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ABSTRACT

Modern cyber-physical systems, such as the smart grid, software-defined networks,
and automated highway systems, are large-scale, physically distributed, and inter-
connected. The scale of these systems poses fundamental challenges for controller
design: the traditional optimal control methods are globally centralized, which re-
quire solving a large-scale optimization problem with the knowledge of the global
plantmodel, and collecting globalmeasurement instantaneously during implementa-
tion. The ultimate goal of distributed control design is to provide a local, distributed,
scalable, and coordinated control scheme to achieve centralized control objectives
with nearly global transient optimality.

This dissertation provides a novel theoretical and computational contribution to the
area of constrained linear optimal control, with a particular emphasis on addressing
the scalability of controller design and implementation for large-scale distributed
systems. Our approach provides a fundamental rethinking of controller design:
we extend a control design problem to a system level design problem, where we
directly optimize the desired closed loop behavior of the feedback system. We show
that many traditional topics in the optimal control literature, including the param-
eterization of stabilizing controller and the synthesis of centralized and distributed
controller, can all be cast as a special case of a system level design problem. The sys-
tem level approach therefore unifies many existing results in the field of distributed
optimal control, and solves many previously open problems.

Our system level approach has at least the following four technical merits. First,
we characterize the broadest known class of constrained linear optimal control
problem that admits a convex formulation. Specifically, we show that the set
of convex system level design problems is a strict superset of those that can be
parameterized using quadratic invariance. Second, we identify a class of system
level design problems, which we called the localized optimal control problems, that
are scalable to arbitrary large-scale systems. In particular, the parallel synthesis and
implementation complexity of the localized optimal controller are O(1) compared
to the size of the networked system. Third, we provide a unified framework to
simultaneously incorporate user-specified design specification on the closed loop
and the hardware implementation constraints on the controller into the optimal
controller design process. Lastly, we provide a system level approach that supports
the co-design of optimal controller and its sensing and actuating architecture.
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We demonstrate the effectiveness of our method on a 51200-state randomized het-
erogeneous power network model, and show that the system level approach provides
superior scalability over the centralized and distributed method. For such a large-
scale example, the theoretical computation time for the centralized scheme is more
than 200 days, and the distributed optimal control scheme is intractable. In contrast,
it only takes 38 minutes to synthesize a localized optimal controller that achieves at
least 99% global optimality guarantee.
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C h a p t e r 1

INTRODUCTION

Large-scale networked systems have emerged in extremely diverse application ar-
eas recently, with examples including the smart grid, automated highway systems,
software-defined networks, Internet of Things, and biological networks in science
and medicine. These systems often have limited, sparse, uncertain, and distributed
communication and computing in addition to sensing and actuation. Fortunately,
the corresponding plants and performance requirements are also sparse and struc-
tured, and this must be exploited to make constrained controller design feasible,
tractable, and scalable. In this dissertation, we introduce a new “system level" (SL)
approach involving three complementary SL elements. System Level Parameteri-
zations (SLPs) generalize state space and Youla parameterizations of all stabilizing
controllers and the responses they achieve, and combine with System Level Con-
straints (SLCs) to parameterize the largest known class of constrained stabilizing
controllers that admit a convex characterization, generalizing quadratic invariance
(QI). The resulting System Level Synthesis (SLS) problems that arise define the
broadest known class of constrained optimal control problems that can be solved
using convex programming. Furthermore, we identify a class of SLS problem,
which is called the convex localized separable SLS (CLS-SLS) problems, that can
be solved with O(1) computational complexity. The class of CLS-SLS problems,
which include the localized H2 optimal control with sensor actuator regulariza-
tion and the localized mixed H2/L1 optimal control problem as special cases, are
therefore scalable to systems with arbitrary large-scale. In the following, we review
the literature in the field of constrained optimal control, present the key ideas and
main contributions of our method, and outline the organization of the rest of this
dissertation.

1.1 Motivation and Challenges
The Youla parameterization [77] represented an important shift towards a system
level approach to optimal controller synthesis. Youla showed that there exists an
isomorphism between a stabilizing controller and the resulting closed loop system
response from sensors to actuators; therefore rather than synthesizing the controller
itself, this system response (or Youla parameter) could be designed directly. The ad-
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vantage of this approach is that an affine expression of the Youla parameter describes
all achievable responses of the closed loop system, allowing for system behavior to
be directly optimized. Together with state-space methods, this contribution played
a major role in shifting controller synthesis from an ad hoc, loop-at-a-time tuning
process to a principled one with well defined notions of optimality. Indeed, this
approach proved very powerful, and paved the way for the foundational results of
robust and optimal control that would follow [13].

This dissertation presents an approach that is inspired by the system level thinking
pioneered by Youla: rather than directly designing only the feedback loop between
sensors and actuators, we propose directly designing the entire closed loop response
of the system, as captured by the maps from process and measurement disturbances
to control actions and states — as such, we call the proposed method a system level
approach to controller synthesis. A distinction between our approach and Youla’s is
that we explicitly model the internal delay structure of the feedback system, whereas
Youla (and contemporary state-space methods) hid the internal structure of the
controller, and focused instead on its input-output behavior. This focus on controller
input-output behavior was natural for the problems of that era (often motivated by
aerospace and process control applications), where systems had a single logically
centralized controller with global access to sensor measurements and global control
over actuators.

In contrast, modern cyber-physical systems (CPS) are large-scale, physically dis-
tributed, and interconnected. Rather than a logically centralized controller, these
systems are composed of several sub-controllers, each equipped with their own sen-
sors and actuators — these sub-controllers then exchange locally available informa-
tion (such as sensor measurements or applied control actions) via a communication
network. It follows that the information exchanged between sub-controllers is con-
strained by the delay, bandwidth, and reliability properties of this communication
network, ultimately manifesting as information asymmetry among sub-controllers
of the system. It is this information asymmetry, as imposed by the underlying
communication network, that lies at the heart of what makes distributed optimal
controller synthesis challenging [2, 3, 23, 37, 46, 53].

A defining feature of CPS is that controllers have internal delays, as specified by
the exchange of information between constituent sub-controllers. These delays thus
needed to be reintroduced into Youla and state-space based synthesis methods;
methods that aimed to hide the internals of the controller from the system engineer.
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Further, there was reason to suspect that introducing such information asymmetry
into the optimal control problem lead to intractable synthesis tasks [4, 61, 76].

Despite these apparent technical and conceptual challenges, a body of work [2, 3, 14,
37, 46, 49, 53] that began in the early 2000s, and culminated with the introduction
of quadratic invariance (QI) in the seminal paper [53], showed that for a large class
of practically relevant systems, such internal structure could be incorporated into
the Youla parameterization and still preserve the convexity of the optimal controller
synthesis task. Informally, a system is quadratically invariant if sub-controllers
are able to exchange information with each other faster than their control actions
propagate through the CPS [52]. Evenmore remarkable is that this condition is tight,
in the sense that QI is a necessary [33] and sufficient [53] condition for subspace
constraints (defined by, for example, communication delays) on the controller to be
enforceable via convex constraints on the Youla parameter.

The identification of QI as a useful condition for determining the tractability of a
distributed optimal control problem led to an explosion of synthesis results in this
area [27, 29, 30, 32, 34, 42, 55, 57, 59]. These results showed that the robust and
optimal control methods that proved so powerful for centralized systems could be
ported to distributed settings. However, they also made clear that the synthesis and
implementation of QI distributed optimal controllers did not scale gracefully with
the size of the underlying CPS. In particular, a QI distributed optimal controller is
at least as expensive to compute as its centralized counterpart (c.f., the solutions
presented in [27, 29, 30, 32, 34, 42, 55, 57, 59]), and can be more difficult to
implement (c.f., the message passing implementation suggested in [29]).

We show in Chapter 2 that the QI framework, which adapts the Youla parameteri-
zation to a distributed setting, fails to capture certain constraints that are needed for
optimal controller synthesis to scale to arbitrarily large systems. In particular, when
the underlying physical system is strongly connected,1 the QI framework does not
allow for localized controllers, in which local sub-controllers only access a subset
of system-wide measurements (c.f., Section 4.2.8), to be synthesized using convex
programming; perhaps counter-intuitively, this statement holds true even when sub-
controllers can exchange information with no delay (c.f., Example 1). Although
this may seem surprising, note that implicit to the Youla parameterization is that
sub-controllers can only exchange locally collected measurements with each other,

1We say that a plant is strongly connected if the state of any subsystem can eventually alter the
state of all other subsystems.
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and not, for instance, locally applied control actions. This restriction has no conse-
quences in centralized applications, but can complicate controller implementation
and synthesis in a distributed setting.

The lack of scalability of the distributed optimal control framework has not gone
unnoticed by the community, and techniques based on regularization [17, 35],
convex approximation [16, 19, 65], spatial truncation [45], and structural realization
[62–64] have been used in hopes of finding a sparse (structured) feedback controller
that is scalable to implement. These methods have been successful in extending
the size of systems for which a distributed controller can be implemented, but there
is still a limit to their scalability as they often rely on an underlying centralized
synthesis procedure. Further, it is not clear if these methods can be extended to
compute a dynamic controller that incorporates information sharing constraints.

To overcome the above-mentioned limitation, we propose the system level approach
to controller synthesis [69, 72, 73], which is composed of three main elements:
SLPs, SLCs, and SLS problems. We informally introduce the ideas of the system
level approach as below.

1.2 Key Ideas

K

P

�

x[t + 1] = Ax[t] + B2u[t] + �x[t]

y[t] = C2x[t] + �y[t]

⇠[t + 1] = Ak⇠[t] + Bky[t]

u[t] = Ck⇠[t] + Dky[t]

y u


x
u

� 
�x

�y

�

Figure 1.1: Optimal Feedback Control Problem

Consider the optimal control problem shown in Figure 1.1, where P is called a
plant and K is called a controller. Specifically, P is a linear time invariant (LTI)
dynamical system that we want to control, and K is another LTI dynamical system
that we want to design for. The interface between the plant and the controller are
the measurement signal y and control action u. Let Φ be the system response from
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the external disturbance δx and δy to regulated output x and u in the closed loop.
The traditional way to formulate a constrained optimal control problem is typically
given by

minimize
K

| |Φ| |
subject to K internally stabilizes P

K ∈ C, (1.1)

where C is a structured constraint imposed on the controller. The idea of (1.1) is
to find a controller K to optimize the closed loop system responseΦ, subject to the
constraints that the interconnected feedback loop shown in Figure 1.1 is internally
stable and the controller satisfies the structured constraint C. The limitation of the
formulation (1.1) is that the structured constraint C usually makes the constrained
optimal control problem non-convex, i.e., the QI framework only characterizes a
limited class of convex problems in constrained optimal control.

The system level design philosophy approaches the constrained optimal control
problem from a different point of view. Instead of designing a controller K to
optimize the system responseΦ, we directly choose our desired system responseΦ
from the set of all stable and achievable system response. After the desired system
response Φ is chosen, we then reconstruct a controller K to achieve the desired
system response. This design philosophy leads to a system level synthesis (SLS)
problem given by

minimize
Φ

g(Φ) (1.2a)

subject to Φ stable and achievable (1.2b)

Φ ∈ S, (1.2c)

where (1.2a) is called the system level objective (SLO), (1.2b) the system level
parameterization (SLP), and (1.2c) the system level constraint (SLC). The goal of
this dissertation is to show that the SLS framework (1.2) offers significant benefits
over the traditional frameowork (1.1) in terms of the generality, simplicity, and
scalability. Our specific contributions are outlined below.

1.3 Theoretical Contributions
First, we generalize the objectives of the constrained optimal control problem (1.1)
from a system norm to arbitrary SLO (1.2a). This allows us to extend a controller
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design problem to a system level co-design problem. For instance, we can incorpo-
rate the regularizers for sensor actuator placement into the SLO in (1.2a), and use the
SLS problem to co-design the controller and its sensing and actuating architecture.
The set of all SLS problems is a superset of the set of all constrained optimal control
problems. We show this relation using the Venn diagram in Figure 1.2.

1

NP-hard

Unknown

Constrained Optimal Control

System Level Synthesis
Convex SLS

QI

LLQR

Figure 1.2: Relations between the traditional constrained optimal control framework
and the system level synthesis framework

Then, we show that the SLS framework characterizes the broadest known class of
constrained optimal control problems that can be solved using convex programming.
This is one of the main theoretical contribution of the SLS framework. In particular,
we show that the set of constrained stabilizing controllers that can be efficiently
parameterized using SLPs (1.2b) and SLCs (1.2c) is a strict superset of those that
can be parameterized using quadratic invariance with (1.1), and hence we provide
a generalization of the QI framework, characterizing the broadest known class of
constrained controllers that admit a convex parameterization. The relation between
convex SLS and QI are shown in Figure 1.2.

Furthermore, we identify a class of SLS problems, which we call the CLS-SLS
problems, that are scalable to systems with arbitrary large-scale. Specifically, we
propose a distributed algorithm to solve all CLS-SLS problems in a localized and
scalable way, with O(1) parallel computational complexity. As a concrete example,
we demonstrate the localized linear quadratic regulator (LLQR) algorithm on a
randomized heterogeneous power network example with 51200 states, and show
that the LLQR controller can be computed in 23 minutes using a personal computer.
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In contrast, the theoretical computation time for the traditional LQR using the same
computer is 200 days, and the distributed LQR is simply intractable. We also use an
adaptive constraint update algorithm to design a LLQR controller with at least 99%
optimality guarantee on the 51200-state example in 38minutes. Table 5.2 in Chapter
5 shows the superior scalability of LLQR (a special case of a CLS-SLS problem)
over the centralized and distributed approach. As shown in Figure 1.3, examples
of CLS-SLS problems include localized linear quadratic Gaussian (LLQG) (the
output feedback version of LLQR), localized mixed H2/L1 optimal control, and
LLQGwith sensor actuator regularization using the regularization for design (RFD)
framework [40, 41].

2

NP-hard

Unknown

Constrained Optimal Control

System Level Synthesis
Convex SLS

CLS-SLS

LLQG

H2/L1

LLQG
+RFD

Figure 1.3: Examples of CLS-SLS problems

Finally, the SLS formulation provides a unified framework to simultaneously in-
corporate user-specified design specifications on the closed loop and structured
constraints imposed on the controller into the optimal controller design process —
both the design specification and structured constraints are in the form of SLCs.
In Chapter 4, we provide a catalog of SLCs that admit a convex representation:
highlights include general convex constraints on the Youla parameter (QI subspace
constraints being a special case thereof), robustness and architectural constraints on
the controller, as well as multi-objective performance constraints and spatiotempo-
ral constraints on the system response. We also show that the constrained system
responses can be used to directly implement a controller achieving them — in par-
ticular, any SLC imposed on the system response imposes a corresponding SLC on
the internal structure of the resulting controller. This offers a convex way to design
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a structured controller that is scalable to implement for large-scale systems, which
cannot be done using the traditional optimal control framework (1.1).

1.4 Organization of the Dissertation
The rest of this dissertation is structured as follows. In Chapter 2, we define
the system model considered in the thesis, and review relevant results from the
distributed optimal control and QI literature. We then provide a motivating example
as to why moving beyond QI systems may be desirable, before presenting a survey
of our main results. In Chapter 3 we define and analyze SLPs (1.2b) for state and
output feedback problems, and provide a characterization of stable and achievable
system responses. We show that SLPs also give a characterization of all internally
stabilizing controllers, and propose a structural realization of the controller to achieve
the desired system response. In Chapter 4, we define and analyze the SLS problem
(1.2), which incorporates SLPs and SLCs into an optimization problem. We provide
a catalog of SLCs that can be imposed on the system responses parameterized
by the SLPs described in the previous chapter — in particular, we show that by
appropriately selecting these SLCs, we can provide convex characterizations of
all stabilizing controllers satisfying QI subspace constraints, convex constraints on
the Youla parameter, finite impulse response (FIR) constraints, sparsity constraints,
spatiotemporal constraints [67, 68, 71, 75], controller internal robustness constraints,
multi-objective performance constraints, controller architecture constraints [40, 41,
70], and any combination thereof. In addition, we show that the constrained optimal
control problem (1.1) is a special case of SLS (1.2).

InChapters 5 - 7, wemove our focus to the class of CLS-SLS problems for large-scale
systems. We introduce LLQR control in Chapter 5, and show that the synthesis and
implementation of a LLQR controller are scalable to systems with arbitrary large-
scale, i.e., with O(1) parallel computational complexity. We demonstrate the LLQR
algorithmon a randomized heterogeneous power network examplewith 51200 states,
and show that the LLQR controller achieves superior scalability over the centralized
and distributed methods. In Chapter 6, we generalize LLQR to output feedback
localized linear quadratic Gaussian (LLQG). We combine distributed optimization
algorithm such as alternating direction method of multipliers (ADMM) with LLQR
to solve a LLQG in a localized yet iterative manner. In Chapter 7, we generalize
LLQG to the class of CLS-SLS problems, and propose a distributed optimization
algorithm to solve all CLS-SLS problems in a localized and scalable way, with O(1)
parallel computational complexity. Finally, we end with conclusions and future
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works in Chapter 8.

1.5 Mathematical Notations
We use lower and upper case Latin letters such as x and A to denote vectors and
matrices, respectively, and lower and upper case boldface Latin letters such as x and
G to denote signals and transfer matrices, respectively. We use calligraphic letters
such as S to denote sets.

In the interest of clarity, we work with discrete time linear time invariant systems,
but unless stated otherwise, all results extend naturally to the continuous time
setting. We use standard definitions of the Hardy spaces H2 and H∞, and denote
their restriction to the set of real-rational proper transfer matrices by RH2 and
RH∞. We use G[i] to denote the ith spectral component of a transfer function G,
i.e., G(z) = ∑∞

i=0
1
zi G[i] for |z | > 1. Finally, we use FT to denote the space of

finite impulse response (FIR) transfer matrices with horizon T , i.e., FT := {G ∈
RH∞ |G =

∑T
i=0

1
zi G[i]}.
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C h a p t e r 2

PROBLEM STATEMENT AND MAIN RESULTS

We begin by introducing the system model and some preliminaries on optimal
control and Youla parameterization. We then introduce the distributed optimal
control framework and discuss its limitations. This chapter ends with the summary
of the main result of this dissertation.

2.1 System Model
We consider discrete time linear time invariant (LTI) systems of the form

x[t + 1] = Ax[t] + B1w[t] + B2u[t] (2.1a)

z̄[t] = C1x[t] + D11w[t] + D12u[t] (2.1b)

y[t] = C2x[t] + D21w[t] + D22u[t], (2.1c)

where x, u, w, y, and z̄ are the state vector, control action, external disturbance, mea-
surement, and regulated output, respectively. The frequency domain representation
of (2.1) is given by

zx = Ax + B1w + B2u

z̄ = C1x + D11w + D12u

y = C2x + D21w + D22u, (2.2)

where z is the variable of z-transform. Equation (2.1) can be written in state space
form as

P =


A B1 B2

C1 D11 D12

C2 D21 D22

 =
[
P11 P12

P21 P22

]
, (2.3)

where Pi j = Ci(zI − A)−1B j + Di j . We refer to P as the open loop plant model.

Remark 1. Wewill occasionally discuss continuous time system in this dissertation.
A continuous time LTI system is given in the form

Ûx(t) = Ax(t) + B1w(t) + B2u(t)
z̄(t) = C1x(t) + D11w(t) + D12u(t)
y(t) = C2x(t) + D21w(t) + D22u(t). (2.4)
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The frequency domain representation of the continuous time system is given by
(2.2) by changing z to s (the variable for Laplace transform). The state space
representation is given by (2.3), with Pi j = Ci(sI − A)−1B j + Di j .

P11 P12

P21 P22

K

y u

wz̄

Figure 2.1: Interconnection of the plant P and controller K.

Consider a dynamic output feedback control law u = Ky. The controller K is
assumed to have the state space realization

ξ[t + 1] = Akξ[t] + Bk y[t] (2.5a)

u[t] = Ckξ[t] + Dk y[t], (2.5b)

where ξ is the internal state of the controller. We have K = Ck(zI − Ak)−1Bk + Dk .
A schematic diagram of the interconnection of the plant P and the controller K is
shown in Figure 2.1.

The following assumptions are made throughout the dissertation.

Assumption 1. The interconnection in Figure 2.1 is well-posed — the matrix (I −
D22Dk) is invertible.

Assumption 2. Both the plant and the controller realizations are stabilizable and
detectable; i.e., (A, B2) and (Ak, Bk) are stabilizable, and (A,C2) and (Ak,Ck) are
detectable.

The internal stability of the interconnection in Figure 2.1 is defined as follows [81].

Definition 1. The interconnection in Figure 2.1 is said to be internally stable if the
origin (x, ξ) = (0, 0) is asymptotically stable, i.e., x[t], ξ[t] → 0 for t →∞ from all
initial states.

We say that a controller K is an internally stabilizing controller for plant P if the
interconnection of P and K in Figure 2.1 is internally stable. We summarize some
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useful lemmas to determine the internal stability of the interconnection in Figure
2.1 in Appendix 2.A in the end of this chapter.

The aim of the optimal control problem is to find a controller K to stabilize the plant
P and minimize a suitably chosen norm1 of the closed loop transfer matrix from
external disturbance w to regulated output z̄. From the relations z̄ = P11w +P12u, y
= P21w +P22u, and u = K y, we can express z̄ as a function of w as

z̄ = (P11 + P12K(I − P22K)−1P21)w.

The optimal control problem can then be formulated as

minimize
K

| |P11 + P12K(I − P22K)−1P21 | |
subject to K internally stabilizes P. (2.6)

We refer to (2.6) the unconstrained (centralized) optimal control problem.

2.2 Youla Parameterization
Youla parameterization is a common technique to characterize the set of all internally
stabilizing controller for a given plant, i.e., the constraint set in (2.6). The Youla
parameterization technique is based on a doubly co-prime factorization of the plant,
which is defined as follows.

Definition 2. A collection of stable transfer matrices, Ur , Vr , Xr , Yr , Ul , Vl , Xl ,
Yl ∈ RH∞ defines a doubly co-prime factorization of P22 if P22 = VrU−1

r = U−1
l Vl

and [
Xl −Yl

−Vl Ul

] [
Ur Yr

Vr Xr

]
= I .

Such doubly co-prime factorizations can always be computed if P22 is stabilizable
and detectable [81].

Let Q be the Youla parameter. From [81], the centralized optimal control problem
(2.6) can be reformulated in terms of the Youla parameter as

minimize
Q

| |T11 + T12QT21 | |

subject to Q ∈ RH∞ (2.7)

with T11 = P11+P12YrUlP21, T12 = −P12Ur , and T21 = UlP21. In (2.7), we search
over all stable proper real-rational transfer matrix Q to minimize the norm of the

1Typical choices for the norm includeH2 andH∞.
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closed loop map. Once the optimal Youla parameter Q is found, we reconstruct the
controller K by the formula

K = (Yr − UrQ)(Xr − VrQ)−1.

The set {(Yr−UrQ)(Xr−VrQ)−1 |Q ∈ RH∞} is the parameterization of all internally
stabilizing controller.

With a change of variable from controller K to Youla parameter Q, we note that
(2.7) is in the form of a convex optimization problem, which can then be solved
using efficient convex programming algorithms.

2.3 Distributed Optimal Control and Quadratic Invariance
Distributed optimal control problems arise when there are information asymmetry
among sub-controllers in the network. In this section, we follow the paradigm
adopted in [27, 30, 32, 34, 42, 53, 55, 57, 59], and focus on information asymmetry
introduced by delays in the communication network— this is a reasonable modeling
assumption when one has dedicated physical communication channels (e.g., fiber
optic channels), but may not be valid under wireless settings. In the references cited
above, locally acquired measurements are exchanged between sub-controllers sub-
ject to delays imposed by the communication network,2 which manifest as subspace
constraints on the controller itself.

The distributed optimal control problem is then formulated as a constrained optimal
control problem in the following form [31, 33, 53, 54]:

minimize
K

‖P11 + P12K(I − P22K)−1P21‖ (2.8a)

subject to K internally stabilizes P (2.8b)

K ∈ C, (2.8c)

for C a subspace. This subspace can enforce, for instance, the information sharing
constraints imposed on the controller K by the underlying communication network,
as described above.

In order to determine the tractability (convexity) of the constrained optimal control
problem (2.8), we first reformulate (2.8) in terms of the Youla parameter Q. The

2Note that this delay may range from 0, modeling instantaneous communication between sub-
controllers, to infinite, modeling no communication between sub-controllers.
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authors in [54] show that (2.8) can be equivalently formulated as

minimize
Q

| |T11 + T12QT21 | | (2.9a)

subject to Q ∈ RH∞ (2.9b)

M(Q) ∈ CQ, (2.9c)

whereM is an invertible affine map defined in terms of an arbitrary doubly co-prime
factorization of the plant3, and CQ is given by the set CQ = {K(I−P22K)−1 |K ∈ C}.
Note that the convexity of (2.9) (and/or (2.8)) depends solely on the convexity of
the set CQ .

A synthesis of the main results of the distributed optimal control literature [27, 30–
34, 42, 53–55, 57, 59] can be expressed as follows: if the subspace C is quadratically
invariant (QI)4 with respect to P22 [53], then we have CQ = C, and therefore the
constraint (2.9c) can be replaced by the subspace constraintM(Q) ∈ C. In this case,
problem (2.9) is a convex optimization problem. Further, the QI condition can be
viewed as tight, in the sense that quadratic invariance is also a necessary condition
[31, 33] for a subspace constraint C on the controller K to be enforced on the Youla
parameter Q in a convex manner.

2.4 Beyond Quadratic Invariance
We now present a simple example showing how the above framework, built around
the Youla parameterization, fails to capture an “obvious” structured controller. We
return to this example at the end of this chapter to show that our system level
approach naturally recovers said obvious controller.

Example 1. Consider the optimal control problem:

minimize
u

limT→∞
1
T
∑T

t=0 E‖x[t]‖22
subject to x[t + 1] = Ax[t] + u[t] + w[t],

(2.10)

with zero mean unit covariance additive white Gaussian noise (AWGN) vector w[t],
i.e., w[t] i.i.d∼ N(0, I). We assume full state-feedback, i.e., the control action at time
t can be expressed as u[t] = f (x[0 : t]) for some function f . An optimal control
policy u? for this linear quadratic regulator (LQR) problem is easily seen to be
given by u?[t] = −Ax[t].

3We have M(Q) = K(I − P22K)−1 = (Yr − UrQ)Ul . By definition, we have P22 = VrU−1
r =

U−1
l

Vl . This implies that the transfer matrices Ur and Ul are both invertible. Therefore, M is an
invertible affine map of the Youla parameter Q.

4The subspace C is quadratically invariant with respect to P22 if KP22K ∈ C for all K ∈ C
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Further suppose that the state matrix A is sparse and let its support define the adja-
cency matrix of a graph G for which we identify the ith node with the corresponding
state/control pair (xi, ui). In this case, we have that the optimal control policy u?

can be implemented in a localized manner. In particular, in order to implement the
state feedback policy for the ith actuator ui, only those states x j for which Ai j , 0
need to be collected — thus only those states corresponding to immediate neighbors
of node i in the graph G, i.e., only local states, need to be collected to compute the
corresponding control action, leading to a localized implementation. As we discuss
in more detail in Section 4.2.8 and in Chapter 5 - 7, the idea of locality is essential
to allowing controller synthesis and implementation to scale to arbitrarily large
systems, and hence such a structured controller is desirable.

Now suppose that we naively attempt to solve optimal control problem (2.10) by
converting it to its equivalent H2 optimal control problem and constraining the
controller K to have the same support as A, i.e., K =

∑∞
t=0

1
zt K[t], supp (K[t]) ⊂

supp (A). If the graph G is strongly connected, then the conditions in [52] imply
that the corresponding distributed optimal control problem is not quadratically
invariant. The results of [33] further allow us to conclude that computing such a
structured controller cannot be done using convex programming when using the
Youla parameterization described in the previous section.

In addition, we note that the QI framework is developed under the assumption that C
in (2.8c) is a subspace constraint. When C is not a subspace constraint, no general
method exists to determine the convexity of the constrained optimal control problem
(2.8). Further, we note that the optimization problem (2.9) is convex as long as the set
CQ in (2.9c) is a convex set— in particular, the set CQ does not need to satisfy the QI
condition, nor does CQ need to be a subspace. In other words, there are some convex
constrained optimal control problems that cannot be identified using the theory of
QI. The motivation of this thesis is to generalize the QI framework to characterize a
broader class of convex constrained optimal control problems, and show that some
of these problems are extremely favorable for large-scale applications.

2.5 Summary of Main Results
The rest of the thesis is devoted to defining and analyzing the system level approach
to controller synthesis, centered around the notion of a system response. We collect
here a summary of our main results, and show how they can be used to pose a novel
System Level Synthesis (SLS) problem that significantly generalizes that defined in
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equation (2.8).

For a LTI system with dynamics given by (2.1), we define a system response {R, M,

N, L} to be the closed loop maps satisfying[
x
u

]
=

[
R N
M L

] [
δx

δy

]
, (2.11)

where δx = B1w is the disturbance on the state vector, and δy = D21w is the
disturbance on the measurement. We illustrate the system response using the block
diagram shown in Figure 2.2.

Figure 2.2: An illustration of the system response in the block diagram

We say that a system response {R,M,N,L} is stable and achievable with respect
to a plant P if there exists an internally stabilizing controller K such that the inter-
connection illustrated in Figure 2.1 leads to closed loop behavior consistent with
equation (2.11).

In Chapter 3, Theorem 2, we show that a system response {R,M,N,L} is stable and
achievable with respect to a strictly proper plant P with realization (2.1) if and only
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if it lies in the affine subspace described by:[
zI − A −B2

] [
R N
M L

]
=

[
I 0

]
(2.12)[

R N
M L

] [
zI − A

−C2

]
=

[
I

0

]
(2.13)

R,M,N ∈ 1
z
RH∞, L ∈ RH∞. (2.14)

As the above characterizes all stable and achievable system responses, we call it a
system level parameterization (SLP).

In addition, for such a stable achievable system response {R,M,N,L}, a controller
that leads to these closed loop maps is given by K = L − MR−1N, and can be
implemented as:

zβ = z(I − zR)β − zNy
u = zMβ + Ly,

(2.15)

for β the internal state of the stabilizing controller.5 Ablock diagramof the controller
structure is shown in Figure 2.3.

B21/z

A

1/z

C2

��

�y

�x

�u

�

x

uy

M̃

L

Ñ

R̃+

Figure 2.3: The proposed output feedback controller structure, with R̃+ = zR̃ =
z(I − zR), M̃ = zM, and Ñ = −zN.

Notice that any sparsity structure imposed on the system response {R,M,N,L}
translates directly to the sparsity structure of the controller implementation, and
hence information sharing constraints on themeasured output y and controller state β
can be imposed via subspace constraints on the system response {R,M,N,L}. As the

5Although not apparent, z(I − zR) ∈ RH∞, and hence the suggested controller implementation
is causal. See Section 3.2 for further details.
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controller is implemented directly using these transfer matrices, we are furthermore
no longer limited to subspace constraints, and can in fact impose arbitrary system
level constraints (SLCs) on the closed loop response of the system, and by extension
the controller implementation. In Section 4.2, we provide a catalog of useful SLCs.
We also show in Section 4.2.1 and 4.2.2 that by combining appropriate SLCswith the
SLP (2.12) - (2.14), we recover all structured controllers that can be parameterized
using the Youla parameter and quadratic invariance.

Let S denote such a SLC, and assume that it admits a convex representation.
Furthermore, let g(·) be a convex functional. This gives a convex system level
synthesis (SLS) problem

minimize
{R,M,N,L}

g(R,M,N,L) (2.16a)

subject to equations (2.12) − (2.14) (2.16b)[
R N
M L

]
∈ S. (2.16c)

We show in Chapter 4 that the SLS problem (2.16) characterize the broadest known
class of convex problems in optimal control — in particular, the distributed optimal
control problem (2.8) is a special case of a SLS problem. Beside (2.8), we show
that the mixed objective optimal control problem and the sensor actuator regularized
optimal control problem can all be cast as a SLS problem.

In Chapters 5 - 7, we focus on a special class of SLS problems, which we call
the convex localized separable SLS (CLS-SLS) problems. By imposing suitable
localized SLC in (2.16c), we show that the CLS-SLS problems can be solved in an
extremely scalable manner, i.e., with O(1) parallel computational and implementa-
tion complexity relative to the size of the overall system. This allows us to synthesize
and implement localized optimal controller for systems with arbitrary large-scale,
which is extremely favorable for large-scale applications.

