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ABSTRACT 

This thesis studies the structures, design procedures and implementations of FIR 

perfect-reconstruction digital filter banks. The first part of the thesis deals with the 

structures and the design procedures of the perfect-reconstruction filter banks where 

the polyphase transfer matrices are lossless. Thesestructures are parameterized by 

a set of rotation angles [37]. The usual procedure is to blindly optimize these angles 

to minimize an objective function where the objective function consists of all the 

stopband energies of the filters which we would like to design. This procedure 

is very time-consuming because of the nonlinear objective function and the large 

number of parameters to be optimized. The pairwise-symmetry property is imposed 

on these perfect reconstruction systems as a means of decreasing the number of 

parameters (rotation angles). The pairwise-symmetric property together with a 

method to initialize these rotation angles gives a very efficient design procedure. 

Design examples and complexity of the pairwise-symmetric, perfect-reconstruc tion 

FIR filter banks have compared well with the approximate perfect-reconstruction 

systems. 

The second part of the thesis studies the structures and the design procedures of 

perfect-reconstruction filter banks which yield linear-phase filters. By confining the 

problem to a class, we are able to count exactly the number of linear-phase, perfect- 

reconstruction filter banks in this class. For the two-channel filter banks, we have 

obtained structures and design procedures for all nontrivial systems. Comparison 

with the approximated perfect-reconstruction systems in terms of complexity and 

performance is made. In our subclass of linear-phase, perfect-reconstruction, there 

are three structures for the case of three-channel filter banks. By limiting the 

problem to one of these systems, we obtain structures which yield linear-phase, 



perfect-reconstruction filters. The implementation complexity is studied. Design 

examples for all new methods presented here are included, along with tabulation of 

lattice and filter coefficients. 
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CHAPTER I 

INTRODUCTION 

The last decades have seen a rapid growth of high-speed integrated circuits, 

along with which digital signal processing has expanded greatly in both theoretical 

and implementational aspects. Systems that could not be implemented in the past 

due to the lack of high speed circuits can now be built in research laboratories and 

companies around the world. The digital-signal processor and its development sys- 

texns, which have recently emerged for commercial uses, have helped in bridging the 

gap between theory and practice in digital-signal processing. Digital-signal proces- 

sors are thus used in many applications such as speech synthesis and recognition, 

image processing and spectrum estimation, i o  name a few. Improvements in VLSI 

technology have led to increasing speeds of operation of the digital-signal proces- 

sors, yet there is a need for algorithms which can be executed in real time. The 

search for faster algorithms has led to the advent of a new avenue, viz, Multirate 

Signal Processing. 

Unlike a single rate system where the sample spacing is constant, sample spacing 

in a multirate system can vary from point to point. This often results in a more 

efficient processing of signals, because the sampling rates at various internal points 

can be kept as small as possible. One example of a rnultirate system is a block 

filtering system, which converts a signal into M parallel subsignals via a switch as 

shown in Fig. 1.1. If the sampling rate of the input signal x(n) is B Hertz, then the 

sampling rate of each subsignal ui(n) is B / M  Hertz. The advantage of the above 

system is that the ui(n)  can now be processed in parallel at a much smaller rate. 

Encouraged by the efficiency of implementation of multirate systems, many re- 



searchers have recently used them in communications, speech and image processing, 

radar systems and antenna systems. An excellent tutorial article on the application 

of multirate systems appears in [34,38]. In particular, [34] points out the applica- 

tions in digital-audio systems, in subband coding techniques (used in speech and 

image compression) and in analog voice privacy systems (for standard telephone 

communications). Further applications include new techniques for efficient coding 

of impulse response sequences of narrow band filters, design of FIR filters with ad- 

justable multilevel responses, adaptive filtering in subbands and derivation of new 

sampling theorems for efficient compression of signals [34]. 

One of the topics which has recently received a lot of attention is digital fil- 

ter banks, since it finds many applications in image processing, speech analysis, 

bandwidth compression, voice privacy, radar and sonar signal processing and spec- 

trum parameterization of signals. Nearly all of these systems have, as their basis, 

some form of filter bank decomposition and/or reconstruction of signal in which 

the filter bank components occur in decimated form. The spectrum of any phys- 

ical signals have different energy concentrations depending on the nature of the 

signals. For example, most of the energy of a speech signal usually concentrates 

at  the low-frequency end of its spectrum. In order to encode or transmit these 

signals efficiently, it is judicious to assign more bits per sample to the low-frequency 

bands and less bits per sample to the high-frequency bands, provided that we have 

a method to separate these frequency bands. We will propose a filter bank system 

which enables us to accomplish the above goals. 

Fig. 1.2(a) illustrates the basic framework of an M-channel filter bank. The 

filter bank analyzer splits the input signal x(n) into M subband signals, which in 

turn are decimated by M and encoded prior to transmission. At the receiving end, 
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the M subband signals are decoded (possibly after demultiplexing), interpolated 

and recombined using the filter bank synthesizer. The decimator, which decreases 

the sampling rate of the signal, and the interpolator, which increases the sampling 

rate of the signal, are denoted respectively by the down-arrowed and up-arrowed 

boxes in the figure. We will elaborate on their functions in Chapter 2. In addi- 

tien to separating the spectrum of a signal, the above filter bank is also useful in 

transmitting a high-bandwidth signal over a narrow-band channel. Physically, the 

channel can take many forms such as telephone lines and fiber optic lines, or it can 

even be the atmosphere. Of course, if the channel is the atmosphere, one should 

time-multiplex the M-subband signals before transmission. 

The filter bank analyzer and synthesizer are sets of filters as shown in Fig. 

1.2 (b) . Hk (2) and Fk (z) are. called the analysis and synthesis filters, respectively. 

The filter banks in which Hk(z) and Fk(z) reside are called the analysis bank and 

the synthesis bank, respectively. Normally, we will design Ho(z) and Fo(z) to be 

lowpass filters; Hl(z) and Fl(z) to be bandpass filters, etc. The last filters HM-l(z) 

and FM-l(z) are highpass filters. The frequency responses of these filters are shown 

in Fig. 1.2(c). From now on, we will work only with the filter bank shown in Fig. 

1.2(b), where the filter- have frequency responses as shown in Fig. 1.2(c). 

Ignoring the nonideal channel characteristics and the nonlinear encoding/decoding 

error, the signal 2(n) suffers from three errors, namely, aliasing because of change 

in the sampling rate, amplitude and phase distortions. These are due to the non- 

ideal nature of the analysis and synthesis filters. The objective is to design both 

filter banks in such a way that all three distortions are eliminated; that is, 2(n) is a 

delayed version of x(n). The system where all three errors are eliminated is called 

a "perfect reconstructionn system, in short, a PR system. Moreover, such a system 



should also be designed and implemented at a finite cost. 

To illustrate the use of the above digital filter bank in speech compression, let 

us consider the system for transmission of a speech signal in Fig. 1.3. To transmit 

this signal, we need to encode it with 8 bits/sample. Since the sampling rate is 

8 KHz, the total number of bits needed here is 64 Kbits per second. However, 

as is evident from Fig. 1.3, the energy in the low-frequency band is generally 

much more than that of the high-frequency band. Thus, it is judicious to allocate 

less bits per sample in the frequency band which has little or no energy, viz, the 

high-frequency band. As an example, let us split the spectrum of the above signal 

into 4 subbands and allocate the following bits for the subbands: 8 bits/sample, 4 

bits/sample, 3 bits/sample and 2 bits/sample for the first, second, third and last 

subbands, respectively. Since the sampling rate in each subband is one-fourth of 

the original sampling rate, the total bits needed for this technique are 34Kbits per 

second. Thus, we are able to compress the speech signal from 64 Kbits per second 

to 34 Kbits per second, which gives us a eomp~ession ratio of 1.82. 

Many approximate solutions to the above problem of eliminating the three types 

of error in multirate filter banks have appeared recently in the literature. Most of 

these systems cancel aliasing introduced by the change in the sampling rate. De- 

pending on the filters used in these systems, they either cancel amplitude distortion 

while minimizing phase distortion, or vice versa. For instance, by taking the synthe- 

sis and analysis filters to be linear phase FIR (finite impulse response), the design 

in [32] is able to eliminate phase distortion. Then they focus on designing these 

filters such that the amplitude distortion is minimized. In the other design [83], the 

amplitude distortion is eliminated by choosing the filters to be ,?!lpass. The phase 

distortion is then minimized by carefully designing these allpass filters. For a while 



Fig. 1.2(c) Desired frequency responses of both analysis 

and synthesis filters. 
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Fig. 1.3. Spectrum of vowel "an for a 20KHz sampling rate. (p. 173 of [98]). 



it seems that the PR system is impossible to design. 

When doubts were cast on the existence of a PR system, new light in the case 

of two channels shone in [ 5 ] .  This discovery led to a frenzy of researchers trying 

to find PR systems with an arbitrary number of channels -M. By using a tree- 

structured architecture, the problem can be solved if M = zk. However, tree- 

structured systems are known to have unnecessarily large group delays and thus 

can have a big effect on applications where small group delays are crucial. Two 

independent theories in [7,11] have shown that a PR system indeed exists for systems 

with an arbitrary number of channels. They also have a design procedure for a PR 

system. 

The system in (71 involves orthogonal matrix functions and lattice structure 

theory. The difficulty, however, lies in the design method of producing these filters 

efficiently. In other words, it can take a long time (days) to design a set of filter 

banks for a particular set of specifications. Moreover, filters with high attenuation 

and sharp cut-off band edges are difficult (if not impossible) to design. Basically in 

these PR systems, the filter banks are realized in the form of a cascade of lattice 

sections. The difficulty is partly due to the optimization of a large number of 

parameters in these lattice sections. Typically, one optimizes these parameters in 

the lattice sections to yield good filters f i ( z )  and Fk(z) in Fig. 1.2(b). Apart from 

the intrinsic relations imposed on both filter banks (so as to yield PR property), 

the analysis filters Hk(z) and the synthesis filters Fk(z) are not related among 

themselves. If we impose additional constraint such as the pairwise symmetric 

condition (to be explained) on each filter bank, then the number of parameters 

to be optimized is cut by a factor of 2. As a result, we would be able to design 

these systems faster. To illustrate the idea, let us consider the filter bank for three 



channels. Here, incorporating the mirror-image constraint together with applying 

the initialization procedure (to be elaborated), we are able to design the analysis 

filter bank as shown in Fig. 1.4 very fast compared to the design in [7]. The three- 

channel PR FIR analysis filter bank in Fig. 1.4 satisfies the pairwise-symmetric 

condition; i.e., H2(z) = Hg(-z) and Hl(z) = al(z2),  where crl(z) is an arbitrary 

polynomial. 

It is important in image coding to preserve phase imformation. The filters of 

the PR system in [7], however, do not have linear-phase responses. They instead 

satisfy the power-complementary property, namely, 

Furthermore, it is shown in 1311 for the case of two channels that only trivial filters 

exist if both linear phase and power-complementary properties are imposed on the 

structure. It turns out that power-complementary property is not necessary for PR 

systems. Thus, by sacrificing the power-complementary property for the case of 

two channels, we are able to obtain PR system with linear-phase responses. For 

the arbitrary number of channels, however, we will show that there are PR systems 

that have both power-complementary and linear-phase properties in their filters. 

Thesis outline: In Chapter 2, basic tools such as decimators, interpolators and 

digital filter banks are reviewed, along with the interconnection properties of these 

building blocks. Some of the important results about the decomposition of the PR 

system into a cascade of lattice sections as well as the initialization of these lattice 

sections are also described in Chapter 2. Chapter 3 introduces the concept of mirror- 

image filter banks and their structures. Design examples are given to illustrate the 

theory. Comparisons between the new PR filter bank and the approximated 



N O R H A L I Z E D  F R E Q U E N C Y  

Fig. 1.4. Frequency response plots of the optimized analysis filters where 

mirror-image conditions are imposed. 



conventional filter banks are also studied. A table of the analysis filter coefficients 

for several sets of specifications are given at the end of the chapter for future use. 

The linear-phase PR systems are addressed in Chapter 4. Here, we will show that 

for a particular M (number of channels), there are many feasible classes of linear- 

phase PR systems. We study extensively one of these classes for the case of two 

and three channels. Consequently, explicit lattice structures for these linear-phase 

PR filter banks are derived. Design examples and comparisons with approximate 

PR systems are also studied. 

In the initialization of the lattice sections in a PR system, we use the concept of 

an eigenfilter. Appendix A elaborates on the design and applications of eigenfilters 

in both normal and multirate digital-signal processing. Basically, eigenfilters are 

linear-phase FIR filters with minimum stopband and passband errors in energies (to 

be elaborated). An eigenfilter7s coefficients come from the eigenvector corresponding 

to the minimum eigenvalue of a particular, real, symmetric, and positive definite 

matrix. In terms of optimality and design time, eigenfiiters perform no worse than 

filters designed using the equiripple method [62,92]. Appendix B concentrates on a 

new method to design half-band filters, which find application in multirate signal 

processing in the form of decimation and interpolation filters. A comparison with 

the conventional approach is also made. 

Notations used in the thesis: The variable w is used as frequency variable, 

whereas the term "normalized frequency" is used to denote f = w/27r. The fre- 

quency response of a transfer function N(z) is expressed as N(ejw) = l ~ ( e j ~ ) l e j # ( ~ ) ,  

where IH(ejW)I is the magnitude response and $(w) the phase response. The quan- 

tity r(w) = -d$(w)/dw is the group delay of H(z). If I H(ejw) 1 is constant for all 

w ,  H (z) is allpass. If $(w) has the form ko - klw, then H(z)  is said to have lin- 



ear phase and the group delay is a constant kl; physically, if the input to such a 

filter H(z) has energy only in the passband of H(z),  then the output is a delayed 

version of the input, by kl samples. Unless mentioned otherwise, a lowpass filter 

has real coefficients so that IH(ejW)l is symmetric and 4 (w)  is antisymmetric with 

respect to w = 0. Usually IH(ejw)I is plotted for 0 5 f 5 0.5 (i.e., for 0 5 w < n), 

since 1 H (ejw) 1 = 1 H (ej(2"-w)) I for n 5 w 5 2n. H (z) is a spectral factor of G(z) if 

G ( z )  = H(z) H(z-l) .  FIR and IIR are abbreviations for finite impulse response and 

infinite impuse response, respectively. 

We say "H(z) is symmetric" if the impulse response h(n) of H(z) is symmetric, 

and so on. The center of a linear phase FIR transfer function is defined to be the 

center of symmetry or antisymmetry of h(n). Clearly, the center of H(z)  could be 

either an integer or an odd multiple of (1/2). The mirror image of H(z),  denoted 

by H(z), is defined as H ( ~ ) % - ( ~ - ~ ) H ( z - ~ ) .  Here, h(N - 1) is the highest nonzero 

coefficient of H(z) ,  and N - 1 is called the degree of H(z).  

Bold-faced quantities denote matrices and vectors, as in A ,  H(z) ,  etc. The 

symbol Ik denotes the k x k identity matrix (with subscript often omitted). The 

quantities A ~ ,  At and A*  denote the transpose, transpose-conjugate, and conjugate 

of A,  respectively. For functions H(z) ,  the notation H ,  (z) denotes conjugation of 

the coefficients without conjugating z. For example, if H(z) = a + bz-l, then 

H. (z) = a* + b'z-l. Thus, H* (z) = H. (2'). The notation g ( z )  stands for HT (z-I). 

In other words, conjugate the coefficients, take transpose (if matrix) and replace z 

with z-'. When z = ejw (i.e., on the unit circle), we have i f (z)  = Ht(z). A p x r 

matrix A is said to be unitary (orthogonal if it is real), if AtA = cI,, c # 0. The 

degree of a p x M system (also called McMillian degree [57]) H(z) is equal to the 

number of scalar delays (i.e., z-I building blocks) required to implement it. The 



symbol WM stands for e - j 2 * I M .  The subscript M is usually deleted because its value 

is often clear from the context. This quantity appears in the definition of a discrete 

Fourier Transform (DFT) [95] ,[96]. Thus, an M-point sequence [ x O ,  X I , .  . . , 
has the M-point DFT sequence 

The inverse DFT (IDFT) is given by 

The most crucial property of W ,  which finds repeated use in multirate signal pro- 

cessing, is the following: 

M - 1  
M, k -- multiple of M c wkn = {o, 

k=O 
otherwise. 

For any pair of integers k, n we have W k  = W n  if and only if k - n is an integer 

multiple of M .  In particular, therefore, W k  $I W n  for 0 < k < n < M - 1. 



CHAPTER 11 

BASIC BUILDING BLOCKS AND VARIOUS RESULTS 

ON DIGITAL FILTER BANKS 

In this section, we introduce the decimator and interpolator along with their 

frequency-domain Fharacterist ics, and interconnect ion behavior. Furthermore, the 

polyphase decomposition, a tool for analyzing digital filter banks, is also studied. 

This representation yields the polyphase transfer matrices associated with both 

analysis and synthesis filter banks. Consequently, the necessary and sufficient con- 

dition for which the filter bank in Fig. l.Z(b) is a PR system can be derived [7]. 

For FIR structures, a necessary and sufficient condition for them to be PR is that 

the determinants of their polyphase transfer matrices are delays. Structures in 

which their polyphase transfer matrices are lossless 171, [97] are special cases. These 

lossless filter banks are parameterized by a set of rotation angles 1371. Thus, by 

constraining the structure to be lossless, we can search for a set of rotation angles, 

which yields filters with good responses as in Fig. l.Z(c). This procedure is as 

complicated as finding a way down the Himalayas blind-folded, with a stick. This 

Himalayan task will be easier if one can start near the ground and search for the 

way down. Therefore, given any filter Hk(z), if we can somehow initialize the lattice 

coefficients, then only a few iterations are needed to obtain the optimal result. We 

will elaborate on this procedure in this chapter. This initialization procedure is the 

backbone for the fast design of PR systems. 

2.1. Decimator and interpolator 

Fig. 2.1 shows block diagrams of these building blocks. The decimator is char- 



acterized by the following input-output relation 

which says that the output at time n is equal to the input at time Mn.  As a 

consequence, only the input samples with a sample number equal to a multiple of 

M are retained. This sampling rate reduction by a factor of M is demonstrated in 

Fig. 2.2(b) for the case of M = 3. Since decimation corresponds to compression in 

the time domain, one might expect a stretching effect in the frequency domain. To 

be more precise, the z-transform of yD(n) is given by [2] 

M-1 

On the unit circle, (i.e., z = ejW), Yo (ejw) is such that MYo (ejw) = C X(e j(w-2kr)/M 

k,=O 
1. 

The term with k = 0 is indeed the M-fold stretched version of X(eJW) . The remain- 

ing (M - 1) terms with k > 0 are uniformly shifted versions of this stretched version. 

Fig. 2.3(b) demonstrates this effect for M = 3. The (M - 1) terms with k > 0 are 

called the aliasing terms, since they involve the shifted version of X(ejw). As long 

as x(n) is bandlimited to Iwl < r / M ,  there is no overlap of these terms with the 

k = 0 term. 

On the other hand, the L-fold interpolator is characterized by the input-output 

relation 

{ x(f ) ; if n is a multiple of L 
YI(.) = ; otherwise. 

The output yI(n) is obtained by inserting (L - 1) zero-valued samples between 

adjacent samples of x(n), as demonstrated in Fig. 2.2(c). The z-transform of the 

interpolator ouput yI(n) is given by [2] 



x(n) Y D(n) (a) 

The M-fold decimator. 

x(n) Y, (n) (b) 

The L-fold interpolator. 

Fig. 2.1 The decirnator and interpolator building blocks. 

Fig. 2.2 Demonstration of decimation for M=3 
and interpolation for L=3. 



Fig. 2.3 Transform-domain effects of decimation and interpolation. 



On the unit circle, YI(eiw) = X(ejwL), which implies that YI(ejw) is an Lfold com- 

pressed version of x(eiW) as demonstrated in Fig. 2.3(c), The multiple copies of 

the basic spectrum in Fig. 2.3(c) are images created by the interpolator. 

Interpolator and decimation are linear systems, but are tirne-variant [2]. Cas- 

cades of decimators and interpolators, as in Fig. 2.4 are often encountered in 

filter-bank systems. We can verify that 

~ ( n )  = {;;(n); n multiple of M otherwise, 

and the transform domain relation is (by using both (2.2) and (2.4)): 

which in turn means that M Y  (ejw) is the sum of X(ejw) with the ( M  - I) uniformly 

shifted versions ~ ( e i ( ~ - ~ ~ " / ~ )  >. 

Let us now study cascades of a decimator or an interpolator and a transfer 

function as shown in Fig. 2.5, since these forms of cascades are used in the filter 

bank (see Fig. 1.2(b)). The identity in Fig. 2.5(a) can be proved based on (2.2), 

provided that G(z) is a rational transfer function (i.e., a ratio of polynomials in 

z-I). In a similar manner, the two cascades in Fig. 2.5(b) are equivalent (provided 

that G(z) is rational) as can be proved from (2.4). These identities are very valuable 

in many applications for efficient implementation of filters and filter banks. 

2.2. Polyphase decomposition (representat ion) 

We shall now represent the filters in "polyphase formn [2], [17] for convenience. 

Suppose each of the analysis filters Hk(z) is represented as 



Fig. 2.4 The effect of decimation followed by interpolation. 

Fig. 2.5. Identities for multirate systems. 



Similarly, let each synthesis filter Fk(z) be represented as 

Note that given Hk(z) and Fk(z), the above representations are always possible. We 

can collect the two equations for all Hk(z) and Fk(z) in a matrix form as follows: 

and 

With this representation, we can always redraw [7] Fig. 1.2(b) in the form of Fig. 

2.6, where E(z) = [Ek,g(z)]; 0 < Ic ,  l 5 M - 1 and R(z)  = [Reak(z)], 0 < k ,  l < M - 1. 

Fig. 2.6 is precisely the polyphase representation of the filter bank in Fig. 1.2(b). 

We can employ the identities in Fig. 2.5(a) and (b) to move the decirnator and 

interpolator, resulting in Fig. 2.7(a). It is clear that if the filters Hk(z) and Fk(z) 

are such that 

R(z)E(z) = zFK1, (2.11) 

then the system in Fig. 2.7(a) becomes Fig. 2.7(b), which is a PR system. The sets 

of filters Hk(z) and Fk(z)? which satisfy (2.11)~ are called sets of PR filters. Given 

an FIR polyphase transfer matrix E(z),  the obvious choice of R(z) which satisfies 

(2.11) is 

R(z)  = z-~E- ' (z) .  (2.12) 

The above choice of R(z) ,  in general, yields IIR synthesis filters. Furthermore, the 

resulting synthesis bank might not be stable for any choice of E(z). In order to 

ensure stability for the synthesis filter bank, E(z) is such that its determinant is 



- 
ANALYSIS BANK SYNTHESIS BANK 

Fig. 2.6. The polyphase representation of the filter 
bank in Fig. 1.2(b). 

ANALYSIS BANK SYNTHESIS BANK 

Fig. 2.7(a). Equivalent filter bank for Fig. 2.6. 

Fig. 2.7(b). Equivalent structure of Fig. 2.7(a) where 



a minimum-phase polynomial (all zeros are inside the unit circle). On the other 

hand, if only FIR filter banks are permitted, then for a PR system, the determinant 

of E(z) has to be a delay (within a scale factor). A subclass of FIR matrices for 

which the determinant of E(z)  is a delay is the family of lossless matrices [7], [99]. 

In order to design FIR PR QMF banks systematically, we now turn attention to 

t his-family. 

2.3. Discrete-time lossless systems: 

A transfer function H(z) is said to be lossless [16], [99] if for all z 

where c # 0. On the unit circle (z = ejw), H(z) is unitary; i.e., Ht(ejw)H(ejw) = c I .  

Thus, a constant unitary matrix is a trivial example of a lossless system. A causal 

stable allpass function H(z) is also another example of a lossless system since by 

definition, jH(ejw)J = constant. Lossless examples with p = r = 2 are the 2 x 2 

orthogonal matrix ( 1) and the matrix 

To explain the concept of the lossless system physically, let us consider a p x r 

system with transfer function H(z).  This system has r-inputs and poutputs, de- 

noted by the vectors u(n) and y(n),  respectively. The input and output energies 
w w 

are defined respectively as E, = ut (n)u (n) and Ey = yt (n)y(n). A loss- 
n=-~3 n=-cc) 

less system has the property that Ey = cE, where c # 0. Note that if c = 1, 

then E; = E,, or in other words, the output energy is the same as the input en- 

ergy. Thus, the system does not dissipate any energy, thereby justifying the name 



When p = r ,  the inverse of a FIR transfer matrix is obtained from (2.13), 

Therefore, H(z) satisfies the property that det H(z) = dz-", where IC is an integer 

and d is a constant [37], [97]. In other words, the inverse is not only guaranteed to 

exist, but can be found from H(r) simply by writing E ( z ) .  For example, let 

H(z)  is therefore lossless since it is a cascade of lossless systems. The inverse is 

given by 

It is clear from (2.14) that H-'(2) is lossless if and only if H(z) is lossless. In 

order to physically realize the above transfer matrix H-'(z), we will need to make 

it causal by multiplying H-'(2) to a delay; i.e., 

2.4. Use of lossless system in digital filter bank design. 

Returning to the filter bank in Fig. 2.7(a), let us restrict E(z) to be real- 

coefficient, FIR and lossless and choose R(z) as 

so that PR is guaranteed. The delay z-" ensures causality of the synthesis bank. 

