then used to predict the cluster assignment of test datapoints in MOB-ML feature
space. We employ the RFC implementation in SCIKIT-LEARN, using with 200 trees,
the entropy split criteria,(Criminisi, Shotton, and Konukoglu, 2012) and balanced
class weights.(Criminisi, Shotton, and Konukoglu, 2012) Alternative classifiers were
also tested in this work, including K-means, Linear SVM,(Fan et al., 2008) and
AdaBoost;(Hastie et al., 2009) however, these schemes were generally found to yield
less accurate MOB-ML energy predictions than RFC.

For comparison, a "perfect" classifier is obtained by simply including the test data
within the RC training set. While useful for the analysis of prediction errors due to
classification, this scheme is not generally practical because it assumes prior knowl-
edge of the reference energy labels for the test molecules. Since the perfect classifier
avoids mis-classification of the test data by construction, it should be regarded as
a best case scenario for the performance of the clustering/regression/classification
approach.
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The clustering/regression/classification workflow
Fig. 73 summarizes the combined work flow for training and evaluating a MOB-ML
model with clustering. The training involves three steps: First, the training dataset
of MOB-ML feature vectors and energy labels are assigned to clusters using the RC
method (panel a). Second, for each cluster of training data, the regression model
(LR or GPR) is trained to enable the prediction of pair correlation energies from the
MOB-ML vector. Third, a classifier is trained from the MOB-ML feature vectors and
cluster labels for the training data, to enable the prediction of the cluster assignment
from a MOB-ML feature vector.

The resulting MOB-ML model is specified in terms of the method of clustering (RC,
for all results presented here), the method of regression (either LR or GPR), and
the method of classification (either RFC or the perfect classifier). In referring to
a given MOB-ML model, we employ a notation that specifies these options (e.g.,
RC/LR/RFC or RC/GPR/perfect).

Evaluation of the trained MOB-ML model is explained in Fig. 73d. A given molecule
is first decomposed into a set of test feature vectors associated with the pairs of
occupied MOs. The classifier is then used to assign each feature vector to an
associated cluster. The cluster-specific regression model is then used to predict the
pair correlation energy from the MOB feature vector. And finally, the pair correlation
energies are summed to yield the total correlation energy for the molecule.

To improve the accuracy and reduce the uncertainty in the MOB-ML predictions,
ensembles of 10 independent models using the clustering/regression/classification
workflow are trained, and the predictive mean and the corresponding standard error
of the mean (SEM) are computed by averaging over the 10 models; a comparison
between the learning curves(Cortes et al., 1994) from a single run and from averaging
over the 10 independent models is included in Supporting Information Fig. S1. As
described here, the predicted correlation energies may exhibit discontinuities as a
function of nuclear position, due to changes in the assignment of feature vectors
among the clusters; moving forward, this may be avoided with the use of soft (or
fuzzy) clustering algorithms.(Baraldi and Blonda, 1999)

7.4 Results
Clustering and classification in MOB feature space
We begin by showing that the situation explored in Fig. 72, in which locally linear
clusters overlap, also arises in realistic chemical applications of MOB-ML. We
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consider the QM7b-T set of drug-like molecules with thermalized geometries, using
the diagonal pair correlation energies εML

d computed at the MP2/cc-pVTZ level.
Randomly selecting 1000 molecules for training, we perform RC on the dataset
comprised of these energy labels and feature vectors, using N = 20 optimized
clusters; the sensitivity of RC to the choice of N is examined later.

In many cases, the resulting clusters are well separated, such that the datapoints
for one cluster have small distances (as measured by the linear regression distance
metric, Eq. 7.6) to the cluster which it belongs to and large distances to all other
clusters. However, the clusters can also overlap. Fig. 74a illustrates this overlap for
two particular clusters (labeled 1 and 2) obtained from the QM7b-T diagonal-pair
training data.

