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ABSTRACT

The feasibilities of (i) liberating free energy from dissimilative
iron reduction and (ii) coupling oxidative phosphorylation to electron
transport to Fe(III) are sensitive to the aqueous chemistry of iron.
The addition of ligands, such as nitrilotriacetic acid (NTA), to
solution significantly impacts both the overall thermodynamics and
kinetics of dissimilative iron reduction. The overall free-energy
change due to electron transfer from glucose or lactate ion to Fe(IlI)
is negative, but when Fe(III) is presented as an iron oxide there may
be insufficient free energy in the transformations to permit coupled
ATP generation. A systematic investigation of iron-reduction kinetics
as a function of Fe(III) speciation indicated that in Pseudomonas sp.
200 (i) iron-reduction rate was functionally related to the
concentrations of individual iron species and (ii) direct contact
between Fe(III) and the electron-transport chain (ferrireductase) was
required for electron transfer. Iron reduction in the absencevof
microbial activity was negligible. The addition of equimolar
quantities of NTA enormously accelerated the initial rate of microbial
iron reduction, and the calculated concentration of Fe(NTA)(OH)Zz'
correlated strongly with measured iron-reduction rates.

When Fe(IIl) was provided as an iron oxide, the overall reduction
rate was much slower, though still dependent upon the concentration of
NTA added to solution. Primary factors controlling mineral dissolution
and Fe(III) reduction were mineral surface area (or concentration of
high-energy surface sites), ligand concentration, and cell number.
Saturation kinetics were evident, as indicated by the following

relationship governing reductive dissolution of hematite:



d[FE(II)] Vmax(I)Km(NTA)Vmax(II)[NTA] . [FE(III)]

1

where V 2.8 x 107> M*hr”

max (1)
) = 6.3 10‘4 M'hr"1
max(1I1) «3 X =

- -3
Km(NTA) = 1,2 x 10 24_
Kn(Fe) = 1.0 x 1071 M (as Fe)
NTA = nitrilotriacetic acid
[Fe(III)] = volume concentration of hematite (as Fe).

Experiments involving oxide/microorganism separation indicated that
cell/mineral contact was essential to reductive dissolution of
goethite.

Specific respiratory inhibitors were utilized to idéntify elements
of electron transport chains involved in reduction of molecular oxygen
and Fe(IIl) and to compare transport-chain compositions of cells grown
under high- versus Hmited-o2 conditions., Pseudomonas sp. 200
expressed both a constitutive (cytochrome o) and an inducible
(cytochrome d) cytochrome oxidase. Induction of the alternate
transport pathway resulted from growth at low oxygen tension
(<0.01 atm.). Induced cells were capable of 0, utilization at
moderately increased rates. Pseudomonas sp. 200 also expressed a
constitutive and an inducible ferrireductase. Growth at low oxygen
tension resulted in acceleration of the overall rate of dissimilative
iron reduction by a factor of 6 to 8, but iron reduction appeared to be

uncoupied from oxidative phosphorylation. Maximum rates of electron
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transfer in induced cells were independent of the identity of the
electron acceptor indicating a common rate-l1imiting step.
Dissimilative iron reduction occurred via an abbreviated electron
transport chain in both the induced and uninduced cases.

Electron-transport-chain compositions for the induced and uninduced

cases are postulated.
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1

Chapter 1
INTRODUCTION

1.1 Environmental Motivation

Despite its general abundance within the earth's crust, in aquatic
environments iron is generally unavailable to biota, prompting
speculation that iron assimilation can limit biological productivity
(Jones, 1975; Barber and Ryther, 1969; Glover, 1978; Menzel and Ryther,
1961; Ryther and Guillard, 1959; Anderson and Morel, 1980; 1982), The
cause of this apparent contradiction lies with the extreme insolubility
of Fe(III) in the neutral and high-pH regimes. The dominant
equilibrium species of iron in an aqueous system in the presence of CO2
are displayed as functions of pH and redox potential in Figure 1.1.
Although this phase diagram represents an oversimplification of natural
waters, it is apparent that in the presence of molecular oxygen (high
redox potential) Fe(III) is the dominant oxidation state of iron.
Because the solubility product for amorphous ferric hydroxide is small