For example, if E(z) is as in (2.15), then R(z)  should be as in (2.17). With the 

above choice of E(z) and R(z)  as in (2.15) and (2.17), the analysis filters Hk(z) and 

the synthesis filters Fk(z) obtained from (2.9) and (2.10) are: 



and 

Thus, a simple choice of lossless E(z) results in a FIR PR filter bank. 

Any arbitrary choice of lossless E(x) does not necessarily yield good filters as 

evidenced from (2.19) and (2.20). These filters are only third-order filters. There- 

fore, one needs a systematic procedure to design good filters Hk(z) and Fk(z) and 

at  the same time guarantee that E(z) is lossless. Naturally, the better the filter per- 

formance, the higher the order of the required filter. Thus, given any order E(z) ,  if 

we can come up with a structure that spans all lossless E(z) with that order, then 

by optimizing the parameters of this structure, we might be able to obtain good 

filters. 

A structural representation for Iossless E(z), developed in 1151, [37] is shown in 

Fig. 2.8. This is a cascade of N (real) orthogonal matrices Kk;O 5 k < N - 1, 

separated by diagonal matrices of the form 

Recall that an arbitrary M x M real orthogonal matrix requires (7) parameters 

(rotation angles) for complete characterization. The N - 1 matrices Kk,O < k < 
N - 2 are special types of orthogonal matrices with M - 1 planar rotation operators 

cos B sine 
of the form i . The rightmost matrix KNW1, on the other hand, is a 

sine - cos 9 
general orthdgonal matrix characterized by (7) planar rotations as in Fig. 2.9(b). 

It is shown in [37] that every real-coefficient FIR lossless system E(z) of degree 

N - 1 can be represented as in Fig. 2.8(b) with matrices as in Fig. 2.9. Conversely, 



Fig. 2.8. Implementation of FIR lossless E (z) as a cascade of 
unitary matrices seperated by delays. 
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Stages 0 to N-2 

Stage N-1 

Fig. 2.9. Details of the building blocks in Fig. 2.8(b). 



the structure in Fig. 2.8(b) with matrices as in Fig. 2.9 necessarily represents a 

real-coefficient FIR lossless system. Thus, the angles in Fig. 2.9 form a complete set 

for characterizing real-coeficient FIR lossless E(z). Moreover, the representation in 

Fig. 2.8(b) is canonic (i.e., minimal) in number of delays, and in number of planar 

rotation parameters. 

The total number of planar rotations in Fig. 2.8(b) is 

and the maximum length of an analysis filter with this setup is 

The number of parameters N, clearly grows linearly with respect to L and quadrat- 

ically with respect to M. Fof example, with M = 3 and analysis filters of length 

56, we have Np = 39. Let us define an objective function related to the error in the 

analysis filter bank as 

For lossless E(x), the analysis filters Hk(z) satisfy the power-complementary prop- 

erty as in (1.1) [7]. Thus, it is sufficient to include in $ only the stopbands of Hk (2). 

Notice that in terms of the rotation angles in Fig. 2.8(b), the objective function 

in (2.24) is highly nonlinear. We thus have a formidable task in optimizing these 

rotation angles to yield analysis filters Hk(z), which minimize the above objective 

function. 

It is shown in [36] that if we can make an initial guess of any analysis filters of 

length L, say Ho(z), then all of ATp parameters except 



parameters can be initialized based on Ho(z). Thus, once Ho(z) is known, only N, 

parameters are still underdetermined in Fig. 2.8(b). Eq. (2.25) therefore measures 

t h e  number of degrees of freedom available for the design of Hk (z), 1 5 k < M - 1, 

once Ho(z) has been fixed. In other words, losslessness in E(z) puts a constraint 

o n  Hk (z) , k # 0 once Ho (z) is fixed. 

For instance, with M = 2, we have Nf = 0, which shows that we have no 

freedom of choice of Hl(z), once Ho(z) is fixed. This is consistent with the earlier 

observations [5], [7], [19] that for the M = 2 case, losslessness of E(z)  completely 

constrains Nl(z) to  be Hl(z) = Z - ( ~ - ' ) H ~ ( - Z - ~ ) .  For the M = 3 case, N j  = 1, so 

tha t ,  once Ho(z) is fixed, only one degree of freedom can be exercised in choosing 

IrTl(z) and H2 (2). It is important to realize that Nf is independent of the filter length 

L. Consequently, if Ho(z) is known, we have to optimize only the remaining Nf 

parameters, regardless of filter length, to obtain Hk(z) ,  1 < k < M - I. In practice, 

however, we have the option of reoptimizing all the parameters after initializing of 

a subset of parameters based on the initial choice of Ho(z). 

In order to  exploit this to our advantage, it is first necessary to find an ap- 

propriate initialization for Ho(z), which is the purpose of this section. We can 

mathematically express Ho(z) as 

where eT(z) is the oth row of E(z).  By replacing z with z W - ~  for 0 < k < M - 1, 

we can arrive a t  M equations like (2.26). Stacking these filters together, we obtain 



where W is the M x M DFT matrix and A(z) is the diagonal matrix of delays 

Since E(z)  is lossless, the vector eo(z) is lossless. The matrices W and A(z) are 

clearly lossless; therefore, the product in (2.27) is lossless; i.e., 

where c # 0. This proves that Go(z) = ~ o ( z ) H o ( z )  is an Mth-band filter. Recall 
M-1 

that an Mth-band filter Go(z) satisfies the condition G ~ ( Z W - ~ )  = c. In other 
k=O 

words, Ho(z) is a spectral factor of an Mth-band filter. It can then be verified 

that eo(z) is lossless [36]. Let N - 1 denote the degree of e ~ ;  then eo(z) can be 

represented as [36] 

where U (2) = UN-l (Z)UN-~  (2) . . . u2 (2) Ul (2) and Po is a M x 1 unit-norm vector. 

If we construct an unitary matrix 

by using the Gram-Shmidt procedure, starting with the oth column to be Po, then 

the M x M FIR system 

S (z) = U (z)H0 (2.32) 

is clearly lossless of degree N - 1. By defining E ( z ) & s ~  (2) , we obtain the FIR 

analysis filters Hk(z) according to Fig. 2.8(a). This shows that once a spectral 

factor Ho(z) of an Mth-band filter Go(z) is obtained, it is easy to find a set of M - 1 

analysis filters Hk(z), 1 < k 5 M - 1 of the perfect-reconstruction system. The 

number of freedoms in the above construction of Hk(z) is exactly the number of 



freedoms available in constructing an M x M orthogonal matrix when a column is 

fixed. This number is 

As shown in [36], this technique covers every possible set of causal FIR filter Hk(z), 

0 5 k < M - 1, provided that the degree of Ho(z) is ( M ( N  - I) + M - 1). In other 

words, Ho(z) is assumed to have the maximal possible degree in the structure of 

Fig. 2.8(a). Since this is a reasonable assumption in practice, we will assume it 

unless mentioned otherwise. 

The design procedure based on the above results would typically run as follows 

[36]: First design a linear-phase FIR Mth-band filter Go(z) with nonnegative am- 

plitude response. Then identify a spectral factor of Go(z) and label it as one of the 

analysis filters, say Ho(z). These two steps can be designed using the eigenfilter 

method described in Appendix A. The choice of the length of Go(z), of course, 

depends on the attenuation requirement of Ho(z). Next, figure out the polyphase- 

component vector eo(z), using (2.26). This is guaranteed to be LBR. Synthesize 

it in the form (2.30), and using the Gram-Schmidt procedure to construct an or- 

thogonal matrix H o  as described in (2.31). The polyphase transfer matrix E(z) is 

chosen such that E(z)  = ST(z), where S(z) is as in (2.32). This process initializes 

all except Nf parameters in Ho. Optimize the remaining Nf rotation angles Oh to 

minimize the stopband energies of Hk(z), 1 < k 5 M - 1. 

The response of Ho(z) is usually very good. The responses of the other filters, 

after optimization, however, are usually much worse than that of &(z). Therefore, 

it is judicious to optimize not only the remaining Nf rotation angles, but all N, of 

them so that all filters (including Ho(z)) tend to come out equally good. This, of 

course, takes a longer computation time, but is still much faster than the "random 



initialization" used in [7]. 

In Chapter 3, we study the PR structure, which yields pairwise-mirror image 

filters Hk(z) and Fk(z). Since this structure can also be chosen to be lossless, we 

will apply the above initialization approach to design the filter bank. For M = 3, 

the filter Hl(z) (rather than & ( z ) )  was obtained as a spectral factor of a 3rd-band 
- 

linear-phase filter. All N, parameters are then optimized to minimize the objective 

function in (2.24). Compared to the earlier method [7], [19], the new method 

converges very fast and always leads to much improved attenuation characteristics 

for a given filter length. The analysis filters Hk(z) in Fig. 1.4 are designed using 

this method. 



CHAPTER I11 

MAXIMALLY DECIMATED PR FIR FILTER BANKS 

WITH PAIRWISE MIRROR IMAGE ANALYSIS 

(AND SYNTHESIS) FREQUENCY RESPONSES 

As discussed in the previous chapters, any peSfect reconstruction structure with 

lossless E ( z )  can be realized as a cascade of lossless systerns; i.e., 

where Ki are constant unitary matrices, i.e., K ~ K ;  = 1 , O  5 i 5 N' - 1, and 

Since we consider only real coefficient QMF banks, thus Ki are real orthogonal 

matrices, that can be realized by a sequence of ( y )  planar rotations [7,9]. The 

filters H k ( z )  of the analysis bank in Fig. 3.1(a) are automatically guaranteed [a]  to 

satisfy the condition 
M-1 c I H ~ ( . ' " ) ~ '  = 1 
k=O 

by the lossless property of E ( z ) .  An objective function which represents the s t o p  

band energies of the analysis filters is 

Since the constraint (3.2) is structurally enforced, the passbands of H k ( z )  are also 

"good" if their stopbands are good. The optimization of the parameters of Ki  

is time-consuming since the objective function is a nonlinear function of many 

parameters (the parameters being the planar rotation angles mentioned above). 



Fig. 3.l(a). The M-channel maximally decimated 
parallel QMF bank. 

ANALYSIS BANK SYNTHESIS BANK 

Fig. 3.1 (b). Polyphase implementation of Fig. 3.1 (a). 



In an earlier design of perfect-reconstruction structure with lossless E(z) 171, the 

magnitude responses of HM-1-k(z) and Hk(z) are mirror images with respect to 

7r/2, even though this condition is not imposed on the system. In other words, 

the resulting set of analyis filters Hk(z) tends to converge to a solution where 

IHM-~-k (ejw) 1 = I ~k (ejcw+")) 1, 0 5 k 5 M - 1. It is judicious, therefore, to a priori 

impose this pairwise mirror image property on the filter bank before optimizing the 

parameters. The advantage here is that the number of parameters associated with 

the pairwise mirror image structure is about half of that of the original PR structure 

in [37]. Furthermore, the new objective function consists of only the stopbands of 

Hk(z), 0 < k < M/2 (assuming that M is even). Consequently, the design time for 

this new pairwise mirror image structure is substantially reduced. 

There are many ways in the time domain to impose pairwise mirror-image prop- 

erty on the system to yield filters where l f f~ - l -k (e j~ ) l  = I~k(e j (~+")) I ,  0 < k 5 

M - 1. The two easiest possibilities are 

and 

HM-1-k(z) = z-~H~(--z- ' )  

for 0 < k < M-1. Here, r is a positive integer large enough to ensure the causality of 

i f ~ - ~ - ~ ( z ) .  The other choices of time-domain relations are more difficult to write. 

We therefore will consider only the pairwise mirror image structures which obey 

either (3.4a) or (3.4b). An analysis bank satisfying (3.4) will be called a "pairwise- 

s y m e t r i c  analysis bank" in this chapter. We will use both "pairwise symmetry" 

and "pairwise mirror-image" interchangeably in this chapter. For instance, if M = 3, 

then 

Hz(.) = Ho(-z), H1(z) = a1(z2) (3.5) 



for some crl (2). Moreover, it is sufficient to optimize 

where E depends on the desired stopband edges. In the next two sections, we 

modify the structure of Fig. 3.l(b) such that the properties described in (3.4) 

are structurally enforced. The number of parameters in the resulting structure is 

approximately half those in our earlier structure [7]; thus, the design time for this 

new structure is substantially reduced. 

For reasons that will become clear as we progress, it is convenient to consider 

two separate cases, viz., odd M and even M .  Using the PR properties in Chapter 

2 with appropriate constraints (3.4), we derive new PR structures in Sections 3.1 

and 3.2, for odd and even M ,  respectively. In each section, we demonstrate tkeo- 

retical results by design examples. For M = 4, we compare the filter lengths, the 

complexity of the analysis bank, and the overall group delay caused by the QMF 

bank, to the comparable tree-structure-based design [18,19]. 

3.1. Odd M .  

Recall that any set of M transfer functions Hk(z),  0 5 Ic 5 M - 1 can always 

be represented as in Fig. 3.l(b), where E(z) is an M x M matrix. If we impose the 

condition 

H;M-l-k(Z) = H k ( - 4 ,  O S I c S M - 1 ,  (3.7) 

then we can write 

where lk is some odd integer (with lk = 1, this representation is always possible). 

Accordingly, the analysis bank can be redrawn as in Fig. 3.2, where L = (M - 1)/2 



(M being odd). In this figure, the M x M matrix R has the form 

and is orthogonal. By writing ak (2) in the form 

we can redraw Fig. 3.2 as in Fig. 3.3, where I"(z) is an M x M diagonal matrix of 

the form. 

Here, JL(z)  is a diagonal matrix with the diagonal elements z-". With lk = 1 

for all k (so that JL(z)  = z-lIL), any set of M transfer functions Hk(z) with the 

constraint (3.7) can be realized as in Fig. 3.3. If we restrict lk = nkM (i.e., integer 

multiples of M so that r l (z )  - r(zM)) ,  we can realize a restricted class of such 

transfer functions. If lk are SO restricted, and if E'(zj is lossiess, then the complete 

QMF bank (shown in Fig. 3.4) is a perfect reconstruction system. This can be seen 

by drawing it as in Fig. 3.5 and recognizing that ~ ( z ~ ) f ( z ) ~ ~ ~ I ' ( z ) E ' ( z ~ )  = I 

so that Fig. 3.4 reduces to Fig. 2.7(b) except that z-I is replaced by z - ~ .  It 

can be shown that with the diagonal elements z-" in r l ( z )  restricted to be of the 

form z-"kM, where nk are arbitrary integers, losslessness of E1(z) in Fig. 3.3 is 

equivalent to that of E(z)  in Fig. 3.l(b). Furthermore, the synthesis filters Fk(z) 

in Fig. 3.4 satisfy Fk(z) = z - ( ~ ~ + ~ ~ - ~ ) ~ ~ ( z ) ,  and the synthesis bank in Fig. 3.4 is 

equivalent to that of Fig. 3.l(b) [7]. Consequently, the synthesis filters are pairwise 

mirror-image with respect to 7r/2 if the analysis filters are. 

'See Appendix 3.A for further clarification of this perfect-reconstruction property. 



Fig. 3.2. The analysis bank for odd M. 

Fig. 3.3. The M-channel analysis bank in which the 
filter's frequency responses are pairwise mirror 
image about n/2. (M is odd). 



Fig. 3.4. A QMF bank in which the analysis bank (in Fig. 3.3) 
satisfies I?' (z) = r ( z M )  . 

Fig. 3.5. An equivalent structure for Fig. 3.4. 



Even though the condition l k  = nkM makes it easier to see how to buiId a 

perfect reconstruction system (satisy ing (3.7)), this condition is not necessary. As 

an example, consider an analysis bank as in Fig. 3.l(b) with M = 5 and 

I). -1 

1 

E(z)  is orthogonal (and hence lossless) and moreover, (3.7) is satisfied. If we now 

draw the analysis bank as in Fig. 3.3, we can verify that 

so that E1(z) is not lossless and I"(z) is not of the form r (z5)  (i.e., l k  not multiples 

of M) .  Yet, it is a perfect reconstruction system, satifying (3.7)! 

In s u m a r y ,  even though Fig. 3.3 with lossless E1(z), orthogonal R and with 

I"(z) = I'(zM) (diag~nal matrix of delays) leads to a perfect reconstruction system 

satisfying (3.7), it does not cover all such systems. We can obtain a relatively more 

general system by not restricting R to be as in (3.9). We now proceed to this issue: 

Lemma 3.1: Consider the analysis-bank structure of Fig. 3.3, where I"(z) is of 

the form 
0 

(3.14) 

with M odd and where MI is an integer with 0 < MI < M - 1. The relation (3.7) 

holds if and only if R is of the form 



where A is L x (M -MI), B is L x Ml, C is 1 x (M - MI), and P1 is the L x L 

permutation matrix given by 

P I  (: . '-1 
Here, Ml is the number of connecting lines between E ' ( z ~ ~ )  and R with delay 

z - ~ ,  and M = 2L + 1. A proof of the above lemma can be found in Appendix 3.B. 

Notice that MI does not have to be equal to L (which is (M - 1)/2), even though 

this was the natural choice when we derived the structures of Fig. 3.2 and Fig. 3.3. 

Next, by forcing Ef(z) to be lossless and R to  be orthogonal, we can obtain 

perfect reconstruct ion. Orthogonality of R implies 

which is equivalent to the three following conditions 

( A C ~  = 0. 

Since R is a square matrix, (3.17) also implies RTR = I, which is equivalent to the 

following conditions 
2 A T ~  + CTC = IM-M1, 

(BTB = ?I 2 Ml7 

in terms of the submatrices A, B, and C. 

The condition B B ~  = ~ I L  in (3.18) implies that Ml 2 L, whereas BTB = $IM, 

in (3.19) implies that L > MI. In other words, the only choice of M1 that is 



permitted by an orthogonal R of the form (3.15) is Ml = L. With this, I"(z) and 

R in (3.14) and (3.15)~ respectively, take simpler forms; i.e., 

B 
T1(z) = ( I 1  ) , and 

R =  (F'tA -:lB] ' 
(3.20) 

x - ~ I L  

where A is L x (L + I), B is L x L and C is 1 x (L + 1). The pairwise symmetric 

structure of Fig. 3.3, with r l (z)  and R as in (3.20),'is redrawn as Fig. 3.6. We can 

simplify the structure in Fig. 3.6 further by observing that R can be written as 

Form a square matrix D as follows: 

The orthogonal requirements for A and C in (3.18) reflect into the following con- 

dition on D: 

(3.23) 

Such D is easy to construct. For instance, denote the rows of an (L + 1) x (L + 1) 

orthogonal matrix D' by d:, d r ,  . . ., d:; then the matrix 

satisfies (3.23). Using the above orthogonal matrix Dl, R in (3.21) is equivalent to 

-1-IL 0 aL 
(I" O O )  (i" fi0 ) ( D I  0 ) R =  0 1 0 

0 JZB ' 
(3.25) 

0 0 P, -1-1, 0 -LIL fi \/z 

We observe from Fig. 3.6 that Dl in R can be moved to the left of the delays and 

can be combined into the general lossless matrix E1(z), since the delay lines affect 

only the last L lines of the structure. Furthermore, as evident from (3.18), 



Fig. 3.6. An equivalent structure for Fig. 3.3. 

Fig. 3.7. An equivalent and simplified structure for Fig. 3.6. 



B = &B is an L x L orthogonal matrix of unit norm. Fig. 3.6, consequently, can 

be redrawn as Fig. 3.7, where ~ ( z )  is a general M x M lossless transfer function 

matrix and R is 

(3.26) 

In summary, having chosen B to be any L x L orthogonal matrix of unit norm, 

the analysis bank in Fig. 3.7, with R defined as  in (3.26), is the analysis bank 

of a perfect reconstruction structure in which the filters satisfy the pairwise image 

property. Here, ~ ( z ) ,  as shown in Chapter 2, is realized as in Fig. 2.9 and 2.10, 

respectively. 

Example 3.1: Let M = 3, so that the symmetric requirement (3.7) on the analysis 

filters becomes H2(z> = Ifo(-z), Ifl(z) = al(z2) .  We also have L = I here, and 

thus B = 1 and P1 = 1. R has the form 

The structure in Fig. 3.7 is reduced to Fig. 3.8, where ~ ( z )  is explicitly shown as 

a cascade of orthogonal building blocks interlaced by delays. The synthesis bank, 

shown in Fig. 3.9, is obtained by transposing each building block in Fig. 3.8. 

Note that a delay z-(6Nf '1 is multiplied to the synthesis bank in order to obtain a 

causal system. Using (2.22) to count the number Np of rotation angles 0; $, we have 

(counted in the analysis bank only) 

These Np rotation angles in the lattice structure for ~ ( z )  are optimized to minimize 

(3.6). As mentiond in Chapter 2, minimizing (3.6) by "random initializing" of OiJ 

is very time consuming. Often, the solution converges to a local minimum. If we 



where ( case i ,  j i I j  

sin e iF j  - sine cos eiIj > 
0. 

1,j 

Fig. 3.8. The analysis bank of a perfect-reconstruction FIR QMF bank 

which yields pairwise-mirror analysis filters. 



where '-X ( cosei,j sin 0. 

sin 8 i,j 
8. 

1,j 

Fig. 3.9. The synthesis bank of the analysis bank in Fig. 3.8. 



can initialize these rotation angles somehow, then the minimization process would 

be much faster and it would also yield much better results. 

This is indeed possible. As outlined in Chapter 2, we know that each analysis 

filter Hk(z) is a spectral factor of a 3rd-band filter. Furthermore, given any Hk(z), 

say Hl(z), we also outlined a procedure to initialize these rotation angles. As a 

design example, let the number of orthogonal matrices K, be N = 10. Then the 

lengths of Ho(z) and H2(z) are 62 each, whereas the length of Hl(z) is 59. Since 

we would like to use Hl(z) to initialize the lattice structure, we can first design a 

3rd-band filter Gl (z) of length 117 by using the eigenfilter method. The minimum- 

phase spectral factor of GI (z) is obtained and the rotation angles Oir j  are initialized 

(20 angles). These initialized 20 rotation angles together with the Nf = 1 rotation 

angle in the lattice structurl. for ~ ( z )  were optimized using IMSL subroutines [lo] 

on a computer so as to minimize (3.6). The resulting frequency response magnitudes 

for E = 0.0625~ are shown in Fig. 3.10. The lattice coefficients BiSj  and the impulse 

response coefficients h,(n) are shown in Tables 3.1 and 3.2, respectively. 

Example 3.2: Using the initialization technique outlined in the design of the three- 

channel FIR PR QMF bank in example 3.1, we design a set of filters with different 

specifications. We tabulate the properties of these filter banks as well as the lattice 

coefficients and the filter coefficients in three tables in Appendix 3.F. The filter 

length, transition bandwidth, stopband attenuation, etc; are shown in Table 3.F.l. 

Tables 3.F.2 and 3.F.3 give the lattice coefficients and the filter coefficients of these 

filter banks, respectively. Since the filter coefficients of Ho(z) and H 2 ( z )  are related 

as h2(n) = (-l)"ho(n), we show only ho(n) and hl(n) in Table 3.F.3. 
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Table 3.2 Impulse responses of the optimized analysis filters in Ex. 3.1. 



3.1.1. Comment on ueneralitu: 

The main difference of the design technique here as compared to [7] is that we 

have structurally imposed the symmetry conditions, so as to cut down the number of 

planar rotation angles in the optimization. Using this initialization method together 

with the above pairwise-symmetric structures, we have been able to obtain designs 

with much better stopband attenuation than before. This method has led to faster 

optimization program according to our experiences. We, however, can not claim 

that our methods to enforce the symmetry are completely general, as evidenced by 

the counter example of Equations (3.12), (3.13). 



