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ABSTRACT

The present work attempts to obtain a mathematical model for
generation and dispersion of photochemical smog. A simplified kinetic
model which is proposed by FRIEDLANDER and SEINFELD (1969), is
presented for the photochemical smog reactions. To take into account the
effect of atmospheric mixing processes on the chemical reactions, the
Lagrangian similarity hypothesis for the diffusion of non-reactive com-
ponents is extended to reacting species. The concept of a variable
volume batch reactor model (VVBR) is applied in the study of the forma-
tion of photochemical smog. The critical value, [h/bu*]cr. where
h is the source height, b constant and U* friction velocity, for the
onset of photochemical smog is found.

Calculations based on the simplified kinetic model and the applica-
tions of the Lagrangian similarity hypothesis are given for a nonlinear,
second order chemical reaction. Finally, determination of the probability

density function of the pollutant is given for the non-reacting case.



l. INTRODUCTION
A. Air Pollution and Photochemical Smog

Air pollution refers to the presence of anthropogenic foreign
substances (other than 02, N2 and noble gases), either reactive or
non-reactive in the atmosphere. When the concentration of these foreign
substances increases to a certain degree, they interfere with human
beings and their environment, and air pollution is said to be created. The
term "smog" originated in Great Britain as a popular derivation of "smoke-
fog". Smog has been popularly used to describe any air pollution accompanied
by a decrease in visibility. Unless smog is controlled, it will inevitably
become a serious threat to the health and environment of the living beings

on the earth, especially in urban and industrial areas.

In general, we can distinguish two types of smog, viz., chemically
reactive and non-chemically reactive. The constituents emitted directly
from sources are usually termed primary contaminants. If these primary

contaminants are mainly responsible for the observed effects of air pollution
and if they are dispersed in the atmosphere without undergoing chemical
change, then these primary contaminants are non-chemically reactive
pollutants; for example, carbon monoxide and lead particles.

Constituents which are not emitted directly from sources in
appreciable quantities but are formed in the atmosphere from chemical
reactions among the primary contaminants are called secondary contamin-
ants. If these secondary contaminants are mainly responsible for the
observed effects of air pollution, then these secondary contaminants become
chemically reactive air pollution. For example, ozonel, nitrogen dioxide

(also a primary contaminant), oxidized organic products such as

10zone is also produced naturally.
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PAN's (Peroxyacyl Nitrates), formaldehyde, etc.,(which may be mainly responsible
for eye irritation) from the reactions between automobile exhausts, oxygen, sun-
slight, etc., constitute the kind of chemically reactive air pollution that is popularly
called photochemical smog. In short, photochemical smog is the result of a series
of ultraviolet-initiated* reactions involving hydrocarbons or other organic compounds and
nitric oxide. Its chief source is automobile exhaust, which is comprised of carbon
monoxide, formaldehyde and other partially oxidized hydrocarbons and noxious gases.
It has been established that photochemical smog is a chemically reacting type of
air pollution (Leighton, 1961; Wayne, 1962; Altshuller and Bufalini, 1965; Stephens,
1966, 1969; Haagen-Smit and Wayne, 1967). In the Los Angeles basin there is
good evidence (Middleton and Haagen-Smit, 1960; Haagen-Smit, 1952) that the
hydrocarbons and oxides of nitrogen from automobile exhausts are strong con-
tributors to the production of smog during those days when air circulation is
low and there is an abundance of sunlight. Several thousand different organic
compounds and other oxidants are produced by chemical and photochemical
reactions. Some of the components that are emitted or produced cause eye
irritation, plant and animal damage, loss of visibility, and odor, and they are
possible health hazards to exposed persons.

The formation of photochemical smog over an urban area is controlled
by the rate at which reactants (primarily unburned hydrocarbons and nitric
oxide) are introduced into the atmosphere, the mixing of the air masses, the
temperature and solar radiation. Because of these many factors which
influence the existence of the smog problem, a systematic approach toward
the control of air pollution is required.

As a first step in the control of air pollution, air control regions have

been established incorporating two or more communities that have
a common air pollution problem (Sec'y., HEW, 1968). Each region is
responsible for the development of local air quality standards. The control

of air pollution in each region may be achieved by either

*3100-4000 A wavelength, less than 3100 A does not penetrate the lower
atmosphere.



(i) modification of the state of atmosphere, or
(ii) controlling, distributing (geographically), or removing the source of
pollutants

or both to reach the present air quality standards. For example, the
California Department of Public Health has established the following
standards for carbon monoxide: 30 ppm for an 8-hour exposure; 120
ppm for a 1-hour exposure. Standards for nitrogen oxides have been based
on atmospheric coloration and levels likely to cause long-term health
impairments. Oxidant levels have been tentatively set as 0.1 ppm for
a l-hour average, not to be exceeded more than one percent of the time.
The present study will be to concentrate on (ii). The problem then is to
determine the concentration of air pollutants concentration at any time, at
any location for a given emission source and meteorology of the control region.
Conversely, the question corresponds to given present standard (say for
motor vehicle emission standards, see Table 1), what can be the maximum
input source allowed? To provide a basis for answering such questions, it is
necessary to have reliable models for predicting the pollutants concentration
at any time, any location in the control region.
In principle, the above question can be answered, at least in part, through
solutions of the equation of continuity for each species in a turbulent

medium (BIRD, et. al., 1960, p. 557) provided the meteorology is known,

(1)
where we assume the air density is constant, Di is molecular diffusivity
in the air, ri chemical reaction rate and C i the concentration of species i,
the wind velocity vector. In a turbulent flow C i will be a
fluctuating function of time. It is then convenient to replace Ci by the
sum of a time-smoothed value and a turbulent concentration fluctua-

tion Ci



(2)

Similarly, replace and
neglect the molecular diffusion. Then, after time averaging, we have
(3)
The term describes the turbulent mass transport. One way of
solving Egn. (3) is to replace the turbulent mass vector by

a relation analogous to Fick's law of diffusion:

(4)
where Kj is the turbulent diffusivity or eddy diffusivity in the | -direction.
Further assuming and neglecting the

fluctuating term y "i, we thus obtain the equation of continuity for a

species i in turbulent atmosphere transport with chemical reaction:

(5)

Equation (3) with appropriate boundary conditions is the fundamental
equation of this research in determining the concentration distribution of airborne
pollutants. Egn. (5) is obtained by assuming turbulent mass flux analogous to
Fick's law of diffusion. It is nonlinear (because of vy -i), simultaneous,
n coupled partial differential equation. In general, the solution of the
above equation requires information on the meteorological conditions (wind
speed, solar radiation, etc.), the eddy diffusivities Kx, Ky, Kz, and
chemical reaction rate

The mathematical modeling of an air



guality control region for photochemical smog includes the following
steps (SEINFELD, 1969):

1. determination of meteorological factors influencing
the dispersion of airborne pollutants,

2. determination of a suitable kinetic mechanism for the
atmospheric chemical reaction of airborne pollutants,

3. combination of above two to formulate a model predicting
pollutant concentration distribution as a function of time and
location.

A major objective of this research is the investigation of step (3). In the present
study, step (2) is based on the mechanism proposed by Friedlander and
Seinfeld (1969). |In future work, a more sophisticated mechanism may be
applied. Information on step (1) comes mainly from meteorological studies.
The effect of meteorology on air pollution has been reviewed recently by
Panofsky (1969) and Neiburger (1969). They can be summarized briefly as
follows:

1. The effect on transport of pollutants is mainly due to the wind.

2. The effect on atmospheric dispersion depends on mean wind speed
and on the characteristics of atmospheric turbulence.

3. The effect on the "effective" emission height depends critically
on the difference between the temperature of the effluent and
that of surrounding air.

4. The effect on chemical reaction rate constants are influenced by
temperature for thermochemical reaction and sunlight intensity

for photochemical reactions (SEINFELD, 1969).



B. Mathematical Model of Photochemical Smog

It has been pointed out in part A that the main effort of this
research is to construct a simple model for combining the information of
meteorological conditions and chemical kinetic mechanism to formulate a
numerical technique for predicting the pollutant concentration distribution.
A direct approach to the above problem is to find the solutions of Egn. (5).
In the case of non-chemically reacting pollutants, numerous solutions to
(5) have been obtained for different sources using different expressions
for the eddy diffusivities Kx, Ky and Kz (PASQUILL, 1962). In fact,
the diffusivities are complicated functions of position in the turbulent field.
For this reason, the direct solutions of Eqn. (5) have not been very satis-
factory (mainly the boundary conditions have been unrealistic and wind field
not accounted for) in prediting atmospheric concentrations except in some
very idealized cases. This approach is mainly a numerical calculation of
simultaneous partial differential equations on a spatial domain representing an
urban area subject to the appropriate boundary conditions. However, lack
of detailed knowledge of eddy diffusivities, atmospheric turbulence character-
istics in the presence of buildings, wind patterns, etc. makes this approach
difficult at present. The direct approach toward the solution of Eqn. (5) will,
therefore be bypassed by a more simplified model which is computationally
feasible yet still (hopefully) retain the essential aspects of the physical
situation. The direct approach will be used only as a check to the simplified model.
The simplified model in which we are going to apply the prediction of chemically
reacting airborne pollutants is called the Lagrangian similarity model. In this
model, the Lagrangian similarity hypothesis proposed by Batchelor (1964) for the
non-chemically reacting turbulent diffusion is extended to the reacting case
(FRIEDLANDER and SEINFELD, 1969). The so-called Lagrangian similarity

hypothesis is that the turbulent motion of particles in a steady, self-preserving,



free shear flow possesses similarity in the Lagrangian sense. The hypothesis
was proposed for the non-reacting turbulent diffusion, but in the present
study, the Lagrangian similarity hypothesis will be extended to chemically
reacting airborne pollutants following FRIEDLANDER and SEINFELD (1969).
An initial study for a binary chemically reacting puff has been given by
Friedlander and Seinfeld (1969). The form of the concentration distribution
in the puff either can be found from empirically determined probability
function or direct derivation of the process. In the chapter V, the concen-
tration distribution function is derived for the non-reacting case.

In the formulation of the problem, we consider a puff released from
a source near the ground. A puff of contaminant is an ensemble of marked
fluid particles that were all at a definite position at the time of release. | f
the spacing between particles is sufficiently large, then the separate fluid
particles move independently and the statistical properties of the motion of
a single fluid particle may be obtained by observing the cloud. As the cloud
expands in the direction downwind and vertical direction, it is convenient
for our observation to follow the cloud (Fig. 1). For this reason the
Lagrangian description of flow field is adopted. This approach permits a
prediction of the average form of variation of the distribution of the concen-

tration at a given time, but

Fig. 1. Expansion of a Contaminant Puff



it is hindered by the difficulty of making any direct measurements of
Lagrangian statistics and absence of any simple relations connecting them
with the more accessible studies Eulerian statistics of the velocity at
fixed point in the flow. We will show later in this report that the
Lagrangian similarity hypothesis (Batchelor, 1964) can resolve the above
difficulty for practical purposes. The similarity hypothesis does not

relate fundamentally the two systems, however.



M. CHEMICAL KINETIC MODEL

Chemical kinetic modeling depends on the understanding of
chemical reaction mechanisms for smog formation. The kinetic modeling
of photochemical smog includes the following steps:

1. The compilation of published mechanisms for the photochemical
smog reactions and integration of the rate equations for a
constant volume batch reactor to find the concentration as a
function of time for the key constituents.

2. The compilation of published experimental data on the
irradiation of mixtures typical of automobile exhausts and
comparison of the results from the first step with the
experimental observation.

3. The derivation of new kinetic models to incorporate effect or
information which might be lacking in currently proposed
mechanisms.

Based on this approach, Friedlander and Seinfeld (1969) were able to
formulate a kinetic model describing the photochemical smog. The model will
be described briefly. It will be referred to as ultrasimplified model.

