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ABSTRACT

In this thesis, we study the problem of characterizing the set of games that are

consistent with observed equilibrium play, a fundamental problem in econo-

metrics. Our contribution is to develop and analyze a new methodology based

on convex optimization to address this problem, for many classes of games

and observation models of interest. Our approach provides a sharp, compu-

tationally efficient characterization of the extent to which a particular set of

observations constrains the space of games that could have generated them.

This allows us to solve a number of variants of this problem as well as to

quantify the power of games from particular classes (e.g., zero-sum, potential,

linearly parameterized) to explain player behavior.

We illustrate our approach with numerical simulations.
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C h a p t e r 1

INTRODUCTION

In this thesis, we study the problem of recovering properties and characterizing

payoffs of the games that are consistent with observed play. There are several

reasons why one might want to extrapolate beyond observations of player be-

havior. Finding compatible game payoff matrices that explain observed behav-

ior well (say, assuming observed behavior was generated by equilibrium play

under perturbations of an underlying game) provides compact, interpretable

summaries of said behavior. The process of characterizing consistent pay-

off matrices also yields insight into how tightly the observed player behavior

constrains the space of possible explanatory games—are there multiple, wildly

differing possible explanations for the observed behavior? In some settings, it

may be the case that the observations tightly constrain the set of consistent

games, in which case they may also yield predictive power; an observer who

understands the payoff matrix of a game may be able to predict how player be-

havior will change under modifications to the underlying game, and may also

be better able to manipulate game outcomes. Even when the observations do

not tightly constrain the space of explanatory games, one may wish to verify

whether the observed behavior is consistent with certain assumptions—could

the observed behavior have been generated by a zero-sum game? A potential

game? By other models?

These questions are solidly within the domain of econometrics, an area that

largely focuses on the identification (i.e., parameter-fitting) of simple mod-

els given observational data (data not generated by controlled experiments).

Many econometric approaches to these questions have suffered from at least

one of two main issues:

• Inability to scale to reasonably sized problems due to computational inef-

ficiency. Many of the techniques developed in the econometric literature

are only applicable in practice to games of small size (a prime example

of games that the econometrics literature focuses on are 2-player entry

games, where each of the two players has only two possible actions) or

games with a low-dimensional parameterization.
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• Restrictive assumptions on the observation model and the games to be

fit. In particular, much of the econometrics literature relies on perfectly

knowing the distribution of unobserved variables affecting the games an

observer wants to recover.

In contrast with previous work, our approach is to cast the task of characteriz-

ing and understanding games consistent with player behavior as an efficiently

solvable optimization problem, where observations of equilibrium play act as

constraints on the space of possible explanatory games. This approach allows

us to sidestep issues of model selection (we need not decide which aspects of

the data to include in a model). We do so under assumptions that are weaker

and more robust than the usual econometric assumptions, reflecting ideas from

the robust optimization literature—see [9, 11, 7].

Our approach may be viewed as complementary to a model-driven approach,

in that the tools we provide here may be used to objectively evaluate the

quality of fit one achieves under certain modeling assumptions. Our approach

also allows us to explore a variety of assumptions about the information that

might available to an observer of game play, and the effect that it would have

on constraining the space of consistent games.

1.1 Summary of results

We study a setting in which, at each timestep, an observer observes the equi-

librium selected by the players in a finite, two-player game.1

We assume that players play according to some correlated equilibrium (a more

permissive concept than Nash equilibria). We never make distributional

assumptions on the payoff shifters unlike previous work, nor make any

assumption how the players decide which equilibrium to play when multiple

equilibria are present. Instead, we assume that the observer knows noth-

ing of the equilibrium selection rule, and that the information the observer

has on the unobserved payoff shifters is simply that the unobserved pay-

off shifters belong to a known set (see Section 2 for more details); this

is a significantly weaker assumption than knowing exactly what distribution

the shifters/perturbations are taken from. For example, imagine an analyst

observes a routing game everyday; the shifts in payoff may come from a com-

1Our framework extends to multi-player games with succinct representations; for clarity,
we focus here on the two-player case.
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bination of several events such as changes in road conditions, traffic accidents,

and work zones, whose potential effects on the costs of paths in a routing

game may be difficult to predict and quantify precisely as a single probability

distribution.

In this setting, we give a computationally efficient characterization of

the set of games that are consistent with the observations (Sec-

tion 3.1); this set is “sharp”, in the sense that it does not contain any game

that is not consistent with the observations. One of our main new contribu-

tions is computational efficiency itself: the seminal econometric work of

Beresteanu, Molchanov, and Molinari [10] only checks membership of a game

to the set of consistent games, and does so in a manner that is tractable in

small games but intractable for larger games—see Section 1.2 for a more in-

depth discussion. We show our framework also accommodates an alternate

model wherein the observer learns the expected payoff of each player at each

equilibrium he sees; in our routing game example, think of an observer who

sees the expected time each player spends in traffic. We refer to this setting

as “partial payoff information,” and discuss it in Sections 3 and 4.

Our second main contributions is our ability to quantify the size of the set

of consistent games. We give an efficient algorithm (see Section 3.3, Al-

gorithm 1) that takes a set of observations as input and computes the di-

ameter of the sharp region of consistent games. The diameter of the

consistent set is of interest to an observer, because i) it gives him a measure of

how sharp the conclusions he can draw from the observations are (the larger

the diameter, the least sharp the conclusions), and ii) it tells him whether

approximately accurate recovery of the underlying game is possible (whenever

the diameter is small), when the observer is interested in such point iden-

tification. Additionally, in Section 4, Lemmas 2 and 3, we give structural

conditions on the sets of observations that allow for accurate recov-

ery when payoff information is present. We also exhibit examples in which

said conditions do not hold, and accurate recovery is not possible.

We show we can extend our framework (Section 3.3) to find the set of con-

sistent games when restricted to games with certain linear proper-

ties, e.g., zero-sum games, potential games, and games whose utilities can

be parametrized by linear functions; this allows us to determine to what

extent the observed behavior is consistent with assumptions on the
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underlying game.

In a more basic model in which the payoffs and “shifters” are not observed, and

no additional properties of the underlying game are assumed, the all-constant

game always provides a good explanation for the observed behavior. How-

ever, one presumably wishes to explore the set of nontrivial consistent

games. We provide a framework (Section 5) that eliminates trivial games by

controlling the level of degeneracy of the explanations, and provide bounds on

the trade-off between finding less-trivial games and recovering games that are

more consistent with the observations.

In Section 6, we show we can extend our framework to finite games with larger

number of players, provided they have succinct representation. We further

show our framework’s potential to deal with games with infinite action spaces,

using Cournot competition as an example.

Finally, in Section 7, we illustrate our approach with simple simulations. We

look at what the consistent region looks like for a simple entry game in Sec-

tion 7.1, then look at large Cournot competition in 7.2.

1.2 Related work

An important thread of economics takes an empirical perspective, with the

goal of understanding what properties of agents are consistent with given,

observed data on their economic behavior. While part of this literature focuses

on discrete choice in single-agent problems, another significant line of research

aims to rationalize the behavior of several agents in game theoretic settings,

where their decisions impact each other, as we study here.

Much of the literature on econometrics, whether it be in the single-agent or

game theoretic setting, assumes a parametrized model of agent behavior and

focuses on drawing inferences on the values of the parameters, based on ob-

served behavior. A typical goal is “point identification,” namely, perfectly

recovering the parameters that produced the observed behavior. This line

of work usually relies on distributional assumptions—for example, it assumes

that perturbations added to the parametrized models are drawn from a distri-

bution that is perfectly known by the observer—and aims at identification or

statistical estimation of the underlying parameters (see [23, 21, 30, 18] for an

overview of the fundamentals of econometrics). In econometrics in games, it is

often the case that one requires that the game be small or that the utilities of
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the players can be written as simple functions of a restricted number of param-

eters. For example, 2-player entry games with entry payoffs parametrized as

linear functions of a small number of variables, as seen in [29] and subsequent

work, are among the most studied in the literature. One drawback of this

literature is that when the space of parameters is high-dimensional or when

multiple equilibria exist (which is typically the case in many games of inter-

est), point identification of the true parameters of the game often becomes

impossible, since the observations do not correspond to a unique consistent

explanatory game.

In an interesting departure from the emphasis on point identification, a num-

ber of recent papers [1, 17, 10, 25] consider the problem of constructing regions

of parameters that contain the true value of the parameters they aim to recover

from equilibrium observations of games. For example, Nekipelov, Syrgkanis,

and Tardos [25] study a dynamic sponsored search auction game, and provide a

characterization of the rationalizable set, consisting of the set of private param-

eters that are consistent with the observations, under the relaxed assumption

that players need not follow equilibrium play, but rather use some form of

no-regret learning. Relatedly, Andrews, Berry, and Jia [1] and Ciliberto and

Tamer [17] compute confidence regions for the value of the true parameter, but

their regions are not “sharp,” in the sense that they may contain parameter

values that are not consistent with some of the implications of their models.

Perhaps closest to the present work, Beresteanu, Molchanov, and Molinari [10]

combine random set theory and convex optimization to give a representation of

the sharp identification region—the collection of parameter values that could

generate the distribution of observations found in the data, and only those

parameter values—as the set of values for which the solution to a convex

optimization program with a random objective function is almost surely (in

the observed and unobserved payoff shifters) equal to 0.2 Hence, verifying

membership of a parameter value to the sharp identification region can be done

efficiently in simple settings such as entry-games with linearly parametrized

payoffs. This is an exciting advance; however, for computational reasons, the

approach is impractical in large games, such as 2-player games with many

actions per player:

2Our notion of the consistent set is closely analogous to the sharp identification region
of [10]. We use different terminology to highlight that they are derived under somewhat
different settings.
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• While their framework can verify that a vector of parameter values be-

longs to the sharp identification set, it does not provide an efficient,

searchable representation of the sharp identification set itself.

• One can verify that a parameter vector belongs to the sharp identifica-

tion set by checking that a condition on the objective value of a convex

program holds for almost all possible realizations of the payoff shifters.

Beresteanu, Molchanov, and Molinari [10] further show that one can

cluster payoff shifters into groups such that all perturbed games in the

same group have the same set of Nash equilibria; one then must solve

only one optimization program per group. In particular, in their entry-

game example, the number of such groups is small, and thus this is a

computationally tractable task. However, in more complex games, the

number of such groups can be exponential in the number of actions avail-

able to each player, making this technique impractical when the number

of actions grows.

• Finally, their framework relies on being able to compute all equilibria

of each of the perturbed games. However, no algorithm is known that

can find a Nash equilibrium in time polynomial in the number of actions

of each player, even for general 2-player games—it is in fact a PPAD-

complete problem [16].

The goal of the present thesis is similar to the goal of [10], in the sense that

we wish to sharply understand the set of games that are consistent with a

set of observations (for us, correlated equilibria of perturbed games). We

also use the setting of their simulations as the jumping off point for our own

experimental section. Our work differs from theirs in two main ways. First, the

model of [10] requires strong distributional assumptions on the perturbations;

we relax this by instead assuming only that the perturbations belong to a

known set. Most importantly, we provide a computationally efficient—in

the number of actions available to the players—characterization of the sharp

set of consistent games. Our characterization comes in the form of a convex

set defined by a quadratic (in the number of actions) number of linear and

convex quadratic constraints of a quadratic number of variables; such sets have

been extensively studied in convex optimization, and computationally efficient

algorithms are known for finding elements in and for optimizing over such sets
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(see Boyd and Vandenberghe [14] for a textbook treatment). We also provide

computationally efficient algorithms to find points in the set, quantify the set’s

diameter, and check whether it contains games with certain properties. Our

set-based approach to modeling the perturbations is inspired by the concept

of uncertainty sets in robust optimization (see [9, 11, 7]). Robust optimization

aims to give an alternative to distributional assumptions and avoid their most

common drawbacks: stochastic formulations typically lead to computationally

hard problems, and the guarantees of such stochastic models can sometimes be

severely affected by even minor imprecision in the distributional assumptions

they rely on.

