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Abstract

This book introduces new concepts at the intersection of machine learning, causal inference and philoso-

phy of science: the macrovariable cause and effect. Methods for learning such from microvariable data

are introduced. The learning process proposes a minimal number of guided experiments that recover the

macrovariable cause from observational data.

Mathematical definitions of a micro- and macro- scale manipulation, an observational and causal partition,

and a subsidiary variable are given. These concepts provide a link to previous work in causal inference and

machine learning.

The main theoretical result is the Causal Coarsening Theorem, a new insight into the measure-theoretic

structure of probability spaces and structural equation models. The theorem provides grounds for automatic

causal hypothesis formation from data. Other results concern the minimality and sufficiency of representa-

tions created in accordance with the theorem.

Finally, this book proposes the first algorithms for supervised and unsupervised causal macrovariable

discovery. These algorithms bridge large-scale, multidimensional machine learning and causal inference. In

an application to climate science, the algorithms re-discover a known causal mechanism as a viable causal

hypothesis. In a psychophysical experiment, the algorithms learn to minimally change visual stimuli to

achieve a desired effect on human perception.
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Chapter 1

Introduction

During my time at Caltech, I developed — together with Pietro Perona and Frederick Eberhardt — the theory

and algorithms that aim at solving a previously open problem in machine learning and causal inference.

Concisely stated, the problem is as follows. Learn, by looking at low-level measurements, a maximally

compressed representation of the causal mechanisms underlying these measurements. Part of this book is

dedicated to defining the mathematical apparatus necessary to approach this question. This leads to the first

algorithms solving the task, both in settings with and without supervision. The algorithms extract features

of the data that are, in a well-defined sense, causal features: changing the underlying data has an effect

on a system of interest only inasmuch as the value of the causal features changes. Hence the name of the

framework, CFL.

Much of this book contains results and in some cases text passages from four peer-reviewed publications I

am a co-author of (Chalupka et al., 2015, 2016b,a,c). Chapter 6 contains new material available online but not

peer-reviewed (Chalupka et al., 2016d). Computer programs that implement our algorithms and reproduce

some of the experimental results presented in this book is available online at http://vision.caltech.

edu/˜kchalupk/code.html.

1.1 Causal Feature Learning

CFL is a machine learning and causal inference framework with two goals:

1. Formation of high-level causal hypotheses using low-level input data, and

2. Efficient testing of these hypotheses.

As a motivation, consider the following archetypical research situation (Fig. 1.1C): a neuroscientist notices

that a specific neuron responds preferentially to some images containing humans. The scientist progressively

refines and tests this hypothesis by exploring painstakingly the effect of different poses and occlusions of a

large number of human shapes on the neuron. These experiments suggest that the neuron responds specif-

ically to images of female faces. This conclusion is based on alternating three main steps: (a) formulating

hypotheses through modeling and intuition, (b) designing experiments to test such hypotheses and (c) col-
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Figure 1.1: Causal Macrovariables. Macrovariables in science are functions of the underlying microvariable
space. Each such function f corresponds to a partition on the microvariable state space, defined by the
equivalence relation x1 ∼ x2 ⇐⇒ f(x1) = f(x2). (A) Temperature may be defined as the mean kinetic
energy of a system of particles. It is a one-dimensional function of a high-dimensional system consisting of
a large number of particles, each one with a mass and velocity. (B) El Niño is defined as the sea surface
temperature (SST) anomaly in a specific region of the Pacific Ocean exceeding 0.50C. It is a binary function
of the high-dimensional sea surface temperature (SST) map. (C) Primate brains are thought to have areas
specialized for face detection (see Tsao et al. (2006) for direct evidence in the macaque cortex). “Presence of
a face” is a binary function on the space of all images.

lecting evidence from such experiments.

Steps (a) and (b) are guided by prior knowledge, intuition and formal reasoning. CFL aims to augment or

fully automate this process in situations where observational data is plentiful, reducing the bias resulting from

pre-conceived ideas of the scientist. The method is predicated on the idea that if the data in fact contains high-

level features (such as female faces) that are causal, then these ought to be detectable by a learning algorithm.

In addition, CFL distinguishes between features that are related by direct causation from features that are

related through common causes. For example, atmospheric pressure causes the needle of the barometer the

change, but the needle’s position is neither a cause nor an effect of rainfall, with which it nevertheless strongly

correlates.

1.2 Macrovariables in Science

In CFL, the distinction between high-level and low-level features is framed in terms of macrovariables and

microvariables, terms often used in physical sciences. The semantics of these terms as used in science provide

direct inspiration for our methods.

Just about any scientific discipline is concerned with developing ‘macrovariables’ that summarize an

underlying finer-scale structure of ‘microvariables’ (see Fig. 1.1A-C). Temperature and pressure summarize

the particles’ masses and velocities in a gas at equilibrium; large-scale climate phenomena, such as El Niño,

supervene on the geographical and temporal distribution of sea surface temperature (SST) and wind speed.

Similarly, for the human sciences: Macro-economics supervenes on the economic activities of individuals,

which in turn presumably summarize the psychological processes of each person, which are aggregates of
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neural states.

These abstractions are particularly useful when one can establish causal relations amongst macrovariables

that hold independent of the micro-variable instantiations of the macrostates. For example, it is useful to pro-

pose that “El Niño is caused by strong westerly winds”. CFL is motivated by the need to automate the process

of developing such hierarchical descriptions starting from the less-constrained space of microvariables. The

key insight is that it is best to discover simultaneously the macrovariables and their causal relations. CFL

thus searches for the macrovariable cause/effect hypotheses starting from microvariable data. Any random

variable with a large, possibly infinite, number of states may be considered a microvariable. Continuous

variables, as well as discrete variables with unmanageable numbers of states (such as digital images or spin

configurations in the Ising model) are microvariables.

In science, macrovariables often correspond to equivalence relations on the microvariable state-space.

For example, all the particle ensembles with the same mean kinetic energy correspond to the same tempera-

ture. Similarly, all the SST maps where the temperature anomaly in a specified region of the Pacific Ocean

exceeds 0.5◦C correspond to El Niño. Following this intuition, CFL defines the relation between micro- and

macrovariables in terms of an equivalence relation, which we review formally in Chapters 2 and 3.

The learning task of CFL may be framed in terms of the micro- and macrovariable distinction:

1. Take two observational — that is, “sampled by nature”, not-experimental (Pearl, 2000, 2010)— mi-

crovariable datasets L andR as input, with the task of discovering “what in L causes what inR.”

2. Search the space of all macrovariables (equivalence relations) on L and retain only those that could be

causes ofR.

3. Search the space of all the macrovariables that supervene on R and retain only those that could be

effects of L.

4. Propose an efficient procedure that picks out the (unique) macrovariable cause and effect among the

retained macrovariable pairs.

In general, there is an infinite number of macrovariables defined over two given microvariable spaces.

However, not every random variable can function as a causal variable. First of all, causal variables cannot

stand in logical or definitional relations to one another – X does not cause 2X . Furthermore, causal variables

should permit well-defined experimental interventions. This latter point raises a subtle but important issue

for CFL: ambiguous manipulations.

1.2.1 Ambiguous Manipulation and Causal Macrovariables

Figure 1.2 illustrates a case of an unfortunate choice of a macrovariable. Total cholesterol used to be consid-

ered a risk factor for heart disease. However, further analysis revealed that ‘total cholesterol’ is not a good

causal variable, since it is a sum of cholesterol carried by low-density lipoprotein (LDL) and high-density

lipoprotein (HDL), commonly called “good” and “bad” cholesterol, which have different effects on heart

disease (see Spirtes and Scheines (2004) for an in-depth discussion of this case.)
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Figure 1.2: Ambiguous Manipulation. Total cholesterol is the sum of LDL and HDL. Suppose that LDL
causes heart disease and HDL prevents it. The effect of total cholesterol on heart disease is then ambiguous
as it depends on the proportion of HDL vs. LDL (see Sec.1.2.1). Experimental procedures based on adjusting
total cholesterol only can give inconsistent results.

Consequently, to recommend a “low-cholesterol diet” is to prescribe an ambiguous manipulation: “low-

cholesterol” could mean low in LDL, HDL or both, but each would have very different consequences for

the heart. Unless the proportions of LDL vs. HDL are known in advance, this makes a proper experimental

verification of the causal link between total cholesterol and heart disease impossible. The example illustrates

that there exists an appropriate “ground-truth” level of aggregation to describe the causal relation, and “total

cholesterol” is too high-level. The challenge is to identify when one has reached the correct level.

CFL addresses this concern, and requires causal variables to be unambiguous: Each macrovariable state

must have a consistent, well-defined causal effect. This effect can be probabilistic and highly variable, but

must not depend on the microvariable instantiation of the macrovariable. For just like the specifics of gas

molecule momenta do not change the effects of temperature, as long as their mean is equal. In this way,

CFL abstracts microscopic details of the problem away, allowing the scientist to focus on all the relevant

macroscopic details. This is analogous to the role of the macrovariables in Fig. 1.1 (A–C).

1.2.2 Macrovariables Are Task-Specific

Although pre-theoretic intuition may suggest that there is some uniquely true taxonomy to the variables de-

scribing the world, we reject this view and propose that macrovariables should be thought of as task-specific.

For example, there is evidence that the human visual system parses the image in terms of macrovariables that

(among other things) track the location, shape and appearance of faces in the scene. However, there is no a

priori reason that these are ‘optimal’ visual variables. To other creatures, occupying a different ecological

niche and animated by different behavioral goals, a different grouping of visual information may be relevant.

For example, an insect might be far more concerned about luminance, edges and motion flow in its visual in-

put than about objects and faces. Thus, the appropriate equivalence relation on the microvariable state space

is driven by the relation between L and R (for example, the statistics of the environment as imaged by the
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Figure 1.3: Macrovariables of Pacific Weather Patterns. A preview of the results of applying CFL to
climate data in Chapter 5. The microvariables consist of zonal (East-West) wind strength over the equatorial
Pacific and SST maps over the same region. The figure shows the causal hypothesis discovered by CFL.
Each image represents one macrovariable state, the average over one cluster of wind W (left) or temperature
T (right). The conditional probability table shows P (T | W ), the probability of the hypothesized SST
macrovariable given the hypothesized wind macrovariable. It shows that CFL learned at least two relations
that, causally interpreted, are consistent with current climate science: ‘Westerly winds’ (W=1) cause El Niño
(T=1) and ‘Easterly winds’ (W=0) cause La Niña (T=2).

optic array, and the desired behavior), rather than by one or the other of the spaces considered individually.

As an example, take ‘wind strength map over the Pacific Ocean’ as the input space, and ‘SST’ as the output

space. Applying CFL to this task yields a discrete division of each space into a set of wind pattern classes

(‘Westerly Winds’, ‘Easterly Winds’ etc) and SST pattern classes (‘El Niño’, ‘La Niña’ etc) – Chapter 5

describes the experiment in detail. Knowing which class a wind pattern belongs to then gives all the useful

information about its possible effects on SST1. For a different output space – say “average US income” – the

input macrovariable would change, unless the causal consequences are entirely mediated by the same wind

patterns.

1.3 Example Microvariable Cause-Effect Systems

The current section describes four example CFL problems. Further chapters develop the theory and algo-

rithms necessary to solve these problems, and present experimental results. This section has two goals:

1. Clarify, by example, when CFL is useful, and

2. provide a guide to the contents of this book.

By necessity, most of our experiments are done on simulated systems. The reason is that the “causal

ground-truth” can only be obtained either by definition of the system, or through thorough experimentation.

1As discussed throughout the book, a causal interpretation of purely observational data is not possible without further assumptions.
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The latter is an expensive and time-consuming in most interesting cases. Nevertheless, Chapter 5 contains a

limited application of the framework to real data where the ground-truth is given by expert opinion.

1.3.1 Images and a Spiking Neuron

Fig. 1.4 presents a cartoon of a paradigmatic case study in visual CFL. The contents of an image I are caused

by external, non-visual binary hidden variables H1 and H2 such that if H1 is on, I contains a vertical bar

(v-bar2) at a random position, and if H2 is on, I contains a horizontal bar (h-bar) at a random position. A

target behavior T ∈ {0, 1} is caused by H1 and I , such that T = 1 is more likely whenever H1 = 1 and

whenever the image contains an h-bar. T could indicate, for example, whether a particular neuron in the

human brain significantly exceeds its baseline spiking rate within 500ms after viewing the image.

This example is deliberately constructed such that the visual cause is clearly identifiable: manipulating

the presence of an h-bar in the image will influence the distribution of T . Thus, we can call the following

function C : I → {0, 1} the causal feature of I or the macrovariable cause of T :

C(I) =

 1 if I contains an h-bar

0 otherwise.

The presence of a v-bar, on the other hand, is not a causal feature. Manipulating the presence of a v-bar in

the image has no effect on H1 or T . Still, the presence of a v-bar is as strongly correlated with the value of

T (via the common cause H1) as the presence of an h-bar is. Call the following function S : I → {0, 1} the

spurious correlate of T in I:

S(I) =

 1 if I contains a v-bar

0 otherwise.

Both the presence of h-bars and the presence of v-bars are good individual (and even better joint) predic-

tors of the target variable, but only one of them is a cause. Identifying the visual cause from the image thus

requires the ability to distinguish among the correlates of the target variables those that are actually causal,

even if the non-causal correlates are (possibly more strongly) correlated with the target.

Chapter 2 defines rigorously what it means to be a macrovariable cause and spurious correlate in a general

setting. It provides theory and algorithms for optimal experimental design to differentiate the two. Chapter 4

describes a method to learn a manipulator function. The manipulator takes a microvariable input (for ex-

ample, an image with a horizontal and vertical bar in it, as well as other, causally irrelevant, structure) and

constructs the closest possible (according to some metric) image that has a different causal effect. In our

example, a perfect manipulator would remove only one pixel from the (causally relevant) h-bar to remove

this feature of the image, but would leave any v-bars intact (since they are not causal features). As discussed

in Chapter 4, manipulator functions make CFL useful in contexts where the goal is not only to understand

2We take a v-bar (h-bar) to consist of a complete column (row) of black pixels.
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H1

H2 I T

P(H2=0) = 0.5

P(H1=0) = 0.5
P( I | H1=0, H2=0) = U(      )

P( I | H1=0, H2=1) = U(      )

P( I | H1=1, H2=0) = U(      )

P( I | H1=1, H2=1) = U(      )

P(T=0 | I   (      ,      ), H1=0) = .33

P(T=0 | I   (      ,      ), H1=1) = .66

P(T=0 | I   (      ,  ,   ), H1=1) = 0

P(T=0 | I   (      ,      ), H1=0) = 1

Figure 1.4: A Toy Causal Model of Visual Features Activating a Single Neuron. Two binary hidden (non-
visual) variables H1 and H2 toss unbiased coins. These variables represent random events in the world, e.g.
H1 could mean “There is a tree nearby”. The content of the image I depends on these variables as follows.
If H1 = H2 = 0, I is chosen uniformly at random from all the images containing no v-bars and no h-bars.
If H1 = 0 and H2 = 1, I is chosen uniformly at random from all images containing at least one h-bar but
no v-bars. If H1 = 1 and H2 = 0, I is chosen uniformly at random from all the images containing at least
one v-bar but no h-bars. Finally, if H1 = H2 = 1, I is chosen from images containing at least one v-bar and
at least one h-bar. The distribution of the binary behavior T depends only on the presence of an h-bar in I
and the value of H1. In observational studies, H1 = 1 iff I contains a v-bar. However, a manipulation of any
specific image I = i that introduces a v-bar (without changing H1) will in general not change the probability
of T occurring. Thus, T does not depend causally on the presence of v-bars in I .
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causal mechanisms of a system, but also manipulate the system efficiently. For example in healthcare, the

desire to understand the relationship between the human body and its environment is driven by the underlying

goal of intervening on the environment in order to improve health.

1.3.2 Hue and Skin Conductance

In the previous example, input images consisted of microvariables, but the output was a binary macrovariable.

Sec. 1.2, however, motivated this work with many examples in which both the cause and the effect supervene

on microvariables. In such cases it is not possible to “anchor” the discovery of causal features in a well-

defined effect – both the cause and the effect have to be learned jointly. I call this the unsupervised CFL

setting, in contrast to the supervised CFL described above.

A simple toy example will visualize the definitions and main algorithmic steps involved in unsupervised

CFL (we return to this example in Chapter 3). Take a fictitious study on the influence of color on the elec-

trodermal activity (eda) (also known as the skin conductance). In a fictitious experiment, the electrodermal

response to a (constant but unspecified) stimulus is recorded in varying environments. At the same time, the

predominant hue of the environment is recorded. Our simulated system is pictured in Fig. 1.5. In the sys-

tem, “Red” hues increase eda (a perhaps controversial but plausible response, see e.g. Jacobs and Hustmyer

(1974)). In addition, living in warmer climates increases eda, but also increases the chance of observing

“Warm” colors in the environment. Our imaginary study consists of picking humans from diverse popula-

tions at random, and measuring their eda as well as the predominant hue in their environment. The example

is set up to exhibit three characteristics:

1. The microvariables (hue and eda) are one-dimensional. Although this makes the example rather con-

trived, the visualizations of the algorithms and definitions are much simpler and more illuminating than

in higher-dimensional cases.

2. Microvariable hue gives rise to intuitive macrovariables: color classes. “Red” colors, “Natural” colors

or “Warm” colors are (subjective) partitions of the hue space, and clearly supervene on hue. For

example, “Red” is not caused by hue, it is simply a range in the hue space.

3. The cause (hue) influences the effect (eda) by direct causation, but they are at the same time con-

founded by geographic location. The goal of CFL is to separate the causal information and the purely-

confounded information, and compress each into a separate macrovariable.

In our model, eda (in units normalized to (0, 1) where .5 is the global average) is causally influenced

by hue (represented in degrees, with 0 being the red hue, see Fig. 1.5) and lat (geographic latitude, a one-

dimensional proxy for “climate” for ease of visualization). Among these microvariables, only hue and eda

are observed and lat is latent. Thus, hue causes eda and at the same time the two variables are confounded,

as illustrated in Fig. 1.5. Assuming that lat fully captures the causal confounding between hue and eda, their

joint distribution p(hue, eda) factorizes as
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p(hue, eda) =
∑
lat

p(eda | hue, lat)p(eda | lat)p(lat). (1.1)

The probability tables for these factors are shown in Fig. 1.5. We purposefully constructed the conditional

distribution p(eda | hue, lat) to take a special form: there are four ranges of hue within which p(eda | hue)

is constant. For example, the conditional is the same for any hue ∈ (0, 90). This construction indicates that

there are macrovariables driving the relation between hue and eda: to a good approximation, any hue within

a given range has the same effect on eda. The situation is analogous to that of the temperature macrovariable

driving the relation between, say, water and human pain receptors. The probability and intensity of experi-

encing pain is roughly the same upon touching any body of water with the same temperature – given that all

the other relevant variables, such as the individual experiencing pain, remain unchanged.

Chapter 3 shows that in unsupervised CFL tasks such as the one described in this section, causal macrovari-

ables are unique and can be extracted automatically from the data. For now, we propose a “ground truth”

macrovariable model that agrees with the microvariable distribution shown in Fig. 1.5. Chapter 3 shows that

this model is in fact the macrovariable structure that supervenes on hue and eda and can be automatically

discovered using CFL.

The macrovariables are all binary. A supervenes (is a function of) eda, withA = 1 if and only if eda > .5.

That is, A represents an “Above-average” skin conductance. A is caused byR (“Redness”) which supervenes

on hue, R = 1 ⇐⇒ hue ∈ (0, 90) ∪ (270, 360). In addition, A correlates with, but is not caused by, W –

another variable that supervenes on hue, W = 1 ⇐⇒ hue ∈ (0, 180). W represents “Warm” hues.

The causal graph of R,W and A, shown in Fig. 1.5, is determined by the variables’ supervenience on

hue and eda. Similarly, the joint probability distribution P (R,W,A) is fully determined by p(hue, eda).

Algorithm 3 shows how to recover the variables R and A – the causally relevant variables – through data-

driven experimental design.

1.3.3 Images and Neural Populations

Whereas the above simulated dataset is simple and low-dimensional, unsupervised CFL can be applied to

very high-dimensional and complex data. The current example is partially inspired by a problem at the core

of much of modern neuroscience that is a generalization of the problem presented in Sec. 1.3.1: Can we detect

which features of a visual stimulus result in particular responses of neural populations without pre-defining

the stimulus features or the types of population response we are interested in?

For example, Rutishauser et al. (2011) analyze data from multiple electrodes implanted in the human

amygdala. The patient is asked to look at images containing either whole human faces, faces randomly

occluded with Gaussian “bubbles”, or images of specific regions of interest in the face—say the eye or the

mouth. The neurons are then sorted according to whether they are full-face selective or not, and the response

properties of the neurons are analyzed in the two populations. This set-up is an instance of a widely used
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Figure 1.5: Causal Graphical Model of Color Influencing eda. In the simulated study, the predominant
hue of the environment causes changes in the electrodermal response: red hues increase eda beyond the
average, whereas non-red hues tend to decrease it. In addition, the latitude of the experiment influences eda:
lower latitudes, close to the equator, cause higher absolute eda due to predominantly warm climate. Lower
latitude visual environments tend also to have visually warmer hues, whereas higher latitude environments
often have cooler hues. The probability tables show generative probabilities for our data, where U(a, b) is
the uniform distribution between a and b. For example, if lat > 45 and 270 < hue < 360, then p(eda) =
.2U(0, .5) + .8U(.5, 1) – a mixture of two uniform distributions that indicates that most likely, eda is above
the average in this situation.

experimental protocol in the field: prepare stimuli that represent various hypotheses about what the neurons

respond to; record from single or multiple units; and analyze the responses with respect to the candidate

hypotheses.

But what if the candidate hypotheses are wrong? Or if they do not line up cleanly with the actually

relevant features? CFL offers a less biased and more automatized process of experimentation: Record neural

population responses to a broad set of stimuli. Then, jointly analyze what features of the stimuli modify

responses of the neural population and what features of neural activity are changing in response to the stimuli.