Each datapoint assigned to cluster 1 (blue) is plotted according to its distance to both
cluster 1 and cluster 2; likewise for the datapoints in cluster 2 (red). The datapoints
for which the distances to both clusters approach zero correspond to regions of
overlap between the clusters in the high-dimensional space of MOB-ML features,
akin to the case shown in Fig. 72.

Finally, in Fig. 74b, we illustrate the classification of the feature vectors into clusters.
An RFC is trained on the feature vectors and cluster labels for the diagonal pairs
of 1000 QM7b-T molecules in the training set, and the classifier is then used to
predict the cluster assignment for the feature vectors associated with the remaining
diagonal pairs of 6211 molecules in QM7b-T. For clusters 1 and 2, we then analyze
the accuracy of the RFC by plotting the linear regression distance for each datapoint
to the two clusters, as well as indicating the RFC classification of the feature vector.
Each red datapoint in Fig. 74b that lies above the diagonal line of reflection is
mis-classified into cluster 2, and similarly, each blue datapoint that lies below the
line of reflection is mis-classified into cluster 1. The figure illustrates that while
RFC is not a perfect means of classification, it is at least qualitatively correct. Later,
in the results section, we will analyze the sources of MOB-ML prediction errors
due to mis-classification by comparing energy predictions obtained with perfect
classification versus RFC.

Chemically intuitive clusters
To address this, we employ a training set of 500 randomly selected molecules from
QM7b-T, and we perform regression clustering for the diagonal pair correlation
energies εML

d with a range of total cluster numbers, up toN = 20. For each clustering,
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Figure 74: (a) Illustration of the overlap of clusters obtained via RC for the training
set molecules from QM7b-T. (b) Classification of the datapoints for the remain-
ing test molecules from QM7b-T, using RFC. Distances correspond to the linear
regression metric defined in Eq. 7.6.

Figure 75: Analyzing the results of clustering/classification in terms of chemical in-
tuition. Using a a training set of 500 randomly selected molecules from QM7b-T, RC
is performed for the diagonal pair correlation energies, εML

d , with a range of cluster
numbers, N , and for each clustering, an RFC is trained. Then, the trained classi-
fier is applied to a set of test molecules (CH4, C2H6, C2H4, C3H8, CH3CH2OH,
CH3OCH3, CH3CH2CH2CH3, CH3CH(CH3)CH3, CH3CH2CH2CH2CH2CH2CH3,
(CH3)3CCH2OH, and CH3CH2CH2CH2CH2CH2OH) which have chemically intuitive
LMO types, as indicated in the legend. The LMOs are successfully resolved accord-
ing to type by the classifier as N increases. Empty boxes correspond to clusters into
which none of the LMOs from the test set is classified; these are expected since the
training set is more diverse than the test set.
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we then train an RFC. Finally, each trained RFC is independently applied to a set
of test molecules with easily characterized valence molecular orbitals (listed in the
caption of Fig. 75), to see how the feature vectors associated with valence occupied
LMOs are classified among the optimized clusters.

Figure 75 presents the results of this exercise, clearly indicating the agreement
between chemical intuition and the predictions of the RFC. As the number of clus-
ters increases, the feature vectors associated with different valence LMO types are
resolved into different clusters; and with a sufficiently large number of clusters (15 or
20), each cluster is dominated by a single type of LMO while each LMO type is as-
signed to a small number of different clusters. The empty boxes in Fig. 75 reflect that
the training set contains a larger diversity of LMO types than the 11 test molecules,
which is expected. The observed consistency of the clustering/classification method
presented here with chemical intuition is of course promising for the accurate local
regression of pair correlation energies, which is the focus of the current work; how-
ever, the results of Fig. 75 also suggest that the clustering/classification of chemical
systems in MOB-ML feature space provides a powerful and highly general way of
mapping the structure of chemical space for other applications, including explorative
or active ML applications.(Browning et al., 2017)

Sensitivity to the number of clusters
We now explore the sensitivity of the MOB-ML clustering/regression/classification
implementation to the number of employed clusters. In particular, we investigate the
mean absolute error (MAE) of the MOB-ML predictions for the diagonal (

∑
i εii)

and off-diagonal (
∑

i 6=j εij) contributions to the total correlation energy, as a function
of the number of clusters, N , used in the RC. The MOB-ML models employ linear
regression and RFC classification (i.e., the RC/LR/RFC protocol); the training set
is comprised of 1000 randomly chosen molecules from QM7b-T, and the test set
contains the remaining molecules in QM7b-T.