Example 2 (Example 1 cont’d). We now return to themotivating example introduced
above to provide a preview of the usefulness of the system level approach to controller
synthesis. In the case of a full control (B2 = I) state-feedback (C2 = I, D21 = 0)
problem, the conditions (2.12) - (2.14) simplify to (zI−A)R−M = I, R,M ∈ 1

zRH∞
(c.f. Section 3.1), and a controller achieving the desired response is given by
K =MR−1. Further, this controller can be implemented as

ŵ = x − x̂, u = zMŵ, x̂ = (zR − I)ŵ.
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Again, suppose that we wish to synthesize an optimal controller that has a commu-
nication topology given by the support of A — from the above implementation, it
suffices to constrain the support of transfer matrices R and M to be a subset of that
of A. It can be checked that R = 1

z I, and M = −1
z A satisfy the above constraints,

and recover the globally optimal controller K = −A. Recall that this controller
cannot be computed using quadratic invariance and the Youla parameterization if
the graph with adjacency matrix defined by the support of A is strongly connected
and sparse.
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APPENDIX

2.A Lemmas for Internal Stability
The following definitions and lemmas are useful to determine the internal stability
of the closed loop system for a given controller [81].

Definition 3 (stable matrix). For the discrete time system (2.1), the square matrix
A is said to be a stable matrix if the spectral radius of A is smaller than 1. For the
continuous time system (2.4), the square matrix A is said to be a stable matrix if
every eigenvalue of A has strictly negative real part.

Lemma 1. The interconnection in Figure 2.1 is internally stable if and only if the
matrix

Acl =

[
A 0
0 Ak

]
+

[
B2 0
0 Bk

] [
I −D22

−Dk I

]−1 [
0 Ck

C2 0

]
is a stable matrix. In particular, when D22 = 0, the equation above can be simplified
into

Acl =

[
A + B2DkC2 B2Ck

BkC2 Ak

]
. (2.17)

Lemma 2. The interconnection in Figure 2.1 is internally stable if and only if the
four closed loop transfer matrices from (δy, δu) to (u, y) in Figure 2.4 are in RH∞
(real rational, stable, and proper).

K

y

�y

�u

u

P22

Figure 2.4: Internal stability analysis diagram
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C h a p t e r 3

SYSTEM LEVEL PARAMETERIZATION OF STABILIZING
CONTROLLERS

In this chapter, we propose a system level approach to parameterize the set of
all internally stabilizing controller. Specifically, we show that the affine subspace
defined by the constraints (2.12) - (2.14) parameterizes all stable achievable system
responses {R,M,N,L}. In addition, the controller K = L−MR−1N, which admits a
realization as described in (2.15), parameterizes all internally stabilizing controllers
for a strictly proper plant P22.1 The results of this chapter provide an alternative
to the traditional Youla parameterization, but is far more amenable for constrained
optimal control problems, as will be shown in the next few chapters.

We begin by analyzing the state feedback case, as it admits a simpler characterization
and allows us to provide intuition about the construction of a controller that achieves
a desired system response. With this intuition in hand, we present our results for the
output feedback setting, which is the main focus of this chapter.

3.1 State Feedback
We consider a state feedback problem with plant model given by

P =


A B1 B2

C1 D11 D12

I 0 0

 . (3.1)

The z-transform of the state dynamics (2.1a) is given by

(zI − A)x = B2u + δx, (3.2)

where we let δx := B1w denote the disturbance affecting the state.

We define R to be the system response mapping the external disturbance δx to the
state x, and M to be the system response mapping the disturbance δx to the control
action u. By substituting a dynamic state feedback control rule u = Kx into (3.2),
we can write the system response {R,M} as a function of the controller K as

R = (zI − A − B2K)−1

M = K(zI − A − B2K)−1. (3.3)
1The non-strictly proper case is discussed in Section 3.3.
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The main result of this section is an algebraic characterization of the set {R,M}
of state-feedback system responses that are achievable by an internally stabilizing
controller K, as stated in the following theorem.

Theorem 1 (System Level Parameterization for State Feedback Systems). For the
state feedback system (3.1), the following are true:

(a) The affine subspace defined by[
zI − A −B2

] [
R
M

]
= I (3.4a)

R,M ∈ 1
z
RH∞ (3.4b)

parameterizes all system responses from δx to (x, u), as defined in (3.3), achiev-
able by an internally stabilizing state feedback controller K.

(b) For any transfer matrices {R,M} satisfying (3.4), the controller K = MR−1 is
internally stabilizing and achieves the desired system response (3.3).

The rest of this section is devoted to proving the claims made in Theorem 1.

3.1.1 Necessity
The necessity of a stable and achievable system response {R,M} lying in the affine
subspace (3.4) follows from rote calculation. Here we provide some intuition about
the conditions (3.4). Note that (3.4a) can be derived by substituting the definition
x = Rδx and u = Mδx into (3.2). This condition must hold for any achievable
system response (R,M). In addition, for a proper controller K, the relations in (3.3)
imply that both R and M are strictly proper. Intuitively, the state feedback system
(3.2), or the matrix pair (A, B2), is stabilizable if and only if there exists strictly
proper stable transfer matrices R,M ∈ 1

zRH∞ lie in the subspace described by
(3.4a). This idea is formally stated and proved by the following lemma.

Lemma 3 (Stabilizability). The pair (A, B2) is stabilizable if and only if the affine
subspace defined by (3.4) is non-empty.

Proof. Wefirst show that the stabilizability of (A, B2) implies that there exist transfer
matrices R,M ∈ 1

zRH∞ satisfying equation (3.4a). From the definition of stabiliz-
ability, there exists a matrix F such that A+ B2F is a stable matrix. Substituting the
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state feedback control law u = Fx into (3.2), we have x = (zI − A − B2F)−1δx and
u = F(zI − A − B2F)−1δx . The system response is given by R = (zI − A − B2F)−1

and M = F(zI − A − B2F)−1, which lie in 1
zRH∞ and are a solution to (3.4a).

For the opposite direction, we note that R,M ∈ RH∞ implies that these transfer
matrices do not have poles outside the unit circle |z | ≥ 1. From (3.4a), we further
observe that

[
zI − A −B2

]
is right invertible in the region where R and M do

not have poles, with
[
R> M>

]>
being its right inverse. This then implies that[

zI − A −B2

]
has full row rank for all |z | ≥ 1. This is equivalent to the PBH test

[15] for stabilizability, proving the claim. �

Thus Lemma 3 provides an alternative definition of (state feedback) stabilizability
via the conditions described in (3.4) — in particular, stable achievable responses
exist only if the state feedback system is stabilizable.

The necessity of conditions (3.4) is provided in the following lemma.

Lemma 4 (Necessity of conditions (3.4)). Consider the state feedback system (3.1).
Let (R,M) be the system response achieved by an internally stabilizing controller
K. Then, (R,M) is a solution of (3.4).

Proof. See Appendix 3.A in the end of this chapter. �

3.1.2 Sufficiency
Here we show that for any system response {R,M} lying in the affine subspace
(3.4), we can construct an internally stabilizing controller K that leads to the desired
system response (3.3).

A partial solution is provided in our prior work [71], where we give a construction
for finite impulse response (FIR) system responses {R,M}. Here we extend these
results to infinite impulse response (IIR) system responses, and provide a proof of
internal stability for the proposed controller structure.

In [71], we considered FIR system responses of horizon T , i.e., R,M ∈ FT , and
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proposed the following disturbance-based controller implementation:

δ̂x[t] = x[t] − x̂[t] (3.5a)

u[t] =
T−1∑
τ=0

M[τ + 1]δ̂x[t − τ] (3.5b)

x̂[t + 1] =
T−2∑
τ=0

R[τ + 2]δ̂x[t − τ]. (3.5c)

The internal states of the controller (3.5) should be interpreted as follows: δ̂x is
the controller estimate of the state disturbance, and x̂ is a desired or reference state
trajectory. The estimated disturbance δ̂x[t] is computed by taking the difference
between the current state measurement x[t] and the current reference state value
x̂[t]. The control action u[t] and the next reference state value x̂[t + 1] are then
computed using past estimated disturbances δ̂x[t − T + 1], . . . , δ̂x[t].

Taking the z-transform of equations (3.5), we obtain their representation in the
frequency domain

δ̂x = x − x̂ (3.6a)

u = zMδ̂x (3.6b)

x̂ = (zR − I)δ̂x . (3.6c)

Combining equations (3.6) with (3.2) and (3.4), one can verify that the estimated
disturbance δ̂x[t] indeed reconstructs the true disturbance δx[t − 1] that perturbed
the plant at time t − 1; hence δ̂x = z−1δx . It is then straightforward to show that
the desired system response {R,M} satisfying x = Rδx and u = Mδx is achieved.
Note that the previous argument holds for any FIR horizon T as well as for T = ∞.

Remark 2. From (3.6), the control action u can be expressed as u = MR−1x.
We can therefore also implement the controller defined in (3.6) via the dynamic
state feedback gain K = MR−1.2 However, we argue that the disturbance-based
implementation in (3.6) has significant advantages over a traditional state feedback
implementation — specifically, this implementation allows us to connect constraints
imposed on the system response to constraints on the controller implementation.
The implementation (3.6) is the key to make a localized linear quadratic regulator
(LLQR) optimal controller (cf., Chapter 5) scalable to implement.

2As R is strictly proper, R−1 is not proper. However, K = MR−1 can be verified to always be
proper.
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Figure 3.1: The proposed state feedback controller structure, with R̃ = I − zR and
M̃ = zM.

It remains to be shown that the controller implementation (3.6) internally stabilizes
the plant (3.1). We consider the block diagram shown in Figure 3.1, where here
R̃ = I − zR and M̃ = zM. It can be checked that R̃ = I − zR = −AR − B2M
∈ 1

zRH∞ and M̃ = zM ∈ RH∞, and hence the internal feedback loop between δ̂x

and the reference state trajectory x̂ is well defined.

As is standard, we introduce external perturbations δx, δy , and δu into the system
and note that the perturbations entering other links of the block diagram can be
expressed as a combination of (δx, δy, δu) being acted upon by some stable transfer
matrices.3 Therefore, the standard definition of internal stability applies, and we can
use a bounded-input bounded-output argument (e.g., Lemma 2 in Appendix 2.A) to
conclude that it suffices to check the stability of the nine closed loop transfer matrices
from perturbations (δx, δy, δu) to the internal variables (x, u, δ̂x) to determine the
internal stability of the structure as a whole.

As all blocks in Figure 3.1 are stable filters, it follows that if the origin (x, δ̂x) = (0, 0)
is asymptotically stable then any other signals in the block diagram will decay
asymptotically. This is equivalent to the conventional notion of internal stability
[81], which we recall here for the reader before stating and proving that the proposed
controller implementation is internally stabilizing.

Definition 4. The interconnection in Figure 3.1 is internally stable if the origin
(x, δ̂x) = (0, 0) is asymptotically stable, i.e., x[t], δ̂x[t] → 0 for t →∞ for all initial

3The matrix A may define an unstable system, but viewed as an element of F0, defines a stable
(FIR) transfer matrix.
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conditions when the external perturbations δx, δy, δu in Figure 3.1 are set to 0.

Lemma 5 (Sufficiency of conditions (3.4)). Consider the state feedback system
(3.1). Given any system response {R,M} lying in the affine subspace described by
(3.4), the state feedback controller K = MR−1, with structure shown in Figure 3.1,
internally stabilizes the plant. In addition, the desired system response, as specified
by x = Rδx and u =Mδx , is achieved.

Proof. Wefirst note that fromFigure 3.1, we can express the state feedback controller
K asK = M̃(I−R̃)−1 = (zM)(zR)−1 =MR−1. Now, for any system response {R,M}
lying in the affine subspace described by (3.4), we construct a controller using the
structure given in Figure 3.1. To show that the constructed controller internally
stabilizes the plant, we list the following equations from Figure 3.1:

zx = Ax + B2u + δx (3.7a)

u = M̃δ̂x + δu (3.7b)

δ̂x = x + δy + R̃δ̂x . (3.7c)

Routine calculations (seeAppendix 3.A for details) show that the closed loop transfer
matrices from (δx, δy, δu) to (x, u, δ̂x) are given by

x
u
δ̂x

 =


R −R̃ − RA RB2

M M̃ −MA I +MB2
1
z I I − 1

z A 1
z B2



δx

δy

δu

 . (3.8)

As all nine transfer matrices in (3.8) are stable, the implementation in Figure 3.1
is internally stable. Furthermore, the desired system response {R,M}, from δx to
(x, u), is achieved. �

3.1.3 Summary and corollary
The proof of Theorem 1 is then straightforward.

Proof of Theorem 1. The statements follow directly by combining the results of
Lemma 4 and 5. �

Theorem 1 provides a necessary and sufficient condition for the system response
{R,M} to be stable and achievable, in that elements of the affine subspace defined
by (3.4) parameterize all stable system responses achievable via state-feedback, as
well as the internally stabilizing controllers that achieve them.
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We note that the analysis for the state feedback problem can be applied to the state
estimation problem by considering the dual to a full control system (c.f., §16.5
in [81]). For instance, the following corollary to Lemma 3 gives an alternative
definition of the detectability of pair (A,C2) [74].

Corollary 1 (Detectability). The pair (A,C2) is detectable if and only if the following
conditions are feasible: [

R N
] [

zI − A

−C2

]
= I (3.9a)

R,N ∈ 1
z
RH∞. (3.9b)

A parameterization of all detectable observers can be constructed using the affine
subspace (3.9) in a manner analogous to that described above. We will give a more
detailed discussion about state estimation application in Section 5.6.

Finally, we note that Theorem 1 can be extended to continuous time system imme-
diately by replacing z-transform variable z to the Laplace transform variable s. The
corollary of Theorem 1 for continuous time system is therefore given as follows:

Corollary 2 (Theorem 1 for continuous time systems). For a continuous time state
feedback system with state space realization (3.1), the following are true:

(a) The affine subspace defined by[
sI − A −B2

] [
R
M

]
= I (3.10a)

R,M ∈ 1
s
RH∞ (3.10b)

parameterizes all system responses from δx to (x, u) achievable by an internally
stabilizing state feedback controller K.

(b) For any transfer matrices {R,M} satisfying (3.10), the controller K = MR−1

is internally stabilizing and achieves the desired system response x = R δx and
u =M δx .
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3.2 Output Feedback for Strictly Proper Systems
We now extend the arguments of the previous section to the output feedback setting,
and begin by considering the case of a strictly proper plant

P =


A B1 B2

C1 D11 D12

C2 D21 0

 . (3.11)

Letting δx[t] = B1w[t] denote the disturbance on the state, and δy[t] = D21w[t]
denote the disturbance on the measurement, the dynamics defined by plant (3.11)
can be written as

x[t + 1] = Ax[t] + B2u[t] + δx[t]
y[t] = C2x[t] + δy[t]. (3.12)

Analogous to the state-feedback case, we define a system response {R,M,N,L} from
perturbations (δx, δy) to state and control inputs (x, u) via the following relation:[

x
u

]
=

[
R N
M L

] [
δx

δy

]
. (3.13)

Substituting the output feedback control law u = Ky into the z-transform of system
equation (3.12), we obtain

(zI − A − B2KC2)x = δx + B2Kδy .

For a proper controller K, the transfer matrix (zI − A − B2KC2) is always invert-
ible because its leading coefficient zI is invertible, hence we obtain the following
expressions for the system response (3.13) in terms of an output feedback controller
K:

R = (zI − A − B2KC2)−1

M = KC2R

N = RB2K

L = K +KC2RB2K. (3.14)

We now present one of the main results of this chapter: an algebraic characterization
of the set {R,M,N,L} of output-feedback system responses that are achievable by
an internally stabilizing controller K, as stated in the following theorem.
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Theorem 2 (System Level Parameterization for Output Feedback Systems with
Strictly Proper Plants). For the output feedback system (3.11), the following are
true:

(a) The affine subspace described by:[
zI − A −B2

] [
R N
M L

]
=

[
I 0

]
(3.15a)[

R N
M L

] [
zI − A

−C2

]
=

[
I

0

]
(3.15b)

R,M,N ∈ 1
z
RH∞, L ∈ RH∞ (3.15c)

parameterizes all system responses (3.14) achievable by an internally stabilizing
controller K.

(b) For any transfer matrices {R,M,N,L} satisfying (3.15), the controller K =
L −MR−1N is internally stabilizing and achieves the desired response (3.14).

As the equations (3.15a) - (3.15c) characterize the set of all stable and achievable
system responses, we call it a system level parameterization (SLP).

3.2.1 Necessity
Aswas the case for the state-feedback setting, the necessity of a stable and achievable
system response {R,M,N,L} lying in the affine subspace (3.15) follows from rote
calculation. We first provide some intuition about how the equality constraints
(3.15a) - (3.15b) are derived from the relations (3.14). Using the identity (zI −
A − B2KC2)R = I and the relation M = KC2R, we get (zI − A)R − B2M = I.
Likewise, we have the relation (zI − A)N − B2L = 0. Therefore, the system
response must satisfy the equality constraint in (3.15a). Similarly, using the identity
R(zI − A−B2KC2) = I, we know that the system response must also satisfy (3.15b).
Besides, from the relations in (3.14), we note that R,M, and N must be strictly
proper, and all the system response are stable because K is an internally stabilizing
controller. This leads to the constraint (3.15c). Intuitively, the equations (3.15a) -
(3.15c) are feasible as long as the system matrices (A, B2) is stabilizable and (A,C2)
is detectable. This is formally stated in the following lemma.

Lemma 6 (Stabilizability and Detectability). The triple (A, B2,C2) is stabilizable
and detectable if and only if the affine subspace described by (3.15) is non-empty.
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Proof. See Appendix 3.A in the end of this chapter. �

Lemma 6 provides an alternative characterization of stabilizability and detectability
via the conditions described in (3.15) — in particular, stable achievable system re-
sponses (3.14) exist only if the output feedback system is stabilizable and detectable.
The next lemma shows that (3.15) is a necessary condition for the system response
to be stable and achievable.

Lemma 7 (Necessity of conditions (3.15)). Consider the output feedback system
(3.11). Let {R,M,N,L}, with x = Rδx + Nδy and u = Mδx + Lδy , be the
system response achieved by an internally stabilizing control law u = Ky. Then,
{R,M,N,L} lies in the affine subspace described by (3.15).

Proof. See Appendix 3.A in the end of this chapter. �

3.2.2 Sufficiency
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L
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R̃+

Figure 3.2: The proposed output feedback controller structure, with R̃+ = zR̃ =
z(I − zR), M̃ = zM, and Ñ = −zN.

Here we show that for any system response {R,M,N,L} lying in the affine subspace
(3.15), there exists an internally stabilizing controller K that leads to the desired
system response (3.14). From the relations in (3.14), we notice the identity K =
L −KC2RB2K = L −MR−1N. This relation leads to the controller structure given
in Figure 3.2, with R̃+ = zR̃ = z(I − zR), M̃ = zM, and Ñ = −zN. As was the
case for the state feedback setting, it can be verified that R̃+, M̃, and Ñ are all in
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RH∞. Therefore, the structure given in Figure 3.2 is well defined. The controller
implementation of Figure 3.2 is governed by the following equations:

zβ = R̃+β + Ñy

u = M̃β + Ly. (3.16)

The control implementation equations (3.16) can be interpreted as an extension of
the state-space realization (2.5) of a controller K. In particular, in the realization
equations (3.16) we allow the constant matrices AK, BK,CK,DK of the state-space
realization (2.5) to be stable proper transfer matrices R̃+, M̃, Ñ, and L. The benefit
of this implementation is that arbitrary convex constraints imposed on the transfer
matrices R̃+, M̃, Ñ,L carry over directly to the controller implementation. We show
in Chapter 4.2 that this allows for a class of structural (locality) constraints to
be imposed on the system response (and hence the controller) that are crucial for
extending controller synthesis methods to large-scale systems (this will be discussed
in details in Chapters 6 - 7). In contrast, we recall that imposing general convex
constraints on the controller K or its state-space realization AK, BK,CK,DK cannot
be done in a computationally efficient manner.

What remains to be shown is that the proposed controller implementation (3.16) is
internally stabilizing and achieves the desired system response (3.14). As was the
case for the state feedback setting, all of the blocks in Figure 3.2 are stable filters —
thus, as long as the origin (x, β) = (0, 0) is asymptotically stable, all signals internal
to the block diagram will decay to zero. To check the internal stability of the
structure, we introduce external perturbations δx, δy , δu, and δβ to the system. The
perturbations appearing on other links of the block diagram can all be expressed
as a combination of the perturbations (δx, δy, δu, δβ) being acted upon by some
stable transfer matrices, and so it suffices to check the input-output stability of the
closed loop transfer matrices from perturbations (δx, δy, δu, δβ) to controller signals
(x, u, y, β) to determine the internal stability of the structure [81].

With this discussion in mind, we formally define internal stability for the controller
structure of Figure 3.2, and state and prove the sufficiency of the conditions stated
in Theorem 2.

Definition 5. The interconnection in Figure 3.2 is said to be internally stable if the
origin (x, β) = (0, 0) is asymptotically stable, i.e., x[t], β[t] → 0 for t → ∞ from
any initial condition when the perturbations δx, δy, δu, δβ in Figure 3.2 are 0.



32

Lemma 8. Consider the output feedback system (3.11). For any system response
{R,M,N,L} lying in the affine subspace defined by (3.15), the controller K =
L − MR−1N (with structure shown in Figure 3.2) internally stabilizes the plant.
In addition, the desired system response, as specified by x = Rδx + Nδy and
u =Mδx + Lδy , is achieved.

Proof. For any system response {R,M,N,L} lying in the affine subspace defined
by (3.15), we construct a controller using the structure given in Figure 3.2. We
now check the stability of the closed loop transfer matrices from the perturbations
(δx, δy, δu, δβ) to the internal variables (x, u, y, β). We have the following equations
from Figure 3.2:

zx = Ax + B2u + δx (3.17a)

y = C2x + δy (3.17b)

zβ = R̃+β + Ñy + δβ (3.17c)

u = M̃β + Ly + δu . (3.17d)

Combining these equations with the relations in (3.15a) - (3.15b), we summarize
the closed loop transfer matrices from (δx, δy, δu, δβ) to (x, u, y, β) in Table 3.1 (see
Appendix 3.A for a detailed derivation).

Table 3.1: Closed Loop Maps from Perturbations to Internal Variables

δx δy δu δβ

x R N RB2
1
z NC2

u M L I +MB2
1
z LC2

y C2R I + C2N C2RB2
1
z C2NC2

β −1
z B2M −1

z B2L −1
z B2MB2

1
z I − 1

z2 (A + B2LC2)

Equation (3.15c) implies that all sixteen transfer matrices in Table 3.1 are stable,
so the implementation in Figure 3.2 is internally stable. Furthermore, the desired
system response from (δx, δy) to (x, u) is achieved. �
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3.2.3 Alternative controller implementations
Before we summarize the results for Theorem 2, we first show that caremust be taken
when dealing with open loop unstable systems. In particular, we demonstrate the
necessity of considering perturbations on the internal controller state β and control
input u for unstable plants. Such perturbations can arise, for instance, from using
floating point arithmetic within the controller, or from quantization at the actuators.

If we set δu and δβ to 0, it follows that β = −1
z B2u from Table 3.1. This leads to a

simpler controller implementation given by u = Ly−MB2u, with the corresponding
controller structure shown in Figure 3.3a. This implementation can also be obtained
from the identity K = (I +MB2)−1L, which follows from the relations in (3.14).
Unfortunately, as shown below, this implementation is internally stable only when
the open loop plant is stable.

For the controller implementation and structure shown in Figure 3.3a, the closed
loop transfer matrices from perturbations to the internal variables are given by

[
x
u

]
=

[
R N RB2 (zI − A)−1B2

M L I +MB2 I

] 
δx

δy

δu

δβ


. (3.18)

When A defines a stable system, the implementation in Figure 3.3a is internally
stable. However, when the open loop plant is unstable (and the realization (A, B2) is
stabilizable), the transfer matrix (zI − A)−1B2 is unstable. From (3.18), the effect of
the perturbation δβ can lead to instability of the closed loop system. This structure
thus shows the necessity of introducing and analyzing the effects of perturbations
δβ on the controller internal state.

Alternatively, if we start with the identity K = L(I + C2N)−1, which also follows
from (3.14), we obtain the controller structure shown in Figure 3.3b. The closed
loop map from perturbations to internal signals is then given by

x
u
β

 =


R N RB2

M L I +MB2

C2(zI − A)−1 I C2(zI − A)−1B2



δx

δy

δu

 .
As can be seen, the controller implementation is once again internally stable only
when the open loop plant is stable (if the realization (A,C2) is detectable). This
structure thus shows the necessity of introducing and analyzing the effects of per-
turbations on the controller internal state β.
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Of course, when the open loop system is stable, the controller structures illustrated
below may be appealing as they are simpler and easier to implement. In fact,
when the open loop system is stable, the system response L is equal to the Youla
parameter Q (this will be shown in Lemma 9 in Section 4.2). In this case, the
controller implementation u = Ly −MB2u can be written as u = Qy −QP22u, and
the controller structure shown in Figure 3.3a is just the implementation of Internal
Model Control (IMC) [21, 51].

���y

�u

u

y
L

�MB2

(a) Structure 1

�y

�u

� u

y L

�C2N

(b) Structure 2

Figure 3.3: Alternative controller structures for stable systems.

3.2.4 Summary
The proof of Theorem 2 is straightforward.

Proof of Theorem 2. The statements follow directly by combining the results of
Lemma 7 and 8. �

Theorem 2 provides a necessary and sufficient condition for the system response
{R,M,N,L} to be stable and achievable, in that elements of the affine subspace
defined by (3.15) parameterize all stable achievable system responses, as well as all
internally stabilizing controllers that achieve them.

Theorem 2 can be extended to continuous time system immediately by replacing z-
transform variable z to the Laplace transform variable s. The corollary of Theorem
2 for continuous time system is therefore given as follows:

Corollary 3 (Theorem 2 for continuous time systems). For a continuous time output
feedback system with state space realization (3.11), the following are true:
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(a) The affine subspace described by:[
sI − A −B2

] [
R N
M L

]
=

[
I 0

]
(3.19a)[

R N
M L

] [
sI − A

−C2

]
=

[
I

0

]
(3.19b)

R,M,N ∈ 1
s
RH∞, L ∈ RH∞ (3.19c)

parameterizes all system responses (3.13) achievable by an internally stabilizing
controller K.

(b) For any transfer matrices {R,M,N,L} satisfying (3.19), the controller K =
L −MR−1N is internally stabilizing and achieves the desired response (3.13).

3.3 Output Feedback for Proper Systems
Finally, for a general proper plant model (2.1) with D22 , 0, we define a new
measurement ȳ[t] = y[t] − D22u[t]. This leads to the controller structure shown in
Figure 3.4. In this case, the closed loop transfer matrices from δu to the internal
variables become 

x
u
y
β


=


RB2 + ND22

I +MB2 + LD22

C2RB2 + D22 + C2ND22

−1
z B2(MB2 + LD22)


δu .

The remaining entries of Table 3.1 remain the same. Therefore, the controller
structure shown in Figure 3.4 internally stabilizes the plant. The parameterization
of all stable achievable system responses as well as the set of well-posed internally
stabilizing controllers follow immediately from Theorem 2.
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Figure 3.4: The proposed output feedback controller structure for D22 , 0.



37

APPENDIX

3.A Proof of Lemmas
Proof of Lemma 4. Consider an internally stabilizing controller u = Kx with its
state space realization given by

zξ = AKξ + BKx

u = CKξ + DKx. (3.20)

Combining (3.20) and (3.2), we have the closed loop system dynamics given by[
zx
zξ

]
=

[
A + B2Dk B2Ck

Bk Ak

] [
x
ξ

]
+

[
I

0

]
δx . (3.21)

As the controller is internally stabilizing, we know that the state matrix in (3.21) is
a stable matrix (Lemma 1 in Appendix 2.A). The system response achieved by the
control law u = Kx is given by

[
R
M

]
=


A + B2Dk B2Ck I

Bk Ak 0
I 0 0

Dk Ck 0


. (3.22)

It is clear that the system response (3.22) is strictly proper and stable, and thus (3.4b)
is satisfied. From (3.22), we have

(zI − A)R − B2M = zR − AR − B2M

=


A + B2Dk B2Ck I

Bk Ak 0
A + B2Dk B2Ck I

 −


A + B2Dk B2Ck I

Bk Ak 0
A 0 0


−


A + B2Dk B2Ck I

Bk Ak 0
B2Dk B2Ck 0


= I,

which shows that the equality constraint (3.4a) is satisfied for arbitrary (Ak, Bk, Ck,

Dk). This completes the proof. �
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Proof of Lemma 5 (from (3.7) to (3.8)). Recall that we have R̃ = I − zR and M̃ =
zM. We can rewrite (3.7a) - (3.7c) as

(zI − A)x = B2u + δx (3.24a)

u = zMδ̂x + δu (3.24b)

x = zRδ̂x − δy . (3.24c)

Substituting (3.24b) and (3.24c) into (3.24a), we have

z(zI − A)Rδ̂x − (zI − A)δy = zB2Mδ̂x + B2δu + δx .

Moving δ̂x to the left-hand-side and using the identity (3.4a) from the assumption,
we have

zδ̂x = (zI − A)δy + B2δu + δx,

which can be simplified into

δ̂x =
1
z
δx + (I −

1
z

A)δy +
1
z

B2δu . (3.25)

Substituting (3.25) into (3.24b) and (3.24c) leads to equation (3.8). �

Proof of Lemma 6. For one direction, note that the feasibility of (3.15) implies the
feasibility of both (3.4) and (3.9). Using Lemma 3 and Corollary 1, we know that
the triple (A, B2,C2) is stabilizable and detectable.

For the opposite direction, given a stabilizable (A, B2) and a detectable (A,C2), let
(R1,M1) be a feasible solution of (3.4) and (R2,N2) be a feasible solution of (3.9).
We use these to construct the feasible solution to (3.15)

R = R1 + R2 − R1(zI − A)R2 (3.26a)

M =M1 −M1(zI − A)R2 (3.26b)

N = N2 − R1(zI − A)N2 (3.26c)

L = −M1(zI − A)N2, (3.26d)

which completes the proof. �

Proof of Lemma 7. Consider an internally stabilizing controller K with state space
realization

zξ = AKξ + BKy

u = CKξ + DKy. (3.27)
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Combining (3.27) with the system equation (3.12), we obtain the closed loop dy-
namics [

zx
zξ

]
=

[
A + B2DkC2 B2Ck

BkC2 Ak

] [
x
ξ

]
+

[
I B2Dk

0 Bk

] [
δx

δy

]
.

From the assumption that K is internally stabilizing, we know that the state matrix
of the above equation is a stable matrix (Lemma 1 in Appendix 2.A). The system
response achieved by u = Ky is given by

[
R N
M L

]
=


A + B2DkC2 B2Ck I B2Dk

BkC2 Ak 0 Bk

I 0 0 0
DkC2 Ck 0 Dk


, (3.28)

which satisfies (3.15c). From (3.28), we have

(zI − A)R − B2M = zR − AR − B2M

=


A + B2DkC2 B2Ck I

BkC2 Ak 0
A + B2DkC2 B2Ck I

 −


A + B2DkC2 B2Ck I

BkC2 Ak 0
A 0 0


−


A + B2DkC2 B2Ck I

BkC2 Ak 0
B2DkC2 B2Ck 0


= I .

Using similar derivation, we can verify that (3.28) satisfies both (3.15a) and (3.15b)
for arbitrary (Ak, Bk,Ck,Dk). This completes the proof. �

Proof of Lemma 8 (from (3.17) to Table 3.1). Recall that we have R̃+ = z(I − zR),
M̃ = zM, and Ñ = −zN. We can rewrite (3.17a), (3.17c), and (3.17d) as

(zI − A)x = B2u + δx (3.30a)

zRβ = −Ny + 1
z
δβ (3.30b)

zMβ = u − Ly − δu . (3.30c)

Multiplying (zI − A) and B2 on both sides of (3.30b) and (3.30c) respectively, we
obtain

z(zI − A)Rβ = −(zI − A)Ny + (I − 1
z

A)δβ (3.31a)

zB2Mβ = B2u − B2Ly − B2δu . (3.31b)
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Taking the difference between (3.31a) and (3.31b) then substituting the equality
constraint (3.15a) in, we can express β as a function of u and the perturbations as

zβ = −B2u + (I − 1
z

A)δβ + B2δu . (3.32)

Next, we multiply R on both sides of (3.30a) to obtain

R(zI − A)x = RB2u + Rδx . (3.33)

Substituting (3.17b) into (3.30b) and rearranging some terms, we have

NC2x = −zRβ − Nδy +
1
z
δβ . (3.34)

Taking the difference between (3.33) and (3.34) then substituting the equality con-
straint (3.15b) in, we have

x = RB2u + zRβ + Rδx + Nδy −
1
z
δβ . (3.35)

Substituting (3.32) into (3.35), we can express x as a function of external perturba-
tions as

x = Rδx + Nδy + RB2δu +
[
R(I − 1

z
A) − 1

z
I
]
δβ . (3.36)

We have R(I − 1
z A) −1

z I = 1
z NC2 from (3.15b), and thus (3.36) can be rewritten as

x = Rδx + Nδy + RB2δu +
1
z

NC2δβ, (3.37)

which is the first row of Table 3.1. The third row of Table 3.1 follows immediately
by substituting (3.37) into (3.17b).