To our knowledge, such joint cause-and-effect learning is a novel contribution not only in the neuroscientific

setting, but to a whole array of other scientific disciplines.

A simple neural population simulation provides a motivating example (again, we resort to simulation to be

able to compare our results to the ground-truth causal mechanisms). This example differs from the two above

in that there is no confounding in the system: we will assume that visual stimuli influence neural behavior

directly, and there are no common causes between the two. Fig. 1.6 illustrates a simulation of a population of

100 neurons whose dynamics follow Izhikevich’s equations (Izhikevich, 2003). The equations are designed

to mimic the behavior of human cortical neurons. As the ground-truth structures of interest, we define simple

macro-level causes and effects: Presented with an image containing a horizontal bar (h-bar), the “top half”

of the neural population produces a pulse of joint activity after about 100ms. When presented with a vertical
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Figure 1.6: A simulated neuroscience experiment. A stimulus image I can contain a horizontal bar (h-bar),
a vertical bar (v-bar), neither, or both (plus uniform pixel noise). In response to an image, a simulated
population of neurons (the “top” population) can produce a single pulse of joint activity, a 30 Hz rhythm,
both, or neither, with probabilities P (pulse | h-bar) = 0.8 and P (30Hz | v-bar) = 0.8. These two causal
mechanisms compose to yield the full response probability table shown in top right. In addition, another
(“bottom”) population of neurons can exhibit a rhythmic activity independent of the stimulus image. The
system’s output J is a 10ms-window running average of the neural rasters, with the neuron indices shuffled
(as a neuroscientist has no a-priori knowledge of how to order neurons). Here we show example J’s sorted
by neuron id; we use the shuffled version in our experiments.

bar (v-bar), the same population synchronizes in a 30Hz rhythm after roughly the same delay. The remaining

(“bottom half”) population acts independently of the visual stimuli (perhaps the experimenter unwittingly

planted some of the electrodes in a non-visual brain area). Half the time these “distractor neurons” follow

their spontaneous noisy dynamics, and half the time they synchronize to produce a rhythmic activity. One can

think of this activity as being caused by internal network dynamics, extra-visual stimuli or any other cause,

as long as it is independent of the image presented by the experimenter.

The example is made up of deliberately simple features for ease of illustration and interpretation. Never-

theless, it hints at what makes similar problems non-trivial to solve. The causal features can be convoluted

with salient probabilistic structure (such as the rhythmic behaviors generated in the “bottom” neuronal popu-

lation). Moreover, the data and its features can be difficult to interpret directly “by looking”: after reshuffling

the neural indices, the raster plots are hardly distinguishable by the human eye. In many domains (e.g. in

finance) the data have no special spatial structure in the first place, since they can consist simply of rows

of numbers. Chapter 3 shows how CFL can be applied in such domains, and how it solves this simulated
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problem.

1.4 Related Work

Our framework draws heavily on ideas developed in computational mechanics (Shalizi, 2001; Shalizi and

Crutchfield, 2001; Shalizi and Moore, 2003) and connects them with the framework of causal graphical

models (Spirtes et al., 2000; Pearl, 2000). After discussing these two frameworks, this section briefly indicates

several other related areas of machine learning and information theory.

1.4.1 Computational Mechanics

Our approach derives its theoretical underpinnings from the theory of computational mechanics (Shalizi,

2001; Shalizi and Crutchfield, 2001). In particular, computational mechanics defines macrovariable states

in terms of equivalence classes of conditional probabilities. Definition 5 from Cosma Shalizi’s PhD disser-

tation (Shalizi, 2001) is in fact equivalent to our definition of the observational state (Definition 1 in this

book).

However, in computational mechanics macrovariables stop at the level of conditional probabilities and

are meant to ‘summarize’ the phenomena rather than to support causal reasoning. Our work supports an

explicitly causal interpretation by incorporating the possibility of confounding and interventions. We take

the distinction between interventional and observational distributions to be one of the key features of a causal

analysis. Thus, our Def. 1 is just a first step, leading later to the development of the Causal Class and the

Causal Coarsening Theorem that relates observation and intervention.

1.4.2 Causal Graphical Models

The framework of causal graphical models (Spirtes et al., 2000; Pearl, 2000) provides the grounds for our

understanding of causality. In this framework, X causes Y if P (Y | do(X)) 6= P (Y ), where do() is an

operator representing a randomized experiment. That is, one variable causes another if and only if after

intervening on the first we see a (probabilistic) change in the value of the latter – while all the other relevant

factors are kept constant. This definition captures a wide range of intuitions about causality, for example:

1. Atmospheric pressure causes the position of the needle of a barometer. This is because changing the

atmospheric pressure would have an effect on the needle. However, the needle’s position is not a cause

of atmospheric pressure. Tampering with the barometer will never cause a change in air pressure.

2. Whether it rains or not correlates with3 the position of the barometer’s needle, but there is no direct

causal relation between the two. This is because they have a common cause, the atmospheric pressure.

3Throughout this book we will often use the expression “x correlates with y” to mean that the two variables are probabilistically
dependent, that is P (x, y) = P (x)P (y).
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3. Position of a barometer’s needle is neither a cause nor effect of a probabilistically unrelated variable

such as the outcome of a coin toss.

The field of causal graphical models concerns itself mainly with two tasks: 1) discovering the causal relation-

ships between probabilistic variables (also called “learning the causal graph”), and 2) given a causal graph,

inferring what effect a specific set of interventions will have on a chosen set of variables (classical approaches

to these two problems are discussed broadly by Spirtes et al. (2000) and Pearl (2000)).

For our purposes, the above definition of causality is sufficient and we need not discuss causal discovery

and inference further. We wish to remark, however, that the standard causal graphical models setting presup-

poses that the relevant (macro)variables are given together with the problem specification. In contrast, in our

setting the causal variables have to be constructed from the micro-variables they supervene on, before any

causal relations can be established. This work is, as far as we know, the first attempt to construct meaningful

causal variables from scratch, within the causal graphical models framework. We emphasize the difference

between our method of causal feature learning and methods for causal feature selection (Guyon et al., 2007;

Pellet and Elisseeff, 2008). The latter choose the best (under some causal criterion) features from a restricted

set of plausible macro-variable candidates. In contrast, our framework efficiently searches the whole space

of all the possible macro-variables that can be constructed from an image.

1.4.3 Machine Learning and Artificial Intelligence

David MacKay ties together the fields of machine learning and information theory as follows (MacKay,

2003):

Why unify information theory and machine learning? Because they are two sides of the same

coin. In the 1960s, a single field, cybernetics, was populated by information theorists, computer

scientists, and neuroscientists, all studying common problems. Information theory and machine

learning still belong together. Brains are the ultimate compression and communication systems.

If machine learning is concerned with compression, the field of Artificial Intelligence (AI) is about how

to use compression to act. Archetypical machine learning algorithms of the past two decades (neural net-

works (Bishop, 1995), Support Vector Machines (Schölkopf and Smola, 2001), Gaussian processes (Williams

and Rasmussen, 2006)) can compress complex data all the way to the level of discrete labels or rid time-

series of information irrelevant to a given predictive task. Thanks largely to the flexibility of neural net-

works (Schmidhuber, 2015) and their commercialization however, we now see a revival of the desire to build

agents endowed with the ability to act, at least in games (Silver et al., 2016; Mnih et al., 2013) – though the

idea is certainly not new (Russell et al., 2003). Modern intelligent agents depend on machine learning when

compressing information about their environment before acting.

The field of causal inference is to a large degree inspired by the desire to create intelligent acting sys-

tems (Pearl, 1995). Clearly, an agent would be well-advised to try and predict the results of its own interven-
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tions in the world, as well as the interventions of other agents. We see our work as bridging causal inference

and modern machine learning. Our work is all about how to compress stimuli in order to get the most concise

representation of the causal mechanisms relevant to a given task, and how to act or intervene in the world in

an optimal manner, given that only low-level direct measurements are available. We use machine learning to

create concise causal representations that can be directly used by intelligent agents to act in the world.

Active learning and automatic experimental design (see for example (Chaloner and Verdinelli, 1995; Tong

and Koller, 2001; Srinivas et al., 2010; Snoek et al., 2012)) share CFL’s goal of decreasing experimental effort

in discovering causal mechanisms in the world. CFL and active learning are applicable in complementary

situations. CFL serves its purpose best if microvariable observational data is easy to obtain and/or we suspect

the presence of macrovariables driving the system. Active learning is applicable to macro-level, experimental

data.
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Chapter 2

Supervised Causal Feature Learning

This chapter develops the theory of supervised CFL within the context of visual causes. This setting makes

the definitions most intuitive and is itself of significant practical interest. A visual cause is defined (more

formally below) as a function (or feature) of raw image pixels that has a causal effect on a well-defined target

behavior of a perceiving system of interest. However, the framework and results can be equally well applied

to extract causal information from any aggregate of micro-variables on which manipulations are possible.

Examples include auditory, olfactory and other sensory stimuli; high-dimensional neural recordings; market

data in finance; consumer data in marketing. There, causal feature learning is both of theoretical (“What is

the cause?”) and practical (“Can we automatically manipulate it?”) importance.

Visual perception is an important trigger of human and animal behavior. The visual cause of a behavior

can be easy to define, say, when a traffic light turns green, or quite subtle: apparently it is the increased

symmetry of features that leads people to judge faces more attractive than others (Grammer and Thornhill,

1994). Significant scientific and economic effort is focused on visual causes in advertising, entertainment,

communication, design, medicine, robotics and the study of human and animal cognition. Visual causes

profoundly influence our daily activity, yet our understanding of what constitutes a visual cause lacks a

theoretical basis. In practice, it is well-known that images are composed of millions of variables (the pixels)

but it is functions of the pixels (often called ‘features’) that have meaning, rather than the pixels themselves.

2.1 Advances in This Chapter

This chapter presents the following advances in machine learning and causal inference:

• A definition of the visual cause of a target behavior as a macro-variable that is constructed from the

micro-variables (pixels) that make up the image space. The visual cause is distinguished from other

macro-variables in that it contains all the causal information about the target behavior that is available

in the image. The visual cause is defined within the standard framework of causal graphical mod-

els (Spirtes et al., 2000; Pearl, 2000), thereby contributing to an account of how to construct causal

variables.
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• The Causal Coarsening Theorem (CCT), which shows how observational data can be used to learn the

visual cause with minimal experimental effort. CCT provides a connection between state-of-the-art

machine learning methods for classification and causal discovery and experimental design.

• Algorithms to learn the visual cause from data and with minimal resort to experimentation.

2.2 Theory

Consider again the example from Sec. 1.3.1. There, the visual cause is identified with the presence of an

h-bar. But the example does not provide a theoretical account of what it takes to be a visual cause in the

general case when we do not know what the causally relevant pixel configurations are. In this section, we

provide a general account of how the visual cause is related to pixel data.

2.2.1 Visual Causes as Macro-variables

A visual cause is a high-level random variable that is a function (or feature) of the image, which in turn

is defined by the random micro-variables that determine the pixel values. The functional relation between

the image and the visual cause is, in general, surjective, though in principle it could be bijective. While we

are interested in identifying the visual causes of a target behavior, the functional relation between the image

pixels and the visual cause should not itself be interpreted as causal. Pixels do not cause the features of an

image, they constitute them, just as the atoms of a table constitute the table (and its features). The difference

between the causal and the constitutive relation is that the former requires the possibility of independent

manipulation (at least to some extent), whereas by definition one cannot manipulate the visual cause without

manipulating the image pixels.

The probability distribution over the visual cause is induced by the probability distribution over the pixels

in the image and the functional mapping from the image to the visual cause. But since a visual cause stands

in a constitutive relation with the image, we cannot without further explanation describe interventions on the

visual cause in terms of the standard do-operation (Pearl, 2000). Our goal will be to define a macro-variable

C, which contains all the causal information available in an image about a given behavior T , and define its

manipulation.

To make the problem approachable, we introduce two (natural) assumptions about the causal relation

between the image and the behavior: (i) The value of the target behavior T is determined subsequently to the

image in time, and (ii) the variable T is in no way represented in the image. These assumptions exclude the

possibility that T is a cause of features in the image or that T can be seen as causing itself.
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H = (H1, ... , HN)

HC = (H2, HN) 

Figure 2.1: A general model of visual causation. In our model each image I is caused by a number of hidden
non-visual variables Hi, which need not be independent. The image itself is the only observed cause of a
target behavior T . In addition, a (not necessarily proper) subset of the hidden variables HC can be a cause of
the target behavior. These confounders create visual “spurious correlates” of the behavior in I .

2.2.2 From Micro- to Macro-variables

Let T ∈ {0, 1} represent a target behavior.1 Let I be a discrete space of all the images that can influence the

target behavior (in our experiments in Section 2.4, I is the space of n-dimensional black-and-white images).

We use the following generative model to describe the relation between the images and the target behavior:

An image is generated by a finite set of unobserved discrete variables H1, . . . ,Hm (we write H for short).

The target behavior is then determined by the image and possibly a subset of variables Hc ⊆ H that are

confounders of the image and the target behavior:

P (T, I) =
∑
H

P (T | I,H)P (I | H)P (H)

=
∑
H

P (T | I,Hc)P (I | H)P (H). (2.1)

Independent noise that may contribute to the target behavior is marginalized and omitted for the sake of

simplicity in the above equation. The noise term incorporates any hidden variables which influence the

behavior but stand in no causal relation to the image. Such variables are not directly relevant to the problem.

Fig. 2.1 shows this generative model.

Under this model, we can define an observational partition of the space of images I that groups images

into classes that have the same conditional probability P (T | I):

Definition 1 (Observational Partition, Observational Class). The observational partition Πo(T, I) of the set

of images I w.r.t. behavior T is the partition induced by the equivalence relation ∼ such that i ∼ j if and

only if P (T | I = i) = P (T | I = j). We will denote it as Πo when the context is clear. A cell of an

observational partition is called an observational class.

In standard classification tasks in machine learning, the observational partition is associated with class

1An extension of the framework to non-binary, discrete T is easy but complicates the notation significantly. An extension to the
continuous case is beyond the scope of this book.
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labels. In our case, two images that belong to the same cell of the observational partition assign equal

predictive probability to the target behavior. Thus, knowing the observational class of an image allows us

to predict the value of T . However, the predictive probability assigned to an image does not tell us the

causal effect of the image on T . For example, a barometer is widely taken to be an excellent predictor of the

weather. But changing the barometer needle does not cause an improvement of the weather. It is not a (visual

or otherwise) cause of the weather. In contrast, seeing a particular barometer reading may well be a visual

cause of whether we pack an umbrella.

Our notion of a visual cause depends on the ability to manipulate the image.

Definition 2 (Visual Manipulation). A visual manipulation is the operation man(I = i) that changes (the

pixels of) the image to image i ∈ I, while not affecting any other variables (such as H or T ). That is, the

manipulated probability distribution of the generative model in Eq. (2.1) is given by P (T | man(I = i)) =∑
Hc
P (T | I = i,Hc)P (Hc) (see Pearl (2000) for a detailed discussion of the probabilistic interpretation

of causal manipulation).

The manipulation changes the values of the image pixels, but does not change the underlying “world”,

represented in our model by the Hi that generated the image. Formally, the manipulation is similar to the

do-operator for standard causal models. However, in this book we reserve the do-operation for interventions

on causal macro-variables, such as the visual cause of T . We discuss the distinction in more detail below.

We can now define the causal partition of the image space (with respect to the target behavior T ) as:

Definition 3 (Causal Partition, Causal Class). The causal partition Πc(T, I) of the set I w.r.t. behavior T is

the partition induced by the equivalence relation∼ defined on I such that i ∼ j if and only if P (T | man(I =

i)) = P (T | man(I = j)) for i, j ∈ I. When the image space and the target behavior are clear from the

context, we will indicate the causal partition by Πc. A cell of a causal partition is called a causal class.

The underlying idea is that images are considered causally equivalent with respect to T if they have the

same causal effect on T . Given a causal partition of the image space, we can now define the visual cause of

T :

Definition 4 (Visual Cause). The visual cause C of a target behavior T is a random variable whose value

stands in a bijective relation to the causal class of I .

The visual cause is thus a function over I, whose values correspond to the post-manipulation distributions

C(i) = P (T | man(I = i)). We will write C(i) = c to indicate that the causal class of image i ∈ I is c, or

in other words, that in image i, the visual cause C takes value c. Knowing C allows us to predict the effects

of a visual manipulation P (T | man(I = i)), as long as we have estimated P (T | man(I = i∗k)) for one

representative i∗k of each causal class k.
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2.2.3 The Causal Coarsening Theorem

The main theorem of this book relates the causal and observational partitions for a given I and T . It turns

out that under appropriate, intuitive assumptions, the causal partition is a coarsening of the observational

partition. That is, the causal partition aligns with the observational partition, but the observational partition

may subdivide some of the causal classes.

2.2.4 Set-up and Definitions

For simplicity, consider a causal system between three discrete variables H, I, T in which I and H are both

causes of T , andH is in addition a cause of I – equivalent to the setup in Fig. 2.1 but with all the confounders

collapsed into one variable for simplicity of notation. We assume that these three variables fully describe the

causal system, that is, with respect to these three variables the system is causally sufficient. (In fact, since we

treat H as an unobserved common cause of I and T , H can be thought of as a catch-all for any confounding

between I and T .) The parameterization of this causal system is given by

P (H, I, T ) = P (H)P (I | H)P (T | I,H). (2.2)

We define partitions of the micro-variable space I.

Definition 5 (partition Πf (I)). Let Πf (I) to be the partition on I induced by the relationship i1 ∼ i2 ⇔

f(i1) = f(i2) for any i1, i2 ∈ I.

Here f stands for any function whose domain contains I. For example P (H | I) or P (I) are such

functions, where i1 ∼ i2 means that P (H | i1) = P (H | i2) for any value of H . Thus the causal and

observational partition above can be rewritten as, respectively

Πc(I) = ΠP (T |man(I))(I) (2.3)

Πo(I) = ΠP (T |I)(I) (2.4)

We write C(i) to denote the causal class of i in Πc(I) and O(i) to denote the observational class of i in

Πo(I).

In addition, we will make use below of a partition ΠP (I|H)(I), that we refer to as the confounding

partition:

i1 ∼ i2 ⇔ P (i1 | H) = P (i2 | H) ∀h ∈ H.

We are now ready to state the theorem:
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P(T=0 | do{      }) = .17

P(T=0 | do{      }) = .83

P(T=0 |       ) = .33

P(T=0 |       ) = .66

P(T=0 |       ) = 0

P(T=0 |       ) = 1

Figure 2.2: The Causal Coarsening Theorem. The observational probabilities of T given I (gray frame)
induce an observational partition on the space of all the images (left, observational partition in gray). The
causal probabilities (red frame) induce a causal partition, indicated on the left in red. The CCT allows us to
expect that the causal partition is a coarsening of the observational partition. The observational and causal
probabilities correspond to the generative model shown in Fig. 1.4.

Theorem 6 (Causal Coarsening Theorem). Among all the joint distributions P (T,H, I) over discrete vari-

ables T,H, I , consider the subset that induces any fixed causal partition Πc(I) and a fixed confounding

partition ΠP (T |I)(I). Within this subset, the set of distributions whose causal partition Πc(I) is not a coars-

ening of the observational partition Πo(I) is a set of measure zero.

Fig. 2.2 illustrates the relation between the causal and the observational partition implied by the theorem.

We prove the CCT in Sec. 2.5.

The motivation for the CCT is to establish a connection between the observational partition Πo(I) and

the causal partition Πc(I) such that minimal experimental effort is required to learn the causal partition

given an observational partition. In particular, if the observational partition already constitutes a coarsening

of the micro-variable space I, then the hope was to leverage this coarse observational partition to learn the

causal partition. Consequently, in order to obtain any experimental savings from the developed algorithms

we require a theorem that establishes a connection between an observational partition that is itself already a

coarsening of the micro-variable space I, and the the causal partition.

An observational partition that is a coarsening of the micro-variable space I can arise for several reasons,

To have such a coarsening, the following equation must be satisfied for at least two distinct i1, i2 ∈ I:

P (T | i1) = P (T | i2) (2.5)

⇔
∑
H

P (T | i1, H)P (H | i1)− P (T | i2, H)P (H | i2) = 0

⇔
∑
H

P (H)(P (T | i1, H)P (i1 | H)− P (T | i2, H)P (i2 | H)) = 0

⇔
∑
H

P (T | i1, H)P (i1 | H)− P (T | i2, H)P (i2 | H) = 0 (2.6)

if P (H) 6= 0 ∀h ∈ H
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Since H is assumed to be a hidden variable there is no significance to states that have zero probability, so the

assumption on the last line is innocuous. Note that equation 2.6 is stated entirely in terms of the fundamental

parameters in equation 2.2.

Consequently, for an observational partition to be a coarsening of the micro-variable space, the fundamen-

tal parameters must combine in just such a way that equation 2.6 is satisfied. However, there is an important

subclass of such combinations that satisfy the equation due to the fact that the corresponding fundamental

parameters for i1 and i2 are equal, i.e. when

P (T | i1, H) = P (T | i2, H) ∀h ∈ H

P (i1 | H) = P (i2 | H) ∀h ∈ H

It is these cases that are of interest to the discovery of causal macro-variables, since – intuitively – the

coarseness of the observational partition arises from causal effects that are invariant across distinctions at

the micro-level – this is the case in all the simulated examples enumerated in Chapter 1. In other cases that

satisfy equation 2.6, the parameters just happen to combine in such a way as to result in a coarse observational

partition.

The CCT shows that no matter what partitions we fix Πc and ΠP (I|H) to, the set of distributions consis-

tent with these partitions has the property that the causal partition will be a coarsening of the observational

partition except for a set of distributions that has measure zero.