3.2. Even M .  

Suppose that we use the painvise symmetric structure in Fig. 3.7 for even M 

where L = M/2 here. For even M ,  all delays in this structure are even orders; 

therefore, the resulting analyis filters Hk(z) are functions of z2. Thus, this system 

is very limited. Instead of (3.4a), let us impose a different kind of pairwise symmetry 

on the analysis filters as follows: 

HIM-i-k(z) = zerlik(--Z-l); O L k L , M - 1 ,  (3.29) 

where r is a positive integer large enough to ensure the causality of HM-l-k (2). For 

the case of M = 2, Hl(z) = z-'Ho(-z-'). One recognizes that this is the condition 

that Smith and Barnwell [18] and Mintzer [6] imposed on their analysis filters for 

the 2 channel QMF bank. We shall generate this symmetry property by employing 

the structure of Fig. 3.11. We shall constrain E(z) to be lossless by constraining 

K; to be orthogonal matrices. K; and Ki+l are separated by a transfer matrices 

of the form (t 1-z4), where L = M i 2  It can be verified that a cascade of 

orthogonal matrices and the above transfer matrices 

E(z)- 

It is clear that any arbitrary choices of K; do not yield pairwise symmetric 

analysis filters. Thus, what form does K; take so that Hk(z) satisfy (3.4b). In 

other words, let Hm,k(z) denote the transfer function from the input x(n) to the kth 

output terminal of K, (Fig. 3.11 denotes several examples of Hm,k(z)). Suppose 

that Hm,k(z) have the two following properties: (Fig. 3.12) 

I .  They form a set of PR filters. 

2. They obey the pairwise symmetry property; i.e., 



Fig. 3.1 1. The M-channel analysis bank in which the filter's 

frequency responses are pairwise mirror-image about 

7C 12. (M is even). 

Fig. 3.12. One stage of the analysis bank in Fig. 3.1 1. 



The filters Hm,k(z) in consideration here, are assumed to have the maximum order 

possible; namely, ( (m + l )M - 1). The idea is to find Km+1 such that the same 

above two properties are propagated to the (m + l)th stage; i.e., H m + l , k ( ~ )  form a 

set of PR filters and 

By considering only orthogonal matrices Ki ,  the first condition above is automati- 

cally satisfied. To propagate the pairwise symmetric property, the only matrix Km+1 

for which (3.31) holds for any set of Hm,k(z) satisfying (3.30) is (see Appendix 3.C 

for a proof) 
Jm+l,l Jm+l,2 i (3.32) 

-P1Jm+1,2P1 P I J ~ + I , ~ P I  

where PI is defined in (3.16). Here Jm+l,l and Jm+1,2 are arbitrary L x L ma- 

trices. We observe that using (3.32) for K O  does not yield a set of transfer func- 

tions HO,k(z) that satisfy the pairwise-symrnrnetry property, since the delay chain 

(1 z-I . . . z - ( ~ - ' ) ) ~  does not satisfy (3.29). Hence, we need to initiate the induction 

process by looking for an orthogonal matrix KO such that HoSk(z) satisfy (3.29), for 

0 < k 5 M - 1. Notice that 

The only K O  in (3.33) for which HO,k(z) satisfy (3.29) has the form (see Appendix 

3.D for a proof) 
J0,l 

(3.34) 

plJ0,2p3 PlJ0,1p2 



where Jotl, J0,2 are arbitrary L x L matrices, P1 is as in (3.16) and 

p 2 = [ 0 .  -l 1) ; ..(O -I 0) (3.35) 

L x  L -1 L x L  

Kmtl and KO in (3.32) and (3.34) can be rewritten as 

where 
Jm+l,l Jm+l,2P1 

T m + l =  (3.38) 
-Jm+l ,2Pl  Jm+l , l  

J0,l - J0 ,2p3 

(3.39) 

J0,2p3 = i J0,l 1 
Making use of the identities (3.36) and (3.37) in Fig. 3.11, it can be redrawn as in 

Fig. 3.13, where PI, P2 are defined as in (3.16), (3.35), respectively. Fig. 3.13 is 

the analysis bank of a perfect reconstruction structure in which the analysis filters 

Hk(z) and HM-l-k(~)  have the pairwise symmetry property if T,+l and To are 

orthogonal, i.e., if 

T 
Tm+lTm+l= I and T F T ~  = I. (3.40) 

Using the identities 

PT = PI, P: = I, and P3P2 = -I, (3.41) 

(3.40) is equivalent to  



Fig. 3.13. An equivalent structure of Fig. 3.1 1. 

Fig. 3.14. The "complex domain" interpretation of each stage 
in Fig. 3.13. 



If we define 

Um+l = Jm+l, l+ jJm+l,zP1 and uo = J o , ~  + j Jo ,~Ps ,  (3.43) 

then it is clear that the unitariness of and Uo  implies the orthogonality of 

Tm+1 and To,  respectively, and vice versa. Consequently, to form orthogonal M x M 

matrices Tmtl and To of the specific form (3738), (3.39), we first construct arbitrary 

L x L unitary matrices and Uo. A general procedure to generate an arbitrary 

L x L unitary matrix is described in [9] and requires L2 angles. Having formed 

and Uo, Tmtl and To  are constructed as follows: 

Re(Urn+1) Im(Um+1) quo) -Im(Uo) 
Trn+l= ) , and To  = ( 

-Im(Urn+1) Re(Umt1) Im(U0) Re (Uo) 
(3.44) 

This procedure guarantees that Tmtl and To are orthogonal, and hence Fig. 3.12 

is the analysis bank of a perfect reconstruction structure with pairwise-symmetric 

response analysis filters. Compared to the earlier method [7], which requires (2f) 

rotational angles, the symmetric structure described above requires at most L2 

angles [9]. Thus, the above structure yields faster optimization algorithms. The 

relation between Tmtl and Umtl leads us to the equivalence shown in Fig. 3.14. 

Thus, the analysis bank is essentially a cascade of L x L complex unitary building 

blocks, with delays inserted into the imaginary paths of the signals. Appropriate 

adjustments are done at the left and right ends in order to obtain the correct 

initializations and the correct outputs. The initialization is done by setting 

where s-l(n) = [x(n) x(n - 1) ... x(n - L+ l)lT and r-l(n) = [x(n - L) x(n - 

L - 1) . . . z (n  - 2L + 1) jT (recall L = M/2). The analysis transfer functions are 



obtained as Ho(z) = s ~ - ~ ( z ) / X ( Z )  and Hl(z)  = P 1 ~ N - l ( ~ ) / X ( ~ ) ,  where Ho(z) = 

T [Ho (2) Ni (2) . . . f i - 1  (z)IT and Hl(z)  = [HL (2) H L T ~  (2) . . HIM-1 (z)] 

3.2.1. Comment on the  generality 

The structure in Fig. 3.13 yields PR painvise symmetric analysis filters. In 

other words, for any choices of Ti satisfying (3.38) and (3.39), this structure is a 

PR structure, which yields painvise symmetric filters. However, it does not cover 

all sets of PR pairwise symmetric filters. 

Example 3.3: For M = 4, the analysis filters of a perfect reconstruction structure 

satisfy the pairwise frequency response image property, 

,(z) = Z - ( ~ ~ - ~ ) H ~ ( - ~ - ~ ) ,  

(3.45) 
H2 (z) = z - (NM-l )~ l  (-z-l) , 

where N is the number of sections in the structure. Let the unitary matrices Uo 

and Um be 
C O , ~  - js0,1 C O , ~  + j ~ 0 , 2  

(3.46) 

- O  - 0 , )  j(c0,2 + j ~ 0 , 2 )  j 

and 

then 

and 

where c m i  = cos(Om,i), sm,i  = sin(O,,i) and Om,i are the planar rotation angles at 

the mth stage. It can be easily verified that the above To and Tm are orthogonal. 



The above forms for Uo and U, do not represent the most general 2 x 2 unitary 

matrices (which actually require 4 angles to be completely characterized). These 

forms are meant only to be examples. We choose N = 15 in this example, so that 

the length of each (FIR) analysis filter is 60. There are 30 angles 0 5 rn 5 14, 

0 5 i 5 1 in the lattice structure of Fig. 3.13, and these are optimized using the 

IMSL subroutine to minimize the following objective function 

for t- = 0 . 0 5 ~ .  Note that we do not include the stopband energies of H2(ejw) and 

H3(ejw) in 4, since they will be small if the stopband energies of their images, 

HO (ejw) and Hl(ejw), are small because of the pairwise-symmetry property. More- 
M-l 

2 
over, because of the structural form of Fig. 3.13, the constraint 1 I ~ ~ ( e j ~ ) l  = 1 

k=O 

automatically holds, hence the passband errors automatically come out to be small. 

The magnitude responses of the resulting analysis filters are shown in Fig. 3.15. 

The impulse response coefficients of Ho(z) and Hl(z) are displayed in Table 3.4, 

whereas the 30 rotation angles are shown in Table 3.3, respectively. Based on 

the relation HM-i-k(z) = z-'Hk(-z-'), the impulse response coefficients of H2 (2) 

and H3(z) can be readily obtained from Table 3.4. 

3.2.2. Complexity of the analysis bank 

Let us calculate the complexity of the analysis bank using both the direct-form 

structure and the lattice structure. If we implement Hr(z) of length 5 in direct form 

and if we share the multipliers of Hk (z) and HM-l-k (2) , a total of = 2 x 60 = 120 

multiplications are involved per computed output sample (see Fig. 30 of 1521). 

Having shared the multipliers of the pairwise symmetric analysis filters, we cannot, 

however, take advantage of the decimation factor of 4. A more efficient direct-form 
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Fig. 3.15. Ex. 3.3. Magnitude response plots for the optimized analysis filters. 

Table 3.3 Lattice coefficients c,,i of the optimized analysis filters in Ex. 3.3. 



Table 3.4 Impulse responses of the optimized analysis filters in Ex. 3.3. 

h2,n and h3,, can be computed by h2,, = (-l)nhl,(5g-n) and hs,, = (-l)nho,(~g-n). 

1 rn / I  Coefficients ho,, / Coefficients hl,, I 
1 0 /I -4.112909 x 1 -1.036139 x / 



implementation is to take advantage of the decimation ratio without sharing the 

multiplers. This requires a total of 4214 = 24014 = 60 = 2 MPU for the complete 

analysis bank. 

On the other hand, if we implement the lattice structure of Fig. 3.13 directly, 

we can take further advantage of the orthogonal form of Tm. At the output of each 

stage, we would have to compute 

where ui and y; are the inputs and outputs of each block T,. Rewrite the above 

equation as 

Having ccrnputed (ao al)T and (bo b l IT ,  we have 

Since each 2 x 2 block in (3.52) is an orthogonal block, we can compute it using 3 

multiplications and 3 additions [60]. Thus, (3.51) requires 6 multiplications and 

10 additions. The complexity of the normalized lattice structure is, therefore, 6x 

number of stages = 6 N  = 614 x 2 = 90 MPU, where 2 is the length of H k ( r ) .  Since 

the decimators can be moved all the way to the left of the building block To in Fig. 

3.13, the actual number of MPU's is only 32/8 FZ 23. Notice that the 4 x 4 matrix 

(3.51) is orthogonal; hence, the lattice structure is automatically L2 scaled. It is 

possible to obtain a more efficient (but denormalized) lattice structure by noting 



that if we divide each element on T, by a constant, say c , , ~ ,  the responses of Hk(z) 

are unchanged (except for a scale factor.) Thus, (3.52) and (3.53) are written as 

By noting that (a;  can be computed by 2 multiplications, each denormalized 

orthogonal block T, requires only 5 multiplications. Hence, the total complexity 

for the analysis bank is 55/16 z 19 MPU. 

3.2.3. Comparison between tree-structured design and the proposed lattice 

structure 

The conventional procedure to design a four-channel perfect-reconstruction sys- 

tem would be to use the tree structure [IS] of the form in Fig. 3.16. Here, 

[Hoo (z) , Hbl (z) ] is a two-channel perfect-reconstruction pair, and so is [HAo(z), HA, (z) ] . 
(Appendix 3.E reviews the design procedure of the two-channel. PR system in [ 5 ] ,  

and [la].  Also, its relation to lattice structure [I91 is briefly discussed.) These pairs 

are designed by spectral factorization of appropriate half-band filters [IS]. The over- 

all analysis filters are Ho (2) = Hoe (z) Hho (z2), HI (2) = Ifoo (2) HA1 (z2) >, and so on. In 

order to obtain the same transition bandwidth A f as in Fig. 3.15, we should take 

the transition bandwidth of Hoo(z) to be Af and that of HA0(z) to be 2A f .  The 

stopband attenuation seen in Fig. 3.15 can be obtained with the tree structure if 

Hoo(z) and H&(z), designed as in [18], are of lengths 30 and 16, respectively. Thus, 

each analysis filter has length = (29 + 2 x 15 + 1) = 60. The responses are shown in 

Fig. 3.17. It seems to be an interesting coincidence that the analysis filters Hk(z) 

corresponding to Fig. 3.15 and Fig. 3.17 have the same length (= 60). It is not 

clear to us at this time as to whether this is a general property of the two methods 



Fig. 3.16. The 4x4 tree-structured QMF analysis bank. 
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Fig. 3.17. Ex. 3.3. Magnitude response plots for the analysis filters designed 
based on the tree structure. 



for power-of-two M. The overall group delay of the QMF system is equal to 59 

samples, for both methods. 

It is interesting to compare the complexity (in terms of both MPU and APU) 

for the two designs. For the tree-structured design, we can implement each two- 

channel branch in Fig. 3.16 by either direct-form [18] or lattice structure 1191. In 

our implementation, two factors which can potentially contribute to savings in the 

number of multiplication are: a). the relation Hol(z) = z-29Hoo(-z-1), and b). 

decimation by a factor of two. In a direct-form structure we cannot simultaneously 

exploit both of these factors because the order is necessarily odd (29 in our example.) 

Based on either one of these factors, it is easy to implement the pair [Hoo(z), Hol (z)] 

using only (29+ 1) MPU. Galand and Nussbaurner have proposed a modified direct- 

form scheme [61] whereby both the above contributing factors can be partially 

exploited to obtain an implementation with only 314 x (29 + 1) MPU. Thus, the 

pair [lYoo(z), Hol(z)] requires 314 x 30 multiplications per computed output sample 

[GI]. Similarly, because of the decimation factor, each [H&(z), HAl(z)] pair requires 

1/2 x 3/4 x (16) = 6 MPU. Hence, in a modified direct-form implementation, the 

analysis bank designed based on the tree structure requires 314 x (30) +3/4 x (16) * 
35 MPU. 

The lattice structure implementation is based on the lossless property of the 

polyphase filter matrix E(z) [19]. The denormalized two-channel lattice requires 

S/2 MPU (see [19]), where S is the length of each analysis filter. The normalized 

lattice structure, on the other hand, has automatic internal L2 scaling property, 

as the internal building blocks are planar rotation operators. Each such operator 

is mathematically identical to a single complex multiplication, and can be imple- 

mented [60] using 3 real multiplications (and 3 real additions). As a result, the 



entire normalized analysis bank requires only 3S/4 MPU, which is exactly the same 

as the best known [61]. The complexity of the pair [Hoo(z), Hol(z)], hence, is 23 

and 15 MPU for the normalized and denormalized implementations, respectively. 

Similarly, because of the decimation factor, each [Hho(z), Hhl(z)] pair requires 6 and 

4 MPU for the normalized and denormalized structures, respectively. Implemented 

by lattice structure, the total complexity of the andysis bank designed based on 

tree structure is 23 -t- 2 x 6 = 35 MPU and 15 + 2 x 4 = 23 for the normalized and 

denormalized structures, respectively. 

Table 3.5 summarizes the comparison between the new design and the tree- 

structured design. As is evident from it, the complexity of the new pairwise sym- 

metric lattice structure implementations is less than that of the tree-structured im- 

plementation. In fact, with a denormalized lattice, the MPU count is the smallest 

(= 19). Besides the complexity advantage, the painvise symmetric lattice structure 

can be used for designing filters with arbitrary M ,  which is not necessarily a power 

of 2. 



Table 3.5 Comparison of the number of multiplications per unit time in the analysis bank 
for various four-channel QMF bank implementations. Here "unit timen is the sampling 

period corresponding to the input x(n) in Fig. 3.l(a). The normalized two-channel lattice 
is assumed to be implemented with 3 multiplications per section. 

No = length of the analysis filters in stage 1 (Tree structure). 

Nl = length of the analysis filters in stage 2 (Tree structure). 
S= length of analysis filters in the new lattice. 

- 
General 

expression 
for MPU 

No. of 
MPU with 

No = 30 
Nl = 16 
Lj( = 60 

Order of 
Hk(2) = 

Group delay 

Non-tree latt ice-based design 
Direct Form 

3 

60 

59 

Tree-struc ture based design 
New Lattice Direct Form 

Norm 

f s  

23 

59 

Lattice 1191 
Regular 

No + Nl 

46 

59 

Denorm 

L 1, jt 

19 

59 

Denorm 

f (No + Nl )  

2 3 

59 

Galand [61] 

f (No + Nl )  

35 

59 

Norm 

3 ;(NO + N I )  

35 

59 



Appendix 3.A 

We shall state and prove two lemmas here. 

L e m a  3.A.1: If the analysis filters can be written in two ways: 

where (i, M )  = 1, then 

EE = I if and only if GG = I. (3.A.2) 

L e m a  3.A.2: Consider the structure in Fig. 3.18. If (i, M )  = I ,  then this is 

a perfect-reconstruction system. 

When i = 2 and M  is odd, the above two lemmas can be applied to Fig. 3.3 to 

conclude two features: 

I). If E ' ( z ~ ~ )  is lossless and R is orthogonal, then RI' ( z ~ ) E ' ( z ~ ~ )  = G ( z M )  is 

lossless; hence, the complete structure in Fig. 3.4 has perfect-reconstruction 

property by Lemma 3.A.2. 

2). Imposing losslessness on E1(z)  is equivalent to imposing losslessness on E ( z ) .  

Proof: (Lemma 3.A.1) First consider the M x M  DFT matrix. This is unitary 

because WtW = M I ;  i.e., 

'Here (i, M) denotes the greatest common divisor of i and M. 



Fig. 3.18. Pertaining to Appendix 3.A. 

Fig. 3.1 9. Pertaining to Appendix 3.8. 



where 0 < e, l' < M - 1 .  Suppose we replace W with W S ,  where (S, M )  = 1 ,  then 

M-1 M - 1  
- C w - " ~ " ~  - 

wks(e-ef) - - {O, if s(e - e l )  Lf multiple of M ;  
(3.A.3) 

k=O k=O M ,  otherwise. 

Since / e  - e l l  < M ,  we see that s ( l -  4!') is a multiple of M only if s  contains a factor 

of M .  This cannot happen if ( s ,  M )  = 1. Hence, 

The modified DFT matrix, denoted w (~ ) ,  is therefore also unitary. Now (3 .A. l )  

implies 

for any k. This implies 

where A(z) = diag [ z - ~ ] .  Since A(z) ,  W ,  A(zi) and W'are lossless, we conclude 

that (3.A.2) is true as long as (i, M )  = 1 .  

Proof (Lemma 3.A.2): 

In Fig. 3.18, Hk( z )  = z - ~ '  and Fk(z)  = z -("-l-k)',  SO (3.A .6) becomes 



M-1 

Note that wek" = 0, unless ti is a multiple of M. Since 0 < t 5 M - 1 and 
k=O 

(i, M )  = 1, i! has to be 0. Thus, (3.A.7) simplifies to 

The structure in Fig. 3.18 is, therefore, a perfect-reconstruction structure. We will 

now find the relation between the analysis and synthesis filters of Fig. 3.4. With 

G(zM) & R A ( Z ~ ) E ' ( Z ~ ~ ) ,  the synthesis filters Fk(z) in Fig. 3.4 are given by 

with i = 2. However, 

Thus, 

Fk(z) = z -(sM+'M-i) 
k (4 .  

If the analysis banks of Fig. 3.3 and Fig. 3.l(b) are related as in (3.A.1), are the 

synthesis banks of Fig. 3.3 and Fig. 3.l(b) identical? From (3.A.1), we have 

which implies 



Hence, the synthesis banks in Fig. 3.3 and Fig. 3.l(b) are identical, except for a 

possible overall delay. 

Appendix 3.B 

Fig. 3.19 shows the terminal blocks of the analysis bank for odd M ,  where 

M = 2L + 1, and the number of connecting lines with delays zWM are MI < M .  We 

will derive the necessary and sufficient conditions for R so that Hk(z) satisfy the 

pairwise symmetry property (3.7). Let 

Thus the pairwise symmetry property on Hk(z) yields 

where PI is defined as in (3.16). Let R be partitioned into 

(3.A.12) 

where A is L x (M - MI), B is L x MI, C is 1 x ( M  - MI), D is 1 x MI, E is 

L x ( M  - MI) and F is L x MI. Thus, 

Our aim is to find a structural form for R such that for any set of polynomials ql(z) 

and q2 (z), the vectors hl(z) and h2 (z) are related by (3.A.11). By the pairwise- 

symmetry property, HL(z) = HL(-Z) = a function of z2. Since M is odd, it is clear 



from (3.A.13) that D = 0. Substituting (3.A.13) into (3.A.11) and simplifying, we 

have 

(A - p 1 ~ ) q 1 ( z 2 )  = Z - ~ ( P ~ F  + B ) ~ ~ ( Z ~ ) .  (3.A.14) 

Since M is odd, the RHS of (3.A.14) has only odd powers of z-l, whereas the LHS 

has only even powers. With arbitrary ql(z) and q2(z), this is possible if and only 

if A -PIE = 0, and PIF + B = 0. Thus, E = PT'A = P I A  and F = -P,'B = 

-P IB  as in (3.15). 

Appendix 3.C 

Let 

where A , B , C  and D have dimensions L x L. We will derive the necessary and 

sufficient condition on Km+l such that (3.31) holds if (3.30) holds. In terms of 

h i ( z )  and hk(z) ,  (3.30) and (3.31) are equivalent to 

where P1 is as in (3.16). We would like to find the structural form of Km+1 such 

that (3.A.16) holds for any set of h i ( z )  and h&(z) satisfying (3.A.15). From Fig. 

3.15, 

Substituting (3.A.15) into (3.A.17), we have 



If (3.A.16) has to hold, then the right-hand sides of (3.A.18) and (3.A.19) should 

be the same, so that 

For arbitrary causal FIR hk(z) ,  the function h k ( - ~ - ' ) z - ( ( ~ + ' ) ~ - ' )  is also causal 

and FIR, and in general has the form ho + zm'hl + . . .. Since the RHS of (3.A.20) 

has a power of z-' starting from z - ~ ,  (3.A.20) holds for arbitrary hk(z)  if and 

only if PIBPl + C = 0, which in turn implies A P 1  - P I D  = 0 .  Simplying these 

relations, we obtain B = -P1CP1 and D = P I A P l  resulting in the form (3.32) for 

Km+l. 

Appendix 3.D 

Consider the even M case. Let h l l (z )  = (1 z-l . . . z - ( ~ - ' ) ) ~  and h2_, = (z-= 

. . . z - ( ~ - ' ) ) ~ ,  where L = M/2. Using the notations in Appendix B with K O  = 

( E ) ,  r e  will derive the necessary and saficient conditions on KO such that 

Ah?,(z) + ch!,(z) 
(3.A.21) 

~ h ' _ , ( z )  + Dh?,(z) 

satisfies the pairwise-symmetry property; i.e., Plh; (z) = ~ - ( ~ - ' ) h '  o (-z-I). Accord- 

ingly, (3.A.21) is simplified to  

However, h l l  (-z-') z - ( ~ - ' )  = P 2 h ?  I (z) , and h?, (-z-') z - ( ~ - ' )  = P3h11 (z) , where 

PZ and P3 are as in (3.35). Hence, (3.A.22) simplifies to 



The matrices ( P I B  - CP3) and (AP2  - P I D )  are L x L. The left-hand side has the 

powers z -~ ,O  < k < L - 1 and the right-hand side contains z - ~ ,  L < k < M - 1. It 

can therefore be easily verified that we must have P I B  - C P 3  = 0, A P 2  - P I D  = 0. 

This can be rewritten, yielding B = P1CP3, D = P l A P 2  and thus K O  in (3.34) is 

the only form which forces HO,k(z) to have the painvise symmetry property. 

Appendix 3.E 

We review the design process in the two-channel perfect-reconstruction FIR 

QMF banks [5], [18] in this appendix. Its relation with the lattice structure reported 

in [19] is also discussed. Consider the two-channel QMF bank, where Ho(z) and 

Hl (z) are analysis filters, whereas Fo(z) and Fl (z) are synthesis filters. Here, Ho (z) 

and %(z) are iowpass transfer functions and Hl(z) and Fl(z) are highpass transfer 

functions, respectively. Using the standard identities in multirate signal processing 

121, the reconstructed signal k ( z )  is 

The term X(-z) is precisely the aliasing term, and thus it is required to be 

made equal to zero, since the objective is to choose Hk(z) and Fk(z) such that 

k ( z )  = !X(-z). Eq (3.A.24) yields 

In the scheme of Smith and Barnwell [5], [18], the following relations between 

the transfer functions are enforced: 
H1(z) = z-(N-l)~o(-z-l)  
Fo (z) = z-(*-') HO (z-') (3.A.26) 
Fl (2) = Z-("-')H~ (2-I) ,  



where N-1 is the order of H o ( z )  (and it is odd). With the above choices in (3.A.26), 

(3.A.25) simplified to 

Ho(z - l )  H o ( z )  + H ~ ( Z - ~ ) H ~ ( ~ )  = 1 for all z. (3.A.27) 

Note that the above choices (3.A.26) cancel the aliasing term in (3.A.24). To en- 

sure the PR property, the design procedure proposed in [5] based on the spectral 

factorization of a linear-phase FIR halfband filter with positive amplitude response. 