Then, we eliminate B2u by adding (3.30a) and (3.32) as

zβ = −(zI − A)x + δx + (I −
1
z

A)δβ + B2δu . (3.38)

In addition, we substitute (3.17b) into (3.30c) and rearrange some terms to obtain

u = zMβ + LC2x + Lδy + δu . (3.39)

Multiplying M on both sides of (3.38) and substituting into (3.39), we have

u =
[
LC2 −M(zI − A)

]
x +Mδx + Lδy + (I +MB2)δu +M(I − 1

z
A)δβ

= Mδx + Lδy + (I +MB2)δu +M(I − 1
z

A)δβ, (3.40)
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where the last equality comes from (3.15b). We note that M(I − 1
z A) = 1

z LC2, and
thus (3.40) can be written as

u =Mδx + Lδy + (I +MB2)δu +
1
z

LC2δβ, (3.41)

which is the second row of Table 3.1. Substituting (3.41) into (3.32) yields the
fourth row of Table 3.1, which completes the proof. �
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C h a p t e r 4

SYSTEM LEVEL SYNTHESIS PROBLEMS

An advantage of the system level parameterizations (SLPs) described in the previous
chapter is that they allow us to impose additional constraints and objectives on the
system response, e.g., the set constraint S and the objective functional g in (2.16).
These constraints and objectives may be in the form of structural constraints on
the response (and the corresponding controller implementation), or may capture a
suitable measure of system performance. In this chapter, we introduce the System
Level Objective (SLO) (e.g., the objective functional g(·) in (2.16)) and the System
Level Constraint (SLC) (e.g., the set constraint S in (2.16)) for a system response.
We then formulate the System Level Synthesis (SLS) problem (e.g., problem (2.16))
by combining SLO, SLP, and SLC into an optimization problem. We show that the
SLS formulation characterizes the broadest known class of convex problems in con-
strained linear optimal control. As a special case, we recover all possible structured
optimal control problems of the form (2.8) that admit a convex representation in the
Youla domain.

This chapter begins with the general formulation of the SLS problem. We then
provide a catalog of useful SLCs that can be naturally incorporated into the SLPs
described in the previous chapter. Finally, we give some examples of convex SLS
problems.

4.1 General Formulation
Let g(·) be a functional capturing a desiredmeasure of the performance of the system
response, and let S be a set. We pose the System Level Synthesis (SLS) problem as

minimize
{R,M,N,L}

g(R,M,N,L) (4.1a)

subject to (3.15a) − (3.15c) (4.1b)[
R N
M L

]
∈ S. (4.1c)

The functional g(·) in (4.1a) is called a System Level Objective (SLO), and the
set constraint S in (4.1c) is called a System Level Constraint (SLC). The affine
subspace described by (4.1b) is called a System Level Parameterization (SLP), as
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introduced in the previous chapter. For g(·) a convex functional and S a convex
set, the resulting SLS problem is a convex optimization problem. More generally,
as long as the intersection of the SLC (4.1c) and SLP (4.1b) is convex, and the
restriction of the SLO (4.1a) to the constraint (4.1b) - (4.1c) is convex, the resulting
SLS problem is a convex optimization problem.

Remark 3. Recall that the SLP for a state feedback problem is given by (3.4a) -
(3.4b). Therefore, for a state feedback problem, the SLS problem can be simplified
to

minimize
{R,M}

g(R,M)

subject to (3.4a) − (3.4b)[
R
M

]
∈ S. (4.2)

For a state estimation problem, the SLS problem can be simplified to

minimize
{R,N}

g(R,N)

subject to (3.9a) − (3.9b)[
R N

]
∈ S. (4.3)

4.2 Convex System Level Constraints
We focus on the SLC (4.1c) in this section. We provide a catalog of useful convex
SLCs that can be naturally incorporated into the SLPs described in the previous
chapter. In particular, we show that QI subspace constraints are a special case of
SLCs, and as such, we provide here a description of the largest known class of
constrained stabilizing controllers that admit a convex parameterization.

4.2.1 Constraints on the Youla Parameter
We show that any constraint imposed on the Youla parameter can be translated into
a SLC, and vice versa. In particular, if this constraint is convex, then so is the
corresponding SLC.

Consider the following modification of the standard Youla parameterization, which
characterizes a set of constrained internally stabilizing controllers K for a plant
(3.11):

K = Y(Q)[X(Q)]−1, Q ∈ Q ∩ RH∞. (4.4)

Here Y(Q) = Yr −UrQ and X(Q) = Xr −VrQ are affine maps defined in terms of a
doubly co-prime factorization of the plant (3.11) (c.f. Section 2.2 and §5.4 of [81]),
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and Q is an arbitrary set — if we take Q = RH∞, we recover the standard Youla
parameterization. By appropriately varying the set Q, one can then characterize all
possible constrained internally stabilizing controllers,1 and hence this formulation
is as general as possible. We now show that an equivalent parameterization can be
given in terms of a SLC.

Theorem 3. The set of constrained internally stabilizing controllers described by
(4.4) can be equivalently expressed as K = L−MR−1N, where the system response
{R,M,N,L} lies in the set

{R,M,N,L
�� (3.15a) - (3.15c) hold, L ∈ M(Q)}, (4.5)

for M an invertible affine map as defined in Section 2.2. Further, this parameteri-
zation is convex if and only if Q is convex.

We note that when the system response {R,M,N,L} is constrained to lie within
a convex set, the transformation K = L −MR−1N implies that the corresponding
set of parameterized controllers K can be non-convex. Therefore it is possible to
parameterize the set of internally stabilizing controllers K lying in certain non-
convex sets C using the parameterization described in Theorem 3 and appropriately
selected additional convex constraints on the system response {R,M,N,L}.

In order to prove this result, we first need to understand the relationship between the
controller K, the Youla parameter Q, and the system response {R,M,N,L}.

Lemma 9. Let L be defined as in (3.14), and the invertible affine mapM be defined
as in Section 2.2. We then have that

L = K(I − P22K)−1 = M(Q). (4.6)

Proof. Here we prove the identity from the definition of the system response L. We
provide an alternative algebraic proof in Appendix 4.A in the end of this chapter.
From the equations u = Ky and y = P21w+ P22u, we can eliminate u and express y
as y = (I − P22K)−1P21w. We then have that

u = Ky = K(I − P22K)−1P21w. (4.7)

Recall that we define δx = B1w and δy = D21w. As a result, we have P21w =
C2(zI − A)−1δx + δy . Substituting this identity into (4.7) yields

u = K(I − P22K)−1[C2(zI − A)−1δx + δy]. (4.8)
1In particular, to ensure that K ∈ C, it suffices to enforce that Y(Q)[X(Q)]−1 ∈ C.
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By definition, L is the closed loop mapping from δy to u. Equation (4.8) then
implies that L = K(I − P22K)−1. From [54] and [28] (c.f. Section 2.2 - 2.3), we
have K(I − P22K)−1 = M(Q), which completes the proof. �

Proof of Theorem 3. The equivalence between the parameterizations (4.4) and (4.5)
is readily obtained from Lemma 9. AsM is an invertible affine mapping between L
and Q, any convex constraint imposed on the Youla parameter Q can be equivalently
translated into a convex SLC imposed on L, and vice versa. �

FromTheorem3, we note that any convex constraint imposed on theYoula parameter
can be translated into a convex SLC imposed on the system response L. Note that
the system response R,M, and N are uniquely determined by the system response
L, as suggested by the SLP. Therefore, all the convex SLC can also be translated
into a convex constraint imposed on the Youla parameter. The primary advantage of
the SLC-based characterization (4.5) over the Youla-based characterization (4.4) is
that we give a clear physical interpretation of the constraint imposed on the system
response. Specifically, a set constraint imposed on the Youla parameter as in (4.4)
in general does not have any specific physical meaning. On the contrary, if we
lift the optimization variables from Youla parameter Q to four system response
transfer matrices (R, M, N, L), then the constraint set described in (4.5) has a
very clear physical meaning — these are constraints that shape the desired closed
loop response from disturbances to state and control action. In addition, using
the controller structure given in Figure 3.2, the SLC can also be interpreted as a
structured constraint for controller implementation. This feature is the key to allow
certain structured controller synthesis problems to be done in a convex manner, as
will be shown in Section 4.2.8 and Chapters 5 - 7.

4.2.2 Quadratically Invariant Subspace Constraints
Recall that for a subspace C that is quadratically invariant with respect to a plant
P22, the set of internally stabilizing controllers K that lie within the subspace C can
be expressed as the set of stable transfer matrices Q ∈ RH∞ satisfyingM(Q) ∈ C,
forM and invertible affine map (c.f. Section 2.2). We therefore have the following
corollary to Theorem 3.

Corollary 4. Let C be a subspace constraint that is quadratically invariant with
respect to P22. Then the set of internally stabilizing controllers satisfying K ∈ C
can be parameterized as in Theorem 3 with L ∈ M(Q) = C.
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Proof. From Lemma 9, we have L = K(I −P22K)−1. Invoking Theorem 14 of [53],
we have that K ∈ C if and only if L = K(I − P22K)−1 ∈ C. The claim then follows
immediately from Theorem 3. �

Corollary 4 gives a reinterpretation of the main result of the QI framework [27, 31,
33, 53, 54, 57]: a QI subspace constraint C for controller K can be equivalently
translated into a subspace SLC given by L ∈ C. Thus we see that QI subspace
constraints are a special case of SLCs.

Note that Corollary 4 holds true for stable and unstable plants P. Therefore, in order
to parameterize the set of internally stabilizing controllers lying in C, we do not
need to assume the existence of an initial strongly stabilizing controller as in [53]
nor do we need to perform a doubly co-prime factorization as in [54].

Finally, we note that in [33] and [31], the authors show that quadratic invariance
is necessary for a subspace constraint C on the controller K to be enforceable
via a convex constraint on the Youla parameter Q. However, when C is not a
subspace constraint, no general methods exist to determine whether the set of
internally stabilizing controllers lying in C admits a convex representation. In
contrast, determining the convexity of a SLC is trivial.

4.2.3 System Performance Constraints
Let g(·) be a functional of the system response — it then follows that all internally
stabilizing controllers satisfying a performance level, as specified by a scalar γ, are
given by transfer matrices {R,M,N,L} satisfying the conditions of Theorem 2 and
the SLC

g(R,M,N,L) ≤ γ. (4.9)

Further, recall that the sublevel set of a convex functional is a convex set, and hence
if g is convex, then so is the SLC (4.9). A particularly useful choice of convex
functional is

g(R,M,N,L) =





[C1 D12

] [
R N
M L

] [
B1

D21

]
+ D11






 , (4.10)

for a system norm ‖ · ‖, which is equivalent to the objective function of the decentral-
ized optimal control problem (2.8). Thus by imposing several performance SLCs
(4.10) with different choices of norm, one can naturally formulate multi-objective
optimal control problems, e.g., mixed H2/H∞ optimal control and mixed H2/L1

optimal control.
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Remark 4. For a continuous time system with the system norm ‖ · ‖ in (4.10) chosen
to be the H2 norm, the closed loop transfer matrix in (4.10) needs to be strictly
proper, i.e., D12L[0]D21 + D11 = 0.

4.2.4 Controller Robustness Constraints
Suppose that the controller is to be implemented using limited hardware, thus
introducing non-negligible quantization (or other errors) to the internally computed
signals: this can be modeled via an internal additive noise δβ in the controller
structure (c.f., Figure 3.2). In this case, we may wish to design a controller that
further limits the effects of these perturbations on the system: to do so, we can
impose a performance SLC on the closed loop transfer matrices specified in the
rightmost column of Table 3.1. Note that it is not clear how to impose such
controller robustness constraints using the Youla parameterization.

For another example, suppose that the sub-controllers ui and u j in different locations
need to exchange their information through some noisy channel. If we model the
communication noise as additive noise on the transmitted signal, thenwe can analyze
the system responses of these perturbations using the structure given in Figure 3.2,
and incorporate their effects in the controller design stage. This shows the usefulness
of our system level approach for controller design with imperfect hardware.

4.2.5 Controller Architecture Constraints
The controller implementation (3.16) also allows us to naturally control the number
of actuators and sensors used by a controller — this can be useful when designing
controllers for large-scale systems that use a limited number of hardware resources
(c.f., Section 4.3.3). In particular, assume that implementation (3.16) parameterizing
stabilizing controllers that use all possible actuators and sensors. It then suffices to
constrain the number of non-zero rows of the transfer matrix [M L] to limit the
number of actuators used by the controller, and similarly, the number of non-zero
columns of the transfer matrix [N> L>]> to limit the number of sensors used by
the controller. As stated, these constraints are non-convex, but recently proposed
convex relaxations [40, 41] can be used in their stead to impose convex SLCs on the
controller architecture. We will explore this topic in more details in Section 4.3.3
and Chapter 7.
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4.2.6 Positivity Constraints and Desired System Response
It has recently been observed that (internally) positive systems are amenable to
efficient analysis and synthesis techniques (c.f., [50] and the references therein).
Therefore it may be desirable to synthesize a controller that either preserves or
enforces positivity of the resulting closed loop system. We can enforce this condition
via the SLC that the elements{ [

C1 D12

] [
R[t] N[t]
M[t] L[t]

] [
B1

D21

] }∞
t=1

and the matrix (D12L[0]D21+D11) are all element-wise nonnegative matrices. This
SLC is easily seen to be convex.

For a similar example, suppose that we want to find a controller to reject a step
disturbance w on the regulated output z̄. In this case, we enforce a convex SLC as

D11 + D12L[0]D21 +

∞∑
t=1

[
C1 D12

] [
R[t] N[t]
M[t] L[t]

] [
B1

D21

]
= 0.

4.2.7 FIR Constraints
Given the parameterization of stabilizing controllers of Theorem 2, it is trivial to
enforce that a system response be FIR with horizon T via the following SLC

R,M,N,L ∈ FT . (4.11)

We argue that imposing a FIR SLC is beneficial in the following ways:

(a) The closed loop response to an impulse disturbance is FIR of horizon T , where
T can be set by the control designer. As such, the settling time of the system
can be accurately tuned.

(b) The controller achieving the desired system response can be implemented using
the FIR filter banks R̃+, M̃, Ñ,L ∈ FT , as illustrated in Figure 3.2. This sim-
plicity of implementation is extremely helpful when applying these methods in
practice.

(c) When a FIR SLC is imposed, the resulting set of stable achievable system re-
sponses and corresponding controllers admit a finite dimensional representation
— specifically, the constraints specified in Theorem 2 only need to be applied
to the impulse response elements {R[t], M[t], N[t], L[t]}Tt=0.
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Remark 5. It should be noted that the computational benefits claimed above hold
only for discrete time systems. For continuous time systems, a FIR transfer matrix is
still an infinite dimensional object, and hence the resulting parameterizations and
constraints are in general infinite dimensional as well.

We defer discussing how to select the FIR horizon T in the context of an optimal
control problem in Chapters 5 - 6, and present here instead connections between the
feasibility of the SLC (4.11) and the controllability, reachability, and observability
of a system (3.11).

Recall that the feasibility of condition (3.4) provides an alternative characterization
of the stabilizability of the system (A, B2). We now give an alternative charac-
terization of the controllability of (A, B2), in terms of condition (3.4) and a FIR
SLC.

Before proceeding, we recall the notions of controllability and reachability in the
sense of Kalman [25]. Given a positive integer T , we say that a system (A, B2) with
dynamics x[t+1] = Ax[t]+B2u[t] is T-step controllable if we can select a sequence
of control actions {u[t]}T−1

t=0 to drive the state x[T] to 0 from any initial condition
x[0]. If we can drive the state x[T] to an arbitrary value from any initial condition
x[0], then the system is said to be T-step reachable. A system (A, B2) is said to
be controllable (reachable) if it is T-step controllable (reachable) for some finite T .
Therefore, to check whether a system (A, B2) is T-step controllable, it suffices to
verify that the impulse responses from δx to (x, u) in (3.2) are FIR of horizon T . It
is therefore clear that a pair (A, B2) is T-step controllable if and only if the following
equations are feasible for some finite T :[

zI − A −B2

] [
R
M

]
= I (4.12a)

R,M ∈ FT ∩
1
z
RH∞. (4.12b)

The conditions for reachability are slightly more restrictive than those for controlla-
bility.

Lemma 10. The pair (A, B2) is reachable if and only if [A B2] is full rank and
(4.12) is feasible for a finite T .

Proof. Assume that (4.12) is feasible. As R and M are FIRs, the poles of R and M
must be located at the origin z = 0. From (4.12a), we observe that

[
zI − A −B2

]
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is right invertible in the region where R(z) and M(z) do not have poles, with[
R> M>

]>
being its right inverse. This means that

[
zI − A −B2

]
has full row

rank for all |z | > 0. Combining with the assumption that [A B2] has full row rank,
we can use the PBH test [15] to show that (A, B2) is reachable.

For the opposite, we apply the PBH test to show that [A B2] must have full row
rank. From the definition of reachability, it is straightforward to construct a feasible
solution to (4.12). �

A similar argument leads to an alternative characterization of the observability of
a pair (A,C2): it suffices to check the feasibility of conditions (3.9) with the added
FIR SLC that R,N ∈ FT for some T .

Finally we note that when the triple (A, B2,C2) is controllable and observable, we can
use equation (3.26) inAppendix 3.A to construct a FIR system response {R,M,N,L}
that satisfies the conditions (3.15) of Theorem 2 — hence, the controllability and
observability of a triple (A, B2,C2) is a necessary and sufficient condition for the
existence of a FIR system response {R,M,N,L} for some horizon T .

4.2.8 Subspace and Sparsity Constraints
Let L be a subspace of RH∞. We can then parameterize all stable achievable
system responses that lie in this subspace by adding the following SLC to the
parameterization of Theorem 2: [

R N
M L

]
∈ L. (4.13)

Of particular interest are subspacesL that define transfer matrices of sparse support.
An immediate benefit of enforcing such sparsity constraints on the system response
is that implementing the resulting controller (3.16) can be done in a localized way,
i.e., each controller state βi and control action ui can be computed using a local
subset (as defined by the support of the system response) of the global controller
state β and sensor measurements y. For this reason, we refer to the constraint (4.13)
as a localized SLC when it defines a subspace with sparse support. Further, as we
discuss in details in Chapters 5 - 7, such localized constraints also allow for the
resulting system response to be computed in a localized way if the SLS problem
(4.1) satisfies certain technical condition. In this case, the global computation
decomposes naturally into decoupled subproblems that depend only on local sub-
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matrices of the state-space representation (2.1). Clearly, both of these features are
extremely desirable when computing controllers for large-scale systems.

Selecting an appropriate (feasible) localized SLC, as defined by the subspace L,
is a subtle task: it depends on an interplay between actuator and sensor density,
information exchange delay and disturbance propagation delay. For instance, in
our recent paper [70], we present a method that allows for the joint design of an
actuator architecture and corresponding feasible localized SLC.We generalize these
methods to the output feedback setting in [72], where we show that actuation and
sensing architectures, as well as feasible localized SLCs, can be co-designed using
convex programming. This class of problem will be discussed in details in Section
5.3 and in Chapter 7.

We informally illustrate some of these concepts in the example below, which builds
on the motivating example Example 2 of Section 2.4.

Example 3. Consider the optimal control problem (2.10) in Example 1, and assume
that there is unit measurement delay, i.e., the control action at time t can be expressed
as u[t] = f (x[0 : t − 1]) for some function f . The optimal system response for this
delayed centralized optimal control problem is given by

R = 1
z

I +
1
z2 A, M = − 1

z2 A2, (4.14)

with the optimal state-feedback controller given by K = −A2(zI + A)−1. Note that
the support of the system response elements R and M is defined by the support of A

and A2, respectively. As a concrete example, let the state matrix A be tridiagonal
(hence its support defines the adjacency matrix of a chain): it then follows that the
transfer matrix R is tridiagonal and M is pentadiagonal.

Using Lemma 5, the controller achieving the desired system response can be im-
plemented using the FIR transfer matrices R̃ and M̃ (which have the same support
as R and M), via the controller structure in Figure 3.1. This implementation is
localized as each node i needs only collect its first and second neighbors’ esti-
mated disturbances ŵ j to compute its control action ui and reference state value
x̂i. In contrast, notice that implementing the control policy u = Ky, with controller
K = MR−1 = −A2(zI + A)−1, requires each node to collect measurements y from
every other node in the system, as K is dense.

As we highlighted in Example 1 and the discussion of Section 2.4, imposing sparsity
constraints on the controller K violates the conditions of quadratic invariance when
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the underlying system is strongly connected, and hence cannot be done using convex
constraints on the Youla parameter. In contrast, imposing a localized SLC on the
system response elements R and M is always convex, and in this case allows us to
recover the centralized optimal solution.

4.2.9 Intersections of SLCs and Spatiotemporal Constraints
Another major benefit of SLCs is that several such constraints can be imposed on
the system response at once. Further, as convex sets are closed under intersection,
convex SLCs are also closed under intersection. To illustrate the usefulness of this
property, consider the intersection of a QI subspace SLC, a FIR SLC, and a localized
SLC. The resulting SLC can be interpreted as enforcing a spatiotemporal constraint
on the system response and its corresponding controller, as we explain using the
chain example previously described.

Figure 4.1 shows a diagram of the system response to a particular disturbance
(δx)i. In this figure, the vertical axis denotes the spatial coordinate of a state in
the chain, and the horizontal axis denotes time: hence we refer to this figure as
a space-time diagram. Depicted are the three components of the spatiotemporal
constraint, namely the communication delay imposed on the controller via the QI
subspace SLC, the deadbeat response of the system to the disturbance imposed by
the FIR SLC, and the localized region affected by the disturbance (δx)i imposed by
the localized SLC.

When the effect of each disturbance (δx)i can be localized within such a spatiotem-
poral SLC, the system is said to be localizable (c.f., [68, 71] and Section 5.3).
Recall that the controllability and the observability of a system is determined by
the existence of an FIR system response. Similarly, the localizability of a system
is determined by the existence of a system response satisfying a spatiotemporal
SLC — in this sense, localizability can be viewed as a natural generalization of
controllability and observability to the spatiotemporal domain.

4.3 Convex System Level Synthesis Problems
In this section, we give some examples of optimal control problems that can be cast
as a SLS problem.

4.3.1 Distributed Optimal Control
Here we show that by combining an appropriate SLC with the SLP described in
Theorem 2, we recover the distributed optimal control formulation (2.8) as a special
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Figure 4.1: Space time diagram for a single disturbance striking the chain described
in Example 3.

case of the SLS problem (4.1). Recall that the objective function in (2.8) is specified
by a suitably chosen system norm measuring the size of the closed loop transfer
matrix from the external disturbance w to the regulated output z̄. Therefore it
suffices to select the SLO to be as described in equation (4.10), and to select the
SLC constraint set S as described in Corollary 4. The resulting SLS problem

minimize
{R,M,N,L}






[C1 D12

] [
R N
M L

] [
B1

D21

]
+ D11







subject to (3.15a) − (3.15c)

L ∈ C (4.15)

is then equivalent to the distributed optimal control problem (2.8) when the subspace
C is QI with respect to the plant P22. Note that the optimization problem (4.15) is
convex as long as the set C imposed on the system response L is convex. Therefore,
we can generalize the set C from a QI subspace constraint to arbitrary convex
constraint. In particular, all decentralized optimal control problems that can be
formulated as convex optimization problems in the Youla domain are special cases
of the SLS problem (4.1).

4.3.2 Localized LQG Control
In [68, 71] we posed and solved a localized LQG (LLQG) optimal control problem.
It can be recovered as a special case of the SLS problem (4.1) by selecting the SLO
to be of the form (4.10) (with the system norm ‖ · ‖ chosen to be the H2 norm),
and selecting the constraint set S to be a spatiotemporal SLC. In the case of a state
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feedback problem, which is known as the localized LQR (LLQR) problem [71], the
resulting SLS formulation is of the form

minimize
{R,M}

‖
[
C1 D12

] [
R
M

]
‖2H2

subject to (3.4a) − (3.4b)[
R
M

]
∈ C ∩ L ∩ FT, (4.16)

for C a QI subspace SLC, L a localized SLC, and FT a FIR SLC. In the case of an
output feedback LLQG, the resulting SLS formulation is given by

minimize
{R,M,N,L}






[C1 D12

] [
R N
M L

] [
B1

D21

]
+ D11







subject to (3.15a) − (3.15c)[

R N
M L

]
∈ C ∩ L ∩ FT . (4.17)

The observation that we make in [71] (and extend to the output feedback setting in
[68]), is that the LLQR problem (4.16) can be decomposed into a set of independent
subproblems solving for the columns Ri and Mi of the transfer matrices R and M
— as these problems are independent, they can be solved in parallel. Further, the
localized constraint L restricts each sub-problem to a local subset of the system
model and states, as specified by the nonzero components of the corresponding
column of the transfer matrices R and M (e.g., as was described in Example 1),
allowing each of these subproblems to be expressed in terms of optimization vari-
ables (and corresponding sub-matrices of the state-space realization (3.4)) that are
of significantly smaller dimension than the global system response {R,M}. Thus
for a given feasible spatiotemporal SLC, the LLQR problem (4.16) can be solved
for arbitrarily large-scale systems, assuming that each sub-controller can solve its
corresponding subproblem in parallel. This argument extends to output feedback
LLQG problem as well. We will discuss the LLQR and the LLQG problem in
details in Chapter 5 and 6, respectively. We also show how to co-design an actuation
architecture and feasible corresponding spatiotemporal constraint in Section 5.3,
and so the assumption of a feasible spatiotemporal constraint is a reasonable one.

Finally in Chapter 7, we generalize all of these concepts to the class of convex lo-
calized separable SLS (CLS-SLS) problems. Specifically, we show that appropriate
notions of separability for SLOs and SLCs can be defined which allow for optimal
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controllers to be synthesized and implemented with order constant complexity (as-
suming parallel computation is available for each subproblem) relative to the global
system size.

4.3.3 Regularization for Design and SLS
At this point our motivation has been to extend controller synthesis methods to
large-scale systems. An equally important task when designing control systems in
such settings is the design of the controller architecture itself, i.e., the placement of
actuators, sensors and communication links between them. As will be discussed in
Section 5.3, sufficiently dense actuation, sensing and communication architectures
are necessary for a localized optimal control problem to be feasible. More generally,
there is a tradeoff between closed loop performance and architectural cost, as denser
controller architectures lead to better closed loop performance.

The regularization for design (RFD) frameworkwas formulated to explore this trade-
off using convex programming by augmenting the objective function with a suitable
convex regularizer that penalizes the use of actuators, sensors, and communication
links. The original RFD formulation allowed for controller architecture co-design
in the Youla domain by exploiting QI properties of desirable architectures [38–41],
but was later ported to the LLQR framework [70]. Thus to integrate RFD with
the system level approach, it suffices to add a suitable regularizer, as mentioned in
Section 4.2.5 and described in [40, 70], to the objective function of the SLS problem
(4.1).

We will formulate the sensor actuator regularized LLQG problem in Chapter 7 to
co-design a localized optimal controller and its sensing and actuation architecture.
Further, we will show that the sensor actuator regularized LLQG problem belong
to the class of CLS-SLS problems, and thus can be solved with constant parallel
complexity for arbitrary large-scale systems.

4.3.4 Computational Complexity and Non-convex Optimization
A final advantage of the SLS problem (4.1) is that it is transparent to determine the
computational complexity of the optimization problem. Specifically, the complexity
of solving (4.1) is determined by the type of the SLO and the characterization of the
intersection of the SLC and SLP. Further, when the SLS problem is non-convex, the
direct nature of the formulationmakes it straightforward to determine suitable convex
relaxations or non-convex optimization techniques for the problem. In contrast,
as discussed in [33], no general method exists to determine the computational
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complexity of the decentralized optimal control problem (2.8) for a general constraint
set C.
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APPENDIX

4.A Alternative Proof of Lemma 9
Algebraic Proof of Lemma 9. From the definition of R in (3.14), we have

(zI − A − B2KC2)R = I .

Moving B2KC2R to the right-hand-side and multiplying (zI − A)−1 on both sides, it
is straightforward to derive that

R = (zI − A)−1(I + B2KC2R). (4.18)

Then, we have

C2R = C2(zI − A)−1 + C2(zI − A)−1B2KC2R

= C2(zI − A)−1 + P22KC2R.

Moving P22KC2R to the left-hand-side and multiplying (I −P22K)−1 on both sides,
we have

C2R = (I − P22K)−1C2(zI − A)−1. (4.19)

Finally,

L = K +KC2RB2K

= K +K(I − P22K)−1C2(zI − A)−1B2K

= K +K(I − P22K)−1P22K

= K(I − P22K)−1,

which completes the proof. �



58

C h a p t e r 5

LOCALIZED LINEAR QUADRATIC REGULATOR

In the rest of this dissertation, we move our focus to the class of convex localized
separable system level synthesis (CLS-SLS) problems. The class of CLS-SLS prob-
lems can not only be solved in a convex manner, but also be solved in a localized
and scalable way, with O(1) parallel computational complexity compared to the size
of the global network. In theory, we can solve a CLS-SLS problem to synthesize
localized optimal controller for systems with arbitrary large-scale if parallel compu-
tation is available. In addition to the scalability of controller synthesis, the controller
achieving the desired system response can also be implemented in a localized and
scalable way — each sub-controller in the network only needs to exchange infor-
mation with O(1) numbers of sub-controllers to compute its control action. The
CLS-SLS framework is therefore extremely favorable for large-scale applications
such as power grid, transportation network, and computer networking.

In this chapter, we introduce the localized linear quadratic regulator (LLQR) prob-
lem, which is a simple example of a CLS-SLS problem. We show that the LLQR
controller can achieve similar transient optimal performance compared to the tra-
ditional centralized LQR one, but far more superior in terms of the scalability of
controller synthesis and implementation. In particular, we demonstrate the LLQR
controller on a randomized heterogeneous power network example with 51200 states
in Section 5.7. We show that the LLQR controller can be synthesized in 23 minutes
using a personal computer. In contrast, the theoretical computation time for the
centralized LQR on the same computer is more than 200 days, and the distributed
LQR is intractable.

The purpose of this chapter is to illustrate the intuition of our method, so we will
keep our system model as simple as possible. We will generalize the discussion to
output feedback localized linear quadratic Gaussian (LLQG) in Chapter 6, and to
the general class of CLS-SLS problems in Chapter 7.

The rest of this chapter is organized as follows. We introduce the interconnected
system model, explain the challenges of controller design for large-scale systems,
and give the LLQR problem formulation in Section 5.1. In Section 5.2, we show that
the LLQR controller can be synthesized and implemented in a localized and scalable



59

way for a localizable system. We discuss the relations between the localizability
of the system, the delay pattern of the communication network, and the actuation
architecture of the controllers in Section 5.3. We also propose a regularization-based
method [70] to co-design a LLQR controller and its actuation architecture in the
same section. In Section 5.4, we introduce the class of nearly localizable systems,
and discuss the robustness of applying a localized controller on a nearly localizable
system. In Section 5.5, we quantify the sub-optimality of the LLQR controller and
propose an adaptive constraint update algorithm to design a LLQR controller with
performance guarantee [66]. In Section 5.6, we consider the localized distributed
Kalman filter (LDKF) problems for large-scale state estimation, and show that LDKF
problems can be solved using the LLQR algorithm [74]. Finally, we perform some
numerical simulation to illustrate the effectiveness of the LLQR method in Section
5.7.

5.1 Problem Statement
We begin by introducing the interconnected system model that we consider in
this chapter. We then explain why the traditional centralized and distributed LQR
methods do not scale to large systems. We end this section by formulating the LLQR
problem as a localized SLS problem.

5.1.1 Interconnected System Model

……

……

Subsystem

: physical interaction
: communication
: sensing and actuation

: sub-controller

: subsystem’s state

……

……

Figure 5.1: An Example of Interconnected System

Consider n dynamically coupled discrete time linear time invariant (LTI) subsystems
that interact with each other according to an interaction graph G = (V, E). Here
V = {1, . . . , n} denotes the set of subsystems. We denote xi and ui the state vector
and control action of subsystem i. The set E ⊆ V × V encodes the physical
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interaction between these subsystems — an edge (i, j) is in E if and only if the
state x j of subsystem j directly affects the state xi of subsystem i. The dynamics of
subsystem i is assumed to be given by

xi[t + 1] = Aii xi[t] +
∑
j∈Ni

Ai j x j[t] + Biiui[t] + wi[t], (5.1)

where Ni = { j |(i, j) ∈ E} is the (incoming) neighbor set of subsystem i, Aii,
Ai j , Bii some matrices with compatible dimension, and wi the process disturbance
of subsystem i. Figure 5.1 shows an example of such interconnected distributed
system— each subsystem i has a sub-controller that takes the locally available state
measurement xi, exchanges information with some other sub-controllers through a
communication network, and generates the control action ui to control the state xi

of the physical system.