In particular, if we assume that the observational partition is a coarsening of I only because both the

confounding partition ΠP (I|H) and the causal partition ΠP (T |man(I)) are each coarsenings of I, then the

theorem justifies the application of the algorithms developed in the following section to problems where

the observational partition is itself already a coarsening of the micro-variable space of I. In other words,

when using CFL we assume away cases where a coarse observational partition arises due to “coincidental”

combinations of the fundamental parameters that satisfy Equation 2.6. Finally, the notion of coincidence

here is not measure-theoretic in the standard sense, since for two fundamental parameters to be equal carries

in a standard measure-theoretic analysis the same amount of measure as the event that a combination of

parameters satisfy a particular algebraic constraint. However, our set-up takes as starting point the assumption

that there exist causal macro-variables in nature. In that case, the equality of two fundamental parameters

P (T | h, i1) = P (T | h, i2) is not coincidental but a result of a macro-variable, whereas the satisfaction of

some algebraic constraint such as Eq.(2.6) without equalities in the fundamental parameters is a rare event.

Two points are worth noting here: First, the CCT is interesting inasmuch as the visual causes of a behavior

do not contain all the information in the image that predict the behavior. Such information, though not itself

a cause of the behavior, can be informative about the state of other non-visual causes of the target behavior.

Second, the CCT allows us to take any classification problem in which the data is divided into observational

classes, and assume that the causal labels do not change within each observational class.
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2.2.5 The Complete Macro-variable Description Theorem

Recall the example from Sec. 1.3.1, where the visual presence of an h-bar causes a neuron to spike, and the

presence of a v-bar correlates with the spiking only through a confounder. In this section, we formalize the

intuition that the v-bar is a visual spurious correlate of neural spiking.

Assume that the causal partition ΠT
c is a coarsening of the observational partition ΠT

o , in accordance

with the CCT. Each of the causal classes c1, · · · , cK delineates a region in the image space I such that

all the images belonging to that region induce the same P (T | man(I)). Each of those regions—say, the

k-th one—can be further partitioned into sub-regions sk1 , · · · , skMk
such that all the images in the m-th sub-

region of the k-th causal region induce the same observational probability P (T | I). By assumption, the

observational partition has a finite number of classes, and we can arbitrarily order the observational classes

within each causal class. Once such an ordering is fixed, we can assign an integer m ∈ {1, 2, · · · ,Mk} to

each image i belonging to the k-th causal class such that i belongs to the m-th observational class among

the Mk observational classes contained in ck. By construction, this integer explains all the variation of the

observational class within a given causal class. This suggests the following definition:

Definition 7 (Spurious Correlate). The spurious correlate S is a discrete random variable whose value dif-

ferentiates between the observational classes contained in any causal class.

The spurious correlate is a well-defined function on I, whose value ranges between 1 and maxkMk.

Like C, the spurious correlate S is a macro-variable constructed from the pixels that make up the image. C

and S together contain all and only the visual information in I relevant to T , but only C contains the causal

information:

Theorem 8 (Complete Macro-variable Description). The following two statements hold for C and S as

defined above:

1. P (T | I) = P (T | C, S).

2. Any other variable X such that P (T | I) = P (T | X) has entropy H(X) ≥ H(C, S).

We prove the theorem in Sec. 2.5. It guarantees that C and S constitute the smallest-entropy macro-

variables that encompass all the information about the relationship between T and I . Fig. 2.3 shows the

relationship between C, S and T , the image space I and the observational and causal partitions schemat-

ically. C is now a cause of T , S correlates with T due to the unobserved common causes HC , and any

information irrelevant to T is pushed into the independent noise variables (commonly not shown in graphical

representations of structural equation models).

The macro-variable model lends itself to the standard treatment of causal graphical models described in

Pearl (2000). We can define interventions on the causal variables {C, S, T} using the standard do-operation.

The do-operator sets the value of the intervened variable to the desired value, making it independent of its
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Figure 2.3: A macro-variable model of visual causation. Using our theory of visual causation we can ag-
gregate the information present in visual micro-variables (image pixels) into the visual cause C and spurious
correlate S. According to Theorem 8, C and S contain all the information about T available in I .

causes, but it does not (directly) affect the other variables in the system or the relationships between them

(see the modularity assumption in Pearl (2000)). However, unlike the standard case where causal variables

are separated in location (e.g. smoking and lung cancer), the causal variables in an image may involve the

same pixels: C may be the average brightness of the image, whereas S may indicate the presence or absence

of particular shapes in the image. An intervention on a causal variable using the do-operator thus requires

that the underlying manipulation of the image respects the state of the other causal variables:

Definition 9 (Causal Intervention on Macro-variables). Given the set of macro-variables {C, S} that take

on values {c, s} for an image i ∈ I, an intervention do(C = c′) on the macro-variable C is given by the

manipulation of the image man(I = i′) such that C(i′) = c′ and S(i′) = s. The intervention do(S = s′) is

defined analogously as the change of the underlying image that keeps the value of C constant.

In some cases it can be impossible to manipulate C to a desired value without changing S. We do

not take this to be a problem special to our case. In fact, in the standard macro-variable setting of causal

analysis we would expect interventions to be much more restricted by physical constraints than we are with

our interventions in the image space. This issue is ultimately quite subtle both from the philosophical and

practical point of view. We do not discuss it in full detail here, as the details of the discussion may vary

significantly between various domains.

2.2.6 Predictive Non-causal Information in the Macro-variable Cause

In some cases C retains predictive information that is not causal. Consider the following example: We have a

causal graph consisting of three variables {I, T,H} where the causal relations are I → T and I ← H → T .

All three variables are binary and we have a positive distribution over the variables. In the general case,

distributions over this graph satisfy

1. P (T |do(I = 1)) 6= P (T |do(I = 0))
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2. P (T |I = 1) 6= P (T |I = 0) , and importantly

3. P (T |I) 6= P (T |do(I)).

If we view I as an image (which can either be all black or all white), T as the target behavior and H as a

hidden confounder, analogous to the set-up in the main article, then the observational partition Πo has just

two classes, namely {1, 0}. But in this case the observational partition is the same as the causal partition:

Πo = Πc. So by our definition of a spurious correlate, S is a constant, since there are no further distinctions to

be made within any of the causal classes. S would be omitted from any standard causal model. Nevertheless,

we have in our model still that P (T |C) 6= P (T |do(C)), i.e. the causal variable C still contains predictive

information that is not causal. Given that there is by construction no other than the causal and the trivial

partition in this example, it must be the case that C retains predictive non-causal information. It follows that

in our definitions of C and S, it is not the case that the predictive non-causal components of an image can

always be completely separated from the causal features. However, any distinction we make in C does make

a causal difference.

2.3 Algorithms

The theoretical advances of the previous section allows us to develop algorithms to learn C, the visual cause

of a behavior. In addition, knowledge of C will allow us to specify a manipulator function which we discuss

separately in Chapter 4.

2.3.1 Predicting Macro-variable Intervention Results

A standard machine learning approach to learning the relation between I and T would be to take an ob-

servational dataset Dobs = {(ik, P (T | ik))}k=1,··· ,N and learn a predictor f whose training performance

guarantees a low test error (so that f(i∗) ≈ P (T | i∗) for a test image i∗). In causal feature learning, low test

error on observational data is insufficient; it is entirely possible that D contains spurious information useful

in predicting test labels which is nevertheless not causal. That is, the prediction may be highly accurate for

observational data, but completely inaccurate for a prediction of the effect of a manipulation of the image

(recall the barometer example). However, we can use the CCT to obtain a causal dataset from the observa-

tional data, and then train a predictor on that dataset. Algorithm 1 uses this strategy to learn a function C

that, presented with any image i ∈ I, returns C(i) ≈ P (T | man(I = i)). We use a fixed neural network

architecture to learn C, but any differentiable hypothesis class could be substituted instead. Differentiability

of C is necessary in Section 4.3 in order to learn the manipulator function.

In Step 1 the algorithm picks a representative member of each observational class. The CCT tells us

that the causal partition coarsens the observational one. That is, in principle (ignoring sampling issues) it is

sufficient to estimate Ĉm = P (T | man(I = ikm)) for just one image in an observational class m in order
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Algorithm 1: Causal Predictor Training
input : Dobs = {(i1, p1 = p(T | i1)), · · · , (iN , pN = p(T | iN )} – observational data

P = {P1, · · · , PM} – the set of observational classes (so that ∀k, pk ∈ P, 1 ≤ k ≤ N )
Train – a neural net training algorithm

output: C : I → [0, 1] – the causal variable

1 Pick {ik1 , · · · , ikM } ⊂ {i1, · · · , iN} s.t. pkm = Pm;
2 Estimate Ĉm ← P (T | man(I = ikm)) for each m;
3 For all k let Ĉ(ik)← Ĉm if pk = Pm;
4 Dcsl ← {(i1, Ĉ(i1)), · · · , (iN , Ĉ(iN ))};
5 C ← Train(Dcsl);

to know that P (T | man(I = i)) = Ĉm for any other i in the same observational class. The choice of the

experimental method of estimating the causal class in Step 2 is left to the user and depends on the behaving

agent and the behavior in question. If, for example, T represents whether the spiking rate of a recorded neuron

is above a fixed threshold, estimating P (T | man(I = i)) could consist of recording the neuron’s response to

i in a laboratory setting multiple times, and then calculating the probability of spiking from the finite sample.

The causal dataset created in Step 4 consists of the observational inputs and their causal classes. The causal

dataset is acquired through O(N) experiments, where N is the number of observational classes. The final

step of the algorithm trains a neural network that predicts the causal labels on unseen images. The choice of

the method of training is again left to the user.

2.4 Experiments

Section 4.4 contains experiments shared between this chapter and Chapter 4.

2.5 Proofs

Before proving the CCT, we prove a useful lemma.

Lemma 10. Let SP (H) denote the simplex of multinomial distributions over the values of H . For fixed

P (T | H, I), the subset of SP (H) for which Πc is not equal to ΠP (T |H,I)(I) is measure zero.

Proof. We want to show that the subset of SP (H) for which, for any i1, i2 ∈ I and h ∈ H

P (T | H = h, i1) 6= P (T | H = h, i2), and (2.7)

P (T | man(i1)) = P (T | man(i2)), (2.8)

is measure zero. (Note that if P (T | H, I) is the same for all i, equality of Πc and ΠP (T |H,I) follows directly

from their definitions).
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Eq. 2.8 is equivalent to
∑
h P (H = h)[P (T | H = h, i1)−P (T | H = h, i2)] = 0. Since this is a linear

constraint on SP (H), in order to show that it is satisfied on a measure-zero subset we only need to show that

there is at least one point which does not satisfy it.

First, set P (H = h) = 1/K, where K is the number of states of H , for all h. If the equation is

not satisfied, we are done. If it is satisfied, it must be for some h1 that P (T | H = h1, i1) − P (T |

H = h1, i2) > 0 and for some h2, we have P (T | H = h2, i1) − P (T | H = h2, i2) < 0. Pick

any 0 < ε < min(1/K, 1 − 1/K). Set P (H = h1) = 1/K + ε and P (H = h2) = 1/K − ε, and

P (H = h) = 1/K for other h. Then Eq. (2.8) does not hold.

Theorem (Causal Coarsening) Among all the joint distributions P (T,H, I) over discrete variables T,H, I ,

consider the subset that induces any fixed causal partition Πc(I) and a fixed confounding partition ΠP (T |I)(I).

Within this subset, the set of distributions whose causal partition Πc(I) is not a coarsening of the observa-

tional partition Πo(I) is a set of measure zero.

Proof. (i) We first set up the notation. Assume that T is binary, and that H and I are discrete variables (say

|H| = K, |I| = N , thoughN can be very large). P (T | H, I) requiresK×N parameters, P (I | H) requires

(N − 1)×K parameters, and P (H) requires another K − 1 parameters. Call the parameters, respectively,

αh,i , P (T = 0 | H = h, I = i)

βi,h , P (I = i | H = h)

γh , P (H = h)

We will denote parameter vectors as

α = (αh1,i1 , · · · , αhK ,iN ) ∈ RK×N

β = (βi1,h1
, · · · , βiN−1,hK

) ∈ R(N−1)×K

γ = (γh1 , · · · , γhK
) ∈ RK−1,

where the indices are arranged in lexicographical order. This creates a one-to-one correspondence of each

possible joint distribution P (T,H, I) with a point (α, β, γ) ∈ P [α, β, γ] ⊂ RK2×(K−1)×N×(N−1).

(ii) Show that for any α, β consistent with Πc and ΠP (I|H), the causal partition and the confounding

partition are, in general, fixed.

To proceed with the proof, pick any point in the P (T | H, I)×P (I | H) space – that is, fix α and β. The

only remaining free parameters are now in γ. Varying these values creates a subset of the space of all joints

isometric to the (K − 1)-dimensional simplex of multinomial distributions over K states (call the simplex

SK−1):

P [γ;α, β] = {(α, β, γ) | γ ∈ SK−1} ⊂ [0, 1](K−1).
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Note that fixing β directly fixes ΠP (I|H). Fixing α doesn’t directly fix Πc. But by Lemma 10, for almost all

distributions in P [γ;α, β] the causal partition Πc equals the partition ΠP (T |H,I), which is directly fixed by

α. Let P ′[γ;α, β] be P [γ;α, β] minus this measure zero subset.

The statement of the theorem fixes Πc and ΠP (I|H). If the α, β we picked are consistent with these

partitions within P ′[γ;α, β], continue with the proof. Otherwise, choose other α, β.

We now prove that within P ′[γ;α, β] the set of γ for which the causal partition Πc is not a coarsening of

the observational partition Πo is of measure zero. Later in (iv) we integrate the result over all α, β.

(iii) Let the causal coarsening constraint be that for i1, i2 ∈ I we have

O(i1) = O(i2) ⇒ C(i1) = C(i2). (2.9)

That is, it is not the case that two members of I are observationally equivalent but have causally different

effects.

We show that the causal coarsening constraint holds for each pair i1, i2 ∈ I: Pick any i1, i2 ∈ I. If

C(i1) = C(i2), then we are done with this pair. So assume that there is a causal difference, i.e. C(i1) 6=

C(i2). Our goal is now to show that then only a measure-zero subset of P ′[γ;α, β] allows forO(i1) = O(i2).

We first show that O(i1) = O(i2) places a polynomial constraint on P ′[γ;α, β]. We have

O(i1) =
1

P (i1)

∑
h

αh,i1βi1,hγh,

O(i2) =
1

P (i2)

∑
h

αh,i2βi2,hγh.

After expanding in terms of α, β, γ, we have

O(i1) = O(i2) ⇔∑
hk,hl

γhk
γhl

[βi2,hk
βi1,hl

αhl,i1 − βi1,hk
βi2,hl

αhl,i2 ] = 0. (2.10)

We have thus shown that, for fixed α, β and i1, i2, the violation of the causal coarsening constraint (2.9),

is a polynomial constraint on P ′[γ;α, β]. By an algebraic lemma (proven by Okamoto, 1973), the subset on

which the constraint holds is measure zero if the constraint is not trivial. That is, we only need to find one γ

for which Eq. (2.10) does not hold to prove that it almost never holds.

To find such γ, let γh = 1/K for all h. If for this γ Eq. (2.10) does not hold, we are done. If it does hold,

since we know α is not all 0, there must be in the sum of the equation at least one factor [βi2,hk
βi1,hl

αhl,i1 −

βi1,hk
βi2,hl

αhl,i2 ] which is positive, and one that is negative. Call the hk, hl corresponding to the positive

element hk+ , hl+ and to the negative element hk− , hl− . Since the factors are different, we must have either

k+ 6= k− or l+ 6= l− (or both). Assume k+ 6= k−. Now, pick any positive ε < min(1/K, 1 − 1/K). Set

γh = 1/K for all h 6= hk+ , hk− and set γhk+ = 1
K + ε and γhk−

= 1
K − ε. In this way, we keep

∑
h γ
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unchanged, and are guaranteed that Eq. (2.10) does not hold. That is, for this γ we have O(i1) 6= O(i2)2.

(iv) Show that the theorem holds over the space of all distributions.

To reiterate proof progress thus far:

1. We fixed the macro-scale causal partition Πc and the confounding partition ΠP (I|H) and picked arbi-

trary α and β compatible with these partitions.

2. We picked two points i1, i2 for which C(i1) 6= C(i2).

3. We showed that for any such two points, the subset of P ′[γ;α, β] for which O(i1) = O(i2) is measure

zero.

Since there are only finitely many points in I, it follows that for the fixed α, β, the subset of P ′[γ;α, β] on

which the coarsening constraint (2.9 does not hold for at least one pair of points is also measure zero. Since

P [γ;α, β] − P ′[γ;α, β] is a set of measure zero, the subset of P [γ;α, β] on which the causal coarsening

constraint does not hold is also measure zero.

Now, call the set of all joint distributions that agree with Πc and ΠP (I|H) the admissible set, and de-

note it with P [α, β, γ]A. For each α, β consistent with the two partitions, call the (measure zero) subset of

P [γ;α, β]A that violates the causal coarsening constraint z[α, β]. Let Z = ∪α,βz[α, β] ⊂ P [α, β, γ]A be the

set of all the admissible joint distributions which violate the causal coarsening constraint. We want to prove

that µ(Z) = 0, where µ is the Lebesgue measure. To show this, we will use the indicator function

ẑ(α, β, γ) =

 1 if γ ∈ z[α, β],

0 otherwise.

By basic properties of positive measures we have

µ(Z) =

∫
P [α,β,γ]A

ẑ dµ.

For simplicity of notation, let

1. A ⊂ RK×N be the set of all possible α’s (a Cartesian product of K ×N 1-d simplexes);

2. B ⊂ RN×K be the set of all possible β’s (a Cartesian product ofK simplexes, eachN−1 dimensional);

3. G ⊂ RK be the set of all possible γ’s (a K − 1-dimensional simplex).

Note that each set has, in its respective Euclidean space, a non-empty interior, and comes equipped with the

Lebesgue measure.

Finally, let IA(α, β) be the indicator function that evaluates to 1 if α, β are admissible and evaluates to 0

otherwise. We have
2It is possible that this γ is not in P ′[γ;α, β]. However, it is guaranteed to be in P [γ;α, β]. Since a subset of measure zero in

P [γ;α, β] is also measure zero in P ′[γ;α, β], this does not influence the proof.
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∫
P [α,β,γ]A

ẑ dµ =

∫
A×B×G

ẑ(α, β, γ)IA(α, β) d(γ, β, α)

=

∫
A×B

∫
G
ẑ(α, β, γ) d(γ) IΠc

(β, α) d(β, α)

=

∫
A×B

µ(z[α, β]) IA(α, β) d(β, α) (2.11)

=

∫
A×B

0 IA(α, β) d(β, α)

= 0.

Equation (2.11) follows as ẑ restricted to P [γ;α, β] is the indicator function of z[α, β].

This completes the proof that Z, the set of joint distributions over T,H and I that violate the causal

coarsening constraint (2.9) is measure zero.

Theorem (Complete Macro-variable Description) The following two statements hold for C and S as de-

fined in Sec. 2.2.5:

1. P (T | I) = P (T | C, S).

2. Any other variable X such that P (T | I) = P (T | X) has Shannon entropy H(X) ≥ H(C, S).

Proof. The first part follows by construction of S. For the second part, note that by the CCT there is a

bijective correspondence between the pairs of values (c, s) and the observational probabilities P (T | I).

Call this correspondence f , that is f(c, s) = P (T | c, s) and f−1(p) = {c, s | P (T |c, s) = p}. Further,

define g as the function on X such that g : x 7→ P (T | x). But since P (T | X) = P (T | I), we have

(c, s) = f−1(g(x)). That is, the value of C and S is a function of the value of X , and thus the entropy of C

and S is smaller than or equal to the entropy of X .
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I wish to thank professor Jiji Zhang for pointing to an error in an earlier version of the Causal Coarsening

Theorem. Without his attentive review of this work, the main theorem of this thesis would likely still be
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Chapter 3

Unsupervised Causal Feature Learning

The previous chapter develops a method to discover from micro-variable data the macro-variable cause of a

pre-defined macro-variable “target behavior”. In this chapter, we do not assume that the macro-level effect is

already specified. Instead, in a generalization of the CFL framework, we simultaneously recover the macro-

level cause C and macro-level effect E from micro-variable data. We will use the name Causal Feature

Learning to refer to both frameworks. When ambiguous, we will refer to the first as supervised, and the

current chapter’s as unsupervised CFL.

3.1 Advances in This Chapter

This chapter presents the following advances in machine learning and causal inference:

• An extension of the CFL framework of Chapter 2 to the scenario in which all the observed variables

are micro-variables.

• An extension of the CCT to this case.

• A definition of the subsidiary variable, which makes mathematical sense of “micro-to-macro” hierar-

chies of variables (recall the example of macro-economic processes supervening on individual activities

that in turn supervene on personal psychological processes and finally neural state aggregates).

• New algorithms that generalize algorithms from Chapter 2 to new situations.

• Algorithms to detect hierarchies of causal variables in data.

• The Sufficient Causal Description Theorem, which shows that our causal macro-variables are minimal

sufficient statistics of causal interactions of a causal systems.

Some of the definitions of this chapter are similar or identical to those of Chapter 2. This is because this

chapter extends the CFL framework and generalizes the previous chapter. We provide the older definitions

for completeness, in the context of notation developed here.
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3.2 Theory

CFL takes microvariable data and produces macrovariable causal hypotheses. Throughout this chapter, we

will use the example from Sec. 1.3.2 to illustrate the definitions and algorithms. Recalling the example, let

L = (0, 360) denote our input microvariable space (range of the hue variable), and R = (0, 1) the output

microvariable space (range of eda). We will denote the random variables defined over these spaces as hue

and eda, and their specific instantiations as h and e – for example, we will write p(eda = e | hue = h)

for some e ∈ R, h ∈ L. Note that the framework applies to general microvariables, not only this specific

case used for illustration. For example, in Sec. 3.4 below we apply the framework to the high-dimensional

example of images causing changes in neural populations.

3.2.1 Learning the Causal Hypothesis

Fig. 3.1A shows 1,000 samples from p(hue, eda) together with the ground-truth conditional distribution

p(hue | eda). These observations are generated from the probabilistic model shown in Fig. 1.5, where hue

and eda are confounded by the unobserved lat.

