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ABSTRACT

The work presented here is concerned with theoretical investigations of electronic
states in small-scale semiconductor structures. This last term encompasses
layered structures made up of two dissimilar, but lattice-matched, semiconduc-
tors. The semiconductors of interest here are mostly the tetrahedrally bonded
zincblende semiconductors GaAs and the alloy Ga;_;Al;As. The thesis is sub-
divided in three major chapters. The first chapter is concerned with electri-
cal doping of Gaj—zAlzAs-GaAs-Gaj_—,Al;As quantum well structures. The
second chapter addresses the question of the transport of electrons through GaAs-
Gaj—yAl; As-GaAs double heterojunction structures. In the final chapter, we
develop a theory of the electronic structure of semiconductor superlattices par-
ticularly suitable for the study of the optical properties and the recombination
mechanisms.

In Chapter 2, we study the energy spectrum of ground state and ezcited
states of shallow donor states in Ga; —Al;As-GaAs-Gay —AlzAs quantum well
structures. In this system, an impurity atom is located within a GaAs slab of finite
thickness. The GaAs slab is, in turn, centered between two semi-infinite layers of
Gaj_ Al As. We use a variational method to solve the effective mass equation
for the donor envelope function. We study the variation of the binding energy as
a function of

o thickness of the GaAs containing the impurity,

o alloy composition z in Ga;_zAl;As, and

o position of the impurity in the GaAs slab.

Two cases are treated:
(1) In the first case we assume that the potential well is formed by finite con-

duction band offsets at the GaAs-Gaj—, Al As interface (¢mperfect confinement).
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(7%) In the second case we consider infinite confining potential at the GaAs-
Gaj —zAlz As interface (perfect confinement).

The major result of this study is that the binding energy of the donor ground
state 1s considerably modified as the thickness of the GaAs slab containing the
impurity is varied. At large GaAs slab thicknesses, the binding energy is that
of shallow donors in bulk GaAs. At small GaAs slab thicknesses, the binding
energy is that of shallow donors in bulk Ga;_;Al;As for the case of imperfect
confinement, but corresponds to the two-dimensional Coulomb limit in the case
of perfect confinement. It is also found that the binding energy depends on the
position of the impurity atom within the GaAs slab. Thus, we have a confinement-
induced lifting of the Coulomb energy levels.

In Chapter 3, we study the transport characteristics of electrons through
GaAs-Gaj —;Al;As-GaAs double heterojunction structures. In this system, a
Gaj; —zAlzAs slab of finite thickness is centered between two semi-infinite layers
of GaAs. An electron is incoming from the GaAs onto the Gaj;—;Al;As barrier.
Transport coefficients are calculated using the formalism of the complez-k energy
band structure within the empirical tight-binding method. Transmission into
states derived from different energy extrema of the GaAs lowest conduction band :
obtained. We consider both the (111) and the (100) GaAs-Ga;., AlyAs interfaces.
Transport coefficients are calculated as a function of

o GaAs conduction band minimum from which the electron state is derived,
o energy of the electron incoming on the Ga;__,Al, As barrier,

o thickness of the Gaj —;Al;As barrier, and

o alloy composition z in the Ga;_—zAl;As.

The major result of the study is that states derived from different energy

extrema of the GaAs lowest conduction band appear to couple weakly across
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the GaAs-Ga; Al As interface. Thus, if we consider the (111) interface, is seems
possible to reflect the L-point component of the current while transmitting the
I'-potnt component. There exists two regimes of transport: tunneling transport
and propagating transport. In the case where the energy incoming electron is
below the energy barrier, transmission is small and the transport occurs via a
tunneling process. However, in the case where the energy incoming electron is
above the energy barrier, transmisston s large and the transport occurs via a
propagating process. Depending on the Ga; _;Al;As slab thickness, it is possible
to induce resonances whereby the transmission coefficient is unity.

In Chapter 4, we develop a theoretical framework to investigate the electronic
structure of semiconductor superlattices. The theoretical formulation is based on
the k- p method fierived from an accurate local pseudopotential method. The for-
malism developed is particularly well suited for the study of the optical properties
and the investigation of the recombination mechanisms in semiconductor super-
lattices. Here again, we make extensive use of the complez-k energy band struc-
ture oblained wa the k - p method. Realistic boundary conditions are imposed
on the multi-componeni superlattice envelope function. From these boundary
conditions, the energy spectrum of the superlattice is deduced. For the first time,
we develop a scheme whereby the superlattice state function in both solids is
ezpanded in terms of the same set of basts functions. By doing so, we relax the
often used approximatibn that assumed that the basis functions are the same for

all zincblende semiconductors.
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CHAPTER 1

THEORETICAL INVESTIGATIONS OF ELECTRON STATES
IN SMALL-SCALE SEMICONDUCTOR STRUCTURES:
INTRODUCTION
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Section 1.1
1.1 Scope and Justification of this Study:

1.1.1 General Background:

In the past decade, tremendous progress has been made towards the fabrication
of new electronic devices. In particular, thanks to the introduction of new fabrica-
tion technologies, semiconductor structures in which the physical dimension, in a
given direction, is of the order of few A can now be made. We refer generically
to this category of structures as small-scale structures. The best example of the
new generation of growth technologies is the introduction of the molecular-beam
epitazy as an important growth technique. It is now possible to grow very high
quality semiconductor-semiconductor interfaces. This advance in semiconductor
materials technology has provoked a large number of experimental and theoretical
studies on semiconductor interfaces. As one of the consequences of these inves-
tigations, it is now fairly safe to assess that the semiconductor-semiconductor
interface is one of the best characterized interfaces.

Another crucial aspect of the new growth techniques is the possibility of
growing small-scale semiconductor structures of reduced physical size. With
this reduction in the physical size, new quantum mechanical phenomena related
to the the nature and the behavior electron states. These new aspects have no
counterparts whatsoever with more conventional semiconductor devices exploiting
the bulk properties of the solids.

Intrinsically coupled to these materials advances, is therefore a need to under-
stand the nature of the electron states pertaining to these small-scale devices.
The work presented here in concerned with the nature of electron states in small-

scale semiconductor structures. An interface constructed from two lattice-matched
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semiconductors of different nature is called an heterojunction. A major concept
that enters the investigation of small-scale device and semiconductor heterojunction
is that of relative position of the energy bands, or energy band offsets. This effect
is related to the fact that when two lattice-matched semiconductors are brought in
contact at an interface, thetr respective conduction and valence band edges do
not line up. We must determine a relative energy scale between the two semicon-
ductors forming the heterojunctions. A sketchy presentation of the various concepts
that help to understand the value of energy band offsets is presented in Appendix
(5.2) at the end of this work.

The difference in energy band gaps between the two semiconductors, AEy ,
is split into a conduction band offset, AE, , and a valence band offset, AE, .

Naturally, the following sum rule
AE, = AE, + AE,, (1)

must hold. A lot of electronic properties described in the present work arise
from the presence of conduction band offsets. We regard the quantities AE,
and AE, as inputs of the calculations presented in this work rather than outputs.

Having defined an heterojunction, it is possible to envision more complicated
structures.

(1) In the case where two heterojunctions are formed back to back, the energy
band diagram of the structure resembles either that of a one-dimensional quantum
well, (if a small band gap semiconductor is centered between two large band
gap semiconductors), or that of a one-dimensional barrier (if a large band gap
semiconductor is centered between two small band gap semiconductors).

f17) In the case where the semiconductors are grown in an alternating way,

we obtain a periodic set of heterojunctions. An energy band diagram of such a
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structure resembles that of a periodic series of quantum wells separated by barriers.
We call such a structure a semiconductor superlattice.

Let us consider the case where a small band gap semiconductor is centered
between two large band gap semiconductors. As seen above, the energy band
diagram of such a structure resembles that of a one-dimensional quantum well
The energy band edge discontinuities constitute potential energy barriers for the
electronic states within these structures. A consequence of the introduction of a
potential energy discontinuity at the interface is the confinement of the electron
states. In a zeroth-order picture, the electron states in such a structure resemble
that of the eigenstates of the particle in a well problem. This approach neglects the
detailed electronic energy band structure of the constituent semiconductors forming
the structure. Although very simplistic, a lot of physical insightr can be gained by
considering this approximation.

However, in some situations where the atomic character of the semiconductor-
sermniconductor interface plays a dominant role, we must resort to superior theoretical
techniques. In those instances, it becomes necessary to include the atomic character
of the interfaces and to impose realistic boundary conditions on the wavefunction.
This can only be achieved by considering the detailed electronic energy band struc-
ture of each of the constituent semiconductors forming the structure.

Having now introduced the new theoretical elements (7. €., energy band offsets,
confinement of electron states, potential energy barriers, ...) that underlie the
nature of the electrons states in small-scale structures, we now turn more specifically
to the properties that make these small-scale semiconductor structures potentially

interesting.



1.1.2 Relevance of the Study:

With the introduction of small-scale semiconductor structures, one has to
determine whether or not it is feasible to use the small-scale structures in the prac-
tical realization of semiconductor devices. This, in major part, will be determined
by answering the following questions:

(1) A first aspect of semiconductor devices regards the extensive control of
electronic properties of semiconductor devices by the addition of electronically
active impurities. This process is referred to as doping.

e Is it possible to dope these structures just like bulk semiconductors ?

e How does the binding energy of impurity states in small-scale structure differ
from that of bulk semiconductors ?

e Is it possible to vary the binding energy of impurity states by changing the
physical dimensions of the structure ?

® How does the breaking of three-dimensional periodicity affect the binding
energy of impurity states ?

We will consider this aspect of small-scale semiconductor structures in Chapter
1. In this chapter, we investigate the energy spectrum of shallow impurity states
in Ga; —;AlyAs-GaAs-Gay— Al As quantum well structures.

(1) A second aspect of major importance in the realization of semiconductor
devices concerns the transport of electronic carriers.

e How are the transport properties of electrons modified by the special
geometry of small-scale semiconductor structures ?

e Is it possible to put to profit the properties of small scale semiconductor
structures to develop interesting new transport regimes ?

e How can energy band offsets be used to modify the transport of electrons ?

The aspect of transport in small-scale semiconductor structures will be the



-6-

subject of Chapter 2. In this Chapter, we study the transport characteristics of
GaAs-Ga; — ;Al; As-GaAs double heterojunctions structures.

(131) A third facet that influences the performance of semiconductor devices is
related to optical properties and recombination mechanisms. Optical phenomena
in semiconductor superlattices have become the center of much experimental inves-
tigations since the fabrications of quantum well lasers. A satisfying theoretical
study has yet not been given.

e What are the optical properties of the small-scale structures (z.e., optical
absorption, ...) and how do they differ from those of bulk semiconductors ?

e How different are the radiative recombination mechanisms in small-scale
semiconductor structures compared to those of bulk semiconductors ?

» How different are the non-radiative recombination mechanisms in small-
scale semiconductor structures compared to those of bulk semiconductors ?

e Can some of these recombination mechanisms be modified by the geometry
of these structures ?

® Due to the recent development of quantum well lasers, is it possible to un-
derstand the optical efficiency of these structures within a more complete theoretical
description ?

In Chapter 3, we develop a new and efficient formalism for the calculation
of electronic properties of semiconductor superlattices. This new formalism is
especially well-suited for the treatment of optical properties and recombination

mechanisms in semiconductor superlattices.
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Section 1.2

1.2 Outline of thesis:

In this section, we give a general outline of the thesis. In addition, some aspects

of the theoretical techniques are briefly discussed.

1.2.1 Chapter 2:
Electronic Spectrum of Shallow Donor States
in Ga;_,Al;As -GaAs-Ga;__;Al;As Quantum Well Structures

As mentioned above, the understanding of electrical doping of small-scale semi-
conductor structures is an all important step towards the fabrication of electronic
devices.

In Chapter 1, we consider the vartation of the binding energy for shallow
donors in Gaj— Al As-GaAs-Ga; _yAl;As quantum well structures. In these
structures, a finite slab of GaAs is located between two semi-infinite layers of
Gaj—zAlzAs. In this case a small band gap semiconductor (GaAs) is located
between two large band gap semiconductors (Ga;—zAl;As), thereby forming a
confining potential energy well for the electrons located within the central GaAs
slab. The donor atom is located within the central GaAs slab.

To understand the nature of the electron states in quantum well structures, it
1s most instructive to consider the following oversimplified picture. In a quantum
well semiconductor structure, a small band gap semiconductor is located between
two large band gap semiconductors and the electronic states closely resemble
etgenstates of a particle confined within a one-dimensional quantum well. We
refer to this approximation as the well model Thus, the conduction band offset
AFE,. confines the electrons and the valence band offset AFE, confines the holes.

In this approach, a series of quantized subbands arise due to the confinement of
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the motion of the electron along the quantum well axis. For example, due to this
quantization of the energy levels associated with the motion of the electron along
the quantum well axis, the zero of energy does not correspond to the minimum of

the conduction band but rather to the first subband.

In essence, the well model only considers the nature of the semiconductors
forming the structure through bulk parameters like effective masses and bulk
dielectric constant and uses a description of the electron states valid only for k
near the center of the Brillouin zone. Approximate as this approach may be, it
nevertheless gives a certain degree of guidance as to how to describe the electron
states when the quantum well is large and a microscopic description of the solids is
not crucial. When a Coulomb center is located within the quantum well structure,
we can view this new potential as a perturbation on the quantum well eigenstates.

Thus the Coulomb potential mixes the states belonging to the different subbands.

We specifically study the binding energy of the donor ground state and
the low-lying excited states with respect to the first conduction subband of the

quantum well Two separate cases are treated.

(1) In the first case, we take into account the finite value of the electron
potential barrier AE, at the GaAs-Gaj__ Al As interface. In this finite barrier
model, the donor wavefunction is imperfectly confined by the electron potential
barrier and is now allowed to penetrate in the Ga;_,Al,As. We refer to this as

the tmperfect confinement case.

(2) In the second case we consider that the electron potential barrier created
by AE. at the interface can be assumed to be infinite with respect to the energy
scale of the binding energy. In this infinite barrier model, the donor state is not
allowed to leak out in the adjacent Ga;__,Al;As layers and is perfectly confined to

the GaAs slab. We refer to this as the perfect confinement case.
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Variations of binding energies with respect to the first conduction subband are
examined as a function of

e the thickness of the GaAs slab containing the impurity,

e the alloy composition z in the alloy Ga;_,Al;As, and

e the position of the impurity atom within the GaAs slab.

We treat shallow donors within the effective mass approzimation. This ap-
proximation essentially treats the physics at k = 0. All the electronic features of the
solid containing the impurity atom are lumped into an electron effective mass and
a bulk dielectric constant. A variational method is used to solve the effective mass
equation for the donor wavefunction. In this scheme, the donor envelope function
is expanded onto a physically reasonable variational basis set. The Hamiltonian
matrix is written in this variational representation. Direct diagonalization of the

Hamiltonian matrix yields the energy eigenvalues and the energy eigenstates.
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Chapter 3:
Theory of Electronic Transport through
in GaAs-Ga;__;Al;As -GaAs Double Heterojunction Structures

Another aspect of the fabrication of small-scale electronic devices lies in un-

derstanding the transport of charge carriers.

In Chapter 2, we analyse the transport of electrons through GaAs-Ga; _, Al  As-
GaAs double heterojunction structures. In these structures, a finite slab of
Gaj —gAlzAs is located between two semi-infinite layers of GaAs. In this case, a
large band gap semiconductor (Gaj_Al; As) is located between two small band
gap semiconductors (GaAs), thereby forming a potential energy barrier for the
electrons on each side of the central Ga;_ Al As slab. Transport coefficients are
calculated for electrons incoming from the GaAs onto the central Ga; —;Al;As bar-
rier. We are specifically interested in the cases where the incoming electron is
derived from different eztrema of the GaAs conduction band. We must therefore
include a description of the electronic states that is not confined to that region of the
Brillouin zone near k = 0. To do so, we provide a description of the electronic
energy spectrum of the two semiconductors forming the double heterojunction

structure. Such a description is obtained via a realistic band structure calcula-

tion.

There are many schemes to calculate band structures of semiconductors. These
vary in rigor and accuracy. A simple approach uses a description of the soluttons
of the crystal Hamiltonian in terms of atomic orbitals. The matrix elements of
the Hamiltonian between these local atomic orbitals are then treated as disposable
parameters chosen to fit the band structure obtained by more accurate methods
at high symmetry k points in the Brillouin zone. The band structure at other

k points is then obtained via an interpolation scheme first introduced by Slater
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and Koster!. Such a band calculation scheme is referred to as the empirical
tight-binding method. It describes accurately enough valence bands and low-lying

conduction bands for the purposes of the present study.

Since the three-dimensional periodicity of the bulk semiconductor is now dis-
rupted by the presence of an interface, the use of the real quantum number k to
label the irreducible representations of the crystal translation group is no longer
permitted. Simply put, the component of the wavevector k normal to the interface
plane cannot be used to label the solutions of the interface Hamiltonian. This com-
ponent is now allowed to take on complex values. An electronic energy spectrum
where k can be complex is referred to as a complez-k band structure. In that
case, the solutions associated with complex-k are not running wave solutions. The
imaginary part of the complex wavevector k is directly related to the decay length

of the solution in x-space.

In the Ga;__ Al As bérrier, the wavefunction exists in regions of energy where
free propagation is forbidden. This region is called a flat barrier region, since
the potential resembles locally that of bulk Ga;_ Al As. The complez-k band
structure is thus an indispensable ingredient for an accurate description of the
wavefunction in these barrier regions. Such a band structure is calculated within

the empirical tight-binding method.

Apart from flat barrier regions, there exist interfacial regions in which the
potential varies from one lattice site to the next. In order to describe the electronic
wavefunction in these regions, we use a transfer matriz method to express the
tight-binding wavefunction on one side in terms of the tight-binding wavefunction
on the other side of the interface. A full description of this method is given in
Appendix (2.2).

In the foregoing study we treat the cases of the GaAs-Gaj_ Al As-GaAs
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double heterojunction structures along the (111) and (100) interfaces. The purpose
of this study is to analyse how an electron, incoming from a given energy minimum
of the GaAs conduction band on one side of the Ga;_,Al,;As barrier, transmits
into different energy extrema of the GaAs conduction band on the other side of the
Gaj—zAlzAs barrier.

(1) For the (111) interface, we consider the cases of incoming electrons derived
from near the I"-point GaAs conduction band minimun, and from near the L-point

conduction band valley. The regions of interest in the Brillouin zone are therefore

the I'-point,

k() — [31](0, 0,0), (2.0)

a

and the L-point

2ri/1 1 1
aw=[Z](L LY y
(L) [ . J 5'3" 3 (2.)

(2) In the case of the (100) interface, we analyse the transport pertaining to
electrons in the I"-point conduction band minimum and in the X-point conduction

band valley. The regions of interest in the Brillouin zone are therefore the I'-point,

F2 3
k() = |==|(0,0,0), (2.¢)
L @ o
and the X-point
[27]
k(x)=|-Z|(1,0,0). (2.d)
e a -

Transport coefficients are studied for electrons associated with different ex-
trema of the GaAs conduction band. The theoretical apparatus uses complex-k
energy band structures and transfer matrices within the empirical tight-binding
formulation. We analyse transport coefficients of electrons incoming from the GaAs -
side of the double heterojunction structure as a function of

e the GaAs conduction band minimum from which they are derived,
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o the energy of the incoming electrons,
e the thickness of the Ga; _ Al As barrier, and

e the alloy composition z in the Ga;_,Al,As barrier.
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1.2.3 Chapter 4:
Theory of Electronic Structure
of Semiconductor Superlattices: k - p Theory

In this Chapter, we develop a new formalism to calculate the electronic
properties of semiconductor superlattice. The formalism uses the k - p perturba-
tion theory derived from an accurate local pseudopotential calculation. In this
approach, the bulk solutions of the crystal Hamiltonian at a general point k, are
expanded in terms of a set of basis functions that are solutions of the crystal
Hamiltonian at a given point ko. This theoretical technique has the advantage
that the ezpansion set s ezact for a certain point ko in the Brillouin zone.
This is not the case of the tight-binding approach described above. Furthermore,
the ezpansion set s the same for both semiconductors forming the superlattice
structure.

The superlattice wavefunction is expanded in terms of this common basis set.
The corresponding expansion coefficients are referred to as the multi-component
envelope function. The use of the k - p formalism allows a description of the
superlattice state which is particularly well suited for the study of the optical
properties. This is due to the fact that, in the k - p method used here, the input
to the calculation are the matrix elements of the momentum operator, p, between

two basis functions at kg.

A suitable set of boundary conditions on the superlattice wavefunction allows
us to obtain the complex-q energy spectrum of the superlattice, where q is the
superlattice wavevector that classifies the superlattice solutions. We thus obtain

the complez-q energy band structure of the superlattice.
e We would like to stress two very attractive features of the above formalism:

(1) The only empirical input parameters are the local pseudopotential form
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factor and the energy band offsets.

(i2) The superlattice state function in each solid is expressed in terms of a set
of basis functions assoctated with the same reference solid We therefore relax
the often used approximation that the ko functions for all semiconductor of the
group III-V are the same®—*, which is clearly a convenient approximation when
matching the superlattice state function onto the interface plane.

(%) The formalism is well suited for the study of superlattices with large

primitive cells.
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Section 1.3

1.3 Summary of Major Results:

In this section, we present a summary of the major results.

1.3.1 Chapter 2:
Electronic Spectrum of Shallow Donor States
in Ga;_;Al;As -GaAs-Ga;__;Al;As Quantum Well Structures

The major result concerning the binding energy of shallow donors in semi-
conductor quantum well structures is that, the binding energy is considerably
modified when the GaAs quantum well thickness is reduced from a large value
to few monolayers.

(1) We discuss first the case of a donor atom at the center of the GaAs slab.

() In the case of finite barrier, the binding energy varies from the bulk GaAs
limit lto the bulk Ga;_;Al;As limit when the dimensions of the quantum well are
reduced. At large GaAs thicknesses, the donor wavefunction has a large amplitude
in the GaAs slab, and the binding energy is close to that of bulk GaAs. At small
GaAs thicknesses, the donor wavefunction leaks out appreciably in the Ga; Al As
alloy and the binding energy corresponds to that of bulk Ga;_—;Al;As. Between
these two limits, the binding energy measured from the first conduction subband
as a function of the thickness of the GaAs slab forming the quantum well, shows a
maximum corresponding to a maximum confinement of the wavefunction.

(11) In the case of tnfinite barrier, the binding energy increases from the three-
dimensional limit at large well thicknesses to the two-dimesional limit at small
well thicknesses. Thus the reduction in dimensionality is accompanied by an
increase in the binding. For example, a two-dimensional Coulomb ground state is

four times as tightly bound as a three-dimensional one.
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(2) We discuss now the case of a donor atom displaced from the center of the
GaAs slab.

It is found that a displacement of the impurity atom from the center of the
GaAs slab towards the edge of the quantum well has the effect of reducing the
binding. For a donor state at the edge of the GaAs quantum well, ¢.e., at the GaAs-
Ga; Al As interface, the effect of the repulsive barrier, AE, , is more important
and reduces the binding effect of the attractive Coulomb potential produced by the
ionized impurity. We thus have a confinement-induced lifting of the ground states
degeneracy of the Coulomb spectrum.

(3) We discuss now the effect of the alloy composition z in Gaj—zAl;As on
the binding energy.

In the model used for the Gaj;_;Al;As-GaAs-Gaj—_ Al As quantum well
structures, the electron potential barrier, AE, increases linearly with the Al fraction
z in the Ga;—zAl;As alloy. It is found that an increase of the Al content in
Gaj —zAlzAs increases the binding of the donor state as a larger electron potential

barrier is more effective at confining the wavefunction within the GaAs quantum

well.
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1.3.2 Chapter 3:

Theory of Electronic Transport through
in GaAs-Ga;_ Al As -GaAs Double Heterojunction Structures

The major result of the transport study is that transmission seems to be
large for states corresponding to states derived from equivalent extrema of the

conduction band. We now discuss the (111) and (100) interfaces separately.

(1) Let us consider the case of the (111) interface. A state incoming in GaAs
from the I"-point on one side of the Ga; —;Al, As barrier transmits largely to the I"-
point minimum in GaAs on the other side of the Ga; Al As barrier. Transmission
into other GaAs conduction band extrema seems to be much smaller. The same is
true for states originating from the GaAs L-point valley in GaAs and transmitting

strongly into the L-point valley and weakly into the I"-point minimum.

(2) Let us now consider the case of the {100) interface. For a state incoming
in GaAs from the I'-point on one side of the Ga;__;Al,;As barrier, transmission
into other GaAs conduction band extrema seems to be much smaller. The same is
true for states orginating from the GaAs X-point valley in GaAs and transmitting
strongly into the X-point valley and weakly into the I'-point minimum.

Another interesting result is related to the energy dependence of the transport
coefficients. Depending on the energy of the incoming state, transmission could oc-
cur below or above the Ga;__,Al,As barrier.

(1) When the energy of an incoming state derived from a given conduction band
extremum is below the Ga; _,Al;As barrier corresponding to the same extremum,
transport is characteristic of tunneling. In that case transmission is small and
the wavefunction is damped in the Ga; __;Al;As barrier. In the tunneling regime,
transport within the Ga;_;Al; As barrier occurs via evanescent Bloch states with

complez values of k.
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{2) On the other hand, when the energy of a incoming state derived from a
given conduction band extremum is above the Ga;_;Al;As barrier corresponding
to the same extremum, transport is propagating . In that case transmission
shows a resonant behavior whenever the thickness of the Ga;__ Al As barrier
is an integer multiple of a half-wavelength of the wavefunction inside that region.
In the propagating regime, transport within the Gaj;__,Al;As barrier occurs via
propagating Bloch states with real values of k. In the case of the (100) interface,
it seems possible to induce very sharp resonance whereby an incoming state at

k(I") in GaAs couples very weakly to a propagating state at k(X) in Ga;_ ;Alz As.



-20-

1.3.3 Chapter 4:
Theory of Electronic Structure
of Semiconductor Superlattices: k - p Theory

We have applied the above formalism to the case of the GaAs-Alas superlattice.

The complex-k energy band structure is accurately described by this truncated
k - p Hamiltonian derived from a more complete local pseudopotential calculation.
In the present scheme, the complex-k energy band structure of each constituent
semiconductor forming the superlattice is obtained such that the bulk Bloch solu-
tions are expanded in terms of the same set of ko = 0 basis functions. This
approach has the advantage that the boundary conditions on the superlattice state
function are ezact without the approximation that the kg = 0 of all III-V solids
are the same.

We also present results for complex-q energy band structure for GaAs-AlAs su-
perlattices of different periods. The method is shown to provide an accurate means
of determining the electronic structure of semiconductor superlattices without rely-
ing on trial-and-error techniques as is presently done within the tight-binding
formalism®.

The formalism presented in Chapter 4 serves as a basis for future studies
concerning the optical properties of superlattices. As mentioned earlier, opti-
cal phenomena in quantum well structures and semiconductor superlattices have
generated a lot of experimental effort since the fabrication of quantum well lasers.
It is the purpose of Chapter 4 to present a general theory that will serve as a basis

for future investigations of the optical properties of semiconductor superlattices.
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CHAPTER 2

ENERGY SPECTRUM OF SHALLOW DONORS IN
Ga;__;Al;As -GaAs-Ga; —;Al;As QUANTUM WELL STRUCTURES
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Section 2.1
INTRODUCTION

2.1.1 Scope of the study

Most electronic properties of semiconductor devices are largely determined
by the addition of electronically active doping species within a bulk crystal.
Semiconductor superlattices, when employed as active electronic devices, can also
have their electronic properties modified by the introduction of dopant impurities.
Furthermore, impurities are inevitably introduced during the growth of the semi-
conductor superlattice, whereas it is possible to grow highly pure bulk semiconduc-
tor. It is therefore crucial to have an understanding of the effect of doping on
the electronic properties of semiconductor superlattices. Superlattices open a
new avenue as far as the control of electronic parameters such as energy band
gap, effective masses, .... In a superlattice or a quantum well (¢.e., a single-period
superlattice) these parameters that determine the overall electronic properties
of the semiconductor structure can be adjusted independently by varying the
superlattice period or other quantities easily controllable during the growth.

This chapter is concerned with the energy spectrum of shallow donors in
Gay —;Al;As-GaAs-Gaj —gz AlyAs quantum well structures. The unique nature of
electronic states associated with semiconductor superlattices has been the subject
of a great deal of interest! ™3. In view of the potential applications of these
structures* 7 the understanding of impurity states found within these systems
is an issue of technical as well as scientific importance. The conduction and valence
band offsets arising at the interface between the two semiconductors forming the
superlattice produce a series of rectangular potential wells confining the electronic

states in the smaller band gap material. It has been shown analytically! and verified
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experimentally® that both the electronic transportg’10 and the optical properties!!

are largely determined by the nature of the electronic states confined within these

potential wells.
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2.1.2 Outline of Chapter 2

We now present an outline of the chapter. This chapter addresses the question
of the calculation of the binding energy for shallow donors in Ga; — Al As-GaAs-
Gaj—zAlzAs quantum well structures. In these structures, a finite slab of GaAs
is located between two semi-infinite layers of Ga;_;Al;As. In this case, a small
band gap semiconductor (GaAs) is located between two large band gap semicon-
ductors (Ga;—;Al; As), thereby forming a confining potential energy well for the
electrons located within the central GaAs slab. Variations of binding energies are
examined as a function of the thickness of the GaAs slab, the alloy composition z
in the alloy Gaj_;Al;As, and the position of the impurity atom within the GaAs

slab. Two specific cases are treated.

(9) In the first case, we take into account the finste value of the electron
potential barrier, which has its origin in the conduction band offset AE, , at the
GaAs-Gay—yAlzAs interface. In this fintte barrier model, the donor wavefunction
is imperfectly confined by the electron potential barrier and is allowed to penetrate
in the Ga;_;Al; As. In bulk GaAs, the binding energy is independent of the position
of the impurity ion within the crystal. This is n0ot the case in the case of quantum
well structure where the motion of the electron is confined in the direction normal
to the pair of interfaces. We also study the lifting of the degeneracy due to the
spatial distribution of the donors. In order to do so, the effect of the position of

the impurity ion within the central GaAs slab is studied.

(12) In the second case, we consider an idealized case in which the electron
potential barrier created by the conduction band offset AE, at the interface is
assumed to be tnfinite with respect to the energy scale of the binding energy. In
this snfinite barrier model, the donor state is not allowed to leak out in the adjacent

Gay —; AlzAs layers and is perfectly confined to the GaAs slab. The purpose of this



-26-

exercise is to study the behavior of the donor ezcited states as the thickness of
the central GaAs slab is varied.

The GaAs-Gaj;_—;Al;As system was chosen since the EMA is known to hold
to a high degree of accuracy for shallow donor states in GaAs!?. Since we treat
a single quantum well, the results discussed below should apply to superlattices
in which the Ga;_;Al;As barriers are thick enough so that there is little overlap
between the states confined to adjacent GaAs quantum wells. In the case of thin
superlattices, one should take into account the spreading of the donor envelope
function into the adjacent quantum wells.

We treat shallow donors in quantum well structures along the lines of an
effective mass theory. A variational method is used to calculate the binding energy
of the shallow donors. A review of the single-valley effective mass theory for bulk
solids can be found in Appendix (2.1). The variational solutions of the effective

mass equation for the donor envelope function can be found in Appendix (2.2).
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2.1.3 Summary of the Results of Chapter 2

This study focuses on the variation of the binding energy of a shallow donor
state within a Ga;_;Al, As-GaAs-Gaj — Al As quantum well structure as a func-
tion of

e thickness of the GaAs slab containing the donor atom,

e alloy composition in Ga; —;Al;As, and

¢ position of the impurity ion within the GaAs slab.

The binding energy with respect to the the first conduction subband is calcu-
lated for the donor ground state and the low-lying excited states. We present now
a brief summary of the results of Chapter 2. A detailed discussion of these results

can be found below in Sections (2.2) and (2.3).

1. Variation of Binding Energy with GaAs Well Thickness:

Generally, it is found that the binding energy is considerably modified
when the GaAs quantum well thickness ts reduced from a large value to few
monolayers. This effect is more important for the donor ground state than for the
donor excited states. Let us first consider the case of a donor atom at the center
of the GaAs slab.

(1) In the case of finite barriers, the binding energy varies from the GaAs
limat to the Gaj Al As limit when the dimensions of the quantum well are
reduced from a large value to a few monolayers. At large GaAs thicknesses,
the donor wavefunction has larger amplitude around the ionized center, in the
GaAs slab, and the binding energy is close to that of bulk GaAs. At small GaAs
thicknesses, the donor wavefunction has more amplitude in the Ga; —;Al;As alloy
and the binding energy corresponds to that of bulk Ga;_;Al;As. Between these

two limits, the binding energy measured from the first conduction subband as a
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function of the thickness of the GaAs slab forming the quantum well, shows a

maximum corresponding to a maximum confinement of the wavefunction.

(12) In the case of tnfinite barrier, the binding energy increases from the
three-dimensional limit at large well thicknesses to the two-dimesional limit at
small well thicknesses. A two-dimensional Coulomb state is more bound than a
three-dimensional one. For example, it is found that the two-dimensional Coulomb
ground state is four times as fightly bound as the three-dimensional Coulomb
ground state. Thus the reduction in dimensionality leads to an increase in the

binding of the donor state.

2. Variation of Binding Energy with Position of Impurity Atom:

It is found that a displacement of the tmpurity atom from the center of the
GaAs slab towards the edge of the quantum well has the effect of reducing the
binding. For a donor state at the edge of the GaAs quantum well, ¢.e., at the GaAs-
Gaj —z Al As interface, the effect of the repulsive barrier, AE, , is more important
and reduces the binding effect of the attractive Coulomb potential produced by the
ionized impurity. When the donor is located near the edge of the quantum well two
opposite effects play a major role in reducing the binding:

(1) the Coulomb attraction tends to pull the wavefunction on the edge of the
quantum well where the ionized donor is located, and,

(2) the repulsive potential of the barrier tends to push the wavefunction towards

the center of the quantum well, away from the position of the attractive center.

This finding leads to the conclusion that, due to the confinement of the
wavefunction, there is a lifting of the degeneracy of the Coulomb states. This

effect is related to the breaking of the three-dimensional periodicity found in bulk

solids.
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3. Variation of Binding Energy with Alloy Composition:

In the model used for the Ga;_ Al As-GaAs-Ga;__,Al;As quantum well
structures, the electron potential barrier, AE, increases linearly with the Al fraction
z in the Gaj;_ Al As alloy. Is is found that an tncrease of the Al content in
Gaj —zAl;As increases the binding of the donor state as a larger electron potential

barrier is more effective at confining the wavefunction within the GaAs quantum

well.
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Section 2.2

EFFECTIVE MASS THEORY FOR DONORS
IN GaAs-Ga;_,Al;As QUANTUM WELL STRUCTURES:
IMPERFECT CONFINEMENT
OFF-CENTER IMPURITY

2.2.1 Scope of this Study:

In this section, we study the energy spectrum of the ground state and the
low-lying ezcited states for shallow donors in Gay;_,Al; As-GaAs-Gaj— Al As
quantum well structures. In order to study the confinement-induced lifting
of the Coulomb degeneracies, the effect of the position of the impurity atom
within the central GaAs slab is investigated for different slab thicknesses and alloy
compositions.

Two limiting cases are presented:

o one in which the impurity atom is located at the center of the quantum well
(on-center tmpurity),

e the other in which the impurity atom is located at the edge of the quantum
well (on-edge impurity).

Throughout this section, we consider a quantum well structure formed by a
rectangular confining potential of finite magnitude (¢mperfect confinement). The
strength of the finite potential barriers is determined by realistic conduction band
offsets. We find that both the on-center and the on-edge donor ground state
are bound for all values of GaAs slab thicknesses and alloy compositions. The

alloy composition, z, is varied between 0.1 and 0.4. In this composition range,
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Gaj —zAlzAs is direct and the single-valley effective mass theory is an adequate

technique for treating shallow donor states.
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2.2.2 Outline of Section 2.2:

In this section, we report on a study of the energy spectrum of shallow donor
states in a single GaAs-Ga;_— ;Al;As quantum well. The energy spectrum of a donor
state located within the GaAs slab is studied as a function of the width of the rectan-
gular potential well formed by the conduction band offset at the GaAs-Ga; —gAlzAs
interface. The effect of the alloy composition, z, in the barrier material as well as
the position of the donor atom within the well are also investigated. To illustrate
the effect of the position of the donor on the electronic spectra, two positions of the

donor ion were studied:
(1) donor ion at the center of the quantum well (on-center impurity) and
(2) donor ion on the edge of the quantum well boundary (on-edge tmpurity).

We find that the donor energy spectrum, both for the on-center and the on-
edge impurity, is considerably modified as the dimension of the quantum well
is varied. Both the on-center and the on-edge donor energies with respect to
the first conduction subband versus GaAs slab thickness present a maximum (in
absolute value) whose magnitude depends on the alloy composition. The on-edge
impurity, produces a more shallow donor state than the on-center tmpurity.
This reduction of binding of the on-edge donor ground state results from the fact
that the repulsive barrier potential tends to push the electronic charge distribution
away from the attractive ionized center thereby leading to a reduced effective
Coulomb attraction. This finding is in accord with calculations carried in the case
of infinite confining potential for on-center defect and for an on-edge defect!3. We
present such calculations in the next section where we study the infinite barrier
limit.

In Section (2.2.3), we present the calculational techniques. We describe the

basis orbitals on which the donor state is expanded and we discuss the validity of
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this expansion. In Section (2.2.4), the main results are presented. First we discuss
the energy spectrum for the on-center impurity, then we treat the case of the on-
edge impurity. A comparison is made between these two limiting cases. A summary

of the results and a conclusion are presented in Section (2.2.5).
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2.2.3 Calculational Method:

Calculations are based on the single valley effective-mass approximation (EMA).
A detailed presentation of the EMA for shallow impurity states in bulk semiconduc-
tors is presented in Appendix (2.1). In Appendix (2.2), we present a modification of
the EMA in the case of systems in which a planar defect (<.e., surface, interface,. . .)
perturbs the three-dimensional periodicity characteristic of bulk systems. Also,
Appendix (2.2) gives the prescription to solve the resulting single valley effective-
mass equation for the donor envelope function within a variational formalism. Most
of the mathematical derivations are relegated to these two Appendices and will not

be repeated here.

We are concerned with a single Ga;_—;Al;As-GaAs-Ga; Al As quantum
well, and the results discussed in this section below should apply to superlattices
in which the Ga; —;Al;As barriers are thick enough so that there is little overlap
between the states confined to adjacent GaAs quantum wells. In the case of very thin
superlattices, the effective mass theory may be expected to give a wrong description
of the impurity system. In such cases, superior theoretical techniques that take
into account the atomic character of the interface should be used. In Chapters 3
and 4 we consider such techniques where realistic description of the interfaces are

obtained via energy band structures.

Throughout the present investigation, the composition of the Gaj —_,Al;As
alloy was varied in the range where the alloy remains direct, so that the single-
valley effective mass theory stills holds. Realistic conduction band offsets of finite
magnitude were used, thereby allowing the wavefunction to penetrate into the
barrier material as the dimenstons of the confining quantum well are reduced.
The use of finite conduction band offsets has a large effect on the binding energy

of the donor state in the thin GaAs slab limit and should be compared with
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approximate calculations carried out using infinitely high barrier height (quantum
boz case)14_15. For example, as first shown by Levine16, hydrogenic donor states
at a semiconductor surface cannot exist unless the sum of the angular and magnetic
Coulomb quantum numbers, [l + m|, is an odd integer if the potential discontinuity
is assumed to be infinite at the surface. In this case, the ground state corresponds
to a 2p, hydrogenic state. In particular, in the case of infinite barriers, spherically
symmetric states are not allowed since the donor envelope function is required to
vanish at the interface.

When finite conduction band offsets are taken into account, the condition that
the wavefunction vanishes at the interface is relaxed and penetration in the barrier
material is allowed. The tnfinite barrier case should be viewed as a limiting case
valid only for very wide quantum wells for which the penetration of the donor

state into the barrier material is small
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2.2.3.1 Effective Mass Hamiltonian:

We now describe the impurity system within an effective mass Hamiltonian
formalism. The effective mass Hamiltonian corresponding to a Coulomb center
located at a distance ¢ from the center of a finite quantum well of width 24 along
the & direction (the #-axis is normal to the interface plane) and height V; (see Figure

1 for geometry) is:

. — 72
H(1)= — Vi + Uy (x) ...in region (1),(1.a)
2m,
. —%2
H(2) = —Vi + Ua(x)+ Vo ...in region (2),(1.5)
2m;
. —h2
H(3)= ——*Vi + Us(x)+ W ...in region (3),(1.¢)
2my

where m; refers to the bulk GaAs (well material) effective mass and m; refers to
the interpolated effective mass in Ga;_;Al;As (barrier material). Since the bulk
dielectric constants of GaAs and Gaj;_ Al As, €; and e5 respectively, differ slightly,
the Hamiltoniah must include terms due to electrostatic image charges!? 18, The
potentials Uj (x), U2(x) and Us(x) represent the Coulomb interaction between the
electron and the impurity ion as well as the ion image charge. The explicit form of
these potentials, including the image potentials terms is given in Appendix (2.3).
A finite number of image charges was included in the donor effective mass

Hamiltonian. Since the dielectric mismatch,

[e1 — ea]

[61 + 62]’

is at most of the order of 5% for the z = 0.4 alloy, the contributions due to higher

order image charge terms are negligible.
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Ga, Al As GaAs Ga,_, Al As

(a) |

-a 0 a

~c~

Figure 1: Geometry of a Coulomb center located at a distance ¢ from the
center of a finite quantum well of width 2a (along the §-direction) and height V;.
{a) Physical structure. (b) Quantum well potential profile along the &-axis normal
to the interfaces.
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Throughout the calculations, the conduction band offset, AE, , is taken to be
85% of the difference of the I'-point band gaps of GaAs and Ga;_;Al,As, AER 19
Since the alloy composition range studied was such that the alloy was direct (z <
0.45)19, both the effective mass m; and the conduction band offset Vy = AE,

were determined using the I"-point values in Ga;— Al As?;

m; = 0.06Tmy, (2.a)

msy = (0.067 + 0.083z)my, (2.6)
€1 = 13.1¢p, (2.¢)

e2 = [13.1(1 — z) + 10.17] €, (2.d)
Vo = 1.06z eV, (2.€)

where mo and ¢g are the free electron mass and the vacuum static dielectric
constant, respectively.

To calculate binding energies, we must solve for the Hamiltonian defined in
Eqgs.(1) without the impurity potentials U; (x), Uz(x) and Us(x). That is, we must
find the ground state of an electron in the quantum well without the impurity

potential In this case, the Hamiltonian for the particle is given by:

. — K2
Hy(l) = v2 ...in region (1),(3.a)
2m;
. —#2
Hy(2) = —————Vi + Vo ...in region (2),(3.5)
2m;
R _+2
Hy(3) = —V% + Vo ...in region (3).(3.¢)
2m;

The energies (E) of the Coulomb states with respect to the first conduction subband

edge are given by the difference between the donor energy, E(H ), and the subband
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energy E(H ):

E=EH)—E®#") (4)

In the cases

e where the impurity ion is at the center of the GaAs quantum well and,

e where we consider the Hamiltonian without the Coulomb center, H 0,

then the Hamiltonian is even with respect to reflection through the zy-
plane. Therefore eigenstates of these Hamiltonians must have definite parity.
Let us consider the Hamiltonian without the Coulomb center, H 0, that gives rise
to the subband structure. Eigenstates of H ° belonging to odd-number subbands
(n = 1,3,5,...) must be even with respect to reflection through the zy-plane.
Eigenstates of H 0 belonging to even-number subbands (n = 2,4,6,...) must be
odd with respect to reflection through the zy-plane.

The donor effective mass equation was solved using a variational method.
In this technique, the donor envelope function is expanded in terms of a varia-
tional basts set. The Hamiltonian for the donor is then expressed as a matrix
in the representation of these variational basis functions. Diagonalization of the
Hamiltonian matrix yields the energy eigenvalues and the energy eigenstates. The
details of the technique are presented in Appendix (2.2)

To preserve the cylindrical geometry of the system, the triai basis orbitals on
which the donor state envelope function is expanded are of the form of Gaussian-
type orbitals (gto’s) defined in an ellipsoidal coordinate system and shifted with

respect to the tonized donor taken to be at the origin:

(nimy = Y Ny(nd)[[xl(r, )] exp [—si(n, D]J=|0, 4)F] ] Y UE),  (5)
1=1,2,3

where,

Ix|(\, di) = V22 + y2 + 22(z — 4;)2, (6)
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and N;(nl) is a normalization constant. The index ¢ = 1, 2, 3 labels the region of

space where the gto orbital is defined. The paramater X is a shape parameter, and

the parameter d; is a shift parameter.
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2.2.3.2 Variational basis set:

We pause here to justify the functional form of the variational basis functions
(X'|nlm). As seen by the explicit form of Eq.(4), the basis functions (x'|{nim) on

which the envelope function is expanded can be decomposed into a product,
(& [nlm) = €u(x)))gn(2), (7)

where both the variational functions £,(x|) and gn(z) are of the form of gto. The

vector X|| is a two-dimensional position vector in the plane of the interface,
x| = z% + y¥. (8)

According to Appendix (2.2), the basis functions can be chosen to be of the

form of a product:
(x|nt; mj) = €™zl (2), (9)

where fsm)(x") can be taken to be of the same gto functional form as £,(x) in
Eq.(5) but the function gogfh) (2) appearing in Eq.(6) is now an eigenstate of the

quantum well Hamailtonian as defined in Appendix (2.2):

——} + Vi(z), (10)

where V(2) is the confining quantum well potential of width 2a. The eigenstates

of ﬁo(z) have definite parity and are of the form:
gogzg)(z) SR [k%g)z] ..z < |a,(11.0)

gogz")(z) A sin [kg”)z] ..z < |a|, (11.)

pQ)(z) ~ L exp [£x@)|] ..z > lal,(11.0)
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where j = g for states even with respect to reflection through the zy-plane, and

J = u for states odd with respect to reflection through the zy-plane.

Is is clear to see that as the GaAs quantum well thickness is reduced, a—0,
then the subband energy increases and E—V, and the first conduction subband
merges with the Ga;—;Al;As conduction band edge. In that case, the eigenstates
gogf')(z) describe a free state and form a poor basis set for the Coulomb problem.
This is due to the fact that, in the small quantum well limit, the eigenstates ;ogtj)(z)
have a nearly constant amplitude throughout space and fail to describe a Coulomb
state adequately. Similarly, for very large quantum well thicknesses, a—o0, the
first conduction subband merges with the GaAs conduction band edge. The
functions gogbj)(z) fail to provide an accurate description of a Coulomb state for the
same reason. In the case of finite potential barrier, the variational set {|nim)}
mimics the Coulomb problem in a cylindrical geometry in both limits of large and
small quantum well thicknesses. We therefore label the variational functions |nim)

by the usual Coulomb quantum numbers.

The boundary conditions that both the wavefunction and the particle current
are continuous across the interface®® determine relations between the normaliza-
tion constants, NV;(nl), and the orbital exponents, ¢;(n,!), in the barrier material
(¢ = 2,3) in terms of those in the well material (; = 1). To produce an accurate
description of the donor envelope wavefunction, a shape parameter, or eccentricity
(X), as well as a shift parameter (d;), were incorporated in the variational basis
set {|{nim)}. The shape parameter \ determines the compression of the envelope
function along the quantum well axis (#). The shift parameter d; determines the
location of the electron charge distribution when the impurity ion is moved towards

the quantum well edge. In the calculation presented here we chose:

e d; = 0 in the case of the on-center impurity and
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e dy70 for [ = 0 and d; = 0 for {540 in the case of the on-edge impurity.