Define x = [x1 . . . xn]>, u = [u1 . . . un]>, and w = [w1 . . .wn]> the stacked vectors
of the subsystem states, controls, and process disturbances, respectively. The n

interconnected system models (5.1) can be combined into a global system model
given by

x[t + 1] = Ax[t] + B2u[t] + w[t], (5.2)

with

A =


A11 · · · A1n
...

. . .
...

An1 · · · Ann

 and B2 =


B11 · · · 0
...

. . .
...

0 · · · Bnn

 .
Note that the topology of the graph G is encoded in the sparsity pattern of the global
system matrices A. In particular, the block sparsity pattern of A is equal to the
adjacency matrix of its underlying graph G.

Remark 6. When each xi and ui in (5.1) are scalar variables, we call the model
(5.1) - (5.2) a scalar subsystem model.

Remark 7. Note that the matrix B2 in (5.2) is diagonal. If the ith subsystem does
not have an actuator that can directly alter its state, we simply assign Bii = 0. We
will lift these assumptions in Chapter 7 to consider the most general output feedback
interconnected system model with arbitrary sparsity pattern.

We assume that the pair (A, B2) in (5.2) is controllable. In addition, the disturbances
w are drawn i.i.d. from a zero mean unit covariance Gaussian distribution, i.e., we
have E(w[k]) = 0 and E(w[i]w[ j]>) = δi j I for all i, j, k, where δi j is the Kronecker
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delta and E(·) is the expectation operator. The objective is to find a control strategy,
which is a mapping from state measurement x to control action u, to minimize the
expected value of the average quadratic cost

E
(
lim

N→∞

1
N

N∑
k=1

[
x[k]
u[k]

]> [
C>1 C1 C>1 D12

D>12C1 D>12D12

] [
x[k]
u[k]

] )
(5.3)

for some cost matrices (C1,D12). The traditional infinite horizon stochastic LQR
problem can then be formulated as

minimize
{x[k],u[k]}∞

k=1

E
(
lim

N→∞

1
N

N∑
k=1

[
x[k]
u[k]

]> [
C>1 C1 C>1 D12

D>12C1 D>12D12

] [
x[k]
u[k]

] )
subject to x[k + 1] = Ax[k] + B2u[k] + w[k]

x[0] = 0, u[0] = 0

E(w[k]) = 0, E(w[i]w[ j]>) = δi j I . (5.4)

5.1.2 Challenges on Scalability
Traditionally, the solution of the stochastic LQR problem (5.4) is obtained by solving
a discrete time algebraic Riccati equation (DARE). The optimal solution is given by
a static feedback u[k] = K x[k], where the gain matrix K can be found by solving the
DARE. The solution to the LQR problem is one of the most important and elegant
result in modern optimal control theory [81] due to the following reasons: (i) the
optimal solution is proven to be linear (the control action u is a linear function of
the state measurement x), (ii) the optimal solution is static (the control action u[k]
at time k depends only on the measurement x[k] at time k), and (iii) the controller
K can be obtained by solving a convex program in polynomial time. In addition
to its simplicity, the LQR method has proven to be useful in extremely diverse
applications [81].

However, there are some limitations of the LQR method for large-scale systems:

1. Communication delays: The LQR gain matrix K is generally dense even
when the system matrices (A, B2) that specify the system dynamics (5.2) are
sparse. This means that the measurements from all states need to be shared
instantaneously, which requires infinite (or impractically fast) communication
speed.

2. Scalability of controller implementation: A dense LQR gain also implies
that the measurements from all sensor need to be collected by every sub-
controller in the network, which is not scalable to implement.
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3. Scalability of controller synthesis: To compute the LQR gain, one need
to solve a large-scale DARE. The complexity of solving the DARE is O(n3),
where n is the dimension of the matrix A. Even though the DARE can be
solved in polynomial time, the complexity blows up quickly for a large n.

4. Scalability of controller re-synthesis subject to model change: When a
few entries of the global plant model (A, B2) change, one needs to recompute
the solution of (5.4) to resynthesize the global LQR optimal controller. This
is not scalable for incremental design when the physical system expands.

To solve the above limitations, a common approach is to incorporate structured
constraint on the controller, which leads to a constrained optimal control problem
as in (2.8). In particular, the stochastic LQR problem (5.4) is a special case of aH2

optimal control problem, with plant model given by

P =


A I B2

C1 0 D12

I 0 0

 =
[
P11 P12

P21 P22

]
.

A structuredH2 optimal control is given by (cf., Section 2.3)

minimize
K

‖P11 + P12K(I − P22K)−1P21‖2H2
(5.5a)

subject to K internally stabilizes P (5.5b)

K ∈ C, (5.5c)

where the subspace constraint K ∈ C enforces information sharing constraints
between the sub-controllers.1 As mentioned in Chapter 2, it was shown in [53] that
if the subspace constraint set C is quadratically invariant (QI) with respect to P22

then the optimal control problem admits a convex reformulation. Loosely speaking,
this condition requires that sub-controllers be able to share information with each
other at least as quickly as their control actions propagate through the plant [52].
The QI framework therefore provides a tractable way to address the challenge of
communication delays mentioned above.

However, the distributed optimal control framework based on QI has less emphasis
on the challenges of scalability mentioned above. We note that the implementation
complexity of controller K is determined by the densest row Ki of K. Specifically, if

1Note that the controller K here does not need to be static. Therefore, we use a boldface Latin
letter to emphasize that K is a transfer matrix.
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we consider the control action taken at subsystem i, which is specified by ui = Kix,
then if Ki is completely dense then subsystem i must collect measurements from
every other subsystem j ∈ V. In order to design a controller that is scalable to
implement, a natural solution is to impose sparsity constraints on the controller K
such that each row only has a small number of nonzero terms — in this way each
subsystem i only needs to collect a small number of measurements to compute its
control action. Unfortunately, this naive approach fails if the underlying topology of
G of the networked system is strongly connected. Specifically, when the topology
of G is strongly connected, any sparse constraint set C is not QI (cf. Example 1 in
Section 2.4), which means that the constrained optimal control problem is always
non-convex. Although recent methods based on convex relaxations [19] can be used
to solve certain cases of the non-convex optimal control problem (5.5) with sparse
constraint set C, the underlying synthesis optimization problem is itself still large-
scale and does not admit a scalable reformulation. The need to address scalability,
both in the synthesis and implementation of a controller, is the driving motivation
of the LLQR framework.

5.1.3 Localized LQR as a SLS Problem
We first reformulate the stochastic LQR problem (5.4) into the form of a SLS
problem. For the system model (5.2), we define R to be the system response from
w to x, and M to be the system response from w to u. The stochastic LQR problem
can then be reformulated using the system response as

minimize
{R,M}

‖
[
C1 D12

] [
R
M

]
‖2H2

subject to
[
zI − A −B2

] [
R
M

]
= I[

R
M

]
∈ 1

z
RH∞. (5.6)

Note that the constraints in (5.6) is just the system level parameterization (SLP) for
state feedback systems (cf. Theorem 1 in Chapter 3). As there is no additional
system level constraint (SLC) imposed on the system response, we call (5.6) a
centralized (unconstrained) LQR problem.

Although (5.6) is a convex SLS, it is still a large-scale optimization problem that
depends on the knowledge of the global plant model (A, B2). To enhance the
scalability of controller synthesis and implementation, we impose an additional d-
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localized SLC Ld (this will be formally defined later) and a FIR SLC FT on the
system response in (5.6), which leads to the LLQR problem given by

minimize
{R,M}

‖
[
C1 D12

] [
R
M

]
‖2H2

(5.7a)

subject to
[
zI − A −B2

] [
R
M

]
= I (5.7b)[

R
M

]
∈ Ld ∩ FT ∩

1
z
RH∞. (5.7c)

The goal of this chapter is to show that (i) the LLQR problem (5.7) can be solved
in a localized and scalable way if the d-localized SLC and the FIR SLC are prop-
erly specified, and (ii) the LLQR controller achieving the desired localized system
response can be implemented in a localized and scalable way. At this point, we
assume that the LLQR problem (5.7) is feasible. The feasibility of (5.7), which is
called the (d,T) state feedback localizability of the system (A, B2), will be formally
defined in the end of this section.

d-localized SLC

The notion of d-localized SLC Ld is defined based on the interaction graph G of
the interconnected system. We first recall some standard terminology from graph
theory.

Definition 6. In an unweighted graph G, the length of a path is the number of edges
it uses.

Definition 7. For an interconnected system with an unweighted interaction graphG,
the distance from subsystem j to subsystem i is defined by the length of the shortest
path from node j to node i in the graph G, and is denoted by dist ( j → i).

With the definition of the distance function on the interaction graph, we define the
d-incoming and outgoing sets of subsystem j as follows.

Definition 8. The d-outgoing set of subsystem j is defined asOut j(d) := {i |dist( j →
i) ≤ d}, and the d-incoming set of subsystem j is defined as In j(d) := {i |dist(i →
j) ≤ d}.

Example 4. For a system (5.1) with interaction graph illustrated in Figure 5.2, the
2-incoming and 2-outgoing sets of subsystem 5 are given by In5(2) = {2, 3, 4, 5} and
Out5(2) = {5, 6, 7, 8, 9, 10}, respectively.
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In5(2)

Out5(2)

Figure 5.2: Illustration of the 2-incoming and 2-outgoing sets of subsystem 5.

Our approach to making the controller synthesis task specified in optimization
problem (5.7) scalable is to confine, or localize the effects of each process disturbance
w j to a d-outgoing set at each subsystem j, for a d much smaller than the radius
of the interaction graph G. As we make precise in the sequel, this implies that
each sub-controller j can be synthesized using the localized plant model contained
within its (d+1)-outgoing set Out j(d+1), and implemented by collecting data from
subsystems contained within its (d + 1)-incoming set In j(d + 1).

With this approach in mind, we say that the system response R mapping the state
disturbancew to the state x is d-localized if its impulse response can be appropriately
covered by d-outgoing sets. The formal definition of a d-localized system response
is described as follows.

Definition 9. For the system model (5.2), let Ri j denote the transfer function from
the perturbation w j at sub-system j to the state xi at sub-system i. The map R is said
to be d-localized if and only if for every subsystem j, Ri j = 0 for all i < Out j(d).
Similarly, letMi j denote the transfer function from the perturbationw j at sub-system
j to the control ui at sub-system i. The map M is said to be d-localized if and only
if for every subsystem j, Mi j = 0 for all i < Out j(d).

Remark 8. Alternatively, we can also say that R is d-localized if and only if for
every subsystem i, Ri j = 0 for all j < Ini(d).

Remark 9. Let supp (·) : Rm×n → {0, 1}m×n be the support operator, where
{supp (A)}i j = 1 if Ai j , 0 and {supp (A)}i j = 0 otherwise. Let A = supp (A) ∪
supp (I), where ∪ is the OR operator on binary matrices. For the scalar subsystem
model, a convenient way to impose d-localized SLC on the system response R is
given by

supp (R) ⊆ supp
(
Ad

)
. (5.8)
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In words, this says that the transfer matrix R is d-localized if and only if the effect
of each disturbance is contained, or localized, to within a region of radius d from
the source of the disturbance. In general, we can specify a localized constraint
with different values of d for the system response R and M, respectively. As will be
shown later in this chapter, a common approach is to enforce a d-localized constraint
on R, and a (d + 1)-localized constraint on M. We call this special type of localized
constraint a d-localized SLC, and is denoted by Ld (cf. (5.7)).

Definition 10. The subspace Ld is called a d-localized SLC if it constrains the
system response R to be d-localized, and M to be (d + 1)-localized.

(d,T) state feedback localizability

With the definition of the d-localized SLC, we formally define the notion of (d,T)
state feedback localizability of a system (A, B2) as follows.2

Definition 11. The system (5.2) with system matrices (A, B2) and an underlying
graph G is said to be (d,T) state feedback localizable if (5.7) is feasible.

Recall that a system is said to be controllable if there exists a FIR closed loop
response. Here, we say that a system is (d,T) localizable if there exists a localized
FIR closed loop response (cf., Section 4.2.9). In this sense, localizability can be
considered as a stricter notion of the controllability of a system.

The relations between the localizability of the system, the delay pattern of the
communication network, and the actuation architecture of the controllers will be
discussed in details in Section 5.3.

5.2 Localized Linear Quadratic Regulator
In this section, we propose a scalable algorithm to solve the LLQR problem (5.7) in
a localized and scalable way. Specifically, we show that each sub-controller j can
be synthesized using the localized plant model contained within the set Out j(d + 1).
Therefore, if the cardinality of the set Out j(d + 1) for each j is significantly smaller
than the size of the global network, then the LLQR controller can be synthesized
with O(1) parallel computational complexity. In addition, when the system is
(d,T) localizable, the LLQR controller can also be implemented in a localized
way, in the sense that each sub-controller j in the network only needs to exchange

2Since we only discuss state feedback in this chapter, we sometimes use (d,T) localizability as
an abbreviation of (d,T) state feedback localizability in this chapter.
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information within the set In j(d + 1). Finally, we show that the LLQR method
naturally supports localized controller re-synthesis subject to model change. This
solves all the challenges of scalability mentioned in Section 5.1.2.

For the ease of presentation, we only consider scalar subsystem model (cf. Remark
6) in this section. The method extends to the non-scalar subsystem model in a
natural way.

5.2.1 Localized Synthesis
The localized synthesis procedure consists of two main steps. First, we perform a
column-wise separation to decompose the LLQRproblem (5.7) into parallel column-
wise LLQR subproblems. Second, we exploit the d-localized constraint to reduce
the dimension of each LLQR subproblem from global scale to local scale. These
two steps are explained in details as follows.

Column-wise Separation

We first notice that (5.7) admits a column-wise separation — we can solve for the
transfer matrices R and M column at a time. Denote G j the jth column of any
transfer matrix G. From the definition of theH2 norm, we can rewrite the objective
in (5.7) as

| |
[
C1 D12

] [
R
M

]
| |2H2
=

n∑
j=1
| |

[
C1 D12

] [
R
M

]
j

| |2H2
.

This allows us to decompose (5.7) into n parallel subproblems as

minimize
{Rj,Mj }

| |
[
C1 D12

] [
R
M

]
j

| |2H2
(5.9a)

subject to
[
zI − A −B2

] [
R
M

]
j

= e j (5.9b)[
R
M

]
j

∈ (Ld) j ∩ FT ∩
1
z
RH∞ (5.9c)

for j = 1, . . . , n, with e j a column vector with 1 on its jth entry and 0 elsewhere. By
definition, the jth column of R and M are the system response of disturbance w j to
x and u, respectively. The column-wise separation property therefore suggests that
we can analyze the system response of each local disturbance w j in an independent
and parallel way. This separation property is implied by two different characteristics
of the LLQR problem. First, the system is linear time invariant, so the superposition
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principle holds. This allows us to verify the system dynamics constraint in (5.7b)
column at a time. Second, the disturbance wi and w j are assumed to be uncorrelated
to each other, i.e., w ∼ N(0, I). In addition, the cost function in (5.7a) is chosen to
be the LQR cost. In this case, the objective function (5.7a) can be separated into
column-wise sum as above.

Dimension Reduction

We now focus on a specific j in (5.9). Note that the localized constraint (Ld) j
by definition forces the non-zero entries of R and M to be contained within the
sets Out j(d) and Out j(d + 1), respectively. Therefore, we can interpret (5.9c) as
a constraint to localize the effects of disturbance w j within the set Out j(d), by
actuating the control signal within the set Out j(d +1). In order to get further insight
of (5.9), we rewrite (5.9) from the frequency domain formulation to the time domain
formulation as

minimize
{x[k],u[k]}T

k=1

T∑
k=1
‖C1x[k] + D12u[k]‖22 (5.10a)

subject to x[1] = e j (5.10b)

x[k + 1] = Ax[k] + B2u[k], k = 1, . . . ,T (5.10c)

x[T + 1] = 0 (5.10d)

xi[k] = 0, for i < Out j(d), k = 1, . . . ,T (5.10e)

ui[k] = 0, for i < Out j(d + 1), k = 1, . . . ,T, (5.10f)

where (5.10b) - (5.10c) comes from the system equation (5.9b), (5.10d) from the
FIR constraint FT , and (5.10e) - (5.10f) from the d-localized constraint (Ld) j .

When the nonzero entries of the state vector x[k] are contained within the set
Out j(d), we know by definition that the nonzero entries of Ax[k] will be contained
within the set Out j(d + 1). In addition, as B2 is diagonal in our scalar subsystem
model, the nonzero entries of B2u[k] are also contained within the set Out j(d + 1).
Therefore, the nonzero entries of the state vector x[k + 1] = Ax[k]+ B2u[k] at time
step (k + 1) will automatically be contained within the set Out j(d + 1). In other
words, we do not need to check the condition xi[k + 1] = 0 for i ∈ {i |dist( j → i)
≥ d + 2}. Applying this argument for each time step k, we note that we only need
to check the condition xi[k] = 0 on the boundary set {i |dist( j → i) = d + 1} at
each time step k. As long as the states in the boundary set are all zero in all the
time horizon, it is guaranteed that the effect of initial condition x[1] = e j will not
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escape from the localized region Out j(d + 1), and the condition xi[k] = 0 for i ∈
{i |dist( j → i) ≥ d + 2} for all k will be automatically satisfied. Therefore, we can
replace the constraint (5.10e) by the condition

xi[k] = 0, for i ∈ {i |dist( j → i) = d + 1} (5.11)

without changing the solution of (5.10).

This motivates the definition of the ( j, d)-reduced state and control vectors as follows
[71].

Definition 12. The ( j, d)-reduced state vector of x consists of all local state xi with
i ∈ Out j(d + 1) and is denoted by x( j,d). Similarly, the ( j, d)-reduced control vector
of u consists of all local control ui with i ∈ Out j(d + 1) and is denoted by u( j,d).

We can then define the ( j, d)-reduced plant model A( j,d) by selecting submatrix of
A consisting of the rows and columns associated with x( j,d), and B( j,d) by selecting
submatrix of B2 consisting of the rows and columns associated with x( j,d) and
u( j,d), respectively. The cost matrices C( j,d) and D( j,d) can be defined by selecting
submatrices ofC1 and D12 consisting of the columns associated with x( j,d) and u( j,d),
respectively. This allows us to simplify the optimization problem (5.10) as

minimize
{x(j,d)[k],u(j,d)[k]}Tk=1

T∑
k=1
‖C( j,d)x( j,d)[k] + D( j,d)u( j,d)[k]‖22 (5.12a)

subject to x( j,d)[1] = er( j,d) (5.12b)

x( j,d)[k + 1] = A( j,d)x( j,d)[k] + B( j,d)u( j,d)[k], k = 1, . . . ,T
(5.12c)

x( j,d)[T + 1] = 0 (5.12d)

xi[k] = 0, for i ∈ {i |dist( j → i) = d + 1}, (5.12e)

where er( j,d) in (5.12b) is the initial condition e j in the reduced dimension. The
complexity of solving (5.12) is determined by the dimension of the vector x( j,d) and
u( j,d), which is equal to the cardinality of the set Out j(d + 1). When we choose
a parameter d that is significantly smaller than the radius of the interaction graph,
the dimension of the state x( j,d) (or equivalently, u( j,d)) can be much smaller than
the dimension of the original state x. In this case, the complexity of solving (5.12)
is independent to the size of the global network, i.e., with O(1) computational
complexity. In summary, we reduce the global optimization problem (5.10) into
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Localized Region

Figure 5.3: The localized region for w1

a local optimization problem (5.12) that only depends on the local plant model
(A( j,d), B( j,d)).

We illustrate the above idea through a simple example.

Example 5. Consider a chain of n LTI subsystems with a single disturbance w1

at the first subsystem. We solve the LLQR subproblem (5.10) with initial condition
x[1] = e1. Assume that the localized constraint in (5.10) is specified by a parameter
d = 1, i.e., we have x3 = · · · = xn = 0 and u4 = · · · = un = 0. In this case, we
can solve (5.10) using only the information contained within the localized region
Out1(2) shown in Figure 5.3. Intuitively, as long as the boundary constraint x3 = 0
is enforced, the system response of w1 can never escape from the pre-specified
localized region. In other words, the condition xi = 0 for i = 4, . . . n is implicitly
implied by the boundary constraint x3 = 0. In order to make the state x3 at the third
subsystem unaffected by the disturbance w1 from the first subsystem, the actuator u3

at the third subsystem must actuate properly to cancel the coupling from the state
x2 at the second subsystem. The complexity of analyzing the system response of w1

is completely independent to the size of the global network n, and thus our method
can be scaled to systems with arbitrary large-scale.

Summary of Localized Synthesis

In summary, we propose a scalable algorithm to solve the LLQR problem in (5.7)
with two steps. First, as the system is LTI and the cost is quadratic, we perform
a column-wise separation to decompose the LLQR problem (5.7) into column-
wise LLQR subproblems in (5.9). We then analyze the system response for each
individual disturbance w j in an independent and parallel way. Second, we exploit
the d-localized constraint imposed on the system response to reduce the dimension
of each column-wise LLQR subproblem from global scale to the localized region
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specified by the set Out j(d + 1). We then analyze the system response for each
individual disturbance w j within their own localized regions in a parallel way. This
argument holds even when the localized regions for each disturbance overlap. As
discussed before, if the parameter d is chosen in the way that the cardinality of the
set Out j(d + 1) for each j is significantly smaller (i.e., O(1)) than the size of the
global network, then the parallel computation complexity of our LLQR synthesis
algorithm is O(1).

5.2.2 Localized Implementation
Once we solve the LLQR problem (5.7), we get a localized system response (R,M).
Applying Theorem 1 in Chapter 3, the controller achieving the desired system
response can be implemented by

ŵ[t] = x[t] − x̂[t] (5.13a)

u[t] =
T−1∑
τ=0

M[τ + 1]ŵ[t − τ] (5.13b)

x̂[t + 1] =
T−2∑
τ=0

R[τ + 2]ŵ[t − τ]. (5.13c)

The internal states of the controller (5.13) should be interpreted as follows: ŵ is
the controller estimate of the process disturbance, and x̂ is a desired or reference
state trajectory. The estimated disturbance ŵ[t] is computed by taking the difference
between the current statemeasurement x[t] and the current reference state value x̂[t].
The control action u[t] and the next reference state value x̂[t + 1] are then computed
using past estimated disturbances ŵ[t − T + 1], . . . , ŵ[t]. As shown in Section 3.1,
the estimated disturbance ŵ[t] indeed reconstructs the true disturbance w[t − 1] that
perturbed the plant at time t − 1; hence ŵ = z−1w. It is then straightforward to
show that the desired system response {R,M} satisfying x = Rw and u = Mw is
achieved.

The controller implementation (5.13) is localized in the following sense: each
sub-controller ui only needs to collect the estimated disturbance from its (d + 1)-
incoming set to compute its control action. Specifically, as the system response R
is d-localized, the nonzero entries of the ith row of R are contained within the set
Ini(d), which means that we only need to collect ŵ j for j ∈ Ini(d) to compute x̂i.
Similarly, we can compute ui by collecting ŵ j for j ∈ Ini(d + 1). We summarize the
LLQR controller synthesis and implementation in Algorithm 1.
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Algorithm 1: LLQR Synthesis and Implementation
Given the LLQR problem (5.7) ;
for each disturbance w j do

Identify its localized region Out j(d + 1) and define local plant model
(A( j,d), B( j,d)) within the localized region;
Solve (5.12) to compute x( j,d) and u( j,d);

if all LLQR subproblems are feasible then
for each LLQR subproblem do

Distribute the solution x( j,d) and u( j,d) to the local controllers contained
within its localized region Out j(d + 1);

for each controller ui do
Collect the estimated disturbance ŵ j from the region Ini(d + 1) to compute
ui, x̂i, and ŵi during controller implementation;

It should be noted that all the for loops in Algorithm 1 can be computed in a parallel
way.

5.2.3 Localized Re-synthesis
We note that each LLQR subproblem j can be solved using the plant model infor-
mation contained within its localized region Out j(d + 1). Therefore, when the plant
model changes locally, we only need to re-compute some of the LLQR subprob-
lems to maintain global optimality, and then distribute the solution of these LLQR
subproblems within their localized regions.

For instance, suppose that the coupling strength from state xk to state x j changes,
i.e., the plant parameter A j k changes from some nonzero value to another nonzero
value. In this case, if the state x j is covered by the (d + 1)-outgoing region of state
xi, then we need to re-compute the ith LLQR subproblem. This is equivalent saying
that we need to re-compute the ith LLQR subproblem for i ∈ In j(d + 1). Once these
LLQR subproblems are re-computed, we distribute each of these solution to its own
(d + 1)-outgoing region. In this case, the controller being updated is covered by the
set ⋃

i∈Inj (d+1)
Outi(d + 1). (5.14)

When the sparsity pattern of the system matrix A is symmetric (i.e., the underlying
interaction graph G is undirected), the d-incoming set of state x j is equal to the d-
outgoing set of state x j , for all d and j. In this case, the set (5.14) can be simplified
into Out j(2d + 2) (or equivalently, In j(2d + 2)).



73

From the above discussion, we note that LLQR supports real-time localized con-
troller re-synthesis subject to model change. This feature allows incremental design
of the optimal controller when the physical system expands.

5.2.4 Summary of LLQR
In this section, we show that the LLQR controller can be synthesized and im-
plemented in a localized and scalable way, if the localized constraint Ld and the
FIR constraint FT are properly specified and the system is (d,T) localizable. In
addition, we can re-synthesize the optimal controller in a localized way when the
model changes locally. All these properties are extremely favorable for large-scale
applications.

5.3 State Feedback Localizability
We note that a key assumption of the LLQR algorithm is that the system (A, B2)
is localizable, i.e., the LLQR problem admits a localized feasible solution. In this
section, we show that the (d,T) localizability of the system (5.2) depends on two
different factors: (i) the delays pattern of the communication network between sub-
controllers, and (ii) the locations of the actuators in the network (as specified by the
matrix B2).

We begin by formulating the LLQR problem with a spatiotemporal SLC. The
spatiotemporal SLC is described by the intersection of three component: a d-
localized SLC, a FIR SLC, and a communication delay SLC (cf. Section 4.2.9).
Then, we assume full actuation (i.e., B2 = I), and design the d-localized SLC Ld

and the FIR SLC FT for a given communication delay SLC such that the LLQR
synthesis problem (5.7) is feasible. Finally, we propose a regularization-based
method to co-design a feasible LLQR controller and locations of the actuators in
the network.
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5.3.1 LLQR with Spatiotemporal Constraints
Consider a LLQR problem with a spatiotemporal SLC (cf. Section 4.2.9) given by

minimize
{R,M}

‖
[
C1 D12

] [
R
M

]
‖2H2

(5.15a)

subject to
[
zI − A −B2

] [
R
M

]
= I (5.15b)[

R
M

]
∈ C(ts,tc,ta) ∩ Ld ∩ FT ∩

1
z
RH∞, (5.15c)

where C(ts,tc,ta) is a parameterized communication delay SLC,Ld a d-localized SLC,
and FT a FIR SLC. We already introduce the localized SLC and the FIR SLC in the
previous section. Here we explain the details of the communication delay SLC as
follows.

We assume that the communication network has the same topology as the physical
network, and the communication delay SLC C(ts,tc,ta) is characterized by three pa-
rameters: the sensing delay ts, the communication delay tc, and the actuation delay
ta. Specifically, it takes time ts for a sub-controller ui to access its state measurement
xi, time tc for a sub-controller to transmit information to its direct neighbors, and
time ta for a control action ui to alter the state xi of its subsystem. The delays (ts, tc, ta)
are normalized with respect to the sampling time of the discrete time system (5.2),
and hence they may be non-integers in general. We adopt the following convention
to handle fractional delays: if information is received by a sub-controller between
two sampling times t and t +1, then it may be used by the sub-controller to compute
its control action at time t + 1. The actuation delay ta is typically set to 1 in order
to be consistent to the discrete time system equation (5.2).

Remark 10. The LLQR problemwith spatiotemporal constraint (5.15) can be solved
in a localized and scalable way using the algorithm proposed in the previous section.
Therefore, we solve all the challenges for large-scale systems mentioned in Section
5.1.2.

5.3.2 Constraint Setup Procedure
For the LLQR problem with a spatiotemporal constraint (5.15), we propose a serial
procedure that sequentially designs the localized subspace Ld , the FIR subspace
FT , and the actuation scheme B2 that ensure the (d,T) localizability of the system.
In particular, we treat the actuation scheme B2 as design variables in this section.
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Initialization: Given a distributed plant (5.2), assume a completely dense actuation
architecture, i.e., B2 = I.

Subspaces Ld and FT : Given the communication delay SLC C(ts,tc,ta) imposed on
the distributed controller, determine the sparsest localized constraint Ld , i.e., with
smallest d, and the minimal length T of FT such that the LLQR synthesis problem
(5.15) is feasible. This task can be accomplished by beginning with d and T set to
1 and incrementing these values until feasibility is achieved.

Actuator Regularization: Given the LLQR synthesis problem (5.15) constrained
by the communication delay SLC C(ts,tc,ta) and the designed SLCs Ld and FT , use
regularization for design (RFD) [40, 41] to explore the tradeoff between closed
loop performance and actuation density, as specified by B2. If no acceptably sparse
actuation architecture can be found, return to the previous step and increase either
d or T .

This design procedure is certainly not unique, but is simple and intuitive: we assume
that the system has full actuation and determine the “simplest” constraints such that
a localized controller can still be synthesized. Then we attempt to remove actuators
such that locality and closed loop performance are preserved: if this latter step cannot
be satisfactorily completed, increase the complexity of the localized controller (by
increasing either d or T) and repeat.

The rest of this section focusses on the subtleties of designing the subspaces Ld

and FT and the actuator regularization task. Once the constraint setup procedure is
complete, we can use the LLQR method described in Section 5.2 to synthesize a
LLQR controller that uses the designed actuation architecture and that respects the
localized and FIR SLCs Ld and FT .

5.3.3 Designing Ld and FT

From the discussion of Section 5.2, the subspace (Ld) j ∩ FT is the spatiotemporal
constraint imposed on the system response from disturbance w j to the global state
x and control action u. For a d-localized constraint (Ld) j , the state xi is nonzero
only if i ∈ Out j(d). The size d of the subset of subsystems that can be perturbed by
a disturbance w j is primarily determined by the communication delay SLC C(ts,tc,ta)
that are imposed on the controller — if information can be exchanged between sub-
controllers very quickly, then they can coordinate their actions to contain the effect
of a disturbance in a small d-outgoing set. Conversely, if information is exchanged
slowly then it may not be possible to localize a disturbance at all: as an extreme
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case, if communication between sub-controllers is slower than the propagation of
disturbances through the plant, then there is no way to localize the effect of a local
disturbance.

It should be clear that the feasibility of a d-localized SLC Ld depends on both
the topology of the interaction graph G underlying the distributed system (5.2) and
the information exchange SLC C(ts,tc,ta) underlying the distributed controller. For a
fully actuated system (B2 = I), we can characterize a relationship between the delay
parameters and the minimal size d such that a d-localized constraint set Ld leads to
a feasible LLQR problem (5.15).

Lemma 11. Assume that the system (5.2) is a scalar subsystem model with full
actuation, i.e., B2 = I. For a communication delay SLC C(ts,tc,ta) with tc < 1, the
system (5.2) is d-localizable if ts+ta

1−tc
− 1 ≤ d.

Proof. Consider the disturbance wi that affects subsystem i. If the LLQR problem
with communication delays (5.15) is feasible for a d-localized constraintLd , only the
states in the d-outgoing set Outi(d) may be perturbed in closed loop by disturbance
wi. As each state can be directly actuated, we only need to ensure that the state
of the “boundary” subsystems k satisfying dist (i → k) = d + 1 are not affected by
disturbance wi. By definition, it takes the disturbance (d + 1) time steps to affect
these “boundary” states via the dynamics (5.2). As the communication network
topology mimics the topology of the plant, measurements of the state deviation xi[t]
taken by subsystem i is transmitted to these boundary subsystems with a delay of
ts+(d+1)tc. Thus if ts+(d+1)tc+ta ≤ d+1, then the boundary subsystems are given
advanced warning of the disturbance that is propagating towards them: as actuation
is assumed to be dense, the corresponding boundary sub-controllers can suppress
disturbance such that the states of the boundary subsystems are not perturbed. As
the initial disturbance was arbitrary, this shows that the delay condition of the lemma
is sufficient to ensure the feasibility of a d-localized constraint Ld . �

Remark 11. This condition is reminiscent of the delay characterization of QI de-
veloped in [52]. Using our notation and setup, the delays (ts, tc, ta) define a QI
subspace constraint if p · tc ≤ p+ ta + ts, where p is the distance between any pair of
states. Thus we see that the delay condition stated in Lemma 11 is more restrictive
than the QI condition: for example, if tc = 1, then the delays define a QI subspace
constraint, but the system is not d-localizable for a d smaller than the diameter of
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the interaction graph G. However, because the LLQR controller is by definition d-
localized, communication between subsystems is limited to within a subset of radius
d if tc < 1 — in contrast, the QI controller requires that local information be shared
globally if the plant (5.2) has a strongly connected topology.