A. Ultrasimplified Model of Friedlander and Seinfeld
The absorption by NO2 of the ultraviolet portion of sunlight

(3100-4000 A ) results in the following reactions:

(6)

(M)

(8)
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When reactive hydrocarbons are added to the system (atmosphere), many
additional reactions take place producing such characteristic products as
formaldehyde, acetaldehyde, aerolein, peroxyacyl nitrates (PAN), and alkyl
nitrites. It is assumed that the reaction involving hydrocarbon is chain-
like reactions:

Initiation step:

(9)

(10)
propagation and branching step:

(11)
terminating step

(12)

where RH represents reactive hydrocarbon, R:free radicals.
The principal assumptions of the above model are summarized as follows:
1. The major species observed include reactive hydrocarbon,
nitric oxide, ozone, nitrogen dioxide, oxygen atom, and R-.
2. O and O3 and free radicals R-are in pseudo-steady state.
3. The principal initiation step is reaction (9).
4. Reaction (11) embraces all the propagation steps.
5. The principal termination step is reaction (12).
6. k4 is assumed constant (see below).
Based on the above assumption, we reach the following chemical

reaction rate equations:
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(13)
(14)
(15)
where (16
(a7)
(18)
(19)
(20)
number of free radicals R- generated
as a result of propation and branching
in reaction (11).
= ki1/k2 (21)
k1/k3 (22)

With specific initial concentrations of various constituents Eqgns.
(16) - (18) can be integrated numerically. The Runge-Kutta method has
been used in solving these equations by using IBM 360/75 computer at the
California Institute of Technology. The results are also plotted by a
Calcomp plotter. Even though there are only three differential equations
in this particular model, the computer program can handle a much more

general and complicated mechanism.
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The parameter values a

0.1 ppm2 mini

o = 1.83 x 10-3 ppm-1min-1
= 2.45 x 10-4 min-1
A = 0.02 ppm-2 min-1

were used. These were based on rate coefficients given by Leighton (1961)
but were adjusted to simulate the experimental observations. Fig. 2
represents the dynamics for (NO2)0 = 0.2 ppm

(NO)0O = 1.0 ppm

(RH)O = 2.0 ppm
Fig. 3 shows the case of

(NO2)0 = 0. 2 ppm

(NO)o = 0.68 ppm

(RH)O 1.15 ppm
The shapes of the curves are in general greement with those found in
irradiation chamber experiments (see Fig. 4). As Fig. 4 shows (Tuesday,
1961) nitrogen dioxide forms and nitric oxide disappears as soon as irradiation
begins. Acetaldehyde, methyl nitrate and carbon dioxide also form immediately.
Compound X* is not formed until all of the nitric oxide present has been
oxidized to nitrogen dioxide or methyl nitrate. In continuous radiation
experiments ozone is only detectable after nitric oxide has disappeared.

Smog-chamber experiments have been performed at the Battelle
Memorial Institute, General Motors Corp., Los Angeles Air Pollution Control
District (LAAPCD), National Air Pollution Control Administration, Stanford
Research Institute and the U.S. Department of Interior's Bartlesville
Petroleum Research Center. Some of the conclusions based on this research
are the following:

(1) Control of reactive hydrocarbons (such as olefins and
alkylbenzenes) resluts in a reduction of all smog-causing

*Product of the photochemical reaction of nitrogen dioxide and various
organic compounds.
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reaction products over a considerable range of hydrocarbon
to nitrogen oxide level.

(2) An appreciable amount of oxidants are formed even in a very
low ratio of nitrogen oxide to paraffinic hydrocarbons or
acetylene.

(3) Control of nitrogen oxide does not appear to be nearly as

effective as hydrocarbon control in reducing oxidant level.
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B. Relation of Eschenroeder Model to the Ultrasimplified Model.

The ultrasimplified model proposed by Friedlander and Seinfeld
(1969) is very similar to one proposed later by Eschenroeder (1969).
Eschenroeder's model also employs simplified kinetics for the photochemical
smog, and at the same time is in conformity with the physical realities
of both chamber experiments and atmospheric observations.

In comparing the ultra-simplified model and the "compact chemical
reaction scheme" of Eschenroeder (1969), we find that the only differences
are (see Fig. 5):

1. The reaction

is absent in the ultrasimplified model.

2. No steady-state assumption for ozone in Eschenroeder's model.

The reaction rate constant of the above reaction is estimated about
2.3 x 106 ppmi min-1, therefore this reaction will explain the difference
between these two models. The rate constants in the "compact chemical
reaction scheme" (see Table IlI) are estimated from literature other than
those of ultrasimplified model. It does, therefore, validate the ultra-
simplified mechanism.

3. The rate constant k4 is assumed constant in the ultrasimplified
model, while in Eschenroeder's model it is a function of the reaction rate

of RH, concentrations of nitrogen dioxide and nitric oxide.
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In the following, a comparison is made of the ultrasimplified
model A (Friedlander and Seinfeld) and "compact chemical reactions model

B (of Eschenroeder).
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* R- in ultrasimplified model is equivalent to RCOx in compact chemical
reaction model.
** Where (b) and (c) represents effective stoichiometry of the product.

# Where (a) represents the fraction of the products in the class of PAN's

In summary, these two models are essentially the same in main
features. Therefore, in this report the ultrasimplified model will be

adopted in the investigation of photochemical smog.
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. LAGRANGIAN SIMILARITY HYPOTHESIS FOR NON-CHEMICALLY
REACTING DIFFUSION

A. Theory
The basic theory of the Lagrangian similarity hypothesis for
diffusion in turbulent boundary layers was first proposed by Batchelor
(1959). Since then, the idea has been used by a number of researchers
in various applications (ELLISON, 1959; GIFFORD, 1962; CERMAK, 1963).

A brief review of the idea was given by Batchelor himself in 1964.

We shall consider a non-chemically reacting pollutant and one which
does not influence the motion of the fluid, i.e., is passive. It will be
further assumed that the pollutant (or marked fluid particle) follows the motion
of the fluid wi thout displaying any molecular diffusion. Although some con-
troversy still persists concerning the importance of molecular diffusion, it
seems unlikely that it is significant in real geophysical situations.

Suppose the strength and geometry of the source is given, so that

pollutant is being added to the fluid at a known rate, Q (x,y,x t)

with dimension of mass per unit time per unit volume. Continuous or instantaneous

point or line sources may be represented by taking limiting forms for Q in

the obvious way (in the instantaneous point source

continuous point source

continuous line source
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The problem is to find the statistical properties describing the result-
ing distribution of concentration. The statistical properties means the
average of the experiments repeated many times (viz. ensemble mean).
For example, in the case of instantaneous point sources, if the experiment
is repeated many times, the mean position of the particle at any time t
is where x axis is the direction downwind and z axis
is vertical to the ground.

The concept of similarity may be applied to either Eulerian or
Lagrangian systems. In the former case, it is applied to statistical
functions relating to the velocity of the fluid at a "given" point in space.
In the latter case, it is applied to statistical functions relating to the
velocity of a material element of fluid or marked fluid particle. It also
permits a prediction of the form of the variation of the dispersion of the
concentration at any time; but it is hindered by the difficulty of measuring
the statistical properties of the velocity of a marked fluid particle, and
its relation to the extensive studied Eulerian statistics. Therefore, the
Lagrangian similarity must be introduced as a hypothesis.

Let us consider the region of the fluid near the boundary in which
the Reynolds stress (tangential to a flat surface) is constant. Assume the
ground is an infinite plane. In the constant stress region, the Eulerian
properties depend on z and the shear stress, T o, acting on the ground
only. We will see later this corresponds to the fact that the structure of
the turbulence in the constant stress region is wholly determined by the
friction velocity, The mean Eulerian properties of the
turbulent motion are independent of position in the xy plane. Hence,
these Eulerian properties in the constant stress region are determined by

p* and z. If the mean wind is , it follows that

(23)
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where k is von Karman's constant, equal 0.4
By using the Prandtl's hypothesis for the turbulent shearing stress

(Bird, et al., 1960),

(24)
where ¢ is Prandtl's mixing length, p the density of the fluid, one

can also derive equation (23) using the assumption that turbulent shearing

stress in the region near the wall is constant. In the neighborhood of
the wall, the mixing length may be assumed proportional to distance from
the wall. The assumption is justified by the fact that the turbulent

shearing stress at the wall is zero due to the disappearance of the fluctua-

tions. Therefore

(25)

and (26)

Prandtl further assumed that the turbulent shearing stress T is constant
in the boundary layer, and is equal to the shearing stress at wall, w®

Defining the friction velocity , Egn. (26) becomes

(23)

On integration of Egn. (23) we have

(27)
where zo is the length characterizing the roughness of the boundary.
The whole structure of turbulence will be affected only when =z is of

the order of zo.
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In the turbulent flow field, a marked fluid particle migrates through
a region in which the velocity fluctuation at a given point is statistically
steady and depends only on p* and height 2z above the ground. If marked fluid
particles are released continuously from a fixed source at time t after
release, the velocity will vary from one particle to another. The average
of some function of velocity over all these particles will depend on t and
p* only. Therefore, Batchelor (1964) proposed the following hypothesis for
the ground level sources. "The statistical properties of the velocity of a
marked fluid particle at time t after release at the ground level depend

only on p* and t".

In the case of elevated sources, the height of the source, h, above the
ground will effect the statistical properties of the velocity of a marked fluid
particle at the instant when the particle was released. How-

ever, after a certain period of time, the statistical properties of the
velocity of a marked fluid particle will lose its dependence on h. The
above hypothesis may, therefore, be extended in the following form (Batchelor,
1964):

"The statistical properties of the velocity of a marked fluid particle

at time t after release at height h above the ground are the same as

those of a particle release at the ground at the instant - , provided that
te where t1 is expected to be the order of magnitude of the time scale
of the turbulence at height h, i.e., of order h/p*."

The Lagrangian similarity hypothesis is limited to steady, self-preserv i g,
free shear flow which possess similarity in the Lagrangian sense. The
theory proposed by Batchelor (1957) is applicable only to a turbulent
shear flow produced by flow along a solid boundary in the region where the
shearing stress may be assumed constant and equal to the shearing stress

at the wall. In this region (called the constant stress region) the Eulerian
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properties are determined by friction velocity and distance from the
boundary. In the atmosphere, the thickness of this region is typically
between 30 ~ 300 feet above the ground level.

The similarity hypothesis stated above is valid only in adiabatic
conditions (i. e, neutral stability). In the case of stable or unstable
stratifications (i.e., upward turbulent flux of heat exists), the Lagrangian
similarity is extended by including the Monin-Obukhov length, L.

This length scale is defined by

(28)
where k is von Karman's constant, q the acceleration of gravity, T
the average absolute temperature, ¢ the heat flux in the vertical direction,
p the air density, and Cp the specific heat at constant pressure. For
a stable condition, there is a negative heat flux q < 0,soL>0 and vice
versa. For the neutral condition (adiabatic) g = 0, and hence L = o.
The constant value of in the neutral conditions (Egn. (23) ) is now

replaced by an undetermined function ¢ (3) of the non-dimensional variable ,

(28a)
where
Since for adiabatic conditions 3 = 0, it follows ¢ (0) = 1. Thus for the
case L # o, the Lagrangian similarity hypothesis should be introduced
as follows:
"The statistical properties of the velocity of a marked fluid particle
at time t after release at height h above the ground depend only on py *

L and t, provided that t >> tl, where tl is expected to be the order

h Jp * . "
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B. Applications
1. Consequences of the Lagrangian similarity hypothesis.
For a marked fluid particle is released at t = o from z = h,
in neutrally stable conditions, after t >> hifas a consequence of Lagrangian
similarity hypothesis, we have the following equations based on dimen-

sional grounds: (29) - (31)

Eqn. (29) in equality form

(32)
where a is a dimensionless constant, and t1 =

Integration of (32) gives

(33)
where to is the instant at which the particle has zero mean horizontal
velocity.

Assume the mean flow does not vary in the vy direction, then

because of symmetry

(34)
By proper choice of the origin of the coordinates, then®
The vertical displacement of the marked fluid particle cannot have
an infinite rate of change at any time, so that the proportionality constant

in Egn. (31) must be zero.

(35)

or (36)
where Db is another dimensionless constant. Batchelor estimated the
value b to be about 0.1~ 0.2, and Cermak (1963) found that for b =
0.1 the theory was in fairly good agreement with the limited experimental

data. Eqn. (27), the mean
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velocity at a point, and Eqn. (33), velocity of a particle are both logarithmic

functions of height and time of flight, respectively. This points to a connection

between the constants a, t2, Zo, etc.,in Egns. (27) and (33). As mentioned before,

relation between the Lagrangian and Eulerian fields is usually difficult to obtain,
but the Lagrangian similarity hypothesis makes it possible here.
The mean spread of a particle at time t should be equal to the mean

speed of the fluid at some constant times the mean height of the particle, viz.

(38)

where ¢ is a dimensionless constant. In view of the decrease of
with height, ¢ should be less than unity. Substitute of from
Eqn. (33), and =z from Eqgn. (36), we have

(39)
For continuous t, Eqn. (39) implies that

(40)
These relations may be substituted into Eqns. (36) and (38) to give

(41)

(42)

The relation between x and 2z is given by

(43)

a
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Integration of (43) gives

(44)
where A is another constant. The physical meaning of Eqn. (44) is that
the Eqgn. (44) is an equation of the path of a hypothetical particle which
moves with velocity equal to the mean velocity
of a marked fluid particle, or the equation to the center-line of the cloud
of marked fluid particles released by some continuous sources.

