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ABSTRACT

This thesis is a computational investigation on several aspects of the constant stress
and pressure rheology of dense polydisperse colloidal suspensions. Using bidisperse
suspensions as a model, we first study the influences of size polydispersity on short-
time transport properties. The hydrodynamic interactions are calculated using
a polydisperse implementation of Stokesian Dynamics (SD) via a Monte-Carlo
approach. We carefully compare the SD computations with existing theoretical
and numerical results, and critically assess the strengths and weaknesses of the SD
algorithm. For suspensions, we find that the Pairwise Additive (PA) approximations
with the Percus-Yevick structural input is valid up to volume fraction φ = 0.1. We
also develop an semi-analytical approximation scheme to predict the wavenumber-
dependent partial hydrodynamic functions based on the δγ-scheme of Beenakker &
Mazur [Physica 120A (1983) 388 & 126A (1984) 349], which is shown to be valid
up to φ = 0.4.

To meet the computation requirements of dynamic simulations, we then developed
the Spectral Ewald Accelerated Stokesian Dynamics (SEASD) based on the frame-
work of SD with extension to compressible solvents. The SEASD uses the Spectral
Ewald (SE) method [Lindbo & Tornberg, J. Comput. Phys. 229 (2010) 8994] for
mobility computation with flexible error control, a novel block-diagonal precondi-
tioner for the iterative solver, and the Graphic Processing Units (GPU) acceleration.
For further speedup, we developed the SEASD-nf, a polydisperse extension of the
mean-field Brownian approximation of Banchio&Brady [J. Chem. Phys. 118 (2003)
10323]. The SEASD and SEASD-nf are extensively validated with static and dy-
namic computations, and are found to scale as O(N log N ) with N the system size.
The SEASD and SEASD-nf agree satisfactorily over a wide range of parameters for
dynamic simulations.

Next, we investigate the colloidal film drying processes to understand the structural
and mechanical implications when the constant pressure constraint is imposed by
confining boundaries. The suspension is sandwiched between a stationary substrate
and an interface moving either at a constant velocity or with constant imposed stress.
UsingBrownianDynamics (BD) simulationswithout hydrodynamic interactions, we
find that both fast and slow interface movement promote crystallization via distinct
mechanisms. The most amorphous suspension structures occur when the interface
moves at a rate comparable to particle Brownian motion. Imposing constant normal
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stresses leads to similar suspension behaviors, except that the interface stops moving
when the suspension osmotic pressure matches the imposed stress. We also compare
the simulation results with a continuum model. This work reveals the critical role
of interface movement on the stress and structure of the suspension.

Finally, we study the constant shear stress and pressure rheology of dense colloidal
suspensions using bothBDandSEASD-nf to identify the role of hydrodynamic inter-
actions. The constant pressure constraint is imposed by introducing a compressible
solvent. We focus on the rheological, structural, and dynamical characteristics of
flowing suspensions. Although hydrodynamic interactions profoundly affect the
suspension structure and dynamics, they only quantitatively influence the behaviors
of amorphous suspensions. The suspension becomes glassy, i.e., exhibits flow-arrest
transitions, when the imposed pressure is high, and reveals the Shear Arrest Point
(SAP) in the non-Brownian limit. From a granular perspective, we find that the
suspensions move away from the arrested state in a universal fashion regardless
of the imposed pressure, suggesting the critical role of the jamming physics. The
hydrodynamic simulations quantitatively agree with the experiments of Boyer et
al. [Phys. Rev. Lett. 107 (2011) 188301] with a volume fraction shift. The results at
all imposed stresses and pressures reveal a generalized Stokes-Einstein-Sutherland
relation with an effective temperature proportional to the pressure. We develop a
model that accurately describes the rheology and diffusion of glassy suspensions.
Our results show the critical role of pressure on the behaviors of dense colloidal
suspensions.
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2.16 (Color online) The particle shear viscosity ηs/η0−1 as a function of φ
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3.1 The bidisperse suspension partial radial distribution functions gαβ (r)

(upper panel) and partial static structure factors Sαβ (q) (lower panel)
for φ = 0.5, y = 0.5, and λ = 2, directly measured from the simu-
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3.3 The partial hydrodynamic functions H11(q) and H22(q) for a bidis-
perse suspension of φ = 0.4, y = 0.5, and λ = 2 with the re-
spective other species being hydrodynamically inactive. The hy-
drodynamic functions are scaled with the single particle mobility
µα0 = (6πη0aα)−1 and the wave number is scaled with a1, the radius
of the smaller particles. . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.4 The partial hydrodynamic functions Hαβ (q) of bidisperse suspen-
sions with full hydrodynamics. The size ratio is λ = 2. The top,
middle, and bottom rows are H11(q) and H22(q), and H12(q), re-
spectively. The interspecies partial hydrodynamic functions H12(q)
are shifted by 0.1 for y = 0.5 and by 0.2 for y = 0.9 for clarity
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is orthogonal (γ = 0), and the particle size effects are accounted using
the hybrid approach. . . . . . . . . . . . . . . . . . . . . . . . . . . 135

4.4 (Color online) The overall accuracymeasured in e∞,r (E) as a function
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4.6 The accuracy of GPGPUmobility computation measured in e∞,r (E).
(a): the wave-space accuracy as a function of P for various m with the
same parameters in Fig. 4.2b. The GPU results are shown in black
lines, and the CPU results in Fig. 4.2b are reproduced in gray lines.
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4.7 (Color online) The wall times (in second) of 100 time steps in dy-
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scaling, and the dash-dotted line show the O(N log N ) scaling. The
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from equilibrium configurations. . . . . . . . . . . . . . . . . . . . 140
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sphere suspensions with λ = 2, y2 = 0.5. The results are scaled
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0,α and
dr

0,α, respectively. The SEASD results are shown in symbols and the
conventional SD results from Wang & Brady [11] are shown as lines. 144

4.9 (Color online) The species far-field short-time translational and rota-
tional self-diffusivities, dt,ff
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s,α , respectively, as functions of the
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5.1 (Color online) (a): A sketch of the colloidal film drying process.
Colloidal particles of radius a are sandwiched between a stationary
substrate at z = 0 and an interface at z = H , moving either at constant
velocity Uw or in response to a constant normal stress Σe in the −z
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5.2 (Color online) The terminal gap width H as a function of Péclet
number PeU for constant velocity interface movement. The error
bars corresponds to variations in 300 independent simulations. The
inset shows the gap width H as a function of the volume fraction
φ for the initial H0 and φ0 in the simulations. The H (φ) operating
curve is superimposed over the H-φ equilibrium phase diagram of
confined hard-sphere systems from Fortini and Dijkstra [30] (with
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time taΣe/ζ for constant normal stress interface movement with
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z = H − 2.7a, and z = a at different gap locations H for (a):
PeU = 0.1, (b): PeU = 2, and (c): PeU = 50. The crystalline
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xy-plane, gxy (rxy), measured at z = H − a for PeU = 0.1, 2, and
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the middle column in Fig. 5.5a, 5.5b, and 5.5c. . . . . . . . . . . . . 192
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5.7 (Color online) The normal stress profiles Σzz/(n0kBT ) in drying
processes with constant velocity interface movement at (a), (b):
PeU = 0.1, (c), (d): PeU = 2, and (e), (f): PeU = 50. Simulation
measurements are shown in (a), (c), and (e), and continuum model
results are shown in (b), (d), and (f). To reduce noise, simulation
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on the moving interface are shown in red, and the stress profiles at
the denoted H/a are shown in blue. Near the boundaries, the contact
stress and the suspension stress are connected by green dashed lines,
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cesses with constant normal stress interface movement at (a), (b):
PeΣ = 0.5, (c), (d): PeΣ = 2, and (e), (f): PeΣ = 50. Simulation
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results are shown in (b), (d), and (f). Other arrangements are identical
to Fig. 5.7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
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as functions of the gap width H/a for (a): Σm/(PeU n0kBT ) for drying
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Σs/(n0kBT ) as functions of gap spacing for the same PeU or PeΣ. The
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with constant velocity interface movement at (a), (b): PeU = 0.1, (c),
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6.1 (a): The suspension steady shear viscosity ηs/η0 (left triangles)
and the long-time self-diffusivity ds

∞/d0 (right triangles), with d0 =

kBT/(6πη0a), as functions of Peσ in constant shear stress and pres-
sure simulations at an imposed pressure Πa3/kBT = 5. The filled
(open) symbols represent the flowing (arrested) states. Typical accu-
mulated strain γ (top) and volume fraction φ (bottom) at Peσ = 0.5
(b), 5 (c), and 10 (d) as functions of dimensionless time tσ/η0 are
also presented, with the corresponding Peσ annotated in (a). . . . . . 213

6.2 (Color online) The steady shear rheology of hard-sphere colloidal
suspensions with constant shear stress and pressure, (a): µ = σ/Π as
a function of Iv = η0γ̇/Π and (b): µ as a function of φ. Simulations at
the same imposed pressureΠa3/kBT are shown in the same symbols.
For suspensions exhibiting flow-arrest transitions, the filled (open)
symbols represent the flowing (arrested) states. The raw and the
scaled data of Boyer et al. [19] are shown in diamonds and triangles,
respectively. In (b), the dashed lines outline the boundary of the
flowing region, and the solid lines are contours of the shear viscosity
ηs/η0. The Shear Arrest Point (φSAP, µSAP) is shown as a star. . . . 215

6.3 (Color online)Universal viscosity divergences (a): the shear viscosity
ηs/η0 and (b): the incremental normal viscosity ηn/η0 as functions
of (φm − φ), the volume fraction difference from arrest, for flowing
suspensions with Π̄ ≥ 3.5. The inset of (a) shows φm as a function
of Π̄. The legends are identical to those in Fig. 6.2. . . . . . . . . . 217

6.4 (Color online) The system size dependence on (a): the suspension
shear viscosity ηs/η0, (b): the long-time self-diffusivity ds

∞/d0. and
(c): themaximumof the dynamic susceptibilitymax( χ4) as functions
of Peσ for constant stress and pressure simulations at Πa3/kBT = 5.
The filled (open) symbols represent the flowing (arrested) suspension
states. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

6.5 (Color online) The initial condition dependence on (a): the average
volume fraction φ and (b): the average strain rate γ̇a2/d0, with d0 =

kBT/(6πη0a), as functions of the number of independent simulations
in the group Nsamp. The simulations are performed at Πa3/kBT = 5
(open symbols) and 50 (filled symbols). The stress Péclet number
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average of all 50 independent runs. . . . . . . . . . . . . . . . . . . 222
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7.1 The suspension equilibrium osmotic pressureΠ/(nkBT ) as a function
of the volume fraction φ, computed using constant pressure Brownian
Dynamics simulations. The suspension size polydispersity p.d. =
0.1. The dashed line is the osmotic pressure from Carnahan-Starling
equation of state for monodisperse suspensions. The error in φ is
smaller than the symbol size. . . . . . . . . . . . . . . . . . . . . . . 235

7.2 (Color online) Simulation results as functions of the stress Péclet
number Peσ = 6πσa3/kBT at an imposed pressure Π̄ = Πa3/kBT =

50. (a): the shear and the normal viscosities, ηs and ηn, respectively,
and (b): the volume fraction φ. In (b), the arrested results are shown
as open symbol. The insets of (a) show the time evolution of the
accumulated strain γ at Peσ = 145 and 215. The inset of (b) presents
the corresponding time evolution of φ at the same Péclet numbers. . 236

7.3 Equatorial slices of pair distribution function in the velocity-velocity
gradient g12(r ), velocity-vorticity g13(r ), and velocity gradient-vorticity
g23(r ) planes at various Peσ with an imposed pressure Π̄ = 50. The
slice width is 0.7a. On the panel for g12(r ) at Peσ = 145 the com-
pressional and the extensional axis are also highlighted. . . . . . . . 238

7.4 (Color online) The peak values of the pair distribution function in the
compressional and the extensional axes, max(gcomp) andmax(gext) as
functions of Peσ at the imposed pressure Π̄ = 50. The vertical dashed
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C h a p t e r 1

INTRODUCTION

Colloidal suspensions are widely present in nature and in industry from biological
fluids to advanced materials, with examples as diverse as cytoplasm, milk, and ink.
They have attracted extensive research interests dating back to Einstein [1]. Despite
almost 110 years of extensive experimental, computational, and theoretical investi-
gations, the behaviors of dense colloidal suspensions remain poorly understood [2,
3]. Even the most elementary form—the hard-sphere colloidal suspensions that
are mixtures of submicron rigid particles in a viscous solvent—exhibit rich and
surprising behaviors such as glass and jamming transitions [4, 5], shear thinning
and shear thickening, i.e., a decrease and increase of suspension viscosity with in-
creasing strain rate [6], and particle migration [7, 8]. These behaviors arise from
the complex interplay among interparticle forces, hydrodynamic interactions, and
Brownianmotion. A thorough understanding is critical for developing newmaterials
and improving existing processes.

This thesis is a comprehensive computational investigation on the rheology of dense
colloidal suspensions. By dense we refer to suspensions that exhibit flow-arrest
transitions, i.e., that are unable to flow unless the imposed stress exceeds the yield
stress. The volume fraction is therefore above the glass transition φG ≈ 0.58 but
below the jamming transition φJ ≈ 0.64 for hard-sphere systems. The current
standard method for rheology simulations of colloidal suspensions is Stokesian
Dynamics (SD) [9], which exploits both the mobility and the resistance formalism
of Stokes flow to accurately capture the hydrodynamic interactions that are non-
pairwise-additive and long-range in the far field and diverging in the near field. The
monodisperse implementation of SD has been used to study suspension rheology
up to the monodisperse fluid-solid transition φF ≈ 0.494 with fixed volume fraction
φ and strain rate γ̇ [10, 11]. However, we cannot directly use the standard SD or the
Accelerated Stokesian Dynamics(ASD), the Particle-Mesh-Ewald (PME) variation
of the SD [12], to study the rheology of dense suspensions for several reasons:
(1) The monodisperse suspensions spontaneously crystallize when φ > φF . The
crystallization process qualitatively alters the suspension behaviors compared to the
amorphous state; (2) With constant imposed strain rate γ̇ we implicitly assume the
suspensions flow like a fluid, and therefore we are unable to accurately probe the
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dynamics near the flow-arrest transitions; (3) We assume that the prescribed volume
fraction φ is given and fixed. This assumption is valid for suspensions far from the
jamming transitions. However, near the jamming point, the exact value of φJ is
strongly protocol dependent and therefore unknown, and the prescribed φ may not
be reached.

The solution to the challenges above is the constant stress and pressure rheology of
polydisperse suspensions. Introducing a small particle size polydispersity signifi-
cantly suppresses the crystallization process [13]. This ensures that the suspensions
are amorphous at least in the arrested state. Imposing a constant shear stress σ
and measuring the resulting responses can probe both the flowing state, where the
suspension continuously deforms with γ̇ > 0, and the arrested state, where the
suspension behaves like a solid with γ̇ = 0. When the imposed stress is close to
the yield stress, we can observe the dynamics of the flow-arrest transitions. Finally,
imposing a constant pressure Π allows the suspension volume fractions to adjust
accordingly, and to reach a maximum value in the Π → ∞ limit. In this way, we
can properly study the rheology of dense suspensions.

Introducing particle size polydispersity in colloidal suspensions not only suppresses
the crystallization at φF , but also alters the hydrodynamic interactions among parti-
cles, and consequently, the suspension transport properties. Particle size differences
can introduce qualitative changes in hydrodynamic interactions. For example, the
trajectories of two sedimenting particles can become periodic if their sizes are dif-
ferent [14]. On the other hand, although there are extensive studies on the transport
properties of hard-sphere and charge-stabilized monodisperse equilibrium colloidal
suspensions [15–17], the influences of particle size differences have not been ad-
dressed. Here, the transport properties are measured at a time scale much smaller
than the time scale of configuration change, and therefore they only depend on the
instantaneous (equilibrium) configurations.

Experimentally, the constant stress and pressure rheology was first introduced
by Prasad and Kytömaa [18] for non-Brownian suspensions using a concentric
cylinder geometry with pressure control in the vorticity direction. They observed
that φ changes with the imposed stress and pressure. Recently, Boyer et al. [19]
introduced a different experimental setup based on the cone and plate geometry
with pressure control in the velocity gradient direction. They successfully collapsed
the results from different samples, and constructed the flow curve of non-Brownian
suspensions. However, there is no corresponding computational investigations for
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overdamped colloidal suspensions.

In addition to introducing physical boundaries, another way of keeping the pressure
constant is to introduce a compressible solvent with a bulk viscosity κ0 and adjust
the uniform compressive flow in unconfined suspensions. In a compressible solvent,
a rigid particle can not expand or contract with the uniform compressive flow and
thus generates a flow disturbance satisfying the Stokes equation, which, in turn,
generates a pressure moment [20, 21]. In this way, the normal stress of hard-sphere
suspensions is proportional to the compressible flow. This approach eliminates the
structural anisotropy due to confining boundaries.

The thesis consists of four parts. In the first part, we investigate the effects of par-
ticle size differences on the short-time transport properties of equilibrium colloidal
suspensions. We extend the conventional SDmethod for infinite suspensions [22] to
polydisperse systems. Since hydrodynamic interactions do not affect the equilibrium
properties, these transport properties are computed using a Monte-Carlo approach.
We address suspension properties including the short-time translational and rota-
tional self-diffusivities, the instantaneous sedimentation velocity, the wavenumber-
dependent partial hydrodynamic functions, and the high-frequency shear and bulk
viscosities; and porous media properties including the permeability and the transla-
tional and rotational hindered diffusivities. The computational results are compared
with existing theoretical and numerical results. For suspensions, we also explore the
range of validity of various approximation schemes, notably the Pairwise Additive
(PA) approximations with the Percus-Yevick structural input. We critically assess
the strengths and weaknesses of the SD algorithm for various transport properties.
For very dense systems, we discuss the interplay between the hydrodynamic inter-
actions and the structures due to the presence of a second species of a different
size.

In this part, we also develop an approximation scheme for the bidisperse partial
hydrodynamic functions based on the δγ-scheme for monodisperse suspensions [23,
24]with partial static structure factors as the input and a rescaling law for themixture.
The so-modified δγ scheme predicts hydrodynamic functions in good agreement
with the SD computations up to φ = 0.4.

The polydisperse SD has an unfavorable O(N3) computation scaling, with N the
number of particles in the system, which effectively restricts the algorithm to static
computations of equilibrium systems, where hydrodynamic interactions do not affect
the structural evolution, and to dynamic simulations with small N . This limitation
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necessitates developing a new algorithm for dynamic simulations of dense suspen-
sions.

The second part of the thesis is devoted to the development of a computational
method designed for dynamic simulations of polydisperse suspensions with full hy-
drodynamic interactions, Spectral EwaldAcceleratedStokesianDynamics (SEASD).
Based on the framework of Stokesian Dynamics (SD) with extension to compress-
ible solvents, the SEASD uses the Spectral Ewald (SE) method [25] for mobility
computation, a far-field block-diagonal preconditioner for the iterative solver, and
Graphic Processing Units (GPU) acceleration. For further speedup, we develop
SEASD-nf, a polydisperse extension of the mean-field Brownian approximation
of Banchio and Brady [26]. We extensively discuss implementation and parameter
selection strategies in the SEASD, and demonstrate the spectral accuracy in the
mobility evaluation and the overall O(N log N ) computation scaling. The algo-
rithm is rigorously validated using three computational examples in monodisperse
and bidisperse suspensions: the short-time transport properties, the equilibrium
osmotic pressure and viscoelastic moduli, and the steady shear Brownian rheology.
The results show that the SEASD and SEASD-nf agree satisfactorily over a wide
range of parameters, and provide insight to the dynamics of polydisperse colloidal
suspensions.

The third part of the thesis shifts the attention from hydrodynamic interactions to the
constant pressure constraint. We consider the structural and mechanical influences
of the confining boundarymotion if the constant pressure constraint is imposed. This
problem is formulated as the film drying process by confining colloidal suspensions
between a moving interface and a stationary substrate, with only excluded volume
interactions among the particles and walls.

In this part, we develop a new variant of the Brownian Dynamics simulations, the
Energy Minimization Potential-Free (EMPF) algorithm for confined systems and
for stress profile measurement. The interface moves either at a constant velocity
or with a constant imposed normal stress. For constant interface velocity Uw,
comparing the rate of interface movementUw/a to the rate of diffusion d0/a2 defines
a Péclet number, PeU = Uwa/d0, with a the particle radius and d0 the single-particle
diffusivity. In the PeU � 1 limit, Brownian motion dominates and the suspensions
are driven by thermodynamics. In the PeU � 1 limit, a particle front emerges next
to the moving interface and promotes localized, epitaxial crystallization. The stress
profile becomes step-like and has a boundary layer next to the moving interface. The
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most amorphous structures at a given gap width occur at moderate PeU . We also
develop a continuummodel for the drying process and compare themodel prediction
with the simulation results. With constant imposed normal stress, the suspension
shows similar behaviors, except that the interface stops moving when the suspension
osmotic pressure matches the imposed stress. This part shows the critical role of
interface movement on the resulting suspension structures and mechanics.

The fourth part of the thesis focuses on the constant stress and pressure rheology
of colloidal suspensions without and with hydrodynamic interactions. We use the
Potential-Free Brownian Dynamics (PFBD) [27] for computations without hydro-
dynamic interactions, and use SEASD-nf for hydrodynamic simulations. As the
confinement strongly affects the suspension behaviors even without hydrodynamic
interactions, we impose the constant pressure constraint by introducing a compress-
ible solvent.

We first study the flow behaviors using PFBD. Expressing the flow behavior in
terms of the macroscopic friction coefficient µ = σ/Π, with σ the shear stress and
Π the osmotic pressure, reveals a Shear Arrest Point (SAP) from the collapse of the
rheological data in the non-Brownian limit. The flow curves agree quantitatively
(when scaled) with the experiments of Boyer et al. [19]. Near suspension arrest,
both the shear and the incremental normal viscosities display a universal power
law divergence, demonstrating the important role of jamming on the arrest of col-
loidal suspensions and illustrating the care needed when conducting and analyzing
experiments and simulations near the flow-arrest transition.

We then investigate the constant stress and pressure rheology with and without
hydrodynamic interactions by focusing on the rheological, structural, and dynamical
characteristics of the flowing suspensions. Hydrodynamic interactions, for example,
lead to the preferential alignment of particles in the vorticity direction at high
imposed stresses, and the shear-melting of the string-order structures at moderate
stresses.

For suspensions without hydrodynamic interactions, we also explore the suspension
instability near flow-arrest transitions. Through temporal coarse graining, the sta-
tionary strain rate distribution near flow-arrest transitions shows two peaks, with one
in the arrested state and one in the flowing state. The stress-scaled self-diffusivities
at different stresses collapse, and depend only on Π and γ̇. The results lead to a
diffusion-rheology flow map for Brownian suspensions. Spatially, the fast-moving
particles move collectively when the suspensions change from an arrested state to a
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flowing state.

Adopting a granular perspective that characterizes the suspension dynamics using
the viscous number Iv = η0γ̇/Π with η0 the solvent viscosity, we find that the
rheology, the structural features, and the diffusive dynamics collapse in the high
pressure limit. For glassy suspensions, µ and φ approach the arrest point (φm, µm)
as Iv → 0, which approaches the SAP in the Π → ∞ limit. Away from the
flow-arrest transitions, δφ = φm − φ and δµ = µ − µm exhibit universal power
law behavior with respect to Iv, suggesting that the jamming physics dominates the
flow behavior, and that thermal fluctuations only change the arrest locations. With
this insight, we also develop a simple rheology model that accurately captures the
behaviors of glassy suspensions. Hydrodynamic interactions only quantitatively
alter this behavior. Moreover, the results from hydrodynamic simulations in the
non-Brownian limit agrees quantitatively with the experiments of Boyer et al. [19]
with a shift in φ.

In addition, the interaction friction coefficient µI = µ − (1 + 5
2φ)Iv collapse for

all flowing suspensions as functions of γ̇a2/ds
∞, with ds

∞ the long-time self-
diffusivity, as µI ∝ γ̇a2/ds

∞. The data collapse suggests a generalized Stokes-
Einstein-Sutherland relation with an effective temperature proportional to the im-
posed pressure. The structural distortions also collapse with γ̇a2/ds

∞ for all the
flowing suspensions, suggesting that the shear stresses are only proportional to the
product of structural distortion and osmotic pressure near flow-arrest transitions.
These universal behaviors are valid regardless of hydrodynamic interactions, sug-
gesting that a mean-field description is possible for the diffusion and rheology of
Brownian suspensions.

The thesis is arranged as follows: the first part contains Chapters 2 and 3, with
Chapter 2 focusing on the short-time transport properties and Chapter 3 on the
modified δγ-scheme for approximating the bidisperse diffusion properties. The
second part is Chapter 4, presenting details of the SEASD algorithm. The third
part is presented in Chapter 5 as the structure and mechanical properties in the
colloidal film drying process. The fourth part is in Chapters 6, 7, and 8. Chapter 6
presents a short study on the mechanical aspects of the constant stress and pressure
rheology of colloidal suspensions without hydrodynamic interactions. Chapter 7
significantly expands the previous chapterwith additional focus on the dynamical and
structural aspects. Chapter 8 thoroughly investigate the influences of hydrodynamic
interactions. We finish this thesis with a conclusion and outlook in Chapter 9.



7

Finally, we note that Chapters 2–8 are presented in a form suitable for publication,
with Chapters 2, 3, 4, and 6 already published.
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C h a p t e r 2

SHORT-TIME TRANSPORT PROPERTIES OF BIDISPERSE
COLLOIDAL SUSPENSIONS AND POROUS MEDIA

[1] M. Wang and J. F. Brady, “Short-time transport properties of bidisperse
suspensions and porous media: a Stokesian Dynamics study”, the Journal of
Chemical Physics 142, 094901 (2015) doi:10.1063/1.4913518,

2.1 Introduction
Understanding the short-time transport properties of colloidal suspensions has been
a lasting pursuit of researchers for over a century, dating back to Einstein’s inquiry to
the effective viscosity of dilute suspensions [1]. Such understanding has important
scientific and technological implications due to colloidal suspensions’ rich and
complex behaviors—their applications encompass virtually every aspect of our
lives.

The principal challenges in investigating colloidal suspensions are (i) the long-range
and non-pairwise-additive hydrodynamic interactions (HIs) mediated by the solvent,
which exhibit sharp transitions when two particles are close, and (ii) their sensitive
response to the particle configurations, e.g., their shape, size, and physico-chemical
environments. To overcome these difficulties, a wide range of computational tech-
niques have been developed: Lattice Boltzmann simulations [2, 3], Dissipative
Particle Dynamics [4, 5], Smoothed Particle Hydrodynamics [6, 7], hydrodynamic
multipole methods [8–10], boundary integral methods[11, 12], the Force Coupling
Method [13–15], and (Accelerated) Stokesian Dynamics [16–19], to name a few.
Despite significant advancement, substantial gaps remain in the vast parameter
space, which leads to the versatility of colloidal suspensions.

In this work we present a comprehensive simulation study of the short-time trans-
port properties of bidisperse colloidal systems, exploring the effects of particle size.
Size polydispersity arises naturally in colloidal systems [20] and is known to affect
their phase and packing behaviors [21] and transport properties [22–24], particu-
larly at high density. However, the majority of existing theoretical and simulation
works focuses on monodisperse systems. For polydisperse systems, with a few ex-
ceptions [25], earlier studies were restricted to dilute systems [26–30], or imposed

http://dx.doi.org/doi:10.1063/1.4913518
http://dx.doi.org/doi:10.1063/1.4913518
http://dx.doi.org/doi:10.1063/1.4913518
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simplifications on HIs [31, 32].

To the best of our knowledge, the present work is the first study for polydisperse
suspensionswith full HIs covering the entire concentration range up to close packing.
Specifically, the following species and mixture properties will be addressed: (1) the
short-time translational self-diffusivity, (2) the short-time rotational self-diffusivity,
(3) the instantaneous sedimentation velocity, (4) the hydrodynamic functions, (5)
the high-frequency dynamic shear viscosity, and (6) the high-frequency dynamic
bulk viscosity.

From a hydrodynamic perspective, flows in porous media are closely related to those
in colloidal suspensions. In both cases, the fluid motions are governed by the Stokes
equation, and, for a given particle configuration, the distinction is that in suspensions
the particles are free to move, while in porous media the particles are fixed in space.
Compared to suspensions, the immobile particles give rise to much stronger HIs
and qualitatively different behaviors in their transport properties. Here, we present
the following transport properties of bidisperse porous media: (1) the translational
drag coefficient, which is related to the permeability, (2) the translational hindered
diffusivity, and (3) the rotational hindered diffusivity.

We chose the Stokesian Dynamics (SD) [16, 17, 33] as the computational tool due
to the simplicity and effectiveness of its formalism in treating the hydrodynamic
interactions. For monodisperse systems, SD has been used to study the short-
time transport properties of hard-sphere suspensions [34] and porous media [35],
and its Particle Mesh Ewald (PME) variation, known as Accelerated Stokesian
Dynamics (ASD), has been used to study the transport properties of charged colloidal
suspensions [36, 37]. For polydisperse systems, only partial extensions of SD
exist. Chang & Powell [31, 38, 39] extended SD to polydisperse systems without
the far-field mobility Ewald summation. Consequently, their extension is only
appropriate for monolayers. Ando & Skolnick [40] developed a force-torque level
polydisperse SD to investigate the effect of molecular crowding on protein diffusion.
Since stresslet order moments were ignored, their implementation is unsuitable for
rheological studies. In this work, we implemented the SD algorithm for polydisperse
systems to the stresslet level with Ewald summed periodic boundary conditions.

The simplicity of the SD framework unfortunately comes at a cost of accuracy for
certain transport properties. However, the errors associated with SD cannot be
estimated a priori and have to be understood by comparing with existing results
from other computational techniques. This leads to the second objective of this
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work: a careful assessment of the accuracy and effectiveness of SD.

Computing hydrodynamic interactions using conventional SD requires O(N3) op-
erations, where N is the number of particles in the system. This makes SD compu-
tationally expensive and imposes severe restrictions on the system size accessible
to dynamic simulations [41]. The time limiting step is the explicit inversion of the
mobility and resistance tensors. The scaling can be reduced to O(N2) by taking
advantage of iterative solvers [42–44], to O(N log N ) in ASD through PME tech-
niques [18], and further down to O(N ) using fast multipole methods [45]. However,
for computing short-time transport properties in this work, the choice of the O(N3)
algorithm is deliberate. Here, hydrodynamic computations are performed for in-
dependent configurations using a Monte-Carlo approach, and each O(N3) matrix
inversion straightforwardly yields all the short-time transport properties associated
with the configuration for both the suspension and the porous medium. In addi-
tion, the conventional SD incorporates a mean-field quadrupole contribution in the
mobility computation [33], improving its accuracy.

The transport properties of colloidal suspensions can also be approximated via
(semi-) analytical expressions. These approximations are often preferred over full
hydrodynamic computations since they are easier to access. There are two ap-
proaches to treat HIs: One is akin to the diagrammatic methods in liquid state the-
ories [46]. For example, the δγ-scheme developed by Beenakker & Mazur [47–49]
incorporates many-body HIs by resumming an infinite subset of the hydrodynamic
scattering series from all particles in the suspension. In a companion paper [50], we
introduced a semi-empirical extension of the original monodisperse δγ-scheme to
approximate the partial hydrodynamic functions of polydisperse suspensions. The
other approach is similar to the virial expansions: Explicit computations of the two-
body, three-body, etc., HIs lead to polynomial expressions of transport properties in
powers of concentration. Its simplest form considers only the two-body HIs and is
known as the Pairwise Additive (PA) approximation [51]. It is asymptotically exact
for dilute suspensions, and can conveniently incorporate size polydispersity since
the two-body HIs can be computed to arbitrary precision. At higher concentrations,
the many-body HIs become important and the PA approximations break down. The
third objective of this work is to assess the validity of the PA approximations for
polydisperse suspensions by comparing to the SD results.

The remainder of the chapter is arranged as follows: in Sec. 2.2 we define the
bidisperse systems under study and their various transport properties. Sec. 2.3
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describes the polydisperse SD algorithm and the simulation procedure. In Sec. 2.4
we summarize the equations for the PA approximations, and in Sec 2.5 we review
the existing analytical results beyond the PA level. We present and discuss the SD
results for bidisperse suspensions and porous media in Sec. 2.6 and 2.7, respectively.
We conclude this chapter with a few comments in Sec. 2.8.

2.2 Bidisperse suspensions and porous media
Static structures
We consider an unbounded homogeneous isotropic mixture of hard-sphere particles
of different radii. For two particles with radii aα and aβ, their interaction potential
uαβ (r) can be written as

uαβ (r) =



0 if r > aα + aβ
∞ otherwise,

(2.1)

where r is the center-center distance between the two particles, and α, β ∈ {1, 2} are
the species indices for bidisperse systems. We choose the following dimensionless
parameters to describe the configuration:

λ = a2/a1, (2.2)

φ = φ1 + φ2, and (2.3)

y1 = φ1/φ, (2.4)

where λ is the size ratio, φ is the total volume fraction, φα = 4
3πa3

αnα is the species
volume fraction, and yα is the volume composition of species α. The species
number density nα = Nα/V with Nα the number of α particles in the system and V

the system size. The total number of particles in the system is N = N1 + N2, and
the total number density is n = n1 + n2. The thermodynamic limit corresponds to
increasing both N andV to infinity while keeping their ratio constant. Obviously the
volume composition 0 ≤ y1 ≤ 1. For convenience, and without loss of generality,
we assume a1 < a2 and thus λ ≥ 1.

The structure of bidisperse systems can be characterized by the partial static strcture
factors

Sαβ (q) =
〈
nα−qnβq

〉
, (2.5)

where q is the orientation-averaged wavenumber, and 〈·〉 is the average operator in
the thermodynamic limit over all configurations. The species density fluctuation nαq
is defined as

nαq =
1
√

Nα

∑
j∈α

e−ıq·r j, (2.6)
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with ı =
√
−1, r j the position of particle j, and j ∈ α means summing over all

particle j in species α. One way to capture the overall structure of the mixture is
the number-number static structure factor

SN N (q) =
∑
α,β

√
xαx βSαβ (q), (2.7)

with xα = Nα/N the species molar or number fraction. However, measurements
from scattering experiments are often different from SN N (q), and correspond to a
weighted average of Sαβ (q),

SM (q) =
1

f 2(q)

∑
α,β

√
xαx β fα (q) f β (q)Sαβ (q), (2.8)

where fα (q) is the species scattering amplitude, and f 2(q) =
∑
α xα f 2

α (q) is the
square mean scattering amplitude [52]. Unless different species have constant
scattering amplitude and fα = f β, we generally have SN N (q) , SM (q), making the
interpretation of experiments with polydisperse systems difficult.

The real space characterization of the homogeneous and isotropic mixture structure
is described by the partial radial distribution functions gαβ (r). It is the probability
of finding a particle of species β with distance r for a given particle of species α.
Accordingly, we have [51]

gαβ (r) =
1

nαnβ

〈∑′

i∈α
j∈β

1
V
δ(r − ri + r j )

〉
, (2.9)

where δ(x) is theDirac delta function, and the prime on the summation sign excludes
the case of i = j. The radial distribution function is related to the inverse Fourier
transform of Sαβ as [46]

gαβ (r) = 1 +
1

2π2r√nαnβ

∫ ∞

0
[Sαβ (q) − δαβ]q sin(qr)dq, (2.10)

where δαβ is the Kronecker delta. Accordingly, the mixture total radial distribution
function is

g(r) =
∑
α,β

xαx βgαβ (r). (2.11)

The short-time hydrodynamics
Colloidal suspensions and porous media exhibit different behaviors depending on
the time scale [53], and in this work we are interested in the short-time properties.



14

For a Newtonian solvent with shear viscosity η0 and density ρ0, by “short-time” we
mean a coarse grained time scale t satisfying

τH ∼ τI � t � τD, (2.12)

where τH is the hydrodynamic time, τI is the inertia time, and τD is the diffusion
time.

The hydrodynamic time τH = ρ0a2
2/η0 characterizes the time required for the fluid

momentum to diffuse a length scale of the (larger) particle. With τH � t, the
Reynolds number Re = τH/t � 1, and therefore the HIs are dominated by the
viscous stresses. Consequently, the fluid motion is governed by the Stokes equation
and the incompressibility constraint,

∇p(x) = η0∇
2v(x) and ∇ · v(x) = 0, (2.13)

where p(x) and v(x) are the fluid pressure and velocity field, respectively. We
further supplement the above equations with the no-slip boundary condition on the
particle surfaces.

The particle inertia time, τI =
2
9 ρ2a2

2/η0, where ρ2 is the density of the (larger) parti-
cle, describes the time required for the particlemomentum to dissipate by interacting
with the solvent. The consequence of τI � t is that the particle momentum dissi-
pates almost instantaneously and the particle dynamics are completely overdamped
in the time scale we are interested in. Therefore, the HIs in the suspension are solely
determined by the instantaneous particle configurations rN = {r1, r2, . . . , rN }. This
allows the use of Monte-Carlo type approaches to study the short-time transport
properties, as each independent configuration is equivalent.

The diffusion time τD = 6πη0a3
1/kBT , where kBT is the thermal energy scale, sets

the upper limit of the short-time regime. It characterizes the time for a smaller
particle to move a distance of its own size when driven by thermal fluctuations, i.e.,
τD = a2

1/d
t
0,1, where dt

0,1 = kBT/(6πη0a1) is the Stokes-Einstein-Sutherland (SES)
translational diffusivity of a single particle with radius a1. In dense suspensions, the
particles are close to each other, and the mean interparticle gap spacing ξa1 � a1.
In this case, the relative mobility for the nearly touching particles scales as ξ, and
the relative diffusivity scales as ξdt

0,1. As a result, the characteristic time for a
particle of size a1 to move a distance of ξa1 remains τD. Therefore, τD is a valid
diffusion time scale at any suspension volume fraction. At the time scale t ∼ τD, the
(smaller) particles wander far from their original positions and directly interact with
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the neighboring particles. Such interactions change the suspension configuration,
and lead to subdiffusive particle behaviors. At a much longer time scale t � τD,
the memory effects associated with changes in the particle configuration begin to
decorrelate, and the particle motion becomes diffusive again. For the moderate
size ratios considered in this work, the time scale τD is always several orders of
magnitude larger than τI and τH , leaving a well-defined short-time regime as shown
in Eq. (2.12).

The Stokes equation in Eq. (2.13) governs the HIs in the suspension. Its linearity
gives rise to the linear dependence between the forces F, torquesT , and stresslets S
and the linear and angular velocities U and Ω, respectively. For all particles in the
suspension, we have [54]

*
,

F

S
+
-
= −R · *

,

U −U∞

−e∞
+
-
, (2.14)

where R is the grand resistance tensor, F = {F,T } is the generalized force, U −
U∞ = {U − u∞,Ω−ω∞} is the generalized velocity disturbance, and u∞, ω∞, and
e∞ are the imposed linear velocity, angular velocity, and strain rate, respectively. The
unsubscripted symbols suggest all particles are involved, e.g., F = {F1, F2, . . . , FN }.
Each element of the grand resistance tensor depends on the configuration of the
entire system, i.e., R = R(rN ), and the minimum dissipation theorem of Stokes
flow requires R to be symmetric and positive definite [54]. We can partition the
grand resistance tensor R as

R(rN ) = *
,

RFU RFE

RSU RSE

+
-
, (2.15)

where, for example, RFU describes the coupling between the generalized force and
the generalized velocity. The resistance tensor RFU and its inverse R−1

FU play a
particularly important role in the short-time transport properties of suspensions and
porous media, and can be further partitioned as

RFU = *
,

ζ tt ζ tr

ζ rt ζ rr
+
-
, (2.16)

R−1
FU =

*
,

µtt µtr

µrt µrr
+
-
, (2.17)

where each sub-matrix contains coupling between the translational (t) and rotational
(r) velocities and forces.
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Suspension transport properties
The dynamic structural evolution of a colloidal mixture can be described by the
dynamic partial structure factors

Sαβ (q, t) =
〈
nα−q (0)nβq (t)

〉
, (2.18)

where nβq (t) is the density fluctuations measured at time t from Eq. (2.5), and thus
Sαβ (q) = Sαβ (q, 0). The dynamics of Sαβ (q, t) are governed by the Smoluchowski
equation [51, 55], and one can show that in the short time limit,

S(q, t) ≈ exp[−tq2D(q)] · S(q), (2.19)

where S(q, t) for bidisperse suspensions is a 2×2 matrix with elements of Sαβ (q, t),
andD(q) is the q-dependent diffusivitymatrix depending on the suspension structure
and HIs. The hydrodynamic contribution to diffusivity matrix D(q) is extracted as

H (q) = D(q) · S(q)/(kBT ), (2.20)

and H (q) is known as the hydrodynamic matrix with elements Hαβ (q), the partial
hydrodynamic functions. The microscopic definition of Hαβ (q) is

Hαβ (q) =
1√

NαNβ

〈∑
i∈α
j∈β

q̂ · µtt
i j (r

N ) · q̂eıq·(ri−r j )
〉
, (2.21)

where q̂ = q/|q | is the unit vector of q. The mobility tensors µtt
i j are elements of

the tensor µtt in Eq. (2.17), and describe the coupling between the linear velocity
disturbance of the particle i due to an imposed force on the particle j.

It is convenient to split Hαβ (q) as

Hαβ (q) = δαβdt
s,α/(kBT ) + Hd

αβ (q), (2.22)

where Hd
αβ (q) is the q-dependent distinct part of the partial hydrodynamic function,

and dt
s,α is the short-time translational self-diffusivity of species α. Note that we

use the lowercase symbol to signify its q-independence. The microscopic definition
of dt

s,α is

dt
s,α =

kBT
Nα

〈∑
i∈α

q̂ · µtt
ii · q̂

〉
, (2.23)

and it describes the short-timemean-square displacement of species α in a Brownian
suspension

dt
s,α = lim

t→0

d
dt

〈
1
6 [ri (t) − ri (0)]2

〉
, i ∈ α. (2.24)
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Comparing Eq. (2.21) and (2.23), we see that in the short wave-length limit,

dt
s,α = lim

q→∞
kBT Hαα (q). (2.25)

The suspension hydrodynamic functions can be obtained by dynamic scattering
experiments, but Hαβ (q) is often difficult to access directly unless special techniques
such as selective index of refraction matching are employed [56]. Otherwise, the
measured hydrodynamic function HM (q) is related to Hαβ (q) as [52]

HM (q) =
1

f 2(q)

∑
α,β

√
xαx β fα (q) f β (q)Hαβ (q), (2.26)

where fα (q), f β (q) and f 2(q) are defined in Eq. (2.8). In the hypothetical case of
constant and equal fα, the number-number mixture hydrodynamic function is

HN N (q) =
∑
α,β

√
xαx βHαβ (q). (2.27)

The rotational Brownian motion of colloidal suspensions can be observed by in-
troducing optical anisotropy to the otherwise spherical particles using depolarized
dynamic light scattering techniques [30, 57]. The optical anisotropy is characterized
by the orientation unit vector n̂i (t) for particle i at time t. The short-time decay of
the rotational correlation function of particles of species α,

Sαr (t) = 〈P2[n̂i (t) · n̂i (0)]〉 , i ∈ α, (2.28)

where P2(x) is the Legendre polynomial of the second order, defines the short-time
rotational self-diffusivity

dr
s,α = −

1
6 lim

t→0

d
dt

ln[Sαr (t)]. (2.29)

Microscopically, dr
s,α is defined as

dr
s,α =

kBT
Nα

〈∑
i∈α

q̂ · µrr
ii · q̂

〉
, (2.30)

where µrr
i j are elements of µrr in Eq. (2.17), and describe the angular velocity

disturbance on particle i due to an imposed torque on particle j.

Sedimentation occurs when the particle density ρα is different from the solvent
density ρ0. The net body force exerted on species α depends on the species radius
aα and the density difference ∆ρα = ρα − ρ0. In bidisperse suspensions, the
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instantaneous sedimentation velocities depend on the size ratio λ and the density
ratio [28, 58]

γ = ∆ρ2/∆ρ1. (2.31)

The ratio of the mean forces between the two species is F2/F1 = λ
3γ. Examination

of Eq. (2.21) reveals that the species instantaneous sedimentation velocities, Us,1

and Us,2, can be expressed in terms of Hαβ (0) = limq→0 Hαβ (q) as

Us,1

U0,1
=

1
µ0,1

[
H11(0) + λ3γ

√
x2
x1

H12(0)
]
, (2.32)

Us,2

U0,2
=

1
µ0,2

[ 1
λ3γ

√
x1
x2

H21(0) + H22(0)
]
, (2.33)

where, for species α, µ0,α = (6πη0aα)−1 is the single particle mobility and U0,α =

µ0,αFα is the single particle sedimentation velocity. For simplicity, we only consider
the case γ = 1.