Throughout the calculations, energy is measured in units of

* 62 2 m;
E = lﬁ:{] [EQ‘J, (12)

(donor rydberg) and distance is measured in units of

* €1 hz
a ={—||—] 13
M[m] "

(donor bohr), where the effective mass, m’;, and the static dielectric constant, €y,
both refer to GaAs bulk values.
The gto orbital exponents ¢;(n,!) appearing in Eq.(4) are taken to be of the

form, in atomic rydberg units:

_ $0
w00 = st "
with
b(n) = {1,2,4,8, 16, 32, 1/2} (15)

so as to cover a physically reasonable range. The exponent at the center of the

distribution, ¢, is taken to be

0 = [9—87;}bohr—'2. (16)
The choice of ¢ is dictated by the fact that if one solves the hydrogen atom
Hamiltonian for the ground state with a trial Gaussian orbital of the variational
form N exp(—g|x[?), then one easily finds that the variational orbital exponent

¢o that minimizes the expectation value of the energy is ¢y = 8/(97) bohr—2.

The boundary condition that the particle current

[L*J[wanzm) 4] (17)

m
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must be continuous across the interface is required since the difference in effective
masses was taken into account in the expression of the Hamiltonian. As shown by
Ando and Mori?!, these are adequate boundary conditions in the case of GaAs-
Gaj —;Al;As quantum well structures as long as Ga;_.,Al;As is direct. For other
electronic systems, a more careful analysis of the wavefunction at the interface
should be done?? and would not lead to as simple boundary conditions as the ones

outlined above. For our purposes, these boundary conditions will turn out to be

adequate.
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2.2.3.3 Calculational technique:

The donor envelope function, | ¥} is expanded on this set of trial orbitals:

|¥) = Y " |nim)C(nim), (18)

nim

where the set of basis orbitals {|nlm)} are the ellipsoidal gto’s defined above in
Eq.(4).
The problem of solving the EMA Schrodinger equation for the donor envelope

function

H|¥) = E(H)|¥), (19)

reduces to that of solving the generalized eigenvalue problem

Y [nimlA | Im'y — Efnlm|n’Um")] C(n/I'm) = o, (20)

n'l'm!

A

for the eigenenergy E(H ) and the expansion coefficients C(nlm) appearing in the
expansion Eq.(18).

Calculations were carried out using both s-like ({ = 0) and p-like (I = 1) gto’s.

(1) In the case of the on-center tmpurity (c = 0), the Hamiltonian in Eqs.(1)
mixes only orbitals whose angular momentum [ differ by an even integer. For the
on-center tmpurity, only slike gto’s were included in the expansion Eq.(18).

(2) However, for the on-edge impurity (¢ = a), the mixing between s- and
p-like orbitals becomes appreciable and must be included to provide an accurate
description of the neutral donor. For the on-edge impurity, 7 s-like gto’s and 7
p-like gto’s were included in the expansion Eq.(18).

The calculation of the subband energy, E(IAIO), was carried through using 7 s
like gto’s . As mentioned above, eigenstates of H ° belonging to the first conduction

subband are even with respect to reflection through the zy-plane and thus the
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Eccentricity of Gaussian Orbitals
for On-Center Ground State for
Different Ga,_, Al, As Confining
Barriers.
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Figure 2: Eccentricity (shape parameter)\ of ellipsoidal Gaussian-type or-
bitals as a function of GaAs slab thickness for four alloy compositions, z ==
0.1,0.2,0.3,0.4, of Ga;—;Al;As. A GaAs monolayer is 2.83 A thick along the [100]
direction.
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donor envelope function can be fairly well described by s-like basis orbitals. For
each value of GaAs slab thickness, (2a), impurity position (c) and barrier height
Vo, the shape parameter \ as well as the shift parameter d; were determined by

minimizing the energy expectation value in the ground state, Ey(}, di).

This shifted ellipsoidal Gaussian set has the advantage of reproducing reasonably
well the Coulomb center at both the small (¢—0) and the large (a—co) slab thick-
ness limit where the binding energy reduces, in the case of the on-center donor, to
that of the barrier material or the well material bulk values, respectively. At the
same time, it retains the non-spherical character of the problem and allows the basis
orbitals to reshape themselves in order to minimize the total energy. The inclu-
ston of a shift parameter d; tn the variational basis set allows the electronic
charge distribution associated with the donor ground state envelope function
to be shifted away from the position of the tmpurity ton. This degree of
freedom appears to be most important in the case of the on-edge donor where the
Coulomb potential tends to pull the charge distribution towards the ionized center

whereas the repulsive barrier potential tends to push it away from the ionized center.

2.2.3.4 Shape Parameter or Eccentricity:

Figure 2 shows the eccentricity (shape parameter \) for the on-center donor
state as a function of the GaAs slab thickness for different alloy compositions z.
As shown in the figure, greater values of z (.., greater conduction band offset)
result in larger shape parameter and therefore tighter gto’s. Furthermore, the shape
parameter-versus-slab thickness curve presents a mazimum corresponding to
a mazimum confinement of the donor envelope function around the impurity
atom. For both very large and very small slab thicknesses, the shape parameter A

reduces to unity as it should in order to describe the isotropic case corresponding
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to bulk GaAs or bulk Gaj_—;Al; As, respectively.



-49-

2.2.4 Results
We first treat the results obtained for the on-center impurity case (¢ = 0).
Then we treat the on-edge impurity case (¢ = a). Comparisons are made between

these two limiting cases.

2.2.4.1 On-Center Donor Ground State Envelope Function:

Figure 3 shows the on-center donor ground state envelope function through
the Coulomb center and normal to the interface plane for different GaAs slab thick-
nesses and alloy compositions. Greater Al composition produces higher conduction
band offsets which, in turn, tend to localize the donor envelope function more
effectively. As shown in Figure 3, for very thin GaAs slab, the envelope function
leaks appreciably into the barrier material (Ga;—zAlgAs). In the limit of very
thin GaAs slab thicknesses, one should recover the binding energy correspond-
ing to bulk Ga; —;Al;As. Conversely, for large GaAs slab thicknesses, the on-
center donor ground state ts mostly confined within the quantum well and one
should recover the binding energy for bulk GaAs. As mentioned above, the EMA
Hamiltonian for the on-center impurity mixes only orbitals whose angular momen-

tum ! differ by an even integer.

2.2.4.2 On-Center Donor Ground State Binding Energy:

Figure 4 shows the energy, with respect to the first conduction subband,
for the on-center donor ground state as a function of GaAs slab thickness for
four alloy compositions, £ = 0.1,0.2,0.3,0.4. Along the [100] direction, GaAs
monolayers are measured in units of /2, where a = 5.656 A is the GaAs bulk lattice
constant. For the on-center impurity, the energy with respect to the first conduction
subband versus GaAs slab thickness presents a maximum (in absolute value) whose

magnitude depends on the alloy composition of the barrier material. Greater Al
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Figure 3: On-center donor ground state envelope function plotted along the
axis normal to the interfaces for different GaAs slab thicknesses and four alloy
compositions, z = 0.1,0.2,0.3, 0.4, of Ga; Al As.
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Figure 4; Energy of the on-center donor ground state with respect to the first
conductjon subband as a function of GaAs slab thickness for four alloy compositions
z = 0.1,0.2,0.3,0.4, of Ga; -;Al;As. Calculations are carried through using 7 &
like ellipsoidal Gaussian-type orbitals as defined in the text. A GaAs monolayer is
2.83 A thick along the [100] direction.
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composition in the barrier material leads to larger conduction band offsets and
therefore more complete confinement of the donor envelope function. Since greater
confinement of the donor state leads to a more sharply peaked wavefunction as
the envelope function builds up amplitude around the impurity ion, the attractive
Coulomb potential is more effective in binding the donor state when the Al content
in the Ga; —;Al;As barrier is increased. For large GaAs slab thicknesses, the effect
of the alloy composition z or, equivalently, of the barrier height Vj, on the on-center
donor ground state energy and wavefunction is greatly reduced since the envelope
function is strongly localized around the impurity ion in the center of the quantum

well and does not feel much the repulsive barrier potential.

2.2.4.3 On-Center Donor Excited States Binding Energy:

Figure 5 shows the energy, with respect to the first conduction subband,
for the on-center low-lying ezcited states of even parity as a function of GaAs
slab thickness for four alloy compositions, z = 0.1,0.2,0.3,0.4. The qualitative
dependence of the GaAs slab thickness on the energy with respect to the first
conduction subband of the even-parity excited states is similar, though not as
important, to that of the ground state as can be seen by comparing Figures 4 and 5.
The envelope functions corresponding to these excited states are even with respect
to reflection through the zy-plane since these are made up from states derived from
the first conduction subband. Recent calculations on hydrogenic impurity states
in Gay; _;Al; As-GaAs-Ga;_;Al;As quantum well structures®? are in accord with

ours and reinforce the above conclusions.

2.2.4.4 On-Edge Donor Ground State Envelope Function:

Figure 6 shows the on-edge donor ground state envelope function through

the Coulomb center and normal to the interface plane. As mentioned above, al-
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Figure 5: Energy of the on-center low-lying excited states of even parity with
respect to the first conduction subband as a function of GaAs slab thickness for
four alloy compositions, z = 0.1,0.2,0.3,0.4, of Ga; _,Al,As. Calculations are
carried through using 7 s-like ellipsoidal Gaussian-type orbitals as defined in the
text. A GaAs monolayer is 2.83 A thick along the [100] direction.
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though the on-center donor wavefunction is entirely s-like, the on-edge wavefunction
develops a strong p-like character. The p-like character of the on-edge wavefunction

increases as the height of the conduction band offset, V3, increases.

2.2.4.5 On-Edge Donor Ground State Binding Energy:

Figure 7 shows the energy, with respect to the first conduction subband, of
the on-edge donor ground state as a function of the GaAs slab thickness for four
alloy compositions, z = 0.1,0.2,0.3,0.4. The on-edge donor energy curve presents
qualitatively the same features as the on-center donor energy curve. In the thin
GaAs slab limit, the energy curves for the on-center and the on-edge donor are
very similar. In the thick GaAs slab limit, the on-edge donor is less tightly bound
than the on-center donor. This is mainly due to the fact that, as the impurity ion
approaches the quantum well edge, the donor ground state envelope function should
be constructed more and more from Bloch states derived from the Ga;__, Al As
conduction band edge. These states lie above the GaAs conduction band edge by an
energy equal to the conduction band offset between GaAs and Ga;_ Al As. As the
on-edge donor ground state envelope function includes more of these higher energy
states, the on-edge donor ground state becomes more shallow than the on-center

donor ground state.

In the case of the on-edge center, the repulsive barrier potential tends to
push the electronic charge distribution away from the tonized donor , leading
to a reduced Coulomb attraction. For the on-edge impurity, the results presented
here using finite conduction band offsets are qualitatively similar to the case where
infinite conduction band offsets are assumed’3, thereby preventing the donor en-
velope function from leaking out of the quantum well. The dashed line in Figure 7

indicates the binding energy in the limit of large GaAs slab. The boundary condi-



-56-

Energy with Respect to
1st Conduction Subband
(o] = On-Edge Donor Ground State
2k Thick GaAs slab limit
x = 0.1
x = 0,2
-4k x= 0,3
x=04
2 -6F
E
>
e
gl
o
-14 ! ! L ! 1
| 20 40 60 80 100 120

Number of GaAs Monolayers

Figure 7: Energy of the on-edge donor ground state with respect to the first
conduction subband as a function of GaAs slab thickness for four alloy compositions,
z = 0.1,0.2,0.3,0.4, of Ga;—;AlzAs. Calculations are carried through using 7
slike and 7 p-like ellipsoidal Gaussian-type orbitals as defined in the text. The
dashed line indicates the energy with respect to the first conduction subband in the
large GaAs slab thickness limit. A GaAs monolayer is 2.83 A thick along the [100]

direction.
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tions on the wavefunction at the interface in the finite conduction band offset case
gives the donor envelope function a d-like character as the slope of the wavefunction
is vanishingly small on the donor center. In the large slab limit, the p-like character
of the donor envelope function is less important for the finite conduction band offset

case and the donor ground state mostly consists of shifted s-like orbitals.
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2.2.5 Summary and Conclusion

We have calculated the energy spectrum of shallow donor statesin Ga; —zAl; As-
GaAs-Gaj —zAl;As quantum well structures using the effective mass approximation
scheme. The variation in energy with respect to the first conduction subband of
the donor ground state and the low-lying excited states was studied as a function of

o the central GaAs slab thickness,

o the position of the impurity atom within the GaAs slab,

e the alloy composition z of Ga;__ Al As.

Calculations were done for four alloy compositions of Ga;—,Al;As in a range
in which the alloy remains direct (z < 0.45). Realistic values for conduction band
offsets of finite magnitude were used. The effect of the impurity position on the
binding energy of the donor state was investigated in the two limit cases where the
impurity ion was

e at the center of the quantum well (on-center impurity) and

o at the edge of the quantum well (on-edge impurity).

In the case of both the on-center and the on-edge impurities, the energy.
with respect to the first conduction subband versus slab thickness presents a
mazimum (in absolute value) corresponding to a mazimum confinement of the
donor state envelope wavefunction. In the case of the on-edge impurity, the donor
ground state is not as tightly bound as the on-center ground state. The reduction
in the binding for the on-edge tmpurity ts a direct consequence of the repulsive
wnterface potential which tends to push the electronic charge distribution away
from the Coulomb center.

For both the on-center and the on-edge impurity, it was found that the energy
spectrum of the donor ground state and the low-lying excited states are considerably

modified as the thickness of the GaAs slab containing the impurity was varied.
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This variation in binding energy should be easily observed experimentally since
molecular-beam epitaxy (MBE) techniques®® now allow for the fabrication of su-
perlattices consisting of alternating slabs of few monolayers of GaAs-Gaj_ Al As.
It seems possible to adjust the binding of a Coulomb center in a superlattice by

varying the thickness of the slab containing the impurity center.



-60-

Section 2.3

EFFECTIVE MASS THEORY FOR DONORS
IN GaAs-Ga;—;Al;As QUANTUM WELL STRUCTURES:
PERFECT AND IMPERFECT CONFINEMENT
ON-CENTER IMPURITY

2.3.1 Scope of this Study:

In this section, we study the energy spectrum of the ground state and the low-
lying ezcited states for shallow donors centrally located within quantum well
structures (on-center impurity) consisting of a single slab of GaAs sandwiched
between two semi-infinite layers of Ga;__,Al;As. The binding energy of the donor
with respect to the first conduction subband is investigated for different slab thick-
nesses and alloy compositions. In the work presented here, the impurity atom is
located at the center of the quantum well The on-center donor ground state is
bound for all values of GaAs slab thicknesses and alloy compositions. The alloy com-
position, z, is varied between 0.1 and 0.4. In this composition range, Gaj_ Al As
is direct and the single-valley effective mass theory as presented in Appendices (1.1)
and (1.2) is a valid technique for treating shallow donor states. Calculations are
carried out in the two following cases:

e infinite confining potential that does not allow the donor wavefunction to
penetrate the adjacent Ga;—yAl; As regions, (perfect confinement),

e finite confining potential that allows the donor wavefunction to penetrate

the adjacent Ga;_,Al;As regions, (¢mperfect confinement).
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2.3.2 Outline of Section (2.3):

In this section, we report on a study of the energy spectrum of shallow donor
states In a single GaAs-Gaj;—;Al;As quantum well, 7.e., a structure formed by a
central GaAs slab (well material) flanked by two semi-infinite Ga;_ Al As layers
(barrier material). The energy spectrum of a donor state centered the GaAs slab
is studied as a function of the width of the rectangular potential well formed by the
conduction band offset at the GaAs-Gaj__ ;Al; As interface. The effect of the alloy
composition, z, in the barrier material is also investigated in the case of imperfect
confinement. We find that the donor energy spectrum is considerably modified

as the dimenston of the quantum well is varied.

o In the case of perfect confinement of the defect wavefunction, the binding
energy increases from its value in bulk GaAs up to four times that value as the
width of the quantum well is reduced from infinity down to zero. This increase in
binding energy for a perfectly confined donor state as the well width is reduced is

in accord with the two-dimensional limit of the Coulomb problem?%.

e On the other hand, in the case of imperfect confinement of the defect
wavefunction, the binding energy with respect to the first conduction subband
versus GaAs slab thickness present a maximum (in absolute value) whose magnitude
depends on the alloy composition. For large GaAs slab thickness, the binding
energy reduces to that of bulk GaAs. For small GaAs slab thickness, the binding

energy reduces to that of bulk Ga;__ Al As.

In Section (2.3.3), we present the calculational techniques. We discuss first the
effective mass Hamiltonian used for treating the shallow states and its validity, then
we describe the basis orbitals on which the donor state is expanded. Comparisons
are made for the infinite potential and the finite potential cases. In Section (2.3.4),

the main results are presented. First we discuss the energy spectrum for the per-
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fectly confined impurity (infinite barrier), then we treat the case of the imperfectly
confined impurity (finite barrier). A summary of the results and a conclusion are

presented in Section (2.3.5)



2.3.3 Calculational Method:

Calculations are based on the single-valley effective-mass approximation (EMA)
as presented in Appendices (2.2) for quantum well systems. The GaAs-Gaj_ Al As
system was chosen since the EMA is known to hold to a high degree of accuracy for
shallow donor states in GaAs'2. Since we treat a single quantum well, the results
discussed below should apply to superlattices in which the Ga; _, Al As barriers are
thick enough so that there is little overlap between the states confined to adjacent
GaAs quantum wells. In the case of thin superlattices, one should take into ac-
count the spreading of the donor envelope functio’n into the adjacent quantum wells.

e In the case of perfect confinement of the defect wavefunction, the electronic
structure of the semiconductor of the barrier material is unimportant since the
wavefunction is not allowed to leak out of the quantum well into the barrier material.

o However, in the case of imperfect confinement the composition of the
Gaj —zAlzAs alloy was varied in the range where the alloy remains direct, so that
the single-valley effective mass theory stills holds. Realistic conduction band offsets
of finite magnitude were used, thereby allowing the wavefunction to penetrate into
the barrier material as the dimensions of the confining quantum well are reduced.
As was seen in the preceding section, the use of finite conduction band offsets has

a large effect on the binding energy of the donor state in the thin GaAs slab

limat.
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2.3.3.1 Effective Mass Hamiltonian
In the case where the confining potential is of tnfinite strength, the effective
mass Hamiltonian corresponding to a Coulomb center located at the center of a
quantum well of width 2a along the & direction (the &-axis is normal to the interface
plane) (see Figure 1(a) for potential profile) is:

R —h
H =

. V2 4 Ui(x) ...z < laf,(1.a)
my

H =00 .z > |al, (1.b)
However, in the case where the confining potential is of finite sirength Vj, the

effective mass Hamiltonian corresponding to the same system (see Figure 1(b) for

potential profile) becomes:

2
A =192 4 U 2 < |a],(2.0)
2my
. —72
H=—V3+Ux)+W ...z > |a|,(2.)
2m,

where m; refers to the bulk GaAs (well material) effective mass and m; refers
to the composition-dependent interpolated effective mass in Gaj—;AlzAs (barrier
material). As mentioned above, the bulk dielectric constants of GaAs and Ga; —zAlz As,
€1 and es respectively, differ slightly, and the Hamiltonian should include terms due
to electrostatic image chargesl7°18. In the present work these image charge

potentials were neglected since they go like (¢f. Appendix (2.3)):

[e1 — e
[61 + 62]’ (3)

which is at most of the order of 5% for the system treated here.
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Figure 1: Quantum well potential profile along the #-axis normal to the
interfaces. The position of the impurity is at the center (2 = 0) of the quantum well
of width 2a. (a) Infinite potential: V (z) = oo. (b) Finite potential: V (2) = ;.



-66-

When the origin is taken to be on the ionized donor, the left and right
boundaries of the quantum well are respectively 2y = —[a] and 2y = [a]. The
potentials U;(x) and Uz(x) appearing in Egs.(1) and (2) represent the Coulomb

interaction between the electron and the impurity ion:

62
Uy (x = — , (4.&)
€1 (x|
and
62
2(!) = - ’ (4b)
e2x|
where
x| = V22 + 2 + 22 (4.0)

is the distance from the impurity ion.

In the case of the finite potential the strength of the quantum well potential,
Vo, has its origin in the conduction band offset AE, at the GaAs-Gaj_ Al As
interface. Throughout the calculations, the conduction band offset, AE,, was taken
to be 85% of the difference of the I'-point band gaps of GaAs and Gaj _zAl;As,
AEp 9. Since the alloy composition range studied was such that the alloy was
direct (z < 0.45)'°, both the effective mass m; and the conduction band offset

Vo = AE, were determined using the I"-point values in Ga;_,Al,As!®:

m] = 0.06Tmy, (5.2)

My = (0.067 + 0.083z)my, (5.5)
€1 = 13.1¢, (5.¢)

€2 = [13.1(1 — z) + 10.17] ¢q, (5.d)
Vo = 1.06z eV, (5.¢)

where mo and €p are the free electron mass and the vacuum static dielectric

constant, respectively.
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2.3.3.2 Variational Basis Set:

As demonstrated in Appendix (2.2) it is possible to expand the defect wavefunc-
tion in a Wannier representfation and to obtain a variational formulation of the
effective-mass equation. Since the Hamiltonians for the on-center impurity, with
and without the Coulomb potential, H and H o(z) are both tnvariant with respect
to refiection through the zy-plane and rotation about the &-azis, the eigenstates
of H and H 0(z) must have definite parity.

Let the variational expansion set be composed of a product of the form

{Egm)(x")gogf')(z)}. The vector x| is a position vector parallel to the interface plane,
x| = 2% + y¥. (6)

The quantum number j of the functions gogf-) (2) indicates fhe parity of the
wavefunction with respect to reflection through the zy-plane. We use j = ¢
for even-parity states and j = u for odd-parity states. The eigenstates of H 0,
go(nj) (2), belonging to odd-number subbands (n = 1,3,5,...) go like cos [k(ng)z]
and therefore must be even with respect to reflection through the zy-plane, j = g,
and eigenstates of ﬁo belonging to even-number subbands (n = 2,4,6,...) go
like sin [kg")z] and therefore must be odd with respect to reflection through the
zy-plane, j = u. The quantum number m of the functions Egm)(x”) plays the role
of a magnetic quantum number associated with rotations about the & axis. Thus,
in the case of the on-center Coulomb potential, the parity indez (j) and the
magnetic quantum number (m) are good labels to classify the solutions of the
quantum well Hamiltonian.

The variational functions Efm)(x"), whose explicit form will be given below,
are taken to be two-dimensional Gaussian-type orbitals (gto’s), and the functions

. ~ 0
gogf)(z) are eigenstates of the one-dimensional operator H (z) representing the



quantum well potential

B (2)pD (2) = [ r - [k53‘>]2Jso£3)(z), (7)
2m1
where, ot o
~ 0 _ —h 0

= =+ v ®)

represents the the one-dimensional Hamiltonian giving rise to the energy-subbands:

2
B [k(j)]2,n =1,2,3,... (9)

n

EY) = —
2my

Therefore the expansion of the defect wavefunction becomes:

(x| @mD) = 3 c(n) D el x))o ) (2). (10.0)

ni

or,

(x| w(my = Zc nd)"™ Iz |nl; my). (10.5)

As a consequence of the symmetry properties of the the Hamiltonian H of Egs.(1)
and (2), we label the donor wavefunction I\Ii(mj)) by a parity quantum number j
and a magnetic quantum number m.

As in Section (2.2), we impose continuity of the wavefunction and of the

velocity operator across the quantum well boundary??. The boundary condition

[%Mwﬁs"(z) - a] (11)

must be continuous across the interface is required since the difference in effective

that

masses was taken into account in the expression of the Hamiltonian.
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2.3.3.3 Eigenstates of Quantum Well Hamiltonian:
In the case of tnfintte potential V (z) = co, it is well known from elementary
quantum mechanics®®, that the eigenstates of I—:’O(z), 1.e., the functions gogf')(z)

entering in the expansion Eq.(10) are of the form:

goslg)(z) /2 cos [/cgg)z] L2 < al, (12.0)
gogz")(z) A< sin [kg‘)z] ooz < laf, (12.0)
gog)(z) =0 ...z > a|, (12.¢)
where:

k9 = Sk , n=1,3,5,...(13.q)

| 2a ]

U) e [ T -‘
kﬁ):n_gJ, n=24,6,...(13.b)

However, in the case of fintle potential V(z) = Vj, that the eigenstates of

~ 0 . . ; N .
H (z), t.e., the functions gosf)(z) entering in the expansion Eq.(10) are of the form:

¢gg)(z) A% cOS [kgf)z] oz < lal, (14.0)
so(n")(Z) A< sin [kﬁf‘)z] o2 < al, (14.9)
o)(2) ~ + exp [:l:'igf')lzl] ...z > |a], (14.b)
where: .
C [%JE (15.0)
and,

()] = [QmQJ(Vo —£) (15.5)
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are determined by solving
ktan(ka) = vk (16.2)
for the even-parity eigenstates, gogf)(z), and,
kcot(ka) = —vk (16.5)

for the odd-parity etgenstates, gog.f‘)(z). In Eqs.(14), we have defined

=[5 o

as the ratio of the I'-point effective masses in the well and in the barrier.
The variational set of basis functions, {Egm)(x")} was taken to be of the

functional form of two-dimensional Gaussian-type orbitals (gto). More specifically:
el ) = N @)™ ™ exp [—qp?] exp(ims), (18)

where N(1)(™) is a normalization constant and,
z = pcos(p), (19.0)

y = psin(9), (19.5)
p = W) (19'0)

in a two-dimensional cylindrical system.
The two-dimensional gto orbital exponents ¢ appearing in Eq.(17) are fized
and taken to be of the form, in atomic rydberg units:

_[so
= [b(t)}' (20)



-T1-

* 52 2 m;
E E[;:] 277',_2:,’ (21)

(donor rydberg) and distance is measured in units of

= [%J[h—iJ (22)
my

(donor bohr), where the effective mass, mt, and the static dielectric constant, €1,

Energy is measured in units of

both refer to GaAs bulk values. The coefficients b(l) are chosen so as to cover a

physically reasonable range. The central exponent ¢y was taken to be
8
G = [—}bohr"Q. (23)
97

The choice of ¢ is dictated by the fact that if one solves the hydrogen atom
Hamiltonian for the ground state with a trial Gaussian orbital of the form N exp(—¢|x|?),
then one easily finds that the orbital exponent ¢; that minimizes the expec-

tation value of the energy is ¢y = 8/(97) bohr—2.
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2.3.3.4 Calculational Technique:

To calculate binding energies, we must solve for the Hamiltonian defined in
Eqs.(1) and (2) without the impurity potentials Uy (x) and Up(x). That is, we must
find the ground state of an electron in the quantum well without the impurity
potential The energies E(™J) of the Coulomb states with respect to the first
conduction subband edge are given by the difference between the donor energy,

E(mJ')ZI}), and the first subband energy Egg):

A

Em) = gplmi) (g — EY), (24)

The donor envelope function, |¥(™7) is expanded on this set of trial orbitals:

(x| @My = Z C(nl)(mj)gg"")(x")gogf')(z), (25.0)
ni
or,
&™) = 3" c(nl)mixjnl; mj), (25.5)
nl

where the set of basis orbitals {ffm)(x” )gogzj)(z)} is defined above. The problem of

solving the EMA Schrédinger equation for the donor envelope function
H[¥"D) = EC( ) wd), (26)
reduces to that of solving the generalized eigenvalue problem

Z {(nl; mjl|H |n'l'; mj) — E(mj)(nl; mj|n'l'; my) C(n'l')(mj) =0, (27)
n'it

for the eigenenergy E (mj)(}} ) and the expansion coefficients C(n'l')("J) appear-
ing in the expansion Eq.(25). Since the Hamiltonian is invariant under reflection

through the ry-plane and under rotation through the 3-axis, the on-center donor
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state can be labelled by va(?) where
v=1,23,... (28.a)

is a principal quantum number that labels the states in order of increasing energy,

and,
a=0,7,0,... (28.5)

corresponds to the magnetic quantum numbers,
m=0,41,+2,... (28.c)

Calculations were carried out using a set of 19 gto with magnetic quantum
numbers m = 0, 1, 2 for the two-dimensional basis functions {dm)(x”)}. Since the
Hamiltonian of Eqs.(1) and (2) has even parity, only states of the same parity can
be mixed.

e For the infinite potential Eq.(1), a set of 5 states gog)(z) was included in
the expansion of the defect wavefunction, Eq.(25).

e However, for the case of finite potential a single basis function gogg)(z) was
included in the expansion since a finite one-dimensional potential well can bind only

one state as the width of the well is reduced below a certain value.
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2.3.4 Results:
We first discuss the results obtained for the perfectly confined impurity case,

1.6, V(z) = co.

2.3.4.1 Infinite Potential: Binding Energy of Donor Ground State:

Figure 2 shows the energies, with respect to the first conduction subband Esy ),
of the lowest-lying states of o) and ¢(® symmetries as a function of the number
of GaAs monolayers forming the infinite quantum well. Along the [100] direction,
GaAs monolayers are measured in units of a/2, where a = 5.656 A is the GaAs
bulk lattice constant. Since GaAs is a direct band gap semiconductor with spherical
energy surface, we obtain simple hydrogen atom-like solutions in the limit of large

GaAs slab thicknesses:
1
EN((Z*OO)=— m ,N'—_—1,2,3,..., (29)

where the energy, in GaAs rydberg units, is measured from the first conduction
subband. The quantum number NV is the principal quantum number. Each energy
level is N2-fold degenerate.

As seen in F'ig.2, the donor energy eigenvalue spectrum is modified considerably
as the GaAs slab thickness is reduced. It is found that the energy eigenvalue

spectrum of a hypothetical two-dimensional hydrogen atom is given®* by:

1

m],N =0,1,2,..., (30)

En(a—0) = —{

with respect to the conduction subband edge. The quantum number N is the
principal quantum number. In this two-dimensional limit, each level is (2N + 1)-
fold degenerate. Thus, 1n the limit of infinitely thin GaAs slab (a—0), the donor

ground state 159 should become as much as four times more tightly bound
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Figure 2: Binding energy of donor states of o{9) and of o(¥ symmetries as a
function of the number of GaAs monolayers forming the quantum well structure.
We assume infinite potential barrier as the GaAsGa, —Al;As interface. Binding
energies are measured with respect to the first conduction subband, E&” ). A GaAs

monolayer is 2.83 A thick.
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than in the case of infinitely thick GaAs slab (a—oc). The binding energy of the
excited states of even parity j = g do not show as big an effect as that of the
ground state. This is due to the fact that the Rydberg series Eqs(29) and (30) do
not vary appreciably for IV large.

However, the binding energy of states of odd-parity j = u shows a very
different behavior for small GaAs slab thicknesses. At small GaAs slab thicknesses,
these odd-parity states are not bound with respect to the first conduction sub-
band, n = 1, since these states are associated with even-numbered subbands,
n=2486,...

Table 1 shows the correspondence between the Coulomb states in the two-
dimensional and three-dimensional limit. Three-dimensional Coulomb states that
are odd with respect to reflection through the zy-plane correspond to two-dimensional
j = u states. As mentioned above these odd-parity states are derived from even
number subbands and are not bound with respect to the first conduction subband

when a—0.

2.3.4.2 Infinite Potential: Binding Energy of Donor Excited States:

Figures 3 and 4 show the binding energf of donor states of a(y), 7r(9), ) (9), U(“),
and of 7(¥) symmetries as a function of the number of GaAs monolayers forming
the infinite quantum well structure. In the thin GaAs slab limit,

e the even-parity states are bound with respect to the first conduction sub-
band, whereas

o the odd-parily states are not bound with respect to the first conduction

subband, whereas

2.3.4.3 Donor Ground State Envelope Function:

We now consider the case of a finite strength quantum well V (z) = V; that



3D Coulomb states 2D Coulomb states
1s 109
2s 90(9)
2po 1o(%)
2041 o7(9)
3s 309
RI 20(%)
3p+1 379)
3dp 40(9)
3d41 27r(¥)
3d4o ‘ 36(9)

Table 1. Correspondence between three-dimensional and two-dimensional
Coulomb states.
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3D Coulomb states . 2D Coulomb states
4s 50(9)
4po 30(®)
dp4y 47(9)
4d, 6o(9)
4dy4, 3%
4d 4o 46(9)
4fo - 40(®)
4f41 57(9)
4f 40 36(%)
4f13 46(9)

Table 2. Correspondence between three-dimensional and two-dimensional
Coulomb states.
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Figure 3: Binding energy of donor states of o9, (9 and of o{*) symmetries
as a function of the number of GaAs monolayers forming the quantum well struc-
ture. We assume infinite potential barrier as the GaAsGa; _;Al;As interface.
Binding energies are measured with respect to the first conduction subband, Egg).
A GaAs monolayer is 2.83 A thick.
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Figure 4: Binding energy of donor states of @) (9, 59 a(¥) and of (¥
symmetries as a function of the number of GaAs monolayers forming the quantum
well structure. We assume infinite potential barrier as the GaAsGa;_yAl;As
interface. Binding energies are measured with respect to the first conduction
subband, Egy ). A GaAs monolayer is 2.83 A thick.
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produces an imperfect confinement of the donor state wavefunction. Figure 5 shows
the on-center donor ground state envelope function through the Coulomb center and
normal to the interface plane for four GaAs slab thicknesses, a = 3A,7 A, 10 A and
50 A, and an alloy compositions of z = 0.4. The comparison is made between the
finite quantum well (solid line) and the infinite quantum well (dotted line). Greater
Al composition produces higher conduction band offsets which, in turn, tend to
localize the donor envelope function more effectively. As shown in Figure 5, for very
thin GaAs slabs, the envelope function leaks appreciably into the barrier material
(Gaj—zAl;As). In the limit of very thin GaAs slab thicknesses, one should recover
the binding energy corresponding to bulk Ga;_;Al;As. Conversely, for large GaAs
slab thicknesses, the on-center donor ground state is mostly confined within the
quantum well. As Figure 5 shows, the wavefunctions in the infinite barrier and the
finite barrier cases are quite similar and one should recover the binding energy for

bulk GaAs.

2.3.4.4 Finite Potential: Binding Energy of Donor Ground State:

Figure 6 shows the energy, with respect to the first conduction subband, for
the on-center donor ground state 10{9) as a function of GaAs slab thickness for four
alloy compositions, z = 0.1,0.2,0.3,0.4. For the on-center impurity, the energy
with respect to the first conduction subband versus GaAs slab thickness presents a
maximum (in absolute value) whose magnitude depends on the alloy composition of
the barrier material. Greater Al composition in the barrier material leads to larger
conduction band offsets and therefore more complete confinement of the donor
envelope function. Since greater confinement of the donor state leads to a more
sharply peaked wavefunction as the envelope function builds up amplitude around

the impurity ion, the attractive Coulomb potential is more effective in binding the
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Figure 5: On-center donor ground state envelope function plotted along the
axis normal to the interfaces for four GaAs slab thicknesses a = 34,7 4,10 A and
50 A, and an alloy compositions of z = 0.4. Solid line: Finite potential barrier:
V(z) = Vp. Dotted line: Infinite potential barrier: V (z) = co.
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donor state when the Al content in the Gaj_;Al; As barrier is increased. For large
GaAs slab thicknesses, the effect of the alloy cémposition z or, equivalently, of the
barrier height V;, on the on-center donor ground state energy and wavefunction is
greatly reduced since the envelope function is strongly localized around the impurity
ion in the center of the quantum well and does not feel much the repulsive barrier
potential.

By comparing the binding energy spectrum of the donor ground state 10(9) in
the case of perfect confinement (Figure 2) and in the case of imperfect confinement
(Figure 6), it is clear that the differences in qualitative behavior appear at small
GaAs slab thicknesses. In the thin GaAs slab region, the envelope function
of the donor ground state for V(z) = oo and for V(z) = V; are qualita-
tively very different: As the GaAs slab thickness decreases, the infinite-barrier
wavefunction becomes two-dimensional in character, whereas the finite-barrier
wavefunction penetrates the Gay_ Al As region more substantially. We con-
clude that the perfect confinement case should only be regarded as an ap-
prozimation valid only for thick GaAs slab thicknesses when the leaking of
the on-center donor ground state wavefunction in Ga;__ Al As 15 negligible.
In the thick GaAs slab limit, the binding energies for the infinite-barrier and the
finite-barrier show similar behavior since the finite-barrier wavefunction leaks con-

siderably less as the thickness a of the quantum well is increased.
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2.3.5 Summary and Conclusion:

We have calculated the energy =spectrum of shallow donor statesin Ga; —,Al; As-
GaAs-Gaj— Al As quantum well structures using the effective mass approximation
scheme. The donor atom is located at the center of the GaAs slab. Two cases were
treated,

e infinite potential discontinuity at the GaAs-Gaj; —zAl;As interface, (perfect
confinement),

o finite potential discontinuity at the GaAs-Ga;_,Al; As interface, (tmperfect
confinement).

The variation in energy with respect to the first conduction subband of the
donor ground state and the low-lying excited states was studied as a function of

o the central GaAs slab thickness, and

o the alloy composition z of Ga; —Al;As in the case of imperfect confinement.

Calculations were done for four alloy compositions of Ga;_.,Al,As in a range
in which the alloy remains direct (z < 0.45).

e For the infinite potential case, it is found that, for states of even-parity the
binding energy spectrum evolves continuously from a three-dimensional limait
to a two-dimensional limit as the width of the quantum well 1s reduced. In
particular, tn the limit of infinitely thin GaAs slab (a—0), the donor ground
state 109 should become as much as four times more tightly bound than in the
case of infinitely thick GaAs slab (a—o0).

However, the binding energy of states of odd-parity show a very different
behavior for small GaAs slab thicknesses. At small GaAs slab thicknesses, these
odd-parity states are not bound with respect to the first conduction subband,
n = 1, since these states are assoctated with even-numbered subbands, n =

2,4,6, . ...
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e In the finite potential case, the energy with respect to the first conduction
subband versus GaAs slab thickness presents a maximum (in absolute value) whose
magnitude depends on the alloy composition of the barrier material. The binding
energy varies from the bulk value in Ga;__;Al;As for the thick slab limit, to the
bulk value in GaAs for the thin slab limit. Increasing the alloy composition z results
in a greater binding as the height of the potential barrier is increased.

We conclude that the perfect confinement case should only be regarded as
an approzimation valid only for thick GaAs slab thicknesses when the leaking
of the on-center donor ground state wavefunction in Ga;—,Al;As s negligible.
The use of finite conduction band offsets has a large effect on the binding energy

of the donor state in the thin GaAs siab limit.
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CHAPTER 3

ELECTRONIC TRANSPORT THROUGH SEMICONDUCTOR
DOUBLE HETEROJUNCTION STRUCTURES
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Section 3.1
INTRODUCTION

3.1.1 Scope of this Study:

The process of making new semiconductor structures rest, in major part, in
providing answers to the two following questions:

(i) Is it possible to modify the electronic properties of the semiconductor
structure by addition of electrically active dopants ? How do the binding energy of
the impurity states vary with growth parameters ?

(7i) What are the transport properties of electrons within such a structure ?
How can the transport properties be modified so as to improve the performance of
the device ?

In Chapter 2, we partly addressed the first question. We analysed the doping
of Ga;_;Al; As-GaAs-Ga; __ Al As quantum well structures and found that it was
possible to vary the binding energy of a shallow donor state appreciably by
changing the thickness of the GaAs slab in which the donor center was located.

In Chapter 3, we are concerned with the second question. We study the
transport properties of electrons through double heterojunction structures (DHS)
formed by a finite slab of Ga;_—;Al; As located between two semi-infinite layers of
GaAs.

In this case, a large band gap semiconductor (Gaj—;Al;As) is located between
two small band gap semiconductors (GaAs), thereby forming a potential energy
barrier for the electrons on each side of the central Ga; —, Al As slab. Transport
coefficients were calculated for electrons incoming from the GaAs onto the central
Gaj —zAl;zAs barrier. Since we are specifically interested in the cases where the

incoming electron is derived from different extrema of the GaAs conduction band,
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we must include a description of the electronic states that is not confined to that
region of the Brillouin zone near k = 0. To do so, we provide a description of the

electronic energy spectrum of the two semiconductors forming the DHS.

As mentioned in Section (1.1), the electronic band structure of each of the
constituent semiconductors is obtained by means of the empirical tight-binding
method (ETBM) as developed by Slater and Koster!. The tight-binding theory uses
a description of the solutions of the crystal Hamiltonian in terms of atomaic
orbitals. The matrix elements of the Hamiltonian between these local atomic
orbitals are then treated as disposable parameters chosen to fit the band structure
obtained by more accurate methods at high symmetry k points in the Brillouin
zone. The band structure at other k points is then obtained via an interpolation
scheme. A review of the ETBM for bulk solids is given in Appendix (3.1), along with
an application for zincblende semiconductors and a list of empirical tight-binding

interactions for GaAs and AlAs.

Since the three-dimensional periodicity of the bulk semiconductor is now dis-
rupted by the presence of an interface, the use of the real quantum number k
to label the irreducible representations of the crystal translation group is not per-
mitted anymore. Simply put, the component of the wavevector k normal to the
interface plane cannot be used to label the solutions of the interface Hamiltonian.
This component is now allowed to take on complex values. An electronic energy
spectrum where k can be complex is referred to as a complez-k band structure.
Bulk solutions associated with complex values of k are not running wave solutions.
The imaginary part of the complex wavevector k is directly related to the evanescent
character of the solution in x-space.

3.1.1.1 Flat Barrier Regions:

In the Ga;_;Al; As barrier, the wavefunction exists in regions of energy where
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free propagation is forbidden. This region is called a flat barrier region, since
the potential resembles locally that of bulk Ga;__;Al,As. The complez-k band
structure is thus an indispensable ingredient for an accurate description of the
wavefunction in these barrier regions. The energy eigenvalue spectrum for complex
values of the wavevector k provides a description of the wavefunvtion in terms of
evanescent solutions. Within the formalism of Chapter 3, the complex-k energy
band structure is calculated within the empirical tight-binding method.

3.1.1.2 Disrupted Interfacial Regions:

Apart from flat barrier regions, there exist interfacial regions in which the
potential varies one lattice site to the next. In order to describe the electronic
wavefunction in these regions, we use a transfer matriz method to ezpress the
tight-binding wavefunction on one side in terms of the tight-binding wavefunction
on the other side of the interface.

A detailed treatment of the transfer matrix method, as derived in the ETBM
formalism, is given in Appendix (3.2) Appendix (3.3) gives the prescription to obtain
the complex-k energy band structure of a solid within the ETBM given a knowlodge
of the transfer matrix. As in Chapter 2, mathematical derivations will be relegated

to Appendices and not repeated within the main course of the discussion.
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3.1.2 Outline of Chapter 3:

In the foregoing study we treat the cases of the GaAs-Gaj_— Al As-GaAs
double heterojunction structures

e along the (111) interface in Section (3.2), and

e along the (100) interface in Section (3.3).

As mentioned above, transmission and reflection coefficients are calculated for
an electron incoming from the GaAs and derived from a given extremum of the
conduction band.

e For the (111) interface, we consider the cases of incoming electrons derived

from near the I'-point GaAs conduction band minimum,

k() = [fﬂ(a, 0,0), (La)

and from near the L-point conduction band valley such that,
27471 1 1
K1) =|Z (—,-,—). Lb
w=2]G 3 (Lo
o In the case of the (100) interface, we analyse the transport pertaining to

electrons in the I"-point conduction band minimum and in the X-point conduction

band valley,

K(X) = ﬁﬂu, 0,0). (1.0)

Transmission coefficients are calculated as a function of

e GaAs conduction band minimum from which the incoming electron is
derived,

e energy of the incoming electron,

e thickness of the Ga; _;Al,As barrier, and

e alloy composition z in the Ga;__;Al;As barrier.
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Transport coeflicients are calculated for different extrema of the GaAs lowest
conduction band. Applications of these ideas to the physics of semiconductor

devices is discussed.
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3.1.3 Summary of the Results of Chapter 3

This chapter focuses on the transport coefficients of electronic carriers through
GaAs-Gaj;— g Al; As-GaAs DHS. We consider both the (111) and the (100) zincblende

interface. We present now a brief summary of the results of Chapter 3.

3.1.3.1 Transport Through GaAs-Ga;__,Al;As -GaAs DHS (111):

It is found that transmission seems to be large for states corresponding to
states derived from equivalent extrema of the conduction band. A state incoming
in GaAs from the I'-point on one side of the Ga;__;Al;As barrier transmits largely
to the I'-point minimum in GaAs on the other side of the Ga;—;Al;As barrier.
Transmission into other GaAs conduction band extrema seems to be much smaller.
The same is true for states originating from the GaAs L-point valley in GaAs and

transmitting strongly into the L-point valley and weakly into the I"-point minimum.

It is also found that, depending on the energy of the incoming state, transmis-

sion could occur below or above the Ga;__,Al;As barrier giving rise to two distinct
regimes of transport.

o When the energy of an incoming state derived from a given conduction band
extremum is below the Ga; _,Al;As barrier corresponding to the same extremum,
transport is characteristic of tunneling. In that case transmission ts small and
the wavefunction is damped in the Ga;._;Al,As barrier. In the case of tunneling
transport the incoming state couples mostly to evanescent Bloch states associated

with complex values of k in the Ga;_;Al;As barrier.

o On the other hand, when the energy of a incoming state derived from a given
conduction band extremum is above the Gaj;_. Al As barrier corresponding to the
same extremum, transport is propagating . In that case transmission shows a

resonant behavior whenever the thickness of the Gay_., Al As barrier is an integer
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multiple of a half-wavelength of the wavefunction in that region. In the case of
propagating transport the incoming state couples mostly to propagating Bloch

states associated with real values of k in the Ga;__;Al; As barrier.

3.1.3.2 Transport Through GaAs-Ga;__.Al,As -GaAs DHS (100):

In this case also, it is found that transmission seems to be large for states
corresponding to states derived from equivalent eztrema of the conduction
band. A state incoming in GaAs from the I'-point on one side of the Ga;_ Al As
barrier transmits largely to the I'-point minimum in Gé.As on the other side of
the Ga;_;Al;As barrier. Transmission into other GaAs conduction band extrema
seems to be much smaller. The same is true for states orginating from the GaAs X-
point valley in GaAs and transmitting strongly into the X-point valley and weakly
into the I"-point minimum

In the case of the (100) interface, two regimes of transport, propagating
and tunneling, are also found depending on the energy of the incoming electron.
-Resonant transport is also found whenever the thickness of the Gaj_ Al;As
barrier is an integer multiplé 6f a half-wavelength of the wavefunction if that region.
In the case of the (100) interface, it is also possible to induce very sharp resonance
when an incoming state is derived in GaAs from the I'-point and couples weakly
to a state derived from the X-point minimum in Ga;—;Al;As. The sharpness of
the resonance s an indication of the weakness of the coupling between states

derived from different eztrema of the conduction band.
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Section 3.2

TRANSPORT CHARACTERISTICS OF
L-POINT AND I'-POINT ELECTRONS THROUGH
GaAs-Ga; __;Al,;As -GaAs (111) DOUBLE HETEROJUNCTIONS

3.2.1 Scope of this Study:

In this section we present here a study on the transport characteristics of L-
point and I"-point derived electrons through abrupt GaAs-Ga; _;Al;As-GaAs (111)
double heterojunctions. The use of complex-k band structures in the tight-binding
approximation and transfer matrices provide a reasonably accurate description of

the wavefunction at the GaAs-Gaj—.zAl;As interface.

e A representation of the wavefunction in terms of bulk complex-k Bloch

states, {]k”E ;kz)}, is used in the GaAs regions where the potential is bulk-like.

e A representation of the wavefunction in terms of planar orbitals, {|ao; k|)}
is used at the GaAs-Gaj_— Al;As interface where the potential deviates from its

bulk value (%.e., interfacial region).