Figure 76 presents the result of this calibration study, plotting the prediction MAE
as a function of the number of clusters. Not surprisingly, the prediction accuracy for
both the diagonal and off-diagonal contributions improves with N , although it even-
tually plateaus in both cases. For the diagonal contributions, the accuracy improves
most rapidly up to approximately 20 clusters, in accord with the observations in
Fig. 75; and for the off-diagonal contributions, a larger number of clusters is useful
for reducing the MAE error, which is sensible given the greater variety of feature
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vectors that can be created from pairs of LMOs rather than only individual LMOs.
Appealingly, there does not seem to be a strong indication of MAE increases due
to "over-clustering". While recognizing that the optimal number of clusters will,
in general, depend somewhat on the application and the regression method (i.e.,
LR versus GPR), the results in Fig. 76 nonetheless provide useful guidance with
regard to the appropriate values of N . Throughout the remainder of the study, we
employ a value of N = 20 for the MOB-ML prediction of diagonal contributions
to the correlation energy and a value of N = 70 for the off-diagonal contributions;
however, we recognize that these choices could be further optimized.
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Figure 76: Illustration of the sensitivity of MOB-ML predictions for the diagonal and
off-diagonal contributions to the correlation energy for the QM7b-T set of molecules,
using a subset of 1000 molecules for training and the RC/LR/RFC protocol. The
standard error of the mean (SEM) for the predictions is smaller than the size of the
plotted points.

Performance and training cost of MOB-ML with RC
We now investigate the effect of clustering on the accuracy and training costs of
MOB-ML for applications to sets of drug-like molecules. Figure 77a presents
learning curves (on a linear-linear scale) for various implementations of MOB-
ML applied to MP2/cc-pVTZ correlation energies, with the training and test sets
corresponding to non-overlapping subsets of QM7b-T. In addition to the new results
obtained using RC, we include the MOB-ML results from our previous work (GPR
without clustering).(Cheng et al., 2019)
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Figure 77: Learning curves for various implementations of MOB-ML applied to (a)
MP2/cc-pVTZ and (b) CCSD(T)/cc-pVDZ correlation energies, with the training
and test sets corresponding to non-overlapping subsets of the QM7b-T set of drug-
like molecules with up to heavy seven atoms. Results obtained using GPR without
clustering (green) are reproduced from Ref. (Cheng et al., 2019). The gray shaded
area corresponds to a MAE of 1 kcal/mol per seven heavy atoms. The prediction
SEM is smaller than the plotted points. The log-log version of this plot is provided
in Fig. S3.

Figure 77a yields three clear observations. The first is that the use of RC with RFC
(i.e., RC/GRP/RFC and RC/LR/RFC) leads to slightly less efficient learning curves
than our previous implementation without clustering, at least when efficiency is
measured in terms of the number of training molecules. Both the RC/GPR/RFC and
RC/LR/RFC protocols require approximately 300 training molecules to reach the
1 kcal/mol per seven heavy atoms threshold for chemical accuracy employed here,
whereas MOB-ML without clustering requires approximately half as many training
molecules. The second observation is that the classifier is the dominant source of
prediction error in these results. Comparison of results using RFC versus the perfect
classifier (which utilizes prior knowledge of the energy labels and this thus not
generally practical), reveals a dramatic reduction in the prediction error, regardless
of the regression method. This result indicates that there is potentially much to be
gained from the development of improved classifiers for MOB-ML applications. A
third observation is that with a perfect classifier, the LR slightly outperforms GPR,
given that the clusters are optimized to be locally linear; however, GPR slightly
outperforms LR in combination with the RFC, indicating that GPR is less sensitive
to classification error that LR.