A distinguishing feature of sedimentation in polydisperse suspensions is that Us,α

can be negative. The motion of one species can give rise to a strong back flow
that reverses the sedimentation velocity of the second species, i.e., the particles
move in a direction opposite to the imposed body force, especially when the body
force is weak [28]. For monodisperse suspensions, on the other hand, the positive
definiteness of the mobility tensor µ requires the sedimentation velocity to be
positive.

Eq. (2.32) and (2.33) also reveal the close connection between Us,α and Hαβ (q).
At different wavenumber q, Hαβ (q) probes the suspension HIs at different length
scales: single particle behaviors as q → ∞, and collective dynamics as q → 0. The
wavenumber corresponding to the maximum of Hαβ (q) is closely related to the size
of the structures that dominate the suspension short-time dynamics [36].

The suspension rheological properties are obtained from the volume average of the
Cauchy stress [59, 60],

〈σ〉 = −〈p〉 f I + 2η0
〈
e∞

〉
+ (κ0 −

2
3η0)

〈
∇ · u∞

〉
I + n〈SH〉, (2.34)

where p is the solvent pressure, 〈·〉 f is the fluid phase averaging operator, I is the
idem tensor, κ0 is the solvent bulk viscosity, and 〈SH〉 is the stresslet due to the
presence of particles. In the short-time limit and without the interparticle forces,

〈SH〉 = −〈RSU · R
−1
FU · RFE − RSE〉 :

〈
e∞

〉
. (2.35)



19

Eq. (2.34) ignores the stress contributions from the Brownian motion, and therefore
is strictly valid in the short-time limit. To measure the transport properties associ-
ated with 〈σ〉 defined in Eq. (2.34) and (2.35), rheological experiments have to be
performed with high-frequency, low-amplitude deformations, such that the suspen-
sion microstructures are only slightly perturbed from the equilibrium hard-sphere
structures, and the Brownian stress contribution is out of phase with the applied os-
cillating deformation [34]. In a high-frequency shear experiment with an imposed
strain rate of amplitude γ̇, the suspension high-frequency dynamic shear viscosity
is

ηs = η0 + n〈SH〉12/γ̇, (2.36)

where the subscript 12 denotes the velocity-velocity gradient component of the
stresslet. In a high-frequency expansion experiment with an imposed expansion rate
of amplitude ė, the high-frequency dynamic bulk viscosity is

κs = κ0 +
1
3 n〈SH〉 : I/ė. (2.37)

Note that for solvent with a finite bulk viscosity κ0, the incompressibility condition
of the Stokes equation is violated. However, as is shown in Ref. [60], the fluid
velocity disturbance remains incompressible and satisfies the Stokes equation. The
rigid colloidal particles, unable to expand with the fluid, therefore contribute to the
suspension bulk viscosity.

Porous medium transport properties
When a fluid passes through a porous medium, which is frequently modeled as
a matrix of stationary particles, the particles resist the flow, creating a pressure
drop across the material. The resistance behavior is often characterized by the
dimensionless drag coefficient Fα [25], defined through

6πη0aαFαV = Fd,α, (2.38)

where V is the superficial fluid velocity and Fd,α is the mean drag force for particle
species α including the back pressure gradient contribution from the fluid. A force
balance considering both the fluid and the particles shows that the average force for
each particle is

Fd,α =
1 − φ

Nα

〈∑
i∈α

N∑
j=1

ζ tt
i j

〉
· V, (2.39)

where ζ tt
i j is from the resistance tensor ζ tt in Eq. (2.16), and describes the force-linear

velocity coupling between particles i and j.
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For a porous medium containing particles of different sizes, the average drag coef-
ficient is defined as

〈F〉 =
∑
α

yα

z2
α

Fα, (2.40)

where the diameter fraction zα = aα/ 〈a〉 and 〈a〉 = (
∑
α yα/aα)−1. As is shown

in Ref. [25], Eq. (2.40) allows convenient extension of the Darcy’s equation to
polydisperse systems. The porous medium permeability 〈K〉 is closely related to
〈F〉 in Eq. (2.40) as

〈K〉 =
〈F〉

1 − φ
. (2.41)

The diffusive behaviors of particles in porous media are characterized by the transla-
tional and rotational hindered diffusivities, denoted as dt

HD,α and dr
HD,α, respectively.

They describe the short-time Brownian motions of a single mobile particle in a ma-
trix of fixed particles. In terms of the resistance tensors, we have [35]

dt
HD,α =

kBT
Nα

〈∑
i∈α

q̂ · (ζ tt
ii )−1 · q̂

〉
, (2.42)

dr
HD,α =

kBT
Nα

〈∑
i∈α

q̂ · (ζ rr
ii )−1 · q̂

〉
, (2.43)

where ζ rr
i j are elements of ζ rr in Eq. (2.16), and describe the torque-angular velocity

coupling between particles i and j.

2.3 The polydisperse Stokesian Dynamics
The framework of Stokesian Dynamics (SD) has been extensively discussed else-
where [16, 17, 19, 33, 61] and here we only present the aspects pertinent to the
extension to polydisperse systems. The grand resistance tensor R in Eq. (2.15) is
computed in SD as

R = (M∞)−1 +R2B −R
∞
2B, (2.44)

where the far-field mobility tensorM∞ is constructed pairwisely from the multi-
pole expansions and Faxén’s laws of Stokes equation up to the stresslet level, and
its inversion captures the long-range many-body HIs. The near-field lubrication
correction (R2B − R

∞
2B) is based on the exact two-body solutions with the far-field

contributions removed, and it accounts for the singular HIs when particles are in
close contact. The SD recovers the exact solutions of two-particle problems and
was shown to agree well with the exact solution of three-particle problems [62].

Extending SD to polydisperse systems retains the computational framework above.
The far-field polydisperse mobility tensorM∞ is computed using multipole expan-
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sions as Ref. [38] and the results are extended to infinite periodic systems using
Beenakker’s technique [63, 64]. The lubrication corrections (R2B − R

∞
2B) for a

particle pair with radii aα and aβ are based on the exact solutions of two-body
problems in series form [65–68] up to s−300, where s = 2r/(aα + aβ) is the scaled
center-center particle distance. Note that in Ref. [68] there is an extra (n + 1)
that should be removed in the denominator of the fraction in front of Ps(q−s)(p−n−1)

for the expression of Pnpq. In the simulations, the lubrication corrections are in-
voked when r < 2(aα + aβ), and the analytic lubrication expressions are used
when r < 1.05(aα + aβ). To avoid singularities in the grand resistance tensor due
to particle contact, we enforced a minimum separation of 10−6(ai + a j ) between
particles.

Our polydisperse SDprogram treats the solvent as a compressible fluid and computes
the fluid velocity disturbance due to the presence of rigid particles. As a result, the
trace of the particle stresslet is no longer zero and has to be computed. The solvent
compressibility allows the quantities related the pressure moment to be directly
incorporated to the grand resistance tensor R, augmenting its size from 11N × 11N

to 12N × 12N . This is more convenient compared to the earlier approaches, where
the pressure related quantities are treated as a separate problem and sometimes
require iterations [67, 69, 70].

A subtlety in incorporating the fluid compressibility is that in the mobility problem,
a compressible flow disturbance can only be generated by the trace of the stresslet.
As a result, the pairwisely constructed far-field grand mobility tensorM∞ is not
symmetric. This asymmetry is necessary to eliminate the spurious hydrodynamic
reflections upon its inversion and ensure the elements of (M∞)−1 corresponding
to the incompressible problem remain the same as the original SD. However, the
symmetry ofR is restored by copying the missing components in RSU and the lower
triangular part of RSE from the transpose of RFE and the upper triangular part of of
RSE , respectively [61].

As pointed out by Cichocki et al. [10], the pairwise additive lubrication correction
(R2B − R

∞
2B) contains both the relative and collective motions of the particle pair.

When computing the three-body contributions to the suspension short-time self-
diffusivity, the lubrication corrections corresponding to the collectivemotion destroy
the convergence and should be eliminated [10]. In this work, however, we have
verified that removing the pair collective motion part of the lubrication corrections
has limited quantitative effect (on average less than 1% difference) on the resulting
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transport properties. Therefore, the results in Sec. 2.6 and 2.7 are based on the
full lubrication corrections that reproduce the exact pair results. Note that the
force-torque level SD implementation of Ando & Skolnick [40] removed the pair
collective motion in the lubrication corrections.

Our simulations proceed as follows. First, a random bidisperse hard-sphere pack-
ing at the desired composition is generated using the event-driven Lubachevsky-
Stillinger algorithm [71, 72] with high compression rate. After the desired volume
fraction φ is reached, the system is equilibrated for a short time (10 events per
particle) without compression. This short equilibration stage is necessary as the
compression pushes particles closer to each other, and prolonging this equilibra-
tion stage does not alter the resulting suspension structure significantly. After the
grand resistance tensor R is constructed based on the particle configuration rN , the
short-time transport properties presented in section 2.2 are extracted.

The simulations were performed for bidisperse systems of size ratio λ = 2 and
4 as well as monodisperse systems. To scan the parameter space, we first fix
the mixture composition to y1 = 0.5 and vary the total volume fraction φ. We
then study the effects of y1 with fixed φ at λ = 2. Typically each configuration
contains 800 particles and at least 500 independent configurations are studied for
each composition. For systems with disparate size ratios, we ensure at least 10 large
particles are presented in the simulations.

Fig. 2.1 shows the structural characterizations, gαβ (r) and Sαβ (q), measured from
the above simulation protocol for a bidisperse suspension of λ = 4, y1 = 0.5, and
φ = 0.4. The measurements from the simulations are compared with the Percus-
Yevick (PY)[73, 74] integral equation solutions. Note that at y1 = 0.5, the mixture
number composition is highly asymmetric, i.e., x1 = 0.985. For gαβ (r) in Fig. 2.1a,
the simulation measurements can be accurately described by the PY solutions [75,
76] despite the small underestimation of the contact values for g12(r) and g22(r).
Although semi-empirical corrections [76, 77] exist for this well-known symptom
of the PY solutions [46], they are not applicable for dense mixtures with large size
ratios. In Fig. 2.1b, Sαβ (q) directly measured from the simulations agree well with
the analytical PY solutions [78, 79] except at small wavenumbers. Note that the
PY Sαβ (q) was shown to be valid for polydisperse mixtures at φ even beyond the
monodisperse close packing [80]. Fig. 2.1 validates the PY solution as a satisfactory
description of the suspension structures in both the real and the wave spaces.

The transport properties extracted from µtt , i.e., dt
s,α, Us,α, and Hαβ (q), exhibit a
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Figure 2.1: (Color online) The structures of bidisperse suspensions with λ = 4,
φ = 0.4, and y1 = 0.5 directly measured from the SD simulations (dots) and
computed from the Percus-Yevick (PY) integral equation (dashed lines): (a) the
partial radial distribution functions gαβ (r), and (b) the partial static structure factors
Sαβ (q). Note that S22(q) for the larger particles is shifted up by 1 for clarity.
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strong 3√N size dependence in the simulations due to the imposed periodic boundary
conditions [34, 36, 81, 82]. The finite size effect can be eliminated by considering
Hαβ (q) as a generalized sedimentation velocity with contributions from random
suspensions and cubic lattices [34, 82]. For bidisperse suspensions, the finite size
correction∆N Hαβ (q) for partial hydrodynamic functions from an N-particle system,
Hαβ,N (q), is

∆N Hαβ (q) =
1.76µ0,1Sαβ (q)

(x1 + x2λ3)
1
3

η0
ηs

(
φ

N

) 1
3
, (2.45)

so that in the thermodynamic limit the partial hydrodynamic function Hαβ (q) =
∆N Hαβ (q) + Hαβ,N (q). In Eq. (2.45), ηs/η0 is the suspension high-frequency
dynamic shear viscosity obtained from the same simulations, and the static structure
factors Sαβ (q) are taken from the analytical PY solution [78, 79]. Note the scaling
for ∆N Hαβ (q) is µ0,1 regardless of the choice of α and β. The corrections for dt

s,α

and Us,α correspond to the large and small q limit of Eq. (2.45), respectively. We
checked that other transport properties, including the shear viscosity ηs/η0, change
little with the system size.

The effectiveness of Eq. (2.45) is demonstrated in Fig. 2.2 for all three partial
hydrodynamic functions. Without the correction, simulations at different N produce
distinct Hαβ (q) and the finite size effect is significant. After applying Eq. (2.45), the
data at different N collapse for all q. Note that the finite size collapse of H22(q) in
Fig. 2.2c for small N is slightly scattered due to the limited number of large particles,
e.g., at N = 100, there are only 11 large particles in the mixture. The corrected
results for N = 400 and 800 do agree with each other satisfactorily. Eq. (2.45)
spares us from extrapolating multiple simulations to eliminate the finite size effect,
and we apply it for all the presented results.

2.4 The pairwise additive approximation
The pairwise additive (PA) approximation is convenient for estimating suspension
transport properties at low volume fractions [51]. It explicitly takes the mixture
structures into account by incorporating the radial distribution functions (RDF)
gαβ (r) into its formulation. As is evident fromFig. 2.1, the PY solution satisfactorily
captures the suspension structures, and is therefore used in this work.

ThePAapproximations of the short-time translational and rotational self-diffusivities,
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dt
s,α and dr

s,α respectively, for species α are [27, 30]

dt
s,α

dt
0,α
= 1 +

∑
β

I t
αβφβ, (2.46)

dr
s,α

dr
0,α
= 1 +

∑
β

Ir
αβφβ, (2.47)

where dt
0,α = kBT µ0,α is the single particle translational diffusivity, dr

0,α = kBT/(8πη0a3
α)

is the single particle rotational self-diffusivity. The integrals I t
αβ and Ir

αβ are

I t
αβ =

(1 + λ βα)3

8λ3
βα

∫ ∞

2
s2gαβ (s)(xa

11 + 2ya
11 − 3)ds, (2.48)

Ir
αβ =

(1 + λ βα)3

8λ3
βα

∫ ∞

2
s2gαβ (s)(xc

11 + 2yc
11 − 3)ds, (2.49)

where s = 2r/(aα+aβ) and λ βα = aβ/aα. Note that the RDF gαβ (s) = gαβ (s, λ, φ)
depends on the mixture composition. The mobility couplings of the dimensionless
hydrodynamic functions xa, ya, xc, etc., are described in Kim & Karrila [54], and
we adopt the scaling of Jeffrey & Onishi [65].

The PA approximation of the sedimentation velocity is a natural extension of Batch-
elor [28]:

Us,α

U0,α
= 1 +

∑
β

Sαβφβ, (2.50)

and the integral [83]

Sαβ =
(1 + λ βα

2λ βα

)3 ∫ ∞

2
s2gαβ (s)(xa

11 + 2ya
11 − 3)ds

− γ(λ2
βα + 3λ βα + 1) + 3

4γ(1 + λ βα)2
∫ ∞

2
shαβ (s)ds

+ γ

(1 + λ βα
2

)2 ∫ ∞

2
s2gαβ (s)( x̂a

12 + 2ŷa
12)ds, (2.51)

where hαβ (s) = gαβ (s) − 1. The far field hydrodynamic functions take the form

x̂a
12(λ βα, s) =xa

12(λ βα, s) − 3
2 s−1 +

2(1 + λ2
βα)

(1 + λ βα)2 s−3, (2.52)

ŷa
12(λ βα, s) =ya

12(λ βα, s) − 3
4 s−1 −

1 + λ2
βα

(1 + λ βα)2 s−3. (2.53)
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The PA approximation of the distinct part of the partial hydrodynamic function,
Hd
αβ, is [52]

Hd
αβ (q) =µ0,αλ

− 3
2

βα

√
φαφβ

[
9
8 (1 + λ βα)2Hd,1

αβ

+3
2 (1 + λ2

βα)Hd,2
αβ +

3
4 (1 + λ βα)2Hd,3

αβ

]
, (2.54)

with

Hd,1
αβ = − 2

j1(2q̄)
q̄
+

∫ ∞

2
shαβ (s)

(
j0(q̄s) −

j1(q̄s)
q̄s

)
ds,

Hd,2
αβ =

j1(2q̄)
2q̄

+

∫ ∞

2
hαβ (s)

j2(q̄s)
q̄s

ds,

Hd,3
αβ =

∫ ∞

2
s2gαβ (s)×

[
ŷa

12 j0(q̄s) + ( x̂a
12 − ŷa

12)
(

j0(q̄s) − 2
j1(q̄s)

q̄s

)]
ds,

where q̄ = 1
2 (aα + aβ)q is the rescaled wavenumber, and j0(x), j1(x), and j2(x) are

spherical Bessel functions of the first kind.

The shear viscosity for polydisperse suspensions is computed as [26, 84]

ηs

η0
= 1 + 5

2φ +
5
2φ

2 +
∑
α,β

Iηα βφαφβ, (2.55)

where 5
2φ is the Einstein viscosity correction and 5

2φ
2 is the sum of force dipoles in

the suspension. The integral Iηα β is

Iηα β =
15
32 (1 + λ βα)3(1 + λ−3

βα)
∫ ∞

2
s2gαβ (s) Ĵ (s, λ βα)ds, (2.56)

and the expression for Ĵ is presented Ref. [26].

The PA approximation of the suspension bulk viscosity is [60]

κs

η0
=
κ0
η0
+

4φ
3(1 − φ)

+
∑
α,β

I κα βφαφβ, (2.57)

where the integral

I κα β =
(1 + λ βα)6

32λ3
βα

∫ ∞

2
s2gαβ (s) ĴQ (s, λ βα)ds. (2.58)

The definition of ĴQ and its asymptotic forms are presented in Appendix 2.A.
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Table 2.1: The PA approximation coefficients computed with gαβ = 1. For the
sedimentation velocity coefficient Sαβ, the density ratio γ = 1.

λβα −I tαβ −Irαβ −Sαβ Iηαβ Iκαβ
1⁄16 2.4152 2.2345 3.6033 1.8237 1.6412
1⁄8 2.3464 1.9952 3.7252 1.8661 1.6059
1⁄4 2.2424 1.6101 4.0146 2.0388 1.5716
1⁄2 2.0876 1.1083 4.7167 2.3312 1.5683
1 1.8315 0.63102 6.5464 2.5023 1.5835
2 1.4491 0.30980 11.966 2.3312 1.5683
4 1.0365 0.14186 29.392 2.0388 1.5716
8 0.68904 0.064479 88.930 1.8661 1.6059
16 0.43484 0.030028 304.60 1.8237 1.6412

The integrals for the PA approximations are evaluated numerically using Gauss-
Kronrod quadrature over the entire integration domain. The integrands are cal-
culated using twin-multipole expansions up to s−300 for 2 ≤ s ≤ 30 and far-field
asymptotes, presented in Appendix 2.A, for s > 30. At s = 30, the difference
between the exact and the asymptotic solutions is sufficiently small.

Table 2.1 presents the PA approximation coefficients for suspension properties with
gαβ = 1 and for the sedimentation velocities the density ratio γ = 1. Note that Iηα β
and I κα β are symmetricwith respect to λ βα and λ−1

βα in the table. ThePAcomputations
agreewell with the published results formonodisperse and polydisperse systems [26,
27, 29, 30, 57, 60]. As far as we are aware, the values of Ir

αβ and I κα β are presented
for the first time using the exact two-body problem solutions.

2.5 Analytical results beyond the PA level
Suspension properties
The short-time diffusive behaviors of monodisperse hard-sphere colloidal suspen-
sions have been extensively studied in the past. The short-time translational self-
diffusivity, dt

s, can be accurately estimated by the following semi-empirical expres-
sion for φ ≤ 0.5 [37, 85]

dt
s

dt
0
≈ 1 − 1.8315φ × (1 + 0.1195φ − 0.70φ2), (2.59)

where dt
0 = kBT/(6πη0a) is the SES translational diffusivity for particles of radius

a. The quadratic term in Eq. (2.59) recovers the three-body coefficients with lubri-
cation [10], and the cubic term is fitted from the computation results of ASD [36] and
the hydrodynamic multipole method [85]. The short-time rotational self-diffusivity,
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dr
s , has been calculated up to φ2 by including the three-body HIs with lubrication

effects[10],
dr

s

dr
0
≈ 1 − 0.631φ − 0.726φ2, (2.60)

where dr
0 = kBT/(8πη0a3) is the SES rotational diffusivity.

Extending the monodisperse results above to polydisperse colloidal suspensions is
a non-trivial undertaking and the results beyond the PA level are limited to the
case of bidisperse suspensions with one species presented in trace amount [30].
Alternatively, inspired by the form of Eq. (2.59), we propose the following hybrid
scheme for the polydisperse self-diffusivities:

dt
s,α

dt
0,α
≈1 +

(∑
β

I t
αβφβ

)
× (1 + 0.1195φ − 0.70φ2), (2.61)

dr
s,α

dr
0,α
≈1 +

(∑
β

Ir
αβφβ

)
× (1 + 1.1505φ), (2.62)

with the coefficients I t
αβ and Ir

αβ from Table 2.1. Eq. (2.61) and (2.62) are designed
in such a way that, for monodisperse suspensions, we recover Eq. (2.59) and (2.60),
and for dilute polydisperse suspensions, we recover the PA approximation results
with gαβ = 1. Moreover, it assumes that the particle size only affects the HIs on
the pair level, and the many-body HIs are of a mean-field nature, depending only
on the total volume fraction. A similar decoupling idea was used for studying the
translational and rotational diffusivities of permeable particle suspensions [85]. In
the companion paper [50], we have successfully applied Eq. (2.61) to approximate
the bidisperse partial hydrodynamic functions Hαβ (q) with the monodisperse δγ
scheme [47, 48] up to φ = 0.4.

The analytical expression of the monodisperse sedimentation velocity including the
three-body HIs is [86]

Us

U0
≈ 1 − 6.546φ + 21.918φ2, (2.63)

where U0 = F/(6πη0a) is the single particle sedimentation velocity. A semi-
empirical approximation of the polydisperse sedimentation velocities was proposed
by Davis & Gecol [87], and for bidisperse suspensions it is

Us,α

U0,α
= (1 − φ)−Sαα[1 + (Sαβ − Sαα)φβ], (2.64)

with the coefficients from Table 2.1. Eq. (2.64) recovers the PA approximation
results with gαβ = 1 in the dilute limit.
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For the monodisperse hydrodynamic function H (q), the principal peak occurs close
to the wavenumber qm corresponding to the static structure factor peak. The value
H (qm) is well represented by a linear fit [36, 88]

H (qm)/µ0 = 1 − 1.35φ. (2.65)

The analytical approximation formonodisperse suspension shear viscosity including
the three-body HIs is [89]

ηs

η0
≈ 1 + 2.5φ + 5.0023φ2 + 9.09φ3. (2.66)

Presently, we are not aware of any approximations of the suspension bulk viscosity
beyond the PA approximation level. Note that in Ref. [60], the quadratic term in the
suspension bulk viscosity is 1.57, and agrees with 1.58 in Table 2.1 for λ βα = 1.

Porous medium properties
For monodisperse porous media, the following expression agreed with the Lattice
Boltzmann simulation results within a 3% error up to φ = 0.6 [25]:

F (φ) = 10
φ

(1 − φ2)
+ (1 − φ)2(1 + 1.5

√
φ). (2.67)

For polydisperse porous media, the species drag coefficient is well represented by
the following equation [25],

Fα = [(1 − φ)zα + φz2
α + 0.064(1 − φ)z3

α]F (φ), (2.68)

where zα is the species diameter fraction defined in Sec. 2.2, and F (φ) is from
Eq. (2.67).

Few studies have been performed on the hindered diffusion in porous media. As
far as we are aware, only the translational hindered diffusivity for monodisperse
porous media has been investigated, and it can be obtained by solving the following
self-consistent equation [90]:

(dt
HD)−1 = 1 +

√
9
2φ(dt

HD)−
1
2 + 3

2φ(dt
HD)−1 + . . . (2.69)

2.6 Results for suspensions
Short-time translational self-diffusivity
Fig. 2.3 presents the short-time translational self-diffusivity dt

s,α for both species as a
function of the total volume fraction φ for bidisperse suspensions with y1 = 0.5 and
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Figure 2.3: (Color online) The short-time translational self-diffusivity (a): dt
s,1 and

(b): dt
s,2 as a function of φ for bidisperse suspensions with y1 = 0.5 and λ = 1, 2,

and 4 [bottom to top in (a) and top to bottom in (b), respectively]. The monodisperse
simulation results from Ladd [81] and Abade et al.[91] are also presented in (a).
The PA approximations are shown in dashed lines and Eq. (2.61), which reduces
to the expression of Heinen et al.[37] at λ = 1, is shown in solid lines. The insets
show the results at higher φ.
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λ = 2 and 4, as well as for monodisperse suspensions. In the same figure we also
present the monodisperse computations of Ladd [81] and Abade et al. [91], which
are in excellent agreement with the SD results. The semi-empirical expression of
Heinen et al. [37], Eq. (2.59), accurately captures the monodisperse data up to
φ = 0.5. The PA approximations, however, are valid only for φ < 0.1, and begin
to deviate from the simulation data afterwards. At very high φ, as is shown in the
inset of Fig. 2.3a, the monodisperse dt

s decreases drastically when φ > 0.60, and
vanishes as the volume fraction approaches φ ∼ 0.64 [18].

In a bidisperse suspension (λ > 1), the relative short-time translational self-
diffusivities of the smaller species is always higher than that of the larger species,
i.e., dt

s,1/d
t
0,1 > dt

s,2/d
t
0,2. The diffusivity difference between the small and the

large particles increases with the increasing suspension size ratio λ. At a fixed φ,
for the smaller particles dt

s,1/d
t
0,1 can be much higher than the monodisperse value

dt
s/d

t
0, particularly at high λ, as is shown in Fig. 2.3a, but dt

s,2/d
t
0,2 does not differ

significantly from dt
s/d

t
0 even with a large size ratio, as is shown in Fig. 2.3b. This

suggests that the HIs for the two species are distinct: intuitively, the larger particles,
which can be surrounded by multiple smaller particles, experience mean-field-like
HIs, as if they were suspended in an effective medium formed by the solvent and the
smaller particles. The HIs for the smaller particles, on the other hand, are expected
to be strongly affected by the presence of the large particles.

The PA approximations of dt
s,α, shown in dashed lines in Fig. 2.3, agree with the

SD computations up to φ ≈ 0.1. At higher volume fractions, the HIs beyond the
two-body level begin to dominate and the PA approximations underestimate the
diffusivities for both species. The decoupling approximations of Eq. (2.61), shown
in solid lines, exhibit superior agreement. For the small particles in Fig. 2.3a,
Eq. (2.61) is accurate up to φ ≈ 0.25 and 0.15 for λ = 2 and 4, respectively. The
decoupling approximation works much better for the large particles, and remains
valid for φ = 0.4 and 0.35 for λ = 2 and 4, respectively, as is shown in Fig. 2.3b.
Beyond their range of validity, the decoupling approximation overestimates the small
particle diffusivity and underestimates the large particle diffusivity.

The SD calculations for very dense suspensions up to and beyond the monodisperse
close packing volume fraction (φ ∼ 0.64) are shown in the insets of Fig. 2.3. For the
smaller particles in Fig. 2.3a, the reduction of dt

s,1 with increasing φ is slower for
λ > 1 compared to the monodisperse case. In particular, at φ = 0.655, the highest
volume fractions we studied in this work, the diffusivity dt

s,1/d
t
0,1 remains higher



33

than 0.1 at λ = 4. More interestingly, for the larger particles shown in Fig. 2.3b,
dt

s,2/d
t
0,2 for λ > 1 crosses the monodisperse values near φ ≈ 0.61. At higher φ, the

diffusivities dt
s,2/d

t
0,2 for λ = 4 is higher than those for λ = 2. This is simply because

the size polydispersity improves the particle packing and increases the suspension
maximum packing density [21], where the diffusivity dt

s,α reduces to zero due to
particle contact. At a fixed y1, increasing λ increases the maximum packing density.
As a result, at sufficiently high φ, the diffusivities of both species can exceed the
monodisperse value, and the apparent diffusivity enhancement increases with λ.

Fig. 2.4 examines the ratio of the species diffusivity to the monodisperse value at
the same volume fraction φ, dt

s,α/d
t
s, as a function of the suspension composition

y1 at several φ for bidisperse suspensions of λ = 2. The ratio dt
s,α/d

t
s highlights the

influence of suspension composition on the diffusivities, such that it recovers 1when
y1 → 0 for the large species and y1 → 1 for the small species. At low to moderate
φ, as is shown in the insets of Fig. 2.4, the PA approximation and the decoupling
approximation of Eq. (2.61) are also presented in dashed and solid lines, respectively.
Both approximation schemes capture the SD calculations up to φ = 0.25 at all y1

except overestimating dt
s,1/d

t
s at φ = 0.25. Within this volume fraction range, dt

s,α/d
t
s

for both species decreases almost linearly with increasing y1, with dt
s,1/d

t
s towards

and dt
s,2/d

t
s away from unity, respectively. Physically, replacing smaller particles

with larger particles at a fixed φ (decreasing y1) increases the diffusivities of both
species. Moreover, at a given φ, the tracer diffusivity is the maximum diffusivity
for the smaller particles and the minimum diffusivity for the larger particles. At
φ = 0.25, the maximum diffusivity enhancement for the smaller particles is 15% as
y1 → 0, while the maximum reduction for the larger particles is 10% as y1 → 1.

The ratio dt
s,α/d

t
s exhibitsmore intriguing behaviors for dense suspensions. For small

particles, as is shown in Fig. 2.4a, dt
s,1/d

t
s increases significantly with decreasing

y1. In particular, at φ = 0.635, dt
s,1/d

t
s → 2.9 as y1 → 0. Moreover, the ratio

dt
s,1/d

t
s is no longer linear with y1 when φ is close to 0.635, particularly when y1

is small. For the larger particles in Fig. 2.4b, the ratio dt
s,2/d

t
s is more surprising.

Contrary to the dilute behaviors shown in the inset, dt
s,2/d

t
s increases with increasing

φ when φ > 0.5. Moreover, with φ > 0.6, dt
s,2/d

t
s exceeds unity, and a maximum

dt
s,2/d

t
s emerges at a non-trivial y1. For φ = 0.635, the maximum occurs between

y1 = 0.2 and 0.3, and corresponds to a 150% diffusivity enhancement relative to
the monodisperse value. These peculiar behaviors correspond to the approaching
and crossing of the monodisperse diffusivities in the inset of Fig. 2.3b, and are
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Figure 2.4: The normalized translational diffusivity (a): dt
s,1/d

t
s and (b): dt

s,2/d
t
s as a

function of y1 at different φ for bidisperse suspensions of λ = 2. The monodisperse
short-time translational self-diffusivity at the corresponding φ is dt

s. The insets also
show the PA approximations (dashed lines) and Eq. (2.61) (solid lines).
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due to changes in both the HIs and the bidisperse particle packing. A particularly
interesting aspect of Fig. 2.4 is that for a densemonodisperse suspension near closing
packing, replacing a small amount of large particles with small particles promotes
diffusivities dt

s,α of both species.

Short-time rotational self-diffusivity
Fig. 2.5 shows the short-time rotational self-diffusivity for both species, dr

s,α, as a
function of φ for bidisperse suspensions with λ = 2 and 4 at y1 = 0.5, as well
as for monodisperse suspensions. The Lattice-Boltzmann (LB) computations of
Hagen et al.[92] and the hydrodynamic multipole calculations of Abade et al.[85]
for monodisperse suspensions are also presented. The monodisperse dr

s/d
r
0 shows a

much weaker φ dependence compared to its translational counterpart dt
s/d

t
0. Up to

φ = 0.2, the monodisperse SD results agree well with the hydrodynamic multipole
results. At higher volume fractions, the SD results lie between the LB and the
hydrodynamic multipole results. The PA approximation agrees with the SD dr

s/d
r
0

only up to φ = 0.1, and underestimates the diffusivity at higher φ. The analytical
expression of Cichocki et al.[10], Eq. (2.60), exhibits remarkable agreement with
the simulations up to φ = 0.5. Moreover, for very dense suspensions, as is shown
in the inset of Fig. 2.5a, the diffusivity dr

s/d
r
0 does not drop as rapidly as dt

s/d
t
0,

and retains a large value (∼ 0.25) even close to the maximum packing, undoubtedly
owning to the weak logarithm singularity of the rotational lubrication interactions.

For bidisperse suspensions, the small and the large particle rotational diffusivities
dr

s,α/d
r
0,α are shown in Fig. 2.5a and 2.5b, respectively. Compared to the monodis-

perse results, dr
s,1/d

r
0,1 are higher and dr

s,2/d
r
0,2 are lower. Unlike their translational

counterparts, the rotational diffusivities of both species are noticeably different from
the monodisperse values, and are sensitive to the size ratio λ, particularly at mod-
erate to high φ. On the other hand, they display less sensitivity to φ compared to
dt

s,α/d
t
0,α, as rotation is always easier than translation in a crowded environment. At

very high φ, as shown in the inset of Fig. 2.5a and 2.5b, the diffusivities dr
s,2/d

r
0,2 at

higher λ do not cross the monodisperse values even at φ = 0.635. Therefore, the
suspension packing plays a less significant role on the rotational diffusivities. Note
that the weak φ and the strong λ dependence of dr

s,α/d
r
0,α exhibited in Fig. 2.5 can

be exploited experimentally as a structural probe for dense suspensions [30, 57].

The PA approximations, shown in dashed lines in Fig. 2.5 in respective colors,
agree reasonably well with the polydisperse SD results up to φ = 0.15, and then
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Figure 2.5: (Color online) The short-time rotational self-diffusivity (a): dr
s,1 and (b):

dr
s,2 as a function of φ for bidisperse suspensions with y1 = 0.5 and λ = 1, 2, and

4 [bottom to top in (a) and top to bottom in (b), respectively]. The monodisperse
simulation results from Hagen et al.[92] and Abade et al.[85] are also presented
in (a). The PA approximations are shown in dashed lines and Eq. (2.62), which
reduces to the results of Cichocki et al. [10] at λ = 1, is shown in solid lines. The
insets show the results at higher φ.
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significantly underestimate the diffusivities due to the HIs beyond the pairwise level.
The decoupling approximation of Eq. (2.62), plotted as solid lines in respective
colors in Fig. 2.5, shows a better agreement, and, similarly to the translational case,
works better for the larger particles. In particular, the decoupling approximation is
valid up to φ = 0.2 for the smaller particles with λ = 2 and 4; for the larger particles,
it is valid up to φ = 0.4 for λ = 2 and up to φ = 0.3 for λ = 4. The success of the
decoupling approximation again demonstrates that the HIs for the larger particles
are mean-field-like. For the smaller particles, the size effect is more complex and is
beyond the decoupling approximation.

The influences of the composition y1 on the ratio dr
s,α/d

r
s , with dr

s at the same φ,
are presented in Fig. 2.6 for bidisperse suspensions with λ = 2. The effect of y1

at low and moderate φ are shown in the insets of Fig. 2.6a and 2.6b for the smaller
and the larger particles, respectively. Increasing the small particle composition
y1 with a fixed φ decreases dr

s,α of both species almost linearly, with the smaller
particles towards the monodisperse value and the larger particles away from it.
The ratio dr

s,1/d
r
0,1 exhibits a maximum for trace amount of smaller particles and

dr
s,2/d

r
0,2 exhibits a minimum for trace amount of larger particles. As is shown in the

insets of Fig. 2.6, increasing φ increases the maximum of dr
s,1/d

r
0,1 for the smaller

particles and reduces the minimum of dr
s,2/d

r
0,2 for the larger particles. The PA

approximation and the decoupling expression, Eq. (2.62), are presented as dashed
and solid lines, respectively, in the insets of Fig. 2.6. Both approximation schemes
capture the composition y1 dependence of dr

s,α/d
r
s up to φ = 0.10 for both species.

At φ = 0.25, Eq. (2.62) also captures the y1 dependence for both species, but the
PA approximations overestimate the effect of composition change.

The ratio dr
s,α/d

r
s at higher φ differ significantly from its translational counterpart.

For the smaller particles in Fig. 2.6a, dr
s,1/d

r
s increases with increasing φ and remains

linear with y1 with fixed φ. At φ = 0.635, the tracer diffusivity of the small particles
is almost 190% of the monodisperse values. For the larger particles in Fig. 2.6b,
with φ ≥ 0.5, increasing φ also increases dr

s,2/d
r
s altogether, and this is qualitatively

different from the dilute behaviors in the inset. At φ ≥ 0.62, the ratio dr
s,2/d

r
s can

exceed unity, suggesting the rotational diffusivities of both species are enhanced due
to the change in the particle packing. Moreover, the ratio dr

s,2/d
r
s is very sensitive

to y1, and with the presented data, it appears almost linear with y1. This means
dr

s,2/d
r
s must exhibit a maximum at y1 � 0.1. Therefore, for a dense monodisperse

suspension near close packing, replacing trace amount of large particles with small
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Figure 2.6: The normalized rotational diffusivity (a): dr
s,1/d

r
s and (b): dr

s,2/d
r
s as a

function of y1 at different φ for bidisperse suspensions of λ = 2. The monodisperse
short-time rotational self-diffusivity at the corresponding φ is dr

s . The insets also
show the PA approximations (dashed lines) and Eq. (2.62) (solid lines).
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particles can increase the rotational diffusivities of the both species. Together with
Fig. 2.4, Fig. 2.6 illustrates the distinctive behaviors of the HIs for translational and
rotational motions.

Instantaneous sedimentation velocity
The instantaneous sedimentation velocitiesUs,α/U0,α of bidisperse suspensions with
equal density materials at λ = 2 and 4 and y1 = 0.5, as well as monodisperse
suspensions, are presented in Fig. 2.7. For monodisperse suspensions, Us/U0 from
Ladd [81] and Abade et al. [91] are also shown in Fig. 2.7a for comparison. The
SD results agree with the earlier computational studies [81, 91] up to φ = 0.2,
and then yield higher values. Although the absolute magnitude of the differences
appears to be small, the relative difference is significant, up to 36% at φ = 0.45.
The origin of the discrepancy, as pointed out by Brady & Durlofsky [83], is that
the multipole expansions up to the mean-field quadrupole level used in SD is not
sufficient to capture the collective HIs in sedimentation problems. On the other
hand, SD closely captures the qualitative aspects of Us/U0, and remains positive
over the entire volume fraction range. As mentioned earlier, the incorporation of the
mean-field quadrupole in the mobility tensor construction improves the accuracy of
the conventional SD compared to ASD [18].

The monodisperse PA approximations and the analytical results of Cichocki et
al. [86], Eq. (2.63), are shown in dashed and solid lines in Fig. 2.7a, respectively.
The agreement between the simulations and the analytical expressions is unsatis-
factory. The PA approximation is valid only up to φ = 0.05, and Eq. (2.63), which
incorporates three-body effect, shows aminor improvement and agrees with the sim-
ulations only up to φ = 0.08. Such lack of agreement at higher φ clearly illustrates
the challenges in developing theories for sedimentation problems.

For bidisperse suspensions, the species sedimentation velocities are shown in
Fig. 2.7a and 2.7b for the small and the large particles, respectively. With equal
densities for both species,Us,1/U0,1 of the smaller particles is lower than themonodis-
perse values, and Us,2/U0,2 of the larger particles is higher. Interestingly, at λ = 4,
the small particle sedimentation velocity Us,1 changes sign when φ ≥ 0.08. In this
case, the fall of large particles generates a strong upward backflow that offsets the
effects of the downward force on the small particles, making them move with the
fluid in the opposite direction. The small particle Us,1 first reaches a minimum,
then increases with increasing φ. At λ = 2, Us,1 approaches zero for φ > 0.35,
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Figure 2.7: (Color online) The instantaneous sedimentation velocity (a): Us,1 and
(b): Us,2 as a function of φ for bidisperse suspensions with y1 = 0.5 and λ = 1, 2,
and 4 [top to bottom in (a) and bottom to top in (b), respectively]. The monodisperse
simulation results from Ladd [81] and Abade et al.[91] are also presented in (a). The
PA approximations are shown in dashed lines. The theoretical results of Cichocki
et al.[86] for λ = 1, and the semi-empirical expression of Davis & Gecol [87],
Eq. (2.64), for λ = 2 and 4 are presented in solid lines. The insets show the results
at higher φ.
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suggesting that the combination of the imposed force and the back flow makes the
particles almost stationary. Apparently, the HIs for the small particles are strongly
affected by φ and λ. On the other hand, for the larger particles, Us,2 closely follows
the monodisperse values, and shows little variation with different λ.

The SD results of the sedimentation velocity Us,α/U0,α for very dense systems are
shown in the insets of Fig. 2.7. For the smaller particles near close packing, Us,1 is
positive for λ = 1 and 2, and remains negative for λ = 4. For the larger particles,
the sedimentation velocities Us,2 cross each other. As a result, at φ > 0.6, the
monodisperse sedimentation velocity is the highest, and the magnitude of Us,2/U0,2

decreases with increasing λ, an opposite trend compared to the dilute suspensions.

The polydisperse PA approximation and the semi-empirical expression of Davis &
Gecol[87], Eq. (2.64), are presented in dashed and solid lines in respective colors
in Fig. 2.7, respectively. The PA approximations capture Us,α of both species up to
φ = 0.05 for λ = 2 and 4, and then underestimate the SD results. In Fig. 2.7a, the
semi-empirical approximation of Eq. (2.64) shows a remarkable overall agreement
with the SD results for λ = 2 at all φ, and for λ = 4, it captures the velocity direction
change but overestimates the sedimentation velocity at higher φ. For the larger
particles in Fig. 2.7b, Eq. (2.64) captures the qualitative trend in the SD results of
Us,2. However, at higher φ, the quantitative difference becomes apparent.

Fig. 2.8 presents the effect of composition y1 on the ratioUs,α/Us, whereUs is the the
monodisperse value at the same φ, for bidisperse suspensions with λ = 2 at various
volume fractions. For volume fractions up to φ = 0.25, the data are shown in the
insets of Fig. 2.8a and 2.8b for the small and the large species, respectively. At low
and moderate φ, increasing y1 increases the ratio Us,α/Us for both species almost
linearly. For the smaller particles the ratio moves towards unity and for the larger
particles away from unity. The ratio Us,α/Us exhibits a minimum as y1 → 0 for the
smaller particles and a maximum as y1 → 1 for the larger particles. Increasing the
total volume fraction φ reduces the minimum inUs,1/Us and increases the maximum
in Us,2/Us due to stronger HIs. When φ is large enough, the small particle velocity
ratioUs,1/Us can change sign as the backflow from the other species becomes strong
enough to reverse the particle motion. On the other hand, the enhancement of
Us,2/Us for the larger particles as y1 → 1 is more modest. In this limit, a large
particle sees the small particles and the solvent as an effective medium with a
higher viscosity, leading to the sedimentation velocity enhancement relative to the
monodisperse case. The PA approximations, shown as the dashed lines in Fig. 2.8,
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Figure 2.8: The normalized instantaneous sedimentation velocity (a): Us,1/Us and
(b): Us,2/Us as a function of y1 at different φ for bidisperse suspensions of λ = 2. The
monodisperse instantaneous sedimentation velocity at the corresponding φ is Us.
The insets also show the PA approximations (dashed lines) and the approximations
of Davis & Gecol [87], Eq. (2.64) (solid lines).
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capture the effect of y1 on Us,α/Us only up to φ = 0.06 and then overestimate the
effect of suspension composition. On the other hand, the semi-empirical expression
of Davis & Gecol [87] works up to φ = 0.25 for the smaller particles and φ = 0.1
for the larger particles.

At higher φ, the sedimentation behaviors are different from the dilute limit. For
example, in Fig. 2.8a, the ratio Us,1/Us in the dilute limit y1 → 0 increases with
increasing φ when φ ≥ 0.5. When φ ≥ 0.6, Us,1/Us is no longer monotonic in y1,
and exceeds unity for small y1. In Fig. 2.8b, the y1 → 1 limit of Us,2/Us exhibits a
trend opposite to dilute suspensions, and decreases with increasing φ. At φ ≥ 0.6,
the ratio Us,2/Us becomes less than 1 and also exhibits non-linear behaviors with
respect to y1, most likely due to changes in the suspension packing.

Hydrodynamic functions
The q-dependent partial hydrodynamic functions Hαβ (q) for bidisperse suspen-
sions with λ = 2 at various φ are presented in Fig. 2.9. The interspecies partial
hydrodynamic function H12(q) in Fig. 2.9b are shifted for clarity. Physically, the
partial hydrodynamic function Hαβ (q) corresponds to the wave space component
of a generalized sedimentation velocity of species α in response to a spatially peri-
odic external force on species β. Therefore, at small q, the species hydrodynamic
functions H11(q) and H22(q) are always positive since the other species remains
force-free. This interpretation also explains the negative interspecies H12(q) at small
q: the external force on species 2 generates a backflow that moves the force-free
species 1 in an opposite direction.

