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ABSTRACT 

 

Global energy demands are predicted to increase through 2040. In the spirit of meeting these 

demands, work focusing on increasing the efficiency of existing energy technologies, as well as 

improving energy storage is necessary. This work takes a catalytic approach to these challenges, 

focusing on Co, Rh, and Ir catalysts with pincer and bipyridine ligands. Density functional theory 

(DFT) can be used in order to gain a deeper understanding of how these catalysts behave. In the 

realm of improving existing technologies, the mechanism for oxidation of methane to methanol 

by Phebox Ir (Phebox = bis(oxazolinyl)phenyl) is investigated with a focus on understanding 

how subtle substitutions to the ligand can help or hinder this reaction. It is shown that in this 

catalyst, two unwanted intermediates on the potential energy surface (an IrIV state leading to 

catalyst deactivation and an IrV state leading to over-oxidation) can potentially be avoided by 

adding trifluoromethyl groups to the ligand. For production of fuels from solar energy, two 

reactions are studied. Experimentally, CO2 reduction to formate by (POCOP)Ir (POCOP = 

C6H3-2,6-[OP(tBu)2]2) has been shown to selectively occur at moderate potentials. The 

mechanism by which this catalyst reduces CO2 is elucidated. In particular, the impressive product 

selectivity afforded this catalyst for formate over hydrogen production is rooted in kinetics: high 

barriers for protonation inhibit the creation of H2 adducts.  In addition to this, substitutions to 

the ligand and metal center are investigated to further illuminate the relationship between 

kinetics and thermodynamics. Hydrogen evolution in Cp*Rh(bpy) (bpy = 2,2'-bipyridine, Cp* 

= pentamethylcyclopentadienyl) is investigated, centering on unexpected protonation at the Cp* 

ligand rather than the metal center. This state is on the path for hydrogen evolution in the case 

of using weak acids, but in the presence of strong acids, the path through the traditional hydride 

is most likely. Finally, the attachment of these catalysts to electrode surfaces is discussed with 

the aim of making molecular catalysts a more viable option in industry It is shown that chlorine 

present in the attachment process enables easy catalyst dissociation from the surface. Several 

non-halogen options are discussed as replacements. Throughout the thesis two themes emerge:  

the constant interaction between thermodynamics and kinetics to control mechanistic paths and 

products, and the ability of small modifications to have huge impacts on catalytic cycles.  
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NOMENCLATURE 
Bipyridine (bpy). 2,2'-bipyridine, a nitrogen-based heterocycle which is commonly used as a 
ligand in organometallic catalysis 

Hydride. H–, a proton and two electrons.  

HOMO. Highest occupied molecular orbital 

HSOMO. Highest singly-occupied molecular orbital 

Ligand. An organic molecule bound to a metal center 

LUMO. Lowest unoccupied molecular orbital 

Ortho. See Phenyl Substutition section below. 

Meta. See Phenyl Substutition section below. 

NHE. Normal Hydrogen Electrode 

Para. See Phenyl Substutition section below. 

Phebox. Bis(oxazolinyl)phenyl ligand 

POCOP. C6H3-2,6-[OP(tBu)2]2 ligand 

SHE. Standard hydrogen electrode 

Turnover Number (TON). Number of full catalytic cycles a catalyst completes 

Turnover Frequencies (TOF). Number of turnovers in a given time span 

Phenyl substitutions. If a group X is bound to a phenyl ring, as shown below, the ortho, meta, 
and para positions are indicated by O, M, and P, respectively.  
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C h a p t e r  1  

INTRODUCTION 

Current US and Global Energy Scenario 

 

Figure 1.1: Global demand for energy, divided into contributions 
from developed (OECD) and developing countries. Figure courtesy 
of the US Energy Information Administration.1  

As the global population increases, worldwide energy demand will grow with it.  The overall 

predicted energy demand can be seen in Figure 1.1. In this figure, energy demand has been 

divided into to two categories: demand from developed countries (defined by the US Energy 