Figure 77b presents the corresponding results at the CCSD(T)/cc-pVDZ level of
theory. The same trends emerge as the ones at the MP2/cc-pVTZ level of theory. As
seen in previous work, the training efficiency of MOB-ML with respect to the size
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Figure 78: Training costs and transferability of MOB-ML with clustering
(RC/LR/RFC, red; RC/GPR/RFC, blue) and without clustering (green, Ref. (Cheng
et al., 2019)), applied to correlation energies at the MP2/cc-pVTZ level. Prediction
errors are plotted as a function of wall-clock training time. Training sets are com-
prised of subsets of the QM7b-T dataset, with the number of training molecules
indicated via datapoint labels. Correlation energy predictions are made for test sets
comprised of the remaining seven-heavy-atom molecules from QM7b-T (circles)
and the thirteen-heavy-atom molecules from GDB-13-T (diamonds). Both MAE
prediction errors and parallelized wall-clock training times are plotted on a log scale.
The gray shaded area corresponds to a MAE of 1 kcal/mol per seven heavy atoms.
The prediction SEM is smaller than the plotted points. Details of the parallelization
and employed computer hardware are described in the text.

reference dataset is found to be largely insensitive to the level of electronic structure
theory.(Welborn, Cheng, and Miller, 2018; Cheng et al., 2019)

Figure 78 explores the training costs and transferability of MOB-ML models that
employ RC. In all cases, the models are trained on random subsets of molecules
from QM7b-T with up to seven heavy atoms, and predictions are made either on
the remaining molecules of QM7b-T (circles) or on the GDB-13-T set (diamonds);
it has previously been shown than that MOB-ML substantially outperforms the
FCHL atom-based-feature method in terms of transferability from small to large
molecules.(Cheng et al., 2019) The parallelization of the training steps are im-
plemented as follows. Within the RC step, the LR for each cluster is performed
independently on a different core of a 16-core Intel Skylake (2.1 GHz) CPU proces-
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sor. Within the regression step, the LR or GPR for each cluster is likewise performed
independently on a different core. For RFC training, we apply parallel 200 cores
using the parallel implementation of SCIKIT-LEARN, since there are 200 trees. The
regression and RFC training are independent of each other and are thus also trivially
parallelizable.

Focusing first on the predictions for seven-heavy-atom molecules (circles), it is clear
from Fig. 78 that RC leads to large improvements in the efficiency of the MOB-ML
wall-clock training costs. Although it requires somewhat more training molecules
than MOB-ML without clustering, MOB-ML with clustering enables chemical
accuracy to be reached with the training cost reduced by a factor of approximately
4500 for RC/GPR/RFC and of 35000 for RC/LR/RFC. Remarkably, for predictions
within the QM7b-T set, chemical accuracy can be achieved using RC/LR/RFC with
a wall-clock training time of only 7.7 s.

Figure 78 also demonstrates the transferability of the MOB-ML models for predic-
tions on the GDB-13-T set of thirteen-heavy-atom molecules (diamonds). In general,
it is seen that the degradation in the MAE per atom is greater for the RC/LR/RFC
than for RC/GPR/RFC, due to the previously mentioned sensitivity of LR to clas-
sification error. However, we note that the RC/GPR/RFC enables predictions on
GDB-13-T (blue, diamonds) that meet the per-atom threshold of chemical accuracy
used here, whereas that threshold was not achievable without clustering (green,
diamonds) due to the prohibitive training costs involved.