The partial hydrodynamic functions H11(q) and H22(q), shown in Fig. 2.9a and
2.9c respectively, are always less than unity for all q and decrease with increasing
φ. At φ = 0.01 and 0.1, H11(q) and H22(q) are similar to each other for the
scaled wavenumber qaα. At higher φ, H11(q) exhibits a minimum ahead of the
dominant peak at the wavenumber corresponding to the principal peak of H22(q).
Themodulations of H11(q) and H22(q) are the strongest atmoderate φ, where theHIs
are the most sensitive to the suspension structures. At φ ≥ 0.6, the magnitude and
the q-modulations of Hαα (q) become small. Therefore, for very dense suspensions,
the HIs are mean-field-like and are insensitive to different length scales. Note that
the peak of H11(q) at qa1 ≈ 3.5 develops a cusp-shape, most likely due to the
packing of particles.

The interspecies hydrodynamic functions H12(q), shown in Fig. 2.9b, exhibit the
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Figure 2.10: (Color online) The number-number mixture hydrodynamic functions
HN N (q) for bidisperse suspensions with λ = 2 and y1 = 0.5 at φ = 0.01 (©), 0.1
(�), 0.2 (�), 0.4 (4), 0.6 (/), and 0.635 (O). The PA approximations up to φ = 0.4
are shown in dashed lines with the same color as the simulation results.

most significant modulation at moderate volume fractions between φ = 0.1 and
0.4. Comparing to that of H11(q) and H22(q), however, the modulation is relatively
weak. When φ ≥ 0.6, H12(q) becomes almost constant in q.

The PA approximations of Hαβ (q), shown as dashed lines in respective colors in
Fig. 2.9, capture the SD results satisfactorily up to φ = 0.1. The largest difference
between the PA approximation and the SD results is in the low q limit. At φ = 0.2, the
PA approximations capture the shape of Hαβ (q), but are quantitatively inaccurate.
The method completely fails at φ = 0.4, where the estimated Hαβ (q) becomes
negative and exhibits too much modulations. Note that, for H11(q) at φ = 0.4, the
value of the dominant peak from the PA approximation coincides the SD results.

Fig. 2.10 presents the number-number mixture hydrodynamic function HN N (q)
constructed from Hαβ (q) in Fig. 2.9. The corresponding PA approximations up to
φ = 0.4 are also shown in respective colors, and exhibit a similar degree of agreement
as in Fig. 2.9. Note that HN N (q) is the simplest form of the mixture hydrodynamic
function HM (q), and treats the bidisperse suspension as a single entity with equal
and constant scattering intensities for both species. Evidently, HN N (q) is strongly
affected by H11(q) since the number composition corresponding to y1 = 0.5 is x1 =

0.889. The mobility of the most mobile structures in the suspension corresponds
to the principal peak of HN N (q), and the respective wavenumber qm identifies the
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length scale of such structure. In Fig. 2.10, the length scale corresponding to qm,
`m ∼ 2π/qm, approximately reflects the average spacing between neighboring small
particles in the mixture. It suggests that collective particle motions on the length
scale of the nearest neighbor cage experience the least hydrodynamic resistance.
The wavenumber qm increases with φ, suggesting the cage shrinks. Moreover, a
minimum appears ahead of HN N (q) principal peak when φ > 0.2. Such a minimum
is a unique feature of polydisperse mixture hydrodynamic functions.

Fig. 2.11 illustrates the influence of y1 on Hαβ (q) for bidisperse suspensions at
φ = 0.4 and λ = 2. Note that the corresponding monodisperse hydrodynamic
functions are presented as dashed lines in Fig. 2.11a and 2.11c, and H12(q) is
shifted for different y1 in Fig. 2.11b. When present in small quantity, H11(q) at
y1 = 0.1 is distinct from H22(q) at y1 = 0.9 in several aspects. First, the average
magnitude of H11(q)/µ0,1 is almost 60% higher than that of H22(q)/µ0,2, suggesting
a higher intrinsic mobility of the smaller particles. Meanwhile, the modulation
of H11(q)/µ0,1 is stronger: H11(q) at y1 = 0.1 exhibits distinct maximum and
minimum with respect to q, but H22(q) at y2 = 0.9 is almost flat. Therefore,
the smaller particles are sensitive to the local suspension environment, while the
larger ones experience mean-field-like HIs. The transition of Hαα (q) towards the
monodisperse H (q) also illustrates the distinct HIs for the small and the large
particles. In essence, the large wavenumber limit of H11(q) reduces with increasing
y1, but the limiting value of H22(q) growswith decreasing y1, i.e., increased presence
of the larger particles. For the interspecies partial hydrodynamic function H12(q),
the modulation reaches amaximum at y1 = 0.5, but themagnitude of themodulation
remains small compared to Hαα (q).

The principal peak of HN N (qm) as a function of φ for bidisperse suspensions with
λ = 2 and 4 and y1 = 0.5, as well as for monodisperse suspensions, is shown
in Fig. 2.12. The peak wavenumber qm is directly measured from the computed
HN N (q), and using qm corresponding to the principal peak of the number-number
static structure factor SN N (q) of the PY closure yields virtually the same results.
Note that we scale the results with (x1µ0,1+ x2µ0,2) for proper dilute behaviors. The
monodisperse SD results agree well with the computations of Abade et al. [91], also
presented in Fig. 2.12. For φ < 0.5, the monodisperse data are well described by the
linear expression of Eq. (2.65) [36]. For bidisperse suspensions, the φ evolution of
the principal peak value HN N (qm) follows closely the monodisperse results, with the
data for λ = 2 below and the data for λ = 4 above, and is also almost linear. The PA
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Figure 2.12: (Color online) The peak value of the rescaled number-number mixture
hydrodynamic function HN N (qm)/(x1µ0,1+ x2µ0,2) as a function of φ for bidisperse
suspensions with λ = 1, 2, and 4 at composition y1 = 0.5. The monodisperse
simulation results from Abade et al.[91] and the analytical fitting of Banchio &
Nägele [36] are also presented. The PA approximations are shown in dashed line
for λ = 1, dash-dotted line for λ = 2, and dash-double-dotted line for λ = 4. The
inset shows the results at higher φ.

approximations exhibit varying degrees of agreement with the SD computations:
they are valid up to φ = 0.15 for λ ≤ 2, and show exceptional agreement up to
φ = 0.4 for λ = 4. This agreement, however, is incidental and similar to the peak
value agreement observed in Fig. 2.9a for H11(q). For very dense suspensions
(φ > 0.45) shown in the inset of Fig. 2.12, the peak value drops drastically near
close packing, and the λ = 2 data cross the monodisperse results at φ ≈ 0.61 due to
changes in the suspension packing structure.

The effects of the composition y1 on the normalized peak of the hydrodynamic
function are shown in Fig. 2.13 at various φ for bidisperse suspensions with λ = 2.
The peak values and the corresponding wavenumbers are directly measured from the
computed HN N (q), and the scaling HN N (qm)/Hmax/(x1 + x2λ

−1) ensures the ratio
goes to 1 as y1 → 0 or 1. The inset of Fig. 2.13 shows normalized peaks for φ ≤ 0.4.
In this range, the presence of the second species always reduces the peak value
relative to themonodisperse suspensions, and the reduction increaseswith increasing
φ, e.g., at φ = 0.4 the maximum reduction is 20%. The corresponding composition
is y1 = 0.2, suggesting an asymmetric influence on HN N (q) for different species.
For more dense suspensions, shown in the main figure of Fig. 2.13, increasing the
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Figure 2.14: The scaled wavenumber qma1 corresponding to the maximum of
HN N (q) measured from the simulations (symbols) as a function of y1 at different
φ for bidisperse suspensions with λ = 2. The qm from the PY number-number
mixture static structure factor SN N (q) are shown in dashed lines, with increasing φ
indicated in the legend from bottom to top.
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volume fraction φ lessens the extent of the normalized peak reduction, and when
φ ≥ 0.6, introducing a second species into the suspension can bring the normalized
peak beyond unity. Here, the particle packing at different y1 clearly plays a vital
role in the behavior of the mixture hydrodynamic function principal peak.

The wavenumbers qm corresponding to the principal peak of HN N (q) in Fig. 2.13 are
shown in Fig. 2.14. Also plotted as dashed lines are the wavenumbers corresponding
to the principal peak of SN N (q) from the PY closure. For very dense suspensions
up to φ = 0.635, we have verified that the bidisperse PY static structure factor
SN N (q) adequately describes suspension structures at finite wavenumbers [80]. For
monodisperse suspensions, the maximum of H (q) is practically at the maximum
of the static structure factor [36]. However, as shown in Fig. 2.14, this is not the
always the case for bidisperse suspensions. For y1 close to 1, qm for the principal
peak of HN N (q) and SN N (q) indeed coincide. However, with decreasing y1, the
peak locations for HN N (q) and SN N (q) begin to deviate from each other, and the
most significant difference is found at y1 = 0.2 at high φ. Here, the SN N (q) peak
corresponds to the mean distance between large particles, while the HN N (q) peak
corresponds to the mean distance between small particles. The decoupling of the
hydrodynamic and structural descriptions of dense suspensions illustrates the care
needed when treating the HIs of dense mixtures.

High-frequency dynamic shear viscosity
The high-frequency dynamic shear viscosities ηs for volume fractions up to φ = 0.5
of bidisperse suspensions with λ = 2 and 4 and y1 = 0.5, as well as monodisperse
suspensions, are shown in Fig. 2.15. The monodisperse SD results exhibit excellent
agreement with the computations of Ladd [81], also shown in the figure. The ana-
lytical expression of Cichocki et al. [89], Eq. (2.66), is valid up to φ = 0.25. The
bidisperse ηs closely follows the monodisperse results, and is almost indistinguish-
able from the monodisperse results until φ > 0.45. The weak size dependence of ηs

is also evident from the weak λ βα dependence of Iηα β in Table 2.1. The PA approx-
imations with proper suspension structures, also shown in Fig. 2.15, exhibit very
weak λ dependence for λ < 4, and agree with the SD computations up to φ = 0.2.
The inset of Fig. 2.15 examines the pairwise HI contributions to the high-frequency
dynamic shear viscosity, ηs/η0 − 1 − 5

2φ, in the dilute limit. Here, the SD results
closely follow the PA approximations, and grow as ∼ φ2 when φ � 1.

The results for dense suspensions with φ > 0.45 are shown in Fig. 2.16. When φ >
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Table 2.2: The limiting volume fraction φm in ε = 1 − φ/φm, and the constants
in Eq. (2.70) and (2.71), characterizing the asymptotic divergences of ηs and
κs, respectively, fitted from the SD computations for bidisperse suspensions with
y1 = 0.5.

λ φm Bη −Cη Bκ −Cκ

1 0.639 11.38 12.37 32.69 71.86
2 0.664 11.84 10.93 31.29 61.46
4 0.702 15.98 16.00 − −

0.55, the viscosity ηs increases drastically, and increasing λ reduces ηs significantly.
As revealed by experiments [22, 23, 93] and simulations [31], the viscosity reduction
is primarily due to the improved packing for polydisperse suspensions, i.e., the
average particle spacing increases with λ, leading to a viscosity reduction. The
divergent behavior of ηs is well represented by the asymptotic expression [18],

ηs

η0
≈ Bη log(ε−1) + Cη + · · · , (ε � 1), (2.70)

where Bη and Cη are constants, and ε = 1 − φ/φm, with φm the limiting volume
fraction. The parameter ε characterizes the mean interparticle gap spacing relative
to the particle size. Note that Bη , Cη , and φm depend on the bidisperse suspension
composition [18, 94], and the fitted values from the SD computations are shown
in Table 2.2. The inset of Fig. 2.16 shows the ηs asymptotic behaviors based on
Eq. (2.70), and that the SD results and the fitted expression agree well. However,
the numerical values of Bη and Cη for monodisperse suspensions differ from earlier
ASD results [18]. This is likely because the asymptotic behaviors near close packing
are very sensitive to the suspension structures, and any differences in the packing
generation protocol, or even different parameters within the same protocol, can lead
to quantitative differences. However, the asymptotic form suggested by Eq. (2.70)
remains valid.

The effects of composition y1 on the normalized shear viscosity ηs (φ, y1)/ηs (φ),
where ηs (φ) is themonodisperse shear viscosity at the same φ, are shown in Fig. 2.17
for bidisperse suspensions at λ = 2. For the moderate λ studied here, the effect of
size ratio is not apparent until φ = 0.4. At higher φ near the monodisperse close
packing, the presence of a second species with a different size leads to significant
viscosity reduction. Moreover, the normalized shear viscosity in Fig. 2.17 is not
symmetric for y1: the smaller particles are more effective at viscosity reduction.
For example, at φ = 0.635, at y1 = 0.1 and 0.9 the viscosity is 66% and 80% of the
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monodisperse value, respectively.
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High-frequency dynamic bulk viscosity
Fig. 2.18 presents the the high-frequency dynamic bulk viscosity κs as a function
of φ for monodisperse and bidisperse suspensions with λ = 2 and y1 = 0.5. Note
that the level of approximation in SD is insufficient for the bulk viscosity at large
size ratios, and therefore the results for λ = 4 are not shown. For monodisperse
suspensions, the SD results agree with earlier studies [61]. The bulk viscosity
of bidisperse suspensions are slightly smaller than the monodisperse values. The
particle size ratio λ weakly affects κs, but the influence is stronger compared to ηs.
At φ = 0.3, differences in λ can be found between λ = 2 and 1, while for ηs, this
is not apparent until φ = 0.45. The PA approximations, also presented in Fig. 2.18,
show little size dependence, as also indicated in Table 2.1, and agree with the SD
computations up to φ = 0.2. The inset of Fig. 2.18 presents the dilute behaviors of
pairwise HI contribution to the bulk viscosity, (κs − κ0)/η0 −

4
3φ. The results show

quadratic growth with φ, and agree well with the PA approximations.

The results of κs for φ > 0.45 are presented in Fig. 2.19. At φ > 0.55, significant
differences emerge between the monodisperse and bidisperse results. To identify the
divergent behavior of κs, we fitted the SD results for dense suspensions (φ > 0.6)
with asymptotic terms ε−1 and log(ε−1) using the same φm in Table 2.2 for ε, since
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both ηs and κs are computed from the same configurations. It was consistently
found that the coefficient of the ε−1 terms are orders of magnitudes smaller than
those of the log(ε−1) terms. Therefore, we conclude from the SD data that the κs

divergence is best described by

κs

η0
−
κ0
η0
≈ Bκ log(ε−1) + Cκ + · · · , (ε � 1), (2.71)

where the constants Bκ and Cκ are functions of the suspension compositions and
packing generation protocol, and their fitted values are presented in Table 2.2.
Eq. (2.71) and the SD data agree well, as shown in the inset of Fig. 2.19. The
weak logarithmic divergence of κs first appears odd given the inverse gap spacing
(∼ ξ−1) divergence of the hydrodynamic function TQ [68]. In the ε � 1 limit, the
HIs are dominated by the lubrication forces, and ηs and κs can be estimated from
the HIs between nearest neighbors with appropriate geometric information [95–
97]. This approach is particularly useful for estimating the divergence behavior
of colloidal lattices [94, 98]. For random suspensions, however, such divergence
behavior also depends on the geometric statistics such as the nearest neighbor
gap spacing distribution P(ξ)dξ [99]. If the probability density function P(ξ)
is somewhat uniformly distributed [100], with a lower bound proportional to ε,
properties dominated by ξ−1 HIs can show logarithm asymptotic behavior since∫
ε
ξ−1P(ξ)dξ ∼ log(ε−1). This simple argument explains the logarithm divergence

of κs despite the ξ−1 divergence of TQ. The same argument also explains the
logarithm divergence of the high-frequency dynamic shear viscosity ηs, shown in
Eq. (2.70) and in Fig. 2.16, since for two nearly touching spheres, ηs is dominated
by the two-body resistance function X M ∼ ξ−1. We defer the formal study involving
structural analysis of hard-sphere packings to a future work.

Fig. 2.20 shows the influence of composition y1 on the ratio [κs (φ, y1)−κ0]/[κs (φ)−
κ0], where κs (φ) in the denominator is the monodisperse bulk viscosity at φ, for
bidisperse suspensions with λ = 2. At moderate volume fraction φ = 0.25, the
effect of introducing a differently sized species on κs is slight. At higher volume
fraction, particularly near themonodisperse close packing, the bulk viscosity reduces
significantly due to the introduction of a second species. For example, at φ = 0.635,
the mixture κs can be as low as 39% of the monodisperse value at y1 = 0.4. The
shape of the curve is asymmetric to y1 = 0.5, indicating that the larger and the
smaller particles affect κs differently.
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Figure 2.21: (Color online) The mean drag coefficient 〈F〉 /(1 − φ) as a function of
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comparison.
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2.7 Results for porous media
Permeability (mean drag coefficient)
The permeability, presented in terms of the mean particle drag coefficient 〈F〉 in
Eq. (2.40), is shown in Fig. 2.21 for bidisperse porous media of λ = 2 and 4 and
y1 = 0.5, as well as for monodisperse media. The monodisperse results of Ladd [81]
and van derHoef et al. [25] are also shown in the figure. Note that near close packing,
〈F〉 does not diverge as the fluid can pass through the interstitial spaces between
particles. The SD results agree with earlier studies for φ < 0.25, and underestimate
〈F〉 at higher φ. At φ = 0.6, the drag coefficient from SD is only 40% of the LB
computations of van der Hoef et al. [25] in Fig. 2.21. This is because 〈F〉 is strongly
affected by the many-body HIs, and the lubrication interactions only play a limited
role. As a result, the computation of 〈F〉 relies on the accurate estimation of the
grand mobility tensor. The multipole expansion to the mean-field quadrupole level
used in SD is insufficient to capture the HIs between stationary particles, similar to
the errors associated with the sedimentation velocity Us,α in Sec. 2.6.

For bidisperse suspensions, SD remains valid for φ < 0.25, and at higher φ it is
expected to capture the qualitative aspect of the particle size effects. Since each
stationary particle in a porous medium acts as a force monopole, the particle size
plays a relatively minor role. This is confirmed in Fig. 2.21, where the bidisperse
〈F〉 closely follows the monodisperse data. At low φ, the mean drag coefficient
increases slightly with the size ratio λ. The behavior for φ > 0.25 arises from the
complex interplay between the HIs and the particles configurations.

The semi-empirical expressions for the drag coefficient, Eq. (2.67) and (2.68), are
also plotted in Fig. 2.21. For monodisperse porous media, Eq. (2.67) accurately
captures earlier simulation results [25, 81] even in the dense limit. For bidisperse
porous media, comparing to the SD results at low φ, the empirical expressions work
well for λ = 2, but underestimate the size effects for λ = 4. This may be because in
constructing Eq. (2.68), van der Hoef et al. [25] did not consider the case of λ = 4
at low to moderate φ in their simulations.

The effects of composition y1 on the drag coefficient ratio 〈F〉 /F (φ), where F (φ)
is the monodisperse drag coefficient, for bidisperse mixtures at λ = 2, are presented
in Fig. 2.22. The empirical expressions Eq. (2.67) and (2.68) are not shown because
they do not recover to the correct limit when y1 → 0 or 1. Over the wide range
of φ presented, except when φ > 0.62, the mean drag coefficient 〈F〉 for the
mixture differs from the monodisperse results by at most 10%. Introducing a second
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Figure 2.22: The normalized mean drag coefficient 〈F〉 /F (φ) as a function of y1
at different φ for bidisperse porous media with λ = 2. The monodisperse drag
coefficient at the corresponding φ is F (φ).

species of a different size to a monodisperse porous medium first increases the mean
drag coefficient for φ < 0.4, while at higher volume fractions, the second species
reduces 〈F〉 for φ < 0.6 and then increases the mean drag coefficient again near
the monodisperse close packing. At φ = 0.635, 〈F〉 is merely 21% higher than the
monodisperse drag coefficient F (φ). The relative insensitivity of 〈F〉 to y1 suggests
that the particle size plays aminor role in the permeability of porousmedia. Fig. 2.21
and 2.22 show that SD remains a useful tool [101] to assess qualitative aspects of
polydisperse porous media.

Translational hindered diffusivity
Fig. 2.23 presents the translational hindered diffusivity, dt

HD,α, as a function of
the volume fraction φ for bidisperse porous media with y1 = 0.5 and λ = 2 and
4, as well as for monodisperse porous media. The self-consistent expression of
Eq. (2.69) [90], also presented in the figure, agrees with the SD computation for
φ < 0.05 and underestimate the results at higher φ. Note that the hindered diffusive
properties describe particle relative motions in a stationary matrix, and therefore the
lubrication effects are important.

Compared to the suspension short-time translational self-diffusivity dt
s,α in Sec. 2.6,

the hindered diffusivity dt
HD,α exhibits a stronger φ and λ dependence due to stronger

HIs in porous media. In particular, dt
HD,α decreases quickly with φ with an initial ∼
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Figure 2.23: (Color online) The translational hindered diffusivity dt
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{1, 2} for both species, as a function of φ for bidisperse porous media with y1 = 0.5
and λ = 1, 2, and 4. The result of Freed & Muthukumar [90], Eq. (2.69), is shown
in dashed line. The inset shows the results at high φ.

√
φ reduction. The hindered diffusivity for small particles, dt

HD,1, exhibits moderate
enhancement relative to the monodisperse systems similar to dt

s,1. Moreover, at
a fixed φ, the large particle hindered diffusivity dt

HD,2 reduces appreciably with
increasing λ, in contrast to the λ-insensitive dt

s,2 in suspensions. The increased
sensitivity is simply because the fixed particle matrix exerts much stronger HIs
on a mobile particle inside. For very dense systems shown in Fig. 2.23 inset, the
hindered diffusivities for both species display dramatic reductions at φ > 0.6 as the
nearby stationary particles get closer, and the reduction is most pronounced near the
close packing volume fraction. Moreover, the large particle dt

HD,2 approaches the
monodisperse value at φ ≈ 0.63, suggesting an enhancement of dt

HD,2 due to more
efficient particle packing in bidisperse systems.

The effects of porous media composition y1 on the diffusivity ratio dt
HD,α/d

t
HD are

shown in Fig. 2.24. The translational hindered diffusivity for monodisperse porous
media at the same φ is dt

HD. At any φ, the diffusivities dt
HD,α for both species

decreases monotonically with increasing y1, towards the monodisperse results for
the smaller particles and away from it for the larger particles. When presented in
trace amount at a fixed φ, dt

HD,1/d
t
HD reaches a maximum for small particles while

dt
HD,2/d

t
HD reaches a minimum for large particles. Compared to the suspension

dt
s,1/d

t
s, the maximum of dt

HD,1/d
t
HD is significantly higher due to stronger HIs.
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Figure 2.24: The normalized translational hindered diffusivity (a): dt
HD,1/d

t
HD and

(b): dt
HD,2/d

t
HD as a function of y1 at different φ for bidisperse porous media of

λ = 2. The monodisperse translational hindered diffusivity at the corresponding φ
is dt

HD.
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Moreover, the increase of dt
HD,1/d

t
HD with decreasing y1 is clearly stronger than

linear when y1 → 0. For the larger particles, at low to moderate φ, as shown in
the inset of Fig. 2.24b, introducing the smaller particles to the system reduces its
hindered diffusivity, and the reduction enhances with increasing φ. However, for
dense porous medium, particularly when φ > 0.5, increasing φ at fixed y1 increases
dt

HD,2. For φ > 0.6, the hindered diffusivity for the larger particles dt
HD,2 becomes

extremely sensitive to the small particles. In Fig. 2.24b at φ = 0.635, the maximum
of dt

HD,2/d
t
HD occurs at y1 � 0.1. In contrast, the suspension ratio dt

s,2/d
t
s exhibits

less sensitivity. Note that only at φ = 0.635, the presence of the smaller particles
enhances the hindered diffusivities of both species in the porous medium.

Rotational hindered diffusivity
Finally, the φ dependence of the rotational hindered diffusivities dr

HD,α for bidisperse
porous media with y1 = 0.5 at λ = 2 and 4 and for monodisperse porous media is
shown in Fig. 2.25. The monodisperse rotational hindered diffusivity dr

HD agrees
with the earlier study [35] and decreases much slower with φ compared to its
translational counterpart dt

HD. The SD results up to φ = 0.5 can be satisfactorily
described by a linear fit,

dr
HD
dr

0
= 1 − 1.08φ, (2.72)
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also shown in Fig. 2.25. This is a stronger dependence on φ compared to the
suspension short-time rotational self-diffusivity dr

s in Sec. 2.6. Approaching the
close packing volume fraction, the diffusivity dr

HD decreases but largely remains
finite, as the nearby stationary particles can only weakly affect the rotation of the
mobile particle.

In bidisperse porous media, dr
HD,α for both species is highly sensitive to the size

ratio λ. The bidisperse dr
HD,α differs significantly from the monodisperse results,

and no longer displays the almost linear relation with φ. For the smaller particles,
the diffusivity dr

HD,1 is higher than the monodisperse results, while the for the larger
particles dr

HD,2 is always lower. The deviation from the monodisperse results grows
with increasing particle size ratio λ, and is more significant for the larger particles.
This is because the average number of neighboring particles, which produces the
most significant HI to the mobile particle, scales as λ3 for the larger particles.

The effects of the medium composition y1 on the ratio dr
HD,α/d

r
HD for λ = 2, where

dr
HD is the monodisperse data at the same φ, are shown in Fig. 2.26. The results are

qualitatively similar to dr
s,α/d

r
s in Fig. 2.6. Quantitatively, the effect of y1 at fixed

φ on dr
HD,α is slightly stronger. At low to moderate φ, dr

HD,α/d
r
HD for both species

decreases monotonically with increasing y1. At a fixed φ, a trace amount of small
particles yields the maximum of dr

HD,1/d
r
HD, while a trace amount of large particles

leads to the minimum of dr
HD,2/d

r
HD. At very high φ, the most notable feature is

the mutual enhancement of dr
HD,1 and dr

HD,2 with a small amount of small particles,
e.g., at y1 = 0.1 and φ = 0.635. The extent of the enhancement, however, is much
weaker than the translational counterpart dt

HD,α, but is similar to the suspension
counterpart dr

s,α. The similarity between dr
HD,α and dr

s,α suggests that the HIs of
rotational motions are weak but sensitive to the environment through φ and λ.

2.8 Concluding remarks
In this work we presented a comprehensive study of the short-time transport prop-
erties of bidisperse suspensions and porous media over a wide range of parameter
space using conventional Stokesian Dynamics. For suspensions, our study includes
the short-time translational and rotational self-diffusivities, the instantaneous sed-
imentation velocity, the partial hydrodynamic functions, and the high-frequency
dynamic shear and bulk viscosities, and for porous media, our study includes the
mean drag coefficient (permeability) and the translational and rotational hindered
diffusivities.
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Figure 2.26: The normalized rotational hindered diffusivity (a): dr
HD,1/d

r
HD and

(b): dr
HD,2/d

r
HD as a function of y1 at different φ for bidisperse porous media of

λ = 2. The monodisperse rotational hindered diffusivity at the corresponding φ is
dr

HD.
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Our computational survey shows that introducing a second species of different size
to a monodisperse suspension or porous medium leads to significant changes in the
hydrodynamic interactions, and different transport properties respond differently.
For dense suspensions, the changes in particle structures can significantly affect
the HIs, leading to surprising mutual enhancement of diffusivities and reduction
of viscosities. The peak locations of the mixture hydrodynamic function HN N (q)
differ from those of the mixture static structure factor SN N (q), suggesting great care
is needed when studying the HIs of dense systems. The log(ε−1) divergences of
both the shear and bulk viscosities, where ε = 1−φ/φm with φm the limiting volume
fraction, show the subtle and complex interplay between the lubrication interactions
and the suspension structures.

To estimate suspension properties, the PA approximations can reliably predict vari-
ous transport properties up to φ = 0.15. The method breaks down at higher volume
fractions, even with proper suspension structural input. For diffusivities, we found
that the decoupling approximations in Eq. (2.61) and (2.62) work better than the PA
approximations. They are particularly effective in estimating the diffusivities of the
larger particles up to φ = 0.4, but the range of validity for the smaller particles is
more restricted, indicating the HIs for the two species are different. For polydisperse
sedimentation velocities, the approximation of Davis & Gecol [87] is quantitatively
accurate at low to moderate φ.

The limitation of the Stokesian Dynamics algorithm is also assessed in this work.
The low moment multipole expansions in SD cannot accurately capture the HIs
corresponding to collective particle motions and with very large size ratios. As a
result, the SD computations of the suspension sedimentation velocity and porous
media permeability are significantly different from other methods for φ > 0.25.
However, even in this range, SD is expected to capture qualitative aspects of the size
effects.

The present work can serve as a concrete starting point for future experimental and
computational investigations of polydisperse systems. Extension of this work in-
cludes improved approximation scheme for various transport properties [50], inves-
tigations of systems with different interaction potentials, e.g., screened electrostatic
interactions, and long-time dynamic studies.
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2.A Additional expressions for the PA approximations
The PA approximation of the polydisperse bulk viscosity requires first defining the
functions xp

αβ, which are the mobility counterpart of the resistance functions X P
αβ

in Ref. [67]:
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With the definition of particle stresslet in Eq. (2.35), we have the function JQ (s, λ βα),
which is essential for the suspension bulk viscosity,

JQ =
8

(1 + λ βα)3

[(
TQ

11 +
1
8 (1 + λ βα)3TQ

12

)
−

(
X P
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+ 1
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+1
4λ βα (1 + λ βα)2X P

12xp
22

)]
, (2.74)

where TQ
αβ are computed in Ref. [68]. Finally, we have

ĴQ (s, λ βα) = 1
2 [JQ (s, λ βα) + JQ (s, λ−1

βα)] (2.75)

for computing the integral in Eq. (2.58).

We use the following asymptotic expressions for s → ∞ in the PA approximations:

xa
11 + 2ya

11 − 3 ≈ −
60λ3

βα

(1 + λ βα)4 s−4 +
480λ3

βα − 264λ5
βα

(1 + λ βα)6 s−6, (2.76)

xc
11 + 2yc

11 − 3 ≈ −
480λ3

βα

(1 + λ βα)6 s−6 −
5760λ3

βα

(1 + λ βα)8 s−8, (2.77)

x̂a
12 + 2ŷa

12 ≈
1200λ3

(1 + λ)6 s−5, (2.78)

Ĵ ≈
480λ3

βα

(1 + λ βα)6 s−6, (2.79)

ĴQ ≈
1280λ3

βα (1 − λ βα + λ2
βα)

(1 + λ βα)8 s−6. (2.80)
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C h a p t e r 3

SHORT-TIME DIFFUSION OF COLLOIDAL SUSPENSIONS

[1] M. Wang, M. Heinen, and J. F. Brady, “Short-time diffusion in concentrated
bidisperse hard-sphere suspensions”, the Journal of Chemical Physics 142,
064905 (2015) doi:10.1063/1.4907594,

3.1 Introduction
Short-time diffusion in Brownian suspensions has been a topic of extensive research
for many years, which has pushed forward the development of various computer
simulation methods including Lattice Boltzmann simulations [1–3], Dissipative
Particle Dynamics [4, 5], Stochastic Rotation / Multiparticle Collision Dynamics
[6–8], hydrodynamic force multipole methods [9, 10], boundary integral methods
[11, 12], and (Accelerated) Stokesian Dynamics [13–15]. Each of these simulation
methods is rather involved, which is one reason for the on-going development of
approximate (semi-) analytical theoretical schemes for colloidal short-time dynamics
[16–25].

In spite of extensive simulations and analytical theoretical studies, substantial gaps
remain in the colloidal suspension parameter space that has yet been explored, which
is due both to the large number of tunable parameters in soft matter systems, and
the complexity of the salient hydrodynamic interactions (HIs) among the suspended
particles. The purpose of this chapter is to assess the short-time diffusive dynamics
in mixtures of hard spheres with two different hard-core diameters using a gen-
eralization of Stokesian Dynamics (SD) simulations and an analytical-theoretical
scheme. While similar theoretical studies have so far been limited to suspensions
in which at least one of the species is very dilute [16, 19, 22, 26], in the present
chapter we cover a large range of packing fractions including both dilute and dense
bidisperse hard-sphere fluids. All results presented here can be straightforwardly
generalized to suspensions of more than two particle species.

Experiments on polydisperse suspensions have so far been limited to very high
densities [27–29], where polydispersity suppresses crystallization and facilitates
studies of the glass transition, or to fluid mixtures of charged particles which exhibit
strong pair correlations already at low volume fractions [30]. Moderately dense,

http://dx.doi.org/doi:10.1063/1.4907594
http://dx.doi.org/doi:10.1063/1.4907594
http://dx.doi.org/doi:10.1063/1.4907594
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polydisperse equilibrium suspensions are experimentally underattended to date,
despite their resemblance of many substances handled in industrial, biological, and
medical applications. Polydispersity is the rule rather than the exception in naturally
occurring suspensions and should therefore receive more attentions in experimental,
theoretical, and computational studies. One reason for the lack of experimental
studies may be the poor theoretical understanding of diffusion in polydisperse fluid
suspensions. Providing a semi-analytical theoretical scheme that applies in a wide
range of volume fractions and compositions, the present chapter should help to close
this gap in the theory of suspensions and facilitate future experiments.

In addition to the steric no-overlap constraint, the suspended hard spheres interact
via solvent-mediated HIs. Accurate inclusion of HIs into theory and simulation
is essential, since the linear transport coefficients for colloidal suspensions are
governed entirely by the HIs in the colloidal short-time regime. However, the
peculiar properties of HIs render their computation a formidable task. In particular,
HIs are long-ranged, non-pairwise-additive, and exhibit steep divergences in case
of lubrication, i.e., when particles move in close contact configurations.

A semi-analytical theoretical scheme for short-time suspension dynamics, with
multi-body HIs included in an approximate fashion, has been devised by Beenakker
and Mazur [17, 18, 20], and has quite recently been re-assessed by Makuch and
Cichocki [25]. This method, commonly referred to as the δγ scheme, makes use of
resummation techniques by which an infinite subset of the hydrodynamic scattering
series [31] is computed, including all particles in suspension. Nevertheless, a
complementary infinite subset of scattering diagrams is omitted in the δγ scheme
which, moreover, fails to include the correct lubrication limits of particle mobilities.
Comparisons of the original δγ-scheme predictions to experimental and computer
simulation data have revealed a shortcoming of the δγ scheme in its prediction
of self-diffusion coefficients [23, 24, 32–34], which can be largely overcome by
resorting to a modified δγ scheme in which the computation of the self-diffusion
coefficients is carried out by a more accurate method [23, 24, 33]. To date the
(modified) δγ scheme remains the only analytical-theoretical approach that captures
the essential physics of diffusion in dense suspensions, making predictions at an
acceptable accuracy level. Unfortunately, the δγ scheme has so far been formulated
for monodisperse suspensions only, and a stringent generalization to mixtures poses
a tedious task.

Here we propose a simple rescaling rule that allows the application of the numer-
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ically efficient, easy to implement standard δγ-scheme expressions to mixtures of
bidisperse hard spheres. The rescaling rule is based on the notion of describing
either species as an effective, structureless host medium for the other species to
move in. By comparing to our SD simulation results we show that the rescaled,
modified δγ scheme predicts both species’ partial hydrodynamic functions with a
surprisingly good accuracy, for suspension volume fractions as high as 40%. The
proposed, rescaled δγ scheme can be particularly useful in the analysis of scatter-
ing experiments, where only a limited part of the hydrodynamic function can be
measured due to the limited range of accessible wave vectors.

The remaining part of this chapter is organized as follows: In Sec. 3.2 we define
the hard-sphere mixtures under study, and discuss the prevailing interactions among
the particles. Section 3.3 contains a discussion of colloidal short-time diffusion
and the partial hydrodynamic functions that are calculated in this chapter. Our SD
simulations are outlined in Sec. 3.4, which is followed by a a discussion of the static
pair correlation functions in Sec. 3.5. The proposed, rescaled δγ scheme is outlined
in Sec. 3.6. In Sec. 3.7 we present our results for partial hydrodynamic functions of
various suspensions, and we draw our finalizing conclusions in Sec. 3.8.

3.2 Bidisperse hard-sphere suspensions
We study unbounded homogeneous equilibrium suspensions of non-overlapping
Brownian hard spheres with hard-core radii aα and aβ. The pairwise additive direct
interaction potentials between the particles can be written as

uαβ (r) =



∞ for r < aα + aβ,

0 otherwise
(3.1)

in terms of the particle-center separation distance r and the particle species indices
α, β ∈ {1, 2}. The suspensions’ thermodynamic equilibrium state, studied in this
chapter, is entirely described by the three non-negative dimensionless parameters

λ = a2/a1, (3.2)

φ = φ1 + φ2, and (3.3)

y = φ1/φ, (3.4)

where λ is the size ratio and φα = (4/3)πnαa3
α is the volume fraction of species α in

terms of the partial number concentration nα = Nα/V . In taking the thermodynamic
limit both the number, Nα, of particles of species α, and the system volumeV diverge
to infinity while their ratio nα is held fixed. The remaining parameters in Eq. (3.3)
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and (3.4) are the total volume fraction φ and the composition ratio y, which satisfies
0 ≤ y ≤ 1. Without loss of generality, we assume a2 ≥ a1 in the following. We
denote the total number of particles as N , and obviously, N = N1 + N2.

All particles are assumed neutrally buoyant in an infinite quiescent, structureless
Newtonian solvent of shear viscosity η0. No external forces or torques act on the
suspended particles. The solvent is assumed to be incompressible, and the Reynolds
number for particle motion is assumed to be very small, such that the solvent velocity
field v(r ) and dynamic pressure field p(r ) satisfy the stationary Stokes equation
with incompressibility constraint,

η0∆v(r ) = ∇p(r ), (3.5)

∇ · v(r ) = 0, (3.6)

at every point r inside the solvent. Equations (3.5) and (3.6) are supplemented
with hydrodynamic no-slip boundary conditions on the surface of each suspended
sphere. The linearity of Eqs. (3.5) and (3.6) suggests a linear coupling between the
translational velocity of particle l, Ul , and the force exerted on particle j, Fj :

Ul = −

Nj∑
j=1

µtt
l j · Fj, (3.7)

where the mobility tensor µtt
l j has a size of 3 × 3. By placing the tensor µtt

i j as
elements of a larger, generalized matrix, we construct the suspension grand mobility
tensor µtt of size 3N × 3N . The minimum dissipation theorem [35] requires µtt to
be symmetric and positive definite.

3.3 Short-time diffusion
Here we are interested in diffusive dynamics at a coarse-grained scale of times t that
satisfy the two strong inequalities [36]

τH ∼ τI � t � τD, (3.8)

defining the colloidal short-time regime. The hydrodynamic time scale τH =

a2
2 ρ0/η0, involving the solvent mass density ρ0, quantifies the time at which solvent

shear waves traverse typical distances between (the larger) colloidal particles. The
criterion t � τH implies that HIs, being transmitted by solvent shear waves, act ef-
fectively instantaneously at the short-time scale. Therefore, the elements of the grand
mobility matrix µtt depend on the instantaneous positions rN = {r1, r2, · · · , rN } of
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all particles, but not on their positions at earlier times. The momentum relaxation
time τI = m2/(6πη0a2) in terms of the mass, m2 of a particle of species 2, is similar
in magnitude to τH . At times t � τI , many random collisions of a colloidal particle
with solvent molecules have taken place, the particle motion is diffusive, and inertia
plays no role. The colloidal short time regime is bound from above by the (diffusive)
interaction time scale τD = a2

1/d
1
0, given in terms of the Stokes-Einstein-Sutherland

(SES) translational free diffusion coefficient, d1
0 = kBT µ1

0 of the smaller particle
species. Here, µα0 = (6πη0aα)−1 is the single particle mobility of species α, kB is
the Boltzmann constant and T is the absolute temperature. During times t & τD,
diffusion causes the spatial configuration of the (smaller) particles to deviate appre-
ciably from their initial configuration, and in addition to the HIs, rearrangements of
the cage of neighboring particles start to influence particle dynamics. This results
in a sub-diffusive particle motion at times t & τD preceding the ultimate diffu-
sive long-time regime t � τD at which a particle samples many independent local
neighborhoods. Unless the particle size-ratio λ is very large, τD is some orders
of magnitude larger than both τH and τI , and the colloidal short-time regime in
Eq. (3.8) is well defined [36].

Scattering experiments on bidisperse colloidal suspensions, including themost com-
mon small angle light scattering [37] and x-ray scattering [38, 39] techniques, allow
the extraction of the measurable dynamic structure factor [21]

SM (q, t) =
1

f 2(q)

2∑
α,β=1

√
xαx β fα (q) f β (q) Sαβ (q, t), (3.9)

which contains the scattering amplitudes, fα (q), for particles of either species, the
mean squared scattering amplitude f 2(q) = x1 f 2

1 (q) + x2 f 2
2 (q) in terms of the

molar fractions xα = Nα/N , and the partial dynamic structure factors Sαβ (q, t). In
the case of scattering experiments, Nα is the mean number of α-type particles in
the scattering volume. The microscopic definition of the partial dynamic structure
factors reads

Sαβ (q, t) = lim
∞

〈
1√

NαNβ

∑
l∈α
j∈β

exp
{
iq · [rαl (0) − r

β
j (t)]

}〉
, (3.10)

with the summation carried out over all particles l that belong to species α and
all particles j that belong to species β, with i =

√
−1 denoting the imaginary

unit, lim∞ indicating the thermodynamic limit, the brackets 〈. . .〉 standing for the
ensemble average, and r

γ
k (t) denoting the position of particle number k (which
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belongs to species γ) at time t. From the microscopic definition it follows that
Sαβ (q) = Sβα (q), and that the functions Sαα (q) are non-negative, while the Sαβ (q)
for α , β can assume either sign. In the special case of t = 0, the partial dynamic
structure factors reduce to the partial static structure factors Sαβ (q) = Sαβ (q, 0) and,
likewise, SM (q, 0) = SM (q) is the measurable static structure factor.

A useful approximation in the analysis of experimental scattering data for suspen-
sions with a small degree of particle polydispersity (typically 10% or less relative
standard deviation in the particle-size distribution) is the decoupling approximation
[21, 33] in which all functions Sαβ (q, t) in Eq. (3.9) are approximated by a monodis-
perse, mean structure factor S(q, t). For the strongly size-asymmetric hard-sphere
mixtures studied here, the Sαβ (q, t) show distinct mutual differences, which rules
out the application of the decoupling approximation.

In some experiments, the fα (q) for different species α may be tuned independently.
An example is the selective refractive index matching of solvent and particles in
light scattering experiments [40]. Under such circumstances, the three independent
functions Sαβ (q) for α, β ∈ {1, 2} may be singled out individually. When all
functions Sαβ (q, t) are known, the dynamic number-number structure factor

SN N (q, t) =
2∑

α,β=1

√
xαx β Sαβ (q, t), (3.11)

can be determined, which reduces, for t = 0, to the static number-number structure
factor SN N (q). In computer simulations, the Sαβ (q, t) and SN N (q, t) are easily
extracted once that all the time-dependent particle positions r

γ
k (t) are known, but

the challenge lies in the accurate computation of the latter.

Colloidal dynamics at times t � τH ∼ τB are governed by the Smoluchowski
diffusion equation [36] which quantifies the temporal evolution for the probability
density function P(t, rN ) of the particle configuration rN at time t. It can be shown
[41] that the 2× 2 correlation matrix S(q, t) with elements Sαβ (q, t) decays at short
times as

S(q, t) ≈ e−q2D(q)t · S(q), (3.12)

with a diffusivity matrix D(q) that can be split as

D(q) = kBTH (q) · S−1(q), (3.13)

into a product of the matrix H (q) of partial hydrodynamic functions Hαβ (q) and
the inverse partial static structure factor matrix S−1(q).



79

The functions Hαβ (q) can be interpreted as generalized wavenumber-dependent
short-time sedimentation velocities: In a homogeneous suspension, the value of
Hαβ (q) quantifies the spatial Fourier components of the initial velocity attained by
particles of species α, when a weak force field is switched on that acts on particles
of species β only, dragging them in a direction parallel to q with a magnitude
that oscillates harmonically as cos(q · r ). The microscopic definition of the partial
hydrodynamic functions reads [21]

Hαβ (q) = lim
∞

〈
1√

NαNβ

∑
l∈α
j∈β

q̂ · µtt
l j (r

N ) · q̂ exp
{
iq · [rαl − r

β
j ]

}〉
, (3.14)

where q̂ = q/q is the normalized wave vector, and the summation ranges are the
same as Eq. (3.10). Note that the positive definiteness of the µtt implies that the
functions Hαα (q) are non-negative, whereas the functions Hαβ (q) can assume both
positive and negative values for α , β. In particular, the latter functions assume
negative values at small values of q due to the solvent backflow effect: when a weak
spatially homogeneous external force acts on particles of species β only, it causes
the β-type particles to sediment in a direction parallel to the applied force, which
corresponds to Hβ β (q → 0) > 0. Mass conservation requires the collective motion
of β-type particles to be compensated by an opposing backflow of solvent, which
drags the α-type particles in the direction anti-parallel to the applied force. Hence,
Hαβ (q → 0) < 0 for α , β.