The empirical distribution shown in the figure indicates that p(eda | hue) is constant for any h ∈ (0, 90)

as well as for h ∈ (90, 180), h ∈ (180, 270) and h ∈ (270, 360). Fig. 1.5 shows that indeed, this partition

of hue into four classes captures all the combinations of macrovariables supervening on hue. For example,

h ∈ (0, 90) if and only if W = 1 and R = 1, h ∈ (90, 180) if and only if W = 1 and R = 0, and so on.

Such partitioning of a microvariable space into the coarsest cells that retain all the observational distinctions

is the key element of CFL. This construction, called the (supervised) Observational Partition, abstracts away

all the irrelevant micro-level details:

Definition 11 (Unsupervised Observational Partition, Unsupervised Observational Class). The unsupervised

observational partition of L, denoted by Πo(L), is the partition induced by the equivalence relation ∼h such

that

h1 ∼h h2 ⇔ ∀e∈Rp(e | h1) = p(e | h2).

The unsupervised observational partition ofR, denoted by Πo(R), is the partition induced by the equivalence

relation ∼e such that

e1 ∼e e2 ⇔ ∀h∈L p(e1 | h) = p(e2 | h).

A cell of an observational partition is called an unsupervised observational class (of L orR).

Whenever context allows, we will call the unsupervised observational partition and class simply the ob-

servational partition and class. The observational partition ofR is easily discerned from Fig. 3.1: e ∈ (0, .5)
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Figure 3.1: Model Samples and pdf. A) Black dots are samples from the joint p(hue, eda), background color
shows the ground-truth value of p(eda | hue). B) The result of conditional density learning of p(eda | hue)
using a Mixture Density Network (see Sec. 3.3).

Figure 3.2: Learning the Observational Partition. A) The observational partition learned on L results
from clustering the samples’ h coordinate with respect to the inferred p(eda | hue) shown in Fig. 3.1B. We
indicate the learned partitions with an apostrophe, H ′ and E′ in contrast with the ground-truth H and E. B)
The observational partition of R, with two cells, results from clustering the samples’ eda-coordinate with
respect to the inferred p(eda | hue). C) The observational partitions are endowed with probability densities
simply by counting the histogram of the microvariable samples in each (conditional) macrovariable state. The
ground truth values (see Fig. 1.5) are given in square brackets.
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has the same P (e | h) for any h. Let us index the observational classes on L as H = 0, 1, 2, 3 if h ∈ (0, 90),

(90, 180), (180, 270), (270, 360) respectively, and E = 0, 1 if e ∈ (0, .5) and (.5, 1) respectively. We can

then compress p(eda | hue) to only four numbers without losing any information:

P (E = 1 | H = 0) = 1,

P (E = 1 | H = 1) = 1/3,

P (E = 1 | H = 2) = 0,

P (E = 1 | H = 3) = 4/5.

Note that this corresponds to p(A | R,W ) in Fig. 1.5. However, whereas R truly is a cause of A, the non-

causal dependence of A on W results from the confounder lat. The observational partition can be seen as a

macrovariable causal hypothesis for the causal effect of hue on eda. However, the observational partition of

hue does not necessarily characterize the cause of the observational class of eda.

3.2.2 Weeding Out the Spurious Correlates

Our notion of causality is rooted in the framework of Pearl (2000) and Spirtes et al. (2000). Intuitively,

X causes Y if intervening on (or manipulating) X , without influencing any other variables in the system,

changes the distribution of Y . That is, P (Y | do(X)) is not constant. But as is well-known, the conditional

probability distribution P (Y | X) for any two variablesX and Y does not fix the causal effect P (Y | do(X)).

For example, the barometer’s needle predicts rain, but manipulating the needle will not cause the weather to

change.

The observational partition can be used as a basis for an efficient testing procedure of causal hypotheses.

To distinguish interventions in the microvariable space from those on the macrovariable space, we denote

the manipulation operation in the microvariable space with the operator man() and reserve the standard do()

operator for causal macrovariables:

Definition 12 (Microvariable Manipulation). A microvariable manipulation is the operation man(hue = h)

(we will often simply write man(h) for a specific manipulation) that changes the microvariable hue to h ∈ L,

while not (directly) affecting any other variables (such as lat or eda). That is, the manipulated probability

distribution of the generative model is given by

P (eda | man(hue = h)) =
∑
l

P (eda | hue = h, lat = l)P (lat = l).

In contrast to the conditional distribution p(eda | hue = h), the dependency between lat and hue is

removed in the manipulated probability p(eda | man(hue = h)). This is because the latter equation models

an intervention, where the value hue = h is set in a controlled setting. For example, placing a subject in a
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room with wallpapers of a particular hue is a micro-level manipulation.

A macrovariable intervention do(X = x) amounts to setting the underlying microvariable to any value

within the specified partition cell x. The value of the underlying microvariable need not be fully determined

by the intervention. For example, do(R = 1) in our toy model would mean that the subject is placed in

a room colored with any hue belonging to the R = 1 range as indicated in Fig. 1.5B. Note that any such

experiment would, according to our model, have the same effect on eda (and A).

In our model, P (A | do(R = r)) 6= P (A) for any r, and P (A | do(W = w)) = P (A) for any w, which

confirms the intuition that R is a cause of A, but W is not. However, the unsupervised observational partition

Πo(L) contains information about both R and W .

We can discover which cells of the observational partition are causally relevant using a simple experimen-

tal procedure, illustrated in Fig. 3.3. Pick one representative hi from each observational class i and perform

the intervention man(hue = hi). Then, merge those cells of the observational partition whose representa-

tives induced the same p(eda | man(hi)) (see Algorithm 3). The resulting causal partition retains only the

distinction between hue ∈ (90, 270) and hue ∈ (0, 90)∪ (270, 360) — which is our “Red” variable, the true

cause of A.

This procedure can be applied in the general setting. Let us first define the causal partition, which cor-

responds to the macrovariable true cause. We will then show that the causal partition is almost always a

coarsening of the observational partition, just like in our toy model.

Definition 13 (Unsupervised Causal Partition, Causal Class). The unsupervised causal partition ofL, denoted

by Πc(L) is the partition induced by the equivalence relation ∼h such that

h1 ∼h h2 ⇔ ∀e∈Rp(e | man(h1)) = p(e | man(h2)).

Similarly, the unsupervised causal partition of R, denoted by Πc(R), is the partition induced by the equiva-

lence relation ∼e such that

e1 ∼e e2 ⇔ ∀h∈L p(e1 | man(h)) = p(e2 | man(h)).

We call a cell of a causal partition a causal class of hue or eda.

That is, two microvariable states h1, h2 ∈ L belong to the same causal class if they have the same exact

effect on the microvariable eda. This implies that switching between the causal classes of hue is the only

way to change p(eda | man(hue)). The causal class is precisely the value of the macrovariable cause.

Definition 14 (Macrovariable Cause and Effect). The unsupervised cause C is a random variable whose

value stands in a bijective relation to the causal class of L. The unsupervised effect S is a random variable

whose value stands in a bijective relation to the causal class of R. We will also use C and S to denote the
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functions that map each h and e, respectively, to its causal class. We will thus write, for example, C(h) = c

to indicate that the causal cell of h is c.

The standard do()-operator is now simply defined as an intervention on such a causal macrovariable.

But note that a macrovariable intervention, while well-defined in the macrovariable space, in general has

multiple instantiations in the microvariable space. In our simplified example, “do(R=0)” can be realized by

man(hue = h) for any h ∈ (90, 270). Macrovariables treat such distinctions as irrelevant because they make

no causal difference.

Definition 15 (Macrovariable Manipulation). The operation do(X = x) on a macrovariable is given by a

manipulation of the underlying microvariable man(hue = h) to some value h such that X(h) = x.

We are now ready to state our main theorem, which connects microvariable observations to macrovariable

causal relations.

Theorem 16 (Unsupervised Causal Coarsening Theorem). Among all the joint distributions P (T,H, I) over

discrete variables T,H, I , consider the subset that induces any fixed causal partition Πc(I) and a fixed

confounding partition ΠP (T |I)(I). Within this subset, the following two statements hold:

1. The subset of distributions for which Πc(I) is not a coarsening of the observational partition Πo(I) is

Lebesgue measure zero, and

2. The subset of distributions for which Πc(J ) is not a coarsening of the observational partition Πo(J )

is Lebesgue measure zero.

3.2.3 Subsidiary Variables and the Sufficient Causal Description Theorem

Consider the example of a neural population whose behavior is influenced by visual stimuli (Sec. 1.3.3). This

system contains no confounder – the behavior of the simulated neural population is directly affected by two

independent causal mechanisms: the presence of a v-bar can create a neural pulse, and the presence of an

h-bar can induce a 30Hz neural rhythm. We wrote “P (30Hz = 1 | do(v-bar = 1)) = .8 and P (pulse = 1 |

do(h-bar = 1)) = .8”, and said that these two mechanisms compose to bring about the observed effects. We

now formalize under what conditions higher-level variables, such as “30Hz” or “v-bar”, can arise from the

unsupervised causal partition.

Definition 17 (Subsidiary Causal Variables). Let C and E be the unsupervised cause and effect of a causal

system. Let C̄ and Ē be strict coarsenings of C and E. Denote by c1(l), · · · , cNl
(l) the cells of C that

belong to the l-th cell of C̄. We say that C̄ and Ē are subsidiary causal variables, and that C̄ is a subsidiary

cause of the subsidiary effect Ē if (i) ∀lP (Ē | do(C = c1(l))) = · · · = P (Ē | do(C = cNl
(l))), and (ii)

P (Ē | do(C̄ = c̄1)) 6= P (Ē | do(C̄ = c̄2)) for any distinct c̄1 and c̄2 in the range of C̄.

According to the definition, any coarsening of C and E that aspires to be a subsidiary cause-effect pair

has to satisfy two conditions. First, manipulations on the subsidiary cause C̄ have to be well-defined. The
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Figure 3.3: Learning the Causal Partition. A) The observational partition, obtained from the empirical
distribution p(eda | hue) (Eq. 2.1), is a causal hypothesis: each cell of Πo(L) could have a different effect on
the probability of cells of Πo(R). B) Conducting experiments to estimate P (E′ | do(H ′ = h′) amounts to
estimating P (E′ | man(hue = h)) for any h ∈ h′. In this case, we arbitrarily chose hue = 36, 100, 195, 320
as representatives of the observational cells. By experimental estimate, P (E′ = 1 | man(hue = 36)) =
22/25 [the ground-truth is .83], P (E′ = 1 | man(hue = 100)) = 1/25[.1], P (E′ = 1 | man(hue =
195)) = 6/25[.1] , P (E′ = 1 | man(hue = 320)) = 23/25[.83]. C) The causal partition on L results from
merging the observational cells whose representatives induce similar P (E′ | man(hue)). Here, we show both
the causal partition (in color) and 1000 samples from the causal density p(eda | man(hue)). As expected, the
sampled structure is homogeneous within each causal class. It is also different from the observational density,
because the man() operator removes confounding. D) Estimates of the macrovariable causal probabilities,
obtained from experiments shown in B) – ground-truth values in square brackets. Note that a close prediction
of the behavior shown in C) was obtained from the few samples in B).

definition guarantees that any two i1, i2 for which C̄(i1) = C̄(i2) generate the same distribution over the

subsidiary effect: For such i1, i2 we have P (Ē | do(C̄ = C̄(i1))) = P (Ē | do(C̄ = C̄(i2))). In our

example, producing an image with an h-bar induces the neural pulse with probability .8. The probability

of the pulse is indifferent to the presence/absence of a v-bar (or any other structure) in the image (see also

Fig. 3.4a,b). On the other hand, we claimed that v-bars cause rhythms, not pulses (see Fig. 3.4c). What

shows formally that v-bars do not cause pulses? Producing an image i with a v-bar but no h-bar gives us

P (pulse | man(i)) = 0, but if i contains both h- and v-bars, we have P (pulse | man(i)) = .8. This disagrees

with our definition of what it takes to be a causal variable: the manipulation on the macro-cause v-bar is not

well-defined with respect to the macro-effect pulse, as the effects of micro-variables belonging to the same

macro-variable causal class are not the same. We have what Spirtes and Scheines (2004) call an “ambiguous

manipulation” of v-bar with respect to the pulse.

The second condition in the definition ensures that the values of subsidiary causes are only distinct when

they have distinct effects. A succinct answer to the question “what causes the neural pulse?” is “the presence

of a horizontal bar” — not “two states: one corresponding to the presence of a horizontal bar along with the

presence of a vertical bar; the other corresponding to the presence of a horizontal bar without the presence of

a vertical bar”. Two states with the same probabilistic effect should be combined.

Together, the two conditions ensure that subsidiary causes and effects allow for well-defined, parsimo-

nious manipulations. Equipped with the notion of subsidiary causal variables and an understanding of what
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it takes to define P (Ē | do(C̄)), we can complete our Unsupervised Sufficient Causal Description theorem:

Theorem 18 (Unsupervised Sufficient Causal Description). Let (I,J ) be a causal system and let C and

E be its cause and effect. Let E be E applied sample-wise to a sample from the system (so that e.g.

E(j1, · · · , jk) = (E(j1), · · · , E(jk))). Then:

1. Among all the partitions of J , E is the minimal sufficient statistic for P (J | man(i)) for any i ∈ I,

and

2. C and E losslessly recover P (j | man(i)). No other (subsidiary) causal variable losslessly recovers

P (j | man(i)). Any other partition is either finer than C,E or does not define unambiguous manip-

ulations. In this sense, the unsupervised causal partition corresponds to the coarsest partition that

losslessly recovers P (j | man(i)).

The proof is provided in Sec. 3.5. The theorem suggests that the use of subsidiary variables is to ignore

causal information that is not of interest. For example, having discovered the unsupervised effects of images

on a brain region the neuroscientist might want to focus on the subsidiary effects whose analogues were

observed in other brain regions, or in other animals. Alg. 4 shows a simple (but combinatorially expensive)

procedure to discover the full set of subsidiary causes and effects. The algorithm iterates over all the pos-

sible coarsenings of E, the unsupervised effect, and computes, for each, the corresponding coarsening (not

necessarily strict) of the unsupervised cause that adheres to Def. 17.

To complete the picture of how the unsupervised and subsidiary variables relate to each other, we for-

malize the intuition that the unsupervised causal partition can be a product of its subsidiary variables. Recall

that we have defined causal macro-variables as partitions of sets of values of random micro-variables. The

composition of causal variables is defined in terms of the product of partitions.

Definition 19 (Partition Product, Macro-Variable Composition). Let Π1 and Π2 be partitions of the same set

X . The product of the partitions, denoted Π1 ⊗Π2, is the coarsest partition of X that is a refinement of both

Π1 and Π2. The set of partitions of X forms a commutative monoid under ⊗. The composition C of two

causal macro-variables C1 and C2 is defined as the product of the corresponding partitions. In this case, we

will use the ⊗ operator to write C = C1 ⊗ C2.

Finally, we describe a special class of subsidiary variables to gain additional insight into the unsupervised

causal structure of causal systems.

Definition 20 (Non-Interacting Subsidiary Variables). Let C1, C2 be subsidiary causes with respective sub-

sidiary effects E1, E2. Denote by (e1, e2) the cell of E1 ⊗ E2 that corresponds to the intersection of a cell

e1 of E1 and cell e2 of E2, and analogously for (c1, c2). C1 and C2 are non-interactive if for any non-empty

(c1, c2) and (e1, e2) we have P (E1 ⊗ E2 = (e1, e2) | do(C1 ⊗ C2 = (c1, c2))) = P (E1 = e1 | do(C1 =

c1))× P (E2 =e2 | do(C2 =c2)).

The unsupervised causal partition gives rise to no subsidiary causes in almost all the cases. The presence

of coarse, non-interacting subsidiary causes (such as the h-bar and the v-bar in our example) can be assumed
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a strong indicator of independent physical mechanisms that produce symmetries in the unsupervised causal

structure of the system. Our framework enables the scientist to automatically detect such independent mech-

anisms from data.

For example, let C1= “presence of h-bar”, C2= “presence of v-bar”, E1= “presence of pulse”, E2=

“presence of rhythm (top)”. We can discover these variables from data using Alg. 4, and check that indeed

they are non-interacting. In fact, these two subsidiary variables compose to yield the unsupervised causal

partition and its probability table – we can write C = C1 ⊗ C2 and E = E1 ⊗ E2 (see Fig. 3.4d).

3.3 Algorithms

Learning the observational partition amounts to clustering L such that all the h belonging to one cluster

induce the same p(eda | hue = h), and clustering R such that all the e in one cluster have the same

likelihood p(eda = e | hue) for any value of hue. We outline the procedure in Algorithm 2. Its most

involved component is the density learning subroutine used in Line 1. Fortunately, we only need to estimate

the conditional density well enough to discover its equivalence classes.

In Fig. 3.1B, the learned density differs from the ground truth. Nevertheless, we used this learned density

to perform clustering on the L andR spaces into the ground-truth number of clusters (4 and 2, respectively).

Fig. 3.2 shows that simple K-means clustering of the density vectors accurately discovers the observational

class boundaries in both L and R. Sec. 3.3.1 discusses in detail observational partition learning in the more

realistic situation where the ground-truth number of macrovariable states (clusters) is unknown.

To estimate the conditional density, we used a Mixture Density Network (MDN) (Bishop, 1995) with three

hidden layers of 64, 64 and 32 units and four mixture components. MDNs can be relatively easily applied to

high-dimensional conditional density learning problems with large datasets, even in the online setting where

new data is arriving continuously. In very high-dimensional problems, an MDN might be unable to learn

the true density accurately. Nevertheless, if the ground-truth generative model has a discrete macrovariable

structure, we can expect the mixture coefficients to have similar values within each observational class as

long as the number of components is not significantly smaller than the number of observational classes.

3.3.1 Choosing the Number of States

In Fig. 3.2 we provided the algorithm with the ground-truth number of observational states. In practice

we want to learn the variables starting only from continuous microvariable data – their a priori unkown

cardinalities must also be discovered. A solution we propose is to run Alg. 2 with Nh and Ne (the target

number of observational classes for L and R) slightly larger than our best guess. Steps 8-17 then merge the

appropriate classes to obtain the observational partition.

This procedure is based on the assumption that the density learning and clustering steps return to a good

approximation a refinement of the observational partition. In the limit of infinite samples and a good density
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Figure 3.4: Subsidiary Causal Variables. (a) The unsupervised cause and effect of our neuroscience ex-
ample. (b) The subsidiary cause C1, “presence of an h-bar”. The corresponding coarsening of C groups
together the images which contain no h-bars (C1 = 0) and the images which contain an h-bar (C1 = 1).
Similarly, the subsidiary effect of C1 groups together raster plots with and without the “pulse” behavior. (c)
The subsidiary cause C2, “presence of a v-bar” and its effect E2. Note that E1, for example, is not an effect
of C2. If it was, the effects of manipulations do(C2 = 0) as well as do(C2 = 1) would be ambiguous:
P (E1 = 1 | do(C2 = 1)) could be either .8 or 0, depending on whether the manipulated micro-variable
contains an h-bar or not. (d) C1 and C2 are non-interacting subsidiary causes. The effect of their product is
the product of their effects.



45

Algorithm 2: Learning the Unsupervised Observational Partition
input : {(h1, e1), · · · , (hN , eN )} – observational microvariable data.

Nh, Ne – number of observational classes to learn.
DensityLearning – a conditional density learning routine.
Cluster – a clustering routine.
EMD – earth mover’s distance routine.
θemd – EMD histogram similarity threshold.

output: H ′ : L → {1, · · · , Nh} – the L observational partition.
E′ : R → {1, · · · , Ne} – theR observational partition.

1 pe|h ← DensityLearning(Dcsl);
2 Eftmic ← {[pe|h(h, e1), · · · , pe|h(h, eN )] | h ∈ L};
3 Csmic ← {[pe|h(h1, e), · · · , pe|h(hN , e)] | e ∈ R};
4 H ′ ← Cluster(Eftmic); // range(H ′) = {1, · · · , Nh}
5 E′ ← Cluster(Csmic); // range(E’)={1, · · · , Ne}
6 Eftmac ← {[P (e′1|h′), ..., P (e′Ne

|h′)] | h′ = 1, ..., Nh};
7 Csmac ← {[P (e′|h′1), ..., P (e′|h′Nh

)]/(P (e′|h′1) + ...+ P (e′|h′Nh
)) | e′ = 1, ..., Ne};

8 for h′i, h′j ∈ H ′ ×H ′ do
9 if EMD (Eftmac(h

′
i),Eftmac(h

′
j)) < θemd then

10 Merge H ′ clusters h′i and h′j ;
11 end
12 end
13 for e′i, e′j ∈ E′ × E′ do
14 if EMD (Csmac(e′i),Csmac(e′j)) < θemd then
15 Merge E′ clusters e′i and e′j ;
16 end
17 end

Algorithm 3: Learning the Unsupervised Macrovariable Cause
input : Dobs = {(h1, e1), · · · , (hN , eN )} – observational microvariable data.

EMD – Earth Mover’s Distance routine.
θemd – threshold on Earth Mover’s Distance similarity.

output: C : L → {1, · · · , Nc} – the L causal partition.

1 H ′, E′ ← Run Algorithm 2 on Dobs to obtain the observational partitions on L andR;
2 h1, · · · , hNH′ ← Pick one representative for each h′i ∈ range(H ′) s.t. H ′(hi) = h′i;
3 e1, · · · , eNE′ ← Pick one representative for each e′i ∈ range(E′) s.t. E′(ei) = e′i;
4 Estimate P (E′ | man(hi)) for each representative hi;
5 for h′i, h′j ∈ range(H ′)× range(H ′) do
6 if EMD (P (E′ | man(hi)), P (E′ | man(hj))) < θemd then
7 Merge H ′ clusters h′i and h′j ;
8 end
9 end

10 C = {c1, · · · , cNc
} ← merged H’;

learning and clustering algorithm this should always be true.