Information Administration as countries belonging to the Organization for Economic 

Cooperation and Development [OECD])1 and demand from developing economies. While 

demand in OECD countries is predicted to plateau and even decrease into the future, demand 

in developing countries will cause global energy demand to increase. The plateau in the US is 

attributed to increased appliance and vehicle efficiency, as well as a population shift to warmer 

regions, that require less heating.2 Increasing demands in developing countries stems from higher 

demands for liquid fuels, personal travel, and materials in the industrial sector.1 
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Figure 1.2: Global demand for petroleum and liquid fuels with 
projection. Increasing demand is largely driven by demand in growing 
economies. Figure courtesy of the US Energy Information 
Administration.1 

In the United States, energy use can be divided into the following sectors: industrial, commercial, 

residential, and transportation. The largest consumer of energy is the industrial sector, 

comprising nearly one third of the U.S.’s energy use. This amount is predicted to grow into the 

future. Transportation contributes approximately 25% of the total energy use and is predicted 

to stay nearly the same. These two sectors are unique in that they are both significant users of 

petroleum and liquid fuels. According to the U.S. Energy Information Administration, “there 

are few substitutes for petroleum in construction, mining, agriculture, and manufacturing 

applications.”2 Furthermore, petroleum accounted for  92% of the transportation sector’s energy 

usage (in 2010)3. The demand for petroleum and liquid fuels is not likely to subside. In fact, 

petroleum is the largest single source of fuel used in the United States, accounting for 

approximately 35% of primary energy use when divided by source.2,3 In 2015, the U.S. net 

imported 4.21 million barrels of petroleum per day, with the top suppliers being Canada (40%), 

Saudi Arabia (11%), and Venezuela (9%).4 Foreign petroleum sources composed about 24% of 
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US petroleum consumption in 2015. Demand for petroleum and liquid fuels is also projected 

to grow globally, as seen in Figure 25.  

The fastest growing energy sources in the United States are natural gas and renewable sources, 

including wind, solar, hydropower, and geothermal sources. Natural gas, a mixture of methane 

and other light hydrocarbons, is largely used in the US for industrial and electric power, and 

heating. One stumbling block for natural gas’s expansion into the transportation sector or as a 

replacement for petroleum is its gaseous nature, which makes it difficult to store and transport.6 

While gas-to-liquid (GTL) technologies exist, including liquefied natural gas (LNG) and 

compressed natural gas (CNG), these technologies often encounter issues with storage and are 

relegated to fleet vehicles or ships7,8, or are prohibitively expensive9. Solar energy is the fastest 

growing renewable energy source and is predicted to continue growing 6% per year on average 

from 2015 to 2040.2 Like natural gas, solar energy is faced with issues in energy storage.10-12  

Growth in energy production to meet the rising demand often comes at a cost, especially when 

demand is met by fossil fuels. In 2015, China declared a red flag alert in Beijing due to hazardous 

pollution from coal plants north of the city.13 CO2 concentration in the atmosphere is predicted 

to increase without policies and technologies aimed at reducing emission.14 Unmitigated increase 

in greenhouse gas emission (including CO2 and CH4) is predicted by the Environmental 

Protection Agency (EPA) to have devastating effects on both the American environment and 

economy. Some of these effects include the loss of 35% of Hawaiian coral leading to recreational 

and tourism losses of $1.1 billion, $3.1 billion in predicted damages due to sea level rise and 

storm surge, and impacts on human health due to extreme temperatures and reduced air 

quality.15 These losses represent damages to business, challenges to infrastructure, and decreasing 

ability for the economy to compete globally. Thus it is imperative to find and use clean liquid 

energy sources that also lower greenhouse gas emissions. Additionally, production of liquid fuels 

in the US presents a chance to improve energy security while also providing opportunities for 

strengthening the economy via export. Research aimed at meeting future demands can be 

directed in two broad thrusts: 1) improving existing energy technologies in terms of efficiency, 

or 2) investigating new methods of harvesting and storing energy. In this work, both approaches 

will be taken.  
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In the realm of existing energy technologies, natural gas is one of the fastest growing fuel 

sources in the US. However, much of the natural gas resources are tied up in stranded wells. 