Within the theoretical framework outlined in the Appendices (3.1), (3.2), and
(3.3), realistic band structure effects are taken into account and no artificial rules
regarding the connection of the wavefunction across the interface are introduced.
The ten-band tight-binding model includes admixture in the total wavefunction of

states derived from different extrema of the GaAs conduction band.

The major result of this study is that, states derived from the same eztremum
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of the conduction band appear to couple strongly to each other, whereas states
derived from different eztrema are found to couple weakly. Transport charac-
teristics of incoming L-point and I'-point Bloch states are examined as a function
of

e the energy of the incoming state,

e thickness of the Ga; _;Al;As barrier, and

e alloy composition, z, int the central Ga; _ Al As barrier.

Transmission through the Gaj_ ;Al; As barrier is either tunnelingor propagat
1ng depending on the nature of thé Bloch states available for strong coupling in the
alloy. Since Bloch states derived from different extrema of the conduction band ap-
pear to couple weakly to each other, it seems possible to reflect the low-velocity -

point component of the current while transmitting the high-velocity I"-point com-

ponent.
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3.2.2 Outline of Section 3.2:

The introduction of new device fabrication technologies has allowed the realiza-
tion of planar electronic devices in which the dimension perpendicular to the growth
plane is of the order of a few lattice spacings. The understanding of the transport of
electrons through semiconductor interfaces is of great importance regarding the per-
formance of these very small-scale electronic devices. The major reason that makes
GaAs a prime candidate for high-speed electronic devices is the very high velocities
that can be achieved by electrons derived from the I'-point conduction band mini-
mum. The small value of the I"-point effective mass is in major part responsible for
the very high velocities that can be achieved by these electrons. At higher energies,
electrons start to populate the low-velocity L-point and X-point GaAs conduction
band valleys, therefore reducing the population of the high-velocity I'-point mini-
mum. This has the direct effect of setting an upper limit to the speed at which
the device can operate. The study of the transport of electrons associated with the

various GaAs conduction band valleys is therefore of crucial importance.

The work presented here is concerned with the transport of L-point and
I'-point derived electron states through a GaAs-Ga;_,;Al,As-GaAs (111) double
heterojunction structure {DHS). The transport in these structures is either tun-
neling or propagating depending on the nature of the states with strong coupling
available for transmission in the Ga;__;Al;As barrier (.., evanescent or propagat-
ing).

o In the tunneling regime of transport, the Bloch states with strong coupling
available for transmission in the Gaj_;Al;As barrier are evanescent and the

wavevector k is complex.

o In the propagating regime of transport, the Bloch states with strong cou-

pling available for transmission in the alloy are propagating and the wavevector k
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takes on real values.

In the following, we examine DHS in which the perpendicular dimension of the
central barrier region is of the order of a few atomic layers. Since the potential varies
over distances on an atomic scale, a theoretical approach beyond the effective-mass

theory is needed.

The theoretical framework used here exploits the bulk properties of the con-
stituent semiconductors forming the DHS. The transport of electrons through a
region of space in which the energy of the state is such that free propagation s
not allowed is best described in terms of the complex-k bulk band structure. The
breakdown of translational invariance induced by the interface implies a new set
of boundary conditions that do not exclude the component of the wavevector k
normal to the interface to take on complez values. The problem of calculating the
transport coefficients of Bloch states at an abrupt interface using complex-k band
structure, cast in a tight-binding band calculation scheme, has been addressed in
the pastZ—5,

The major result of the following theoretical study is that the mixing between
L-point and I'-point states appears to be small. Therefore, there seem to exist
two distinctive energy barriers for L-point and I'-point electrons. Given an alloy
composition of the Ga;_yAl;As barrier, there is a range of energies for which the
electrons incoming from the I'-point minimum of GaAs are mostly transmitted
whereas the electrons incoming from the L-point extremum of GaAs are mostly
reflected. It seems then possible to reflect back the low-velocity L-point com-
ponent of the current while allowing the high-velocity I'-point component to be

transmatted.

In Section (3.2.3) , the basic ingredients of the theoretical technique used to

calculate the transport coefficients are presented. The major results are presented
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and discussed in Section (3.2.4). A summary and conclusions are given in Section

(3.2.5)
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3.2.3 Calculational method:
The DHS studied consists of a region of Ga;_,Al,As located between two

semi-infinite layers of GaAs. Figure 1 shows the energy band diagram and the
physical configuration of the DHS. The energy band diagram of the structure
indicates the relative positions of the I'-point and the L-point conduction band
edges for an alloy composition of z =~ 0.3 in the Ga; _,Al;As barrier.

e An electron incoming in the bulk region I (GaAs) at a total energy E above
the GaAs I'-point minimum

o is scattered at the boundaries of the barrier region II (Gaj—;AlzAs )

o and is finally transmitted in another bulk region Il {GaAs).

The incoming electron is derived from the I'-point or from the L-point in
GaAs. The I'-point conduction band offset,AE/ , is a fraction of the difference
in the I'-point conduction band gaps between GaAs and Ga; - Al;As. Depending
on whether we describe the total wavefunction in a bulk region or an interfacial
region, different representations are used accordingly. We now discuss these two

representations in the light of the theoretical discussion of Appendix (3.3)
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Figure 1: Energy band diagram of GaAs-Ga;_. Al,As-GaAs DHS and cor-
responding physical structure. The electron is derived from the I'-point or from
the L-point and has a total energy E' measured with respect to the GaAs I'-point
conduction band minimum. The relative positions of the I'-point (solid line) and
the L-point (dotted line) conduction band edges are also shown for an alloy com-
position of z =~ 0.3 in the Ga;_—;Al;As barrier. The I'-point conduction band
offset is indicated by AE .
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3,2.3.1 Planar Orbital Representation:

Systems which exhibit two-dimensional periodicity are best described in a
planar orbital representation® ~11. A planar orbital is a two-dimensional Bloch sum
consisting of localized atomic functions as defined in Appendix (3.2). We define a
planar orbital corresponding to an atomic orbital of symmetry o within the sublayer
labelled by o to be the two-dimensional Bloch sum

lao; k) = ——I——Z exp(ik) - R)j)lo; Rjjo), (1)

Ni Ry
where R" is a two-dimensional primitive lattice translation vector and o labels the
layer in the #-direction. [NV} is the number of two-dimensional primitive cells in
the crystal. In the case of the (111) interface, a sublayer can be thought of as a
monoatomic plane, either anion or cation. Let & be the direction normal to the

interface and

kj = k; + Fky, (2)

be the two-dimensional wavevector parallel to the interface.

We assume that space lattice matching at the interface is such that kj is a
good quantum for the planar orbital. As seen in Appendix (3.2), the bulk Bloch
states |k E; kx , I), corresponding to the wavevector k, = k) , evaluated on layer

X2, labelled by the wavector
k =k -+ &k N=1,...,2N],(3)

can be expanded in terms of this set of planar orbitals, {|ac; ky)},

2Ng
[K|\E; kx , Z) = exp(ikx Zao) Z :
o=1
Na
> S(ao,bx skl k) N =1,...,2N],(4)

a=1
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where the index o labels the 2N, sublayers forming the layer 2.

The total number 2N of Bloch states {lkyE; kx)} with &, = kx corresponding
to a given parallel wavevector k| and total energy E is equal to [2N, - Ny | = 2N.
The eigenvector matrix S(kjj) that diagonalizes the product of L transfer matrices,
allows us to transform the description of the wavefunction from the planar orbital
representation {[ao;ky)} to the Bloch states representation {|kyE;ky )}.

e In the light of the discussions of the preceding sections, wherever the total
Hamiltonian is bulk-like, the wavefunction is expanded in a set of bulk Bloch states,
{lkyE; k2)}-

At the GaAs-Ga;__ Al As interfaces, the potential is no longer bulk-like and
a description in terms of bulk Bloch states is prohibited. In the interfacial regions,
the wavefunction is described in a planar orbital representation, {|ac;k|}}. The
* connection between the bulk Bloch states representation, {lkyE;kz)}, and the
planar orbital representation, {|ao;kj)}, is described in Appendix (3.2) and will
not be repeated here. The matrix S(kjj) provides such a connection.

As discussed earlier, the total number 2V of Bloch states {{k)E; ks )} with
kz = k) corresponding to a given parallel wavevector kj and total energy E
depends on the particular tight-binding model (¢.e, the number N, ) used and on
the orientation of the interface plane (t.e, the number 2N, ). In the spas* tight-
binding representation used here!2, we have five orbitals per atom, N, = 5, and
only first nearest-neighbor interactions were included. Along the (111) direction,
a sublayer consists of a monoatomic plane, N, = 1. There are therefore ten.

Bloch states for each parallel wavevector k)| and total energy E,

Half of the states have to be discarded because they either grow away from the
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interface, if Im[k;| does not have the proper sign, or are propagating in the wrong

direction when k% is real.
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3.2.3.2 Theoretical Apparatus: Transfer Matrix
Let the incoming Bloch state |k) E; ko ) with real wavevector ko be incident

from the left in GaAs onto the GaAs-Ga;_,Al,As interface. The total wavefunc-

tion on a given layer £ composed of the 2N, sublayers o, can be written as?:
2N
[k E; 2) = [k Es ko, 2) + 3 AD (ks sk, EYkE; bn , E)  region I (6.a)
A==1
N, 2N,
[k E; Z)) = Z Z C([—”)(ao;k",E)laa; ky) interface I-II {(6.0)
a=1o=1
2N
[¥(kyE; L)) = Z AUD(ky sk, BNk E; by, E) region I (6.c)
A==1
N. 2N,
|[¥(kyE; Z)) = Z Z C(”’I”)(ao; ki, E)|ao; k) interface II-III (6.4)
a=]10o=1
2N
Wk E; 2)) = D A D(ky sk, E)KyE; by, E) region III (6.¢)
A=1

e The expansion coefficients A (kx; Ky, E), A(”)(lc)\; k|, E)and AU (kx; ky, E)
are associated with the bulk Bloch states representation, {|kjE;k;}}, in regions
I, I and III, respectively. The expansion coefficients C'(I_”)(cw; k|, E) and
cUI=11)( g, k||, E') are associated with the planar orbital representation, {|ac; ky}},
across the interfaces.

Appendix (3.4) gives the prescription to obtain the transport coefficients with
the aid of the transfer matrix. Transmission and reflection coefficients are obtained
by imposing the proper boundary conditions on the incoming and outgoing waves.
We impose the boundary conditions that there are no growsng states at z = +oo

and at z = —o0.
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3.2.3.3 Transport Coefficients:

At fixed total energy E and parallel wavevector k||, we denote by R\ (k”, E)
and 75 (kj, E') the k-resolved reflection and transmission coefficients corresponding
to the Bloch states |k E;k) ) in GaAs. The k,-resolved transport coefficients
Ry (ky, E) andﬁTx(k", E) are related to the expansion coefficients in the bulk Bloch
state representation, A(I)(k)\ ;kjj, E') and A([”)(kx sk, E), respectively. Given an
incoming Bloch state [kjE; ko ) with wavevector k, = k¢ normal to the interface,

we define the k,-resolved transport coefficients in the following way

| aEgk) |
3k,
2 kz=k)\

T (ky, E) = AU D (53, E)? - , (7.a)
I[BE(k)} |
k., =

and

Ry(kyj, E) = ]A(I)(lcx ;k",E)|2 2 =k (7.5)

where the group velocity, normal to the interface, of the Bloch state ]k”E; ky ) is

va(hy ) = [%M PE(L)

. (8)
Ok, ]kz=/€)\

The total transport coefficients R(kjj, E') and T (kjj, E) are just the sum of the

transport coefficients Ry (kjj, E') and Ty (k||, E'),

Rk, E ZR)\ (kyj, E), (9.0)

Tk, E ZT) (ky, E). (9.5)
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Flux conservation requires R(k|, E) + Tk, E) = 1.
As shown in Ref. 1, the transmission coefficient for the Bloch state |k||E; ky )
vanishes when the wavevector of the incoming Bloch state, kg, approaches a critical

point such that
" = 0. (10)

[BE(k)J

ks, —ky
In that case, the incoming state is identical with the reflected state. At this critical
point, the incoming state |kjE; ko ) has no component of the group velocity
perpendicular to the interface and does not couple to any Bloch states in

Gaj—zAl;As. Therefore, transmission starts to occur as the incident wavevector

ko moves away from the critical point.
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3.2.3.4 Complex-k Energy Bandstructure:

The transport states originate in the complex-k band structure of GaAs and
Gaj—zAlgzAs. The complex-k band structure for GaAs and AlAs is well known”+12.
We have used similar techniques to obtain the complex-k band structure for
Ga; Al As within the virtual crystal approximation. Within the ten-band tight-
binding description used here, the GaAs I'-point conduction band minimum is
E IQaAs = 1.509 eV above the GaAs I'-point valence band maximum and the
GaAs L-point conduction band valley is at an energy EE‘aAS = 0.50 eV above the
GaAs ["-point conduction band minimum.

Figures (2) and (3) show the complex-k band structure of GaAs and AlAs
along the (111) direction, respectively. The complex-k band structure corresponds
to vanishing wavector parallel to the (111) interface plane, . e, kjj = 0. At a given
energy E, the purely real values of k£, are indicated by a solid line on the right panel
of the figure and the purely imaginary values of £, are indicated by a solid line on
the left panel of the figure. Complex values of k, are indicated by a dashed line,
Relk,| being on the right and Im[k,] being on the left of the figure respectively.
As seen in Figures (2) and (3) complex band connect to real bands at points of

vanishing slope, 1.e., where

[ JE(k) —0 (1)

Oks } ka=ho
for a real value of the wavevector £y. Appendix A gives a collection of the properties
of the energy functions E, (k) in the case where the wavevector k is complez.

The propa.gdting or evanescent nature of the Bloch states depends on the real
or complez character of the wavevector k£, normal to the (111) interface plane.

o Propagating Bloch states are associated with real values of £, whereas

o evanescent Bloch states are associated with complex values of k,.
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Figure 2: Complex-k band structure of GaAs along the (111) direction, respec-
tively. The complex-k band structure corresponds to vanishing wavector parallel to
the (111) interface plane, %.e. kjj = 0. At a given energy E, the purely real values
of k, are indicated by a solid line on the right panel of the figure and the purely
imaginary values of k£, are indicated by a solid line on the left panel of the figure.
Complex values of &, are indicated by a dashed line, Re[k,] being on the right and
Im[k,] being on the left of the figure respectively. The zero of energy is taken at

the top of the GaAs valence band maximum.
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- Figure 3: Complex-k band structure of AlAs along the (111) direction, respec-
tively. The complex-k band structure corresponds to vanishing wavector parallel to
the (111) interface plane, 7.e. kj = 0. At a given energy E, the purely real values
of k, are indicated by a solid line on the right panel of the figure and the purely
imaginary values of k, are indicated by a solid line on the left panel of the figure.
Complex values of &, are indicated by a dashed line, Re[k,] being on the right and
Im[k,] being on the left of the figure respectively. The zero of energy is taken at
the top of the GaAs valence band maximum.
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We denote the bulk states with k, = k) in spatial region u by [k E; k) ). In
the discussion that follows, the incident Bloch state is derived either from near the
GaAs conduction band L-point with real wavevector kg = k£ , €.4. IkHE; ko) =
|k E;s kL I ), or from the the GaAs conduction band I"-point with real wavevector
ko =k, e.q. [kyE;ko) = kyE; kr 7).

Throughout the calculations, the valence band offset AE is taken to be equal
to 15% of the difference of the I"-point band gap between GaAs and Ga;—zAl;As
14=15 " The virtual crystal approximation is used to weight the tight-binding
parameters of Ga;_;Al;As according to the alloy composition, z. In the following,
we consider alloy compositions in the range £< 0.3, for which Ga;_ Al As is
direct. Within this composition range, the dependence of the I'-point and L-point
conduction band energy edges in Gay;_;Al;As on the alloy composition z is, in the
virtual crystal approximation: E}(}al_mAles ~~ 1.35z eV and Egal“IAles A
(0.50 4 0.65 z) eV, above the GaAs I'-point conduction band minimum.

Throughout this study, we neglect carrier scattering by the electron-phonon
interaction and by the alloy disorder. Such scattering would undoubtedly occur in
the structures we consider here and will have some influence on the transport in
them. We point out, however, that the thickness of the barrier in the structures we
discuss is less than the phonon scattering mean free path, which is of the order of
58 A in GaAs at room temperaturew. The scattering processes could be discussed

in perturbation theory using the wavefunctions we calculate here as the unperturbed

states.
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3.2.4 Results:

We present the main results for the transmission coefficients of electrons
derived from the L-point and I'-point of GaAs through the GaAs-Gaj—jzAl As-
GaAs (111) DHS. We discuss the transport across the central Gay_;Al;As barrier

as a function of
e the total energy, E, of the incoming state,
e thickness of the Ga; __,Al;As barrier, and

e alloy composition, z.

3.2.4.1 Transmission Coefficient vs. Energy:

The different transport regimes (tunneling and propagating) can be demonstrated
by studying the transmission coefficient for fized barrier thickness as a function
of the energy of the incoming state. Figure 4 shows the transmission coefficient,
T(k” ,E'), as a function of the energy, E, of the incoming Bloch state. The incoming
Bloch state is either derived from the GaAs L-point (ko = &1), or from the GaAs I"-
point (kg =k IL ). Energy is measured with respect to the GaAs I'-point conduction
band minimum. We consider the case of vanishing parallel wavevector kj =
0. Calculations were carried out for an alloy composition of £ = 0.1 and a
barrier thickness of seven Gaj_Al;As layers. For the £ = 0.1 alloy, the
Gaj)—zAlzAs I'-point and the L-point energies are: E}(jal_zAl¢As = (.135 eV,
and Egal““Ales = 0.565 eV, above the GaAs I"-point conduction band mini-
mum. For energies of the inéoming states near a given GaAs conduction band
extremum (L or I'), transmission through the Gaj_;Al;As barrier appears to
occur mostly via the coupling to states that connect to the alloy conduction
band at the same extremum in the Brillouin zone (L or I'). Since the Bloch

states derived from different extrema of the conduction band appear to couple
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Incoming state: Conduction band in
GaAs

L- point along (111)
----- : T'-point along (1)

Alloy composition : x=0,
Barrier thickness: 7 layers

TRANSMISSION

1 1 ] 1
0.50 0.54 0.58 0.62 0.66 0.70 0.74
Energy: E [eV]

Figure 4: Transmission coefficient, T(k”, E), as a function of the energy, E, of
incoming electron. The incoming electron is either derived from the GaAs L-point
(solid line}), or from the GaAs I'-point (dashed line). The alloy composition of z =
0.1 and the Ga;__,Al As barrier is seven layers thick. Energy is measured with
respect to the GaAs I'-point conduction band minimum and ky =o.



-116-
weakly to each other, the energy barrier for the states derived from the L-
point is different than the energy barrier for the states derived from the I'-
point.

The figure clearly demonstrates that there seems to ezist a range of
energies above the GaAs L-point valley (E?aAS ) and below the Ga;— Al As
L-pownt valley (EE%’”“zAles ), such that transmission ts large for incoming
Bloch states derived from the I'-point and small for incoming Bloch states
derived from the L-point. In this energy range, EEaAS <E<L Egal—zAlmAs,
Bloch states incoming from the I'-point in GaAs couple mostly to propagating
I'-point states in the barrier (kII-I real), and Bloch states incoming from the L-
point in GaAs couple mostly to evanescent L-point states in the barrier (& £I com-
plex). The energy range for which the transmission |k E; kr ")—»lknE; kr 111y is
much greater than the transmission |k E; k1, [)—+|k“E; kr, '1T) roughly corresponds
to the composition-dependent L-point energy barrier that the incoming L-point
Bloch states have to overcome in order for them to become propagating (kg
real) in the barrier. For the £ = 0.1 alloy, the L-point valley of the alloy lies

at E?al—xAles = 0.565 eV above the GaAs conduction band minimum, and

o k|E; kL [)—-»]k”E; kr, ”I) transmission will remain small below this energy
whereas

o [kyE;kr [)—>|k||E; kr 117y transmission will be important.

Thus, for a given Ga;_,Al;As composition ,z, there is a range of energies,
roughly E}}aAS <EXL Egal—zAles, for which electrons tncoming in GaAs
from the I'-point are mostly transmitted whereas electrons tncoming in GaAs
from the L-point are mostly reflected.

Generally, when an incoming state in GaAs is derived from a conduction band

extremum, say X\, such that ky = /c){ and [k E; ko ) = [k E; kx 7y the mode of
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transport (t.e., tunneling or propagating) appears to be determined by the nature
of the states in Gaj;_—,;Al;As derived from the same conduction band extremum,
[k”E; k>, ”). For energies of the incoming state less than the alloy conduction band
edge E)‘Gal—”Al””As , the states that couple strongly in the alloy are gap states
(k| E; kx Iy evanescent) and hence the wavefunction is damped in the barrier.
However, for energies of the incoming state greater than the alloy conduction band
edge E}(‘}al_xAles, the states that couple strongly in the alloy are band states

([k“E; kx ”) propagating) and hence the wavefunction is not damped in the barrier.

Electron derived from the L-point:

We now discuss the energy dependence of the transmission for incoming
electrons derived from the GaAs L-point valley. As mentioned in section (3.2.3), the
transmission coefficient vanishes for incoming states derived from the L-point at an

energy equal to the L-point extremum of GaAs, E?aAS . At this energy, the com-
3E(k)

ponent of the group velocity normal to the interface vanishes ,{ ok
F4

0, and the incoming state |kjE;kr [) does not couple to any Bloch states in

Gaj—zAlzAs. The overall energy dependence is found to be similar to that of
plane waves incident on a rectangular barrier as derived from a one-dimensional
quantum-mechanical treatment!”.

For incoming states derived from the GaAs L-point with energy below Ega1_$Ales :
0.565 eV, transport through the barrier is tunneling and the transmission is small.
However, for incoming states derived from the GaAs L-point with energy above
Egal"z Al«"AS, transport through the barrier is propagating and the transmission
becomes important. For a fixed barrier thickness, propagating transport exhibits
maximum transmission whenever the energy of the incoming state is such that
the thickness of the Ga;_,Al,As barrier contains an integral number of half-

wavelengths in the barrier region. At energies £ > E?al—IAlIAS , the transmis-
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Figure 5: Transmission coefficient T'(k), E), as a function of the number of
layers forming the central Ga;__,Al,As barrier for various energies of the incoming
electron. The incoming electron is either derived from the GaAs L-point (solid
line), or from the GaAs I'-point (dashed line). The alloy composition is z = 0.1.
Energy is measured with respect to the GaAs I'-point conduction band minimum

and kj = 0. Layers are measured in units of a/ \/-3-, where a is the GaAs lattice
constant.
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sion oscillates as a function of energy and is maximum at resonance. The off-

resonance transmission amplitude increases with increasing incoming energy.

3.2.4.2 Transmission Coefficient vs. Ga;__,Al,As Barrier Thickness:

The different transport regimes (tunneling and propagating) can also be demonstrated
by studying the transmission coefficient for fixed incoming energy as a function
of the barrier thickness. Figure 5 shows the transmission coeflicient T(k“,E),
as a function of the number of layers forming the central Ga;_,Al,As bar-
rier for various energies of the incoming Bloch state. The alloy composition is
z = 0.1 and kj = 0. Layers are measured in units of a/V3, where a
is the GaAs lattice constant. For the z = 0.1 alloy, the I'-point and L-
point conduction band energies in Ga;_ Al As are: E[Cj'al“”’AlfAs = 0.135 eV
and Egal-zAles = 0.565 eV, above the GaAs I'-point conduction band
minimum. The incoming Bloch state is either derived from the GaAs L-point
(ke = lci ), or from the GaAs I'-point (kg = k} ). For the case where
the incoming Bloch state is derived from the GaAs L-point valley, the different
types of transport (tunneling and propagating) are shown for an energy £ =
0.54 eV < Egal_mAl“’As , in which case the transport is tunneling and for an

energy £ == 0.59 eV > Eg'al —“AlmAs, in which case the transport is propagating.

Electron derived from the L-point:

We discuss first the case of incoming electrons derived from the GaAs L-point
valley. .

e In the tunneling regime of transport (£ < Egal"zM“As ), transmission
occurs mostly via the coupling to evanescent states (kg complex) derived from

the L-point of Ga;_ Al As. As seen in Figure 5, the evanescent character of

the wavefunction in Gaj;_, Al As is reflected in the fact that the transmission
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coefficient T(k“,E) is an exponentially decaying function of the Ga;_;Al;As bar-
rier thickness. These results are similar to those obtained from the thick-barrier
WKB approximationls_lg.

o In the propagating regime of transport (£ > E?al—IAlfAs ), transmission
occurs mostly via the coupling to propagating states (k g real) near the conduction
band L-point of Ga;._;AlgAs. For energies of the L-point incoming electron greater
than ELG'a‘l"ﬂ'iAIWquj , the transmission coefficient is a periodic function of the
Gay Al As barrier thickness. The period is determined by the wavevector qllf =
k% — Icg , where k% is the L-point Brillouin zone edge.

The transmission coefficient is unity when the thickness of the Ga; _;Al; As
barrier contains an integral number of half-wavelengths (determined by qg ) in the
barrier region. Since the wavevector qil increases with the energy of the incoming
L-point Bloch state, the period of the transmission amplitude decreases with the
energy of the incident L-point electron.

The off-resonance transmission amplitudes increase with increasing incident
energy. The general qualitat.ive behavior of the transport is similar to that exhibited
by plane wave states incident on a rectangular quantum-mechanical barrier. Similar

regimes of transport have also been reported for incoming states near the GaAs

I-point for GaAs-GaAs; _ ;P;-GaAs strained (100) DHS>.

Electron derived from the I"-point:

Also shown in Figure 5 is a comparison between the transmission for incom-
ing electrons derived from the GaAs I'-point and from the GaAs L-point at the
same energy, namely £ = 0.59 eV. At this energy, /cIU and kﬁl are real and,
consequently, the Bloch states [kj| E; kp Ty and (kg E; kL Iy are propagating. At a
given layer thickness, the transmission is greater for states incoming from the GaAs

I'-point than for the states derived from the L-point. This is due to the fact that,
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for a given energy of E = 0.59 eV, the I'-point states lie at an energy of about
0.46 eV above the I'-point minimum of the alloy, E IGal_a;Ales = 0.135 eV.
On the other hand, the L-point states lie at an energy of only 0.03 eV above the
L-point valley of the alloy, Eg'al—xAles = 0.565 eV. As seen in the figure, it
seems possible to tune the thickness of the Ga; _, Al As barrier in such a way as
to reduce the transmission for the incoming states derived from the GaAs L-point

while the transmission for the I"-point remains close to unity.

3.2.4.3 Transmission Coeflicient vs. Ga,__,Al,As Alloy Composition:

Figure 6 shows the transmission coefficient, T(k",E ), as a function of alloy
composition for two different Ga;__Al;As barrier thicknesses. The incoming Bloch
state is either derived from the GaAs L-point (kg = & £), or from the GaAs I'-point
(ko = lc,Ia ). The incoming Bloch state has kjj = 0. The energy of the incom-
ing state is £ = 0.501 eV above the GaAs I'-point conduction band minimum.
As mentioned above, the I"-point and L-point energy edges, Elgal-mAles and
Eg’al“IAlwAs, scale linearly with the alloy composition for £<< 0.3. The composi-
tion z is therefore directly related to the I"-point and L-point barrier heights at the
interface. For the range of alloy compositions studied, the I"-point and the L-point
energies of Ga; . Al;As vary in the range 0 eV< E}(}a1_xAles < 0.405 eV and
0.50 eVSEgal—'"’Al“As <0.70 eV, above the GaAs I"-point conduction band min-
imum. For a fixed energy of E = 0.501 eV, the transport is propagating for Bloch
states incoming from the I'-point although it is mostly tunneling for Bloch states
incoming from the L-point in the composition range z< 0.3. This is due to the fact
that, in this composition range, we have E}Cjal_mAl,As <EL Egal_mAlfAs

so that k{! is real whereas /s:i[ is mostly complex.

Electron derived from the [-point:
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Figure 6: Transmission coeflicient, T'(kj, E'), as a function of alloy composition
for two different Ga;_,Al;As barrier thicknesses. The incoming electron is either
derived from the GaAs L-point (solid line), or from the GaAs I'-point {dashed
line). The energy of the incoming state is £ = 0.501 eV above the GaAs I'-point
conduction band minimum and kj = 0. Layers are measured in units of a/V/ 3,
where a is the GaAs lattice constant.
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We first discuss the case of incoming electrons derived from the GaAs L-point
valley. As the Al concentration increases, the L-point energy edge in Ga;_;Al;As,
E?al_zAles , increases and so does the magnitude of Im(££/). Therefore, the
L-point derived states have smaller decay lengths and tunnel less efficiently across
the barrier. This, in turn, implies an increased reflection probability for the L-point
derived states. At a given alloy composition, z, the transmission is greater for states
incoming from the GaAs I"-point than for the states derived from the L-point. This
is due to the fact that the I"-point states are transmitted in the propagating regime
(E>E I(}al_xAlmAs ), whereas the L-point states are transmitted in the tunneling
regime (£ < Egal*xAlIAs ).

Since the mixing between L-point and I'-point states appears to be small, there
seem to exist two distinctive energy barriers for L-point and I'-point electrons. In
the light of the results presented above, it seems possible to create a situation (by
either selecting the energy, the barrier thickness or the alloy composition) such that
both the I"-point and the L-point states were propagating in GaAs but only the
I'-point states would be propagating in Ga;_;Al;As , the L-point states being
evanescent in the barrier. Such a situation may have applications in GaAs high-
speed low-power devices to provide a way of reflecting back the low-velocity L-point
component of the current while allowing the high-velocity I"-point component to be

transmitted.
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3.2.5 Summary and Conclusion:

We have calculated the transport coefficients of L-point I"-point electrons
through GaAs-Gaj—;Al;As-GaAs (111) double heterojunctions within a ten-band
tight-binding formalism. The model takes reasonably well into account band
effects through the use of complex-kband structures and transfer matrix methods.
Within this theoretical framework, k,-resolved transport coefficients can be cal-
culated. This, in turn, allows for a better understanding of the transmission
coefficients of electrons derived from different extrema of the conduction band in
GaAs. Calculation of transport coefficients associated with various conduction band

valleys were carried out as a function of
o energy of thfe incoming electron,
e thickness of the central Ga;_ Al;As barrier, and
e alloy composition, z, in the central Ga; —;AlzAs barrier.

It is generally found that states originating from the same eztremum of the
conduction band appear to couple strongly to each other, whereas states derived
from different eztrema are found to couple weakly. For energies of the incoming
states near a given GaAs conduction band extremum (L or I'), transmission through
the Ga;_ ;Al;As barrier occurs mostly via the coupling to states (evanescent or
propagating) that connect to the alloy conduction band at the same extremum
(L or I"). Transmission through the Ga;_ AlzAs barrier is either tunneling or
propagating depending on the nature of the Bloch states available for strong
coupling in the alloy. Since the mixing between L-point and I'-point states appears
to be small, there seem to exist two distinctive energy barriers for L-point and I"-
point electrons. This observation may lead to interesting effects in GaAs high-speed
low-power electronic devices whereby the low-velocity L-point component of the

current could be blocked (4.e., small transmission below the L-point barrier) while
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the high-velocity I"-point component could be transmitted (z.e., large transmission

above the I'-point barrier).
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Section 3.3

TRANSPORT CHARACTERISTICS OF
X-POINT AND I'-POINT ELECTRONS THROUGH
GaAs-Ga; Al As -GaAs (100) DOUBLE HETEROJUNCTIONS

3.3.1 Scope of this Study:

In this section, we present a study of the transport characteristics of electrons
through abrupt GaAs-Gaj —;Al;As-GaAs (100) double heterojunctions. As in the
preceding section, the theoretical apparatus uses complex-k band structures in the
tight-binding approximation and transfer matrices. States on each side of the
Gay —;Al;As central barrier are expanded in terms of a complex-k bulk state basis
so as to provide a description of the wavefunction at the GaAs-Gaj—;Al;As (100)
interface. We treat the case where the incoming state in GaAs is derived from
near the conduction band I"-point . Transmission through the Ga; Al As barrier
is either tunneling or propagating depending on the nature of the Bloch states
available for strong coupling in the alloy. States derived from the same eztremum
of the conduction band appear to couple strongly to each other across the GaAs-
Ga; —yAl;As interface. Transport characteristics of incoming states derived from

near the conduction band I"-point are examined as a function of
e the energy of the incoming state,
o thickness of the Ga; —, Al As barrier and

e alloy composition, z, in the Ga;—;Al; As barrier.
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Transmission through the Ga; _;Al; As barrier is either tunnelingor propagat-

tng depending on the nature of the Bloch states available for strong coupling in the

alloy.
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3.3.2 Outline of Section 3.3:

The work presented in this section is concerned with the transport of electrons
through a GaAs-Ga;_;Al;As-GaAs (100) double heterojunction structure (DHS).
An energy band diagram of the I"-point conduction band edge is shown in Figure
1 along with the physical structure.

The mode of transport in these structures is either tunneling (energy less
than the potential barrier height) or propagating (energy greater than the potential
barrier height).

o In the tunneling regime of transport the Bloch states available for trans-
mission in the Ga; _;Al; As are evanescent and the wavevector k is complex.

o In the propagating regime of transport the Bloch states available for trans-
mission in the alloy are propagating and the wavevector k takes on real values.

The theoretical framework exploits the bulk properties of the constituent
semiconductors forming the DHS as developed in Appendices (3.2) and (3.3). The
bulk Bloch states associated with complex-k provide a suitable basis for a full
description of the wavefunction. The calculational technique has been exposed in
Section (3.2) and only the results applicable to the (100) interfaces will be discussed

in Section (3.3.3) A summary and conclusions are given in Section (3.3.4)
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Figure 1: Energy band diagram of GaAs-Ga;_,Al;As-GaAs DHS and cor-
responding physical structure. The electron is derived from the GaAs I'-point and
has a total energy E measured with respect to the GaAs I'-point conduction band
minimum. The I"-point conduction band offset is indicated by AE;. The thickness
of the Ga;__,Al,As barrier is d.
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3.3.3 Results:

The complex-k bandstructure of GaAs and Ga; —;Al;As was calculated using
the ten-band tight-binding model described in the preceding section. Within the
ten-band tight-binding description used here, the GaAs I'-point conduction band
minimum is at an energy Elqus =~ 1.51 eV above the GaAs I'-point valence
band maximum, and the GaAs X-point conduction band valley is at an energy

E}C{iaAs =~ 0.52 eV above the GaAs I'-point conduction band minimum.

We denote the bulk states with &k, = ky in spatial region u by |kj£; kx H,
In the discussion that follows, the incident Bloch state is derived from near the
GaAs conduction band I"-point with real wavevector kg = k,lw , e.9. [kE; ko) =
]k”E skr I ). The &, values of interest are those near the conduction band extrema
I'(kr)and X (kx ).

In the energy range between the bottom of the GaAs conduction band and the
GaAs X-point valley, k% is real and k% is complez such that k) E; kr Iy has a

travelling character and k)| E; kx !y has an evanescent character.

However, in the energy range above the X-point valley, both k,lq and /cg( are
real such that |k E; kr 7) and |k E; kx ) have travelling character.

Similar considerations apply to the Bloch states available for transport in the
alloy Gaj—zAlzAs.

Al As <

For an alloy composition z < 0.4513, Gaj_ Al Asis direct and E,gal“z
Egal“ﬁAles in this composition range. As in the preceding section, the valence
band offset AE was taken to be equal to 15% of the difference of the I'-point band
gap between GaAs and Ga; —;Al;As. The dependence on the alloy composition z of
the I'-point energy edge in Gaj—;AlzAs is, in the virtual crystal approximation:

El(}m_zAlmAs ~ 1.35 £ eV , above the GaAs I'-point conduction band mini-

mum.
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We present the main results for the transmission coefficients of electrons
through a GaAs-Gaj_ ;Al; As-GaAs (100) DHS. The incident Bloch state is derived
from near the GaAs conduction band I'-point with real wavevector kg = k{a , €.9.
[k E; ko) = |k B kr Iy, We discuss the transport across the central Gaj—zAl As
barrier as a function of

o energy, E, of the incoming Bloch state, |k E; ko ),

o thickness of the Ga; _;Al;As barrier and

e alloy composition, z, in the central Ga; — Al;As barrier.

3.3.3.1 Complex-k Energy Band Structure:

Figures (2) and (3) show the complex-k band structure of GaAs and AlAs
along the (100) direction, respectively. The complex-k band structure corresponds
to vanishing wavector parallel to the (100) interface plane, 1.¢e., k| = 0. At a given
energy E, the purely real values of &, are indicated by a solid Hne on the right panel
of the figure and the purely imaginary values of &k, are indicated by a solid line on
the left panel of the figure. Complex values of k£, are indicated by a dashed line,
Re[k;] being on the right and Im(k,] being on the left of the figure respectively.
As seen in Figures (2) and (3) complex bands connect to real bands at points of

vanishing slope, t.e., where

=0, (4.13)

[c‘)E(k)]
Ok, k,=kg

for a real value of the wavevector ko . General properties of the energy function

En (k) in the case where the wavevector k is complex can be found in Appendix A.

3.3.3.2 Transport Coefficient vs. Energy:
Figure 4 shows the total transmission and reflection coefficients , T'(k), £') and

R(kyj, E), as a function of the energy, E, of the incoming Bloch state. Energy
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Figure 2: Complex-k band structure of GaAs along the (100) direction, respec-

tively. The complex-k band structure corresponds to vanishing wavector parallel to
the (100) interface plane, ¢.e. k| = 0. At a given energy E, the purely real values
of k, are indicated by a solid line on the right panel of the figure and the purely
imaginary values of k£, are indicated by a solid line on the left panel of the figure.
Complex values of %, are indicated by a dashed line, Re[k,] being on the right and
Im[k;| being on the left of the figure respectively. The zero of energy is taken to

be the GaAs valence band maximum.
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Figure 3: Complex-k band structure of AlAs along the (100) direction, respec-
tively. The complex-k band structure corresponds to vanishing wavector parallel to
the (100) interface plane, t.e. k) = 0. At a given energy E|, the purely real values
of &k, are indicated by a solid line on the right panel of the figure and the purely
imaginary values of k£, are indicated by a solid line on the left panel of the figure.
Complex values of k, are indicated by a dashed line, Re[k,] being on the right and
Im[k,] being on the left of the figure respectively. The zero of energy is taken to

be the GaAs valence band maximum.
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is measured with respect to the GaAs conduction band minimum. We consider
the case of vanishing parallel wavevector k) =0, and composition of z = 1.0.

Calculations were carried out for different AlAs barrier thicknesses.

For energies of the incoming states near the GaAs conduction band I"-point,
transmission through the AlAs barrier occurs mostly via the coupling to evanes-
cent states that connect to the AlAs conduction band at the I'-potnt. In the
energy range considered, no propagating Bloch states are available in AlAs and
the wavefunction has an evanescent character in the barrier. The AlAs I'-point
minimum is at an energy E}QIAS = 1.35 eV above the GaAs conduction band
minimum. As mentioned in Section {3.3.2), the transmission coefficient vanishes for
incoming states derived from near the conduction band I'"-point at an energy equal

to E}(}aAs . At this energy, the component of the group velocity normal to the
aE(k)

ok, :l !
not couple to any states in AlAs.

interface vanishes ,[ = 0, and the incoming state ]knF; kr [) does

3.3.3.3 Transmission Coefficient vs. Ga;__,Al,As Barrier Thickness:

We now examine the different transport regimes. Figure 5 shows the total
transmission coefficient T'(kjj, E) as a function of the number of monolayers forming
the central Gaj_—;Al;As barrier. Layers are measured in units of a/2, where a is
the GaAs lattice constant. Energies of the incoming Bloch state |k E; k1 [) range
from 0.19 eV E < 0.69 eV, measured with respect to the GaAs conduction band
minimum. The alloy composition is £ = 0.3 and kjj = 0. The alloy is direct and the
I'-point energy edge of Gaj—zAlzAs is Elgal“zAles 2= 0.41 eV. Transmission
through the Ga;—;Al;As barrier is either tunneling or propagating depending on
the nature of the Bloch states available for strong coupling in the alloy.

For energies of the incoming state less than EIC}al_zAles , the avail-
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Figure 4: Total transmission (solid line) and reflection (dashed line) coefficients
, T(kj), E') and Rk}, E'), as a function of the energy E of the incident Bloch state
]k"E; kr I ), for different Gaj—5Al;As barrier thicknesses with a composition of
z = 1.0. Energy is measured with respect to the GaAs conduction band minimum
and kjj = 0. The number of Ga;_;Al;As barrier layers is n.
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Figure 5: Total transmission coefficient, T(k",E), as a function of central
Gaj —zAl;As barrier thickness for different incoming energies. The incoming Bloch
state has no momemtum parallel to the interface, kj = 0. The Ga;__;Al,As alloy
composition is z = 0.3.
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able states in the alloy are gap siates (k{f complex) and the wavefunction is
damped in the barrier. However, for energies of the incoming state greater than
E}Cjal_zAles , the available states in the alloy are band states (& {! real) and the

wavefunction is not damped in the barrier.

Generally, when an incoming state in GaAs is derived from a conduction band
extremum, say \, such that by = k{\ and [k) E; ko )y = [k E; kx [) the mode of
transport (%.e., tunneling or propagating) appears to be determined by the nature
of the states in Gaj—;Al;As derived from the same conduction band extremum,
[k} E; kox Iy For energies of the incoming state less than the alloy conduction band
edge Egal —zAlzAs , the states that couple strongly in the alloy are gap states
(Ik"E; ky, ”) evanescent) and hence the wavefunction is damped in the barrier.
However, for energies of the incoming state greater than the alloy conduction band
edge ES’ al—“?Ales, the states that couple strongly in the alloy are band states

k| E; ky [/ propagating) and hence the wavefunction is not damped in the barrier.
I

o In the tunneling regime of transport, transmission occurs mostly via the
coupling to the alloy I"-point evanescent states (k,lﬂ[ complex). As seen in Figure 5,
the evanescent character of the wavefunction in Gaj—,AlzAs is reflected in the fact
that the transmission coefficient T(k”,E) is an exponentially decaying function of
the Ga;__;Al;As barrier thickness. These observations are similar to those obtained

from the thick-barrier WKB approximati0n15—16.

o For incoming states with energy greater than Elg'al—mAles , transmission
occurs mostly via the coupling to the alloy I'-point propagating states (k{«l real).
The transmission coeflicient is unity when the thickness of the Ga;_;Al;As barrier
contains an integral number of half-wavelengths (determined by % IIJ ) in the barrier
region. Under these resonant scattering conditions, the states derived from the

conduction ba: ['-point couple strongly to each other and channeling into Bloch
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states derived from different conduction band extrema is found to be small. This
observation is supported by the original work®® on the transport of Bloch states

at a single GaAs-Gaj_;Al;As heterojunction.

As , the transmission

For energy of the incoming state above Elgal-“’Al”’
coefficient is a periodic function of the Gaj_zAl;As barrier thickness. Since the
wavevector £ Ilf increases with incident Bloch state energy, the period of the trans-
mission amplitude decreases with the energy of the incident Bloch state. The off-
resonance transmission amplitudes increase with increasing incident energy. The
general qualitative behavior of the transport is similar to that exhibited by plane

wave states incident on a rectangular quantum-mechanical barrier!”.

3.3.3.4 Transmission Through X-point Bloch states:

Figure 6 shows the total transmission and reflection coefficients , T (k||, E') and
R(ky, E'), as a function of the number of monolayers forming a central AlAs bar-
rier. The energy of the incoming Bloch state |k||E; kp I ) is E =0.51 eV, measured
with respect to the GaAs conduction band minimum. The incoming state derived
from near the conduction band I'-point has vanishing parallel momentum, kj = 0.
At this energy the states available for transport in AlAs are propagating states
near the X-point extremum (k&f real), and evanescent states connecting to the
I'-point (k}[ complex) at higher energy. Here again it is found that, for incom-
ing states derived from the GaAs conduction band ["-point, transmission through
the AlAs barrier occurs mostly via the coupling to evanescent states that connect
to the AlAs conduction band at the I'-point. At small AlAs barrier thicknesses,
transmission of conduction band I"-point incoming states is governed by tunneling.
In this regime, the incoming state lk“E; kr ]) tunnels through the’AlAs barrier by

coupling to the evanescent Bloch states |k E; k- Iy associated with the conduction
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Figure 6: Total transmission (solid line) and reflection (dashed line) coefficients
» T(ky,E) and R(kj|, E), as a function of central AlAs barrier thickness for an
energy of E = 0.51 eV. Energy is measured with respect to the GaAs conduction

band minimum and k" = 0.



-140-
band I"-point minimum. However, it was found that under energetically favorable
conditions, transport could exhibit very sharp resonance scattering through avail-
able propagating X-point states, lk”E’; kx I ). This mode of resonant transport
occurs for thick AlAs barriers when the tunneling through I"-point derived evanes-
cent Bloch states is negligible. The sharpness of the resonances in this case s
an indication of the weakness of the coupling between states derived from the

I'-point and states derived from the X-point.

3.3.3.5 Transmission Coeflicient vs. Ga;__,Al,As Alloy Composition:

We now analyse the relative contributions of the X-point and the I"-point
conduction band Bloch states to the transmitted wavefunction as a function of the
alloy composition z. Figure 7 shows the transmission coefficients Tp(k”,E) and
Tx (kjj, E) as a function of alloy composition, for two different Gaj—zAlzAs barrier
thicknesses. The energy of the incoming state is £ = 0.69 eV measured with
respect to the GaAs conduction band minimum. For the range of alloy compositions
studied, this energy is greater than E,gal—wAlﬁAs . At this energy the I"-point
R BT

and X-point states in GaAs and Ga; _,Al;As are propagating (k }, real,

and kg( , k% , k&U real). The incoming Bloch state has k” = 0.

As mentioned above, the I'-point energy edge, El(}al_zAles’ scales linearly
with the alloy composition. The composition z is therefore proportional to the
I'-point barrier height at the interface. For the range of alloy compositions
studied, the I"-point energy edge of Ga;—;Al;As varies approximately in the range
0ev< E}(}al_xAles < 0.47 eV, above the GaAs I'-point conduction band min-
imum. For an energy of the incoming state of E = 0.69 eV, the transport regime
for incoming states derived from the conduction.band I'-point is propagating since

the coupling states in the alloy are propagating Bloch states. Since the energy of
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and Tx (kj, E) (dashed line), as a function of Gaj—zAl;As alloy composition z for
different barrier thicknesses. The energy of the incoming state is £ = 0.69 eV.
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the incoming state lies above the I"-point energy edge of the alloy, the transmission
amplitude is a weakly dependent function of the barrier height.