By splitting the sum in Eq. (3.14) into the self (l = j) and the complementary
distinct contributions, the functions Hαβ (q) can each be decomposed, according to

Hαβ (q) = δαβ
dαs

kBT
+ Hd

αβ (q), (3.15)

into a sum of a wavenumber-independent self-part and the wavenumber-dependent
distinct part of the partial hydrodynamic function, Hd

αβ (q), which tends to zero for
large values of q. In case of infinite dilution, or in the (purely hypothetical) case of
vanishing hydrodynamic forces, Hαβ (q)/µα0 reduces to the Kronecker delta symbol
δαβ. The short-time translational self diffusion coefficient dαs is equal to the time
derivative of the mean squared displacement Wα (t) = 1

6

〈
[rαl (t) − rαl (0)]2

〉
of a

particle of species α at short times. At infinite dilution, dαs = dα0 .

If all functions Hαβ (q) are known, then the number-number hydrodynamic function

HN N (q) =
2∑

α,β=1

√
xαx β Hαβ (q) (3.16)



80

and the measurable hydrodynamic function

HM (q, t) =
1

f 2(q)

2∑
α,β=1

√
xαx β fα (q) f β (q) Hαβ (q), (3.17)

can be computed, which quantify the short-time decay of the dynamic number-
number structure factor

SN N (q, t) ≈ SN N (q)e−q2DNN (q)t (3.18)

and the measurable dynamic structure factor

SM (q, t) ≈ SM (q)e−q2DM (q)t, (3.19)

through the number-number diffusion function DN N (q) = kBT HN N (q)/SN N (q) and
the measurable diffusion function DM (q) = kBT HM (q)/SM (q).

3.4 Stokesian Dynamics simulations
The framework of the Stokesian Dynamics (SD) has been extensively discussed
elsewhere [13, 15, 42, 43] and here we only present the aspects pertinent to this
chapter. For rigid particles in a suspension, the generalized particle forces F and
stresslets S are linearly related to the generalized particle velocitiesU through the
grand resistance tensor R as [35]

*
,

F

S
+
-
= −R · *

,

U −U∞

−e∞
+
-
, (3.20)

whereU∞ and e∞ are the imposed generalized velocity and strain rate, respectively.
The generalized force F represents the forces and torques of all particles in the
suspension, and the generalized velocityU contains the linear and angular velocities
for all particles. The grand resistance tensor R is partitioned as

R = *
,

RFU RFE

RSU RSE

+
-
, (3.21)

where, for example, RFU describes the coupling between the generalized force and
the generalized velocity, RFE describes the coupling between the generalized force
and the strain rate, etc.. In the SD method the grand resistance is approximated as

R = (M∞)−1 +R2B −R
∞
2B, (3.22)

where the far field mobility tensorM∞ is constructed pairwisely from the multipole
expansions and the Faxén’s laws of the Stokes equation up to the stresslet level,
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and its inversion captures the long-range many-body hydrodynamic interactions.
The near-field lubrication correction (R2B − R

∞
2B) is based on the exact two-body

solutions with the far field contributions removed, and it accounts for the singular
HIs when particles are in close contact. The SD method recovers the exact solutions
of two-particle problems and was shown to agree well with the exact solution of
three-particle problems [44].

Extending the SD method to polydisperse systems retains the computational frame-
work above. The far-field polydisperse mobility tensorM∞ is computed using the
multipole expansions as in Ref. [45] and the resulting expressions are extended to
infinite periodic systems using Beenakker’s technique [46, 47]. The lubrication
correction (R2B −R

∞
2B) for particle pair with radii aα and aβ are based on the exact

solution of two-body problems in Ref. [48–51] up to s−300, where s = 2r/(aα+aβ) is
the scaled center-to-center particle distance. In our simulations, the lubrication cor-
rections are invoked when r < 2(aα + aβ), and the analytic lubrication expressions
are used when r < 1.05(aα + aβ).

Our simulations proceed as follows. First, a random bimodal hard-sphere packing at
the desired composition is generated using the event-driven Lubachevsky-Stillinger
algorithm [52, 53] with high compression rate. After the desired volume fraction φ
is reached, the system is equilibrated for a short time (10 events per particle) at zero
compression rate. This short equilibration stage is necessary as the compression
pushes particles closer to each other than in thermodynamic equilibrium. Prolonging
the equilibration stage does not alter the resulting suspension structure significantly.

To avoid singularities in the grand resistance tensor due to particle contact, we
enforce a minimum separation of 10−6(ai+a j ) between particles in our simulations.
The resistance tensor R is then constructed based on the particle configuration rN .
The partial hydrodynamic functions are extracted from µtt , a submatrix of the grand
mobility tensor

R−1
FU =

*
,

µtt µtr

µrt µrr
+
-
, (3.23)

which contains coupling between the translational (t) and rotational (r) velocities
and forces of a freely-mobile particle suspension. Typically each configuration
contains 800 particles and at least 500 independent configurations are studied for
each composition.

The partial hydrodynamic functions Hαβ (q) extracted from the simulations exhibit
a strong 3√N size dependence due to the imposed periodic boundary conditions [9,
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23, 54, 55]. The finite size effect can be eliminated by considering Hαβ (q) as a
generalized sedimentation velocity. The sedimentation velocity from a finite size
system with periodic boundary conditions is a superposition of the velocities from
random suspensions and cubic lattices [54, 55]. This argument is straightforwardly
extended to bidisperse suspensions, where the size correction, ∆N Hαβ (q), for the
partial hydrodynamic functions computed from the N-particles system, Hαβ,N (q),
is

∆N Hαβ (q) =
1.76µ1

0[1 + (λ3 − 1)y] 1
3 Sαβ (q)

λ

η0
ηs

(
φ

N

) 1
3
. (3.24)

In Eq. (3.24), ∆N Hαβ (q) = Hαβ (q) − Hαβ,N (q), Hαβ (q) is the hydrodynamic
function in the thermodynamic limit, and ηs/η0 is the high frequency shear viscosity
of the suspension, which is obtained from the same simulation. Note that the shear
viscosity ηs/η0 changes little with system size, and that the scaling for Hαβ (q) in
Eq. (3.24) is chosen to be µ1

0 regardless of the choice of α and β.

3.5 Static pair correlations
Fig. 3.1 features the partial radial distribution functions gαβ (r) (upper panel) and
the partial static structure factors Sαβ (q) (lower panel) generated by the simulation
protocol described in the previous section for a bidisperse suspension of λ = 2,
y = 0.5, and φ = 0.5, the highest volume fraction studied in this chapter. The
function gαβ (r) quantifies the probability of finding a particle of species β at a center-
to-center distance r from a particle of species α [56]. Themeasured functions gαβ (r)
and Sαβ (q) (open circles in both panels of Fig. 3.1) are compared with the solutions
of the Percus-Yevick (PY)[57–59] and the Rogers-Young (RY)[60] integral equations
at the same system parameters. We solve the polydisperse RY scheme as described
in Ref. [61] with a single mixing parameter that ensures the partial thermodynamic
self-consistency with respect to the total isothermal osmotic compressibility of the
mixture in the virial and the fluctuation routes[56]. The RY-scheme equations are
solved numerically by means of a spectral solver that has been comprehensively
outlined in Refs. [62, 63]. The PY scheme is simpler, but it is thermodynamically
inconsistent. It predicts the static pair-correlations of particles with repulsive pair
interactions less accurately than the RY scheme [64]. Differences between the PY-
and RY-scheme solutions are most prominent in the functions gαβ (r), in particular
around the contact values gαβ (r = aα + aβ). Nevertheless, observing the lower
panel Fig. 3.1 we note that the PY scheme predicts the partial static structure factors
accurately, and in nearly perfect agreement with the RY-scheme and the simulations,
even at the high volume fraction φ = 0.5. We have checked that the nearly perfect
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Figure 3.1: The bidisperse suspension partial radial distribution functions gαβ (r)
(upper panel) and partial static structure factors Sαβ (q) (lower panel) for φ = 0.5,
y = 0.5, and λ = 2, directly measured from the simulations (open circles), and
computed via the Percus-Yevick (PY) and Rogers-Young (RY) integral equation
schemes. Note that the function S22(q) has been shifted upwards by one unit along
the vertical axis for clarity.
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agreement between the PY- and RY-scheme predictions for the functions Sαβ (q)
remains for other composition parameters (from y = 0.1 to y = 0.9), and that
the final predictions of our combined, semi-analytical theoretical scheme (i.e., the
hydrodynamic functions plotted in Fig. 3.3, 3.4 and 3.6) do not change significantly
when the RY-scheme functions Sαβ (q) are used instead of the PY-scheme solutions.

Therefore, the simple, analytically solvable PY scheme is sufficiently accurate to
generate the static structure input for the rescaled δγ scheme described in the
following sections. The main source of error of our method is from the various
approximations made in the δγ scheme and its modifications, rather than the slight
inaccuracy of the structural input. Consequently, we have used the PY-scheme
static structure factors in generating all results presented further down this article.
In future applications of our method, the reader may use the RY-scheme or other
more accurate integral equation schemes, particularly when studying systems with
different pair potentials. In addition, a related line of research is concerned with tests
and improvements of the different δγ-scheme approximations (for monodisperse
suspensions) [34]. Such assessment relies critically on an accurate static structure
input and hence the RY-scheme is used there.

3.6 Rescaled δγ scheme
The δγ scheme, originally introduced by Beenakker and Mazur [18, 20] and quite
recently revised by Makuch et al. [25, 34] predicts short-time linear transport
coefficients of monodisperse colloidal suspensions with an overall good accuracy,
for volume fractions of typically less than 40%. A modified version of the δγ
scheme with an improved accuracy has been proposed in Ref. [23, 24, 32, 33]. The
modification consists of replacing the rather inaccurate, microstructure-independent
δγ-scheme expression for the self-diffusion coefficient ds by amore accurate expres-
sion. The hydrodynamic function for a monodisperse suspension is then calculated
as the sum of this more accurate self-term and the distinct part of the hydrodynamic
function, with the latter retained from the original δγ scheme (c.f., the special case
of Eq. (3.15) for monodisperse suspensions). This replacement of the self-diffusion
coefficient does not only result in an improved accuracy of the predicted hydro-
dynamic functions for hard spheres, but also allows computation of hydrodynamic
functions of charge-stabilized colloidal particles with mutual electrostatic repulsion
of variable strength.

There are several possibilities for choosing the self-diffusion coefficient in the mod-
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ified δγ scheme. It can be treated as a fitting parameter [32], calculated by computer
simulation [23], or in the approximation of pairwise additive HIs, which is specially
well-suited for charge-stabilized suspensions [24, 33]. In case of monodisperse
hard-sphere suspensions,

ds

d0
≈ 1 − 1.8315φ(1 + 0.1195φ − 0.70φ2), (3.25)

where d0 = kBT µ0 and µ0 = (6πη0a)−1, is a highly accurate approximation provided
that φ . 0.5 [24]. Expression (3.25) coincides with the known truncated virial
expression [10] to quadratic order in φ. The prefactor of the cubic term has been
determined as an optimal fit value that reproduces numerically precise computer
simulation results for ds/d0 [23, 65].

The distinct part of the monodisperse hydrodynamic function is approximated in the
δγ-scheme as:

Hd (q)
µ0

=
3

2π

∞∫
0

dy′
[
sin(y′)

y′

]2
·

[
1 + φSγ0 (φ, y′)

]−1

×

1∫
−1

dµ(1 − µ2)
[
S(|q − q′|) − 1

]
. (3.26)

In Eq. (3.26), y = 2qa is a dimensionless wavenumber, µ = q · q′/(qq′) is the
cosine of the angle between q and q′, and the volume-fraction and wavenumber-
dependent function Sγ0 (φ, y) (not to be confused with a static structure factor) has
been specified in Ref. [20, 32].

For monodisperse suspensions, the δγ scheme requires only the static structure
factor S(q) and the suspension volume fraction φ as the input for calculating the
hydrodynamic functions, namely,

H (q)
µ0
≈ Hδγ[S(q), φ], (3.27)

where Hδγ[·, ·] denotes the modified δγ-scheme result based on Eq. (3.15), (3.25)
and (3.26).

Extending the δγ scheme to the more general case of bidisperse suspensions is a
non-trivial task. The size polydispersity affects (i) the structural input through the
partial static structure factors Sαβ (q), and (ii) the hydrodynamic scattering series
[31], upon which the δγ scheme is constructed [25]. For bidisperse suspensions,
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the structural input in (i) can be computed by liquid integral equations, e.g., the PY
scheme [57–59, 66] which we use in the present study. However, the evaluation of
the bidisperse hydrodynamic scattering series is more difficult since each scattering
diagram for monodisperse suspensions has to be replaced by multiple diagrams
describing the scattering in particle clusters containing particles of both species.
Even if the resummation of the bidisperse hydrodynamic scattering series can be
achieved, the accuracy of the results remains unknown without a direct comparison
to experiments or computer simulations.

Here we bypass the difficult task of bidisperse hydrodynamic scattering series re-
summation and adopt a simpler idea based on the existing (modified) δγ scheme for
monodisperse particle suspensions. The partial hydrodynamic functions Hαα (q)
can always be written as

Hαα (q)
µα0

= fαHδγ[Sαα (q), φα], (3.28)

where the factor
fα = fα (q; λ, φ, y) (3.29)

describes the wave-number dependent HIs due to the other species β not captured
in the δγ scheme, and also depends on the suspension composition.

For the interspecies partial hydrodynamic functions Hαβ (q) (α , β), the limiting
value at q → ∞, like Sαβ (q), goes to zero. Therefore, only the distinct part in the
δγ scheme is relevant, and to maintain consistency with Eq. (3.26), a shifted distinct
static structure factor Sαβ (q) + 1 (α , β) is used as the input. Similar to Eq. (3.28),
a scaling factor fαβ = fαβ (q; λ, φ, y) provides the connection to the δγ scheme by

Hαβ (q)
µα0

= fαβHd
δγ[Sαβ (q) + 1, φ], (α , β), (3.30)

when Hd
δγ[Sαβ (q)+1, φ] is computed according to Eq. (3.26). Note that in Eq. (3.30)

the total volume fraction φ is used in the δγ scheme. This is motivated by the physics
of Hαβ (q) (α , β)—from a generalized sedimentation perspective, it describes the
q-dependent velocity response of species α due to an application of q-dependent
forces on the β species. Since both species are present, the total volume fraction
φ should be used. For monodisperse suspensions with artificially labeled particles,
we expect fαβ ∼ 1. In bidisperse suspensions the deviation from unity in fαβ is due
to the size effects in HIs.
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Figure 3.2: Schematic representation of the effective medium concept. Straight red,
green and black lines indicate the αα, β β and α , β correlations, respectively.
Either species α, β is approximated as an effective structureless fluid for the other
species to move in (left and right panels). The distinct species contributions (α , β,
central panel) are approximated by those of a hydrodynamically monodisperse fluid
of fictitious γ-type particles in pure solvent. The size of γ-type particles is chosen
such that φγ = φ = φα + φβ, and their center of mass positions coincide with those
of the α− and β− type particles in the bidisperse suspension (top panel).

A simplification for the hydrodynamic interactions in bidisperse suspensions is to
assume that the HIs are of a mean-field nature, and consequently the factors in
Eq. (3.28) and (3.30) become q-independent, i.e.,

fα (q; λ, φ, y) ≈ fα (λ, φ, y) (3.31)

fαβ (q; λ, φ, y) ≈ fαβ (λ, φ, y). (3.32)

In this way, the monodisperse δγ scheme is extended to bidisperse suspensions
by introducing composition dependent scaling constants. We call the resulting
approximation scheme the rescaled δγ scheme. As we will see in Sec. 3.7, this
simplification describes the SD measurement surprisingly well—providing an a
posteriori justification for Eq. (3.31) and (3.32). Note that the rescaling rules in
Eq. (3.28) and (3.30) can be straightforwardly generalized to the polydisperse case
with more than two different particle species.

Fig. 3.2 succinctly illustrates the rescaled δγ scheme. In computing the functions
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Hαα (q), we ignore the particulate nature of species β which is replaced by an
effective medium for species α to move in (left and right panels in Fig. 3.2). The
effective translational free diffusion coefficient is therefore fαdα0 , and is expected
to be smaller than the SES diffusion coefficient dα0 for diffusion in the pure solvent,
leading to fα < 1. The distinct species partial hydrodynamic function Hαβ (q)
for α , β is approximated by the corresponding function in a hydrodynamically
monodisperse suspension of fictitious particles (γ-type particles in Fig. 3.2) in pure
solvent, which occupy the same center of mass positions as the α- and β- type
particles in the bidisperse suspension. The size of the γ-type particles is chosen
such that φγ = φ = φα + φβ. We stress again that the fidelity of our approach cannot
be easily estimated, but rather is validated a posteriori by comparing with the SD
simulation results.

For our rescaled δγ scheme to be useful, estimations of the scaling factors fα and fαβ
are required. To estimate the factor fα, recall that fαdα0 describes the translational
free diffusivity of one particle of species α in an effective medium of many β

particles. Equivalently, for many α particles, fαds (φα)/d0, where ds (φα)/d0 is the
self-diffusivity of monodisperse suspensions at volume fraction φα, represents the
species self-diffusivity dαs (φ, λ, y)/dα0 in the bidisperse mixture, i.e.,

fα =
dαs (φ, λ, y)/dα0

ds (φα)/d0
, (3.33)

where the monodisperse self-diffusivity ds (φ)/d0 is given in Eq. (3.25), and the
estimation of the species self-diffusivity is discussed next. For the interspecies
factor fαβ, we assume the mean-field description of HIs is sufficient and the size
effect is weak, i.e.,

fαβ = 1. (3.34)

Note that both Eq. (3.33) and (3.34) are physically motivated and are validated by
the SD measurements in Section 3.7.

The estimation of fα in Eq. (3.33) requires an approximation of the species short-
time self-diffusivity dαs /d

α
0 in the mixture. For dilute systems where HIs can be

decomposed into sums of pairwise additive contributions, dαs /d
α
0 can be calculated

to linear order in the volume fractions as [19, 22]

dαs
dα0
= 1 +

∑
β=1,2

Iαβφβ + O(φ2
1, φ

2
2), (3.35)
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with the integrals

Iαβ =
(1 + λ βα)3

8λ3
βα

∫ ∞

2
s2

[
xa

11(s) + 2ya
11(s) − 3

]
ds (3.36)

in terms of s = 2r/(aα+aβ) and λ βα = aβ/aα. The scalar hydrodynamic two-body
mobility functions xa

11(s) and 2ya
11(s) describe the relative motions of two spheres

in the direction parallel and orthogonal to a line that connects the sphere centers,
respectively, and can be calculated with arbitrary precision [35, 48, 67]. A series
expansion in the inverse particle separation yields the leading order far-field terms
of the integrand

xa
11 + 2ya

11 − 3 =
−60λ3

βα

[s(1 + λ βα)]4 +
480λ3

βα − 264λ5
βα

[s(1 + λ βα)]6 + O(s−8). (3.37)

Here, we employ the two-body mobility coefficients from ref. [48] up to s−300 to
ensure a smooth crossover to the analytically known close-contact (lubrication)
expressions [68]. For particle size-ratio λ = 2, numerical integration of Eq. (3.36)
yields the values I11 = I22 = −1.8315, I12 = −1.4491 and I21 = −2.0876.

Computation of the quadratic and higher order terms of the virial expansion in
Eq. (3.35) is an elaborate task, even when three-body HIs are included in their
leading-order far-field asymptotic form only [22]. In place of such cumbersome
computation of the dαs /d

α
0 , we propose a simple Ansatz

dαs
dα0
≈ 1 + *.

,

∑
β=1,2

Iαβφβ
+/
-
×

(
1 + 0.1195φ − 0.70φ2

)
(3.38)

which reduces to the accurate expression in Eq. (3.25) for λ = 1, and is correct to
linear order in the volume fractions for all values of λ. In Eq. (3.38), the effects
of different particle sizes are incorporated in the linear term while the effects of
different volume fractions are treated in a mean-field way, i.e., independent of the
size ratio. It is important to note here that Eq. (3.38) is merely an educated guess for
the quadratic and cubic terms in the virial expansions of the dαs /d

α
0 . The accuracy of

(3.38) will be tested by comparison to our SD results in Sec. 3.7. With Eqs. (3.25),
(3.34), and (3.38), the analytical estimation for fα is

fα =

1 + *.
,

∑
β=1,2

Iαβφβ
+/
-
×

(
1 + 0.1195φ − 0.70φ2

)
1 − 1.8315φα

(
1 + 0.1195φα − 0.70φ2

α

) . (3.39)
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3.7 Results and discussions
In this section we compare results of the rescaled δγ scheme described in Sec. 3.6
to the results of the SD simulations outlined in Sec. 3.4. For each suspension
composition, the SD simulations typically take a few days, while computations
using the rescaled δγ scheme only require at most a few minutes. This great
performance incentive renders the rescaled δγ scheme more convenient for many
applications.

The rescaled δγ scheme relies on the monodisperse δγ scheme to capture the
structural features in the hydrodynamic functions of bidisperse suspensions, using
bidisperse static structure factors as input. The validity of this Ansatz can be directly
validated by studying a bidisperse suspension where one of the species, say, species
β, only influences the suspension structurally but not hydrodynamically, i.e., fα = 1
in Eq. (3.28). An experimental realization of such system would be a mixture of
hard-sphere particles and highly permeable porous but rigid particles of different
size. In the SD simulations, we generate a bidisperse suspension configuration and
then exclude the inactive species β from the hydrodynamic computations. The
resulting hydrodynamically monodisperse, but structurally bidisperse suspension’s
function H (q) is influenced by the partial static structure factor Sαα (q).

Fig. 3.3 compares the partial hydrodynamic functions Hαα (q) of bidisperse suspen-
sions containing hydrodynamically inactive particles from the rescaled δγ scheme
[Eq. (3.28) with fα = 1] and the SD simulations. Recall that, for example, H11(q)
corresponds to suspensions with hydrodynamically inactive large particles. Com-
paring to the SD measurements, the monodisperse δγ scheme accurately captures
the structural features in the hydrodynamic functions with structural input S11(q),
including in particular the minimum in H11(q) for qa1 ≈ 1.7 due to cages formed by
the large particles. However, the monodisperse δγ scheme systematically overesti-
mates the magnitude of the hydrodynamic functions at all wave-numbers, since the
species self-diffusivity in this case is different from the self-diffusivity in Eq. (3.25)
for monodisperse suspensions, due to the different suspension structures.

Turning now to the true (structurally and hydrodynamically) bidisperse suspensions
where both species are hydrodynamically active, Fig. 3.4 features the SD mea-
surements (symbols) of the partial hydrodynamic functions Hαβ (q) for bidisperse
suspensions with λ = 2 over a wide range of the compositions y and total volume
fractions φ, covering both the dilute (φ = 0.1) and the concentrated (φ = 0.5)
regimes. The qualitative and quantitative aspects of the functions Hαβ (q) are ex-
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Figure 3.3: The partial hydrodynamic functions H11(q) and H22(q) for a bidisperse
suspension of φ = 0.4, y = 0.5, and λ = 2 with the respective other species being
hydrodynamically inactive. The hydrodynamic functions are scaled with the single
particle mobility µα0 = (6πη0aα)−1 and the wave number is scaled with a1, the
radius of the smaller particles.

tensively examined and discussed in a companion paper [69], and here we focus on
the performance of the rescaled δγ scheme.

We first discuss the central assumptions of the rescaled δγ scheme: thewave-number
independence of the fitting parameters fα and fαβ in Eq. (3.31) and (3.32), respec-
tively. The q-independent parameters fα and fαβ were computed by least-square
fitting the SD measurements and the rescaled δγ scheme as in Eq. (3.28) and (3.30).
The fitted partial hydrodynamic functions are presented as solid curves in Fig. 3.4.
For Hαα (q), the fitted data capture all the qualitative and most quantitative features
in the SD measurements at all q for both species. The best agreement is found at
y = 0.5, where both species are present in large enough amounts for the mean-field
description of the HIs to be valid. For more asymmetric compositions, such as at
y = 0.1 and y = 0.9, the agreement deteriorates slightly at low q with increasing
φ. For the dilute suspensions at φ = 0.1, we find excellent agreement between
the fitted functions and the SD measurements. At φ = 0.25, despite the excellent
overall agreement for both species, the discrepancies are slightly more pronounced
for the smaller species. The mean-field description is more appropriate for the
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Figure 3.4: The partial hydrodynamic functions Hαβ (q) of bidisperse suspensions
with full hydrodynamics. The size ratio is λ = 2. The top, middle, and bottom
rows are H11(q) and H22(q), and H12(q), respectively. The interspecies partial
hydrodynamic functions H12(q) are shifted by 0.1 for y = 0.5 and by 0.2 for
y = 0.9 for clarity (also indicated in the figure). The left, middle, and right columns
correspond to volume fractions φ = 0.1, 0.25, and 0.5, respectively. For each φ we
show the SD measurements for composition y = 0.1 (©), y = 0.5 (�), and y = 0.9
(4). The results for the fitted δγ scheme are shown as solid curves, and results of the
parameter-free rescaled δγ scheme with fα from Eq. (3.39) and fαβ from Eq. (3.34)
are shown as dashed curves.
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hydrodynamic environment of the large particles, as each of them is surrounded by
multiple small particles. On the other hand, the small particles are strongly affected
by the presence of large particles, and the respective hydrodynamic environment
exhibits more fluctuations. This leads to the slight differences in H11(q) at y = 0.9
in Fig. 3.4(b). At φ = 0.5, the accuracy of the δγ scheme breaks down since
the unaccounted hydrodynamic scattering diagrams become important. However,
despite some disagreements the fitted scheme still captures many qualitative fea-
tures of Hαα (q). The discrepancies are particularly apparent in the low q limit
with asymmetric compositions, e.g., H11(q) at y = 0.9 in Fig. 3.4(c) and H22(q)
at y = 0.1 in Fig. 3.4(f). In these cases, the q-independent scaling factor fα is not
sufficient to describe the hydrodynamic interactions from the minority species β.
For Hαβ (q) (α , β) shown in Fig. 3.4(g)–(i), the agreement between the measured
and fitted H12(q) is excellent for all φ except at small q. Note that the modulations
of H12(q) first increase from φ = 0.1 to φ = 0.25 due to the enhancement of hydro-
dynamic interactions, and then decrease from φ = 0.25 to φ = 0.5, possibly due to
hydrodynamic shielding effects. The q-modulations in H12(q) are small compared
to H11(q) and H22(q). Overall, the agreement between the SD measurement and
the fitted scheme validates the assumption of q-independence of fα and fαβ, up to
relatively high volume fractions.

It seems appropriate to discuss the role of the near-field lubrication interactions on
the partial hydrodynamic functions Hαβ (q) here. In many cases, the lubrication
effects play a critical role in transport properties of bidisperse hard-sphere suspen-
sions. For example, when computing the pairwise additive shear viscosity of dilute
bidisperse suspensions, neglecting the lubrication effects can lead to quantitatively
and qualitatively wrong results on the composition dependence of the viscosity [70].
To assess the influences of lubrication here, we recomputed Hαβ (q) of bidisperse
suspensions at λ = 2 and φ = 0.5 using SD without the lubrication corrections.
Relative to the full results in Fig. 3.4, the resulting Hαβ (q) are much larger in mag-
nitude and exhibit more pronounced modulation with respect to q. However, unlike
the pairwise additive shear viscosity, the Hαβ (q) without the lubrication effects are
qualitatively similar to the results in Fig. 3.4, i.e., the shape of the curve at each com-
position and the relative features with different compositions remain unchanged. In
fact, the Hαβ (q) results with and without the lubrication correction can be brought
to quantitative agreement with a q-independent factor. For this reason, the results
without the lubrication corrections are not presented. Apparently, the lubrication
effects only play a quantitative, rather than qualitative, role in the determination of
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Hαβ (q) for bidisperse hard-sphere suspensions.

The fitted q-independent scaling factors f1, f2, and f12 as a function of the com-
position y for bidisperse suspensions with λ = 2 at different volume fractions φ
are presented in Fig. 3.5. As expected, at a fixed volume fraction φ, fα decreases
monotonically from 1 with the increasing presence of the other species β. At a
fixed value of y, fα also decreases from 1 when the volume fraction φ is increased.
Both decreasing trends in fα are due to the enhanced HIs from the other species.
The scaling factor f12 for the interspecies hydrodynamic interactions exhibits more
peculiar behaviors. For φ = 0.1 and 0.25, the factor f12 is close to unity, suggesting
that the mean-field hydrodynamic interaction assumption in the rescaled δγ-scheme
is valid. However, f12 does become smaller with increasing y, i.e., for H12(q),
adding larger particles to the suspension is not equivalent to adding smaller parti-
cles, which becomes particularly clear for φ ≥ 0.25 in Fig. 3.5(c). For φ = 0.4
and 0.5, f12 becomes much smaller than unity and decreases monotonically with
increasing y. At these volume fractions, it appears that f12 is extremely sensitive to
the presence of the other species in the mixture, as we expect f12 to recover to unity
when y → 0 or y → 1.

The f1 and f2 predicted by Eq. (3.39) are shown in Fig. 3.5(a) and (b) as curves. The
predicted f1 agrees well with the fitted value up to φ = 0.25, and at higher volume
fractions, the equation overestimates f1 by 10% at φ = 0.35 and y = 0.1 and by 20%
at φ = 0.45 and y = 0.1. The predicted f2 for the larger species, however, agreeswell
with the fitted value up to φ = 0.4 at all compositions except when y is close to unity.
Since Eq. (3.39) is motivated by a mean-field model of dαs /d

α
0 , Eq. (3.38), Fig. 3.5

again suggests that the larger particles in bidisperse suspensions experience themean
field from the small particles, while the hydrodynamic environment of the smaller
particles shows stronger fluctuations. Specifically, since Eqs. (3.38) and (3.39)
are exact in the dilute limit when the pairwise HIs dominate, the error must come
from the many-body HI term which is based on the monodisperse results. Both
the near-field and far-field effects contribute to the many-body HI, and both depend
on the bidisperse suspension compositions. For dense suspensions, it is difficult
to separate one contribution from another, and any improvements must consider
both in tandem. Based on Fig. 3.4 and 3.5, any improvement of the rescaled δγ
scheme requires a better estimation of dαs by explicitly considering the composition
dependence of the many-body HIs. For practical purposes here, from Fig. 3.5 we
note that the parameter-free analytical estimation of fα and fαβ is satisfactory up to



95

0
0
.2

0
.4

0
.6

0
.8

1
y

0
.2

0
.4

0
.6

0
.81

f 1

φ
=

0
.1

φ
=

0
.2

5

φ
=

0
.3

5

φ
=

0
.4

φ
=

0
.5

0
0
.2

0
.4

0
.6

0
.8

1
y

0
.2

0
.4

0
.6

0
.81

f 2

0
0
.2

0
.4

0
.6

0
.8

1
y

0
.5

0
.6

0
.7

0
.8

0
.91

1
.1

f 1
2

(a
)

(b
)

(c
)

Fi
gu

re
3.
5:

Th
efi

tte
d

q-
in
de
pe
nd

en
ts
ca
lin

g
fa
ct
or
s(
a)
:

f 1
,(
b)
:

f 2
,a
nd

(c
):

f 1
2
in
th
er
es
ca
le
d
δ
γ
sc
he
m
ef
or

th
eb

id
is
pe
rs
es

us
pe
ns
io
ns

w
ith

λ
=

2.
Th

e
cu
rv
es

ar
e
ca
lc
ul
at
ed

ac
co
rd
in
g
to

Eq
.(
3.
39

)
fo
r

f α
w
ith

φ
=

0.
1
(s
ol
id
),

0.
25

(d
as
he
d)
,0
.3

5
(d
as
h-
do

tte
d)
,0
.4

(d
as
h-
do

ub
le
-d
ot
te
d)
,a
nd

0.
5
(d
ot
te
d)
.



96

φ ∼ 0.35–0.4 at all compositions, for λ = 2.

The parameter-free partial hydrodynamic functions, predicted by the rescaled δγ
scheme with factors fα from Eq. (3.39) and f12 from Eq. (3.34), are presented in
Fig. 3.4 as dashed curves. The agreement with the SD measurements is satisfactory
for Hαβ (q) at all compositions at φ = 0.1 and 0.25. In Fig. 3.4(b) the predicted
f1 slightly overestimates H11(q) at y = 0.1 at φ = 0.25, primarily due to the
overestimation of the small particle diffusivity in Eq. (3.38). At φ = 0.5, the
prediction breaks down, and the discrepancy is most pronounced at y = 0.1 for
the overestimation of H11(q) in Fig. 3.4(c) and at y = 0.9 for the underestimation
of H22(q) in Fig. 3.4(f). Moreover, Eq. (3.34) overestimates the q-modulations in
H12(q) in all compositions at φ = 0.5 in Fig. 3.4(i), as the hydrodynamic shielding
in dense systems cannot be captured by f12 = 1.

In practice, individual partial hydrodynamic functions Hαβ (q) cannot be conve-
niently measured in scattering experiments and the measured quantity HM (q) is a
weighted average of the Hαβ (q). Note from Eq. (3.16) and (3.17), that HM (q) dif-
fers from the similar number-number hydrodynamic function HN N (q) only trough
its dependence on the particle-specific scattering amplitudes fα (q). To test the ac-
curacy of the rescaled δγ scheme, it is sufficient to test its predictions of HN N (q). In
Fig. 3.6 we compare the HN N (q) from the SD measurements and from the rescaled
δγ scheme, with factors fα and fαβ obtained from optimal least square fittings
(solid curves) and from the parameter-free analytic Eq. (3.39) and (3.34) (dashed
curves). Results for the same bidisperse suspensions are depicted in Fig. 3.6 and
3.4. For φ = 0.1, the rescaled δγ scheme captures the SD results with high precision
in the entire q-range, at all studied compositions y. Small discrepancies occur most
noticeably in the q → 0 limit. At φ = 0.25, the difference in HN N (q) from both
the fitted and the parameter-free analytical expression is less than 5% in the entire
q-range, which demonstrates the validity of our proposed rescaling rules for the
δγ scheme. For the very dense suspensions, φ = 0.5, we see how the rescaled δγ
scheme breaks down. With the fitted fα and fαβ, the scheme is only capable of
capturing the qualitative features in the measured HN N (q). With the fα and fαβ
from Eq. (3.39) and (3.34), the scheme exhibits significant differences from the SD
measurements with decreasing y.

The performance of the rescaled δγ scheme for size ratios λ , 2 (and in particular
for λ > 2) remains to be explored. In representative tests for λ = 4 we found
that the scaling approximation of Eq. (3.33) remains valid, but Eq. (3.39) breaks
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down around φ = 0.25 and y = 0.5, particularly for the smaller particles. This
is due to the breakdown of Eq. (3.38) for the short-time self-diffusivity dαs /d

α
0 .

Note that Eqs. (3.38) and (3.39) are exact in the dilute limit φ → 0, and that they
remain valid in a decreasing φ-range with increasing size ratio. At a given λ and
φ, the approximations are expected to be better for the larger particles than for the
smaller particles, due to the more mean-field-like HIs among the larger particles.
However, establishing an accuracy measure of the rescaled δγ scheme in the full
suspension parameter range requires direct comparison with accurate hydrodynamic
computations. Unfortunately, this is a very elaborate and computationally expensive
task because of the system size that increases with increasing values of λ, and
because of accuracy limitations of the SD method. In future, obtaining an accurate
expression of dαs /d

α
0 for dense suspensions with arbitrary values of λ will be the key

to further improvement of the rescaled δγ scheme.

3.8 Conclusions
In this chapter we have proposed a rescaled δγ scheme to compute approximations
of the partial hydrodynamic functions Hαβ (q) in colloidal mixtures. We found
that the Hαβ (q) from the Stokesian Dynamics measurements differs from the δγ
scheme with appropriate structural input by a q-independent factor, suggesting that
the hydrodynamic environment for one species can be described as a mean field due
to the HIs from the other species and the solvent. This constitutes the fundamental
assumption of the rescaled δγ scheme.

We extensively tested the rescaled δγ scheme with the SD simulation measurements
for bidisperse suspensions over a wide range of volume fractions φ and compositions
y, and provided approximate analytical estimates for the scaling factors fα, and fαβ.
Comparing with the SD measurements, the rescaled δγ scheme with analytical
scaling factors can accurately predict the number-number hydrodynamic function
HN N (q) up to φ ≈ 0.4 at all studied composition ratios y, for a particle-size ratio as
high as λ = 2.

The proposed rescaled δγ scheme is the first semi-analytical method for estimating
the bidisperse hydrodynamic functions up to φ = 0.4, and it can be readily extended
to polydisperse and charged systems. It will be a valuable tool for interpreting
dynamic scattering experiments of moderately dense bidisperse systems.
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C h a p t e r 4

SPECTRAL EWALD ACCELERATION OF STOKESIAN
DYNAMICS FOR POLYDISPERSE COLLOIDAL SUSPENSIONS

[1] M. Wang and J. F. Brady, “Spectral Ewald Acceleration of Stokesian Dy-
namics for polydisperse suspensions”, Journal of Computational Physics
306, 443 (2016) doi:10.1016/j.jcp.2015.11.042,

4.1 Introduction
Colloidal suspensions are dispersions of small particles in a viscous solvent, and
are found in almost every aspect of our life, ranging from dairy milk to printer ink.
They have two distinguishing features: (i) Brownian motion of the particles due to
thermal fluctuations, and (ii) the long-range, non-pairwise-additive hydrodynamic
interactions (HIs) mediated by the solvent. As a result of these features, disper-
sions exhibit many surprising behaviors such as non-Newtonian rheology, glass
transitions, phase transitions, etc., and have attracted extensive scientific and engi-
neering interests [1]. Using monodisperse colloidal suspensions as a model system,
significant understanding has been achieved through theoretical, simulation, and
experimental studies.

However, naturally occurring colloidal suspensions are seldom monodisperse, and
particle size differences are often unavoidable. In addition, particle size disparity
introduces phenomena otherwise not observed in monodisperse suspensions. For
example, size polydispersity reduces suspension viscosity [2–4], softens and even
melts colloidal glasses [5], and promotes particle segregation in pressure driven
flows [6]. Apparently, these behaviors can only be understood by studying dynamics
of polydisperse colloidal suspensions.

In this work we develop a computational method based on the framework of Stoke-
sian Dynamics [7] (SD) for fast and realistic dynamic simulations of dense, poly-
disperse colloidal suspensions, with a focus on suspension rheology. Presently,
theoretical and computational studies on polydisperse colloidal suspensions, even
for the simplest case of neutrally buoyant hard-sphere particles, are scarce, and
heavily focus on the dilute or the short-time limits [8–12]: the former restricts HIs
to the two- or three-body level, and the latter ignores suspension dynamic evolution,

http://dx.doi.org/doi:10.1016/j.jcp.2015.11.042
http://dx.doi.org/doi:10.1016/j.jcp.2015.11.042
http://dx.doi.org/doi:10.1016/j.jcp.2015.11.042
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particularly the influence of Brownian motion. Beyond these limiting cases, we are
only aware of the work of Ando & Skolnick [13], who studied particle diffusion in
dense polydisperse colloidal suspensions using conventional SD in the context of
biological molecular crowding. Their implementation limits HIs to the force-torque
level, and therefore is unsuitable for rheological investigations.

A difficulty in dynamic simulations of dense colloidal suspensions is the singular
HIs due to the lubrication interactions between close particle pairs. To directly
resolve HIs, a computational method must capture the flow details in the small
gap between particles. For multipole expansion based methods [7, 14, 15], a large
number of expansion terms are necessary to achieve convergence, and for methods
based on surface or spatial discretization, such as the boundary element method [16,
17] or direct numerical simulations [18–21], very fine meshing is needed in the gap.
Directly resolving lubrication interactions drastically increases the computational
cost and limits many studies to low volume fractions. For example, the force
coupling method study of Abbas et al. [22] on the dynamics of non-Brownian
bidisperse suspensions is limited to particle volume fractions below 20%.

A solution to the above difficulty is the SD framework [7], which exploits the local
and pairwise additive nature of lubrication interactions. In SD, the long-range, non-
pairwise-additive HIs are computed from the mobility perspective using low-order
multipole expansions, and for particles in close contact, lubrication corrections
are added pairwise to the corresponding resistance formalism. The corrections
are based on the solutions of two-body problems with the far-field contributions
removed. In this way, SD avoids directly resolving the singular lubrication interac-
tions. The idea of lubrication correction in SD is general enough for incorporation
to other computational methods. For example, similar lubrication corrections has
been developed for hydrodynamic multipole methods [14, 15, 23, 24], the force
coupling method [25], the lattice Boltzmann method [26], and the fictitious domain
method [27]. Moreover, with an appropriate fluid solver, the lubrication corrections
can be improved beyond the pairwise level [28]. We feel that, by incorporating the
lubrication corrections, many recent computational techniques can significantly ex-
tend their accessible parameter range without increasing the computational burden.
This point is demonstrated in the present work, which essentially combines the lubri-
cation corrections and the Spectral Ewald (SE) method of Lindbo & Tornberg [29,
30] for dynamic simulations of dense polydisperse suspensions.

The Spectral Ewald (SE) method is a new particle mesh technique for computing
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long-range electrostatic [30] or hydrodynamic [29] interactions, and has recently
been incorporated into the boundary integral method for spheroidal particles [31].
Particle mesh techniques including the Particle Mesh Ewald (PME) method [32]
and the Smooth Particle Mesh Ewald (SPME) method [33] have been extensively
used for calculating HIs with O(N log N ) computation scaling. Note that, although
algorithms based on the fast multipole method [34] can achieve a better computation
scaling–down to O(N ), they often have significant computation overheads, and re-
quire large system sizes to justify the complexity [35]. Therefore, for many dynamic
simulations, the particle mesh techniques remain the practical choice. Notable
examples are Accelerated Stokesian Dynamics (ASD) [36] which uses the PME
method for the far-field mobility evaluation, and the work of Saintillan et al. [37],
where the SPME method is employed to study fiber sedimentation. Compared to
other particle mesh techniques, the SE method is spectrally accurate, and can sepa-
rate errors from the mesh interpolation and the wave-space truncation. Both features
are essential for capturing the complicated HIs in polydisperse suspensions.

Another challenge in dynamic simulations of colloidal suspensions is Brownian
motion, which is configuration dependent due to the fluctuation-dissipation relation.
When Euler-Maruyama time integration is used, the deterministic particle drift
due to the Brownian motion must also be included [38]. As a result, computing
Brownian-related quantities requires the gradient and the square root of the mobility
tensor. Fortunately, these quantities can be evaluated in a matrix-free manner
under the framework of ASD, making dynamic studies on hundreds of colloidal
particles possible [39, 40]. Moreover, the mean-field Brownian approximation,
which estimates the mobility tensor based on the near-field HIs, is able to further
speed up the computations [39, 41]. In this work, these developments are fully
incorporated for the dynamic simulation of Brownian polydisperse suspensions.
Note that a different approach to treat the Brownian motion is based on fluctuating
hydrodynamics [42], where the thermal fluctuations are directly incorporated in the
governing fluid equations. It has been applied to the lattice Boltzmann method [43],
the force coupling method [44], and the immersed boundary method [45].

The emergence of the General Purpose Graphic Processing Unit (GPGPU) program-
ming often brings significant, sometimes orders of magnitude, speed improvements
for many existing algorithms. Recently, Kopp & Höfling [46] implemented the con-
ventional SD for infinite solvent using GPGPU with direct HI summation. Despite
the O(N2) scaling, they achieved impressive speedup over the CPU implementation.
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However, to study the dynamics of homogeneous suspensions, further extension to
periodic systems are necessary. On the other hand, GPU acceleration of the SPME
method [47, 48] in molecular dynamics provides access to millisecond-scale dy-
namics on personal computers. These acceleration techniques are applicable to
particle mesh techniques in general, and inspired the present work. In particular,
we used GPGPU programming to compute the HIs with the SE method in homoge-
neous suspensions, and realized almost an order of magnitude speedup in dynamic
simulations.

Furthermore, our computation method extends SD to compressible suspensions,
allowing dynamic simulations of constant pressure rheology [49] without introduc-
ing geometric confinement. This is possible because the flow disturbances due to
rigid particles in a compressible solvent are incompressible and satisfy the Stokes
equation [50]. Another benefit of such extension is that the suspension normal
stress, which is essential for particle migration in sheared suspensions [51–53], can
be directly evaluated.