Figure 3.5A illustrates the result of running our algorithm on toy data with Nh = Ne = 6 (as opposed

to the ground-truth Nh = 4, Ne = 2). The algorithm divided L into six groups, which are close to a

refinement of the true observational partition. The pink group (spanning about hue ∈ (160, 190) crosses
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Algorithm 4: Finding Subsidiary Variables
input : C,E – the unsupervised cause and effect (and the corresponding partitions).
output: S = (C1, E1), · · · , (CN , EN ) – subsidiary variables of the system.

1 S ← ∅;
2 c1, · · · , cm ← range(C);
3 e1, · · · , en ← range(E);
4 for Ē ∈ Partitions(E) do
5 for ē ∈ range(Ē) do
6 P (ē | do(C = ck))←

∑
el∈ē

P (el | do(C = ck));

7 end
8 Define effect : ck 7→ P (Ē | do(C = ck));
9 Let ci ∼C̄ cj ⇔ effect(ci) = effect(cj);

10 ΠC̄ ← partition of range(C) induced by ∼C̄ ;
11 C̄ ← random variable corresponding to ΠC̄ ;
12 S ← S ∪ (C̄, Ē);
13 end

the true observational boundary at hue = 180. This error type can be ascribed to low sample numbers and

clustering mistakes and is hard to avoid given finite sampling.

Given a refinement of the observational partition onL, it is easy to recover the true observational partition.

If any two clusters h′i and h′j are subsets of the same observational state, then P (E′ | h′i) should be similar

to P (E′ | h′j), where E′ is (the refinement of) the observational partition onR. In Fig. 3.5B, the i-th column

corresponds to the empirical P (E′ | h′i) where E′ and H ′ are the 6-state observational variables. Fig. 3.5C

shows the result of merging these E′ states whose corresponding columns in Fig. 3.5B have Earth Mover’s

Distance (Levina and Bickel, 2001) smaller than .2. Due to sampling errors, it deviates from the ground truth

slightly, but contains four states as expected.

Figure 3.5D-F shows the merging process for R. The end result is almost exactly the ground truth. The

merging process for R requires a slight modification, since one cannot simply merge e′i and e′j when P (e′i |

h′) = P (e′j | h′) for any h′. To see why, consider clusters e′0 and e′1 in Fig. 3.5D (counting from the top of the

plot, the dark-green and the brown clusters). Both clusters are subsets of the same ground-truth observational

cell, but e′0 consists of significantly fewer samples. As a result, the vector [P (e′0 | h′0), · · · , P (e′0 | h′5)] is a

scaled version of [P (e′1 | h′0), · · · , P (e′1 | h′5)] (see the first and second rows in Fig. 3.5B). Normalizing the

likelihood vectors such that they sum to 1 solves the problem. It is always true that if two clusters are subsets

of the same observational class, their normalized likelihood vectors are (in the limit of infinite sample size)

the same.

3.4 Experiments

Consider a dataset {(i, j)} of size N generated experimentally from a causal system with input and output

spaces I and J : each i is chosen by the experimenter arbitrarily, and each j is generated from P (J | man(i)).
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Figure 3.5: Observational Partition Learning — Unknown Number of States. A) We clustered hue
w.r.t. p(eda | hue) into six (as opposed to the ground truth four) clusters H ′ = 0, · · · , 5. With enough
samples and good density learning, the overclustering should refine the true observational partition. We
repeated the procedure in R, clustering reaction states into six (instead of two) clusters E′. B) Computing
empirical P (E′ | H ′) shows that H ′ = 1, 2 induce similar conditionals on E′. H ′ = 4, 5 also induce similar
probabilities. C) Merging clusters with similar conditionals brings us close to the ground truth observational
partition (compare with Fig. 3.2). We merged clusters whose Earth Mover’s Distance is less than .1. D-F)
A similar merging procedure is repeated for E′ clusters. In this case, we renormalized the likelihoods to
account for different sample counts in clusters with the same P (E′ | H ′) (see text for details). Two of the
merged clusters correspond well to the ground-truth. Because of sample-size issues a small additional cluster
a the boundary of the true classes was detected (colored pink).
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Algorithm 3 can take such data as input, and compute the unsupervised cause and effect of the system. Here

we provide a step-by-step illustration of the algorithm’s application to the simulated neuroscience problem

from Sec. 1.3.3.

We generated 10000 images i similar to those shown in Fig. 1.6: 2500 h-bar images (with varying h-bar

locations and uniform pixel noise), 2500 v-bar images, 2500 “h-bar + v-bar” images and 2500 uniform noise

images. Of course, this is an ideal dataset that we can only design because we know the ground-truth causal

features. In practice, the experimenter would want to choose as broad a class of stimuli as reasonable. Next,

for each image we generated a corresponding time-averaged, neuron-index-shuffled raster plot j according to

P (J | man(i)). We then applied Alg. 3 to this experimental data. The output is for each image i an estimate

of its causal class C(i), and for each raster j an estimate of its effect class E(j), as defined in Fig. 1.6.

Figure 3.6 shows how Alg. 3 recovers the macro-variable causal mechanism of our simulated single-unit-

recording experiment. Two remarks are in order:

1. For purposes of illustration, the macro-level causal variables are very simple. Nevertheless, the proce-

dure is completely general and could be applied to detect causal macro-variables that do not admit such

a simple description. We believe the method holds promise for applications in a broad set of scientific

domains.

2. The algorithm does not simply cluster I and J . Instead, it clusters the probabilistic effects of points in

I, and the probabilities of causation for points in J . Its crucial function is to ignore any structures that

are not related to the causal effect of I on J . In our example, the raster plots contain salient structure

that is causally irrelevant: With probability 0.5, the “bottom” subpopulation of neurons spikes in a

synchronized rhythm. Simply clustering J would sub-divide the true causal classes in half. Fig. 3.6e

shows that the algorithm finds the correct solution.

3.5 Proofs

Theorem (Unsupervised Causal Coarsening) Among all the joint distributions P (T,H, I) over discrete

variables T,H, I , consider the subset that induces any fixed causal partition Πc(I) and a fixed confounding

partition ΠP (T |I)(I). Within this subset, the following two statements hold:

1. The subset of distributions for which Πc(I) is not a coarsening of the observational partition Πo(I) is

Lebesgue measure zero, and

2. The subset of distributions for which Πc(J ) is not a coarsening of the observational partition Πo(J )

is Lebesgue measure zero.

Proof. (1) Πc(I), Πo(I) and J can be treated as the causal partition, observational partition and target

variable as defined in Chapter 3. Thus we can directly use the proof of Theorem 6 to prove (1).

(2) We cannot use Theorem 6 to prove (2), but we use the same strategy with some differences in the
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Figure 3.6: Learning the unsupervised causal partition. The figure demonstrates Algorithm 3 applied to
the example from Fig. 1.6. (a) Given a dataset {(ik, jk)}k=1...N , the algorithm learns data density P (j |
man(i)) and forms a matrix in which the kl-th entry is the estimated P (jk | man(il)). (b) The rows and
columns of the matrix are clustered. Each cluster of columns corresponds to a cell of C ′, the proposed
unsupervised partition of I, and each cluster of rows corresponds to a cell of E′, the proposed unsupervised
partition of J . (c) The histograms show the ground-truth causal class of the points in each cluster (this
ground truth is unknown to the algorithm). For example, the cell E′ = 8 contains a majority of raster
plots that contain the “30Hz (top)” causal structure; it also contains some “30Hz (top) + pulse” rasters. (d)
The algorithm computes the probability table P (E′ | do(C ′)) by counting the co-occurrences of the cluster
labels. (e) Finally, the columns of this table are merged according to their similarity to form the unsupervised
partition ΠC , and the rows are merged to form ΠE . For example, columns C ′ = 1 and C ′ = 3 of the table
in (d) are similar—indeed, the cluster purity histograms indicate that both rows correspond to sets of images
with a vertical bar. P (E | do(C)) is very similar to the ground-truth table (see Fig. 1.6), and the final C,E
clusters are pure (as shown along the axes of the table).

details of the algebra.

(i) We first set up the notation. Let H be the hidden variable of the system, with cardinality K; let J have

cardinality N and I cardinality M . We can factorize the joint on I, J,H as P (J, I,H) = P (J | H, I)P (I |

H)P (H). P (J | H, I) can be parametrized by (N − 1)×K ×M parameters, P (I | H) by (M − 1)×K

parameters, and P (H) by K − 1 parameters, all of which are independent.

Call the parameters, respectively,

αj,h,i , P (J = j | H = h, I = i)

βi,h , P (I = i | H = h)

γh , P (H = h)
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We will denote parameter vectors as

α = (αj1,h1,i1 , · · · , αjN−1,hK ,iM ) ∈ R(N−1)×K×M

β = (βi1,h1
, · · · , βiN−1,hK

) ∈ R(M−1)×K

γ = (γh1
, · · · , γhK−1

) ∈ RK−1,

where the indices are arranged in lexicographical order. This creates a one-to-one correspondence of each

possible joint distribution P (J,H, I) with a point (α, β, γ) ∈ P [α, β, γ] ⊂ R(N−1)×K2(K−1)×M(M−1).

(ii) Show that for any α, β consistent with Πc and ΠP (I|H), the causal partition and the confounding

partition are, in general, fixed.

To proceed with the proof, pick any point in the P (J | H, I)×P (I | H) space – that is, fix α and β. The

only remaining free parameters are now in γ. Varying these values creates a subset of the space of all joints

isometric to the (K − 1)-dimensional simplex of multinomial distributions over K states (call the simplex

SK−1):

P [γ;α, β] = {(α, β, γ) | γ ∈ SK−1} ⊂ [0, 1](K−1).

Note that fixing β directly fixes ΠP (I|H). Fixing α doesn’t directly fix Πc. But by Lemma 10, for almost all

distributions in P [γ;α, β] the causal partition Πc equals the partition ΠP (T |H,I), which is directly fixed by

α. Let P ′[γ;α, β] be P [γ;α, β] minus this measure zero subset.

The statement of the theorem fixes Πc and ΠP (I|H). If the α, β we picked are consistent with these

partitions within P ′[γ;α, β], continue with the proof. Otherwise, choose other α, β.

We now prove that within P ′[γ;α, β] the set of γ for which the causal partition Πc(J ) is not a coarsening

of the observational partition Πo(J ) is of measure zero. Later in (iv) we integrate the result over all α, β.

(iii) Let the causal coarsening constraint be that for j1, j2 ∈ J we have

O(j1) = O(j2) ⇒ C(j1) = C(j2). (3.1)

That is, it is not the case that two members of J are observationally equivalent but have different likelihoods

of causation.

We show that the causal coarsening constraint holds for each pair j1, j2 ∈ J : Pick any j1, j2 ∈ J . If

C(j1) = C(j2), then we are done with this pair. So assume that there is a causal difference, i.e. C(j1) 6=

C(j2). Our goal is now to show that then only a measure-zero subset of P ′[γ;α, β] allows forO(j1) = O(j2).

We first show that equivalence of the observational classes (O(j1) = O(j2)) places a polynomial con-
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straint on P ′[γ;α, β]. By definition, we have

O(j1) = O(j2) ⇔

∀i
∑
h

αj1,h,iβi,hγh =
∑
h

αj1,h,iβi,hγh

Pick an arbitrary i. The above equation places the following polynomial constraint, for this i, on P ′[γ;α, β]:

∑
h

γh(αj1,h,iβi,h − αj2,h,iβi,h) = 0. (3.2)

We have thus shown that, for fixed α, β and j1, j2, the violation of the causal coarsening constraint (3.1)

places a polynomial constraint on P ′[γ;α, β]. By an algebraic lemma (proven by Okamoto, 1973), the subset

on which the constraint holds is measure zero if the constraint is not trivial. That is, we only need to find one

γ for which Eq. (3.2) does not hold to prove that it almost never holds.

To find such γ, let γh = 1/K for all h. If for this γ Eq. (3.2) does not hold, we are done. If it does

hold, since we know α is not all 0, there must be in the sum of the equation at least one factor [αj1,h,iβi,h −

αj1,h,iβi,h] which is positive, and one that is negative. Call the h corresponding to the positive element

h+ and to the negative element h−. Pick any positive ε < min(1/K, 1 − 1/K). Set γh = 1/K for all

h 6= h+, h− and set γh+ = 1
K + ε and γh− = 1

K − ε. In this way, we keep
∑
h γ unchanged, and are

guaranteed that Eq. (3.2) does not hold. That is, for this γ we have O(j1) 6= O(j2)1.

The rest of the proof follows exactly as the proof of Thm. 2.5.

Theorem (Unsupervised Sufficient Causal Description) Let (I,J ) be a causal system let C and E be its

unsupervised cause and effect. Let E be E applied sample-wise to a sample from the system (so that e.g.

E(j1, · · · , jk) = (E(j1), · · · , E(jk))). Then:

1. Among all the partitions of J , E is the minimal sufficient statistic for P (J | man(i)) for any i ∈ I,

and

2. C and E losslessly recover P (j | man(i)). No other (subsidiary) causal variable losslessly recovers

P (j | man(i)). Any other partition is either finer than C,E or does not define unambiguous manip-

ulations. In this sense, the unsupervised causal partition corresponds to the coarsest partition that

losslessly recovers P (j | man(i)).

Proof. 1. We first prove that E is a sufficient statistic. Recall that we assumed J to be discrete, although

possibly of vast cardinality. For any jk ∈ J , write P (jk | man(i)) = pjk for the corresponding categorical

distribution parameter. Let range(E) = {E1, · · · , EM} be the set of causal classes of J . By Definition 3

1It is possible that this γ is not in P ′[γ;α, β]. However, it is guaranteed to be in P [γ;α, β]. Since a subset of measure zero in
P [γ;α, β] is also measure zero in P ′[γ;α, β], this does not influence the proof.
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there is a number of “template” probabilities pE1
, · · · , pEM

such that pjk = pEk
if and only if E(jk) = Ek.

Consider an i.i.d. sample j = j1, · · · , jl from P (J | man(i)). Then

P (j1, · · · , jl | man(i)) = Πl
k=1pjk

= ΠM
m=1p

#(Em)
Em

,

where #(Em) , Σlk=11{E(jk) == Em} is the number of samples with causal class Em. Since the sample

density depends on the samples only through C and E it follows from Fisher’s factorization theorem that E

is a sufficient statistic for P (J | man(i)) for any i ∈ I.

Now, we prove the minimality of E among all the partitions of J . Consider first any refinement of

E. One can directly apply the reasoning above to show that the cell assignment in such a partition is also

a sufficient statistic. However, any refinement is not the minimal sufficient statistic, as the unsupervised

causal partition is its coarsening— and thus also its function. Now, consider any partition that is not the

unsupervised causal partition, and is not its refinement. Call it E′. Assume, for contradiction, that E′ is a

sufficient statistic for P (J | man(i)). Then, by the factorization theorem, P (j1, · · · , jk | man(i)) would

factorize as h(j1, · · · , jk)g(E′(j1), · · · , E′(jk)), where h does not depend on the parameters pjl . Now,

take some j1
1 , j

2
1 such that E(j1

1) 6= E(j2
1) but E′(j1

1) = E′(j2
1) (such a pair must exists since E′ is not a

refinement of E and is not equal to it). Then

P (j1
1 , j2, · · · , jk | man(i))

P (j2
1 , j2, · · · , jk | man(i))

=
pE(j11)

pE(j21)

,

P (j1
1 , j2, · · · , jk | man(i))

P (j2
1 , j2, · · · , jk | man(i))

=
h(j1

1 , · · · , jk)g(E′(j1
1), · · · , E′(jk))

h(j2
1 , · · · , jk)g(E′(j2

1), · · · , E′(jk))
=
h(j1

1 , · · · , jk)

h(j2
1 , · · · , jk)

which, as already stated, does not depend on the parameters of the distribution – a contradiction.

2. That P (J | man(i)) can be recovered from C and E follows directly from the definition of an un-

supervised causal partition. That it cannot be recovered losslessly from any partition that is not a refine-

ment of C and E follows again from the fact that for any such partitions C ′ and E′ there must be is at

least one pair (i1, j1), (i2, j2) for which p(E′(j1) | do(C ′(i1))) = p(E′(j2) | do(C ′(i2))) even though

p(j1 | man(i1)) 6= p(j2 | man(i2)).

We note that the first part of the Sufficient Causal Description Theorem indicates that E is only a minimal

sufficient statistic among all partitions of J , i.e. among the set of possible causal variables. It is not the

minimal sufficient statistic over all possible sufficient statistics for P (J | man(i)). In particular, a histogram

is a minimal sufficient statistic for the multinomial distribution and is a function of E, but a histogram does

not correspond to a partition of J .
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Chapter 4

Learning Optimal Interventions

Chapters 2 and 3 developed theory and algorithms to learn causal features. Sometimes, knowledge of the

causal features can be of interest by itself – for example in neuroscience. At other times, one wants to know

causal mechanisms of a system in order to intervene on the causes to achieve desired results. In health

science, for example, the goal is to understand what causes good health (or disease) in order to intervene on

the causes to increase health and decrease disease.

Knowledge of C, the macrovariable cause of a system, is a starting point to learning a manipulator

function: a function that, given any microvariable instance, constructs the smallest perturbation to the instance

that has the desired causal effect.

There are several reasons why we might want such a manipulator function:

• If our goal is to perform causal manipulations on the system, the manipulator function offers an auto-

mated solution.

• A manipulator that uses a given C and produces the desired causal effect provides strong evidence that

C is indeed the causal macrovariable.

• The manipulator function can enrich the dataset, in hope of achieving better generalization on both the

causal and predictive learning tasks.

4.1 Advances in This Chapter

This chapter shows how the concepts of Chapters 2 and 3 can be used to automatically design optimal control

of a causal system.

4.2 Theory

We develop the manipulator function within the supervised CFL framework (and to easier refer to ideas in

Chapter 2, use the visual causes example). Extension to the unsupervised case is trivial.
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Definition 21 (Manipulator Function). Let C be the causal macrovariable of T and d a metric on I. The

manipulator function of C is a function MC : I × C → I such that MC(i, k) = arg minı̂∈C−1(k) d(i, ı̂) for

any i ∈ I, k ∈ C. In case d(i, .) has multiple minima, we group them together into one equivalence class and

leave the choice of the representative to the manipulator function.

The manipulator searches for an image closest to I among all the images with the desired causal effect k.

The meaning of “closest” depends on the metric d. The choice of d is task-specific and crucial to the quality

of the manipulations. In our experiments, we use a metric induced by an L2 norm. Alternatives include

other Lp-induced metrics, distances in implicit feature spaces induced by image kernels (Harchaoui and

Bach, 2007; Grauman and Darrell, 2007; Bosch et al., 2007; Vishwanathan, 2010) and distances in learned

representation spaces (Bengio et al., 2013).

Note that the manipulator function can find candidates for the image manipulation underlying the desired

causal manipulation do(C = c), but it does not check whether other variables in the system (in particular, the

spurious correlate) remain in fact unchanged. Using the closest possible image with the desired causal effect

is a heuristic approach to fulfilling that requirement.

4.3 Algorithms

Algorithm 5 proposes one way to learn the manipulator function using a simple manipulation procedure that

approximates the requirements of Definition 21 up to local minima.

Algorithm 5: Manipulator Function Learning
input : d : I × I → R+ – a metric on the image space

Dcsl = {(i1, c1), · · · (iN , cN )} – causal data
C = {C1, · · · , CM} – the set of causal classes (so that ∀i, ci ∈ C)
Train – a neural net training algorithm
nIters – number of experiment iterations
Q – number of queries per iteration
α – manipulation tuning parameter
A : I → C – an oracle for P (T | do(I))

output: MC : I × C → I – the manipulator function

1 for l← 1 to nIters do
2 C ← Train(Dcsl);
3 Choose manipulation starting points {il,1, · · · , il,Q} at random from Dcsl;
4 Choose manipulation targets {ĉl,1, · · · , ĉl,Q}such that ĉl,k 6= cl,k;
5 for k ← 1 to Q do
6 ı̂l,k ← argmin

j∈I
(1− α)|C(j)− ĉl,k| +α d(j, il,k);

7 end
8 Dcsl ← Dcsl ∪ {(̂ıl,1,A(̂ıl,1)), · · · , (̂ıl,Q,A(̂ıl,Q))};
9 end

The algorithm, inspired by the active learning techniques of uncertainty sampling (Lewis and Gale, 1994)

and density weighting (Settles and Craven, 2008), starts off by training a causal neural network in Step 2. If
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only observational data is available, this can be achieved using algorithms of Chapters 2 and/or 3. Next, it

randomly chooses a set of images to be manipulated, and their target post-manipulation causal labels. The

loop that starts in Step 6 then takes each of those images and searches for the image that, among the images

with the same desired causal class, is closest to the original image. Note that the causal class boundaries

are defined by the current causal neural net C. Since C is in general a highly nonlinear function and it can

be hard to find its inverse sets, we use an approximate solution. The algorithm thus finds the minimum of

a weighted sum of |C(j) − ĉl,k| (the difference of the output image j’s label and the desired label ĉl,k) and

d(il,k, j) (the distance of the output image j from the original image il,k).

At each iteration, the algorithm performs Q manipulations and the same number of causal queries to

the agent, which result in new datapoints (̂ıl,1, A(̂ıl,1)), · · · , (̂ıl,Q, A(̂ıl,Q)). It is natural to claim that the

manipulator performs well if A(̂ıl,k) ≈ ĉl,k for many k, which means the target causal labels agree with the

true causal labels. We thus define the manipulation error of the lth iteration MErrl as

MErrl =
1

Q

Q∑
k=1

|A(̂ıl,k)− ĉl,k|. (4.1)

While it is important that our manipulations are accurate, we also want them to be minimal. Another measure

of interest is thus the average manipulation distance

MDistl =
1

Q

Q∑
k=1

d(Il,k, ı̂l,k). (4.2)

A natural variant of Algorithm 5 is to set nIters to a large integer and break the loop when one or both

of these performance criteria reaches a desired value.