These wells exist either in geographically isolated locations or locations that lack proper 

infrastructure. This includes methane trapped with other liquid hydrocarbons which is too 

difficult to transport.16,17 Especially in this case, the infrastructure present is tailored to the 

transportation of liquid products. At room temperature and pressure, methane is a gas. As 

previously mentioned, there are some physical processes such as LNG and CNG meant to make 

methane easier to transport and their difficulty has been described.13 However, there are also 

chemical processes aimed at converting methane into a transportable liquid. One such process 

is steam reformation of methane (SRM) to syngas, which can then be combined with the Fischer-

Tropsch process to make higher order hydrocarbons.6,9,18 Steam reformation occurs at 

temperatures in excess of 900 °C, requiring expensive alloys for reactors and plant components.9 

This in turn makes SRM  a difficult option for wells in isolated locations, as the capital cost 

associated with the plant renders the process economically unviable, except in the case of very 

high oil prices.2 Presently, methane recovered from isolated wells is typically flared to release 

CO2 or released as methane directly, which has dire environmental impacts.14,15,19 It also 

represents a source of waste in the process. Alternatively, chemical oxidation of methane to 

methanol, which is a liquid at room temperature, presents an attractive solution. Improvements 

made here could reduce the amount of energy required to transport natural gas, as well as enable 

more efficient recovery of energy resources from stranded wells. However, significant challenge 

lies in gently breaking the C-H bond, which at 105 kcal/mol is quite strong. Once one bond is 

broken, the remaining C-H bonds become weaker, leading to over-oxidation in most cases. 

Solar energy presents an attractive option among renwables due to its large supply.11 Utility-scale 

photovoltaics have grown in capacity from approximately 250 MW nationwide in 2010 to over 

4000 MW in 2014, nearly a 16-fold increase.20 The National Renewable Energy Lab’s benchmark 

utility-scale installed price for PV has fallen, from $4.39 in 2009 to $1.77 in early 2015, largely 

attributed to decreasing costs of solar modules.20 However, one challenge of solar energy is its 

intermittency: weather events, clouds, and the diurnal nature of the earth’s solar cycle present a 

need for storage technologies. Batteries are problematic due to their low specific energies, 

implying that for a given energy storage capacity, they are quite heavy relative to conventional 
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liquid fuels. This is particularly relevant in the transportation sector, as the amount of energy 

required for long trips becomes intractably large. Their specific energies range from ~20 W•h/kg 

for redox flow batteries to ~160 W•h/kg for conventional lithium ion batteries.21 By 

comparison, the specific energy of gasoline is around 170,000 W•h/kg.22  

In order to achieve this kind of energy density, we can take a lesson from nature: photosynthesis 

is the process by which plants store solar energy as sugars made from water and CO2. By 

modifying this process to use sunlight to split water and provide protons and electrons to make 

fuels of our choosing, we create a process called artificial photosynthesis.10,11 The harvested protons 

and electrons can be used to make hydrogen or can be combined with CO2 to make carbon-

based fuels. One advantage of using CO2 as a feedstock is that one could close the loop in the 

carbon cycle. Fuels made from CO2 release CO2 when burned, which is then recovered to make 

more fuel. Unfortunately, these reactions can be incredibly complex and energy intensive. Even 

the basic case of 2H+ + 2e– à H2 can have puzzling and varied routes.23,24 The one-electron 

reduction of CO2 to the anionic radical occurs at -1.90 V vs SHE in water25, too high for 

commodity fuel production. CO2 reduction can also have a variety of routes and products.9,26,27  