We illustrate the meaning of Lemma 11 in Figure 5.4.
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Figure 5.4: Information delay and physical delay

Example 6. Consider a single disturbance w1 in Figure 5.4 with a 1-localized SLC.
Using Lemma 11, the information delay (the sum of the sensing delay from x1 to
u1, the communication delay from u1 to u3, and the actuation delay from u3 to x3)
needs to be less than or equal to the physical delay (the delay from x1 to x3 through
dynamics coupling), so that the LLQR problem is feasible.

We further specialize the delay condition of Lemma 11 by assuming that ts = 0 and
ta = 1. The condition of Lemma 11 then reduces to tc

1−tc
≤ d — as we assume full

actuation, every d-localized subset of the system is trivially controllable, and thus
we can set the FIR horizon to be T ≥ d + 1. Thus using Lemma 11 and the previous
discussion, given a communication delay SLC C(ts,tc,ta), we can identify small values
d and T to ensure that the spatiotemporal SLC S := C(ts,tc,ta) ∩ Ld ∩ FT leads to a
feasible LLQR problem (5.15).

We now give an explicit construction forS. Assume that at time step k, we can sense
the state deviation, transmit the information to j-hop away, and actuate the state.
Using the delay parameters (ts, tc, ta), we must have the inequality ts + j · tc + ta ≤ k,
or alternatively, j ≤ k−ts−ta

tc
. The largest integer j that satisfies this inequality is
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given by j = b k−ts−ta
tc
c. Since the communication network has the same topology as

the physical network, this is equivalently saying that the kth spectral component of
the system response R[k] is j-localized, i.e., the sparsity pattern of R[k] is covered
by the support ofA j , withA = supp (A)∪ supp (I). The similar argument holds for
the system response M as well. Therefore, the communication delay SLC C(ts,tc,ta)
imposes the following constraint on the system response (R,M):

supp (R[k]) , supp (M[k]) ⊆ supp
(
A b

k−ts−ta
tc
c
)
. (5.16)

Combining this constraint with the d-localized constraint Ld and the FIR constraint
FT , the spatiotemporal SLC in (5.15c) is specified by

supp (R[k]) ⊆ supp
(
Amin(d,b k−ts−tatc

c)
)

supp (M[k]) ⊆ supp
(
Amin(d+1,b k−ts−tatc

c)
)

(5.17)

for k = 1, · · · ,T , and R[τ] = 0 and M[τ] = 0 for all τ > T . According to Lemma
11, the LLQR problem (5.15) is feasible for a fully actuated system if tc < 1,
d ≥ ts+ta

1−tc
− 1, and T ≥ d + 1.

Usually, the parameters of communication delay (ts, tc, ta) are imposed by the pre-
specified hardware constraint. In contrast, the parameters T and d can be chosen by
the controller designer. The parameter T dominates the trade-off between settling
time and transient performance (including H2 norm or maximum overshoot), and
it also affects FIR horizon of the LLQR controller implementation (5.13) — thus
T should chosen as small as possible while still leading to acceptable transient
performance. The parameter d should also be kept as small as possible as it controls
the complexity of the controller synthesis and implementation procedures. However,
if sparse actuation is desired, then it is desirable to increase d from its minimum
to allow some flexibility in the actuation architecture. Although these parameters
typically need to be identified by trial and error, they are integer quantities that can be
explored fairly easily. For instance, in the simulation of Chapter 7, we show that the
localized size d often only needs to be increased by one or two to be able to design
sparse actuation schemes that nonetheless achieve good closed loop performance.

5.3.4 LLQR with Actuator Regularization
Now we show how to explore the tradeoff between closed loop performance and
actuation density using the RFD framework (cf., Section 4.3.3), given a feasible
spatiotemporal constraint S = C(ts,tc,ta) ∩ Ld ∩ FT .
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Recall that the LLQR controller is implemented using the equations (5.13) — it
follows that if the ith row of the map M is zero, i.e., if e>i M = 0, then the control
action ui is identically zero, and the corresponding actuator at subsystem i can be
discarded. If we want to construct a controller that uses at most r actuators, we can
impose an additional row-cardinality constraint Nr(M) ≤ r on the transfer matrixM,
where Nr(M) represents the number of nonzero rows of M. If we incorporate this
constraint into the LLQR problem (5.15), we can formulate the actuator constrained
LLQR control problem as

minimize
{R,M}

| |
[
C1 D12

] [
R
M

]
| |2H2

subject to (5.15b) and (5.15c)

Nr(M) ≤ r . (5.18)

Problem (5.18) is a combinatorial optimization problem due to the last constraint,
and is generally computationally hard to solve. The RFD framework allows such
combinatorial controller architecture design problems to be solved in a tractable way
based on convex relaxations of the combinatorial penalties. We use this technique
to relax (5.18) and formulate the LLQR problem with actuator regularization as

minimize
{R,M}

| |
[
C1 D12

] [
R
M

]
| |2H2
+ | |µM| |U (5.19a)

subject to (5.15b) and (5.15c), (5.19b)

where | |.| |U is the actuator norm introduced in [40, 41, 70, 72]. One possible
actuator norm is given by

| |µM| |U =
n∑

i=1
µi | |e>i M| |H2, (5.20)

where µi is the relative price of each actuator, and µ is a diagonal matrix with µi

being its ith diagonal entry. When µi = 1 for all i, (5.20) is equivalent to the `1/`2

norm (group lasso [78] in the statistical learning literature). The parameters {µi}
can be used to explore the tradeoff between closed loop performance (the square of
H2 norm in (5.19a)) and the actuation architecture complexity (as measured by the
actuator norm in (5.19a)), given a fixed controller spatiotemporal complexity (as
specified byLd and FT ). Further, once an actuation architecture has been identified,
a traditional LLQR optimization problem (5.15) can then be solved restricted to the
designed actuation architecture, thus removing any bias or conservatism introduced
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by the actuator norm regularizer (cf. [40, 41] for why this two step approach is
appropriate).

To further enhance the sparsity of the solution, we can use the reweighted `1 algo-
rithm proposed in [6] to iteratively set the weights {µi} and solve (5.19) multiple
times. Let µ(0)i = µ0 for i = 1, . . . , n. Let M(k) be the optimal solution of (5.19)
when the weights are given by {µ(k)i }

n
i=1. We update the weights at iteration (k + 1)

by
µ
(k+1)
i = ( | |e>i M(k) | |H2 + ε)−1 (5.21)

for some small ε . It is shown in [6] that this reweighted scheme usually results in
sparser solution.

Equation (5.19) is a convex optimization problem, and hence is tractable to solve.
However, the regularization term in (5.19) does not decompose in column at a time,
so we cannot apply the original LLQR decomposition technique to solve the actuator
regularized LLQR in an efficient and scalable way. Fortunately, we will show in
Chapter 7 that the actuator regularized LLQR problem (5.19) belongs to the class
of CLS-SLS problems, which can still be solved in a localized and scalable way
by exploiting the partial separability of the quadratic cost and actuator regularizer
using distributed optimization algorithm such as alternating direction method of
multipliers (ADMM).

5.4 Nearly Localizable Systems
In the previous two subsections, we assume that the system (A, B2) is (d,T) local-
izable. That is to say, there exists a (d,T) localized system response (R,M) that
satisfies the constraints (5.7b) - (5.7c). We then show that the controller achieving
the desired localized system response can be implemented in a localized way us-
ing (5.13). In practice, the system may not be exactly localizable. An interesting
question is: if the system response (R,M) is only approximately (d,T) localizable,
can we still implement a localized stabilizing controller using (5.13)? How much
non-localizability is allowed? In this section, we give a simple necessary and suffi-
cient condition on the robustness of the localized implementation (5.13) for nearly
localizable systems.

We first consider a pair of (d,T) localized transfer matrices (Rc,Mc) that satisfies[
Rc

Mc

]
∈ Ld ∩ FT ∩

1
z
RH∞. (5.22)
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We assume that the controller is implemented using the following equations:

ŵ = x − x̂ (5.23a)

u = zMcŵ (5.23b)

x̂ = (zRc − I)ŵ. (5.23c)

As (Rc,Mc) are localized transfer matrices, (5.23) is a localized controller imple-
mentation. However, the actual system response may not be localized because the
transfer matrices (Rc,Mc) may not satisfy the equality constraint (5.7b). We use a
strictly proper stable transfer matrix ∆RM ∈ 1

zRH∞ to quantify the infeasibility of
(5.7b) as follows:

∆RM =
[
zI − A −B2

] [
Rc

Mc

]
− I . (5.24)

Note that (5.24) becomes (5.7b) when ∆RM = 0. In this case, (Rc,Mc) becomes the
actual system response.

Equation (5.24) should be interpreted in the following way: (A, B2) in (5.24) repre-
sents the actual system model, and (Rc,Mc) in (5.22) - (5.24) represents the actual
controller implementation. The infeasibility measure ∆RM may come from various
sources, including model uncertainty, model bias, computation error, or localized
truncation. For instance, when the system has an approximated localized system
response, we can truncate the system response to get a pair of localized transfer
matrices (Rc,Mc), then implement the controller in a localized way. This local-
ized truncation will induce a non-zero ∆RM in (5.24). The transfer matrix ∆RM
characterizes all kinds of mismatch between the actual system model and the actual
controller implementation.

The following theoremgives a necessary and sufficient condition for internal stability
in the presence of ∆RM .

Theorem 4. Let (Rc,Mc,∆RM ) be a solution of (5.22) and (5.24). Then, the
controller implementation (5.23) internally stabilizes the system (A, B2) if and only
if (I + ∆RM )−1 is stable.

Proof. The proof is similar to the one in Lemma 5. We first adapt (3.24a) - (3.24c)
into our problem setting:

(zI − A)x = B2u + δx (5.25a)

u = zMcŵ + δu (5.25b)

x = zRcŵ − δy . (5.25c)
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Substituting (5.25b) and (5.25c) into (5.25a), we have

z(zI − A)Rcŵ − (zI − A)δy = zB2Mcŵ + B2δu + δx .

Moving ŵ to the left-hand-side and using the relation (5.24) from the assumption,
we have

z(I + ∆RM )ŵ = (zI − A)δy + B2δu + δx,

Denote I∆ = (I +∆RM )−1. We then have the closed loop transfer matrices from (δx,
δy, δu) to ŵ given by

ŵ = 1
z
I∆δx + I∆(I −

1
z

A)δy +
1
z
I∆B2δu . (5.26)

Substituting (5.26) into (5.25b) and (5.25c), we have the closed loop transfermatrices
from (δx, δy, δu) to (x, u, ŵ) summarized in Table 5.1. Clearly, if I∆ is stable, then
all the transfer matrices in Table 5.1 are stable. If I∆ is unstable, then the closed loop
maps from δx to ŵ will be unstable, and the controller does not internally stabilize
the system. Therefore, the stability of I∆ = (I + ∆RM )−1 is necessary and sufficient
condition for the controller implementation (5.23) to internally stabilize the system
(A, B2). �

Table 5.1: Closed Loop Maps With Non-localizability

δx δy δu

x RcI∆ RcI∆(zI − A) − I RcI∆B2

u McI∆ McI∆(zI − A) I +McI∆B2

ŵ 1
z I∆ I∆(I − 1

z A) 1
z I∆B2

Note that in the present of ∆RM , the actual closed loop system response is no longer
exactly localizable. However, when ∆RM is small enough, I∆ = (I + ∆RM )−1 will
be stable, and the closed loop system achieves global stability. The robustness
of the controller implementation (5.23) allows us to use approximated solution
to implement the localized controller even when the system is not exactly (d,T)
localizable.
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Now we specialize our discussion to the case where the non-localizability measure
∆RM comes from the bias or the uncertainty of the plant model. Specifically, we
assume that the localized controller is designed based on the system model (A, B2),
but is applied on a different system model (A + ∆A, B2 + ∆B). In this case, we have

∆RM = −∆ARc − ∆BMc. (5.27)

From (5.27), when the plant has a higher uncertainty on its A matrix, we should
penalize more on the system response Rc to make the non-localizability measure
∆RM small. On the other hand, if the system has a higher uncertainty on the gain
matrix B2, we should penalize more on the system response Mc.

5.5 Adaptive Constraint Update with Performance Guarantee
Although theLLQRcontrollerwith a fixed spatiotemporal constraint can be designed
and implemented in a scalable way, the additional constraint also makes the LLQR
controller sub-optimal to the centralized one. In this section, we quantify the sub-
optimality of a LLQR controller with a given spatiotemporal constraint. The key
idea is a scalable algorithm to compute a non-trivial lower bound of the cost achieved
by an idealized centralized controller. In particular, both the lower bound and the
LLQR controller can be computed using local plant model information. We then
use the ratio of the upper bound (the cost achieved by the LLQR controller) and
the lower bound to adaptively update the spatiotemporal constraint imposed on the
LLQR controller until a sub-optimality guarantee is satisfied. Using this constraint
update algorithm, we are able to design the tradeoff between the complexity of a
LLQR controller and its closed loop performance in a localized and automated way.

5.5.1 Lower Bound of Centralized LQR Cost
We first assume that the cost matrix

[
C1 D12

]
in (5.10) is given by[

C1 D12

]
=

[
(Dx)

1
2 0

0 (Du)
1
2

]
for some positive semidefinite diagonal matrices Dx and Du. Consider a centralized
LQR problem with a given initial condition x[1] = e j :

minimize
{x[k],u[k]}∞

k=1

∞∑
k=1

x[k]>Dx x[k] + u[k]>Duu[k] (5.28a)

subject to x[1] = e j (5.28b)

x[k + 1] = Ax[k] + B2u[k], k = 1, . . . ,∞. (5.28c)
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The LLQR problem can be formulated by incorporating additional constraints
(5.10d) - (5.10f) into (5.28), as shown in (5.10). Let Ψ∗j be the optimal value
of problem (5.28), and Ψupper

j ≥ Ψ∗j be the LLQR cost, i.e., the optimal value of
(5.28) when additional constraints (5.10d) - (5.10f) are included. For a large-scale
system, the value Ψ∗j cannot be computed in a scalable manner. In order to quantify
the degradation of Ψupper

j , we propose a scalable algorithm to provide a non-trivial
lower bound Ψlower

j ≤ Ψ∗j of the centralized optimal cost. In this way, the degrada-
tionΨupper

j /Ψ∗j of the LLQR controller is upper bounded by the ratioΨupper
j /Ψlower

j .
In other words, we can compute a sub-optimality guarantee Ψlower

j /Ψupper
j for the

LLQR controller with a given initial condition x[1] = e j using only local plant
model information.

From the discussion of Section 5.2, we can analyze the solution of (5.10), which is
an upper bound of the optimal value of (5.28), within the localized regionOut j(d+1)
for each disturbance w j . Similar to the upper bound problem, here we would like
to compute a lower bound of the optimal value of (5.28) based on the network
information contained within the set Out j(d + 1). Consider the following example.

……

…………

……

Figure 5.5: Localized region for the initial condition x[1] = e1 in a large network

Example 7. Figure 5.5 shows the interconnection of subsystem x1 to other subsys-
tems in a large network. The global network in this example can be arbitrary large.
The goal is to compute a lower bound of (5.28) for a given initial condition x[1] = e1

within a given localized region Out1(2) = {x1, x2, x3, x4, x5}. In particular, we have
no information about the system model outside the localized region Out1(2).

The intuition of our approach is as follows. First, note that the matrices (Dx,Du)
are diagonal and positive semidefinite. Therefore, a lower bound of the objective
function in (5.28) can be computed by setting xi = 0 and ui = 0 for all xi and ui

outside the localized region. Then, we restrict the system dynamics (5.28c) within
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the localized region, and match the inconsistent part by introducing additional zero
penalty control action at the boundary of the localized region. We formalize this
idea by the partition of the state and control vectors as follows.

Given a localized region Out j(d + 1), we partition the global state vector x into
three components: the internal state vector xin, the boundary state vector xb, and
the external state vector xout . We partition the global control vector u into two
components: the internal control vector uin and the external control vector uout . The
state vector is partitioned in the following way.

Definition 13. The external state vector xout of a localized region Out j(d + 1) is
defined by the set

xout = {xi |xi < Out j(d + 1)}.

The boundary state vector xb of Out j(d + 1) is a subset of Out j(d + 1) that contains
the states coupled from the external state vector xout . Specifically, we have

xb = {xi |xi ∈ Out j(d + 1), ∃xk < Out j(d + 1), Aik xk , 0}.

Finally, the internal state vector is given by

xin = {xi |xi ∈ Out j(d + 1), ∀xk < Out j(d + 1), Aik xk = 0}.

Example 8. Consider the example in Figure 5.5 with localized region Out1(2)
= {x1, x2, x3, x4, x5}. The external state vector of this localized region contains all
the states except those in Out1(2), i.e., xout includes x6, . . . , x8 and all the states not
shown in the figure. The boundary state vector contains the states that are coupled
from the external region, which is xb = {x2, x4}. The internal state vector is given
by xin = {x1, x3, x5}. Note that x5 is coupled to, but not coupled from the external
region, and thus is a component of the internal state vector.

Remark 12. It should be noted that the boundary region defined here for the lower
bound problem is different from the boundary region defined for the LLQR problem
(5.10). For the LLQR problem (an upper bound of (5.28)), the boundary states are
those that couple to the external region (e.g., {x5} in Figure 5.5). For the lower
bound of (5.28), the boundary states are those that couple from the external region
(e.g., {x2, x4} in Figure 5.5).

The external control vector uout for a localized region Out j(d + 1) is defined by the
set of control actions that only directly affect the states in xout . Let bi be the ith
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column of matrix B2. For the scalar subsystem model, the external control vector
uout is the set of ui where the nonzero locations of biui are contained within the set
xout . The internal control vector uin is the complement of the external control vector
uout .

Example 9. For Figure 5.5, we have uin = {u1, u2, u3}. The external control vector
uout contains u4 and u5 and all the control actions not shown in the figure.

With the partition of the state and control vectors, we can rewrite the objective
function in (5.28a) by

∞∑
k=1


xin[k]
xb[k]

xout[k]


> 

Dx,in 0 0
0 Dx,b 0
0 0 Dx,out




xin[k]
xb[k]

xout[k]


+

[
uin[k]
uout[k]

]> [
Du,in 0

0 Du,out

] [
uin[k]
uout[k]

]
. (5.29)

As Dx and Du are diagonal and positive semidefinite, a lower bound for (5.29) is
given by

∞∑
k=1

[
xin[k]
xb[k]

]> [
Dx,in 0

0 Dx,b

] [
xin[k]
xb[k]

]
+ uin[k]>Du,inuin[k]. (5.30)

Note that (5.30) can be computed using the information contained within the local-
ized region Out j(d + 1).

The system dynamics in (5.28c) can be rewritten as
xin[k + 1]
xb[k + 1]

xout[k + 1]

 =


Ain,in Ain,b 0
Ab,in Ab,b Ab,out

Aout,in Aout,b Aout,out




xin[k]
xb[k]

xout[k]

 +


Bin,in 0
Bb,in 0

Bout,in Bout,out


[

uin[k]
uout[k]

]
.

(5.31)
The zero in equation (5.31) is from the definition — the external state vector xout

does not couple to the internal state vector xin directly, and the external control
vector uout cannot adjust the internal state vector xin and the boundary state vector
xb directly. The only possibility that connects the external region to the localized
region is through the term Ab,out . This coupling can be captured by introducing an
additional control action uadd[k] = Ab,out xout[k] into the system. In this case, the
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system dynamics within the localized region is given by[
xin[k + 1]
xb[k + 1]

]
=

[
Ain,in Ain,b

Ab,in Ab,b

] [
xin[k]
xb[k]

]
+

[
Bin,in 0
Bb,in I

] [
uin[k]

uadd[k]

]
(5.32)

uadd[k] = Ab,out xout[k]. (5.33)

Since we are only interested in the lower bound of (5.28), we can discard the
constraint (5.33) to increase the feasible set of the optimization problem. Combining
with the objective function (5.30), we can compute a lower bound of (5.28) by solving
the following optimization problem

minimize (5.30) (5.34a)

subject to

[
xin[1]
xb[1]

]
= er( j) and (5.32), (5.34b)

where er( j) is the initial condition e j in the reduced dimension. Note that (5.34) is a
smaller centralized LQR problem that can be computed using only the plant model
information contained within the localized region Out j(d+1). Similar to the LLQR
problem, the computational complexity of solving (5.34) depends on the number
of nodes in the localized region. If the size of the localized region is significantly
smaller than the size of the global network, then (5.34) can be solved efficiently.

Remark 13. To make the LQR problem (5.34) well-posed, we can add a term
∑∞

k=1

εu>add[k] uadd[k] in the objective function for some small ε . As long as ε is small
enough, problem (5.34) still gives a lower bound for the optimal value in (5.28).

Example 10. Consider the example in Figure 5.5 with localized region Out1(2)
= {x1, x2, x3, x4, x5}. To compute a lower bound of the optimal cost, we introduce
additional control actions on the boundary states x2 and x4. The lower bound can
then be solved by the LQR problem shown in Figure 5.6.

Figure 5.6: Lower bound problem for Figure 5.5
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Remark 14. For comparison, we include the upper bound problem (LLQR problem)
for Figure 5.5 in Figure 5.7. For the upper bound problem, we introduce additional
constraint x5 = 0 into the system. As discussed before, the boundary states for the
upper bound problem is different from that for the lower bound problem.

Figure 5.7: Upper bound problem for Figure 5.5

Remark 15. The upper and lower bounds for distributed optimal control problem
(2.8) satisfying aQI subspace constraint can be computed in a similar fashion. First,
we reformulate the QI subspace constraint imposed on the distributed controller into
a subspace SLC, as shown in (4.15). With a given localized region, the lower bound
of the distributed optimal control problem is then given by (5.34) with an additional
subspace constraint. This becomes another distributed optimal control problem,
but only requires the plant model information contained within the pre-specified
localized region. The distribute optimal control problem with reduced dimension
can then be solved by the algorithm presented in [29].

5.5.2 Adaptive Constraint Update Algorithm
As described in the previous subsection, the LLQR controller for a given initial
condition x[1] = e j achieves at least Ψlower

j /Ψupper
j degree of optimality. This

ratio can be used as a signal to update the spatiotemporal constraint imposed on the
LLQR controller. For instance, we can increase the radius d of the d-localized SLC
or the length T of the FIR SLC to synthesize a LLQR controller with tighter upper
bound. Likewise, increasing the size of the localized region also gives a tighter
lower bound. The high-level idea of this adaptive constraint update algorithm is
presented in Algorithm 2.

Note that the for loop in Algorithm 2 can be computed in a parallel way. This
means that all the subsystems can compute their bounds within their localized
regions in parallel. There are multiple ways to update the spatiotemporal constraint
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Algorithm 2: Localized LQR with Adaptive Constraint Update
Given the global plant model (A, B2), diagonal cost matrices (Dx,Du), an initial
spatiotemporal SLC C ∩ Ld ∩ FT , and an optimality requirement µ ∈ [0, 1];
for each subsystem x j do

Initialize Ψlower
j = 0, Ψupper

j = ∞;
while Ψlower

j /Ψupper
j < µ do

Solve the LLQR subproblem in Algorithm 1 to obtain Ψupper
j ;

Solve (5.34) in the localized region to obtain Ψlower
j ;

if Ψlower
j /Ψupper

j < µ then
Relax the constraint by increasing the length Tj of the FIR constraint or
the size of the localized region Out j(d + 1);

in Algorithm 2. In practice, the LLQR algorithm is effective only when all the
localized regions are significantly smaller than the global network. Therefore, we
should try to keep the localized regions as small as possible. It should be noted that
Algorithm 2 may not be feasible with arbitrary µ when there is a hard constraint
imposed on the maximum size of the localized region. However, as will be shown in
Section 5.7, it is possible for the LLQR controller to achieve 99% global optimality
even with some extremely sparse constraints. Assume that Algorithm 2 found a
solution Ψlower

j /Ψupper
j ≥ µ for all j for a given µ. Then, the LLQR controller

achieves at least
∑

j Ψ
lower
j /∑ j Ψ

upper
j ≥ µ degree of optimality compared to the

idealized centralized controller

5.6 Localized Distributed Kalman Filter
In this section, we present the localized distributed Kalman filter (LDKF) [74]
architecture for a class of large-scale state estimation problems. Mathematically,
the LDKF problem is dual to the LLQR problem described in the previous sections
in this chapter. Therefore, the LDKF has the following desirable properties: (1)
each local estimator only needs to collect the information within a localized region
to estimate its local state, and (2) each local estimator can be designed by solving a
local optimization problem using local plant model information. The decomposition
of the global problem into local subproblems thus allows for the method to scale
to arbitrarily large heterogeneous systems — this is clearly an extremely favorable
property for large-scale estimation problems.

We begin by reviewing some literature in the community of distributed Kalman
filtering, and show that these methods do not scale gracefully for large-scale esti-
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mation problems. We then formulate the LDKF problem for state estimation, and
apply the results from the previous sections to solve the LDKF problem in a scalable
way.

5.6.1 Motivation of LDKF
The celebrated Kalman filter achieves minimum mean square error for linear state
estimation problems via an elegant and easily interpretable recursive method. Un-
fortunately, the Kalman filter is an inherently centralized method, and is neither
scalable to compute nor physically implementable for large-scale systems. Specifi-
cally, the computation of the traditional Kalman filter involves solving an Algebraic
Riccati Equation (ARE) and computing amatrix inverse, which is complicated when
the size of the problem goes large. Even if a centralized estimator can be computed,
large-scale estimation problems are nonetheless subject to practical communica-
tion delays between sensors and estimators which can degrade the performance of
a centralized scheme substantially. These limitations make centralized estimation
unappealing in large-scale applications such as weather forecasting [18], ocean data
assimilation [20], biological signal analysis [36], and state estimation in the power
grid [24].

Various methods have been proposed in the field of distributed Kalman filtering,
but many still suffer from scalability issues that limit their application to large-scale
systems. For instance, both the consensus-based algorithm of [47] and the diffusion-
based algorithm of [7] require each local sensor to store and use the global plant
model, and to estimate the global state during implementation. This introduces
a huge computational burden, and is prohibitive for large-scale applications. An
exception is the work of [26], in which the authors use spatial decomposition,
observation fusion, and approximated algorithms on matrix inversion to design a
scalable Kalman-like filter. However, the algorithms involve multiple iterations, and
the transient behavior of the algorithm is hard to analyze.

The motivation of the LDKF framework is to facilitate the scalability of estimator
synthesis and implementation for large-scale systems. Our main technical tool is to
cast the LDKF problem as a dual problem to LLQR, then solve the LDKF problem
using the algorithm proposed in the previous sections.
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5.6.2 Traditional Kalman Filter
We adopt to the common setting for Kalman filter (cf. [1]). Consider a discrete time
LTI system with dynamics given by

x[k + 1] = Ax[k] + B2u[k] + δx[k]
y[k] = C2x[k] + δy[k], (5.35)

where x is the state, u the control input, y the sensor measurements, δx the process
noise, and δy the sensor noise. Our goal is to design a state estimator x̂ based
on the measurement y and a pre-specified control input u. Similar to the setting
of LLQR, we are interested in the case when the system matrices (A, B2,C2) are
high-dimensional yet suitably sparse. Our approach is to exploit the sparsity of
(A, B2,C2) to derive a scalable algorithm for state estimator design.

We assume that the process noise δx and sensor noise δy are independent zero mean
AWGN, with covariance matrix given by

E(
[
δx[i]
δy[i]

] [
δx[ j]
δy[ j]

]>
) =


[
W 0
0 V

]
if i = j

0 i , j .

(5.36)

We assume that δx and δy are uncorrelated to keep the formulas simple, while the
method described in this section still works when δx and δy are correlated. The
initial condition x[0] is also assumed to be a Gaussian random vector with mean x0

and variance Σ0, and x[0] is uncorrelated with δx[k] and δy[k] for all k.

Let x̂[k |τ] denote the estimate of the state x[k] given the collected information up
to time τ, i.e. the measurements y[t] and control inputs u[t] from t = 1, . . . , τ. The
Kalman filter for the LTI system (5.35) is specified by

x̂[k |k] = x̂[k |k − 1] + K(y[k] − C2 x̂[k |k − 1]) (5.37)

x̂[k + 1|k] = Ax̂[k |k] + B2u[k] (5.38)

with initial condition given by x̂[0| − 1] = x0. The matrix K in (5.37) is known as
the Kalman gain, which can be found by solving an ARE. Let Σ be the solution to
the discrete time ARE

Σ = AΣA> +W − AΣC>2 (C2ΣC>2 + V)−1C2ΣA>. (5.39)

The Kalman gain in (5.37) can then be computed as

K = ΣC>2 (C2ΣC>2 + V)−1. (5.40)



92

The Kalman filter is optimal in the sense of minimum mean square error. Let
x̃[k |k − 1] = x[k] − x̂[k |k − 1] be the estimation error before y[k] is measured. The
Kalman filter algorithm in (5.37) - (5.38) minimizes the mean square error

E

(
lim

N→∞

1
N

N∑
k=1

x̃[k |k − 1]> x̃[k |k − 1]
)
. (5.41)

Similarly, let x̃[k |k] = x[k] − x̂[k |k] be the estimation error after y[k] is measured.
The mean square error of x̃[k |k] is also minimized.

Equations (5.37) and (5.38) can be combined into a single equation as

x̂[k + 1|k] = Ax̂[k |k − 1] + Bu[k] + H(y[k] − C2 x̂[k |k − 1]) (5.42)

with H = AK is a gain matrix. We refer to (5.42) as the delayed form of state
estimation. We can also combine equations (5.37) and (5.38) to obtain

x̂[k + 1|k + 1] = (I − KC2)(Ax̂[k |k] + B2u[k]) + Ky[k + 1]. (5.43)

We refer to (5.43) as the current form of state estimation.

Limitations

Here we point out some limitations of the traditional Kalman filter for large-scale
systems:

1. Communication delays: The Kalman gain given by (5.40) is generally dense
even when the system matrices (A, B2,C2) that specify the system dynamics
(5.35) are sparse. This means that the measurements from all sensors need
to be shared instantaneously, which requires infinite (or impractically fast)
communication speed.

2. Scalability of estimator implementation: A dense Kalman gain (5.40) also
implies that the measurements from all sensor need to be collected by every
estimator in the network, which is not scalable to implement.

3. Scalability of estimator synthesis: To compute the Kalman gain (5.40), one
need to solve a large-scale ARE (5.39). The complexity of solving (5.39) is
O(n3), where n is the dimension of the matrix A. This can be prohibitive for
a large n.
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4. Scalability of estimator re-synthesis subject to model change: When the
global plant model (A, B2,C2) changes locally, one needs to recompute the
solution to (5.39) to resynthesize the global Kalman filter. This is not scalable
for incremental design when the physical system expands.

To design a state estimation algorithm for large-scale systems, one must overcome
the aforementioned limitations of the traditional Kalman filter. Distributed Kalman
filter architectures in [47] or [7] may resolve the first two limitations, but not the
latter two. This motivates our development of the LDKF architecture, in which the
estimator can be both implemented and designed in a localized and scalable way.

5.6.3 LDKF Formulation
We now use the system response to analyze the estimation error dynamics of the
Kalman filter.

Delayed Form LDKF

Consider first the delayed form (5.42) of the Kalman filter. Taking the z-transform
of equation (5.42), we get

(zI − A)x̂ = B2u + H(y − C2x̂). (5.44)

In the following, we assume that the estimator structure (5.44) is fixed, but the gain
matrix H is unknown and needs to be designed. Although the Kalman filter can be
implemented via a static gain H, this is not necessary. We relax the static gain H to
be a proper transfer matrix H and rewrite (5.44) as

(zI − A)x̂ = B2u +H(y − C2x̂) (5.45)

in the sequel. This extra freedom will be key in allowing us to incorporate spa-
tiotemporal constraints on the transfer matrices that define the estimator. Combining
(5.45) and (5.35), we have the estimation error dynamics

(zI − A +HC2)x̃ = δx −Hδy . (5.46)

Define R := (zI − A + HC2)−1 to be the system response from process noise δx to
estimation error x̃, and likewise let N := −RH be the system response from sensor
noise δy to estimation error x̃. Equation (5.46) can then be rewritten as

x̃ = Rδx + Nδy . (5.47)
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Rather than finding a suitable gain matrix H to optimize the system response (R,N)
indirectly, we instead characterize the set of stable achievable system response (R,N)
and optimize directly over those sets. Note that the characterization of the set (R,N)
can be obtained by applying the dual of Theorem 1 in Section 3.1, which gives the
following lemma.