In both the single-agent discrete choice and the multi-agent game theory set-

tings, one important modeling issue is whether and why one would ever observe

multiple, differing behaviors of a single agent. A common approach is to as-

sume that the agents’ behaviors are observed in several different perturbed

versions of the same game. A natural, well-established approach models dif-

ferent observations found in the data as stemming from random perturbations

to the agents’ utilities, as in [13, 15, 29, 28, 4, 5]. In dynamic panel models,

one observes equilibria across several markets sharing common underlying pa-

rameters, and in particular [22] considers a setting in which a unique, fixed

equilibrium is played within each market. We adopt a similar approach here,

and assume that we have access to several markets or locations that play per-

turbed versions of the same game, and that a single (mixed) equilibrium is

played in each location.

It is common (see [4, 2, 10, 6, 3], for example) to assume that the payoff pertur-

bations and covariates have an observable part (known as a payoff shifter) that

is seen by the observer—usually observable economic parameters like costs or

taxes—and a non-observable part. The observed data can be used to estimate

the probabilities of different strategy profiles, conditioned on the observed pay-

off shifters. We demonstrate how a version of such payoff shifter information

can be incorporated into our approach.

A few papers in the computer science literature have looked at slightly different

but related questions, arising when observing equilibria of games whose payoffs

are unknown. In particular, Bhaskar et al. [12] and Rogers et al. [27] study

a network routing setting in which equilibrium behavior can be observed but

edge costs are unknown, and study the query complexity of devising a variant
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of the game to induce desired target flows as equilibria. Barman et al. [8] adopt

a model in which the observer observes what joint strategies are played when

restricting the actions of the players in a complete information game with no

perturbations, and show that data with certain properties can be rationalized

by games with low complexity.
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C h a p t e r 2

MODEL AND SETTING

2.1 Players’ behavior

Consider a finite two-player game G; we will refer to it as the true or underlying

game. Let A1,A2 be the finite sets of actions available to players 1 and 2,

respectively, and let m1 = |A1| and m2 = |A2| be the number of actions

available to them. For every (i, j) ∈ A1 × A2, we denote by Gp(i, j) the

payoff of player p when player 1 chooses action i and player 2 chooses action

j. Gp ∈ Rm1×m2 is the vector representation of the utility of player p, and we

often abuse notation and write G = (G1, G2). The strategies available to player

p are simply the distributions over Ap. A strategy profile is a pair of strategies

(distributions over actions), one for each player. A joint strategy profile is a

distribution over pairs of actions (one for each player); it is not required to be

a product distribution. We refer to strategies as pure when they place their

entire probability mass on a single action, and mixed otherwise.

We consider l perturbed versions of the game G, indexed by k ∈ [l] so that the

kth perturbed game is denoted Gk; one can for instance imagine each Gk as a

version of the game G played in a different location or market k. The same

notation as for G applies to the Gk’s.

Throughout the thesis, we assume that for each k, the players’ strategies are

given by a correlated equilibrium of the complete information game Gk. In the

presence of several such equilibria, no assumption is made on the selection rule

the players use to pick which equilibrium to play (though we assume they both

play according to the same equilibrium). Correlated equilibria are defined as

follows:

Definition 1. A probability distribution e is a correlated equilibrium of game

G = (G1, G2) if and only if

m2∑
j=1

G1(i, j)eij ≥
m2∑
j=1

G1(i
′, j)eij ∀i, i′ ∈ A1

m1∑
i=1

G2(i, j)eij ≥
m1∑
i=1

G2(i, j
′)eij ∀j, j′ ∈ A2



10

The notion of correlated equilibrium extends the classical notion of Nash equi-

librium by allowing players to act jointly; as every Nash equilibrium of a game

is a correlated equilibrium of the same game, many of our results also have

implications for Nash equilibria.

2.2 Observation model

We make the important assumption throughout that the observer does

not have access to the payoffs of the underlying game G nor of the

perturbed games Gk, for any k in [l]. We model an observer as observing,

for each perturbed game Gk, the entire correlatd equilibrium distribution ek ∈
Rm1×m2 , where ek(i, j) denotes the joint probability in the kth perturbed game

of player 1 playing action i ∈ A1 while player 2 plays action j ∈ A2. Note

that as ek represents a probability distribution, we require ek(i, j) ≥ 0 ∀(i, j)
and

∑
i,j

ekij = 1.1 In this thesis, we consider two variants of the model of

observations we just described:

• In the partial payoff information setting, the observer has access to equi-

librium observations e1, ..., el, and additionally to the expected payoff of

equilibrium ek on perturbed games Gk, for each players p and for all

k ∈ [l]; we denote said payoff vkp and note that vkp = ek ′Gk
p.

• In the payoff shifter information setting, at each step k, a payoff shifter

βk = (βk1 , β
k
2 ) ∈ Rm1×m2 × Rm1×m2 is added to game G = (G1, G2),

and the perturbed games Gk result from the further addition of small

perturbations to the G+βk’s. The observer knows β1, ..., βl and observes

e1, ..., el of perturbed gamesG1, ..., Gl. This setting is based on a common

model in the economics literature: it represents a situation in which

changes in the behavior of agents are observed as a function of changes

in observable economic parameters (taxes, etc.).

1The reader may interpret this assumption as describing a situation in which each per-
turbed game is played repeatedly over time, with the same (possibly mixed) equilibrium
played each time, allowing the observer to infer the probability distribution over actions
that is followed by the players. When using samples to compute the empirical distribution
over actions followed by the players, one may not have access to exactly the correlated equi-
librium, but instead a nearby distribution that is known to be a ε-approximate equilibrium
for some ε that depends on the sample size. Our framework can trivially be extended to
deal with approximate correlated equilibria.
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While the payoff shifter information setting is the model of perturbations that

is commonly used in econometrics, the partial payoff information setting has

not been used in previous work to the best of our knowledge. We introduce it to

model the following type of situation: two firms are competing for customers in

Los Angeles, and an observer follows what actions the two L.A. branches take

over the course of a quarter. At the end of each quarter, the observer learns

the gross revenue of both firms over the course of the term (or, less plausibly,

their expected payoff, if they have played a mixed equilibrium during that

quarter). Alternatively, agents are playing a routing game, and the observer

gets to see the expected time they spend in traffic.

2.3 Observer’s knowledge about the perturbations

This thesis aims to characterize the games that explain equilibrium observa-

tions under the partial payoff and payoff shifter information settings when

the perturbations are known to be “small” and the perturbed games are thus

“close” to the underlying game. The next few definitions formalize our notion

of closeness, and Assumption 1 formalizes the information the observer has on

the perturbations added to the underlying game G.

Definition 2. A game G is δ-close to games G1, ..., Gl with respect to metric

d for δ > 0 if and only if d(G1, ..., Gl|G) ≤ δ.

We think of d as distances and therefore convex functions of the perturbations

G−Gk for all k. For the above definitions to make sense in the context of this

thesis, we need a metric whose value on a set of games G,G1, ..., Gl is small

when G,G1, ..., Gl are close in terms of payoffs. We consider the following

metrics:

Definition 3. The sum-of-squares distance between games G and G1, ..., Gl is

given by

d2(G
1, ..., Gl|G) =

l∑
k=1

(G1 −Gk
1)′(G1 −Gk

1) +
l∑

k=1

(G2 −Gk
2)′(G2 −Gk

2).

The maximum distance between vectors G and G1, ..., Gl is defined as

d∞(G1, ..., Gl|G) = max
p∈{1,2}, k∈[l]

‖Gp −Gk
p‖∞

, where ‖.‖∞ denotes the usual infinity norm.
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Both distances are useful, in different situations. The sum-of-squares distance

is small when the variance of the perturbations added to G is known to be

small, but allows for worst-case perturbations to be large. An example is when

the Gk’s are randomly sampled from a distribution with mean G, unbounded

support, and small covariance matrix, in which case some of the perturbations

may deviate significantly from the mean but with low probability, while the

average squared perturbation remains small. If the distribution of perturba-

tions is i.i.d Gaussian, the sum-of-squares norm replicates the log-likelihood of

the estimations and follows a Chi-square distribution. The maximum distance

is small when it is known that all perturbations are small and bounded; one

example is when the perturbations are uniform in a small interval [−δ, δ].

Throughout this thesis, we make the following assumption on the information

about the perturbations that is available to the observer:

Assumption 1. Let G be the underlying game and G1, ..., Gl be its perturba-

tions that generated observations e1, ...el.

• In the partial payoff information settings, the observer knows that G is

δ-close to games G1, ..., Gl with respect to some metric d and magnitude

δ ≥ 0.

• In the payoff shifter information setting with observed shifters β1, ..., βl,

the observer knows that G is δ-close to the unshifted games G1−β1, ..., Gl−
βl with respect to some metric d and magnitude δ ≥ 0.

Assumption 1 defines a convex set the observer knows the perturbations must

belong to, much like the uncertainty sets given in [7, 9, 11]. We note that

the d2 and d∞ distances we focus on define respectively an ellipsoidal and a

polyhedral uncertainty set (as seen in [11]).

Remark 1. While we make Assumption 1 for convenience and simplicity of

exposition, our framework is able to handle more general sets of perturbations.

In particular, the results of Section 3 can easily be extended to any convex

set of perturbations that has an efficient, easy-to-optimize-on representation.

This includes classes of sets defined by a tractable number of linear or convex

quadratic constraints, which in turn encompasses many of the uncertainty sets

considered in [7], such as the central limit theorem or correlation information

sets, and most of the typical sets presented therein.
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2.4 Consistent games

In this thesis, as in [10], we adopt an observation-driven view that describes

the class of games that are consistent with the observed behavior. Given a set

of observations, we define the set of consistent games as follows:

Definition 4 (δ-consistency). We say a game G̃ is δ-consistent with the ob-

servations when there exists a set of games (G̃, G̃1, ..., G̃l) such that for all k,

ek is an equilibrium of G̃k, and:

• If in the partial payoff information model of observations,
∑

p G̃
k ′
p e

k = vkp

for all players p and d(G̃1, ..., G̃l|G̃) ≤ δ.

• If in the payoff shifter information model, d(G̃1 − β1, ..., G̃l − βl|G̃) ≤ δ.

The set of all δ-consistent games with respect to metric d is denoted Sd(δ).

Given the specifications of our model, it is often the case that, given a set of

observations with no additional assumption on the distribution of perturba-

tions nor on a the rule used to select among multiple equilibria, one cannot

recover an approximation to a unique game that generated these observations

(no matter what recovery framework is used). That is, the diameter of the

consistent set can sometimes be too large for approximate point identification

to be possible, which is highlighted in the following example:

Example 1. Imagine a simpler setting with no partial payoff or payoff shifter

information, and take any set of observations e1, ..., el and let Ĝ be the all-

constant game, i.e., Ĝ1(i, j) = Ĝ2(i, j) = c for some c ∈ R and for all (i, j) ∈
A1 ×A2. Let Ĝ1 = ... = Ĝl = Ĝ. Then for all k ∈ [l], ek is an equilibrium of

Ĝk, and d2(G
1, ..., Gl|G) = d∞(G1, ..., Gl|G) = 0. That is, Ĝ is a trivial game,

and it is consistent with all possible observations. Even when e1, ..., el are

generated by a non-trivial G, without any additional observations, an observer

cannot determine whether G or Ĝ is the underlying game. In fact, both games

are consistent with all implications of our model. We note that this issue arises

regardless of how inferences will be drawn about the observations, so long as

the approach does not discard consistent games.

It may thus be of interest to an observer to compute the diameter of the

consistent set, either to determine whether point identification is possible,
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or simply to understand how tightly the observations constrain the space of

consistent games. We define it as follows:

Definition 5. The diameter D(Sd(δ)) of consistent set Sd(δ) is given by

D(Sd(δ)) = sup{‖Ĝ− G̃‖+∞ s.t. G̃, Ĝ ∈ Sd(δ)}

When the diameter is small, then every game in the consistent set is close to

the true underlying game, and approximate point identification is achievable.