-38.7

(estimated at KSo = 10 , 25°C, I =3 M NaC10, (Stumm and Morgan,

1981)) the solubilities of free ferric ion and its hydroxo complexes in

3+ in equilibrium with

18

water are negligible; the concentration of Fe

-17

and 107°° M. In a very

Fe(OH)3(s,amorph) at pH 7.0 is between 10
dense bacterial culture, this amounts to little more than one ion for
each million microorganisms. In the absence of ligands other than OH™,

3+ and its hydroxo complexes are

the equilibrium concentrations of Fe
functions of pH alone (at fixed temperature and pressure). Between pH
6.0 and 8.0 the total solubility of Fe(III) is < 5 x 10‘9.m (Figure
1.2(a)); in the presence of more stable iron oxides such as hematite

(upFe203) or goethite (a-FeO(OH)) the equilibrium concentrations are
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even lower, The effect of complexing agents such as nitrilotriacetic
acid (NTA) on the overall solubility of Fe(III) is striking, as
indicated in Figure 1.2(b) in which equilibrium concentrations of
several Fe(III)-NTA species are plotted as a function of solution pH.

Under these conditions (1.86 x 1073

_biFe(III)T and equimolar NTA), NTA
addition increases the total solubility of Fe(III) by a factor of more
than 105. The equilibrium concentration of free ferric iron remains
unaffected by NTA.

Under reducing conditions (again referring to Figure 1.1) the stable
oxidation state for iron is Fe(Il), which is moderately soluble within
the mid- and low-pH range. On this basis, one might envision a cycle in
which Fe(IIl) precipitates as ferric hydroxide or a more stable iron
oxide in the surface waters of a lake or coastal marine environment.
These solids would coagulate and settle with organic detritus,
eventually reaching reduced bottom waters or sediments. Here, although
anaerobic conditions might make Fe(II) thermodynamically stable,
reductive dissolution of Fe(IlI) solids could be slow enough to control
the overall rate at which iron becomes biologically available. Davidson
et al. (1980) have shown that 70-90% of the iron which entered a productive
lake was permanently retainéd in the sediments.

In a number of environmental studies, it has been shown that the
rate of solubilization of iron-bearing minerals, and hence the rate at
which iron is rendered biologically available, is determined by
microbial activity:

(i) Takai and Kamura (1966) studied reductive processes in
rice-paddy soils. They indicated that a primary determinant of electron

potential in many soils was the Fe(III) ----> Fe(II) redox couple;
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ferric iron was far more abundant than other potential electron
acceptors including molecular oxygen, nitrate, and Mn(IV). They
observed a clear succession in the utilization of electron acceptors
with higher-energy reactions proceeding first (0,, nitrate, Mn(1V),
Fe(III)). Addition of antibiotics to these soils resulted in total loss
of Fe(IIl) reduction, indicating the microbial origin of this activity.
The observed dependence of crop yield on redox condition of the paddy
field waters during specific growth stages may have been related to iron
availability.

(ii) Sorensen (1982) found that iron-reduction activity in
anaerobic slurries of marine coastal sediments was eliminated by
sediment sterilization. He concluded that reduction of Fe(III) was
either directly associated with microbial metabolism or driven
indirectly by microorganisms which produce soluble, reducing
metabolites. Sulfide was not an effective chemical reductant of
Fe(III). Bacterially mediated Fe(III) reduction may be instrumental to
sediment mineralization under anaerobic, low-nitrate conditions.