Keys to Catalysis 

 

Figure 1.3: Model potential energy surface for catalyzed and 
uncatalyzed reactions.  
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One common thread between these two seemingly disparate energy problems is that they both 

involve high energy reactions with stable, small molecules. In order to reduce the energy 

requirement for these reactions (and thus lower their cost), we turn to catalysis. The potential 

energy surface (PES) for a model reaction (A + B à C + D) is seen in Figure 1.3. In this reaction, 

A and B represent our reactants and C + D are the products. These complexes are all referred 

to as intermediates. On a PES, intermediates are defined as minima. Moving along our reaction 

coordinate from A and B to C and D (left to right), we encounter a barrier in the energy surface, 

which is denoted as [AB]‡. The double dagger superscript is indicative of AB’s status as a transition 

state. We define the transition state as the energy maximum in this figure, which features a two-

dimensional PES. However, real PESs are usually multi-dimensional, so we define the transition 

state more rigorously as the saddle point in a PES dividing products and reactants in quasi-

equilibrium.28,29 The transition state energy (or activation energy) is related to the reaction rate 

coefficient, which helps to determine how quickly a reaction will progress. This was seen 

empirically by Svante Arrhenius, a Swedish chemist, and appears as his Arrhenius equation30. 

The related Eyring equation can be derived from transition state theory and has a similar 

functional form.31 The Arrhenius equation can be seen in Eq. 1, where Ea is the activation energy, 

R is the gas constant, T is the temperature, and A is a pre-exponential factor. 

                 𝑘 = 𝐴𝑒
%&'
()                                                 (1)  

The rate constant k is then related to the actual rate of reaction by multiplying it by some 

function of the reactant concentration.18  This is a simplified description of the field of chemical 

kinetics and for further reference, the reader is referred to texts focusing solely on the topic.32-34 

In Figure 1.3, there are two barriers, [AB]‡ and [AB]‡
cat, which represent the uncatalyzed and 

catalyzed reactions, respectively. In the uncatalyzed case there is a higher barrier.  

The catalyst is a material that lowers a reaction’s barrier without affecting its thermodynamics, 

resulting in a faster reaction. A popular metaphor is that of traveling through a mountain range: 

one can walk directly over a mountain but will expend a lot of energy. This represents the 

uncatalyzed case. Alternatively, one can take a mountain pass or a tunnel through the mountain, 

metaphorically choosing the catalyzed route. In both cases, one starts and ends in the same place, 

but the amount of energy expended (and inherently the time it takes) varies by case. By 
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definition, at the end of the reaction, the catalyst is unchanged and can proceed with more 

catalysis. A reaction which is aided by a molecule or surface, but the molecule or surface is 

changed at the end and does not react in the same way is said to be stoichiometric, whereas a 

reaction in which a molecule aids in reaction and is returned to its original state to aid again is 

referred to as catalytic. In order to be catalytic, a catalyst’s PES must have moderate barriers, but 

also must have intermediates that are not too low in energy. These create thermodynamic sink 

states, which are difficult to overcome. One common type of sink occurs when something binds 

too strongly to the catalyst, effectively poisoning it. If something does not bind at all, catalysis 

cannot be done. This is called the Sabatier principle (a.k.a. the Goldilocks principle). Catalysis 

relies on optimization of all factors. 

From these definitions, three concepts emerge: turnover, turnover number, and turnover 

frequency. Turnover is when the catalyst is returned to its original state to start another catalytic 

cycle. Turnover number (TON) is defined as the number of turnovers completed. Turnover 

frequency (TOF) is the turnovers completed in a given time span.18 High TON and TOF are 

crucial in catalysis as they represent a fast and efficient reaction.9 Other key characteristics of a 

good catalyst are high product and reactant selectivity, meaning that the catalyst only reacts with 

and produces desired molecules. Unwanted side reactions can poison a system35, create side 

products that are difficult to separate,36 or lead to a catalyst’s deactivation and failure37. In terms 

of industrial catalysts, it is important to keep in mind the efficiency of a catalyst. To this goal, 

Sheldon describes the E-factor of a catalyst, defined as the ratio of undesired product to desired 

products.38 Undesired products represent wasted energy and increased separations downstream. 