Substituting H l ( z )  = Z - ( ~ - ' ) H ~ ( - Z - ' )  into (3.A.27), we have 

H~ ( z - I )  Ho ( z )  + Ho ( -2)  Ho(-z-l)  = 1 for all z .  (3.A.28) 

If we define G O ( Z )  &Ho(z)  ~ ~ ( z - ' ) ,  then it follows from (3.A.28) that G O ( z )  is a 

halfband filter. In other words, 

The design procedure is thus as fofoll~ws: First, design a linear-phase FIR half- 

band filter G o ( z )  with positive amplitude response. Obtain a spectral factor Ho(z )  

of Go(z ) .  Once H o ( z )  is designed, the remaining set of filters are chosen as according 

in (3.A.26). 

Given the pair of odd-order PR filters Ho (2) and Hl ( z )  , which satisfies Hl ( z )  = 

Z - ( ~ - ' ) H ~ ( - Z - ' ) .  It is shown in [19] that there is a lattice structure associated with 

this pair. These lattice structures consist of a cascade of orthogonal building blocks 

and the transfer matrix ( z !2 ) .  In other words, this lattice structure spans all 

two-channel PR FIR QMF filter banks with lossless E ( z ) .  



Appendix 3.F 

This appendix tabulates the properties, lattice coefficient and filter-coefficient 

values for a set of PR pairwise symmetric QMF designs based on the material in 

Section 3.1. Although this design procedure is capable of designing filters for any 

QMF bank which has odd number of channels, we consider only the case of three 

channels here. Table 3.F.1 summarizes the properties of the PR QMF structures. 

The first column lists the code number of the filters, whereas the second and third 

columns give the number of sections (number of blocks K; in Fig. 3.8) and the 

lengths of the filters, respectively. The width of the transition band (normalized 

to 27r) is shown in column 4. The cut-off frequencies of the analysis filters are 

shown explicitly in Fig. 3.20. The last column tabulates the stopband attenuation 

(in dB) of the filters. Table 3.F.2 displays the lattice coefficients rotation angles 

in radians) of the PR system in Figs. 3.8 and 3.9. Similarly, table 3.F.3 displays 

the impulse responses ho(n) and hl(n). hz(n)  can be computed from ho(n) by 

kp(n) = (-l)"ho(n). 

Fig. 3.20. The cutoff frequencies of the analysis filters. (M=3). 
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Table 3.F. 1. Properties of the PR pairwise mirror-image QMF structures 

A f 

0.17 
0.15 
0.15 
0.14 
0.14 

0.14 
0.12 
0.11 
0.11 
0.10 
0.10 
0.10 

0.09 
0.08 
0.07 
0.07 

Length of 
filters 

L 
14 
20 
26 
32 
38 

14 
20 
26 
3 2 
3 8 
44 
50 

20 
26 
3 2 
3 8 

Filter 
Number 

14A 
20A 
26A 
32A 
38A 

14B 
20B 
26B 
32B 
38B 
44 B 
50B 

20C 
26C 
32C 
38C 

Stopband ' 

Attenuation 

(dB) 
30.5 
38.5 
48.6 
58.8 
63.5 

26.2 
31.1 
37.8 
44.6 
52.6 
59.2 
67.8 

24.2 
27.4 
31.2 
35.4 

Number of 
sections 

N 
2 
3 
4 
5 
6 

2 
3 
4 
5 
6 
7 
8 

3 
4 
5 
6 

I 

2 6 0  
3 2 0  
38D 
4 4 0  
50D 
5 6 0  
6 2 0  
68D 
7 4 0  

4 
5 
6 
7 
8 
9 
10 
1 I 
12 

22.8 
25.2 
27.7 
30.3 
33.2 
36.0 
39.4 
42.7 
45.4 

, 
26 
3 2 
38 
44 
50 
56 
62 
68 
74 

0.072 
0.07 
0.052 
0.046 
0.043 
0.043 
0.043 
0.043 
0.043 



Table 3.F.2 Lattice coefficients of the PR pairwise mirror-image 
QMF structures as  in Fig. 3.8 ( in radians). 



Table 3.F.2. continued ... 



Table 3 3 . 2 .  continued ... 



Table 3.F.2. continued ... 



Table 3.F.2. continued ... 



Table 3.F.2. continued ... 



Table 3.F.2. continued ... 



Table 3.F.3. Filter coefficients of the optimized analysis filters. 
Here, hn(n) = (- l j n  ho(n). 
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Table 3.F.3. continued ... 
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Table 3.F.3. continued ... 
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Table 3.F.3. continued ... 

14 
15 
16 

, 2.673383 x 
8.557101 x lo-' 
5.386738 x 

1.754621 x lo-" 
0.  

-1.717389 X 10-I 

17 1.473493 x 
i 

18 
19 

-5.492308 X lo-' 
-5.867611 X 

0. 
-1.114084 x 10-I 

0 .  
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CHAPTER IV 

M-CHANNEL FIR PR LINEAR-PHASE QMF BANKS 

It is proved in [31] that for a two-channel FIR QMF bank with lossless E(z),  only 

trivial filters in the form of sums of delays exist. The reason [31] is that the lossless 

property put too many constraints on E(z). Instead of forcing E(z) to be lossless, 

let us derive a general condition for an FIR perfect-reconstruction system. Figures 

1.2(b), 2.6 and 2.7 are redrawn as Figures 4.l(a), 4.l(b) and 4.l(c), respectively. It 

is clear from Fig. 4.l(c) that it is a perfect-reconstruction system if we choose 1121 

R(z)  = Edl(z). If the analysis filters are FIR, the choice R(z)  = E-'(z) gives rise 

to FIR synthesis filters as well, provided that det E(z) = bz-', where b and r are a 

nonzero constant and a nonnegative integer, respectively. In this chapter, the term 

"perfect reconstruction" is taken to be synonymous to the condition det E(z) = 

bz-' (even though this is not a necessary condition with IIR perfect-reconstruction 

systems). 

The theory of perfect reconstruction when M is a power of 2 is well known 

[18], [19]. The design method in [18] is based on spectral factorization of an FIR 

half-band filter. Some methods of perfect reconstruction for an arbitrary number 

of channels have been reported recently [7, 201. The method described in [7] 

constrains the polyphase transfer matrix E(z) to be FIR and lossless (i.e., E(ejw) 

to be unitary for all w ) .  The coefficents here are assumed to be real. Under this 

condition if the matrix R(z)  is chosen as R(z) = ET(z-I), then the system of Fig. 

4.l(a) is forced to be a PR system. In [11], a procedure for the design of two- 

channel perfect-reconstruction systems with linear-phase FIR filters is given, based 

on judicious factorization of a linear- phase FIR halfband filter. The number of 



Fig. 4.l(a). The M-channel maximally decimated parallel QMF bank. 

ANALYSIS BANK SYNTHESIS BANK 

Fig. 4.1 (b). Polyphase implementation of Fig. 4.1 (a). 

- 
ANALYSIS BANK SYNTHESIS BANK 

Fig. 4.1 (c). An equivalent structure for Fig. 4.1 (b) 



possible spectral factors, hence, grows exponentially with respect to the degree of 

the filters; besides, the resulting filters are not guaranteed to be optimal. 

Our goal in this chapter is t o  impose both the PR and the linear-phase properties 

on the analysis filters of the QMF bank in Fig. 4.l(a). First, in Section 4.1, we study 

the necessary form of E(z) - such that Hk(z),  0 < k 5 M - 1 are linear-phase FIR 

filters. Next, we concentrate on a special class (to be elaborated) of these linear- 

phase FIR QMF banks. Our restriction to this subclass is primarily motivated by 

analytic tractability. Having limited our study to a subclass of these PR structures, 

the conditions on the lengths and the symmetries of Hk(z) are derived by imposing 

the perfect-reconstruction condition on the above E(z). We will also give the exact 

number of linear-phase perfect-reconstruction structures for this subclass. For the 

two-channel case, this class covers all nontrivial LP PR FIR QMF structures [30]. 

The lattice structures for the two-channel and three-channel PR LP FIR QMF banks 

are elaborately studied in Sections 4.2 and 4.3, respectively. Once this linear-phase 

perfect-reconstruction lattice structure for %channel QMF bank is obtained, the 

pairwise symmetry property [59] is incorporated on it to speed up the convergence 

time in the design process. Design examples and systems complexity are also 

included. 

4.1. M-channel L P  PR FIR QMF Banks.  

Let Hk(z), 0 < k < M - 1 be the M (causal) linear-phase analysis filters with 

A center ck. We define the degree of Hk(z) as Nk - 1=2ck. For a given M ,  we can 

uniquely write Nk - 1 as mkM+ik ,  where 0 < ik < M - 1 and mk are integers. This 

representation will be used subsequently. In terms of the polyphase components 



Ekj (z), the filter Hk (z) is represented as [7, 171 

We shall define the center of Eki(z) as ckj, where 

First, let us find the relations among the polyphase component Ekj(z), which yields 

linear-phase analysis filters. Once these relations are known, we can further study 

the perfect-reconstruction aspect of these structures. 

The impulse response of a linear-phase filter Hk(z) could be either a symet r i c  

or an antisymmetric sequence; i.e., 

where 

I ,  Hk (z) is symmetric; 
Jk = { -I, Hk(z) is anti-symmetric. 

Using (4.1) in (4.3) and noting that Nk - 1 = mkM + ik,  we obtain 

Making changes of variables, the above equation becomes 



Comparing like powers of both sides of (4.6), we have the following necessary form 

of E(z), which yields linear-phase analysis filters. Thus, 

The above relation has been known before in a slightly different notation [14]. Let 

us now concentrate on a subclass of systems that satisfizs (4.7), namely, the class 

where all ik are equal; i.e., io = il = . . . = iM-l = I. From now on, we consider 

only this class. The restriction of our discussion to this class is motivated primarily 

by the tractability of the possible combinations of PR systems belonging to this 

subclass. 

Recalling that Nk = rnkM + ik + 1, we see that for this particular subclass, the 

sum of the lengths of the analysis filters is a multiple of M .  E(z)  in (4.7) becomes 

The above form of E(z) yields a linear-phase QMF structure. It does not, how- 

ever, guarantee perfect-reconstruction yet. To achieve this additional goal, namely, 

perfect reconstruction, let us study E(z) carefully. It can be verified that (4.8) is 

equivalent to 

E(Z) = A ~ ( Z ) P E ~ ( Z ) A ~ ( Z ) ,  (4.9) 

where hl (z) and h2 (z) are diagonal matrices such that 

- { j <  1; and (Az) j j  = zmj J j  . 
1 3 ' -  z-l, j > I ,  

Here, P is a permutation matrix of the form 



where 

For a PR system, det E(z) = bz-'. Taking the determinant of both sides in (4.9), 

det E(Z) = det A1(z) det P det E ~ ( z )  det A2(z) (4.13) 

or equivalently, 

Comparing both sides of (4.14), we have the two following conditions: 

(Mr]' Jk') det P = 1. 

The first equation in (4.15) yields the same condition on the filter lengths as above. 

Namely, the sum of the lengths of the analysis filters is a multiple of M. From Eq. 

(4.15b) one can obtain the total number of possible combinations of analysis filters 

which yield LP PR systems. 

We have shown in [30] that in the case of two-channel LP PR FIR QMF banks, 

there are only two structures in which all ik are the same. For an arbitrary number 

of channels, partly because of the two choices that Jk can take (namely, Jk can 

be either 1 or -I) ,  and partly because of the M choices that I can take (i.e., 

0 5 I M - I), the counting of combinations that yield LP PR FIR QMF banks 

is not simple. For instance, if M = 3, there are 3 possible combinations which the 

triplets Jo, J1 and J2 can take. These are the combinations in which either one or 

two or all three of the Jk are 1. (The case where none of the Jk is 1, i.e., all Jk are -1, 



can not be a PR structure. In other words, the DC component of the signal s(n) can 

not be reconstructed since all analysis filter Hk(z) have zeros at w = O!) Moreover, 

for each of the above triplets Jo,  Jl and J2 ,  there are 3 possibilities because I can 

be either 0 or I or 2. Thus, there are in total 3' structures that yield LP analysis 

filters in our subclass. In general, there are M2 LP structures. Which one of these 

can be both LP and PR? 

Let us turn our attention to (4.15b), which governs the number of combinations 

of analysis filters that yield LP PR FIR filters. Let 

S-1 [ As = Number of combinations of Jk such that n Jk = 1, 
k=O 
s-1 (4.16) 

O s  = Number of combinations of Jk such that n Jk = -1, 
k=O ( R1 = Number of combinations of I such that det P = 1; 

then the total number of combinations of analysis filters which are LP PR and are 

obeying (4.15b) (denoted as Total) is: 

Total = AMRl + e M ( 2 k l -  Ri) = RI(AM - O M )  + M O M .  (4.17) 

Let us calculate As, O s  and R1 separately, as follows: 

From (4.11), 

det P = det rr+1 det I'M-l-I, (4.18) 

where 

det Tk = { I ;  k = 4r, 4r + 1, 
-1; k = 4 r + 2 , 4 r + 3 .  

Here, r is a positive integer. By taking I in the range from 0 to M - 1 and using 



(4.19) in (4.18), one can verify that 

(:/2; M is even, 
R1 = M ;  M = 4 r + l ,  

M = 4r + 3, 

where r is a positive integer. 

Calc ulatine; AS : 

S-1 

We are interested in the number of combinations of Jk for which fl Jk = 1, 
k=O 

where Jk can be either 1 or -1. As mentioned above, the case where all Jk = -1 

is excluded since a PR system is not possible for this case. 

Even S Since S is even and, furthermore, since Jk can be either 1 or 

-1, the number of Jk that takes the values -1 has to be even. In other words, 

there will be 0, or 2, . . ., or s values of Jk that take the value -1. That gives us, 

in total, (S/2 + 1) combinations. Excluding the case where all Jk are -1, we have 
s-1 

a net total of S/2 combinations in which fl Jk = 1. 
k=O 

Odd S: Similar to the above even case, the number of Jk that takes 

the value -1 in this case has to be even. Thus, there will be 0, or 2, . . ., or ( S  - 1) 

values of Jk that take the value -1 and thus, As = (S + 1)/2. Combining both 

cases, As is: 
even S, 

= { 2 odd S .  
(4.21) 

Calculating OS: 

Use the same counting argument as in the As case where the only difference is 

that the number of Jk taking the values -1 is odd. Thus, 

even S, 
Os = 



In summary, the total number of LP PR FIR QMF structures is 

Total  = Rl(AM - OM) + MOM, (4.23) 

where R1, AM and OM are as in (4.20), (4.21) and (4.22). We have calculated 

Total for several M in Table 4.1. We observe that for M = 2, this result agrees 

with previous work [30]. For this particular subclass, let us summarize all results 

on the LP PR QMF bank in the following fact. 

m: For an M-channel FIR QMF bank in which all ik are the same, the 

total number of combinations of LP PR analysis filter banks is given in (4.23). The 

polyphase transfer matrix E(z) satisfies (4.8) or equivalently, (4.9). The lengths of 
M-1 

the analysis filters Hk(z),  & satisfy the condition: Nk = M(2r + M): where r 
k=O 

is some positive integer and Nk - 1 = m k M  + ik .  

Table 4.1 
Number of combinations of LP PR systems for the case where 

all ik are the same 

From the above discussions, it is clear that there are several possible combina- 

tions of analysis filters that yield LP PR FIR QMF banks. In order to develop a 

design procedure for such systems, we shall adopt the same strategy as in some 

of our previous work (7,191. This strategy is to construct a lattice structure for 

the analysis bank such that the properties of interest are structurally enforced. In 

other words, regardless of the values of the multipliers in the structure, the FIR 

filter bank would satisfy the LP PR property. If we invent such a structure, we 

M 
Total  15 

6 
18 

2 3 4 5  
8 2 

7 
21 3 



can optimize the multiplers in the structure to obtain an analysis filter with good 

stopband attenuations, without sacrificing the LP PR property. 

Now, because of the existence of several possible combinations of analysis filters 

giving rise to the LP PR property, it is not possible to find a single general lattice 

structure that covers all of these cases. Our main purpose in the next section is to - 
demonstrate that it is indeed possible to obtain lattice structures if we restrict the 

filter bank to be a subclass of all the possible combinations. To be specific, if we set 

I = M - 1 in the above discussions, it turns out to be easy to obtain such lattice 

structures. 

4.2. Two-channel LP PR FIR Q M F  Banks. 

For a two-channel FIR QMF system, the QMF bank of Fig. 4.l(a) - 4.l(c) is 

simplified to Fig. 4.2(a) - 4.2(c). Writing the analysis filters Hk(z) in terms of 

their polyphase components EkVe(z), we have 

Evidently from Fig, 4.2(c), we can obtain a perfect-reconstruction system if we 

choose R(z)  = E-'(z). If the analysis filters are FIR, the choice R(z)  = E-'(2) 

gives rise to FIR synthesis filters, provided that det E(z) = bz-', where b and r are 

a nonzero constant and a nonnegative integer, respectively. Our aim is to obtain a 

structure for the pair of transfer functions [Ho(z), Hl (z)] with overall form as in Fig. 

4.3. The structure should have the following features regardless of the multiplier 

values in the structure: 

I. Ho(z) and Hl(z) are linear-phase FIR filters. 

2. det E(z) = bz-'. 



Fig. 4.2(a). The 2-channel QMF bank. 

Fig. 4.2(b). An equivalent structure for Fig. 4.2(a). 

Fig. 4.2(c): A redrawing of Fig. 4.2(b). 

Fig. 4.3. Pertaining to the discussion of a 
perfect-reconstruction pair. 



Such a structure will be called a linear-phase perfect-reconstruction structure, 

and such a pair [Ho(z), Hl(z)] will be called a perfect-reconstruction pair. Most 

of the two-channel QMF designs satisfy the power-complement ary property (i.e., 

Ifir,(ejw) l2  + /Hl(ejw) l2  = 1) either approximately, as in [2], 1261, or exactly as 

in perfect-reconstruction systems [6], [7], [18], [19]. This condition, however, is 

not necessary for perfect reconstruction [20], 11301. In fact, if we constrain Ho(z) 

and Hl(z) to be linear-phase filters, it will be necessary to give up the power- 

complementary property [31]. All the QMF analysis filter designs in this subsection 

(two-channel) have linear-phase and perfect-reconstruction property, accomplished 

by relaxing the power-complement ary requirement. 

As discussed in the above section, there are two PR FIR QMF structures that 

yield linear-phase analysis filters. We showed in 1301 that these two choices are the 

only ones that yield nontrivial LP PR FIR analysis filters. These choices are: 

1. io = il = I = 1. Here, the orders of Ho(z) and Hl(z) are odd since Nk - 1 = 

2mkf1 .  Furthermore, from (4.11), P = ( . Thus, Jo= J l=  l o r  in 

other words, the two analysis filters Ho(z) and Hl(z) have opposite symmetry. 

We will denote this case by "Type A." 

2. io = il = I = 0. Opposite the above case, the orders of Hk(z) are now 

even. Based on (4.15b) and the fact that I = 0, we have P = ( ) md 
therefore JoJl = 1. Thus, the two analysis filters are both symmetric. (The 

case where Jo = J1 = -1 is of no interest to us since perfect reconstruction is 

not possible.) We denote this case by "Type B." 

Furthermore, the lengths of Ho(z) and Hl(z) satisfy No + Nl = 4r, where r is a 



positive integer. We will now elaborate on the structures and implementations of 

Type A and Type B in Sections 4.2.1 and 4.2.2, respectively. Accompanying the 

design in each subsection is the comparison between the new proposed structures 

and the corresponding conventional ones. Examples are given to verify the theory. 

Let us now discuss the properties of the synthesis filters of a two-channel FIR - 
PR system. From Fig. 4.2(c), with R(z) = E-I (z), we have 

Since det E(z) = bz-', the above equation becomes 

Simplifying the above expression, we have 

Note that the above relation (4.26) between the synthesis and analysis filters holds 

regardless of the phase responses of Hk(z). Moreover, if the analysis filters have 

linear phase, then so do the synthesis filters. The noncausal factor z2' can be 

dropped in practice. 

4.2.1. Analysis filters and lattice structures for Type A systems. 

Recall that the word "Type A" implies that [Ho(z), Hl(z)] is a linear-phase FIR 

SAOO pair, and that det E(z) is a delay. Our aim here is to obtain FIR lattice 

structures for the pair [Ho(z), Hl(z)] such that it is guaranteed to be Type A. We 

shall first propose a structure, and then prove that (almost) any Type A pair can be 

realized by the structure, so that the structure is a general tool for optimal design 

of such pairs of filters. (The parenthetical adverb "almost" is elaborated towards 



the end of this section.) The basic ingredient of the proof will be to show that such 

a pair can be systematically synthesized in the proposed structural form. In the 

following discussions, the synthesis procedures are primarily tools for such proofs. 

Without loss of generality, we assume that Ho(z) and Hl(z) are symmetric and 

antisymmetric, respectively. Their lengths, No and Nl, are both even. We start 

with a structure closely related to the well-known linear prediction lattice [21], 

[23] shown in Fig. 4.4 (for the moment let us ignore the last section [: !I]). 
Traditionally, in the linear prediction lattice, the coefficients k,, which are real- 

valued, are constrained to  be kk < 1. This constraint is a necessary and sufficient 

condition for the FIR transfer function TN(z) to have minimum-phase (i.e., all N 

zeros strictly are inside the unit circle). The FIR function UN (z) is automatically 

constrained by the structure to be such that UN (z) = z - ~ T ~  (z-I) = G(z). Thus, 

[TN (z), UN (z)] is an MIP (which stands for mirror-image pair), and UN (z) is a 

maximum-phase FIR filter. 

If we permit k, to be arbitrary real numbers (i.e,, not constrained to be Ich < I), 

then UN (z) and TN (z) are still related as UN (z) = FN (z), but UN(z) can now have 

arbitrary phase response. Caution should, however, be exercised concerning the 

possibility of k i  = 1, which leads to "singularities" as elaborated a few paragraphs 

later. We shall now exploit the fundamental features of this structure (uncon- 

strained k,, with kk # 1) to obtain Type A pairs eventually. 

Given the pair [Ho(z), Hl(z)], the idea is to  generate the MIP [TN (z), UN(z)], 

which can be synthesized in the form of a lattice. If Ho(z) and Hl(z) have the 

same lengths, (No = Nl) the MIP can be generated as 



If, on the other hand, we have No < N1, the centers of symmetries of Ho(z) and 

Hl(z) should first be aligned. The MIP is then generated as 

The inverse relation is evidently 

which is represented in Fig. 4.4. The purpose of the delay z-(N1-N0)12 is to align the 

centers of symmetry of both Ho(z) and Hl (2). For arbitrary choices of Ho (z) and 

Hl (z), the filters TN (z) and UN (z) obtained from (4.28) no longer have minimum 

phase and maximum phase. However, by permitting unconstrained real values for 

k,, one can still realize the pair [TN(z), UN(z)] by using the structure of Fig. 4.4. 

To comprehend the nature of the synthesis problem at  hand, we shall for a 

moment relax the perfect-reconstruction constraint. Thus, let [TN (2) , UN (z)] be 

any MIP of order N. The procedure to  synthesize a lattice of the form in Fig. 4.4 

can be understood by referring to Fig. 4.5(a), which shows the mth section of Fig. 

4.4. Since the polynomials T,(z) and U,(z) are given as 

we can invert the relation to  obtain 

provided that k& # 1. Thus, given the MIP [TN(z), UN(z)], we can iteratively 

compute the lower-order pairs [Tk (z), Uk(z)], k = N - 1, N - 2,. . . by repeated 

application of (4.30), resulting in the structure of Fig. 4.4. The quantity k,, which 

results in a reduced-order pair [T,-l ( z ) ,  (z)], is given by k, = tm,m/tm,o, where 



Fig. 4.4. The 2x2 LPC lattice structure and its resulting SA LP 

pair [H0(z) t q (~11. 

Fig. 4.5(a). Type I building block. 

Fig. 4.5(b). Type II building block for the SAOO or 
SAEE LP FIR lattice structure. 

Fig. 4.5(c). The SAOO or SAEE LP FIR lattice structure. 



t,,i is the ith coefficient of the impulse response of T,(z); i.e., T,(z) = CZ0 trn,*z-j. 