As the Al content of Ga; _,Al, As increases, transmission into the propagating
X-point Bloch states lk”E;kx ”[) increases but remains rather small. States
derived from the same extremum of the conduction band appear to couple strongly
to each other across the GaAs-Ga;_ Al As interface. Howewver, states derived
from different extrema of the conduction band appear to couple weakly across

the GaAs-Gaj—zAl;As interface.
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3.3.4 Summary and Conclusions:

We have calculated the transport coefficients of Bloch states through GaAs-
Gaj_ Al As-GaAs double heterojunctions. The mode] uses complex-k band struc-
tures and transfer matrix methods in the tight-binding approximation. With these
techniques, &,-resolved transport coefficients can be calculated. This, in turn, allows
for a better understanding of the transmission coefficients of Bloch states derived
from different extrema of the conduction band in GaAs. The incoming electron
is derived from the GaAs conduction band I'-point. Calculations of transport
coefficients associated with various conduction band valleys were carried through
as a function of

o the energy of the incoming state,

e thickness of the Ga; _,Al,As barrier and

e alloy composition, z, in the Gaj.Al; As barrier.

The major result of this study is that, states derived from the same eztremum
of the conduction band appear to couple strongly to each other across the GaAs-
Gaj —gAl;As interface. Transmission through the Gaj_;Al;As barrier is either
tunneling or propagating depending on the nature of the Bloch states available for
strong coupling in the alloy. For energies of the incoming states near the GaAs
conduction band I'-point, transmission through the Ga;_;Al;As barrier occurs
mostly via the coupling to states (evanescent or propagating) that connect to the
alloy conduction band at the I"-point.

In the propagating mode of transport, resonances in the transmission could
possibly be used in GaAs high-speed low-current electronic devices. In an opera-
tional mode, it is desirable to populate the low-mass high-velocity GaAs conduc-
tion band I-point minimum and to depopulate the high-mass low-velocity X and

L valleys. These results could provide the basis for an interesting filter for use in
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high-speed devices!Z.
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CHAPTER 4

ELECTRONIC STRUCTURE OF
SEMICONDUCTOR SUPERLATTICES
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Section 4.1
INTRODUCTION

4.1.1 Scope of this study

This study is concerned with a new approach to the theory of semiconduc-
tor superlattices devised specially for the study of non-local properties, such as
optical properties.

Superlattice structures are made by the alternate deposition of layers of two
lattice-matched solids. Semiconductor superlattices can be viewed as completely
new materials whose electronic and optical properties are not just a combination
of the properties of the bulk constituent semiconductors. In fact, it is possible to
tailor the electronic and optical properties of semiconductor superlattices over a
large range. It is this tailorability that makes semiconductor superlattices vastly
more interesting that the corresponding semiconductor alloys.

Due to the alternate arrangement of layers of semiconductor, the superlattice
primitive cell in x-space can be made to be much larger than that of the constituent
semiconductors. This is accompanied by a corresponding reduction to the Brillouin
zone in k-space. This effect is known as band folding. The concept of band folding
often plays an all important role at determining the general qualitative features
of the electronic band structure. Thus, in a zeroth-order picture, the increase in
the dimension of the x-space primaitive cell translates directly in a proportional
decrease in the dimenston of the k-space primitive cell or first Brillouin zone.
This has the effect of folding the quantum number k associated with the translation
group back near the center of the first Brillouin zone. This folding back of the
Brillouin zone is a completely new property due to the increased repeated distance

and does not have its origin in the bulk properties of the constituent semiconductors.
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In particular, it is possible to create a direct band gap (1. e., whenever the mazimum
of the valence band and the minimum of the conduction band occur at the same
k-point in the Brillouin zone) superlattice out of two indirect semiconductors®.

The optical properties of quantum well structures and semiconductor super-
lattices have generated a lot of experimental work in the past few years. More
specifically, the fabrication of quantum well lasers® has opened a totally new area
of applications. In these quantum well laser systems, quantum mechanical effects
are readily observed as the energy of the light emitted from the quantum well is
greater than that of the corresponding bulk solid. This is one of the examples of
the experimental evidence of the existence of energy subbands.

In the light of these new effects, it is imperative to devise a theory that allows
for a deeper understanding of the optical properties of semiconductor superlattices.
This chapter is devoted to the presentation of a general theoretical formalism well
suited for the study of the optical properties of semiconductor superlattices. The
formalism presented here will serve as a basis for future studies in the area of the

optical properties of semiconductor superlattices.
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4.1.2 Outline of Chapter 4

This chapter is concerned with the study of the electronic structure of semi-
conductor superlattices. The formalism used is particularly suttable for the study
of the optical properties of semiconductor superlatiices.

o The first step leading to realistic superlattice electronic structure is the
accurate calculation of the electronic band structure of the constituent bulk
semiconductors. Within the present formalism, the following procedure allows
us to describe the constituent semiconductors in terms of a single set of basis
Sfunctions:

(1) The local pseudopotential Hamiltonian of each semiconductor forming the
superlattice is expressed in terms of a local pseudopotential Hamiltonian associated
with a reference soltd A total number of 113 plane waves exp(ig - x), where g is

a reciprocal lattice vector, is used.

(i1} We operate a transformation on the local pseudopotential Hamiltonian of
each solid in order to transform from a plane wave representation, exp(ig-x), to
a representation in terms of ko = 0 basis functions associated with the same
reference solid, um(x). We refer to this representation as the k - p representation.
Thus the Hamiltonian of each solid is now expressed in a k - p representation
associated with the same set of kg = 0 basis functions u,,(x). This technique
has a definite advantage, since no approximations are made when matching the

supelattice state function onto the interface plane.

(311) The k - p Hamiltonian of each solid is truncated down to N = 27
basts functions um,(x). This truncation procedure is very satisfying since the
k - p representation prowdes much better convergence than the plane wave
representation. Furthermore ’the k- p Hamiltonian of each solid can be ezplicitely

calculated in terms of the ko = 0 basts functions of the reference solid, um,(x).
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(1v) The complex-k energy band structure is then obtained with the use of a
companton matriz whose etgenvector matriz 1s closely related to the boundary
condition matriz on the superlattice state function. Since we use N = 27 basis
functions u,,(x) we obtain a total of 2N = 54 Bloch solutions ]k”E;kg‘j)) with
complex wavevectors k&j ) at each parallel momentum k| and energy E, in each
solid j = 1, 2.

(v) The superlattice state function is then expanded in terms of the Bloch
solutions lk”E;kg\j)) in each solid j. Since the Bloch solutions Ik”E;kg\j)) are
expended in terms of the basis functions u,,(x) of the reference solid, we can express
the superlattice state function in terms of the basis functions u,,(x) associated with
ko = 0. The expansion coefficients are termed the multi-component envelope
functions. The use of the k - p theoretic allows a description of the superiattice
wavefunciion in terms of basis functions un,(x) which are ezact etgensolutions
of the crystal Hamiltonian of the reference solid at kg = 0.

(vi) A suitable set of boundary conditions on the superlattice wavefunction
allows us to obtain the complex-q energy spectrum of the superlattice, where q is
the superlattice wavevector that classifies the superlattice solutions. We thus obtain
the complez-q energy band structure of the superlattice.

o We would like to stress two very attractive features of the above formalism:

(i) The only empirical input parameters are the local pseudopotential form
factor and the energy band offsets.

(1) The superlattice state function in each solid is expressed in terms of a set
of basis functions u,,(x) assoctated with the same reference solid. We therefore
relax the often used approximation that the kg = 0 functions for all semiconductor
of the group II-V are the same® >, which is clearly a convenient approximation

when matching the superlattice state function onto the interface plane.
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4.1.3.Summary of the Results of Chapter 4

We have applied the above formalism to the case of the GaAs-Alas superlattice.

o The complex-k energy band structure is accurately described by this trun-
cated k - p Hamiltonian derived from a more complete local pseudopotential cal-
culation. It is shown that this method provides an efficient way of obtaining the
bulk Bloch solutions associated with each solid forming the superlattice in terms
of the same set of basis functions. The transformation from the local pseudo-
potential formalism to the k - p formalism allows us to truncate the number of
basis functions from 113 plane waves, exp(ig-x), down to 27 zone-center functions,
Um(X).

e We also present results for complex-q energy band structure for GaAs-AlAs
superlattices of different periods. More specifically we study the variation of the
superlattice band gap as a function of the number of GaAs monolayers forming the
superlattice period, the number of AlAs monolayers being kept fixed.

The formalism presented here will serve as a basis for future studies on the

optical properties of semiconductor superlattices.
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Section 4.2

ELECTRONIC STRUCTURE OF SEMICONDUCTOR SUPERLATTICES

4.2.1 Outline of Section 4.2:

In this section, we develop the theoretical framework to treat the electronic
structure of semiconductor superlattices. The electronic spectrum of semiconduc-
tor superlattices is obtained via a bulk complex-k full-zone k - p description of the
constituent semiconductors. The bulk complex-k full-zone k - p band structure is
derived from a local pseudopotential calculation to obtain accurate description of
the band structure and of the associated Bloch solutions. Within the pseudopoten-
tial and k- p scheme, the bulk complex-k Bloch solutions for the two solids forming
the superlattice structure are expanded in terms of the same set of zone-center
Sfunctions.

The complex-k bulk Bloch states of each semiconductors forms the expansion
set for the superlattice wavefunction. The superlattice bandstructure and wavefunc-
tion are derived from a set of boundary conditions imposed on the envelope

Sfunction at the semiconductor interface.
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4.2.2 Introduction:

The backbone of the theory of the electronic structure of semiconductor su-
perlattice presented here rests on the full-zone k - p description of the constituent
semiconductors forming the superlattice. A review of the k - p theory of bulk
semiconductors is presented in Appendix (4.1). In the full-zone k - p approach the
Bloch state at a general k-point in the Brillouin zone is expanded in terms of a
set of cell-periodic function associated with a spectal k-point in the Brillouin zone,
uyn(ko;x). In the present treatment, we take ko = 0 as the special k-point with
which the cell periodic basis functions are associated.

The theoretical technique used here is based on the full-zone k - p theory
derived from a local pseudodopotential approach as developed in Appendix (4.2).
In the local pseudopotential approach, the Bloch state at a general k-point in the
Brillouin zone is expanded in terms of a set of plane waves exp(ig - x) associated
with reciprocal lattice vectors g. The term pseudopotential refers to a potential
such that the expansion of the Bloch state in terms of the plane waves exp(ig - x)
will converge fairly rapidly.

The formal connection between the local pseudopotential description and
the full-zone k - p description is presented in Appendix (4.3). We would like to
point out two important advantages of this approach.

o By using a full-zone k - p formulation derived from a local pseudopotential
description of the two constituent semiconductors, it is possible to ezpand the bulk
Bloch soluttons in each solid in terms of the same set of cell-periodic part of
the Bloch functions associated with kg = 0. By doing so, we relax the often used
approximation that takes the cell-periodic part of the Bloch functions at the center

of the Brillouin zone to be equal.

o By transforming from a local pseudopotential description to a k-p description
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we increase the convergence with respect to the number of basis functions used
in the description of the band structure and the associated Bloch solutions.

The basic ingredients of the theory developed below are the complex-k bulk
Bloch solutions. The superlattice state function is expanded in terms of the bulk
Bloch solutions associated with complex-k in each solid. The prescription to obtain
the complex-k energy band structure and states with a knowledge of the full-zone
k - p Hamiltonian is developed at length in Appendix (4.4).

In the present section, we are mainly concerned with the description of the
superlattice state function in terms of the Bloch solutions associated with complex-
k. Further, we indicate how the expansion coefficients are determined from a set
of boundary conditions on the superlattice state function across the interfaces.
From these boundary conditions it is possible to derive an efficient and accurate

way to obtain the superlattice electronic energy spectrum.
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4.2.3 k.p Theory of Semiconductor Superlattices

4.2.3.1. Superlattice Wavefunction:

The superlattice is made of two lattice-matched solids belonging to the zincblende
crystal structure. Let j = 1,2 be a label to identify either one of the two constituent
semiconductors forming the superlattice. The set of Bloch states {|kjE; kg\j))} in

solid 7 is a solution of the bulk Schrodinger equation:
~ () : : .
H |k E; k(f)) = E(k|, /cg\J))Ik”E; /cg‘])), (1)

where H G) refer to the bulk Hamiltonian in solid j, and [\ = 1,...,2N]. Note
that Eq.(1) is not an eigenvalue problem, since we have to find the solutions kg\j)
for a given parallel wavevector kjj and total energy E.

Using the technique outlined in Appendix (4.4), the Bloch solution |k} E; lcgj))
associated with the wavevector lcg‘j) can be expanded in terms of a set of ko = 0

basis functions {|m)} of a common reference solid,

x|k E; kg\j)) = exp(ik|| -xn)exp(z’kgj)z)u(k", lcg\j); x), (2.a)
» > N . B
x|k E; kgf)) = exp(ikj| -x”)exp(z'kgf)z) E (x|m)CD(m, lcg\]); k\E) (2.
m=1
The basis functions (x|m) = u,(x) are the same for both solids j = 1,2. Let

C(j)(/ck; k|| E) be the column vector associated with the eigenvalue k&j) consists of
the expansion coefficients C(j)(m, kg\j); k”E) in terms of the ko = 0 basis functions
in the reference solid. As before, the index m will refer to a kg = 0 basis function
in the reference solid. Let N be the number of basis functions (x|m) entering in
the expansion of the Bloch solution (x|k) E; lcg‘j )).

We now indicate how to construct the superlattice state out of the bulk solu-

tions obtained in the preceding section. Let the superlattice state at fixed parallel
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wavevector k|| and energy E in solid 5 be ]k"E ;q; ), where q is a quantum number
that labels the superlattice states. The label q is referred to as the superlattice
wavevector. Let the & be the direction normal to the superlattice interfaces.
We now expand the superlattice state [k||E; g; j) on the set of Bloch solutions
{lk E; /cgf’))} in each solid j:

2N
K E;qi) = Y [k E; kO D0, g Xy, (3)
A==1

where the amplitudes f ¢ )(k(\j), g; k) indicate the admixture of the bulk Bloch state
Iy E; k&j)) in the superlattice state |kjE;q; ).
As seen above, the Bloch solutions in solid j {|kE; k&g))} are described in a
zone-center expansion set {|{m)} which is associated with a common reference solid
Then the superlattice state in solid 7 can be expressed as a linear combination
of zone-center basis functions {|m)} of a reference solid. By using explicitly a

x-representation, we can expand:

2N
ik Esq ) = 3 (=l E; k01 Ok, g ky),
A=1
2N N _ .
Z [ exp(ik|| - x||) exp(ik () z) Z (XIm)C(’)(m,k(ﬂ);kuE)J FO %), g ky),
A=1 m==1
N 2N ' .
Z (x|m) l:exp (k| - x)) Z exp(ik J)z)C’ J)(m k( k||E)f(7)(kg\3),q;k” )jl,
m=1 X—"].
and finally,
N B
(x|kyE; q ) = Z (x|m)F D (m; k) q; x), (4)
m=1

where the functions F(j)(m; k|| q; x) are referred to as multi-component envelope

functions and are defined to be the expression in [. . .J:
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2N
Z {exp(ikg‘j)z)c(j)(m,k&j);k”E) f(j)(kg‘j),q; kj),

A==l

in terms of the basis states at kg = 0 in the reference solid, {|m)}.
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4.2.3.2. Equivalent Solutions:

We note that due to the lack of periodicity of the k- p Hamiltonian, some
of the solutions kg\j) are related to each other by a reciprocal lattice vector
g Thus, some solutions |kj E; lcg\j)) have Re[kg‘j)} outside the first Brillouin zone.
These solutions are approzimate repeated-zone solutions due to the truncation

of the k - p Hamiltonian. These bulk solutions whose Re[kg\j)J lie outside the first

Brillouin should be equal to the bulk solutions whose Re[kg\j)} lie inside the first
Brillouin plus a reciprocal lattice vector §g,. However, since the set of kg = 0 basis
functions {|m)} used in the calculations constitute a truncated set and is not a
complete set, these solutions are only approximate, repeated-zone solutions to the
solutions inside the first Brillouin zone. In higher-index Brillouin zones, the bulk
solutions {|kj E; kg‘j))} contain appreciable admixture of zone-center basis functions
lying at high energy. Since the set of zone-center basis functions is truncated, these
high-energy zone-center basis functions are not include in the expansion set and
therefore, the bulk solutions lying in high-order Brillouin zones are poorly described.

We would like to examine Bloch states whose wavevectors are related by a
reciprocal lattice vector. A more complete treatment is given in Appendix (4.5)
and we point out here only the line of the argument.

Consider two Bloch states associated with the wavevectors
ky =kj + &k, (6.2)

and

K, =k’ + k). (6.)

Suppose that k) and k’)\ are related by a reciprocal lattice vector, g,

k)\ = k’)\ + gp, (7"1)



-160-

where
gy =8| T 89,- (7.0)
Equations (7) imply that
kj =k + g, (8:0)
and,
iky = 8k} + 8g,. (8.5)

We must consider two cases:

(i) In the case where g|j40 we have
kj 751:"'. (9)

Since the Bloch states correspond to fixed parallel wavevector kj| and energy E, this
situation would correspond to another problem unless the Hamiltonian has some
higher symmetry along some directions in the Brillouin zone. We rule out this case.

(%) In the case where g = 0 we have
k= k”', (10.a)

and,

§ky = &k} + 8gu. (10.5)

In this case the two Bloch states have their wavevectors in the #-direction separated
by a reciprocal lattice vector. Bloch states |k||E;lc>\) whose wavevector satisfy
Eq.(10) are said to be equivalent. Thus equivalent Bloch states correspond to
the same physical situation.

Then, it seems appropriate to relabel the solutions lcg\j) into sets of non-

equivalent Bloch states. Let us make the change of label for the solutions kg\j) in
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solid y = 1,2
k@ —k), (11.q)
for the wavevector,
|k E; k7))~ iy B kD)), (11.6)

for the associated Bloch states, and,

FOED, ¢ k) s (j)(kﬂ,’}, g k), (11.¢)

for the superlattice amplitudes. The meaning of the double label is the following:
e 7 labels the sets of non-equivalent Bloch states
e u labels the equivalent partners within the set .

Thus, out of the 2/V solutions
k), A=1,..., 2N, (12.a)

[y £; £$), A=1,...,2N,(12.b)

let there be 2M < 2N sets of non-equivalent solutions

), v=1,...,2M,(13.0)
Ik”E;k%), y=1,...,2M,(13.0)

where the index p labels the equivalent partner solutions within the set 7,

8kU), = 8kU) + dg,u. (13.¢)

We now would like to determine the number 2M of non-equivalent sets +.

As shown in Appendix (4.5), if NV is the number of plane waves {|g)} included in
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the expansion of the Bloch solutions in the local pseudopotential formalism and
M < N is the the number of two-dimensional reciprocal lattice vector g|| included
in the expansion set {|g)}, then the number of non-equivalent solutions is equal
to twice the number M of distinct two-dimensional reciprocal lattice vectors g|-
Thus, for each g)| included in the expansion there are two non-equivalent solutions.
The other solutions are related to these two by a reciprocal lattice vector &g, and
therefore correspond to equivalent solutions. Each different g|| included in the
expansion of the Bloch state gives rise to a set of non-equivalent Bloch solutions.

Since only the non-equivalent solutions are the physically meaningful
quantities, we must solve the boundary conditions only for the non-equivalent
states.

Let us now break the total 2V solutions kg‘j) into 2M < 2N sets kﬁfg of non-
equivalent solutions. We relabel the solutions kg\j) into sets of non-equivalent

Bloch states. Let us make the change of label for the solutions kg\j) insolid j = 1,2

k@ -k, (14.0)
for the wavevector,
Ik 5 k) 25 £ 7)), (14.b)

for the associated Bloch states, and
f:(j')(kg\j)’ q k”)__,f(j)(kgjz, @ kj), (14.¢)

for the superlattice amplitudes.

As above, 7y labels the sets of non-equivalent Bloch states and x labels the

equivalent partners within the set v, and [y = 1,...,2M].
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We now rewrite the expansion of the superlattice state function as

kB 5.5 E D Ik 5 k) O (), @ k). (15)

=1 p
The summation Z —1 18 over the 2M sets of non-equivalent solutions. The

summation ) u 18 over the partner solutions within the set 7.

The relation between the equivalent partners of a set v is shown in Appendix

(4.5) to be
|ky E; k) = exp [iso(j) (1, u)] ey 5 £()), (16)

where the state k|| E; lc(’)) belongs to the eigenvalue k(j) and the state |k)| E; & 7))
belongs to the eigenvalue kﬁ,g The phase exp [zgo(J (v, 1) ] relates a Bloch solution
outside the first Brillouin, k) E; k%), to a solution inside the first Brillouin zone
Ik"E;kgj)). As above, we adopt the convention that Re[kgj)] lies inside the first
Brillouin zone.

We can now write

2M
Ky Eq5) = Y D IkE; kD%, aky), (17.a)
=1 p
or, using
|ky E; &) = exp [iso(") (1 u)] Ik E; k), (17.5)
we have
2M
k| E;q ) = Z Zexp [Z@(J)(’Y u)}lknE kD) D(&G), g Xyp), (18.a)
=1 u

or, regrouping,

2M
kyE;q i) = ) |k E; kﬁ,j))[z eXp[iso(j)(% u)]f(j)(kif;l,q;k||)J, (18.6)

q=1 7
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and finally,
2M . o .
k30550 = Y Iy B; k9N Dk, g Xy), (19.0)
=1

where we have defined,

TG, g Xy) = > exp [iao(j) (7, u)] FO%9), g ky). (19.5)
i

Since only the non-equivalent solutions correspond to physically distinct

situations we only should regard the sum

FO%D, g k) = D exp [iso(j) (v, u)] FO%Y9), ¢ ky), (20)
°

as physically meaningful. Then, within the local pseudopotential formalism, we
know that there are only 2M physically significant amplitudes, f (j)(lcgf),q; k),
where M 1is the number of distinct g| included in the expansion of the Bloch
state. The amplitudes f (j)(kgj), ¢ k|), [y = 1,...,2M] are the quantities of inter-

est.

4.2.3.3 Linear Independence on the Interface Plane:

- In the local pseudopotential formalism, the number of linearly independent
plane wave projected onto the interface plane is equal to the number of distinct
two-dimenstonal reciprocal lattice vectors g included in the exzpansion. It
would thus be possible to project the total set of IV plane wave exp(ig- x) onto a set
of M linearly independent plane waves exp(igj - x}) in the interface plane. In this
case we would solve the boundary conditions for the 2Af amplitudes f (3')(1927'), g ky).

However, another approach would be to solve the boundary conditions for all the
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2N amplitudes f (j)(k ﬁfg, q; k||) and then to extract the information about the 2M
physically significant non-equivalent amplitudes f (j)(kgj),q;k“ ). By doing so,
we use a particular way of dividing the solutions into equivalent and non-equivalent.
Since this division is unphysical, it legitimate to do so given that we are able to
extract the physically meaningful solutions in the ezpansion of the superlattice
state function.

o In the case of a truncated k - p description, the solutions outside the
first Brilloutn are in general poorly described. But, as mentioned above these
out-of-zone solutions are equivalent to some solutions inside the first Brillouin
zone. The latter are very accurately described within the present formalism. In
general only well-described solutions within the first Brilloutn zone are retained
in the superlattice state function ezpansion, the other equivalent solutions are
discarded due to their poor description. _

o Special consideration must be given in the case of solutions right at the first

Brilloutn zone edge, that solutions of the form,
0 PN )
7T igg[l :t Ky, (21)

where /cg‘j) is a real number and g, is the smallest non-vanishing reciprocal lattice
vector. In this case, the description of all the equivalent solutions is equally good

and we cannot discard any solution.
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4.2.4 Superlattice Complex-q Bandstructure:

We now indicate how the complex-q band structure of the superlattice can
be calculated by application of the proper boundary conditions on the superlattice
wavefunction, |k"E; qJ)
4.2.4.1 Boundary conditions:

The superlattice wavefunction IkHE; q; j) is expressed in terms of the same
set of ko = 0 basis functions, {|m)}, of a reference solid,

N
(x|k) E;q;5) = Z (x|m)F ) (m; k) q; x). (22)

m=1

The superlattice primitive cell is shown in Figure (1). The interface plane has been
taken to be at zy = O for convenience.

» The solid (1) extends from 2y = —b to the left of the interface plane up to
zp = 0.

o The solid (2) extends from 2y = 0 up to zg == a to the right of the interface
plane.

Let Ro be the superlattice period. We apply the following set of boundary
conditions on the superlattice wavefunction on both sides of the interface:

(1) Continuity of the superlattice wavefunction at the interface plane zo = 0
(kB30 1)), = [(xIkj B3 q2)] - (23.0)

(i) Continusty of the normal derivative of superlattice wavefunction at the

interface plane 29 = 0

i [V(x]k”E;q; 1)] g = 8- [V(XlkllE; q; 2)] p

. (23.5)

="

(113) Bloch theorem for the superlattice wavefunction,

exp(iq- Ro)[(zlk E5¢ 1)],_ _, = [(xlk E;0:2)] ,_ . (23.0)
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Figure 1: Energy band diagram of a GaAs-AlAs (100) superlattice. The
superlattice primitive cell extends from zg = —b& to the left of the GaAs-AlAs

interface, up to z9p = a to the right of the interface. The GaAs-AlAs interface is
taken to be at zyp = 0.
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(1v) Bloch theorem for the normal derivative of superlattice wavefunction,
exp(iq- Ro)i - [V(x|k||E;q; 1)] ey = 8- [V(x]k”E; q; 2)] r—a’ (23.4)

Let us now solve the boundary conditions equations for all the 2N amplitudes
f(f)(kﬁfz, q; ki) with the provision that we will later extract the 2M physically
meaningful amplitudes f (j)(lcgj), q; k) out of the f (3')(lc§792‘, g k). With this
procedure, the set of boundary conditions on the superlattice wavefunction reduces
to a set of boundary conditions on the expansion coefficients of each of the basts
functions, |m). These expansion coefficients are the envelope functions defined
by Eqs.(8) in terms of the zone-center basis functions of the reference solid,
{im}},

FO)(m; k) q; x) = exp(ik) - x}) -

2N

Z [exp(z'k%z)c(”(m, lcffz;k”E) f(j)(lcgfz,q; k) (24)
yu=1

Then the set of boundary conditions Eq.(10) is equivalent to a set of boundary

conditions on each of the the envelope functions, s.e., for m = 1,2,...,N,

(1) Continuity of the superlattice wavefunction at the interface plane z9 = 0

= [F(Q)(m; kjq; x)J , (25.a)

z=0

[F(l)(m; kg x)]

==

(#%) Continuity of the normal derivative of superlattice wavefunction at the

interface plane z9p = 0

+ [F(l)(m; kg x)i - V(z|m) =

z2=0

(x|m)d - vr) (m; kjjq; x)J

z2==0
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+ [F(Q)(m; kj|q x)i - V(x]m)] (25.5)

z=0

[(x[m)i . VF(‘D‘)(m; kjq; x)}

=

(#13) Bloch theorem for the superlattice wavefunction,

= [F(2)(m; k| q; x)] , (25.c)

2=Qq

exp(z'q-Ro)[ﬂ”(m;kuq;x)]

Zm=—

(1y) Bloch theorem for the normal derivative of superlattice wavefunction,

exp(iq- Ro) -

[[(xlm)i . VF(I)(m; kjq; x)] -+ [F(l)(m;k“q; x)i - V(xlm)J } =
z=——b

F=—1}

H(xlm)i . VF(Q)(m; kg x)} + [F(z)(m; kjq; x)d - V(x]m)] } (25.4)

Z=Q

Equations (12a) and (12.b) constitute a set of 2N equations. Likewise, Egs.
(12a) and (12.b) constitute a set of 2V equations. There is therefore a total of
4N equations. Each envelope function, F(j)(m; kg x), has 2NV components, 1.e,
2N unknown coefficients f (j)(lcgjz,q; ki) per solid j. Thus the total number of

unknown is thus:

[2-N]+[2-N] = 4N, (26)

and is equal to the total number of equations.

e We now obtain the normal derivatives of the ky = 0 basis functions in the

reference material, {|{m)}, t.e., the terms

2 V(iz|m)], (27)
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in Eqs.(12.b) and (12.d). We can use the fact that the functions (x|m) and -
V(x|m) are periodic functions with the space periodicity of the space lattice . Thus,
the function § - V{x|m) can be expanded on a set of periodic functions with the

periodicity of the space lattice,
g-Vix|m) = [ }sz (m, m')(x|m'), (28)

where p, = §-p is the component of the momentum normal to the interface and we

used the expression of the momentum operator in x-representation, p = —iAV.
It is straightforward to express the set of boundary conditions of Eqs.(12) in

an etgenvalue system for the 4N unknown coefficients f (J‘)(k%, q; k)| ), where j =

1, 2. By using Eq.(8.a) for the envelope function,

2N
Z [exp(zk z)C(J)(m k() k”E)}f(J (k(ﬁ)’q, kj|), (29)
Tu=1

we obtain the following relations for m = 1,2,... N,

2N
Z [C(l)(m, kL k"E)}f(l)(kg), g k)=
Tu=1
2N
> [0(2)(m,k%22;kn’f’]f Dk k) (30-0)

Tu=1

2N
Z [Z [Tikg‘)é(m, m') + po(m, m' )] C(l)(m Ic( k”E)Jf( )( 1),q k)=

yu=1
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2N
> [Z[ﬁkgfﬁ(m,m)-l-pzm m')] ¢!, k2 knE)}f(Q)( , & k)
=1L m
e (30.5)
N
exp(iq- Ry) Z [C( m, ,,,,,knE)eXp(—zk(”b)}f(l)( kL) g k) =
yu=1
2N
Z {C(z)(m lc( ) k"E)exp(zk( ) )Jf( )(k%,q,k”) (80.c)
Ju=1
exp(iq- Ro) -
2N
Z [Z [hkglgb‘(m, m') + p,(m, m')] C‘(l)(m ,/cglu,k"E)exp(—-zk(l)b)]
yp=1L m!
FOEY, g ky) =
2N
> [Z [12k3)5(m, m') + pa(m, m")] @ (!, £2); ) E) exp(ik 2) )]
yp=1Lm
@ *3), aXxp) (30.4)

Let us express the set of 4V equations given by Eqs.(17) for the 4N unknown
coeflicients f @)k ( 3) ;@ kj)) in a matrix form.

To do so, let us define the [2N ] -dimensional column vector #{7) (q) composed of
the expansion coefficients f (j)(kgjg, q; kj ) of the envelope function F(j)(m; k| g; x).

Also let us define the [2V - 2V ] diagonal matrix D(k%) whose matrix elements

are the complex-k values k% in solid ;.



-172-
We define the [2IV - 2IV] diagonal matrix D(q) whose matrix elements are the
complex-q values of the superlattice wavevector.
We also define the [2]V - 2N]| matrix M(k)| E; j) whose first [V - 2N ] are the
set of Eqs.(13.a) whose second [N - 2IN] are the set of Eqgs.(13.b).

We can thus write, symbolically,

(31)

(1 E; cU(m, k(]) k| E)
1E39) = 5k + )00 (m, £); )

Thus the set of equations Eqs(13) can be written as
Mk E; 1) - 1)(q) = M(K E; 2) - £ (q
for the set of equations Eqs(17.a) and (17.b) and,
exp [iD(q) - Ro] - M(kj|E; 1) - exp [—zD(k%)b] -f(l)(q) =

M(k)E;2) - exp [z'D k 2 ] 2)(q)

for the set of equations Eqs(17.c) and (17.d). Equations (19) constitute a set of
two [2N - 2N| matrix equations to be solved for the two [2/V| -dimensional column
vectors f() (q) in solids j = 1, 2.

It is now a simple matter to express Eqs.(19) as an eigensystem for the column

vector £{1)(q). Inverting Eq.(19.a) we find
(@) = Mk E;2)] 7" - My E; 1) - £(q)
or, by defining the transfer matriz T(k)E) as
T(kE) = [M(kyE;2)] "' - M(k) E; 1), (34)

we can write,

f(2)( )= T(k|E)- f(l (35.a)
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or more explicitly,

2 2 V(1 .
FAkE, k) = Y TR, k0 E) - O, g k). (35.0)
7lﬂl
o The physical meaning of the transfer matrix T(k"E ) is clear: The transfer
matriz indicates the mizing between the different Bloch states {IkyE; lcg]g)}
across the interface plane.

Then Eq.(19.b) becomes,
exp [:D{q) - Ro] -M(kj E;1) - exp [—ZD(k(l))b] -f(l)(q) =

M(k||E; 2) - exp [z'D(lc%)a] -T(kE)- f(l)(q)

By rearranging,

exp [iD(a) - Ro] - fV(q) =
exp [z'D(kglg)b] . [T(k”E)]_1 - exp [z'D(lcgfg)a] - T(k|E)- f(l)(q). (37)

Equation (24) constitutes an eigensystem for the column vector #{1)(q). Diagonalization

of the matrix,
exp [zD ] [T(k”E] —t - eXp [zD(kgiz)a] - T(k|E), (38.a)

yields the complex-q band structure of the superlattice through the matrix of Bloch

factors,

exp [iD(q) - R (38.5)

Once the set of coefficients f(l)(q) are known in solid (1), the set of coefficients

f(g)(q) in solid (2), can be calculated with the use of the transfer matrix, T(k| E),

f(z)(q) T(kyE) - f(l (39)
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4.2.4.2 Truncated Transfer Matrix: Reduced Eigensystem:

As it stands, the eigensystem
exp [D(q) - Ro] - £)(q) =

exp[zD(lcgl’Z)b] . [T(l:"E)]_"1 - eXp [zD(/c(fz) ] T(kE)- f(l (40.a)

and,
f(q) = T(kyE) - V) (q), (40.5)

is a [2N - 2N] eigensystem for the 2N superlattices amplitudes f{! (lc % u,,q,k”)
and f (2)(k£’2’2, q; k||). The index yu runs over all the bulk solutions.

k()

eT/3] THh = 1,-.., 2N,(41.a)

corresponding to the Bloch states,

lky£; k1)), Tu=1,...2N.(41.5)

As mentioned above we are interested in a reduced eigensystem for the non-

equivalent solutions,

FO®RY, gk =) exp [z'so(j (v, u)} 9%, a k), (42)
u
where Re[kgj)] is in the first Brillouin zone and the sum u is over the equiy-
alent partners belonging to the set y. We must therefore extract the physically
meaningful 2M amplitudes f ( q k") out of the equivalent 2N amplitudes
FOED), g k).
The procedure for going from the above [2/NV - 2N] eigensystem for the 2V

superlattices amplitudes f(J) ) ,q ky) to a reduced [2M - 2M | eigensystem for
I
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the 2M superlattices amplitudes f (J')(/cgj),q; k) ) is outlined in Appendix (4.5) for
the local pseudopotential formalism and in Appendix (4.6) for the truncated k-p
formalism.
We give here the general line of the developement:
o By definition, two equivalent wavevectors kﬁf)‘ and kgj)‘, belonging to the

same set 7y are related through
860, = k1) + Ggpu, (43)

where g, is a reciprocal lattice vector. The phase relation between equivalent

Bloch states belonging to a given set 7 is
Ik £; £0)) = exp [iso(j) (v, N#’)} Ik E; k), (44)

where the state Ik”E; kﬂfg) belongs to the eigenvalue kg’ll and the state |k E; k(%)‘,)
belongs to the eigenvalue kgjz,.
o We must therefore express the non-reduced transfer matrez,

T(k(), k0 E),

that couples all the partners k(l,) , and £(2) of the non-equivalent sets v and 7/, in
7 u Vi

terms of a reduced transfer matriz,

Q(lcgz), lcgll); k| E),

that relates the states k'gf) and /cgl,) where both Re[/cgl,)J and Re[/cgg)] lie tnside
the first Brilloutn zone.
o This is done by expressing the proper phase relations between the equivalent

partners k% and kgj) of the set v where the solution /c,(yj) lies within the first
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Brillouin zone. We then perform a sum over all the partners ) u while expressing
the phases with respect to the solution kgj) lying within the first Brillouin zone.
o We arrive at a reduced [2M - 2M| eigensystem for the 2M superlattices

amplitudes fU ( k() » g kyy),

FOED, g k) = Zexp[Z'so(")(%u)}f( (k9), @ ky), (45)

J7!
corresponding to the solutions kgj) lying inside the first Brillouin zone.

o The reduced eigensystem takes the following form
exp [iD(q) - Ro] - 1)(q) =
exp[z’D(lc(l) b] [ k"E)] ' - eXp [z'D( k(2)q ] Qg E)- f(l )s (46.a)

and,
£2(q) = (i E) - V) (@), (46.8)
where we have defined the [2M - 2M ] reduced transfer matriz

Qk\E) = Q(]cg ), k g,),k”E) 1,9 =1,...,2M,(47.0)

and the diagonal matrices
exp [z’D(kgj))z] = exp(z'kgj)z) v =1,...,2M .(47.0)
The above eigensystem constitutes therefore an eigensystem for the the ex-

pansion amplitudes

f(q) = 1D, g k) vy=1,...,2M,(48.0)
and,
f2(q) = 1P, g k) y=1,...,2M,(48.D)
where the 2M superlattices amplitudes f ( ,,),q, kj|) are
f(")(k(qj),q; k)= Zexp [w(”(w u)}f(’ (k). g kyp), (49)
"

where Re[kgj)] lies inside the first Brillouin zone for j = 1, 2.
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4.2.4.3 Actual Truncation of Transfer Matrix:

In the present work, we have performed a truncation of the transfer matriz
to include only those solutions whose real part lies instde the first Brillouin
zone. This can be justified on the grounds that, due to the truncation of the k- p
Hamiltonian, the out-of-zone solutions are approximately described and should not
enter in the expansion of the superlattice state function.

We have proceed as follow:

o The Hamiltonian of each solid forming the superlattice is expressed in terms
of a local pseudopotential Hamiltonian. The local pseudopotential Hamiltonian
is expressed in terms of 113 plane waves exp(ig - x).

o From the transformation that diagonalizes the pseudopotential at ko = 0,
the Hamiltonian is transformed from the {|g)}}-representation (local pseudopoten-
trals) to the {|m)}-representation (k - p). The k - p Hamiltonian of both solids
forming the superlattice is thus expressed in terms of the same set of basis func-
tions (x|m) = u.,(x) associated with the reference solid. At this point the k- p
Hamiltonian is truncated to include /N = 27 basis functions u,,(x) associated with
ko =0.

o The complex-k bandstructure is obtained from this truncated k-p Hamiltonian.

This produces 2IN = 54 solutions

4

e =1,...,54,(50.a)
corresponding to the Bloch states,

k) E; /cgjg), T =1,...,54.(50.b)

o The eigensystem derived from the boundary conditions then involves a non-

reduced transfer matriz,

T(k2), k() Xy B), T yE = 1,...,54,(51)
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that couples all the partners k( ) ! and kg ‘2 of the non-equivalent sets v and ~'.
The transfer mairiz ¢s then truncated to include only 18 solutions. We
then obtain a reduced transfer matriz,

Q(/c( ),kgll),k"E), 1,9 =1,...,54,(52)
that relates the states k(g) and lc(l) where both Re{ kK )} and Re[k(z)] lie inside the
first Brillouin zone. The number 18 corresponds to twice the number of different
g|| contained in the first 15 free-electrons plane wave states having reciprocal

lattice vectors:
2
g = 7”(0, 0,0), (41, £1, 1), 2 (i2 0,0), (53)

where a is the bulk lattice constant for the solid under consideration. Thus for
each kj| and E, we obtain a [18 - 18] eigensystem for the 18 superlattices amplitudes
f (j)(kgj), q; kjj), corresponding to the solutions Icgj) lying inside the first Brillouin
zone. This produces 18 complex-q superlattice wavevector.

By using this truncation procedure we discard the following states:

(1) Real-k Bloch states with Re[kﬁfz] > 27 /e and Im[kgjg] == 0. These out-
of-zone real solutions are equivalent to real solutions Icgj) inside the first Brillouin
zone.

(i) Complex-k Bloch states with Re[kﬁfz] > 27 /a and Im[k%];éo. These
out-of-zone complex solutions are equivalent to complex solutions lcgj) inside the
first Brillouin zone.

(1%¢) Purely imginary-k Bloch states with Re[/cgj)] = 0 and Im[k(J ]#0 and
very large. These solutions are very rapidly decaying solutions that contribute

to the superlattice state function only on the interface plane.
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4,2.4.4 Symmeftric Truncation of Transfer Matrix:
As mentioned above, special care must be taken whenever the Bloch solutions

lie exactly on the first Brillouin zone,

Q) = +-gu £ ix), (54)

T

DD | =

where Kig\j) is a real number and g, is the smallest non-vanishing reciprocal lattice

vector.
To perform a symmetric truncation of the transfer matriz we must include
solutions by pair of inversion and time-reversal. That is, if

) =+ 0l &

is a solution lying within the first Brillouin zone, then we must also include, in the
reduced eigensystem, the following time-reversed pairs of solutions:

o For the first time-reversed pair,

k) = KU+ iQl), (56.a)
. ¥ . .
—k{) =—kU) 4 iQU). (56.5)

o For the second time-reversed pair,

—k% = —K Sf& — z'ng?‘, (56.¢)
lcgfu* =k —iQ), (56.d)

We refer to Appendix (5.1) to show that the time-reversed partner of a Bloch

state associated with wavevector ky, 1s a Bloch state assoctated with wavevector

—k;, to within a phase factor exp(ip).
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Let ko be a solution on the first Brillouin zone edge,

1 .
kfyO = '2‘90 + k4, (57)

where gg is the smallest non-vanishing reciprocal lattice vector. The two time-
reversed pairs are

o For the first time-reversed pair,

1 .
koo = 590 + ik, (58.a)
. * 1 . - PPN
K0 = ——Ego T 1K+, (08.6)

o For the second time-reversed pair,

1 .
—kqo = -—590 — 1K, (58.¢)
* 1 .
koo = 7% — Ky (58.0)

From these four solutions we construct the symmetrized ltnear combinations,
writing |ky) for the Bloch state Iy E; ky),

o For the first time-reversed pair,

¥
kg0, — kg, ) = ko) £ [—F o), (59.0)

associated with the time-reversed pair,

(k,,o, —k;(,). (59.5)

o For the second time-reversed pair,

| k0, k00 ) = | —hyo) = k30, (60.0)
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associated with the time-reversed pair,

(=20 5%0). (60.6)

Only one symmetrized linear éombination was retained for the expansion of
the superlattice state function. This approach has the advantage of producing
a symmetric truncation of the transfer matriz whereby time-reversed pairs
are tncluded in the ezpansion of the superlattice state function. Some basic

symmetry properties of the transfer matrix are discussed in Appendix (4.7)
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4,.2.5 Results
In this section we present some results obtained from the above formalism. We

apply the formalism to the GaAs-AlAs (100) superlattice.

4.2.5.1 Complex-k Bulk Bandstructure: k- p Theory

We first analyse the complex-k band structure of bulk GaAs and bulk AlAs.

e Figures (1) and (2) show a typical complex-k band structure for GaAs and
AlAs, respectively, as obtained by the k-p method outlined above. Only the energy
bands within the first Brillouin zone are shown. The complex-k band structure
corresponds to vanishing wavector parallel to the (100) interface plane, ¢.e., kj =
0. At a given energy E, the purely real values of k, are indicated by a solid line on
the right panel of the figure and the purely imaginary values of &, are indicated by
a solid line on the left panel of the figure. Complex values of k, are indicated by
a dashed line, Re[k;] being on the right and Im[k,] being on the left of the figure
respectively. The origin of the energies is taken to correspond to the top of the
GaAs valence band. The top of the AlAs valence band is therefore shifted down by

the valence band offset,
AE, = 0.15| EAAS(r) _ gGaAspy | (61)

Numerically we have, AE, = 0.266eV.

As mentioned above this band structure is obtained from a local pseudopoten-
tial calculation including 113 plane waves exp(ig - x). Then the Hamiltonian
is transformed from .the {|g}}-representation (pseudopotentials) to the {|m)}-
representation (k - p) in terms of basis functions of a common reference solid.

The k - p Hamiltonian is then truncated down to include N = 27 basis functions
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Figure 2: Complex-k band structure of GaAs along the (100) direction, respec-
tively. Only the energy bands within the first Brillouin zone are shown. The
complex-k band structure corresponds to vanishing wavector parallel to the (100)
interface plane, ¢.e. kj = 0. At a given energy E, the purely real values of k, are
indicated by a solid line on the right panel of the figure and the purely imaginary
values of k, are indicated by a solid line on the left panel of the figure. Complex
values of k, are indicated by a dashed line, Re[k,] being on the right and Im[k,]
being on the left of the figure respectively. The zero of energy is taken at the top

of the GaAs valence band maximum.
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Figure 3: Complex-k band structure of AlAs along the (100) direction, respec-
tively. Only the energy bands within the first Brillouin zone are shown. The
complex-k band structure corresponds to vanishing wavector parallel to the (100)
interface plane, t.e. k” = 0. At a given energy E, the purely real values of &, are
indicated by a solid line on the right panel of the figure and the purely imaginary
values of %, are indicated by a solid line on the left panel of the figure. Complex
values of k, are indicated by a dashed line, Relk,] being on the right and Im[k,]

being on the left of the figure respectively. The zero of energy is taken at the top
of the GaAs valence band maximuin.
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Um(x). Out of the 2N = 54 solutions obtained,

k), Yu=1,...,54 (62.a)
corresponding to the Bloch states,
|ky E; (), | yp=1,... 54 (62.b)

we only plotted 10 solutions Icgj) whose real part lies within the first Brillouin zone.
The symmetry of the Bloch states at k = 0 and k = 27/4(0,0,1) are
indicated. One the right panel, which shows Relk,], we can identify, in solid lines,
the heavy-hole (Ag) and the light-hole (A}) bands and the two lowest conduction
band (A{) . On the left panel, which shows Im[k,], we can identify two major
bands for which k, is purely imaginary. Both of these bands originate from the
top of the valence band and connect real bands across the energy gap. The band
of A; symmetry connects the ltght-hole band and the first conduction band across
the energy gap. The band of A5 symmetry connects the heavy-hole band and the
second conduction band across the energy gap. We can also identify complez
bands for which both Re[k,]| and Im[k,| are non-zero. These bands are indicated
by pairs of dashed lines. These bands emanate from the X-point. One complex
band of special interest is the band that connects the points X ¢ and X §. This

complex band is of the form,
B0 = 4 1 - (4)
N = :!:Egz 4 k37, (63.a)
where ;cg\j) is a real number and
4
9z = —F(O, 0,1) (63.h)
a

is the smallest non-vanishing reciprocal lattice vector.
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Figure 4: GaAs-AlAs (100) superlattice energy band gap as a function of
the number of GaAs monolayers forming the superlattice period. The superlattice
period consists of 2 monolayers of AlAs.
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4.2.5.2 Superlattice Energy Gap:

We used the procedure described above to study the GaAs-AlAs superlatices
grown along the (100) direction. GaAs-AlAs (100) superlattice energy band gap
as a function of the number of GaAs monolayers forming the superlattice period.
Monolayers are in units of a/2, where a is the lattice constant of bulk GaAs
and AlAs. The superlattice period consists of 2 monolayers of AlAs. As seen
in the figure, the superlattice band gap decreases when the number of GaAs
monolayers increases in the superlattice period, the number of AIAs monolayers
being kept fixed.