When the diameter D(Sd(δ)) grows large, point identification is impossible

independently of what framework is used for recovery, as there exists two

games that are D(Sd(δ))-far apart in terms of payoff yet both could have

generated all observations.
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C h a p t e r 3

A CONVEX OPTIMIZATION FRAMEWORK

In this section, we will see how techniques from convex optimization can be

used to recover the perturbation-minimizing explanation for a set of observa-

tions, determine the extent to which observations are consistent with certain

assumptions on the underlying game, and determine whether a set of observa-

tions tightly constrains the set of games that could explain it well. The results

in this section are not tied to a specific observation model

3.1 Efficient characterization of the set of consistent games

In this section, we show that for every δ, and d ∈ {d2, d+∞}, the set of consis-

tent games Sd(δ) has an efficient, convex representation.

Claim 1. If in the “partial payoff information” model of observations:

Sd(δ) =


G s.t

∃(G1, ..., Gl) with d(G1, ..., Gl|G) ≤ δ s.t.
m2∑
j=1

Gk
1(i, j)ekij ≥

m2∑
j=1

Gk
1(i′, j)ekij ∀i, i′ ∈ A1,∀k ∈ [l],

m1∑
i=1

Gk
2(i, j)ekij ≥

m1∑
i=1

Gk
2(i, j′)ekij ∀j, j′ ∈ A2,∀k ∈ [l]∑

p G̃
k ′
p e

k = vkp


If in the “payoff shifter information” model:

Sd(δ) =

G s.t

∃(G1, ..., Gl) with d(G̃1 − β1, ..., G̃l − βl|G̃) ≤ δ s.t.
m2∑
j=1

Gk
1(i, j)ekij ≥

m2∑
j=1

Gk
1(i′, j)ekij ∀i, i′ ∈ A1, ∀k ∈ [l],

m1∑
i=1

Gk
2(i, j)ekij ≥

m1∑
i=1

Gk
2(i, j′)ekij ∀j, j′ ∈ A2, ∀k ∈ [l]


Proof. Follows from the definion of δ-consistency (Definition 4)

We remark that as in [10], our sets are sharp: any game that explains the

observations belongs to this set, and any game that belongs to this set is

consistent with our assumptions and observations. Indeed, if G is in the con-

sistent set, there must exist perturbations of valid magnitude (given by the

corresponding G1, ..., Gl) and an equilibrium ek of each perturbed game that

together lead to our observations, by the definition of the consistent set.
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These consistent sets have efficient convex representations, for two reasons.

First, all constraints are always linear except those of the form

d(G1
p, ..., G

l
p|G) ≤ δ. When d = d2, d(G1

p, ..., G
l
p|G) ≤ δ is a simple convex

quadratic constraint, while when d = d∞, d(G1
p, ..., G

l
p|G) ≤ δ is equivalent to

the following collection of linear constraints:

−δ ≤ Gk
p −Gp ∀p ∈ {1, 2},∀k ∈ [l]

Gk
p −Gp ≤ δ ∀p ∈ {1, 2},∀k ∈ [l].

Second, the number of constraints describing each set is quadratic in the num-

ber of player actions m1 and m2.

As mentioned in the model and setting section, it is easy to see that in all

observation models d(G1
p, ..., G

l
p|G) ≤ δ can easily be replaced by the pertur-

bations Gk −G being in any tractable convex set. In particular, many of the

sets considered in [7] fit this requirement, and they describe robust informa-

tion that an observer without distributional knowledge of the perturbations

could realistically have on said perturbations: for example, an observer could

know that the sum or average of the perturbations satisfies certain lower- and

upper-bounds.

3.2 Recovering the perturbation-minimizing consistent game

Here, we consider the problem of recovering a game that best explains a given

set of observations from perturbed games, according to the desired distance

metric d. One reason to do so is that it enables an observer to test whether

there exists any game in Sd(δ) that is consistent with specific properties and

to give a measure of how much of Sd(δ) has said properties—see Section 3.3.

Or, it could be that the observer is simply interested in recovering the “best”

game according to any simple convex metric of interest. For any metric d and

any observation model, this can be done simply by solving:

min
G,δ

δ

s.t. G ∈ Sd(δ)
(3.1)

It is easy to see that this program returns the game G and the minimum value

of δ such that d(G1, ..., Gl|G) ≤ δ (resp. d(G1 − S1, ..., Gl − Sl|G) ≤ δ) in the

partial payoff information setting (resp. the payoff shifter information setting)

where the Gk’s satisfy all equilibrium constraints, hence Program (3.1) returns

the perturbation-minimizing G that is consistent with all observations. When
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d = d∞, this is a linear program and when d = d2, this is a second-order cone

program, using the same reasoning as in Section 3.1 – this clearly holds even

with δ as a variable. Both types of programs can be solved efficiently, as seen

in [14]

3.3 Can observations be explained by linear properties?

This convex optimization-based approach can be used to determine whether

there exists a game that is compatible with the observations and that also

has certain additional properties, as long as these properties can be expressed

as a tractable number of linear equalities and inequalities. One can then

solve program (3.1) with said linear equalities and inequalities as additional

constraints (the program remains a SOCP or LP with a tractable number of

constraints), then check whether the optimal value is greater than or less than

δ. If the optimal value is greater than δ, then there exists no game with those

properties that belongs to the δ-consistent set; if the optimal value is smaller

than δ, then the recovered game obeys the additional properties and belongs to

the δ-consistent set. In what follows, we present a few examples of interesting

properties that fit this framework.

Zero-sum games

A zero-sum game is a game in which for each pure strategy (i, j), the sum of

the payoff of player 1 and the payoff of player 2 for (i, j) is always 0. One can

restrict the set of games we look for to be zero-sum games, at the cost of sepa-

rability of Program (3.1), by adding constraints G1(i, j) = −G2(i, j) ∀(i, j) ∈
A1 ×A2.

Exact potential games

A 2-player game G is an exact potential game if and only if it admits an exact

potential function, i.e. a function Φ that satisfies:

Φ(i, j)− Φ(i′, j) = G1(i, j)−G1(i
′, j) ∀i, i′ ∈ A1,∀j ∈ A2 (3.2)

Φ(i, j)− Φ(i, j′) = G2(i, j)−G2(i, j
′) ∀i ∈ A1,∀j, j′ ∈ A2 (3.3)

In order to restrict the set of games we are searching over to the set of potential

games, one can introduce m1m2 variables Φ(i, j) and constraints (3.2), (3.3)

in Program (3.1).
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Games generated through linear parameter fitting

It is common in the economics literature to recover a game with the help

of a parametrized function whose parameters are calibrated using the ob-

servations. In many applications, linear functions of some parameters are

considered—entry games are one example. Our framework allows one to de-

termine whether there exist parameters for such a linear function that provide

good explanation for the observations. When such parameters exist, one can

use the mathematical program to find a set of parameters that describe a game

which is consistent with the observations. Take two functions f1(θ) and f2(θ)

that are linear in the vector of parameters θ and output a vector in Rm1×m2 .

It suffices to add the the optimization variable θ and the linear constraints

G1 = f1(θ) and G2 = f2(θ) to Program (3.1) to restrict the set of games we

look for to games linearly parametrized by f1, f2.

Computing the diameter of the consistent set

In this section, we provide an algorithm for computing the diameter of Sd(δ)

for a given value of δ, Algorithm 1.

ALGORITHM 1: Computing the diameter of the consistent set

Input: Observations e1, ..., el, magnitude of perturbations δ, metric d
Output: Real number A(δ), can be infinite
for (i, j) ∈ A1 ×A2, player p ∈ 1, 2 do

Pδ,p(i, j) = sup
G̃,Ĝ,γ

γ

s.t. G̃ ∈ Sd(δ)
Ĝ ∈ Sd(δ)
G̃1(i, j)− Ĝ1(i, j) ≥ γ

end
A(δ) = max

(i,j)∈A1×A2

max
p∈{1,2}

Pδ,p(i, j)

Algorithm 1 is computationally efficient for the considered metrics d2 and

d∞: it solves 2m1m2 linear programs for d∞, and 2m1m2 second-order cone

programs (SOCP) for d = d2 with a tractable number of constraints. The

algorithm has the following property:

Lemma 1. The output A(δ) of Algorithm 1 run with input δ satisfies A(δ) =

D(Sd(δ)).

Proof. See Appendix A.
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Thus Algorithm 1 computes exactly the diameter of Sd(δ) for any parameter δ.

Because the diameter is a property of the consistent set and not of the frame-

work used to recover an element from said set, this tells an observer whether

approximate point identification is possible independently of what framework

is used for recovery. In particular, when the diameter is small, our framework

approximately recovers the true underlying game (see Section 3.2). When the

diameter is big, no framework can achieve approximate point identification of

a true, underlying game.
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C h a p t e r 4

CONSISTENT GAMES WITH PARTIAL PAYOFF
INFORMATION: WHEN IS RECOVERY POSSIBLE?

This section considers the partial payoff information variant of the observation

model described in Section 2. We ask the following question: when is it

possible to approximate the underlying game, in the presence of partial payoff

information? We answer this question by giving bounds on the diameter of

the consistent set Sd(δ) as a function of δ and the observations e1, ..., el, for

both metrics d2 and d∞.

Recall that in this setting, for an equilibrium ek observed from perturbed game

Gk, the observer also learns the expected payoff vkp of player p in said equilib-

rium strategy on game Gk, in addition to observing ek. Similar to the previous

sections, we are interested in computing a game Ĝ that is close to some per-

turbed games Ĝ1, ..., Ĝl that (respectively) have equilibria e1, ..., el with payoffs

v1, ..., vl. For simplicity of presentation, we recall that the optimization pro-

gram that the observer solves is separable and note that he can thus solve the

following convex optimization problem for player 1, and a similar optimization

problem for player 2

P (ε)= min
Gk

1 ,G1

d(G1
1, ..., G

k
1|G1)

s.t.
d∑
j=1

Gk
1(i, j)ekij ≥

d∑
j=1

Gk
1(i′, j)ekij ∀i, i′ ∈ A1,∀j ∈ A2, ∀k ∈ [l]

ek ′Gk
1 = vk1 ∀k ∈ [l]

(4.1)

We take l ≥ m1m2 and make the following assumption for the remainder of

this subsection, unless otherwise specified:

Assumption 2. There exists a subset E ⊂ {e1, ..., el} of size m1m2 such that

the vectors in E are linearly independent.

We abuse notation and denote by E the m1m2 × m1m2 matrix in which

row i is given by the ith element of set E, for all i ∈ [m1m2]; also, we

write d(G1, ..., Gl|G) =
∑
p

d(G1
p, ..., G

l
p|Gp), i.e. d(G1

p, ..., G
l
p|Gp) is the part
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of d(G1, ..., Gl|G) that corresponds to player p. For every p ∈ N ∪ {+∞}, let

‖.‖p be the p-norm. We can define the corresponding induced matrix norm

‖.‖p that satisfies ‖M‖p = sup
x 6=0

‖Mx‖p
‖x‖p for any matrix M ∈ Rm1m2×m1m2 .

The following statement highlights that if one has m1m2 linearly independent

observations (among the l equilibrium observations) such that the induced

matrix of observations E is well-conditioned, and the perturbed games are

obtained from the underlying game through small perturbations, any optimal

solution of Program (4.1) necessarily recovers a game whose payoffs are close

to the payoffs of the underlying game. The statements are given for both

metrics introduced in Section 2.

Lemma 2. Let G be the underlying game, and G1, ..., Gl be the games gen-

erating observations e1, .., el, where l = m1m2. Suppose that for player p,

d2(G
1
p, ..., G

l
p|Gp) ≤ δ. Let (Ĝp, Ĝ

1
p, ..., Ĝ

l
p) be an optimal solution of Program

(4.1) for player p with distance function d2. Then

‖Gp − Ĝp‖2 ≤
√

2‖E−1‖2 · δ.

