Citation
Mailhiot, Christian (1984) Theoretical investigations of electron states in smallscale semiconductor structures. Dissertation (Ph.D.), California Institute of Technology. http://resolver.caltech.edu/CaltechETD:etd01112007111123
Abstract
NOTE: Text or symbols not renderable in plain ASCII are indicated by [...]. Abstract is included in .pdf document.
The work presented here is concerned with theoretical investigations of electronic states in smallscale semiconductor structures. This last term encompasses layered structures made up of two dissimilar, but latticematched, semiconductors. The semiconductors of interest here are mostly the tetrahedrally bonded zincblende semiconductors GaAs and the alloy [...]. The thesis is subdivided in three major chapters. The first chapter is concerned with electrical doping of [...] quantum well structures. The second chapter addresses the question of the transport of electrons through [...] double heterojunction structures. In the final chapter, we develop a theory of the electronic structure of semiconductor superlattices particularly suitable for the study of the optical properties and the recombination mechanisms.
In Chapter 2, we study the energy spectrum of ground state and excited states of shallow donor states in [...] quantum well structures. In this system, an impurity atom is located within a GaAs slab of finite thickness. The GaAs slab is, in turn, centered between two semiinfinite layers of [...]. We use a variational method to solve the effective mass equation for the donor envelope function. We study the variation of the binding energy as a function of
•thickness of the GaAs containing the impurity,
•alloy composition x in [...], and
•position of the impurity in the GaAs slab.
Two cases are treated:
(i) In the first case we assume that the potential well is formed by finite conduction band offsets at the [...] interface (imperfect confinement).
(ii) In the second case we consider infinite confining potential at the [...] interface (perfect confinement).
The major result of this study is that the binding energy of the donor ground state is considerably modified as the thickness of the GaAs slab containing the impurity is varied. At large GaAs slab thicknesses, the binding energy is that of shallow donors in bulk GaAs. At small GaAs slab thicknesses, the binding energy is that of shallow donors in bulk [...] for the case of imperfect confinement, but corresponds to the twodimensional Coulomb limit in the case of perfect confinement. It is also found that the binding energy depends on the position of the impurity atom within the GaAs slab. Thus, we have a confinementinduced lifting of the Coulomb energy levels.
In Chapter 3, we study the transport characteristics of electrons through [...] double heterojunction structures. In this system, a [...] slab of finite thickness is centered between two semiinfinite layers of GaAs. An electron is incoming from the GaAs onto the [...] barrier. Transport coefficients are calculated using the formalism of the complexk energy band structure within the empirical tightbinding method. Transmission into states derived from different energy extrema of the GaAs lowest conduction band obtained. We consider both the (111) and the (100) [...] interfaces. Transport coefficients are calculated as a function of
•GaAs conduction band minimum from which the electron state is derived,
•energy of the electron incoming on the [...] barrier,
•thickness of the [...] barrier, and
•alloy composition x in the [...].
The major result of the study is that states derived from different energy extrema of the GaAs lowest conduction band appear to couple weakly across the [...] interface. Thus, if we consider the (111) interface, is seems possible to reflect the Lpoint component of the current while transmitting the Fpoint component. There exists two regimes of transport: tunneling transport and propagating transport. In the case where the energy incoming electron is below the energy barrier, transmission is small and the transport occurs via a tunneling process. However, in the case where the energy incoming electron is above the energy barrier, transmission is large and the transport occurs via a propagating process. Depending on the [...] slab thickness, it is possible to induce resonances whereby the transmission coefficient is unity.
In Chapter 4, we develop a theoretical framework to investigate the electronic structure of semiconductor superlattices. The theoretical formulation is based on the k • p method derived from an accurate local pseudopotential method. The formalism developed is particularly well suited for the study of the optical properties and the investigation of the recombination mechanisms in semiconductor superlattices. Here again, we make extensive use of the complexk energy band structure obtained via the k • p method. Realistic boundary conditions are imposed on the multicomponent superlattice envelope function. From these boundary conditions, the energy spectrum of the superlattice is deduced. For the first time, we develop a scheme whereby the superlattice state function in both solids is expanded in terms of the same set of basis functions. By doing so, we relax the often used approximation that assumed that the basis functions are the same for all zincblende semiconductors.
Item Type:  Thesis (Dissertation (Ph.D.)) 

Degree Grantor:  California Institute of Technology 
Division:  Engineering and Applied Science 
Major Option:  Applied Physics 
Thesis Availability:  Restricted to Caltech community only 
Research Advisor(s): 

Thesis Committee: 

Defense Date:  13 September 1983 
Record Number:  CaltechETD:etd01112007111123 
Persistent URL:  http://resolver.caltech.edu/CaltechETD:etd01112007111123 
Default Usage Policy:  No commercial reproduction, distribution, display or performance rights in this work are provided. 
ID Code:  127 
Collection:  CaltechTHESIS 
Deposited By:  Imported from ETDdb 
Deposited On:  16 Jan 2007 
Last Modified:  26 Dec 2012 02:27 
Thesis Files
PDF (Mailhiot_c_1984.pdf)
 Final Version
Restricted to Caltech community only See Usage Policy. 9Mb 
Repository Staff Only: item control page