The superlattice state at the conduction band edges is derived from the lowest
conduction band A of GaAs. At the energy corresponding to the superlattice
conduction band minimum, the Bloch solutions forming the superlattice state are
propagating states derived from the first conduction band. The AlAs Bolch solutions
derived from the X-point lie higher in energy and do not contribute substantially

to the lowest superlattice state.
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4.2.6 Summary and Conclusions:

We have developed a new formalism for the study of the optical propertieé
of semiconductor superlattices. This formalism is essentially based on a local
pseudopotential formulation and on the k- p theory. We summarize the major
ingredients of the theory.

e An accurate description of the bulk constituents semiconductors forming the
superlattice is obtained. This is done using a set of 113 plane waves, exp(ig-x), in the
expansion of the bulk Bloch solutions within the local pseudopotential formalism.

A transformation from the local pseudopotential formalism to the k - p
formalism is then performed. At this point, the k - p Hamailionian of both
constituent semiconductors is expressed in terms of the same set of ko = 0
basis functions, u.,(x). This results relaxes the often used approximation the the
ko = 0 basis functions for all III-V semiconductors are the same.

The complex-k energy band structure is then obtained within the k - p for-
malism. Due to the nice convergence features of the k- p formalism, it is legitimate,
at this point, to truncate the k - p Hamiltonian from 113 basis functions down to 27
basis functions u,,(x). Each bulk Bloch soultions, associated with real or complex
values of k, is then expanded in terms of the same set of kg = 0 basis functions.

The superlattice state function is then expanded in terms of the bulk Bloch
solutions associated with complex-k in each solid. A set of realistic boundary
conditions is then applied on the superlattice state function and formulated in
terms of eigensystem for the superlattice state function. The eigenvalues of this
eigensystem are the complex values of q, the superlattice wavevector.

It is therefore possible to obtain the complez-q energy band structure of the

superlattice without having to perform energy searches.

The method is applied to the study of the superlattice band gap as a function



~189-

of the number of GaAs monolayers forming the superlattice period.
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APPENDIX 2.1

Effective-mass theory: Bulk Semiconductors

In this appendix, we develop the theory necessary for the study of shallow
Coulomb centers within quantum well structures. For the cases treated here, the
constituent semiconductors forming the quantum well structure are direct, . ¢ solids
for which the maximum of the valence band is believed to be located at the same
value of k as the minimum of the conduction band. Therefore a single-valley
effective mass theory is adequate for the electronic structures investigated here.
The back-bone of the treatment resides in the multi-valley éﬂ'ective mass theory
(EMT) for shallow impurity states in bulk semiconductors as was first developed
by Kohn!.

The EMT was first developped to treat the motion of an electron in the
Coulomb potential of an impurity atom imbeded within a perfectly crystalline host

solid. The Schrédinger equation for the impurity electron wavefunction, |¥), is:
H|¥) = E|¥), (1)

A ~ 0
where the Hamiltonian H is the sum of the unperturbed Hamiltonian , H , cor-

responding to the host solid, plus the impurity potential, U (x),
. . 0
H=H +U(x). (2)

The eigenfunctions for the unperturbed problem are the set of Bloch functions,

{ink}}, associated with the energy eigenvalue spectrum E, (k) forming the host



-193-

solid band structure:
' [nk) = E, (0} (3)
In x-space representation, the Bloch function |nk) is of the form
(x|nk) = exp(ik - x)u,(k; x), (4)

where u, (k; x) is a function periodic in the x-space lattice and is referred to as the

cell-periodic part of the Bloch function
un(k;x + R) = un(k; x), (5)

where R is a Bravais lattice vector generating the x-space lattice. The index n
is the band index that labels the eigensolutions of Eq.(3) and 7k is the crystal
momentum. The Bloch solutions {|nk)} are orthogonal with respect to band index

n and wavevector k,
(nk|n'¥') = 6(n, n')63(k — k'), (6.a)

or,
/ Pz (k; X)unr(K;x) exp [i(K — k) - x] = 6(n,n)63k —K').  (6.5)

Since the cell-periodic functions, u, (k; x) are periodic in the direct lattice (cf.
Eq.(5)), we can expand these functions on a set of plane waves exp(ig- x) associated

with the reciprocal lattice,

Un(k;x) = ) Cn(k; ) exp(ig - x), (7)
g
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where g is a set of reciprocal lattice vector generating the reciprocal lattice. The

set of coefficients Cy, (k; g) is obtained by inverting Eq.(7),
Cn(k;g) = f d*xup (k; x) exp(—ig - x) (&)

The Bloch solutions {|nk)} of Eq.(4) can now be written as

(x|nk) = exp(ik - X)u,(k; x), (8.42)
(x|nk) = exp(ik - x) Z Cn(k; g) exp(ig - x). (8.0)
g

Vith a knowledge of the unperturbed crystal eigensolutions, {|nk)}, the im-
purity electron state ,|¥), is constructed from a linear combination of the host solid

Bloch states, s
d*k
¥) = Z / Gy ink) (9)

where the integral is over the first Brillouin zone and the sum runs over all bands.
The expansion coefficients, F, (k), are called the envelope functions and indicate the
degree of mixing of the Bloch states |nk) in the expansion Eq.(9). The Schrodinger
equation for the impurity electron, Eq. (1), can be transformed in matrix equation
in the coefficients F, (k) by replacing the expansion of Eq.(9) into Eq.(1) and by

projecting onto the Bloch state {nk|:

3
Eate) — EIF, 0+ Y [ (‘;';’3 (rkU @I K)Fw () =0, (10)

where

(nk|U (x)|n'K) = /d3x(nk|x)U(x)(x|n'k'), (11.a)
or, using Eq.(4) |

(nk|U (x)|n'k') = /deu;(k; x)U (X)un(K'; 3) exp [z’(l( —k)- x] . (11.5)
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Eq.(10) is the single-valley effective mass equation (EME) for the envelope functions

F,(k). The matrix equation (10) contains a diagonal part:
[En(k) - E]Fn(k)

0 . . .
since H  is diagonal in the {|nk)}-representation, and a off-dtagonal part:

'Y
>/ kI KO (),

which is associated with the scattering between the two Bloch states |nk) and |n'k)
by the Coulomb potential U (x).

As Eq.(10) stands, it constitutes an infinite set of coupled integral equations
for the envelope functions F, (k). To find which values of k and ¥ are mixed by the
perturbing potential U (x), it is instructive to expand the product u:;(k; x)un(K'; x)

on a set of plane waves associated with the reciprocal lattice g as in Eq.(7),
Ll .
U, (k; X)un (K x) = Z Crnn (kK'; g) exp(ig - ). (12.2)
g

As in the expansion of Eq.(6) only reciprocal lattice vectors enter in the expansion
since the product u;(k; X)un(K; x) is a periodic function with the periodicity of
the direct lattice R . The set of coefficients Cpn/(kk'; g) is given by the inversion

of Eq.(12),
Cnn(kK'; g) = /d3xu:(k; x)un(k'; x) exp(—ig - x). (12.5)

The Coulomb scattering matrix elements (nk|U(x)|n'K) can then be expanded

in the following way:

(nk|U (g)|n'K) = ) Cont(kK'; 8)Unms (k — k' —g), (13)
g
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where Uy, (k — k/ — g) is the Fourier transform of the Coulomb potential,

(14)

47 e?
Unn’(k_ ¥ — 8) = —le_ X — 8]2 },
for
Ux) = ——?-2—. (15)
elx|

Here ¢ is the static dielectric constant of the host solid and |x| is the distance
measured from the Coulomb center. The set of EME for the envelope functions,

Fr.(k), then becomes:

3K
! !/
[En(k) — E]Falk) + ‘; , § , / Crnt (KK; @)Unnt (k — X' — g)Fn: (X)) = 0.
g

—
Do
5

A

w

n!

(16)
The Coulomb attraction of the impurity atom is greatly reduced by the static
dielectric constant, ¢, of the host solid. We anticipate the set of equations Eq.(16),
will have solutions for which F, (k) has small amplitude unless » = 0 and k — ¥/

is small, t.e.,

k —¥|<]g]. (17)
Also, we assume that
[Unnt(k — K — )< |Upnt (k — k’)|, (18)

by the explicit form of Upnr(k — K — g) given by Eq.(14). As a consequence, all
the g>#0 terms are dropped in Eq.(16) and we set, for n' = n = 0,

C(kk';g = 0) ~~ C(kk;g = 0) = 1. (19.2)

The equality in Eq.(19) is exact and is a direct consequence of Eq.(12.b) and of the

normalization condition

{(nk|n'K') = §(n,n )63k — k'), (19.)
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Equation (20) assumes that the function uy(k;x) for » = 0 does not vary
appreciably over the range of k values for which the envelope function F(k) =
Fy(k) has large amplitude. The above approximation is essentially equivalent to
taking the cell-periodic function uq(k; x) as constant in Eq.(7).

Furthermore, we expand the unperturbed eigenenergies Ey(k) of the band
n = 0 about the extremum k = 0 up to order k2,

2
Eo(k) = Eolk = 0) + ——12, (20)
2m

where m" is the effective mass associated with Bloch states derived from near the
conduction band extremum. Within the set of approximations mentioned above,

the EME becomes:

[—hi*-kz - EbJF(k) + /

2m

a®¥ ;
(2W)3U(k —¥)F(K')=o, (21)

where Ey = E — Ep(k = 0) is the energy of the impurity state measured with
respect to the host solid band edge. This simplified version of the EME can
be transformed in x-space by introducing the Fourier transform of the envelope

function F (k):

3
F(x)=/(ZF];Q,F(k)exp(ik-x). (22)

By Fourier transforming Eq.(20), we obtain:
—p2 5
{——;vx — Eb]F(x) +UEF@E) =0, (23
2m
which indicates that F'(x) is the solution of a hydrogenic-like EME in which the
Coulomb potential has been reduced by a factor e.
The EMT has been particularly successful in the study of shallow donor states

in direct band gap semiconductors. Within these solids, the eigenenergy spectrum
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corresponding to Eq.(17) is close to the simple Hydrogen atom Rydberg series, where
the free-electron mass m is replaced by the effective mass m" and the vacuum
dielecric constant €¢; has been replaced by the host solid dielectric constant e, 7.e.,

*
m~—m and e—e:

2
E* 1[e2 m'
n = ;2— ? 572 |’ n=123,...(24.a)
or,
e |2[m*
* 0
€ m
where E, is the Hydrogen atom Rydberg series. The corresponding Bohr orbit

associated with the impurity electron ground state is similarly modified to read:
* € 77',2
a = ;5 ;-n-: ’ (25.(1)

o = [i][—%}a()»ao (25.)
€Q m

or,

where ag is the Hydrogen atom Bohr orbit. The most spectacular success of the
EMT has been in the theory of shallow donors states in GaAs. In this case, the
relations Eqs.(22) and (23) have been verified experimentally to hold to a high degree
of accuracyQ. In GaAs, we have m' = 0.06Tm and ¢ = 13.1¢p such that the
binding energy (n = 1 in Eq.(21)) is of the order of |E| =~ 5.311 meV. Similarly
the donor ground state Bohr orbit is of the order of a* =~ 100 A. Thus, the donor
ground state wavefunction extends over a large number of primitive cells in x-space.
Typically, for shallow donors the envelope function F'(k) extends appreciably

in k-space only to values of the order of
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For shallow donors in GaAs, this value corresponds to approximately to 1% of the
Brillouin zone. An estimate of the validity of retaining only the n = 0 term in

Eq.(16) can be made by transforming Eq.(16) to read, for g = 0,

1 d°¥
Fu(k) = —{E—m] f otk — K)Fy(K) =0, (27)

which gives, in order of magnitude,

[P J0)] ~ ['—?H“—S}m (©), (28)
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APPENDIX 2.2

The purpose of this appendix is twofold.

e First, we develop the effective-mass equation for shallow impurities in quan-
tum well structures.

e Second, we indicate the procedure to solve the effective-mass equation for

the impurity envelope function within a variational formalism.

2,2.1 Effective-mass theory: Quantum Well Structures

In this section of the appendix, we develop the effective-mass equation for
shallow impurities in quantum well structures. Having described the effective-mass
theory formalism for bulk semiconductors, we now turn to the application of this
technique in the calculation of the electronic spectrum of shallow impurity states in
quantum well structures. Since the bulk periodicity is broken by the introduction
of an interface, the wavevector k that labels the Bloch state solutions { |nk)} of the
bulk solid is not a good quantum number anymore.

Consider the case for which the quantum axis normal to the interface is along
the & direction. The wavevector k can now be decomposed on a component parallel

to the interface, k||, and a quantized component normal to the interface, ik,

= kj| + &ky, (1)

with

k| = gks + §ky, (2)
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being the component of the wavevector k parallel to the interface plane. Since the
translational symmetry of the bulk solid is preserved parallel to the interface, the
component kj still remains a good quantum number to label the Bloch solutions.
The component of the wavevector perpendicular to the interface, #%,, is now
quantized in discrete values associated to the energy levels of a particle confined
within a one-dimensional quantum well. The total energy, E, of the Bloch state is
also a good quantum number to label the solutions.
In the case of quantum well structures, and in the spirit of the EMA outlined
in Appendix (2.1), we now label the Bloch solutions of the bulk Hamiltonian H 0
by {|nkj)}, where the index n labels the energy subbands associated with the one-
dimensional confining quantum well and k| labels the component of the wavevector
parallel to the interface. The Schrodinger equation for the unperturbed problem is
now:
H Olnku) = Eyn(ky)inky), (3)

A

where now the unperturbed Hamiltonian, H , can be decomposed in the following

way:

A= 1)+ 22). (4)

~ 0 . . . .
The Hamiltonian H (k") gives rise to a two-dimensional energy dispersion, Eo(k” ),

~ 0
and the Hamiltonian H (z) contains the confining quantum well potential, V (z),

3270 22
20 = =" {—a—}—kV(z). (5)

8z2

am”*

Accordingly, the energy eigenvalue spectrum, E, (k“), can be decomposed in
Eyn (k) = E°(ky) + En(ikq). (6)

The energy function Eo(k") represents the two-dimensional energy dispersion

relation. The series of solutions E,(iky) label the energy levels associated with
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e A0
quantum well Hamiltonian H (z). In the case where V(z) represents a simple

rectangular potential well, the discrete energy levels Ey, (§ky ) are of the form

h2

En(8ky) = kn?, (7)

om*

where the set of %, represent the discrete values of the wavevector normal to the
interface plane.

As seen by Eq.(6), the energy eigenvalue spectrum is dispersionless in the &-
direction, ¢.e., the energy function E, (kj|) contains no k, dependence. This is a
direct consequence of the fact that we are considering a single quantum well and

herefore the overlap vanishes in the #-direction. The energy dispersion relation,

[

En(k|), consists of a series of two-dimensional subbands, E 0(k”), belonging to the
energy levels Ey, (8ky,) of the quantum well.

Within the effective-mass approximation, the cell-periodic functions are as-
sumed to remain constant in the small range of k-space for which the envelope
has large amplitude. Therefore, the Bloch solutions of Eq.(3) can approximately be

written as a product:

Inkj) ~ [k )|}, (8.2)
or, in x-representation,
(x|nk)) ~ exp(ikj - x| )pn(2), (8-5)
with
(x[ky) = exp(ik) - x)), (8-¢)
and,
(z[n) = pn(2), (8.9)

where x|| is a two-dimensional position vector parallel to the interface plane,

x| = %7 + §, (9.a)
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and

x = x| + &z, (9.5)

In the well model, the functions p,(z) are eigenstates of the one-dimensional

~ 0
operator H (z),

H (2)pp(z) =

*

7’ [’ZQ knz]son(z). (10)

2m

As for bulk semiconductors, we must solve the Schrédinger equation for the

defect wavefunction in the presence of a Coulombic potential U (x),
H|¥) = E|¥), (1)

where, as in Appendix (2.1), the Hamiltonian H is the sum of the unperturbed solid

~ 0
Hamiltonian , H , plus the impurity potential, U (x),
. ~ 0
H=H 4 U(x). (12)

As in the case for bulk, the impurity wavefunction, | ), is expanded on the

set of Bloch solutions, {|nkj)}, of Eq.(3),

k” nk”) (13)

where the summation now runs over all the subbands 7 associated with the quantum
well. By substitution of the expansion Eq(12) into the Schrédiger equation Eq.(10),
and by projecting onto the Bloch solution (nk” |, we obtain the matrix equation for

the envelope function, F, (ky),

[En (i) — ] Fa i) + Z/

(nk”lU )]n'k”’)Fn/(k”') = 0, (14)
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where
(nky U (x)|n'K) = / dx)|.dz{nk) | 2)U (x)(x|nky). (15)

More explicitly, we have, using Eq.(7.b):

(nky U (x)|n'ky") = / dgx”.dzgc::(z)exp(—zk”-x”)U(x)gon:(z)exp(z'k“’-x”) (16)

As in the case for bulk semiconductors, the matrix equation (14) contains a diagonal

part:
[E°(k)) + En(8ks) — E] Fr(ky)

0 . . .
since H ~ is diagonal in the {|nkj)}-representation, and a off-diagonal part:

d?ky’
Z f ! 5 (nky [U (x)|n'ky ) Fos (i),

which represents the scattering between between the Bloch states |nk)) and ln'k“ )

by the Coulomb potential U (x).
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2.2.2 Variational solution of the Effective-mass equations
We now develop the formalism necessary to solve the effective-mass equation

Eq.(14) by a variational method.

2.2.2.1 Crystal momentum representation:

In order to obtain a variational formulation of the effective-mass equations in
the crystal momentum representation (k-space), we first expand the two-dimensional
envelope function, Fn(k" ), on a set of orthogonal variational orbitals Eﬂ(k”)} in

the following way:
Fa(ky) = D AR5, (k). (17)
7

Substituting the variational expansion Eq.(15) in the effective-mass equation Eq.(14)
and projecting onto the basis function {5, (kj|)| in kj-space we obtain the matrix

equation to be solved for the expansion coefficients A} in the {5, (k) )}-representation,
~ pp! ’
Y H,.(E)AL =0, (18)
n'p!

up!

where the matrix elements H nnt(E) contain the energy E and are defined to be

7
HUM(E) = THE(E) 4+ UsS, (19.0)

where the kinetic energy term is

T4 (E) = (8, (k)| [En (ky) — E] 12, (i )}3 (m, '), (19.5)

' >k,
TEE(E) = [ f éﬂ—)’quﬂ(k”)[z«:n(k“) — E| 5,k )J&(n, n'), (19.¢)
and the Coulomb term is

Uﬁﬁ’; = d2x”.dz£;(x”)goZ(z)U(x)g”:(x”)gon:(z), (19.4)
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where we have defined the two-dimensional Fourier transform

4%k
Eulx)) = f #Eu(kn)exp(ikn - x|))- (20)

Note that the kinetic energy term, T,m,(E), is evaluated in k-space, whereas the
Coulomb potential energy term, U gﬁ,, is evaluated in x-space. The set of functions

{€u(x))} is simply the two-dimensional Fourier transforms of the basis functions

Eu(kj )} used in the crystal momentum representation of Eq.(17
p X

2.2.2.2 Wannier representation:

We now wish to give an equivalent expansion of the envelope functions ex-
panded in Wannier representation (x-space). As in Eq.(12) the defect wavefunc-
tion is expanded on the set of solutions {|nkj)} corresponding to the unperturbed

problem:
E / amy2 ! (Kilnlky) (21)

by using the x-representation of the Bloch solutions, Eq(7.b):

(x|nky) ~= exp(ikj - x| )pn(2), (22)
we obtain
{x|¥) = Z / Fn(ku exp(ik| - x| )i (2). (23)
By regrouping terms,
(xlw) = [ f %Fn(kn)em(zku - x))|enl2), (24)

or

(W) = D Fa(x))en(2), (25)
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where the envelope function Fy(x)|) is the two-dimensional Fourier transform of

Fy(ky) defined by,

Fu( =fd2k"Fk k-
n (X)) = 2n)2 w (k) exp(iky) - x)- (26)

As in the crystal-momentum representation, the envelope function in x-space is

expanded on the set of variational orbitals {€,(x))},
Fn(x)) =Y Aléu(x)), (27)
"

and the defect wavefunction can now be written as,

(x]¥) = ) Fulx))on(2), (28)
(x|¥) = Y ATEux))en(z). (29)
np

In this representation, the matrix equation to be solved for the expansion

coefficients AZ:
~ pp! /
H 1 (E)Al =0, (30)
nfu!

N L
where now the matrix elements H 55,(E ) are defined to be

! pu! iy
H,  (E)=THI(E)+ UL, {(31.a)

nn!

where the kinetic energy term has been Fourier transformed,
THEE) = (Eu(xpI[En(x)) — E]1€u(x)))d(n, n'), (31.5)

Tﬁ:’:ll(E) = {/ d2x”£;(x”)[En(x”) — E]Eur(k”) §(n,n'), (31.¢)
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and the Coulomb term is still given by

Ukt = / x| 428, (x) ) (2)U (%) (x) o (2), (3L.9)

where we have defined the two-dimensional Fourier transform of the kinetic energy

term: d2k"
En(xy|) = f (271_)2En(k“)exp(ik” - X)), (32.a)
with,
Balep) = TovE, + Ak?, (82.)
2m 2m

where V§" is a two-dimensional Laplacian operator.
[
Thus, diagonalization of the matrix H ZZ,(E) in the representation {£,(xy)},

yields the energy eigenvalues E, and the energy eigenstates through the expansion

(W) = Y A"E,(x))en(z)- (33)
n
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APPENDIX 2.3

Hamiltonian for Shallow Donors in

Ga;_ Al As -GaAs-Ga;_, Al,As Quantum Well Structures

The purpose of this appendix is to give an explicit expression for the Hamiltonian
for a shallow Coulombic donor in Ga; —;Al;As-GaAs-Gaj__zAl;As quantum well
structures.

The effective-mass Hamiltonian corresponding to a Coulomb center located
at a distance c from the center of a finite quantum well of width 2¢ along the §
direction (the #-axis is normal to the interface plane) and height V; (see Figure 1

for geometry) is:

—$2

E 3
2m1

Vi + Uy (x) ...in region (1),(1.a)

—p2
H(2) = —Vi + Ua(z) + Vo ...in region (2),(1.b)
2mg

2

~ —

H(3)= ——V3z + Us(x) + Vo ...in region (3),(1.c)
2my,

where mI refers to the bulk GaAs (well material) effective mass and m; refers
to the interpolated effective mass in Ga;_ Al As (barrier material). Since the
bulk dielectric constants of GaAs and Gaj__;Al;As, €; and e respectively, differ
slightly, the Hamiltonian must include terms due to electrostatic image charges.

The potentials Uj (x), Ua(x) and Us(x) represent the Coulomb interaction between
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the electron and the impurity ion as well as the ion image charge. When the origin is
taken to be on the ionized donor, the left and right boundaries of the quantum well
are respectively 290 = —[a + ¢| and 2y = [a — ]. We let the dielectric mismatch

between GaAs and Ga;_ Al As be expressed as:

_ [e1 — e

p= ——-—[61 el (2.a)
- 261

P e ea]’ 20

and the positions of the jon image charges along the #-axis to be:

o= [ wros [222ema). oo

7y (n) = —2([’”;1}@ +o)+ ( - { * lD(a— c)), (3.0

where
[z] = integer part of z. (3.¢)
Letting
p= V2 +y2 (4.2)
and

x| = Vo2 + 22, (4.5)

the potential energy in region (1) can be written as:

Ur(x) = — ¢ + o1 (x) + v (2), (4.c)
€1 x|
where
e2 o]~ 1/2
it = -2 X ol -l (4.
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21 & —1/2

vy (x) = [—Z} > p"[pz + [z — 757 (n)] 2] ;
n==1

for the electron-ion potential.

In region (2), the potential energy can be expressed as:
9 o0 -—1/2
€ 2
Un(x) = [——}p’ > p“[p2 + [z — 23 (v)] ] ,
€2
n=0
for the electron-ion potential.

In region (3), the potential energy can be expressed as:

00 —1/2
Us(x) = [—-‘pr’ > p"[p2 + [z — 27 (n)] 2} :

€2 n=0

for the electron-ion potential.

(4.1)
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APPENDIX 3.1

The purpose of this appendix is threefold.
e First, we develop the empirical tight-binding theory for bulk solid.
e Second, we study the the special case of zincblende semiconductors.

o Finally, we list the set of empirical tight-hinding interactions used for GaAs

and AlAs.

3.1.1 Empirical Tight-binding Theory of Bulk Solids

In this part of the appendix, we describe the empirical tight-binding method
used to provide a description of the electronic band structﬁre of a solid. This
method was first suggested by Bloch! in 1928. In this method, the set of Bloch
solutions, {|nk)}, associated with the energy eigenvalue spectrum E, (k) forming

the solid band structure,

Ho|nk) = Ep (k)|nk), (1)
is expanded in a Wannier representation consisting of a set of Bloch sums,
{lav; k)}, in the form:

|nk) = Z C(av; nk)|lav; k), (2)

The Bloch sums {|av;k)} consist of a sum of atomic orbitals {|av; R)} located
within the primitive cell labelled by R and modulated by the appropriate Bloch

factor, exp(ik - R),

|av; k) = —I—_Zexp(ik-R)lau;R), (3)
VN R
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where [av; R) consists of an atomic orbital of symmetry @ on an atom of type v
within the primitive cell labelled by the translation vector R. N is the number of

primitive cells in the lattice. More explicitly, we write,
(xlav;R) = ¢ (x —d, —R), (4)

where ¢,,(x — d, — R) is an atomic orbital of symmetry o« on an atom of type
v located at the position d, within the primitive cell labelled by the translation
vector R. The set of vectors [R,d,] spans the whole three-dimensional crystal.
When the local orbital representation, {|av;R)}, is used, the Schrédinger
equation Eq.(1) for the Bloch solutions {|nk)} can be transformed into a generalized
eigenvalue problem of the form
Z [I;'O(av, o'vik)— E, (k)S (av, o' v'; k)] C(a'v';nk) =0, (5)
alyl!

where the Hamiltonian matriz elements H olav, &/ v'; k) are defined to be:

N 1 ~
Holav, o'V k) = ~ Z exp(tk - R)Hy(av, o' v} R), (6.a)
R

and the overlap matriz elements S(av, o' v'; k) are defined to be:
1
S{ov, V' k) = Iz E exp(ik - R)S (av, o/ v'; R). (6.0)
R
In Eq.(6) the matrix elements Ho{ov, o/ v'; R) and S(av, o’v';R) are simply the
Hamiltontian matrix elements and the overiap matrix elements between two local

orbitals jav; R) and |o/v; R'), i.e.,
I}O(au, VR — R') = (av; R|fI0[a'1/';R'), (7.a)
or,

A

Ho(av,d'v;R —R/) = / x4, (x —dy —R)Hopar(x —dy —R'), (1.5)
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and

S(av, o/ V;R — R') = (av;R|e'V;R)), (T.c)
or,
S(av,d'V;R—R) = / Bx¢.,(x —d, — R)paryi(x — dpr — R). (7.d)

As seen by Eq.(5) the size of the matrix to be diagonalized is N, - N, where
Ny is the number of atomic orbitals per atom and N, is the number of atoms
in the primitive cell. Thus, the order of the secular matriz is equal to the total
number of orbitals in the primitive cell Solution of the matrix equation Eq.(5)
in the local orbital representation {|av; R)} yields the energy bands E, (k) and the

Bloch functions {|nk)} in terms of the expansion coefficients C(av; nk),
|nk) = Z C(av; nk)|av; k), (8.2)
[ 424
or, using Eq(3),
1
|nk) = — Z C(av; nk) Zexp(z"k ‘R)|av; R)| . (8.9)
N

av R

In the expansion of the Bloch sums {|av;k)} in terms if the local atomic

orbitals, {jav;R)},

1
lav;k) = —— )" exp(ik - R)|av; R), (9)
N R
the sum over the translational lattice vectors R must be carried to convergence,
at each wavevector k. As it stands, the direct evaluation of the Hamiltonian and
overlap matrix elements, ro(aV, 'v';R — R') and S(av,dv;R —R'), is too

cumbersome due to the large number of multicenter integrals.
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However, Slater and Koster? suggested that the method outlined above, also
known as the linear combination of atomic orbitals method (LCAOQ), could be
used effectively as an interpolation scheme. If, for example, more powerful
band structure calculation techniques are used to obtain the solutions of Eq.(1)
at high-symmetry k-points in the Brillouin zone, then the LCAO matrix elements
Ho(av, o/v';R — R’) can be treated as parameters to be fitted to the accurately
known energies Ey, (k) at these high-symmetry points. Thus when the Hamiltonian
matrix elements Ho(av, o/ v';R — R’) are treated as disposable parameters, a
simple diagonalization of the matrix equation Eq.(5) will give the energy eigenvalues
Ep (k) and the Bloch functions {[nk)} in the local orbital representation, {|av;R)}.
The method outlined above is referred to as the empirical tight-binding method
(ETBM) due to the fact that the matriz elements Ho(av, o/v'; R — R') appear-
ing in the matrix equation Eq.(5) are treated as parameters to be fitted to energy
eigenvalues obtained by more detailed calculations at high-symmetry k-points in

the Brillouin zone.

We now discuss some of the basic assumptions of the ETBM when used in the

study of the electronic structure of tetrehedral semiconductors.

(1) The basis set {|av;R)} used is usually restricted to a small number of
orbital symmetries o on each atom v. Typically four orbitals per atom are used,
t.€., @ = §,pz,Dy,Pz- This set is often referred to as a minimum basis set,
or the sp® model. The adequacy of the use of one s orbital and three p orbital
has been examined in detail by Kane® and Chadi%. Both of these authors used a
pseudopotential Hamiltonian and verified the minimum number of LCAO necessary
to reproduce the energy band structure Ej (k) obtained in the plane-wave-basis
calculation. They found that the use of s and p orbitals is quite adequate for the

valence band and the lowest-lying conduction bands. In the calculations presented
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below, the minimum basis set mentioned above is increased so as to include an
excited s-like orbital denoted s*. We therefore use five orbitals per atom in the
sp35* model.

(i2) Orbitals centered on different atoms are assumed to be orthonormal, 7.e.,
S(av,d'v;R —R') = §(a, )5 (v, v")63(R — R'), (10.a)

so that
S(av, d'v';k) = §(a, & o(v, V). (10.0)

The neglect of the overlap matrix elements has be justified by Anderson® in the case
of molecular systems. There exists a set of orbitals which represent the ezact solu-
tions of the one-electron problem. These orbitals are not orthogonal but neverthe-
less satisfy a secular equation of the form Eq.(5) with a diagonal overlap matrix
S(av, a’v';k). Of course, in that case the Hamiltonian matrix Ho(av, o'V k) ap-
pearing in Eq.(5) is not the matrix elements of the true Hamiltonian, but rather
those of a non-Hermitian pseudo Hamiltonian. It it therefore justified to as-
sume that S(av, o’v';k) = §(a, /)6(v, V'), provided that the Hamiltonian matrix
H o{av, a’v’; k) is not interpreted as the matrix elements of the true Hamiltonian.

(1) Only first (and sometimes second) nearest-neighbors are retained in the
construction of the Bloch sums |av; k) in Eq.(2). This implies that the summations
of Eqgs.(6) neglect the interactions ﬁo(au, o/v';R) and the overlap S(av, o/v';R)
after the first or the second nearest-neighbors shells. Again this can be justified
partly if we regard the interactions H o(av, o/ v'; R) as effective average interactions
rather than as the matrix elements of the true Hamiltonian H o- In the applications
discussed below, only first nearest-neighbors interactions are retained within the
sp3s’ model. Furthermore, it is assumed that the Hamiltonian has local cylindrical

symmetry about the azis connecting pairs of interacting atoms.
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3.1.2 Application to Zincblende Semiconductors
As an application of the ETBM as a method of band structure calculations, we
consider more specifically the case of semiconductors with the zincblende structure.
The zincblende structure consists of a face-centered space lattice with primitive

translation vectors

a=|c|&+9) (11.0)
o]
a2 =7 F +8), (11.5)
- .E-(- 3) 11
a.3—_2jx+z, (11.¢)

where a is the length of the side of the conventional cubic unit cell. The reciprocal

lattice is body-centered cubic with primitive reciprocal lattice vectors

[1][ 47 ]

by = |=||=|(+& + ¢ —13), (12.0)
(2]l a |
1][4r]

by = ||| (2 —7 +9), (12.b)
2] ]
1][4r]

by = [ 1| | —x +5 +9), (12.0)
2] e |

where [47 /a]is the length of the conventional cubic unit cell in k-space.

In the case of the zincblende structure, the primitive cell contains two different

basis atoms with coordinates
d.a = 0, (13.(1«)

and,

d, = H(i +3+14), (13.0)

where d; and d. represent the coordinates of the anion (Ga,AlIn...) and the cation

(As,Sb,...), respectively. The anion has been arbitrarily placed at the origin of the
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primitive cell. Since we are considering five atomic orbitals per atom,

*

Q= Ss,8 ,Pg, Py, P2y (14)

then we have ten atomic orbitals per primitive cell and the matriz equation Eq.(5)

isa 10 X 10.

Let C(v; nk) represent the five-dimensional column vector consisting of the

coefficients C(av; nk) associated with the basis atom of type v, 1. e.,
C(v; nk) = C(av; nk), a=s,s, Pz, Py, P2-(15.a)

And let H(vv'; k) represent the 5 X 5 tight-binding interaction matrix consisting

of the interactions Ho(av, o/ v'; k), between the atoms v and ¢/, ¢.¢.,
H(VV’; k)= IA{O(O‘V’ a’V’§ k), o, a=s, 5*, Pz, Py, pz-(15.0)
Then, the secular equation Eq.(5) can be written in the following matrix form

H(aa; k) H(ac; k)} ' [C(a; nk) C(a; le)] (16)

H(ca;k) H(cc k) C(c;nk)}=E"(k)[C(c; nk)

In Eq.(16) the subscripts v = @ and v = ¢ refer to the anion and cation,

respectively.
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3.1.3 Empirical Tight-Binding Parameters

We now present the empirical tight-binding model used to obtain the electronic
band structure of GaAs and Ga;_ Al;As. As mentioned above the model uses five
orbitals per atom and tight-binding interactions up to first nearest-neighbors are
retained. The sp3s* used here is similar to that of Vogl et al.%.

Tables 1 and 2 show the set of empirical tight-binding Hamiltonian matrix
elements for GaAs and AlAs in the sp3s* model. The interactions showed stand

for the following matrix elements:

E(s;v) = (sv;le}olsv;R), (17.a)
E(p;v) = (psv; R|Ho|pov; R), (17.5)
E(s*; V)= (s*v;RII:IOI.s*V;R), (17.¢)

Vis;s) = 4(sa;le10|sc; R), (17.4)

V(P23 ) = 4poa; R|Holps ¢ R), (17.¢)
V(P25 py) = 4pz a; RIHolpyc; R), (17.7)
Vs, a;p,c) = 4{saq; R|I:I()lpzc; R), (17.9)
V(.s*, a;p,c) = 4(s*a;R|I:IOlpzc; R), (17.R)
V(p, a; s*, c) = 4(pza;R|I:IO|s*c; R), (17.9)

where v = g, ¢ for the anion (As) or cation (Ga,Al), and R labels the primitive cell.
Thus, we have a total of 13 parameters: 6 on-site energies, E(s, a), E(s, c), E(s*, a),
E(s*, ¢), E(p, a), and E (p, s); and 7 transfer tight-binding matriz elements, V(s; ),
V(pz, pe), V(pe, py) V (s, a;pz, ), V(ps, a; 5, ¢), V(s*, a; pz, ¢), and V (pg, a; s, ¢).

In Eq.(6), the matrices H(aa; k) and H(cc; k) represent the anion-anion and

cation-cation self energies, respectively, and the matrices H(ac;k) and H(cg; k)
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Interaction (eV)
E(s;a) —8.3431
E(p; a) 1.0414
E(s;¢) —2.7150
E(p;c) 3.6686
E(s%;a) 8.5914
E(s";c) 6.7386
V(s; ) —6.4513

V(pa; pa) 1.9546

V(ps; py) 5.0779
V(s,a;p,c) 4.4800
Vis,c;p,a) 5.7839
V{s",a;p,c) 4.8422
Vip,a;s",c) 4.8077

Table 1. Empirical tight-binding interactions for GaAs. The model used
incluges first nearest-neighbors interactions and five atomic orbitals per atoms,
sp®s . The notation for the tight-binding interactions is described in the text.
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Interaction (eV)
E(s;a) —T7.5273
E(p; a) 0.9833
E(s;c) —1.0790
E(p;c) 3.5867
E(s%;a) 7.4833
E(s";¢) 6.7267
V(s;s) —6.6642

V(ps; pz) 1.8780
V(pz; py) 4.2919
V(s,a;p,c) 5.1106
V(s,c;p,a) 5.4965
V(s",4;p,c) 4.5216
Vi(p,a;5,c) 4.9950

Table 2. Empirical tight-binding interactions for AlAs. The model used
inclu;ies first nearest-neighbors interactions and five atomic orbitals per atoms,
sp3s”. The notation for the tight-binding interactions is described in the text.
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represent the anion-cation and cation-anion transfer interaction matrices, respec-
tively. Diagonalization of the matrix Eq.(16) for each wavevector k yields the
energy eigenvalues Ey, (k) and the expansion coefficients C(av;nk) of the Bloch

states {|nk)} in terms of the Bloch sums {|av;k)},
|nk) = Z C(av;nk)|av; k). (18)
[+ 174

In the case of the alloy Ga;—;Al;As, we use the virtual crystal approzima-
tton. In this method the empirical tight-binding interactions are weighted accord-

wng to the alloy composition z.
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APPENDIX 3.2

The purpose of this appendix is twofold.
o In the first part of this appendix, we give a detailed derivation of the transfer
matriz method used in the sudy of interfaces systems.

* In the second part, we make the distinction between layer orbitals and

sublayer orbitals.

3.2.1 Transfer Matrix Theory

The purpose of this part of the appendix is to give a detailed derivation of the
transfer matrix method as used within the empirical tight-binding theory.

Interface systems are most easily studied in terms of planar orbitals. Before
defining the planar orbital, let us first introduce the notion of sublayer. A sublayer
consists of the smallest number of adjacent atomic planes parallel to the inter-
face such that each sublayer interacts with the same number of other sublayers
on each side. In the cases treated here, 1.e., (100) and (111) interfaces, we can
view the sublayer as being a single atomic plane (either a anion atomic plane or a
cation atomic plane).

Let us define a planar orbital corresponding to an atomic orbital of symmetry
o within the sublayer labelled by o to be the two-dimensional Bloch sum

|ao; k) = 1 Z exp(ik) - R)lo; R} o), (1)
NI Ry

where R is a two-dimensional primitive lattice translation vector and o labels the

sublayer in the §-direction. N)| is the number of two-dimensional primitive cells in
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the crystal. Let there be N, orbitals of symmetry o per two-dimensional primitive

cell.

The localized orbital |a;Ryjo) is simply
(xlo;Rjjo) = gal(x —Rj — do”), (2)

where ¢o(x — R} — do”) is the local orbital of atomic symmetry o located at
position do° within the two-dimensional primitive cell labelled by Rjjand in the
sublayer o. The position dq° can be decomposed into a component parallel to the

interface and a component perpendicular to the interface. Thus, we write
do’ = 1,7 + #oay, (3)

where f,7 is a two-dimensional position vector parallel to the interface and &cay
is the component perpendicular to the interface which specifies the distance of the
sublayer o from the origin. The sublayer is labelled by ¢, and ag is the distance
separating adjacent sublayers. The set of vectors [R",dac] spans the whole three-
dimensional crystal.

Having defined the two-dimensional Bloch sum, |ac; kj|), it is clear that we
can also define the three-dimensional Bloch sum |q; k| k;) corresponding to the

wavevector

= k)| + &k;, (4)

by summing over the sublayers o with the appropriate Bloch factors exp(ik,oag),

los kyjk,) = —— Z exp(ikzoa0) ac; k), (5.2)

V-4 g

or, using Eq.(2)

1
las kyky) = — Z exp(ik,oag) Z exp(ik) - Ry|)|e; R o), (5.0)
\/ﬁ o R”
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where N = Nj - N; is the total number of primitive cells in the crystal. Eq.(5.b)

simply corresponds to the bulk case for the Bloch sum

lav; k) = —i—Zexp(ik ‘R)|av; R), (6)
vN R
where the summation has been broken into a two-dimensional part ZR” and a
one-dimensional part ).

Let us define [¥(kj E'; 0)) as the tight-binding electronic wavefunction of the
Hamiltonian H, evaluated on the sublayer ¢. The wavefunction [¥(k E; o)),
corresponding to a given parallel wavevector k| and energy E and evaluated on
the sublayer o is simply constructed out of a linear combination of the two-
dimensional planar orbitals, {|ao; kj|}}, as defined by Eq (4). We write the

expansion of |¥(k| E; o)) as

Na
[¥(ky E;0)) = Z C(ao; ky)lao; ), (7)

a=1

where the expansion coefficients C(aa;k") indicate the degree of mixing of the
planar orbitals {|ac;kj)}. Of course, in order to obtain the wavefunction over all

space, we must add the contribution on each individual sublayer,
¥ E) = ) _|¥(k)E; o)), (8.9)
o

or, using Eq.(7),

Na
V(| E)) = Z[Z Clao; k”)laa;k“)J. (8.5)

o La=1

We now introduce the transfer matrix as it is proposed by Schulman and

Chang!. Let N, be the number of sublayers that interact on one side with a given
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sublayer, t.e., a given sublayer ¢ has non-zero tight binding matrix elements only
with NV, other sublayers on one side.

Let us solve the Schrédinger equation on a given sublayer o,
H[¥ (k| E;0)) = E[¥ (k) E; 0)), (9)

where the wavefunction I\Il(k”E; o)) on the sublayer ¢ is expanded in terms of layer
orbitals {|ac; k||)} as in Eq.(3). The Hamiltonian H is the interface Hamiltonian.
Let us now define the [Ny - Ng | tight-binding matrix that couples the layer

orbitals on sublayers o and ¢/ as Hg, (o,0; k”) with matrix elements

af T

[HE (c,0; ky )] = (ao; k| I[H — EJ lo o ky ). (10)

Let us also define C(c; k| ) be the column vector of dimension N, correspond-
ing to the coefficients C(ao; k)) on sublayer . With these definitions, Schrédinger

equation Eq.(9) can be cast into a matrix form

. |
Y. Hg(o,0+ miky)- C(o + m;ky) = 0, (11)

m=-—N,
where the summation is over all the sublayer m that interacts with a given sublayer
o. The [Ny - No ] matrix Hg(o,0 + m; kj|) couples the [2N, + 1} sublayers

entering in the summation. The summation can be broken into two parts

Hg (0,0 + Nysky) - Clo + Nos k) +

N, —1
3 He(o,0 + m;ky) - Clo + m; k) =0, (12)

m=-— Ng

where the term m = N, has been singled out. By multiplying by Hg(o, 0 +

No; K| )—1, we obtain

C(o + Nyik)) = —Hg(0,0 + Ny k)t -
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Ny—1
Z Hg(o,0 + m;k)|) - Clo + m; k) =0, (13)

m=— N,
which relates the column vector C(o + Ny; kjj) on the sublayer o + N, to the

column vectors C(o + m;kjj) on the precedent 2N, sublayers,
m=—Ngz, —N, +1,...,N, — 1. (14)

The matrix that allows us to obtain the column vector C(o; k”) on sublayer ¢ in
terms of previous column vectors is called a transfer matriz. The transfer matriz

ts defined in terms of sublayers.
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3.2.2 Layer Orbitals
In the second part of this appendix we distinguish between layer orbitals and
sublayer orbitals .
If the set of equations (14) can be iterated 2N, times, then, by a product of

transfer matrices, we can relate the set of 2N, coefficients

C(oc + Ng; ky), Clc + No + 1; kj),...,Clc 4+ 3Ny — 1; kj(), (15.2)
to the set of 2N, original coefficients

C(oc — Ny; kj),Clc — N, + 1; ky)..,Clo + Ny, — 1; k). (15.5)

In that case, the two sets of coefficients have no sublayer in common and the product
of transfer matrices that allows us to completely decouple the two set of sublayers
can be viewed as transferring the electronic wavefunction over layers, or groups of
sublayers. This is equivalent to the idea of principal layers introduced by Lee and
Joannopoulos®. In the following, a layer Z' will be composed of 2N, sublayers o.
In the systems considered below, a sublayer will consist of a single monoatomic
plane and a layer can be viewed as a group of monoatomic planes. With this in

mind, the equation,
C(Z;k”) = T(Z;k”) -C(X — 1 k), (16)

will refer to the transfer between layers X and £ — 1, t.¢., groups of sublayers.
The transfer matrix T(Z; k) ) transfers over layers and is just the product of
transfer matrices that transfer over sublayers, T(o; k).
By a simple extention, we can define a layer orbital in the same way as we

defined a sublayer orbital by Eq.(2).
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The following example will make clear the distinction between layers and sub-
layers. Figure (1) illustrates the case of the (100) interface in zincblende semicon-
ductor. Shown in Figure (1) are the atomic positions in a zincblende structure
projected on a (100) plane. Fractions denote height above base in units of the
length of the conventional cubic unit cell, a. The open circles represent cations
(t.e., Ga, Al) and the filled circles represent anions (t.e., As). The open circles
represent cations (7.e., Ga, Al) and the filled circles represent anions (1.e., As). The
points 0 and % are on the cation face-centered cubic space lattice. The points ;i—
and % are on the anion face-centered cubic space lattice displaced from the cation
face-centered lattice by (& + § + #).

In Figure (1) we define the layer 2 in terms of the 2N, = 2 sublayers ¢ and
indicate how the product of two sublayer transfer matrices T(c; kj) allows us to
obtain the layer transfer matrix T(Z; k| ).

Let C(Z ;k||) designate the column vector consisting of the atomic orbitals
on the cation sublayer o within the layer . Let A(Z; ki) designate the column

vector consisting of the atomic orbitals on the anion sublayer o within the layer

z.
By application of a sublayer transfer matrix, we obtain,
[C(Z;k")J = [T(1)] - [A(E N l;k”)] (17.a)
A(E;k”) - C(Z k”) ' )

The sublayer transfer matrix T(1) transfer from one anion sublayer to the adjacent

cation sublayer.
Application of another transfer matrix yields.

[C(E; ku)]

A(Z; k) (17.8)

C(Z — 1;k))
= [T(1)] - [T(2)] - [A(g — 1'ku)}’

In this case, the two column vectors have been completely decoupled and

have no sublayer in common. Thus the product of the two sublayer transfer
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Figure 1. Atomic positions in a zincblende structure projected on a (100)
plane. Fractions denote height above base in units of the length of the conventional
cubic unit cell, . The open circles represent cations (t.e. Ga, Al) and the filled
circles represent anions (%.e. As). The points 0 and i- are on the cation face-centered
cubic space lattice. The points ;} and % are on the anion face-centered cubic space
lattice displaced from the cation face-centered lattice by i—(i + ¥ + §).
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matrices,

T(Z; k) = [T(1)] - [T(2)],

allows the transfer from one layer to the other.

(18)
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APPENDIX 3.3

This appendix serves two purposes:

o In the first part of this appendix, we indicate how the complez-k band
structure of a solid can be determined given a knowledge of the transfer matrix
within the empirical tight-binding method.

o In the second part of the appendix, we give the transformation rule to ex-
press the interface tight-binding wavefunction either in a complez-k bulk solutions

representation or in a planar orbital representation.