Proof. For simplicity of notation, we drop the p indices. We first remark that

(G,G1, ..., Gl) is feasible for Program (4.1); as (Ĝ, Ĝ1, ..., Ĝl) is optimal, it is

necessarily the case that

l∑
k=1

‖Ĝ− Ĝk‖22 ≤
l∑

k=1

‖G−Gk‖22 ≤ δ.

Let us write ∆G = G− Ĝ. We know that for all k, ek ′Gk = ek ′Ĝk = vk, and

thus ek ′(Gk − Ĝk) = 0. We can write

E∆G = (e′1(G− Ĝ) ... e′l(G− Ĝ))′

= (e′1(G−G1 +G1 − Ĝ1 + Ĝ1 − Ĝ) ... e′l(G−Gl +Gl − Ĝl + Ĝl − Ĝ))′

= (e′1(G−G1 + Ĝ1 − Ĝ) ... e′l(G−Gl + Ĝl − Ĝ))′.

Let xk = G−Gk + Ĝk − Ĝ. We then have ‖E∆G‖22 =
l∑

k=1

x′keke
′
kxk, as eke

′
k is

a symmetric, positive semi-definite, stochastic matrix, all its eigenvalues are

between 0 and 1 and

‖E∆G‖22 ≤
l∑

k=1

x′kxk =
l∑

k=1

‖xk‖22 ≤ 2δ.

It immediately follows that ‖∆G‖2 ≤
√

2‖E−1‖2 · δ.
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Lemma 3. Let G be the underlying game, and G1, ..., Gl be the games gen-

erating observations e1, .., el, where l = m1m2. Suppose that for player p,

d∞(G1
p, ..., G

l
p|Gp) ≤ δ. Let (Ĝp, Ĝ

1
p, ..., Ĝ

l
p) be an optimal solution of Pro-

gram (4.1) for player p with distance function d∞. Then

‖Gp − Ĝp‖∞ ≤ 2‖E−1‖∞ · δ.

Proof. See Appendix B.

When E is far from being singular, as long as the perturbations are small, we

can accurately recover the payoff matrix of each player. An extreme example

arises when we take E to be the identity matrix, in which case we observe every

single pure strategy of the game and an approximation of the payoff of each

of these strategies, allowing us to approximately reconstruct the game. It is

also the case that there are examples in which ‖E−1‖∞ is large and there exist

two games that are far from one another, yet both explain the observations,

making our bound essentially tight:

Example 2. Consider the square matrix E ∈ R4×4 with probability 0.25 +

ε on the diagonal and 0.75+ε
3

off the diagonal, i.e., we get four equilibrium

observations with a different action profile that has probability slightly higher

than 0.25 for each equilibrium; the first equilibrium has a higher probability on

action profile (1,1), the second on (1,2), the third on (2,1) and the last one on

(2,2). Suppose the vector of observed payoffs is v = (δ,−δ, δ,−δ)′, where v(i)

is the payoff for the ith equilibrium. Note that there exists a constant C such

that for all ε > 0 small enough, ‖E−1‖+∞ ≤ C
ε

.

In the rest of the example, we fix the payoff matrix of player 2 for all considered

games to be all zero so that it is consistent with every equilibrium observation,

and describe a game through the payoff matrix of player 1. Let G be the all-

zero game, G1 = G3 be the game with payoff δ
0.5+2ε/3

on actions (1,1) and

(1,2) and 0 everywhere else, and G2 = G4 be the game with payoff − δ
0.5+2ε/3

on actions (2,1) and (2,2) and 0 everywhere else. The Gi’s are consistent with

the payoff observations as the payoffs are constant across rows on the same

column, making no deviation profitable, and that the payoff of each equilibrium

is indeed δ. We have

d∞(G1, G2, G3, G4|G) =
δ

0.5 + 2ε/3
≤ 2δ
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and

lim
ε→0

d∞(G1, G2, G3, G4|G) = 2δ.

Now, take Ĝ to be the game that has payoff δ/ε for action profiles (1,1) and

(1,2), and −δ/ε for (2,1) and (2,2). Take Ĝ1 = Ĝ3 to be the game with

payoffs δ
ε

in the first column, and − δ
ε
3−2ε
3−4ε in the second column; similarly, take

Ĝ2 = Ĝ4 to be the game with payoffs δ
ε
3−2ε
3−4ε in the first column and − δ

ε
in the

second column. The observations are equilibria of the Ĝi’s and yield payoff δ.

Now, note that for ε < 3/4,

d∞(G1, G2, G3, G4|G) =
δ

ε

∣∣∣∣1− 3− 2ε

3− 4ε

∣∣∣∣ =
2

3− 4ε
δ

Therefore, both G and Ĝ are good explanations of the equilibrium observations,

in the sense that for ε ≤ 1/4, G is δ-close to G1, ..., Gl and Ĝ is δ-close to

Ĝ1, ..., Ĝl that have e1, ..., el as equilibria, respectively. However,

‖G− Ĝ‖∞ =
δ

ε
− δ

0.5 + 2ε/3
≥ δ

(
1

ε
− 2

)
,

which immediately implies

‖G− Ĝ‖∞ = Ωε→0

(
δ

ε

)
= Ωε→0

(
‖E−1‖∞δ

)
.

Remark 2. In the case of sparse games, in which some action profiles are

never profitable to the players, and are therefore never played, one can reduce

the number of linearly independent, well-conditioned observations needed for

accurate recovery. Under the assumption that the action profiles that are never

played with positive probability have payoffs strictly worse than the lowest pay-

off of any action profile played with non-zero probability, one can solve the

optimization problem on the restricted set of action profiles that are observed

in at least one equilibrium, and set the payoffs of the remaining action profiles

to be lower than the lowest payoff of the recovered subgame, without affecting

the equilibrium structure of the game. While the recovered game may not be

the unique good explanation of the observations when looking at the full payoff

matrix, it is unique with respect to the subgame of non-trivial actions when one

has access to sufficiently many linearly independent, well-conditioned equilib-

rium observations.
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C h a p t e r 5

FINDING CONSISTENT GAMES WITHOUT ADDITIONAL
INFORMATION

This section focuses on a variant of the observation models given in Section 2

in which the observer only observes what equilibrium ek is played for each

perturbed game Gk, and does not have access to payoff shifters nor partial

payoff information. In this section, we note that in the absence of additional

information, the consistent region contains a continuum of trivial and nearly

trivial games that may not be of interest to an observer. Hence, we provide

a framework that allows the observer to avoid recovering trivial games by

controlling the degree of “degeneracy” (i.e., closeness to a trivial game) of

the games he considers. Further, we characterize how much the size of the

consistent set shrinks as a function of the minimum level of degeneracy of the

games the observer is interested in.

5.1 Finding non-degenerate games

In this section, we separate the programs solved for players 1 and 2 and focus

on the optimization problem that recovers the payoffs of player 1 (by symme-

try, all results can be applied to the optimization program that recovers the

payoffs player 2); we drop the player indices for notational simplicity. Since

no payoff information is given, throughout this section, we assume w.l.o.g that

the games are normalized to have all payoffs between 0 and 1. As mentioned in

Example 1, the all-constant game G = G1 = ... = Gl gives an optimal solution

to our optimization problem, as such a game is compatible with all equilibrium

observations and has an objective value d(G1, ..., Gl|G) = 0. It is therefore the

case that solving our optimization problem might output a degenerate game,

so in this section, we provide a framework that allows us to control the degree

of degeneracy of the game we recover and to avoid trivial, all-constant games.

To do so, we require some of the equilibria of the games to be “strict,” in the

sense that

d∑
j=1

G(i, j)xij ≥
d∑
j=1

G(i′, j)xij + εii′ ∀i, i′
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with εii′ ≥ 0 and with the condition that at least one of the εii′ is non-zero. All-

constant games do not have strict equilibria, thus this avoids such games. Note

that such a technique only affect the payoffs of pure strategies that are played

with positive probability, and does not accord any importance to strategies

that are never played. Let us now consider the new problem:

min
Gk,G

d(G1, ..., Gl|G)

s.t. ek is a “strict” equilibrium of Gk, ∀k
0 ≤ G(i, j) ≤ 1, ∀(i, j)

which can be rewritten as

min
Gk,G

d(G1, ..., Gl|G)

s.t.
d∑
j=1

Gk(i, j)ekij =
d∑
j=1

Gk(i′, j)ekij + εkii′ ∀(i, i′),∀k

0 ≤ G(i, j) ≤ 1, ∀(i, j)

We introduce a positive parameter ε that controls the level of non-degeneracy

of the game and let the optimization program decide how to split ε among the

εkii′ ’s in a way that minimizes the objective. The optimization program can

now be written as

P (ε) = min
Gk,G

d(G1, ..., Gl|G)

s.t.
d∑
j=1

Gk(i, j)ekij =
d∑
j=1

Gk(i′, j)ekij + εkii′ ∀(i, i′),∀k
l∑

k=1

∑
i,i′
εkii′ = ε

0 ≤ G ≤ 1

εkii′ ≥ 0 ∀(i, i′),∀k

For all i, i′ ∈ A1 such that i 6= i′ and k ∈ [l], we introduce vectors ẽkii′ whose

entries are defined as follows:

ẽkii′(h, j) =


−ek(i, j) if h = i

ek(i, j) if h = i′

0 if h 6= i, i′
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This allows us to rewrite the optimization program under the following form:

P (ε) = min
Gk,G

d(G1, ..., Gl|G)

s.t.
∑
k,i,i′

ẽk ′ii′G
k = −ε

ẽk ′ii′G
k ≤ 0 ∀(i, i′), ∀k

0 ≤ G ≤ 1

(5.1)

This optimization problem is, depending on the chosen metric, either a linear

or quadratic optimization program with a tractable number of constraints, and

can therefore be efficiently solved.

5.2 A duality framework

In this section, we give a duality framework under distance d2 that offers insight

into the solutions to the optimization program. Throughout the section, we

let D(ε) be the dual of Program (5.1).

Sufficient conditions for strong duality

Claim 2. If there exist G1, ..., Gl such that

ẽk ′ii′G
k < 0 ∀(i, i′) ∈ cA1,∀k ∈ [l] s.t. ẽkii′ 6= 0,

then strong duality holds and P (ε) = D(ε).

Proof. Slater’s condition holds iff there exists a solution G,G1, ..., Gl such that∑
k,i,i′

ẽk ′ii′G
k = −ε

ẽk ′ii′G
k < 0 ∀(i, i′),∀k s.t. ẽkii′ 6= 0.

It is enough to find G1, ..., Gl such that

ẽk ′ii′G
k < 0 ∀(i, i′),∀k s.t. ẽkii′ 6= 0

as we can then renormalize the Gk’s such that
l∑

k=1

∑
i,i′
εkii′ = ε.

Note that the previous sufficient condition is not necessarily tractable to check.

We give a stronger sufficient condition such that for any fixed k, ẽk ′ii′G
k <

0 ∀(i, i′) has a solution:
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Lemma 4. Let k ∈ [l]. Let ek(i, :) = (ek(i, 1), ..., (ek(i,m2)) ∀i ∈ A1. If the

non-null ek(1, :), ..., ek(m1, :) are linearly independent, then the non-null ẽkii′’s

are linearly independent. In particular, there exists Gk such that

ẽk ′ii′G
k < 0, ∀i, i′ ∈ A1.

If this holds for all k ∈ [l], then P (ε) = D(ε).

Proof. Let α(h, h′)’s be such that
∑
h,h′

α(h, h′)ẽkhh′ = 0, and so
∑
h,h′

α(h, h′)ẽkhh′(i, j) =

0 ∀(i, j). Recall that for a fixed (i, j), ẽkh,h′(i,j) 6= 0 only if h = i or h′ = i, but

not both at the same time. Therefore,∑
h,h′

α(h, h′)ẽkhh′(i, j) =
∑
h′ 6=i

α(i, h′)ẽki,h′(i, j) +
∑
h6=i

α(h, i)ẽkh,i′(i, j).