4.4 Experiments

In order to illustrate the concept of learning a manipulator we perform two causal feature learning experi-

ments. The first experiment, called GRATING, uses observational and causal data generated by the model

defined in Sec 1.3.1. The GRATING experiment confirms that our system can learn the ground truth cause and

ignore the spurious correlates of a behavior. The second experiment, MNIST, uses images of hand-written

digits (LeCun et al., 1998) to exemplify the use of the manipulator function on slightly more realistic data: in

this example, we transform an image into a maximally similar image with another class label.

We chose problems that are simple from the computer vision point of view. Our goal is to develop the

theory of visual causal feature learning and show that it has feasible algorithmic solutions; we are at this point

not engineering advanced computer vision systems.
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4.4.1 The GRATING Experiment

In this experiment we generate data using the model of Sec. 1.3.1, with two minor differences: H1 and H2

only induce one v-bar or h-bar in the image and we restrict our observational dataset to images with only about

3% of the pixels filled with random noise (see Fig. 4.1). Both restrictions increase the clarity of presentation.

We use Algorithms 1 and 5 (with minor modifications imposed by the binary nature of the images) to learn

the visual cause of behavior T .

Figure 4.1 (top) shows the progress of the training process. The first step (not shown in the figure) uses

the CCT to learn the causal labels on the observational data. We then train a simple neural network (a fully

connected network with one hidden layer of 100 units) on this data. The same network is used on Iteration

1 to create new manipulated exemplars. We then follow Algorithm 5 to train the manipulator iteratively.

Fig. 4.1 (bottom) illustrates the difference between the manipulator on Iteration 1 (which fails almost 40%

of the time) and Iteration 20, where the error is about 6%. Each column shows example manipulations

of a particular kind. Columns with green labels indicate successful manipulations of which there are two

kinds: switching the causal variable on (0 ⇒ 1, “adding the h-bar”), or switching it off (1 ⇒ 0, “removing

the h-bar”). Red-labeled columns show cases in which the manipulator failed to influence the cause: That

is, each red column shows an original image and its manipulated version which the manipulator believes

should cause a change in T , but which does not induce such change. The red/green horizontal bars show

the percentage of success/error for each manipulation direction. Fig. 4.1 (bottom, a) shows that after training

on the causally-coarsened observational dataset, the manipulator fails about 40% of the time. In Fig. 4.1

(b), after twenty manipulator learning iterations, only six manipulations out of a hundred are unsuccessful.

Furthermore, the causally irrelevant image pixels are also much better preserved than at iteration 1. The

fully-trained manipulator correctly learned to manipulate the presence of the h-bar to cause changes in T ,

and ignores the v-bar that is strongly correlated with the behavior but does not cause it.

4.4.2 The MNIST ON MTURK Experiment

In this experiment we start with the MNIST dataset of handwritten digits. In our terminology, this – as well

as any standard vision dataset – is already causal data: the labels are assigned in an experimental setting, not

“in nature”.

Consider the following binary human behavior: T = 1 if a human observer answers affirmatively to the

question “Does this image contain the digit ‘7’?”, while T = 0 if the observer judges that the image does not

contain the digit ‘7’. For simplicity we will assume that for any image either P (T = 1 | man(I)) = 0 or

P (T = 1 | man(I)) = 1. Our task is to learn the manipulator function that will take any image and modify it

minimally such that it will become a ‘7’ if it was not before, or will stop resembling a ‘7’ if it did originally.

We conduct the manipulator training separately for all the ten MNIST digits using human annotators on

Amazon Mechanical Turk. The exact training procedure is described below. Fig. 4.2 (top) shows training
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Figure 4.1: Manipulator learning for GRATING. Top. The plots show the progress of our manipulator function
learning algorithm over twenty iterations of experiments for the GRATING problem. The manipulation error
decreases quickly with progressing iterations, whereas the manipulation distance stays close to constant.
Bottom. Original and manipulated GRATING images. See text for the details.
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Figure 4.2: Manipulator Learning for MNIST ON MTURK. Top. In contrast to the GRATING experiment, here
the manipulation distance grows as the manipulation error decreases. This is because a successful manipulator
needs to change significant parts of each image (such as continuous strokes). Bottom. Visualization of
manipulator training on randomly selected (not cherry-picked) MNIST digits. See text for the details.
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progress. As in Fig. 4.1, the manipulation error decreases with training. Fig. 4.2 (bottom) visualizes the

manipulator training progress. In the first row we see a randomly chosen MNIST “9” being manipulated to

resemble a “0”, pushed through successive “0-vs-all” manipulators trained at iterations 0, 1, ..., 5 (iteration 1

shows what the neural net takes to be the closest manipulation to change the “9” to a “0” purely on the basis

of the non-manipulated data). Further rows perform similar experiments for the other digits. The plots show

how successive manipulators progressively remove the original digits’ features and add target class features

to the image.

For this experiment, we started off by training ten one-vs-all neural nets. We used cross-validation to

choose among the following architectures: 100 hidden units (h.u.), 300 h.u. (one layer), 100-100 h.u (two

layers), 300-300 h.u. (two layers). We used maxout (Goodfellow et al., 2013) activations (each of which

computed the max of 5 linear functions). For training we used stochastic gradient descent in batches of 50

with 50% dropout (Hinton and Srivastava, 2012) on the hidden units, momentum adjustment from 0.5 to 0.99

at iteration 100, learning rate decaying from 0.1 to 0.0001 with exponential coefficient of 1/0.9998, no weight

decay, and we enforced the maximum norm of a column of hidden units to 5. The training stopped after 1000

iterations and the iteration with best validation error was chosen. We used the Pylearn2 package (Goodfellow

et al., 2013) to train the networks.

This initial training was done on 5000 training points and 1250 validation points (both of which come

from the MNIST dataset) for each machine. The training points were chosen at random to include 2500 images

of a specific digit class (that is, 2500 zeros for the first machine, 2500 ones for the second machine and so

on), and 2500 images of random other digits for each machine. The validation sets were composed similarly.

Each machine then used Algorithm 2 to transform 1000 images of digits from its training set into maximally

similar images of the opposing class.

We thus started off with ten manipulated datasets of 1000 images each. The first dataset contained images

of zeros manipulated to be non-zeros, and all the other digits manipulated to be zeros. The tenth dataset

contained images of nines manipulated to be non-nines and the other digits manipulated to be nines. We then

used Amazon Mechanical Turk to present all those images to human annotators, using the interface shown

in Fig. 4.3. The images created by all the manipulator networks were mixed at random together, so that

each single annotator (annotating 250 images in one task) would see some images created by each machine.

Finally, each of the 10000 images was shown to five annotators; we used 5×40=200 annotators total on each

iteration. The annotators labeled the images as either one of the ten digits, or the question mark ‘?’ if there

was no recognizable digit in an image. The final label (“target digit” or “not target digit”) was chosen using

majority of the annotators’ votes.

The annotated manipulated digits were then added to the datasets which their respective original images

belonged to. We then proceeded to train the next iteration of neural network manipulators on the updated

datasets, and so on until completion of the manipulator training.
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Figure 4.3: The Amazon Mechanical Turk interface we used to query online annotators. An annotator is
shown five rows of five manipulated digit images, and is requested to type the digit labels (or ‘?’) into the
input boxes. Each annotator goes through ten similar screens, annotating a total of 250 digits.
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Chapter 5

Application to Climate Science

The accurate characterization of macro-level climate phenomena is crucial to an understanding of climate

dynamics, long term climate evolution and forecasting. Modern climate science models, despite their com-

plexity, rely on an accurate and valid aggregation of micro-level measurements into macro-phenomena. While

many aspects of climate may indeed be subject fundamentally to chaotic dynamics, many large scale phe-

nomena are deemed amenable to precise modeling. The El Niño–Southern Oscillation (ENSO) is arguably

the most studied climate phenomenon at the inter-annual time scale, but much about its dynamics relating

zonal winds (zonal wind strength (ZW)) and sea surface temperatures (SST) remains poorly understood.

Figure 5.1: El Niño vs. neutral conditions from Di Liberto (2014). Top: An illustration of the state of the
atmosphere and surface during typical El Niño conditions. Here, the colors indicate SST deviations from the
neutral state with red being a positive and blue being a negative deviation. Bottom: Similar to the top panel
but now showing neutral conditions of the Walker circulation (neither El Niño nor La Niña).

From the climate-science point of view, our research shows that CFL can be successfully used for an un-

biased automated extraction of climate macro-variables, which would otherwise require tedious hand-crafting

by domain experts. Moreover, the framework can directly suggest (computationally) expensive climate ex-
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Figure 5.2: Niño 3.4 SST anomalies for the time period 1950–2005. The figure was adapted from McPhaden
et al. (2006). Red shadings indicate El Niño years and blue shadings indicate La Niña years. The two dashed
lines indicate the threshold for strong El Niño or La Niña events.

periments (for example, through climate simulations) that could differentiate between true causes and mere

correlations efficiently. Closer inspection of the output of CFL can also yield insights about new climate

macro-phenomena (or important variants of existing ones) that inspire new physical models of the climate.

Python code that reproduces our results and figures is available online at http://vision.caltech.

edu/˜kchalupk/code.html.

5.1 Advances in This Chapter

This chapter uses CFL to learn causal macro-variables from equatorial Pacific climate data. It shows that

CFL can:

• be applied to real-world data, and

• learn, without supervision, the causal hypothesis that El Niño is an important macro-variable state in

the ZW-SST system’s dynamics.

5.2 El Niño–Southern Oscillation

El Niño is a weather pattern that is principally characterized by the state of eastern Pacific near-surface

winds, sea surface temperature patterns, and the associated state of the atmospheric Walker circulation (see

for example, Holton et al., 1989; Trenberth, 1997). The Walker circulation (see Fig. 5.1) is characterized

by warm air rising over Indonesia and Papua New Guinea and cooler subsiding air over the eastern Pacific

cold tongue region just west of equatorial South America (Lau and Yang, 2003). Near the surface, easterly

winds (winds blowing from the east) drive water from east to west resulting in oceanic upwelling near the

coast of equatorial South America (and downwelling east of Indonesia), that brings with it cold and nutrient

rich waters from the deep oceans. During the ENSO warm phase, commonly referred to as El Niño (because

it often occurs around and after Christmas), the Walker circulation weakens, ultimately resulting in weaker

upwelling in the Eastern Pacific and thus in positive SST anomalies. Fig. 5.1 illustrates these phenomena.
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ENSO-related weather in the tropics includes droughts, flooding, and may have direct impact on fisheries

through reduced nutrient upwelling (e.g., Glantz, 2001). Atmospheric waves (ripples in wind, SST and

rainfall patterns) generated by the change in circulation and SST anomalies in the tropics, make their way

across the planet with dramatic impact (e.g, Ropelewski and Halpert, 1987; Changnon, 1999). Cashin et al.

(2015) show that the economic impact of El Niño varies across regions. Economic activity may decline

briefly in Australia, Chile, Indonesia, India, Japan, New Zealand, and South Africa after an El Niño event.

Enhanced growth may be registered in other countries, such as the United States.

The ENSO cold phase, usually referred to as La Niña, is the opposing phase of El Niño with enhanced

upwelling and colder SSTs in the eastern Pacific. Currently, predicting the strength of El Niño and La Niña

events remains a difficult challenge for climate scientists as the period may vary between 3 and 7 years (see

Fig. 5.2); as a consequence accurate forecasts are only possible less than a year in advance (e.g., Landsea and

Knaff, 2000).

The National Oceanic and Atmospheric Administration (NOAA) defines El Niño as a positive three-

month running mean SST anomaly of more than 0.5◦C from normal (for the 1971–2000 base period) in the

Niño 3.4 region (120◦W–170◦W, 5◦N–5◦S, see also Fig. 5.3). Similarly, La Niña conditions are defined

as negative anomalies of more than −0.5◦ C. Conditions in between −0.5◦C and 0.5◦C are called neutral.

This is illustrated using red and blue shadings in Fig. 5.2. Strong El Niño/La Niña events are defined as

SST-anomalies greater than 1.5◦C. However, the definitions for El Niño and La Niña have evolved over time.

For example, other regions than the Niño 3.4 region or other averaging conventions have been used in the

specification of the SST anomalies.

5.3 Experiment: Learning Pacific Macro-variables

Climate experts view zonal winds as drivers of SST patterns. We take the view that if El Niño and La Niña are

indeed genuine macro-level climate phenomena in their own right (and not just arbitrary quantities defined

by convention) then they must consist of macro-level features of the relation between the high-dimensional

micro-level ZW and SST patterns that can be detected by an unsupervised method. That is, it must be possible

to identify El Niño and La Niña from a mass of air pressure and sea temperature readings, using a method

that has no independent information about when such periods occurred.

Chapters 2 and 3 develop a theoretically precise account of causal relations of macro-variables that su-

pervene on micro-variables and proposed an unsupervised method for their discovery. This chapter adopts

the framework with a few interpretational adjustments for our climate setting.

The input micro-variable X is, in this case, the ZW map. The output micro-variable Y takes values in the

high-dimensional domain Y (SST patterns). The basic idea underlying our set-up is that the causal macro-

variable relation is defined in terms of the coarsest aggregation of the micro-level spaces that preserves

the probabilistic relations under intervention (hence, causal) between the micro-level spaces. Conceptually,
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Figure 5.3: A micro-variable climate dataset. Top: A week’s average ZW field. Bottom: A week’s average
SST field over the same region. In addition, the Niño 3.4 region is marked. Our dataset comprises 36 years’
worth of overlapping weekly averages over the presented region.

macro-level causal variables group together micro-level states that make no causal difference.

In the present context, our climate data consisting of ZW and SST measurements (Sec. 5.3.1 below de-

scribes the dataset in detail) is entirely observational. That is, the data is naturally sampled from P (SST, ZW)

and not created by a (hypothetical) experimentalist from P (SST | man(ZW = z)) for different values of z.

Nevertheless, we can identify the observational macro-variables that characterize the probabilistic relation

between ZW and SST.

In Chapter 3 we showed that the fundamental causal partition is almost always a coarsening of the corre-

sponding fundamental observational partition. We thus have some reason to expect that any macro-variables

we do identify from our observational climate data will capture all the distinctions that are causal, but may

in addition make some distinctions that do not support a causal inference. We return to this point in Sec-

tion 5.3.5, where we discuss in more detail what causal insights can be drawn from this work. Our results

should be seen as a step towards a characterization of macro-level causal variables for climate science, but

we fully acknowledge that a complete causal characterization of the equatorial Pacific climate dynamics is

beyond the scope of this book.

5.3.1 Dataset

The data used for this study is based on the daily-averaged version of the NCEP-DOE Reanalysis 2 product

for the time period 1979–2014 inclusive (Kanamitsu et al., 2002), a data product provided by the US National

Centers for Environmental Protection (NCEP) and the Department of Energy (DOE). Reanalysis data sets are

generated by fitting a complex climate model to all available data for a given period of time, thus generating

estimates for times and locations that were not originally observed. In addition, we used the Geophysical

Observational Analysis Tool (http://www.goat-geo.org) to interpolate the SST and zonal wind fields onto a
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2.5◦× 2.5◦ spatial grid for easier analysis. We chose to focus on the (140◦, 280◦)E×(-10◦, +10◦)N equato-

rial band of the Pacific Ocean. From the raw dataset, we extracted the zonal (west-to-east) wind component

and SST data in this region (specifically, we extracted the fields at the 1000 hPa level near the surface). Fi-

nally, we smoothed the data by computing a running weekly average in each domain. The resulting dataset

contains 13140 zonal wind and 13140 corresponding SST maps, each a 9×55 matrix. Fig. 5.3 shows sample

data points.

5.3.2 Pacific Macro-Variables

To apply CFL in practice, we applied the algorithms of Chapter 3 to our dataset1. The algorithms extracted

in an unsupervised manner the SST and ZW macrovariables. We start with the description of the results.

We will refer to zonal wind macro-variables as W, and to temperature macro-variables as T. We first

chose to search for four-state macro-variables (though we experiment with varying this number in Sec. 5.3.3)

and considered a zero-time delay2 between W and T. In the CFL framework, each macro-variable state cor-

responds to a cell of a partition of the respective micro-variable input space. Fig. 5.4 visualizes the W and

T we learned by plotting the difference between each macro-variable cell’s mean and the ZW (SST) mean

across the whole dataset. The visualized states are easy to describe: For example, when W=WEqt there is a

larger-than-average westerly wind component in the west-equatorial region, a feature often associated with

the causes of El Niño (see Fig. 5.1). Indeed, Table 5.1 shows that the El Niño cell of T only arises in con-

nection with W=WEqt. In addition, WEqt is often positively correlated with the T=Warm. Throughout the

rest of the article, we will mostly focus on the T macro-variable. Our first goal is to quantitatively justify

calling T=1 “El Niño” and calling T=2 “La Niña”. Qualitatively, the warm and cold water tongues that reach

westward across the Pacific and that are often used to describe the two phenomena, are evident in the image.

Following the standard definition of El Niño (see Section 5.2), we use the SST anomaly in the Niño 3.4

region to detect its presence (Trenberth, 1997). The anomaly is computed with respect to the climatological

mean, that is the mean temperature during the same week of the year over all the weeks in our dataset. We will

call a weekly average anomaly exceeding +.5◦C a mild episode, and an anomaly exceeding +1.5◦C a strong

episode. The definition of La Niña is analogous, with negative thresholds. Fig. 5.5 shows that in the T=1

and T=2 cells, over 75% of all the points exceed the threshold for a mild (positive and negative, respectively)

anomaly, and over 50% of the points exceed the strong threshold. The situation is different in the Warm and

Cold cells, where almost no points exceed the strong threshold while the number of points falling in these

non-anomalous cells is about 30% of the total. Since this macro-variable contains a state capturing a high

1We actually used a slightly modified version of the algorithm simply because we hadn’t found the best machine learning ingredients
while doing this experiment. The original work published in the proceedings of the conference on Uncertainty in Artificial Intelligence
contains the details.

2A zero time delay implies that CFL will attempt to relate the weekly moving ZW average to the weekly moving SST average. The
question of different time delays turns out to be a very subtle issue in the study of El Niño as El Niño is not a periodic event, nor does it
have a fixed duration (see Fig. 5.2). We chose not to discuss other delays here and the zero-time delay was deemed a reasonable starting
point by domain experts we consulted.
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Figure 5.4: Macro-variables discovered by our algorithms. For each state, the average difference from the
dataset mean is shown. Left: Four states of W, the zonal wind macro-variable. We named the states “Easterly
Equatorial” (EEqt),“Westerly Equatorial” (WEqt), “Easterly North of Equator” (EN) and “Easterly South
of Equator” (ES). Right: Four states of T, the SST macro-variable. We named the states “Cold [American
Coastal Waters]”, “El Niño”, “La Niña” and “Warm [American Coastal Waters]”. The main text provides
additional justification for calling T=1 and T=2 “El Niño” and “La Niña”, respectively.

proportion of El Niño-like patterns, we will say that this state has a “high precision” of detecting El Niño,

while similarly, state T=2 has a high La Niña precision. Formally, we define the precision of a macro-variable

state as follows:

Definition 22 (Precision). Let T = {T1, · · · , TK} be a partition of the set of all the SST maps used in our

experiments. Let n34 : SST → R be the function that computes the Niño 3.4 anomaly for a given map.

Then, let

cθ(Tk) =


1
|Tk| |{t ∈ Tk s.t. n34(t) > θ}| if θ > 0

1
|Tk| |{t ∈ Tk s.t. n34(t) < θ}| if θ < 0

be the function that computes for, a given cell Tk of the partition, the fraction of its members whose anomaly

is greater than (if θ > 0) or lesser than (if θ < 0) a given threshold θ. Finally, call the four numbers

maxk c.5(Tk), maxk c1.5(Tk), maxk c(−.5)(Tk), maxk c(−1.5)(Tk) the mild/strong-El Niño and mild/strong-

La Niña precision of the macro-variable T .

Together, the precisions indicate how well the partition T separates the mild and strong El Niño and La

Niña anomalies from other structures in the data. In Fig. 5.5, for example, c.5(T ) ≈ .75 and c1.5(T ) ≈ .25

(both because of T=1), c(−.5)(T ) ≈ .85 and c(−1.5)(T ) ≈ .5 (both because of T=2). Thus, T has high mild-El

Niño precision, and high mild-La Niña precision.

As further evidence that we recovered El Niño and La Niña, we show minimal state-to-state manipulations

in Fig. 5.5. Take the La Niña→El Niño plot as an example. To compute it, we took all the SST maps for

which T=La Niña, and for each found the closest (in the Euclidean space) map for which T=El Niño. We

then averaged these differences. One of the insights the figure offers is that low SSTs in the Niño 3.4 region
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Figure 5.5: T=1 and T=2 are El Niño and La Niña. Top: Each plot shows the cumulative histogram of the
Niño 3.4 anomalies, computed over all the weekly SST averages that belong to the given state of T. The
dashed lines show the +/-0.5 and +/-1.5 “mild” and “strong” anomaly thresholds. Bottom: The minimal
manipulations needed to transition from a given T-state into another (the exact procedure to obtain the plots
is described in the text).

really are the distinguishing feature of T=La Niña. Similarly, an important difference between the T=Warm

and T=El Niño is the characteristic tongue of warm water extending into the Niño 3.4 region. Adding this

tongue is necessary to switch from T=Cold to T=El Niño, but not to switch from T=Cold or T=La Niña to

T=Warm.

The CFL framework allows us to interpret W and T as standard probabilistic random variables with

distribution we can estimate. Table 5.1 offers a probabilistic description of the system we learned. “When

the equatorial zonal wind is unusually westerly, there is a 75% chance that the eastern Pacific is warm, and a

25% chance that El Niño arises.” and “When the North-equatorial zonal wind is predominantly westerly, but

the South-equatorial easterly, then the Eastern Pacific is most likely to be cold.”—are example insights about

the equatorial Pacific wind-SST system offered by CFL. We emphasize that both the macro-variables and the

probabilities are learned from the data in an entirely unsupervised manner, without any a priori input about

what constitutes ENSO events (except the fact that we restrict the SST and ZW fields to the equatorial Pacific

region).