The improved efficiency of MOB-ML training with the use of clustering arises from
the cubic scaling of standard GPR in terms of training time (O(M3), where M is
number of training pairs).(Rasmussen and Williams, 2006) Trivial parallelization
over the independent regression of the clusters reduces this training time cost to
the cube of largest cluster. We note that other kernel-based ML methods with high
complexity in training time, like Kernel Ridge Regression,(Murphy, 2012) would
similarly benefit from clustering. For the RC/LR/RFC and RC/GPR/RFC results
presented in Fig. 78, a breakdown of the training time contributions for each step
of the clustering/regression/classification workflow as a function of the size of the
training dataset is shown in Fig. S4; this supporting information figure confirms
that the GPR regression dominates the total training (and prediction) costs for the
RC/GPR/RFC implementation, whereas training the RFC dominates the training
costs for RC/LR/RFC. In addition to improved efficiency in terms of training time,
clustering also brings benefits in terms of the memory costs for MOB-ML training,
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due to the quadratic scaling of GPR memory costs in terms of the size of the dataset.

Finally, returning to the learning curves, we compare the results for MOB-ML
both with and without clustering to recent work(Anders S Christensen et al., 2018,
arXiv:1909.01946) using Faber-Christensen-Huang-Lilienfeld (FCHL) features.
Fig. 79 shows these various learning curves for the MP2/cc-pVTZ correlation ener-
gies. For Fig. 79a, the training and test sets correspond to non-overlapping subsets
of QM7b-T, and Fig. 79b shows the transferability of the same models trained using
QM7b-T to predict the energies for GDB-13-T. Fig. 79a again shows that MOB-ML
RC/GPR/RFC requires slightly more training geometries than MOB-ML without
clustering, yet both MOB-ML protocols are more efficient in terms of training
data than either the FCHL18(Felix A Faber et al., 2018) or FCHL19 implementa-
tions(Anders S Christensen et al., 2018, arXiv:1909.01946). Like MOB-ML with
clustering, the FCHL19 implementation was developed to reduce training times.
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Figure 79: Comparison of learning curves for MP2/cc-pVTZ correlation energies
obtained using MOB-ML (with and without clustering) versus FCHL18 and FCHL19.
Part (a) presents results for which both the training and test sets include molecules
from QM7b-T, and part (b) presents results for which the training set includes
molecules from QM7b-T and the test set includes molecules from GDB-13-T. The
MAE are plotted on a log-log scale as a function of number of training molecules.
The gray shaded area corresponds to a MAE of 1 kcal/mol per seven heavy atoms.
Results for FCHL18 and FCHL19 were digitally captured from Ref. (Anders S
Christensen et al., 2018, arXiv:1909.01946).

Capping the cluster size
Since the parallelized training time for RC/GPR/RFC is dominated by the GPR
regression of the largest cluster (Fig. S4), a natural question is whether additional
computational savings and adequate prediction accuracy could achieved by simply
capping the number of datapoints in the largest cluster. In doing so, we define
S
Ncap
max to be the number of datapoints in the largest cluster obtained when the RC
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with the greedy algorithm is applied to a training dataset of Ncap molecules from
QM7b-T. Upon specifying Ncap (and thus SNcap

max ), the RC/GPR/RFC implementation
is modified as follows. For a given number of training molecules (which will
typically exceed Ncap), the RC step is performed as normal. However, at the end
of the RC step, datapoints for clusters whose size exceeds SNcap

max are discarded at
random until all clusters contain SNcap

max or fewer datapoints. The GPR and RFC
training steps are performed as before, except using this set of clusters that are
capped in size. The precise value of SNcap

max will vary slightly depending on which
training molecules are randomly selected for training and the convergence of the
greedy algorithm, but typical values for SNcap

max are 672, 1218, 1863, 3005, and 4896

for Ncap = 100, 200, 300, 500, and 800, respectively, and those values will be used
for the numerical tests presented here.