Different chemical sectors have different E-factors. For example, in the field of pharmaceuticals, 

an E-factor of 25-100 is suitable, since the desired products are quite expensive and can absorb 

costs associated with waste. However, in the field of bulk chemicals (which includes fuels), much 

smaller ratios of 1-5 are required for the economic viability of processes.38 In efficient fuels 

catalysts, waste must be minimal. 

Broadly, catalysis can be separated into several categories, including homogeneous catalysis, 

heterogeneous catalysis, and biocatalysis.18 Homogenous catalysis refers to when the catalyst and 

substrates are of the same phase, most often in the liquid phase. Conversely, heterogeneous 

catalysis refers to situations where the catalyst and the product are of different phases. In 
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industry, this typically involves a solid catalyst in liquid or gas substrate. Biocatalysis refers to 

enzymatic catalysis, where proteins perform reactions. Catalysts can further be separated into 

chemical catalysis and electrocatalysis39, which work in an electrochemical cell27. Each type of 

catalyst has advantages and disadvantages, which will be discussed in Chapter 6. However, in 

this study we will focus on homogeneous, molecular catalysts with a single metal center 

surrounded by organic ligands.  

A recent technoeconomic analysis of H2 produced by photoelectrochemical cells found that 

while fuel-forming catalysts were not a large portion of the overall cost, they were the least 

abundant component of the cells, which was cause for alarm.40  In this thesis, I study the PESs 

and mechanisms of existing, successful fuel-forming catalysts in order to determine the source 

of their selectivity, high TON and TOF, and resistance to degradation. With this in mind, I will 

work towards design of earth-abundant catalysts. The overarching focus will be on group 9 

transition metals: Co, Rh, and Ir. I will also focus on two broad ligand structures: pincer catalysts 

and bipyridine-based (bpy) catalysts. These catalysts are all studied with the goal of improving 

energy sources, both established and emerging. 

Ligand Classes 

The first class of catalysts studied here are called pincer catalysts because they literally grip the 

metal like the pincers of a bug. A generalized form can be seen in Figure 1.4a and b.  

 

Figure 1.4: Schematic of a. an arbitrary pincer, b. the side view of the 
arbitrary pincer, and c. bipyridine. 

 These pincers are tridentate ligands, meaning they bind to the metal in three places. They are 

typically planar due to the aryl ring in the middle (though non-aryl groups can be used41), though 

some bending an occur along the Y-M-Y axis42. In Fig. 1.4a, we see the different positions in the 

pincer ligand labeled. Each position in the pincer is unique, as it modifies the electronic structure 
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of the catalyst in a different way.42-46 The R groups can be used as a solvation aid47, or to modify 

the electronics at the metal center without interfering sterically. The E groups can affect bending 

of the pincer, as well as be used in second sphere coordination to lower reaction barriers48. The 

Y and Z groups can be used to affect the sterics at the metal center, creating reaction pockets or 

blocking reaction sites at the metal.42 Finally, the X position has significant control over the 

coordination of groups directly across the metal (position B in Fig. 1.4b).49 In many of the 

systems studied here, full octahedral coordination is found around the metal, meaning six groups 

bind. Three positions are taken up by the pincer and the other three can be seen in the side view 

of Figure 1.4.b. Positions A and C are referred to as the axial positions, and B is referred to as 

the equatorial position. One of the reasons for the pincer ligand’s ubiquity in catalysis is its 

modular nature: since each position of the pincer has a subtle effect, these groups are routinely 

swapped out to tune catalysts. Part of their modularity results from the synthetic processes used 

to make them.43,50 

The second class of catalysts that will be investigated are bipyridine (bpy) based catalysts. Bpy is 

a non-innocent ligand (meaning that it is able to host an electron upon reduction)51 that is found 

in many catalytic systems52-57. It often binds with transition metals through the nitrogen groups 

and can also be modified, such as to make vinyl bipyridine58, though not as extensively as the 

pincer scaffold.  