It can be verified that [T,_l(z), Um-l(z)] is an MIP (assuming, of course, that 

[T, (z) , Urn (z)] is an MIP) . This procedure is the familiar "downward recursion" 

in Levinson's algorithm [21], [23], [24] with the exception that k, is now arbitrary 

(rather than constrained to be k; < 1 as in Levinson's algorithm). 

Now, the above procedure works for any MIP [TN(z), UN(z)], provided that 

kh # 1 at any stage. If k i  = 1 for some m, the 2 x 2 matrices in (4.29), (4.30) are 

singular. The meaning of this singularity situation is discussed further in Appendix 

4.A. In what follows, we shall outline a method to overcome singularity situations. 

The iteration in (4.29) is not the only means of constructing a lower-order MIP 

[Tm-1 (2) , [z)] from an MIP [Tm(z), U,(z)]. A more general procedure would 

be to define 

which works as follows: z, is an arbitrary real number. The parameter k, is 

chosen to  be 

SO that Tm(z) - kmUm(z) has a zero at  z = z,, canceling the denominator 1 - z-lz, 

in (4.31a). Since [T,(z), U,(z)] is MIP, the factor (z-I - z,) is canceled off in 

(4.31b) by the same choice of k,. Furthermore, since the pair [I - z-lz,, z-I - z,] 

is MIP, the pair [Trn-1 (z), (z)] is guaranteed to be a reduced-order FIR MIP! 

The purpose of the number z, is to avoid the possibility of kk's being unity. 



Since T,(z) f U,(z) is a finite-degree polynomial, it has only m zeros so that there 

is guaranteed to exist z, such that Tm(zm) + Um(zm) # 0, Tm(zm) - Um(zm) # 0, 

and Um(zm) # 0. Except for this restriction, z, is entirely arbitrary. In order to 

find a z, that works, it is only necessary to try out at most 3m values, say, z, = k, 

k = 0,1,. . . ,3m - 1. In Appendix 4.B it is shown that such a z, is guaranteed to 

exist as long as there is no common factor between TN(z) and UN(z). (It is also 

shown in Appendix 4.C that such a common factor cannot exist if [Ho(z), Hl(z)] 

is a PR pair). Fig. 4.5(b) shows the structural interpretation of the new order- 

reduction scheme. The resulting structure for arbitrary MIP [TN (z) , UN (z)] is as 

in Fig. 4.5(c) with building blocks A,(z) as in Fig. 4.5(b). It is clear that any 

arbitrary MIP [TN(z), UN(z)] can be represented in this form and that for arbitrary 

k,,z, (kk # I), the structure gives rise to only MIP [TN(z), UN(z)]. Notice that 

the traditional structure of Fig. 4.4 is obtained as a special case with z, = 0. 

Readers familiar with the relation between the linear-prediction IIR lattice and 

FIR lattice structure [21] will recognize that the relation between Fig. 4.5(b) and 

the IIR allpass structures in [24, page 4831 is similar. For convenience of discussion, 

the building blocks in Fig. 4.5(a) and 4.5(b) will respectively be called Types I and 

11. These are equivalent when z, = 0. 

The structures for [Ho(z), Hl(z)] proposed in Figs. 4.4, 4.5 and 4.6 are not in 

the form of Fig. 4.3, and this gap should now be bridged. First consider Fig. 4.3. 

It is clear that we can represent [Ho(z), HI (z)] as 

where G(z) is a 2 x 2 FIR transfer matrix with det G(z) = delay. However, since 

this is not in the form (4.24) (i.e., G(z)  is not equal to E(z2)) ,  we cannot conclude 

that det E(z) = delay. Thus, it is not true that all [Ho(z), Hl(z)] pairs represented 



by Fig. 4.4 lead to FIR perfect reconstruction analysis banks. If we impose the 

stipulation that km = 0 for even m in Fig. 4.4, then G(z) = E(z2),  and det E(z) is 

indeed a delay. What is more important, however, is the following stronger result: 

Lemma 4.1: Let [Ho(z), Hl(z)] be a Type A pair such that we can synthesize 

it in the form of Fig. 4.4, such that k, r f  +1 for any m. Then the even-numbered - 
coefficients k2, automatically turn out to be zero, if det E(z) is a delay. 

Proof: The proof is inductive. Suppose that we are given an mth order MIP 

[Tm(z), Um(z)], which at the same time is a PR pair; i.e., 

[;:[:] = Em(z2) [z!l] , with det E,(z) = rz-.. (4.34a) 

The coefficient of the z0 power in det Em(z) is (tm,otm,,-~ - tm,ltm,,), which should 

be 0. This condition together with k, = tm,m/tm,o yields 

tm,m - tm,m-1 k, - - -. (4.346) 
tm,o t,,l 

- Substituting (4.34b) in (4.30), we obtain tm-l,m-l - u,-l,o = 0. Thus, an order 

reduction by two is automatically enforced, so that 

By combining (4.35) and (4.34a) we also see that [Tm-z(z), U,-~(Z)] is an MIP PR 

pair. So if we start with an MIP PR pair [TN(z) ,U~(z) ]  and repeat the above 

order reduction process, we see that k, = 0 for even m and Fig. 4.7 reduces to a 

PR structure as shown in Fig. 4.8. QED 

Since we restrict z, to be zero in Lemma 4.1, it therefore does not cover all 

Type A pairs of filters. The pairs of filters which the structure of Fig. 4.8 excludes 

are essentially the ones which, during the synthesis process, yield internal transfer 



Fig. 4.6. The SAOO or SAEE LP FIR lattice structure. 

. . . 
z-' H 0 (z) 

..a Hl(z) 

Fig. 4.7. A redrawing of Fig. 4.6 with zm=O. 

Fig. 4.8. The lattice structure for Type A system. N is odd. 



function pairs (the [T,(z), U,(z)] pairs) such that tmPo = kt,,,, forcing k, = k 1. 

Suppose that the optimal filter happens to be one of these excluded filters. Then 

in practice, we can still always get as close to it as possible by using the structure 

of Fig. 4.8. Thus, these excluded filters are not expected to result in serious loss 

of generality. 

A result similar to Lemma 4.1 does not hold for the structure with the general- 

ized building blocks shown in Fig. 4.6. Even if such a result were true, the quantity 

E-'(2) that arises in the synthesis bank would contain the inverses of these building 

blocks. These inverse building blocks would contain the two factors 1/(1 - z-'2,) 

and l/(z-' - z,) at least one of which is necessarily unstable (i.e., synthesis fil- 

ters are IIR and unstable) for any choice of z,. This observation excludes the 

consideration of Fig. 4.6 for the rest of this section. 

Example 4.1: In the optimization procedure, we additionally use two scale 

factors pl and pz at the end of the structure in Fig. 4.8. The objective function to 

be minimized is 

A mathematical optimization subroutine [lo] is used to search for an optimal solu- 

tion. In order to initialize the lattice coefficients, we use the tabulated linear-phase 

filters designed earlier by Johnston [32], [2, page 4011. For our example, the filter 

64D was used for Ho(z), and Hl(z) was taken to be Ho(-z). With this "initial 

pair", the lattice of Fig. 4.4 was synthesized. Since the filters obtained from [2, 

page 4011 give only an approximation to a PR pair, the even-numbered coefficients 

kzm do not turn out to be zero. These were forced to be zero during initialization, 



and the odd-numbered coefficients reoptimized, using [lo]. The frequency responses 

of these reoptimized filters are shown in Fig. 4.9(a). The number of lattice sections 

in the example is equal to 32 and the transition bandwidth is A f = 0.086. Notice 

that these filters form an exact PR pair and retain the PR property in spite of 

quantization of the coefficients Ic,  to any desired level. The synthesis filters Fo(z) 

and Fl (2) can be obtained by using (4.26). Table 4.2 displays tihe lattice coefficients 

kZmS1, and the impulse responses of both analysis filters. Table 4.2 displays only 

the first half of the coefficients of Ho(z) and Hl(z), since the impulse responses are 

symmetric and antisymmetric, respectively. 

It is interesting to compare the above perfect-reconstruction design with John- 

ston's 64D filter in [2, page 4011 (to be referred to as the 64D filter in the following 

discussion). Both designs have linear phase and filter lengths equal to 64. The 

PR pair has a minimum stopband attenuation of about 42 dB and a reconstruction 

error equal to zero. On the other hand, the 64D filter has a better minimum s t o p  

band attenuation of about 65 dB, but a nonzero reconstruction error (defined in [2]) 

of about 0.002 dB. Both designs have about the same transition bandwidth, viz., 

A f = 0.086. The tradeoff is therefore very clear. For comparison, the frequency 

responses of the 64D-analysis filters are shown in Fig. 4.9(b), and the impulse re- 

sponse coefficients in Table 4.3. Notice that the significantly large coefficients in 

the 64D filter agree closely with those in the PR pair. The 64D filters satisfy the 

relation Hl(z) = Ho(-z), whereas the PR pair does not. It can, in fact, be shown 

that with Hl (z) = Ho(-z), it is impossible to force det E(z) to be an exact delay 

unless Ho(z) is a trivial function (See Appendix 4.D). Notice, finally, that some of 

the trailing coefficients in the PR pair (Table 4.2) are very small (compared to the 

ones in Table 4.3). These can be replaced with "zero" without significant effect on 



N O R H R L I Z E D  F R E Q U E N C Y  

Fig. 4.9a. Ex. 4.1. Magnitude response plots for the optimized analysis filters. 

Each filter has length =64. 

N O R H R L I Z E D  F R E Q U E N C Y  

Fig. 4.9b. Ex. 4.1. Magnitude response plots for the 64D analysis filters. 

Each filter has length =64. 



Table 4.2 
Lattice coefficients and impulse responses of the optimized analysis 

filters in Ex. 4.1. (SAOO) PI = 9.3367072622762 x lo-'', 
P2 = 8.6458769493813 x lo-''. 

Filter Coefficients hl,, 
2.7701557075405 x lo-' 

-4.6394634766867 x lo-' 
8.8828615641826 x 

-1.5142595131503 x 
3.6797322378863 x 

-7.0105005042002 x 
3.3979745779936 x loe5 

-3.4610132423983 x 
-2.9314605847016 X 

4.6300165292477 x 
-9.6019269511046 x 
-5.3867082067374 x 

2.6665204377661 x 
1.3763566255439 x 

-3.9203746653654 x 
-3.2204697559136 X 

5.2062396452593 x 
6.1298978924939 x lov3 

-6.2739942846780 x 
-1.0972495757049 x 

6.2975034654359 x 
1.8004225149880 x loi2 

-4.2379770697116 x 
10-"2.7168914395689 x low2 

-1.0169910794786 X 

3.9969783616942 x low2 
1.2025400363970 x 

-6.0718905144588 x 
-3.6911412178463 X lo-' 

1.0590613371084 x 10-I 

rn 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 

Lattice Coeff. k2,+l 
-0.16748024178056 
-0.98630142049519 

46.797422738757 
1.0155415002447 

-0.98123943672420 
71.799272118326 

0.99604836163496 
73.293136853215 

-0.32992582104225 
-0.58756852009572 

0.68608642287498 
-6.8758613928422 
-1.0899663381059 
0.70138304837561 

1.9359402130086 
32.412571811713- 

-2.2762581355052 
- 1.0546765432115 
-14.637818055814 
0.91309339992145 
0.20497603236147 
-8.7549576287234 
-34.634777587712 
0.84932894911060 
-2.7082137206053 
-1.0358588647791 

11.636158464610 
1.2034512561861 

-0.20699149394524 
-0.19132416529613 

Filter Coefficients ho,, 
-2.8047649315578 x 

4.6974270887493 x lo-' 
-9.0320483808830 X 

1.5395771337727 x 
-3.8484265421346 x 

7.3072834050915 x 
-5.4844133513744 x 

4.4822758623806 x 
-3.1420371203276 x 

6.0057015567620 x 
9.0093326906975 x low4 
1.6949632352623 x lom4 

-1.7113555648237 x 
-8.8586614964934 X 

2.1821453210951 x 
1.8133626090971 x 

-2.5292916536995 x 
-4.1596794940782 x 

3.5887675000538 x 
7.6713479773340 x 

-5.7266129912836 x 
-1.2745794143760 x 

9.5185739377873 x 
2.0342217498768 x 

-1.6072095730447 x 
-3.1588256584766 x lo-' 

2.7807655367843 x 
5.0150998969974 x 

-5.2720604380285 x 
-9.3506916444599 x 



Table 4.3 
Impulse responses of the Johnston's BQD filters in EX. 4.1. 

0. 0.100 0.200 0.300 0,400 0.50@ 

N O R H A L I Z E O  F R E Q U E N C Y  

Fig. 4 . 9 ~ .  Ex. 4.1. The plots of IHo(eiW)12 + I H ~ ( P ~ ) I ~  for the 

6 4 0  pair of filters and the new PR pair of filters. 



the PR property. 

A second major difference between the above PR design and the 64D filter 

is that the 64D pair [Ho(z),Hl(z)] is approximately power-complementary; i.e., 

lHo(eiw)12 -t jHl(ejW)I2 cz 1 (see Fig. 4.9(c)). In fact, the design procedure in [32] is 

[ 
2 

such that I,* 1 - lHo(ejw) l 2  - (ejw) 12] dw is minimized. On the other hand, the 

PR pair does not satisfy the power-complementary property (see Fig. 4.9(c)). In 

fact, the main basis of the PR designs introduced in this paper is the fact that PR 

property can be accomplished exactly for linear-phase filters, by giving up power- 

complementarity of the pair [&(z), HI (z)] as well as the relation HI (z) = Ho(-z) , 

which are two restrictions forced in most of the earlier designs 1261, [32-341. After 

relaxing these two restrictions, we can obtain good PR pairs which in addition have 

linear phase. 

4.2.1.a Implementation Complexity: 

A further interesting point of comparison between the 64D design and our PR 

design is the number of multiplication and addition operations per unit time (abbre- 

viated MPU and APU, respectively) required to implement the analysis bank. A 

direct form implementation of the 64D filter pair [Ho(z), Hl(z)] would appear to re- 

quire 2 x 64 = 128 MPU. However, there are three simplifying factors involved, viz., 

(a) the relation Hl (z) = Ho(-z); (b) the symmetry relation ho(n) = ho(N1 - 1 - n) , 
where N1 is the length of Ho(z) and (c) the decimation by a factor of 2. Only two 

of these three factors can be simultaneously exploited, because N' is even (see [26] 

for details). As a result, we require 128/4 = 32 MPU to implement the 64D pair 

using a direct form polyphase structure. The number of APUs required is 32. 

* A  unit of time is defined to be the sampling period of the input sequence z(n) in Fig. 4.l(a).  



Now consider the PR pair of length 64 designed above (Table 4.2 and Fig. 

4.9(a)), implemented in lattice form of Fig. 4.8. There are 32 lattice sections in 

the structure. Each lattice section can be implemented efficiently using only one 

multiplication and three addition operations (see 1271 and [28]). Second, both the 

decimators can be moved to the left of all the building blocks in Fig. 4.8 (which 

are functions of z2) by replacing z - ~  with z-I in these building blocks (see [2] or 

use the identity (a) in Fig. I1 of [29]). With such rearrangement, each lattice 

building block operates at the lower rate, and so the total number of MPUs is equal 

to (32 + 2)/2 = 17. The number of APUs required can be similarly verified to be 

49. In conclusion, for the same filter length, the PR pair requires only 17 MPU 

and 49 APU, whereas the 64D pair requires 32 MPU and 32 APU. 

The significant features of the above comparison are summarized in Table 4.4. 

As a final observation, suppose we consider Johnston's 32D pair in [2]. This filter 

has the same number of MPU and nearly the same attenuation as the PR pair under 

discussion, and in addition has a reconstruction error = 0.025 dB [2]. In other 

words, the 32D pair and the above PR pair have nearly the same cost (assuming 

that the multiplication time significantly dominates addition time) and the same 

performance, except for the reconstruction error. The only price paid for perfect 

reconstruction appears to be the overall group delay of the QMF bank, which is 63 

for the PR pair, and 31 for the 32D pair. 

The structure in Fig. 4.8 can be partly generalized for the case where M is an 

even integer. We discuss this briefly in Appendix 4.E. 



Table 4.4 
Comparison between Johnston's 64D filters and the new PR filters. 

4.2.2. Analysis filters and lattice structures for Type B systems. 

Feature 

Phase Response 
Filter Length 

Stopband 
Attenuation 

Reconstruction 
Error 

Number of MPU 
for Analysis Bank 

Implementation 
Number of APU 

for Analysis Bank 
Implement ation 
Power Comple- 

mentarity 

Relation between 
Analysis Filters 

Overall Group 
Delay of 

QMF bank 

Recall that for a Type B pair, the FIR filters Ho(z) and Hl(z) have even orders 

and symmetric impulse responses, and the determinant of E(z) is a delay. Let 

[Ho(z), Hl(z)] be a Type B pair with orders No- 1 and Nl-1, respectively. Without 

loss of generality, assume that Nl 2 No. As we have shown from Section 4.1; i.e., 

(4.15)) the lengths of these filters satisfy the condition 

rl = nonnegative integer, 

Johnston's 64D 
Pair of Filters 

L' inear 
64 

65 dB 

0.002dB 

32 

32 

Approximately 
holds 

H I  (2) = Ho (-2) 

63 

The new P R  
Pair of Filters 

Linear 
64 

42.5 dB 

No error 

17 

49 

Does not 
hold 

Not explicit. 
Implicitly 
such that 

det E(z) = delay 

63 



which we call the "length condition." Based on the fact that both No and Nl are 

o d d ,  it can be shown that the only choice for No and Nl, which satisfies (4.37), is: 

N l = N o + 4 L + 2 ,  L = nonnegative integer. (4.38) 

In other words, the lengths of any Type B pair of filters have to obey both (4.37) 

a n d  (4.38), simultaneously. 

We would like to find a structure that covers all Type B pairs of filters [Ho(z), Hl(z)]. 

We accomplish this by showing that every such pair can be synthesized as a cas- 

caded lattice. The building blocks of the lattice will be such that the Type B 

property propagates down the structure. Consider Fig. 4.10(a) where the pair 

[P,-(z), Qm(z)] is a Type B pair with orders r = (m - 4 l -  2) and m, respectively, 
m-4e-2 m 

with even rn. Let P, (z) = 1 pr,jz-j and Qm(z) = 1 gmjz-j. We shall assume 
j = O  j = O  

t ha t  

which will be justified soon. Since m is even, the order of [P,(z), Qm(z)] satisfies 

the  length condition. 

For convenience, let us express the pair [Pr(z), Qm(z)] in polyphase form; i.e., 

The elements of Em (z) have orders given by 

The determinant P,,o(z) QmPl(z) - Pr,l (z) Qm,o(z) is a linear-phase polynomial (be- 

cause P,(z) and Q,(z) are linear-phase polynomials of even order). Since this 

determinant is also equal to a delay, the following equation holds: 



Fig. 4.10(a). Pertaining to the downward recursion of 

Type B system. 

Fig. 4.10(b). The building block for Type B system 

where pb #o  a n d q b  f 0 .  

Fig. 4.10(c). The building block for Type B system. 



Our aim is to use (4.42) to extract the building block B( '~)(Z')  in Fig. 4.10(a) such 

that  the remainder pair [P1(z), Q1(z)] is also a Type B pair with orders (m - 4& - 4) 

and (m -4-t - 2), respectively. Since both pairs [P,(z), Q,(z)] and [P1(z), Q1(z)] are 

PR pairs, the building block should be a function of z2, which justifies the notation 

B ( ~ ~ ) ( Z ~ ) .  Furthermore, the determinant of B ( ~ ~ ) ( z ~ )  is required to be a delay, in 

view of the PR property. 

Denoting the elements of B(lrn)(z) by B!,:~)(z), Fig. 4.10(a) yields 

The orders of the components in (4.43) are related as 

(em) 2 
Order[B,,, (z ) ]  Order[Bo,, (z )]  m - 4& - 4 [ m 2 2 ] = [  Order[Bl,o (em) (z 2 ) ]  0rder[B$")(z2)] m - 4t - 2 1 .  (4.45) 

Both pairs [P, (z) , Q, (z)] and [P1(z), Q1(z)] are symmetric polynomials; therefore, 

( e l  2 it can be shown that Bit; (z ) also have to be symmetric polynomials. Moreover, 

from the first equation of (4.44), in order to yield a symmetric polynomial in the 

left-hand side, B::;)(z2)~'(z) and B&:T)(z2)~'(z) have to have the same orders so 

that the centers of symmetry align. Thus, from (4.45), 0rder[BAk)(z2)] = 2 

and 0rder[B&')(z2)] = 0. Similarly, by considering the second equation of (4.44), 

0rder[B!f;)(z2)] = (4-t+4) and 0rder[Bifj")(z2)] = (4t-t-2). In summary, to obtain 

a symmetric pair [P1(z), Q1(z)] with orders (m - 4 & -  4) and (m - 41- 2) from a 

symmetric pair [P,(z), Q,(z)] with orders (m - 4& - 2) and m, all the elements of 

the building block B ( ' ~ ) ( Z ~ )  are symmetric polynomials and moreover, the orders 

of the elements can be summarized as 



We now propose a particular form for E3('4(z2) and through the "downward recur- 

sion'' on the pair [P,(z), Qm(z)] show that this particular form of B ( ' ~ ) ( Z ~ )  is indeed 

sufficient to cover all Type B pairs. The proposed form is 

where T (z) and U(z) are symmetric polynomials of orders ( 2 l +  2) and (2t f I), 
2'+2 2 t + l  

respectively; i.e., T(z) = x t j z - j  and U(z) = ujz-j. We assume that to = 
j = O  j = O  

uo = 1 (see justification later). From (4.47), the condition "det ~ ( ' ~ 1  (z) = a delay" 

is equivalent to 

(1 + z-') ~ ( z )  - T(z) = CZ-('+'). (4.48) 

Equating the like powers of z in (4.48)' we obtain 

Thus, any choices of UI, and tk that satisfy (4.49) guarantee that det B('-)(z) = 

cz-('+'). In the synthesis procedure, we show how to find uk, l < k 5 t such that 

the orders of [Pi  jz), Qi(z) j are (m - 4t - 4) and (m - 4t  - 2). Then det I3ILm)(z) 

is forced to be a delay by choosing tk as in (4.49), and the synthesis procedure is 

completed. Noticing from (4.49) that te+' is arbitrary, we assume that it is chosen 

such that c + 0. From Fig. 4.10(a) we then have 

Since we are interested in obtaining causal filters P1(z), Q1(z), we should choose 

U(z) such that 

u(z2)pr(z)  - Qm(z) = z -2(e+l)a0 (z) (4.51) 

and 

- T ( z ~ )  P,(z) + (I f f2)Qm(z)  = z -2(e+1)a1(z) (4.52) 



for some causal FIR ao(z), al (2). Now, forcing the condition (4.51) automatically 

guarantees (4.52) because (4.51) implies 

which, in view of (4.48), simplifies to the form (4.52). It therefore remains only 

to satisfy (431). For convenience, write Pr(z) and Qm(z) in the polyphase forms 

Pr(z) = Pr,o(z2) + Z-~P , ,~ (Z~)  and Qm(z) = Qm,0(z2) + ~ - l Q , , ~ ( z ~ ) ,  respectively. 

Then (4.51) breaks into two equations: 

for some caiusal FIR Po(z), Pl(z). We now show that (4-53) implies (4.54) automat- 

ically, because of the constraint (4.42). For this, note that m - 4 l -  2 is the degree 

of Pr(z) so that 7 - 21 - 1 > 0, which implies 7 - l - 1 2 l + 1. As a result, (4.42) 

implies in particular 

for some causal FIR So(z). Multiplying both sides of (4.53) by PrPl(z) and substi- 

tuting (4.55) results in 

for some causal FIR bl(z). Since pr,o # 0 by assumption, (4.56) implies (4.54), 

proving that (4.53) implies (4.54). 

Summarizing, we can ensure that we obtain a causal reduced-degree a Type 

B pair [Pr(z),  Qr(z)] in Fig. 4.10(a) simply by satisfying (4.53)! The condition 

(4.53) can be satisfied by choosing the coefficients u,, 1 5 n < 1 of U(z) such 



that ~(z)P , ,o(z)  = Qm,o(z) + z-('+')po(z). This can be written as a triangular set 

of equations 

The first equation above is automatically satisfied because of (4.39). The remaining 
- 

equations can be satisfied by solving for a unique set ul, . . . ue because pr,o # 0 in 

(4.57). 

In summary, we first find U(z) satisfying (4.57) and then find T(z) using (4.49). 