In order to determine the constant A, consider the mean velocity of
a particle released at the height h at t = o has ufh), o, and o in the
X, ¥y, z direction respectively. After a period of time, t~ h/p* for
the particle to forget its position of release,
at then

therefore (45)

and from Eqn. (27), we get
(46)
Tor , then A < O because b-1 <O.
Consequently, increase of h leads to a larger value of =z at a given
value of x - . The physical meaning of this consequence is that a smoke
cloud from a certain source has a higher center-line of the cloud for a higher
source, i.e., h. This is shown in Fig. 6.
Substituting A into Eqgn. (44) gives
(47)
in the case of ground level source, h -o. A =0

and Egn. (44) becomes

(48)
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2. The mean concentrations at ground level for different sources.
The Lagrangian similarity hypothesis may be applied to predict the
mean concentration of dispersing substances. We shall consider three different

kinds of sources, namely, the instantaneous point source, continuous point soure

and continuous line source. Without loss of generality, all the considerations
will be restricted to steady state, ground level source.
() Instantaneous point source

The probability density function ¢ that a particle diffusion on the
ground level will reach a distance from its origin. The average position
must be a universal function of . According to the Lagrangian
similarity hypothesis, the average concentration of the marked fluid particle release

instantaneous from the coordinate origin mustbe, on the dimensional ground,

(49)
where Qi is the strength of the instantaneous point source, with dimension
of mass. The ground level concentration is at y=2z=0 ,

(50)

(i) Continuous point source
For a continuous point source, the marked fluid particle is
emitted steady from the source, the probability of finding a marked fluid

particle at x, y, z at any time is found by a time integration from 0 to o,

(51)
where W i is the strength of the continuous point source with dimension of

mass per unit time.
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The mean height of the particle is related to t by Egn. (42).

By the change of variable we have

(52)

from the Eqgn. (43),

(53)

at ground level

(54)

since the function ¢ is expected to have a sharp maximum at

the Laplace method of the asymptotic integration may be applied (Carrier,et. al. , 1960

in this case. The form of function ¢ need not be known. As X - o |
we have
(55)
where
as

From Eqn. (48), we have

(56)
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(iii) Continuous line source
The concentration distribution due to a continuous line source
is obtained from Eqgn. (51) by integrating with respect to y over the range

from -o to o .

(57)
where Vi is the rate of emission per unit length of the line source, with
dimension of mass per unit time, per unit length. By the transformation

we have,

(58)

Let
then

(59)

as X - o , and at ground level.

(60)

As , the last term in Eqn. (48) becomes negligible,
So (61)

3. Comparison of Theoretical Prediction and Experimental

Observations.
Sutton (1953), Cermak (1963), Gifford (1962) quote the results
of some measurements which may be compared with the theory. It was

found that the concentration varied as x-1.76 for a continuous point
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source and x® for a continuous line source. It appears then that the
Lagrangian similarity hypothesis does make possible a satisfactory
assessment of the effect of the inhomogeneity of the turbulence on the
diffusion from sources and that the predicted ground level mean con-
centrations far downwind from the source of instantaneous point or
continuous point or continuous line source do in fact agree roughly with

experimental observations (see Table Ill).
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V. LAGRANGIAN SIMILARITY HYPOTHESIS FOR CHEMICALLY
REACTING DIFFUSION

A. Theory
The Lagrangian similarity hypothesis proposed by Batchelor is
limited to the non-reacting case. In the case of diffusion with chemical reaction,
the hypothesis is generally no longer applicable. However, for a slow
chemical reaction, the hypothesis can be extended to the chemically reacting
case. In the following derivation the ideas are mainly due to FRIEDLANDER and
SEINFELD, and we shall follow their method to formulate the theory.

Let us assume that the Eqgn. (49) of the instantaneous point source can
be used in the case of a reacting pollutant but with Q i a function of time.
This assumption appears reasonable if the chemical reaction processes are
slow compared with the mixing process, so that Q i is slowly varying function
of time. A more quantitative criterion can be obtained by an examination

of the equation of conservation of species (Eqn. (3)):

(62)
Where the velocity is measured relative to the velocity of the
average cloud position, and all distances are measured relative to cloud center.
According to the Lagrangian similarity hypothesis for the non-reacting case,
the average concentration at any point in the cloud at time t after ground
level release depends on distance from average position and on the vertical

spread. Thus on dimensional grounds,

(49)
for instantaneous point source.

FRIEDLANDER and SEINFELD (1969) assumed that the same form can
be used in the case of reacting pollutant but with Q3 a function of time. The

assumption is justified if the chemical reaction processes are slow compared



30

with the mixing process, so that Qi is a slowly varying function of time.
It is reasonable thus to assume the similarity form of the average chemical

reaction rate as

(63)
where fi is a probability density function depends not only on

but also on time t.

There seems to be no reason why the velocity relative to the cloud

center, in the x, y, z direction at time 't should be equal to the
mean speed of a particle but it must be equal to the mean speed of
a particle times some probability function Fx, Fy, F z , where

Fx, Fy, Fz is a function of nx, n y , and n z only,

i. e., (64)
The turbulent mass flux appearing in Eqn. (62) must be
related to or its gradient (eddy diffusivity) if Egn. (62) is to be solved.

Assuming on dimensional grounds that the turbulent mass flux is given by

(65)
where is a probability density function in the x, y, z directions,

substitution of Egns. (63) - (65) into Egn. (62) gives
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SO

Dividing by

(66)
Similarity exists if a differential equation (66) is a function of nx, ny, nz
only. There is still a term which is not a function of nx ny, nz
but a function of time only. Strictly speaking the similarity proposed
in Eqn. (63) - (65) does not result in a similarity solution. In other
words, the similarity does not exist. However, if the term is
suppressed or less significant compared to the other terms, then the
similarity does exist in an approximate manner. Therefore, we may

claim the similarity exists if
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and the functions are of order unity. The measure
of the spread of the cloud of contaminant in the vertical direction about its

center of mass is z z , where

define

then

It has been shown by Chatwin (1968) that

Hence

so that

The fractional rate of expansion of the cloud is,
therefore, equal to . The above criterion of the extent of

similarity shows that for the similarity solution to apply, the fractional

rate of change of material in the cloud due to chemical reactions must be
small compared with the fractional rate of expansion of the cloud. There
may be other circumstances under which the similarity hypothesis applied
to a reacting system, but at the present time the above assertion may be

taken as a challenge for further testing either experimentally or theoretically.
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B. Applications
1. Development and generalization of Lagrangian similarity to
chemically reacting diffusion of different sources.
The chemical reaction rate for component i can be written in terms
of the chemical reaction rates for the p reactions involving n chemical

species as follows

(68)
where J j is the rate of the jth reaction and V ij is the stoichiometric
coefficient for component i in the jth reaction. In other words, there

are n chemical species involving in p chemical reactions,

(69)
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Chemical reaction rate of jth reaction can be expressed in the form

(70)
where a k j the order of reaction of species k in the jth reaction.
If the fluctuating reaction term V 'i is negligible, Eqn. (68) can be
written as

(71)
In the following, we shall apply the Lagrangian similarity hypothesis

to different sources (Seinfeld, 1969).

(i) Instantaneous point source

For the case of an instantaneous point source, the similarity

form for C i must also be consistent with the following condition

(72)
where Qi(t) = mass of species at time t
From Eqgn. 71, we get

(73)

Lagrangian similarity hypothesis for chemically reacting diffusion implies

(74)

using the relation in Eqgn. 73, then

(75)
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Where

(76)

In this way, the diffusion and chemical reaction effects are partially
uncoupled. The set of nonlinear, coupled, second order partial differential
equation (Eqgqn. 62) has been reduced to a set of nonlinear, coupled, first order
ordinary differential equations suitable for numerical evaluation. Eqn. (75)
corresponds to the kinetic expression for variable volume batch reactor (VVBR)as
related to chemical reactor models often studied in chemical engineering
(Denbigh, 1965). The term Q i/z-3 is equivalent to the concentration of
component i in the reactor and Zz3 to the reactor volume.

The ground level concentration is given by the following relation when

(77)
where a is a constant equal
Since the mean position of the cloud above ground, increases
monotonically with time as cloud expands. The concentration at ground
level of a non-reacting species decreases continuously as cloud expands.
For a species generating by chemical reaction, such as NO2, or O3 in
the case of photochemical smog, Qi increases with time for at least

some portion of the cloud trajectory. In this case, a maximum concentration

can be expected.
(i) Continuous point source

The coordinate system employed in the mathematical analysis

is shown below (Fig. 7),
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Fig. 7. Coordinate System of Continuous Point
Source and Continuous Line Source

For any plane at constant X the continuity condition holds:

(78)
where Wi(x) = mass of species i per unit time crossing a plane at x.
Because of chemical reaction, Wi(x) is no longer a constant but a function
of X
Differentiate Eqn. (78) with respect to x , we have
(79)

Now, from the equation of conservation of species, Eqgn. (62), with neglect

of diffusion in the x direction,

(80)

Thus (81)

The boundary conditions are
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By using these boundary conditions in the integration of the first two terms

at the right hand side of Eqn. (81), we have

(82)

By applying the Lagrangian similarity hypothesis for the reacting case, from

Eqn. (52),

(83)

where (84)

For a chemical reaction system given by Eqgn. (69), and chemical reaction

rate

(85)

substituting Eqgn. (85) into Eqn. (82), then

(86)

where

(87)
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In the same way as in the instantaneous point sources, the partial
differential equation has been partially uncoupled to a set of ordinary differential

equations .The ground level concentration is easy to obtain by settingy=z=0

in Egn. (83).

(iii) Continuous line source

In the case of continuous line source, the concentration is no
longer a function of vy . In a sense, this is much easier than the case of
continuous point source. The analysis of the diffusion from a continuous line

source based on the Lagrangian similarity hypothesis for chemically reacting
is similar to the previous discussions of continous point source.
Refer to the coordinate system given in (ii), at any plane X = constant

downwind from the source, the continuity condition implies

(88)
where Vi(x) is mass of species i <crossing the plane at x =

constant. Differentiate Eqn. (88) with respect to x

(89)
From the equation of the conservation of species, Egn. (62), with negligible

diffusion in the x and vy directions, we have

(90)
substituting into Eqgn. (89), then

(91)
Then boundary condition at implies the first

term of the integration of Eqn. (91) is zero.
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Therefore (92)

By applying Lagrangian similarity hypothesis for chemically reacting

diffusion,

(93)

where (94)

For a chemical reaction system given by Eqgn. (69) and with reaction rate

given by Eqn. (71), then

(95)

where (96)

Again, the partial differential equation has been partially uncoupled to an
ordinary differential equation.

(iv) Relationship among the three different sources and

their assumptions.

The probability of finding the marked fluid particle in a

neighborhood of the point x, y, z at time t s ] 592
In our three sources, our assumption is that is invariant with respect
to t, but a function of nx, n y , and n z only.

For an instantaneous point source, the mean concentration is given by

(97)
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For a continuous point source, the mean concentration is found by an
integration of instantaneous point source for t from O to o. The con-

centration is no longer a function of time t.

(98)

For a continuous line source, the mean concentration is found by integrating

the continuous point source for vy from - to +o . The mean concentra-

tion is therefore a function of x and z only,

(99)

Consider a sequence of instantaneous non-interacting point sources of

strength , then

is the rate of emission of species .

(100)
If the species i at t = o is emitted , then is
constant, so that
, a function of x only, as At -0,
i.e., (101)
The independent variable of is changed from t to x . In the
Eulerian sense, only changes with x . The relationship
between three cases may be summarized as follows:
Type of source I. P.S. C.P.s. C.L.S.

Source strength i Wi Vi
L.S.H. Form %qn. (97) Eq'rg)_()(gg) Elqr(1),()(99)
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2. Applications of Lagrangian Similarity Hypothesis of Chemically

Reacting Diffusion to a Bimolecular Chemical Reaction A +B - C

The application of the Lagrangian similarity hypothesis to a
bimolecular chemical reaction from an instantaneous point source has
been shown by Friedlander and Seinfeld (1969). Since it demonstrates
the application of the hypothesis effectively, it is thus proper to show
their results here.

(). Instantaneous point source.

An analytical solution can be obtained for neutral conditions

when ®(¢) = ®(0) = 1. The solution which satisfies the initial
condition Qi = 0 at z = h is
(109)
where
(110)
The result of calculations based on Eqn. (110) are shown in
Figs. 8, 9, and 10. Figures 8 shows that the dimensionless ground

level concentration of product reaches a maximum near the source and
then rapidly decays. For given values of o , the ratio of reactant
source strengths, highest ground level concentrations are obtained for
large values of NS, corresponding to high chemical reaction rates and
low friction velocities.