(ii1) Jones et al. (1983, 1984) found that the rate of release of
Fe(II) from anoxic lake sediments had a temperature optimum at 30°C and
was inhibited by HgClz, reflecting the biological nature of the
mineralization process. From these sediments, the authors isolated two
microorganisms capable of catalyzing electron transfer to Fe(III) in
pure cultures.

(iv) The reduction of ferric iron in sediments from the Potomac
River Estuary was found to depend on microbial activity (Lovley and
Phillips, 1986). The microbially catalyzed rate of iron reduction

increased by a factor of 50 when amorphous ferric hydroxide was



substituted for hematite in enrichment media. Experiments indicated
that iron-reducing microorganisms can outcompete methanogenic consortia
for sediment organic substrates. It was concluded that under
appropriate chemical conditions bacterial iron reduction could provide a

significant pathway for mineralization of sedimentary organic material.

1.2 Commerical Motivation

The importance of microorganisms in promoting the leaching of metals

is well established. Acidophilic chemolithotrophs Thiobacillus

ferrooxidans and Thiobacillus thiooxidans catalyze the oxidation of

sulfidic minerals such as pyrite (FeSZ) releasing component metals.
Oxidative dissolution has been used for the hydrometallurgical
extraction of copper and uranium from low-grade ores; microbial
extraction of nickel, lead, and zinc are also feasible due to the
non-specific nature of bacterial substrate requirements (Brierley,
1982).

When Fe(III) produced by direct enzymatic transformation drives
subsequent oxidation and release of mineral components, the leaching

process is classified as indirect. In this manner, T. ferrooxidans can

accelerate the oxidative dissolution of FeS2 by a factor of 106 or more.
Iron(1II), soluble under conditions of extreme acidity, is known to be a
major factor in the indirect bacterial leaching of copper and uranium;
bacterially generated, soluble Fe(III) chemically oxidizes U(IV) to
U(VI) under acid conditions resulting in mineral dissolution. Other
indirect leaching processes (both oxidative and reductive) have been
proposed. For instance, it has been suggested that Fe(III) reduction

can be chemically mediated by microbially produced sulfide (Sorensen,
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1982), and soluble, extracellular metabolites are frequently cited as
potential intermediates in bacterially driven reductive dissolution of
Fe(III) (see below).

Microbial leaching of iron from natural Fe-bearing minerals may
provide a commercially attractive alternative to extraction and
ore-beneficiation processes currently in use within the steel industry.
Since biological extraction could result in a concentrated Fe(II)
slurry, there would be attendant savings attributable to reduced
transportation costs and mitigated demand for reductants during
subsequent steps in the production of elemental iron. Unit processes
within a hypothetical iron-extraction scheme are represented in Figure
1.3. The economic viability of such a process depends upon the kinetics
of microbially mediated reductive dissolution of Fe(IIl) oxides or other
iron-bearing minerals. Bacterial iron reduction might also be applied
commercially for the removal of corrosion products from the surface of

ferrous metals.

1.3 The Physiology of Bacterial Respiration

1.3.1 Energy Transduction.

Dissimilative iron reduction, a process in which respiratory
electrons enzymatically convert Fe(III) to Fe(Il), is distinguished from
assimilative reduction in which iron is processed for incorporation into
metabolically functional systems (Ehrlich, 1981). Enzymes of the
respiratory system, including those responsible for electron transport
to Fe(III) are associated with the cytoplasmic membrane. Assimilative

iron reduction is catalyzed by iron reductases within the cell
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cytoplasm. The rate of Fe(IIl) ----> Fe(Il) conversion by dissimilative
processes is potentially much faster.