Lemma12. The system response (R,N)with finitemean square error can be induced
by an estimator with structure (5.45) if and only if the following two affine constraints
hold: [

R N
] [

zI − A

−C2

]
= I (5.48)[

R N
]
∈ 1

z
RH∞. (5.49)

Proof. To prove the necessary direction, we show that (5.48) and (5.49) must hold
for an estimator with structure (5.45) and suitable gain matrix H. Equation (5.48)
can be verified using the identity R(zI − A+HC2) = I directly. For (5.49), note that
the transfer matrices R and N must be stable so that the mean square error of the
estimator is finite. Besides, as R = (zI − A + HC2)−1 and N = −RH, the transfer
matrices R and N must be strictly proper, i.e., R[0] = 0 and N[0] = 0. Therefore,
(5.49) must holds.

To prove the sufficient direction, we show that the desired system response (R,N)
can be induced by an estimator with structure (5.45) if (5.48) and (5.49) hold. For
any solution of (5.48) - (5.49), we construct a gain matrix H0 = −R−1N for (5.45).
In this case, the estimation error dynamics (5.46) become

(zI − A − R−1NC2)x̃ = δx + R−1Nδy . (5.50)

Multiplying R to both sides of (5.50) and substituting (5.48) into the equation, we
can show that the desired system response x̃ = Rδx +Nδy is achieved. �

Lemma 12 suggests that we can implement the estimator using the gain matrix
H = −R−1N to achieve the desired system response. Substituting this identity back
to (5.45) and multiplying R to both sides of the equation, we get

x̂ = RB2u − Ny. (5.51)
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This gives a simpler estimator implementation.

Given this characterization of valid system response, we now aim to find an expres-
sion for the Kalman filter objective function in terms of R and N. Using the error
dynamics (5.47) and the AWGN assumptions on the noise dynamics, it is straight-
forward to show that the Kalman filter is the optimal solution to the following SLS
problem

minimize
{R,N}

‖
[
R N

] [
B1

D21

]
‖2H2

subject to (5.48) − (5.49) (5.52)

with [
B1

D21

]
=

[
W

1
2 0

0 V
1
2

]
.

We can view optimization problem (5.52) as an alternative formulation for the
Delayed Form of the Kalman filter problem.

In order to enhance the scalability of estimator design and implementation, we
impose an additional d-localized SLC Ld , a FIR SLC FT , and a QI information
sharing SLC C on the system response. This leads to the Delayed Form LDKF
given by

minimize
R,N

‖
[
R N

] [
B1

D21

]
‖2H2

subject to (5.48) − (5.49)[
R N

]
∈ Ld ∩ FT ∩ C. (5.53)

Problem (5.53) is just the transpose of a LLQR problem. Therefore, we can solve
(5.53) using themethod described in the previous sections in a localized and scalable
way. Specifically, we first perform a row-wise separation to decompose (5.53) into
row-wise LDKF subproblems. For each LDKF subproblem, the d-localized con-
straintLd further allows us to reduce the dimension of each LDKF subproblem from
global scale to local scale. Each LDKF subproblem in the reduced dimension can
then be solved by a local optimization problem using local plant model information
only. In particular, the complexity of solving a LDKF subproblem is independent
with the size of the global system. In other words, our method can scale to systems
of arbitrary size if parallel computation is available.
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Remark 16. In (5.53), we try to find a localized system response for the state
estimation error. It should be noted that we are not localizing the effect of the pro-
cess/sensor noise on the state vector. Rather, we are localizing the state estimation
error due to the noise.

Remark 17. It should be noted that the localized synthesis method is valid for
arbitrary noise covariance matrices (W,V), i.e., even when the noise is globally
correlated. In addition, when the system matrices (A, B2,C2) change locally, we
only need to resolve some of the row-wise LDKF subproblems and update the
estimator locally. It follows that this allows for the incremental addition of new
subsystems to the global system without the need for a complete redesign of the
estimator.

Current Form LDKF

Consider the current form of Kalman filter in (5.43). Taking the z-transform of
(5.43) and rearranging some terms, we have

(zI − A)x̂ = −KC2 Ax̂ + (I − KC2)B2u + zKy.

We relax the static Kalman gain K to a proper transfer matrix K in the sequel. We
then have

(zI − A)x̂ = −KC2 Ax̂ + (I −KC2)B2u + zKy

= −KC2 Ax̂ + (I −KC2)B2u + zK(C2x + δy)
= −KC2 Ax̂ + (I −KC2)B2u + zKδy +KC2(zx)
= −KC2 Ax̂ + (I −KC2)B2u + zKδy +KC2(Ax + B2u + δx)
= KC2 Ax̃ + B2u + zKδy +KC2δx . (5.54)

Combining (5.54) with (5.35), we have

(zI − A)x̃ = −KC2 Ax̃ + (I −KC2)δx − zKδy .

The system response from noise to the estimation error are therefore given by

R = (zI − A +KC2 A)−1(I −KC2)

N = −(I − 1
z
(I −KC2)A)−1K. (5.55)

For the characterization of all valid system response, we still have the identity (5.48).
The constraint in (5.49) changes slightly however, as the transfer matrix from sensor
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noise to estimation error N is only restricted to be proper in the Current Form of the
Kalman filter. The estimator equation in (5.51) remains unchanged. The Current
Form LDKF is then given by

minimize
R,N

‖
[
R N

] [
B1

D21

]
‖

subject to (5.48)

R ∈ 1
z
RH∞, N ∈ RH∞[

R N
]
∈ Ld ∩ FT ∩ C. (5.56)

Similar to the Delayed Form LDKF, the Current Form LDKF (5.56) can also be
solved in a localized way using the LLQR algorithm.

5.6.4 Localized Estimator Implementation
After solving the LDKF problem, the LDKF estimator can be implemented using
the transfer matrix form (5.51) to achieve the desired system response. When a
d-localized system response (R,N) exists, the implementation (5.51) is localized
and thus scalable. This is indicated by the sparsity pattern of each row of R and N
in (5.51) — each component of the state estimate x̂ can be computed by collecting
only some components of the measurement y and the control action u.

Another scalable way to implement the LDKF estimator is given by

zx̂ = Ax̂ + B2u − β

β = (I − zR)β + zN(y − C2x̂). (5.57)

Here, (I − zR) is strictly proper and zN is proper, so the estimator structure is causal
and well-defined. It can be shown that (5.57) is equivalent to (5.45) for H = −R−1N.
As R and N are localized transfer matrices, the implementation in (5.57) is localized
and thus scalable. The benefit of (5.57) over (5.51) is that (5.57) is compatible with
the form of an extended Kalman filter, which provides a possible approach to extend
our methods to nonlinear systems.

5.7 Simulation Results
In this section, we perform some numerical simulation to demonstrate the usefulness
of the LLQR approach. We begin with a simple stylized chain model, and use the
LLQR method to explore tradeoffs with respect to plant model parameters, closed
loop performance, implementation complexity, and robustness. The simulation
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results suggest that we can usually find a fairly sparse localized constraint Ld such
that the LLQR controller achieves similar transient performance compared to the
centralized LQR optimal controller, but far more superior in terms of the scalability
of controller synthesis and implementation.

Then, we demonstrate the scalability of LLQR controller on a randomized heteroge-
neous power network example with 51200 states. We show that the LLQR controller
can be computed in 23 minutes using a personal computer without using parallel
computation. In addition, we use Algorithm 2 to compute a LLQR controller with at
least 99% optimality guarantee in 38 minutes for the same example. In contrast, the
theoretical computation time for the centralized LQR is more than 200 days using
the same computer, and the distributed scheme is simply intractable.

5.7.1 Chain Model
We use a 100 node bi-directional chain with scalar subsystems for this numerical
study. The dynamics of each subsystem i is given by

xi[t + 1] = α(xi[t] + κxi−1[t] + κxi+1[t]) + biui[t] + wi[t]

for i = 1, · · · 100, with x0 = x101 = 0 as the boundary value. We can vary
the parameter κ to adjust the coupling strength between subsystems, and vary the
parameter α to adjust the instability of the open loop system. The value bi is given
by 1 if there is an actuator at subsystem i, and 0 otherwise. We place 40 actuators
in the chain network, with actuator location specified by i = 5 j − 4 and 5 j for
j = 1, · · · , 20. The objective function is given in the form of ‖x‖22 + γ‖u‖

2
2 , where γ

is the relative penalty between state deviation and control effort. If we choose γ = 0
and have bi = 1 for all i, then this example reduces to Example 1 in Section 2.4. We
first choose κ = γ = 1, and adjust α to make the spectral radius of A be 1.1 for the
simulated example. Note that we use a plant with uniform, symmetric parameters
and topology just for the convenience of illustration.

Performance vs. controller complexity

We solve the LLQR problem (5.7), and study the effects of choosing different
sized localized regions d and the length of the FIR horizon T . As shown in
Figure 5.8, appropriate choices of the parameters (d,T) lead to no degradation
in performance with respect to a centralized optimal controller, while leading to
significant improvements in synthesis and implementation complexity. If we choose
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(d,T) = (4, 15), then there is only 0.3% performance degradation compared to the
centralized optimal one, which corresponds to (d,T) = (99,∞).
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Figure 5.8: Performance vs. FIR horizon T and localized region d. The cost is
normalized with respect to the optimal centralizedH2 cost.

The result shown in Figure 5.8 holds for a wide range of the parameters (κ, α, γ)
of the plant. Specifically, we vary the coupling strength κ from 0.1 to 1, adjust
the instability of the system from 1.1 to 3, change the relative penalty γ from 10−6

to 106, and change the actuator density from 20% to 100% — all the results are
qualitatively similar to the one shown in Figure 5.8.

Performance vs. communication delay

We next consider the LLQR problem with a spatiotemporal SLC (5.15), and study
the effects of communication delay on the performance by varying tc in (5.15). We
choose (d,T) = (7, 20) for the previous example, and study the tradeoff between
communication delay tc and the normalized H2 cost (i.e., the square root of the
LQR cost). As shown in Figure 5.9, communication delay only leads to slight
degradation in performance. Note that the degradation is mostly contributed by the
delay constraint. To verify this claim, we compare our localized controller with
the QI optimal controller on a 40-state chain example — the QI method cannot
scale to the 100-state example due to both memory issue and long computation
time. Simulation shows that the localized FIR constraint (d,T) = (7, 20) only leads
to 0.03% degradation compared to a QI optimal controller with the same delay
constraint.



100

0 0.2 0.4 0.6 0.8 1
Communication Delay

1.000

1.020

1.040

1.060

1.080

1.100

N
or

m
al

iz
ed

 H
2 

co
st

Figure 5.9: Performance vs. communication speed ((d,T) = (12, 20) for tc = 0.9,
(d,T) = (7, 20) for the rest). The cost is normalized with respect to the optimal
centralizedH2 cost.

5.7.2 Power System Model
We begin with a 20 × 20 mesh topology representing the interconnection between
subsystems, and drop each edge with probability 0.2. The resulting interconnected
topology is shown in Figure 5.10 — we assume that all edges are undirected. The

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

16

18

20

Figure 5.10: Interconnected topology for the simulation example

dynamics of each subsystem is given by the discretized swing equation for power
network. Consider the swing dynamic equation

mi Üθi + di Ûθi = −
∑
j∈Ni

ki j(θi − θ j) + wi + ui, (5.58)

where θi, Ûθi, mi, di, wi, ui are the phase angle deviation, frequency deviation,
inertia, damping, external disturbance, and control action of the controllable load
of bus i. The coefficient ki j is the coupling term between buses i and j. We let
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xi := [θi Ûθi]> be the state of bus i and use eA∆t ≈ I + A∆t to discretize the swing
dynamics. Equation (5.58) can then be expressed in the form of (5.1) with

Aii =

[
1 ∆t

− ki
mi
∆t 1 − di

mi
∆t

]
, Ai j =

[
0 0

ki j
mi
∆t 0

]
,

and Bii =
[
0 1

]>
. The parameters ki j, di,m−1

i are randomly generated and
uniformly distributed between 0.2 and 1. In addition, we set ∆t = 0.2 and
ki =

∑
j∈Ni

ki j .

We consider the LLQR problem with a spatiotemporal SLC (5.15) enforced as
follows. The localized region for each subsystem j is specified by its two-hop
neighborhood.3 This means that each subsystem can only communicate up to its
two-hop neighbors during implementation, and use the plant model up to its two-
hop neighbors for controller synthesis. For communication delays, we assume that
ui[t] can access x j[τ] at time τ ≤ t − k if subsystem (i, j) are k-hop neighbors.
As the disturbance takes two steps to propagate to its neighboring subsystems, the
communication speed is twice faster than the speed of disturbance propagation. We
impose the FIR constraint with length T = 15.

Large-Scale Example

We now allow the size of the mesh network to vary and compare the computation
time needed to synthesize a centralized, distributed, and localized LQR optimal
controller. The distributed LQR controller is computed using the methods described
in [29], in which we assume the same communication delay constraints as LLQR.
The empirical relationship obtained between computation time and problem size
for the different control schemes is illustrated in the log-log plot in Figure 5.11.
For the LLQR controller, we plot both the total computation time and the average
computation time per subsystem. As can be seen in Figure 5.11, the computation
time needed for the distributed controller grows rapidly when the size of problem
increases. For the centralized controller, the slope of the log-log plot in Fig. 5.11
is 3, which matches the theoretical complexity of O(n3). The slope for the LLQR
(total time) is approximately 1.27, which is larger than the theoretical value 1. This
overhead is likely caused by other computational issues such asmemorymanagement
and data copy. For the largest example that we computed, we are able to synthesize

3For the mesh network, the number of subsystems contained within the two-hop neighborhood
region of a subsystem is up to 13. Since each subsystem has 2 scalar states, the number of states for
each localized region is up to 26.



102

a LLQR optimal controller for a system with 51200 states in about 23 minutes using
a personal computer. If the computation were to be parallelized across the 25600
subsystems in the large-scale network (as would be done in a practical situation),
the synthesis procedure can be performed in under 0.1 second. In contrast, the
theoretical computation time for the centralized LQR using the same computer is
more than 200 days, and the distributed LQR is intractable.
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Figure 5.11: Computation time for the centralized, distributed, and localized LQR

Large-Scale Example with Sub-optimality Guarantee

In order to quantify the sub-optimality of the LLQR controller for this large-scale
example, we use Algorithm 2 to adaptively update the LLQR spatiotemporal con-
straint according to the following rule — if the ratio of the lower bound to the upper
bound is less than 98% for a particular subsystem, then the subsystem adaptively
increases the FIR length T to 20 for itself.

We then compute the LLQR controller and the lower bound for the 51200-state
system described above. Among the 25600 subsystems, 156 subsystems increase
the FIR length from 15 to 20. The ratio of the overall lower bound to the overall
upper bound is 99.01%. This means that the LLQR controller, despite the additional
communication delay constraint, localized region constraint, and FIR constraint, is
guaranteed to be at least 99.01% optimal compared to the unconstrained centralized
LQR optimal controller. The computation of the LLQR controller and its lower
bound is finished in 38 minutes. If the computation is parallelized into 25600
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subsystems and each subsystem is capable of solving its subproblem using a personal
computer, then the LLQR controller with performance guarantee can be computed
within 0.1 seconds. In Table 5.2, we summarize the comparison between centralized,
distributed and localized LQR for this 51200-state example. It is clear that LLQR
has superior performance over centralized and distributed LQR in terms of the
scalability of controller synthesis and implementation.

Table 5.2: Comparison Between Centralized, Distributed and Localized LQR on a
51200-State Randomized Example

LQR Distributed LLQR

Affected region Global Global 2-hop

Closed Loop Affected time Long Long 20 steps

Quadratic Cost 1 1.01 1.01

Comp. complexity O(n3) > O(n3) O(n)

Parallel complexity O(n3) > O(n3) O(1)

Synthesis Comp. time 200 days Inf 38 mins

Parallel time 200 days Inf 0.1 second

Plant model Global Global 2-hop

Redesign Offline Offline Real-time

Implementation Comm. Speed Inf 2 times 2 times

Comm. Range Global Global 2-hop
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C h a p t e r 6

LOCALIZED LINEAR QUADRATIC GAUSSIAN

In this chapter, we discuss the localized linear quadratic Gaussian (LLQG) problem,
which is the output feedback version of the LLQR problem. Similar to the LLQR
controller, the LLQG controller can also be synthesized and implemented in a
localized and scalable way, if the localized SLC is properly specified. The primary
difference between LLQR and LLQG is the additional affine constraint (3.15b)
in the system level synthesis problem. This constraint breaks the column-wise
separability of the LLQG problem, so the LLQR decomposition technique does not
directly apply to the output feedback problem. In order to solve the LLQG problem
in a scalable way, we use the distributed optimization algorithm such as alternating
direction method of multipliers (ADMM) to decouple the LLQG problem into two
iterative subroutines. We show that each subroutine can then be solved using the
LLQR algorithm described in the previous chapter. This provides a localized yet
iterative algorithm to solve the LLQG problem in a scalable way.

This chapter is organized as follows. In Section 6.1, we introduce the output feedback
version of the interconnected system model and give the LLQG formulation. In
Section 6.2, we apply Theorem 2 in Section 3.2 to show that LLQG controller is
scalable to implement. Then, we propose the ADMM algorithm in Section 6.3 to
solve the LLQG problem in a localized yet iterative manner. Finally, simulation
results are shown in Section 6.4.

6.1 Problem Statement
6.1.1 Interconnected System Model
Here we consider the output feedback version of the interconnected system model.
Consider n dynamically coupled discrete time LTI subsystems that interact with each
other according to an interaction graph G = (V, E). Here V = {1, . . . , n} denotes
the set of subsystems. We denote xi, ui, and yi the state vector, control action, and
measurement of subsystem i. The set E ⊆ V ×V encodes the physical interaction
between these subsystems — an edge (i, j) is in E if and only if the state x j of
subsystem j directly affects the state xi of subsystem i. The dynamics of subsystem
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i is assumed to be given by

xi[t + 1] = Aii xi[t] +
∑
j∈Ni

Ai j x j[t] + Biiui[t] + δxi [t] (6.1a)

yi[t] = Cii xi[t] + δyi [t], (6.1b)

where Ni = { j |(i, j) ∈ E} is the (incoming) neighbor set of subsystem i, (Aii, Ai j ,
Bii, Cii) some matrices with compatible dimension, and δxi and δyi the process
disturbance and sensor disturbance, respectively. Comparing to the state feedback
problem (5.1), the output feedback problem (6.1) only has noisy and partial mea-
surement of the state (6.1b). This makes the output feedback problem significantly
harder than its state feedback counterpart. Figure 6.1 shows an example of such
interconnected distributed system — each subsystem i has a sub-controller that
takes the locally available measurement yi, exchanges information with some other
sub-controllers through a communication network, and generates the control action
ui to control the state xi of the physical system.

Define x = [x1 . . . xn]>, u = [u1 . . . un]>, y = [y1 . . . yn]>, δx = [δx1 . . . δxn]>, and
δy = [δy1 . . . δyn] the stacked vectors of the subsystem states, controls, measure-
ments, and process and sensor disturbances, respectively. The n interconnected
system models (6.1) can be written into a global system model as

x[t + 1] = Ax[t] + B2u[t] + δx[t] (6.2a)

y[t] = C2x[t] + δy[t], (6.2b)
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with

A =


a11 · · · a1n
...

. . .
...

an1 · · · ann

 , B2 =


b11 · · · 0
...

. . .
...

0 · · · bnn

 , and C2 =


c11 · · · 0
...

. . .
...

0 · · · cnn

 .
Remark 18. We call the model (6.1) - (6.2) a scalar subsystem model if xi, ui, yi

are scalar variables for all i.

Remark 19. Note that the matrices B2 and C2 in (6.2) are assumed to be diagonal.
If the ith subsystem does not have a sensor for measurement, we can simply assign
cii = 0. We will lift these assumptions in Chapter 7 to consider the most general
interconnected system model with arbitrary sparsity pattern on (A, B2,C2).

We assume that the process disturbance δx and sensor disturbance δy are zero mean
i.i.d AWGNs, with covariance matrix given by

E(
[
δx[i]
δy[i]

] [
δx[ j]
δy[ j]

]>
) =


[

B1

D21

] [
B1

D21

]>
if i = j

0 i , j .

(6.3)

The objective is to find an output feedback control strategy, which is a mapping from
measurement y to control action u, to minimize the expected value of the average
quadratic cost (5.3) for some cost matrices (C1,D12). The traditional infinite horizon
stochastic LQG problem can then be formulated as

minimize
{x[k],u[k]}∞

k=1

E
(
lim

N→∞

1
N

N∑
k=1

[
x[k]
u[k]

]> [
C>1 C1 C>1 D12

D>12C1 D>12D12

] [
x[k]
u[k]

] )
subject to (6.2) and (6.3). (6.4)

The equivalent SLS formulation of the LQG problem (6.4) is given by

minimize
{R,M,N,L}






[C1 D12

] [
R N
M L

] [
B1

D21

]




2

H2

(6.5a)

subject to
[
zI − A −B2

] [
R N
M L

]
=

[
I 0

]
(6.5b)[

R N
M L

] [
zI − A

−C2

]
=

[
I

0

]
(6.5c)

R,M,N ∈ 1
z
RH∞, L ∈ RH∞. (6.5d)
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Note that (6.5b) - (6.5d) is just the system level parameterization (SLP) for the
output feedback system (cf., Theorem 2 in Section 3.2). Since there is no additional
system level constraint (SLC) imposed on the system response, we refer to (6.5) as
the centralized (unconstrained) LQG problem.

6.1.2 Localized LQG as a SLS Problem
From the discussion of Section 5.1.2, the centralized LQG controller is neither scal-
able to compute nor scalable to implement for large-scale interconnected systems.
In order to enhance the scalability of controller synthesis and implementation, we
incorporate an additional d-localized SLC Ld (we will define this for output feed-
back system later) and a FIR SLC FT into the LQG problem (6.5). This leads to the
LLQG problem (cf., Section 4.3.2) given by

minimize
{R,M,N,L}






[C1 D12

] [
R N
M L

] [
B1

D21

]




2

H2

subject to (6.5b) − (6.5d)[
R N
M L

]
∈ C ∩ Ld ∩ FT (6.6)

for C a communication delay SLC.

The d-localized SLC Ld for output feedback system is defined as follows.

Definition 14. The subspace Ld is called a d-localized SLC for the output feedback
problem (6.6) if it constrains the system response R to be d-localized, M and N to
be (d + 1)-localized, and L to be (d + 2)-localized.

The (d,T) output feedback localizability of the system is defined as follows.

Definition 15. The system (6.2)with systemmatrices (A, B2,C2) and communication
delay SLC C is said to be (d,T) output feedback localizable if (6.6) is feasible.

We also make the following assumption throughout the rest of this chapter.

Assumption 3. At least one of the matrices[
C1 D12

]
or

[
B1

D21

]
is block-diagonal.
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For the case where
[
C1 D12

]
is block-diagonal, the global quadratic cost function

(5.3) can be expressed as the sumof local quadratic cost functions. For the casewhere[
B>1 D>21

]>
is block-diagonal, the process and sensor disturbances at different

subsystems are uncorrelated to each other.

Under Assumption 3, the goal of this chapter is to show the following:

1. Localized controller implementation: If the system (6.2) is (d,T) output
feedback localizable, then the LLQG controller achieving the desired local-
ized system response can be implemented in a localized and scalable way.
Specifically, the controller at subsystem i can compute its control action ui by
collecting the information (including the measurement and controller’s state)
within the set Ini(d + 2).

2. Localized controller synthesis: The LLQG problem (6.6) can be solved in a
localized and scalableway if the d-localized SLCand the FIRSLCare properly
specified. Specifically, the controller at subsystem i can be synthesized using
the plant model contained within the set Ini(d + 2) ∪ Outi(d + 2).

We will discuss localized controller implementation in Section 6.2, and localized
controller synthesis in Section 6.3

6.2 Localized Controller Implementation
The localized implementation of the LLQG controller is a direct application of
Theorem 2 in Section 3.2. From Theorem 2, the controller achieving the desired
localized system response of (6.6) can be implemented by

zβ = R̃+β + Ñy

u = M̃β + Ly, (6.7)

with R̃+ = zR̃ = z(I − zR), M̃ = zM, Ñ = −zN ∈ RH∞. The variable β in (6.7)
is interpreted as controller’s internal state. In (6.7), we share both the measurement
y and controller’s internal state β during implementation. We then compute the
control action u and the controller’s internal state at the next time step. As discussed
in Section 3.2, the implementation (6.7) can be considered as a generalization of the
state space realization of the controller.

For the solution of the LLQG problem (6.6), the system response R, M, N, and
L are at most (d + 2)-localized. Note that the transfer matrices R̃+, M̃, and Ñ are
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at most (d + 2)-localized as well. Using the controller implementation (6.7), each
subsystem i only need to collect the information (y j, β j) of subsystem j from the
set j ∈ Ini(d + 2) to compute the control action ui and the controller’s internal state
βi . If the parameter d is significantly smaller than the radius of the interconnected
system, then each subsystem only need to collect local information during controller
implementation — this offers a scalable way to implement the LLQG controller for
large-scale systems. Note that the LLQG controller can still be implemented in a
localized way even when Assumption 3 does not hold.

6.3 Localized Controller Synthesis
In this section, we propose a scalable algorithm to solve the LLQG problem (6.6)
with Assumption 3 in a localized way. Note that the LLQR decomposition technique
cannot be applied to optimization problem (6.6) for plants (6.2) corresponding to
output feedback problems. This is because the constraints (6.5b) and (6.5c) admit
incompatible decompositions: constraint (6.5b) can be decomposed column-wise,
whereas constraint (6.5c) can be decomposed row-wise, introducing a coupling be-
tween all optimization variables. The ADMM has proven very useful in “breaking”
such coupling between optimization variables, allowing for large-scale problems
to be decomposed and solved efficiently. Our approach to developing a scalable
solution to the LLQG problem (6.6) is to combine the ADMM technique with the
LLQR decomposition introduced in the previous chapter.

To reduce notational clutter, we assume that B1 =
[
I 0

]
and D21 =

[
0 σy I

]
,

where σy is the relative magnitude between process disturbance and sensor distur-
bance.1Using these values for B1 and D21, the LLQG problem (6.6) can be written
as

minimize
{R,M,N,L}

‖
[
C1 D12

] [
R σyN
M σyL

]
‖2H2

(6.8a)

subject to (6.5b) − (6.5d) (6.8b)[
R N
M L

]
∈ C ∩ Ld ∩ FT . (6.8c)

1The methods in this section extend in a natural way to the case where
[
B>1 D>21

]> is block-
diagonal. By solving the transpose of the LLQG problem, the method can also extend to the case
where

[
C1 D12

]
is block-diagonal.
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6.3.1 ADMM Algorithm
We nowmake a series of observations that motivate the use of the ADMMalgorithm
to solve the LLQG problem (6.8). First, notice that if we remove constraint (6.5c)
from problem (6.8), then the resulting optimization problem admits a column-wise
LLQR separation, which as described in the previous chapter allows for the global
problem to be decomposed into subproblems of size defined by that of the (d + 2)-
outgoing sets of the subsystems. Through a dual argument, we can show that
verifying the feasibility of constraint (6.5c) can be done row at a time, resulting in
a feasibility problem that admits a row-wise LLQR separation, once again allowing
for the global problem to be decomposed into easily solved subproblems. In order
to exploit the decomposition properties of each of these modified problems, we
leverage the standard ADMM technique of shifting the coupling from the difficult
to enforce constraints (6.5b) and (6.5c) to a simple equality constraint through the
introduction of a redundant variable: wemake this approach precise in what follows.

We use

Φ =

[
R N
M L

]
to denote the system response that we are solving for. Let Ψ be a duplicate of
the optimization variable Φ. Following [5], we define the extended-real-value
functionals h(r)(Φ) and h(c)(Ψ) by

h(r)(Φ) =
{

0 if (6.5c), (6.5d), (6.8c)
∞ otherwise

h(c)(Ψ) =
{
(6.8a) if (6.5b), (6.5d), (6.8c)
∞ otherwise.

(6.9)

Here, h(r)(Φ) can be considered as a row-wise separable component of (6.8), and
h(c)(Ψ) can be considered as a column-wise separable component of (6.8).

Remark 20. Note that the constraints (6.5d) and (6.8c) are included in the definition
of both h(r)(·) and h(c)(·). This is a key point to allow the subroutines of the ADMM
algorithm to be solvable in a localized way, as shown in the following.

Using these definitions, we can rewrite the LLQG optimization problem (6.8) as

minimize
{Φ,Ψ}

h(r)(Φ) + h(c)(Ψ)

subject to Φ = Ψ. (6.10)
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The form of optimization problem (6.10) is precisely that needed by the ADMM
approach [5], and can be solved via the iteration

Φk+1 = argmin
Φ

(
h(r)(Φ) + ρ

2
| |Φ − Ψk + Λk | |2H2

)
(6.11a)

Ψk+1 = argmin
Ψ

(
h(c)(Ψ) + ρ

2
| |Ψ −Φk+1 − Λk | |2H2

)
(6.11b)

Λk+1 = Λk +Φk+1 − Ψk+1. (6.11c)

Recall that the system response Φ and Ψ are constrained to lie in the FIR subspace
FT , and hence is a finite dimensional variable: it follows that each of the problems
specified by the ADMM algorithm (6.11) can be formulated as finite dimensional
optimization problems by associating the FIR transfer matrices with their matrix
representations. We now focus on the problem specifying the Ψk+1 iterates (6.11b),
which can be written as

minimize
{R,M,N,L}

‖
[
C1 D12

] [
R σyN
M σyL

]
‖2H2
+
ρ

2
‖
[
R N
M L

]
−Φk+1 − Λk ‖2H2

subject to
[
zI − A −B2

] [
R N
M L

]
=

[
I 0

]
R,M,N ∈ 1

z
RH∞, L ∈ RH∞[

R N
M L

]
∈ C ∩ Ld ∩ FT . (6.12)

From the form of this problem, it is apparent that an analogous argument to that
presented in Chapter 5 applies — we first perform a column-wise separation of the
optimization problem (6.12), then exploit the d-localized SLC Ld to reduce the
dimension of each subproblem from global scale to the localized region defined
by the (d + 2)-outgoing set of each disturbance. Similarly, subproblem (6.11a)
admits a row-wise LLQR separation, and the Lagrange multiplier update equation
(6.11c) decomposes element-wise. Thus if the ADMM weight ρ is shared between
subsystems prior to the synthesis procedure, the optimization problems specifying
the ADMM algorithm (6.11) decompose into subproblems specified by the (d + 2)-
outgoing and (d + 2)-incoming sets of the system.

An added benefit of the LLQG framework is the ability to perform real-time re-
synthesis of optimal controllers. In particular, suppose that the dynamics (6.1)
describing the dynamics of a collection D of subsections change — in order to
suitably update the LLQG optimal controller, only the components of the system
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response (R,M,N,L) corresponding to the response of subsystems j satisfying
In j(d + 2) ∩ D , ∅ or Out j(d + 2) ∩ D , ∅ need to be updated.

Next we show that the problems specifying the iterates Φk+1 and Ψk+1 can be
solved in closed form allowing for the update equations (6.11a) and (6.11b) to be
implemented via matrix multiplication. We end the section with a discussion of
conditions guaranteeing the convergence of the iteratesΦk+1 andΨk+1 to the optimal
solution to the LLQG problem (6.8).

Remark 21. The ADMM approach specified in (6.11) can be used with other
objective functions that admit a column-wise separation and/or row-wise separation.
We will generalize the application of the algorithm (6.11) to a broader class of
problems, which is called the convex localized separable SLS (CLS-SLS) problems,
in Chapter 7. An interesting special case is that we can solve problem (6.8) for
arbitrary B1 and D21 if [C1 D12] is block-diagonal — in particular, this means
that a LLQG controller can be synthesized in a scalable way using our proposed
algorithm even if the process and sensor noise are globally correlated, so long as
the subsystem’s performance objectives are decoupled.