In Fig. 9 and 10 it is shown that the condition
is best satisfied for large values of , consistent with the asymptotic

nature of the original similarity hypothesis on which the analysis is based.
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The ratio is greatest near the source and then falls

rapidly since the chemical reaction rates are particularly sensitive to

the reactant concentrations. The total quantity of product generated by
the chemical reaction as can be calculated from Eqgn. 109 and
is

(111)
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Q c o is always less than QA o0 ; the maximum amount of product
which would be produced in a fixed volume batch reactor (QAo < QBo)
The reduction results from the quenching effect of the rapid expansion of
the VVBR This seems to be an important result. Not
only is the concentration of the product of the chemical reaction reduced
by the mixing process, but so also is the maximum attainable total quantity
of product. The extent of the reduction depends on the dimensionless group
NS: small values of NS, corresponding to low reaction rates (small k) and
large mixing rates (high p * ), lead to small values of Q ¢ . From this
kind of analysis, it is possible to develop simple criteria for atmospheric
contaminant levels in a reacting system. For example, if o-1 and NS

<< 1, Eg. (111) can be written approximately as

(112)
Now assume that Q A o and Bo represent the total amounts of pollutants
A and B emitted by a source into an air basin with inversion height H.
As the cloud expands to the inversion height, the total amount of product
generated, Qc o , will be mixed into the volume HS where S is the
effective area covered by the cloud. This leads to the following result for
the average concentration of product, Q ¢ o /H S , after expansion to

the inversion height:

(113)
When pollutant emissions and the effective area covered by the cloud are
constant, the right hand side of Eq. (113) is a constant, independent of
meteorological conditions. Eq. (113) is then similar in form to a correla-

tion proposed by Schuck, Pitts and Wan (1966) for oxidant concentration in
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the Los Angeles basin. The Schuck, et.al. expression was empirically
derived, based on only two sets of experimental data. The theoretical
calculation given above is based on the bimolecular reaction model which is
highly simplified so far as smog is concerned. Hence it cannot be claimed
that the correlation is well established either on experimental or theoretical
grounds. It will be interesting to see whether further studies support this

observation.

(ii). Continuous Point Source and Continuous Line Source

For a bimolecular chemical reaction, Eqn. (86) leads to the

following equation

(114)
Let

(115)
then
where
at

(116)

(117)
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For a continuous line source, we will get a solution in the form of
Eqns. (116) and (117). For further information about the mean concentration,

a critical step is to investigate the probability density function W.
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3. The Variable Volume Batch Reactor Model (VVBR) and the

Critical Damkohler Parameter for the Formation of Smog.

We can now go on to discuss the more realistic case of

the VVBR with the ultrasimplified model for chemical kinetics. Define

the "effective concentration” n i, such that

(118)

Then Eqn. (75) becomes

(119)
Based on the extended Lagrangian similarity hypothesis, the
vertical average velocity , on dimensional grounds must be
proportional to the friction velocity p* times some universal dimension-

less function involving Monin-Obukhov length L (Egn. 28):

where
and is a universal function of the dimensionless variable >
For adiabatic condition, q = 0 and, therefore L = o, from which

it follows that ¢@(G3) - 1 as 3 0.

From Eqgn.(119), we have then

(120)

for a neutral case, i. e., L = o.

It is interesting to note that Eqn. (120) becomes the equation for the
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constant volume batch reactor model (CVBR) as h/bp* -0 The
results for various values of h/bpy* as a parameter, using the ultra-
simplified chemical reaction model are shown in Fig. 11 through 14.
Photochemical smog reactions have been studied experimentally in
smog chambers simulating atmospheric conditions. It is known that
there is a dramatic conversion of NO to NO2 when the radiant energy
is supplied. Usually, however, these experiments are performed in
a constant volume batch reactor. In the case of variable volume batch
reactor, as photochemical smog in the atmosphere, the pollutants not
only react with each other, they also disperse into the atmosphere. | f
diffusion is rapid, there may be no photochemical reactions occurring,
because the reactions may be quenched due to dispersion. On the other
hand, if chemical reaction controls, then the photochemical reaction will
not die out even at very low concentration. It has been shown that the
Lagrangian similarity hypothesis applied to the reacting case of the

chemical reaction is slow compared to the atmospheric dispersion, i.e.,

In the case of fast reactions, the Lagrangian similarity hypothesis
is generally no longer applicable. But since the chemical reactions are
fast, that short period of reaction time may be neglected. After the
reactions are completed, the resultant products may be treated as passive
contaminant in which the above theory may be again applicable.

It also was determined in the laboratory and in experiments that the
consumption of reactant hydrocarbon, the rise of oxidant, etc., do not
start until the conversion of NO to NO2 is almost complete. It is thus
reasonable to assert that the critical value for the formation of photochemical

smog is when
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If the above criterion is applied to Eqgn. (120) then

(121)

The left hand side of Equation (121) corresponds to a mechanical time,

Tm ach, and the right hand side of the equation corresponds to a
chemical time, tchem . The Damkimhler number is defined as the ratio
Hence by Equation (121) the critical value for the

formation of photochemical smog is thus that the Damkohler number is

unity.
If the ultrasimplified model is a suitable kinetic model for the

photochemical smog reaction, the critical value of h/bu* is given by

For A1 = A2 = 1,
the critical value is about 15 minutes for the initial concentrations

[M1]0 = 0.2 ppm

[n2]0 1.0 ppm

[n3]0

The results are shown in Figures 11 through 14 for four different values

2.0 ppm

of h /b py*- For small values of h /b py *, corresponding to rapid mixing,
the chemical reaction is effectively quenched and the reactants rapidly

dispersed. For h/bp* > 100 minutes, ozone begins to appear and the
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curves assume a form typical of the constant batch reactor studies made

in smog chambers (see Fig. 4).
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4. Applications of Lagrangian similarity hypothesis of chemically
reacting diffusion to the ultrasimplified model.
The extended Lagrangian similarity hypothesis can be applied to
the ultrasimplified model for an instantaneous point source in the adiabatic
conditions. The ultrasimplified model takes into account the chemical
species NO, NO2, O3 O, RH, and R- (free radial). Steady state assumptions

to O, 03 and R:-, results in three algebraic equations (FRIEDLANDER and

SEINFELD, 1969):

For an elevated source, the extended Lagrangian similarity hypothesis gives

the following equations for NO 2, NO and RH:

where
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Q1l, Q2, Q3 refers to the source strengths of NO2, NO, and RH

respectively. Qo/h3is a reference concentration to make the concentration
term dimensionless. dN, AN, oN, puN are the Damkohler parameters defined
by tmech/tchem. For example, The Damkohler parameters

include the effects of the following meteorological variables:
(1) solar radiation and temperature through reaction rate
constants, a , A, M, O
(2) Wind condition through friction velocity p *.
(3) stability through L (L = o).
With given initial conditions and Damkohler parameters, the solution

of the above differential equations is easy to obtain by numerical integration.
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V. DETERMINATION OF THE PROBABILITY DENSITY FUNCTION
A. Non-Reacting Case
The turbulent diffusion of a passive (non-reacting) substance

released from a source into the atmosphere was classified according to

the condition under which the substance was released, viz. , instantaneous
point, continuous point and continuous line source. In the latter two cases,
the strength may be a function of time. In the first case, the substance is
completely discharged during an infinitesimal period of time. The puff of

substance then begins to diffuse about its center of mass, which is moving
randomly with turbulent motion existing in the atmosphere.

We shall first restrict our consideration to the instantaneous point
source undergoing vertical diffusion, and we shall further assume that the
horizontal diffusion in x and y directions are independent among them-
selves. In any instantaneous released source, we are interested mainly in
discussing the distribution of substance about the center of mass. Thus, a
Lagrangian description is more appropriate than an Eulerian in discussing
the statistical properties of a diffusing puff.

After a period of time t when the puff was released, the shape of
iso-concentration lines will be irregular and random. The point of maximum
concentration will not necessarily coincide with the center of mass. If
under the same conditions, a large number of experiments are performed,
the center of mass of each puff will follow a different history due to non-
stationary and inhomogeneous character of the larger eddies to the extent to
which they are included or excluded by the finite interval over which the
average is taken. However, as far as the relative distribution of substance
with respect to the center of mass is concerned, the statistical properties
may be almost equivalent to each other for individual puff, since the smaller

eddies responsible for the relative distribution are supposed to be stationary
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and homogeneous. Thus, if we take an infinite number of distributions,
each observed at the same time interval after release, and if we superposed
them in such a way that the centers of mass coincide with each other, and if
we average over all the superposed distributions, we would then expect a
rotationally symmetrical distribution of substance about the center of mass,
which corresponds to the point of maximum concentration. The mean con-
centration is then a function of the diffusion time t and distance z from
the center of mass.

The turbulent diffusion process, in general, is described by the

following probability distributions:

= probability of finding (t) in the range

at time t, where (t) is random coordinate of

a marked fluid particle relative to the moving center

of mass;
= joint probability of finding () in a
range at time to and in a range
at the successive time t1;
joint probability of finding (t) in
a range at to, and
at t1 and at t2;

and so on.

The process is considered to be a discrete time process and to <tl <t2<....

The set of the above functions must satisfy the following conditions:
(1)

(i1)



54

Since each function must imply all the previous
(iii)
(122)
For more precise information about the process we shall define
the following transition probability functions
Let = transition probability that given at t0
one finds (t) in the range
at time tl1, where t1 >to,
= transition probability that given and
at t and t1, respectively, one finds (t) in
the range at time t2, where
t2 >tl1 > to
and so on.
These transition probabilities also have the following properties:
(1)
(i)
(iii)
(iii) above is nothing but a definition of transition probability. By induction,

it can be shown
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and
(123)
Now, let
= transition probability that initially given
at to one finds (t) in the range
at time tk. This is a point function, i. e.,
it is irrespective of the at
corresponding time t1,...., tk-1
It then follows that
(124)
Integrating Eqgn.(123) for over
then
(125)

In Eqn.@5), LHS = by Eqn.(122).
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For a given initial condition , we still need to know
to get
If we make an important assumption that the process of turbulent
diffusion is a Markov process, then the problem is much simplified. The

definition of Markov process is that

Therefore, Equation (1249) may be written

(126)

For a continuous time process, Eqn. (126) becomes

(127)

This is the so-called Chapman-Smoluchowski-Kolmogorov equation.

For a stationary process,

By choosing to = O, Eqn. (127) becomes

Propose
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Formally, taking the limit as , then
The moments of the change in the space coordinate in a small time are
and we assume that for only the first and second moments become
proportional to , SO that

let

then

but

(128)
which is the Fokker-Planck equation.

In vertical diffusion only, Eqn. (128) becomes

(129)

If we assume

then Eqn. (129) becomes:

(130)
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By Fourier transform, the solution of Eqn. (130) is given by

(131)

where (132)

(133)

The first equality signs of Eqns.(132) and(133) are definitions of mean

and variance. The variance is the expectation of

By the previous assumption that there is no interaction among vertical

and horizontal diffusion, then we have

where

and therefore

(134)
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By assuming

Eqn.(134) becomes

(135)
Eqn.(135) is exactly the form assumed by Gifford (1957). Eqn.(134) is
more general, and requires information about and from
experimental results.

Although our derivation from the fundamental theory of stochastic
processes has reached a form consistent with those proposed by Gifford (1957).
Experiment has shown that Eulerian statistics of turbulent dispersion are not
exactly Gaussian. Therefore, one must be careful not to take the applicability
of the Markov theory to turbulence too literally. However, this research is
clearly emphasized on practical application on engineering modeling. It is

thus undoubtedly reasonable as a practical assumption for real turbulence.

B. Reacting Case and Its Applications (Proposed)
It is from the analysis in Part (A) we get a probability density
function ¢ consistent with experimental observation. The analysis was
based on the assumption, the effluent is non-reacting, and the diffusion process
is Markov process. In the photochemical smog, the above assumption may
no longer be true. It is thus necessary to further work toward the solution

of this more complicated problem.
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VI, Proposed Work

With the present state of the model, there are some problems

that must be considered. The work so far has concentrated on a
simple puff of pollutants. There is no consideration of the interaction
between two or more than two puffs. Strictly speaking, this is not

what is occurring in reality.

As an individual puff travels and expands, there must be
certain interaction between these puffs. Also the model is limited to
the case when a puff is released into clean air. It is thus natural
to consider the problem that a puff expands and takes up pollutants along
the way as it travels into the atmosphere.

The derivation of in Chapter V results in the form pro-
posed by Gifford (1957), but experiments have shown that ¢ in Gaussian
form is not correct. The uncertainty in ¢ is likely to be the results
of the atmospheric dispersion, which is not a Markov process. Physical
realities are more complicated than that assumed in Chapter V, for
example, diffusion in the x, y and z direction was assumed to be
independent.