Consequently, B( '~) (z)  is determined. To be able to apply the same synthesis pro- 

cedure on the Type B pair [P1(z), Q1(z)], its coefficients have to satisfy a condition 

analogous to (4.39). Denoting the coefficients of P1(z) and Q1(z) by p; and 6, this 

condition is satisfied by a scale factor am if pb # 0 and qb # 0. The complete 

building block for the case where pb # 0 and qb # 0 is shown in Fig. 4.10(b). 

Clearly, (4.39) cannot be satisfied by just a scale factor if pb = 0 or qb = 0. We 

now elaborate on the remedy for this case (i.e., the case where pb = 0 or qb = 0). 

The remedy is to choose the extra freedom te+i such that qb # 0. With qb # 0, 

we show now that if pb = 0, then we can always pull out a delay of the specific form 

z-2Km (as demonstrated in Fig. 4.10(c)) such that the first coefficient of Vo(z) is 

nonzero. (Having done so, the pair [Vl(z),Q1(z)] is a causal Type B pair. We can 

therefore repeat the above order reduction process.) For this, represent the pair 

P1(z) and Q1(z) in polyphase form: 

We know that the determinant of E1(z) is a delay, by our above construction of the 



pair [P' (z), Q' (z)]. Thus, 

If, for some reason, we have pb = 0, then PA(z)Q\ (z) has the form z-lcx(z), where 

~ ( z )  is some causal FIR system. Because of (4.58b) this implies that P:(z)Qb(z) 

has this form as well. Since qb # 0, this necessarily implies pi = 0. In other words, 

pb = 0 implies p\ = 0 as well. More generally, it is easily verified based on this type 

of argument that if p; = 0 for 0 5 n < K with pk+l # 0, then K is odd. This 

means we can factorize P' (z) as P r ( z )  = Z - ~ " ~ V ~ ( ~ ) .  

With this, Fig. 4.10(a) becomes Fig. 4.10(c), where the pair [Vo(z) , Q' (z)] 

now satisfies vo,o # 0,qL # 0. We now insert a scale factor am as shown in Fig. 

4.10(c) such that the pair [V;(z), Q'(zj] in Fig. 4.10(c) is a Type B pair with orders 

(m-4l-4 -4Km) and (m-4t-2), respectively. Moreover, it satisfies vl,o = qb # 0, 

which is analogous to (4.39). Consequently, the order reduction process can now 

be repeated to obtain a Type B structure as shown in Fig. 4.11, where Aj(z2) is 

shown in Fig. 4.10(c). Note that Fig. 4.10(b) is the same as Fig. 4.10(c) when 

K, = 0. 

The only remaining question to be answered is whether or not we can choose 

te+l such that qL # 0 (and c # 0). The answer is in the affirmative. From (4.50), 

It is clear from the above equation and the assumption prPo # 0 that we have to 

choose te+1 such that 

We summarize the synthesis procedure as follows: 



Fig. 4.1 1. The lattice structure for Type B system. 

Fig. 4.12. The lattice structure for Type B system used in 

the optimization procedure. Here 1,  =O and Km =O. 



Given a Type B pair [P,(z), Q,(z)] of order (m - 4& - 2) and m (where m is 

even) which satisfies (4.39), do the following: 

Compute u,, 0 5 n 5 & using (4.57) and t ,  using (4.49). Choose the coefficient 

tt+l such that q; # 0. This determines ~ ( ~ m ) ( z ) .  

If pb # 0, then scale the pair [P1(z), Q1(z)] to satisfy pb = qb. The complete 

building block is shown in Fig. 4.10(b). 

If pb = 0, then pull out the delay z-2Km, with appropriate K,. Then scale 

the pair [Vo(z), Q1(z)] to obtain [Vl ( z ) ,  Q'(z)], which satisfies v l , ~  = qb. The 

resulting block is shown in Fig. 4.10(c). 

Since Fig. 4.10(b) is a special case (K, = 0) of Fig. 4.10(c), therefore the most 

general building block Aj(z) of the overall Type B structure (in Fig. 4.11) is as in 

Fig. 4.10(c). 

E x a e  4 .  The building blocks iil Fig. 4.11 have the two added freedom, 

namely, L and K,. To simplify the optimization process, we choose em = Km = 

0 for all blocks Aj(z) in Fig. 4.11. The resulting structure to be used in the 

optimization procedure is shown in Fig. 4.12, where 

Even though the structure has 2N parameters am,a,, 1 < m 5 N, there are only 

N degrees of freedom. This is evident from the derivation of the structure above. 

Thus the parameters a, are precisely the free parameters used in (4.49), and 

can be chosen arbitrarily. In the design example we fixed the parameters a, to be 

equal to 64 and optimized am.  The choice a, = 64 is, however, entirely arbitrary 



and not based on any engineering judgement. At this point in time, we do not have 

any indication that a particular set of a, should be preferred to another. 

We have N = 11, and the transition bandwidth A f = 0.1 in the example. 

The orders of Ho(z )  and H l ( z )  are thus 22 and 24, respectively. We minimize 

the objective function described in (4.36) using [lo]. The magnitude responses of - 
the optimized analysis filters are shown in Fig. 4.13(a). The lattice coefficients 

a, and the impulse responses of both filters are summarized in Table 4.5. The 

complexity of this structure can be readily computed by noting that there is only 

one multiplier per building block in Fig. 4.12, namely, a, (a ,  = 64 can be realized 

by shifting). Moreover, each building block can be implemented with 5 addition 

operations. Thus, with a factor of 2 saving in the decimation ratio, the complexity 

of the analysis bank is ( N  + 2)/2 = (11 + 2)/2 = 6.5 MPU and 5N/2 = 27.5 APU. 

The fact that we can obtain a linear-phase PR pair, with even orders for the 

filters and with both filters symmetric, is not entirely surprising. Indeed, procedures 

for design of QMF banks with linear-phase even-order filters have been presented in 

[26], which are approximately PR. The results we have presented above, however, 

have exact PR property. It should be noticed that Johnston's filters [2,32] were 

designed for even-length case, and therefore are not suitable for comparison with 

the Type B PR system reported in this paper. 

4.2.2.a. Comparison of Type A and Type B systems. 

To compare the two types of PR systems reported in this paper, we design a 

Type A pair with the same number of sections and transition band as the Type B 

pair in example 4.2, i.e., N = 11 and A f = 0.1. The frequency response of this 



N O R H R L I Z E D  F R E Q U E N C Y  

Fig. 4.13a. Ex. 4.2. Magnitude response plots for the optimized analysis filters 

(Qpe B). The filter lengths are 23 and 25,respectively. 

N O R H R L I Z E O  F R E Q U E N C Y  

Fig. 4.13b. Ex. 4.2. Magnitude response plots for the optimized analysis filters 

(Type A). The filter lengths are 22 each. 



Type A pair is shown in Fig. 4.13(b). The lengths of the Type A analysis filters 

are 22. The passband and stopband errors of Ho(z)  and H l ( z )  for both PR systems 

are summarized in Table 4.6. The number of MPUs and APUs required for both 

types are also included in the table. From the table it is evident that both systems 

have nearly identical filtering performance, and require the same number of MPUs. 

Type B systems, however, require a larger number of APUs. 

Table 4.5 
Lattice coefficients and impulse responses of the optimized analysis 

filters in Ex. 4.2. (SSEE) P1 = 7.81221 x 10-15, P2 = 1.37742 x 10-l8 

Table 4.6 
Comparison between Type A and Type B PR systems for the design example. 

Here 6' and 62 denote the peak-ripple sizes in passband and stopband, 
respectively. Both types require 6.5 MPUs for the analysis bank. The Type 
A system requires 17.5 APU, where the Type B system requires 27.5 APUs. 

m 
0 
1 
2 
3 

Filter length 
61 
62 

Filter Coefficients hl,, 
1.0446957436687 x 

-2.7652111453693 x 
8.2562648947712 x 

10-"1.3369902864879 x 

Lattice Coeff. azrn+l 
-0.37779962858106 

28.980740681587 
-47.817981025871 
-26.815036810932 

6 0.00041704202379460 4.0981175348012 x loe2 5.2822531950793 x 
-164.81675604153 6.3735691673040 x lo-' -3.1883222956165 x 
-7501.9622674952 -8.7080719666949 x lo-' -1.1276359972347 x 

Filter Coefficients ho,, 
5.9250950404227 x low3 

-1.5683167986894 x loP2 
4.5594028972112 x 
3.6047559927372 x 

9 
10 
11 
12 

Type A 

- 1.1059836252728 
0.10978902673135 

Ho (4 
2 2 

2.46 x lo-' 
5.92 x lo-' 

Type I3 
Hl(z)  

22 
2.60 x 1 0 - q . 2 7  
3.07 x lo-' 

Ho (4 
2 3 
x lo-' 

4.49 x 

-6.4640370944037 x 
3.1314592005381 x lo-' 
5.6912350680866 x i0-' 

Hl(z) 
25 

3.49 x lo-' 
2.67 x 

9.5100122977005 x lo-' 
-9.5195769252465 x 
-3.1042174432319 x lo-' 

5.0039707172893 x lo-' 



The purpose of the next section is to demonstrate that three-channel LP PR 

FIR QMF banks that yield filters with good attenuation are indeed possible. As 

indicated in Table 4.1, there are three possible LP PR structures for M = 3; let 

us concentrate on the structure where I = M - 1 = 2. Even with this restriction, 

we shall find in Sec. 4.3 that the analysis filters have very good attenuation char- 

acteristics. However, the theoretical development is fairly complicated. We have 

therefore attempted to make the presentation as complete as possible in order to 

enable the reader to appreciate the complexity of deriving such a QMF bank. Once 

such a structure is constructed theoretically, its implementation is, however, not 

nearly as complicated! This is demonstrated at the end of the next section by a 

design example, and an explicit complexity count. 

4.3. An LP PR FIR QMF Lattice S t ruc ture  for 3-channel QMF Bank. 

From Table 4.1, there are three possibilities here. For one of them, it is easy to 

see how to decompose E(z), which satisfies the property det E(z) = bz-' under the 

linear-phase constraint. We shall address only this case, as the other two appeared 

to be not easily tractable. Here, we discuss the case where I = M - 1 = 2 and 

Hk(z) have the same degrees. Recalling the form for E(z) in (4.8), which yields 

LP analysis filters, and simplifying it for this particular case, we have 

2 

From (4.11), P = and thus from (4.15b), Jk = -1. Consequently, 
k=O 

two analysis filters are symmetric, whereas the remaining one is antisymmetric. 

Recall that Ho (2) and H2 (z) are lowpass and highpass filters, respectively. Ho (z) 

thus, cannot be antisymmetric since antisymmetric LP filters have a zero at w = 0. 



Likewise, odd-order symmetric LP filters have a zero at w = T and therefore, H 2 ( z )  

should not be symmetric. Of course, even-order symmetric H 2 ( z )  would also work; 

however, it would limit our design only to filters of even length. Consequently, the 

first two filters, H o ( z )  and H l ( z )  are symmetric, while H 2 ( z )  is antisymmetric. In 

other words, Jo = J1 = 1 and J2 = -1. Writing E ( z )  from (4.62) results explicitly 

Eoo ( 2 )  Eo1(2) hoo ( 2 )  

E I O ( Z )  Ell(2) $o(z)  (4.63) 
E20 ( 2 )  E2 1 ( 2 )  - E20 ( 2 )  

where E o l ( z )  and E l l ( z )  are symmetric polynomials, whereas E 2 1 ( ~ )  is an anti- 

symmetric polynomial. The above E ( z )  guarantees that the corresponding analysis 

filters are linear-phase. To impose the PR condition, namely, det E ( z )  = bz-', we 

decompose E ( z )  into lower-order building blocks as follows: 

The strategy here is to find A ( z )  such that E 1 ( z )  has the same form as E ( z ) .  If 

we continue to decompose E t ( z )  by repeatedly applying (4.64), we will be able to 
L-1 

obtain a cascade of building blocks in the form of E ( z )  = B ( z )  AL-l-i ( 2 ) .  For 
i =O  

clarification, the subscript on A is added. Here, B is the first-order block, which has 

the same form as in (4.63). This decomposition is not a general way to decompose 

E ( z ) .  In other words, the resulting structure obtained from this decomposition 

procedure is not guaranteed to cover all triplets of LP PR analysis filters in which 
I n Jk = -1 and I = 2. 

k=O 

Let the elements of E 1 ( z )  and A ( z )  be Eke(z)  and Ake(z ) .  Then (4.64) yields: 

(assuming that the orders of ELe(z) are the same and so are the degrees of Ake(Z) )  



Similarly to E ( z ) ,  E;, (z) and Ei, (z) are symmetric polynomials, whereas E;, (z) is 

antisymmetric. We would like to find the conditions on Ake(z) such that both E(z )  

and Ef (z )  have the form as in (4.63). From (4.65), these conditions reflect into the 

following equations: 

We wish to choose A;j(z) such that the above equations hold for any E1(z) of the 

form as in (4.63). In particular, let E;, (z) = 1 and EAo(z) = 0. From the first and 

the fourth equations in (4.66), we have A12(z) = Alo(z), All(z) = Arl(z).  Using 

these relations, Eq. (4.66) is reduced to 

To find the corresponding relations of the remaining Aij (z), let Eb0 (z) = EbO (z) = 1. 

This choice of E1(z)  will yield A2o(z) = AO2(z), A 2 2 ( ~ )  = AoO(z) and A21(z) = 

o l ( z ) .  In summary, Aij(z) has to satisfy the following conditions if (4.66) holds 

for all choice of E r ( z )  of the form as in (4.63). 

2 0  (2) = 0 ( 2 )  A12 (z) = 1 1 0  (z) , A22 (2) = A00 (z) , (4.67) 
A21 (2) = 2 0 1  (2). A11(z) = A11(z). 

A ( z )  then takes the form 



where All(z) is symmetric. Continuing the decomposition process and putting 

subscript on A(z), we see that E(z) is realized as a cascade of lower order building 

blocks, i.e., 

where L is the number of Ai(z) blocks in the structure. The analysis bank in Fig. 

4.l(b) thus becomes Fig. 4.14 where A; (z) is as in (4.68) and B(z) has the same 

form as in (4.63). We now can impose the PR condition detE(z) = z-' on each 

building block so that the overall structure is a PR system. 

3 Fig. 4.14. Decomposition of E (z ) into a cascade of building blocks. 

The simplest B(z) which satisfies simultaneously (4.63) and det B(z) = z-' is 

Since the above choice for B(z) is a constant matrix, Ai(z) must be a function of 

z. Consider the following form for A;(z): 



where U; and V; are nonsingular matrices and 

Clearly, det A(z) = z - ~ .  To satisfy the form in (4.68) for A (z) , U; and V; have t o  

take special forms. From (4.68), 

where r3 is defined in (4.12). Substituting (4.71) into (4.73), U; and V; satisfy 

In other words, both Ui  and V; have the form 

With the above Ai(z) and B ,  E(z )  becomes 

Observing from (4.75), V i U j  satisfies V;Uj = r3V;Ujr3 and has the same form as 

U; in addition to being a nonsingular matrix. Therefore, we can use the general 

symbol W; for U;, V; and ViUj.  The polyphase transfer matrix E(z )  in (4.76) is 

equivalent to  

where 

(4.78) 

Fig. 4.14 thus becomes Fig. 4.15, where B, A(z) and W;  are as in (4.70), (4.72) 

and (4.78). Assuming that d; # 0, the above W; can be factorized as 



Furthermore, we notice that the mulitplier d; can be propagated through the entire 

analysis bank and can be grouped into the multipler P2 at the end of Fig. 4.15. By 

propagating d; through the analysis bank, the multiplers ai, b;, and c; in W; are 

changed. The building block W; in Fig. 4.15 thus takes the following form 

where the set of lattice coefficients a;, b;,ci is different from the one in (4.78). In 

summary, Fig. 4.15 is the analysis bank of a LP PR FIR QMF structure, which 

yields Hk(z) of the same degrees. Moreover, Ho(z) and Hl(z) are symmetric, 

whereas H 2 ( z )  is antisymmetric. The degree of Hk(z),  0 5 k 5 2 is 6L - 4, where 

L is the number of Wi(z) blocks in the analysis bank. 

Without loss of generality, let us assume that Ho(z), Hl (z) and H2(z) are low- 

pass, bandpass and highpass filters, respectively. To design Hk(z), we define an 

objective function that represents both the stopband and passband errors as follows: 

The optimization of the parameters of W; (so as to minimize G1) can be done by 

employing standard gradient algorithms [lo]. This usually consumes time since the 

objective function GI is a nonlinear function of many parameters. Suppose that 

Hk(z) has pairwise-symmetry property [59]; i.e., 

for some crl (2). It is shown in [59] that the structure presented in Fig. 9 of 1591 

yields filters that satisfy the pairwise symmetry condition for odd M. For M = 3, 

Fig. 9 of [59] simplifies to Fig. 4.16, where 



Fig. 4.15. The LP PR analysis bank. 

Fig. 4.1 6. The LP PR pairwise-symmetric analysis bank. 

Fig. 4.17. The synthesis bank of Fig. 4.15 

and G2=11(P2) 



In other words, the structure in Fig. 4.16 is an analysis bank of a LP PR FIR QMF 

structure. Furthermore, Hk ( z )  satisfies the pairwise-symmetric property described 

above. Since E l ( z )  is a function of z6 instead of z3 as in Fig. 4.15, for a given 

order of the analysis filter, the structure in Fig. 4.16 has approximately half the 

number of variables compared to those in structure in Fig. 4.15. Consequently, the 

convergence of the optimization using pairwise symmetric structure will be much 

faster than the one in Fig. 4.15. 

With the above pairwise symmetry property enforced in the structure, it is now 

sufficient to optimize 

where E depends on the desired stopband edges. Therefore, if we can impose the 

pairwise-symmetry condition on the structure of Fig. 4.15, then we would save 

approximately half of the computation time in terms of the stopband and passband 

errors computations in the objective function. Thus, together with the saving in 

the number of variables to be optimized, we would expect a faster convergence time 

for the pairwise symmetric LP PR structure in Fig. 4.16. 

4.3.1. Comments on the svnthesis filters Fk(z): 

The synthesis filters F k ( z )  of the PR structure are obtained as 

2 

Fk ( z )  = z - ( ~ - ' )  ~ r k  ( z 3 ) ,  
e=o 

where R(z)  = E-' (2) .  By computing E- ' ( z )  explicitly, we will show that Fk(z )  

are also linear-phase filters of the same symmetries as that of H k ( z ) .  Calculating 



R(z)  from (4.63), we observe that Rek(z) satisfies the condition 

which has the same form as in (4.62) (except for the transposition). Thus, Fk(z) 

is also linear phase of the same symmetries as Hk(z). By inverting the analysis 

bank in Fig. 4.15 and 4.16, we will conclude below that Fk(z) has the same degree 

as Hk(z). 

In general, Fk(z) has a higher degree compared to Hk(z) because of the inversion 

process of E(z). Hence, if we implement the analysis bank as in (4.77), then 

By noting that h-l(z) = Z - ~ I ' ~ A ( Z ) I ' ~ ,  the corresponding synthesis bank of Fig. 

4.15 is drawn in Fig. 4.17. It is clear from Fig. 4.17 that in this particular 

instance, Fk(z) actually has the same degree as Hk(z). Further conclusion can 

be drawn for the synthesis filters corresponding to the analysis bank in Fig. 4.16; 

namely, the synthesis filters also satisfy the pairwise symmetric property. In other 

words, F2(z) = -Fo(-z) and Fl(z) = for some function cr2(z). In short, 

if we implement the analysis filters as in Fig. 4.15 or 4.16, then the synthesis filters 

are also linear phase with the same corresponding symmetries as Hk(z) and their 

degrees are the same as that of Hk(z). 

4.3.2. Comments on the LP PR pairwise symmetry analysis bank of Fig. 4.16 

Fig. 4.16 is an LP PR analysis bank that yields pairwise symmetric analysis 

filters. We obtain this structure by using El(z) in (4.80) with z replaced by z2. 

The degrees of Ho(z), Hl (z) and Hz (z) are thus (12L - 5), (12 L - 8) and (12L - 

5), respectively. In addition to the pairwise-symmetric property, namely, h2(n) = 



(-l)"ho(n) and hl (n) = 0 for even n, the coefficients of Hk ( z )  also satisfy: 

1) = ho(12L - 6) = h2(1) = h2(12L - 6) =r 0, 
h1(n) =: 0 ,  n odd. 

Using the above fact to compute the degrees of Ekj(z), we have 

From the above lengths of Hk(z), I = 1 instead of I = 2 as in the structure of 

Fig. 4.15. Moreover, the lengths of Hk(z) are not the same. This, however, is not 

surprising since we have taken a LP PR structure in which I = 2 and Nk are the 

same and have transformed it into a structure in which I = 1 and Nk are not the 

same, by imposing the pairwise-symmetric property. 

Example 4.3: Using the structure in Fig. 4.16 and taking the number of W; 

blocks to be L = 5, we design Hk(z) for E = 0 . 1 ~ .  The degrees of the analysis filters 

are 55,52 and 55, respectively. The 15 variables in the lattice structure and the 2 

additional multipliers at the output were optimized using the IMSL subroutine [lo] 

on a computer to minimize (4.81). The resulting frequency response magnitudes 

are shown in Fig. 4.18(a). The lattice coefficients and impulse responses of Hk(z) 

are given in Tables 4.7 and 4.8, respectively. Table 4.8 only displays half the 

number of coefficients of Hk(z),  since they are linear phase filters. The pairwise 

symmetry property is apparent in Table 4.8. The frequency response magnitudes 

of the synthesis filters associated with the analysis filters in Example 4.3 are shown 

in Fig. 4.18(b). We display only half the number of coefficients of Fk(z) in Table 

4.9 since Fk(z) are linear-phase filters. 

In most of the earlier designs of PR systems [7, 19, 591, the LBR condition was 

enforced on the structure, and consequently, the analysis filters satisfied the power- 



N O R H R L I Z E O  F R E Q U E N C Y  

Fig. 4.18a. Ex. 4.3. Magnitude response plots for the corresponding 

analysis filters. 

N O R t l R L I Z E D  F R E Q U E N C Y  

Fig. 4.18b. Ex. 4.3. Magnitude response plots for the corresponding 

synthesis filters. 



Table 4.7 
Lattice coefficients of the optimized analysis bank in Ex. 4.3. 

pl = -4.1034794220864 x lo-' and B2 = 1.5707941418142 x lo-'. 

/ m 11 Lattice Coefficients a, / Lattice Coefficients b ,  I Lattice Coefficients c, 1 

Table 4.8 
Impulse responses of the optimized analysis filters in Ex. 4.3. Here No - 1 = 55 and N 1  - 1 = 52. 

Furthermore, h o ( m )  = ho(No - 1 - m), h l ( m )  = h l ( N 1  - 1 - m) and h 2 ( m )  = ( - l )mho(rn ) .  

m 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

-. 
20 
21 
22 
23 
24 
25 
26 
27 

Filter Coefficients hl  (m) 
-9.9901150220313 X lo-' 

0.  
2.3259087841885 x 

0.  
5.5238789890867 x 

0.  
-3.3676459377498 x 

0. 
2.2796523469311 x 

0.  
1.5044677383506 x 

0. 
-3.9523449509934 X 

0. 
6.8329546163215 x 

0. 
9.1535965074864 x 

0.  
-4.7294831413144 X lo-' 

0.  

Filter Coefficients ho ( m )  

-4.1034799150810 X lo-' 
0. 

9.5537638547501 x 
2.7942540296973 x lo-' 
2,2689555060244 x 

-6.5056107748452 X 

-1.3835938232415 x 
-1.5450393805053 X 

1.6807358248882 x 
9.4189414966001 x 
7.9474660355847 x 

-5.3803123943823 x low4 
-2.7006977979884 x 
-3.9715006886561 x 

2.3956889217717 x 
9.6102366520721 x 
5.8659326584867 x 

-1.2145874803718 x 
-1.5561448572774 X lo-' 
-4.9352298948535 x 

2.8655843071586 x lo-' 
-6.8884118701520 x lo-' 
-5.7672278487990 x 
-5.6803993889263 X 

4.3175380598407 x 
2.0762730202796 x lo-' 
3.3497547410063 x lo-' 

Filter Coefficients ha (m) ' 
-4.1034799150810 X lo-' 

0.  
9.5537638547501 x 

-2.7942540296973 x 
2.2689555060244 x 
6.5056107748452 x 

-1.3835938232415 x 
1.5450393805053 x 
1.6807358248882 x lov4 

-9.4189414966001 X 

7.9474660355847 x 
5.3803123943823 x lo-" 

-2.7006977979884 X 

3.9715006886561 x 
2.3956889217717 x 

-9.6102366520721 x 
5.8659326584867 x 
1.2145874803718 x 

-1.5561448572774 X lo-' 
4.9352298948535 x 

-w 
0. -2.8655843071586 x lo-' 

9.4252950512146 x lo-' -6.8884118701520 x 
0. 