A set of typical catabolic reactions, starting with glucose and
leading to the production of ATP via oxidative phosphorylation, is
schematically represented in Figures 1.4 and 1.5. Cellular respiration
is the process by which reducing power, temporarily conserved as reduced
nicotinamide adenine dinucleotide (NADH) within the tricarboxylic acid
cycle, is converted to useable chemical energy in the form of
adenosine-5'-triphosphate (ATP). In addition to NADH, reducing
equivalents may be donated to membrane-bound enzymes of the electron
transport chain by such reductants as succinate, lactate, and methanol.
Membrane-bound respiratory enzymes are alternately reduced and oxidized
by the transfer of electrons; transport is terminated with the reduction
of a terminal electron acceptor. In mitochondrial and aerobic bacterial
respiration, the terminal electron acceptor is invariably molecular
oxygen. However, because response to rapidly changing environmental
conditions may afford selective advantages among prokaryotes, bacteria
frequently possess branched electron transport systems capable of
reducing a variety of terminal electron acceptors including 02, nitrate,
nitrite, sulfate and partially oxidized sulfidic forms, and ferric iron
(White and Sinclair, 1971). When Fe(IIl) serves as terminal electron
acceptor, the process is known as dissimilative iron reduction.

Enzymes of the respiratory system can be thought of as descending
rungs in an energy ladder. Specific redox reactions (single steps on
this enzymatic ladder) are sufficiently exergonic to drive the coupled
translocation of protons from the cytoplasm (across the cytoplasmic

membrane) into the cell surroundings or periplasmic space (Lehninger,
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Catabolism of glucose with ATP generation via oxidative
phosphorylation; steps include those of the glycolytic
pathway, citric-acid cycle, and electron-transport chain.
Processes are representative since catabolism of
alternative substrates and/or alternative metabolic
pathways are frequently encountered. (From Bailey and

011is, 1977.)

Figure 1.4.
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Figure 1.5. Function and (typical) composition of E. coli aerobic
electron-transport chain. Electron transport is linked
to ADP phosphorylation by proton translocation and
establishment of transmembrane proton-motive force.
(From Hinkle and McCarty, 1978.)
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1973). Among actively respiring cells, the process occurs with
sufficient frequency to support a transmembrane proton-motive force
directed towards the cytoplasm. This force is comprised to a variable
degree of two components: (i) the proton gradient, and (ii) electrical

potential:

M =AMy - ZpH

where /p is the proton motive force (mV);
v is the electrical potential (Ay is formed because proton
translocation removes positive charges from the cytoplasm
and accumulates them in the cell surroundings); and
Z=2.3 RT/F. (R is the gas constant; T the absolute
temperature; and F the Faraday constant. Z = 60 mV at

25°C) (Konings and Veldkamp, 1983).

Potential energy stored as proton-motive force is subsequently used
to generate ATP. Protons are retranslocated from the cell surroundings
or periplasmic space to the cytoplasm via membrane-bound ATPase (Figure
1.5); retranslocation is enzymatically coupled to the phosphorylation of
adenosine diphosphate (ADP) (Hinkle and McCarty, 1978). Energy
liberated from the subsequent hydrolysis of ATP drives most
energy~-demanding metabolic processes.

This overall mechanism for coupling electron transport to
phosphorylation of ADP, known as the chemiosmotic hypothesis, has gained

general acceptance since its formulation by Mitchell (1961). Several
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important predictions of Mitchell's theory are supported by
experimentation: (i) it is possible to drive ATP synthesis independent
of electron transport by imposing a proton-motive force across an intact
bacterial (cytoplasmic) or mitochondrial inner membrane; (ii) it has
never been convincingly shown that energy transduction can be
successfully carried out by other than a topologically closed membrane;
(iii) respiration rate can be slowed by back pressure in the form of
excessive Ap when dissipation of proton-motive force is blocked; and
(iv) compounds which render the cytoplasmic membrane permeable to ions,
particularly H* or OH™, act as uncoupling agents, encouraging electron

transport without oxidative phosphorylation by dissipating Ap (Jones, 1983).