3.3.1 Complex-k Bandstructure

In this part of the appendix, we indicate the prescription to obtain the
complex-k solutions {|kjE;k;)} in the planar orbital representation {lac; k) }
once the transfer matrix is known.
Consider the case for which the axis normal to the interface is along the §

direction. The wavevector k can now be decomposed on a component parallel to

‘the interface, kj, and a component normal to the interface, ik,:
= k| + &k, (1.a)

with
k) = 2k: + §ky, (1.5)

being the component of the wavevector k parallel to the interface plane. Since the

translational symmetry of the bulk solid is preserved parallel to the interface, the
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component ky still remains a good quantum number for the Bloch solutions
and remains real The total energy ,E, of the Bloch state is also a good quantum
number to label the solutions. It is more convenient, when dealing with an interface

system, to label the Bloch state solutions by {|kyE;k.)}, with
Holk|E; kz) = E(k|), k2)[kj E; k2). (3)

In Eq.(3) we labelled the Bloch states |k E; k) in the extended zone scheme
and therefore we got rid of the band index, n, that appears in Eq.(1.1). It is
important to realize that Eq.(3) is not an eigenvalue problem, since for a given
k|| and E(kj|, k,) there exists a finite number of &, real or complex, for which the
Bloch state |k|E; k,} is a solution of Eq.(3). As mentioned above, the component
of the wavevector parallel to the interface, k||, and the total energy, E, can be
used to label the solutions of Eq.(3). However, the component %, is not a conserved
quantity across the interface and cannot be used to label the solutions of Eq.(3). We
now show how to obtain all the solutions of Eq.(3) for k, real or complex within the
ETBM framework. In this case the spectrum E'(kjj, k) is referred to as a complex-k
band structure.

Let us define |k|| E; k2, o) the Bloch solution of Eq. (3) evaluated on the sublayer
o. Let the bulk primitive cell be made up of, say, L sublayers in the 2-direction.
Then, after being transferred over the L sublayers, the bulk Bloch state on sublayer
Lo, |k E; k2, 0 + L) has to be equal to the Bloch state on sublayer o, [k E; k25 0),

multiplied by the Bloch factor exp(ik,Lag), t.e.,
k|| E; ks, 0 + L) = exp(ik.Lao)k||E; kz, 0). (4)

With this information, we arrive at an etgenvalue problem for the solution

of Eq.(3.3). We write T(o;kjj) as the transfer matrix that gives the coefficients
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C(o;kj) on sublayer o in terms of the coefficients C(c — 1;k|) of the preceding

sublayer [0 — 1],
C(o; ky) = T(o; k) - Clo — L; k). (5)
Successive transfers then lead to the set
C(o + L; k) = [T(c + L;Xy)] - C(o + L — L; k),

Clo+ L; k) = [T(o + L; k)) - T(c + L — L;ky)] - C(o + L — 2 ky),

Clc + L;k)) = [T(G' + Lik))-T(e+L—1; kj)-...-T(oc + l;k")] - C(o; k),

(6)
where a product of L transfer matrices is included in |.. ..
But we also know, by Eq.(2.12), that
C(o + L; kyj) = [exp(ik,Lag)|C(o; k), (M)

must be true for the Bloch theorem to be realized.

By combining Eq.(2.14) and Eq.(2.15) we arrive at the eigenvalue problem,
[T(O' + Liky)- Te+L—L;k)-...- T(o + l;k”)] -Clo ) =

lexp(ik,Lag)] C(c; ky), (8)

for the [Ny ]-dimensional column vector C(o;kj) composed of the coefficients

C(ao; k) ) on sublayer o.
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The eigenvalues of this eigensystem are simply the components of the wavevec-
tor k normal to the interface, through the Bloch factor, [exp(:k, Lag)].

By direct diagonalization of the following product of L transfer matrices
[T(c + Liky) - T(o + L — k) -... - T(o + L k)] , (9)

it is possible to find the [2N; - Ny | = 2N complex values of k, for each parallel

wavevector k|| and energy E. We can therefore label the allowed complex-k,

wavevectors by

kz = ky N=1,2,...,2N],(10.a)

and the corresponding Bloch states by
|k E; k2) = [k E; by ) N =1,2,..,2N].(10.5)

Let S(kjj) be the [2N, - Ny | eigenvector matrix that diagonalizes the product

of L transfer matrices
[T(o + Liky) - T(o + L — L;kp) ...~ T(o + 1; k)] (11)

in the planar orbital representation {|ac;kjj)}.

The meaning of the matrix 8(kj) is simple: Is it the eigenvector matriz of
coefficients for the ezpansion of the bulk Bloch states {{kyE; kx )} tn the planar
orbital representation {|ao;k))}. The eigenvector matrix S(ky) that diagonalizes
the product of L transfer matrices, allows us to transform the description of the
electronic wavefunction from the planar orbital representation {lac;ky)} to the
Bloch states representation {[k) E; &y )}.

In terms of layer we can state that, the eigenvector matrix S(kj|) in composed

of the column vectors S(ao, ky ; k”) that are simply the expansion of the Bloch state



-240-

[kj|E; kx , ) corresponding to k; = k) in terms of the planar orbitals {|co; kj)}.

Thus the Bloch state with k&, = k) on layer 2 can be written as

2N,
[k E; kb , Z) = exp(iky Zag) Z :
o=1
Na
E S(ao, kx ;ky)|ao; k) N=1,...,2N].(12)

=1

where the index o labels the 2N, sublayers forming the layer .
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3.3.2 Connections between Complex-k Solutions
and Planar Orbitals
In this second section of the appendix, we outline briefly the correspondence
between the bulk Bloch states representation {|k)E; k;}} and the planar orbital
representation {|ao; ky)}.
On a given layer I, the electron wavelunction, |¥(k| E; Z')}, can be expanded

in a planar orbital representation as in Eq.(3.5)

Nga 2N,
[¥(k)E; Z)) = Z Z (co; kp)lao; k), (13)

where the expansion coefficients C (aa;k") indicate the admixture of the planar
orbitals {|ac;kyj}} in the wavefunction |¥(k)E; Z)). The sum is over all the
subalyers ¢ forming the layer X.

On the other hand, we could use as the expansion set the set of bulk Bloch
states {|k)E; kx , £)} evaluated on the layer X,

2N

(B E; Z) = Y Al s Xy, E)k|E; b, Z), (14)
A=1

where now the expansion coefficients A(ky ; kyj, E') indicate the admixture of the
bulk Bloch states {|kj E; kx , L)} in the wavefunction |¥(kjE; 2)).
But, as seen in the preceding we can relate the bulk Bloch states on a layer

X and the planar orbitals on that same layer by

2N,s
k) E; kx , Z) = exp(iky Zag) Z .
o=1
Na
S(ao, kx s k) )lao; ki) N=1,...,,2N],(15)

r==1]1
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where the [2N, - Ny | eigenvector matrix S(k“) diagonalizes the product of L

transfer matrices
[T(o + LX) - T(o + L — k) ...  T(o + Lky)] (16)

in the planar orbital representation.

By combining Eqs(3.2) and (3.3) we have

2N
[k E; ) = D Alky sky, E)k|E; by , T, (17.0)
=1
2N
[B(kyE; D)) = D Alky ; Ky, E)-
A=1
Nag 2N,
I:exp(z'k)\ X ag) Z E S(ao, ky ;k")laa;k”)] , (17.5)
a=]1o=1
Na 2Ne
[P Dh =37 3
a=1o=1
2N
l:z S(ac, ky ; ki) exp(iky X ag)Alky ;k”,E)]Iaa; ky). (18.¢)
A=1
And, by comparing with Eq.(3.1),
Na 2Ng
|W(kyE; 2)) E Z (ao; k) )|ao; k), (19)

we find that the expansion coefficients C(aoc; k") of the planar orbital expansion
are related to the amplitudes A(ky ;k“,E) of the bulk Bloch states representations
by

2N
Clao; k) = Z S(ao, kx ; k) exp(iky Zao)Alkx ; k||, E), (20)
A=1
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where the sublayer ¢ is within the layer 2.

We can also write Eq.(3.6) as the matrix equation,
C(E;k") = §(L; k") - A(ky), (21)

where the colunm vector C(Z; kj|) is composed of the coefficients C(ao; kj) of the
atomic orbitals o on the sublayer o belonging to the layer £. The [2N, - Ny |

matrix S(Z;kj|) is formed of the column vectors S(ao, ky ; kj|) and has matrix

elements
S(ao, ky , XZ; k”) = S(ao, ky ; k|j) exp(iky Zao), (22)

where the sublayer o belongs to the layer £. The column vector A(k“) is com-

posed of the 2NV coefficients A(k» ; k), E) of the bulk Bloch states representation
{lkE; &y )}
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Appendix 3.4

Calculation of Transport Coeficients:
Tight-Binding Transfer Matrix Method

The purpose of this appendix is to obtain the transport coefficients for electrons
through a semiconductor double heterojunction structure. The formalism utilizes
the complex-k band structure and the transfer matrix method within the empirical

tight-binding method.

3.4.1 Tight-Binding Wavefunction and Transfer Matrix
Let the incoming Bloch state ]k"E; ko ) with real wavevector ky be incident
from the left in GaAs onto the GaAs-Ga;_—,Al;As interface. The total wavefunc-

tion on a given layer £ composed of the 2N, sublayers o, can be written as!:

Wk E; D) = [kyEi ko, 2) + Y AD(kx sk, EViyE; by , I)  region I (1.a)

A=1
Na 2N,
[k E; ) = Z Z cl— ” aa;k”,E)Iaa; k) interface I-II (1.b)
2N
(W E; Z) = > AUD(ky Ky, E)kyE; kx , £) region II (L.c)
A=1
Na 2N,
Yk E; X)) = Z Z C(”—I”)(aa; k)|, E})|ac; k) interface II-1II (1.d)
a=1o0=1
aN ,
V(K E; L)) = Z A([”)(kx K, Bk E5kx , X) region III (1.¢e)

r=1
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o The expansion coefficients A([)(kx s Ky, E), Al (kx; k), £) and A(I”)(/cx; k|,E)
are associated with the bulk Bloch states representation, {|k||£; k.)}, in regions I, II
and III, respectively.

o The expansion coefficients C(I"'”)(aa; kj, E) and C(”_[H)(acr; k|,E) are
associated with the planar orbital representation, {|ac; kj|)}, across the interfaces.

We now explain the procedure to obtain the transport coefficients within the
tight-binding transfer matrix framework outlined above. First let us define the
layer-dependent matrix S(Z; kj) to be simply the eigenvector matrix with matrix

elements,
S(ao, ky , Z; k) = S(ao, ky ;ky) exp(iky Zag), (2)

where the sublayer o is within the layer L. With this definition, the relation
derived in Appendix (3.2) between the expansion coefficients for the planar orbital

representation and the bulk Bloch states representation,

2N
Clao; k) = z S(ao, ky ; k) exp(iky Zag)A(ky ; k), E), (3)
A=1

can be written in matrix form as
C(Z;ky) = 8(Z; k) - Alky), (4)

where the column vector A(k|) is formed by the 2V expansion coefficients, A(ky; kj|, E).
The column vector C(Z;kj|) is composed of the coefficients, C'(ac;ky), for the
atomic orbitals a on the sublayers o belonging to the layer £. The GaAs-
Ga; —;Al;As-GaAs DHS is schematically represented in Figure (1) of Section
(2.2). Let the central Ga;—;Al;As barrier region be composed of n layers.

e In the last layer of the bulk region I, we can write, dropping the label kj|

altogether,
c((0) = s (o) - AlD), (5.0)
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where the origin of region I (<.e., £ = 0), has been taken on the last layer of region

L

e On the first layer of the barrier region II, we have
C(”)(O)= S(”)(O)-A(”), (5.5)

where the origin of region II has been taken on the first layer of region II. But the
first layer of region II can be expressed in terms of the last layer of region I by the

transfer matrix equation,
ctNo) = TU=11) . ¢c(q), (5.c)

where the transfer matrix T /7 relates the coefficients of the last layer of region
I to the coefficients on the first layer of region II. By combining Eqs(8.b) and (8.¢)

we have

AUD = [8UD (o) Th . TU=ID . ¢ g). (5.d)
¢ Similarly, on the last layer of the barrier region I, .e., layer n — 1, we have
cUDn —1) = sN(n —1). AUD, (5.¢)

¢ and on the first layer of region III we have,
cUID) (o) = sUID(g). AUID, (5.7)

where the origin of region III (s.e., = 0), has been taken on the first layer of

region III.

e Again, the first layer of region III can be expressed in terms of the last layer

of region II by the transfer matrix equation,

cUID(g) = U= . cUD(np — 1), (5.9)
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where the transfer matrix T(/Z—7/D) relates the coefficients of the last layer of

region II to the coefficients on the first layer of region III.

o Then, the coefficients of the bulk states in region III, AUID can be related

to the coefficients of the bulk Bloch states on region I, by
Al - [S([[I)(O)]—l .U (0),

— [S(”[)(O)]—l .pUI—II1) C(n)(n —1),
— [S(III) (0)]—_1 .pUI—11T) 8D (y — 1. AUD),
— [3(111)(0)]—1 L pUI—=IID)  g(ID) (5 — v).
[g,(fl')(o)]—1 . TU—=1D) . (D (g,

and finally
AUTD = My E) - AD,

where the matrix M(kj E) is defined to be

Mk E) = [$UD (o))~ - TUI=111) gDy _ 1y,

[sUD(0) ™" . TU=1D . 8(D)(g),

(5.k)

(5.0)



-248-

3.4.1 Boundary Conditions

We have now to impose the proper boundary conditions on the incoming
and the outgoing states. Suppose that the column vector A(k" ), formed by the
2N expansion coefficients A(ky ;k",E) corresponding to the 2N bulk solutions
{lkjfE; %\ )}, is ordered such that the solutions corresponding to Im{ky | > 0 are

above those for which Im[k, | < 0. Then we write

(Al +)
AD = _i(n—)]’ (6.a)
in region I, and ]
Al = ix;;t;] (6.5)
The matrix equation Eq.(5.1) can now be expressed in the form,
[AU I ’HH} _ [M(+,+) M(—I-,-)] . [A(I ’+)}. 1)
AlIL=) M(-,+) M) ]| [AG—)

We now impose the boundary conditions that there are no growing states at

z = 400 and al z = —oo. This translates into,
n_| o
A = A(I’-)}’ (8.a)
in region [, and
[A(II1,+)
AUID = |A ) ], (5)
We now have to solve the matrix equation,
A([[I'+) . M(+7+) M(+") . 0 (9)
0 M+)  M() | [AGT)]
for the column vector of the outgoing state,
(AT, +)
AN = |A } (10.b)
0
given that the column vector for the tncoming state,
)
A([) = A(I,_):l, (10.&)

is known.
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APPENDIX 4.1

In this appendix, we review the k- p perturbation theory of bulk semiconductor
as a mean of calculating energy band structure. Most of the derivations presented
here can be found in the review article by Kane! and in standard solid-state physics
texts?.

This appendix contains two subsections.

e In the first subsection we derive the set of k - p equations when the cell-
periodic part of the Bloch state is expanded on a set of cell-periodic functions at
k=ko.

» In the second subsection, we consider the special case whereby ko = 0.

k.p Theory of Bulk Semiconductors
Given that the set of Bloch states {|nk)} are solutions to the Schrédinger

equation for the bulk solid:
H|nk) = En(K)|nk). (1)

The Hamiltonian is

A= —p*+ V() (2
where V(x 4+ R) = V(x) is the crystal potential which has the symmetry of
the crystal space group. The momentum operator is p = —i%ZV. The energy
eigenvalues, Ey, (k) , for the band structure of bulk solid. The Bloch states are of

the form,

(x|nk) = exp(ik - )un(k; x), (3)
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where up,,(k; x) is the cell-periodic part of the Bloch function:
un(k; X + R) = un(k; x), (4)

where R is a Bravais lattice vector generating the x-space lattice. The index n
is the band index and 7k is the crystal momentum. We now wish to obtain the
eigenvalue equation for the cell-periodic part of the Bloch function, up(k;x), by

direct substitution of the form Eq.(3) into the Schrodinger equation Eq.(1):

[Ei—n—p‘? + V(x)] exp(tk - Xjun(k; x) = E, (k)uny(k; x). (5)

By commuting the plane wave exp(ik - x) across the Hamiltonian, we arrive at:

H (k)un(k; x) = Ep(k)un(k; x), (6)

where the Hamiltonian H (k) is defined to be :

) = —(p + k) + V(x), (7.0)
2m
or,
2
Ak)= —p° + k- p+ -—k? + V(x). (7.6)
2m m 2m

The form of the Hamiltonian H (k) corresponds to a gauge transformation,

A

Hk)=H(p+kx3)= exp(—ik - x) - H (p; x) - exp{ik - x). (T.¢)
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4.1.1 Expansion on set of functions at k= k,

For any wavevector k, the cell-periodic functions un(k; x) form a complete set
for any function having the periodicity of the crystal potential, V(x). Thus the
cell-periodic function u,(k; x) associated with any wavevector k can be expanded
on the set of cell-periodic functions {uns(ko; x)} belonging to the different bands »’
and associated with a particular wavevector ko,

ugn (k; x) = Z unt(ko; X)C (nn'; kko), (8)
nl
so that the Bloch solutions of Eq.(1) become
(x|nk) = exp(ik - x) Z uni(ko; x)C (nn'; kkg). (9)
nl

The amplitudes C (nn'; kkg ) indicate the mixing of the kg basis states, uns(ko; x)

belonging to the different bands n/. The k = k; cell-periodic basis functions

y{un(ko; x)}, are solutions of the k = ko Schrédinger equation, Eq (5):

~

H (ko Jun(ko; x) = Ey (ko )un (ko; X), (10)

where the Hamiltonian for k = kg, H (k) is simply the Hamiltonian & (k) in Eq.
(7) with k = kq:
- 1 5, & A2,
H(ko) = —p° + —ko - p+ —ko° + V(x). (11)
2m m 2m
Thus, at a general k, we can split the k-dependent Hamiltonian defined in Eq.

(7) into a k-independent term, H (ko), and a k-dependent term:

. 1 I %2
H(k) = E;Z'PQ + r—n‘k P+ '2;1!2 + V(x), (12.a)
. ) 1 2

(k—ko)-p+ —(k* — ko), (12.5)

H(k)EH(kO)'f';; o
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with
, 1 5, & a2
H{kg)= —p° + —ko-p+ —ko" + V(x) (12.¢)
2m m 2m

Eq. (6) can be put in matrix equation by using the expansion Eq. (8) for the

cell-periodic function ,u, (k; x), and by projecting onto the ko basis state, u;(ko; x),

3" H(nn'; kko)C (nn'; kko) = En(k)C (nn'; kko), (13)
n!

where the matrix elements H (nn'; kko) are defined to be
F (0! h? 2 2 ny !
H(nn';kko) = (En(ko) + %‘(k — k%) 5(",n)+;n‘(k—ko)°l)(n,n sko), (14)
with the momentum matrix element between two ko basis states given by:

p(n, n';ko)E/daxu;(ko;x)pun:(ko;x), (15)

the integration being over the primitive cell on which the kg basis states are
normalized.

The matrix equation Eq. (13) is the eigenvalue equation for a general cell-
periodic at wavevector k, u,{k;x), when the ko basis functions {un(ko;x)} are
taken as the expansion set. Although Eq. (13) can be solved for any wavevector

k, it is most useful when k is near kg such that the non-diagonal part of the

Hamiltonian H (nn'; kko),
7
-;n—(k — ko) - p(n,n'; ko)

is small.



-255-

4.1.2 Expansion on set of functions at k= 0
In the special case where the basis functions {u,(ko; x)} are taken to be at
the center of the Brillouin zone, t.e., kg = 0, the above expressions take on a

particularly simple form. In this case, the expansion Eq. (8) becomes:
un(k;x) = D uni(x)C(nn'; k), (16)
ol
so that the Bloch solutions of Eq.(1) become
(x|nk) = exp(ik - %) ¥ uw(x)C(nn’;k), (17)
!
dropping the index kg = 0 altogether.
The set of zone-center basis functions {u,(x)} satisfy the ko = 0 Schrédinger

equation, Eq.(10):
Houn(x) = Ep (0)un(x), (18)

where the kg = 0 Hamiltonian, H o is simply:

fo = 2_1_,,2 + V(). (19)
m

Thus the equation for u, (x) associated with k; = 0 has the symmetry of the crystal
potential V (x) which is the symmetry of the crystal space group.
The set of energies E,(0) corresponds to the energies of the Bloch states at the

center of the Brillouin zone. For a general k, the Schrédinger equation becomes:

~

H(kJun(k; x) = Ep (k)un(k; x), (20)

where the k-dependent Hamiltonian, H (k), has the simple form:

A

, 1 A2,
Hk)=Hy+ —k-p+ —k-. (21)
m 2m
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The Hamiltonian H 0 is simply the ko = 0 Hamiltonian of Eq. (19). The kinetic

energy term,

ﬁk2
2m

is simply a c-number that produces a shift in the energy eigenvalues E,, (k). The
term |
[
—k-p
m
is referred to as the k - p Hamiltonian.
In the special case where kg = 0 the matrix equation Eq. (13) becomes, in

terms of the zone-center expansion set {u,(x)},

3" H(nn;X)C(nn'; k) = Ey(k)C(nn'; k), (22)
n!
where the matrix elements H (nn'; k) are defined to be
A %2 )
H(nnl; k) = [En (0) + 2—sz6(”7 nl) + —k- p(n; nl)7 (23)
m m

with the momentum matrix element between zone-center basis states given by:
p(n,n') = /d3xu:;(x)punr(x). (24)

Since the operator p transforms according to a vector representation, the Hamiltonian
matrix ﬁ(nn’;k) can have non-diagonal elements only between zone-center
states u,(xX) of opposite parity.

Direct diagonalization of the k - p Hamiltonian matrix H (nn’; k) of Eq.(22)
yields the energy eigenvalues Ey, (k) across the entire Brillouin zone. F urthermore,
the eigenvector matrix consisting of the expansion coefficients, C'(nn’; k), are used

to construct the Bloch states:
(xlnk) = exp(ik - x)uq (k; ),

(x|nk) = exp(ik - x) Z Unt (x)C (nn'; k), (25)

n!

in terms of the zone-center expansion set {u,(x)} at kg = 0.
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APPENDIX 4.2

Pseudopotentials formulation:

The purpose of this appendix is twofold,

e First, we give a brief description of the pseudopotential theory as it is used
for the calculation of the electronic band structure of bulk crystalline solids. This
appendix is a collection of results regarding the local pseudopotential theory. The
major derivation and the theoretical justifications can be found in the review articles
by Cohen and Heinel.

e Secondly, we treat the specialized case of semiconductor with the diamond

or zincblende structure.

4.2.1 Pseudopotential Theory of Bulk Semiconductors
Briefly, a pseudopotential 1s a potential such that an ezpansion of the
pseudo Bloch states {|pseudo; nk)} in terms of plane waves {|g)} assoctated with
reciprocal lattice vector g, will converge. We briefly outline below the procedure.
Given that the set of pseudo Bloch states {|pseudo; nk)} are solutions to the

Schrodinger equation for the bulk solid:

. d
Hpseu O]pseud0§ nk) = E, (k)|pseudo; nk). (1)

The pseudo Hamiltonian is

~ pseudo 1
H = 2—"7172 + Vpseudo(X), (2)
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where Vpgeudo(x+R) = Vpseudo(X) is a pseudopotential which has the symmetry
of the crystal space group. The momentum operator is p = —tAV. The energy
eigenvalues, E, (k) , are the same for the set of pseudo Bloch states and the set of
true Bloch states. The pseudo Bloch states {|pseudo; nk)} are smoothly varying
in the core regions in contrast with the true Bloch states {|nk)}}.
We now expand the pseudo Bloch solutions of Eq.(1), {|pseudo; nk}}, in terms

of a set of plane waves {|g}},

|pseudo; nk) = exp(ik - x) Y_|g)C (" (g, k), (3)
g

where, in the x-representation, we define the plane wave associated with the recipro-

cal lattice vector g as,
(x|g) = exp(ig - x) (4)

By substitution of the plane wave expansion Eq.(3) in Schrodinger equation,

. d
HPseu °|pseud0; nk) = Ey,(k)|pseudo; nk), (5)

we arrive at the matrix equation,

~ pseudo
Z Hioeal (885X)C™M (g, k) = B, (k)C™(g k) (6)

We define the pseudopotential form factors V (g) as the Fourier amplitudes of

the pseudopotential Vpseudo(x),
Vpseudo(x Zexp (18- x)V (g). (7)
g

The pseudopotential form factors V (g) can be written as a product of an structure

factor S,(g) and a atomic form factor V,(g), associated with the atomic species
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Q,
Vpseudo(x) = > _ exp(ig - )V (g)- (8)
g
where
V(g) =Y Sa(8)Vals), (9)

where the sum is over all the atomic species a within the primitive cell.

e The structure factors S, (g) associated with the plane wave g are defined

as,
1 .
= e—— - d’

Sa(g) = N Zj exp(ig - d7,), (10)

where N, is the number of atomic species present. The sum Z j is over all the
primitive cells, and d{;{ is the position vector associated with the atomic species o
within the primitive cell j.

o The atomic form factors V,(g) are the Fourier transforms of the atomic

pseudopotentials V,(x) associated with the atomic species «,

Valg) = /dax exp(—ig - x)Va(x), (11)

1
oy

where 2, is the atomic volume.
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4,2.2 Local and Non-Local Pseudopotentials
The purpose of this section is to make a distinction between local pseudo-
potentials and non-local pseudopotentials. In order to do so, let us first define
what is meant by an orthogonalized plane wave (OPW). We define an OPW as a

plane wave that has been orthogonalized to the core states of the atom,
lopw; k + g) = [1 — ZI{OC)(%I] |pw; k + g), (12)
[4
where |pw; k 4 g) is simply the plane wave

(x|pw; k + g) = expli(k + g) - x], (13)

and |p.) stands for the core state whose eigenenergy is E;. The sum ) . Tuns over
all the core states of all the atoms.

In the OPW representation the pseudopotential operator VP can be writ-
ten as

~ OpW

VU = V(@) + Y [Ea(k) — Ecllpcieel, (14)

where the potential V (x) stands for the true crystal potential More specifically,

by using the definition of [opw; k + g), we can write the matrix elements,
OPW/( o /. 1\ — ) ' > OpW )
VOoP¥(gg/; k) = (opw; k + gV " |opw; k+ &), (15)
VoPY(eg k) = V(gg) + Y [Enlk) — Ec](pw; k + gloc)pelow; k + ). (16)
c

- OpW
The operator V P is a non-local operator due to the non-locality of the
» OpW
operator [p:){o.|- Thus the pseudopotential V' P depends
e on the energy eigenvalues E, (k), and

o on the [-angular momentum components present in the core states |o.).
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In the local pseudopotential approzimation used in the present work, we
neglect the l-angular momentum dependence of the pseudopotential operator
v°P" Within the local pseudopotential approzimation, the pseudopotential

Hamiltonian matrix in the plane wave representation, is simply

~ pseudo 2
Hiocal (8€3k) = —lk+ g°0%(s — &) + V (gg) (17)
where the off-diagonal matrix elements V (gg’) are the pseudopotentials form

factors.

This local pseudopotential approach has proven to be adequate to explain most
of the optical data available for semiconductor compounds?.

Furthermore, if we take the atomic pseudopotentials to be spherically sym-

metric,

Va(x) = Vo (lx]), (18)
then the pseudopotential form factors V (gg') depend only on the magnitude of g,
Vige)=V(g—4gl). (19)

In the empirical local pseudopotential method used within the context of
this work, the pseudopotential form factors, V (|g — g'|) are empirical parameters

fitted to the optical data.
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3.2.3 Application to Diamond and Zincblende Structures
In the case of semiconductors with the diamond or zincblende structure, the
above treatment may be specialized. Suppose a semiconductor whose stoichiometry
is sV BN , where the atomic species « = a represents an anion and the atomic
species @ = c represents a catton. Then the pseudopotential form factor can
be written as the sum of a symmetric part V(s )(g) and an antisymmetric part
vd(g),
V(g) =Y Sa(8)Valg), (20)
a

or,

V(g) = V5)(g)cos(g - do) + iV (g) sin(g - do), (21)

where the symmetric part is given by
1
vEi(g) = S[va(e) + Velg)), (22)
and the antisymmetric part is given by
(4) 1
Vi¥tig) = EIVG(E) — Ve(g)]- (23)

The origin in the calculation of the structure factor S,(g) is symmetrically taken

to be halfway between the anion-cation bond,
a A A ~
do = [g}(x +5+1) (24)

and a is the length of the conventional cubic unit cell.
It is clear that for the diamond structure with Oj symmetry, the antisymmetric

part of the pseudopotential form factor vanishes,

vA(g)or) = o. (25)
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APPENDIX 4.3

Pseudopotentials and k - p formulations:

The purpose of this appendix is twofold,

e First, we relate the k - p and pseudopotentials formulations as presented in
Appendices (4.1) and (4.2).

e Secondly, we describe the procedure used to express the kg = 0 basis
function of two zincblende semiconductors in terms of the kg = 0 basis function

of a reference solid.

4.3.1 Connection between Pseudopotential and k - p
Theories of Bulk Semiconductors

From the preceding two Appendices, it is clear that the set of kg = 0 states,
{I{m)} can be expanded in terms of the set of plane waves {|g)}, where g is a

reciprocal lattice vector,
Im) = > _|8)U (g, m). (1)
g
In x-representation, we have explicitly
(x|m) = upm(x), (2.a)
for the kg = 0 basis functions, and

(x|g) = exp(ig - x), (2.5)
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for the plane waves.

For a complete set {|m)} we have the closure relattion
> _Im)m| =1, (3)
m
which, in the {|g)}-representation, translates into
Sv@em) U@, m]" =sg—¢). (4)
m

The transformation matrix U(g, m) allows us to transform from the {|g)}-
representation to the {|m}}-representation. Thus, we can transform from the local

pseudopotential formulation to the k - p formulation with the help of the U matrix,
. ~ pseudo
H(mm';k) =Y _ > [U(gm)] Hlocal (28 K)U(g, m'), (5)
g €

e In the {|g)}-representation the Hamiltonian matrix is given by the local

pseudopotential Hamiltonian,

-~ pse 2
Hﬁuczﬁdo(ss’; k)= %lk + g%8%(g — &) + V(sd), (6)

where the off-diagonal matrix elements V (gg') are the pseudopotential form factors.

e In the {{m)}-representation the Hamiltonian matrix is given by the k- p
Hamiltonian,
2 ! R, ! f / /
H{(mm';k) = |En(0) + —2_7—n—k o(m,m') + —,;k Am|p|m’) + AV (mm’), (T)

where the perturbation potential in the {|m)}-representation is

AV(mm') =Y [U(gm)tav(gg)U(g, m"), (8.a)
g g
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and the momemtum matrix element between zone-center basis states given as above
by:
*
(mlp|m’) = / d3xum(x)pum:(x). (8.5)

and E,;(0) is the energy of the state |m) at kg = 0.

We will make extensive use of the transformation relation Eq.(3) in the fol-
lowing section.

it is a simple matter to find the transformation matrix U. The matrix U is the

etgenvector matriz that diagonalizes the local pseudopotential Hamiltonian,

seudo 2
Aloeal (a8’ 1) = Ik + 8°8°6— &) + V(8¢ (0.0)
at k =0,
[é(mm'; k)] = [ XX vemitaha edive. )] . e
k=0 g g k—0
[I;I(mm'; k)} = Epn,(0)(m, m'). (9.0).
k=0
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4,3.2 Reference Solid:

4.3.2.1 Pseudopotential Formalism

In this second part of the Appendix(4.3) we describe the prescription to express
the kg = 0 basis function of two zincblende solids in terms of the k; = 0 basis

functions of a reference solid. The procedure is rather well exemplified within the
local pseudopotential formalism.

e Suppose a zincblende semiconductor whose stoichiometry is alV8—N , where
the atomic species a = a represents an anton and the atomic species «

= ¢
represents a catton. Consider a solid ; = 1,2 described in terms of a local

pseudopotential Hamiltonian of the form

- (J 2 -
AV (a0 = Sk +2%%6 — ¢) + VI (ag), (10.0
The pseudopotential form factor V(j)(g) can be written as the sum of a symmetric

part VUiS)(g) and an antisymmetric part v (5:4)(g),

vW(g) = v 59 (g) cos(g - dg) + iV U(g) sin(g - do),

(10.5)
where the symmetric partis given by
Vg = g[vgﬂ(g) + vgﬂ(g)}, (11.0)
and the antisymmetric partis given by
vif(g) = é[vgﬁ(w = vﬁﬂ(s)]. (11.9)

The origin in the calculation of the structure factor is symmetrically taken to be
halfway between the anion-cation bond,

dy = [g](f + 5+ 3),
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and ¢ is the length of the conventional cubic unit cell.
We now wish to express the Hamiltonian H (j)(gg/ ; k) in terms of a Hamiltonian
H (0)(gg' ; k) associated with a reference solid. Suppose that the reference solid is

described in terms of a local pseudopotential Hamiltonian of the form,
» (0) 72
H (g5 k) = [+ g% s — &) + V(V(ag). (13)

Let us take the reference solid Hamiltonian to be the average of the local

pseudopotential Hamiltonians H (j)(gg’ ; k) in each solidj = 1,2
(0) 1o
« (0 A {7
%= 23 16w, (14)
j=1

The pseudopotential form factor V(O)(g) can be written as the sum of a symmetric

part V{(%5)(g) and an antisymmetric part v {(%4)(g),
vO(g) = v 55)(g)cos(g - do) + iV (**)(g) sin(g - do), (15.0)

where the symmetric part is given by

2
v (©9)(g) = -;-FZI v 5:5)(g) (15.)
and the antisymmetric partis given by
v (g) = 1 i v (54 (g), (15.¢c)
2 =

e The Hamiltonian of solid j 1,2 can now be written as a sum of the

~ (0 .
reference Hamiltonian H ( )(gg’ ; k), plus a perturbation term AV(J)(gg’ ),

(0)

A0 = 80 ed; k) + AV gg). (16)



-270-

The perturbation pseudopotential form factor av() (g) can be written as the

sum of a symmetric part AV(j;S)(g) and an antisymmetric part AVU;A)(g),
AVU)(g) = AV(j;S)(g) cos(g - do) + z'AV(j;A)(g) sin(g - do), (17.a)
where the symmetric part is given by
av g = é[VU;S)(g) - V"*S)(g)}, (17.)
and the antisymmetric partis given by

;. 1 . .
AV (g) = E[V(J’A)(g) — V(Z’A)(g)}. (17.¢)
We have now expressed the local pseudopotential Hamiltonians H (j)(gg' ; k)

of the two solids j = 1,2 in terms of the local pseudopotential Hamﬂtonians

H (0)(33’ ; k) of the reference solid.
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4.3.2.2 k - p Formalism
In this section we wish to translate the results of the preceding section from
the pseudopotential to the k - p formalism using the transformation matrix, U.
o Let the set of kg = 0 basis function {|{m)} refer to reference solid At
each k, we can transform the Hamiltonian of the reference solid from the {|g)}-

representation to the {|m)}-representation with the U matrix,

B mm!; k) = YN wem)'E el @, m (18)

g g

()

where H (mm/; k) is the Hamiltonian of the reference solid in the {|m)}-representation.
At the special point k = 0 the set of function {|m)} are eigenstates of

ﬁI(O)(mm’; k) and the matriz ﬁ(o)(

[f}(o)(mm’kJ [EZ[Ug, WA O ed; U, m ] ., (19.0)

mm'; k) s diagonal,

k=0 k=0
o (O) ! 7
H (mm';k) = Em(0)8(m,m’). (19.5)
k=0
Thus, the {|m)}-representation is the representation that diagonalizes the k - p
Hamiltonian of the reference solid H (0)(mm’; k) at k= 0. .
e We now express the Hamiltonian of the solids j = 1,2 in the {|m})}-

~ (0
representation that diagonalizes H ( )(mm';k) at k = 0. From the preceding

section, we have

Amm )= 3. Y wemlT a6 0@, m),  (20.0)

g g

but,
A7 w510 = A eg 0 + AV Oeg), (20.6)
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therefore,

O ;) = Y Y lvegm [ Jeg's )+ avOed)| U@, m'), (20.0)

g g

and finally, we can write explicitly,

- (5 72 A :
H(J)(mm';k) = {Em(o) + 2——k2}6(m, m') + —k - (m|p|m) + AV(])(mm'),
m m
(20.4)
where the perturbation potential in the {|m)}-representation is
AV (mm') Z Z U (g, m)TaviggU(g, m'). (20.¢)

g g

We see that in a {|m)}-representation in which the reference Hamsltonian
H m(mm' ; k) is diagonal, the Hamiltonian of solid (j) contains a non-diagonal
perturbation term AV D(mm'). In general the Hamiltonian (0 )(mm ; k) of the
reference solid and the Hamiltonian H (j)(mm’ ; k) for the solids j = 1,2 will have

T; symmetry associated with the zincblende structure.
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APPENDIX 4.4

The purpose of this appendix is twofold.

e First we review the full-zone k - p theory as it is used to obtain accurate
energy bandstructure throughout the first Brillouin zone. The k- p Hamiltonian is

derived from a local pseudopotential Hamiltonian.

e Second, we indicate the prescription to obtain the complex-k energy band
structure of a solid within the full-zone k - p theory. We introduce the companion
matriz, whose eigenvectors play a crucial role in the application of the boundary

condrtions for the superlattice wavefunction.

We collect these derivations in a single appendix since they are intimately

interconnected.

4.4.1 Full-zone k.p Method: Reference Solid

4.4.1.1 Advantage of k - p Approach:

The k - p method has been particularly successful to describe the features of
the band structure near the band edges to great accuracy. We have derived a
k - p Hamiltonian from a local pseudopotential Hamiltonian in order to describe
accurately the electronic band structure of each constituent semiconductor with a

small number of basis function associated with the symmetry point ko = 0.

In Appendix (4.3), we related the set of kg = 0 states, {|m)}, of the reference

solid to the set of plane waves {|g)}, where g is a reciprocal lattice vector, through
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Im) = > _|g)U (g, m). (1)
3

Where, in the x-representation, we write
(x|m) = up(x), (2.a2)
for the kg == 0 basis functions, and
(x|g) = exp(ig- x), (2.6)

for the plane waves. As was shown in Appendix (4.3), the transformation matrix U

allows us to transform from the {|g)}-representation to the {|m)}-representation.
The local pseudopotential Hamiltonian H (j)(gg' ; k) of the two solids j = 1,2

is expressed in terms of the local pseudopotential Hamiltonians H (0)(33’ ; k) of the

reference solid,
a(eg; k) = 8 (e 1) + AV (ed). &)

where the term AV ()(gg') is a perturbation term.
The perturbation pseudopotential form factor AV (7)(g) can be written as the

sum of a symmetric part AV (55)(g) and an antisymmetric part AV i4)(g),
avO)(g) = AVUS(g)cos(g - do) + iaV A (g)sin(g-do),  (4.0)

where the symmetric partis given by

1

AV(J‘;S)(g) — 5

[VU';S)(s) — V(";S)(s)}, (4.6)
and the antisymmetric partis given by

Av(j;A)(g) = %[V(j;A)(g) — V(i;A)(g)} ) (4.¢)
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We can transform from the {|g)}-representation to the {|m)}-representation

through the U matrix,

A (mm! ;1) = 3 3 [0 (g, ) THY (g8 s 0U (&, m), (5.)
g &
but,
) P R () M (5) (et
H '(gd;k)=H" (gg;k) + AV (gg), (5.6)
therefore,

A9 mm' ) = Zztv(s,mn[ (8g; k) + AVO(gg) | U, m). (5.0)

We can also write explicitly,

. 2
I:I(J)(mm'; k)= [Em(o) + -}—k2]5(m, m')+ zk-(mlpIm'H—AV(j)(mm’), (6)
m m

where the perturbation potential in the {|m)}-representation is

AV D (mm') ZZ[U (g m)]Tav(gg U ). (7)
g g

There are many reasons that make the k - p approach very attractive:

» the convergence is excellent for relatively small numbers of kg = 0 basis

functions,

o the k - p Hamiltonian H (j)(mm' ; k) can be ezplicitly constructed once the
transformation matrix U is knowm,

o the basis functions at kg = 0 of a single reference solid can be used to
describe the electronic structure of two different semiconductors.

e the advantage of using a single reference solid is clear: The Bloch states
in both component semiconductors forming the superlattice are ezpanded in
terms of a common reference soltd. This approach has definite advantage when

the superlattice state function has to be matched across the interfaces.
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4.4.1.2 Truncation from Pseudopotential to k - p Formulation:
In practice the following procedure is used to derive the k - p Hamiltonian
I:I(j)(mm'; k) for each solid j = 1, 2,
e Given the local pseudopotential Hamiltonian of each solid j = 1, 2,

A ] 2 .
A1) = e+ g2 — )+ VO et ®

the local pseudopotential Hamiltonian of the reference solid is constructed from the

average of the Hamiltonian of each solid,

2 .
7%= 1760 ©)

=1

A total number of 113 plane waves {|g)} are used to construct the local
pseudopotential Hamiltonians H (])(gg’ ;k), and H (0)(33’ ; k). The plane waves {|g)}
used in the calculations are those associated with the reciprocal lattice vectors,

27 27
g = _(01 01 0)1 '—-(:tla il’ il)a
a a
27 27
‘—'(:t2, 0, 0): —'(:t2’ :t2’ 0)7
a a
27 27
7(:‘:19 :t]-’ j:3), —a—(iz’ :{'_‘2, :}:2)’

?'aﬁ(ﬂ, 0,0), 2 (43, £3, +1),

@
2T
—a"'(:t‘i, j:2’ 0)’
where g is the bulk lattice constant for the solid under consideration.

® The local pseudopotential Hamiltonian of the reference solid is diagonalized

atk =0,

[ﬁz“’)(mm';k)] [E Y e VeioE. =] . (0

k=0 g g —0
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,- - (0) J; ! ¢
H “(mm';k) = Eun(0)8(m, m'). (10.5)
L k=0

The eigenvector matrix U is the transformation matrix that allows the trans-
formation from the {|g)}-representation to the {Im)}-representation of the reference
sold.

® Once the transformation matrix U is known, the k - p Hamiltonian of

each solid & (J)(mm’ ; k) is obtained from the local pseudopotential Hamiltonian

H m(ss’ ; k),

Bl ;1) = 3 Y Wil B Vg, ), (110)
g &
or, using
A1) PN () B () ot
H™(gg;k) = H ' (gg/;x) + av ) (gg)), (11.5)

AVmm'; 0= 3 Y v(g m)lf[ﬁ Va0 + avOl(ed) U@, m'), (1.9
g g
e It is impractical to transform from the {|8)}-representation to the {Im}}-

representation with the U at each k point since a large number of plane waves {Ig)}
are involved in the construction of the Hamiltonians H (0)(gg' ;k) and H (j)(gd ; k)
for j = 1,2. On the other hand, it is a simple matter to construct ezplicitly the
Hamiltonian f17) (mm'; k) with the eigenvector matriz U (g, m).
As seen in Appendix (4.3), the explicit form of the Hamiltonian of the solid j

in the {|m)}-representation of the reference solid is,

. 2 ) ’
A (mm! ;1) = [Em(o) + Q%kﬂa(m, m') + %k- (mlp|m’) + AV D (mm),

(12.a)
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where the perturbation potential in the {|m)}-representation is

AvO(mm') = 3" " [U(g,m)Tav U, m'), (12.5)
g g

and the momentum matrix element between zone-center basis states given as above
by:
*
(mlp|m’) = /d3xum(x)pum:(x). (12.c)

Once the Hamiltonian is expressed in the {|m)}-representation only the first
27 ko = O are retained to provide the description of the electronic band structure
of the solid j. The 27 zone-center basis functions, {|m)}, are derived from the

free-electrons plane wave states having reciprocal lattice vectors:
27 27 2T
g= 'a—(o’ 07 0)’ (:t17 :!:17 j:]-)) T(igy 0, 0), 7(:‘:2’ iz, 0)7 (13)

where a is the bulk lattice constant for the solid under consideration.

e Table 1 show the set of kg = 0 basis functions used in the calculations and
the plane waves g from which they originate. The ky = 0 basis states are labelled
according to their irreducible representation. The reference solid has T; symmetry.

e In Table 2 we show the set of kg = 0 basis functions along with their atomic
characters. The following phase convention is adopted: functions at ky = 0 are
taken to be real The top of the valence band is taken to be the origin of energies.

Using the procedure outlined above, the Bloch states |k) are expanded on the

zone-center basis states associated with kg = 0
(x|k) = exp(ik - x)u(k; x),

(x[k) = exp(ik - x) D _ (x|m)C (m; k). (14)
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The energy eigenvalues E(k) and the Bloch states |k) are obtained by solving

Schrodinger equation,

H|k) = E(k)|k). (15)

In order to obtain the bandstructure E(k) and the eigensolutions |k), we must
solve the eigenvalue problem Eq.(13.a) in the zone-center representation {|m)} using

the expansion Eq.(12):

D H(mm';k)C(m';k) = E(k)C(m'; k), (16)

where the matrix elements & (mm/'; k) are defined to be
2 ! R? 2 ! n Y !
H(mm';k) = |Ep(0) + 2——k 8(m, m')+ —k- (m|p|m) + AV (mm ) (17)
m m

where the perturbation potential in the {|m)}-representation is

AV (mm') =3 3" ([U(g,m) AV @)U, ), (18.0)
g g

and the momentum matrix element between zone-center basis states given as above
by:
(mlpim') = / & xu ), (X)pum(x), (18.5

where we have dropped the index J that labels the solid.

The parameters needed are the energies of the zone-center states, En(0),
the momentum matrix elements (m|p|m’) between the zone-center states, and
the perturbation potential AV (mm’ ). In the bandstructure calculation presented
here, these parameters are calculated from the local pseudopotential transformation

matrix, U(g, m), as outlined above. As mentioned above, the k - p Hamiltonian,

1)
—k-p, (19)
m
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ko= 0 state Reciprocal lattice vector g [27/d]
Iy (0,0,0)
Iis | (£1,41,+1)
I (£1,+1,+1)
I's (£1,+1,41)
I (£1,41,41)
I (£2,0,0)
s (£2,0,0)
Iy (£2,0,0)
Ios (+£2,£2,0)
s (+2,+2,0)
T2 (+2,42,0)
s (£2,42,0)
I (£2,£2,0)

Table 1. Set of 27 kg = 0 cell-periodic basis functions used in the full-zone
k - p calculation with the plane waves from which they are derived.
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ko= 0 state Atomic symmetry
n [s]
s [l
I [s]
I'is [l
n [s]
I (4]
INs [d]
Iy [s]
Ios [/]
I's (/]
I'yg [/]
I's [f]
I (/]

Table 2. Set of 27 kg = 0 cell-periodic basis functions used in the full-zone
k - p calculation with their atomic symmetries.
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can only couple states of opposite parity due to the fact that the momen-
tum operator p transforms according to a vector representation. In homopolar
diamond semiconductors with O symmetry, basis states at kg = 0 have definite
parity due to the inversion symmetry with respect to the two basis atoms within
the primitive cell. However, in heteropolar zincblende semiconductors with T; sym-
metry, the lack of inversion symmelry implies that the basis states atky = 0
do not have definite parity.