5.3.3 Varying the Number of States

Our choice of discovering four-state macro-variables was rather arbitrary. To check how varying the number

of states changes the macro-variable precision (Def. 22), we repeated our experimental procedure, varying
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Figure 5.6: t-SNE (Van der Maaten and Hinton, 2008) embedding of the k-nn representation of SST data.
The blue dots show, for varying K, the state of T with largest c(−.5) precision (see Def. 22). The red dots
show the state with largest c.5. Thus, the blue dots are “the” La Niña cluster for each K, and the red dots
“the” El Niño cluster.

the number of states K from 2 to 16 (both in the ZW and SST space). Fig. 7.1 (relegated to the last chapter,

as it provides basis for general discussion on our methods) shows the precisions for each case. As expected,

a low number of states (K=2, 3) doesn’t allow the algorithm to precisely detect El Niño and La Niña. With K

> 4 however, a slowly growing trend persists at high precision values. El Niño and La Niña remain important

features as K changes.

There are several possible behaviors of the algorithm given the slowly growing precision of the macro-

variables with growing K: (1) The El Niño and La Niña states remain roughly constant, (2) CFL sub-divides

the El Niño and La Niña states, (3) CFL finds better El Niño and La Niña regions, (3) A mix of the above.

Fig. 5.6 suggests that (2) is true. As K grows, the clusters that most precisely detect the mild El Niño and

mild La Niña phenomena form a chain of strict subsets.

Cold El Niño La Niña Warm

EEqt 2/3 0 1/3 0
WEqt 0 1/4 0 3/4
EN ∼1/10 0 1/4 ∼2/3
ES 3/4 0 0 1/4

Table 5.1: Each row shows P (T |W = w) for a given w.
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T1 T2 T3 T4

W1 .075 .40 .25 .27
W2 .083 .39 .25 .27
W3 .084 .39 .26 .27
W4 .080 .40 .24 .27

Table 5.2: Conditional probabilities P (T | W ) when CFL is applied to randomly (in time) reshuffled ZW
and SST data.

5.3.4 Reshuffled Data

As a sanity check, we ran our algorithms on randomly reshuffled (across the time dimension) ZW and SST

data. We asked the algorithm to find K=4, . . . , 16-state ZW and SST macro-variables. Table 5.2 shows

P (T | W ), where W and T are the input and output macro-variables discovered in the randomized dataset

with K = 4. Note that P (T | W = W1), P (T | W = W2), P (T | W = W3) and P (T | W = W4) are

all equal. This is exactly as expected, since by reshuffling the data we removed any probabilistic dependence

between the inputs and the outputs.

Applying Def. 11 to this data indicates that the algorithm implicitly only discovered one true ZW state,

even though we explicitly asked it to look for a four-state macro-variable. The cardinality of the output

macro-variable is three or four states, depending on whether .24–.26 is close enough to .27 to apply Def. 11

to merge the last two columns. We performed the same reshuffled analysis for each K and computed as

before the precision for the weak and strong El Niño and the weak and strong La Niña. Fig. 7.1, large dotted

lines, shows that in each case none of the clusters contains a significant proportion of either El Niño or La

Niña patterns. This experiment shows that CFL passes the sanity check. When the inputs and outputs are

independent, the input macro-variable is trivial, it has a single state.

5.3.5 Challenges to Establishing Causality

The CFL framework aspires to solve an important problem in causal reasoning: how to automatically form

macro-level variables from micro-level observations. In this work we have shown, for the first time, that

these algorithms can be successfully applied to real-life data. We have recovered well-known, complex

climate phenomena (El Niño, La Niña) as macro-variable states directly from climate data, in an entirely

unsupervised manner.

We emphasize that our experiments use observational climate data, and we have to be cautious about

causal conclusions. It is not even clear a priori whether the ZW → SST causal direction is a reasonable

choice: it is known that wind patterns cause changes in SST and it in turn affects the wind by changing the

atmospheric pressure. Feedback loops are commonplace in climate dynamics.

The Causal Coarsening Theorem (Theorem 16) provides the basis for an efficient learning of causal

relationships based on observational macro-variables – but some experiments are required. In addition, the

theorems were only shown to hold for variables that are not subject to feedback. However, we are hopeful
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that an extension accounting for feedback can be proven. While real climate experiments are generally not

feasible, such a theorem would provide the basis to perform large-scale climate experiments with detailed

climate models, for example, to check whether interventionally shifting from the W = 0 zonal wind state

to W = 1 in the climate model increases the likelihood of El Niño (i.e. of SST ending up in state T=1).

Connecting the CFL framework with such experiments is an exciting future direction as it would also enable

the possibility of using the macro-variables we have found to inform policy that aims to influence climate

phenomena.

Even when working with purely observational data, CFL offers an important causal insight not revealed

by clustering methods. It guards against learning variables with ambiguous manipulation effects (Spirtes

and Scheines, 2004). An illustrative example of an ambiguous macro-variable is total cholesterol. Low

density lipids (LDL, commonly called “bad cholesterol”) and high density lipids (HDL, “good cholesterol”)

can be aggregated together to count total cholesterol (TC), but TC has an ambiguous effect on heart disease

because effects of LDL and HDL differ. The Causal Coarsening Theorem guarantees that each state of the

observational macro-variable is causally unambiguous: no mixing of HDL and LDL can occur. In case of

our El Niño setup, this means that two ZW states within the same cell are guaranteed to have the same effect

on the SST macro-variable.

Finally, we note that there still is significant debate among climate scientists about what exactly consti-

tutes El Niño and what its causes are. For example, recent research has shown that there may be multiple

different types of El Niño states (Kao and Yu, 2009; Johnson, 2013) that all fall under NOAA’s definition. Our

results suggest that the current definition described in Section 5.2 coincides well with states of the probabilis-

tic macro-variable discovered by CFL. In addition, Sec. 5.3.3 indicates that finer-grained structure does exist

within the El Niño and La Niña clusters when they are analyzed from the relational-probabilistic standpoint.

We leave this line of research as an important future direction.
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Chapter 6

Causation without Intervention

Take two discrete variables X and Y that are probabilistically dependent. Assume there is no feedback

between the variables: it is not the case that bothX causes Y and Y causesX . Further assume (Reichenbach,

1991) that all probabilistic dependence always arises due to causation. The fundamental causal question is

then to assess three hypotheses: 1) DoesX cause Y , 2) Does Y causeX , and 3) DoX and Y have a common

cause H? Since we assumed no feedback in the system, hypotheses 1) and 2) are mutually exclusive. Each

of them, however, can occur together with hypothesis 3). Fig. 6.1 enumerates the possibilities.

Within the causal graphical models framework (Pearl, 2000; Spirtes et al., 2000), differentiating between

any two of the causally interesting possibilities (shown in Fig. 6.1B-F) is in general only possible if one has

the ability to intervene on the system. For example, to differentiate between the pure-confounding and the

direct-causal case (Fig. 6.1B and C), one can intervene on X and observe whether that has an effect on the

distribution of Y . Given only observations of X and Y and no ability to intervene on the system however,

the problem is in general not identifiable. Roughly speaking, the reason is simply that any joint P (X,Y ) can

be factorized as P (X)P (Y | X) and P (Y )P (X | Y ), and the hidden confounder H can easily be endowed

with a distribution that can give the marginal
∑
H P (X,Y,H) any desired form.

6.1 Advances in This Chapter

In this chapter we design a novel method to establish the likelihood of each possible causal graph given

samples of two discrete variables X,Y . The method is entirely observational, based only on looking at the

joint probability P (X,Y ) – without resorting to intervention.

Previous chapters showed that, given an observational partition, one of its coarsenings is the causal par-

tition. Thus, in principle, it should be possible to iterate through all the coarsenings and pick out the “right”

or “most-causal” one using methods inspired by this section. Whereas the specifics of this algorithm are still

unclear, in this chapter outline a possible solution.
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6.2 Related Work

There are two common remedies to the fundamental unidentifiability of the two-variable causal system: 1)

Resort to interventions or 2) Introduce additional assumptions about the system and derive a solution that

works under these assumptions.

Whereas the first solution is straightforward, research in the second direction is a more recent and exciting

enterprise.

6.2.1 Additive Noise Models

A recent body of work attacks the problem of establishing whether x → y or y → x when specific assump-

tions with respect to the functional form of the causal relationship hold. Shimizu et al. (2006) showed that

when the effect is a linear function of the cause, with non-Gaussian noise, then the casual direction can be

identified in the limit of infinite sample size.

This inspired further work on the so called “additive noise models”. Hoyer et al. (2009) extended

Shimizu’s idea to the case when the effect is any (except for a small enumerated set) nonlinear function of the

cause, and the noise is additive – even Gaussian. Zhang and Hyvärinen (2009) showed that a postnonlinear

model – the case where y = f(g(x) + ε) with f an invertible function and ε a noise term – is identifiable.

The nonlinear noise models framework was applied to discrete variables by Peters et al. (2011). Janzing et al.

(2009) showed that the additive noise assumption can be used to detect confounding with some success.

Unfortunately, the additive noise assumption is rather stringent. Some extensions of the additive noise

framework (such as the post-nonlinear model) do not apply in the discrete case.

6.2.2 Bayesian Causal Model Selection

In a classic work on Bayesian Network learning (then called Belief Net learning), Heckermann and Chicker-

ing develop a Bayesian scoring criterion that allows them to assess the likelihood of each possible Bayesian

network given a dataset. This work introduces five assumptions that together define which networks are more

and less likely. Their Assumptions 1 (Multinomial Probabilities), 2 (Parameter Independence) and 5 (Multi-

nomial Hyperpriors) can be used to define the likelihood of the structures shown here in Fig. 6.1. We do not

repeat the assumptions here, as we propose their modified versions in Sec. 6.3.

The crucial difference between the work of Heckermann and ours is that their goal is to find Markov

Equivalence Classes of Bayesian Networks. That is, to them two networks that encode the same indepen-

dence assumptions are equivalent. This, however, renders our task impossible: all the possibilities enumerated

in Fig. 6.1B-F are Markov-equivalent. Our contribution is thus to use assumptions similar and assess the like-

lihood of fundamentally unidentifiable causal structures over two variables, bearing in mind that there is no

“right” structure for any observed joint, but there are “more likely” and “less likely” structures.
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Figure 6.1: Possible causal structures linking X and Y. Assume X, Y and H are all discrete but H is unob-
served. In principle, it is impossible to identify the correct causal structure given only X and Y samples. In
this report, we will tackle this problem using a minimalistic set of assumptions. Our final result is a classifier
that differentiates between these six cases – the confusion matrices are shown in Fig. 6.9.

Our idea is most similar in spirit to the work of Sun et al. (2006). Sun puts an explicit Bayesian prior

on what a likely causal system is: if X causes Y , then the conditionals p(Y | X = x) are less complex

than the reverse conditionals P (X | Y = y), where complexity is measured by the Hilbert space norm of

the conditional density functions. This formulation is plausible and easily applicable to discrete systems (by

defining the complexity of discrete probability tables by their entropy).

6.2.3 Desiderata

Our contribution is to create the first algorithm with the following properties:

1. Works for discrete variables X and Y .

2. Decides between all the six possible graphs shown in Fig. 6.1.

3. Does not make any functional assumptions about the functional form of the discrete parametrization

(e.g. additive noise).

In a recent review, Mooij et al. (2014) compares a range of methods that decide the causal direction

between two variables, including the methods discussed above. To our knowledge, none of these methods

attempt to distinguish between the pure-causal, the confounded, and the causal+confounded case.

6.3 Assumptions

We take an approach inspired by the Bayesian methods discussed in Sec. 6.2. Consider the Bayesian model

in which P (X,Y ) is sampled from a hyperprior. Our method is to make this hyperprior as weak or uninfor-

mative as possible while retaining the property that distribution of the cause is independent of the distribution

of the effect conditioned on the cause:
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1. Assume that P (effect | cause) ⊥⊥ P (cause).

2. Assume that P (effect | cause = c) is sampled from the uninformative hyperprior for each c.

3. Assume that P (cause) is sampled from the uninformative hyperprior.

Since all the distributions under considerations are multinomial, the “uninformative hyperprior” is the

Dirichlet distribution with parameters all equal to 1 (which we will denote as Dir(1), remembering that 1

is actually a vector whose dimensionality will be clear from context). What cause and effect are depends

on which causal system is sampled. For example, if X → Y and there is also confounding X ← h → Y

(Fig. 6.1D), then our assumptions set

P (X) ∼ Dir(1)

∀xP (Y | X = x) ∼ Dir(1)

P (H) ∼ Dir(1)

∀hP (X | H = h) ∼ Dir(1)

∀hP (Y | H = h) ∼ Dir(1)

6.4 An Analytical Solution: Causal Direction

Consider first the problem of identifying the causal direction. That is, assume that either X → Y or Y → X ,

and there is no confounding. The assumptions of Sec. 6.3 then allow us to compute, for any given joint

P (X,Y ) (which we will from now on denote PXY to simplify notation), the likelihood p(X → Y | PXY )

and the likelihood p(Y → X | PXY ). The likelihood ratio allows us to decide which causal direction PXY

more likely represents.

We first derive and visualize the likelihood for the case of X and Y both binary variables. Next, we

generalize the result to general X and Y . Finally, we analyze experimentally how sensitive such causal

direction classifier is to breaking the assumption of uninformative Dirichlet hyperpriors (but keeping the

independent mechanisms assumption).

6.4.1 Optimal Classifier for Binary X and Y

Consider first the binary case. Let PX =

 a

1− a

 and PY |X =

b 1− b

c 1− c

. Assume PX is sampled

independently from PY |X , and that the densities (parameterized by a and b, c) are Fa,Fb,Fc : (0, 1) →

R. This defines a density over (a, b, c), the three-dimensional parameterization of an x → y system, as

F(a, b, c) = Fa(a)Fb(b)Fc(c) : (0, 1)3 → R.

Now, consider PXY =

d e

f 1− (d+ e+ f)

 – a three-dimensional parameterization of the joint. If
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we assume that PXY is sampled according to the X → Y sampling procedure, we can compute its density

HXY : (0, 1)3 → R as a function of F using the multivariate change of variables formula. We have


d

e

f

 =


ab

a(1− b)

(1− a)c


and the inverse transformation is 

a

b

c

 =


d+ e

d
d+e

f
1−d−e

 (6.1)

The Jacobian of the inverse transformation is

d(a, b, c)

d(d, e, f)
=


1 1 0

e
(d+e)2

−d
(d+e)2 0

f
(1−d−e)2

f
(1−d−e)2

1
1−d−e ,


its determinant det

(
d(a,b,c)
d(d,e,f)

)
= −1

(d+e)−(d+e)2 . The change of variables formula then gives us

HXY (d, e, f) =
F(d+ e, d

d+e ,
f

1−d−e )

(d+ e)− (d+ e)2
,

where a, b, c are obtained from Eq. (6.1).

We can repeat the same reasoning for the inverse causal direction, Y → X . In this case, we obtain

HY X(d, e, f) =
F(d+ f, d

d+f ,
e

1−d−f )

(d+ f)− (d+ f)2
.

Given PXY and the hyperpriors F , we can now test which causal direction PXY most likely corresponds

to. Assuming equal priors on both causal directions, we have

p(X → Y | (d, e, f))

p(Y → X | (d, e, f))
=
Hxy(d, e, f)

Hyx(d, e, f)

=
F
(
d+ e, d

d+e ,
f

1−d−e

)
F
(
d+ f, d

d+f ,
e

1−d−f

) (d+ f)− (d+ f)2

(d+ e)− (d+ e)2

Only the first factor in the likelihood ratio depends on the hyperprior F . If we fix Fa,Fb,Fc to all be

Dir(1), the factor reduces to 1 and the likelihood ratio becomes
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Figure 6.2: Log likelihood-ratio log
(
P (X→Y |(d,e,f))
P (Y→X|(d,e,f))

)
as a function of e, f for nine different values of d.

Red corresponds to values larger than 0 — that is, X → Y is more likely than the opposite causal direction
in the red regions. Blue signifies the opposite. The decision boundary is shown in black. It is a union of two
orthogonal planes that cut the (d, e, f) simplex into four connected components along a skewed axis.

p(X → Y | (d, e, f))

p(Y → X | (d, e, f))
=

(d+ f)− (d+ f)2

(d+ e)− (d+ e)2
.

Denote the “uninformative-hyperprior likelihood ratio” function

LR : PXY (d, e, f) 7→ (d+ f)− (d+ f)2

(d+ e)− (d+ e)2
.

The classifier that assigns the X → Y class to PXY with LR(PXY ) > 1, and the Y → X class otherwise is

the optimal classifier under our assumptions. Fig. 6.2 shows LR across the three-dimensional PXY simplex.

The figure shows nine slices of this simplex for different values of the d coordinate.

6.4.2 Optimal Classifier for Arbitrary X and Y

Deriving the optimal classifier for the case whereX and Y are not binary is analogous to the binary derivation.

The resulting likelihood ratio is

p(X → Y | PXY )

p(Y → X | PXY )
= (6.2)

=
F
(
PX , PY |X

)
F
(
PY , PX|Y

) |det JXY |−1

|det JY X |−1
, (6.3)
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where JXY is the Jacobian of the linear transformation (PX , PY |X) 7→ PXY and JY X is the Jacobian

of the transformation (PY , PX|Y ) 7→ PXY . The transformation, its determinant and Jacobian are readily

computable on paper or using computer algebra systems. In our implementation, we used Theano (Theano

Development Team, 2016) to perform the computation for us. Note that if X has cardinality kX and Y

has cardinality kY , the Jacobians have (kXkY − 1)2 entries. Computing their determinants has complexity

O((kXkY − 1)6) or, if we assume kX = kY = k, O(k12) – it grows rather quickly with growing cardinality.

IfF is flat, that is all the priors areDir(1), we will call the causal direction classifier that follows Eq. (6.3)

the LR classifier. That is, the LR classifier outputs X → Y if the uninformative-hyperprior likelihood ratio

is larger than 1, and outputs Y → X otherwise.

Note that the optimal classifier is not perfect – there is a baseline error that the optimal classifier has under

the assumptions it is built on. This error is

ELR =

∫
p(Y → X | PXY )I[LR(PXY )>1]+

p(X → Y | PXY )I[LR(PXY )<1]dPXY ,

where the integral varies over all the possible joints PXY with uniform measure, and I[LR(PXY )<>1] is the

indicator function that evaluates to 1 if its subscript condition holds, and to 0 otherwise.

That is, assuming that each PXY is sampled from the uninformative Dirichlet prior given that either

X → Y or Y → X with given probability, in the limit of infinite classification trials the error rate of the

LR classifier is ELR. Whereas this integral is not analytically computable (at least neither by the authors

nor by available computer algebra systems), we can estimate it using Monte Carlo methods in the following

sections. In Fig. 6.6, the leftmost entry on each curve corresponds to ELR for various cardinalities of X and

Y . For example, for |X| = |Y | = 2, ELR ≈ .4 but already for |X| = |Y | = 10, ELR < .001.

6.4.3 Robustness: Changing the Hyperprior F

What if we use the LR classifier, but our assumptions do not match reality? Namely, what if F is not Dir(1)?

For example, what if F is a mixture of ten Dirichlet distributions1?

We will draw F from mixtures with fixed “| log2(αmax)|”. Let the k-th component of the mixture have

parameter αk = (αk1 , · · · , αkN ) where N is the cardinality of X or Y . Then fixed αmax means that we

drew each αki uniformly at random from the interval 2−αmax , 2αmax . Fig. 6.4 shows samples from such

mixtures with growing αmax. The figure shows that increasing the parameter allows the distributions to grow

in complexity.

Note that if αmax = 0, we recover the noninformative prior case. How does the likelihood ratio and the

causal direction decision boundary change as we allow αmax to depart from 0? For binary X and Y , Fig. 6.4

illustrates the change. Comparing with Fig. 6.2, we see that as αmax grows, the likelihood ratios become
1A mixture of Dirichlet distributions with arbitrary many components can approximate any distribution over the simplex.
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Figure 6.3: Samples from Dirichlet mixtures. Each plot shows three random samples from a ten-component
mixture of Dirichlet distributions over the 1D simplex. Each mixture component has a different, random
parameter α. For each plot we fixed a different |log2(αmax)|, a parameter which limits both the smallest and
largest value of any of the two α coordinates that define each mixture component.

more extreme, and the decision boundaries become more complex. Fig. 6.5 makes it clear that a fixed αmax

allows for the decision boundary to vary significantly.

That the “independent mechanisms” assumption as we framed it is not sufficient to provide identifiability

of the causal direction was clear from the outset (since each joint can be factorized as P (X)P (Y | X)

and P (Y )P (X | Y )). However, the above considerations suggest that the assumption of noninformative

hyperpriors is rather strong: In fact, it is possible to show that the decision surface can be precisely flipped

with appropriate adjustment of F , making the LR classifier’s error precisely 100%.

Our experiments, however, suggest that using the LR classifier is a reasonable choice in a wide range

of circumstances, especially as the cardinality of X and Y grows. In our experiments, we checked how the

error changes as we allow the αmax parameter of all the hyperpriors to grow. Our experimental procedure is

as follows:

1. Fix the dimensionality of X and Y , and fix αmax.

2. Sample 100 hyperpriors for each dimensionality and αmax. Sample α parameters for F within

given αmax bounds, where F consists of Dirichlet mixtures (with 10 components), as described above.

3. Sample 100 priors for each hyperprior. Sample P (cause) and P (effect | cause) 100 times for

each hyperpriors (that is, for each α setting).

4. Sample the causal label uniformly. If chose X → Y then let PXY = P (cause)P (effect | cause).

If chose Y → X , let PXY = transpose[P (cause)P (effect | cause)].

5. Classify. Use the LR classifier to classify PXY ’s causal direction and record “error” if the causal label
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Figure 6.4: Log-likelihood ratios for the causal direction when F is a mixture of ten Dirichlet distributions
with growing αmax (see Fig. 6.3).