Usually, some practical problems can be solved only by experi-
mental methods. The dispersion of chemically reactive contaminants
in the atmosphere over a complicated terrain is one which needs
experimental study, possibly by wind-tunnel model experiments. How-
ever, a wind-tunnel model of smoke diffusion is by no means an established
and reliable technigue for application to atmospheric processes. On
the other hand, the technique of numerical solution of the fundamental
differential equation which describes the phenomena has made great

progress recently (HINO, 1968). This technique may be considered a
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numerical experiment if we have full knowledge of the differential

equations that describe the process. However, if the differential

equations and appropriate boundary conditions do not fully describe

the atmospheric processes, then the numerical experiment may be no

better than an analogy to the wind-tunnel experiments.

Most of the liquid and solid particles in automobile emission
are submicroscopic. One of the most serious aspects of photochemical
smog is the generation and increasing concentration of these extremely
small particles. These particles serve as condensation nuclei which
may absorb pollutants. They may act as carriers for other pollutants
and produce serious adverse effects to human beings.

In summary, | propose to investigate:

1. the effect of interaction between pollutant clouds from individual
sources;

2. the probability density function ¢ ;

3. the numerical solution of the Fickian diffusion equation with
chemical reactions;

4. methods for the combination of the model for photochemical smog
reactions developed in this report with the theories and experimental
work on the particle size distribution;

5. a mathematical model of photochemical smog of Los Angeles basin
(combining the results of (1)-(4) and using a more sophisticated
chemical kinetic model, if available).

The starting point of (1) assumes each cloud is a variable volume
continuously stirred tank reactor (VVCSTR). When two clouds meet

together they are considered completely mixed and form another VVCSTR.
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The mass balance for each VVCSTR is

where

Subscript m, n, mn refer to reactor m, n, mn, respectively. One
can expect that this kind of model can be extended to many interacting
clouds.
The approach to problem (2) by using the fundamental theories
of stochastic process are not very promising. A more practical approach
would employ semiempirical forms of the spatial concentration distri-
bution of the effluent downwind from a source. For example, the concentration
of an inert material emitted at a rate Q from a continuous point source

at a height h is given by (PANOFSKY, 1969):

The above expression has been used in atmospheric diffusion predictions
by Gifford (1968).

The problem (3) can be approached in idealized cases so that
the differential equations properly describe the phenomena. The solution

of problem (3) will employ a numerical method.
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There is now experimental evidence which indicates that high
concentration of very small particles are formed in the Los Angeles
atmosphere (personal communication between S. K. FRIEDLANDER and
K. T. WHITBY). This conclusion is consistent with the experimental
result of Lee and Patterson (1969), which indicates that the concentra-
tion of nitrates, formed as a result of atmospheric chemical reaction,
is high in the small particle portion of the spectrum.

The first step of approaching problem (4) will be the determina-
tion of the rate of formation of these small particles. By assuming the
rate of formation of aerosol by photochemical reaction is proportional

to some function f,

then

where is rate of formation of aerosols, f is a function of the con-
centrations of chemical species which involves the photochemical reactions
and K is a constant to be determined from experimental results.

With a known example of the wind field and meteorological con-

dition of Los Angeles basin and the combination of the results of the

proposed research topics (1) - (4) one should be able to formulate a
mathematical model of photochemical smog of Los Angeles basin. It
will thus have application to such problems as determining the degree

to which each source contributes to the over-all pollution problem, and

forecasting air pollution levels.
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Figure 4 - Concentration Changes During Photooxidation. (TUESDAY, 1961)
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Fig. 5. Lumped-parameter reaction scheme
(number in parenthesis indicates reaction number)
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Sketch of the path of a point which
moves with the mean velocity of a
particle released from a source
(Batchelor, 1964)
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Figure 9
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Figure 10
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TABLE |I.

Motor Vehicle Emission Standards,
California State Department of Public Health

Source Engine size Standards

(cube-inch
displacement)

Exhaust hydrocarbons <50 —
50-100 410 ppm by volume
101-140 350
>140 275
Exhaust carbon monoxide <50 —
50-100 2.3%
101-140 2.0%
> 140 1.5%
Exhaust oxides of nitrogen All vehicles 350 ppm by volume
Crank case emission All vehicles 0.1% supplied fuel
Carburetor emission All vehicles 2 grams per soak

Fuel-tank emission All vehicles 6 grams per day
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TABLE II.

Comparison of the Reaction Rate Constants of the
Ultrasimplified Model and the Compact Chemical Reaction Scheme

Ultrasimplified Model Compact Chemical Reaction
Scheme, RH = C4HS8

a 0.1 ppm2 mini 0. 145

A 0.02 ppm-2 min-1 0. 0184

0 1.83x 103 ppm-1 min-1 1.5x10-4
§]

2.45x10-4 min-1 1.98x10-3
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TABLE III.

DATA ON DIFFUSION IN NEUTRAL CONDITION

Continuous Point Sources

Experiment x (ft) m in c o xn
Davar 1961 1.5 -1.20

4.5 -1.47
Malhotra 1962 4.5 -1.47
Wieghardt 1948 1.03 -1.42
Porton (Pasquil, 1962) 1640 -1.76
Prairie Grass 1976 -1.8

(Cramer 1957)

Continuous Line Source

Porton (Pasquil, 1962) 1640 -0.9-1.0
Malhotra 1962 4.5 - 0.8
Poreh 1962 7.5 - 0.9

Wieghardt 1.23 - 0.9
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Nomenclature

Roman Letters

Aj dimensionless constant defined in Eq. 76
B j defined in Eq. 87

a dimensionless constant defined in Eq. 77
b universal constant defined in Eq. 35

C a constant defined in Eq. 38

ci instantaneous concentration of species i

average concentration of species i

ci fluctuating concentration of species i
Cp specific heat at constant pressure
Di molecular diffusivity for species i

dimensionless velocity defined in Eq. 64
fi (mx,ry, 1g.t) dimensionless reaction rate defined in Eq. 63

dimensionless function defined in Eq. 65

H inversion height

h source height

k von Karman constant

Kz(j=x,y,2) eddy diffusivities of material defined in Eq. 4
ki reaction rate constant

L Monin-Obukhov length defined in Eq. 28

Pranetl's mixing length
M third body
NS dimensionless group defined in Eq. 110

number of chemical species

ni effective concentration of component i , defined in Eq. 118
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Roman Letters

Qi moles of species i in cloud
q heat flux in z-direction
ri reaction rate of species i
average reaction rate of species i
S effective area covered by the cloud
t time
T average absolute temperature
Vi (x) mass of species i crossing the plane at x
wind velocity vector
fluctuating velocity vector
u* friction velocity
velocity vector relative to cloud center
W i(x) mass of species i per unit time crossing plane at x
X, Yy, z coordinate position in atmospheric surface layer

coordinate of the average position of the particle in
the atmospheric surface layer

Greek Letters

a parameter defined in Eq. 16
o j order of reaction of species j in i th chemical reaction
€ number of radicals generated per radical consumed
X, ny,nz dimensionless coordinates defined in Egq. 59
e parameter defined in Eq. 18
A defined in Eq. 84
A parameter defined in Eq. 17
M parameter defined in Eq. 19

p air density
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W

Superscript

0

Subscript
cls
cps

ips

79

QBo/QAo0
characteristic time

shearing stress at wall

universal function defined in Eg.

guantum vyield

probability density function

average value

ground level concentration

continuous line source
continuous point source

instantaneous point source

(28a)
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PROPOSITION

The Self-Preserving Particle Size
Distribution for Coagulation by Brownian Motion--

Smoluchowski Coagulation and Simultaneous
Maxwellian Condensation
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ABSTRACT
A theoretical study has been made of the dynamics of coagulation
with simultaneous condensation and of the behavior of the particle size
distribution function. For coagulation and condensation in the continuum
region the existence of self-preserving spectra--as defined in the papers

of Friedlander and Wang (1966), Wang and Friedlander (1967)--depends

on a nondimensional parameter where
p and T are viscosity and temperature of the medium, k is the
Boltzmann's constant, the total volume concentration, N the total

number concentration of particles, B the proportionality coefficient in

the equation for condensation rate and S the saturation ratio. For
C = 0 phase equilibrium exists while for C > 0 simultaneous condensa-
tion and coagulation occur. For C = 1.09 the total surface concentration

(surface area of particles per unit volume of gas) is invariant with respect
to time. For other values of C saturation ratio must vary with time

in a particular way in order for the system to be self-preserving. The
shape of the self-preserving spectra are strongly dependent on C.
Analytical solutions of the transformed kinetic equation have been found
for the lower and upper end of the spectrum and numerical solutions for
the entire spectrum have been calculated for four values of C. The
theory is limited to values of C smaller than of order unity. Good
agreement with experiments is found applying developed theory to the

calculation of the polydispersity factor.
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I EQUATION OF COAGULATION AND CONDENSATION

The existing theory of self-preserving size spectra as developed
in the previous two papers by FRIEDLANDER and WANG (1966, 1967)
does not take into account vapor condensation on the particles, a
process which frequently occurs in aerosol systems. The basic kinetic
equation describing simultaneous coagulation and condensation in a
homogeneous system (particle concentration independent of position) can

be written as follows LEVIN and SEDUNOV (1967):

(1)
where n(v, t) is the particle volume distribution function, v the
particle volume, t the time, the rate of condensation
and the collision parameter (also referred to as collision

frequency factor or coagulation constant) for particles of volumes v
and . In this formulation, particles are neither lost nor gained
by evaporation or condensation which means, for example, that homo-
geneous nucleation is not taking place in the case of condensation. A
justification for this assumption is given later. For I(v,t) =0
equation (1) reduces to the well-known Smoluchowski equation describing
coagulation in a polydisperse system. The physical interpretation of
the terms on the right side of equation (1) has been given by a number

of authors (HIDY and BROCK, 1970; HULBURT and KATZ, 1964;

ZEBEL ,1966 ).
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Two important moments of n (v,
t) are the total number

of concentration N (t) given by

(2)

and the total volume concentration ¢(t) _
given by

(3)

Integrating equation (1) with respect to v from 0 to oo gives

(see Appendix 1)

(4)
Defining the collision parameter of a polydisperse system by

(5)
where is the normalized volume distribution
function, equation (4) becomes

(6)

Similarly, multiplying (1) by v and integrating with respect to v

from O to o gives (see Appendix Il)

(7)
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From (7) it follows that if I(v, t) = 0, is invariant with respect
to time.

The case of Smoluchowski coagulation, that is, diffusion controlled
coagulation of particles much larger than the mean free path of the
gas molecules is a classical problem in coagulation theory with many
important applications. The particles are assumed to be spherical
and electrically neutral. The collision parameter is

given by SMOLUCHOWSKI (1916)

(8)

is a homogeneous function of zero order consistent with the require-
ment for self-preserving spectra discussed in papers by FRIEDLANDER
and WANG (1967). The rate of condensation for negligibly small
Knudsen numbers is given by the Maxwell equation (FUCHS, 1959) which,

if the effects of latent heat are taken into account (see Appendix IIl),

becomes
where )
and is the saturation ratio, Pv the actual pressure of
the vapor, Ps the saturation vapor pressure, L the latent heat,
M  the molecular weight of the vapor, p the density of the liquid,
K the thermal conductivity of the medium, T the absolute temperature

of the medium, R the gas constant and D the diffusion coefficient
of the vapor. The condensation rate is implicitly a function of time

because the saturation ratio may vary with time.



87

We now introduce the similarity transformation of FRIEDLANDER

(1960a, 1960b, 1961, 1962) and SWIFT and FRIEDLANDER (1964):

(10)

Unlike the problems treated in the previous papers by FRIEDLANDER

and WANG (1966, 1967), volume concentration O is a function of time

as a result of the condensation process.

Since is a mean particle volume, the new
independent variable can be written and
can be interpreted as a dimensionless distribution function. It is called

"self-preserving"” since its shape does not change with time when
is represented as a function of . It can be shown (FRIEDLANDER
and WANG, 1966) in certain cases that the self-preserving distribution
is the asymptotic distribution attained in a coagulating system after a
sufficiently long time. The numerical experiments of HIDY (1965) also
support this hypothesis. A general proof does not exist however.
Substitution equation (10) in equation (1) with equations (8) and
(9) for and , the result after some manipu-

lation is:

(11)

where
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and

An equivalent expression was first given by WANG (1966).
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. CRITERIA FOR SELF-PRESERVING SPECTRA

When the dimensionless group

(12)

is constant, equation (11) is an ordinary integro-differential equation
consistent with the original assumption that is a function only
of n . The dimensionless group C which appears in (11) can

be rewritten as follows:

(13)

The numerator is the fractional rate of change in the volume of a
particle of average size due to condensation. The denominator is the
negative of the fractional rate of change in the number of particles
resulting from coagulation. Hence, C can be interpreted as a
measure of the relative rates of condensation and coagulation. When
C is small, the condensation process proceeds slowly compared with
the coagulation process. The variation with time of the total number,
volume and surface concentrations can now be obtained. Using (8)

and (10) equation (5) gives

(14)

Using (14) the solution of (6) becomes

(15)
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where

From (7) using (9), (10) and (12)

(16)

Integration of (16) with the aid of (15) gives

(17)

where and
Inserting (15) and (17) into (12) and supposing constant temperature
gives an expression for the time dependence of the saturation ratio

during the condensation-coagulation process:

(18)
The saturation ratio must vary in this way in order for self-
preserving spectra to exist. The actual time dependence of the saturation
ratio depends on the behavior of the sources and sinks of the saturated
vapor to which the aerosol is exposed.
The total surface area of particles per unit volume or surface

concentration o (t) is given by

(19)

Using (10) equation (19) becomes

(20)
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where

(21)

Inserting (15) and (17) into (20) gives

(22)

where is the initial value of the total
surface concentration.