The remainder of the chapter is arranged as follows: Sec. 4.2 establishes the basic
formalism for HIs in compressible Stokes flow. In Sec. 4.3, various aspects of mobil-
ity computations with the SE method are presented. Here, we also discuss different
approaches to incorporate particle size polydispersity and the GPGPU implementa-
tion. In Sec. 4.4, we present the Spectral Ewald Accelerated Stokesian Dynamics
(SEASD) and its mean-field Brownian approximation, SEASD-nf, for dynamic sim-
ulations of Brownian polydisperse suspensions. In Sec. 4.5 we carefully discuss the
accuracy and parameter selections for the SE method, and the computation scaling
of various SEASD implementations. Sec. 4.6 presents a series of validation calcu-
lations for monodisperse and bidisperse suspensions with SEASD and SEASD-nf:
Sec. 4.6 addresses the short-time transport properties, Sec. 4.6 evaluates the equi-
librium osmotic pressure and viscoelastic moduli, and Sec. 4.6 presents various
aspects of the steady shear rheology of Brownian suspensions. The results also
reveal the role of particle sizes in the dynamics of bidisperse suspensions. Finally,
we conclude this work with a few comments in Sec. 4.7.

4.2 Hydrodynamic interactions in (compressible) Stokes flow
The mobility and resistance formalism
We first consider a suspension of N spherical rigid particles, each with radius ai and
position ri, in an incompressible solvent of viscosity η0 and density ρ0, occupying
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a volume V . For the special case of bidisperse suspensions with particle sizes a1

and a2, the suspension composition is fully characterized by three dimensionless
parameters,

λ = a2/a1, φ = φ1 + φ2, and y2 = φ2/φ, (4.1)

where λ is the size ratio, φ is the total volume fraction, and y2 is the volume ratio of
species 2. The species volume fraction is φα = 4

3πa3
αnα, α ∈ {1, 2}, and the species

number density is nα. The total number density satisfies n = n1+n2, and the species
number fraction is xα = nα/n. Without loss of generality, we take a2 > a1.

If the particles are sufficiently small, the particleReynolds numberRep,α = ρ0aαUα/η0 �

1, where Uα is the species characteristic velocity. In this limit, the velocity field
v(r ) and the pressure field p(r ) of the solvent satisfy the Stokes equation,

∇p = η0∇
2v, ∇ · v = 0, (4.2)

supplemented by no-slip boundary conditions on particle surfaces. Due to the
linearity of Eq. (4.2), there is a linear relation between the velocity disturbance on
the surface of a particle i, u′i , and the surface force density of another particle j, f j ,

u′i (r ) = −
∫

dr′
∑

j

Mi j (r, r′; X ) · f j (r′), (4.3)

where Mi j (r, r′; X ) is a mobility operator depending on positions r and r′ and the
suspension configuration X = {r1, r2, . . .}. The surface force density is localized on
the particle surface, i.e., f j (r ) = σ(r ) · n jδ(‖r − r j ‖ − a j ), where σ is the stress
tensor, n j is the surface normal of particle j, and δ(x) is the Dirac delta function.
The stress tensor σ = −pI+ η0[∇v + (∇v)†], with † indicating transposition and I is
the idem tensor. The velocity disturbance u′i (r ) = Ui +Ωi × (r − ri)− v∞(r ), where
v∞(r ) is the ambient flow satisfying ∇ · v∞ = 0, and Ui and Ωi are respectively
the linear and angular velocities of particle i. By stacking the force density vectors
f = ( f1, f2, . . .)† and the velocity disturbance vectors u′ = (u′1, u

′
2, . . .)

† the grand
mobility operator M is constructed from elements Mi j in Eq. (4.3), such that

u′(r ) = −
∫

dr′M(r, r′; X ) · f (r′), (4.4)

for the N particles in the suspension. Eqs. (4.3) and (4.4) are known as the mobility
formalism, and the inverse relation is the resistance formalism,

f (r ) = −
∫

dr′R(r, r′; X ) · u′(r′), (4.5)



110

where R(r, r′; X ) is the grand resistance operator.

The integral representations in Eqs. (4.4) and (4.5) can be equivalently expressed as
multipole expansions of f (r ) and u′(r ), f and u′ respectively, around the particle
centers, i.e.,

f (r ) → f =



F H

SH

...



and u′(r ) → u
′ =



U ′

−E∞
...



, (4.6)

where F H is the generalized hydrodynamic force, SH is the hydrodynamic stresslet,
U ′ is the generalized velocity disturbance, and E∞ is the rate of strain tensor for the
ambient flow. Note that F H = (FH,TH)†, where FH and TH are respectively the
particle hydrodynamic force and torque for all particles, and U ′ = (U − U∞,Ω −

Ω∞)†, where U − U∞ and Ω −Ω∞ are respectively the linear and angular velocity
disturbances. The hydrodynamic force, torque, and stresslet for particle i are defined
as integrals of the localized surface force density fi,

FH
i = −

∫
dr fi (r ), (4.7)

TH
i = −

∫
dr (r − ri) × fi (r ), (4.8)

SH
i = −

∫
dr 1

2 [(r − ri) fi (r ) + fi (r )(r − ri)]. (4.9)

InEq. (4.6) the ambient velocities are evaluated at particle centers, i.e.,U∞i = v∞(ri),
Ω∞i =

1
2∇× v

∞ |ri , and E∞ = 1
2 [∇v∞ + (∇v∞)†]ri . The expansions in Eqs. (4.4) and

(4.5) lead to the following infinite dimension linear relation,

u
′ = −M(X ) · f and f = −R(X ) · u′, (4.10)

where M(X ) and R(X ) are the multipole grand mobility and resistance tensors of
operators M(r, r′; X ) and R(r, r′; X ), respectively. Evidently, M = R−1, and from
the Lorentz reciprocal theorem [54], both are positive definite.

The infinite dimension vectors f and u′ can be reduced to finite dimensions by
projection [55]. To the stresslet level of f and the strain rate level of u′, we introduce
projection matrices P and Q, such that P · f = (F H,SH)† and Q · u′ = (U ′,−E∞)†.
Moreover, P ·P† = Q ·Q† = I, where I is an identity matrix. The following linear
relation holds: 

U ′

−E∞


= −M ·



F H

SH


, and R =M−1, (4.11)
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where M = QMP† is the grand mobility tensor and R = PRQ† is the grand
resistance tensor. BothM and R are exact as the projections P and Q ensure that
all the scattering of hydrodynamic interactions among the particles are captured.
For convenience, the grand resistance tensor is partitioned as

R =



RFU RF E

RSU RSE


, (4.12)

where, for example, RFU describes the coupling between the generalized force and
the generalized velocity. The linear relation in Eq. (4.11) can also be deduced from
the linearity of Eq. (4.2) without appealing to the multipole expansion, but here
we establish a connection with other works, particularly the multipole methods of
Cichocki and coworkers [15, 56]. Note that for rigid spherical particles, external
flows can only affect the first two moments of f and u′ due to symmetry and the
no-slip boundary condition.

Elements ofM and R can be computed from, for example, the induced force multi-
pole [57, 58], eigenfunction expansions [15, 24, 59], and multipole expansions [7].
To the stresslet level, M can be conveniently evaluated by combining the Faxén
formulae and the multipole expansions. For a rigid particle i in an incompressible
solvent, the Faxén formulae are [7],

Ui − U
∞ = −

FH
i

6πη0ai
+

(
1 + 1

6 a2
i ∇

2
)
v′��ri (4.13)

Ωi −Ω
∞ = −

TH
i

8πη0a3
i

+ 1
2∇ × v′��ri (4.14)

−E∞ = −
SH

i
20
3 πη0a3

i

+
(
1 + 1

10 a2
i ∇

2
)

1
2 [∇v′ + (∇v′)†]��ri, (4.15)

where the overline indicates the traceless part of the symmetric tensor, and v′(r )
is the velocity field in the absence of particle i. With the fundamental solution
of Stokes equation J(r ) and the force density f , the velocity field v′(r ) can be
computed as [54],

v(r ) = −
1

8πη0

∫
dr′J(r − r′) · f (r′). (4.16)

Expanding the force density around particle centers, we have

v′(r ) =
1

8πη0

∑′

j

(
1 + 1

6 a2
j∇

2
)

J ·FH
j +R ·TH

j −
(
1 + 1

10 a2
j∇

2
)

K : SH
j + · · · , (4.17)
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where the prime on the summation excludes the case i = j, and the functions
J, R, and K are evaluated at r − r j . In the Cartesian tensor form, R = Rαβ =
1
4ε δγ β (∇γ Jαδ − ∇δ Jαγ) and K = Kαβγ =

1
2 [∇γ Jαβ + ∇β Jαγ], with εαβγ the Levi-

Civita symbol. With Eqs. (4.13)–(4.15) and (4.17), the grand mobility tensorM for
incompressible solvents can be constructed in a pairwise fashion.

The fundamental solutions
The formalism in Sec. 4.2 relies on J(r ), the fundamental solution of Stokes equa-
tion. Different boundary conditions such as periodicity [60, 61], confinement [24,
62], or a combination of both [63], can be incorporated to J(r ). For an infinite
expanse of fluid, we have the well-known Oseen tensor,

J(r ) =
1
r

(I + r̂ r̂ ), (4.18)

where r = ‖r ‖ and r̂ = r/r .

To study dynamics of homogeneous suspensions, periodic boundary conditions
are necessary to assess the HIs. In this case, the proper fundamental solution
J(r ) describes the fluid velocity disturbance due to an array of periodic forces
F

∑
p δ(r − Rp), where Rp =

∑3
d=1 pdad is the location of the periodic forcing.

Here, p = (p1, p2, p3) ∈ Z3, δ(r ) is the 3D Dirac delta function, and a1, a2, and
a3 are the Bravais lattice vectors describing the spatial periodicity. From a Fourier
expansion of the Stokes equation [Eq. (4.2)], we have for the periodic J(r ):

J(r ) = −
8π
V

(I∇2 − ∇∇)
∑
k,0

1
k4 exp(−ık · r ), (4.19)

where ı =
√
−1, the unit cell volumeV = a1·(a2×a3), thewave vector k =

∑3
d=1 jdbd

is defined by the reciprocal vectorsb1, b2, andb3, j = ( j1, j2, j3) ∈ Z3, and k2 = k ·k.
Writing the lattice and the reciprocal vectors as column vectors and definingmatrices
A = [a1a2a3] and B = [b1b2b3], we have B† = 2πA−1 and exp(ık · Rp) = 1. By
requiring k , 0 in Eq. (4.19), the external forces are balanced by the pressure
gradient [60], a necessary condition for convergent HIs [64].

A difficulty associated with HIs is the long range nature of J(r ), i.e., Eq. (4.18)
decays as r−1 in the real space and Eq. (4.19) as k−2 in the wave space. For periodic
systems, however, the conditionally converging sum in Eq. (4.19) can be split into
two exponentially fast converging series, i.e.,

J(r ) = JR(r ) + JW (r ), (4.20)
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where JR(r ) is the real-space sum, JW (r ) is the wave-space sum. Although the split-
ting in Eq. (4.20) is not unique [29], a particularly efficient scheme by Hasimoto [60]
utilizes the integral

1
k4 = π

2
∫ ∞

0
β exp(−πk2 β)dβ, (k , 0), (4.21)

and the Poisson summation formula. The result is

JR(r ) =
∑
p,0

(I∇2−∇∇)
[
rErfc(rξ) −

1
ξ
√
π

e−r2ξ2
]
, (4.22)

JW (r ) =
8π
V

∑
k,0

(I∇2−∇∇)
(
−1 −

k2

4ξ2

)
1
k4 e−

1
4 k2ξ−2

e−ık ·r, (4.23)

where ξ is the splitting parameter and Erfc(x) is the complementary error function.
Eqs. (4.20), (4.22), and (4.23) are referred to as the Ewald summation of the
Oseen tensor. The real-space sum JR only covers the neighboring periodic cells.
The parameter ξ is consistent with the convention of Beenakker[61] and satisfies
4παξ2 = 1, where α is the splitting parameter introduced by Hasimoto [60].

Extension to compressible fluid
The formalism in Sec. 4.2 is limited to an incompressible fluid, i.e., the imposed
flow must satisfy ∇ · v∞ = 0. This requirement is relaxed by imposing a uniform
rate of expansion everywhere in the fluid, such that ∇ · v∞ = E∞, and the fluid
is assumed compressible with a bulk viscosity κ0. The rigid particles, unable to
expand with the compressible fluid, generate a velocity disturbance that satisfies the
incompressible Stokes equation [50]. From the linearity of Stokes flow, this velocity
disturbance can be superimposed with other flows in the suspension, extending the
existing formalism to compressible fluids.

For a rigid particle of radius ai located at ri = 0, the velocity disturbance vs due to
a compressible flow with an expansion rate E∞ is

vs (r ) = −1
3 a3

i E∞
r

r3 . (4.24)

This isotropic flow disturbance generates an isotropic stress contribution. Introduc-
ing the pressure moment as the trace of the stresslet in Eq. (4.9), i.e.,

SH
i = −

∫
dr (r − ri) · fi (r ), (4.25)

we have SH
i = −

16
3 πη0a3

i E∞ from Eq. (4.24). Therefore, the velocity disturbance
due to a pressure moment SH

i at the origin is

vs (r ) =
1

16πη0

r

r3 SH
i = Q(r )SH

i . (4.26)
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Adding the compressible velocity disturbances vs (r ) from other particles to the
incompressible velocity disturbance v′(r ) in Eq. (4.17), the general velocity distur-
bance in a compressible suspension is

v′c(r ) = v′(r ) +
∑′

j

Q(r − r j )SH
j . (4.27)

When applying the Faxén formulae [Eqs. (4.13)–(4.15)] in compressible suspen-
sions, the velocity disturbance v′c, instead of v′, is used.

In addition to Eqs. (4.13)–(4.15), the Faxén relation for the pressure moment in a
compressible fluid is [65, 66]

SH
i = −

16
3 πη0a3

i E∞ + 4πa3
i p′(ri), (4.28)

where p′ is the pressure disturbance without the particle at ri. The pressure distur-
bance can be obtained from the pressure fundamental solution of Stokes equation,

P(r ) =
r

r3 , (4.29)

such that the pressure distribution due to a force density is

p(r ) = −
1

4π

∫
dr′P(r − r′) · f (r′). (4.30)

For the pressure disturbance p′ in Eq. (4.28), expanding the surface force densities
leads to

p′(r ) =
1

4π

∑′

j

P(r − r j ) · FH
j − ∇P : SH

j |(r−r j ) + · · · . (4.31)

Eq. (4.28) is different from the Faxén formulae in Eqs. (4.13)–(4.15) as it presents
the pressure moment or the trace of the stresslet on the left hand side. This subtle
difference highlights a distinct feature of the compressible flow disturbances: in a
compressible fluid, the pressure moment can cause particle movement satisfying
the incompressible Stokes equation, but the incompressible force moments cannot
generate compressible disturbances. As a result, the interaction part of the pressure
moment can only be evaluated after FH

i , TH
i , and SH

i are known. Otherwise, the
resulting hydrodynamic interactions contain spurious contributions due to the un-
physical coupling between the incompressible force moments and the compressible
flow disturbances.

To extend the above results for vs and SH
i to periodic boundary conditions, we note

that the divergence of Q in Eq. (4.26) satisfies

∇ · Q =
1

4η0
δ(r ), (4.32)
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since ∇2r−1 = −4πδ(r ). Therefore, for uniform expansion in compressible sus-
pensions, the particles act as fluid sources, each with a strength proportional to its
pressure moment. In a periodic system, the velocity disturbance corresponding to
an array of sources is obtained by replacing the delta function in Eq. (4.32) with∑

p δ(r − Rp). From Fourier transform, the solution is

Q(r ) =
1

4η0V
∇

∑
k,0

1
k2 e−ık ·r . (4.33)

The above wave-space sum can be split to two exponentially converging series [30,
60] using ∑

k,0

1
k2 e−ık ·r =

V
4π

∑
p,0

1
r

Erfc(rξ) +
∑
k,0

1
k2 e−

1
4 k2ξ−2

e−ık ·r . (4.34)

Similar to Q(r ), the pressure fundamental solution P(r ) in Eq. (4.29) can also be
extended to periodic systems.

4.3 The mobility computation
The mobility problem seeks the action of the grand mobility tensor M on the
force moments such as F H and SH. It can be constructed in a pairwise fashion
using the formalism in Sec. 4.2 for compressible suspensions. Naïvely, this is
an O(N2) operation for an N-particle system since the long-range HIs necessitate
considerations of all particle pairs. However, with the Ewald summation that splits
the fundamental solutions J(r ), Q(r ), and P(r ) into exponentially fast converging
wave-space and real-space series, the particle mesh techniques can improve the
computation scaling to O(N log N ). In the following, our implementation of the
mobility computation is discussed.

Wave-space computation: the Spectral Ewald (SE) method
The wave-space computation concerns the part of grand mobility tensor associated
with JW (r ) of Eq. (4.23) and the wave-space sum of Eq. (4.34) in P(r ) and Q(r ).
Using the Fast Fourier Transform (FFT) algorithm, the computation cost can be
reduced to O(N log N ). To illustrate this, let us consider the wave-space velocity
disturbance UW

i on particle i at the Rotne-Prager level, obtained by combining
Eqs. (4.13), (4.17), and (4.23), i.e.,

UW
i =

1
η0V

∑
k,0

e−ık ·ri
(
1 − 1

6 a2
i k2

)
g1(k) ·

∑
j

(
1 − 1

6 a2
j k2

)
eık ·r jFH

j , (4.35)
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and the wave-space kernel

g1(k) =
(
1 + 1

4 k2ξ−2
)

k−4e−
1
4 k2ξ−2

(Ik2 − kk). (4.36)

Different from Eq. (4.17), the summation over particle j in Eq. (4.35) is unrestricted
and includes the case of i = j. Therefore, the self interaction term for i = j, which
is from the inverse transform of Eq. (4.35) with ri = r j [61],

1
8η0π3

∫ (
1 − 1

6 a2
i k2

)2
g1(k)dk · FH

i =
ξ (9 − 10a2

i ξ
2 + 7a4

i ξ
4)

18η0π3/2 FH
i , (4.37)

should be removed. Eq. (4.35) exposes the basic idea behind many particle mesh
techniques including the PME method and the SPME method. From an inverse
Fourier transform, the real-space force distribution corresponding to the summation
over j in Eq. (4.35) is ∑

j

(1 + 1
6 a2

j∇
2)FH

j δ(r − r j ). (4.38)

The force distribution in Eq. (4.38) is assigned to a regular spatial grid by approx-
imating the delta functions by Lagrangian polynomials in the PME method [67] or
Cardinal B-splines in the SPMEmethod [33]. The interpolated forces are then trans-
formed to the wave space by FFT and the wave-space computation in Eq. (4.35) is
performed. The wave-space results is then brought back to the real space by inverse
FFTs. Subsequently, the velocity on each particle,UW

i , is interpolated back from the
grid, preferably using the same interpolation scheme for the force assignment [68].
Here, the action of the mobility tensor on the force FH, rather than the tensor itself,
is computed. The kernel g1(k) in Eq. (4.36) is effectively a low-pass filter that cuts
off the spatial signals at high k. Computationally, for M3 grid points the FFT scales
as O(M3 log M3). In FFT-based particle mesh methods, it is necessary to have
M ∝ N1/3 to ensure the overall accuracy in the mobility evaluation as the number
of near neighbors in the real-space computation is kept constant. Consequently, the
wave-space computation scales as O(N log N ).

There are two sources of error affecting the accuracy of particle mesh techniques.
The first is associated with the truncation of the wave-space sum (k-summation) in
Eq. (4.35). This is only affected by the number of grid points M in the simulation
box. The second error is the interpolation error, and arises from polynomial approx-
imation of the δ-functions in Eq. (4.38). For a simulation box of size L, this error
scales as (L/M)p, where p is the polynomial order of the approximation scheme.
Since both errors are associated with M , we cannot separate the two error sources.
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Consequently, to maintain a satisfactory overall accuracy, a large M is often used
in the wave-space computations to keep the interpolation error small, resulting in
unnecessary FFT computations.

In addition, for polydisperse suspensions, different particle sizes introduce addi-
tional complications to traditional particle mesh techniques. If the Laplacian in
Eq. (4.38) is computed in the real space in the SPME method, the interpolation
error increases to (L/M)p−2, which further increases the M requirement. For the
PME method, real-space differentiation is unsuitable due to the discontinuity of
Lagrangian polynomials, and all the computations have to be carried out in the
wave space. This significantly increases the total number of FFTs. In addition,
different particle sizes increase the complexity in the algorithm implementation.
Therefore, a simple method with flexible error control is crucial for accurate and
efficient wave-space computation in polydisperse systems.

To address these concerns, we use a new particle mesh technique, the Spectral
Ewald (SE) method [29–31] for the wave-space mobility computation. The SE
method decouples the k-space truncation and interpolation errors, and is accurate,
efficient, and flexible for polydisperse systems. To show this, we use Eq. (4.35)
again as an example and consider the general case of non-orthogonal lattice vectors.
We first introduce the fractional coordinate t = (t1, t2, t3)† ∈ [0, 1)3. For each
point r in the simulation box, r = t1a1 + t2a2 + t3a3 = A · t. Accordingly, defining
q = (q1, q2, q3)† such that k = q1b1+q2b2+q3b3 = B · q, exp(ık · r ) = exp(2πıq · t),
and k2 = q† · B† · B · q. Eq. (4.35) is rewritten in t and q as

UW
i =

1
η0V

∑
q,0

e−2πıq·ti− 1
8 θq2ξ−2 (

1 − 1
6 a2

i q
† · B† · B · q

)
e

1
4 θq2ξ−2

g1(B · q)

·
∑

j

(
1 − 1

6 a2
j q
† · B† · B · q

)
e2πıq·t j− 1

8 θq2ξ−2
FH

j , (4.39)

with two e−
1
8 θq2ξ−2 multiplied after particle positions and one e

1
4 θq2ξ−2 before g1, and

θ is a parameter. Introducing the Fourier transform pair

f̂ q =
∫

dt f (t)e2πıq·t and f (t) =
∫

dq f̂ qe−2πıq·t, (4.40)

the basic idea of SE is to note that

h(t) =
∫

dqe−2πıq·t− 1
8 θq2ξ−2

=

(
8πξ2

θ

) 3
2

exp
(
−

8π2ξ2

θ
‖ t ‖2∗

)
, (4.41)

i.e., the Fourier transform of a Gaussian remains a Gaussian, and the shape of the
Gaussian is controlled by θ. Here, ‖ · ‖∗ indicates distance computation using the
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minimum image convention for periodic systems. The inverse Fourier transform of
the second line of Eq. (4.39) with respect to q is

H (t) =
∑

j

(
1 + 1

24 a2
j π
−2
∇
†
t · B

† · B · ∇t
)

h��(t−t j )F
H
j , (4.42)

where ∇t = (∂/∂t1, ∂/∂t2, ∂/∂t3)†. Eq. (4.42) facilitates interpolation of a discrete
force distribution onto a uniform grid of coordinate t via theGaussian shape function
h(t) in Eq. (4.41). The effect of particle size is automatically incorporated in the
grid assignment scheme in the real space. After converting the real-space H (t) to
the wave-space Ĥq using FFTs, the wave-space computation produces

Ĝq =




e
1
4 θq2ξ−2g1(B · q) · Ĥq, q , 0

0 otherwise.
(4.43)

From Parseval’s theorem, ∫
T

dt f (t)g∗(t) =
∑
q

f̂ q ĝ∗q, (4.44)

where T is a periodic lattice and (·)∗ indicates complex conjugation, Eq. (4.39)
becomes a convolution integral with the Gaussian shape function,

UW
i =

1
η0V

∫
T

dtG(t)
(
1 + 1

24 a2
i π
−2
∇
†
t · B

† · B · ∇t
)

h��(t−ti ), (4.45)

where G(t) is the inverse Fourier transform of Ĝq. Extending the SE method to
couplings beyond Rotne-Prager level is straightforward, with adjusted H (t) and
G(t) based on the Faxén laws and multipole expansions in Sec. 4.2. In this work,
we have implemented the mobility computation to the stresslet and the strain rate
level.

Unlike other particle mesh techniques, the SE formulation in Eqs. (4.39)–(4.45) is
exact and therefore the errors are entirely from the numerical implementations. Since
the FFT algorithm is accurate to machine precision, the sources of error include the
discretization and truncation of the shape function [Eq. (4.41)], and the numerical
integration in Eq. (4.45). Practically, the evaluation of each shape function is limited
to P3 points (P ≤ M) around the particle. Due to the exponential decay of h(t), the
truncation error decreases exponentially with increasing P. Meanwhile, the integral
in Eq. (4.45) is evaluated using trapezoidal quadrature [29, 30], which also exhibits
exponential error decay with increasing P. Therefore, the interpolation error in SE
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method depends exclusively on P for sufficiently large M , and can be separately
controlled from the k-space truncation error. The rapid, exponential error decay is
known as spectral accuracy [29, 30], and this is the namesake of the SE method.

The computation cost of the SE method also becomes apparent with the truncation
of h(t). The grid assignment in Eq. (4.42) and the convolution Eq. (4.45) are
O(N P3) for an N-particle system, and the FFTs to and from the wave space are
O[M3 log(M3)]. With M3 ∝ N , the time limiting step is the FFT, and the SE
method also scales as O(N log N ) as other particle mesh techniques.

The Gaussian shape in h(t) of Eq. (4.41) is controlled by θ, which is parameterized
as

θ =

(
2πPξ
Mm

)2
, (4.46)

on a regular grid of M3 points with P3 points for each shape function evaluation.
The shape parameter m in Eq. (4.46) ensures that at the edge of the h(t) evaluation,
i.e., t2 = P2/(2M)2, h ∝ e−m2/2. Therefore, with fixed M and P, m describes the
truncation of h(t) on the discretized grid and is consistent with the original SE
method of Lindbo & Tornberg [29, 30].

The computation efficiency of the SE method relies on rapidly computing the
O(N P3) different Gaussian shape functions h(t), which involves expensive expo-
nential evaluations. To reduce these expensive operations, Lindbo & Tornberg [29,
30] introduced the fast Gaussian gridding (FGG) technique [69] to the SE method.
In essence, the FGG technique evaluates the exponential function on a regular grid
as

e−α(δt+i∆t)2
= e−α(δt)2

×
(
e−2αδt∆t

) i
×

[
e−α(∆t)2 ] i2

, (4.47)

where α is a constant, δt is the off-grid value, ∆t is the spacing of the regular
grid, and i is an integer within the range [−P/2, P/2]. It reduces the P exponential
evaluations in each direction in the SE method to 3 exponential computations and
at most 2P multiplications. In addition, the last term of Eq. (4.47) is independent
of δt, and therefore only needs to be computed once.

Wave-space computation: the particle size effect
In Sec. 4.3 the terms associated with finite particle sizes in the Faxén laws and
the multipole expansions are incorporated in the real-space derivatives of the shape
function h(t). For example, in a simple shear flowwith lattice vectors a1 = (L, 0, 0),
a2 = (γL, L, 0), and a3 = (0, 0, L), where γ is the strain, the relevant term in
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Eqs. (4.42) and (4.45) is(
1

24 a2
i π
−2
∇
†
t · B

† · B · ∇t
)

h(t) =

8
3

(
πξai

θL

)2 {
−θ(3 + γ2) + 16π2ξ2[(1 + γ2)t2

1 + t2
2 + t2

3 − 2γt1t2]
}

h(t). (4.48)

The finite particle sizes introduce additional features to the shape function, and for
non-orthogonal simulation boxes, non-trivial anisotropy. As a result, compared to
the case of point forces, more points P are needed to resolve the details in Eq. (4.48).
On the other hand, the benefit of evaluating the particle size effects in the real space
is that fewer FFTs are involved. To compute the mobility problem of compressible
suspensions to the stresslet and the strain rate levels, only four pairs of FFTs are
necessary: three are associated with JW in Eq. (4.23), and one is associated with the
Q in Eq. (4.26).

Alternatively, the particle size effect can be completely accounted in the wave space.
This requires, for each particle j, FH

j , T
H
j , and SH

j , as well as a2
jF

H
j and a2

j S
H
j , to

be separately interpolated to the grid via h(t) and brought to the wave space for
computation. The derivatives associated with the Faxén laws and multipole expan-
sions in Sec. 4.2 are carried out in the wave space as multiplication of wave vectors.
The final results are then combined from different convolutions and weighted by
the particle sizes. To demonstrate this, we again take the wave-space Rotne-Prager
velocity, Eq. (4.39), as an example. In this approach, the grid assignment is split
into two parts:

H′(t) =
∑

j

h(t − t j )FH
j and H′′(t) =

∑
j

h(t − t j )a2
jF

H
j . (4.49)

The wave-space computation for q , 0 is also split as

Ĝ′q =e
1
4 θq2ξ−2

g1(B · q) ·
[
Ĥ′q − ( 1

6 q
† · B† · B · q)Ĥ′′q

]
, (4.50)

Ĝ′′q =(−1
6 q
† · B† · B · q)e

1
4 θq2ξ−2

g1(B · q) ·
[
Ĥ′q − ( 1

6 q
† · B† · B · q)Ĥ′′q

]
, (4.51)

and Ĝ′q = Ĝ′′q = 0 when q = 0. The wave-space velocity disturbance is a sum of
two convolutions:

UW
i =

1
η0V

∫
T

dtG′(t)h(t − ti) +
a2

i

η0V

∫
T

dtG′′(t)h(t − ti). (4.52)

Note that the convolution associated with G′′(t) is weighted by the particle size ai.
Compared to the other approach, the wave-space computation is rather straightfor-
ward for the force interpolation and convolution. With the same P, the accuracy



121

is expected to be higher as the derivatives are calculated in the wave space [68].
However, the computation burden is shifted to the FFTs: for the mobility problem
to the S and E level, a total of 20 pairs of FFTs are necessary: 12 for FH

j , T
H
j , and

SH
j , three for a2

jF
H
j , and five for the traceless part of a2

j S
H
j .

A third approach, a hybridization between the wave- and the real-space approaches
above, aims to reduce the errors associated with the high order derivatives of h(t) in
the real space. It retains the real-space derivatives in the force interpolation step, but
when evaluating the Faxén laws, the second order derivatives are computed in the
wave space for improved accuracy. The first order derivatives are computed in the
real space to keep the total number of FFTs low. As a result, this hybrid approach
requires 12 FFTs: four to the wave space and eight from the wave space. Taking
Eq. (4.39) again for example, the most significant error in Sec. 4.3 is due to applying
the operator (∇†t ·B

† ·B ·∇t ) twice to h(t), once during the force interpolation, and
another time during the convolution. The hybrid approach retains the real-space grid
assignment using H (t) in Eq. (4.42), but evaluates the convolution using Eq. (4.52)
with modified Ĝ′(t) and Ĝ′′(t): in the wave-space computations, the content in the
square bracket on the right hand side of Eqs. (4.50) and (4.51) is replaced with Ĥq

in Eq. (4.42). We adopted this hybrid approach in this work to compute the HIs,
and discuss the accuracy of various approaches in Sec. 4.5.

Real-space computation
The real-space contributions to the grand mobility tensorM are computed pairwise
using the formalism in Sec. 4.2. Since JR(r ) [Eq. (4.22)] decays exponentially fast
with distance, when the parameter ξ is sufficiently large, only particle pairs within
a cutoff distance rc need to be evaluated. If each particle has on average Nnnb near
neighbors within the cutoff distance rc, the scaling for the real-space computation
is O(N Nnnb), and by keeping Nnnb constant, the real-space computation scales as
O(N ). Here, fast neighbor search algorithms such as the linked list [70] or the
chaining mesh [71] are used. These methods divide the simulation box into cells of
size slightly larger than rc and sort the particles into the cells. To find the neighbors
of a particle, only particles in the residing cell and its 26 neighboring cells are
searched.

To accommodate the iterative scheme for HI computations in Sec. 4.4, the real-
space grand mobility tensor is constructed as a sparse matrix at each time step.
After the matrix construction, the action of the real-space contributions to M is
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simply a matrix-vector multiplication. Otherwise, neighbor searching and pairwise
HI evaluations need to be carried out at every iteration. Note that we also include
the self-contributions from the wave-space computations, e.g., Eq. (4.37), and the
self-part of the pressure Faxén law [Eq. (4.28)], in the real-space grand mobility
tensor.

GPGPU acceleration of the mobility computation
The mobility computation with the SE method was first implemented on CPU and
the performance was unsatisfactory for dynamic simulations. The bottlenecks are
the force interpolation step and the convolution step. These are common speed lim-
iting steps in particle mesh techniques due to ineffective memory caching between
the particle and the grid data. For polydisperse systems in this work, the situation is
aggravated as more interpolation points P are needed for satisfactory HI resolution.
After a few optimization iterations on CPU, we realized that the key to the perfor-
mance is the memory bandwidths. Since modern GPUs typically have significantly
highermemory bandwidths compared to CPUs, in this work the entire mobility com-
putation is carried out on GPU using CUDA C, a popular GPGPU programming
model with a relatively mature environment for scientific computations.

The GPU mobility computations are carried out in Single Precision (SP) for the
highest GPU performance. The cost of the performance in SP computation is the
accuracy, as the SP arithmetics can be severely limited by the number of significant
digits compared to the Double Precision (DP). However, this is not a problem in this
work for at least three reasons: (i) For dynamic simulations with iterative solvers, the
SP accuracy is often sufficient; (ii) The SEmethod is able to reach the round-off error
of the SP arithmetics with proper parameter selection due to its spectral accuracy;
and (iii) The far-field HIs captured by the mobility computations are more smooth
compared to the near-field interactions, which are evaluated in DP on CPUs. Note
that the near-field interactions have to be evaluated in DP as they change rapidly for
close particles and become singular at particle contact. The split of the near- and the
far-field HIs in SD allows a natural mixed precision HI computation that captures
the most significant contributions from each part.

The GPGPU computations exploit the massively parallel structure of modern GPUs
by simultaneously executing a large number of similar tasks, or threads, on the data.
To maintain performance, data dependencies and communications between threads
should be minimized. This makes the GPU implementation of the SEmethod differ-
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ent from its CPU counterpart. Inspired by earlier GPU implementations of particle
mesh techniques, this work combines the grid-based method of Ganesan et al. [47]
for force interpolation and the particle-based approach of Harvey&De Fabritiis [48]
for convolution. The grid-based force interpolation keeps a list of contributing par-
ticles for each grid point, and the list is updated when the particle configurations are
changed. The grid values are computed in parallel using M3 threads: with the parti-
cle list, each thread sums the force, torque, and stresslet contributions independently
for each grid point. On the other hand, the particle-based convolution is a weighted
summation on P3 grid points for each particle. To maximize parallelization, the
summation for each particle is performed by a group of P threads cooperatively.
Each thread in the group first sums P2 grid points on the transverse plane, and for the
final result, the first thread in the group adds up the values from other threads using
the shared memory of the GPU. Moreover, on the GPU we use the cufft package
for the FFTs and the cusparse package for the sparse matrix-vector multiplication.

4.4 Dynamic simulation with Stokesian Dynamics
The framework of SD [7, 64] approximates the projected grand resistance tensor R
in Eq. (4.12) as

R = M−1 + Rnf, (4.53)

where M is the multipole grand mobility tensor, and Rnf is the pairwise additive
lubrication correction without the far-field contributions. Recall that the inversion
of M captures the many-body aspect of HIs, and the short-range correction Rnf

captures the lubrication effects. The SD recovers the exact result for two-body
problems and agrees well with the exact solutions of three-body problems [72]. It
can provide significant insights to the HIs of dense suspensions [73, 74].

Iterative computation of hydrodynamic interactions
We incorporate the SE mobility computation into the framework of SD using the
iterative scheme of Swan & Brady [63], and call the resulting method the Spectral
Ewald Accelerated Stokesian Dynamics (SEASD). Here, a matrix-free iterative
scheme is necessary as the grand mobility tensor M is not explicitly constructed.
The iterative scheme splits the overall hydrodynamic force,

F H = −RFU · U
H + RF E · E∞, (4.54)
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whereUH is the velocity disturbances due to HIs, into a near-field part and a far-field
part. The near-field part satisfies

0 = −Rnf
FU
· UH + F H,ff + F̃ P, (4.55)

where Rnf
FU

is the FU coupling in Rnf and is stored as a sparse matrix, F̃ P =

F P + Rnf
F E · E

∞ contains the interparticle force F P and the near-field contributions
from E∞. The far-field hydrodynamic force F H,ff satisfies



UH

−E∞


= −M ·



F H,ff

SH,ff


, (4.56)

where SH,ff is the far-field stresslet from HIs. Solving Eqs. (4.55) and (4.56), the
far-field hydrodynamic forces and stresslets are



F̃ H,ff

SH,ff


= M̃−1 · *

,
(λRM − I) ·



(R̃nf
FU

)−1 · F̃ P

0


+



0
E∞


+
-
, (4.57)

where

M̃ = *
,
(I − λRM) ·



(R̃nf
FU

)−1 0
0 0


+M+

-
. (4.58)

To ensure invertibility, a diagonal matrix λRI , with λR a parameter, is added to
Rnf
FU

, i.e., R̃nf
FU
= Rnf

FU
+ λRI , and accordingly F̃ H,ff = F H,ff + λRU

H. A
convenient choice for λR is 6πη0a, where a is the reference particle radius [63].

Solving Eq. (4.57) requires nested iteration as each evaluation of M̃ contains the
solution of the near-field problem with R̃nf

FU
. The near-field problem is efficiently

solved by the GeneralizedMinimumResidual (GMRES)methodwith an Incomplete
Cholesky preconditioner with zero fill-in (IC0) [75]. To reduce the IC0 breakdown,
prior to applying the preconditioner the particles are reordered using the reverse
Cuthill-McKee algorithm. For isotropic suspensions, the near-field problem typi-
cally converges to an error of 10−4 within 10 iterations [36]. For suspensions with
strong structural anisotropy, however, the convergence becomes more difficult and
the IC0 preconditioner breaks down even with the reordering. This is resolved by
increasing λR in R̃nf

FU
, or introducing a threshold value λIC during the IC0 precon-

ditioner computation [75]. Increasing λR in R̃nf
FU

does not change the convergence
of the near-field problem, but increases the number of expensive M̃ iterations. On
the other hand, increasing λIC deteriorates the quality of the IC0 preconditioner and
increases the iterations required for the near-field problem, but has little effect on
the far-field evaluations. In dynamic simulations, both λR and λIC are adjusted for
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optimal computation efficiency. The current SEASD implementation uses the fact
that the near-field evaluation is faster than the far-field evaluation. In the event of
an IC0 breakdown, the algorithm tries to recalculate the IC0 preconditioner with an
increased λIC until the ratio λIC/λR exceeds a threshold. After that, the algorithm
also increases the parameter λR and regenerates R̃nf

FU
for further calculations. This

process is repeated until a successful IC0 preconditioner generation. Presently, the
λIC/λR threshold is 7 and the increments for λIC and λR are 5.

The pressure moment computation in SEASD also follows the near- and far-field
splitting scheme in Eqs. (4.55) and (4.56). Due to the special coupling between the
pressure moments and other force moments in compressible suspensions (Sec. 4.2),
the interaction contribution to the far-field pressure moment is evaluated after FH,ff

and the traceless part of SH,ff are solved in Eq. (4.57). On the other hand, the
near-field part of the pressure moment is evaluated along with other parts of the
stresslets using the near-field resistance functions.

The near-field pairwise lubrication correctionsRnf are based on the exact solutions of
two-body problems in series form [65, 66, 76, 77] up to s−300, where s = 2r/(ai+a j ),
with ai and a j the radii of the pair, is the scaled particle center-center distance. In
the simulations, the lubrication corrections are activated when s < 4: for s > 2.1 the
interpolation of tabulated data and for s ≤ 2.1 the analytical expressions are used.
Note that Rnf constructed from two-body problems contains both the relative and
the collective motions of the particle pair and, as pointed out by Cichocki et al. [23],
the lubrication corrections corresponding to the collective motion can destroy the
far-field asymptotes beyond the pair level. However, for dense suspensions, this
only leads to a minor quantitative difference on the suspension static properties [11]
in conventional SD. Therefore, we retain the full lubrication correction here for
consistency with the existing SD framework. The SD implementations of Ando &
Skolnick [13] removed the pair collective motion in the lubrication corrections.

Far-field preconditioner
Here we introduce a preconditioner for M̃ to reduce the number of expensive far-field
mobility evaluations when solving Eq. (4.57). Since M̃ is not explicitly constructed,
the preconditioner needs to be built from a suitable approximation. For mobility
problems without the lubrication corrections, Saintillan et al. [37] and Keaveny [44]
found substantial iteration improvement even with the diagonal mobility approxi-
mation. Unfortunately, the approximation of M̃ is more involved due to the presence
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Figure 4.1: The number of far-field iterations, i.e., the number of the grand mobility
tensor M̃ evaluations, as a function of the GMRES residual with (solid line) and
without (dashed line) the far-field preconditioner for a bidisperse suspension of
N = 200, λ = 2, x2 = 0.3, and φ = 0.2.

of (R̃nf
FU

)−1. In this work, a block diagonal approximation of M̃ for the far-field
preconditioner is adopted. First, the near-field resistance tensor R̃nf

FU
is approxi-

mated by N blocks of 6 × 6 submatrices along its diagonal. Using the direct sum
notation, this is

⊕N
i=1(R̃nf

FU
)ii, where

⊕
is the direct sum, and (R̃nf

FU
)i j is the

block submatrix between particles i and j in R̃nf
FU

. To approximate M̃, we use

(R̃nf
FU

)−1 ≈

N⊕
i=1

[(R̃nf
FU

)ii]−1, (4.59)

which only involves N inversion of 6 × 6 matrices. The mobility tensor M is
approximated by its block-diagonal components using direct Ewald summation, i.e.,
for each particle, the approximation only considers the interactions with its periodic
images. To obtain the preconditioner, we apply the Incomplete LU decomposition
with zero fill-in (ILU0) [75] on the approximated M̃, which is constructed following
Eq. (4.58) with the approximated (R̃nf

FU
)−1 and M. Unlike Saintillan et al. [37],

including close pair interactions has an adverse effect on the preconditioner due to
the diagonal approximation of R̃nf

FU
.

The effectiveness of this preconditioner on the far-field iteration is demonstrated
in Fig. 4.1 and Table 4.1. In this case, the HIs corresponding to random forces
and strain rates are solved for a random bidisperse suspension of 200 particles with
λ = 2, x2 = 0.3, and φ = 0.2, and the SE parameters are ξ = 0.5, (M, P) = (64, 15),
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rc = 4(ai + a j ), and m = 8. For these parameters, the far-field preconditioner
substantially reduces the number of GMRES iterations and the computation time by
a factor between 2.5 and 3, depending on the GMRES residual. The time required
for constructing the approximate M̃ and its ILU0 decomposition is far less than the
GMRES computation time, even with the GPU acceleration at a residual of 10−2.
Therefore, for the parameters in Fig. 4.1, using the far-field preconditioner is always
justified. Generally speaking, however, the preconditioner is preferred for small
GMRES residual, and the exact break-even point depends on the SE parameters
such as M , P, and rc. Moreover, since the preconditioner construction is an O(N )
operation and the M̃ evaluation scales as O(N log N ), preconditioning is always
justified for large systems. In addition, in dynamic simulations, further time saving
is possible by updating the preconditioner every few time steps.

Dynamic simulation of Brownian suspensions
Particle dynamics in a suspension are described by the generalized N-body Langevin
equation,

m ·
dU
dt
= F H + F P + F B, (4.60)

where m is the generalized mass/moment of inertial matrix, U is the generalized
particle velocity andF H, F P, andF B are the forces on particles. The hydrodynamic
forceF H arises from theHIs and can be computed fromEq. (4.54). The interparticle
force F P originates from the interparticle potentials. The Brownian force F B is
due to thermal fluctuations in the solvent, and from the fluctuation-dissipation
theorem [78], F B satisfies

F B(t) = 0 and F B(0)F B(t) = 2kBTδ(t)RFU . (4.61)

Here, the overline denotes an average over the solvent fluctuations and kBT is the
thermal energy scale.

The configuration evolution is obtained by integrating Eq. (4.60) twice over an
appropriate time scale ∆t, and the result is [38, 79]

∆X =
[
U∞ + R−1

FU
·
(
RF E · E∞ + F P

)]
∆t + kBT∇ · R−1

FU
∆t + ∆XB, (4.62)

where∆X is the suspension configuration change over time∆t,U∞ is the generalized
velocity from the imposed flow, and ∆XB is the Brownian displacement which
satisfies

∆XB = 0 and ∆XB∆XB = 2kBT∆tR−1
FU

. (4.63)
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The second term on the right hand side of Eq. (4.62) is the deterministic drift due
to the configuration dependent Brownian force F B, and the divergence operator
is acting on the last index of R−1

FU
. The divergence can be numerically evaluated

following Banchio & Brady [39].