Figure 710a demonstrates that capping the maximum cluster size allows for substan-
tial improvements in accuracy when the number of training molecules exceeds Ncap.
Specifically, the figure shows the effect of capping on RC/GPR/RFC learning curves
for MP2/cc-pVTZ correlation energies, with the training and test sets corresponding
to non-overlapping subsets of QM7b-T. As a baseline, note that with 100 training
molecules, the RC/GPR/RFC implementation yields a prediction MAE of approxi-
mately 1.5 kcal/mol. However, if the maximum cluster size is capped at Ncap = 100

and 300 training molecules are employed, then the prediction MAE drops to ap-
proximately 1.0 kcal/mol while the parallelized training cost for RC/GPR/RFC will
be unchanged so long as it remains dominated by the size of the largest cluster.
As expected, Fig. 710a shows that the learning curves saturate at higher prediction
MAE values when smaller values of Ncap are employed. Nonetheless, the figure
demonstrates that if additional training data is available, then the prediction accuracy
for MOB-ML with RC can be substantially improved while capping the size of the
largest cluster.

Figure 710b demonstrates the actual effect of capping on the parallelized training
time, plotting the prediction MAE versus parallelized training time as a function
of the number of training molecules. For reference, the results obtained using
RC/LR/RFC and RC/GPR/RFC without capping are reproduced from Fig. 78. As
is necessary, the RC/GPR/RFC results obtained with capping exactly overlap those
obtained without capping when the number of training molecules is not greater than
Ncap. However, for each value of Ncap, a sharp drop in the prediction MAE is seen
when the number of training molecules begins to exceed Ncap, demonstrating that
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prediction accuracy can be greatly improved with minimal increase in parallelized
training time. For example, it is seen that for RC/GPR/RFC with Ncap = 100,
chemical accuracy can be reached with only 7.4 s of parallelized training, slightly
less than even RC/LR/RFC. For small values ofNcap, this prediction MAE eventually
levels-off versus the training time, since the RFC training step becomes the dominant
contribution to the training time.
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Figure 710: The effect of cluster-size capping on the prediction accuracy and
training costs for MOB-ML with RC. Results reported for correlation energies
at the MP2/cc-pVTZ level, with the training and test sets corresponding to non-
overlapping subsets of the QM7b-T set of drug-like molecules with up to heavy
seven atoms. (a) Prediction MAE versus the number of training molecules, with
the clusters capped at various maximum sizes. The RC/GPR/RFC curve without
capping is reproduced from Fig. 77a. (b) Prediction MAE per heavy atom versus
parallelized training time as a function of the number of training molecules, as in
Fig. 78. The results for MOB-ML with clustering and without capping cluster size
(RC/LR/RFC, red; RC/GPR/RFC, blue) are reproduced from Fig. 78. Also, the
results for RC/GPR/RFC with various capping sizes Ncap are shown. For part (a), the
gray shaded area corresponds to a MAE of 1 kcal/mol, and for part (b), it corresponds
to 1 kcal/mol per seven heavy atoms, to provide consistency with preceding figures.
The prediction SEM is smaller than the plotted points.

7.5 Conclusions
Molecular-orbital-based (MOB) features offer a complete representation for mapping
chemical space and a compact representation for evaluating correlation energies.
In the current work, we take advantage of the intrinsic structure of MOB feature
space, which cluster according to types of localized molecular orbitals, as well
as the fact that orbital-pair contributions to the correlation energy contributions
vary linearly with the MOB features, to overcome a fundamental bottleneck in the
efficiency of machine learning (ML) correlation energies. Specifically, we introduce
a regression clustering (RC) approach in which MOB features and pair correlation
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energies are clustered according to their local linearity; we then individually regress
these clusters and train a classifier for the prediction of cluster assignments on the
basis of MOB features. This combined clustering/regression/classification approach
is found to reduce MOB-ML training times by 3-4 orders of magnitude, while
enabling prediction accuracies that are substantially improved over that which is
possible using MOB-ML without clustering. The use of a random forest classifier
for the cluster assignments, while better than alternatives that were explored, is
found to be the limiting factor in terms of MOB-ML accuracy within this new
approach, motivating future work on improved classifiers. This work provides a
useful step towards the development of accurate, transferable, and scalable quantum
ML methods to describe ever-broader swathes of chemical space.
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