CaltechTHESIS
  A Caltech Library Service

Design and implementation of linear-phase and/or pairwise-symmetric perfect-reconstruction FIR multirate filter banks

Citation

Nguyen, Truong Quang (1989) Design and implementation of linear-phase and/or pairwise-symmetric perfect-reconstruction FIR multirate filter banks. Dissertation (Ph.D.), California Institute of Technology. http://resolver.caltech.edu/CaltechETD:etd-11102005-091115

Abstract

This thesis studies the structures, design procedures and implementations of FIR perfect-reconstruction digital filter banks. The first part of the thesis deals with the structures and the design procedures of the perfect-reconstruction filter banks where the polyphase transfer matrices are lossless. These structures are parameterized by a set of rotation angles [37]. The usual procedure is to blindly optimize these angles to minimize an objective function where the objective function consists of all the stopband energies of the filters which we would like to design. This procedure is very time-consuming because of the nonlinear objective function and the large number of parameters to be optimized. The pairwise-symmetry property is imposed on these perfect reconstruction systems as a means of decreasing the number of parameters (rotation angles). The pairwise-symmetric property together with a method to initialize these rotation angles gives a very efficient design procedure. Design examples and complexity of the pairwise-symmetric, perfect-reconstruction FIR filter banks have compared well with the approximate perfect-reconstruction systems.

The second part of the thesis studies the structures and the design procedures of perfect-reconstruction filter banks which yield linear-phase filters. By confining the problem to a class, we are able to count exactly the number of linear-phase, perfect-reconstruction filter banks in this class. For the two-channel filter banks, we have obtained structures and design procedures for all nontrivial systems. Comparison with the approximated perfect-reconstruction systems in terms of complexity and performance is made. In our subclass of linear-phase, perfect-reconstruction, there are three structures for the case of three-channel filter banks. By limiting the problem to one of these systems, we obtain structures which yield linear-phase, perfect-reconstruct ion filters. The implementation complexity is studied. Design examples for all new methods presented here are included, along with tabulation of lattice and filter coefficients.

Item Type:Thesis (Dissertation (Ph.D.))
Degree Grantor:California Institute of Technology
Division:Engineering and Applied Science
Major Option:Electrical Engineering
Thesis Availability:Restricted to Caltech community only
Research Advisor(s):
  • Vaidyanathan, P. P.
Thesis Committee:
  • Vaidyanathan, P. P. (co-chair)
  • McEliece, Robert J.
  • Abu-Mostafa, Yaser S.
Defense Date:14 April 1989
Record Number:CaltechETD:etd-11102005-091115
Persistent URL:http://resolver.caltech.edu/CaltechETD:etd-11102005-091115
Default Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:4488
Collection:CaltechTHESIS
Deposited By: Imported from ETD-db
Deposited On:10 Nov 2005
Last Modified:26 Dec 2012 03:09

Thesis Files

[img] PDF (Nguyen_tq_1989.pdf) - Final Version
Restricted to Caltech community only
See Usage Policy.

7Mb

Repository Staff Only: item control page