10-"2.8879891452761 x lo-' 
0.  

3.8301848634403 x lo-' 

5.7672278487990 x lo-' 
-5.6803993889263 X lo-' 
-4.3175380598407 x 

2.0762730202796 x lo-' 
-3.3497547410063 x 10-I 



Table 4.9 
Impulse responses of the synthesis filters in Ex. 4.3. Here Nh - 1 = = 55 

and Ni - 1 = 58. Furthermore, f o ( m )  = fo(Nh - 1 - m), f l (m) = f l ( N i  - 1 - m) 
and f 2 (m)  = fo(rn). 

m / /  Filter Coefficients fo(m) I Filter Coefficients f l ( m )  / Filter Coefficients f2(rn) 
0 I1 -5.0856051950609 X / 0. 1 5.0856051950609 x 



M- 1 

complementary property; i.e., I~k(ej , )  l 2  = 1. However, the LBR condition is 
k=O 

not necessary for PR systems, and as demonstrated in Fig. 4.18(c) for our design 

example, xi=o jHk(ejw)12 # 1 (solid line) and I.Fk(ejW)l2 # 1 (broken line). In 

other words, the filters Hk(z) are not power-complementary triplets. 

Implementation of this system on a fixed-point machine might require a very 

large number of bits because of the large dynamic range spanned by the coefficients 

in Tables 4.7 and 4.8. However, a single precision floating point implementation 

was found to be very satisfactory in this case. In order to demonstrate the perfect- 

reconstruction property of the QMF bank characterized by the impulse responses in 

Tables 4.8 and 4.9 and by the lattice coefficients in Table 4.7, the complete systems 

of Fig. 4.1(a) (direct-f~rm) and of Fig. 4.16 (lattice-form) were simulated in Fortran 

on a VAX 11/750 machine, using both single and double precisions. Table 4.10 

shows an arbitrary input x(n) and the reconstructed signal 2(n). It is clear that 

the system has perfect-reconstruction property except for round-off errors. From 

the double-precision implementation, the lattice structure seems to be numerically 

much more robust than the direct form. 

Note that single precision corresponds to 24 bits of mantissa and 8 bits of expo- 

nent, identical to the arithmetic operations in the AT& T DSP 32 signal processor. 

The conclusion is that the perfect-reconstruction system can be implemented on 

such a commercial DSP chip easily, and the fact that the filter coefficients span a 

large dynamic range is immaterial in such implementations. 



Table 4.10 
An arbitrary input sequence z (n )  and the reconstructed signal 2(n) for the 
design example. Here 2(n  + N - 1) is shown in order to align the samples. 

N O R W R L I Z E D  F R E Q U E N C Y  

Fig. 4 .18~ .  Ex. 4.3. The plots of CiZo IHk(ejw)12 (solid line) and 

2(n  + N - 1) 
Lattice Structure 
Double precision 
1.0000000000000 
2.0000000000000 
3.0000000000000 
4.0000000000000 
5.0000000000000 
6.0000000000000 
7.0000000000000 
8.0000000000000 
9.0000000000000 
10.0000000000000 
11.0000000000000 

n 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

IFk(ejW) I 2  (broken line). 

z(n)  

1,00000 
2.00000 
3.00000 
4.00000 
5.00000 
6.00000 
7.00000 
8.00000 
9.00000 
10.00000 
11,00000 

2 ( n + N - 1 )  
Direct Form 

Single precision 
1.00000 
2.00000 
3.00000 
4.00000 
5.00000 
6.00000 
7.00000 
8.00000 
9.00000 
10.00000 
11.00000 

j l ( n + N - 1 )  
Direct Form 

Double precision 
1.0000012161693 
1.9999999838918 
3.0000013029297 
4.0000Jl6419205 
5.0000003711781 
6.0000033301603 
7.0000020906728 
8.0000011335777 
9.0000045952801 
10.000000041374 
11.000001869694 

2 (n+  N - 1) 
Lattice Structure 
Single precision 

1.00000 
2.00000 
3.00000 
4.00000 
5.00000 
6.00000 
7.00000 
7.99999 
9.00000 
10.00000 
11.00000 



4.3.3. Lmwlementation of the PR system: 

From (4.79), 

where Qi = (1 - bi) (1 + bi - 2ajci). Let us use b bits to implement each multiplier in 

Wi .  It appears at first that we would require infinite precision to implement each 

multiplier in w f l  since it involves a division by A;. These terms Ai, however, can 

be grouped with the multipliers Pi at the end of the structure. Each multiplier in 

the above ~f thus requires only 2b bits to implement. Therefore, to preserve the 

PR property of the system, we need b and 2b bits to implement each multiplier in 

the analysis and synthesis banks, respectively. 

Suppose that exact PR is not required under coefficient quantization; then we 

can efficiently realize the QMF bank as follows: 

4.3.4. Implementation of H k ( z )  and Fk(z) : 

At first sight, W ,  in (4.79) requires 6 multipliers to implement. The total 

number of multipliers required to implement the analysis bank in Fig. 4.15 is 

therefore (6L + 3). However, Wi  can be factorized as: 

Defining Wi to be 

VV,Wi+f is implemented as follows: the two multipliers a; and ci+l can be com- 

bined, so Fig. 4.15 is equivalent to Fig. 4.19. In general, the total number of 



multipliers needed to implement the analysis bank (Fig. 4.19) is only (4L + 3). 

The corresponding synthesis bank of Fig. 4.19 is shown in Fig. 4.20, where (W:)-l 

I + bi 
where A: = (1 - bi)(- - 2). Thus, (W:)-' appears to require 9 multipliers to 

ajc; 

implement and the overall synthesis bank of Fig. 4.20 requires in total (10L + 3) 

multipliers to implement. But (W:)-' can be realized as 

where 

Using the same grouping argument as in the implementation of Hk(z), Fig. 4.20 is 

equivalent to Fig. 4.21, where 

and 
b; - 1 

i = 0, 

7; = (b; - 1) (bjv1 - 1) 
: otherwise. 

The number of multipliers in this implementation is (6L + 3). Note that all multi- 

pliers in both analysis and synthesis banks of Fig. 4.19 and 4.21 are quantized to b 

bits and consequently, the PR property is lost. 



Fig. 4.19. Implementation of the analysis bank of the 
approximate PR system. 

Fig. 4.20. The synthesis bank of Fig. 4.19. Here 
0 I =l/(p1fi) and o2 =1/(p2c~-1).  

Fig. 4.21. Implementation of the analysis bank of the 
approximate PR system. 



4.3.5. Implemen t a t ion complexity: 

To demonstrate the advantage of the lattice structure implementation in Fig. 

4.16 over the direct-form implementation in Fig. 4.l(a), let us compare the number 

of multiplication and addition operations per unit time (abbreviated as MPU and 

APU, r e s p e ~ t i v e l ~ ) ~ .  

4.3.5.a. Direct-form implementation: 

A direct-form implementation of the filter triplet [_Ha (z) , HI (z) , R2 (z)] would 

appear to require xi=o Nk MPU and z i= ,Nk - I APU. Writing them in terms of 

L and noting that No - 1 = N2 - 1 = 12L - 5 and N1 - 1 = 12L - 8, it requires 

xi=, Nk = (36L - 15) MPU and xi=, Nk - 1 = (36L - 18) APU. However, there 

are three simplifying factors involved, viz., (a) the pairwise-symmetry condition, (b) 

the linear-phase property and (c) the decimation by a factor of 3. As elaborated 

next, all of the above factors can be exploited to some extent. 

Suppose that we implement the analysis bank of the PR system in Fig. 4.l(a) by 

taking advantage of only (a) and (b); then the linear phase condition yields a factor 

of 2 savings in MPU. In addition, the MPU and APU can be further cut down by 

a factor of 2 since H2 (z) = Ho(-2). Moreover, in the implementation of Hl (z) , 

which is a function of z2, a factor of 4 savings in MPU and a factor of 2 savings in 

APU are obtained. In summary, the total MPU and APU required to realize the 

structure in Fig. 4.l(a) in direct form without utilizing the decimation factor are 

(12L - 4)/2 + (12L - 8)/4 + 1 = (9L - 3) = 42 MPU and (12L - 3) + (6L - 4) = 

(18L - 7) = 83 APU, respectively. 

5A unit of time is defined to be the sampling period of the input sequence z(n) in Fig. 4.l(a) 



On the other hand, let us first decimate by a factor of 3 as in Fig. 4. l (c )  and 

implement the system at a lower rate. In doing so, we would need to realize the 

polyphase components E k j ( z )  directly. Since I = 1 in this system, E ( z )  in (4.8) 

becomes: 

where the degree of E k j ( z )  is given in (3.84). Furthermore, because of the pairwise- 

symmetric condition, E k j ( z )  obeys 

where $;(z)  are appropriate FIR functions. Combining (4.92) and (4.93), E ( z )  is: 

Eoo ( 2 )  ~ o o  ( 2 )  Eo2 ( z )  
Eio(z)  E i i ( z )  E ~ z ( z )  (4.94) 

Eoo(-2) - ( -2)  Eo2 (-2)  

Because of the special form of E k j ( z )  in (4.93), let us consider the implementation 

complexity of E k j ( z )  for k = 0,2 and for k = 1 seperately. 

We would expect a factor of 4 in savings from the special relation of E k O ( z )  and 

E k l ( z )  for k = 0,2 in (4.94). However, the minus sign in front of k o o ( - z )  in the 

last row denies us a factor of 2 in savings. In other words, we can not fully utilize 

the above relation. The saving is thus only a factor of 2 and consequently, the 

complexity is 2(4L  - 3)  = ( 8 L  - 6 )  = 34 M P U  and 4 ( 4 L  - 4 )  + 2 = (16L - 14) = 66 

APU. From (4.84) and (4.93), Ek2(Z) are odd degree linear-phase functions, and 

therefore their complexity is ( 2 L  - 1) = 9 M P U  and 2(4L  - 3) = ( 8 L  - 6 )  = 34 

APU. 



Taking advantage of the special form of E U ( z )  in (4 .93) ,  the numbers of MPU 

and APU required to realize Elo(z)  and El l ( z )  is ( 2 L  - 1)  = 9 MPU and 2 ( 2 L  - 
2 )  + 1 = ( 4  L - 3 )  = 17 APU. The remaining component E12 ( z )  is an even degree 

linear phase function as well as a function of z2, therefore its complexity is L = 5 

MPU and ( 2 L  - 2 )  = 8 APU. With the additional factor of 3 due to decimation, 

the total complexity of the analysis bank implemented in polyphase direct form is 

thus ( 1 3 L  - 8 ) / 3  = 19 MPU and ( 3 0 L  - 2 2 ) / 3  ~3 43 APU. 

Lattice structure implementation: 

At each stage of the lattice structure in Fig. 4.16, the new sequences are com- 

puted at a lower rate as: (Fig. 4.22) 

The above operation requires 4 multiplications and 6 additions. Together with the 

multipliers P I ,  P2 and the Zpoint DFT at the output of the lattice structure, the 

total complexity here is ( 4 L  + 3 )  MPU and ( 6 L  + 2 )  APU. Due to the decima- 

tion factor of 3 ,  the complexity of the analysis bank implementation using lattice 

structure is ( 4 L  + 3 ) / 3  B 8 MPU and ( 6 L  + 2 ) / 3  B 11 APU. 

Fig. 4.22. One stage of the implementation of the 
analysis bank in Fig. 4.1 6. 



Comparing the complexity of both implementations, i.e., direct form and lattice 

structure, we observe that lattice structure is a very efficient implementation. It 

should be noticed, however, that the lattice structure is not minimal in terms of 

number of delays because this number exceeds the filter degrees. 

4.3.6. Comments on the generality of the LP PR structures 

The above structures in Fig. 4.15 (and Fig. 4.16) for the three-channel LP PR 

QMF filter bank are by no means general. That is, they do not cover all possible 

three-channel LP PR QMF banks. There are two reasons for its nongenerality. 

First of all, these are special cases where I = 2 for the structure of Fig. 4.15 and 

I = 1 for the structure in Fig. 4.16. Secondly, even for these special classes, the 

above decomposition in (4.64) with the choices of Ai(z) in (4.73) and B(z)  in (4.70) 

does not cover all LP PR FIR analysis banks satisfying the above constraints on 

filter lengths. However, the importance of these structures and the corresponding 

decomposition technique should not be overlooked, because we are able to design 

filters with high attenuations that have not been done before. In other words, the 

design filters in Ex. 4.3 are the first of their kind which can incorporate both linear 

phase and perfect reconstruction for three-channel QMF banks. Moreover, its com- 

plexity is low because of its pairwise-symmetry property. Furthermore, immediate 

generalization of the above structures in Figs. 4.15 and 4.16 is possible by using the 

same form with the appropriate dimensions. We will elaborate on this issue below. 

4.3.7. Generalization of the structure of LP PR FIR QMF banks for odd M 

The LP PR structure for Fig. 4.15 can be generalized to cover QMF banks 

that have more channels than 3. Since A4 is odd, we represent it as M = 2L' + 1. 



Let Hk(z) be the analysis filters of order Nk - 1, 0 5 k < M - 1. Furthermore, 

assume the first (L' + 1) filters to be symmetric and the remaining L' filters to be 

antisymmetric. B and A(z) in (4.70) and (4.72), respectively, can be generalized to 

The matrix A;(z) satisfies the condition (4.73); namely, Ai(z) = r3Ki(z)r3.  Car- 

rying through the same argument as in Section 3, W i  thus takes the form 

where rLt is defined as in (4.12), and Woo, WO2, WO1, and Wlo have dimensions 

(L' x L') , (L' x L'), (L' x I) ,  and (1 x L'), respectively. The generalized structure 

is shown in Fig. 4.23, where W; and B are as in (4.97) and (4.96), respectively. 

On the other hand, the painvise-symmetric LP PR FIR QMF analysis bank 

in Fig. 4.16 can be appropriately generalized. Let us first consider the pairwise- 

symmetric structure in Fig. 9 of [59]. Redrawing it using the above B in (4.96) 

yields Fig. 4.24. Here El(z) is as in (4.80), where A(z) and W; are as in (4.96) 

and (4.97), respectively. The matrix B in Fig. 4.24 is an orthogonal matrix of unit 

norm [59]. In summary, Fig. 4.24 is the analysis bank of the LP PR FIR QMF 

structure, which yields pairwise-symmetric analysis filters. 



Fig. 4.23. The lattice structure for M-channel LP PR Q M F  analysis bank. 

Fig. 4.24. The lattice structure for M-channel pairwise- 
symmetric LP PR Q M F  analysis bank. 



4.3.8. Price   aid for perfect reconstruction 

It is often assumed that perfect-reconstruction QMF banks are much more ex- 

pensive than approximate-reconstruction systems with comparable stopband at- 

tenuations for Hk(z)'s. This impression, however is not necessarily true. In 

fact, perfect-reconstruct ion systems implemented with lattice structures - [19, 30, 591 

often have computational complexity comparable to the well-known approximate 

reconstruction systems. 

To demonstrate this point, notice that in example 4.3, the computational com- 

plexity of the PR lattice is only 8 MPU and 11 APU. Suppose now that we design a 

linear-phase equiripple FIR filter Go(z) with precisely the same passband and stop- 

band ripples, and the same transition band as Ifo(z). Such a 5lter has order 19. 

Similarly, if we design a linear-phase equiripple filter Gl(z) comparable to Hl(z),  

its order is 20. Finally, define G2(z) = Go(-z) SO that we have a linear phase 

triplet [Go(z), Gl (z) , G2(z)] with exactly identical properties as the perfect recon- 

struction triplet [Ho(z), Hl(z), H2(z)]. Using the above complexity calculation in 

the polyphase direct-form implementation, the pair of filters Go(z) and G2(z) can 

be realized using 13 MPU and 28 APU. Taking advantage of the special form of 

Gl(z), namely, linear phase and function of z2, its complexity is 6 MPU and 10 

APU, respectively. In total, this triplet can be implemented with 19/3 m 7 MPU 

and 38/3 m 13 APU. 

In summary, the perfect reconstruction triplet [Ho(z), Hl (z) , H2(z)] (implemented 

as a lattice) requires 8 MPU and 11 APU, whereas the comparable nonperfect- 

reconstruction triplet [Go (z), Gl (z), G2 (z)] requires 7 MPU and 13 APU. (The 

non-PR triplet, of course, can be implemented only in direct form.) The PR sys- 



tem thus has competitive complexity, which appears to be counter-intuitive! The 

fact of the matter is that the PR property permits the use of a computationally 

efficient lattice structure, which does not exist for arbitrary (non PR) triplets. 

The principal price we actually pay for perfect reconstruction lies in the group 

delay created by the analysis/synthesis system. In the PR case, this is 55 samples, 

whereas for a non-PR triplet, this is only 20. 



Appendix 4.A. Singularity issues 

Given the MIP [TN(z), UN(z)], consider the synthesis procedure of the lattice of 

Fig. 4.4 again. The synthesis procedure is to compute recursively lower-order MIP 

according to the relation 

with Th(z) = TN (z) and U&(z) = UN(z). The coefficient km is computed as 

The unprimed polynomials in (4.30) are essentially scaled versions of the primed 

ones in (4.Al). The inverse of the relation (4.A1) is 

which results in the lattice structure of Fig. 4.4 (except for the scale factor 1 - k$), 

upon repeated application of the above recursion. 

Assume now that at  some stage, k i  = 1. This means that the recursion (4.A1) 

would give Tkwl (z) = r t ~ - ~ U L _ , ( z ) .  However, the inverse relation (4.A3) is now 

meaningless (and so is the scaled inverse relation (4.29)), because the 2 x 2 matrix in 

(4.A1) is singular. This means that we cannot get back [Tm(z), Um(z)] by starting 

from [Tm-l(z), Um-l(z)]; i.e., there simply does not exist a lattice of the form of 

Fig. 4.4 in this case. (Notice that under this situation, an attempt to  use (4.29) 

would lead to the conclusion Tm(z) = f Um(z), which of course is not necessary for 

"k$ = 1" to happen.) 

Next, conversely, suppose we have the lattice of Fig. 4.4 already synthesized for 

some MIP [TN (z), UN (z)], and we replace km with unity for some m. This means 



from (4.29) (which now holds!) that Tm(z) = Um(z), which in turn means that 

TN (z) and UN (z) share the common factor Tm(z). An attempt to synthesize this 

[TN (z), UN (z)], using (4.Al), will once again bring about the situation k; = 1, but 

the synthesis procedure cannot be carried out beyond this point. 

Appendix 4.B. Existence of zrn 

As explained in Sec. 4.2.1, a singularity situation can be avoided by using the 

modified recursion (4.31a), (4.31b) with k,, as in (4.32). We can find a zm such 

that k; # 1 (and k; < GO), as long as none of the three polynomials 

PI (2) = Tm (2) - Urn (2) (4.A4) 

is identically zero. If [Ho(z), Hl(z)] is such that one of these polynomials is identi- 

cally zero for some m, what does this signify? 

Assume that we start with m = N and carry out (4.31) until we arrive at the 

situation when one of the three polynomials PI (z), P2(z) and P3(z) is zero. If 

Pl(z) - 0 or P2(z) EE 0, this means Tm(z) = iUrn(z) ,  which in turn means (See 

Fig. 4.25) that Trn(z) is a common factor between Ho(z) and Hl(z). If, on the 

other hand, Um(z) = 0, this means Tm(z) = 0 as well, since Tm(z) = L(z), and 

this implies that Ho(z) = Hl(z) - 0. 

In conclusion, if Ho(z) and Hl(z) are not identically zero, and do not share a 

common factor, then there will exist a z, such that k i  # 1 for every m. 
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Fig. 4.25. Pertaining to Appendix 4.B. 

Fig. 4.26. The lattice structure for the M-channel SAOO LP QMF bank. 
(Even M). 
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Appendix 4.C. Existence of common  factors 

Consider the QMF bank of Fig. 4.2(a), where the four filters are FIR. If Ho(z) 

a n d  Hl(z) have a common zero on the unit circle of the form (I - z-leiwo), then 

a n  input x(n) = ejwon cannot be "perfectly reconstructed." In fact, if Ho(z) and 

Hl (z) share any - common factor (1 - z-'a), then an exponential input x(n) = d 

would produce an identically zero output i ( n ) ,  violating the PR property. Without 

loss of generality, we can therefore assume that Ho(z) and Hl(z) do not have any 

common factors. 

Appendix 4.D. 

Let the FIR filters Ho(z) and Hl(z) be related as Hl(z) = Ho(-z). Then the 

polyphase-component matrix E(z) has the form 

so that det E(z) = -2Eoo(z) Eol(z). If this has to  be a delay, then we must have 

EOO(z) = c ~ z - ~ ~  and Eol(z) = clz-"1 for some integers no, nl 2 0. This means 

&(z) = coz-2no + C~Z- (~"~" ) ,  which is a very restricted class of transfer functions 

indeed. In order to obtain a good PR pair, it is therefore essential to remove the 

restriction Hl(z) = Ho(-z). 

Appendix 4.E. M-Channel  Generalizations (Even M ,  SAOO) 

Let Hk(z) be the analysis filters of odd order Nk - 1, 0 < k < M - 1. Further- 

more, we assume that the first M/2  filters are symmetric and the last M/2  ones are 

antisymmetric. Consider Hk (2) and HM-l-k(~) for 0 < k < M/2 - 1. Since they 

have odd orders and opposite symmetries, they constitute an SAOO pair, which we 

discussed in Section 4.2.1 above. Thus, one obvious extension from the two-channel 

SAOO case to the M-channel case (even M, SAOO) is that we consider M/2 SAOO 



pairs in such a way that they do not interact with each other. In other words, each 

SAOO pair [ . k f k ( ~ ) , H ~ - ~ - ~ ( z ) ] ,  0 5 k 5 M/2- 1 is realized as in Fig. 4.8, with z - ~  

replaced by z - ~ .  These pairs can then be appropriately combined. The overall 

PR structure is shown in Fig. 4.26, where the building blocks are 

where 
0 ... a0 

@ =: 

. . 
This structure (Fig. 4.26) yields PR odd-order linear-phase filters with opposite 

symmetry. We, however, do not have the most general structure for this purpose, 

at this time. This is currently under study. 
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APPENDIX A - Eigenfilters 

A.1. Introduction 

It is well known that most linear-phase, finite-impulse-response filter (FIR) de- 

sign problems can be satisfactorily handled by using the McClellan-Parks (MP) 

algorithm [62] for weighted equiripple filters. These filters have the advantage of 

providing the designer with the most optimal design in the sense of smallest filter 

length for a given set of specifications. In contrast, a number of authors have also 

considered the least-squares approach for FIR filter design [63]-1661. As outlined in 

[2] ,[33] ,[66], there are some advantages under certain situations, where these meth- 

ods have to be preferred over the Remez exchange t e ~ h n i ~ u e s . ~  Most least-squares 

techniques advanced so far are based on solving a set of linear, simultaneous equa- 

tions by matrix inversion. 

Consider a typical lowpass design problem: We wish to approximate a Kdesired 

response" D(w) with a Type 1 linear-phase FIR filter transfer function H(z)  

(A Type 1 filter has hn = hN-l-n and moreover, the order N - 1 is even [22]). The 

desired response is 

o < w < w p  

w s < w < r  , 
don't care wp < w < w s  

whereas the amplitude response of H(z) is [22] 

~ ~ ( ~ j w )  = 1 hn ,-j(,-M)w - - b, cos nw, 

'"Remez exchange algorithmn and the 'MP approachn are used synonymously in this appendix. 



where M = (N - 1) /2  and 

The least-squares (LS) approach [63] to this problem is to formulate an objective 

function 

where R is the region 0 < w < n, but excludes the transition band. The parameters 

bn are found by minimizing ELS. The actual computation of b, can be performed 

[63] by solving simultaneously a set of linear equations (or by matrix inversion): 

where b = (bo b1 . . . bMIt; c and A are quantities depending upon w, and w s .  By 

incorporating a weighting function into the integrand of Equation (A.5), one can 

attain a tradeoff between passband and stopband accuracies. 

Several interesting design examples can be found in [63]. Figure A . l  shows a 

typicai magnitude response lHo(ejw) of such a least-squares FIR filter. A particular 

special case of the above approach gives rise to the prolate-spheroidal wave sequence 

as the solution [63]. This corresponds to  minimizing 

under a suitable constraint (such as C hn2 = 1). The resulting amplitude response 

is typically as shown in Figure A.2. The prolate-spheroidal solution vector h = 

[ho, hl, . . . , hN-l]t (and hence b) can be found as the eigenvector of a real symmetric 

positive definite matrix [63] (which happens to be Toeplitz). For reasonably large 

N, this solution h can be approximated to  a very high degree of accuracy by closed- 

form expressions based on the zeroth-order Bessel function Io(x). Such closed form 



Fig. A . l  Typical magnitude response of a least-squares FIR filter. 