1.3.2 Cellular Ultrastructure.

The majority of the experimental program described herein consists
of an investigation of dissimilative iron reduction by a single
gram-negative bacterial species. In order to appreciate the topological
problems which such a bacterium must overcome in order to catalyze this
process, a few structural aspects of cell physiology warrant review.

Van Iterson (1984a,b) summarized recent inquiry into the nature of
the bacterial cell envelope. In gram-negative bacteria, the cytoplasmic
membrane is surrounded by an aqueous periplasmic space, approximately 10
nm in thickness including the peptidoglycan layer or true cell wall (see
Figure 1.6). An outer membrane is connected to the peptidoglycan layer
by lipoprotein molecules and to the cytoplasmic membrane at adhesion
zones of unknown character. Cell countenance and antigenic specificity
are provided by lipopolysaccharide molecules extending several

nanometers into the cell surroundings (Lin et al., 1984). Comprehensive
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reviews of cell structural aspects are available in Wright and Tipper
(1979), Rogers et al. (1980),and DiRienzo et al. (1978).

Both the outer and cytoplasmic membranes of gram-negative bacteria
are fluid structures comprised largely of lipids, proteins, and (outer
membrane only) carbohydrates. Roughly half the protein component of the
outer membrane is comprised of a regularly distributed, transmembrane
protein known as porin, originally labelled matrix protein by Inouye
(1974). Using electron microscopy, porin was observed to form a
regular, hexagonal array over much of the outer membrane (Steven et al.,
1977). Porin molecules are thought to surround passive diffusion pores
which span the outer membrane and serve as hydrophilic channels 1 or 2
nm in diameter. Three such pores visible at the cell exterior are
thought to merge to a single, larger opening on the cytoplasmic side
(Engel et al., 1985). Pore sizes are such that diffusive transport of

polysaccharide m.w. < 700 is possible (Nakae and Nikaido, 1975).

1.3.3 Transport-Chain Composition.

Bacterial respiration is based upon the types of redox carriers that
are found in mitochondria. These include flavoproteins and iron-sulfur
proteins (which comprise the dehydrogenases), quinones, cytochromes, and
cytochrome oxidases. However, the scale of variation encountered in
bacterial transport-chain composition makes generalization difficult and

enumeration tedious.

1.3.3.1 Dehydrogenases.

Bacterial dehydrogenases catalyze the oxidation of a variety of

substrates including, in addition to those already mentioned,
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glycerol-3-phosphate, NADPH, formate, lactate, malate, and others.
Flavoproteins are apoproteins of varied molecular weight and amino acid
composition equipped with a tightly-bound prosthetic group -- either
flavin moﬁonuc]eotide (FMN) or flavin adenine nucleotide (FAD) (Jones,
1983). Flavins bind a maximum of two hydrogen atoms. In their oxidized
form, they are yellow (Amax = 450 nm), and essentially colorless upon
reduction. FMN operates at a Tower redox potential than FAD due to the
method of attachment to the apoprotein (FAD is covalently bound while
FMN is usually ionically bound).

Iron-sul fur proteins contain either 2, 4, or 8 proximately located
iron atoms and an equal number of atoms of labile sulfur (released as
HZS under acid conditions). The [8Fe-8S] proteins consist of two
[4Fe-45] centers. Upon reduction, the [2Fe-2S] and [4Fe-4S] proteins
accept a single electron; [8Fe-8S] proteins can accept two electrons.

FMN and four Fe-S centers have been identified in the NADH

dehydrogenases of Escherichia coli and Paracoccus dentrificans. FAD and

three Fe-S centers are located in the succinate dehydrogenase of

Escherichia coli. Most, but not all, of the bacterial respiratory-chain

dehydrogenases are tightly embedded in the cytoplasmic membrane (Jones,

1983).

1.3.3.2 Quinones.

Lipid-soluble quinones of the ubiquinone type (Figure 1.7) normally
accept reducing equivalents from the respiratory-chain dehydrogenases of
gram-negative bacteria (Gel'man et al., 1975). Vitamin-K quinones of
the menaquinone type have been isolated from E. coli although normally

menaquinones are present in gram-positive bacteria. Quinones are firmly
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Figure 1.7. Bacterial quinones.