Tables 3 and 4 show the energies E', (0) for the various kg = 0 basis functions

for GaAs and AlAs, respectively.
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ko= 0 Energies [eV]
E(I') | —12.198
E(T'y5) 0.0
E(I) 1.433
E(I'15) 4.437
E(I) 8.048
E(I'12) 8.673
E(l's5) 12.767
E(I) 14.234
E(Is5) 26.751
E(I'15) 27.329
E(I2) 27.620
E(I's) 28.0
E(I1) 28.167

Table 3. Energies of the 27 kg = 0 cell-periodic basis functions for GaAs.
Energies are expressed in eV.
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ko= 0 Energies [eV]
() —11.662
E(I'15) 0.0
E(I') 3.205
E(I';5) 4.577
E(I'1) 9.122
E(I'12) 8.418
E(I'is5) 13.0
E(I) 14.755
E(I'ss5) 26.411
E(I'5) 27.702
E(I'2) 27.538
E(I'15) 29.03
E(IY) 30.03

Table 4. Energies of the 27 kg = 0 cell-periodic basis functions for AlAs.
Energies are expressed in eV.
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4.4.2 Complex-k Bandstructure : k.p Theory

Having described the k - p formalism for bulk semiconductors, we now turn
to the application of this technique in the calculation of the electronic spectrum of
semiconductor superlattices. The expansion set for the superlattice state consists
of the bulk Bloch states associated with complex values of the wavevector k. Since
the bulk periodicity is broken by the introduction of a series of interfaces, the
wavevector k that labels the Bloch state solutions {|k}} is not restricted to take on
only real values.

Consider the case for which the superlattice axis normal to the interface is
along the % direction. The wavevector k can now be decomposed on a component

parallel to the interface, kj|, and a component normal to the interface, 8&:
k = kj + 8k, (1)

with
kj = &k, + Fky, | (2)

being the component of the wavevector k parallel to the interface plane.

Since the translational symmetry of the bulk solid is preserved parallel to the
interface, the component kj still remains a good quantum number for the Bloch
solutions. The total energy, E, of the Bloch state is also a good quantum number to
label the solutions. It is more convenient, when dealing with an interface system to

label the Bloch state solutions {[k)} by {|kE;k.)}. Then, Schrédinger equation,

H|k) = E(k)[k), - (3.0)

becomes

HIX(E; k) = E(k), k)| k) E; k). (3.5)
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In Eq.(3) we labelled the Bloch states |kj|E; k) in the extended zone scheme
and therefore we got rid of the band index, n. It is important to realize that Eq.(3) is
not an eigenvalue problem, since for a given kyj and E(kj, k) there exists a finite
number of k;, real or complex, for which the Bloch state |k E; k;) is a solution
of Eq.(3). As mentioned above, the component of the wavevector parallel to the
interface, kjj, and the total energy, E, can be used to label the solutions of Eq.(3).
However, the component £, is not a conserved quantity across the interface and
cannot be used to label the solutions of Eq.(3). We now show how to obtain all the
solutions of Eq.(3) for &, real or complex within the k - p theoretical framework.
In this case the spectrum E(k", k,) is referred to as a complex-k bandstructure.

Following the procedure outlined in Appendix (4.1), we use the set {|m)} of
zone-center basis states (ko = 0) of the reference solid, as the expansion set for

the Bloch solutions {|kj| E; k2)}:
(x|ky E; k) = exp(ik) - x||) exp(ikz 2 )u(k), kz; X),
(x|k) E; k;) = exp(ik)| - x)|) exp(ik, 2) Z (x|m)C(m, kz; k| E), (4)

m

where x| is a two-dimensional position vector parallel to the interface plane,
x| = %z + §y. (5)

The ket |m) designates a cell-periodic zone-center basis state associated with ko =

0, in the reference solid,
(xim} = um(x). (6)
o Let H E be a matrix containing the energy E(k|, &, ):

Hp=H — E(kj), k2) (7)
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Direct substitution of the expansion Eq.(4) into Eq.(3), and projection onto the
zone-center basis state (m|, yields the matrix equation in terms of the zone-center

basis function {|m)}:

EHE(mm';k”/cz)C(m', kz; Ky E) =0, (8)
ml
where the matrix elements A g(mm!; k| k2) are defined to be

2
ﬁg(mm';kukﬁ = [Em(o) + Eh—kQ — E(ky|, k;)|6(m, m")
m

+_Z_k - (m|p|m’) + AV (mm"). (9)

The non-diagonal part of the Hamiltonian corresponds to the momentum

matrix element between zone-center basis states given by:
no— 3., %
(m|p|m’) = /d XU, (X)Pums(X). (10)

The perturbation potential is related to the difference between the local pseudo-
potential of the solid under consideration, H (J)(gg' ; k), and that of the reference
solid, #*(gg/; k),

AV (mm') =" > " [U(g m)| AV (gg)U (&, m'). (11)
g g
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4.4.2.1 Complex-k Bandstructure : Eigenvalue Problem
In order to transform Eq(8) into an eigenvalue problem, we now introduce a
companion matrix whose diagonalization, at each parallel wavevector k| and total
energy E(kj, k), gives all the set of allowed perpendicular wavevectors, k.

To simplify the notation, let us introduce atomsic units such that

h=1, (12.q)
1
= —, 12.5

m= (12:9)
and, consequently,

hQ

—_ = ], 12.¢

- (12.c)
and

fi

— =2, ' (12.4)

m .

e Let us first rewrite Eq.(8) in matrix form:
Hg(k), kz) - Clkz; k| E) = 0, (13)

where Hg(k)|, k-) is the matrix H E in the zone-center representation, {|m)}. The
column vector C(k;;k||E) is the set of coefficients C(m, kz; k| E) associated with
kz. The index m labels the zone-center basis functions of the reference solid.

Let us now define the column vector:

K(m, ky; k| E) = Z [kzé(m, m') 4+ p,(m, m')] c(m!, ky; k E), (14.a)

m!

or, in matrix form,

K(kz; k| E) = [k21 + p2] - Clkz; k) E), (14.5)
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or,

—pz - Clkz; k) E) + K(k; k) E) = ks, - Clks; k) E), (14.c)
where the matrix p, has matrix elements, in the {|m)}-representation,

Pz = p(m, m') = (m|p,|m'}, (14.d)

and 1 is the unit matrix.
With the above definitions, the matrix Hg (kj|, k;) appearing in Eq.(7) can be

factorized in the following way:

Hg(mm'; k| ks) = [Em(0) + kK — E(k|, k5)| §(m, m)

+2k - {(m|p|m) + AV (mm), (15.a)

= [Em (0) + l‘”2 + kz2 — E(k, kz)] §(m, m’)
2K - (mipy ) + 2k, - (mlp ) + AV (), (15.0)

Let us write the above equation in matriz form and extract from it an

eigensystem for the column vector,

[C(kz;kuE)] _ [ C(k=; k| E) (16)
K(k,; kyE)] ~ |[(k+ p)Clky; kyE) |
We can write, in matrix form,

Hp(kj, k2) = [Em(0) + k* — E(ky, k;)]1 + 2k -p+ AV, (17.0)

Il

[Em(0) + Xy + k.° — E(ky, k,)] 1 + 2Ky - py + 2k -9, + AV, (1T.0)
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where the matrices p, and pj| are, in the {|m)}-representation,
pz = (m|ps|m’),

and

P = (mlpnlm’).

Let us define the matrix Hg)(k") as

Hg)(k") = [Em(O) + k"2 - E(k", kz)] 1+ 2k -py + AV.

Now, we can write the eigensystem
He(k), k;) - C(kz; k) E) = 0,

as

B (k) - Clks; Ky E) + [k:” + 2k5 - p2] - Clkz; k) E) = .

Let us write
[kz2 + 2k, - Pz] ’ C(szk”E) =ky- [kz + 2Pz] - Clkz; kIIE);

= kz ) [(kz + Pz) + pz] : C(/cz; k“E)
=k, -K(ks; k) E) + k7 - pz - Clh; K E).
Now, we can write

ky-ps - C(kz;kllE) =Dz [(kz + Pz) - pz] : C(kz§k”E);

= pz - (ks + pz) - Clks; K E) — P52 - Clks; k E),

=p, Kk K E) — ps2- Clkz; k)| E),

(18.a)

(18.)

(20.q)

(20.5)

(21.a)

(21.5)

(21.¢)

(22.a)

(22.5)

(22.¢)



-2901-

and finally,
(k.2 + 2k, - 1] - Clhas Ky E) = (ks + p,] - K(kz3 Ky E) — po2 - Clhzs Ky E)  (22.4)
Thus, we can write
[H%”(kn) - pzz}  Clks; K E) + [k + p2] - K(kz; Ky E) = 0, (23.0)
or,
[—HS,?)(ku) + pﬁ] - Clkz; k|| B) — po - K(ks; k| E) = ks -K(kos  E) = 0 (23.5)
We thus have the following eigensystem,
—ps - Clky; X E) + K(ky; k) E) = k; - Clk; k| E), (24.a)

["Hg)(ku) + pf} Clkz; kyE) — ps - K(kzs kyE) = ks - K(ko; Ky E).  (24.0)

e In matrix form, we obtain,

—p, 1 . Clk.; Ky E) . Clkz; k) E) (25
—H(I)(k") —pz| (KlkskE)] ™ 7 Kk X E) )

where we have defined the matrix |
BV (k) = B (k) + 2.2, (26.a)

or,
H(l)(k”) = [Em(O) + k”2 — E'(k”, kz)] 14 2k -p| + AV + P52 (26.0)

The matrix

(26.¢)
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is called the companion matriz
It is now possible to solve the eigensystem,

—p, 1 } . [C(kz;k”E)] . [C(kz;k”E)}
K ’

—HD (k) —p.] |Klks; E)] (kz; kyE) (27)

for the allowed values of k, at fixed kyj and E(kjj, k;): Direct diagonalization
of the companion matrix gives the values of £, and the expansion coefficients
C(m, k,; k)| E') appearing in the expansion of Eq.(4) for the Bloch solutions |k} E'; k)

in terms of the zone-center basis functions {|m)}.
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4.4,2.2 Eigenvector Matrix of Companion Matrix:

In this subsection, we would like to study more closely the etgenvector matriz
that diagonalizes the companion matriz.

We note that the size of the companion matrix appearing in Eq.(26) is twice
the size of the matrices Hg k|, k»), Hg) (ky), and H(l)(k"). This is due to the fact
that the Hamiltonian Hg (k", k.) contains kinetic energy terms going like kzg. The
procedure outlined above is identical to the technique by which one can transform a
m-th order linear differential equation into a set of m first-order linear differential
equations. Suppose that the number of zone-center basis functions appearing in
the expansion of the Bloch state |k E; k;) of Eq.(4) is N, 1.e., the expansion set
is [{{m)},m = 1,..., N.] Therefore, the diagonalization of the companion matrix,
Eq.(14), will produce 2N complex values of k, for each kj and E(k|, k). In what

follows, we denote the finite number of complex values of k, by:

ky =k, A=1,...,2N,(28.a)

and the associated Bloch states by:
kY E; k) = |k||E;k>\), A=1,..,2N,(28.0)

at each k) and E(kj|, kz).
The matrix of eigenvectors, formed by the column vectors C{ky;kjE) and
consisting of the expansion coefficients, C(m, kx;kyE), is not o square matriz.

The columns of C(ky; k) E) label the 2V solutions Eq.(14), t.e.,

ky = ky, AN=1,..,2N,(29.a)

and the rows of C(kx; k| E) label the V basis functions at kg = 0, 1.e.,

{im}, m=1,...,N.(29.b)
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The expansion of the Bloch states in solid j = 1,2, {|k||£; /cg\j))}, N=1,..,2N]

can now be written as:

(xlky E; k) = exp(iky - xy) exp(ik{D 2 )u(ky, ky; x),

N
x|k E; lcg\j)) = exp(ikj « x”)exp(ikgj)z) Z (xim)C(j)(m, k&j);k"E). (30)

m=1

where C'(j)(m,/cg‘ﬂ k|| E) is the set of coefficients associated with the eigenvalue
lcg\j ) in solid 7. The index m labels the zone-center basis functions of the reference
solid. The complex-k band structure, E(kj|, k), and Bloch states, {|k||E; k)}, are
obtained by diagonalization of the companion matrix, Eq.(26) within the full-zone
k - p scheme described in Section 4.4.1. Within this framework, 27 zone-center
states {|m)} constitute the expansion set for the Bloch states {|kyE;ky)}, t.e.,

N = 27. Out of the 2N == 54 Bloch states obtained,

{lkE; k)3, A=1,...,2N.

e We now examine the eigenvector matrix that diagonalizes the companion
matrix and gives it physical significance. |

Let M(k||E; j) be the etgenvector matriz that diagonalizes the companion
matnz in sold j =1, 2,

C(ky; k"E‘)

(k+ p)CW(ky; k) E) | (31

Mk E;j) =

for j = 1,2. The column vector C(j)(k)\; k|| E) is the set of coefficients C(j)(m, kg\j); kE)
associated with the eigenvalue kg\j) in solid 7 = 1,2. The index m labels
the zone-center basis functions of the reference solid.

As they stand, the matrices M(k“E;j) are expressed in the kg = 0 basis

{Im}} of the reference solid. We can express the M(k| E; j) matrices in the plane
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wave basis, {|g)}, with the use of the transformation matrix U,

. U o C(j)(kx;k”E)
Mk E;j) = . . , 32
(kIE37) {o U} [(k + p)CO (ks k| E) (52
where we have performed the left multiplication,
& . N B
cO (g kD xyE) = Y Ulg,m)- ¢Dim, k01 E), (33)
n=1

to transform bases.

It is to be shown in Chapter (4) then the eigenvector matriz that diagonal-
tzes the companion matriz is the matriz obtained by applying the boundary
conditions on the superlattice state function. The matrices M(k)E; ) play a

crucial role in the theory presented in Chapter (4).
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4.4.2.3 Symmetry Properties of Bloch Solutions: Time-reversal
We pause here to point out some of the symmetry properties of the expansion
coefficients C(m, kx; kj| E') appearing in the expansion Eq.(28).
e Let us consider the case of kjj = 0. The Bloch state (x|k E; k) can be

expanded in terms of the ky = 0 basis functions,

N
Y{kx; x) = exp(ikyz) Z um(x)C{(m, k), (34)

m==1

where we have written  (kx; x) for (x]k||E; kx) at k| = 0 for simplicity.
According to Appendix A, the degenerate time-reversed state is simply the

complez conjugate tn the absence of spin-orbit. Then we can write the time-

reversed partner of ¥ (ky; x) as

N
'{[J*(k)\; x) = gxp(—-ik;z) Z u;(x)C*(m, k), (85.a)
m==1
or,
N
* . * * *
¥ (knix) = exp[i(—£3)z] Y upm(x)CT(m, k). (35.6)
m=1
We can also write the Bloch solution w(—k;; x) associated with the wavevector
¥
—k, as,
N
* . *
V(—k3x) = exp[i(—=Fk})z] D umlx)C(m, —F). (36)
m=1

Therefore, the time-reversed partner of a Bloch state with wavevector &y is a
Bloch state with wavevector —k;, to within a phase factor, exp(ip).

We can then relate the time-reversed pair of Bloch states as,

1[1*(/c>\; x) = exp(—z'(p)w(—k;; x), (37.a)
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or,
Y(ky; x) = explip)y” (—ky; %), (37.5)
to within a constant phase factor, exp(—ip) .

By comparing Eq.(35) and Eq.(36), we have
¥ (kx; X) = exp(—ip)Y(—ky; X), (38.0)

or, explicitly,
N

N
exp [z'(——k;)z] Z u:n(x)C*(m, ky) = exp(—-z'go)exp[i(—k:)z] Z U (X)C(m, —ky ),

m==1 _ m=1

(38.5)

or,

N N

* * .

3 ur (x)CT(m, k) = exp(—ip) Y um(x)C(m,—k}),  (38.0)

and finally, by complex conjugating,
N N
. * *
z U (X)C(m, k) ) = exp(ip) Z u,,(x)C (m, —k;). (38.4)
m==1 m==1

According to the phase convention we have that kg = 0 basis functions have

no definite parity and are taken to be real. Then we have,

*

Uy, (X) = um(x). (39.q)

C(m, ky) = exp(ip)C (m, —k:). (39.0)

To determine the phase factor exp(ip), we adopted the following phase con-
vention on the expansion coefficients, the mazimum component of the coefficient
C(m,ky) ts taken to be real and positive. Since the maximum component of

C(m, k) and C*(m, ——lc;) occurs for the same index m, then we have that
C(m, ky) = C" (m, —ky), (40)
which fixes the phase factor to be

exp(ip) = 1. (41)
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4.4.2.4 Normalization of Bloch Solutions: Complex Conjugation

We now indicate how the normalization of the Bloch solutions is done.
As is shown in Appendix (A), when the wavevector ky is complez, if the cell-
periodic function un,(k; x) 15 a solution of the Hamiltonian H (k) then the cell-
periodic function u.(k ;x) is a solution of the adjoint operator, H(k)!, where

the Hamiltonian H (k) is defined to be :

. 1
H(k) = —(p + k)’ + V (x), (41.0)
or, )
. 1 A
H(k) = -é%n-p2 +—k-p+ 2—7;1:2 + V(x). (41.5)

This is due to the fact that, for k complex,
*

Hx'=HK). (42)

Thus we must normalize the solution associated with the wavevector k) with

the solution associated with k;. The Bloch solutions
[kyE; k) = [k E; k), A=1,..,2N,(43.q)

corresponding to the wavevectors,

ke = ky, A=1,...,2N,(43.0)
were normalized such that
N .
* *
> [Cm b Cm k) = 1. (#4)
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APPENDIX 4.5

The purpose of this appendix is twofold.

o First, we analyse the situation in which the Bloch solutions associated with
complex values of k are equivalent, 1.e., when the solutions are related by a
reciprocal lattice vector g .

o Second, we look more closely at the boundary conditions tmposed on the
superiattice state function. We show that the number of linearly independent
Sfunctions projected onto the interface plane is closely related to the the number
of non-equivalent Bloch states.

We collect these derivations in a single appendix since they are intimately

interconnected.

4.5.1 EQUIVALENT SOLUTIONS

4.5.1.1 Pseudopotential and k- p Approaches:
We have seen in Appendix (4.4) that the Bloch solutions in the solid j =
1, 2 associated with the (real or complex) wavevector /cg\j), {lky E; kg\j))}, could be

expanded in terms of kg = 0 basis functions, {|{m)}, of a reference solid,

N
(x]k“E;k&j)) = exp(ikj -x”)exp(z'kg\j)z) Z (xlm)C(j)(m, k‘&j);k”E). (1)
m==1

where C()(m, /cg‘j); k|(E) is the set of coefficients associated with the eigenvalue /cg‘j)

in solid 7. In the x-representation, we write

(xlm) = um(x), (2)
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for the kg = 0 basis functions. The index m labels the zone-center basis functions

of the reference solid.
Is is also possible to carry out this expansion on a set of plane waves {|g)}

associated with the reciprocal lattice,
(x|kyE; k) = exp(iky - x)) exp(ik{) 2 Z =g v xE),  (3)
where, in the x-representation, we write
(x|g) = exp(ig - x), (4)

for the plane waves. The relation between the sets of coefficients C (j)(m, kg\j); k| E)

and C(j)(g, lcg\j) ; ky E') is obtained through the matrix U(g, m)
C(J’)(8 k(J) k| E) = ZU(S’ m)C'(j)(m ]c(J)’k“E) (5)

The matrix U is the eigenvector matrix that diagonalizes the local pseudo-

potential Hamiltonian of the reference solid H gg’ k) at k = 0,

1] =[E T wem aVadsio@, ] L 6o

g g k=0

[I;I(O)(mm’; k)] = Em(0)8(m, m'). (6.9)
k=0

The eigenvector matrix U is the transformation matrix that allows the trans-
formation from the {|g)}-representation to the {|m)}-representation of the reference

soltd. Once the transformation matrix U is known, the k - p Hamiltonian of

each solid H @) (mm!;k) is obtained from the local pseudopotential Hamiltonian
D eg; 1),
A mm' ;1) = 3 (ute,m)l T egs U &, ), (7.0)

g g
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or, using

A% ;1) = 4 (g8 k) + AV (ae), (7.5)

AV mms 1) = Y Y UG, m)l*[ﬁf("’(gs';k) +aviigg)|U(g, m). (1.0
g g

As mentioned in Appendix (4.4), if NV is the number of kg = 0 basis functions
{|{m}} of plane waves {|g}} then the number of solutions kg\j) insolid y = 1,2 is

2N. This is due to the quadratic term in &, in both the k- p

. 2 .
Dm0 = [ B0+ ] m, ')+ L grlpl'y + 2V Do,
m
(8.0)
or the local pseudopotential
N 72 .
A5 = e+ 6%0% — )+ VOer), )

Hamiltonians.

It should be note that due to inherent lack of periodicity of both the k - p
or the pseudopotential Hamiltonian, some of the solutions kg‘j) will be related
to each other by a reciprocal lattice vector g. Thus the diagonalization of the
companion matrix produces states ]k”E ; k&j)) whose Re[kg\j)] lie outside the first
Brillouin zone. These solutions are approzimate repeated-zone solutions due the

truncation of the k- p or local pseudopotential Hamsiltonians.
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4.5.1.2 Equivalent states:

In this subsection we would like to examine Bloch states whose wavevectors

are related by a reciprocal lattice vector.

Consider two Bloch states associated with the wavevectors

k)‘ = k" + ﬁk)\,

and

K, =ky' + k).

Suppose that k) and k’x are related by a reciprocal lattice vector, gy,

ky =K, + g,
where
8u = g T 2g,.
Equations {10) imply that
!
kj =k + g,

and,

e We must consider two cases:

(t) In the case where g||£0 we have

ky 7k

(10.a)

(10.6)

(11.a)

(11.5)

(12)

Since the Bloch states correspond to fixed parallel wavevector ky| and energy E, this

situation would correspond to another problem unless the Hamiltonian has some

higher symmetry along some directions in the Brillouin zone. We rule out this case.
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(%) In the case where gjj = 0 we have
k) = k”', (13.a)

and,

ik = 8k + 8g,. (13.5)

In this case the two Bloch states have their wavevectors in the &-direction separated
by a reciprocal lattice vector. Bloeh states lk"E;k)) whose wavevector satisfy
Eq.(10) are said to be equivalent. Thus equivalent Bloch states correspond to
the same physical situation.

¢ Then, it seems appropriate to relabel the solutions kg\j) into sets of non-

equivalent Bloch states. Let us make the change of label for the solutions k&’l) in

solid j = 1,2
k&j)“*kgﬂa (14.a)
for the wavevector, and
I E; 60)~ i E; 59, (14.5)

for the associated Bloch states. The meaning of the double label vy is the following:
o ~v labels the sets of non-equivalent Bloch states
o u labels the equivalent partners within the set 7.

Thus, out of the 2NV solutions
k() A=1,...,2N,(15.0)
lk”E;k‘g\j)), A=1,..,2N,(15.5)
let there be 2M < 2N sets of non-equivalent solutions

&9

W 7= 1,-.-, 2M,(16.a)
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Ik“E;kgj)‘), vy=1,...,2M,(16.b)

where the index p labels the equivalent partner solutions within the set «,

860, = k) + g, (16.¢)
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4,5.1.3 Equivalent states: Counting
The purpose of this subsection is to determine the number of non-equivalent
states, or, in other words, to determine the number 2M of non-equivalent solution
sets k% out of the total number 2V of solutions kg‘j ), in solid j = 1, 2.
The argument is most easily carried through within the local pseudopotential

formalism. For notational simplicity, let us use atomic units whereby,

=1, (17.a)
1
m= -, 17.b
- (7.5)
and, consequently,
ﬁ2
— =1, 18.a
o (18.0)
and
/]
— = 2, (18.b)
m

Let the Bloch state |nk) be expanded onto the set of plane waves {|g)}

Ink) = exp(ik- x) )_|g)c (g, k). (19)
g

Then, Schrodinger equation,
H|nk) = E,(k)|nk), (20.0)

can be transformed into a matrix equation in the {|g)}-representation,

3 i ag C g, k) = Eal)c (g, ), (20.9)
8'
or,
> [H (s k) — Ea(k)6%g — &) (g, k) =0, (20.0)

gl
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where the Hamiltonian of solid 7 in the local pseudopotential form is given by

H (j)(sd k) = (k+8)%5%g —g) + V(gd)), (21)

and V9 (gg') are the pseudopotential form factors.

Let now consider the quantity,
0]
H (gg/;k) — Ek)$°g —¢) =

[(k+8)°>— E(X)] 635 — &)+ VU(gd), (22)

in the limit where E, (k)— — co. In that limit, we can neglect the pseudopotential

form factors, V (9)(gg'), and the matrix
7Y(ed; ) — Ek)5% 5 — )

is now diagonal in the {|g)}-representation,

Now, since we must solve for the wavevector k at fixed energy E,(k), the

problem

2 {ﬁ(])(ss’; k) — B (0)6%(g — &) (g, k) =0, (24)
gl

is not an etgenvalue problem. The allowed values of k at fixed E, (k) are found

whenever the above equation possesses a solution. The above system has a solution

whenever the determinant of the matrix vanishes, 1.e.,

ss’ k) — En(k)6°(g — g')| = (25)
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Let us restrict ourselves to the case whereby k) remains real and & is allowed

to be complex. Now, since the matrix H (J)(gg’ ; k) is diagonal, the condition

1 (6 k) — Eal)0%(8 — &) = 0, (26)
simply reduces to
Tg((k + 8)° — En(k)] =0, (27)
or
Mg (ky + su)2 + (kz + g:)° — En(k)| =0, (28)

where we have written,

g =g + .. (29)

Thus, the allowed values of &k, are

2
k: = —g: & \/ En(k)— (ky + &) (30)
Let N be the number of plane waves {|g}} included in the expansion
Ink) = exp(ik- x) } |20 "(g, k), (31)
g

and let M < N be the the number of two-dimensional reciprocal lattice vector gj|

included in the expansion set {|g)}. It is clear that the number if non-equivalent

solutions of the form

ky = —g, + \/En(k) — (ky + su)z, (32)

s equal to twice the number M of distinct two-dimensional reciprocal lattice
vectors g||. Thus, for each gj included in the expansion there are two non-

equivalent solutions (4 sign). The other solutions are related to these two by
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a reciprocal lattice vector &g, and therefore correspond to equivalent solutions.
Each different gj| included in the expansion of the Bloch state gives rise to a set of

non-equivalent Bloch solutions.

Thus, out of the 2N solutions
kD, A=1,...,2N,(33.0)

lk”E;k&j)), ‘ A=1,...,2N,(33.5)

there are 2M < 2N sets of non-equivalent solutions associated with the M

different values of gjj included in the expansion,

kg’z, ¥ =1,...,2M,(34.0)
lkuE;kﬁfg), y=1,...,2M.(34.5)

The index p labels the equivalent partner solutions within the set 7,

3k0), = k) + g, (34.¢)
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4.5.1.4 Relation Between Equivalent Solutions:
The purpose of this section is to examine the relation between equivalent
solutions, .e., solutions related to each other by a reciprocal lattice vector &g, .

Agaili, this is most easily done within the local pseudopotential formalism?.

4.5.1.4.1 Equivalent Solutions: k Real

Consider the expansion of the Bloch state [nk) in terms of the set of plane

waves {|g)},

Ink) = exp(ik-x) ) _|8)C(")(g, k). (35)
g

Then, Schrodinger equation,
H|nk) = E,(k)|rk), (36.a)

can be transformed into a matrix equation in the {|g}}-representation,

3 2 eg; 100, k) = En ()0, ), (36.)
gl
> [ér"’(sd; k) — En(k)s%g — &)| ¢((g, k) =0, (36.0)
8(

where the Hamiltonian of solid j in the local pseudopotential form is given by
A {5 .
AV = (k+9)%°5 —g) + Vigd), (37)

and V(9)(gg') are the pseudopotential form factors.
Now, consider the expansion of the Bloch state |nk + gg), related to |nk) by

the reciprocal lattice vector gg, in terms of the set of plane waves {|g}},

|nk + go) = expli(k + g0) - x] Y _|8)C (g, k + go). (38)
g
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Then, Schrodinger equation,
H|nk + go) = En(k + go){nk + g0), (39.2)
can be transformed into a matrix equation in the {|g)}-representation,

> 185k + 80)C (@, k + g0) = Ealk + g)C g k +80), (399
gl

or

> [ﬁ(j)(ss/;k+80)—En(k+80)53(8—8') g,k +g0) =0, (30.0
gl

where the Hamiltonian of solid j in the local pseudopotential form is given by

A% (egsk +80) = (k+ 80 + 8)%5%8 — 8) + V(ag), (40)

and V) (gg') are the pseudopotential form factors.

Now by comparing the local pseudopotential Hamiltonian corresponding to
|nk),
N7 .
AV d 1) = &+ 2%° @ — &) + V(eg), (41.0)

and the local pseudopotential Hamiltonian corresponding to |nk + go)
AV ko) = (k+ 80 +8)%°6— &)+ VOeg),  (410)
it is clear that by making the substitution
k—k + g, (42.a)
the resulting equation is the same as if we had made the replacements,

g—g 1 8o, (42.5)
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and,

g —¢ + 80, (42.0)

and keeping k fixed.

Thus tn the pseudopotential formalism, the secular equations for the Bloch
states |nk) and |nk + go), where gy s a reciprocal lattice vector, are the same
to within a rearrangemant of the rows of the secular matriz. We conclude that

the eigenvectors C(”)(g, k) and C(")(g, k + go) differ by at most a phase factor

exp [ip(k, go)],
c(™(g,k + g9) = explip(k, 8)| €™ (g + g0, k), (43.0)
and belong to the same energy eigenvalue,
En(k + 80) = En(k). | (43.5)
Given the relation
(g, k + go) = exp [ip(k, )] C™(g + g0, k), (44)

between the ezpansion coefficients, we derive the relation between the Bloch
solutions |nk + go) and |nk).

Consider the expansion ,

|nk + g0) = exp li(k + go) - x| Y _1g)C (" (g, k + g0), (45.0)
g

or explicitly, in x-representation,

Ink + g0) = expi(k + g0) - x| Y exp(ig - )C(")(g, k + go), (45.5)
g
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= exp(ik - x) Z exp [i(g + 20)] €™ (g, k + g0), (45.¢)
g
= exp(ik - x) Y exp i(g + 80)] exp [ip(k, g0)] ¢ ™(g + 0, k), (45.d)
g

or, by letting

g8+ 8o, (46)
we have
= exp [ip(k, g0 )] exp(’k - x) Z exp(ig - X) C(" (8, k), (47.a)
g

= exp [ip(k, go)] [nk). (47.0)

We can thus write the relation between equtvalent Bloch solutions as

[nk + go) = exp [ip(k, go)}|nk). (48)

4.5.1.4.2 Equivalent Solutions: k Complex

We now consider the case where k takes on complex values. Let the wavevec-
tors kU) and kﬁnl,, in solid j = 1,2, belong to the same set v and be related
through

8k0), = 8k00) + 2g . (49)

We can relate the expansion coefficients, c9) (g, k%; kjE) and C(J)(g, Ew” kE)

in the {|g)}-representation,

cWig, k), E) = cVg, k) + guw; K E)

_ C(j)(g + 894y k%; k) E)exp {ZKO(J') (v, ﬂu’)}. (50)
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And, the relation between equivalent Bloch states belonging to a given set
is

k) E; kﬁfﬂ:) = exp [iso(j) (1, uu’)] Iy £ &), (51.a)

where the state |kj| E; /cgjlz) belongs to the eigenvalue kﬁfg and the state [kjE; /cfrjz,)

belongs to the eigenvalue /cgj)‘,, and,

ikgﬂg, = 8k{J) + dguu. (51.5)

From now on, we adopt the convention that the eigenvalue lcgj) has its real
part within the first Briilouin zone, in solid j = 1,2. That is, Re[£{)] lies inside
the first Brillouin zone. We label the equivalent partner solutions of Icgj) by kgjz

Then we have
Ik"E; k’(YJZ = exp [z';o(j) (r, M)] |k||E; /‘79‘)), (52)

where the state [kj £; kgj)) belongs to the eigenvalue kgj) within the first Brillouin
zone and the state ]k”E; k%) belongs to the eigenvalue k% The phase exp [z'go(j) (77, u)]
relates a Bloch solution outside the first Brillouin, [kjE; kg’z), to a solution
inside the first Brillouin zone [k E; kgj)).

The wavevectors Icgj) and lcgjll belong to the same set v and are related through
ik() = k() + 8g,, (53)

and Re[kgj)] lies inside the first Brillouin zone.
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4.5.2 EQUIVALENT SOLUTIONS AND BOUNDARY CONDITIONS:
In this second part of the Appendix (4.5) we analyse the superlattice state
Sfunction and the boundary condition matriz in the light of the above discussion

about equivalent solutions.

4.5.2.1. Superlattice Wavefunction and Equivalent States:
As above, let j = 1,2 be a label to identify either one of the two constituent
semiconductors forming the superlattice. The set of Bloch states {|k| E; kg‘j))} in

solid 7 is a solution of the bulk Schrodinger equation:

Ay 2 60y = By, 50k B 50, (1)

where H ) refer to the bulk Hamiltonian in solid j, and [\ = 1,...,2N].

Let the superlattice séate at fixed parallel wavevector k| and energy E in solid
7 be ]kuE; q;J), where q is a quantum number that labels the superlattice states.
The label q is referred to as the superlattice wavevector. Let the & be the direction
normal tc: the superlattice interfaces,

We now expand the superlattice state |kj|E; q; j) on the set of Bloch solutions

{iky E; k&j))} in each solid J:
K E; g 5) = ZlkuE;k(ﬂ))f(’)(k(x“,q; k), (2)
A=1

where the amplitudes f (j)(kg‘j ) q; k) ) indicate the admixture of the bulk Bloch state
[k E; /cg\j)) in the superlattice state |kjE;q; 7).

e k - p Approach:

As seen in the previous section, the Bloch solutions in solid j, {|k}E; kg\j))}, are

described in a zone-center expansion set {|m)} which is associated with a reference
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solid,
(x|k E; lcgj)) = exp(ik -x“)exp(z’lcgj)z)u(k", /cg\j); x), (3.a)
B o N . .
(x]kuE;k@) = exp(ik| -x")exp(z'kgf)z) Z (x|m)C ¥ (m, /cg\]);k"E). (3.9)
m=1

As before, the index m will refer to a kg = 0 basis function in the reference

solid.

o Local Pseudopotentials Approach:

Is is also possible to carry out this expansion of the set of Bloch solutions
{lky E; lcg\j))}, on a set of plane waves {|g)} associated with the reciprocal lattice
vectors,

x|k E; kg‘j)) = exp(ik|| - x")exp(ikg\j)z) Z (x]g)C'(j)(g, k@; k) E). (4)
g

The relation between the sets of coefficients C (j)(m, k&j ); kjE)and C (j)(g, Icg\j ) ;EE)

is obtained through the matrix U (g, m)

g, £k E) =) U(g, m)CW(m, k7 k) E). (5)

We now break the total 2N solutions kgj) into 2M < 2N sets kﬁfg of non-
equivalent solutions. We relabel the solutions k&") into sets of non-equivalent

Bloch states. Let us make the change of label for the solutions Isg‘j) insolid j = 1,2

lcg‘j)—t‘k%, (6.2)

for the wavevector,

Ik E; &)k E; k), (6.5)
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for the associated Bloch states, and
FOED, ¢ Xy)—r D (k) ¢ Ky), (6.c)

for the amplitudes.

As above, v labels the sets of non-equivalent Bloch states and p labels the

equivalent partners within the set v, and [y = 1,...,2M]|.

We now rewrite the expansion of the superlattice state function as

2M
E;q ) = Y 3 JkyE; k) DEl), aky). (7)
T=1 4 ‘
The summation 2,271_\/_:[1 is over the 2M sets of non-equivalent solutions. The
summation )_ u 1s over the partner solutions within the set .

The relation between the equivalent partners g of a set 7 is
|y E5 £()) = exp liw(’) (v, u)] Iy 25 k), (8)

where the state |k E; lcgj)) belongs to the eigenvalue /cgj) and the state |k E; /c,%)
belongs to the eigenvalue k% The phase exp [igo(j) (v, u)] relates a Bloch solution
outside the first Brillouin, |k”E; k%), to a solution inside the first Brillouin zone
k) E; k(qj)). As above, we adopt the convention that Re[kgj)] lies inside the first

Brillouin zone.

We can now write

2M
kg Esqi) = D O IkE; kSO kY, akyp), (9.0)

y=1 u

or, using

|l E5 &) = exp [iso(” (v, u)J Iy 25 6 0)), (9.b)
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we have
2M B . - R
KE;qi)= D Zexp[w%,u)}lkuE;kﬁ,ﬂ>f(”(kgfg,mku), (10.0)
=1 u
oF, regrouping,
2M . . . .
[y E; q; 5) = ZlknE;kgj))[E exp[iso(’)(%u)}f(’)(k%q; kn)], (10.6)
7=1 [
and finally,

2M

g Esa ) = 3 Ik E; kN DED, ¢ k), (11.2)
=1
where we have defined,
f (")(kﬁ,"), g k)= Z exp [i@(") (7 u)Jf (")(kﬁ,’ﬁ, g kj)). (11.8)
i

Since only the non-equivalent solutions correspond to physically distinct

situattons we only should regard the sum

FOED, gk =) exp [iso(j)(% ﬂ)]f(j)(kﬂf;l, @ k), (12)
u

as physically meaningful Then, within the local pseudopotential formalism, we
know that there are only 2M phystically significant amplitudes, f (j)(icgj), q; k),
where M 1s the number of distinct g included in the ezpansion of the Bloch
state. The amplitudes f(j)(kgj), g kjj), [v = 1,...,2M] are the quantities of inter-
est.

o k - p Approach: Multi-component Envelope Function

Then the superlattice state in solid y can be expressed as a linear combination

of zone-center basis functions {|m)} of a reference solid. By using explicitly a
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x-representation, we can expand on the set of 2M non-equivalent solutions,

2M
(=l B q5) = Y (zlky E; D) D (6D, g ky), (13.0)
y=1

2M N
= Z [exp(z]:” -x”)exp(ikgj)z) Z (xlm)C(’( kU) k”E)jl f(J( ),q; kj),

m=1

N 2M
= Z (x]m)[exp(zk” -x|) Z exp(z'/c( 7) )C(J)(m k(] k"E)f(J ( q,k”)]

m==1 =1
and finally,
N ﬁ
(xlk)E; q; j) = Z (x|m)F D (m; ky q; x). (13.5)
m=1

The functions F(j)(m;k”q; x) are referred to as multi-component envelope

functions and are defined to be the expression in [...] of Eq.(13):

FO)(m; k) g x) = exp(ik - x))

2 M
Z [exp(ikgj)Z)C(j)(m, k9; kuE)} f(j)(kﬁ,"), q; k), (14)
n=1

in terms of the basis states at kg = 0 in the reference solid, {|m)}, and

FOUD, g ky) =) exp [iso(j) (, u)]f( (k) q k). (15)
u

¢ Pseudopotential Approach: Multi-component Envelope Function

In the local pseudopotential formaiism, the superlattice state in solid j can
be expressed as a linear combination of plane waves {|g)}. By using explicitly a
x-representation, we can expand on the set of 2M non-equivalent solutions,

2M
(=i B3 g 5) = D (=l B kN (68, g ky), (16.0)

7=1
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2M
= Z l-exp(zk” x|} exp(¢ J)z Z (zlg)C [g, ]) k”E)If 7) 7) , g k),
=1 g

2M

=y <x|s>[exp(z'ku -xy) Y exp(ik{2)C (g, kP; Xy E)r Dk, g Xy |,
g

r=1

and finally,

(=l E5q5) = ) (xlg)F V(g kygs ). (16.5)
g

The sets of coefficients C(7)(m, lc‘gj);k"E) and C(j)(g, /cgj);k"E) are related

through the matrix U(g, m)

c (g, kgj); k) E) = Z U(g, m)C(m, kgj); k| E) (17)

m

The functions F‘(j)(g; kjg; x) are referred to as multi-component envelope

functions and are defined to be the expression in |...] of Eq.(16):

F(j)(g; k|q; x) = exp(ik|| - x||) -

2M
> {exp(ikﬁ,")Z)C O(g, £0); k||E)}f DY), g Xy), (18)
7=1

in terms of the plane waves basis {|g)}, and

9D, g k) = ZeXP [WU)(’Y u)}f(’ (£9), @ Xky). (19)

I
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4.5.2.2 Boundary Conditions and Reduced Transfer Matrix:

In this section, we indicate how to obtain the reduced transfer matriz in
terms of non-equivalent solutions kgj) inside the first Brillouin zone. The phase
exp [z'go(j) (7, u)] relates a Bloch solution outside the first Brillouin, [ky| E; kgjg), to a
solution inside the first Brillouin zone [k)| E; /cgj)). We use the local pseudopotential
approach to derive the boundary conditions mairiz and the transfer matriz.

o Local Pseudopotential Approach: Boundary Conditions

Let us expand the superlattice state function in solid j = 1,2 in terms of NV

plane waves, {|g)},

2N
(xlE;q i) = Y (xlkyE; K O%D, g k), (20)
A=1

2N

=) feXP(iku -xy)exp(ik{2) Y exp(ig - x)C (g, £{); knE)] FOED, g xy),
A=1 g

2N
= Y explig- 1)[exp(ﬂtu -x)) Y exp(ik(Dz)0 (g, k; 1 E)F Dk, g K )],
g A=1

where we have written the plane wave as

(x|g) = exp(ig - x). (21)

The superlattice primitive cell is shown in Figure (1). The interface plane has
been taken to be at zy = 0 for convenience.

o The solid (1) extends from zy = —b to the left of the interface plane up
to zg = 0. The solid (2) extends from zp = 0 up to zy = a to the right of the
interface plane.

Let Ry be the superlattice lattice translation vector. We apply the following
set of boundary conditions on the superlattice wavefunction on both sides of the

interface:
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(1) Continuity of the superlattice wavefunction at the interface plane zg = 0
[(xliey 250 1], _p = [(=lk B5 052)] . (22.0)

(%) Continuity of the normal derivative of superlattice wavefunction at the

interface plane z5 = 0
[i - Vixlk E; g; 1)] g = [ Viz|kyE;q; 2 ] 0" (22.0)
(%%1) Bloch theorem for the superlattice wavefunction,
exp(iq- Ro)[{xlky B5 g )] ,__, = [(xlk 52} , _ . (22.¢)
(4v) Bloch theorem for the normal derivative of superlattice wavefunction,
exp{iq- Rg )[i - Vizlk E; q; 1)] ey = [i Vx| E; q; 2)] seg® (22.d)

We expand the superlattice state function and equate the coefficients cor-
responding to the same plane wave g. We now express the above set of boundary
conditions in an eigenvalue system for the 4N unknown coefficients f 7)( 7 q; ky),

where j = 1, 2. By using the definition of the envelope function,

FY)(g; kyq; x) = exp(iky - x)) -

2N
> [exp< £0)2)c V(g £D; kuE)Jf“ (9, q ky), (23)
r=1

we obtain the following relations for g = 1,2,..., NV, after cancelling a common

factor exp [Z'(k” + g)) - x"]

2N
22[ WEﬂf“(x,%km
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2

Z

[0(2)(8, k?; knE)]f(z)(k(f), g k) (24.a)
x

[y

2

2

[(k'(f) + gz)C(l)(s, kgl);k||E)Jf(l)(k§1), gky) =

I

r=1

2

P

[(k@ + 93)0(2)( B, kIIE)]f(Q( g k) (24.5)

>
I

1

exp(iq- Ro) -
2

2

N

exp(—igz) [c(”(s, kUi E) exp(—z'k&”b)] SO, g Xy =

1

NERT

exp(igz a) [0‘% k2 k) E) exp(ik () )}f@)( (), g ky) (24.0)

A

—

exp(iq-Ro) -
oN

exp(—igb) ) [(k&l) + 9 JoWig, k() k”E)exp(—z'k&”b)} :

A==1

FOED, g 1) =

Z

2

exp(igza) {(k(f) + gz)C(Q)(s,k§2);k|1E)exp(ik§2)a)] :
A

I

7P, g k) (24.d)

We now break the total 2/N solutions k&-"') into 2M < 2NN sets kgjg of non-

equivalent solutions. We relabel the solutions /cgf) into sets of non-equivalent
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Bloch states. Let us make the change of label for the solutions lcg\]) insolid 7 = 1,2

kg\ )qkﬁfg, (25.a)
for the wavevector, and,
FOED, gxp)~ Dk, ¢ ky), (25.5)

for the amplitudes.

o The set of boundary conditions now becomes,

2N

> [c“)(g,kgl,z; knE)]f(”(kgl,l,qskn) =
=1
2N
> [c@)(s, g,z,k“E)]f@)(kiﬁz,q;kn) (26.0)
Fu=1
2N
) [(k“ +9.)c(g k%ﬂl;knE)Jf“( (e ky) =
Fyu=1
2N
> [(/ch,,,-l-g) (g, £3); kuE)}f(2 (£3), ¢ X)) (26.5)
Tp=1
exp(iq - Ro) -
2N
exp(—igzb) ) [c%, ) k|| E) exp(— ik >b)}f< kL), g k) =
yu=1
2N
expigza) ) [0(2)(3,/cﬁ,z,);k”E)exp(z'kﬁﬁza)]f(z)( kG, @ k) (26.0)

Tu=1
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exp(ig- Ry) -
2N
exp(—ig2b) z [(k% +gz)0(1)(g, kglg,k”E)exp(—zk(l)b)]
Ja=1
FOEL, @ ky) =
2N
exp(igza) Z [(lfc(2 + g, )0(2 (8, & W,k”E)exp(zkgzl)a)J-
Tu=1

FOER2), ¢ k) (26.d)

Matrix Formulation:

Let us express the above set of 4N equations given for the 4N unknown
coefficients fU)(k (Y () 4> @ kjj) in a matrix form. To do so, let us define the [2NV] -
dimensional column vector £{7) (q) composed of the expansion coefficients f 7)( %’ q; kyj)
of the envelope function F(j)(g; kg x).

Also let us define the [2NV - 2N ] diagonal matrix D(/c( )) whose matrix elements
are the complex-k values k% in solid ;.

We define the [2N - 2N| diagonal matrix D(q) whose matrix elements are the
complex-q values of the superlattice wavevector.

We also define the z-dependent boundary condition matriz [2IV - 2N | matrix
M(kyE; j; z) whose first [N - 2N] elements are the first set of the above equations,
and whose second [N - 2N] elements are the second set of the above equations.
The matrix M(k||E; j; z) has matrix elements M(g, lcgnz,k"E;j;z) in the {|g)}-
representation.