Role of Computation 

In this study, I use density functional theory as the primary tool in order to understand the PES 

of these catalysts. Density functional theory is rooted in the Schrodinger equation, and in this 

work, primarily the time-independent version.59 The Schrödinger equation allows for the 

solution of energy levels and wave function for a collection of electrons and nuclei. It can be 

seen in Eq. 2.   

 𝐻Ψ = 𝐸Ψ (2) 

In this equation, operator 𝐻 is referred to as the Hamiltonian. In a system consisting of M nuclei 

and N electrons, 𝐻 in atomic units as follows:  
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In this equation, the first two terms refer to the kinetic energy of the electrons and nuclei, 

respectively. The third term gives the interaction between electrons and the nuclei. The fourth 

and fifth terms give the interaction between pairs of electrons and pairs of nuclei, respectively. 

This equation can be solved exactly for the hydrogen atom and for “hydrogen-like” atoms, but 

additional electrons complicate the system intractably. Unfortunately, most interesting catalysis 

involves more than one or two electrons. Thus begins the journey into quantum chemical 

methods, which involves a collection of approximations made with the goal of solving the 

Schrödinger equation as exactly as possible for the multi-electron system.  

The first major approximation is the Born-Oppenheimer Approximation, which approximates 

electrons as moving in a field of fixed nuclei. This is a consequence of the nuclear mass being 

much larger than that of the electron. This approximation reduces the problem to largely solving 

for electronic motion and effects, making the fifth term in Eq. 3 effectively a constant. The 

second major approximation is that of Hartree and Fock, which reduces the N-electron problem 

to N non-interacting one-electron problems, then introduces the Hartree-Fock (HF) potential 

to account for the electron-electron interactions. The reader is referred to the classic text by 

Szabo and Ostlund for further details.60  

While the HF scheme was a large leap forward, it was plagued with error due to electron-electron 

interactions, as well issues with scaling to larger systems. In response to this, Hohenberg and 

Kohn proposed in their 1964 landmark theory the use of electron density rather than N-electron 

wave function.61 This paper effectively gave birth to modern density functional theory. Through 

proof by contradiction, they were able to show that the electron density was a unique property 

of the system. It showed that the energy is functional of the 3-dimensional electron density. 

Previously, 3N-dimensional wave function had been used, so this represented a large 

improvement in scaling. It also showed that if the exact form of the of functional including 

quantum effects, the electron-electron interaction, and kinetic energy were known, an exact 

solution to the Schrodinger Equation would be found.59 However, it gives no information on 

what this functional looks like. 
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However, this is easier said (and proved) than done! The Kohn-Sham approach62 is a direct 

consequence of the Hohenberg-Kohn theorems, presents a blueprint for using the theorems 

iteratively to find a solution. Key to this blueprint is the separation of the Hamiltonian into 

portions that can be solved exactly for a non-interacting system and the remaining unknown 

portions (primarily those involving electron-electron interactions) are collected in a term called 

the exchange-correlation functional. More depth on this subject can be found in Koch and 

Holthausen.59 The exchange-correlation functional puts the functional in density functional 

theory, as judicious choice of functional is key to accurate results. In this thesis, I primarily use 

B3LYP63 and M0664. Both are hybrid functionals, which combine differing amounts of Hartree-

Fock exchange and an empirically-fit function to derive the functional.  