The value of K is of great importance in determining the

behavior of a coagulating system with simultaneous condensation. Four
different cases can be distinguished:
(1) When K =0, C = 0 and no condensation occurs since the system
is in a state of phase equilibrium. By (17) ¢ =¢ o , by (18) sSs=1
and by (22) o decreases with time as expected in the case of the
coagulation of liquid particles. Equation (11) reduces to the problem

treated by FRIEDLANDER and WANG (1966).

(2) When K =1, and (18) requires that the saturation
ration be constant. If the temperature is constant all external parameters
(T, S, u) must be constant. By (17) (0} must increase in the

following way:

(23)
From (18) the condition of self-preserving spectra in the case of
constant saturation ratio is

(24)
By (22) O =0 O which means that the surface concentration is

constant. The decrease of surface area due to coagulation is, in

this case, balanced by the formation of the new surface due to vapor
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condensation.

(3) For 0 <K <1 0<Cc« and from (18) S > 1

as expected for condensation. The volume concentration increases
according to (17) and the saturation ratio S decreases according to
(18) as would be expected for a closed system. By (22) the surface

concentration o decreases, indicating that in this case coagulation

controls.

(4 For K >1, C > and increases according to
(17). By (18) S must increase with time in this case in order for
the system to be self-preserving. By (22) surface concentration is

increasing with time, indicating that in this case condensation controls.

Limitation on values of C will be discussed later.
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I[Il. RELATIONSHIPS AMONG THE MOMENTS
It is convenient to use the following notation for the moments of

particle size distribution function

(25)
Several useful relationships exist among the moments. For example

(26)
where r is the radius of the particle, fr (r) the normalized
number-distribution function, r3 the cube mean radius and rH the
harmonic mean radius. Similarly

(27)
where r1 s the arithmetic mean radius, and

(28)
where r2 = is the mean square radius. According
to HERDAN (1960)

(29)
Using (29) it can be concluded that

(30)
For a monodisperse system all mean radii are equal (rl =r2 = r3 =

rH) and yl1 = p3 = p4 = 1. Thus the deviations of il u3 and p4 from
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unity can serve as a measure of the polydispersity of the system.
This result will be used later. Substitution of (10) into equations (2)

and (3) gives

(31)
and

(32)
Using (26) and (27) equation (14) becomes

(33)

From (33) it follows that a knowledge of r1 and rH or r1 and

is sufficient for the determination of the collision parameter for a
polydisperse system and the knowledge of the whole spectrum is not
required. This statement for a self-preserving system in the continuum
region is equivalent to the conclusion of TIKHOMIROV et al (1942).

For a monodisperse system equation (33) or (14) gives, of course,
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IV. ANALYTICAL SOLUTIONS OF THE TRANSFORMED KINETIC EQUATION

Equation (11) can also be written as follows

(34)

It does not seem possible to obtain a general analytical solution of

this equation, although solutions for the lower and the upper end of

the spectrum can be found using a modified version of the method of

FRIEDLANDER and WANG (1966). It is assumed first that for sufficiently

small values of C the integral term in (34) can be neglected. The

solution of the resulting ordinary differential equation is given by

(35)

where

C1l is an integration constant and exponents € and w are given by

and
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For n< n 1 , Eq. (35) can no longer be applied. Instead, the

solution of Eq. (34) is given by

(35a)
where C1'is another constant different from C1. The boundary
condition WY(n)=0 atn = 0 requires that C1' = 0, so Y (n) = 0 for

n < nl. This means that the integral term in (34) is identically
zero over the range n <nl<2nl so that (35) represents an exact
solution to (34) over that range.

For C = 0 (35) reduces to

(36)
which is the solution of FRIEDLANDER and WANG (1966) for
Smoluchowski coagulation. For the upper end of the spectrum, that
is for n - o equation (34) reduces to

(37)
A solution of this equation is

(38)

where C2 is an integration constant and I is the gamma function.
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The approximations in this derivation are discussed by FRIEDLANDER

and WANG (1966) in their treatment of the upper end of the spectrum.
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V. NUMERICAL SOLUTIONS OF THE TRANSFORMED KINETIC EQUATION

Equation (34) is a nonlinear ordinary integro-differential equation
for ¢ (n) which must be solved with certain constraints on the
moments of ¢ (n ), given by equations (26), (27), (31) and (32).

For the case of C = 0 FRIEDLANDER and WANG (1966) reduced
the two undetermined constants pl and p3 to one by an appropriate
transformation. For C # 0 this transformation is no longer applicable
and a trial-and-error procedure becomes necessary. Among the
approximate methods which exist at present the finite difference method
is probably the most accurate. The Adams extrapolation formula
(COLLATZ, 1960) truncated after the fourth difference term was used.
The starting values for the Adams extrapolation were calculated using
the analytical solution for the lower end of the spectrum (35).

To facilitate numerical computation equation (34) was transformed

using the substitution n = ex and ¢ (n) = Y (x)- The result is

(39)

The integral term in (39) was further transformed into the form

by the substitution . The value of the integral was
computed by the 32-point Gaussian-Laguerre quadrature formula

KRYLOV (1962). The trial-and-error procedure for finding the un-
determined constants pl, p3 and C1 can be simplified minimizing a

function F given by
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(40)

whereft and p3 are assumed values, plc, p2c, p3c and

Bre the computed values of moments p given by (25). The
results of numerical calculations obtained using the IBM 360/75
computer at the California Institute of Technology are given in
Tables | and Il. The constant C2 appearing in the approximate
solution for the upper end of the spectrum (equation (38)) can be
evaluated after the numerical solution for the whole spectrum is
obtained. The values of the constant C2 for various K are given in
Table III.

TABLE 11I.

Estimated values of by fitting equation (38) to the numerical

solution of the whole spectrum.

K 0.01 0.1 0.5 1.0

c2 1.0547 1.0669 1.0937 1.3730

The self-preserving spectra v =g (n) for different values of K
are given in Figure 1.

The curve for K = 0 corresponding to the case treated by
FRIEDLANDER and WANG (1966) is given for comparison. The curve

for K = 0.01 is not given since this curve lies very close to the curve
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TABLE

coagulation with simultaneous Maxwellian condensation obtained

from equation

=0 .01

NOWkRPRPFPOOOOOOOOOoOOo

.0010
.0020
.0030
.0041
.0061
.0100
.0201

.0301

.0605
.1103
.2009
.6036
.0999
.0041
.6 537

.0133
. 0243
.0400
.0540
.0806
.1088

.1623
.2958
4412

.6582

.0852
.7892
.2602

.3752
.2558

(34) by a finite-difference method.

G

(eNeoNeoloNeoNoNoNolololololNoNoNe

oeoleoololoNoloNolNololNolNeoNeNo

.0002
.0067
.0244
.0517
.1133
.2 335
.4 567
.5871
. 7682
.8435
.8 306
5779
.3497
.1384
.0006

.0133
2877

.5487
.6749
.7945
.8460
.8659
.8005
.6991

.5602
.3575
.1694
.0356
.0036
.0004

1.0

ONPWONRPPOOOOOOOO

PWWONRPFRPPPRPOOOOOOO

1144
.1544
.2084
.3109
.3798
.5126
.6261
.8452
.2609
.7020
.0789
.1013
.1 863
11131
.2452

.2351
.2872
.3877
4735
.5783
.7064
.8628
.0538
2871
5721
.9201
.3452
1657
.8666
71227

¢ (n)

cNeololololNoNolNoNoloNoNoNoNoNe

C O OO0 OO0 O0CO0OO0OO0O R RKrL K

.6422
.9106
.9752
.9402
.8885
.7663
.6624
.5105
.3136
.1913
.1224
.0 347
.0095
.0031
.0008

1178
1011
.0143
.9483
.8183
.7259
.5806
4693
.3252
.2205
1379
.0776
.0268
.0085
.0017
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V1. DISCUSSIONS
A. Limits of the Theory

According to equation (35) the behavior of Y (n) at

7l  depends on the value of € - w . Three cases can be
distinguished depending on whether € - W for which ¢ (nl1) = 0,
€ - W = 0 for which Y (n 1) is finite and e-w <0 for
which ¢ (n 1) is infinite. Hence £-W = 0 represents a critical
case. Using the equations for € and w given by (35) this relationship

can be expressed as a quartic equation in C :

(41)

where the coefficients a i ( =0,1,2,3,4) are given by

To each value of C there corresponds a solution ¢ = g (n) with
particular values for the moments pl and p3 so that pl and p 3 are
both functions of C. The functional dependence, however, must be
evaluated numerically. An estimate of the critical C can be made in
the following way: The numerical solutions show that with increasing

values of C the curves become narrower which means that condensation
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tends to narrow the size spectrum. As shown above the deviations of
moments pl and p 3 from unity serve as an index of the polydispersity

of the system. Consequently, it can be expected that p1l is a decreasing
function of C while pu3 is an increasing function of C both approaching
unity.

One extreme case is pl = p3 = 1 Equation (41) in this case

becomes

(42)

According to Descartes' rule this equation has no more than one positive
root. Since for C = 1 the left side of (42) is negative and for C = 2
positive, This unique positive root lies between 1 and 2.
The second extreme case is Smoluchowski coagulation without condensation
for which pl1 = 1.248 = 1.25 andf = 0.9046 = 0.9.

Equation (41) becomes

(43)
Again Descartes' rule requires that the positive root of (43) which also
lies between 1 and 2 is the only positive root of this equation. Thus
it appears that the critical value of C lies between positive roots of
(42) and (43) i.e., between 1 and 2 so the theory is limited to values of
C smaller than the order of unity.

B. Role of Homogeneous Nucleation

To estimate the order of magnitude of C for typical conditions,

the parameter B appearing in (12) and defined by (9) must be known.
Typical values for the constants appearing in B for water vapor are

(FUCHS, 1959; WEAST, 1965):
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so that we get B = 105 cm2 seci

Since the theory is limited to small values of C from (12) it
follows that S must be very close to unity. Much higher values of the
saturation ratio are required for homogeneous nucleation than for vapor
condensation on foreign particles (MASON, 1957). Thus neglecting new
particle formation by homogeneous nucleation is justified for the theory
discussed in this paper.

C. Relationship Between Surface Area and Saturation Ratio

The moment p4 is defined by (21) or by (28) and by (30) 0<4

< 1. This moment can be expected to increase with increasing C.
The value of p4 has been calculated numerically for K = 1 and found to

be p4 = 0.9505. Substitution of this value into (20) gives for K =1

(44)
According to (12) and (20) the surface concentration ¢ is proportional
to the saturation ratio S. Using the values of moments pl and pn3
for K = 1 given in Table Il we get C = 1.09. Thus, for K = 1 the
values of p 4 and C are known so that the proportionality coefficient
between o and S can be calculated for particular values of y,

T and B.
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Appendix 1. Derivation of Equation (4) from Equation (1)

Integrating Equation (1) with respect to v from 0 to o gives

Let

Then and since

we have

The second term of the above expression represents the rate of change of the
total number concentration due to condensation. Since the assumption is
made that condensation does not change the total number concentration
(homogeneous nucleation is not taken into account) this term must be zero.

Thus,
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Let

Then

Let

Then

So

Furthermore, let

then

Hence



108

Appendix Il. Derivation of Egn. (7) from Egn. (1)
Multiplying Eqgn. (1) by v and integrating with respect to v

from 0 to o gives

Let
In B, let
then
Let
then
Let
Therefore, A =0 (1)

Next consider

(2)

Since v is a function of time 't only, the partial differentiation

with respect to t is equal to total differentiation.
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Thus

and further by definition of rate of condensation

therefore, Eqgn. (2) becomes

or
hence (3)
By definition, is a function of t only.
Therefore

(4)
In the Appendix | we have shown that which represents

the rate of change of the total number concentration, is zero.So the term

represents the average rate of the change of the total
number concentration. Since we assume that condensation does not change

the total number concentration. The average rate is, of course, zero.