We can thus write, symbolically,

Mk E; j; 2) = M(g, k%,kuE J; 2)
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=[exp(z'gzz) 0 J cO)(g, £G); Xy E) o)
L0 expige2)] (k) 4 g,)C( (k(’) k| E)

Thus the set of boundary equations can be written as
M(k| E; 1;0) - £1)(q) = M(ky E; 2; 0) - £V (28.a)
for the first set of equations, and,
exp [{D(q) - Rg] - M(kjE; 1, —b) - exp [-—zD ] f(1

M(kj E;2;a) - exp [z'D(lcﬁflz)a] - £2) (a), (28.5)

for the second set of equations.
The above set of equations constitues a set of two [2V - 2N] matrix equations
to be solved for the two [2N] -dimensional column vectors £(7) (q) in solids j = 1, 2.
It is now a simple matter to express the above set as an eigensystem for the

column vector f(l)(q). Inverting Eq.(28.a) we find

2 (q) = [M{kyE; 2,0] " - Mk E; 1;0) - £1)(g), (29)
or, by defining the transfer matriz T(k|E; 2, 2') as

T(k)E; 2, z') = [M(k”E; 2; z)]_1 -M(k) E; 1; 2", (30.a)
or, explicitly,

T3, £

= 2). . 9.
1L qlul,k”E Z, Z =E M(g) kg“z,k”E, 2, Z)] M(g, ﬂl’k”E ]_ Z)
g

(30.5)

we can write,

2)(q) = T(ky £;0,0) - f1)(q), (32.a)
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or more explicitly,

7P %3, gky) = ZT @ e ke 0,0 fOEE, gk (32.0)
vy

The physical meaning of the transfer matrix T(k)E) is clear: The transfer
mairiz indicates the mizing between the different Bloch states {[k"E,k%)}
across the interface plane. |

Then Eq.(28.b) becomes,
exp [iD(q) - Ro| - M(k||E; 1; —b) - exp [—iD(k{}))5] 1 (q) =
M(k) E;2;a) - exp [z'D(kgz,})a] - T(k) E;0,0) - f(l)(q). (33)

By rearranging,

exp [:D(q) - Ry} -f(l)(q) =
exp [zD(kgllz)b] . [T(k”E; a, ——b)] L. exp [z'D(kau))a] - T(k}|E; 0,0) -
£)(q). (34)

Equation (34) constitutes an eigensystem for the column vector o 1)(q). Diagonalization

of the matrix,
exp [z’D(kQ))b] . [T(k”E; a, —b)] -1 exp [zD(kgzg)a] - T(k) E; 0, 0), (35)

yields the complex-q band structure of the superlattice through the matrix of Bloch

factors,

exp [D(q) - Ro}. (36)

Once the set of coefficients f(l)(q) is known in solid (1), the set of coefficients £2)(q)

in solid (2), can be calculated with the use of the transfer matrix, T(kj E;0, 0),

t3(q) = T(k £;0,0) - £)(q) (37)
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Reduced Transfer Matrix:
As pointed out above the physically meaningful quantities are the ezpansion

coeffictents

f(j)(k,(-,j), g k) = Zexp [%UN% ﬂ)} J)(k » q; ki), (38)
u

where Re[kgj)] is in the first Brillouin zone and the sum ), u 18 over the equivalent

partners belonging to the set .

Equivalent Solutions: M-Matrix:
o To rewrite the above system of equations for the coefficients f J)( (7) , q; k),
we must study the behavior of the boundary conditions matrices M(k) E; j; 2).
From the above discussion on the pseudopotential formalism, we know that if

the wavevectors kg) and k(J) belong to the same set v and are related through

ik0), = 8k) + Bgu, (39)
then ,
k) E; £47),) = exp [iso(") (1, uu’)] ky £; k), (40)

where the state [k E; & 7)) belongs to the eigenvalue /c(J) and the state [k)| E’; /cg ;1'>

belongs to the eigenvalue kgfg, As shown above, this is a direct consequence of the

fact that,
ol )( k(J + gup; K E) = C(j)(g-i—igm,:,kgfg;kIlE)exp[igo(j)(fy,p,p.')]. (41)

o We now examine the effect of shifting the solution by a reciprocal lattice
vector 89y, on the boundary conditions matrices M(k“E;j;z). For simplicity,

let us consider, the top half of the boundary condition matrices. With the above
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definition, we have that

M(k||E; j; z) = M(8, k{7); k| E; j; 2) = expligz2)C' g, kD kyE). (42)

Let the wavevectors kf{; and k%,, in solid j, belong to the same set v and

are related through
36, = k) + 89, (43)
Let us look at the quantity,

M(g, £0) Xk E; ji; ) exp(ik D), ).

By definition,

M(g, kg’g,,k”E Jiz )exp(zk( ),z) = exp(ig, z)C'(j (g, k(J),, k"E)exp(zk(j),z)

= exp(z'gzz)C‘( )( /c(g + Guu'; k"E)exp[ (& ﬁf,), + guu’)z]z.
= exp [i(g, + 9uu)2]CV(g + B9, kﬁ,,} kjE)exp [i@(") (v uu')}- exp(ik%z ),
and finally by making the substitution,
gz—9z + Fuus

we obtain
M(g, k) ky E; j; z) expl(ik (), 2) = exp [iso(j) (. uu’)} exp(ik ) z)-

M(g + 89,0, KY); Xy E5 j; 2), (44)

We can rewrite the above expression as,

M(g, k) k) E; j; 2) = exp [iso(j) (v, un’)J exp [i(k%j,l — k%)ZJ -
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M(g + gy, k) kB 5 2),

which is equivalent to

M(g, k) k| E; 3 2) = exp [zso(’)h 7 )} exp(—iguuz)-

M(g + gg,, k%; kyE; 55 2),

whenever

869, = 8kU) + g,

A similar relation holds for the inverse of the matrix M(k)E; J; 2).

Equivalent Solutions: Transfer Matrix:

(46)

(47)

Let us now examine the effect of shifting the solutions by a reciprocal lattice

vector on the transfer matrices, T(k) E; 2, z') as
T(k)E; z, = [M(k”E; 2; z)]—1 -M(k) E; 15 2N,
or, explicitly,

—1
T(% gzlz,/cg,zl,,k”E;z,z')E E [M(g, gm,k“E 2; z)] M(g,/cgX "
g

(48)

k| E;1; z)

(49)

o Let us shift k'(*rl'L’ belonging to the set v/ by a reciprocal lattice vector gg,)ﬂ,

skl = a6l + 300,

Then, we have,

M(g, ks y E; 15 2) = exp |ip(D(, u’ﬁ)} exp(—ig\i)z)-

Mg + 89/, k3 K B3 1; 2).

(50)
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o Let us shift k% belonging to the set v by a reciprocal lattice vector 95120)0
A 2 —_— A ~ 2
z/cgo)l = zlcgzg + zgglg,. (51)

Then, we have,
M(g, £ k) E; 2 2) = exp [w@’( ua)] exp(—ig{2)z) -
M(g + & 59,, %) k) kB2 2).
Let us now express the quantity

exp(-—z’kffo)‘ )- (k?o)[, Icg:

29, k|E;z,z . exp(z'lcgly)ﬂZ’), (52)
that relages the states kﬁf; and kgl,%, in terms of the quantity
exp(—ik 2)2) T(k ),, k"E z2,2')- exp(zkglL,z'), (53)

that relates the states lc,(f’) and kgl,z‘,.
We have

exp(—-z'kg,zcl )- T(k(z) kgl,zg,k“E;z,z')-exp(z'/cgl,zgz')E

j’

exp {——z’(k,(fg + ggzo)t)z} .

—1
Z[M(g, gcl,k“E 2; z)} -M(g,kgl,?a; kyE; L 2
8

exp{ ( N T gq,ﬁ) ] (54.a)
or, by using the shifting properties of the matrices M(g, k (70)1, kyE; 2; z), and
M(g,k(hl,%,k”E 1; 2'), we have,

exp(—z'/c(foﬁz)- T(/cggoz, /cgl,zg, kjE; 2, 2"y exp(ikgl,)ﬁz’) =
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exp(——z'kﬁf)z) .

exp [i(so(l) (' w'8)— B, ua))} :
exp [i(g&l,%zl - 9222’3)] - exp [—z’(g& %z — 9542; )}
—1
Z {M(S‘f‘ zgﬁfw k%,k”E 2; Z)J M(g + ZQE}II)@, ,11,1‘,, k| E;1; %)

g

exp(zk i2). (54.b)

We must take the case whereby,

1y (2
o= o)
in order for the definition
o _ —1
T(k S”z,k(,?u,,k"E z,2) = Z ’W’k"E 2; z)] - M(g, kg L,,k"E 1; 2),
£

(55)
to be valid. That is the two wavevectors must be shifted by the same reciprocal
lattice vector.

Let us consider the following case whereby one solution ts brought within
the first Brillouin zone but not necessarily the other.
Let g, be the reciprocal lattice vector that brings kgl,)ﬂ, back into the first

Brillouin zone. Then we have,

8kl = a6l + 89, (56)
and
ikﬁfg = ilc + By, (57)
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where Re[kgl,)} lies inside the first Brillouin zone ,but Re[kgfg,J does not neces-
sarily.

We then have, by summing over the partners p’' corresponding to the solutions

exp(—z'k(qgu),z) . T(k!,),, k), K|E;z, 2 )-exp(z'kgl,)z’) =

Z exp(—z'/cg%‘)z) - exp [i(@(l)(ﬁ", 1) — o3, MJ,))] :

u

" —1 .
E [M(g -+ Egu, lcgw, k) E; 2; z)] - M(g + dg, /"Eyllzﬂ; k| E;1; z’) .
g

exp(ikglp)ﬂ,z’), (58)

or, equivalently,

exp(—z’kgzg, ) T(lc(‘z,, g,),k”E 2,2 )-exp(z'kgi,)z') =

}: exp(—ik(2)z) - exp [—iso(z) (1, .uu')J :

u
T(kgfu, ,”‘,,k”E 2,2')
eXP[i@(l)(“l’, u’)} exp(ik}),2"), (59)

where the non-reduced transfer matriz is

—1
TG, Kk Es 2,2 = 3 (Mg kE kB )] T Mig kL
g

k|E; 1; ),
(60)
and couples all the partners kfyl,L, and kffl) of the non-equivalent sets v and ~'.

The phase factor
exp [iso(”(“/’, u’)}
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relates the solutions Icgl,) and k&), and the phase factor

’7’[‘"
ex [ () ']
p i~ (v, ui')

: 2 2
relates the solutions kg ’2, and kgg

We now define the semi-reduced transfer matriz by,

-1
T(k‘g%z:, kgl:); kyE; z, )= Z [M(g, kgzlz,; k) E;2; z)] - M(g, k‘gl:); k| E; 1; '),
g

(61)

(2), does not.

where kgl,) lies within the first Brillouin zone but & o

In the above expression the wavevector kgl,) has been brought inside the

first Brillouin zone by g/, but not the wavevector lcgzg,. We must now. bring the

wavevector £(2), back inside the first Brillouin zone. Let gy the reciprocal lattice

!
vector that brings the wavevector lcfflz, back inside the first Brillouin zone,
8k(2 = 8k, + dgy, (62)

where now Re[kgz)] lies inside the first Brillouin zone.

Let us write
oDy, pu')y = 0Oy, ) — @ (7, &), (63)

where
o go(g) (v, #) is the phase that brings kﬁf) into k(f), and
o oD (y, 4!} is the phase that brings k%, into kgg).
We then have

exp [—z'(kgz) — g”:)z] . T(/cgglz,, kgl,); k) E; 2, 2’ exp(z']cgl,)z') =

> exp(—ik(2)z) - exp [—Z'so(g) (v, u)} . exp [z'@(Q) (7, u')} -

u!
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Tk, k8) sk E; 2, 2') -

exp [igo(l) (v, p,')} - exp(s g?u 2N, (64)
or,
exp(—-—z'kgz)z) .
[exp(—ig.u'z)exp {—iw(z) (v, N,)} T(e(2, k) E; 2, z')}

exp(z']cgl,)z’) =

> exp(—ik(Z)z) - exp [—W (v, u)] -

o
T(/cgz,%, kg,L,, k| E; z, 2y

exp [zkom('v' : u’)] - exp(ik{}),2"), (65)

e Finally, by summing over the partners g’ corresponding to the set of eigen-

values kﬁfg,, we obtain,

exp(——z'kgz)z) .

[E exp(—igyrz)exp [z’go( (7, u )] (k lz,, kgl, ; k) E; 2,2 )]
w
exp(z'/cgl,)z') =

D> exp(—ik{)z) - exp [— ie®(, u)J ‘

(k(2 k(l

o ks K 5 2, 21) -

exp [iso(” (, u’)} : exp(zkﬂ, i), (66)

Reduced Eigensystem and Transfer matrix:
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We now define the reduced transfer matriz as the sum over all the partners

p and o/,
Q(/cﬁf), kgl,); kE; 2, z') =
Eexp(-—zg,,:z)exp [zgo(‘?)( )] (k(%zl, S,ll),k”E z,7'), (67)
”’

where the semi-reduced transfer matriz is defined by,

T(lc ) k”E;z,z') =

'm”

-1
Z [M(z, k(f}:, k|E;2; Z)] - M(g, k,,, sk E;1;2),
g

where kgl,) lies within the first Brillouin zone but kgﬁg, does not.

Then we arrive at the final relation, ¢nvolving only solutions k(l and k (2)

lying within the first Brillouin zome,

exp(—ik{®z) Q(ky k(2) k( ;K| E; 2, z')-exp(z'lcgl,)z’):—s

exp(—ik{2)z) - exp [—iso(z) (v, u)] :

wy!
T2, k8 B 2, 27) -
exp [iso(l)(w', u')] -exp(ik(}),2"), (68)

where the non-reduced transfer matriz is

k“E;z,z')E Z[M( gg,k”E 2; z)] —! M(g,kg L,,k”E L),
g

T(k G kS

(69)
and couples all the partners k(lL, and kgglz of the non-equivalent sets v and «'.

The reduced transfer matrix

(k(2) kg,), k| E; 2, 7'

relates the states lcgf) and lcgl,) where both Re{kgl,)} and Re[kgz)] lte inside the

first Brillousn zone.
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Reduced Eigensystem and Transfer matrix:

We now obtain the reduced eigensystem for the non-equivalent solutions,
fOED, gky) =) exp [igo(j) (1, u)} F9&Y), a5 k), (70)
u

where Re[/c,(.{j)] is in the first Brillouin zone and the sum }_ , 18 over the equivalent

pariners belonging to the set .

First Equation:
Let us now consider the first equation involving T(ky £} 0, 0),

D (q) = T(k)E;0,0) - 1})(q), (Tl.q)
or more explicitly,
R, g k) =D Tk, k85 kyE50,0)- rO®k,,, g5 Xy). (71.5)
,1I”I

We want to transform this equation in an equation for the amplitudes

FOEY, g k) =Y exp {iso(”(v', u')} SOES,, g Ky, (12.0)
w
and,
FPEE, gy = exp [iso(2) (v, u)] SR, g Xy, (72.5)
“

where Re[k,(yj)] lies inside the first Brillouin zone for j = 1, 2.

Let us insert

D exp [540(2) (v, u)}

B
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on both sides of the equality,

Y exp {iso(g)(“/, u)] @), g k) =

7

Zexp [up 2) (v, u)} ET 723, lcgl,au,, k) E;0,0) - f(l)(lc(l,y,, g kj)). (73)

b e’

Let us insert a factor
- (1) 0 1 - (Dt o] —
exp |ip (7, u') | exp | —ip (v, u)| = 1, (74)
on the right side of the equation to obtain,

3 exp {iso@) (7, u)}f @), a k) =

7
Z-[Zexp[iw( (v, )} (1622,2,k(ankuE;O,O)exp[—-z'so(l)(ﬂ’,u')H'
Y Lou

[Z exp [iso(l)W’, u')] O, q;kn)]. (75)
i
Let us now define
Ok, g dy) = Zexp[iso(”(v’,u')]-f( e, k), (76.a)
”l

and,

SPED, g k) =) exp [M (v, )} FP G, @ k)), (76.5)
U

where Re[kgj)] lies inside the first Brillouin zone for 7 = 1, 2.

In this case the reduced transfer matriz is simply given by

Q(lcg), g,),k"E 0,0) =
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=) exp [-—iso@)(%u)} - T(k3), k) s Ky 3 0,0) - exp [8‘¢(1)(7’, W )} (17)
bl L
We then obtain,

FO®, q,kn)—Zn ), 63k E;0,0)- fUGED, g k). (78)

Second Equation:

We now look at the equation involving the transfer matrix T(kyE; a, —b),
exp [:D(q) - Ro] -
exp [—iD(kZ)a] - [Tk E;a,—8)] " - exp [—D(k{)o] -
(g = 2, (19)

or, more explicitly,

exp[iD(q) - Ro] -

—1
Zexp(—ik%?ﬁ“"[“ R B K a’-b)] - exp(—ik{}),b)
qlpl

O, g k) = @3, g ky). (80)

Again, we want to solve for the amplitudes

D, gky) =) exp [iso(”( )] SR, 5 k), (81.0)
ul
and,
O, gky) =Y exp {w(g)(w u} @3, g xy), (81.5)
7

where Re[kﬁxj)] lies inside the first Brillouin zone for j = 1, 2.
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Let us insert
.

D exp liﬂo(z) (v, u)}

b

on both sides of the equality to get,

exp [/D(q) - Ro] - Z exp [zgo )]

,1I”l

£k @ ) =

Z exp [z’go(Q) (7, u)}f(z’)(k%, g ky).

b

In that case the reduced transfer matrizis

ﬂ(kgz), kgl,); k| E;a,—b) =

= Z exp [——igo(g) (7, u)] - exp(—igua) - (kﬁf), g,), k| E; a, —b),

where the semi-reduced transfer matriz is defined as above,

—1
Z exp(——ik%%}a) [ (lc%zg, k,(yl,y,, k| E;aq, -—b)} . exp(—z'kgl,L,b) .

(82)

(83)

T(£(2) (1,); k| E;a,—b) = Z [M(g, ¥2); Ky E; 2; a)] L M(g, k(;,); kjE; 1; —b),

T TH?

where k(l) lies within the first Brillouin zone but kgz‘z does not.
We then obtain the following equations
—1

exp [/D(q) - Ro] - Zexp(——z'/cgg)a) {Q(k 2), lc,yl,), kyE;a,—b)
7’

exp(—ik(Vp) - Tk, g k) = P (6D, g k).
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Reduced Eigensystem:

By combining the two sets of equations, we obtain the reduced eigensystem

f(2 q,k”) = ZQ k(z) kL k| E;0,0) - f(l)( 1,),q,lu:”).

;.7'7

and,
Sk, g k) = exp[iD(q) - Ro] -
-1
Z exp(—ik{Da) - [n(kﬁf), /cgl,); k|E;q, —-b)] :
,’l
exp(—ik{Pb) - F(V(k(Y, g ky).
for the expansion amplitudes
FOGED, g k) =) exp [z'so(”('r’, u’)} SO®S,, g k),
””

and,

IOED), aky) =) exp [”40( (. )} FOEG), @ Xy),
u

where Re[kgj)] lies inside the first Brillouin zone for 7 =1, 2.

(85.a)

(85.5)

(86.a)

(86.5)
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APPENDIX 4.6

k- p Formalism for Equivalent States:

In this appendix, we indicate how to obtain the reduced transfer matriz,
k@, k0 E; 2, 2),

for non-equivalent Bloch solutions {|kjE; kg))} where the wavevector kgj) is in
the first Brillouin zone of the solid j = 1, 2.

e To do so, we must include the contribution from equivalent Bloch states,
t.¢., Bloch states whose wavevectors k% are apart from a reciprocal lattice vector
in the & direction. This is most easily done by considering the pseudopotential
formalism.

Here again, we adopt the convention that the eigenvalue lcgj) has its real part
within the first Brillouin zone, in solid j = 1,2. That is, Re[k{)] lies inside the
first Brillouin zone. We label the equivalent partner solutions of kgj) by k%. Then
we have

k) E; k) = exp [iso(") (v, u)J Ky E; k9)), (1)
where the state |kj|E; kgj)) belongs to the eigenvalue lcgj) within the first Brillouin
zone and the state |k”E; lcgjg) belongs to the eigenvalue Icgf‘l The phase exp [z'go(j) (v, u)]
relates a Bloch solution outside the first Brillouin, lk“E ; kgjg), to a solution
inside the first Brillouin zone [k E; kgj)). The wavevectors kgj) and /cgj‘z belong

to the same set 7 and are related through
3kU) = 15l + 1g,, (2)

and Re[k gj)] lies inside the first Brillouin zone.
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4.6.1 Pseudopotentials and k - p Approaches:
The set of kg = 0 states, {|m)} is related to the set of plane waves {|g)},

where g is a reciprocal lattice vector, by
m) = |8V (g, m). (3)
g
In the x-representation, we have explicitly
(x|m) = upm(x), (4.0)
for the ko = O basis functions, and
(x|g) = exp(ig - x), (4.5)

for the plane waves.

The matrix U is the eigenvector matriz that diagonalizes the pseudopoten-

tial Hamaltontan of the reference solid,
SOV 2.3 (0)
A7) = —lk+ 8*5%8 — &) + VO ed), (5

at k = 0. The off-diagonal matrix elements V (gg') are the pseudopotentials form

factors.

For a complete set {{m)} we have the closure relation
Y lm)(m| =1, (6.0)
m

which, in the {|g)}, translates into

N ugm)- U, m] =sg—¢). (6.6)
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With this transformation, we can expand the Bloch solutions {|k| E; k%”g)} as

[k E; k )—- exp(ikj - x||) exp(ik J)z Z (xjm)c(m, km SKE),  (7)
m=1

where the index m in the set of coefficients C(j)(m, kﬁfz;k”E) refer to the kg = 0

basis functions (x|m) of the reference solid as described in Appendix (4.4) and are
associated with the solution k% insolid y =1, 2.

In the k- p formalism, the expansion set consists of the kg = 0 basis functions,

{|m}}, of the reference solid. Therefore, we can write,

N
|k E; k%) = exp(ikj| - x”)exp(z'k,%z)[ Z (x]m)C(J)(m k%,k”E) . (8)

m=1
In the local pseudopotential formalism, the expansion set consists of the plane

waves {|g)}. Thus,

|k E; kU)) = exp(iky - x)) exp(ik) )ZIS)C(j)(s,kﬁfz;kuE), (9)
g

where the expansion coefficients C(j)(g, kf{g; kjE) in the plane wave basis, {Ig)},
are related to the coefficients C'(j)(m,/c%; k|E) in the kg = 0 basis, {|{m}},

through,
- . N . R
cOig k0 E) = Y Ugm)- ¢W(m, k() ky E), (9.6)
n==1

Thus the matriz U allows us to transform from the kg = 0 basis to the

plane wave basts.
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4.6.2 Reduced Transfer Matrix:
We now wish to express the transfer matrix using the pseudopotential for-

mulation. The non-reduced transfer matriz is defined to be

—1 '
Tk, 6Lk B2, 2') = ) [Mlg kT kB2 2)] - Mg, Ak E; 15 2),
g
(10)
and couples all the partners /cgl,L, and k!f,) of the non-equivalent sets v and +'.

The reduced transfer matriz

Q(kgz), kgll); k|E;z,2)

relates the states kgz) and kgl,) where both Re[kﬁ},)] and Re[/cﬂf)] lze inside the

first Brillouin zone.

e We now indicate how to obtain the reduced transfer matriz

Q(k,(,’z), kgi,); k| E;z, 2"

explicitly.
Suppose that two Bloch states have their wavevectors kﬂfu and kgj) separated
by a reciprocal lattice vector in the & direction, say &g,, where y labels the reciprocal

lattice vector,

ikU) = 3kY) + g, (11)
and Re[lcgj)] lies inside the first Brillouin zone.

The relation between the equivalent partners of a set v is

|ky 5 k0)y = exp [z'so(") (, #)J Ik E; k), (12)

where the state [k E; kgj)) belongs to the eigenvalue /cgj) and the state |k E; k%)

belongs to the eigenvalue k% The phase exp [z'go(j) (7, u)] relates a Bloch solution
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outside the first Brillouin, |k E; k ), to a solution inside the first Brillouin zone

ik”E; kif’). As above, we adopt the convention that Re[kﬁf)] lies inside the first

Brillouin zone. We must sum over the equivalent solutions to obtain the transfer

matrix.
Let M(g, lcgul,
basis, {|g)},

We can thus write, symbolically,

Mk E; j) = M(g, k! ,”,, )ik E; 3 2)

l

exp(ig; 2) 0 } _ C(J.)(B,k?fz;kllE)
0 expligaz)] |(K§) +9:)0Wg Kk B) |

or,
Mk E; j) = M(g, k{); ky E; j; 2)
= exp|iD(g.2)| - Mg, k) k) E; 5),
where we have defined the z-dependent diagonal matrix,

exp(igs 2) 0 }

exp [iD(g,2)] = { 0 exp(igy )|

and the z-independent matrix,

cU)(g, kU); &y E)
s = O o)

k) E;j) be the boundary condition matrix in the plane wave

(13.a)

(13.5)

(13.¢)

(13.d)

and where the columns label all the solutions /cgjll and the rows label the plane

waves |g).

The transfer matriz that couples non-equivalent states is defined to be,

Q(k (2),k(1) k\E;z, ') ZT !c£72 ,kgl, s KE; 2, 2",

»

(14.a)



-348-

=22

174
[M(g, k2 kyB; 2, 2)] 1M( kD kB 12", (14.5)
» B Xl g k ~ul Il g
or, using,
M(g, k0); k| E; j; 2) = exp [iD(g;2)] - M(g, k0); ky E; §), (15)
we have,
Q(lc(2), /cgl,),k”E; 2,2y = Z Z
wy g
[M( kgfﬂ, k| E; 2)] 1exp[—-—z’l)(gzz)]-
exp [zD(gz z’)]M(g, kgl,L,; k| E; 1), (16.a)
or,

kD, 6Bz, ) =YY

vu' 8
[M(g + 89, k) Ky E;2)] T - exp [—iD(g2)] -
exp [zD(gz z')] - M(g + 3g,, g,), k) E;1), (16.5)

where both Re[k gl,)} and Re[k(2)] ke inside the first Brillouin zone.

Let us now insert a closure relation,

D lmim| = 3 U (g m[U(, m)" = 35— ¢). (17)
Then

(k(2, ,7: k”E 2,7y = ZZ g—f—ﬁgu,kﬂf);k"E;Q)]_

p!

exp [z'D(gz(z' — z))] .
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Yvem e, ]

m

exp [z’D(gz(z' — z))] .
M(g + g1, k(s Ky E; 1),

or,

Q(kgf),k k| E; 2, ) ZZZ M(g-{-—zg“,

' g &
S vigm)- U@, m]"
exp [D(g:'(z' — 2))] -
M(g' + 89,0, Vs Xy B 1),

by using the fact that

k”E 2)]

ZMch( K E;1)6%(8 — &) = M(g, k\}); Ky E; 1).

We can now change the labels
g—g+ g,

and
&g + g

to get

( £ kgl,),k“E;z z') EZZ

v’ g 8

@k E52)]

Z U(g— igu, m) . [U(g’ — ig”/, m)]T .

(19)

(20)
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exp [’D((Qz’ — gu’)(Z’ - z))] )

Mg, £k 5 1),

At this point we can insert another closure relation,

S imiml = > U mUu,m)] = %5 —¢).

to get

P, Bz, ) =3 3 30D Mk

pu' g g 8"

k"E; 2)] -

}:U(s —igu,m)- [U@E" — dgw, m)]"-

exp [ZD((QZ - g”»)(z' - 3))] ’
M(g", k) kg E; 1),

By inserting another closure relation,

Simiml =Y UgmUE,m)] =65 —g)

we finally obtain,

Q(kg), g,,k”E z,2") ZZZEZ (8, ,7),1:“E 2)]

e 8 g" g

(21)

(22)

(23)

(24)



M(g", &)k E;1). (25)

We can now regroup to obtain,

LRSI DD

upt m ml om

Q(]g( ) k

Z Mg, £2); kE; 2)]_—1 -Ulg,m)-
g

E [U(g’ ] 8 - zg,,, )

g'
Y [ —sgu,m)] " exp [D((e:" — gu)(a' — 2))] - Ulg", m") -
8'[

Z{U(gm’ n] M(d" ,r,,k"E 1), (26)
glll

Let us now contract the matrices and write, in the {|{m)} representation,

M kDB )] =Y Mg APk E )] U m),  (2T0)
| g

O(m', m; 19,;0,0) = 3 [U(g, m")]" - Ulg' — ig,, m), (27.5)
gl

-~ -~ T
O(m, m";8gu; 2,2y =Y [U(g" —dgu, m)]" -
gll

exp [D((9," — gu )& — 2)}] - U@E", m"), (27.c)
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Mem" kDB ) = Y [U@”, m")]" - Mg, kY E; 1),

8"'

We can finally write the reduced transfer matriz

(k(2 kgl,),k”E; z,4') = E Z Z Z

up! m m! mi
[M(m k(z) k) E; 2)] (m', m;8g,;0,0)-
O(m, m"; &gu; 2,2') - M(m", kgl,), k) E; 1),

where Re[kg)] lie inside the first Brillouin zone.

(27.4)

(28)
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4.6.3 Reduced Transfer Matrix: k- p
In this section, we express the z-dependent transfer matriz in the k - p

formalism. As seen above, in the pseudopotential formalism, we can write,

Mk E; /) = M(g, k) k) E; 5 2)

= [eXp(z'gzz) O J . . C(j)(g, k%’ k"E) , (29.0')
0 expligzz)] [(kY) + g:)C\(g, kU)X E)
or,
M(k) E; ) = M(g, k{); k| E; 5; 2)
= exp [{D(g,2)] - Mg, k%, k) E; j), (29.5)
where we have defined the z-dependent diagonal matrix,
__|expligz2) 0
exp [iD(g;2)] = [ 0 exp(z.gzz)J, (29.¢)
and the z-independent matrix,
cl)(g lc(j)'klE)
Mg, 59k E; ) =] et , 29.d
(8, B3 I E5 ) = [(kg’,l + 9:)C (g, k) ky E) (26.6)

and where the columns label all the solutions k% and the rows label the plane
waves |g).
Now the non-reduced transfer matriz is
T(kE, kWi Bz, ) = Y Mg, kR k5% 2)] T - Mg, b,k B3 15 ),
: (30)
or,

T(k3), (1)

-1
N Ky K ES 2, 2') EZ (8 WkuE 2)]  exp[—iD(g,2)] -
g
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exp [Z-D(gzzl)] M(gi v ”” k”E 1)

by using the matrix producf,
M(k||E; ) = M(g, k); Xy E; j; 2)
= exp[iD(g,2)] - M(g, £{1); ky E; 7). (32)

By inserting two closure relations,

Y imim = Y U(gm[uE, m)" = % —g), (33)

we have

T(lc,w, ,7,) s KE;z, Z)E

ZZ Z (s, 'xu’kllE 2)]

%
X vam) u(g, m)]"-
exp [D(g.(z — 2))] -
2 Ulm )]
M(g", k)i X E5 1), (34)

As before we define the following matrices, in the {|m}} representation,

[M(m, kgf), k)| E; 2)] = Z [M( k(qgg,k”E; 2)]—.1 -U(g, m), (35.a)
g

= E [U(g’, m)]T .U(g', m') exp [zD(gz'(z — z'))], (35.5)
gl

o(m,m';z — z')
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M(m', lcgl,zz,;k"E; )= Z [U(g", m')]T M(g", k ,(.yl) s KE;1). (35.¢)
gll

We then obtain the transfer matrix in the {|m)}} representation,

T(kgfg,k( ),, kjE; 2,2 ) =

2D Mm, k3 B 2))

m m!

—1

o(m,m';z —2').
M(m', k ,,k“E 1). (36)’

The matrix

o(m,m'; z — 2')

is the overlap matriz between two basis functions (x|m) separated by z — z/. Thus

when z — 2/, is a bulk lattice translation vector R, we have,
o(m,m';R) = 1, (37.a)
due to the periodicity of the basis functions (x|m),

m(x+ R) = up(x). (37.5)
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APPENDIX 4.7

Symmetry properties of Transfer matrix:
In this appendix, we enumerate the symmetry properties of the reduced
transfer matriz,
2) (1).
a(k@), kLD Ky E),

where Re[lcgj)] lie inside the first Brillouin zone. We consider two symmetries:

e Symmetry under t¢me-reversal,
(5) )
kY — — Ic,]rj . (1.0)
e Symmetry under inversion,

kD~ — k), (L.5)

4.7.1 Symmetry under Time-Reversal:
e We repeat here the argument of Appendix (4.4) for time-reversed Bloch
states. Let us consider the case of kjj = 0. The Bloch state (x|k)E; kx) can be

expanded in terms of the ky = 0 basis functions,
N
Y(kx; x) = exp(iknz) ) um(@)C(m, k) (2)

m=1
where we have written ¥ (kx; x) for (x|kj E; kx) at k) = 0 for simplicity.
e According to Appendix A, the degenerate time-reversed state is simply

the complez conjugate in the absence of spin-orbit. Then we can write the time-

reversed partner of ¥ (ky; x) as
N
¥ (b x) = exp(—iky2) D) up(x)C

m==1
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or,
N
w*(k)‘;x) = exp [z‘(—k:)z] Z u:n(x)C*(m,k)\). (3.8)
m=1

Thus the time-reversed partner of a Bloch state with wavevector k) is a Bloch state
with wavevector —-Ic;, to within a phase factor, exp(ip).

We can then relate the time-r. . ersed pair of Bloch states as,
* :
¥ (kx; x) = exp(—ip)p(—ky; %), (4.0)

or,

(kx; x) = exp(ip)y” (—ky; x), (4.6)

to within a constant phase factor, exp(—ip) By comparing Eq.(19) and Eq.(20), we

have
N N
" um®C(m, k) = expliv) Y up,(R)C"(m, —k}). (5)
m==1 m=1

e According to the phase convention we have that ky = 0 basis functions

have no definite parity and are taken to be real. Then we have,
*
U, (X) = Um(x). (6.2)

C(m, k) = exp(ip)C" (m, —k3). (6.5)

To determine the phase factor exp(ip), we adopted the following phase con-
vention on the expansion coefficients, the mazimum component of the coefficient
C(m, kx) 1s taken to be real and positive. Since the maximum component of

C(m, k) and C™(m, -—-Ic;) occurs for the same index m, then we have that

*

C(m,kn) = C (m, —ky), (7)
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which fixes the phase factor to be
exp(ip) = 1. (8)
e In the kp formulation, the transfer matrix can be written as,

k@, 0 E) = Y [Mim, 3k E;2)] M(m, 3k E5 1), (9)

Under time-reversal, we have,

KD — k(2 (10.2)
k(D — k%")*’ ‘ (10.5)
and, from the relation
C(m,ky) = C*(m,—ky), . (11)
we have
M(m, k(2); k|E;2) = M*(m, ——k(2)*'k"E' 2), (12.a)
M(m, &) k) E; 1) = M (m, —k() ,k"E 1). (12.5)

o Then, we can write the transfer matrix for the {tme-reversed states,

—1
Q(— ) ,7, ,k”E) = Z[M(m,—kﬁrg) ;k”E;Q)} -M(m, — g,) k) E£51),
" (13.0)
—1
=—*Z[M*(m, /c,(f);k”E;z)J ‘M (m, ks ky B3 1), (13.5)
=[Z [M(m, £®; kyE;2)] ~ - M(m, £ X B 1)} : (13.¢)
[ k@, kLD; k”E)] (13.4)

o The symmetry of the transfer matrix under time-reversalis therefore,
*

(42", k) 1y E) = [mkg ) ) ,k”E)} (14)
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4.7.2 Symmetry under Inversion:

o The symmetry of the transfer matrix under tnversion is

Q(—-kgz), —k,(;,); kjE)= :{:Q(kﬁf), kgl,); kyE) (15)
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GENERAL APPENDICES

PROPERTIES OF COMPLEX-k
ENERGY BAND STRUCTURES

ENERGY BAND OFFSETS
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Appendix 5.1
Properties of Complex-k Band Structures

The f)urpose of this appendix is to list some of the properties associated
with crystal Hamiltonian when the wavevector k is complex. That is , we study
symmetries of the function E,, (k) for complex values of k. This appendix is more a
collection of the symmetries of the function E,, (k) for complex k, than derivations
of them. Derivations can be found in the work of Blount! and Heine?.

As seen previously, it is useful to define a Hamiltonian H (k) acting on the
cell-periodic part of the Bloch solutions. Given that the set of Bloch states {|nk)}

are solutions to the Schrodinger equation for the bulk solid:
H|nk) = Epn(k)|nk). (A.1)

The Hamiltonian is
- 1
= —p’ + V(3), (A.2)
2m
where V(x + R) = V(x) is the crystal potential which has the symmetry of
the crystal space group. The momentum operator is p = —iAV. The energy
eigenvalues, E, (k) , for the band structure of bulk solid. The Bloch states are of
the form,
(x]nk) = exp(ik - X)un(k; x), (4.3)

where u,(k; x) is the cell-periodic part of the Bloch function:

un(k; x + R) = u,(k; ), (A.4)
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where R is a Bravais lattice vector generating the x-space lattice. The index n
is the band index and 7%k is the crystal momentum. We now wish to obtain the
eigenvalue equation for the cell-periodic part of the Bloch function, u,(k;x), by

direct substitution of the form Eq.(A.3) into the Schrodinger equation Eq.(A.1):
1 .
[:‘z-;;p2 + V(x)] explik - X)un(k; x) = En(k)un(k; x). (A.5)
By commuting the plane wave exp{7k - x) across the Hamiltonian, we arrive at:

H(K)un(k; x) = Ep (K)un(k; ), (A.6)

where the Hamiltonian H (k) is defined to be :

A= —(p+ 1k + V(x), (AT.0)
or,
2
Ak)= —p* + Lk p+ i+ V(x) (A1)
2m m 2m

The form of the Hamiltonian H (k) corresponds to a gauge transformation,

A

H{k)= fI(p + k; x) = exp(—ik - x) - ﬁ(p; x) - exp(ik - x). (A.8)

If we now allow the wavevector k in Eq.(A.8) to take complex values, then the

operator H (k) is no longer hermitian, but enjoys the property that
A T a %
H (k)=Hk ) (A-9)

Since H (k) is non-hermitian, the eigenvectors of H (k) are not orthogonal. Also,
H (k) can be diagonal only when the eigenvalues are distinct.
We consider the two eigenvalue problem associated with the operator H (k):

the direct problem,

A

H (k)un(k; x) = Ep(k)un(k; x), (A.10.a)
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satisfied by the set of functions u,(k; x), and the adjoint problem,

va(l; )H (k) = En(k)vn(k; ),

(A4.10.5)

satified by the set of functions v,(k;x). Since H(k) is not hermitian, the set

of eigensolutions of the adjoint problem, v,(k;x), is not equal to the hermitian

conjugate u;rz(k; x) of the eigensolutions of the direct problem, u,(k;x). Thus,

instead of the orthogonality relation
(nk|n'k') = 5(n,n")83(k — ¥),
or,
/ d3xu:;(k; X)un(k'; x) exp-[z'(k' —k)- x] = &(n, n')6%(k — k'),
is replaced by the orthogonality relation,
(ni |n'¥') = §(n,n’)6%(k — ),

or,

/d3xu;(k*;x)un:(k';x) exp [z’(k' — k*) . x} = §(n,n')5%(k — K).

In Eqs{A.12) we used the fact that
va(k';3) = uf, (k; x),

from

A = aa’).

(A.11.0)

(A.11.5)

(A.12.a)

(A.12.5)

(A.13)

(A.14)

That is, if the direct problem involves Bloch states with wavevector k, then the

adjoint problem involves Bloch states with wavevector k.
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The relation
Bl = a1, (A.15.0)
on the operator H (k) implies

*

E, (k) = E,(k"), (A.15.)

on the set of eigenvalues E, (k). It also implies that for real k, we have hermicity
of H(k), t.e.,

A A

H (k) = H(k) fork” = k, (A.16)

and the eigenvalues E, (k) are real.
We now study further symmetries of the function E, (k). In a crystal, the
group of the Hamiltonian is the space group of the crystal structure plus the

operation of time reversal We define the time-reversal operator® as
K = —ioaK,, (A.17)

where 045 is the Pauli spin matrix,

09 = {0 —(_)z], (A.18.a)

and K ¢ is, in the Schrodinger representation, the operation of taking the complex

conjugate,

Ko¥(x) = ¥ (x). (A.18.5)
The complex conjugation operator is antilinear
Kola1¥i(x) + aaWa(x)] = a] Ko¥;(x) + asKo¥a(x), (A.18.5)

and antiunitary

(Ko¥|Kod) = (®]). (A.18.5)
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The time-reversal operator reverses the momentum p,

~—1

ka = —p, (A.19.q)
and the spin s,
A oA —1
KsK = —s, (A.19.5)
but not the position x,
NP |
KxK =zx. (A.19.¢)

Without spin-orbit interactions, the time-reversal operator K is equivalent to the

complex conjugation operator Ky,

K = Ky no spin-orbit interaction(A.20)

Kramer's theorem® states that, in the absence of a magnetic field, if ¥ is a one-
electron eigenstate of the Hamultonian H, then the time-reversed function K ¥
15 also an eigenstate of H with the same energy eigenvalue. Furthermore, the

time-reversed solution K U is orthogonal to W. That is, if
HY =EV, (A.21.a)
then we apply the time-reversal operator,
KHY = EKY, o (A21b)
H[K qf} = E[K V], (A.21.c)
since H commutes with K ,

{KHJ = 0. (4.22)
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Then, for real Hamiltonian H and in the absence of spin-orbit interaction, we

have that if ¥ is a solution of the Schrodinger equation
HY =EV, (A.23.a)

then the complex conjugate ¥" is also a solution belonging to the same eigenvalue

E,
HY =Ev". (A.23.5)

For complex-k, we see that if ¥ is a solution of H belonging to the complex

eigenvalue E,
HY =EV, (A.24.0)

then ¥ is a solution of H f belonging to the eigenvalue E*,

N ¥ _ ¥

HY =E V¥. {A.24.5)
Given a Bloch state of the form,
(x|nk) = exp(ik - X)un,(k; x), (A.25)
we apply the conjugation operator K o to get
ko(x]nk) = exXp [z'(——k*) . x] u:(k; x). (A.26.a)
But we can. write, to within a phase factor exp(iy), that
u:(k; x) = exp(ip)un(—k ;x). (A.26.b)
We then have the relation between a Bloch state and its time-reversed partner,

Ko(x[nk) = exp(tp)(x|n — k*). (A.26.0)
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We see that & Bloch state with wavevector —k_ is the time-reversed partner
of the Bloch state with wavevector k,. to within a phase factor exp(ip). We can

thus write,

K |nk) = exp(ip)|ln — k). (A.27)

When spin-orbit interactions are present, the time-reversal operator reverses

the spin component,
K(nk; 1) =exp(ip)n — k' 1), (4.28.0)

K’lnk; 1) = exp(ip)|n — k';1) (A.28.5)

Thus the eigenvalues En(——k*) associated with the time-reversed Bloch state
jn — k") of wavevector —k ", are complez conjugate to the eigenvalues Ey (k)

associated with the Bloch state |nk) of wavevector k,
Ep(—k') = E (k). (4.29)
Combining Eqgs.(A.27) and (A.15.b) we have,
En(—K') = E,(k) = En(k ). (4.30)
For real eigenvalues Ey, (k) we have,

En(—k') = En(k) = E, (k). (A.31)
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Appendix 5.2

Energy Band Offsets
at Semiconductor Interfaces,
Quantum Well Structures and

Semiconductor Superlattices

The purpose of this appendix is to give a general idea of the energy band
offsets at semiconductor interfaces. Also, this appendix introduces the concepts and
the terminology pertaining to the study of semiconductor surfaces and interfaces.
We also give general descriptions of what is meant by quantum well structures
and semiconductor superlattices.

An interface made up from two semiconductors of different nature is called
a heterojunction. When two dissimilar, but otherwise lattice-matched, semicon-
ductors are brought into contact at an interface, their respective valence and con-
duction band edges do not line up. Therefore, we must find a relative energy
scale between the two semiconductors forming the heterojunction. The difference
in energy band gaps between the two semiconductors, AE, , is split into a conduc-
tion band offset, AE, , and a valence band offset, AE, . Naturally, the following

sum rule

must be verified. The question of determining the energy band offsets is by no
means a trivial one. We have not addressed this question here, and we regard the
quantities AE, and AE; as tnputs of the calculations presented in this work
rather than outputs. Let us just mention that, according to a rule developped by

Anderson!, the conduction band offset AE, can be related in a simple way to the
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electron affinities x of the two semiconductors forming the heterojunction,

AE;, = x(l) — X(Q), (B.2.a)

and therefore,
AEty = AEg - AEC ) (B.2.b)
AE, = AE, — [x“) —x@)]. (B.2.c)

The electron affinity X(j) in semiconductor j is defined as the energy required to

take an electron from the conduction band edge Egj) to the vacuum level, ¢.e.,
X(J) = Evacuum - ES:J) (BS)

Before describing an energy band diagram of an idealized semiconductor
heterojunction, we pause to make the distinction between direct and indirect
semiconductors.

o A semiconductor is said to be direct if the maximum of the valence band
and the minimum of the conduction band both occur at the same k point in the

Brillouin zone.

e A semiconductor is said to be tndirect if the maximum of the valence band
and the minimum of the conduction band occur at different k points in the Brillouin
zone.

To be specific, let us consider a heterojunction made up of GaAs and Ga; — Al As.
GaAs is a direct semiconductor and Gajy —zAl;As is also a direct semiconductor? for
alloy compositions in the range z < 0.45. For alloy compositions z exceeding this

value, the minimum of the conduction band is at the X-point,

K(X) = ['2?}}(1’ 0,0), (B.4.0)
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whereas the maximum of the valence band is at the I'-point,

k() = {3;1](0, 0,0), (B.4.b)
where a is the length of the ‘conventional cubic unit cell.

An energy band diagram of a heterojunction is a plot of the band edge energy
at some fized k-point (usually kg = 0) as a function of the position normal to
the tnterface plane. The energy band diagram for the band edge at the I'-point of a
GaAs-Gaj_ ;Al;As heterojunction is shown in Figure (1) along with the definitions
of the various energies mentioned above. The & direction is perpendicular to the
interface plane. The energy Ef(x) is the Fermi level. At equilibrium, Ep(x) is

constant throughout the system, t.e.,
i-VEp(x)=0. (B.5)

.Figure (1) corresponds to a composition z of Gay_ ;Al; As such that the alloy
is direct. In this case the energy band edge at k(") = 0, is plotted as a function of
position along & Let us just mention that, in the case of indirect semiconductors,
care must be exercised to as which band edge to depict in the energy band diagram.

Useful as it might be, let us mention that this picture is oversimplified: In a
real heterojunction system, there occur repartitions of the charges at the interface
that create local electric fields causing the energy band edges to bend near the
wnterface. Throughout this study, we have neglected the energy band bendings
and considered only geometrically abrupt interfaces.

We now introduce the concepts of semiconductor quantum well structures
and semsiconductor superiattices. The energy band edge discontinuities, that
arise when the heterojunction is formed, constitute potential energy barriers for

the electronic states within these structures. Having defined a heterojunction,
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Figure 1. Energy band diagram of an ideal GaAs-Gaj_ ;Al;As heterojunc-
tion. The quantities AE, and AE, refer to the conduction band offset and to
the valence band offset, respectively. The electron affinity ¥'9) in semiconductor
J is defined as the energy required to take an electron from the conduction band
edge E(CJ) to the vacuum level. The energy EF is the Fermi level.
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it is possible to envision more complicated structures. In the case where two
heterojunctions are formed back to back, the energy band diagram of the structure
resembles either that of a one-dimensional quantum well, (if a small band gap
semiconductor is centered between two large band gap semiconductors), or that of a
one-dimensional barrier (if a large band gap semiconductor is centered between two
small band gap semiconductors). In the case where the semiconductors are grown
in an alternating way, we obtain a periodic set of heterojunctions. An energy band
diagram of such a structure resembles that of a periodic series of quantum wells

separated by barriers. We call such a structure a semiconductor superiattice.



-374-

References

1. R. L. Anderson, Solid State Electronics 5, 341 (1962).

2. H. C. Casey and M. B. Panish, Heterostructure Lasers (Academic Press, New
York, 1978), Part A, Chapter 4.

3. J. C. Slater and G. F. Koster, Phys. Rev. 94, 1498 (1954).