As ẽki,h′(i, j) = −ek(i, j) and ẽkh,i(i, j) = ek(h, j), we have for all (i, j) that

−ek(i, j)
∑
h′ 6=i

α(i, h′) +
∑
h6=i

α(h, i)ek(h, j) =
∑
h,h′

α(h, h′)ẽkhh′(i, j) = 0.

Since this holds for all values of j, it immediately follows that for all i,

−ek(i, :)
∑
h′ 6=i

α(i, h′) +
∑
h6=i

α(h, i)ek(h, :) = 0.

Take any i, i′ such that ekii′ 6= 0. Then ek(i, :) 6= 0 and ek(i′, :) 6= 0. By the

previous equation, we have

−ek(i′, :)
∑
h′ 6=i′

α(i′, h′) + α(i, i′)ek(i, :) +
∑
h6=i,i′

α(h, i′)ek(h, :)

= −ek(i′, :)
∑
h′ 6=i′

α(i′, h′) +
∑
h6=i′

α(h, i′)ek(h, :)

= 0

and by the linear independence assumption, we necessarily have α(i, i′) = 0.

Therefore, the ẽkii′ 6= 0’s are linearly independent, completing the proof.

Note that in the worst case, we want m1 ≤ m2, as there can be up to m1 non-

null ek(i, :) of size m2, and by symmetry, we want m2 ≤ m1 for the program

that recovers the payoffs of player 2. For the remainder of this section, we

require m1 = m2, which can be obtained by adding dummy actions to Ap
of player p with the least available actions. When the condition does not

hold in such a setting, it can be obtained through small perturbations of the

equilibrium observations.
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Dual program

The dual of program (5.1) is given by:

Theorem 1. The dual of optimization problem 5.1 is given by:

D(ε) = max
µk
ii′ ,λ0,λ1

−1
4

∑l
k=1(

∑
i,i′
µkii′ ẽ

k
ii′)
′(
∑
i,i′
µkii′ ẽ

k
ii′)− 1

′λ1 − µε

s.t. λ1 − λ0 +
∑
k,i,i′

µkii′ ẽ
k
ii′ = 0

µ+ µkii′ ≥ 0

λ0, λ1 ≥ 0

(5.2)

The KKT conditions imply that if (G1∗, ..., Gl∗, G∗) is a primal optimal solution

and (λ∗0, λ
∗
1, µ

∗, µk ∗ii′ ) is a dual optimal solution, then

∀k,Gk∗ = A− 1
2
(
λ∗1−λ∗0

l
+
∑
i,i′
µk ∗ii′ ẽ

k
ii′)

G∗ = A− 1
2l

(λ∗1 − λ∗0)
(5.3)

for some matrix A ∈ Rl×l

Proof. See Appendix D.

This duality framework will allow us to obtain bounds on the trade-off between

degeneracy and accuracy in the next subsection.

5.3 Trade-off between degeneracy and objective value

Definition 6. We define the degeneracy threshold ε∗ of a set of observations

as

ε∗ = sup{ε s.t. P (ε) = 0}.

Claim 3. The degeneracy threshold is given by

ε∗ = −min
G,εk

ii′

∑
k,i,i′

ẽk ′ii′G

s.t. ẽk ′ii′G ≤ 0 ∀(i, i′),∀k
0 ≤ G ≤ 1

(5.4)

The claim gives a tractable linear program to solve for the degeneracy thresh-

old.
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Proof. Remark that ε∗ solves

ε∗ = max
Gk,G,εk

ii′

ε

s.t. ẽk ′ii′G
k + εkii′ = 0 ∀(i, i′), ∀k

l∑
k=1

(Gk −G)′(Gk −G) = 0∑
k,i,i′

εkii′ = ε

εkii′ ≥ 0 ∀(i, i′), ∀k
0 ≤ G ≤ 1

From the fact that
l∑

k=1

(Gk − G)′(Gk − G) = 0 implies G1 = ... = Gl = G, we

have

ε∗ = max
G,εk

ii′

∑
k,i,i′

εkii′

s.t. ẽk ′ii′G+ εkii′ = 0 ∀(i, i′), ∀k
εkii′ ≥ 0 ∀(i, i′),∀k
0 ≤ G ≤ 1

The result follows immediately.

Claim 4. ε∗ is finite, ∀ε ≤ ε∗, P (ε) = 0, and ∀ε > ε∗, P (ε) > 0.

Proof. The proof follows immediately from Claim 9. P (ε∗) = 0 comes from

the fact that the feasible set of Program (5.4) is bounded: indeed, for any

point in its feasible set, 0 ≤ G ≤ 1 and εkii′ = −ẽk ′ii′G, forcing the εkii′ to also

be bounded. Thus, ε∗ is a solution of a linear program on a bounded polytope

and is therefore finite, and attained at an extreme point of this polytope.

Note that if we solve optimization Program (5.4) and find that ε∗ is large, then

it is possible to find a large value of ε such that P (ε) = 0, and we can therefore

recover a non-degenerate game that has all of the observed equilibria, i.e., we

recover a game that has equilibrium properties similar in some sense to those

of the true, underlying game. For smaller values of ε∗, we refer to the following

statement:
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Theorem 2. For every ε0 > ε∗, and for all ε ≥ ε0, we have f(ε) ≤ P (ε) ≤
g(ε) where f and g are given by

f(ε) = P (ε0)
ε2

ε20
(5.5)

g(ε) =
(

(
√
P (ε0) +

√
lm

2
)
ε

ε0
−
√
lm

2

)2
(5.6)

Proof. See Appendix E.

An observer that sets a degeneracy parameter of ε restricts himself to a set of

games that must have an empty intersection with Sd(f(ε)) and a non-empty

intersection with the set Sd(g(ε)).
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C h a p t e r 6

EXTENSIONS

In this section, we show how our framework can be extended to on the one

hand succinct games with many players, and on the other hand some games

with infinite action spaces.

6.1 Linear succinct games as per [24]

In general, computational complexity cannot be obtained as the number of

players increase. A reason for this is that in the general case, an intractable,

exponential number (in the number of players) of variables need be used to

represent the game and its equilibria: in a game with n players and m actions

per player, there are mn pure action profiles, hence mn variables are needed

simply to represent the payoff matrix of the payoff matrices and the equilibria

of the recovered games.

However, if the game and the observed equilibria have a compact representa-

tion, the equilibrium constraints can be written down using a tractable number

of variables, and our framework provides efficient algorithms to find an element

in the consistent set, compute its diameter, and test for linear properties. [24]

considers linear succinct games and show that if the structure of the succinct

game is known and if we observe an equilbirium such that the “equilibrium

summation property holds” (roughly, the exact expected utility of the players

can be computed efficiently), then a game is consistent with the equilibrium

observations if and only if a polynomial number of tractable, linear constraints

are satisfied. Such constraints can easily be incorporated into our framework.

See Property 1 and Lemma 1 of [24] for more details.

6.2 Cournot competition and infinite action space

In the general case, our framework cannot directly deal with games with infi-

nite action spaces in a tractable way: to write down an equilibrium constraint,

one needs a constraint for each of the infinite number of possible deviations.

In this section, we show that nevertheless, there exist games with infinite ac-

tion spaces for which only a finite, tractable number of constraints is needed

to characterize the equilibria, and show how to adapt our framework to said
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games. We focus on the Cournot competition game with continuous spaces of

production levels.

Consider a Cournot competition with n players selling the same good. Each

player i chooses a production level qi ≥ 0, and sells all produced goods at price

P (q1, ..., qn) common to all players, and each player i incurs a production cost

ci(qi) to produce qi units of the good; we write G=(P, c) where c = (c1, ..., cn).

We assume that P is concave in each qi.

We assume the observer knows the function P and wants to recover the costs ci

of the players, where the costs are perturbed over time. Formally, consider that

we have l perturbed games such that in every pertubed game k, people play

a Cournot competition with the same, commonly known price function P but

perturbed cost functions cki for each player i, known to be convex. We obtain

equilbrium observations q1, ..., ql, where qki is the equilibrium production level

of player i in perturbed game k and qk = (qk1 , ..., q
k
n). I.e., Gk = (P, ck).

Suppose the following hold:

• The observer knows the costs belong to the space of polynomials of any

chosen fixed degree d ≥ 1; i.e., the observer parameterizes the underlying

and perturbed cost functions the following way:

ci(qi) =
d∑

ex=1

ai(ex)qexi (6.1)

where the ai(ex)’s are now the variables the observer want to recover.

• d(c1, ..., cl|c) ≤ δ can be written as a tractable number of semidefinite

constraints on the aki ’s and ai’s (this include, but is not limited to the

d2 and d∞ distances).

• P (q) and ∂P
∂qi

can be computed efficiently for i, given q.

Then Sd(δ) has an efficiently computable and tractable representation (as a

function of n, l and d) as the intersection of SDP constraints. This means in

particular that optimizing a linear function over Sd(δ) can be easily cast as a

tractable semidefinite program, for which efficient solvers are known – see [14];

one such solver, that we use in the simulations of Section sec: simulations, is

CVX ( [20]). This includes the ability to efficiently recover a game in the
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consistent set, efficiently compute its diameter, and efficiently test for linear

properties (by simply adding linear and thus SDP constraints if needed).

To obtain such a tractable characterization, we only need to note that i) the

equilibrium constraints can be rewritten as a tractable number of tractable

linear constraints and ii)convexity constraints on polynomials can be classically

cast as tractable SDP constraints. This is the object of Appendix C.1 and C.2.
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C h a p t e r 7

SIMULATIONS FOR ENTRY GAMES AND COURNOT
COMPETITION

In this section, we run simulations for two concrete settings to illustrate the

power of our approach. We first illustrate how our framework performs on a

simple entry game in Section 7.1, then show that it is able to handle much

larger games in Section 7.2.

7.1 2-player entry game

We first consider an entry game, in which each of two players (think of them as

companies deciding whether to open a store in a new location) has two actions

available to him (enter the market; don’t enter the market). Entry games are

common in the econometrics literature, as seen in [1, 17, 10], and an easy one

to start with and visualize the consistent region.

Each player p has two actions: Ap = {0, 1}; ap = 0 if player p does not

enter the market, ap = 1 if he does. The utility of a player is given by

Gp(ap, a−p) = ap((1−a−p)γp+a−pθp) for some parameters γp ≥ 0 and θp ≤ γp,

similarly to [29]: if player p does not enter the market, his utility is zero; if

he enters the game but the other player does not, p has a monopoly on the

market and gets non-negative utility; finally, if both players enter the game,

they compete with each other and get less utility than if they had a monopoly.

In our simulations, we fix values for the parameters (γp, θp) and generate the

perturbed games as follows:

• In the partial payoff information settings, we add independent Gaussian

noise with mean 0 and standard deviation σ to Gp(ap = 1, a−p) (we vary

the value of σ) to obtain the perturbed games G1, ..., Gl.

• In the payoff shifter information case, we sample the payoff shifters

β1, ..., βl such that for all k ∈ [l], for all players p, βkp (ap = 1, a−p) follows

a normal distribution of mean 0 and standard deviation σs. We then add

Gaussian noise with mean 0 and standard deviation σ to Gp(ap = 1, a−p)

to obtain the perturbed games G1, ..., Gl.
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In all observation models, paralleling the setting of [10], no observed payoff

shifter nor unknown noise is added to the payoff of action ap = 0 for player p;

action ap = 0 is always assumed to yield payoff 0 for player p, independently

of a−p. In order to generate the equilibrium observations, once the perturbed

games are generated, we find the set of equilibria of each of the Gk, and

sample a point ek in said set. In the payoff information case, we also compute

vk = ek ′Gk.