The suspension bulk stress is obtained by spatially averaging the Cauchy stress [50,
51], i.e.,

〈Σ〉 = −〈p〉f I+2η0
〈
E∞

〉
+ (κ0−

2
3η0)E∞I− nkBT I+ n(〈SE〉+ 〈SP〉+ 〈SB〉), (4.64)

where 〈p〉f is the average solvent pressure, 〈·〉 is the volume average over the entire
suspension, κ0 is the fluid bulk viscosity, and n is the particle number density. The
particle stresslets SH are broken down as SH = SE + SP + SB, where SE is the
contributions from the imposed flow, SP from the interparticle potential, and SB

from the Brownian motion. Their suspension averages are expressed in resistance
tensors

〈SE〉 = − 〈RSU · R
−1
FU
· RF E − RSE〉 : 〈E∞〉, (4.65)

〈SP〉 = − 〈(RSU · R
−1
FU
+ r I) · FP〉, (4.66)

〈SB〉 = − kBT〈∇·(RSU · R
−1
FU

)〉, (4.67)

where the divergence in Eq. (4.67) is applied to the last index in the bracket. For
hard-sphere suspensions, 〈SP〉 = 0 as the HI and the interparticle force contributions
exactly cancel each other [51]. The Brownian stresslet 〈SB〉 can also be computed
using the modified mid-point scheme [39].

In dynamic simulations, the Brownian displacement ∆XB is evaluated from the
Brownian force F B in Eq. (4.61) as

∆XB = R−1
FU
· F B

∆t. (4.68)

Following Banchio & Brady [39], the Brownian force can be split into a near-field
part and a far-field part,

F B = F B,nf + F B,ff . (4.69)

Both F B,nf and F B,ff have zero mean and satisfy

F B,nfF B,nf =
2kBT
∆t

Rnf
FU

, (4.70)

F B,ffF B,ff =
2kBT
∆t

(M−1)FU, (4.71)

F B,ffF B,nf =0, (4.72)
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where (M−1)FU is the FU block of the inverted far-field grand mobility tensor.
The pairwise-additive lubrication corrections allow pairwise evaluation of the near-
field Brownian force F B,nf [39]. SinceM is not explicitly constructed, to compute
F B,ff , it is necessary to solve



F B,ff

∆SB


=

2kBT
∆t

(M−1/2) · Ψ, (4.73)

where Ψ is a Gaussian noise of zero mean and unit variance, and ∆SB is the
fluctuation part of the Brownian stress in Eq. (4.67). The inverse square root of the
grand mobility tensor M−1/2 in Eq. (4.73) can be approximated using Chebychev
polynomials with eigenvalue estimations [39, 80], or solved as an Initial Value
Problem (IVP) [40, 81], which was first used by Swan & Brady [40] in ASD. The
solution of the following IVP [82] with matrix A,

dx
dτ
= −1

2 [τI + (1 − τ)A]−1 · (A − I ) · x, x(0) = c, (4.74)

at τ = 1 satisfies x(1) = A−1/2 · c. Swan & Brady [40] devised a numerical scheme
to solve Eq. (4.74) in ASD: at each time step with step size ∆τ, Eq. (4.74) is marched
first with a Euler forward half-step then a Euler backward half-step, i.e.,

xi+ 1
2
− xi

∆τ/2
= − 1

2 [τiI + (1 − τi)A]−1 · (A − I ) · xi, (4.75)

xi+1 − xi+ 1
2

∆τ/2
= − 1

2 [τi+1I + (1 − τi+1)A]−1 · (A − I ) · xi+1. (4.76)

With A = M and c = (2kBT/∆t)Ψ, Eq. (4.73) is solved at τ = 1. In SEASD,
both Eqs. (4.75) and (4.76) are solved iteratively, usually with a smaller tolerance
compared to ∆τ. The results with ∆τ = 0.1 are often satisfactory.

For dynamic simulation of Brownian suspensions under a simple shear flow with
strain rate γ̇, the ratio of the convective transport rate γ̇ and the diffusive transport
rate kBT/(6πη0a3

p) defines the Péclet number,

Pe =
6πη0a3

pγ̇

kBT
. (4.77)

Small Pe indicates Brownian motion dominance, and large values suggest negligible
Brownian influences. For bidisperse suspensions, we define Pe based on the size of
the small particles to capture the dynamics of the most rapid changes, i.e., ap = a1.
In dynamic simulations, the time in Eq. (4.62) is scaled according to the Péclet
number: when Pe ≤ 1, it is scaled with the diffusive time scale of the small
particles, 6πη0a3

1/(kBT ), and when Pe > 1, the convective time scale γ̇−1.
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The mean-field Brownian approximation
The most time-consuming step in dynamic simulations of Brownian suspensions
is computing F B,ff from Eq. (4.73) due to the large number of M evaluations,
although the IVP approach in Sec. 4.4 is expected to be faster than the Chebychev
approximation [40]. Further speed improvement is possible by introducing a mean-
field approximation of theBrownian-related quantities [39]. In this approach, the far-
field grandmobility tensorM is approximated as a diagonal matrix for all Brownian-
related computations, and the full HI computations are retained for the flow-related
quantities such as SE. As a result, this method retains the O(N log N ) scaling, but
with an order of magnitude smaller prefactor for monodisperse suspensions [39].
The diagonal approximation ofM uses the single particle result for the ES coupling,
and the far-field translational and rotational short-time self-diffusivities for theUF
coupling. These far-field values are fromMonte-Carlo computations of equilibrium
configurations at the same volume fraction without the lubrication corrections.
Extending this approach to polydisperse suspensions is trivial: the suspension far-
field diffusivities in the diagonal elements are replaced by the far-field diffusivities
for each species. The mean-field Brownian approximation is especially suitable
for studying dense suspension rheology, where the HIs are dominated by the near-
field lubrication interactions. Following Brady & Banchio [39], we designate this
approximation scheme SEASD-nf.

4.5 Accuracy and performance
Mobility computation accuracy
The accuracy of the mobility computation is characterized by the relative ∞-norm
of the strain rate, i.e.,

e∞,r (E) = max
i∈{1,...,N }

‖ESE
i − E∗i ‖
‖E∗i ‖

, (4.78)

where ESE
i is the particle strain rate from the SE method and E∗i is a well-converged

value from direct Ewald summation. Other error measurements can be similarly
defined. For example, e∞,r (U) for the linear velocity was used by Lindbo & Torn-
berg [29] to characterize the accuracy of the SE method for point forces. For the
stresslet-strain rate level mobility computation here, we found e∞,r (E) the most
stringent error criteria, possibly because more derivatives are involved in Eq. (4.15).

To facilitate quantitative discussions, in this section we focus on a random bidisperse
hard-sphere system of N = 50, φ = 0.05, λ = 2, and x2 = 0.3. The imposed force,
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Figure 4.2: The wave-space accuracy measured by e∞,r (E) [Eq. (4.78)] as a
function of the interpolation point P (a–c) and the CPU wall time in seconds (d–f)
with various shape parameter m at M = 64 and ξa1 = 0.1. The particle size
effects are incorporated using (a), (d): the real-space, (b), (e): the hybrid, and
(c), (f): the wave-space approaches in Sec. 4.3. The values of m are annotated
in each figure. The solid and dashed lines represent the case of γ = 0 and 0.5,
respectively. The dashed dotted lines show the exponential minimum error decay,
e∞,r (E) ∼ exp(−Pπ/2).

torque, and stresslet on each particle are randomly drawn from a normal distribution,
and scaled to ensure ‖Fi‖ = 1, ‖Ti‖ = 1, and ‖Si‖ = 1. The simulation box lattice
vectors are a1 = (L, 0, 0), a2 = (γL, L, 0), and a3 = (0, 0, L), with γ the strain. The
computations are carried out in DP accuracy on CPU.

Wave-space accuracy

Fig. 4.2 presents the accuracy of wave-space computations using different SE im-
plementations with orthogonal (γ = 0) and sheared (γ = 0.5) simulation boxes in
solid and dashed lines, respectively. The error e∞,r (E) is shown as functions of the
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interpolation point P and the CPU wall time (in seconds) with various shape param-
eter m at M = 64 and ξa1 = 0.1. Different particle size incorporation approaches
discussed in Sec. 4.3 are presented: in Fig. 4.2a and 4.2d the real-space approach,
in Fig. 4.2b and 4.2e the hybrid approach, and in Fig. 4.2c and 4.2f the wave-space
approach.

There are several key observations in Fig. 4.2a–4.2c. First of all, the errors associated
with orthogonal and sheared simulation boxes are almost identical. This validates the
general formalism for non-orthogonal simulation boxes in Sec. 4.3. Secondly, the SE
method is sensitive to P and m, which respectively correspond to the discretization
and truncation of the shape function h(t). At a given m, e∞,r (E) first decreases
exponentially, followed by a much slower reduction with increasing P. The two-
stage reduction of e∞,r (E) is well understood for point forces [29]: the exponential
decrease is due to the improved resolution of the shape function, and the slower
reduction is associated with the Gaussian truncation from the shape parameter m.
Therefore, at large P andm the result is expected to be accurate; indeed, in Fig. 4.2 the
minimum errors are all close to themachine precision. Such accuracy is inaccessible
using the PME or the SPME method at this grid number (M = 64) due to the
inherent coupling between the interpolation and the wave-space truncation errors.
Moreover, for a given P, e∞,r (E) first decreases to a minimum and then increases
with increasing m. At the minimum, e∞,r (E) is transitioning from exponential
to slower decay, and the errors from the shape resolution are about the same as
the errors from the Gaussian truncation. From the error estimation of Lindbo &
Tornberg [29, 30], at a given P, the minimum wave-space error e∞,r (E) and the
corresponding shape parameter m are

e∞,r (E) ∼ exp(−Pπ/2) and m ∼
√
πP, (4.79)

respectively. The asymptotic exponential decay of the minimum e∞,r (E) is also
shown as dash-dotted lines in Fig. 4.2. The exponential decay of the minimum error
with respect to P to the round-off precision at large P and m clearly demonstrate the
spectral accuracy [83] of the SE method.

In Fig. 4.2a–4.2c, different particle size incorporation approaches exhibit similar
qualitative behaviors with quantitative differences. For example, to achieve an
accuracy of e∞,r (E) ∼ 10−4 at the optimal m, in Fig. 4.2a, 4.2b, and 4.2c the
required P are respectively 15, 13, and 9, corresponding to the real-space, hybrid,
and wave-space approaches discussed in Sec. 4.3. The latter two approaches reduce
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the h(t) evaluations by 35% and 78% compared to the real-space approach at a
cost of the number of required FFTs. Therefore, there is a subtle balance between
the number of interpolation points P and the number of FFTs in the SE method
implementation. This balance is quantified in Fig. 4.2d–4.2f. In terms of the wall
times, the real-space and the hybrid approaches are comparable, and both are much
faster than the wave-space approach, which involves extensive FFT computations.
Clearly, the accuracy gain in the wave-space approach cannot justify the large wall
time over the entire P range. Meanwhile, for a given accuracy, the hybrid approach
is slower than the real-space approach when e∞,r (E) & 10−4, and becomes faster
when e∞,r (E) . 10−4. Since fast computationswith high accuracy aremore relevant
for dynamic simulations, the hybrid approach in Fig. 4.2b and 4.2e is adopted in
SEASD.

Finally, Fig. 4.2 shows that, in addition to the spectral accuracy and the ease of
implementation, the SE method also allows flexible error control by adjusting P and
m without changing the grid points M . As a result, the errors from the wave-space
summation and the interpolation can be separated, and this permits more flexible
error control when computing HIs in polydisperse systems. On the other hand, such
error separation is not possible in other particle mesh techniques such as the PME
and the SPME methods.

Overall mobility accuracy

Both the wave-space and the real-space computations affect the overall mobility
accuracy, and the controlling parameters are the grid point M , the interpolation
point P, the Gaussian shape parameter m, the real-space cutoff radius rc, and the
splitting parameter ξ. Out of the five parameters, only changes in ξ and m do not
affect the computational cost since adjusting M affects the FFT size, changing rc

influences the number of near neighbors, etc. With a fixed computation cost, i.e.,
fixed M , P, and rc, it is desirable to find the combination of m and ξ that minimizes
the overall error. Alternatively, with accurate error estimations, the parameter
selection can start from a desired tolerance [30]. However, error estimations for
hydrodynamic interactions beyond the point force level are unavailable and difficult
to obtain. Therefore, the simple and pragmatic approach with fixed computational
costs is adopted here.

Fig. 4.3 and 4.4 present the effects of m and ξ on the overall mobility accuracy with
various P and rc for M = 64 and 32, respectively. The wave-space computation uses



135

3

4

5

6

7

8

9

m

3

4

5

6

7

8

9

m

3

4

5

6

7

8

9

m

rc=2(ai+aj)

P=9

rc=4(ai+aj)

P=9

rc=6(ai+aj)

P=9

0.2 0.4 0.6 0.8

a1

0.2 0.4 0.6 0.8

a1

0.2 0.4 0.6 0.8

a1

rc=2(ai+aj)

P=15

log10[e ,r(E)]
-9.6 -8.4 -7.2 -6.0 -4.8 -3.6 -1.2 0-2.4

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

rc=2(ai+aj)

P=21

rc=4(ai+aj)

P=21

rc=6(ai+aj)

P=21

rc=4(ai+aj)

P=15

rc=6(ai+aj)

P=15

Figure 4.3: (Color online) The overall accuracy measured in e∞,r (E) as a function
of the splitting parameter ξa1 and the shape parameter m at M = 64 for a real-space
cutoff radius rc = 2(ai+a j ) (left column), 4(ai+a j ) (middle column), and 6(ai+a j )
(right column), and the interpolation point P = 9 (top row), 15 (middle row), and
21 (bottom row). The thick black lines represent m =

√
πP. The simulation cell

is orthogonal (γ = 0), and the particle size effects are accounted using the hybrid
approach.
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Figure 4.4: (Color online) The overall accuracy measured in e∞,r (E) as a function of
the splitting parameter ξa1 and the shape parameter m with M = 32 for a real-space
cutoff radius rc = 2(ai+a j ) (left column), 4(ai+a j ) (middle column), and 6(ai+a j )
(right column), and the interpolation point P = 9 (top row) and 15 (bottom row).
The thick black lines represent m =

√
πP. The simulation cell is orthogonal (γ =

0), and the particle size effects are accounted using the hybrid approach.

the hybrid approach in Sec. 4.3, and the simulation box is orthogonal (γ = 0). The
thick black lines in these figures represent the optimal shape parameter m = C

√
πP

with C = 1. Although Lindbo & Tornberg [29, 30] established that the optimal m

for the wave-space accuracy takes place with C slightly below unity, here the choice
of C = 1 is for simplicity. Note that in our implementation, the cutoff radius rc

depends on the particle pair radii ai and a j .

It proves revealing to discuss Fig. 4.3 and 4.4 from the perspective of error sources.
As mentioned earlier, the SE method allows separate controls in the real-space and
wave-space truncation errors and the wave-space interpolation error. Earlier inves-
tigations of the SE method [29, 30] showed that the wave-space truncation errors
for both the electrostatic and the hydrodynamic interactions decay as e−[πκ∞/(ξL)]2

with κ∞ = 1
2 (M −1), and the real-space truncation errors decay as e−ξ

2r2
c . The same
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results should hold for the mobility computations here. The interpolation error,
controlled by P and m, also affects the overall accuracy.

Parameters M (through κ∞) and ξ influence the wave-space truncation errors. Com-
paring Fig. 4.3 and 4.4 shows the effects of M . Note that the color scales in these
figures are different, and the minimum e∞,r (E) in Fig. 4.3f and 4.4f is approximately
the same. The qualitative features the two figures are similar. Quantitatively, de-
creasing M increases the wave space truncation error, and it shrinks the parameter
space corresponding to e∞,r (E) < 1. Consequently, at M = 32, the accuracy of the
mobility evaluation is more sensitive to ξa1 compared to the case of M = 64. On the
other hand, the wave-space truncation error grows with ξ. For all plots in Fig. 4.3
and 4.4, the overall error e∞,r (E) increases with ξa1 after it reaches a minimum.
Apparently, the wave-space truncation error dominates the accuracy at large ξa1.

The real-space truncation errors are directly affected by ξ and rc. Contrary to
the wave-space truncation error, increasing ξ improves the real-space accuracy in
Fig. 4.3 and 4.4. The real-space truncation error dominates the overall accuracy at
small ξa1. The overall error e∞,r (E) reaches a minimum at intermediate ξa1 when
the wave- and the real-space errors are approximately the same. Comparing rows
in Fig. 4.3 and 4.4 illustrates that reducing rc increases the real-space truncation
error and shifts the e∞,r (E) minimum towards larger ξa1, e.g., Fig. 4.3g–4.3i. It
also shows a lesser reduction in e∞,r (E) with increasing ξ at small ξa1. With the
small rc in Fig. 4.3g, the minimum in e∞,r (E) takes place at ξa1 > 1.

The SE interpolation error, controlled by m and P, also affects the overall accuracy.
Consistentwith observations in Fig. 4.2, the overall error e∞,r (E) reaches aminimum
with increasing m. The influences of m on e∞,r (E) are less obvious when the overall
accuracy is dominated by the real-space truncation error, e.g., when ξa1 < 0.46
in Fig. 4.3i. Comparing columns in Fig. 4.3 and 4.4, e.g., Fig. 4.3i, 4.3f, and
4.3c, shows that reducing P increases the interpolation error due to poor Gaussian
resolution and shifts the e∞,r (E) minimum towards lower m. Moreover, the overall
accuracy deteriorates at large m and small P, e.g., in Fig. 4.3c, e∞,r (E) > 1 when
m > 8. In addition, the thick black lines representing m =

√
πP provide a good

approximation to the regions of the highest accuracy in both Fig. 4.3 and 4.4. This
approximation, although not exact, substantially simplifies the search for the optimal
ξ.

The influences of the particle number N on the overall mobility accuracy is presented
in Fig. 4.5 for M = 32 and 64. The simulation box size is fixed at L/a1 = 23.5 in
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Figure 4.5: (Color online) The overall mobility accuracy measured in e∞,r (E) as
a function of the splitting parameter ξ with N = 50, 100, and 200, and M = 32
(filled symbols) and 64 (open symbols) for (a): constant box size L/a1 = 23.5 and
(b): constant volume fraction φ = 0.05. Changes are based on the baseline case in
Sec. 4.5. Other parameters are P = 13, m = 6.7, and rc = 4(ai + a j ).

Fig. 4.5a, and the suspension volume fraction is fixed at φ = 0.05 in Fig. 4.5b. Other
parameters remain unchanged from the baseline case, and the mobility computation
parameters are P = 13, m = 6.7, and rc = 4(ai+a j ). The mobility accuracy is more
sensitive to changes in L than changes in φ. In Fig. 4.5a, e∞,r (E) changes little,
but in Fig. 4.5b, the e∞,r (E) minimum increases drastically with different N . The
almost identical reduction in e∞,r (E) at small ξa1 suggests that the real-space error
are not significantly affected by N in either case. The different e∞,r (E) at higher
ξa1 in Fig. 4.5b shows that the wave-space computation is sensitive to the box size
at fixed P and m. This is well-known for particle mesh techniques in general [29,
68]. Therefore, to retain the computational accuracy with larger systems at the same
volume fraction, it is necessary to increase the grid point M or the interpolation
point P. Note that the same qualitative error behaviors are found in the pressure
moment computations.

Accuracy of the GPGPU implementation
The accuracy of the GPU mobility computation discussed in Sec. 4.3 is presented
in Fig. 4.6. The GPU computations are clearly accurate enough for dynamic sim-
ulations. Fig. 4.6a shows the GPU wave-space accuracy as a function of the inter-
polation point P for various shape parameters m in orthogonal (γ = 0) and sheared
(γ = 0.5) simulation boxes. Here, the particle size effects are incorporated using
the hybrid approach in Sec. 4.3, and the SE method parameters are identical to those
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Figure 4.6: The accuracy of GPGPU mobility computation measured in e∞,r (E).
(a): the wave-space accuracy as a function of P for various m with the same
parameters in Fig. 4.2b. The GPU results are shown in black lines, and the CPU
results in Fig. 4.2b are reproduced in gray lines. The values of m are annotated in the
figure. The solid and dashed lines represent the case of γ = 0 and 0.5, respectively.
(b): The overall mobility accuracy from the GPU (solid lines) and the CPU (dashed
lines) computations as a function ξa1 with rc = 4(ai + a j ) and m =

√
πP. The

corresponding M and P are annotated in the figure.

of Fig. 4.2b. Moreover, for comparison the data in Fig. 4.2b are reproduced in gray.
In Fig. 4.6a, the GPU results in black are indistinguishable from the CPU results in
gray when e∞,r (E) > 10−5 for all m and γ, indicating that the GPU computations are
only limited by the SP arithmetics. When the error e∞,r (E) reaches 10−5, increasing
the interpolation point P does not improve the accuracy on GPUs, while the error
from the DP arithmetics on CPU continues to decrease until e∞,r (E) ∼ 10−14. In
addition, the wave-space errors remain e∞,r (E) ∼ 10−5 after reaching the SP limit,
i.e., increasing P does not adversely affect the wave-space accuracy.

The overall GPU mobility accuracy as a function of ξa1 is presented in Fig. 4.6b
for two M and P combinations with m =

√
πP and rc = 4(ai + a j ) in orthogonal

simulation boxes. The errors e∞,r (E) are computed using the baseline case of
Sec. 4.5. The GPU results are shown in solid lines and the CPU results in dashed
lines. When the overall error e∞,r (E) > 10−4, i.e., the case of (M, P) = (32, 13)
in Fig. 4.6b, the GPU and the CPU results are indistinguishable from each other.
However, the differences are evident for the case of (M, P) = (64, 21). When
0.5 < ξa1 < 0.85, the GPU computations deviate from the CPU results with larger
errors due to the SP arithmetics. Beyond this range, the CPU and the GPU results
overlap again. In both cases, the accuracy achieved by theGPUmobility computation
is sufficient for dynamic simulations, where the error tolerance is typically set at
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Figure 4.7: (Color online) The wall times (in second) of 100 time steps in dynamic
simulations at Pe = 1 as functions of the particle number N using the conventional
SD, SEASD, and SEASD-nf. The open symbols represent the CPU mobility com-
putation and the filled symbols the GPU mobility computation. The dashed line
show the O(N2.2) scaling, and the dash-dotted line show the O(N log N ) scaling.
The suspension is bidisperse with λ = 2, y2 = 0.5, and φ = 0.45 starting from
equilibrium configurations.

10−3. The results in Fig. 4.6 dispel any concerns over the SP accuracy in the GPU
mobility computations for dynamic simulations.

Overall performance
To assess the performances of various SEASD implementations, we measure the
wall time to march 100 steps in a dynamic simulation of Brownian suspensions at
Pe = 1, starting from an equilibrium bidisperse configuration with λ = 2, y2 = 0.5,
and φ = 0.45. This composition is different from the baseline case in Sec. 4.5,
and is selected to reflect the SEASD performance in dense systems. The mobility
parameters are fixed at P = 11, rc = 4(ai + a j ), ξ = 0.35 and m = 5.8, and the
grid point M changes as M ∝ N1/3 starting from M = 24 at N = 27. These
parameters are adequate for dynamic simulations, as is demonstrated in Sec. 4.6 and
4.6. The tolerances of the iterative solvers are 10−3. In the SEASD, the far-field
Brownian forces are calculated using Eqs. (4.75) and (4.76) with ∆τ = 0.2, and in
the SEASD-nf, the far-field diffusivities are from Table 4.3. All the timing results
are collected from a workstation with Intel i7-3770K CPU and NVIDIA GeForce
GTX 680 GPU.

Fig. 4.7 presents the overall performance in terms of the wall time as a function of
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Table 4.2: The GPU/CPU speedup of various parts of a mobility computation with
different system size N . The CPU baseline time (in seconds) is shown in parenthesis.

GPU/CPU speedup (CPU baseline time in seconds)

N wave-space
setup

wave-space
evaluation

real-space
setup

real-space
evaluation

64 13.0 9.5 3.9 8.2
(0.00319) (0.00604) (0.00222) (0.00059)

512 72.6 16.1 2.7 10.0
(0.0338) (0.0514) (0.0543) (0.00921)

1728 77.4 13.4 2.6 10.8
(0.126) (0.191) (0.217) (0.0353)

4096 83.6 23.1 2.6 9.9
(0.329) (0.607) (0.543) (0.0801)

the system size N for various SEASD implementations. The open symbols represent
the CPU results and the filled symbols represent the GPU results. For comparison,
Fig. 4.7 also shows the wall time from the conventional SD [11, 12, 84] in red
squares. Various SEASD implementations show the expected O(N log N ) asymp-
totic scaling, highlighted by the dash dotted line in Fig. 4.7. On the other hand, the
conventional SD scales as O(N2.2), highlighted by the dashed line. This scaling
is due to the combined effect of the pairwise grand mobility tensor construction
and the explicit matrix inversion, and should recover O(N3) at higher N . Compar-
ing the wall times between the GPU and CPU implementations demonstrates the
power of GPGPU programming in dynamic suspension simulations. At large N ,
the GPU/CPU speedup can reach 7 for SEASD and on average 3 for SEASD-nf.
Therefore, by combining the GPGPU programming and the SEASD-nf algorithm,
a total speedup of ∼ 20 can be achieved. Such speedup makes studying suspension
dynamics in larger systems and at longer times feasible. Compared to SEASD,
SEASD-nf benefits less from the GPGPU programming because the algorithm has
fewer far-field mobility evaluations. Moreover, in Fig. 4.7, the wall time for the GPU
SEASD-nf at large N does not grow monotonically with N , and this is because the
FFT computation in cufft strongly depends on the grid point M , which follows
M ∝ N1/3. Finally, at N ≈ 216, the wall time between the CPU SEASD and SD
breaks even, and at N ≈ 50, and wall times among the GPU SEASD, the CPU
SEASD-nf, and SD are about the same. For all the system sizes studied here, the
GPU SEASD-nf is always faster than the conventional SD.

To complement the overall time measurements in Fig. 4.7, Table 4.2 presents the
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corresponding GPU/CPU speedup and the baseline CPU time for various parts
in a mobility evaluation at different N . Both the wave-space and the real-space
evaluations require a setup step that only needs to run once for each configuration.
The table demonstrates that the GPGPU programming significantly improves the
wave-space computations. At N = 4096 the wave-space GPU/CPU speedup for
the setup step is 83.6 and for the evaluation step is 23.1. In contrast, the GPU
performance for the real-space evaluation is less impressive. For N = 4096, the
speedup for the real-space setup and evaluation are 2.6 and 9.9, respectively. The
data from Table 4.2 show that the bottleneck for the GPU mobility evaluation is the
real-space setup. Moreover, the near-field computations, which are carried out on
CPU, reduce the overall speedup in dynamic simulations.

4.6 Static and dynamic simulation results
Short-time transport properties
In this section we present static SEASD simulation results on the short-time trans-
port properties of monodisperse and bidisperse hard-sphere suspensions. With the
iterative computation scheme in Sec. 4.4, the short-time translational and rotational
self-diffusivities, instantaneous sedimentation velocities, and high-frequency dy-
namic shear and bulk viscosities can be straightforwardly evaluated. Other transport
properties can also be calculated with an appropriate computation scheme.

The suspension short-time limit refers to a time scale t satisfying τI � t � τD, where
τI is the inertial time and τD is the diffusion time. The inertia time τI =

2
9 ρpa2

p/η0,
where ρp and ap are the characteristic particle density and radius, describes the
time required for the particlemomentum to dissipate by interacting with the solvent.
When τI � t, the particle momentum dissipates almost instantaneously and the par-
ticle dynamics are completely overdamped. The diffusion time τD = 6πη0a3

p/kBT

characterizes the time scale of suspension configuration change and t � τD ensures
that the transport properties entirely arise from the (instantaneous) HIs. Therefore,
they are only determined by the configuration X , and can be calculated by sampling
independent but equivalent configurations. In this work we use the Monte-Carlo
procedure of Wang & Brady [11]: the hard-sphere configurations are first gener-
ated by an event-driven Lubachesky-Stillinger algorithm [85, 86], followed by a
short equilibration. The transport properties are then computed statically. Here
we compare the results from the SEASD with CPU mobility computation with our
recent conventional SD results [11]. Although the SEASD and the SD are based
on the same formalism, the grand mobility tensorM constructed from SD includes
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an additional mean-field quadrupole term [64], which can have quantitative conse-
quences. For bidisperse hard-sphere suspensions, we focus on the composition with
λ = 2 and y2 = 0.5. In the SEASD computations, the system size is N = 800, and
the results are averaged over 500 independent configurations. Note that for simple
cubic array of monodisperse particles, SEASD produces identical results as those
of Sierou & Brady [36].

Short-time translational and rotational self-diffusivities

Themicroscopic definition of the short-time translational and rotational self-diffusivities,
dt

s,α and dr
s,α respectively, for homogeneous suspensions are,

dt
s,α =

kBT
Nα

〈∑
i∈α

q̂ · µtt
ii · q̂

〉
, and dr

s,α =
kBT
Nα

〈∑
i∈α

q̂ · µrr
ii · q̂

〉
, (4.80)

where q̂ is a vector of unit length for the averaging process and µtt
ii and µrr

ii are
respectively the diagonal blocks of the linear velocity-force and angular velocity-
torque couplings in R−1

FU
. Note that i ∈ α in Eq. (4.80) suggests the summation is

restricted to particles of species α. The diffusivities are computed using the matrix-
free approach of Sierou&Brady [36]: the velocity disturbanceUR corresponding to
a stochastic external force F R satisfying 〈F R〉 = 0 and 〈F RF R〉 = I is evaluated.
It is straightforward to show that the ensemble average

〈
URF R

〉
= diag(R−1

FU
),

allowing extraction of the diffusivities in Eq. (4.80).

The computed short-time translational self-diffusivities dt
s,α exhibit a strong N−1/3

size dependence due to the periodic boundary conditions. The size dependence
from an N-particle system can be eliminated by adding the following quantity to the
results,

∆N dt
s,α =

1.76dt
0,1

(x1 + x2λ3)
1
3

η0
ηs

(
φ

N

) 1
3
, (4.81)

where dt
0,1 = kBT/(6πη0a1) is Stokes-Einstein-Sutherland diffusivity for species 1,

and ηs is the high-frequency dynamic shear viscosity from the same configurations.
The shear viscosity exhibits little size dependence, and can be directly used. The
effectiveness of Eq. (4.81) has been demonstrated by Wang & Brady [11] in the
wave-number-dependent hydrodynamic functions. The results here always contain
this finite size N correction.

Fig. 4.8a and Fig. 4.8b respectively present dt
s,α/d

t
0,α and dr

s,α/d
r
0,α of monodisperse

and bidisperse suspensions, where the single particle translational and rotational
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Figure 4.8: (Color online) The species short-time (a): translational and (b): rota-
tional self-diffusivities, dt

s,α and dr
s,α respectively, as functions of the total volume

fraction φ for monodisperse and bidisperse hard-sphere suspensions with λ = 2,
y2 = 0.5. The results are scaled with the single particle translation and rotational
diffusivity, dt

0,α and dr
0,α, respectively. The SEASD results are shown in symbols

and the conventional SD results from Wang & Brady [11] are shown as lines.

Table 4.3: The polynomial coefficient fitted from the far-field diffusivities in Fig. 4.9.
The data is for polydisperse suspensions with λ = 2 and y2 = 0.5. The far-field
self-diffusivity dff

s can be expressed as dff
s /d0 = 1 + c1φ + c2φ

2 + c3φ
3, where d0 is

the single particle diffusivity.

dt,ff
s,1 dt,ff

s,2 dr,ff
s,1 dr,ff

s,2

c1 −1.27 −1.70 −0.207 −0.538
c2 0.536 1.005 −0.131 −0.312
c3 −0.018 −0.12 −0.091 0.19

self-diffusivities are dt
0,α = kBT/(6πη0aα) and dr

0,α = kBT/(8πη0a3
α). The SEASD

results, shown in symbols, agree well with the conventional SD results shown in
lines. As expected, both dt

s,α and dt
s,α decrease with increasing volume fraction φ,

and for bidisperse suspensions, the small particles show diffusivity enhancement
while the large particles exhibit diffusivity supression. Compared to dt

s,α, dr
s,α are

less sensitive to the volume fractions φ, but more sensitive to the particle sizes λ.
The SEASD results for large particles show larger error bars compared to the SD
results [11], most likely due to the stochastic computation procedure.

We have also calculated the far-field short-time translational and rotational self-
diffusivities dt,ff

s,α and dr,ff
s,α , where “ff” suggests only the far-field HIs without the

lubrication corrections are considered. They are the input for subsequent SEASD-nf
computations in Sec. 4.6 and 4.6. The N−1/3 size dependence in the far-field trans-
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Figure 4.9: (Color online) The species far-field short-time translational and rota-
tional self-diffusivities, dt,ff

s,α and dr,ff
s,α , respectively, as functions of the total volume

fraction φ for bidisperse hard-sphere suspensions with λ = 2 and y2 = 0.5. The
results are scaled with the single particle translation and rotational diffusivity, dt

0,α
and dr

0,α, respectively. The symbols are the computation results, and the dashed and
the dash-dotted lines are polynomial fittings for the small and the large particles,
respectively.

lational diffusivity dt,ff
s,α is corrected using Eq. (4.81) with the corresponding far-field

viscosity. Fig. 4.9 shows dt,ff
s,α and dr,ff

s,α for bidisperse suspensions up to φ = 0.62.
Compared to Fig. 4.8, the far-field diffusivities exhibit weaker volume fraction
dependence, and they do not have sharp reductions at high volume fractions. Con-
sistent with Fig. 4.8, dr,ff

s,α also exhibits stronger particle size dependence compared
to its translational counterpart. In general, the φ dependence of any scaled far-field
diffusivity dff

s /d0, with d0 the corresponding single-particle data, can be adequately
captured by a cubic polynomial dff

s /d0 = 1+c1φ+c2φ
2+c3φ

3, where the coefficients
ci, i ∈ {1, 2, 3}, only depend on the suspension composition. The fitting coefficients
for bidisperse suspensions with λ = 2 and y2 = 0.5 are presented Table 4.3. The
polynomial fittings, also shown in Fig. 4.9 in dashed and dash-dotted lines for the
small and the large particles, respectively, indeed describe the data. Not shown in
Fig. 4.9 are the SEASD far-field diffusivities for monodisperse suspensions, which
are identical to those of Banchio & Brady [39].
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Figure 4.10: (Color online) The scaled species instantaneous sedimentation veloc-
ities, Us,α/U0,α, as functions of the total volume fraction φ for monodisperse and
bidisperse hard-sphere suspensions with λ = 2 and y2 = 0.5. The single particle
sedimentation velocity is U0,α. The SEASD results are shown in symbols and the
conventional SD results from Wang & Brady [11] are shown as lines.

Instantaneous sedimentation velocity

The species instantaneous sedimentation velocitiesUs,α are computed by applying a
uniform external force Fα to each species. For bidisperse suspensions, the sedimen-
tation velocityUs,α also depends on the species density ratio [8], γ = ∆ρ2/∆ρ1, with
∆ρα = ρα − ρ0 the density difference of species α. The species force ratio satisfies
F2/F1 = γλ3, and here we set γ = 1 to facilitate comparison with earlier results.
To eliminate the N−1/3 size dependence, the following corrections are added to the
results:

∆NUs,1 =
1.76U0,1

(x1 + x2λ3)
1
3

η0
ηs

(
φ

N

) 1
3

[
S11(0) + λ3γ

√
x2
x1

S12(0)
]
, (4.82)

∆NUs,2 =
1.76U0,1

(x1 + x2λ3)
1
3

η0
ηs

(
φ

N

) 1
3

[√
x1
x2

S21(0) + λ3γS22(0)
]
, (4.83)

where U0,α = Fα/(6πη0aα) is the single particle sedimentation velocity and Sαβ (0)
is the partial static structural factors in the zero wave number limit. Eqs. (4.82) and
(4.83) are based on the finite-size correction for partial hydrodynamic functions [11].
Here, the partial static structural factors are computed from the polydisperse Percus-
Yevic integral equations [87–90].

Fig. 4.10 presents the SEASD Us,α/U0,α in symbols, which are not identical to the
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conventional SD results shown in lines. The difference is especially pronounced
at high volume fractions. For monodisperse suspensions, the SEASD and the
conventional SD agree with each other satisfactorily up to φ ≈ 0.3, and at higher
φ, the SEASD results become significantly higher. This difference is from the
mean-field quadrupole term, which is absent in SEASD. Despite the quantitative
differences, the SEASD monodisperse sedimentation velocity remain positive and
physical. A similar overestimation of the sedimentation velocity is also found when
comparing ASD results [36] and the conventional SD results [64] for simple cubic
arrays.

The differences between the SEASD and the conventional SD results are more
significant for bidisperse suspensions. ForUs,2 of the large particles, the differences
are not evident until φ = 0.3, and for Us,1 of the small particles, the differences are
obvious even at φ ≈ 0.2. Moreover, Us,1 exhibits a minimum and increases with φ
at higher volume fraction, leading to a crossing of Us,1 and Us,2 at φ = 0.45. These
unphysical behaviors are caused by inaccurate HI computations at the stresslet-strain
rate level. Apparently, the HIs of the small particles, which are surrounded by many
large particles, are more complex than those of the large particles and more difficult
to capture accurately. Note that for sedimentation the lubrication interactions are
not important and one must rely on the far-field mobility for all HIs.

Fig. 4.10 also illustrates that the sedimentation problems in dense bidisperse sus-
pensions, even at λ = 2, is challenging for SEASD. Incorporating the mean-field
quadrupole term [64], (1 − 1

5φ), in the grand mobility tensor can significantly
improve the results [11]. For the conventional SD, such incorporation involves
multiplying (1 − 1

5φ) to the quadrupole terms in the velocity-force coupling of the
grand mobility tensor [64]. However, including this term in the SEASD, or any par-
ticle mesh approaches, is more involved due to the wave-space computation. One
method is to multiply (1− 1

5φ) to the quadrupole term in the Faxén’s law, Eq. (4.13).
This modification produces undesired changes in the velocity-torque and velocity-
stresslet couplings, and has to be corrected by a separate wave-space computation
that applies 1

30φa2
i ∇

2 to the velocity disturbances from the torques and stresslets.
Apparently, this additional wave-space correction increases the computational cost
and the algorithm complexity, and therefore is not implemented in this work.



148

0 0.1 0.2 0.3 0.4 0.5 0.6
φ

10
-1

10
0

10
1

10
2

η
s/η

0
- 

1

λ=1, SD

λ=2, SD

λ=1, SEASD

λ=2, SEASD

0 0.1 0.2 0.3 0.4 0.5 0.6
φ

10
-1

10
0

10
1

10
2

κ
s/η

0
-κ

0
/η

0

λ=1, SD

λ=2, SD

λ=1, SEASD

λ=2, SEASD

(a) (b)

Figure 4.11: (Color online) The high-frequency dynamic (a): shear viscosity ηs and
(b): bulk viscosity κs as functions of the total volume fraction φ for monodisperse
and bidisperse hard-sphere suspensions with λ = 2 and y2 = 0.5. The results are
scaled with the solvent viscosity η0, and only the particle contributions, ηs/η0 − 1
and (κs − κ0)/η0 are presented. The SEASD results are shown as symbols and the
conventional SD results [11] are shown as lines.

High-frequency dynamic shear and bulk viscosities

The high-frequency dynamic shear and bulk viscosities, ηs and κs, are respectively
defined as,

ηs = η0 + n〈SE〉xy/γ̇, and κs = κ0 +
1
3 n〈SE〉 : I/ė, (4.84)

where γ̇ is the imposed strain rate, ė is the imposed uniform expansion rate, SE is
the hydrodynamic stresslet in Eq. (4.65), and the subscript xy denotes the velocity-
velocity gradient component. They are directly computed from SEASD and exhibit
little size dependencies. Experimentally, ηs and κs are measured by imposing high-
frequency, low-amplitude deformations, such that the suspension microstructures
are only slightly perturbed, and the Brownian stress contributions are out of phase
with the applied deformations [91].

Fig. 4.11a and 4.11b present the volume fraction φ dependence of the particle
contributions to the high-frequency dynamic shear and bulk viscosities, ηs/η0 − 1
and (κs − κ0)/η0, respectively. The SEASD calculations are shown in symbols, and
the corresponding conventional SD results are shown in lines. For ηs, the SEASD
and the conventional SD results agree well over the entire φ range. The results
for monodisperse and bidisperse suspensions with λ = 2 are almost identical when
φ < 0.55. At higher volume fractions, the monodisperse ηs are more sensitive to
φ compared to the bidisperse results, as introducing particles of difference sizes
significantly alters the suspension hydrodynamic environment in this limit. Unlike
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the sedimentation velocities, for the shear viscosity lubrication interactions are
important at high φ.

For the high-frequency dynamics bulk viscosity κs in Fig. 4.11b, the SEASD and
the conventional SD results show qualitative agreement with noticeable quantita-
tive differences at moderate φ: the SEASD results are higher and less sensitive to
the particle size ratio λ. The differences are caused by different pressure moment
computation procedures. Recall that the far-field grand mobility tensor M is not
symmetric by construction, and the symmetry of M−1 must be restored for subse-
quent calculations. This is done in the conventional SD by explicitly copying matrix
elements after the matrix inversion [92]. This is not applicable for the matrix-free
computation of M in SEASD. Here, the pressure moment is computed from the
far-field forces and stresses. Fig. 4.11b shows that the two conceptually equivalent
approaches do lead to small quantitative differences. Moreover, for dense suspen-
sions, such differences are masked by the dominance of lubrication interactions.
Therefore, the SEASD and the conventional SD results agree well at low and high
φ. Near the close packing limit, κs for bidisperse suspensions is significantly lower
than that of the monodisperse case, since the particle size polydispersity improves
the particle packing.

Equilibrium suspensions
Here we present the dynamic simulation results with SEASD and SEASD-nf for
monodisperse and bidisperse Brownian suspensions at zero Péclet number. In
particular, we are interested in the following equilibrium properties: the osmotic
pressure Π, the high-frequency dynamic bulk modulus K′∞, and the high-frequency
dynamic shear modulus G′∞. The dynamic simulations are carried out with 100
particles over 200 diffusive time units with a time step ∆tdt

0,1/a
2
1 = 10−3. The

mobility computation in SEASD is performed on GPUs with M = 32, P = 11, and
rc = 4(ai+a j ), and the far-fieldBrownian force is calculated using the IVPmethod in
Sec. 4.4with∆τ = 0.1. The tolerance for the iterative solver is 10−3 and the tolerance
for matrix inversion in Eqs. (4.75) and (4.76) is 0.02. The composition of bidisperse
suspensions are λ = 2 and y2 = 0.5. Therefore, for the SEASD-nf computations the
coefficients in Table 4.3 are used. Note that with Pe = 0, SEASD-nf computations
do not contain far-field mobility evaluations.
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Figure 4.12: (Color online) The equilibrium osmotic pressure Π/(nkBT ) of
monodisperse and bidisperse Brownian suspensions with λ = 2 and y2 = 0.5,
as a function of volume fraction φ. The dashed line represents the CS equation of
state, Eq. (4.86), and the dash-dotted line represents the BMCSL equation of state,
Eq. (4.87).

Osmotic pressure

The osmotic pressure of an equilibrium suspension is defined as

Π = nkBT − 1
3 n〈SB〉 : I, (4.85)

where 〈SB〉 is the Brownian stresslet in Eq. (4.67). For rigid particles with no-
slip boundary conditions, Brady [51] showed that the osmotic pressure is purely
hydrodynamic in origin, and is identical to that of a hard-sphere fluid. The osmotic
pressure of monodisperse suspensions is well described by the Carnahan-Starling
(CS) equation up to the fluid-solid transition,

Π

nkBT
=

1 + φ + φ2 − φ3

(1 − φ)3 . (4.86)

The CS equation of state is extended to polydisperse suspensions as the Boublik-
Mansoori-Carnahan-Starling-Leland (BMCSL) equation [93]:

Π

nkBT
=

1 + φ + φ2 − 3φ(z1 + z2φ) − z3φ
3

(1 − φ)3 , (4.87)

where z1 = ∆12(1 + λ)/
√
λ, z2 = ∆12(y1λ + y2)/

√
λ, and z3 = [(y2

1 x1)1/3 +

(y2
2 x2)1/3]3 with ∆12 =

√
y1y2
√

x1x2(λ − 1)2/λ.
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Fig. 4.12 presents the equilibrium osmotic pressure of monodisperse and bidis-
perse suspensions with λ = 2 and y2 = 0.5 as functions of φ using SEASD and
SEASD-nf. The CS [Eq. (4.86)] and the BMCSL [Eq. (4.87)] equations of state
at the corresponding bidisperse compositions are shown in dashed and dash-dotted
lines, respectively. Also shown in Fig. 4.12 are the static computation results with
N = 200, denoted “static”. The static computations do not consider particle dy-
namics, and calculate the osmotic pressure by taking a full Brownian step from
independent particle configurations in a Monte-Carlo fashion. In Fig. 4.12, at each
volume fraction 500 independent configurations are used in the static computations.