(a) Ubiquinones (coenzymes Q): occur in the majority of gram-
negative aerobes; n indicates the number of mono-unsaturated
isoprenoid units in the terpenoid side chain. Differences in
properties are attributable to side-chain length. In naturally
occurring members, n = 6 to 10.

(b) Menaquinones (vitamins Kp): isolated from gram-positive
bacteria, anaerobic and facultative nonphotosynthetic gram-
negative bacteria, and photosynthetic bacteria. In most
microorganisms, n = 7, 8, or 9.

(Merck Index, 1976)



18

bound within bacterial membranes, which on reduction accept 2H to form
quinols. They occupy a central position in the overall electron-
transport chain, transferring reducing equivalents from dehydrogenases
to the terminal cytochrome system. Bacterial quinones are present in
considerable molar excess (5 to 25 times) compared to membrane
concentrations of specific cytochromes. A similar ratio has been
observed in mitochondria. It has been hypothesized that mitochondrial
ubiquinone provides a pool of reducing equivalents from various
flavoprotein dehydrogenases from which electrons are transferred to the
cytochrome chain., Variety and relative complexity associated with

bacterial electron transport do not appear to have altered this role.

1.3.3.3 Cytochromes and Cytochrome Oxidases.

There are four known cytochrome types (a, b, ¢, and d) (Lemberg and
Barrett, 1973). Each consists of a heme prosthetic group bound to an
apoprotein. The heme is an iron(II) porphyrin which in its oxidized
(ferric) form can accept a single electron (Fe(IIl) + e <====> Fe(II)).
The four classes of cytochromes are distinguished on the basis of minor
variations in the prosthetic groups: Cytochrome ¢ is a mesoheme;
cytochrome b, a protoheme; cytochrome a, a heme; and cytochrome d, a
ferrochlorin (Figure 1.8). Differences in properties of the cytochromes
within a single major type arise from the character of apoproteins to
which these four heme types are added. Variation exists in the identity
or nature of substituted groups at the heme periphery and in the method
of binding between heme and apoprotein. Only cytochrome ¢ contains heme
which is covalently bound to apoprotein. Although most b-type

cytochromes, a-type cytochromes, and cytochrome oxidases (see below) are
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tightly held, integral membrane proteins, many c-type cytochromes are
hydrophilic and peripherally attached to the cytoplasmic membrane
(periplasmic side) or are present in the periplasm (Gel'man et al.,
1975). Reducing equivalents generally enter the bacterial cytochrome
chain via b-type cytochromes (Jones, 1983; Gel'man et al., 1975; Jones
and Poole, 1985). Cytochromes are frequently organized into polyenzyme
complexes. They are detected by analysis of their absorption spectra
(o, B -bands at 500-650 nm, y-band at 400-500 nm). Cytochromes account
for no more than 5-10% of the total membrane protein (by weight)
(Gel'man et al., 1975).

Heme iron forms a stable octehedral coordination complex with six
ligands. Four of the six coordination sites are filled by nitrogen
atoms of the porphyrin (one from each component pyrrole ring, see Figure
1.8); the remainder are filled by atoms from neighboring amino acid
residues. When one of these latter two positions can bind molecular
oxygen, autoxidation of reduced heme is usually rapid, and the
cytochrome can act as a terminal oxidase (Jones, 1983). However,
cytochromes which bind carbon monoxide may be regarded as only potential
terminal oxidases until such activity is confirmed by kinetic analysis
(Jones and Poole, 1983). Such a function has been confirmed for
cytochromes aag, 0, d and ay. These commonly contain four one-electron
redox centers which are combinations of different hemes or of heme and
copper centers., The structure permits catalysis of the 4-electron
reduction of molecular oxygen to H20. (For a recent analysis of
structural aspects of cytochrome ¢ oxidase metal centers see Gelles et