In order to parallel the setting of Beresteanu et al. [10], we assume the observer

knows the form of the utility function, i.e., that Gp(0, 0) = 0 and Gp(ap =

0, a−p = 1) = 0, and that he aims to recover the values of γp and θp. Thus,

we add linear constraints Gp(0, 0) = 0 and Gp(ap = 0, a−p = 1) = 0 in the

optimization programs that we solve (see Program (3.1)) in the payoff shifter

information and partial payoff information settings. Furthermore, we assume

as in [10] that the observer knows that perturbations are only added to γ and

θ, and therefore we add linear constraints Gk
p(0, 0) = 0 and Gk

p(ap = 0, a−p =

1) = 0 for all k ∈ [l] to the optimization problems for player p in each of the

observation models. All optimization problems are solved in Matlab, using

CVX (see [20]).

Our model for entry-games is similar to the ones presented in [29] and used in

simulations in [10], so as to facilitate informal comparisons of the simulation

results of both works; in particular, the parametrization of the utility functions

of the players in our simulations is inspired by [10], and noise is generated

and added in a similar fashion. However, while we attempt to parallel the

simulations run by Beresteanu et al. [10], it is important to note that this is not

an apples-to-apples comparison, because of key differences in the setting. In

particular, our observation models (seeing full equilibria) and the information

available to the observer (no distributional assumptions) are different from

those in [10].

Consistent regions for Player 1

We fix l = 500, γ = 5, θ = −10 in all simulations, and vary the values of σ

and σs. Because the observations are generated by adding i.i.d Gaussian noise

with mean 0 and variance σ2 to the two payoffs for entry of each player, if G

is the underlying game and G1, ..., Gl are its perturbations,

1

σ2
d2(G

1, ..., Gl|G) (resp.
1

σ2
d2(G

1 − β1, ..., Gl − βl|G))
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follows a Chi-square distribution with 4l degrees of freedom in the partial

payoff information case (resp. in the payoff shifter case). We choose δ such that

P (d2(G
1, ..., Gl|G) ≤ δ) ≈ 0.99, and suppose the observer sees said value of δ.

While the observer does not have access to the distribution of perturbations,

it is extremely likely he will observe a magnitude of perturbations equal to

or less than δ, and we can use δ as a high-probability upper bound on the

information on the perturbations accessible to the observer.

(a) σ = 0.5,σs = 2.5 (b) σ = 0.5, σs = 5 (c) σ = 0.5, σs = 10 (d) σ = 1.5, σs = 10

Figure 7.1: Plots of the consistent region for different values of σ, σs in the
payoff shifter information observation model

In all plots, the colored region in the plots is the projection over the space

(γ1, θ1) for player 1 of the set of parameters (γ1, θ1, γ2, θ2) that are in the δ-

consistent region. The darker the region, the smaller the objective value of the

best explanation for the corresponding values of γ and θ. The black, center of

the region represents the value of (γ, θ) that minimizes d2(G
1, ..., Gl|G).

Figure 7.1 shows the evolution of the consistent region when varying σ and σs

in the payoff shifter information setting. The smaller the standard deviation

σ of the unknown noise, the tighter the consistent region. On the other hand,

reasonably increasing the value of σs can be beneficial, at least when it comes to

centering the consistent region on the true values of the parameters: this comes

from the fact that when the game is sufficiently perturbed, new equilibria

arise and new, informative behavior is observed, while not adding additional

uncertainty to the payoffs of the game.

Figure 7.2 shows the evolution of the consistent region when varying σ. The

larger the value of σ, the larger the consistent region, and the further away its

center is from the underlying, true value of the parameters.

Testing for linear properties

We also illustrate via simulation how our framework can the ability of linear

properties to explain observed behavior. In particular, here we test whether a
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(a) σ = 0.5 (b) σ = 1.0 (c) σ = 1.5 (d) σ = 2.5

Figure 7.2: Plots of the consistent region for different values of σ in the partial
payoff information observation model

(a) Payoff information setting with
σ = 0.5

(b) Payoff shifter information setting
with σ = 0.5, σs = 10

Figure 7.3: Testing for zero-sum with respect to the 1-norm

set of observations is likely to be explained by a zero-sum game. We consider

entry games as defined in the previous section, and assume the observer wants

to test whether observations were generated by a game that is approximately

zero-sum, without any information on the parametric form of the game (the

observer does not know the game is an entry game).

Formally, we say a game G = (G1, G2) is ε-zero-sum with respect to the p-

norm if and only if ‖G1 + G2‖p ≤ ε. Note that a game being ε-zero-sum is a

linear property and therefore can be included in our framework. The smaller

the value of ε, the more stringent the condition is and the closer G is to a

zero-sum game. We use l = 500, σ = 0.5, σs = 10 in all simulations.

As before, we pessimistically assume the observer sees δ such that

P (d2(G
1, ..., Gl|G) ≤ δ) ≈ 0.99, i.e. δ = 537.5 for l = 500, σ = 0.5. Figure 7.3

shows for which values of ε one can recover a ε-zero-sum game with objective

value less than 537.5 that explains the observations for different values of γ

and θ. Values of ε to the left of the intersection between the red and the blue
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line are impossible, while values to the right of this intersection indicate there

is a ε-zero-sum game that explain the observations. In both cases, we see that

no zero-sum game or game close to being zerosum is a good explanation for the

observations; in the payoff information setting, no game less than 21-zerosum

explains the observations, while in the payoff shifter setting, no game less than

15-zerosum explains the observations.

7.2 Multiplayer Cournot competition

In this section, we run simulations on a Cournot competition with varying

number of players. See Section 6.2 for a discussion of how our framework

can be modified to accomodate for Cournot games with many players and an

action set of infinite size for each player. All simulations are performed on a

laptop with a Intel Core i7-4700MQ at 2.40GHz and 16 Gb RAM.

Generating the games

Let n be the number of players, and qi the production level of player i. We fix

a parameter α = 0.05, and set the price function to be given by P (q1, ..., qn) =

1−α
n∑
i=1

qi; the price function is known to the observer. We fix the form of the

cost function to be linear, i.e. the cost of producing qi of goods incurred by

player i is given by ci(qi) = aiqi + bi. Without loss of generality, we set bi = 0:

bi does not affect the maximization problem nor the first order condition solved

by player i and hence the decision the chosen production level of the players.

We generate ng = 10 underlying Cournot games with heterogeneous, linear

cost functions ci(x) = aix as follows:

• We first set âi = 0.01 for every player i.

• We generate each of the ng games by adding i.i.d. truncated Gaussian

noise Xi with mean 0 and standard deviation 0.01 to the âi’s. I.e.,

ai = 0.01 +Xi where Xi can be written as Xi = max(Zi,−0.01) and Zi

is a non-truncated Gaussian with mean 0, standard deviation 0.01. This

ensures the ai’s are always non-negative, hence the production costs are

always non-decreasing.

Note that the same ng games are used in all plots and simulations.

For each of the ng games, we then generate l perturbed games by adding

truncated Gaussian noise with standard deviation σ = 0.001 to each of the
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ai’s. As before, the noise is truncated to ensure non-negativity of the perturbed

ai’s. We then solve the first-order condition to obtain equilibrium observations

and note that all obtained qi’s are positive with extremely high probability.

Observer’s problem and simulation results

We assume the observer wants to recover a cost that is polynomial of chosen

degree d ≥ 1. I.e., the observer parameterizes the cost functions in the fol-

lowing way: ci(x) = ai(d)xd + ai(d − 1)xd−1 + ... + ai(1)x; we always assume

that for every player i, every perturbed game k, ai(0) = 0 and aki (0) = 0 for

simplicity (not producing anything costs the players nothing); we note that

this without loss of generality, as a constant shift does not change the utility-

maximizing strategies of the players. The observer also knows the perturbed

cost function cki ’s of the perturbed games are convex. The program then solved

by the observer is derived from the results of Section 6.2. In the whole sec-

tion, all results are averaged over the ng games originally generated: i.e., for

each game, we measure the diameter of the consistent set, the time taken to

recover a game within the set, and the time taken to compute the diameter,

then average it over the ng games we are considering.

Figure 7.4 shows the time it takes the observer to recover a game within the

consistent set as a function of the degree, fixing the number of players to

10 and the number of perturbed games/equilibrium observations to 50 per

underlying game. We see the recovery time is less than a minute, even when

considering polynomials of degree 10 or 12, and that said time evolves roughly

linearly in the degree of the polynomial used for recovery. This allows for

recovery within minutes for high degree polynomials even when using minimal

computing power. Recovery could be done even faster using the amount of

computing resources available to universities and industries instead of using a

personal laptop.

Figure 7.5 shows the value of the diameter of the consistent set when the

observer assumes the cost function is linear. The diameter is plotted as a

function of the number of observations, in the presence of a fixed number (10)

of players. The figure shows the diameter decreases quickly as the number of

equilibrium observations. When only one equilibrium observation is available,

the diameter is given by 3.3 × 10−3, which is 35% of the expeted true cost

âi = 0.01; at 10 equilibrium observations, the cost is 3.3 × 10−4, i.e. only
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Figure 7.4: Average recovery time as a function of the degree with 10 players,
10 equilibrium observations

Figure 7.5: Average diameter as a function of the number equilibrium obser-
vations

3.5% of âi, and at 100 equilibrium observations, it is 6.6 × 10−5, i.e. 0.66%

of âi. Hence, very few equilibrium observations are necessary to recover the

underlying game accurately.

Figures 7.6a and 7.6b show the time it takes the observer to recover a game

within the consistent set and to compute its diameter as a function of the

number of players, fixing the degree of the polynomial to 1 and equilibrium

observations to 50 per underlying game. Similarly to before, we see that the

recovery evolves linearly as a function of the number of players, and it takes

less than 1.5 seconds in average to recover a consistent games even with 50

players! The diameter time increases roughly quadratically: this was expected,

as both the number of programs to solve and the size of each program evolve

linearly in the number of players. Hence, while computing the diameter scales

superlinearly, it remains computable within minutes even with larger numbers
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of players on a personal laptop. To the best of our knowledge, no previous

work offers comparable amounts of scalability.

Finally, Figures 7.6c and 7.6d show the time it takes the observer to recover a

game within the consistent set and to compute its diameter as a function of the

number of equilibria, fixing the degree of the polynomial to 1 and the number

of players to 10 per underlying game. Both the recovery time and the diameter

time scale linearly with the number of equilibrium observations. Unlike before,

while the size of each subprogram to solve to compute the diameter increases,

the number of such programs is independent of the number of observations,

allowing for extremely good scalability of our framework as function of the

number of equilibrium observations! In practice, the number of players is

fixed but the observer may sees more and more observations over time, and

our framework is able to deal with such an increasing number of observations.

(a) Recovery time
vs players

(b) Diameter time
vs players

(c) Recovery time
vs equilibria

(d) Diameter time
vs equilibria

Figure 7.6: Average recovery/diameter time as a function of the number of
observations/number of players, when recovering linear costs
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A p p e n d i x A

PROOF OF PERFORMANCE OF THE ALGORITHM

Consider the following optimization program:

Pδ = sup
G̃,Ĝ,γ

γ

s.t. G̃ ∈ Sd(δ)
Ĝ ∈ Sd(δ)
max(‖G̃1 − Ĝ1‖∞, ‖G̃2 − Ĝ2‖∞) ≥ γ

Clearly, Pδ = D(Sd(δ)), simply by noting that the program is a rewriting

of Definition 5. Now if Pδ = max
(i,j)∈m1m2

max(Pδ,1(i, j), Pδ,2(i, j)), then we have

shown that A(δ) = D(Sd(δ)). Clearly, this holds because:

• For every player p and action profile (i, j), if G̃p(i, j)− Ĝp(i, j) ≥ γ then

max(‖G̃1 − Ĝ1‖∞, ‖G̃2 − Ĝ2‖∞) ≥ γ. Hence Pδ ≥ max
p,(i,j)

Pδ,p(i, j).

