Citation
Lai, Fang Shyong (1971) Lagrangian Models of the Dispersion of Airborne Chemically Reacting Contaminants. Master's thesis, California Institute of Technology. doi:10.7907/9HBZ-SW15. https://resolver.caltech.edu/CaltechTHESIS:12082017-140901455
Abstract
The present work attempts to obtain a mathematical model for generation and dispersion of photochemical smog. A simplified kinetic model which is proposed by Friedlander and Seinfeld (1969), is presented for the photochemical smog reactions. To take into account the effect of atmospheric mixing processes on the chemical reactions, the Lagrangian similarity hypothesis for the diffusion of non-reactive components is extended to reacting species. The concept of a variable volume batch reactor model (VVBR) is applied in the study of the formation of photochemical smog. The critical value, [h/bu*]cr. where h is the source height, b constant and u* friction velocity, for the onset of photochemical smog is found.
Calculations based on the simplified kinetic model and the applications of the Lagrangian similarity hypothesis are given for a nonlinear, second order chemical reaction. Finally, determination of the probability density function of the pollutant is given for the non-reacting case.
Item Type: | Thesis (Master's thesis) | ||||||
---|---|---|---|---|---|---|---|
Subject Keywords: | (Chemical Engineering) | ||||||
Degree Grantor: | California Institute of Technology | ||||||
Division: | Chemistry and Chemical Engineering | ||||||
Major Option: | Chemical Engineering | ||||||
Thesis Availability: | Public (worldwide access) | ||||||
Research Advisor(s): |
| ||||||
Thesis Committee: |
| ||||||
Defense Date: | 27 January 1970 | ||||||
Additional Information: | This is a Masters thesis, not a PhD thesis. | ||||||
Record Number: | CaltechTHESIS:12082017-140901455 | ||||||
Persistent URL: | https://resolver.caltech.edu/CaltechTHESIS:12082017-140901455 | ||||||
DOI: | 10.7907/9HBZ-SW15 | ||||||
Related URLs: |
| ||||||
Default Usage Policy: | No commercial reproduction, distribution, display or performance rights in this work are provided. | ||||||
ID Code: | 10598 | ||||||
Collection: | CaltechTHESIS | ||||||
Deposited By: | Mel Ray | ||||||
Deposited On: | 14 Dec 2017 19:04 | ||||||
Last Modified: | 24 Jun 2024 19:07 |
Thesis Files
|
PDF
- Final Version
See Usage Policy. 30MB |
Repository Staff Only: item control page