6.3.2 Analytic Solution
We now focus on optimization problem (6.12), which specifies the iterates Ψk+1.
Following the LLQR method described in Section 5.2, we perform a column-wise
separation of the objective and constraints of (6.12), and exploit the d-localized SLC
of the system response to reduce the dimensionality of each resulting subproblem.
Specifically, for each disturbance δxj or δyj at subsystem j, we solve an optimization
of the same form as (6.12) except with all decision variables, state-space parameters
and constraints restricted to the (d + 2)-outgoing set of subsystem j. The result is
an optimization problem similar to (5.12). We also note that optimization problem
(5.12) and the dimensionality reduced version of optimization problem (6.12) are
least-squares problems subject to affine constraints. Consequently, the optimal
solution is specified as an affine function of the problem data Ψk+1 and Λk in the
reduced dimension. The affine function for each dimensionality reduced subproblem
only need to be evaluated once, after which the updates to the iterates (6.11b) can
be performed via multiple matrix multiplication, all in the reduced dimension. We
defer a detailed mathematical derivation of the analytic solution of ADMM updates
in Appendix 7.C in Chapter 7. Note that theΦk+1 iterate (6.11a) can be carried out
using matrix multiplication in a similar fashion.
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Thus using this approach to solving the iterate updates (6.11a) and (6.11b), theLLQG
optimization problem (6.8) can be solved nearly as quickly as the state-feedback
problem, as the update equations require first solving a least-squares problem defined
on the (d+2)-incoming and (d+2)-outgoing sets of the system and then usingmatrix
multiplication.

6.3.3 Convergence and Stopping Criteria
Assume that the optimization problem (6.10) is feasible, and let Ψ∗ be an optimal
solution. Further assume that the matrix [C1 D12] has full column rank, and
[B1; D21] has full row rank. In this case, the objective function is strongly convex
with respect toΨ, and hence any optimal solutionΨ∗ is the unique optimal solution.
As the extended-real-value functions h(r)(·) and h(c)(·) specified in (6.9) are closed,
proper, and convex, we have that strong duality holds and that optimization problem
(6.10) satisfies the convergence conditions state in [5]. From [5], the objective of
(6.10) converges to its optimal value. As the objective function is a continuous
function of Ψ and the optimal solution Ψ∗ is unique, it follows that the primal
variable iterates converge to Ψ∗, i.e., Ψk → Ψ∗ and Φk → Ψ∗. Note that the
rank condition on the objective function matrices is only a sufficient condition for
primal variable convergence. A less restrictive conditions for the convergence of the
ADMM algorithm will be discussed in Appendix 7.B in Chapter 7. The design of
the stopping criteria for the ADMM algorithm (6.11) can also be found in Appendix
7.B.

6.4 Simulation Results
In this section, we demonstrate the LLQG algorithm using the power system exam-
ple (5.58). After introducing the power system model, we discuss how to set the
constraints Ld and FT to enhance the scalability of controller implementation and
synthesis. We show that the LLQG controller, with additional localized constraint,
FIR constraint, and communication delay constraint, can achieve comparable tran-
sient performance to a centralized LQG optimal one (theH2 optimal controller), but
far more superior than the centralized and the distributed methods in terms of the
scalability of controller synthesis and implementation. Specifically, we synthesize
the LLQG controller for a randomized heterogeneous networked system with 12800
states in 22 minutes, where the centralized and the distributed counterparts cannot
be computed.
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6.4.1 Power System Model
We begin with a randomized spanning tree embedded on a 10 × 10 mesh network
representing the interconnection between subsystems. The resulting interconnected
topology is shown in Figure 6.2a — we assume that all edges are undirected. The
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Figure 6.2: Simulation example interaction graph.

dynamics of each subsystem is given by the discretized swing equation for power
network (5.58). Similar to the model described in Section 5.7, we let xi := [θi Ûθi]>

be the state of bus i and use eA∆t ≈ I+A∆t to discretize the swing dynamics. Equation
(5.58) can then be expressed in the form of (6.1) with

Aii =

[
1 ∆t

− ki
mi
∆t 1 − di

mi
∆t

]
, Ai j =

[
0 0

ki j
mi
∆t 0

]
, Bii =

[
0
1

]
, and Cii =

[
1 0
0 1

]
We set ∆t = 0.2 and ki =

∑
j∈Ni

ki j . In addition, the parameters ki j, di, and m−1
i are

randomly generated and uniformly distributed between [0.5, 1], [1, 1.5], and [0, 2],
respectively. The instability of the plant is characterized by the spectral radius
of the matrix A, which is 1 in the simulated example. The interactions between
neighboring subsystems of the discretized model is described by Figure 6.2b. We
assume that each subsystem in the power network has a phase measurement unit
(PMU), a frequency sensor, and a controllable load that generates ui.

From (5.58), the external disturbancewi only directly affects the frequency deviation
Ûθi. To make the objective functional strongly convex, we introduce small artificial
disturbance on the phase deviation θi as well. We assume that the process noise on
frequency and phase are uncorrelated AWGNs with covariance matrices given by I

and 10−4I, respectively. In addition, we assume that both the phase deviation and
the frequency deviation are measured with some sensor noise. The sensor noise
of phase and frequency measurements are uncorrelated AWGNs with covariance
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matrix given by 10−2I. We choose equal penalty on the state deviation and control
effort, i.e.,

[
C1 D12

]
= I.

Based on the above setting, we formulate aH2 optimal control (LQG) problem that
minimizes the H2 norm of the transfer matrix from the process and sensor noises
to the regulated output. TheH2 norm of the closed loop is given by 13.3169 when
a proper centralized H2 optimal controller is applied, and 16.5441 when a strictly
proper centralized H2 optimal controller is applied. In the rest of this section, we
normalized theH2 normwith respect to the proper centralizedH2 optimal controller.

6.4.2 LLQG
The underlying assumption of the centralized optimal control scheme is that themea-
surement can be transmitted instantaneously with every subsystem in the network.
To incorporate realistic communication delay constraint and facilitate the scalability
of controller design, we impose additional communication delay constraint, local-
ized constraint, and FIR constraint on the system response. We introduce these
constraints in a sequential order as follows.

For the communication delay constraint C, we assume that each subsystem takes one
time step to transmit the information to its neighboring subsystems. Mathematically,
the control action ui[t] of subsystem i at time t can receive (y j[τ], β j[τ]) of subsystem
j for time τ ≤ t − k if the distance between subsystems i and j is k. The interaction
between subsystems illustrated in Figure 6.2b implies that it takes two time steps for
a disturbance at subsystem j to propagate to its neighboring subsystems, and hence
the communication speed is twice as fast as propagation speed of disturbances
through the plant. For the given communication delay constraint C, we use the
method described in Section 5.3 to design the sparsest localized constraint L. In
this example, we can localize the effect of each process and sensor noise within its
two-hop neighbors. This implies that each subsystem j only needs to exchange the
information within its two-hop neighbors, and use the restricted plant model within
its two-hop neighbors to synthesize its sub-controller.

Once the communication delay constraint C and the localized constraint L are
specified, we run some simulation to exploit the tradeoff between the length of the
FIR constraint FT and the transient performance. Figure 6.3 shows the tradeoff
curve between the transient performance of the LLQG controller and the length T of
the FIR constraint. For the given communication delay constraint C and the locality
constraintL, the LLQGcontroller is feasiblewith the FIR constraintFT for allT ≥ 3.
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When the length of the FIR constraint increases, the H2 norm of the closed loop
converges quickly to the unconstrained optimal value. For instance, for FIR length
T = 7, 10, and 20, the performance degradation compared to the unconstrained H2

optimal controller are given by 3.8%, 1.0%, and 0.1%, respectively. This further
means that the performance degradation due to the additional communication delay
constraint C and the localized constraint L is less than 0.1%. From Figure 6.3, we
show that the LLQG controller, with additional communication delay constraint,
localized constraint, and FIR constraint, can achieve similar transient performance
to an unconstrained optimalH2 controller.

0 5 10 15 20
1

1.1

1.2

1.3

1.4 Localized
Centralized (p)
Centralized (sp)

Figure 6.3: The vertical axis is the normalized H2 norm of the closed loop when
the LLQG controller is applied. The LLQG controller is subject to the constraint
C ∩ L ∩ FT . The horizontal axis is the horizon T of the FIR constraint FT , which
is also the settling time of the impulse response. We plot the normalized H2 norm
for the centralized unconstrained optimal controller (proper and strictly proper) in
the same figure.

To further illustrate the advantages of the LLQGscheme, we chooseT = 20 and com-
pare the LLQG controller, distributed LQG optimal controller, and the centralized
LQG optimal controller in terms of the closed loop performance, the complexity of
controller synthesis, and the complexity of controller implementation in Table 6.1.
The distributed optimal controller is computed using the method described in [28],
in which we assume the same communication constraint C as the LLQG controller.
It can be seen that the LLQG controller is vastly preferable in all aspects, except
for a slight degradation in the closed-loop performance. In particular, the localized
constraint L in this example has almost no effect on the closed loop performance.
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Table 6.1: Comparison Between Centralized, Distributed, and Localized LQG
Optimal Control

Centralized Distributed Localized

Affected region Global Global 2-hop

Closed Loop Affected time Long Long 20 steps

NormalizedH2 1 1.001 1.001

Comp. complexity O(n3) > O(n3) O(n)

Synthesis Parallel complexity O(n3) > O(n3) O(1)

Plant model Global Global 2-hop

Redesign Offline Offline Real-time

Implementation Comm. Speed Inf 2 times 2 times

Comm. Range Global Global 2-hop

6.4.3 Large-Scale Example
We now allow the size of the problem to vary and compare the computation time
needed to synthesize a centralized, distributed, and localized LQG optimal con-
troller. We choose T = 7 for the LLQG controller. The empirical relationship
obtained between computation time and problem size for different control schemes
is illustrated in Figure 6.4. As can be seen in Figure 6.4, the computation time needed
for the distributed controller grows rapidly when the size of problem increases. For
the centralized one, the slope in the log-log plot in Figure 6.4 is 3, which matches the
theoretical complexityO(n3). The slope for the LLQG controller is about 1.4, which
is larger than the theoretical value 1. We believe this overhead is caused by other
computational issue such as memory management and data structure. We note that
the computational bottleneck that we faced in computing our large-scale example
was that we were using a laptop to compute the controller (and hence the localized
subproblems were essentially solved in serial) — in practice, if each local subsys-
tem is capable of solving its corresponding localized subproblem, our approach
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scales to systems of arbitrary size as all computations can be done in parallel. For
the largest example we have, we can finish the LLQG synthesis for a system with
12800 states in 22 minutes using a laptop. If the computation is parallelized into
all 6400 sub-systems, the synthesis algorithm can be done within 0.2 second. In
contrast, the theoretical time to compute the centralized LQG optimal controller for
the same example is more than a week, and the distributed LQG optimal controller
is intractable.

102 103 104
10-1

100

101

102

103

104

Localized
Centralized
Distributed

Figure 6.4: Computation time for the centralize, distributed, and localized LQG
controller. The horizontal axis denotes the number of states of the system, and the
vertical axis is the computation time in seconds.
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C h a p t e r 7

SYSTEM LEVEL SYNTHESIS FOR LARGE-SCALE SYSTEMS

In this chapter, we introduce the class of convex localized separable system level
synthesis (CLS-SLS) problems, which include localized LQR (cf. Chapter 5) and
localized LQG (cf. Chapter 6) as special cases. We propose a unified algorithm
to solve all CLS-SLS problems in a localized and scalable way, with O(1) parallel
computational complexity compared to the size of the global network. In addition
to the scalability of controller synthesis, the controller achieving the desired local-
ized system response can also be implemented in a localized and scalable way —
each sub-controller in the network can compute its control action by communicating
with O(1) numbers of other sub-controllers during implementation. As a result, the
CLS-SLS problems can be scaled to arbitrary large-scale network if parallel com-
putation is available. We give several examples of CLS-SLS problems, including
the localized H2 optimal control problem with sensor actuator regularization and
the localized mixedH2/L1 optimal control problem.

This chapter is organized as follows. In Section 7.1, we introduce the system model,
recall the system level synthesis (SLS) framework introduced in Chapters 3 - 4, and
show how to use the convex localized SLS framework to design a localized optimal
controller that is scalable to implement. We then point out the key technical condition
for a convex localized SLS problem to be solvable in a localized and scalable way—
separability. In Section 7.2, we introduce the class of column/row-wise separable
problems, which is the extension of localized LQR (LLQR) introduced in Chapter
5. We then introduce the general CLS-SLS problems in Section 7.3, and show that
CLS-SLS framework is a natural extension of localized LQG (LLQG) introduced in
Chapter 6. Finally, simulation results are shown in Section 7.4 to demonstrate the
generality and scalability of the CLS-SLS framework.

7.1 Problem Setup
7.1.1 Mathematical Notation
Let Z+ be the set of all positive integers. We use calligraphic lower case letters such
as r and c to denote subsets of Z+. We say that {r1, . . . rm} is a partition of a set
q ⊂ Z+ if and only if ri , ∅ for all i, ∪m

i=1ri = q , and ri ∩ r j = ∅ for all i , j.
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Consider a transfer matrix Φ with nr rows and nc columns. Let r be a subset of
{1, . . . , nr} and c a subset of {1, . . . , nc}. We use Φ(r, c) to denote the submatrix of
Φ by selecting the rows according to the set r and columns according to the set c. We
use the symbol : to denote the set of all rows or all columns, i.e., we haveΦ = Φ(:, :).
Let {c1, . . . cp} be a partition of the set {1, . . . , nc}. Then {Φ(:, c1), . . . ,Φ(:, cp)} is a
column-wise partition of the transfer matrix Φ.

A permutation matrix is a square binary matrix that has exactly one entry of 1 in
each row and each column and zeros elsewhere.

7.1.2 System Model
We consider a discrete time linear time invariant (LTI) system with dynamics given
by

x[t + 1] = Ax[t] + B2u[t] + δx[t] (7.1a)

y[t] = C2x[t] + δy[t], (7.1b)

where x, u, y, δx , and δy are the global state vector, control actions, measurements,
and process and sensor disturbances, respectively. We use nx, ny, and nu to denote
the dimension of x, y, and u, respectively. All x, u, y, δx , and δy are large-scale.
We assume that the system model (A, B2,C2) are large-scale but suitably sparse.
Different from the interconnected system model introduced in Chapters 5 and 6,
we do not make any assumption on the specific sparsity pattern of (A, B2,C2). In
particular, the system matrices do not need to be block diagonal. Thus the LTI
system model considered in this chapter is as general as possible.

7.1.3 Localized System Level Synthesis
Here we briefly recall the SLS framework introduced in Chapters 3 - 4. For an LTI
system with dynamics given by (7.1), we define a system response {R,M,N,L} to
be the maps satisfying [

x
u

]
=

[
R N
M L

] [
δx

δy

]
. (7.2)
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From Theorem 2 in Chapter 3, the parameterization of all stable achievable system
response {R,M,N,L} is described by the following set of affine equations:[

zI − A −B2

] [
R N
M L

]
=

[
I 0

]
(7.3a)[

R N
M L

] [
zI − A

−C2

]
=

[
I

0

]
(7.3b)

R,M,N ∈ 1
z
RH∞, L ∈ RH∞. (7.3c)

In addition, the controller achieving the desired system response (7.2) is given by

zβ = R̃+β + Ñy (7.4a)

u = M̃β + Ly, (7.4b)

where R̃+ = z(I − zR), Ñ = −zN, M̃ = zM, L are in RH∞. With the parameteriza-
tion of all stable achievable system response in (7.3a) - (7.3c), we now incorporate a
system level objective (SLO) g(·) and a system level constraint (SLC)S to formulate
the SLS problem:

minimize
{R,M,N,L}

g(R,M,N,L) (7.5a)

subject to (7.3a) − (7.3c) (7.5b)[
R N
M L

]
∈ S. (7.5c)

The SLS problem (7.5) is convex as long as the SLO (7.5a) is convex and the
intersection of the SLC (7.5c) and the affine space (7.5b) is convex.

We now express the SLC set S as the intersection of three convex set components:
the localized (sparsity) constraint L, the finite impulse response (FIR) constraint
FT , and an arbitrary convex set component X, i.e., S = L ∩ FT ∩ X. The localized
constraint L imposed on a transfer matrix G is a collection of sparsity constraints
with the form Gi j = 0 for some i and j. Here L can impose arbitrary sparsity
constraint — in particular, it does not need to be a d-localized SLC as described
in Chapters 5 and 6. The constraint FT restricts the optimization variables to have
finite impulse responses of horizonT , whichmakes (7.5) a finite dimensional convex
program. The constraint X includes any other convex constraint imposed by the
system— in particular, the setX can be the combination of all kinds of convex SLCs
introduced in Section 4.2, which includes the communication delay SLC considered
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in Chapters 5 and 6 as a special case. This leads to a localized SLS problem given
by

minimize
{R,M,N,L}

g(R,M,N,L) (7.6a)

subject to (7.3a) − (7.3c) (7.6b)[
R N
M L

]
∈ L ∩ FT ∩ X. (7.6c)

A SLS problem is called localized if it is in the form of (7.6). We call (7.6) a convex
localized SLS if (7.6) is convex.

Remark 22. For a state feedback problem (C2 = I and D21 = 0, cf., Section 3.1),
the localized SLS problem (7.6) can be simplified into the form of

minimize
{R,M}

g(R,M)

subject to
[
zI − A −B2

] [
R
M

]
= I[

R
M

]
∈ L ∩ FT ∩ X ∩

1
z
RH∞. (7.7)

In addition, the controller achieving the desired system response can be implemented
by the transfer matrices R and M directly (cf., Theorem 1 in Section 3.1).

Remark 23. It should be noted that although the optimization problems (7.6) and
(7.7) are convex for arbitrary localized constraint L, they are not necessarily
feasible. In Section 5.3, we showed that a necessary condition for the existence
of a localized (sparse) system response is that the communication speed between
sub-controllers is faster than the speed of disturbance propagation in the plant. We
also offer some guideline to design a feasible localized constraint L in the same
section.

7.1.4 Localized Implementation
Here we show how to design a controller that is scalable to implement using the
localized SLS framework (7.6). Our approach is to impose sparsity constraint
on the system response (R,M,N,L) through the localized constraint L. Theorem
2 shows how the sparsity of the system response (R,M,N,L) translates into the
implementation complexity of a controller as in (7.4). For instance, if each row of
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these transfer matrices are suitably sparse1, then each sub-controller i only needs to
collect a small number of measurements y j and controller states β j to compute its
control action ui and controller state βi (cf. Section 6.2 and [68, 69, 71]). In this
case, the complexity to implement each sub-controller, which is measured by the
number of required communication links, is independent to the size of the global
network, i.e., the parallel implementation complexity is O(1). If the localized SLS
problem is convex, thenwe have a convexway to design a controller that is scalable to
implement. This holds true for arbitrary convex SLO g(·) and arbitrary convex SLC
X. In contrast, for a strongly connected network, any sparsity constraint imposed
on the controller makes the distributed optimal control problem (2.8) non-convex
(cf. Section 2.4).

7.1.5 Problem Statement: Separability
From the above discussion, we can use the convex localized SLS framework (7.6) to
design a localized optimal controller that is scalable to implement. It is then natural
to ask if a convex localized SLSproblem can also be solved in a localized and scalable
way, using the approach similar to LLQR and LLQG synthesis (cf., Chapters 5 -
6). It turns out that we need one more property of the SLS problem to support
localized synthesis — separability. The aim of this chapter is to formally define
the notion of separability of the SLS problem, and propose a scalable algorithm
to solve all CLS-SLS problems in a localized way. Specifically, if the localized
constraint L of a CLS-SLS problem is suitably specified, the global problem (7.6)
can be decomposed into parallel local subproblems with constant complexity. As
the parallel computational complexity is O(1), we can solve the CLS-SLS problems
for systems with arbitrary large-scale.

7.2 Column/Row-wise Separable Problems
In this section, we consider the state feedback localized SLS problem (7.7), which
is a special case of (7.6). We identify the technical conditions on the SLO and
the SLC in (7.7) such that the optimization problem (7.7) can be decomposed
into parallel local optimization subproblems without using distributed optimization.
This technique is crucial for the general algorithm proposed in Section 7.3.

This section begins with the column-wise separable problems, which is a natural
extension of the LLQR method introduced in Chapter 5. This section ends with

1The number of nonzero entries are significantly smaller than the dimension of the transfer
matrix.
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the highlight of row-wise separable problems as the dual of column-wise separable
problems.

7.2.1 Column-wise Separable Problems
The goal of this subsection is to identify the technical conditions on g(·) and X in
(7.7) such that the global optimization problem (7.7) can be solved in a localized
and distributed way using the column-wise separation technique similar to that of
LLQR. To simplify the notation of (7.7), we use

Φ =

[
R
M

]
to represent the system response we want to optimize for, and we denote ZAB the
transfer matrix

[
zI − A −B2

]
. The state feedback localized SLS problem (7.7) can

then be written as

minimize
Φ

g(Φ) (7.8a)

subject to ZABΦ = I (7.8b)

Φ ∈ S, (7.8c)

with S = L ∩ FT ∩ X ∩ 1
zRH∞.

Similar to the LLQR problem, we note that the matrix variableΦ in constraint (7.8b)
can be examined column at a time. It is then natural to see if the SLO (7.8a) and
the SLC (7.8c) can also be decomposed in a column-wise manner. More generally,
we note that it suffices to find a column-wise partition of the optimization variable
to decompose (7.8) into parallel subproblems. Recall that we use calligraphic lower
case letters such as c to denote subsets of positive integer. Let {c1, . . . , cp} be a
partition of the set {1, . . . , nx}. The optimization variableΦ can then be partitioned
column-wisely into the set {Φ(:, c1), . . . ,Φ(:, cp)}. The column-wise separability of
the SLO (7.8a) is defined as follows.

Definition 16. The system level objective g(Φ) in (7.8a) is said to be column-wise
separable with respect to the column-wise partition {c1, . . . , cp} if

g(Φ) =
p∑

j=1
g j(Φ(:, c j)) (7.9)

for some functionals g j(·) for j = 1, . . . , p.
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We note that the objective functional of the LLQR problem (5.7) is column-wise
separable with respect to arbitrary column-wise partition. Here we give some more
examples of column-wise separable SLOs.

Example 11. Consider the LLQR problem (5.7), but now we assume that the co-
variance matrix of the disturbance is given by B>1 B1 for some matrix B1, i.e.,
w ∼ N(0, B>1 B1). Suppose that there exists a permutation matrix Π such that the
matrix ΠB1 is block diagonal. This happens when the global noise vector w can be
partitioned into uncorrelated subsets. The objective in this case is given by

| |
[
C1 D12

]
ΦB1 | |2H2

= | |
[
C1 D12

]
ΦΠ>ΠB1 | |2H2

.

Note that ΦΠ> is a column-wise permutation of the optimization variable. We can
define a column-wise partition on ΦΠ> according to the block diagonal structure
of the matrix ΠB1 to decompose the objective in a column-wise manner.

Example 12. In the LLQR examples, we rely on the inherent separable property
of the H2 norm. Specifically, the square of the H2 norm of a FIR transfer matrix
G ∈ FT is given by

| |G| |2H2
=

∑
i

∑
j

| |gi j | |2H2
=

∑
i

∑
j

T∑
t=0
(gi j[t])2. (7.10)

Motivated by theH2 norm, we define the element-wise `1 norm (denoted by e1) of a
transfer matrix G ∈ FT as

| |G| |e1 =
∑

i

∑
j

T∑
t=0
|gi j[t]|.

The previous example still holds if we change the square of the H2 norm to the
element-wise `1 norm.

The column-wise separability of the SLC (7.8c) is defined as follows.

Definition 17. The system level constraint S in (7.8c) is said to be column-wise
separable with respect to the column-wise partition {c1, . . . , cp} if the following
condition is satisfied:

Φ ∈ S if and only if Φ(:, c j) ∈ Sj for j = 1, . . . , p

for some sets Sj for j = 1, . . . , p. Mathematically, this condition is expressed as

Φ ∈ S ⇐⇒
p⋂

j=1
Φ(:, c j) ∈ Sj . (7.11)
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Equation (7.11) is interpreted as follows. Suppose that the SLC Φ ∈ S is column-
wise separable with respect to the partition {c1, . . . , cp}. To check whether the
transfer matrix Φ belongs to the set S, we can equivalently check whether the set
constraint Φ(:, c j) ∈ Sj is satisfied for each j.

Remark 24. It can be readily shown that the localized constraint L, the FIR
constraint FT , and the strictly proper constraint 1

zRH∞ are column-wise separable
with respect to any column-wise partition. Therefore, the column-wise separability
of the SLC S = L∩ FT∩ X∩ 1

zRH∞ in (7.8) is determined by the column-wise
separability of the constraintX. If S is column-wise separable, then we can express
the set constraint Sj in (7.11) as Sj = L(:, c j)∩ FT∩ Xj∩ 1

zRH∞ for some Xj for
each j.

We can now formally define column-wise separable SLS problems as follows.

Definition 18. The state feedback system level synthesis problem (7.7) is said to be
a column-wise separable problem if the SLO (7.8a) and the SLC (7.8c) are both
column-wise separable with respect to some column-wise partition {c1, . . . , cp}.

Remark 25. Recall that (7.8) is by definition a localized SLS problem. Therefore,
if (7.8) is column-wise separable and convex, then (7.8) is a CLS-SLS problem.

For a column-wise separable SLS problem (7.8), we can partition (7.8) into p parallel
subproblems as

minimize
Φ(:,cj )

g j(Φ(:, c j)) (7.12a)

subject to ZABΦ(:, c j) = I(:, c j) (7.12b)

Φ(:, c j) ∈ L(:, c j) ∩ FT ∩ Xj (7.12c)

for j = 1, . . . , p.

Then, similar to the LLQR method, we exploit the localized constraint L(:, c j) in
(7.12c) to reduce the dimension of (7.12) for each j from global scale to local scale.
We defer a detailed dimension reduction algorithm for arbitrary localized constraint
in Appendix 7.A. Here we just highlight the results. In Appendix 7.A, we show that
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the optimization subproblem (7.12) can be reduced into

minimize
Φ(sj,cj )

ḡ j(Φ(s j, c j)) (7.13a)

subject to ZAB(t j, s j)Φ(s j, c j) = I(t j, c j) (7.13b)

Φ(s j, c j) ∈ L(s j, c j) ∩ FT ∩ X̄j, (7.13c)

where s j and t j are sets of positive integer defined in Appendix 7.A, and ḡ j and
X̄j the SLO and SLC in the reduced dimension, respectively. Roughly speaking,
the set s j is the collection of optimization variables contained within the localized
region specified by L(:, c j), and the set t j is the collection of states that are directly
affected by the optimization variables in s j . The complexity of solving (7.13) is
determined by the cardinality of the sets c j , s j , and t j , which are determined by
the sparsity of the localized constraint and the system matrices (A, B2,C2). For
instance, the cardinality of the set s j is equal to the number of nonzero rows of the
localized constraint L(:, c j). When the localized constraint and the system matrices
are suitably sparse, it is possible to make the size of these sets much smaller than the
size of the global network. In this case, the global optimization subproblem (7.12)
reduces to a local optimization subproblem (7.13) which depends on the local plant
model ZAB(t j, s j) only.

7.2.2 Row-wise Separable Problems
The technique described in the previous subsection can be readily extended to row-
wise separable problems. Consider a state estimation SLS problem (the dual of the
state feedback SLS) given by

minimize
Φ

g(Φ) (7.14a)

subject to ΦZAC = I (7.14b)

Φ ∈ S, (7.14c)

with Φ =
[
R N

]
and ZAC =

[
zI − A> −C>2

]>
. Let {r1, . . . , rq} be a partition of

the set {1, . . . , nx}. The row-wise separability of the SLO and SLC in (7.14) are
defined as follows.

Definition 19. The system level objective g(Φ) in (7.14a) is said to be row-wise
separable with respect to the row-wise partition {r1, . . . , rq} if

g(Φ) =
q∑

j=1
g j(Φ(r j, :)) (7.15)
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for some functionals g j(·) for j = 1, . . . , q.

Definition 20. The system level constraint S in (7.14c) is said to be row-wise
separable with respect to the row-wise partition {r1, . . . , rp} if

Φ ∈ S ⇐⇒
q⋂

j=1
Φ(r j, :) ∈ Sj (7.16)

for some sets Sj for j = 1, . . . , q.

Definition 21. The state estimation system level synthesis problem (7.14) is said to
be a row-wise separable problem if the SLO (7.14a) and the SLC (7.14c) are both
row-wise separable with respect to some row-wise partition {r1, . . . , rp}.

It can be readily seen that the localized distributed Kalman filter (LDKF) problems
introduced in Section 5.6 is convex, localized, and row-wise separable. Therefore,
LDKF is an example of a CLS-SLS problem.

7.2.3 Summary
In this section, we define the column-wise separability of the SLO and SLC in
Definitions 16 and 17, respectively. We then define the column-wise separable SLS
problem in Definition 18. We propose an algorithm to solve a convex, localized, and
column-wise separable SLS problem in a localized and scalable way. Specifically,
we first use the column-wise separability of the problem to decompose the SLS
problem into parallel subproblems. We then exploit the localized constraint to
reduce the dimension of each subproblem from global scale to local scale. The
similar technique is applied to row-wise separable problems as well.

7.3 Convex Localized Separable System Level Synthesis Problems
In this section, we discuss the output feedback localized SLS problem (7.6) with
arbitrary B2 and C2. Note that (7.6) is neither column-wise nor row-wise separable
due to the coupling constraints (7.3a) and (7.3b), so the techniques introduced in the
previous section do not apply. We introduce the class of partially separable SLS
problems in this section, which is a substantial generalization of the column/row-
wise separable SLS problems described in Section 7.2 and the LLQG problems
introduced in Chapter 6. The intersection of the convex, localized, and partially
separable SLS problems form the class of CLS-SLS problems. For a CLS-SLS
problem (7.6), we can use ADMM algorithm to decouple (7.6) into two iterative
subroutines. Each subroutine can then be solved in a localized and scalable way
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using the column/row-wise separation method described in the previous section.
We show that many constrained optimal control problems belong to the class of
CLS-SLS problems. Examples include the localized H2 optimal control problem
with sensor actuator regularization and the localized mixedH2/L1 optimal control
problem. These problems can be solved for systems with arbitrary large-scale.

7.3.1 Partially Separable Problems
We begin by simplifying the notation of (7.6). We use

Φ =

[
R N
M L

]
to represent the system response we want to optimize for. Denote ZAB the transfer
matrix

[
zI − A −B2

]
and ZAC the transfer matrix

[
zI − A> −C>2

]>
. Let JB be the

matrix in the right-hand-side of (7.3a) and JC be the matrix in the right-hand-side of
(7.3b). For the ease of presentation, we also include the subspace constraint (7.3c)
into the convex set component X. The localized SLS problem (7.6) can be written
as

minimize
Φ

g(Φ) (7.17a)

subject to ZABΦ = JB (7.17b)

ΦZAC = JC (7.17c)

Φ ∈ S (7.17d)

with S = L ∩ FT ∩ X. We assume that (7.17) is a convex problem throughout the
rest of the section. The goal of this section is to identify the technical conditions on
g(·) and S in (7.17) so that the convex localized SLS problem (7.17) can be solved
in a localized and scalable way.

The primary difference between the output feedback SLS problem (7.17) and its
state feedback simplification (7.8) is the additional constraint (7.17c). The column-
wise separation technique does not apply to the output feedback problem (7.17)
directly because the constraint (7.17c) does not admit a column-wise separation.
However, similar to the observation we made in the LLQG problem (cf., Chapter 6),
we note that the optimization variableΦ in constraint (7.17c) can be solved row at a
time. Our strategy is to use distributed optimization techniques such as ADMM to
decouple (7.17) into a row-wise separable component and a column-wise separable
component. If the SLO (7.17a) and the SLC (7.17d) can be split into a row-wise
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separable component and a column-wise separable component, then we can solve
the convex localized SLS problem (7.17) in a localized yet iterative way, using the
algorithm similar to the one for LLQG.

From the definition of the system response (7.2), the number of rows and columns
of Φ in (7.17) are given by (nx + nu) and (nx + ny), respectively. Let {r1, . . . , rq}
be a partition of the set {1, . . . , nx + nu}, and {c1, . . . , cp} be a partition of the set
{1, . . . , nx + ny}. We define partially separable SLO as follows.

Definition 22. The convex system level objective g(Φ) in (7.17a) is said to be partially
separable with respect to the row-wise partition {r1, . . . , rq} and the column-wise
partition {c1, . . . , cp} if g(Φ) can be written as the sum of two convex objectives
g(r)(Φ) and g(c)(Φ), where g(r)(Φ) is row-wise separable with respect to the row-
wise partition {r1, . . . , rq} and g(c)(Φ) is column-wise separable with respect to the
column-wise partition {c1, . . . , cp}. Specifically, we have

g(Φ) = g(r)(Φ) + g(c)(Φ)

g(r)(Φ) =
q∑

j=1
g
(r)
j (Φ(r j, :))

g(c)(Φ) =
p∑

j=1
g
(c)
j (Φ(:, c j)) (7.18)

for some convex functionals g(r)j (·) for j = 1, . . . , q, and g
(c)
j (·) for j = 1, . . . , p.