Figure 6.5: Log-likelihood ratios for the causal direction when F is a mixture of ten Dirichlet distributions
with |αmax| = 28 (see Fig. 6.3) – each plot corresponds to different, randomly sampled α.
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Figure 6.6: Results of the direction-classification experiment. We varied the cardinality of X,Y as well as
αmax of the mixture of Dirichlets F . For each setting, we sampled 100 PXY distributions according to
our causal model and recorded the classification error of the simple LR classifier. The results show that, as
cardinality of X and Y grows, the LR classifier’s accuracy increases.

Figure 6.7: Results of the direction-classification experiment when the number of Dirichlet mixture model
hyperprior components varies. We fixed α to vary between 2−7 and 27. The results show that the max-
likelihood classifier that assumes the noninformative priors is not sensitive to the number of Dirichlet mixture
components that the test data is sampled from.

disagrees with the classifier.

Figure 6.6 shows the results. As the cardinality of the system grows, the LR classifier’s decision boundary

approximates the decision boundary for most Dirichlet mixtures. Another trend is that as αmax grows, the

variance of the error grows, but there is only a small growing trend in the error itself. In addition, Fig. 6.7

shows that the error does not increase as we allow more mixture components, up to 128 components, while

holding αmax at the large value of 7. Thus, the LR classifier performs well even for extremely complex

hyperpriors, at least on average.

6.5 A Black-box Solution: Detecting Confounding

Consider now the question of whetherX → Y orX ← H → Y , whereH is a latent variable (a confounder).

In this section we present a solution to this problem, under assumptions from Sec. 6.3.

Unfortunately, deriving the optimal classifier for this case is difficult without additional assumptions on
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Figure 6.8: Results of the black-box confounding detector. We varied cardinality of X,Y as well as αmax of
the mixture of Dirichlets F . For each setting, we sampled 1000 PXY distributions according to our causal
model and recorded the classification error of a neural net classifier trained on noninformative Dirichlet hy-
perprior data. The results show that, as cardinality of X and Y grows, the LR classifier’s accuracy increases.

the latent H . Instead, we propose a black-box classifier. We created a dataset of distributions from both the

direct-causal and confounded case, using the uninformative Dirichlet prior on either P (X) and P (Y | X)

(the direct-causal case) or P (H), P (X | H) and P (Y | H) in the confounded case. For each confounded

distribution, we chose the cardinality of H , the hidden confounder, uniformly at random between 2 and

100. Next, we trained a neural network to classify the causal structure (Python code that reproduces the

experiment is available at vision.caltech.edu/˜kchalupk/code.html). We then checked how

well this classifier performs as we vary the cardinality of the variables, and as we allow the true hyperprior to

be a mixture of 10 Dirichlets, analogously to the experiment from Sec. 6.4.

Fig. 6.8 shows the results. Note that the classification errors are much lower than for the “deciding

causal direction” case. Both problems (deciding causal direction and detecting confounding) are in principle

unidentifiable, but it appears the latter is inherently easier. The neural net classifier seems to be little bothered

by growing αmax. The largest source of error, for cardinality of X and Y larger than 3, seems to be neural

network training rather than anything else.

6.6 A Black-Box Solution to the General Problem

Finally, we present a solution to the general causal discovery problem over the two variables X , Y : deciding

between the six alternatives shown in Fig. 6.1. The idea is a natural extension of the black-box classifier from

Sec. 6.5. We created a dataset containing all the six cases, sampled under the assumptions of Sec. 6.3. We

then trained a neural network on this dataset (the neural network architecture, as well as the details of the

training procedure, are available in the accompanying Python code).

Figure 6.9 shows the results of applying the classifier to distributions sampled from flat hyperpriors (that

is, from a test set with statistics identical to the training set), for cardinalities |X| = |Y | = 2 and |X| =

|Y | = 10. As expected, the number of errors is much lower for the higher cardinality. For the cardinality of
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Figure 6.9: Confusion matrices for the all-causal-classes classification task. The test set consists of distri-
butions sampled from uniform hyperpriors – that is, sampled from the same statistics as the training data
(equivalent to αmax = 0 in previous sections). A) Results for |X| = |Y | = 2. Total number of errors=2477.
B) Results for |X| = |Y | = 10, total errors=85. C) Average results for |X| = |Y | = 10, same classifier as
in B) but test set sampled with non-uniform hyperpriors with αmax = 7 (see text). 201 errors on average. In
each case, the test set contains 10000 distributions, with all the classes sampled with an equal chance.
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2, the confusion matrix shows that the neural networks:

1. easily learn to classify independent vs dependent variables,

2. confuse the X → Y and Y → X cases, and

3. confuse the two “directed-causal plus confounding” cases (Fig. 6.1E,F).

However, all these are insignificant issues when |X| = 10, where the total error is 85 out of 10000 testpoints.

For |X| = 2, the error is 25.7%. We remark again that the problem is not identifiable – that is, there is no

“true causal class” for any point in our training or test dataset. Each distribution could arise from any of the

possible five causal systems in which X and Y are not independent. The fact that the error nears 0 in the

high-cardinality case indicates that the likelihoods under our assumptions grow very peaked as the cardinality

grows. Thus, the optimal decision can quite safely be called the true decision. In addition, Fig. 6.9C shows

the average confusion table for a hundred trials in which our classifier was applied to distributions overX and

Y with cardinality 10, corresponding to all the possible six causal structures, but sampled from non-uniform

hyperpriors with αmax = 7. The performance drop is not drastic compared to Fig. 6.9B.

6.7 Discussion

We developed a neural network that determines the causal structure that links two discrete variables. We

allow for confounding between the two variables, but assumed acyclicity. The classifier takes as input a joint

probability table PXY between the two variables and outputs the most likely causal graph that corresponds to

this joint. The possible causal graphs span the range shown in Fig. 6.1 - from independence to confounding

co-occurring with direct causation. We emphasize two limitations of the classifier:

1. Since the classifier makes a forced choice between the six acyclic alternatives, it will necessarily pro-

duce 100% error on PXY ’s generated from cyclic systems.

2. Our goal was not, and can not be, to achieve 100% accuracy. For example, error in Fig. 6.9A is about

25%. However, this is not necessarily a “bad” result. Our considerations in Sec. 6.3 and 6.4 show that

even when all our assumptions hold, the optimal classifier has a non-zero error.

The latter is a consequence of the non-identifiability of the problem: it is not possible, in general, to iden-

tify the causal structure between two variables by looking at the joint distribution and without intervention.

Our goal was to introduce a minimal set of assumptions that, while acknowledging the nonidentifiability,

enable us to make useful inferences.

We noted that as the cardinality of the variables grows, the task becomes more and more “identifiable” in

the sense that, for each given PXY , one out of the possible six causal graphs strongly dominates the others

with respect to its likelihood. In this situation, the most likely causal structure becomes essentially the only

possible one, barring a small error, and the problem becomes practically identifiable.

All of the above applies assuming that our generative model corresponds to reality. The assumptions, dis-

cussed in Sec. 6.3, boil down to two ideas: 1) The world creates causes independently of causal mechanisms
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and 2) Causes are random variables whose distributions are sampled from flat Dirichlet hyperpriors. Causal

mechanisms are conditional distributions of effects given causes, and are also sampled from flat Dirichlet

hyperpriors. Whether these assumptions are realistic or not is an open question. Nevertheless, through a

series of simple experiments (Fig. 6.6, Fig. 6.7, Fig. 6.8, Fig. 6.9) we showed that the assumption of flat

hyperpriors is not essential – our classifiers’ average performance does not decrease significantly as we allow

the hyperpriors to vary, although the variance of the performance grows. In future work, we will carefully

analyze under what conditions the flat-hyperprior classifier performs well even if the hyperpriors are not flat.

The current working hypothesis is that as long as the hyperprior on P (cause) is the same as the hyperprior

on P (effect | cause), the classification performance doesn’t change significantly on average, but –as seen

in our experiments – it will have increased variance.

Shohei Shimizu explained our task (for the case of continuous variables) as: “Under what circumstances

and in what way can one determine causal structure based on data which is not obtained by controlled experi-

ments but by passive observation only?” (Shimizu et al., 2006). Our answer is, “For high-cardinality discrete

variables, it seems enough to assume independence of P (cause) from P (effect | cause), and train a neural

network that learns the black-box mapping between observations and their causal generative mechanism.”

6.8 Conjectured Application to CFL

Throughout this section, we freely use terminology, definitions and algorithms of Chapters 2 and 3. We

propose the following procedure to discover the causal partition directly from observational data:

1. Take as input an unsupervised observational dataset (x1, y1), · · · , (xN , yN ).

2. Use Alg. 2 to learn the observational partition of the data.

3. Iterate through each pair of coarsenings of the observational partitions on X and Y . Name the i-th

coarsening pair (C ′, E′)i.

4. Each C ′, E′ pair is a causal hypothesis. There are now four possibilities: 1) The pair constitutes the

causal partition, 2) The pair is a coarsening of the causal partition, or 3) The pair is a spurious correlate

(see Chapter 2) or its coarsening, and finally 4) The pair is neither of the three.

5. Using methods of this chapter, among all the C ′, E′ pairs pick the coarsest one classified as P (C ′i →

E′i).

In a nutshell, the algorithm first learns the observational partition. In previous chapters, we suggested

efficient algorithms to pick out the causal partition based on the observational partition using experimentation.

This algorithm substitutes the interventional experiments with methods of this chapter.

In Step 4, we enumerated four possible causal meanings for each coarsening of the observational partition.

These claims rely on the Causal Coarsening Theorem. First of all, we know that the causal partition is one

of the coarsenings of the observational one. Note that, in the terminology of this chapter, the causal partition

C,E stands in the direct causal reaction: C → E. We also know that the spurious correlate pair S,ES stands
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in the relation S ← H → ES – by definition, the spurious correlate is confounded and not causal. Note

that all the coarsenings that are not the causal partition are probabilistic variables that are not well-defined

causal variables, because they do not support unambiguous manipulation (see Chapter 1). In particular, any

coarsening that contains microvariables from two distinct causal classes is not a causal variable.

Nevertheless, since all the coarsenings are probabilistic variables, the methods of this chapter can in

principle be applied to them. Unfortunately, at the time of writing of this book the efficacy of this approach

has not been researched.

Note that the algorithm iterates over all the possible partitions of the observational partition. This means

its runtime is super-exponential in the number of observational classes. The methods of this chapter however

work best for high-cardinality variables. This means that the algorithm of this section works best when it is

slowest – that is, when the observational partition has a large number of cells.
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Chapter 7

Discussion

CFL can learn high-level causal knowledge from low-level data in an automatic, unbiased manner. Given that

discussion of macro-causal relations is commonplace in scientific discourse, we take the scientific endeavors

mentioned in the first chapter to be predicated on the assumption that micro-level descriptions are not all there

is to the phenomena under investigation. Whether or not there in fact are macro-level causes that justify such

an assumption is, in light of our theoretical account, an empirical question. Taking the definitions literally,

macro-causes cannot be defined arbitrarily.

Throughout this book, we outlined the theory of causal macrovariables and proposed algorithms for their

learning. We cleanly accounted for the interventional/observational distinction that is central to most analyses

of causation. This distinction is entirely lost in heuristic approaches, such as that of Hoel et al. (2013).

Altogether, we have an account of how causal variables can be identified that does not rely on a definition

obtained from domain experts. Given its theoretical generality, we expect our method to be useful in many

domains where micro-level data is readily available, but where the relevant causal macro-level factors are still

poorly understood.

Our contribution is most directly to the field of causal discovery. Modern causal discovery algorithms

presuppose that the set of causal variables is well-defined and meaningful. What exactly this presupposition

entails is unclear, but there are clear counter-examples: x and 2x cannot be two distinct causal variables.

There are also well understood problems when causal variables are aggregates of other variables (Chu et al.,

2003; Spirtes and Scheines, 2004). We provide an account of how causal macro-variables can supervene on

micro-variables.

In general it is possible that macro-variable causes C and effects E are barely coarser (if at all) than

the corresponding micro-variables. The hope that C and E have a “manageable” cardinality is similar in

spirit to standard assumptions in both supervised and unsupervised learning. There, a set of continuous data

is clustered into a discrete number of subsets according to some feature of interest. Here the “feature of

interest” is the causal relationship between C and E.

In this final chapter, we make explicit several assumptions that our methods presuppose, and discuss their

significance to real-world applications. In our minds, the largest contribution of this thesis is the theory of
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causal macrovariables and their learning. At this moment in time, compelling applications of the framework

to science or industry are missing – but are the next, and perhaps the most important, step in the evolution of

the framework.

7.1 CFL in the Real World: Assumptions and Challenges

Chapters 2 and 3 proposed methods to learn causal macrovariables from observational microvariable data.

Applications of CFL presented in this work (enumerated in Chapter 1) range from almost abstract toy prob-

lems to attempts to gain knowledge about the mechanisms driving Earth climate.

CFL makes a set of assumptions that do not necessarily hold in all real-world settings. Assessing to what

degree violations of these assumptions decrease usefulness of the framework is an open issue, but we can at

least lay out and discuss some of the caveats.

7.1.1 Discreteness of Macrovariables

The essential assumption of CFL in its current form is that the macrovariables are discrete – that is, the

statistics of the system, while supervening on continuous microvariables, can be captured by discrete variables

with manageable cardinalities.

In all our toy examples (Sec. 1.3), the micro-variable spaces all collapse to an observational partition

with a small number of cells. Each input cell consists of microvariable states that share exactly the same

conditional probabilities w.r.t. each target cell. Many real-world phenomena, however, are thought to have

continuous probabilistic structure.

In Fig. 1.1A for example, temperature is a continuous macrovariable. The observational partition (with

respect to any variable that is not independent of temperature) still exists, but it divides the state space of

particle masses and velocities into uncountably many cells. Two states belong to the same cell of that partition

if and only if the average kinetic energy of its particles is equal. This observational partition corresponds

precisely to the ‘temperature’ macrovariable. Unfortunately, an equivalent of the Causal Coarsening Theorem

for uncountable partitions does not currently exist, so the value of such a partition for causal discovery is

unclear.

Consequently, before applying CFL it is essential to establish whether the probabilistic structure of the

problem can possibly be captured or at least well-approximated by discrete variables. In low-dimensional

domains visualization of the data can provide guidance. Expert knowledge or physical intuition can also

justify the discreteness assumption. We discuss extensions of CCT to the continuous case in Sec. 7.2.2.
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7.1.2 Smoothness Assumptions During Learning

While the theory of CFL assumes a discrete macrovariable structure, our learning algorithms make the con-

trary assumption. Recall the example of hue influencing eda, from Sec. 1.3.2. Consider p(eda | hue)

evaluated on a fixed set of h samples as a vector-valued function of hue. Fig. 3.1A shows that this function

is discontinuous at the boundaries of the observational states (namely at hue = 0, 90, 180, 270). However,

the learned density shown in Fig. 3.1B varies continuously with hue. We chose to learn a continuous density

mainly because there are good and flexible neural-net-based algorithms for learning continuous conditionals.

As Fig. 3.1B suggests, these algorithms can take sharp boundaries into account. Nevertheless, mistakes at the

boundaries are a likely artifact of the learning method.

A similar situation is encountered in neural network classification (Rumelhart et al., 1985; Bishop, 1995;

Krizhevsky et al., 2012): an essentially discrete problem (dividing the feature space into a discrete number of

classes) is solved using a continuous algorithm and appropriate thresholding of the final output. The success

of neural networks in machine learning tasks proves that this strategy can yield good results.

7.1.3 Why Not Naive Clustering?

It is instructive to compare our results with unsupervised clustering. Recall our results of learning the obser-

vational partition on climate science data in Chapter 5. We used the “precision coefficients” (Definition 22) to

measure the degree to which each cell of the observational partition corresponds to El Niño. Fig. 7.1 shows

the precision coefficients for k-means clustering with k=4, . . . , 16 (small dotted line), alongside our CFL

results. Whereas CFL detects both El Niño and La Niña with high precision using only four states, k-means

struggles to achieve a similar result even for larger K.

Barring particularities of the data, there is in general no reason for CFL to give the same results as

clustering. Consider the example in Fig. 7.2. Arguably, a reasonable clustering algorithm should find four

linearly separable clusters in the joint X ,Y space, and two clusters in the X and Y space each. However,

the variables are probabilistically independent. In contrast, CFL would only find a one-state input variable,

since all values of X (in non-zero density regions) imply the same distribution over Y . Additionally, since

P (Y | X) = P (Y ) is constant across all the Y samples, CFL would also only find a one-state output variable.

Our experiments that compare CFL with clustering showed that, as the number of clusters grows, k-

means approaches never exceed CFL’s precision in detecting El Niño and La Niña. One explanation for this

finding is that while clustering looks for spatial features in the data, CFL looks for relational probabilistic

features. Fig. 7.1 suggests that when the number of clusters is small there are strong spatial features in the

data that supersede El Niño and La Niña in their distinctiveness. In contrast, CFL already detects El Niño

with high precision with only four clusters. This indicates that either (1) There is something unique about

P (El Niño | W) and P (La Niña | W), or (2) There is something unique about P (El Niño) and P (La Niña).
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Figure 7.1: Changes in macro-variable precision as we vary the number of states in CFL, clustering, and CFL
on reshuffled data (“Rand CFL”). With two states, it is impossible to differentiate El Niño and La Niña from
other weather features, be it dynamic (CFL) or spatio-structural (clustering). Increasing the number of states
reveals differences between the algorithms.

Figure 7.2: Samples from a two-dimensional distribution uniform over four square space regions. A rea-
sonable clustering algorithm would divide this space into four regions. However, CFL sees only one obser-
vational class both in the input and the output space, as all the regions of non-zero density have the same
p(Y | X) (and the conditional density is not defined over other regions).
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Since we disproved the second hypothesis in Sec. 5.3.4, our results overall indicate that the El Niño and La

Niña phenomena do not only constitute interesting spatial features of the SST map, but are also crucially

characterized by the dynamic aspect of the interplay between zonal winds and sea surface temperatures.

7.2 Open Problems

The following problems point to future work that would significantly extend the range of domains CFL can

be applied to.

7.2.1 Learning Without Experimentation

Currently, transitioning from the observational testing the causal hypothesis requires intervention – one ex-

periment per each observational class. However, in the field of causal discovery there are methods to reject

causal hypotheses based on observational data only. These are either based on the independence structure of

the generative distributions (Spirtes et al., 2000; Chickering, 2002; Silander and Myllymäki, 2006; Claassen

and Heskes, 2012; Hyttinen et al., 2014) or assumptions about the functional form of the structural equations

that govern the system (Shimizu et al., 2006; Hoyer et al., 2009; Mooij et al., 2011). None of these methods

can be directly applied to the formation of causal macrovariables – they all assume the causal variables of

interested are given. Extending these ideas to the CFL framework would make it useful in domains where

direct experimentation is expensive (medicine) or impossible (climate science).

In Chapter 6, we developed a novel method to establish the likelihood of different causal structures based

on observational data only. The development of this method was motivated by the needs of CFL. We also

proposed an algorithm that – we conjecture – can pick out the causal partition from observational data only.

How well and under what conditions the algorithm works however, is at the moment entirely unclear.

7.2.2 Continuous Macrovariables

Section 7.1 discussed the discreteness assumption in CFL. A logical next step is to extend the framework

to systems where the macrovariables are continuous, or hybrid systems. Whereas definitions of continuous

macrovariables do not pose a challenge, extending the Causal Coarsening Theorem — which makes the

framework useful — to the continuous case appears non-trivial.

7.2.3 Cyclic Microvariable Graphs

Like the majority of work in causal inference and discovery — notable exceptions being (Richardson, 1996;

Mooij et al., 2011; Lacerda et al., 2008; Hyttinen et al., 2012, 2014) — CFL assumes that the microvariable

system is acyclic: in our toy example, hue has causal influence on eda, but we assumed (quite plausibly) that

eda is not a cause of hue. This assumption is not always warranted. For example, in the wind-temperature
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climate case we worked with in Chapter 5, the system definitely experiences feedback (over time). While

cyclicity may not break the CCT or our algorithms, there is currently no proof either way.

7.3 Brief Philosophical Considerations

Our goal has been to provide a rigorous and objective account of causal macrovariables as they occur in the

sciences. Motivation has come from examples, such as temperature that supervenes on the kinetic energy

of particles. Just as it is the room temperature – the mean kinetic energy of the particles – that triggers the

air conditioning, rather than the exact distribution of particle velocities in the room, we have defined causal

macrovariables as aggregates of those microvariables that have the same causal consequences.

Non-trivial macrovariables exist to the extent that there are such equivalent microstates. There is a sense

in which the occurrence of macrovariables is a measure-zero event. Whether or not this licenses inferences to

the existence of macrovariables in practice depends on the appropriateness of the measure for the description

of our world. But there is a further consideration worth noting: We claimed that it was in fact the mean

kinetic energy and not the exact distribution of kinetic energies of the particles that determined whether the

air conditioning was triggered.

But perhaps that is not quite right. After all, it is the specific movement of the particles close to the sensor

that triggers the air conditioning. We could maintain the mean kinetic energy of the particles in the room

overall constant, while significantly changing the velocities of the particles close to the sensor. In that case

one may argue that temperature is not a causal macrovariable in this system. Another view is to say that these

sorts of microstates are extraordinarily improbable and therefore can be neglected. Assuming that such a view

can be properly formalized, the macrovariable temperature then does not have a completely clean delineation

in terms of its causal consequences. There will be a few micro-states within each of its macro-states that have

very different causal consequences from the other micro-states within the same macro-state. Metaphorically,

the macrovariable is a little bit “fuzzy around the edges”. Such a metaphysical account of macrovariables

may be anathema to many, but we note that our epistemology – our learning method – is unable to distinguish

between these and sharply delineated macrovariables since we will in practice never be able to investigate all

possible micro-states.

With these definitions there is no reason a priori to think that macro-variables are common phenomena.

In fact quite the opposite: The conditions that the probability distributions over X and Y must satisfy to give

rise to non-trivial macro-variables C and E can easily be described as a measure-zero event when taken in

their strict form. Consequently, our view is that to the extent that macro-variables are discussed in a scientific

domain, there must be a pre-supposition that such strong conditions are satisfied at least approximately.
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