al., 1983).
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Among the bacterial cytochrome oxidases, type aa; most closely
resembles the mitochondrial oxidase (though still much simpler in terms
of subunit composition) (Poole, 1983). Cytochrome aa, is commonly
detected among all known physiological groups of aerobic bacteria,
usually in the presence of other cytochrome oxidases. (See discussion
of electron transport chain branching, below.) As implied by its name,
the enzyme contains two hemes, one of which (a3) binds in the ferrous
state (sixth axial position) to 02, CO, and other ligands, and in the
ferric state to CN". The spectral properties of reduced cytochrome aa,
include visible absorption bands at 600-605 and 440-445 nm, The
presumed role of copper in promoting electron transport to 02 via this
enzyme is supported by experiments in which membranes of various
bacteria grown under copper-limiting conditions exhibited lowered
oxidase content and activity. Upon reconstitution into phospholipid
vesicles, cytochrome oxidase aay serves as a proton-translocation site.
The enzyme's large size permits it to extend across the cytoplasmic
membrane.

Cytochrome 3, is the least understood of the cytochrome oxidases.
Heme 3 binds to oxygen and carbon monoxide in the ferrous form and to
cyanide in the ferric form. Its presence has been detected in a variety
of bacterial genera. The enzyme's spectral character is poorly defined:
its a-band (peak absorption between 585-595 nm) is weak, and its Soret
band is diffuse and easily confused with cytochrome d. In this range,
other bacterial components such as free protoheme and cytochrome ¢
peroxidase could interfere with its identification. Carbon monoxide
causes a blue shift in the Soret band to 424-427 nm but has little

effect in the a-region. Cytochrome 3 is frequently co-synthesized with
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other cytochrome oxidases. Meyer and Jones (1973) suggested that three
cytochrome oxidases (al, d, and o) are frequently encountered among
heterotrophic, gram-negative bacteria which adapt well to unstable
environmental conditions. The presence of multiple cytochrome-oxidases
is most common following 02-1imited, sulfate-limited, or
cyanide-supplemented growth.

Cytochrome o, a b-type cytochrome though originally designated "o"
for oxidase, is the most widely distributed of the known bacterial
cytochrome oxidases. Although it may serve as the sole oxidase,
cytochrome o more frequently comprises one limb of a branched electron
transport system. Its synthesis, sometimes regarded as constitutive, is
less sensitive to growth conditions than is that of other cytochrome
oxidases. The most distinct spectral indicator of o-type cytochromes is
in the Soret region. Peak absorbance for the CO-liganded form is from
410-421 nm, The o-peak of reduced-minus-oxidized spectra lies in the
555-565 nm range but is frequently difficult to distinguish (Poole,
1983). In its oxidized form, the cytochrome o binds CN~ making electron
transport sensitive to cyanide inhibition. Km values (substrate
concentration at which enzyme is half-bound) for 02 binding to
cytochrome o generally lie between 1.8 and 6.5 uM, although a much lower
value has been derived for E. coli. In the redox scheme proposed by
Webster (1979), two cytochrome o molecules bind 02 reducing it to H2 9
which is stoichiometrically produced in the overall NADH-cytochrome o
oxidase reaction,