Fig. A.2 Typical magnitude response of a Kaiser window. 



expressions have been introduced and used by Kaiser [76] for the design of "Kaiser 

window." Since the Kaiser window is a closed form approximation for the above 

eigenvectors, the latter need not be computed by elaborate eigensystem subroutines. 

Notice that the least-squares filter response shown in Figure A.2 is itself not a 

"good" lowpass response; in order to obtain an acceptable lowpass response (based 

on the LS approach), the passband region 0 w 5 w, must be included in the 

objective function ELS of Equation (A.5). Fig. A.2 represents a specific instance 

of the LS problem, where the solution-vector is an eigenvector of an appropriate 

real symmetric positive-definite matrix. On the other hand, Fig. A . l  represents an- 

other instance of the LS problem, where the solution corresponds to an acceptably 

good lowpass response, but cannot be obtained as the eigenvector of an appropriate 

matrix. The question that arises in this context is, can we formulate an appropri- 

ate objective function E such that the filter coefficients can be obtained from an 

eigenvector of an appropriate matrix, and at the same time give rise to a lowpass 

response as in Fig. A.1 ? In other words, can we obtain a linear-algebraic general- 

ization of the prolate-sequences (or, the Kaiser window) so that the resulting vector 

itself has a response as in Fig. A . l  ? 

The purpose of this appendix is to address this question. The answer turns out 

to be in the affirmative, and we discuss the solution and several applications of 

this result. Such FIR filters whose coefficients are the components of eigenvectors 

will be termed "eigenfilters." The idea of using an eigenvector in order to find 

the coefficients of a FIR filter has been used earlier in other contexts [74]. The 

well-known technique of Pisarenko [75] for harmonic retrieval is such an example. 

Even though eigenvectors have been used in the past for filtering applications (for 

example, see [33]), we believe that the present formulation is novel in the sense that 



it takes care of the passband accuracy directly. Section A.2 formulates the new 

quadratic objective function and includes design examples of such lowpass filters. 

Eigenfilters are used in Section A.3 to design a spectral factor of an mth-band filter. 

This spectral factorization procedure has a direct application in the initialization of 

perfect-reconstruction structure in which its polyphase matrices are lossless. In the 

last section, we make comments on the computational aspects involved in finding 

the appropriate eigenvector. 

A.2. Linear-Phase FIR Lowpass Eigenfilters 

Let H(z) be an FIR transfer function as in (A.l). We wish to obtain a lowpass 

frequency response as in Fig. A.l, by minimizing an error measure of the form 

where P is a real, symmetric and positive definite matrix, depending upon the 

design requirement, and v is a real vector related to hn in some simple manner 

(to be elaborated). We assume an implicit constraint vt v = 1 to avoid trivial 

solutions. We wish the error measure E to reflect both the passband deviation 

and the stopband deviation from the ideal values of (A.2). Once such a measure 

is formed, the solution vector v is simply the eigenvector of P corresponding to its 

minimum eigenvalue in view of the well-known Rayleigh's principle [77] .  We impose 

the additional condition that the resulting transfer function H(z)  should have linear 

phase, i.e., 

hn = h ~ - l - n ,  (A.9) 

where the order N - 1 could be either even (Type 1) or odd (Type 2) [22]. We do 

not consider antisymmetric impulse-response sequences in this section because they 

cannot be used in lowpass designs [22]. 



With H ( z )  satisfying (A.9), its frequency response takes the form 

~ ( ~ j ~ )  = ,-jFw H ~ ( ~ ~ W ) ,  (A.  10) 

where Ho(ejw) is real-valued, given by [22] 

N - 1 even; 

The quantity M in (A.11) is defined as M = ( N -  1)/2 for even N - 1, and M = N/2  

for odd N  - 1. Defining 

t 

b = {  [bo b l  . . . bM-l b ~ ]  , t N  - 1 even; 
[bo b l  . . . b ~ - %  b ~ - i ]  , N  - I odd 

and 
1 cos w cos 2w . . . cos Mwjt, N  - 1 even; 

c(w) = 3w 1 
cos- ... cos(M--)wl t ,  N -  1 odd, 

2 2 
we can write (A.11) as 

For notational simplicity, c(w) will often be denoted as c .  For even N - 1, the 

quantities b, are as in (A.4). For odd N - 1, b, = 2 h ~ - ~ - , .  

With the "desired response" as in (A.2), the "stopband error" can now be defined 

where Ps is given by 

and is a real, symmetric and positive definite matrix (unless w s  = r, which is a 

case of no interest). 



If the passband error measure Ep is also defined according to the integral of 

(A.5), the total error measure cannot be written in the form (A.8). Accordingly, let 

us define Ep differently. First, notice that the zero-frequency response is given by 

where the vector 1 is defined as 

The quantity e p ( v )  = (1 - c)'b therefore represents the deviation of the response 

Ho(ejw) from the zero-frequency response.' Accordingly, a positive-valued (quadratic) 

error measure for the passband can be taken as 

E = -  (w) dw = 1 / u p  bt (1 - c) (1 - c)'bdw, 
7 r o  2- 0 

which can be written in the form 

where Pp is given by 

and is a real, symmetric, positive definite matrix (unless w, = 0). Thus, the total 

measure to be minimized is 

E = btP b, 

where 

P = (1 - a)  P p  + cr Ps 

7The only motivation for taking zero frequency as a reference for passband error formulation is that 
it brings the vector b into the reference, and this enables us to write Ep as a quadratic in b. This 
in turn leads to  the eigen-formulation. 



The quantity a,  which is in the range 0 < a < 1, controls the relative accuracies of 

approximation in the pass and stopbands. Notice that the elements of P are given 

by 

?r +a / (cos nw cos mu) dw 
w.5 

1 1 
P(n ,m)  = - a) /gwp (1 - cos (n + - ) w ) ( l -  cos (m + -)w)dw, 

T 2 2 

N is odd (23a) 

N even 

a 1 1 
[cos (n + -) w] [cos (m + -) w ]dw . 

2 2 

In summary, we have been able to formulate the linear-phase lowpass FIR design 

problem ir? the form of an eigenproblem. Given the band edges up and w s ,  and 

the parameter a, the matrix P can be computed. It is easy to obtain closed- 

form expressions for the integrals in (A.23) and hence, the elements P ( n ,  m) are 

easily computed, once a, w, and w s  are known. It then remains only to compute 

the eigenvector of a real, symmetric and positive definite matrix, corresponding 

to the smallest eigenvalue. The resulting filter is guaranteed to have linear phase 

because the vector b rather than the vector h is directly involved in the optimization 

problem. The eigenvector b can be used to obtain the filter coefficients h, in (A.l). 

We now proceed with design examples to demonstrate the procedures. 

Example A.l:  A lowpass filter with N - 1 = 28, w, = 0.3n, ws = 0.4~ and a = 0.1 

was designed using the above approach. The resulting frequency response is shown 

in Fig. A.3, which also includes the plot for the case of a = 0.5. The effect of a is 

clearly seen from the figure. 

Comments on the choice of a :  It is clear from (A.22) that a larger value of a leads 
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Fig. A.3 Ex. A. l  (a) Magnitude response plot of FIR eigenfilter. 

(b) Passband details for the FIR eigenfilter. 



to better stopband attenuation at the cost of increased passband ripple. Given the 

set of specifications w,, ws, passband tolerance b1 and stopband tolerance 62, it is 

necessary to estimate N - 1 and a in order to design the eigenfilter. An approximate 

estimate for N - 1 can be obtained based on the relations in 1781. Even though 

the estimates in [78] hold only for equiripple designs, the required order for an 

eigenfilter is only slightly larger. The choice of a governs the ratio 61/62. At this 

point in time, we do not have a procedure for estimating a, starting from a desired 

61/62 ratio. Further study of the behavior of eigenfilters is necessary in order to fill 

this gap. 

Example A.2: The design of highpass and bandpass eigenfilters can be accomplished 

with equal ease. For example, a Type 1 bandpass filter can be designed by defining 

the objective function E as E = aEl + ,BE2 + (1 - a - ,B)E3, where a,,B > 0 and 

1 - a - /3 > 0. El and E2 represent the stopband errors: 

and E3 is the quadratic measure of passband error defined as 

Here a is a constant vector of the form 

a = [1 cos wo cos 2wo . . . I ,  

and wl, w2, w3, and w* are the band edges as shown in Fig. A.4a. The quantity wo 

is taken as wo = (w2 + w3) /2. Figure A.4b shows the response for a design example 

where the order is N - 1 = 50, and the band edges are wl  = 0 . 3 ~ ~  w2 = 0 . 3 5 ~ ,  w3 = 

0 . 7 ~  and w4 = 0 . 8 ~ .  



N O R H A L I Z E O  F R E O U E N C Y  

Fig. A.4 Ex. A.2 (a) Typical magnitude response of a bandpass FIR filter. 

(b) Magnitude response plot of a bandpass FIR eigenfilter. 



A.3. Spectral Factors of mth-band FIR filters 

Let G(z) be an even-order linear-phase FIR mth-band filter with order t - 1 and 

real coefficients g(n). To avoid the case where g(0) = g( t  - 1) = 0,  we assume that 

t - 1 is not an integer multiple of 2m. Since G(x) is a linear-phase filter, its zeros 

on the unit circle occur in conjugate pairs, whereas its zeros on the real axis occur 

in reciprocal pairs and its zeros neither on the unit circle nor on the real axis occur 

in reciprocal conjugate quadruples. To be able to have a spectral factor, G(ejw) 

has to be a nonnegative valued function. Consequently, its zeros on the unit circle 

have to be double zeros. In other words, if zo is a zero of G(z) on the unit circle, 

then both zo and z; are double zeros. On the other hand, if zo is a zero neither on 

the unit circle nor on the real axis, then z;, z,-' and (z i l )*  are also zeros of G(z). 

Similarly, zo and z i l  is a pair of zeros on the real axis. Let's group the zeros on the 

unit circle into G!(z) and the zeros not on the unit circle into Go(z). We then have 

G(z) = ~ ~ ( z ) G : ( z ) ,  so that the spectral factor E(z )  is B O ( Z ) ~ l ( z ) ,  where Eo(z) is 

the spectral factor of Go(z) . The problem statement is thus as follows: Find 6 ( z )  

such that 

1. G(z) = C(z)B(z-l) is an mfh-band filter and 

2. E = l2(ejW)l2dw is minimized. 

Minimizing E in step 2 above is the same as minimizing 

E = l~(ej")jdw = 1 ~ ~ ( e j " ) l 1 ~ ~ ( e j ~ )  12dw. (A.24) 

We now discuss an iterative procedure to  design the mth-band filter G(z) and its 

spectral factor 6 ( z ) .  The iterative procedure works as follows: 



1. Initialize Go(ejw) to be unity. Find Gl(ejw) such that i ~ ~ ( e j ~ ) i ~ d w  is /Y: 
minimized, using the eigenfilter method. 

2. Fix Gl(z) and readjust Go(z) by solving a set of linear equations, so that 

G(z) = Go (z) G: (z) has mth-band property [67]. 

3. By fixing Go(z) to be the solution obtained in step 2, find Gl(z) using the 

WE approach such that 

~ = 6  / ~ ~ ( e j , )  1 / G ~  (ejw) i2dw is minimized. 

4. If the resulting Go(z)G:(z) is not satisfacting, go to step 2. 

Very few repetitions of these steps result in excellent design. Trivial solutions to 

the minimization steps can be avoided by constraining the total energy of Gl(z) to 

be unity. Even though the passband error of G(z) does not enter the error function 

in (A.24), the passband of G(z) comes out to be good because of the mth-band 

property of G(z). The order of Go(z) is typically much smaller than that of G(z), 

and moreover it has no zeros on the unit circle, so it is a simple matter to find a 

spectral factor 8 0 ( 2 )  of GO(z) and obtain 6 ( z )  = B o ( ~ ) ~ l ( ~ ) .  The readjustment 

of Go(z) in step 2 is elaborated here, using mth-band property. 

Let 2 6 ,  el and t - 1 be the orders of Go(z), Gl(z) and G(z). Thus, G(z) and 

&(z) have orders 2(&+t1) and (to+!,), respectively. Denote the filter coefficients of 

A 2 (z) 7 Gl (z) , G: (z) (=GI (z)) and G(z) 90 (n)  7 !?I (n) 7 9: (n) and g(n) 

As mentioned earlier, lo+tl # km for any positive integer k. Since G(z) is required 

to be an mth-band filter, every mth coefficient from the mid-point has to be zero; 



The number of known coefficients in G(z) is therefore 

In terms of filter coefficients, G(z) = Go (2) G;(z) = Go(z) . Gi (z) is equivalent to 

For a given filter G:(z), there are (2to + 1) unknown coefficients of Go(z) and L 

fixed values of g(n). Consequently, if L = 2t0 + 1, then we can uniquely solve for 

go(n) in terms of g:(n) such that (A.25) holds. In other words, go(n) is uniquely 

determined in 

Using (A.26) in L = 210 + 1, we have 

Equivalently, 

2 & + 1 5  '(& f '1) + 1 < 2e, + 2 (A.30) 
m 



As long as the order of Gi(z) (which is 2131) satisfies (A.31), we can always solve 

Equation (A.28) for go(n). (A.28) can be further simplified by observing that g(n), 

L + l  
go(n) and g;(n) are symmetric sequences. Thus, only the first - equations are 

2 
sufficient to describe (A.28); i.e., 

1-1 
where t' = - . (A.32) can be compactly rewritten as 

2 

Ago = d, (A.33) 

where go = [go(0) . . . go (lo) IT,  d = [0 . . . 0 :IT, and A is as in (A.32). A ,  go and 

d have dimensions (& + 1) x (lo + I), (to + 1) x 1 and (to + 1) x 1, respectively. By 

noting that all elements in d are zero except the last one, go can be obtained by 

where A,,j and A are the cofactor of the (i, j )  element and the determinant of A, 

respectively. 

In summary, given to, w,, ws and m, we pick el using (A.31). Having fixed 

the orders of Go(z) and Gl(z), we design the mth-band filter by iterative procedure 

described above. The spectral factor k (z )  of G(z) is thus B o ( ~ ) ~ l ( z ) ,  where &o(z) 

is the spectral factor of Go(z). 



Example A.3: We design a 3rd band linear phase FIR filter of length 62, with cutoff 

frequencies at .2% and ,453~. Here, & = 10 and el = 21. Fig. A.5 shows the 

magnitude responses of G(z) and &(z ) .  &(z) has order 31 and has the largest 

possible number of zeros on the unit circle (under the constraint that &(z)&(z-') 

is an m-th band filter.) 

N O R H A L I Z E D  F R E Q U E N C Y  

Fig. A.5 Ex. A.3 Magnitude responses of G(z)  and its-spectral factor B(z). 



A.4. Eigenvector computa t ion  a n d  related issues 

A major fraction of the design-time for our method is spent in the computation 

of the eigenvector. Since we are interested only in one eigenvector (corresponding 

to an extremal eigenvalue) , this computation can be done efficiently (without in- 

voking general methods such as the QR technique [87]). It is wdl known [83],[84] 

that to compute the dominant eigenvalue and its corresponding eigenvector, the 

iterative power method is simple and fast if the ratio is large, where X k  are 

the eigenvalues of P with 
I I 

At the k + lth iteration of the power method, a vector xk+l is computed from the 

previous iterate xk a~ 

Y k + l  = Pxk (A.35~)  

xk+l = ~ k + l / l l ~ k + l l l ,  (A.35b) 

where / lv//  denotes the L2 norm of vector v. The difFerence between xk and x k + l ,  

defined by / / x ~ + ~  --- xk/ / ,  is compared to a prescribed small constant E ,  ar,d if 

/ I ~ k + l  - x k l l  5 € 7  (A.36) 

then x k + l  is a good approximation of the eigenvector corresponding to the maximum 

eigenvalue. A typical value for E is about 1.0 x 

We, however, wish to compute the minimum eigenvalue and its corresponding 

eigenvector. In other words, at  each iteration we would like to compute 

x ~ + ~  = p-lxk. (A.37) 

Given xk, we would like to find xk+l without inverting P-l. Rewrite (A.37) as  

~k = Pxkf l .  (A.38) 



It is well known [83],[84] that a real, symmetric and positive definite matrix P can 

be decomposed into 

P = LLt,  (A.39) 

where L is a real lower triangle matrix. Eq. (A.38) then becomes 

Let 

V k + l  = Ltxk+l, 

then 

~k = LvkS1. 

We can find vk+l in Eq. (A.42), given xk and L, by recursively solving a set of 

linear equations. Let lij be the element in the ith row and jth column of L; then we 

can show that 

Since P is positive definite, inn in (A.43) are evidently nonzero. Using (A.43), we 

first solve for vk+1(O) and recursively solve for all ~ ~ + ~ ( n )  for 1 < n 5 N - 1, where 

N is the dimension of L. (In (A.43), xk(n) denotes the nth element of vector xk.) 

N  N - 1  ELE.9 additions to compute vk+l. It takes 9 multiplications, N divisions and , 
Similarly, we can find xk+l in (A.41) given vk+l and L. The total time required per 

iteration is thus 

where ta,  tm, t d  are, respectively, the required computer times for addition, multi- 

plication and division. 



Note that the speed of convergence depends on the ratio since we are dealing 

with P-' rather than P. Instead of proceeding as in (A.41), (A.42) one could invert 

P beforehand, store it as Q and then perform the iteration 

T h e  operation (A.44a) requires N2 multiplications and N ( N  - 1) additions and the 

t ime required for this is 

t,N(N - I) + t , ~ ~ ,  

which is nearly the same as the time required for performing (A.41), (A.42). How- 

ever, there is an overhead cost associated with the computation of Q. 

Example A.4: Table A.1 indicates a comparison of design time for half-band fil- 

ters, using the eigenfilter approach and the Remez exchange approach, for various 

tolerances. The ratio and the number of iterations required for eigenvector corn- 

putation are also given. We observe that $ is large and hence the number of 

iterations for eigenvector computation is impressively small for all the entries in Ta- 

ble A.1. Our experience based on a large number of design examples has convinced 

us that the ratio X2/X1 is large in all practical cases. Accordingly, the eigenvector 

computation never creates any numerical or stability problems, and is invariably 

fast. Single precision arithmetic is found to be sufficient in all design examples. 

There exist some recent methods for computing eigenvectors (corresponding to 

extrernal eigenvalues) based on gradient techniques [88]. These could prove to be 

even faster than the iterative power method, but we have not studied this possibility 

in the context of our paper. 



TabIe A . l  

Comparison of the eigenfilter and the Remez exchange approaches in 

half-band filter designs. 

N-1 is the required order for peak passband ripple S1 and 

width 2 ( n / 2  - w,). 



APPENDIX B - Design of half-band FIR filters 

Linear phase FIR half-band filters have found several applications in the past 

[6],[91]. For instance, in the design of sharp cutoff FIR filters, a multistage design 

based on half-band filters is very efficient [2]. The efficiency of half-band filters 

derives from the fact that about 50% of the filter coefficients are zero, thus, cutting 

down the implementation cost. Half-band filters have also been used in multirate 

filter-bank applications, either directly or indirectly [5],[6]. 

Let H(z) denote the transfer function of a (linear-phase, FIR) half-band filter 

of order N - I: 
N-1 

H(z) = h(n)z-", h(n) real. 
n= 0 

(B.1) 

These filters are restricted to be of Type I (i.e., N -1 is even and h(n) = h(N -1-n) 

1221). The frequency response is thus of the form H(ejw) = e - j w v  ~ ~ ( e j ~ )  where 

&(ejw) represents the real-valued amplitude response. A typical plot of Ho(ejw) is 

shown in Fig. B.1, assuming an equiripple type of design. There is a symmetry 

with respect to the half-band frequency $; i.e., the band edges we related as 

and the ripples are related as 

In view of this symmetry, the impulse response h(n) satisfies 

N - 1  
0, n - - =even and nonzero; 

h(n) = 
2 

i l  N - 1  (B.3) 

The simplest way to design equiripple half-band filters is to invoke the widely used 

McClellan-Parks algorithm [92] with the specifications satisfying (B.2a) and (B.2b). 



Fig. B.l Typical amplitude response of a halaand FIR filter. 

Fig. B.2 Amplitude response of G(z) .  



(If equiripple nature is not a requirement, then window designs are the fastest [2]). 

The resulting filter satisfies (B.3) with reasonable accuracy. The only disadvantage 

with this procedure is that those coefficients which are supposed to satisfy (B.3) are 

treated as unknowns in the optimization, and accordingly the design time is longer 

than necessary. 

In this appendix, we describe a method (the "half-band trick") for consider- 

ably reducing the design time by exploiting the partial knowledge (B.3) about the 

impulse-response coefficients. The technique also leads to a structural interpretation 

of half-band filters, which enables us to implement these filters in such a way that, 

if the structure has low passband sensitivity, then it automatically has low stopband 

sensitivity as well. (This is significant in view of the fact that low passband and 

low stopband 'sensitivities are often conflicting requirements [93]). 

B.1. The &half-bandn design trick. 

First notice that in view of (B.3), we can always assume (N - 1)/2 to be odd. 

(Indeed, if ( N  - 1)/2 were even, then (B.3) would imply h(0) = h(N - 1) = 0; 

by redefining h(1) to be h(0) we can cut down the order to N - 3). Given the 

specifications w,,ws, and 6, let us first design a one-band prototype linear-phase 

filter G(z) of order ( N  - 1)/2 with specifications as shown in Fig. B.2. G(z) has a 

zero at w = T ,  since (N - 1)/2 is odd [22]. Its passband extends from 0 to Zw, and 

the transition band is from 2wp to x. If we now define 

then H(z) is a half-band filter, with specifications as in Fig. B.1. The conditions 

(B.2a), (B.2b) and (B.3) are satisfied exactly. The impulse response of H (z) is 



evidently related to that of G(z) by 

1 n 
- g ( - ) ,  neven 
2 2 

n odd # 
N-1 n = -  

2 .  

G(z) can be designed with the help of the McClellan-Parks program. This design 

time is considerably lower than the time required to design H ( z )  directly, since the 

order of G(z )  is only (N - 1)/2. Moreover, for large N - 1, the design accuracy is 

better. 

Example B.1: A half-band linear-phase FIR filter of order N - 1 = 34, and w, = 

0 . 4 5 ~  is designed using the above method. The magnitude responses of G(ejw) and 

H ( e j w )  are shown in Fig. B.3. To demonstrate the saving in design time of the above 

method, we compare the design time of this method with the conventional method 

for several half-band filters with various specifications. Table B . l  summarizes the 

results. For higher orders, the savings is quite significant (about a factor of 7 for 

Table B . l  

Comparison of the improved and direct methods in half-band filter designs. 

/ /  IMPROVED METHOD I DIRECT METHOD / 

N - 1 is the required order for peak passband ripple b1 and transition width A f . 

N - 1  

18 
30 
42 
50 
62 
82 

Af 

.1 

.1 

.1 
.05 
.05 
.05 

61 

1.135 x lo-' 
1.350 x 
1.715 x low4 
3.550 x 
1.255 x loe3 
2.275 x 

CPU Time 
(sec .) 
0.6 
1 .O 
1.4 
1.8 
2.4 
3.8 

CPU Time 
(sec .) 

1.9 
4.3 
6.4 
9.4 
14.9 
25.2 
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Fig. B.3 Ex. B. l  Magnitude response plots of G(a)  and the half-band filter. 

I LATTICE STRUCTURE 1 

Fig. B.4 Structure for half-band filter. 



B.1.a. Discussion on the low-sensitivitv structure for half-band filters. 

It is well known [8],[93] that a digital filter structure having low passband sen- 

sitivity does not necessarily have low stopband sensitivity, and vice versa. The 

coefficient-sensitivity problem in FIR structures have been analyzed in the past 

[63],[54],[94]. Based on thenotion of structural passivity, certain lattice structures 

are proposed in [54] that can be used to synthesize low-sensitivity structures for 

any arbitrary FIR transfer function. 

The lattice structures in [54] satisfy two crucial properties: First, they provide 

very low passband sensitivity. Second, if the transfer function has linear phase, 

this linearity is maintained even when the lattice coefficients are quantized. Now 

assurne that we first implement the one-band filter G(z), using suck a structure. 

Then G(z) has low passband sensitivity. When the lattice coefficients are quantized, 

the magnitude response of the transfer function G, (z) remains very close to G(z) . 
Since G, (z) retains linear phase and has odd order (N- 1)/2, it continues to have the 

zero at w = n in spite of quantization. Suppose we realize H(z)  from this structure 

for G(z), exactly as suggested by (B.4) (see Fig. B.4). Then the stopband response 

of H(z) is exactly an image of its passband response, even if the coefficients of the 

lattice are quantized! Thus, H,(z) (the response of the quantized lattice) continues 

to remain a half-band filter and has low passband as well as stopband sensitivities. 
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