Thus, (5)
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From Egns. (3), (4) & (5 we have

and by (1) A = 0, therefore
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Appendix 1II. Derivation of the Maxwell Equation for the Rate of

Condensation: Equation (9)
The theory of vapor condensation on particles in a gaseous medium
was first investigated by Maxwell. Maxwell assumed that the vapor con-

centration at the surface of the particle was equal to its equilibrium density,

Co. This assumption is true when the Knudsen number is very small, i. e,
the particle radius r is much greater than the vapor molecule mean free
path.

In the case of stationary condensation, the rate Im of diffusion of

the vapor of the particle across any spherical surface with radius p may

be written as

(1)
where D the diffusivity of the vapor, C its concentration.
The boundary conditions are
(i) (2)
(ii) (Knudsen number is small)
The solution of (1) and (2) gives
(3)
If the vapor obeys the ideal gas law, then
(4)
where p is partial vapor pressure, M molecular weight, R gas

constant, and T absolute temperature. Egn. (3) becomes

(5)
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where is mean value of the absolute temperature between To and T o« .
Next, consider the temperature drop caused by condensation. If the heat
transfer by convection and radiation are negligible and the conductivity of

the gaseous medium is constant, then

(6)
where X is thermal conductivity of the gaseous medium. The boundary
conditions are

(i), T =T o (temperature of the medium) at p=o
(7)
(i) T = To (temperature of the surface of particle) at p=v
The solution of (6) and (7) gives
(8)

The heat flux to the drop from the surrounding space due to conductivity

of the medium is

(9)
In stationary condensation, the quantity of heat transferred to

particle equals the amount released in condensation, i. e.,

(10)
Where L is the latent heat of condensation of the liquid, the minus
sign is used because of condensation.
Eqn. (5) is substituting into Eqn. (10) gives

(11)

Hence, Eqn. (5) becomes

(12)



113

In the case of condensation, the Clapeyron-Clausisus equation

(13)
may be written as

(14)
If we neglect the volume of the liquid compared to that of the vapor,
then with the assumption of the ideal gas for the vapor,

(15)
Let P s be the pressure of the saturated vapor at T o, then

(16)

(17)
If To - T o is small, then

(18)
From Egn. (11)

(19)

Let

then
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If Im is in volume per unit time, we must divide Im by density of the

liguid. Hence, let

we get
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Appendix 1V. Numerical Solution of the General Ordinary and Nonlinear

Integro-Differential Equation;

(1)

with constraints:

(i)

(ii)

(iii)

where a (i) is a function depends on .

It seems very unlikely to find the analytic solution of the above

guation which appears frequently in the theory of aerosols. The present
study attempts to solve this equation numerically. As an example, this
equation will be solved for the case of Maxwellian condensation and Smolchowski

coagulation.
To facilitate the numerical calculation, the following transformation

is introduced (WANG and FRIEDLANDER, 1966).

(2)

(3)

The advantage of the above transformation is that the function Y (x) looks
like a normal distribution. The argument x ranges from - to +ow

Using this transformation, Eqn. (1) becomes

(4)
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Furthermore, let (5)

The integral term then becomes

(6)
The advantage of the transformation (5) is that the integral term can be

transformed into the following form:

(7)
The above integral can be interagated by the 32-point Gaussian-Laguerre
guadrature formula which is a very general quadrature, and the sub-
routine is available in all computing facilities.

After these two transformations, Egn. (1) becomes

(8)
or (9)
where (10)

Equation (9) is a first order ordinary differential equation. Among
the approximate methods which exist at present, the finite difference
methods are probably the most accurate. The Adams extrapolation method
will be used.

The finite difference methods are based on the integral form of

Eqn. (9), which is

(11)
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In the Adams extrapolation method, the function H(x,Y) under the integral

sign in Eqgn. (11) is replaced by the interpolation polynomial P(x) which

takes the values at the point
respectively. In effect, we evaluate the integral by means of the quadrature
formula
(12)
The truncation after will be used in this solution of Eqn. (9), where

In the finite difference method, it is always needed to have a sequence of
approximations Hi. before we can start the step-by-step procedures
defined by Eqn. (12). Consequently, the finite difference methods have two
distinct stages:
(i) Calculation of starting values which are obtained by some other
means, for example, using the analytic solution of the Eqn. (1)
for certain interval of n (for example, when n is small or n
is large). This will bring another constant which is equivalent
of addition of another constraint. We will discuss the constraints
later.
(ii) Main calculation, step by step as far as required. Due to the

undetermined constants and the constraints (i) and
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(ii) a trial-and-error procedure is necessary. The method assumes the

undetermined constants pi's and then proceeds the numerical calculation.
After the calculation is completed, the constraints (i)-(iii), are calculated.
Let us denote them wv0, v 1 and pic's respectively, and then define

the following function

(13)
The problem now is to minimize the function F subject to the constraints
(i)-(iii). An optimization program AMOEBA is written for obtaining pic's
such that function F has a minimum.

As an example, Eqgn. (34) is solved by the method described above.

We have

(14)
(15)
(16)
constraints
(17)
where are constraints (i) and (ii) respectively.
The result of the above calculation is given in TABLE | and II. The

computer program written in FORTRAN IV is given in APPENDIX V.
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Appendix V. Computer Program

A computer program of the solution of general nonlinear intego-
differential equation with the example of solving Eqn. (34) is given. In
using the computer program, the functions

must be given in the SUBROUTINE QF. Two subroutines

are also included. The first SUBROUTINE QF is mainly responsible
for solving the integro-differential equation. The SUBROUTINE AMOEBA
is a minimization program using the contraction method shrink the simplex
toward a new minimum. If instead a maximum is found, then reflect the
current maximum through centroid. Finally, test of convergence is

given.
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100

25

1000
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NUMERICAL SOLUTION OF THE NONLINEAR INTEGRRO-DIFFRENTIAL EQUATI ON

NUMERICAL SOLUTION OF THE TRANSFORMED KINETIC EQUATION:
SMOLUCHOWSKI COAGULATION AND MAXWELLIAN CONDENSATION

CSTAR .NE. ZERO

IMPLICIT REAL*8 (A-H,0- 2)

REAL*4 QY,QP,QF,XETA(200),YY(200)

DIMENSION QY (4),QP(2,6),CHECK(5),ETA(200),Y(200)

EXTERNAL OQF

COMMON /PARM/ CHECK,BBC,BBW,ETA1,CSTAR,ETA,Y,RK,A,B,C1,NBC
FORMAT (9F8.0)

FORMAT (22X, "ETA', 22X, 'PS 1)

FORMAT(LH1,48X,'A ',24 X ,'B',23X,'C 1"',//)

FORMAT (12X,'G UESSED VALUE',3(10X,E15.8),//)

FORMAT (4(10X, E15.8))

FORMAT(9X,'C ALCULATED VALUE',2 (1 0X,E15.8),//)

FORMAT( ' INTEGRATION OF PSI(ETA) OVER ETA FROM ZERO TO INFINITY =

1',E15.8,///," INTEGRATION OF ETA*PSI(ETA) OVER ETA FROM ZERO TO IN
2FINITY = ', E15.8//)

FORMAT (8X, 'CSTAR = ',E15.8,8X 'ALPHA = ',EL5.8,9X'B ET A = ',E15.8,9 X,
1'ETAl= ', E15.8//,11X,'K = ', E15.8//,11X ,'F= ' E15.8, 9X,'M U 4=",E
215.8,/1/)

READ(5,101) RK, A,B,ClL, (QY(l), 1=1,2)
IF(A.LT.0.9D0.0R.A.GT.1.D0.0R.B.LT.1.D0.0R.B.GT.1.3D0) GO TO 1000
QP(1,1)=A

QP(2,1)=B

CALL AMOEBA(QP,QY,2,1.E-3,QF)

J=4

CALL QF(QP(1,J),XX)

WRITE(6, 105) XX,CHECK(4)

WRITE(6, 103)

WRITE(6,104) (QP(l,4),1=1,2),C1

WRITE(6,106) CHECK(3), CHECK( 1)

WRITE(6, 108) CSTAR, BRC, BBW,ETA1,RK, XX, CHECK(4)
WRITE(6,107) CHECK(2), CHECK(5)

WRITE(6,102)

DO 25 1=1,NBC

WRITE(6,105) ETA(1),Y(!l)

GO TO 100

STOP

END



30

28

29

121

SUBROUTINE QF (VV, XX)

IMPLICIT REAL*8(A-H,0- 2)
REAL*4 XX, VV

DIMENSION Z(32),Q(32),X(200),Y(200),ETA(200),F(200,5),ZZ(2),VV(3),

1X ( 200 ),XJ(200), CHECK(5),Z1(32),2J(32),ZK(32),YZ(2),YOP(5,32)
COMMON / PARM/ CHECK,BBC,BBW,ETA1,CSTAR,ETA,Y,RK,A,B,C1,NBC

DATA Z/.11175139809793770D3,.9882954286828397D2,.8873534041789240D

12,.8018744697791352D 2,.7268762809066271D2,.65975377287935053D2
.59892509162134018D2,.54333721333396907D2,.49224394987308639D2,
.44509207995754938D2,.40145719771539442D2,.36100494805751974D2,
.32346629153964737D2,.28862101816323475D2,.25628636022459D 2,
.22630889013196774D2 ,.19855860940336055D2,.17292454336715315D2,
.14931139755522557D2,.12763697986742725D 2,.10783018632539972D2,
898 282596D1,.7358126733186241D1,.59039585041742439D1,
.46164567697497674D 1,.34922132730219945D1,.25283367064257949D1
.17224087764446454D1,.10724487538178176D1,.57688462930188643D0,
.23452610951961854D0,.4448936 5833267018D-1/
DATA Q/.45105361938989742D-47,.13386169421062563D- 41,
.26715112192401370D-37,.11922487600982224D- 33,
.19133754944542243D-30 ,.14185605454630369D- 27,
.56612941303973594D-25,.1 3469825866373952D-2 2,
.20544296737880454D-20,.21197922901636186D-18,
.15421338333938234D- 16,.8171823443420719D-15,
.32378016577292665D-13,.9799379288727094D- 12,
.23058994918913361D-10,.42813829710409289D- 9,
.63506022266258067D-8 ,.76045678791207810-7,
.7416404578667552D-6,.5 93454 16128686329D-5 ,
.39203419679879472D-4 ,.214864918801364190-3,

.9808033016449551D- 3,.37388162946115248D- 2,
.11918214834838557D-1,.31760912509175070D -1,
.70578623865717442D-1,.12998378628607176D0,
.19590333597288104D0 ,.23521322966984801D0,
F.21044310793881323D0,.10921834195238497D0/

DATA E1,E2 ,E3,E5/0.33333333333333333,0.666666666666666667,
AO.41666666666666667,0.34861111111111111/
F1(EDA,EDAB)=1.DO0+((EDA-EDAB)/EDAB)**E 1
F2(EDA,X1,X3,C)=EDA+X1*X3*EDA+X3*C*EDA-C*EDA**E1

OO0 WN

MUoOom>OWo~NouPwNn R

F3(EDA,X1,X3,C)=2.D0*X1*X3-X3/EDA**E1- X1*EDA**E1+X3*C-C*E1/EDA**E2

A=VV(1)
B=VV(2)

IF(A.LT.0.9DO.OR.A.GT.1.D0O.OR.B.LT.1.D0.0R.B.GT.1.300) GO TO 28
DO 30 J=18,32

Z1(J)=1.5D0*Z(J)

ZJ(J)=DLOG(1.DO-DEXP(-Z1(J))

CONTINUE

DX=0.1 DO

| MAX=175

GO TO 29

XX=1.E7

GO TO 11

CSTAR=RK*(1. DO+A*B) /A*0.5 DO

W=1. DO+A*B+CSTAR*A

CSTARW=CSTAR/W

BMW=3.DO *B/W
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BBC=0.5D0O-B MW*A -1 .5 DO*A*CSTARW
AB=2.DO*A*B

CSTARA=CSTAR*A
CSTAR1=CSTAR*E1

X0 =1.5DO*DLOG(CSTARW)
IF(XO.LT.-10.1D0O) XO=-10.1DO
CSTW=DSQRT(CSTARW)
ETAL1=CSTW**3

BBW=1.5DO *(A/ CSTW+B*CSTW )/W
AA=BB C+BBW

BB=BBC-BBW

XMIN=XO+5*DX

DO 10 1=1,1 MAX

X(1)=XO+I1*DX

ETA (1)= DEXP (X (1))

X1 (1) =DEXP (X[

XJ(1)= DEXP(X (1)*E2)

CONTINUE

Crx****C ALCULATI ON OF STARTING VALUES

C

18

12

16

26

17

15

14

DO 18 1=1,5

Y (1) =CI*DEXP(BMW*XI(1)-E 1 *X (1))* (X 1(1)-CSTW )**A A *(X I1(1)+CSTW)**BB
F(l1,1)=-(AB-A/X1(1)-B*XI(1)+ CSTARA-CSTAR1/XJ(1))/
1(W-CSTAR/XJI(1))*Y (1)

