A Caltech Library Service

Tip Vortices - Single Phase and Cavitating Flow Phenomena


Green, Sheldon Isaiah (1988) Tip Vortices - Single Phase and Cavitating Flow Phenomena. Dissertation (Ph.D.), California Institute of Technology. doi:10.7907/23TX-JF33.


Tip vortices occur wherever a lifting surface terminates in a fluid. An understanding of tip vortices is salient to the solution of many engineering problems, including lift induced drag tip inefficiency, the overturning of small planes flown into the tip wake of larger aircraft, and marine propellor tip cavitation.

The tip vortex shed by several rectangular planform wings, fitted with three different tips, was studied in a water tunnel. Four techniques were employed to examine the tip vortex:

(i) Surface flow visualization to reveal the early stages of vortex rollup.

(ii) Double pulsed holography of buoyant, Lagrangian particle tracers for detailed tangential and axial velocity data around the vortex core. Holograms were also a source of instantaneous core structure information.

(iii) Single pulse holography of air bubbles, of uniform, measured, original size. The size of the bubbles is related to the instantaneous local static pressure. The bubbles are driven by the centripetal pressure gradient forces into the vortex core, providing a means of measuring the average and transient vortex core pressure non-intrusively.

(iv) Direct observation of vortex cavitation. These measurements are useful in their own right because of the considerable technological significance of tip vortex cavitation. In addition, many single phase tip flow characteristics have cavitating flow counterparts.

The present study has shown that one chord downstream of the wing trailing edge virtually all the foil bound vorticity has rolled up into the trailing vortex. Armed with this knowledge one may a priori evaluate, in the near field, the tangential velocity distribution, the core axial velocity excess, and the core mean pressure. These predictions are in agreement with the experimental measurements. Three aspects of the core flow, first observed in the present study, remain analytically inexplicable:

(i) The trend towards a Reynolds number dependent, axial velocity deficit with downstream distance.

(ii) The unsteady core velocity, particularly immediately downstream of the foil.

(iii) The vortex kinking which is coincident with highly unsteady axial core flow.

As a first approximation, cavitation inception occurs when the core pressure is reduced to the vapour pressure. The large measured fluctuating core pressure explains the occurrence of inception at core pressures somewhat above pv and the dependence of σi on the dissolved air content.

Modifying the tip geometry profoundly affects the trailing vortex. Installation of a ring wing tip can reduce the inception index relative to that of a normal rounded tip foil by a factor of three. The reduction was caused primarily by the redistribution, in the Trefftz plane, of the shed vorticity about a line and circle. Fortuitously, this redistribution caused most of the wing bound vorticity to be shed from the ring, decreasing the tip effect lift loss over the foil body.

Item Type:Thesis (Dissertation (Ph.D.))
Subject Keywords:Aspect ratio; cavitation; double-pulsed holography; downwash; flow unsteadiness; flow visualization; hydrofoil; tip vortex; water tunnel; wing
Degree Grantor:California Institute of Technology
Division:Engineering and Applied Science
Major Option:Mechanical Engineering
Awards:Richard Bruce Chapman Memorial Award, 1988
Thesis Availability:Public (worldwide access)
Research Advisor(s):
  • Acosta, Allan J.
Thesis Committee:
  • Acosta, Allan J. (chair)
  • Brennen, Christopher E.
  • Cass, Glen Rowan
  • Culick, Fred E. C.
  • Marble, Frank E.
Defense Date:16 May 1988
Funding AgencyGrant Number
Office of Naval Research (ONR)N000167-85-K-0165
Record Number:CaltechETD:etd-03262007-104625
Persistent URL:
Default Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:1139
Deposited By: Imported from ETD-db
Deposited On:26 Mar 2007
Last Modified:09 Mar 2021 00:06

Thesis Files

PDF - Final Version
See Usage Policy.


Repository Staff Only: item control page