Note that the column/row-wise separable SLO defined in Definition 16 and 19 are
special cases of partially separable SLOs. We define partially separable SLC (7.17d)
as follows.

Definition 23. The convex system level constraint S in (7.17d) is said to be partially
separable with respect to the row-wise partition {r1, . . . , rq} and the column-wise
partition {c1, . . . , cp} if S can be written as the intersection of two convex sets S(r)

and S(c), where S(r) is row-wise separable with respect to the row-wise partition
{r1, . . . , rq} and S(c) is column-wise separable with respect to the column-wise
partition {c1, . . . , cp}. Specifically, we have

S = S(r) ∩ S(c)

Φ ∈ S(r) ⇐⇒
q⋂

j=1
Φ(r j, :) ∈ S(r)j

Φ ∈ S(c) ⇐⇒
p⋂

j=1
Φ(:, c j) ∈ S(c)j (7.19)
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for some convex sets S(r)j for j = 1, . . . , q and S(c)j for j = 1, . . . , p.

Similarly, the column/row-wise separable SLC defined in Definition 17 and 20 are
special cases of partially separable SLCs.

Remark 26. Recall that the SLC set S in (7.17) is given by S = L ∩ FT ∩ X.
The localized constraint L and the FIR constraint FT are partially separable with
respect to arbitrary row-wise and column-wise partition. Therefore, the partial
separability of the SLC S is determined by the partial separability of the set X. If
X is partially separable, we can express the original SLC S as an intersection of
the sets S(r) = L ∩ FT ∩ X(r) and S(c) = L ∩ FT ∩ X(c), where X(r) is a row-wise
separable component ofX andX(c) a column-wise separable component ofX. Note
that the localized constraint and the FIR constraint are included in both S(r) and
S(c). As will be shown later, this is the key point to allow the subroutines of the
ADMM algorithm to be solved in a scalable way.

We now formally define partially separable SLS problems as follows.

Definition 24. The output feedback system level synthesis problem (7.17) is said
to be a partially separable problem if the SLO (7.17a) and the SLC (7.17d) are
both partially separable with respect to a row-wise partition {r1, . . . , rq} and a
column-wise partition {c1, . . . , cp}.

The definition of the class of CLS-SLS problems is then straightforward.

Definition 25. A SLS problem (7.5) is said to be a CLS-SLS problem if it is convex,
localized, and partially separable.

For a CLS-SLS problem (7.17), let Ψ be a duplicate of the optimization variableΦ.
We define extended-real-value functionals h(r)(Φ) and h(c)(Ψ) by

h(r)(Φ) =
{

g(r)(Φ) if (7.17c),Φ ∈ S(r)

∞ otherwise

h(c)(Ψ) =
{

g(c)(Ψ) if (7.17b),Ψ ∈ S(c)

∞ otherwise.
(7.20)

The CLS-SLS problem (7.17) can then be reformulated as

minimize
{Φ,Ψ}

h(r)(Φ) + h(c)(Ψ)

subject to Φ = Ψ. (7.21)
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Problem (7.21) can be solved via the standard ADMM approach [5]. Specifically,
the ADMM algorithm for (7.21) is given by

Φk+1 = argmin
Φ

(
h(r)(Φ) + ρ

2
| |Φ − Ψk + Λk | |2H2

)
(7.22a)

Ψk+1 = argmin
Ψ

(
h(c)(Ψ) + ρ

2
| |Ψ −Φk+1 − Λk | |2H2

)
(7.22b)

Λk+1 = Λk +Φk+1 − Ψk+1, (7.22c)

where the square of the H2 norm is computed by (7.10). As the FIR constraint FT

is imposed onΦ and Ψ through the SLC sets S(r) and S(c), subroutines (7.22a) and
(7.22b) are both finite dimensional optimization problems.

Subroutines (7.22a) and (7.22b) can be further decomposed row-wisely and column-
wisely, respectively. For instance, the optimization problem corresponding to sub-
routine (7.22b) is given by

minimize
Ψ

g(c)(Ψ) + ρ
2
| |Ψ −Φk+1 − Λk | |2H2

(7.23a)

subject to ZABΨ = JB (7.23b)

Ψ ∈ S(c). (7.23c)

This problem has the same form as (7.8) — the right-hand-side of (7.23b) does
not affect the column-wise separability of the problem. The H2 norm regularizer
in (7.23a) is column-wise separable with respect to arbitrary column-wise parti-
tion. As the objective g(c)(·) and the constraint S(c) are column-wise separable
with respect to a given column-wise partition, we can use the column-wise separa-
tion technique described in the previous section to decompose problem (7.23) into
parallel subproblems. Recall that we have S(c) = L ∩ FT ∩ X(c). We can then
exploit the localized constraint L and use the technique described in Section 7.2.1
and Appendix 7.A to further reduce the dimension of each subproblem from global
scale to local scale. Overall, subroutine (7.22b) can be solved in a localized and
scalable manner. Similarly, subroutine (7.22a) can also be solved via the row-wise
separation. Equation (7.22c) can be computed element-wisely since it is a matrix
addition. Therefore, (7.22a) - (7.22c) is a scalable algorithm to solve the CLS-SLS
problem (7.17) by using row-wise and column-wise separation alternatively and
iteratively.
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We prove that the ADMM algorithm (7.22a) - (7.22c) converges to an optimal
solution of (7.17) (or equivalently, (7.21)) under the following assumptions. The
details of the proof, as well as the stopping criteria of the algorithm, can be found
in Appendix 7.B.

Assumption 4. Problem (7.17) has a feasible solution in the relative interior of the
set S.

Assumption 5. The functionals g(r)(·) and g(c)(·) are closed, proper, and convex.

Assumption 6. The sets S(r) and S(c) are closed and convex.

7.3.2 Examples of CLS-SLS Problems
In this subsection, we give some examples of CLS-SLS problems in optimal control.
All these problems can be solved using the ADMM algorithm (7.22) in a localized
and scalable way.

Partially Separable Objectives

We begin by considering some examples of partially separable SLOs.

Example 13. Consider the SLO of the distributed optimal control problem in (4.10),
with the norm given by either the square of the H2 norm or the element-wise `1

norm defined in Example 12. Suppose that there exists a permutation matrix Π
such that the matrix

[
B>1 D>21

]
Π is block diagonal. Using a similar argument

as in Example 11, we can find a column-wise partition to decompose the SLO in
a column-wise manner. Likewise, suppose that there exists a permutation matrix
Π such that the matrix

[
C1 D12

]
Π is block diagonal. We can find a row-wise

partition to decompose the SLO in a row-wise manner. In both cases, the SLO is
column/row-wise separable and thus partially separable.

Example 14. Consider the weighted actuator norm defined in [40, 41, 70], which
is given by

| |µ
[
M L

]
| |U =

nu∑
i=1

µi | |e>i
[
M L

]
| |H2, (7.24)

where µ is a diagonal matrix with µi being its ith diagonal entry, and ei is a unit
vector with 1 on its ith entry and 0 elsewhere. When µ is an identity matrix, the
actuator norm (7.24) is equivalent to the `1/`2 norm, or the group lasso [78] in the
statistical learning literature. This norm acts as a regularizer to make the transfer
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matrix
[
M L

]
row-wise sparse, i.e., have many zero rows. Recall from Theorem

2 that the controller achieving the desired system response can be implemented
by (7.4). If the ith row of the transfer matrix

[
M L

]
is a zero row, then the ith

component of the control action ui is always equal to zero. This means that we
can remove the control action ui without changing the closed loop response. It is
clear that the actuator norm defined in (7.24) is row-wise separable with respect to
arbitrary row-wise partition. This still holds true when the actuator norm is defined
by the `1/`∞ norm. Similarly, consider the weighted sensor norm given by

| |
[
N
L

]
λ | |Y =

ny∑
i=1

λi | |
[
N
L

]
ei | |H2, (7.25)

where λ is a diagonal matrix with λi being its ith diagonal entry. The sensor norm in
(7.25) is a regularizer to make the transfer matrix

[
N> L>

]>
column-wise sparse.

Using the controller implementation (7.4), the sensor norm can be treated as a
regularizer on the measurement y. For instance, if the ith column of the transfer
matrix

[
N> L>

]>
is identical to zero, then we can ignore the measurement yi

without changing the closed loop response. The sensor norm defined in (7.24) is
column-wise separable with respect to any column-wise partition.

Example 15. From Definition 22, it is straightforward to see that the class of
partially separable SLOs with the same partition are closed under summation.
Therefore, we can combine all the partially separable SLOs described above, and
the resulting SLO is still partially separable. For instance, consider the SLO given
by

g(R,M,N,L) = | |
[
C1 D12

] [
R N
M L

] [
B1

D21

]
| |2H2
+ | |µ

[
M L

]
| |U + | |

[
N
L

]
λ | |Y,

(7.26)
where µ and λ are the relative penalty between the H2 performance, actuator
and sensor regularizer, respectively. If there exists a permutation matrix Π such
that the matrix

[
C1 D12

]
Π is block diagonal, then the SLO (7.26) is partially

separable. Specifically, the H2 norm and the actuator regularizer belong to the
row-wise separable component, and the sensor regularizer belongs to the column-
wise separable component.

Partially Separable Constraints

We consider some examples of partially separable SLCs beside the localized con-
straint L and the FIR constraint FT described in Remark 26.
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Example 16. Consider the L1 norm [11] of a FIR transfer matrix G ∈ FT , which
is given by

| |G| |L1 = max
i

∑
j

T∑
t=0
|gi j[t]|. (7.27)

TheL1 norm is the induced norm of a `∞ input signal to a `∞ output signal. Suppose
that the `∞ norm of the disturbance w in (7.2) is bounded, and we want to bound the
`∞ norm of the state vector x and the control action u. We can impose the constraint

| |
[
R N
M L

] [
B1

D21

]
| |L1 ≤ γ (7.28)

in the optimization problem (7.17) for some γ. The solution of (7.28) forms a convex
set because it is a sublevel set of a convex function. Therefore, (7.28) is a convex
SLC. From the definition (7.27), the SLC (7.28) is row-wise separable with respect
to any row-wise partition.

Example 17. From Definition 23, the class of partially separable SLCs with the
same partition are closed under intersection. Therefore, we can combine all the
partially separable SLCs described above, and the resulting SLC is still partially
separable. For instance, the combination of the localized constraint L, the FIR
constraint FT , and the L1 constraint in (7.28) is partially separable. This property
is extremely useful because it provides a unified framework to deal with all kinds of
partially separable constraints at once.

Partially Separable Problems

With some examples of partially separable SLOs and SLCs, we now consider two
CLS-SLS problems: (i) localizedH2 optimal control problem with sensor actuator
regularization, and (ii) localizedmixedH2/L1 optimal control. These two problems
are used in Section 7.4 as case study examples.

Example 18. The localizedH2 optimal control with sensor actuator regularization
is formulated by

minimize
{R,M,N,L}

(7.26) (7.29a)

subject to (7.3a) − (7.3c) (7.29b)[
R N
M L

]
∈ C ∩ L ∩ FT, (7.29c)
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where C is the communication delay SLC. If there exists a permutation matrix Π
such that the matrix

[
C1 D12

]
Π or the matrix

[
B>1 D>21

]
Π is block diagonal,

then (7.29) is partially separable.

Remark 27. When the penalty of the sensor and actuator norms are zero, problem
(7.29) reduces to a LLQG problem (cf., Chapter 6). If the system is state feedback
and we only have actuator regularizer, then (7.29) reduces to the LLQR problem
with actuator regularization (cf., Section 5.3).

Problem (7.29) can be used to co-design a localized optimal controller and its
sensing and actuation interface by choosing the relative weight among the H2

performance, actuator and sensor norm. We emphasize the fact that (7.29) is a CLS-
SLS problem, and thus can be solved by the ADMM algorithm (7.22) with O(1)
parallel computational complexity. In other words, we can co-design a localized
optimal controller and its sensing and actuation interface in a localized and scalable
way. The LLQR with actuator regularization problem described in Section 5.3 is a
special case of (7.29), and thus can be solved in a localized way using the ADMM
algorithm (7.22) as well.

The weights µi and λi in the regularizers (7.24) and (7.25) can be properly chosen to
further enhance row/column-wise sparsity. For instance, we can use the reweighted
`1 algorithm proposed in [6] to iteratively set the weights and solve (7.29) multiple
times. Let µ(0)i = µ0 for i = 1, . . . , nu and λ

(0)
i = λ0 for i = 1, . . . , ny. Let

(R(k),M(k),N(k),L(k)) be the optimal solution of (7.29) when the weights are given
by {µ(k)i }

nu
i=1 and {λ

(k)
i }

ny
i=1. We update the weights at iteration (k + 1) by

µ
(k+1)
i = ( | |e>i

[
M(k) L(k)

]
| |H2 + ε)−1

λ
(k+1)
i = ( | |

[
N(k)

L(k)

]
ei | |H2 + ε)−1 (7.30a)

for some small ε . It is shown in [6] that this reweighted scheme usually results in
sparser solution.

Next, we consider the localized mixedH2/L1 optimal control given as follows:

minimize
{R,M,N,L}

| |
[
R N
M L

] [
B1

D21

]
| |2H2

(7.31a)

subject to (7.3a) − (7.3c), (7.28), (7.29c). (7.31b)
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The localized mixed H2/L1 optimal control problem can be used to design the
tradeoff between average-case performance and worst-case performance. Specifi-
cally, the H2 objective in (7.31a) is the expected value of the energy of the state
and control for AWGN disturbances, which measures the average-case performance
of the closed loop response. The L1 constraint in (7.28) is the `∞-`∞ induced
norm, which measures the worst-case state and control deviation for `∞ bounded
disturbances.

7.3.3 Analytic Solution and Acceleration
Suppose that the Assumptions 4 - 6 in Section 7.3.1 hold. The ADMM algorithm
presented in (7.22) is a special case of the proximal algorithm [5, 9, 48]. For
certain type of objective functionals h(r)(·) and h(c)(·), the proximal operators can be
evaluated analytically (see Ch. 6 of [48]). In this situation, we only need to evaluate
the proximal operators once, and iterate (7.22a) and (7.22b) in closed form. This
improves the overall computation time significantly. We explain how to express the
solutions of (7.22a) and (7.22b) using proximal operators in detail in Appendix 7.C.
Here we list a few examples that the proximal operators can be evaluated analytically.

Example 19. Consider the LLQG problem in Chapter 6. When the global optimiza-
tion problem is decomposed into parallel subproblems, each subproblem is a convex
quadratic program restricted on an affine set. In this case, the proximal operator is
an affine function [5, 48, 68]. We only need to calculate this affine function once.
The iteration in (7.22a) - (7.22c) can then be carried out using multiple matrix
multiplications in the reduced dimension, which significantly improves the overall
computation time.

Example 20. Consider the LLQR problem with actuator regularization in Section
5.3, which is the state feedback version of (7.29). The column-wise separable part is
identical to the LLQG example, so the update (7.22b) can be computed using matrix
multiplicatiosn. Suppose that we use (7.24) as the actuator norm. We showed in
[70] that the row-wise separable part can be simplified into multiple unconstrained
optimization problems, with proximal operators given by vectorial soft-thresholding
[48]. This offers an efficient way to update (7.22a).

Beside ADMM, there exists other distributed algorithms that can be used to solve
the optimization problem (7.21) in a localized and scalable way. For instance, if
either g(r)(·) or g(c)(·) is strongly convex, we can use the alternating minimization
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algorithm (AMA) [60] to simplify the ADMM algorithm. Some other alternatives
include the over-relax ADMM [5] and the accelerated version of ADMM and AMA
proposed in [22].

7.4 Simulation Results
In this section, we continue with the power system example described in Section 6.4,
and demonstrate the localizedH2 optimal control with sensor actuator regularization
(7.29) and the localized mixedH2/L1 optimal control (7.31).

We first solve the localized H2 optimal control with sensor actuator regularization
to co-design the LLQG controller and the locations of sensors and actuators in
the power network. Then, we solve the localized mixed H2/L1 optimal control
problem to exploit the tradeoff between average-case performance and worst-case
performance of the closed loop response.

7.4.1 LocalizedH2 with Sensor Actuator Regularization
We first consider the 10 × 10 mesh example shown in Figure 6.2a. In Section 6.4,
we assume that each subsystem in the power network has a phase measurement unit
(PMU), a frequency sensor, and a controllable load. In practice, the installation of
these sensors and actuators are expensive, and we would like to deliberately trade
off the closed loop performance and the number of sensors and actuators being
used. A challenging problem is to determine the optimal locations of these sensors
and actuators due to its combinatorial complexity. In this subsection, we apply
the regularization for design (RFD) [40] framework to jointly design the localized
optimal controller and the optimal locations of sensors and actuators in the power
network. This is achieved by solving the localized H2 optimal control with sensor
actuator regularization in (7.29).

In order to allow more flexibility on sensor actuator placement, we increase the
localized region of each process and sensor noise from its two-hop neighbors to
its four-hop neighbors. This implies that each subsystem j needs to exchange the
information up to its four-hop neighbors, and use the restricted plant model within
its four-hop neighbors to synthesize the LLQG controller. The length of the FIR
constraint FT is increased to T = 30. TheH2 cost achieved by the LLQG controller
is given by 13.3210, which is 0.03% degradation compared to the one achieved by
an idealized centralized H2 optimal controller. We assume that the relative price
between each frequency sensor, PMU, and controllable load are 1, 100, and 300,
respectively. This is to model the fact that actuators are typically more expensive
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than sensors, and PMU are typically more expensive than frequency sensor. The
price for the same type of sensors and actuators at different locations are the same.
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Figure 7.1: The upward-pointing triangles represent the subsystems in which the
PMU is removed. The downward-pointing triangles represent the subsystems in
which the controllable load (actuator) is removed.

We run the reweighted `1 algorithm for (7.29) 7 times, and remove the sensors and
actuators for those with their sensor or actuator norm smaller than 0.02. Originally,
there are 100 controllable loads, 100 PMUs, and 100 frequency sensors in the power
network. After solving (7.29), we successfully remove 43 controllable loads and
46 PMUs in the network (no frequency sensors are removed due to the chosen
relative pricing). The locations of the removed sensors and actuators are shown in
Figure 7.1. We argue that this sensing and actuation architecture is very sparse.
In particular, we only use 57 controllable loads to control process noise from 200
states and sensor noise from 154 states, while ensuring that the system response for
all the disturbances are localized FIR.

For the system with reduced number of sensors and actuators, theH2 cost achieved
by the LLQG controller is given by 17.8620. As a comparison, the cost achieved
by a proper centralized H2 optimal controller is 16.2280, and the cost achieved
by a strictly proper centralized H2 optimal controller is 18.4707. Note that when
the sensing and actuation interface become sparser, the performance gap between
the centralized and the localized controller becomes larger. This is an inevitable
tradeoff because the system tends to spread the control effort to a larger region
when the the sensing and actuation interface get sparse. Nevertheless, we note that
the performance degradation is only 10% compared to the proper centralized H2

optimal scheme. In addition, our LLQG controller, despite having the additional
localized region constraint, FIR constraint, and communication delay constraint,
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still outperforms the strictly proper centralizedH2 optimal controller in 3.4%.

7.4.2 Localized MixedH2/L1 Optimal Control
We solve the localized mixed H2/L1 optimal control problem in (7.31) on the
10 × 10 mesh example shown in Figure 6.2a. We iteratively reduce the L1 sublevel
set of (7.31) to exploit the tradeoff between average-case performance and worst-
case performance. We plot the normalized H2 norm and the normalized L1 norm
in Figure 7.2. The left-top point in Figure 7.2 is the localized H2 solution. When
we start reducing the L1 sublevel set, the H2 norm of the closed loop response
gradually increases. Note that there usually exists a sweet spot on the tradeoff curve
such that the average-case performance (H2 norm) and the worst-case performance
(L1 norm) is well balanced.

1 1.05 1.1 1.15
1

1.05

1.1

1.15

1.2

1.25

1.3

Figure 7.2: The vertical axis represents the normalized L1 norm of the closed loop,
and the horizontal axis represents the normalizedH2 norm of the closed loop.
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APPENDIX

7.A Dimension Reduction Algorithm
Consider problem (7.12) with a specific j. Recall from (7.2) that the number of
rows of the transfer matrixΦ(:, c j) is given by (nx + nu). Let s̄ j be the largest subset
of {1, . . . , nx + nu} such that the localized constraint L(s̄ j, c j) in (7.12c) is exactly a
zero matrix. When the localized constraint is imposed, we must have Φ(s̄ j, c j) = 0.
This part can be eliminated in the objective (7.12a) and the constraints (7.12b) -
(7.12c). Let s j = {1, . . . , nx + nu} − s̄ j be the complement set of s̄ j . When the
localized constraint is imposed, problem (7.12) can be simplified into

minimize
Φ(sj,cj )

ḡ j(Φ(s j, c j)) (7.32a)

subject to ZAB(:, s j)Φ(s j, c j) = I(:, c j) (7.32b)

Φ(s j, c j) ∈ L(s j, c j) ∩ FT ∩ X̄j, (7.32c)

where ḡ j(·) and X̄j are the restriction of g j(·) and Xj on the constraintΦ(s̄ j, c j) = 0,
respectively. From the definition of the set s j , it is straightforward to see that (7.32)
is equivalent to (7.12).

Next, when the system matrices (A, B2) are fairly sparse, the transfer matrix ZAB is
also sparse. Recall that the number of rows of ZAB is given by nx . Let t̄ j be the
largest subset of {1, . . . , nx} such that the augmented matrix

[
ZAB(t̄ j, s j) I(t̄ j, c j)

]
is a zero matrix. Let t j = {1, . . . , nx} − t̄ j be the complement set of t̄ j . We can
further reduce (7.32) into (7.13). From the definition of the set t j , we know that
(7.13) is equivalent to (7.32) and therefore equivalent to (7.12).

Remark 28. The dimension reduction algorithm proposed here is a generalization
of the algorithms proposed in Chapters 5 - 6. Specifically, the algorithms described
in Chapters 5 - 6 only work for the d-localized constraint. The dimension reduction
algorithm proposed in this section can handle arbitrary localized constraint, and
for system matrices (A, B2) with arbitrary sparsity pattern.

7.B Convergence of ADMM Algorithm (7.22)
Assumptions 4 - 6 imply feasibility and strong duality of (7.17) (or its equivalent
formulation (7.21)). From Assumptions 5 and 6, we know that the extended-real-
value functionals h(r)(·) and h(c)(·) defined in (7.20) are closed, proper, and convex.
Under these assumptions, problem (7.21) satisfies the convergence conditions in [5].
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From [5], we have objective convergence, dual variable convergence (Λk → Λ∗ as
k → ∞), and residual convergence (Φk − Ψk → 0 as k → ∞). As long as the
problem (7.21) approaches feasibility and the optimal value of (7.21) converges to the
global optimal, we can use a feasible solution of (7.21) to construct a controller that
achieves the desired optimal system response using (7.4). Note that the optimization
problem (7.21) may not have a unique optimal point, so the optimization variables
Φk and Ψk do not necessary converge. If we further assume that the SLO g(·) is
strongly convex with respect toΦ, then problem (7.21) has a unique optimal solution
Φ∗. In this case, objective convergence implies primal variable convergence, so we
have Φk → Φ∗ and Ψk → Φ∗ as k →∞.

The stopping criteria is designed from [5], in which we use | |Φk − Ψk | |H2 as
primal infeasibility and | |Ψk − Ψk−1 | |H2 as dual infeasibility. The square of these
two functions can be calculated in a localized and distributed way. The algorithm
(7.22a) - (7.22c) terminates when | |Φk −Ψk | |H2 < ε pri and | |Ψk −Ψk−1 | |H2 < εdual

are satisfied for some feasibility tolerances ε pri and εdual .

In practice, we may not know the feasibility of (7.17) in advanced. In other words,
we do not know whether Assumption 4 holds. Consider the case that the ADMM
subroutines (7.22a) - (7.22c) are solvable, but problem (7.21) is infeasible. In this
situation, the stopping criteria on primal infeasibility | |Φk −Ψk | |H2 < ε pri may not
be satisfied. To avoid infinite number of iterations, we set a limit on the number of
iterations in the ADMMalgorithm. The convergence result of the ADMMalgorithm
should be regarded as a scalable algorithm to check the feasibility of the CLS-SLS
problem (7.17). If the ADMM algorithm does not converge, then we know that
the system (A, B2,C2) is not feasible with respect to the given SLC. The design of
a feasible SLC for state feedback system is described in details in Section 5.3, in
which we present a method that allows for the joint design of an actuator architecture
and the corresponding feasible spatiotemporal SLC. This method can be extended
to output feedback system by solving the localizedH2 optimal control problem with
sensor actuator regularization (7.29).

7.C Express ADMM Solution using Proximal Operators
Here we explain how to express the solutions of (7.22a) and (7.22b) using proximal
operators. We focus our discussion on (7.22b), or its equivalent formulation in
(7.23), while the same argument holds for (7.22a) as well. Recall that the set S(c)

in (7.23c) is given by S(c) = L ∩ FT ∩ X(c). We use the column-wise partition and
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the dimension reduction techniques described in Section 7.2 and Appendix 7.A (the
procedure that simplifies (7.8) into (7.13)) to simplify (7.23) into

minimize
Ψ(sj,cj )

g
(c)
j (Ψ(s j, c j)) +

ρ

2
| |Ψ(s j, c j) −Φk+1(s j, c j) − Λk(s j, c j)| |2H2

(7.33a)

subject to ZAB(t j, s j)Ψ(s j, c j) = JB(t j, c j) (7.33b)

Ψ(s j, c j) ∈ L(s j, c j) ∩ FT ∩ X(c)j (7.33c)

for j = 1, . . . p. In (7.33), the transfer matrices Ψ(s j, c j), Φk+1(s j, c j), and Λk(s j, c j)
are all FIRs with horizon T . We express the optimization variables of problem
(7.33) using a column vector defined by

Ψv( j) = vec(
[
Ψ(s j, c j)[0] · · · Ψ(s j, c j)[T]

]
),

where Ψv( j) is the vectorization of all the spectral components of Ψ(s j, c j). Simi-
larly, we define Φk+1

v( j) and Λ
k
v( j) the vectorization of all the spectral components of

Φk+1(s j, c j) and Λk(s j, c j), respectively. The optimization problem (7.33) can then
be written in the form of

minimize
Ψv(j)

gv( j)(Ψv( j)) +
ρ

2
| |Ψv( j) − Φk+1

v( j) − Λ
k
v( j) | |

2
2 (7.34a)

subject to Ψv( j) ∈ Sv( j), (7.34b)

where gv( j)(·) is the vectorization form of g(c)j (·), and Sv( j) is the set constraint
imposed by (7.33b) - (7.33c). Define the indicator function by

ID(x) =
{

0 x ∈ D
∞ x < D .

We rewrite (7.34) as an unconstrained problem given by

minimize
Ψv(j)

ISv(j)(Ψv( j)) + gv( j)(Ψv( j)) +
ρ

2
| |Ψv( j) − Φk+1

v( j) − Λ
k
v( j) | |

2
2 . (7.35)

The solution of (7.35) can be expressed using the proximal operator as

Ψ
k+1
v( j) = proxISv(j)+ 1

ρ gv(j)
(Φk+1

v( j) + Λ
k
v( j) ). (7.36)

Equation (7.36) is a solution of (7.33). Therefore, the ADMM update (7.22b) can
be carried out by the proximal operators (7.36) for j = 1, . . . p, all in the reduced
dimension.
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C h a p t e r 8

CONCLUSIONS AND FUTURE WORKS

8.1 Summary
In this dissertation, we defined and analyzed the system level approach to con-
troller synthesis, and showed its applications to design controllers for large-scale
distributed systems. The system level approach consists of three main elements:
System Level Parameterizations (SLPs), System Level Constraints (SLCs), and
System Level Synthesis (SLS) problems. We showed that all achievable and stable
system responses can be characterized via the SLPs given in Theorems 1 and 2.
We further showed that these system responses could be used to parameterize in-
ternally stabilizing controllers that achieved them, and proposed a novel controller
implementation (3.16) with structure shown in Figure 3.2. We then argued that
this novel controller implementation had the important benefit of allowing for SLCs
to be naturally imposed on it, and showed in Chapter 4 that using this controller
structure and SLCs, we can characterize the broadest known class of constrained
internally stabilizing controllers that admit a convex representation. In addition,
we combined SLPs and SLCs to formulate the SLS problem in (4.1), and showed
that it recovered as a special case many well studied constrained optimal controller
synthesis problems from the literature.

In Chapters 5 - 7, we introduced the class of convex localized separable SLS (CLS-
SLS) problems. When the localized SLC is properly specified, we showed that the
CLS-SLS problems can be solved in a localized and scalable way using distributed
optimization, with O(1) parallel computational complexity compared to the size of
the global network. We gave several examples of CLS-SLS problems, including the
localized linear quadratic regulator (LLQR) in Chapter 5, localized linear quadratic
Gaussian (LLQG) inChapter 6, the localizedH2 optimal controlwith sensor actuator
regularization and the localized mixed H2/L1 optimal control problem in Chapter
7. We demonstrated the LLQR method on a randomized heterogeneous power
network example with 51200 states. We showed that the LLQR controller for this
large-scale example can be synthesized in 23 minutes using a personal computer,
while the theoretical computation time for the traditional centralized LQR using the
same computer is 200 days, and the distributed LQR is intractable. As illustrated in
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Tables 5.2 and 6.1, the CLS-SLS framework provides superior scalability over the
centralized and distributed approach, which is extremely favorable for large-scale
applications.

8.2 Potential Applications and Future Works
Here we present a few potential applications as well as the future works of the SLS
framework.

8.2.1 Smart Grid
The trend of future power grid is that there will be more renewable energy resources
such as wind farm or solar panel integrated into the power network. While those
distributed energy resources (DERs) offer many potential opportunities to the net-
work, they also introduce large, rapid, and random fluctuations in power supply,
voltage, and frequency into the grid. The regulation and control of the power sys-
tem dynamics in the presence of uncertainty and disturbance therefore become an
important issue in the era of smart grid [12, 79, 80].

Consider the frequency regulation problem as an example. When power demand
or supply fluctuates, the power frequency on a bus may deviate from its nominal
value. This deviation will then change the power flow nearby, resulting a disturbance
propagating in the power network. This problem is minor in the current power grid,
as the frequency dynamics is stabilized by the huge inertia of rotating machines.
However, as more and more generators and loads are driven by power electronics
in the future power grid, the loss of inertia (damping) in the power network raise
significant challenges to the frequency regulation problem. One potential solution is
introducing active fast timescale controller on millions of active endpoints (photo-
valtaics, wind turbines, inverters, storage devices, ...etc) in the power network. The
frequency regulation problem then becomes a large-scale optimal control problem,
which can be solved using the CLS-SLS framework.

8.2.2 Transportation Systems
The study of Automated Highway Systems (AHS) that utilize vehicle-to-vehicle or
vehicle-to-infrastructure communication has gained interest since the 1990s. This
infrastructural change opens the possibility to design a highly efficient traffic control
scheme. The CLS-SLS framework offers a potential to use vehicle-level control
action to alter the macroscopic behavior of traffic flow.

We demonstrate a preliminary result of applying LLQR on shock wave localization
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in a transportation network in [56]. Shock waves are generated in transportation
systems due to a discontinuity in the density profile caused by large disturbances.
The creation and propagation of shock waves in traffic leads to decreased throughput
and several million gallons of wasted fuel [58]. In [56], we use the discretized cell
transmission model [10] to describe the traffic flow. This model can further be
simplified into a hybrid state space model with two modes. We then extend the
LLQR theory to this class of hybrid system. Preliminary results show some positive
effects of our control scheme on shock wave attenuation. In the future, we will try
to extend the result using a more realistic and less simplified model.

8.2.3 Software-Defined Networking
Software-defined networking (SDN) is a new networking paradigm that separates
the network control logic (control plane) from the forwarding hardware (data plane).
This opens the possibility of muchmore programmable networking, and the network
management problem can be viewed as a control problem. While the control plane
of SDN is operated to achieve global and centralize objectives, the implementation
of the control algorithm is physically distributed due to scalability, fast response, and
geographical constraints. In [44], the authors study the performance tradeoffs among
myopic (completely decentralized), coordinated (distributed), and centralized SDN
architectures on the admission control problems. It is worth it to see if the CLS-SLS
framework can be applied to the same control problem but with larger scale.

8.2.4 Layered Control Architecture
It should be noted that the SLS problems and the traditional optimal control problems
focus primarily on the design of the feedback control laws for the purpose of dis-
turbance suppression and reference tracking. The overall design of a cyber-physical
system often involve more high-level objectives, including planning, scheduling,
resource allocation, and network utility maximization. An interesting future re-
search direction is to integrate the SLS optimization problem into the layering as
optimization (LAO) framework [8, 43] to design layered control architecture for
cyber-physical systems.
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