• If max(‖G̃1− Ĝ1‖∞, ‖G̃2− Ĝ2‖∞) ≥ γ, then there exists a player p and a

set of actions (i, j) such that G̃p(i, j)− Ĝp(i, j) ≥ γ w.l.o.g. (remember

G̃ and Ĝ play symmetric roles) and so one of the Pδ,p(i, j) needs to have

objective value at least γ. This means that Pδ ≤ max
p,(i,j)

Pδ,p(i, j).
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A p p e n d i x B

PROOF OF RECOVERY LEMMA UNDER INFINITE NORM
AND PAYOFF INFORMATION

Proof. For simplicity of notation, we drop the indices p. We first remark that

(G,G1, ..., Gl) is feasible for Program (4.1); as (Ĝ, Ĝ1, ..., Ĝl) is optimal, it is

necessarily the case that

max
k
‖Ĝ− Ĝk‖∞ ≤ max

k
‖G−Gk‖∞ ≤ δ.

Let us write ∆G = G− Ĝ. We know that for all k, ek ′Gk = ek ′Ĝk = vk, and

thus ek ′(Gk − Ĝk) = 0. We can write

E∆G = (e′1(G− Ĝ) ... e′l(G− Ĝ))′

= (e′1(G−G1 +G1 − Ĝ1 + Ĝ1 − Ĝ) ... e′l(G−Gl +Gl − Ĝl + Ĝl − Ĝ))′

= (e′1(G−G1 + Ĝ1 − Ĝ) ... e′l(G−Gl + Ĝl − Ĝ))′.

Let xk = G−Gk + Ĝk − Ĝ. We then have ‖E∆G‖∞ ≤ max
k
‖xk‖∞ as ek has

only elements between 0 and 1. Therefore, by the triangle inequality,

‖E∆G‖∞ ≤ 2δ.

It immediately follows that ‖∆G‖∞ ≤ 2‖E−1‖∞ · δ.
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A p p e n d i x C

WRITING COURNOT CONSTRAINTS EFFICIENTLY

C.1 Casting the equilibrium constraints as linear constraints

When action profile (q1, ..., qn) is chosen, player i gets utility ui(qi, q−i) =

qiP (q1, ..., qn)−ci(qi) where q−i denotes the production levels of all players but

i. A pure action profile q∗ = (q∗1, ..., q
∗
n) is a Nash Equilibrium if and only if

for all players i, qi∗ maximizes ui(qi, q
∗
−i); as P is concave and ci is convex, ui

is convex in qi and the equilibrium condition is equivalent to the first order

condition

qi
∂P

∂qi
(q1, ..., qn) + P (q1, ..., qn) = c′i(qi) ∀i (C.1)

Then, combining Equations C.1 and 6.1, the equilibrium constraints become

qi
∂P

∂qi
(q1, ..., qn) + P (q1, ..., qn) =

d∑
k=1

kai(k)qk−1i (C.2)

which are linear and tractable in the variables (ai(0), ai(1), ..., ai(d))), as long

as P (q1, ..., qn), ∂P
∂qi

(q1, ..., qn) can be efficiently computed given observations

q1, ..., qn. Such equilibrium constraints can be incorporated into our frame-

work.

C.2 Casting the convexity constraints as SDP constraints

We need to be able to deal with“ci is convex polynomial of degree d” con-

straints for all i in a computationally efficient manner. This constraint can be

rewritten as “c′′i is a non-negative polynomial of degree d ”. Fortunately, this

is a classic constraint in the realm of convex optimization, and can be dealt

with in the following ways:

• If d = 1, ci(qi) = ai(1)qi + ai(0) (c′′i = 0) is always convex. In this case,

no constraint need be added.

• If d ≥ 2, we need to ensure that c′′i is non-negative in all points. It

is known that a univariate polynomial is non-negative if and only if it

can be written as a sum-of-squares; such constraints can efficiently be

transformed into tractable semidefinite constraints – for more details on

the SDP formulation of sum-of-squares constraints, refer to [26].
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A p p e n d i x D

OBTAINING THE DUAL PROGRAM

We have

L(Gk, G, λkii′ , λ0, λ1, µ)

= d2(G
1, ..., Gk|G) +

∑
k,i,i′

λkii′ ẽ
k ′
ii′G

k + µ(−
∑
k,i,i′

ẽk ′ii′G
k − ε) + λ′1(G− 1)− λ′0G

= d2(G
1, ..., Gk|G) +

∑
k,i,i′

(λkii′ − µ)ẽk ′ii′G
k + (λ1 − λ0)′G− µε− 1

′λ1

= d2(G
1, ..., Gk|G) +

∑
k,i,i′

µkii′ ẽ
k ′
ii′G

k + (λ1 − λ0)′G− µε− 1
′λ1

with

µkii′ + µ = λkii′ (D.1)

Our goal is to find h(λkii′ , λ0, λ1, µ, µ
k
ii′) = inf

G,Gk
L(Gk, G, λ0, λ1, µ, µ

k
ii′) in order

to write the dual. Since L is a convex function of G1, ..., Gl, G, the first order

condition needs to hold at a minimum in G1, ..., Gl, G, unless this minimum is

−∞. Remark that for all k,

∂L

∂Gk
(Gk, G, λ0, λ1, µ, µ

k
ii′) = 2(Gk −G) +

∑
i,i′

µkii′ ẽ
k
ii′

and

∂L

∂G
(Gk, G, λ0, λ1, µ, µ

k
ii′) = 2

l∑
k=1

(G−Gk) + (λ1 − λ0)

Therefore, the first order condition is given by

2(Gk −G) +
∑
i,i′

µkii′ ẽ
k
ii′ = 0 ∀k

2
l∑

j=1

(G−Gj) + (λ1 − λ0) = 0
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that can be rewritten

Gk = G− 1

2
(
∑
i,i′

µkii′ ẽ
k
ii′) ∀k (D.2)

G =
1

l

l∑
j=1

Gj − 1

2l
(λ1 − λ0) (D.3)

and implies the following system of equalities that must hold whenever the

first order condition is satisfied:

Gk =
1

l − 1

l∑
j 6=k

Gj − l

2(l − 1)
(
λ1 − λ0

l
+
∑
i,i′

µkii′ ẽ
k
ii′) ∀k (D.4)

G =
1

l

l∑
j=1

Gj − 1

2l
(λ1 − λ0) (D.5)

The system has a solution if and only if the system of equations in (D.4) has

a solution. Let us write x(i, j) = (G1(i, j), ..., Gl(i, j))′, bk = − l
2(l−1)(

λ1−λ0
l

+∑
i,i′
µkii′ ẽ

k
ii′) for all k, b(i, j) = (b1(i, j), ..., bl(i, j)), and A ∈ Rl×l the matrix that

has 1’s on the diagonal and − 1
l−1 for every other coefficient. Furthermore,

let R(A) denote the range of A, and N (A) its nullspace. Then there exists a

solution to (D.4) iff there exists a solution to Ax(i, j) = b(i, j) for all (i, j), i.e.,

if and only if b(i, j) ∈ R(A) for all (i, j). The following statements characterize

R(A) and N (A).

Claim 5. rank(A) = l − 1, dimN (A) = 1

Proof. Let us write A = (a1, a2, ..., al) where ak ∈ Rl has 1 as a kth coordinate

and has − 1
l−1 for all other coordinates. Therefore, for all i,

l∑
k=1

ak(i) = 1−
l∑

k 6=i

1

l − 1
= 0,

so
l∑

k=1

ak = 0 and, necessarily, rank(A) ≤ l − 1. Now rank(A) ≥ l − 1 be-

cause (−1, 0, .., 0, 1)′, (−1, 0, ..., 0, 1, 0)′, (−1, 0, ..., 0, 1, 0, 0)′,..., (−1, 1, 0, ..., 0)′

are l − 1 linearly independent vectors that are in the range of A, as they are

eigenvectors for eigenvalue k
k−1 . dimN (A) = 1 follows from the rank-nullity

theorem.
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Claim 6. R(A) = {x ∈ Rl/
l∑

k=1

xk = 0}

Proof. Let x ∈ R(A), x = Ay. WriteA = (a1, ..., al)
′, then x = (a′1y, a

′
2y, ..., a

′
ly)′,

so
l∑

k=1

xk = (
l∑

k=1

ak)
′y = 0′y = 0. Therefore, R(A) ⊆ {x ∈ Rl/

l∑
k=1

xk = 0}.

The rest follows from {x ∈ Rl/
l∑

k=1

xk = 0} being a linear subspace of R(A)

that has dimension l − 1.

Corollary 1. There exists a solution to the first order conditions if and only

if

l∑
k=1

bl = − l

2(l − 1)

l∑
k=1

(
λ1 − λ0

l
+
∑
i,i′

µkii′ ẽ
k
ii′) = 0 (D.6)

Proof. Follows immediately from claim 6.

Claim 7. N (A) = span(1, ..., 1)′

Proof. A(1, ..., 1)′ = 0 so span(1, ..., 1)′ ⊆ N (A) and dim span(1, ..., 1)′ =

dimN (A) = 1.

Corollary 2. If equation (D.6) holds, the set of solutions S(i, j) of Ax(i, j) =

b(i, j) is given by

S(i, j) = {(αij + G̃1(i, j), ..., αij + G̃l(i, j))′/αij ∈ R}

for any (G̃1, ..., G̃l) that satisfies the first order conditions. In particular, the

set of solutions S to the first order conditions is given by

S = {(M + G̃1, ...,M + G̃l)/M ∈ Rl×l}

for any (G̃1, ..., G̃l) that satisfies the first order conditions.

Claim 8. ∀k, let G̃k = l−1
l
bk. Then (G̃1, ..., G̃l) satisfy the first order condi-

tions.

Proof. Take any k, 1
l−1
∑
j 6=k

Gj+bk = 1
l−1 ·

l−1
l

∑
j 6=k

bj+bk = −1
l
bk+bk = l−1

l
bk = Gl

as
∑
j 6=k

bj = −bk from equation D.6.

Putting it all together, we obtain the following lemma:
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Lemma 5. The first order conditions are satisfied if and only if

− l

2(l − 1)

l∑
k=1

(
λ1 − λ0

l
+
∑
i,i′

µkii′ ẽ
k
ii′) = 0

in which case the set S of (G1, ..., Gl) satisfying the first order conditions is

given by

S = {(M − 1

2
(
λ1 − λ0

l
+
∑
i,i′

µ1
ii′ ẽ

1
ii′), ...,M +

1

2
(
λ1 − λ0

l
+
∑
i,i′

µlii′ ẽ
l
ii′)/M ∈ Rl×l}

We now have, when constraints (D.1) and (D.6) are satisfied, and recalling

that equation (D.2) must hold, that

h(µkii′ , λ
k
ii′ , λ0, λ1)

=
1

4

l∑
k=1

(
∑
i,i′

µkii′ ẽ
k
ii′)
′(
∑
i,i′

µkii′ ẽ
k
ii′) +

∑
k,i,i′

µkii′ ẽ
k ′
ii′ (G−

1

2

∑
i,i′

µkii′ ẽ
k
ii′)

+ (λ1 − λ0)′G− 1
′λ1 − µε

=
1

4

l∑
k=1

(
∑
i,i′

µkii′ ẽ
k
ii′)
′(
∑
i,i′

µkii′ ẽ
k
ii′) +

∑
k,i,i′

µkii′ ẽ
k ′
ii′ (−

1

2

∑
i,i′

µkii′ ẽ
k
ii′)− 1

′λ1 − µε

= −1

4

l∑
k=1

(
∑
i,i′

µkii′ ẽ
k
ii′)
′(
∑
i,i′

µkii′ ẽ
k
ii′)− 1

′λ1 − µε

and otherwise, h(µkii′ , λ
k
ii′ , λ0, λ1) = −∞. Recall λkii′ , λ0, λ1 ≥ 0 ∀k, i, i′, and

get the following dual:

(D) = max
µk
ii′ ,λ0,λ1

−1
4

∑l
k=1(

∑
i,i′
µkii′ ẽ

k
ii′)
′(
∑
i,i′
µkii′ ẽ

k
ii′)− 1

′λ1 − µε

s.t. λ1 − λ0 +
∑
k,i,i′

µkii′ ẽ
k
ii′ = 0

µ+ µkii′ = λkii′

λkii′ , λ0, λ1 ≥ 0

This can further be rewritten as:

(D) = max
µk
ii′ ,λ0,λ1

−1
4

∑l
k=1(

∑
i,i′
µkii′ ẽ

k
ii′)
′(
∑
i,i′
µkii′ ẽ

k
ii′)− 1

′λ1 − µε

s.t. λ1 − λ0 +
∑
k,i,i′

µkii′ ẽ
k
ii′ = 0

µ+ µkii′ ≥ 0

λ0, λ1 ≥ 0
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A p p e n d i x E

PROOF OF THE DEGENERACY-ACCURACY TRADE-OFF

Claim 9. P (ε) is a non-decreasing function of ε. In particular, if ε2 > ε1 ≥ 0,

then
ε21
ε22
P (ε2) ≥ P (ε1).