Cytochrome d is commonly found among gram-negative heterotrophs in

co-existence with other cytochrome oxidases (particularly o and a,, see

above). It is induced by 1ow-02 conditions, entry into late-exponential
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or stationary growth on non-fermentable substrates, and growth on
non-fermentable carbon in the presence of CN~. Oxidized cytochrome
oxidase d is characterized by a spectral peak in the range 647-652 nm;
upon reduction, peak absorption is near 632 nm. Carbon monoxide binding
shifts the latter band to ~ 637 nm. Its Soret band is weak (Poole,
1983). The oxidase is tightly held in the cytoplasmic membrane and is
frequently isolated as an enzyme complex with b-type cytochromes.
Oxidases of the d type are relatively CN™ resistant due to poor binding
qualities of CN"., There is evidence that cytochrome d binds and reduces
nitrogen-containing compounds, suggesting that the enzyme has a role in
anaerobic respiration. Experimentally derived Km values tend to be
Tower (0.018-0.35 yM) than those assigned to the other oxidases implying
that cytochrome oxidase d may provide competitive advantages under
]ow-O2 conditions. There is disagreement regarding the ability of the

E. coli cytochrome b ----> d pathway to act as a proton translocation

site (Poole, 1983). It has been suggested that respiratory systems
terminating in cytochrome d evolved to protect 02-1abile enzymes by
"wasting" 02 (respiration without coupled proton translocation). The
molecule's ability to trap 02 at low concentrations, afforded by low Km
values, is consistent with such a hypothesis. Properties of the

bacterial cytochrome oxidases are summarized in Table 1.1.

1.3.3.4 Variation in Transport-Chain Composition.

Substantial inter-species variation has been found in electron
transport chain composition. In a few bacterial species (Paracoccus

dentrificans, Alcaligenes eutrophus), the complement of electron

carriers has proven similar to that of mitochrondia (Jones, 1983)
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prompting speculation that the present-day organelle originated as a
bacterial endosymbiont within a primitive host. (Others maintain that
mitochondria arose from specialized (mososmal) bacterial membranes
(Poole, 1983).) Three kinds of variation have been noted among
bacterial redox carriers: (i) substitution of one component for another
with similar redox properties (e.g., menaquinone for ubiquinone); (ii)
substitutions involving components with significantly different
properties; (iii) addition or loss of a limited number of
transport-chain elements.

Electron transport chains can terminate with reduction of a variety
of electron acceptors due to the existence of branches and specialized
electron carriers such as nitrate and iron reductases (White and
Sinclair, 1971). More frequently branches are based on the existence of
multiple cytochrome oxidases within a single species. Such a network
may be no more complex than the transfer of electrons from a single
cytochrome carrier to two oxidases (see Figure 1.9 for examples).
Branches may be inducible in the absence of more energetically favorable
electron-transport alternatives. For instance, a high-Oz-affinity,
d-type cytochrome oxidase appears to be induced in response to

lTow-oxygen conditions in Proteus vulgarus (Moyed and 0'Kane, 1956;

Castor and Chance, 1959), Klebsiella aerogenes (Castor and Chance, 1959;

Harrison, 1972; Moss, 1956), E. coli (Castor and Chance, 1959; Haddock

et al., 1976; Pudek and Bragg, 1974), Pseudomonas putida (Sweet and

Peterson, 1978), and others. When higher concentrations of dissolved
oxygen are available, a lower-affinity oxidase, cytochrome oxidase o, is
generally encountered. Low-O2 conditions are frequently cited as a

source of nitrate-reductase induction, but low cellular energy levels or
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Figure 1.9. Known pathways of aerobic respiration in chemoheterotrophic
and facultatively phototrophic bacteria. Single, italicized
letters represent cytochrome types; characteristic maxima in
difference spectra are provided as subscripts when available.
(Jones, 1983‘)J
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even the reduced nature of the redox carriers themselves (in the absence
of a suitable terminal electron acceptor) could be the direct cause of
system expression since these conditions are difficult to separate.
Relative 02 affinities of the cytochrome oxidases are of the order d>aa3
or o. See Table 1.1 (Poole, 1983).

Variation in transport-chain composition has also been encountered
in response to depletion of a nutrient which is essential for redox
carrier synthesis. Perhaps the simplest such example involves bacterial
growth in low-iron media, which produces correspondingly low
concentrations of iron-sulfur proteins and cytochromes.

Sul fate-limitation decreases