The osmotic pressures from the SEASD, the SEASD-nf, and the static computations
agree with the CS and BMCSL predictions in Fig. 4.12. The static computations
show the best agreement over the entire φ range, and this directly validates the
Brownian stress computation method in Sec. 4.4. The dynamic SEASD results are
slightly higher than the theoretical predictions because the configuration evolution
is affected by the finite ∆τ in the far-field Brownian force computation. The slight
difference is well within the discretization errors of Eqs. (4.75) and (4.76). Note
that, as long as the tolerances for the iterative solution of Eqs. (4.75) and (4.76)
are smaller than the discretization step size ∆τ, the principal source of error is the
time discretization. We have verified that reducing the iterative solver tolerance
with fixed ∆τ does not improve the results. Finally, the agreement in the bidisperse
osmotic pressures from SEASD-nf and the BMCSL equation validates the extension
of the mean-field Brownian approximation to polydisperse systems. The SEASD-nf
results are only slightly lower than the theoretical predictions, which is acceptable
considering the substantial speedup offered by this approach.

High-frequency dynamic moduli

The suspension high-frequency dynamic bulk and shear moduli, K′∞ and G′∞ re-
spectively, can be computed from the short-time limit of the pressure-pressure and
stress-stress autocorrelation functions [92, 94, 95], i.e.,

K′∞ = lim
t→0

V
kBT
〈δΠ(t)δΠ(0)〉 , and G′∞ = lim

t→0

V
kBT
〈σ(t)σ(0)〉 , (4.88)

where δΠ is the osmotic pressure fluctuations and σ is the off-diagonal components
of the bulk stress 〈Σ〉 in Eq. (4.64). Note that the viscoelasticity of colloidal
suspensions is entirely of hydrodynamic origin, and without HIs, e.g., in hard-
sphere fluids, these moduli are infinite.
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Figure 4.13: (Color online) The high-frequency dynamic moduli: (a) the bulk mod-
ulus K′∞a3

1/(kBT ), and (b) the shear modulus G′∞a3
1/(kBT ), as functions of volume

fraction φ for equilibrium monodisperse and bidisperse Brownian suspensions with
λ = 2 and y2 = 0.5. The results are computed from SEASD (filled symbols) and
SEASD-nf (open symbols).

Fig. 4.13a and 4.13b respectively presentK′∞ andG′∞ ofmonodisperse and bidisperse
suspensions as functions of φ from the same SEASD and SEASD-nf dynamic
simulations of Fig. 4.12. Both K′∞ and G′∞ grow rapidly with φ, and at the same
volume fraction, the monodisperse moduli are always higher. In Fig. 4.13a, the
bulk modulus K′∞ computed from SEASD and SEASD-nf share the same qualitative
behaviors. However, the SEASD results are almost always higher than the SEASD-nf
results except at small φ, and their differences grow with increasing φ. This is
consistent with the growing differences in Π with increasing φ in Fig. 4.12. On
the other hand, in Fig. 4.13b the differences in the shear modulus G′∞ between the
SEASD and the SEASD-nf results decrease with increasing φ, with the SEASD-nf
data higher at low volume fractions. Note that the bidisperse SEASD results show
large fluctuations when φ = 0.2 ∼ 0.25, most likely due to the small number of
large particles at N = 100 and the particular particle spacing at this volume fraction.
Finally, small differences in fluctuation quantities such as K′∞ and G′∞ are expected
for SEASD and SEASD-nf because the Brownian stresses are computed differently.
However, the same qualitative behaviors are followed in both methods.

Rheology of bidisperse suspensions
The final validation of SEASD and SEASD-nf is the steady shear rheology of
Brownian suspensions at constant strain rate. Both monodisperse and bidisperse
hard-spehre suspensions are considered: the volume fractions are fixed at φ =
0.45 in both cases, and the bidisperse composition is λ = 2 and y2 = 0.5. The
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Figure 4.14: (Color online) Different viscosity contributions to the rheology of
monodisperse and bidisperse hard-sphere suspensions: (a) the Brownian viscosity
ηB/η0 and (b) the flow viscosity ηE/η0, as functions of Pe. The volume fraction
φ = 0.45 in both cases, and the bidisperse composition is λ = 2 and y2 = 0.5.

results are extracted from the SEASD and the SEASD-nf simulations with GPU
mobility computation over a wide range of Péclet number Pe = 6πη0a3

1γ̇/(kBT ).
Moreover, we introduce a small excluded volume on each particle to emulate the
effects of surface asperities or polymer coating and to prevent particle overlap. It is
characterized by,

δ = 1 − ai/bi, (4.89)

where bi is the excluded volume radius for each particle. The SEASD and SEASD-nf
simulations are carried out at δ = 5 × 10−4 with N = 200 over 150 dimensionless
time units with a step size 10−3. Other simulation parameters are similar to those in
Sec. 4.6. The data are averaged in segments after the steady state is reached, usually
after 20 dimensionless time units. As is customary, the x-direction is the velocity
direction, the y-direction is the velocity gradient direction, and the z-direction is the
vorticity direction.

Shear viscosity

Fig. 4.14a and 4.14b respectively present the Brownian viscosity ηB and the flow
viscosity ηE as functions of the Péclet number. These viscosities are defined as

ηB = n〈SB〉xy/γ̇ and ηE = n〈SE〉xy/γ̇, (4.90)

with 〈SB〉 in Eq. (4.67) and 〈SE〉 in Eq. (4.65). In this figure, the monodisperse data
are shown in squares and the bidisperse data in triangles, with the SEASD results
in filled symbols and the SEASD-nf results in open symbols. For comparison,
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the SD results of Foss & Brady [73] for monodisperse suspensions are presented
in open circles. To clarify the effects of the excluded volume parameter δ on
viscosities, another set of monodisperse SD simulations with N = 30 are performed
at δ = 5×10−4 and 10−5, and the results are shown as crosses and pluses respectively.
In all cases, the stress contributions from the inter-particle forces are negligible, and
therefore are not shown.

In Fig. 4.14 both the Brownian viscosity ηB and the flow viscosity ηE exhibit
the expected behaviors: with increasing Pe, ηB decreases (shear-thinning) and ηE

grows (shear-thickening). In addition, there are several important observations.
First of all, the excluded volume parameter δ introduces quantitative effects on
the suspension rheology. Comparing the SD results with δ = 5 × 10−4 and 10−5,
increasing δ enhances the shear-thinning of ηB and weakens the shear-thickening
of ηE , especially at high Pe. At low Pe, the effect of δ is almost unnoticeable.
The SD results at δ = 10−5 agree well with those of Foss & Brady [73], and the
results at δ = 5×10−4 are consistent with the monodisperse SEASD and SEASD-nf
results, with larger differences shown in ηE . This difference is most likely due
to the number of particles in the computations. Next, the bidisperse Brownian
viscosity ηB is always lower than the monodisperse value at all Pe, and for the
flow viscosity ηE , their difference is most apparent at high Pe. The large difference
in ηE at high Pe suggests distinct HIs and structures between the monodisperse
and the bidisperse suspensions, since Fig. 4.11a suggests ηE is insensitive to the
equilibrium suspension structures at φ = 0.45. Finally, the SEASD and SEASD-nf
results in Fig. 4.14 almost always overlap each other, showing that the mean-field
Brownian approximation is valid over the entire Péclet number range. At high
Pe, the Brownian viscosity ηB from SEASD shows larger fluctuations compared to
the SEASD-nf results as the Brownian stresses are difficult to compute with highly
anisotropic structures. However, these fluctuations do not affect the overall viscosity
since the Brownian contribution at high Pe is insignificant.

Non-equilibrium osmotic pressures

Fig. 4.15a and 4.15b present the Brownian and the flow contributions to the suspen-
sion osmotic pressure,

Π
B = nkBT − 1

3 n〈SB〉 : I and ΠE = −1
3 n〈SE〉 : I, (4.91)

respectively, as functions of Péclet number Pe. In these figures, the scaling for
the Brownian contribution is nkBT and the scaling for the flow contribution ΠE is
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Figure 4.15: (Color online) Different contributions to the osmotic pressures of
monodisperse and bidisperse hard-sphere suspensions: (a) the Brownian contribu-
tion scaled with nkBT , ΠB/(nkBT ), and (b) the flow contribution scaled with η0γ̇,
ΠH/(γ̇η0), as functions of Pe. The volume fraction is φ = 0.45 in both cases, and
the bidisperse composition is λ = 2 and y2 = 0.5.

η0γ̇. Similar to Fig. 4.15, the monodisperse data are presented in squares and the
bidisperse data in triangles, with the SEASD results in filled symbols and SEASD-nf
results in open symbols. Fig. 4.15 also presents the N = 30monodisperse SD results
with δ = 5×10−4 and 10−5 in crosses and pluses, respectively. Similarly to the shear
stresses, the inter-particle contribution to the osmotic pressures is also negligible.

In Fig. 4.15, both ΠB/(nkBT ) and ΠE/(γ̇η0) grow with increasing Pe when Pe <
100. The Brownian contribution ΠB/(nkBT ) asymptotes the equilibrium value as
Pe → 0. At higher Pe, the influence of the excluded volume parameter δ becomes
apparent. For the Brownian osmotic pressure contribution ΠB/(nkBT ), the SD
results at δ = 10−5 continuously grow with Pe up to Pe = 104, the highest value in
our study, while with δ = 5 × 10−4, a maximum in ΠB/(nkBT ) around Pe = 103 is
apparent. After themaximum,ΠB/(nkBT ) decreases slowlywith growingPe. In this
case, the parameter δ not only brings quantitative, but also qualitative differences.
On the other hand, the flow osmotic pressure contribution ΠE/(γ̇η0) increases and
reaches a plateau at high Pe. Comparing the SD results with δ = 5 × 10−4 and
10−5, increasing δ reduces the final plateau value of ΠE/(γ̇η0) at a smaller Pe.
Apparently, the high Pe osmotic pressure is very sensitive to the excluded volume
parameter δ. In terms of the normal viscosity, i.e., Π/γ̇ with Π = ΠB + ΠE ,
increasing δ weakens the shear thickening of the normal viscosity. Furthermore,
the SD results at δ = 10−5 agree qualitatively with the results of Yurkovetsky &
Morris [53], with slight quantitative difference due to different osmotic pressure
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computations. At δ = 5 × 10−4, the Brownian osmotic pressures ΠB from SD and
SEASD almost overlap each other in Fig. 4.15a, and ΠE from SEASD is lower than
the SD results in Fig. 4.15b. Similarly to Fig. 4.14b, the difference is most likely
due to the small system sizes in the SD computations. Moreover, the SEASD ΠB

also exhibits larger error bars at high Pe due to the Brownian stress computation,
but such errors are of little consequences on the suspension total osmotic pressures.

For the bidisperse results shown in triangles in Fig. 4.15, the Brownian osmotic
pressure ΠB is always lower than its monodisperse counterpart, and the bidisperse
ΠE is first slightly higher than the monodisperse results at low Pe and then lower
at high Pe. The crossing of the monodisperse and bidisperse ΠE demonstrates the
complex interplay between HIs and structures in polydisperse systems.

The SEASD-nf results in Fig. 4.15 agree qualitatively with the SEASD compu-
tations. However, for ΠB, there are quantitative differences at both λ = 1 and
λ = 2, with the SEASD-nf results systematically lower. This difference is inher-
ently associated with the far-field Brownian force computations in Sec. 4.4 and the
mean-field Brownian approximations, and is also encountered in Fig. 4.12. How-
ever, the quantitative discrepancies in ΠB are still within the discretization errors
of ∆τ in Eqs. (4.75) and (4.76). On the other hand, for ΠE , the SEASD-nf and
SEASD results almost always overlap each other over the entire Pe range for both
bidisperse and monodisperse suspensions. SEASD-nf satisfactorily captures both
contributions of the suspension osmotic pressures, ΠB and ΠE .

Normal stress differences

The first normal stress difference N1 and the second normal stress difference N2,
defined as

N1 = 〈Σ〉xx − 〈Σ〉yy and N2 = 〈Σ〉yy − 〈Σ〉zz, (4.92)

describe the stress anisotropy in sheared suspensions, and are important for under-
standing phenomena such as the shear-induced particle migrations [52]. The normal
stress differences N1 and N2 are respectively shown in Fig. 4.16a and Fig. 4.16b.
The monodisperse data are shown in squares and the bidisperse data in triangles,
with SEASD results in filled symbols and SEASD-nf results in open symbols. In
addition, in Fig. 4.16, the SD results of Foss & Brady [73] are presented in circles,
and the SD computations at N = 30 with δ = 5 × 10−4 and 10−5 are respectively
shown in crosses and pluses.
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Figure 4.16: (Color online) The normal stress differences: (a) the first normal stress
difference N1 and (b) the second normal stress difference N2 as functions of Péclet
number Pe. The volume fraction is φ = 0.45 in both cases and the bidisperse
composition is λ = 2 and y2 = 0.5.

In general, the first normal stress difference N1 in Fig. 4.16a changes from positive
to negative with increasing Pe, and the second normal stress N2 in Fig. 4.16b
remains negative for all Pe studied and exhibits weak Pe dependence. The data with
small systems are strongly scattered, particularly at small Pe. For monodisperse
suspensions, the excluded volume parameter δ has little effect on N1 or N2, as there
lacks a qualitative difference for the SD results at δ = 5×10−4 and 10−5 in Fig. 4.16.
These SD results in general agree with the data of Foss & Brady [73] when Pe > 1.
At smaller Pe, the data exhibit large errors due to fluctuations in Brownian stresses,
making quantitative comparisons difficult.

In Fig. 4.16 the SEASD results at λ = 1 follow the SD data with the same qualitative
behaviors. The differences at low Pe is likely associated with the difficulties in
measuring the fluctuating Brownian normal stresses. In addition, the SEASD results
show clearer trends at high Pe thanks to larger system sizes: both N1 and N2

asymptote toward constant values with increasing Pe. Particle size polydispersity
weakens the influences of Pe on the first normal stress difference N1. In Fig. 4.16a,
the bidisperse N1 are less sensitive to Pe compared to the monodisperse case, and
as Pe → ∞, the bidisperse N1 asymptotes towards a negative value with a smaller
magnitude. On the other hand, the size polydispersity has little effect on the
second normal stress N2, as the bidisperse N2 almost overlaps the monodisperse N2,
especially at large Pe.

The SEASD-nf and the SEASD results agree satisfactorily when Pe ≥ 10 for both
the monodisperse and bidisperse suspensions. As expected, larger differences are
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Figure 4.17: (Color online) The fraction of stresses taken up by the small particles
(species 1) in a bidisperse suspension: (a) the fraction of the shear stress and (b)
the fraction of the normal stress. The stress fractions are shown as functions of Pe.
The composition of the bidisperse hard-sphere suspension is φ = 0.45, λ = 2, and
y2 = 0.5.

found at low Pe, as the mean-field Brownian approximation in SEASD-nf explicitly
removes the anisotropy in the far-field mobility tensor. However, the SEASD-nf
results still capture the qualitative aspects of N1 and N2 even in the low Pe limit.

Finally, we note in passing that the shear-induced particle migration takes place
in bounded suspensions with spatially varying strain rate, e.g., the Poiseuille flow,
and it can be computationally investigated by introducing confining boundaries.
For the SEASD, this is conceptually straightforward: we only have to replace the
unbounded fundamental solution to the one with the confining boundaries [63], and
use the spectral Ewald method for doubly periodic systems [96].

Species stress distribution

Stress distributions across different species are key to understand the phenomena
of particle migration and segregation in polydisperse suspensions [97], and are
presently only accessible from simulations. Fig. 4.17 presents the stress distribution,
expressed as the stress fraction taken up by the small particles (species 1), as
functions of Pe for bidisperse suspensions with φ = 0.45, λ = 2, and y2 = 0.5.
Fig. 4.17a shows various shear stress fractions. In terms of the definitions in
Eqs. (4.64)–(4.67), σ1/σ (circles), σB

1 /σ
B (squares) , and σE

1 /σ
E (triangles) in

Fig. 4.17a are

σ1/σ =x1〈Σ〉1,xy/〈Σ〉xy,
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σB
1 /σ

B =x1〈SB〉1,xy/〈SB〉xy,

σE
1 /σ

E =x1〈SE〉1,xy/〈SE〉xy, (4.93)

where 〈·〉α indicates averaging with respect to species α. Fig. 4.17b presents various
normal stress fractions. The normal stress fractions S1/S (circles), SB

1 /SB (squares),
and SE

1 /SE (triangles) in Fig. 4.17b are similarly defined as

S1/S =x1(I : 〈Σ〉1)/(I : 〈Σ〉),

SB
1 /SB =x1(I : 〈SB〉1)/(I : 〈SB〉),

SE
1 /SE =x1(I : 〈SE〉1)/(I : 〈SE〉). (4.94)

In both figures, the SEASD results are shown in filled symbols and the SEASD-nf
results are shown in open symbols.

Fig. 4.17a illustrates that the total shear stress is roughly equally partitioned between
the two species, and the fraction σ1/σ is almost constant with respect to Pe. This is
largely because the flow shear stress fraction σE

1 /σ
E is insensitive to Pe. The Brow-

nian shear stress fraction σB
1 /σ

B, on the other hand, exhibits weak Pe dependence:
the ratio σB

1 /σ
B increases with Pe from less than 0.45 at Pe = 0.1 to close to 0.6

at Pe = 100. At higher Pe, the Brownian stress fraction shows large fluctuations,
also due to the difficulties associated with the anisotropic structures. However,
in this limit, the Brownian contribution to the total stress is small, and the large
fluctuations in Fig. 4.17a is inconsequential. On the other hand, the total normal
stress fraction S1/S in Fig. 4.17b shows stronger Pe dependence, and it decreases
from 0.6 at Pe = 0.1 to 0.45 at Pe = 104. Contrary to shear stress distributions in
Fig. 4.17a, the Brownian normal stress distribution SB

1 /SB is almost constant at 0.6,
but SE

1 /SE increases from 0.3 at Pe = 0.1 and asymptotes towards 0.45 as Pe→ ∞.
Since the Brownian stresslet dominates at low Pe and the flow stresslet dominates
at high Pe, the normal stress distributions in Fig. 4.17b are distinctively affected by
both the flow and the Brownian contributions. Fig. 4.17 demonstrates that both the
shear and the normal stresses in bidisperse suspensions are distributed based on the
species volume and the distribution weakly depends on Pe. This is a useful insight
for modelling polydisperse systems.

The stress distributions from SEASD-nf accurately capture the SEASD results
except the Brownian shear stress distribution σB

1 /σ
B at high Pe in Fig. 4.17a,

where the SEASD-nf results is slightly lower. This difference, however, is expected
since the mean-field Brownian approximation ignores the structural anisotropy in
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Figure 4.18: (Color online) The species long-time self-diffusivities: (a) the velocity
gradient direction diffusivity dt,yy

∞,α and (b) the vorticity direction diffusivity dt,zz
∞,α

of monodisperse and bidisperse hard-sphere suspensions as functions of Pe. The
volume fraction is φ = 0.45 for both cases, and the bidisperse composition is λ = 2
and y2 = 0.5.

the suspension. Moreover, the discrepancies are only evident at Péclet numbers
where the Brownian stress does not affect the overall suspension rheology. From
this perspective, the overall quality of the SEASD-nf approximation is deemed
satisfactory.

Long-time diffusion

An important characterization of the overall suspension dynamics is the translational
long-time self-diffusivities. The long-time limit refers to a time scale t � τD,
where, recall that, τD = 6πη0a3

p/kBT is the single particle diffusive time scale. In
this limit, the particle movement is diffusive due to extensive interactions with its
neighbors. The corresponding diffusivities are obtained from the particle mean-
square displacement. In the velocity gradient and the vorticity directions, these
self-diffusivities are respectively defined as

dt,yy
∞,α = lim

t→∞
1
2d〈(∆y)2〉α/dt and dt,zz

∞,α = lim
t→∞

1
2d〈(∆z)2〉α/dt, (4.95)

where ∆y and ∆z are the particle trajectory fluctuations in y- and z-directions.
Fig. 4.18a and 4.18b respectively present the long-time diffusivities dt,yy

∞,α and dt,zz
∞,α as

functions of the Péclet number. The monodisperse results are shown in squares. For
bidisperse suspensions, the small and the large particle long-time self-diffusivities
are presented in triangles and circles, respectively. For comparison, Fig. 4.18 also
shows the results from Foss & Brady [73] in crosses. Moreover, the SEASD and the
SEASD-nf results are shown in filled and open symbols, respectively.
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For monodisperse suspensions in Fig. 4.18, both dt,yy
∞ and dt,zz

∞ grow with Pe due to
the imposed shear flow, with the velocity direction diffusivity dt,yy

∞ slightly higher.
At low Pe, dt,yy

∞ and dt,zz
∞ grow weakly with Pe, and at large Pe, both diffusivities are

proportional to Pe. The SEASD results are consistent with the SD results of Foss
& Brady [73] at intermediate Pe. The differences at large and small Pe are most
likely due to the system size, as in this work N = 200 while in Foss & Brady [73]
N = 27. For bidisperse suspensions, the long-time self-diffusivities dt,yy

∞,α and dt,zz
∞,α

for both species exhibit similar Pe dependencies as themonodisperse case. However,
introducing a second species to the suspension apparently enhances the long-time
self-diffusivities of both species, particularly at high Pe. This mutual diffusivity
enhancement is in contrast to the short-time diffusivities in Fig. 4.8a, where at
φ = 0.45, the small particle diffusivity enhancement is always accompanied by
the large particle diffusivity supression. Moreover, the diffusivity enhancement in
y-direction is stronger than those in z-direction.

In Fig. 4.18 the diffusivities from SEASD-nf in general agree with the SEASD
results for both monodisperse and bidisperse suspensions. At low Pe, the SEASD-nf
diffusivity is lower, particularly for the large particles. The agreement between
SEASD and SEASD-nf improves with increasing Pe due to the reduced influences
of Brownian motion.

Suspension structures

Finally, we examine the structures of sheared bidisperse suspensions via the pro-
jections of the partial pair-distribution functions gαβ (r ), which are defined as the
conditional probability of finding another particle in species β given a particle of
species α, i.e.,

gαβ (r ) =
1

nαnβ

〈∑′

i∈α,
j∈β

1
V
δ(r − ri + r j )

〉
. (4.96)

They are related to the pair-distribution function g(r ) through

g(r ) =
∑
α,β

xαx βgαβ (r ). (4.97)

Fig. 4.19, 4.20, and 4.21 present projections of g(r ) and gαβ (r ) on the velocity-
velocity gradient (xy-) plane, the velocity-vorticity (xz-) plane, and the velocity
gradient-vorticity (yz-) plane, respectively, at selected Péclet numbers. These fig-
ures are based on particle trajectories from SEASD simulation, and are indistin-
guishable from the SEASD-nf results.
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Figure 4.19: (Color online) The velocity-velocity gradient (xy-) plane projection of
the pair-distribution function g(r ) and the partial pair-distribution functions gαβ (r )
at various Pe for bidisperse suspensions with φ = 0.45, λ = 2, and y2 = 0.5.
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Figure 4.20: (Color online) The velocity-vorticity (xz-) plane projection of the
pair-distribution function g(r ) and the partial pair-distribution functions gαβ (r ) at
various Pe for bidisperse suspensions with φ = 0.45, λ = 2, and y2 = 0.5.
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Figure 4.21: (Color online) The velocity gradient-vorticity (yz-) plane projection of
the pair-distribution function g(r ) and the partial pair-distribution functions gαβ (r )
at various Pe for bidisperse suspensions with φ = 0.45, λ = 2, and y2 = 0.5.

Fig. 4.19 clearly displays the structural anisotropy caused by the shear flow in the
xy-plane, characterized by the distortion of the otherwise isotropic pair-distribution
rings. With increasing Pe, the overall pair-distribution function g(r ) shows an accu-
mulation of neighboring particles in the compressional quadrant. This is indicated
by the brightening and thinning of the rings at 2a1, a1 + a2, and 2a2, corresponding
to the particle pairs of two small particles, a large and a small particle, and two large
particles, respectively. Meanwhile, the particle pairs are depleted in the extensional
quadrant.

Specific changes in different particle pairs are revealed by examining the corre-
sponding partial pair-distribution function gαβ (r ) in Fig. 4.19. The distribution of
the small-small particle pairs is presented in g11(r ). Similarly to g(r ), g11(r ) is in-
creasingly distorted and compressed in the compressional quadrant with increasing
Pe, forming a boundary layer. At higher Pe, the pair structure remain approximately
unchanged. In the extensional quadrant, the pair breakup point shifts from the ex-
tensional axis towards the velocity (x-) direction due to the lubrication interactions,
with a clear tail of high probability outlining the trajectory of small-small pair disen-
gagement. The distribution of the small-large particle pairs in g12(r ) shows a similar
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structural distortion in the compressional quadrant with increasing Pe. Moreover, in
the extensional quadrant, the trajectory of particle disengagement is more diffusive
compared to g11(r ) at the same Pe. This suggests that particle movement in bidis-
perse suspensions are facilitated by the breakup of small-large particle pairs, and
partially explains the mutual enhancement of long-time self-diffusivity in Fig. 4.18.
For the distribution of large-large particle pairs, g22(r ) also exhibits anisotropy with
increasing Pe in Fig. 4.19. However, due to the limited particle number, information
beyond the first coordinate shell is difficult to analyze.

Fig. 4.20 displays the total and partial pair-distribution function projections in the xz-
plane. Unlike the xy-plane projections in Fig. 4.19 which exhibits strong anisotropy,
the suspension structures here are less sensitive to Pe. With increasing Pe, the
particles are compressed towards each other, which is evidenced by the thinning and
brightening of the first coordinate shells. More interestingly, at higher Pe ≥ 100,
g12(r ) shows a belt of particle enrichment along the flow direction, while g11(r ) and
g22(r ) exhibit a corresponding particle depletion. This indicates that the small-large
pairs are preferred in the xz-plane, and that the shear flow promotes species mixing
in the flow direction.

Fig. 4.21 shows the projection of g(r ) and gαβ (r ) in the yz-plane. With increasing
Pe, the shear flow also compresses the particle pairs in this plane without apparent
anisotropy. Note that even at Pe = 104, the suspension does not exhibit string
ordering [98] due to the HIs. The lack of structural formation is also confirmed by
the continuous increase of the long-time self-diffusivities dt,yy

∞,α and dt,yy
∞,α with Pe in

Fig. 4.18.

4.7 Conclusions
In this chapter we presented the Spectral Ewald Accelerated Stokesian Dynamics
(SEASD) for dynamic simulations of polydisperse colloidal suspensions. Using
the framework of Stokesian Dynamics (SD), SEASD can accurately and rapidly
compute HIs in dense polydisperse suspensions. Other features of SEASD include
(i) direct inclusion of the solvent compressibility and pressure evaluations, (ii) the
use of the Spectral Ewald (SE) method for accurate mobility computation with
flexible error control, (iii) a far-field preconditioner to accelerate the convergence of
the nested iterative scheme, (iv) GPGPU accelerated mobility evaluation for almost
an order of magnitude speed improvement, and (v) the incorporation of SEASD-nf,
an extension of the mean-field Brownian approximation of Banchio & Brady [39]
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to polydisperse suspensions.

We extensively discussed the accuracy ofmobility computation using the SEmethod,
established the baseline for parameter selection, and demonstrated the adequate ac-
curacy in the GPU single precision (SP) mobility computation. We found that com-
pared to the full SEASD computations, SEASD-nf can achieve significant speedup
without substantially sacrificing accuracy. Indeed, for all the dynamic simulations
in this work, the SEASD and the SEASD-nf results agree satisfactorily. In addition,
we verified the O(N log N ) computational scaling of SEASD and SEASD-nf in
dynamic simulations.

We rigorously validated SEASD and SEASD-nf for monodisperse and bidisperse
colloidal suspensions via: (i) the short-time transport properties, (ii) the equilib-
rium osmotic pressure and viscoelastic moduli, and (iii) the steady Brownian shear
rheology at φ = 0.45. For (i), the SEASD diffusivities and shear viscosity agree
with the conventional SD calculations. The SEASD sedimentation velocity differ
qualitatively from the SD results due to the absence of a mean-field quadrupole
term in the mobility computation. For the bulk viscosity computation, different
procedures to eliminate the spurious HIs lead to slight differences in the SEASD
and the SD results. In (ii), SEASD and SEASD-nf reproduced the equilibrium
suspension osmotic pressure for monodisperse and bidisperse suspensions within
the error tolerance, with the SEASD data higher. For the steady shear rheology in
(iii), the agreement between SEASD-nf and SEASD is satisfactory in the suspen-
sion mechanics, dynamics, and structures. Moreover, we found that the particle size
polydispersity reduces the suspension viscosity and osmotic pressure, and enhances
the long-time translational self-diffusivities of both species. Our rheological simu-
lations also improve our understanding on the structure, dynamics, and rheology of
polydisperse suspensions.

The SEASD and the SEASD-nf developed in this work are important tools for study-
ing dynamics of dense, polydisperse colloidal suspensions, and have significantly
extended the parameter space accessible to computational studies. For example,
they can provide otherwise inaccessible details on a wide range of experimental ob-
servations including the yielding phenomena in glass rheology and the continuous
and discontinuous shear-thickening. Furthermore, the computational framework
can be conveniently extended to other systems, e.g., with geometric confinement or
with autonomous propulsion.

Finally, through SEASD and SEASD-nf we have demonstrated the generality and
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versatility of the SD framework, particularly the splitting of the far- and near-field
interactions: with a suitable far-field computation, the lubrication interactions can
be added pairwise for free. We believe that many far-field HI computational methods
can and should be used with the SD framework to expand their accessible parameter
range, particularly for dense systems.
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C h a p t e r 5

SUSPENSION MICROSTRUCTURES AND MECHANICS IN
THE COLLOIDAL FILM DRYING PROCESS

5.1 Introduction
Colloidal suspensions find widespread applications in science and technology. They
are commonly applied as thin films on a substrate to modify or enhance its surface
properties. An example is latex paint, which, by changing the corrosion resistance
and color of the substrate, makes the material more durable and aesthetically ap-
pealing. In addition to chemistry, the thin film structure and mechanics also become
increasingly important to the film’s quality and functionality, especially for many
novel materials. For instance, the optical properties of thin-film colloidal structures
are strongly influenced by its long-range crystalline nature [1] or lack thereof [2].
On the other hand, the residual stresses in the film can lead to cracking and warping
that adversely affect the film quality [3–5]. The thin film structural and mechanical
properties largely depend on the film drying process, where the solvent is removed
from the suspension, and the colloidal particles are compressed by the receding
interface [6]. A thorough understanding of this process is clearly necessary for
further innovations [7, 8].

The colloidal film drying process is complex: in addition to the interfacial phenom-
ena from the continuously receding liquid-air interface, such as capillary pressure
and Marangoni flow [6, 9], it is also affected by features inherent to the colloidal
suspension [10, 11]: (i) Brownian motion, (ii) hydrodynamic interactions, and (iii)
interparticle potential. Both (i) and (ii) originate from the disparate size difference
between the colloidal particles and the solvent molecules. Examples of (iii) include
screened electrostatic potentials, excluded volume effects, and the plastic/elastic
deformation of the particles [9]. These features are also strongly affected by the
confinement from the interface and the substrate [10, 12–15]. Clearly, the complex-
ity necessitates simplifications to distill the essential physics.

In this work we use Brownian Dynamics (BD) simulations and continuum models
to study the structural and mechanical evolution of the colloidal film drying process.
We focus on the simplest non-trivial model system: the uniaxial compression of
monondisperse hard-sphere Brownian particles between hard boundaries without
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hydrodynamic interactions. This system captures the colloidal interactions among
the moving boundary, the particle Brownian motion, and the excluded volume
effect. Compared to earlier simulations of the film drying processes via kinetic
Monte Carlo [16], soft potential BD [17], and multiscale methods [18–20], focusing
on a simple model allows systematic investigation of key parameters. Indeed, our
focus on simple systems is motivated by progress in the rheology of dense colloidal
suspensions, which has come from in-depth investigations of hard-sphere Brownian
systems [21–23].

In the colloidal film drying process, as the fluid evaporates, the liquid-air interface
pushes the particles towards the stationary substrate, while the particle Brownian
motion attempts to smooth out any local concentration fluctuations (see Fig. 5.1).
With an interface velocity Uw, the competition between convection and diffusion
defines Péclet number,

PeU = aUw/d0, (5.1)

where a is the particle radius and d0 = kBT/ζ is the single-particle Stokes-Einstein-
Sutherland diffusivity, with kBT the thermal energy scale and ζ = 6πη0a the particle
resistance in a solvent of viscosity η0. Physically, PeU � 1 suggests slow interface
movement and Brownian motion dominated dynamics, while PeU � 1 indicates
fast interface movement and convection dominance. Experimentally, varying the
drying rate changes PeU , which, in turn, alters the film structure. To obtain uniform
and ordered film structures, conventional wisdom is that PeU � 1 is necessary to
allow time for the thermodynamic phase transition [24–26]. Surprisingly, recent
experiments and simulations also found highly ordered structureswithPeU � 1 [27].

The first objective of this work is to characterize the film structures over a wide
range of PeU . In the PeU � 1 limit, the final film structure can be predicted
from the equilibrium phase behaviors of confined suspensions, as the slow interface
movement allows sufficient time for equilibration. The phase behavior of hard-
sphere systems are well studied in experiments [28] and simulations [29, 30]. With
confinement, the crystallization onset density is significantly reduced compared
to bulk systems [31], and reducing the confinement (increasing the gap spacing)
introduces a hierarchy of crystalline structures as c4 → c� → (c + 1)4, where c

is the number of crystalline layers, and 4 and � respectively represent crystalline
structures of triangular and square symmetries (see Fig. 5.2). The behavior at
finite PeU and large gap spacing may be inferred from the sedimentation process
next to a confining boundary through a change of reference frame, assuming limited
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influences of hydrodynamic interactions. Experiments [32–34] and simulations [35–
37] show that crystal growth is initiated next to the confining boundary as a first order
phase transition, and continues upwards epitaxially. With increasing sedimentation
velocity—equivalent to increasing the interface velocity in the drying process—the
competition between the particle settling and the crystal growth lead to stack faults
and even glassy structures in crystalline domains. Similar structural evolution is
expected for the drying process near the moving interface. Furthermore, at smaller
gap spacing, the confinement can disrupt the crystallization process, leading to
frustrated structures [38, 39]. However, we are not aware of any similar theoretical
and simulation investigations in the PeU � 1 limit.

We deliberately limit ourselves to systems without hydrodynamic interactions. With
this simplification, compression, filtration, and sedimentation are equivalent when
the gap spacing are sufficiently large. However, such equivalence does not hold with
hydrodynamic interactions. For example, Rayleigh-Taylor instability [34] devel-
ops in sedimentation as particles are under constant forces, but not in compression
or filtration as particles move with the imposed flow. In sedimentation, the back
flow from the no-flux boundary conditions leads to strong particle velocity fluc-
tuations [40]. However, the back flow is absent in filtration and compression due
to solvent removal. Furthermore, the influences of hydrodynamic interactions on
confined systems are profound [12, 15], and are beyond the scope of this work.

The second objective of this work is to study the stress distributions in the suspension
during the drying process. The residual stress can cause unwanted deformation in the
film product, such as cracking and warping [4, 5, 9]. Physically, they are attributed
to the capillary pressure from the liquid menisci among the colloidal particles.
However, stress balance alone can show that the deformation is inevitable regardless
of the underlying mechanisms. The argument goes as follows: a stable film formed
by the drying process with interface movement in the z direction must satisfy the
steady state stress balance ∂Σzz/∂z = 0, suggesting that the zz component of the
stress, Σzz, must be constant across the film. If the Σzz distribution in the z-direction
is not constant, other mechanisms including the lateral film deformation must step in
to maintain the constant stress. Therefore, monitoring the stress distribution during
the compression process provides a key indication on future film deformation. This
often overlooked aspect of the compression process is also addressed in this work.

Thefilmdrying process is also affected by the interfacemovement profile: in addition
to the constant velocity movement, the interface may also move in response to a
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constant imposed normal stress Σe. The resulting film structural and mechanical
evolution is also investigated in this work. Here, the competition between the
external energy a3Σe and the thermal energy kBT defines a stress Péclet number

PeΣ = a3
Σe/(kBT ). (5.2)

With this drying process, the interface slows down as the suspension osmotic pres-
sure grows due the increasing density, and eventually stops when the osmotic pres-
sure matches Σe. Clearly, a single PeΣ corresponds to spectrum of PeU down to zero
in the constant velocity drying process.

Experimentally, constant stress interface movement may be achieved by compress-
ing the suspension using a rigid, porous substrate that is only permeable to the
solvent with constant mechanical load. Although new for colloidal systems, this
compression mode is common in the Surface Force Apparatus (SFA) experiments to
characterize the molecular interactions in thin films [41]. These experiments lead to
extensive molecular dynamics [42–45] and Monte Carlo [46, 47] investigations for
interpreting the results. With the same principle of operation to SFA experiments,
the constant normal stress compression is a promising method to characterize in-
teractions in colloidal films. We hope this work serves as a first step for future
investigations in this direction.

Another focus of this work is on continuum models, which are crucial for selecting
parameters in the engineering and design of the drying process [26, 48]. Assuming
local thermal equilibrium, these models are derived from the principle of mass
conservation, and agree well with experiments with strong thermal fluctuations
(PeU � 1 or PeΣ � 1). The same philosophy is used to model the sedimentation
processes [10, 49, 50]. However, it is unclear if these continuummodels remain valid
when the thermal fluctuations are weak. In this limit, other physics also becomes
important. For example, non-local effects are necessary to properly model the
non-equilibrium flow of granular materials [51]. By developing continuum models
for constant velocity and constant normal stress interface movement following the
traditional approach [10], we compare the model predictions with the simulation
results to elucidate the validity of the models, especially in the high Péclet number
limit.

Finally, dynamic simulation of the drying process and the measurement of suspen-
sion stress profiles pose significant challenges for existing algorithms. Brownian
dynamics algorithms for hard-sphere suspensions can be based on event-driven [52,
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Figure 5.1: (Color online) (a): A sketch of the colloidal film drying process.
Colloidal particles of radius a are sandwiched between a stationary substrate at
z = 0 and an interface at z = H , moving either at constant velocity Uw or in
response to a constant normal stress Σe in the −z direction. The interface allows
the solvent, but not the particles, to pass. (b): A snapshot of the simulation cell at
PeU = 50 and H = 15a. The blue particles are amorphous while the red particles
are crystalline.

53] or time-discretization [21, 54–56]. Here, the complications due to themoving in-
terface rules out the event-driven algorithms. On the other hand, time-discretization
methods known as the “potential-free” algorithms are based on iterative overlap res-
olution. Unfortunately, they are unsuitable for accurate stress profile measurement,
as the particle position changes in the overlap resolution process. Moreover, circular
overlap resolution at high densities may halt the simulation. In this work, we address
these challenges by developing a new Energy Minimization Potential-Free (EMPF)
algorithm, which imposes the hard-sphere potential by simultaneously resolving the
overlaps using the minimum energy principle.

This rest of the chapter is arranged as follows: in Sec. 5.2 we describe the problem
setup, the energy minimization potential-free algorithm, and the continuum model.
The simulation and numerical results are presented and discussed in Sec. 5.3. Finally,
we summarize and conclude in Sec. 5.4.

5.2 Methods
We consider N neutrally buoyant colloidal particles of equal radius a suspended in
a solvent of viscosity η0, occupying a total volume of V . The position of particle i

is at xi = (xi, yi, zi). The particle number density n = N/V and the volume fraction
φ = 4

3πa3n. The suspension is sandwiched between a stationary substrate at z = 0
and an interface at z = H (t), moving towards the substrate in the −z direction. The
sketch of the colloidal film drying process is shown in Fig. 5.1a, and a snapshot of
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the simulation cell is shown in Fig. 5.1b. In the transverse (x- and y-) directions, we
set the simulation cell width to W , i.e., V = HW 2, and impose periodic boundary
conditions.

At the beginning of the film drying process, the initial volume fraction is φ0 and
the interface is located at z = H0. The colloidal particles are randomly distributed
without overlapping between the two boundaries. For constant velocity interface
movement, the interface position changes according to

dH
dt
= −Uw, (5.3)

whereUw is the interface speed. When the interface is subject to an external normal
stress of magnitude Σe, its position changes according to the force balance

ζαm
dH
dt
= a2

Σm(t) − a2
Σe, (5.4)

where Σm(t) is the instantaneous suspension normal stress on the moving interface,
andαm is the interface resistance coefficient, i.e., αmζ is the hydrodynamic resistance
of the interface. Eq. (5.3) and (5.4) suggest that PeU = PeΣ/αm when Σm = 0.
However, as the suspension osmotic pressure grows with φ, the equivalence quickly
breaks down during the drying the process.

Without hydrodynamic interactions, the time evolution of particle position xi follows
the overdamped Langevin equation [21, 54, 57],

ζ
dxi

dt
= f P

i + f W
i + f B

i , (5.5)

where ζ = 6πη0a, f P
i and f W

i are respectively the forces from the interparticle and
the particle-wall potentials, and f B

i is the Brownian force satisfying f B
i (t) = 0 and

f B
i (t) f B

j (t′) = 2kBTζ−1δi jδ(t − t′)I with δi j the Kronecker delta, δ(t − t′) the Dirac
delta, and I the idem tensor. The interparticle potential V P

i j and the particle-wall
potential V W

i are respectively

V P
i j =




0, if ri j > 2a

∞, otherwise
and V W

i =




0, if a < zi < H − a

∞, otherwise
, (5.6)

where ri j = ‖xi − x j ‖. Computation of f P
i and f W

i via the EMPF algorithm for hard
potentials is discussed next.



179

The Energy Minimization Potential-Free algorithm
The potential-free BD algorithm directly discretizes Eq. (5.5) with time step ∆t

for suspensions with singular hard-sphere potentials and advances the simulation
following a predictor-corrector scheme. The position of particle i changes as

xi (t + ∆t) = xi (t) + ∆xR
i + ∆x

P
i . (5.7)

In the predictor step, the particles are randomly displaced by ∆xR
i , drawn from a

normal distribution with zero mean and a variance of 2d0∆t, with d0 = kBT/ζ . In
the corrector step, the algorithm ensures that the suspension is free from any overlaps
by moving particle i a distance ∆xP

i , such that for any i , j, ‖xi − x j ‖ ≥ (ai + a j ).
The resulting interparticle force is f P

i = ζi∆x
P
i /∆t, with ζi = 6πη0ai. The stress

tensor for homogeneous suspensions is simply the spatial moment of the interparticle
force, Σ = −V−1 ∑N

i=1 xi f
P
i .

In the original potential-free algorithm, the overlap-free condition is satisfied by
repeatedly restoring the overlapping pairs back to contact along their line of centers
until the system is free of overlaps. As soon as the algorithm identifies an overlapped
pair s = (p, q) with particles p and q, it moves each particle a distance ∆xP

s,p

and ∆xP
s,q to meet the non-overlapping condition and Newton’s third law, f P

s,p +

f P
s,q = 0. The algorithm works efficiently for dilute suspensions. However, for

dense suspensions, the original algorithm suffers several issues: (i) performance
degradation. Resolving the overlap of one pair may cause secondary overlaps in
adjacent particles. Therefore, computationally expensive iterative overlap resolution
that scans the entire suspensions multiple times are necessary. In extreme cases,
the simulation may be trapped by a repeating sequence of configurations and unable
to advance in time. The confining boundaries in the film drying process further
aggravate this problem. (ii) indeterminate terminal configurations. For particles
with multiple overlaps with other particles, the final overlap-free configuration
strongly depends on the order inwhich the overlap pairs are resolved. (iii) ambiguous
local stress. As the stress is the spatial moment of the interparticle force, the local
stress is ambiguous if a particle has multiple overlaps with other particles: it is
unclear which particle position during the overlap resolution process should be used
for stress measurement. This is especially problematic for measuring the stress
profile in suspensions with large stress variations.

Here, we develop the Energy Minimization Potential-Free (EMPF) algorithm to
address these issues. The motivation for the EMPF algorithm is the realization
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that, for an overlapping pair, the particle movement from the original potential-
free algorithm minimizes the energy cost. In other words, for an overlapping pair
s = (p, q), it minimizes

ε s = ε p + εq = f P
p · ∆x

P
p + f P

q · ∆x
P
q, (5.8)

subject to the non-overlapping and zero total force constraints,

‖(xp + ∆x
P
p ) − (xq + ∆x

P
q )‖ − (ap + aq) = 0, (5.9)

f P
p + f P

q = 0. (5.10)

It can be shown that the ∆xP
p and ∆xP

q that minimize ε s are unique—a manifestation
of the minimization principle in classical mechanics [58]. The idea of energy
minimization is also used by O’Hern et al. [59] to generate jammed packings.