Proof. Since ε1
ε2
≤ 1, we have 0 ≤ ε1

ε2
G ≤ 1. Therefore, one can take an

optimal solution of P (ε2) and multiply all variables by ε1
ε2

, to get a solution

that is feasible for P (ε1); this solution has objective ( ε1
ε2

)2P (ε2).

This immediately gives the first part of the theorem.

Lemma 6. Let ε2 ≥ ε1 > 0, and suppose P (ε2) > 0. Then:

P (ε1) ≥ (1− 2
ε2 − ε1
ε2

)P (ε2)−
√
lm
ε2 − ε1
ε2

√
P (ε2)

Proof. Recall that

D(ε) = max
µk
ii′ ,λ0,λ1

−1
4

∑l
k=1(

∑
i,i′
µkii′ ẽ

k
ii′)
′(
∑
i,i′
µkii′ ẽ

k
ii′)− 1

′λ1 − µε

s.t. λ1 − λ0 +
∑
k,i,i′

µkii′ ẽ
k
ii′ = 0

µ+ µkii′ ≥ 0

λ0, λ1 ≥ 0

(E.1)

Take any optimal solution (µkii′ , µ, λ1) of D(ε2), it is feasible for D(ε1) as the

constraints in the dual do not depend on the value of ε. Therefore,

−1

4

l∑
k=1

(
∑
i,i′

µkii′ ẽ
k
ii′)
′(
∑
i,i′

µkii′ ẽ
k
ii′)− 1

′λ1 − µε1 ≤ D(ε1)

Note that since strong duality holds, by the KKT conditions,

1

4

l∑
k=1

(
∑
i,i′

µkii′ ẽ
k
ii′)
′(
∑
i,i′

µkii′ ẽ
k
ii′) = P (ε2) = D(ε2)

and therefore

−D(ε2)− 1
′λ1 − µε1 ≤ D(ε1)
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Since

D(ε2) = −1

4

l∑
k=1

(
∑
i,i′

µkii′ ẽ
k
ii′)
′(
∑
i,i′

µkii′ ẽ
k
ii′)− 1

′λ1 − µε2 = −D(ε2)− 1
′λ1 − µε2

we have

2D(ε2) + µε2 = −1′λ1

and therefore,

D(ε2) + µ(ε2 − ε1) = −D(ε2)− 1
′λ1 − µε1 ≤ D(ε1)

Now, let us try to lower bound µ. We first remark that necessarily, µ ≤ 0. If

not,

D(ε2) = −1

4

l∑
k=1

(
∑
i,i′

µkii′ ẽ
k
ii′)
′(
∑
i,i′

µkii′ ẽ
k
ii′)− 1

′λ1 − µε < 0

and strong duality cannot hold as P (ε2) ≥ 0. Since

µ =
1

ε2
(−2D(ε2)− 1

′λ1)

it is enough to upper-bound 1
′λ1. Note that since λ1 is always chosen to be as

small as possible as a function of the µkii′ in order to minimize the objective,

we have the following coordinate by coordinate inequality:

λ1 = max(0,
∑
k,i,i′

µkii′ ẽ
k
ii′) ≤ |

∑
k,i,i′

µkii′ ẽ
k
ii′ | ≤

∑
k

|
∑
i,i′

µkii′ ẽ
k
ii′ |

by the triangle inequality. For simplicity, let us denote Xk = |
∑
i,i′
µkii′ ẽ

k
ii′ |.

l∑
k=1

|
∑
i,i′

µkii′ ẽ
k
ii′ |′|

∑
i,i′

µkii′ ẽ
k
ii′| =

l∑
k=1

(
∑
i,i′

µkii′ ẽ
k
ii′)
′(
∑
i,i′

µkii′ ẽ
k
ii′) =

l∑
k=1

X ′kXk = 4D(ε2)

An upper bound on 1
′λ1 ≤

∑
k

1
′Xk is therefore given by

max
Xk

∑
k

1
′Xk

s.t.
∑l

k=1X
′
kXk ≤ 4D(ε2)

We can find an exact solution to this convex optimization problem by looking

at its dual (Slater and therefore strong duality hold); the Lagrangian is given
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by L(Xk, λ) =
∑
k

1
′Xk − λ

∑l
k=1X

′
kXk + 4λD(ε2) with λ ≥ 0 and the first

order condition is Xk = 1
2λ
1. Therefore,

h(λ) = inf
Xk

L(Xk, λ) =
1

4λ

l∑
k=1

1
′
1 + 4λD(ε2)

and the dual is given by

min
λ

∑
k

1
4λ

∑l
k=1 1

′
1 + 4λD(ε2)

s.t. λ ≥ 0

The solution to the dual is λ∗ =
√∑l

k=1 1
′1

16D(ε2)
≥ 0 by the first order condition,

as P (ε2) = D(ε2) > 0 and we get

h(λ∗) =

√√√√ l∑
k=1

1′1
√
D(ε2) ≤

√
lm2
√
D(ε2) =

√
lm
√
D(ε2).

So, 0 ≤ 1
′λ1 ≤

√
lm
√
D(ε2) leading to

µ =
1

ε2
(−2D(ε2)− 1

′λ1) ≥
1

ε2
(−2D(ε2)−

√
lm
√
D(ε2))

and therefore, as ε2 − ε1 ≥ 0,

(1− 2
ε2 − ε1
ε2

)D(ε2)−
√
lm
ε2 − ε1
ε2

√
D(ε2) ≤ D(ε2) + µ(ε2 − ε1) ≤ D(ε1)

Claim 10. ∀ε ≥ ε∗,

lim
h→0+

P (ε+ h) = P (ε)

i.e. P (.) is right-continuous on [ε∗,+∞[.

Proof. Take h > 0. P (ε + h) ≥ ( ε+h
ε

)2P (ε) from claim 9, and ( ε+h
ε

)2P (ε) →
P (ε) when h tends to 0. From Lemma 6, since P (ε+ h) > 0 as ε+ h > ε∗, we

have

P (ε) ≥ (1− 2
h

ε+ h
)P (ε+ h)−

√
lm

h

ε+ h

√
P (ε+ h)

and so

1

1− 2 h
ε+h

(P (ε) +
√
lm

h

ε+ h

√
P (ε+ h)) ≥ P (ε+ h)
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Note that P (ε+ h) ≤ P (ε+ α) for any constant α and small enough h; fix an

α, we have for h small that

1

1− 2 h
ε+h

(P (ε) +
√
lm

h

ε+ h

√
P (ε+ α)) ≥ P (ε+ h)

As P (ε + α) is finite (by the linear program and previous calculations), we

have 1
1−2 h

ε+h

(P (ε) +
√
lm h

ε+h

√
P (ε+ α))→ P (ε) when h tends to 0.

Claim 11. ∀ε > ε∗,

lim
h→0−

P (ε+ h) = P (ε)

i.e. P (.) is left-continuous on ]ε∗,+∞[.

Proof. The proof is similar to the right-continuity one. The main difference

comes from the fact that we know require P (ε) > 0 to satisfy the condition of

lemma 6 (as ε > ε+ h hor h < 0), so we cannot include the ε = ε∗ case.

Claim 12. P(.) is continuous on [0,+∞[.

Proof. By claims 10 and 11, P(.) is continuous on [0, ε∗[ and ]ε∗,+∞[. We

just need to check that P (.) is continuous at ε∗; it is right-continuous at

ε∗ by claim 10, and the left-continuity follows from the fact that P (ε) = 0

∀ε ≤ ε∗.

Claim 13. P(.) is convex on [0,+∞[.

Proof. Let S(ε) be the feasible region of optimization program (5.1). It is easy

to see that the objective function of (5.1) is convex, and that the mapping

ε → S(ε) is convex according to the definition of [19]. Therefore, as seen

in [19], the optimal value function P (.) of Program (5.1) is convex.

Claim 14. Let ε ≥ ε∗, we have for all h > 0

h+ 2ε

ε2
P (ε) ≤ P (ε+ h)− P (ε)

h
≤ 2

ε+ h
P (ε+ h) +

√
lm

1

ε+ h

√
P (ε+ h)

Proof. From claim 9, for h > 0,

P (ε+ h)− P (ε)

h
≥ P (ε)

h
((
ε+ h

ε
)2 − 1) =

h+ 2ε

ε2
P (ε) (E.2)
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From Lemma 6,

P (ε+ h)− P (ε)

h
≤ 1

h
(2

h

ε+ h
P (ε+ h) +

√
lm

h

ε+ h

√
P (ε+ h))

=
2

ε+ h
P (ε+ h) +

√
lm

1

ε+ h

√
P (ε+ h).

Since P (.) is a convex and continuous on [0,+∞[, its right derivative dP (ε)
dε

exists at every point ε ≥ 0. By Claim 14, we have

l(ε) ≤ dP (ε)

dε
≤ L(ε)

where

l(ε) = lim
h=0+

h+ 2ε

ε2
P (ε)

L(ε) = lim
h=0+

2

ε+ h
P (ε+ h) +

√
lm

1

ε+ h

√
P (ε+ h)

if they exist. We know that l(ε) = 2
ε
P (ε) exists; L(ε) = 2

ε
P (ε) +

√
lm
ε

√
P (ε)

exists because by claim 10, P (.) is right continuous and limh=0+ P (ε+ h) = ε.

This implies that given an initial condition P (ε0) for some ε0 > ε∗, P (.) lies

between the function f with f(ε0) = P (ε0) and df(ε)
dε

= l(ε) and the function

g with g(ε0) = P (ε0) and dg(ε)
dε

= L(ε) for all ε ≥ ε0. We can find f and g by

solving differential equations

df(ε)

dε
=

2

ε
f(ε) (E.3)

dg(ε)

dε
=

2

ε
g(ε) +

√
lm

ε

√
g(ε) (E.4)

for all ε ≥ ε0. It is easy to see that with initial condition f(ε0) = P (ε0),

ODE (E.3) has as a unique solution

f(ε) = P (ε0)
ε2

ε20

To solve ODE (E.4), let us write g(ε) =
√
f(ε), and note that the differential

equation can be rewritten:

2g(ε)
dg(ε)

dε
=

2

ε
g(ε)2 +

√
lm

ε
g(ε)
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Noting that by the choice of initial condition, g(ε0) = P (ε0) > 0 and that the

solution of the differential equation is necessarily increasing as the derivative is

always non-negative, we have g(ε) > 0 for all ε ≥ ε0. Therefore, on [ε0,+∞[,

dg(ε)

dε
=

1

ε
g(ε) +

√
lm

ε

The initial condition being fixed, this differential equation has a unique solu-

tion. Note that solutions to the homogeneous ODE dg(ε)
dε

= 1
ε
g(ε) are of the

form g(ε) = Cε, and that g0(ε) = −
√
lm
2

is a particular solution of the ODE.

Therefore, given the initial condition g(ε0) =
√
P (ε0), we have

g(ε) = (
√
P (ε0) +

√
lm

2
)
ε

ε0
−
√
lm

2

and thus

f(ε) =
(

(
√
P (ε0) +

√
lm

2
)
ε

ε0
−
√
lm

2

)2
.