DO 12 J=2,5

DO 12 1=J, 5

F(1,J)=F(l, J-1)-F(1-1,J-1)

Y(6)=Y (5)+DX*(F(5,1)+0.5D0*F(5,2 )+ E3*F(5,3)+0.375D0*F (5,4)+
1E5*F (5,5))

DO 13 1=6,IM AX

QQ=0.DO

DO 14 J=18,32

ZZ(1)=X(1)-Z1(J)

ZZ(2) =X (1) +23(J)

DO 15 K=1,2

IF(ZZ(K)-XMIN) 16,16, 17

IF(ZZ(K).LT.XO) GO TO 26

ZZXX=DEXP(E1*ZZ(K))

YZ(K)=C1*DEXP (-Z Z (K)* EL+ZZXX*BMW )*(ZZX X -CSTW)**AA*(ZZXX+CSTW )**BB
GO TO 15

YZ(K)=0.DO

GO TO 15

IK=(ZZ(K)-X0)*10.D0

DEL=ZZ (K)-X (1K)

YZ(K)=Y (IK)+DEL* (F (IK ,1)+0 .5DO *F (IK,2)+E3*F (1K, 3)+0.375DO*F(IK ,4)
1+E5*F(IK, 5))

CONTINUE

ETAB=DEXP(ZZ(1))

ZK(J)=F1(ETA(I),ETAB)*DEXP(-Z(J)*0.5D0)

QQ=QQ+ZK (J)*YZ(1)*Y Z(2)*Q(J)

RR=F3 (ETA(1),B,A, CSTAR)*Y (1 )+1.5DO*(ETA (1)*QQ

SS=F2(ETA(l), B,A,CSTAR)/ETA(I)

F(1,1)=-RR/SS
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C ***** ADAMS EXTRAPOLATION METHOD

C

19

13
20
C

DO 19 J=2,5

F(1,3)=F (1,3-1)-F(1-1,3-1)

Y(1+1)=Y(1)+DX*(F(1,1)+0.5DO*F( | ,2)+E3*F( |,3)+0.375DO*F (I, 4)+
1E5*F (1,5))

IF (Y(1+1). LT.0.DO) GO TO 20

CONTINUE

NBC=1

C***** CALCULATION OF UNDETERMINED CONSTANTS AND CONTRAINTS

C

24

27

23

22

21

25

102
103
104
105
106
107

108

11

DO 21 1=1,5

REALI=DFLOAT (1)

SUM=0.DO

DO 22 J=18,32

YOP (1,J)=X(NBC)-3.DO*Z(J)/(REALI+1.DO)
IF(YOP (1,J)-XMIN) 24,24,23

IF (YOP(1,J).LT.XO) GO TO 27
ZZXX=DEXP(E1*YOP(1,J))

YPP=C1*DEXP (-YOP(I,J)*E1+ZZXX*BMW)*(ZZXX-CSTW)**AA*(ZZXX+CSTW)**BB
GO TO 22

YPP=0 .DO

GO TO 22

IK=(YOP(1,J)-X0)*10.D0

DEL=Y O P (1,J)-X (1K)

YPP=Y (IK)+DEL*(F (IK,1)+0.5DO*F (IK,2)+E3*F(IK,3)+0.375DO*F (IK ,4)+
1E5*F(1K,5))

SUM=SUM+YPP*Q (J)

CHECK (1)=3.DO*SUMDEXP ((REALI+1.DO)*X(NBC)/3.DO)/(REALI+1.DO)
CONTINUE
XX=DABS(CHECK(3)-A)+DABS(CHECK(1)-B)+DABS(CHECK(2)-1.DO)
1+DABS(CHECK (5)- 1.DO)

IF( XX.GT.1 .E-2) GO TO 11

WRITE(6,103)

WRITE(6,104) A,B,C1

WRITE (6,106) CHECK (3),C HECK(1)

WRITE (6,108) CSTAR,BBC, BBW,ETA1

WRITE(6,107) CHECK(2),C HECK(5)

WRITE(6,105) XX,RK

WRITE(6,102)

DO 25 I=1,NBC

WRITE(6,105) ETA(I), Y(I)

FORMAT (22X,'E TA', 22X, 'PSI')

FORMAT (1H1,48X, 'A' ,24X,'B",23X,'C1',//)

FORMAT(12X,'GUESSED VALUE', 3 (10X, EL5.8),//)

FORMAT (4 (10X, E15.8))

FORMAT(9X,' CALCULATED VALUE', 2(10X,E15.8),//)

FORMAT( INTEGRATION OF PSI(ETA) OVER ETA FROM ZERO TO INFINITY =

1',E15.8,///," INTEGRATION OF ETA*PSI(ETA) OVER ETA FROM ZERO TO IN
2FINITY = ' ,E15.8//)

FORMAT(8X,'CSTAR =',E15.8,8X, "ALPHA =, EL5.8, 9X,' BETA ="',E15.8,9X,
1'ETA1 ="',E15.8//)

RETIIRN
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SUBROUTINE AMOEBA (P,Y,N,E,F)

UPON ENTRY THE FOLLOWING PARAMETERS MUST BE PASSED:

2000
2010
2020
2030
2040
2050
2060
CCC

CcCC
100

102
101

CCC
200

N -- THE NUMBER OF VARIABLES FOR THE M INIM IZATION

E-- ABSOLUTE DELTA FUNCTION VALUE FOR DETERMINING CONVERGENCE.

F-- THE NAME OF A SUBROUTINE WHICH WHEN CALLED BY CALL F(V,X)
WHERE V IS AN ARRAY OF N VALUES WILL RETURN WITH THE COR-
RESPONDING FUNCTION VALUE IN X.

P-- AN ARRAY OF DIMENSION (N,N+4) WITH INITIAL VALUES FOR THE
VARIABLES X (I) IN P(l,1) FOR 1=1(1)N.

Y -- A VECTOR OF DIMENSION (N+2) CONTAINING N DISPLACEMENTS
DX(1) IN Y(I) FOR 1=1(1)N. THESE VALUES OX(Il) WILL RE USED
TO CONSTRUCT THE INITIAL SIMPLEX IN THE ARRAY P:

P(1,J3)=X(1)+DELTA(J-1,1)*D X(l) FOR I1=1(1)N,J=1(1)N+1,

WHERE DELTA (1,J) IS THE KRONECKER DELTA FUNCTION.

EXTERNAL F

DIMENSION P(N,1),Y (1)

DATA RFACT1,RFACT2/-1.0,2.0/
DATA CFACT1,CFACT2/0.5,0.5/

DATA EFACT1,EFACT2/2.0,- 1.0/
FORMAT(10X, E12.5)
FORMAT (10X ,'MAX,M IN', 5 X,2 (E12.5,5 X))
FORMAT (10X ,'"CENTROID ',5X ,E12.5)
FORMAT (10X ,'REFLECTIO N,5X ,E 12 .5)
FORMAT( 10X,' EXPANSION',5X,E12.5 )
FORMAT( 10X, ' CONTRACTION', 5X,E12.5)
FORMAT(10X,' SHRINK' ,5X ,E12.5)
INITIALIZE SUBROUTINE PARAMETERS *
ALN= ALOAT(N)

NS=N+1

NC=N+2

NR=N+3

NT=N+4
CONSTRUCT INITIAL SIMPLEX.

DO 101 J=1,N

DO 102 1=1,N

P(1,J+1)=P(I, 1)

IF(1.LEQ.J) P (I,J+1)=P(1,J+1)+Y(I)
CONTINUE

CALL F(PI1,3),Y(J))

CALL F(P(1,NS),Y(NS))
FIND CURRENT MAX AND MIN.

NH=NS

NL=NS

YH=Y (NS

YL=Y( NS)

DO 201 1=1,N

IF(Y(1).LE.YH) GO TO 202

YH=Y(1)

NH= 1



125

GO TO 201
202 IF (Y (1).GE.YL) GO TO 201
YL=Y (1)
NL=I
201 CONTINUE
WRITE(6,2010) VH,YL
CCC COMPUTE CENTROID.
300 DO 301 I=1,N
X=0.0
DO 302 J=1,NS
IF (J.EQ.NH) GO TO 302
X=X+P(l,J)
302 CONTINUE
301 P(I,N C)=X/FLN
CALL F(P(1,NC),YC
WRITE(6,2020) YC
CCC REFLECT CURRENT MAX THROUGH CENTROID.
400 DO 401 I=1,N
401 P(I,NR)=RFACT1*P (I,NH)+RFACT2*P(I,NC)
CALL F(P(1,NR),YR)
WRITE(6,2030) YR
IF(YR.LT.YL) GO TO 500
X=YL
DO 402 1=1,NS
IF(I.EQ.NH) GO TO 402
IF (Y (1).GT.X) X=Y(I)
402 CONTINUE
IF(YR.GT.X) GO TO 600
NEW=NR
GO TO 800
CCC EXPAND.
500 DO 501 1=1,N
501 P(I,NT)=EFACT1*P(I,NR)+EFACT2*P(I,NC)
CALL F(P(1,NT),YT)
NEW=NT
WRITE(6,2040) YT
IF(YT.GE.YL) NEW=NR
GO TO 800
CCC CONTRACT.
600 NEW=NH
IF(YR.GT.YH) GO TO 601
NEW=NR
YH=YR
601 DO 602 I=1,N
602 P (I, NT)=CFACT1*P (I, NEW)+CFACT2*P(l , NC)
CALL F(P(1,NT),YT)
WRITE(6,2050) YT
IF(YT.GT.YH) GO TO 700
NEW=NT
GO TO 800
CCC SHRINK SIMPLEX TOWARD CURRENT MIN.
700 DO 701 J=1,NC
IF(J.EQ.NL) GO TO 701
DO 702 1=1,N



702 P(1,J)=0.5*(P (1,J)+P (I,NL))

CALL F(P(1,J),Y(J))
701 CONTINUE
YC=Y(NC)
WRITE(6,2060) YC
GO TO 802

CCC TEST FOR CONVERGENCE.

800 DO 801 I=1,N

801 P (I,NH)=P (I,NEW)
YH=YR
| F(NEW.EQ.NT) YH=YT
Y(NH)=YH

802 ERR=0.0
DO 803 1=1,NS

803 ERR=ERR+(Y (1)-YC)**2
ERR=SQRT(ERR/ FLN)

IF(ERR.LT.E) GO TO 1000

CALL ELAPSE
WRITE(6,2000) ERR
CCC UPDATE CYCLE DATA.
900 GO TO 200
CCC END OF MINIMIZATION.
1000 RETURN
END

126
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NOMENCLATURE

Roman Letters

Ao collision paramer of a polydisperse system, defined
by Egn. (5)

Qi (i=0, 1,2, 3,4)

B proportionality coefficient in the Maxmell

dimensionless constant given in Eqn. (41)

condensation Eqn. (9)

C = dimensionless parameter defined in Eqgn. (12)
c1Ci = integration constants defined in Eqn. (35) and Eqn. (35a) respectively
c2 = Integration constant defined in Eqgn. (38)

D = diffusivity of vapor

F = function defined in Eqn. (40)

fv(v) = normalized volume distribution function

I = rate of condensation

K = dimensionless constant defined by Eqgn. (17)
k = Boltzmann's constant

L = latent heat

M = molecular weight of vapor

N (t) = total number concentration of particle at time t
No = initial number concentration, equal N(0)

n (v,t) = particle volume distribution function

os = saturated vapor pressure

oV = actual vapor pressure

R = gas constant

r = radius of the particle

r1 = arithmetic mean radius of particles

— = mean square radius of particles

r3 = cubic mean radius of particles

rH = harmonic mean radius of particles

= saturation ratio

= absolute temperature of the medium

t = time
vV, V~ = particle volumes
V+ = mean particle volume

= dimensionless variable
Y (x) = dimensionless transformed distribution function

z = transformed variable



Greek Letters
B(v, v

€

n

nl
K

U
W i(i=12,3,4,5)

Hic(i=12 3,5)

P
o(t)
(o)e]
? (1)
@0
w(n)

w
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collision parameter for particles of volume v and v
dimensionless parameter defined in Egn. (35)
dimensionless independent variable defined in Eqn. (10)
dimensionless parameter defined in Egn. (35)

thermal conductivity of the medium

vecosity of the medium

moment of the distribution function defined
in Egn. (25)

computed values of pi's

density of liquid

total surface concentration of particles at time t
o(o) initial total surface concentration of particle
total volume concentration at time t

(o) initial total volume concentration
dimensionless distribution defined in Eqgn. (10)

dimensionless parameter defined in Eqgn. (35)
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