From these calculations, one can derive a variety of useful characteristics of a catalytic system.59 

One can calculate the geometry of intermediates on the PES, as well as the geometry of transition 

states (with help from transition state theory28). One can also glean energies from these 

calculations to infer which paths will be most likely. The energies in this thesis generally are 

Gibbs free energies in solution, except where otherwise mentioned. In each chapter, a separate 

methods section is present as there are subtle differences between the methods used in each 

chapter. 

One advantage of computation in catalysis is that small adjustments can be made to the structure 

of the catalyst being studied. These adjustments can be as small as rotating a piece of the 

molecule to see an energy change to something as large as calculating an entirely new pathway 

for a related catalyst with new functional groups. In each case, the atomistic states along the 

pathways can be seen in full detail, a luxury often not afforded to experiment.18 A potential 

molecule can be screened for an effect without the trial of making it in the lab. Molecules that 

do not exist yet can be predicted and some that cannot be made at all for various experimental 

reasons can be made computationally as a toy system. This freedom is attractive, but as Stan Lee 

wrote, “With great power comes great responsibility”. Errors exist in DFT calculations due to a 

variety of reasons including, for instance, errors in functionals65, or unforeseen side reactions37 

so it is important to continually validate. In this study, I have worked closely with experimental 

groups to create constant iteration of explanation of observations and prediction of new 

catalysts.  
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Common Threads and Overview 

Two overarching motifs can be seen in this thesis beyond the connection of energy sciences. 

The first is the capacity of small modifications in structure to have large effects on catalytic 

ability. Gaining a true intuition for how subtle atomic effects can improve a catalyst is the key to 

most chapters. This plays on one of the strengths of computational catalysis and can be used to 

help predict new generations of catalysts which build on the strength of previous generations. 

The second motif is the interplay of thermodynamics, represented by the energy of 

intermediates, and kinetics, represented by transition states. The connection between 

thermodynamics and kinetics cannot be stressed enough. However, while thermodynamics may 

dictate the overall boundaries of possibility for a catalytic system, kinetics dictate which path is 

actually taken. The wrestling of these two effects is a hallmark of many of the catalysts studied 

in this work and can be seen throughout.  

The outline of the thesis is as follows. Chapter 2 focuses on an iridium-based catalyst competent 

for C-H activation in mesitylene, a methane surrogate. This chapter includes elucidation of the 

mechanism for this C-H activation, as well as predictions to help the catalyst improve their 

competence for selective methane activation. Chapter 3 is the first of two chapters focusing on 

iridium and cobalt catalysts for CO2 reduction to formate. This chapter centers on the 

mechanism by which these catalysts actually complete this reduction, as well as investigating the 

effects of solvent on the thermodynamics of the reaction. A key point in this chapter is how this 

catalyst is able to avoid the thermodynamically-preferred hydrogen evolution, which is an 

unwanted side reaction. Chapter 4 follows this closely with investigating how subtle atomic 

changes to the ligands in these catalysts affect both the thermodynamics and kinetics of the 

system. Chapter 5 shifts to investigating a rhodium catalyst for desired hydrogen evolution, and 

looks to explain an unexpected experimental result. The chapter goes on to elucidate how this 

catalyst makes hydrogen and how modifications on the ligand affect that path. Finally, Chapter 

6 is a departure from the realm of strict homogenous molecular catalysis, instead focusing on 

how to make these catalysts more viable for industrial purposes. Molecular catalysts typically are 

more active, with less side reactions than heterogeneous catalysts, yet separation of the catalyst 

from product can be expensive and can render these catalysts uneconomic except in the case of 

specialty chemicals.18 Furthermore, in the field of electrocatalysis, physical closeness of a catalyst 
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to an electrode can speed up processes by reducing the time required for diffusion-based 

electron transfer.66,67 Thus, this chapter operates at the boundary between chemistry and 

materials science. It primarily focuses on meeting the challenge of robust attachment of 

bipyridine-based catalysts on Si electrodes. Much effort has been devoted to predicting new 

schemes for attachment.  
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