The EMPF algorithm simultaneously removes multiple overlaps by generalizing
the minimization argument for particles pairs, and therefore resolves the issues
associated with the original potential-free algorithm. For a overlapped cluster with
n particles and m overlapping pairs, the non-overlapping configuration can be found
by minimizing the following cost function:

fc(y) =
m∑

s=1
λ

p
s [‖(xp + ∆x

P
p ) − (xq + ∆x

P
q )‖2 − (ap + aq)2]

+ λ f ·

n∑
i=1

f P
i +

n∑
i=1

ε i, (5.11)

where ε i = f P
i · ∆x

P
i is the energy for moving particle i, λp

s is the Lagrange
multiplier associated with the pair s = (p, q), λ f = (λ f

x , λ
f
y , λ

f
z ) is the three-

component Lagrangemultiplier vector associatedwith the zero total force constraint,
and y = ({∆xP

i }n, {λ
p
s }m, λ

f ) is the unknownvector. Theminimumof fc in Eq. (5.11)
is found by solving the non-linear systems of equation ∇y fc = 0 using Newton-
Raphson iterations. The analytical Hessian matrix, H( fc) = ∇y∇y fc, is used as the
Jacobian for the solver. The associated linear systems are solved using dense linear
solvers for small clusters (n < 50), and sparse solvers otherwise.

In dynamic simulations with the EMPF algorithm, after applying the random dis-
placement ∆xR

i , clusters with overlaps are first identified, and the overlaps in one
cluster are then resolved simultaneously. At high density, particles from different
clusters may create new overlaps after a resolution. In this case, these clusters are
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merged into a new one for simultaneous overlap resolution based on the current con-
figuration to ensure the overlap-free configuration. The cluster merge continues to
ensure that all the overlaps in the current configuration are resolved simultaneously.
In the case of solver failure, a new set of random displacements ∆xR

i is applied for
all particles from the last non-overlapping configuration. We stop after successive
solver failures, providing an exist point for the simulations.

Several comments are in line for the EMPF algorithm. First, the simultaneous over-
lap resolution is consistent with pairwise interactions. Since the algorithm always
lead to particle clusters in mechanical equilibrium, pairwise force decomposition
is always possible [58]. Second, to resolve issues associated with the original
potential-free algorithm, the EMPF algorithm requires solving a system of non-
linear equations. The computation efficiency may be improved by techniques such
as parallelization, which are not available for sequential pairwise overlap resolution.
TheEMPF algorithm compared to the original algorithm is like theNewton-Raphson
method compared to the successive substitution in root-finding problems: the for-
mer is always preferred due to its reliability and robustness. Finally, the EMPF
algorithm, like many methods based on time discretization, overestimates the con-
tact value in the singlet and pair distribution functions [52], and exhibits a slow

√
∆t

error convergence [60]. Therefore, small time steps are necessary for meaningful
results. We have checked that the EMPF algorithm produces correct results in
the pair distribution functions, osmotic pressure, and stress correlation functions in
equilibrium bulk suspensions. The results are also insensitive to the system sizes.

Eq. (5.11) is valid for clusters not in contact with the confining boundaries. To
study the film drying processes, cost functions that account for the particle-wall
interactions under different interface movement profiles are also necessary. These
are presented in the appendix. With constant velocity interface movement, Eq. (5.3)
alone is sufficient. For constant normal stress interfacemovement, Eq. (5.4) becomes

H (t + ∆t) = H (t) − a2
Σe∆t/(ζαm) + ∆HP, (5.12)

where the second term in the right hand side accounts for the wall movement from
the imposed stress, and ∆HP is the interface’s response to the suspension stresses.
It is determined by minimizing the associated cost functions.

The continuum model
The continuum transport model for the film drying process is inspired by earlier
colloidal theories [10, 26, 48, 50]. The influences of the solvent are ignored as
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hydrodynamic interactions are not considered. The concentration gradient intro-
duced by the moving interface exerts a mean Brownian force f B on the particles,
which in turn move at a mean Brownian velocity uB = f B/ζ . The Brownian force
arises from the chemical potential gradient, i.e., f B = −∇µ, and the change of µ
follows dµ = vdΠ for isothermal systems, where v = n−1 = 4

3πa3/φ is the particle
specific volume, and Π is the local osmotic pressure. With the assumption of local
thermal equilibrium, the osmotic pressure Π(φ) = Z (φ)n(φ)kBT with Z (φ) the
compressibility. The Brownian velocity is therefore uB = −d0φ

−1[φZ (φ)]′∇φ and
the volumetric flux is jφ = φu

B, with the prime denoting derivative. Conservation
of local flux in the z-direction leads to an equation of φ(z, t),

∂φ

∂t
=

∂

∂z

{
d0

d
dφ

[φZ (φ)]
∂φ

∂z

}
. (5.13)

The boundary conditions are

∂φ

∂z
= 0 at z = 0, (5.14)

−d0
d

dφ
[φZ (φ)]

∂φ

∂z
− φ

dL
dt
= 0 at z = L(t), (5.15)

where the interface motion L(t) is determined by its movement profile. The initial
condition is φ(z, 0) = φs, i.e., a uniform starting density in the gap between z = 0
and z = L(0) = L0. Note that L in the model refers to the gap spacing accessible
to the particles, and H in the simulations is the distance between the two confining
boundaries. In the appendix, we discuss the conversion between H and L for proper
comparison between the model and the simulations. When the interface moves at a
constant velocity Uw,

L(t) = L0 −Uwt, (5.16)

and when the interface is subject to a constant external stress Σe, the change in L(t)
follows Eq. (5.4), as

ζαm
dL
dt
=

3kBTφZ (φ)
4πa

− a2
Σe, (5.17)

with φ evaluated at z = L(t).

Here, we choose the Le Fevre equation of state [61] for Z (φ),

Z (φ) =
1 + α3φ

(1 + α1φ)(1 + α2φ)(1 + β1φ + γ1φ2)(1 + β2φ + γ2φ2)
, (5.18)

with the coefficients αk , βk and γk (k = 1,2,3) presented in Table 5.1. Eq. (5.18)
has a simple pole at φ = −α−1

1 = 0.6366 and is reasonably accurate at both low and
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Table 5.1: The coefficients associated with the Le Fevre equation of state in
Eq. (5.18) from Le Fevre [61].

k αk βk γk

1 −1.5708 −2.9552 2.5521
2 1.0232 −1.3795 2.1339
3 −0.8824

high densities [62]. Selecting a single equation of state for all densities implies that
the model ignores phase transitions and greatly simplifies the solution procedure.
Further details on solving the continuum model are also presented in the appendix.

5.3 Results and Discussions
To investigate the colloidal film drying process, we carry out a series of BD simula-
tions using the EMPF algorithm with constant velocity and constant normal stress
interface movement. Each simulation contains N = 1000 particles, and starts with
an initial gap width H0 = 30a and an initial volume fraction φ0 = 0.1. For constant
normal stress interface movement, the interface resistance coefficient αm = 1. In the
simulations, we scale the length with a and the time with a2/d0 when PeU ≤ 1 and
PeΣ ≤ 1, and with a/Uw for PeU > 1 and ζ/(aΣe) for PeΣ > 1. The dimensionless
step size is 10−4. The simulations terminate after 20 successive solver failures. We
perform 300 simulations for each Péclet number and present the averaged results un-
less otherwise stated. In what follows, we present the results with constant velocity
and constant normal stress together and highlight their differences.

Interface movement
When the interface moves at a constant velocity Uw, Fig. 5.2 shows the average gap
width H at which the simulations terminate as a function of PeU . Here, a simulation
terminates because the suspension structures created by the approaching confining
boundaries cannot be relaxed by the particle thermal or mechanical fluctuations, i.e.,
the suspension jams, leading to repeated solver failures. In Fig. 5.2, the terminal
H increases with the growing PeU , and is more sensitive to PeU when PeU � 1.
Meanwhile, the variations among different simulations also grow significantly with
PeU . The inset of Fig. 5.2 presents the terminal H as a function of φ on the drying
operating curve H (φ) over the phase diagramof Fortini andDijkstra [30] for confined
hard-sphere suspensions. The phase diagram outlines the boundaries of different
crystalline structures in the H-φ plane. For example, 44means four-layer crystalline
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Figure 5.2: (Color online) The terminal gap width H as a function of Péclet num-
ber PeU for constant velocity interface movement. The error bars corresponds to
variations in 300 independent simulations. The inset shows the gap width H as a
function of the volume fraction φ for the initial H0 and φ0 in the simulations. The
H (φ) operating curve is superimposed over the H-φ equilibrium phase diagram of
confined hard-sphere systems from Fortini and Dijkstra [30] (with permission). The
terminal gap widths in the simulations are also shown as circles in the inset.

structures with triangular symmetry. In the phase diagram, regions with crystalline-
fluid coexistence are shown in yellow, and intermediate structures are tagged with
letter ‘I’ followed by an integer. On the right, the shaded areas are geometrically
inaccessible for any configurations. The operating curve is a hyperbola determined
by the initial conditions H0 and φ0, satisfying Hφ = H0φ0. Note that the H (φ)
operating curves are identical for both modes of interface movement. As mentioned
in the introduction, traversing the operating curve on the phase diagram provides
valuable information on the film structures in the near equilibrium, PeU � 1, limit.

When PeU � 1, Brownian motion readily relaxes structural heterogeneities due to
the moving interface, and gives rise to a roughly uniform structure across the gap.
In the quasi-equilibrium limit (PeU → 0), we expect the simulation to terminate
in the geometric limit, which, according to the inset of Fig. 5.2, is H ≈ 4.8a. In
the simulations, however, the terminal H at PeU = 0.1, H = 5.13a, is far from
the geometric limit and is closer to the phase transition between the 34 phase
and the 3� phase. The slow interface movement at PeU = 0.1 still disrupts the
structural transitions, and eventually terminates the simulation by creating geometric
frustrations. At PeU ∼ 1, the terminal H is also close to the 34 and 3� transition in
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Figure 5.3: (Color online) The interface position H/a as functions of the scaled
time taΣe/ζ for constant normal stress interface movement with PeΣ = 0.5, 1, 2,
10, and 50, annotated in the figure with the same color as the curve. Solid lines
are simulation results and dashed lines are from the continuum model. The dash-
dotted line refers to the constant velocity interface movement H0 − ta2Σe/(ζαm).
The inset shows the the deviation from the constant velocity interface movement,
H − [H0 − ta2Σe/(ζαm)], at short times. The corresponding PeΣ are also shown.

Fig. 5.2. However, in this case the structural heterogeneity is also important. When
PeU � 1, the Brownian relaxation becomes ineffective, and the structural change
is dominated by the moving boundary, which sweeps the particles into its vicinity
and forms a growing particle front. As the particle front comes to contact with
the stationary substrate, the resulting heterogeneous structure is easily jammed and
quickly ends the simulation. At PeU = 500, the compression on average terminates
at H = 7.3a, well before any solid phase formation in the phase diagram. Moreover,
the large variations in the terminal H at high PeU suggest that the jammed structures
are quite different from each other, as any particle network in contact with both
boundaries may force the simulation to stop.

With constant imposed normal stress Σe, the interface movement may be slowed
down by the suspension stress build-up, allowing more time for structural relax-
ation. The interface stops moving when the external suspension osmotic pressure
matches the normal stress, and fluctuates around an equilibrium position afterwards.
Meanwhile, the suspension evolves towards the equilibrium structures at the corre-
sponding H and φ in the phase diagram of Fig. 5.3 inset. In this case, the simulations
are stopped manually. Unlike the interface motion with constant velocity, where a
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higher PeU corresponds to a larger terminal H , a higher PeΣ corresponds to a smaller
terminal H as relaxation is allowed. As indicated in Eq. (5.3) and (5.4), each PeΣ
corresponds to a continuous change of PeU from 0 to PeΣ/αm.

The changes of the interface location H as functions of the dimensionless time
taΣe/ζ at different PeΣ are shown in Fig. 5.3. Measurements from the simulations
are shown in solid lines and numerical solutions of the continuum model are shown
in dashed lines. Moreover, a dash-dotted line shows the interface positions evolution
if Σm = 0, i.e., the interface moves at a constant velocity as H = H0 − ta2Σe/(αmζ )
because PeU = PeΣ/αm. At the start of the interface movement, the interface
movement asymptotes to constant velocity motion due to the small suspension
stress on the interface Σm. In this case, the condition PeU = PeΣ/αm roughly
holds. Continuing the compression lead to an increase in Σm, which slows down
and eventually stops the interface movement at the equilibrium position. In Fig. 5.3,
the transition to the equilibrium position is smooth for small PeΣ, e.g., at PeΣ = 0.5,
but becomes more abrupt at higher PeΣ, e.g., at PeΣ = 50 a sharp corner is observed
near taΣe/ζ = 32. In addition, the results from the continuum model compare well
with the simulation measurements, especially at PeΣ = 0.5. Discrepancies between
the model and the simulation become more apparent at higher PeΣ. For example,
the model underestimates the equilibrium interface position at PeΣ = 1, 10, and 50,
but overestimates at PeΣ = 2. after taΣe/ζ = 34. From later structural observations,
these differences arise from using an equation of state [Eq. (5.18)] without phase
transitions in the continuum model.

The inset of Fig. 5.3 presents the difference between the interface movement and the
constant velocity motion H0−ta2Σe/(αmζ ) at various PeΣ at small t. Deviation from
the constant velocity movement decreases with increasing PeΣ, and the difference is
apparent at taΣe/ζ = 0.5 even for PeΣ = 50. The continuum model (dashed lines)
captures the simulation measurements (solid lines). At small PeΣ, the differences
between simulation and continuum model are noticeable. However, the differences
become indistinguishable at PeΣ = 50.

Suspension microstructures
We distinguish particles in crystalline and liquid-like environment using the correla-
tional solid identification method [37, 63] based on the bond order parameters [64].
Parameters used by Marechal et al. [37] for hard-sphere sedimentation processes
are suitable for the drying processes here. Identifying whether a particle i is solid
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or liquid involves several steps. First, we find Nb(i) neighbors within a criti-
cal distance of rc = 2.6a and compute the unnormalized bond order parameter
qu

l,m(i) = Nb(i)−1 ∑Nb (i)
j=1 Yl,m(θi j, φi j ), where θi j and φi j are the polar and azimuthal

angles between particle i and its neighbor j relative to a fixed axis, and Yl,m is the
spherical harmonic function of degree l and order m. We then normalize the bond
order parameter with respect to all orders, i.e., ql,m(i) = qu

l,m(i)/
√∑l

m=−l |q
u
l,m(i)2 |.

This leads to the spatial correlation dl (i, j) = R[
∑l

m=−l ql,m(i)q∗l,m( j)] for two neigh-
boring particles i and j, with R[·] extracting the real part of a complex number, and
∗ indicating complex conjugate. For particle i, a crystalline connection is formed
with particle j if the spatial correlation d6(i, j) > dc, with dc = 0.7 and symmetry
index l = 6, and the particle has ncon(i) crystalline connections. Finally, particle
i is part of a solid structure if its crystalline connection number ncon(i) > nc with
nc = 4. We further define an overall order parameter Ξ for the suspension as the
fraction of crystalline particles in the simulation cell, such that Ξ = 1 corresponds
to an entirely crystalline structure.

Fig. 5.4 presents the overall order parameterΞ as a function of the gap width H/a for
various Péclet numbers in both interface movement modes. Combining Fig. 5.4 and
the inset of Fig. 5.2 reveals the influence of the moving interface on the structural
evolution of the drying process. Overall, Ξ grows with reducing H , but the details
differ at high and low Péclet numbers in different interface movement modes.

Beginning with the constant interface velocity film drying process in Fig. 5.4a, with
PeU � 1, Ξ remains close to zero for the majority of H and suddenly increases
rapidly towards Ξ = 1. Taking PeU = 0.1 for example, Ξ suddenly grows almost
vertically at H ≈ 6.5a, corresponding to a fluid-34 phase transition in Fig. 5.2
inset. Here, the Ξ measurement is consistent with the phase diagram prediction.
Therefore, the compression is quasi-equilibrium, and the structural rearrangement
is thermodynamic-driven. However, the growth in Ξ slows down significantly at
H ≈ 5.8a after the initial jump, i.e., near the 34-3� transition in the phase diagram.
In the denser 34 phase, the structural rearrangement takes place slowly, and is easily
disrupted by the moving boundary. This leads to the slower Ξ growth and the
eventual simulation termination.

When PeU � 1, Ξ exhibits qualitatively different behaviors with decreasing H in
Fig. 5.4a. Taking the Ξ evolution at PeU = 50 for example, Ξ grows slowly at large
H , in contrast to the sudden growth of Ξ at small H in the PeU � 1 limit. When
H ≈ 13a, far from any phase boundaries in the inset of Fig. 5.2, more than 10%
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Figure 5.4: (Color online) The overall order parameter Ξ as a function of gap width
H/a with (a): constant velocity interface motion with PeU = 0.1, 1, 2, 5, 10, and
50, and (b) constant normal stress interface motion with PeΣ = 0.5, 1, 2, 5, 10, and
50. The main figure and the inset show the same data with different axis scaling.

of the particles are already ordered, suggesting a heterogeneous mixture of ordered
and disordered structures. More interestingly, when H ≈ 6.6a, Ξ reaches a local
maximum, decreases slightly before increasing again. We explain this observation
via the growth of particle front near the moving boundary. At large H , the density
next to the moving interface is high enough for crystallization, which contributes
to the early increase of Ξ. As the front grows, subsequent crystallization proceeds
epitaxially, i.e., it uses the first layer crystals as a template for growth. Meanwhile,
the particle front has to rearrange itself as it comes into contact with the stationary
boundary, and this rearrangement eventually causes the “dip” in Ξ. Finally, the
continued increase in Ξ suggests ordered structures are preferred at smaller H , but
its formation is disrupted by the fast moving interface, leading to smaller terminal
Ξ.
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The evolution of Ξ in Fig. 5.4a demonstrates that the moving boundary alters the
suspension structure via different mechanisms: when PeU � 1, it induces spon-
taneous crystallization at small H by (almost) uniformly increasing the suspension
density, and when PeU � 1, it directly introduces localized solidification at larger
H . Themoving boundary also disrupts the spontaneous crystallization process when
the thermodynamic time scale is comparable with the convective time scale a/Uw.
This means that the least ordered structure for a given H is expected at a moderate
PeU ∼ 1. In Fig. 5.4a, taking H = 6a as an example, the minimum Ξ takes place at
PeU = 2, when the wall movement is too slow for localized order formation but too
fast for spontaneous crystallization.

For structural evolution at constant normal stress compression in Fig. 5.4b, the Ξ
evolution is qualitatively similar to the case of constant interface velocity in Fig. 5.4a.
The effects of the moving interface on the suspension structures are weaker as the
interface can be slowed down by the suspension pressure build-up. Here, as we
manually stop the simulations shortly after the equilibrium H has been reached, the
structural evolution may be incomplete, i.e., the terminal Ξ in Fig. 5.4b for PeΣ > 1
could be higher should the simulations last longer. For PeΣ = 0.5 and 1, however, the
overall Ξ is vanishingly small throughout the compression because the equilibrium
position is in the liquid phase.

Fig. 5.5 shows cut-plane views of the simulation cell at, from top to bottom, z = H−a,
z = H − 2.7a, and z = a, corresponding the particle center positions of the
immediate particle layer next to the moving interface, the immediate second particle
layer adjacent to a close-packed first layer, and the first layer next to the stationary
boundary, respectively, at different H during the constant interface velocity film
drying process. The corresponding Ξ evolution as a function of H is also presented.
The particle intersections are shown as discs in the cut-plane views, with crystalline
particles colored red and amorphous particles colored blue. Fig. 5.5a, 5.5b, 5.5c
respectively presents the results at PeU = 0.1, 2, and 50. These cut-plane views
provide direct qualitative assessment of the suspension structural evolution.

The first feature revealed in Fig. 5.5 is the particle distributions during the com-
pression. At PeU = 0.1, Fig. 5.5a shows that the densities in the cut-plane views
at different z-positions are approximately the same, suggesting an almost homo-
geneous suspension during the drying process. On the other hand, at PeU = 50,
Fig. 5.5c shows large density variations with respect to z. At H = 15a, the densities
at all three cut-plane views are already quite different. At smaller H , differences
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between views at z = H − a and z = H − 2.7a becomes less apparent, but their
densities are still visibly higher than those at z = a. With an intermediate PeU = 2
in Fig. 5.5b, at H = 15a the density at z = a is lower than the the density near the
moving interface. However, the differences are less evident when H = 6a and 5.5a.

The second feature shown in Fig. 5.5 is the crystalline structures along with the Ξ
evolution. At PeU = 0.1, the suspension becomes crystalline with the Ξ increase,
evidenced by the red discs in Fig. 5.5a. From the cut-plane views at H = 6a and
5.5a, the crystallization process takes place uniformly across the gap. At H = 5.5a,
almost all particles in the suspension are crystalline. The few amorphous particles
are due to defects such as stacking faults. For fast interface movement at PeU = 50
in Fig. 5.5c, patches of crystalline structures emerge as early as H = 15a next to the
moving interface. The size of the crystal patches grow with continued compression.
Moreover, using the existing crystalline structures next to the moving boundary as a
template, a second layer of crystalline structures also start to grow epitaxially. Before
the simulation stops at H = 5.7a, the crystalline structures remains patchy, as the fast
moving interface does not permit further structural rearrangement. The structural
evolution at PeU = 2 in Fig. 5.5b shows a competition between the thermodynamic-
driven crystallization process at low PeU and the kinetic crystallization process
at high PeU . The net result is deferred crystallization onset. At H = 6a, the
suspension remains mostly amorphous despite nearly uniform densities across the
gap. Here, Brownian motion is strong enough to redistribute particles, but too weak
relative to the boundary movement to organize local ordering. Patchy crystals are
only observed at H = 5.5a. Therefore, the structures of the colloidal film can be
controlled by carefully adjusting the interface speedUw. Crystallization at high PeU

in Fig. 5.5c explains the recent success of fast colloidal crystal fabrication with high
drying rate [27]. Moreover, the amorphous structures at moderate PeU may find
applications in angle independent photonic materials[2].

Further characterization of the thin film structures next to the moving boundary at
z = H − a with the gap spacing H = 6a is presented in Fig. 5.6 using the two-
dimensional radial distribution function in the xy-plane, gxy (rxy), averaged over
all simulations. For clarity, gxy (rxy) at PeU = 2 and 50 are shifted upwards by
2 and 4, respectively. The inset of Fig. 5.6 also show the planar pair distribution
function corresponding to the cut-plane views in Fig. 5.5. At PeU = 0.1, the radial
distribution function gxy (rxy) shows a mild double peak near rxy = 4a, suggesting
crystalline structures with relatively low density. The crystalline structure is further
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Figure 5.6: (Color online) The average planar radial distribution function in the
xy-plane, gxy (rxy), measured at z = H − a for PeU = 0.1, 2, and 50 when the gap
width H = 6a. The results at PeU = 2 and 50 are shifted up by 2 and 4, respectively,
for clarity. The insets show the 2D planar pair distribution function corresponding
to the top snapshot in the middle column in Fig. 5.5a, 5.5b, and 5.5c.

confirmed by the hexagonal patterns in the corresponding pair distribution function.
At PeU = 2, the double peak for gxy (rxy) around rxy = 4a vanishes, suggesting
amorphous suspension structure. The overall features in gxy (rxy) is less pronounced
comparing to other PeU , and the pair distribution function is almost isotropic. At
PeU = 50, the peaks in gxy (rxy) becomes much sharper comparing to those at lower
PeU , suggesting the particles are more densely packed. The split peaks near the
second coordinate layer are at 3.5a and 4.0a, closely correspond to closely packed
hexagons, which show peaks at 2

√
3a and 4a. The pair distribution function is

a mixture of amorphous and crystalline structures, consistent with the qualitative
observations in Fig. 5.5c.

The structural features for constant normal stress compression are qualitatively
similar to those in Fig. 5.5 and 5.6, except for the weaker influences of the interface.
The suspension is in general more ordered. For the particle layer immediately next
to the moving interface, at PeΣ = 2 and H = 6a, the second peak of gxy (rxy) is less
pronounced and located at larger r compared to the constant velocity counterpart.
Due to the similarity, these results are not presented.



193

Normal stress profiles
We measure the normal stress profile in the z-direction, Σzz (z), using the method
of Todd et al. [65], which, although derived for Hamiltonian systems, is also ap-
plicable for dissipative Brownian systems without hydrodynamic interactions. The
stress components related to the z-direction at position z′ is

〈
Σzα (z′)

〉
= −

〈
n(z′)

〉
kBTδzα −

1
2A

〈 N∑
i=1

f P
iαsgn(zi − z′)

〉
, α ∈ {x, y, z}, (5.19)

where 〈·〉 denotes an ensemble average, n(z′) is the local particle number density,
A = L2 is the xy area of the simulation cell, and FP

iα is the interparticle force in
the α direction of particle i. Eq. (5.19) suggests that the local stress is intimately
related to the total force across the plane. The first term on the right hand side of
Eq. (5.19) is simplified from the original formulation for the isothermal Brownian
suspensions. Note that the interparticle force f P

i for particle i excludes the forces
from the confining boundaries, f W

i . Since Eq. (5.19) involves all particles in the
simulation box, it provides better local stress resolution comparing to spatial binning,
which is susceptible to large noises at small bin widths [65]. The EMPF algorithm
also eliminates the ambiguous stress definition from multiple overlaps.

To avoid inaccuracies from contact density measurement next to the wall—an in-
herent drawback of the time discretization algorithms—the contact stresses on the
moving interface, Σm, and on the stationary substrate, Σs, are directly computed as

Σm = −
1

2A∆t

l+∑
r=1

λ+r and Σs = −
1

2A∆t

l−∑
t=1

λ−t , (5.20)

where λ+r and λ−t are the wall confinement Lagrange multiplier defined in the
appendix, and their values divided by ∆t are twice the force exerted by the wall on
particle r or t.

Fig. 5.7 and 5.8 present the suspension normal stress profiles Σzz/(n0kBT ), with n0 =
3
4φ0/(πa3), along with the moving interface stresses at different Péclet numbers for,
respectively, the constant velocity and the constant normal stress drying processes.
In both figures, the simulation measurements are presented on the left column
while the continuum model results on the right. For constant velocity interface
movement in Fig. 5.7, Σzz on the moving boundary eventually diverges, and the
stress difference between the two boundaries increases with PeU . On the other hand,
for drying process with constant imposed normal stress in Fig. 5.8, Σzz does not
diverge, and near the equilibriumwall position, the stress profile eventually becomes
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Figure 5.7: (Color online) The normal stress profiles Σzz/(n0kBT ) in drying pro-
cesses with constant velocity interface movement at (a), (b): PeU = 0.1, (c), (d):
PeU = 2, and (e), (f): PeU = 50. Simulation measurements are shown in (a), (c),
and (e), and continuum model results are shown in (b), (d), and (f). To reduce noise,
simulation stress measurements are averaged over 0.01a. The normal stresses on
the moving interface are shown in red, and the stress profiles at the denoted H/a are
shown in blue. Near the boundaries, the contact stress and the suspension stress are
connected by green dashed lines, visible only at high PeU due to stress concentration.

uniform across the gap, and suspension stress on the boundary eventually matches
the imposed stress Σe.

Let us begin with the normal stress measurements in Fig. 5.7a, 5.7c, 5.7e for constant
velocity interface movement. For PeU � 1, the stress distribution across the gap
reflects Brownian motion dominance. For example, at PeU = 0.1 (Fig. 5.7a), the
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Figure 5.8: (Color online) The normal stress profiles Σzz/(n0kBT ) in drying pro-
cesses with constant normal stress interface movement at (a), (b): PeΣ = 0.5, (c),
(d): PeΣ = 2, and (e), (f): PeΣ = 50. Simulation measurements are shown in (a),
(c), and (e), and continuum model results are shown in (b), (d), and (f). Other
arrangements are identical to Fig. 5.7.

stresses on the moving boundary increase with decreasing H , except a reduction
between H ≈ 6.6a and 6.1a. This reduction coincides with the abrupt increase of Ξ
in Fig. 5.4a due to crystallization to the 34 phase in the phase diagram. Therefore,
the stress is reduced by the thermodynamic structural rearrangement. From the
almost uniform stress distribution across the gap, the stress differences between the
stationary and the moving boundaries are small due to strong Brownian motion.
In addition, the stress profile becomes more inhomogeneous near the structural
transition, i.e., at H = 7a. Here, the higher stress on the moving boundary suggests
the higher local density, which initiates the spontaneous crystallization.
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At PeU � 1, the structural heterogeneity leads to strong stress heterogeneity. On the
moving boundary, the normal stress evolution with reducing H can be divided into
four stages. Using the case of PeU = 50 in Fig. 5.7e as an example, they are: (i) linear
normal stress increase from the beginning to H ≈ 7a. This reflects the normal stress
required to carry the growing particle front at a constant velocity. The linearity
implies linear particle front growth as the initial particle distribution is uniform.
(ii) Abrupt stress increase over a short distance between H ≈ 7a and 6a. The particle
front begins to be in contact with the stationary boundary and is compressed, giving
rise to a local Ξ maximum in Fig. 5.4a. (iii) Slower stress increase near H/a = 6.
This slower stress growth is consistent with the onset of Ξ increase after the “dip” in
Fig. 5.4a, i.e., the tendency for crystallization in a dense and heterogeneous structure
is strong enough to slow down the stress increase. (iv) Continued stress increase
until simulation stops from compressing a jammed structure. Clearly, the stress
on the moving interface is consistent with the suspension structural evolution. For
moderate PeU , e.g., PeU = 2 in Fig. 5.7c, stage (iii) disappears completely together
with the Ξ “dip” in Fig. 5.4a due to a lack of order in the suspension. Moreover, the
stress distribution across the gap at large PeU is more complicated. Near the moving
interface, the stresses measured in the suspensions from Eq. (5.19) are different
from the stress measured on the interface via Eq. (5.20), suggesting boundary-layer-
like stress variation in this region. Away from the boundaries, the stress exhibits a
step-like profile, and remains inhomogeneous during the drying process. The stress
profiles here are consistent with the structural heterogeneity.

The normal stress profiles for interface movement with constant imposed normal
stress, shown in Fig. 5.8a, 5.8c, and 5.8e, share many similarities with those of
constant velocity compression. As indicated earlier, in this compression mode the
normal stress no longer diverges, and eventually matches the imposed stress. In
the PeΣ � 1 limit, qualitative features of the stress profile remain unchanged, but
in the PeΣ � 1 limit, the slowdown of the moving interface changes the linear
Σzz/(n0kBT ) growth in stage (i) of the PeU � 1 case to a curve, e.g., the case of
PeΣ = 50 in Fig. 5.8e. Other stages of stress development discussed earlier remain
similar. Stress concentration in the stress boundary layer remains at the beginning
of the compression for PeΣ � 1. However, with decreasing H , the stress boundary
layer vanishes and the stress difference between the two boundaries diminishes,
again due to relaxation from the slowing moving interface.

In Fig. 5.7 and 5.8, the normal stress computed from the continuummodel, Σzz (z) =
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Figure 5.9: (Color online) The scaled suspension stress on the moving interface
as functions of the gap width H/a for (a): Σm/(PeU n0kBT ) for drying with an
interface at constant velocity at (from right to left) PeU = 1, 2, 5, 10, and 50 and
(b): Σm/(PeΣn0kBT ) for drying with an interface subject to constant normal stress
at (from right to left) PeΣ = 1, 2, 5, 10, and 50. The insets show the stress on the
stationary boundary Σs/(n0kBT ) as functions of gap spacing for the same PeU or
PeΣ. The simulations results are shown in solid lines and model computations are
shown in dashed lines.

3
4 kBTφZ (φ)/(πa3), not only captures the qualitative, but also some quantitative
aspects of the simulation results, particularly the normal stresses evolution on the
boundaries. The continuum model agrees excellently with the simulation until the
onset of solidification in the simulation when PeU � 1, i.e., comparing Fig. 5.7a
and 5.7b at PeU = 0.1, the model agrees with the simulations up to H ≈ 7a.
Without crystallization, e.g., in Fig. 5.8a and 5.8b at PeΣ = 0.5 with constant normal
stress interface movement, the agreement between the model and the simulation is
present over the entire drying process. At larger PeU and PeΣ, the model can predict
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the boundary normal stresses in both interface movement modes until significant
structural rearrangement takes place in the simulation. However, the continuum
model is unable to capture the complex, step-like, stress profiles. For example,
at PeU = 50 and PeΣ = 50, the model can only capture the moving wall normal
stress during stage (i) and (ii) of the stress evolution. Considering how simple
the parameter-free model is, i.e., ignoring the structural transitions and non-local
effects, this agreement is remarkable.

Finally, Fig. 5.9 presents the moving stress evolution during the compression scaled
with the corresponding Péclet number, −Σm/(PeU n0kBT ) in Fig. 5.9a for PeU ≥ 1
and −Σm/(PeΣn0kBT ) in Fig. 5.9b for PeΣ ≥ 1. The stress evolution at different
Péclet number collapses onto a master curve for different interface movement pro-
file during stage (i) of the stress evolution in the high Péclet number limit. The
collapse suggests that with PeU � 1 or PeΣ � 1, the stress on the moving in-
terface is dominated by convection: at constant velocity interface movement, the
faster the moving interface pushes the growing particle front, the larger the stress
required; and with constant imposed normal stress, the growing particle front slows
down the moving interface in a way that is proportional to the imposed stress. Fur-
thermore, all data in Fig. 5.9b share the same maximum Σm/(PeΣn0kBT ), because
Σzz/(PeΣn0kBT ) = (Σzz/Σe)( 4

3π/φ0) and at equilibrium Σzz = Σe. Therefore, the
scaled stress maximum is 41.9 for φ0 = 0.1, consistent with Fig. 5.9b. Here, the con-
tinuum model in dashed line agrees excellently with the simulation when H > 7a.
At smaller gap width, structural rearrangement drives the model prediction away
from the simulation data. The discrepancy is especially apparent at higher PeU or
PeΣ.

The inset of Fig. 5.9 presents the stress on the stationary boundary, Σs/(n0kBT ), as
functions of the gap spacing H in the corresponding compression mode at different
Péclet numbers. The Σs/(n0kBT ) behaviors are similar between different interface
movement modes, but do not collapse with the Péclet numbers like the stresses on
the moving interface. For PeU ≥ 1 and PeΣ ≥ 1, the growth of Σs/(n0kBT ) is
deferred, e.g., Σs only begins to grow at H ≈ 15a with PeU = 1 and at H ≈ 10a with
PeU = 10 in Fig. 5.9a. Prior to the growth, the stationary boundary stress remains a
constant. The growth of Σs/(n0kBT ) takes place at smaller H with increasing PeU

or PeΣ. This is because, physically, Σs only begins to change when the particle front
becomes in contact with the stationary boundary. The continuum model captures
the behaviors of Σs at low PeU and PeΣ, but underestimates the gap width where Σs
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Figure 5.10: (Color online) Local volume fraction profile φ(z) in drying process
with constant velocity interface movement at (a), (b): PeU = 0.1, (c), (d): PeU = 2,
and (e), (f): PeU = 50. Simulation measurements are shown in (a), (c), and (e), and
continuum model results are shown in (b), (d), and (f). The local volume fractions
next to the moving interface are shown in red, and the volume fraction profiles at
the denoted H/a are shown in blue.

begins to grow, as the continuum model cannot resolve the structural evolution of
the particle front.

Volume fraction profiles
Measuring the local volume fraction φ within the gap provides a direct comparison
between the simulation and the continuum model. Unlike the number density n

which can be sensitive to the measurement resolution near the fast moving interface,
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the volume fraction is always bounded. The local volume fractions are computed
by partitioning the simulation cell using Voronoi tessellation [66] with periodic
boundary conditions in the x- and y-directions. In the z-direction, the part of the
simulation cell that is inaccessible to particles is omitted, i.e., the tessellation is
limited between z = a and z = H − a. For each particle i, the ratio of the particle
volume Vp,i to the tessellation cell volume Vc,i defines the local volume fraction of
the particle φi = Vp,i/Vc,i. The volume fraction profile φ(z) is obtained by sorting
and averaging φi based on their z-position. Comparing to other coarse-grained
approaches [39], this is parameter-free and provides satisfactory spatial resolution.

Fig. 5.10 shows the simulation and the continuum model local volume fraction φ(z)
across the gap at various H during the constant interface velocity drying process
at PeU = 0.1 (Fig. 5.10a, 5.10b), PeU = 2 (Fig. 5.10c, 5.10d), and PeU = 50
(Fig. 5.10e, 5.10f). The local volume fractions next to the moving interface are also
shown. The simulation measurements are presented in the left and the computation
from the continuum model on the right. Results from constant imposed normal
stress are almost identical and therefore are not shown. That the almost identical
φ profiles produce distinct stress development in two interface movement modes
suggests the sensitivity of the local stress Σzz (z) to the local volume fraction φ(z).

The measured local volume fraction is bounded by the Voronoi tessellation. For
example, in Fig. 5.10a at PeU = 0.1, the maximum φ from the simulations is ∼ 0.65
despite extensive solidification, significantly lower than the bulkmaximum φ ∼ 0.74
for fcc solids. Fluctuations in the φ measurements near the boundaries are due to
measurement protocol, and the fluctuations at small H arises from crystallization.
With PeU = 0.1 in Fig. 5.10a, the φ profile is almost linear across the gap for
H ≥ 15a, and the φ difference between the moving interface and the stationary
boundary is small. Therefore, the particle flux is almost constant across the gap
due to abundant thermal fluctuations. At smaller H , the φ distribution becomes
more symmetric due to crystallization. For PeU = 50 in Fig. 5.10e, the φ profile
shows more variations across the gap. The φ profile for H ≥ 15a clearly indicates
the formation of a particle front with an advancing interface. When H ≈ 10a, the
particle front is in contact with the stationary boundary and begins to rearrange.
The rearrangement is localized, causing significant φ increase near the stationary
boundary, but not much change near the moving interface. The larger φ fluctuations
near H = 6a are due to crystallization. Qualitatively, the φ profiles at PeU = 2 and
PeU = 50 from the simulations are similar.
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The continuum model accurately predicts the φ profile at PeU � 1 with H > 7a,
but fails to capture the φ fluctuations at small H from the crystallization process.
At higher PeU , the continuum model disagrees with the simulation measurements
on the changes in φ next to the moving interface. This is especially pronounced
at PeU = 50: the model predicts that φ near the moving interface becomes almost
constant when H < 20a. However, the corresponding simulation measurements
show a much slower φ growth. Moreover, the simulation shows a more diffusive
particle front near the moving wall, in contrast to the sharp interface predicted by
the model. This “diffusive” front, however, is not due to the Brownian motion, but
the finite particle size—an aspect not captured by the model.

Improving the continuum model is challenging. For example, incorporating the
effects of convection on the particle mobility, i.e., changing d0 in Eq. (5.13) and
(5.15) to collective diffusivity dc(φ) = (1 + PeU b) or dc(φ) = (1 + PeU bφ)—with
b a fitting parameter—did not yield qualitative improvement. It should be recalled
that the particle size does not enter the continuum model and therefore non-local,
particle-scale effects similar to those proposed byKamrin and Koval [51] for particle
mobility may be helpful. Nonetheless, the existing continuum model successfully
captures the φ evolution at small Péclet numbers and large H in both interface
movement modes. The success of the model may be that the equation of state,
Eq. (5.18), accurately captures the behaviors of the amorphous suspensions under
confinement.

5.4 Concluding Remarks
We presented a simulation and modeling investigation on the colloidal film drying
process with the interface moving at constant velocity or subject to constant imposed
stresses. For the simulations, we developed a new EMPF algorithm to address the
unique challenges in the drying process. The simulation results are compared with
a continuum model, also developed in this work, to understand their validity.

At low Péclet numbers, the drying dynamics are dominated by Brownian motion up
to small gap widths. Changes in suspension structures and stresses can be succinctly
summarized by constructing an operating curve on the confined suspension phase
diagram [30]. At high Péclet numbers, a growing particle front emerges next to
the moving interface, which leads to structural heterogeneity. As a result, the
stress profiles exhibit a stress boundary layer next to the moving interface, and step
like stress profiles within the gap. Our simulations show that different suspension
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structures from amorphous to crystalline can be obtained by adjusting interface
motion. Interestingly, for a given H , the most amorphous structures are found at
moderate Péclet numbers as the moving interface promotes localized crystallization
and disrupts spontaneous phase transition. With constant imposed normal stress,
the influence of the moving interface is weaker as the interface velocity can be
reduced. The simple continuum model successfully captures the dynamics of the
suspension at low Péclet numbers, but shows limited success at high Péclet numbers.
The model predicts the interface stress and position in both compression modes, but
cannot describe the stress and volume fraction profiles, suggesting the importance
of phase transitions and non-local effects in the model construction.

This work provides an in-depth structural and mechanical characterization of the
colloidal film drying process. It also sheds light on the non-equilibrium, boundary-
driven transport processes of confined systems in general. It shows that film structure
may be controlled by changing the interface movement, demonstrating the unex-
pectedly important role of convective transport on the film formation process and
the colloidal self-assembly processes in general. The comparison between the con-
tinuum model and the simulation also show the need for new model developments
that properly account for the convection effects.

A possible extension of this work is the incorporation of hydrodynamic interactions.
Hydrodynamics profoundly affect the dynamics and transport of the confined col-
loidal suspensions [12, 15]. The influences of hydrodynamic interactions on the
drying process are unknown, including the structural consequences of the reduced
particle mobility and the long-range correlated particle motion. Their effects can
only be assessed via detailed hydrodynamic simulations.

5.A Cost functions for confined systems
Additional cost functions to account for the interactions between the boundary and
the clusters are necessary to use the EMPF algorithm for the film drying process.
We assume that the boundaries are reflective in the z-direction and perfectly slip
in the x- and y-directions. With constant interface velocity, the wall motion is
deterministic. However, when the interface is subject to constant normal stress, the
interface position also changes by interacting with the overlapping particles.

For the deterministic interface movement, the boundaries impose new geometric
constraints, and remove the force-free constraints in the z-direction. Given an n-
particle cluster with m overlapping particle pairs, l+ and l− particles overlapped with
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the boundary at z = H and z = 0, respectively, the cost function for particles with
radii a is

f f w
c (y) =

n∑
i=1

ε i +
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p
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P
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where zr and ∆zP
r are respectively the z-position and displacement of particle r

overlapped with the boundary at z = H , and zt and ∆zP
t are similar quantities with

the boundary at z = 0, and the unknown vector is
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When the interface is subject to a constant normal stress, its position change due
to particle overlaps has to be solved as part of the problem. From Eq. (5.4),
the force required to move the boundary a distance ∆HP in z-direction is f P

m =

ζαm(L2/a2)(∆HP/∆t), and the energy associatedwith suchmotion is εm = f P
m∆HP.

If the cluster only overlaps with the moving boundary at z = H , the wall is treated
as a large particle, and the cost function is augmented from Eq. (5.11):
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where 1z is the z-direction unit vector. In addition, the cluster may overlap with
both boundaries, and the cost function is augmented from Eq. (5.21) as,
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The set of cost functions in Eq. (5.11), (5.21), (5.23) and (5.24) covers all possible
scenarios of interface movement in this work.

5.B Solving the continuum model and mapping to simulations
The moving boundary problems in Eq. (5.13) and (5.15) and their auxiliary equa-
tions are transformed to a fixed domain of 0 ≤ ξ ≤ 1 through the coordinate
transformation ξ (t) = z/L(t) [67]. Since particle size does not explicitly appear in
the model, it is more convenient to scale the length with the initial gap width L0.
For constant velocity interface movement, we introduce a new dimensionless time
τ = tUw/L0 and a wall velocity Péclet number PeWU = UwL0/D0 = PeU (L0/a),
which leads to

∂φ

∂τ
=

1
PeWU(1 − τ)2

∂

∂ξ

{
d

dφ
[φZ (φ)]

∂φ

∂ξ

}
−

ξ

1 − τ
∂φ

∂ξ
(5.25)

with boundary conditions

∂φ

∂ξ
= 0 at ξ = 0, (5.26)

d
dφ

[φZ (φ)]
∂φ

∂ξ
− PeWU(1 − τ)φ = 0 at ξ = 1. (5.27)

For constant normal stress interface movement, we define τ = (ζ/Σe)(L0/a2),
and the wall stress Péclet number PeWΣ = a2L0Σe/(kBT ) = PeΣ (L0/a). With
L̄ = L(t)/L0, we have

∂φ

∂τ
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1
PeWΣ

1
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with boundary conditions

∂φ

∂ξ
= 0 at ξ = 0, (5.29)

1
L̄

d f
dφ

∂φ

∂ξ
+
φPeWΣ

αm
(−1 + β f ) = 0 at ξ = 1, (5.30)

and the wall motion auxiliary equation

dL̄
dτ
=
−1 + β f
αm

, (5.31)

where f = φZ (φ), and β = 3/(4π)(L0/a)Pe−1
WΣ

. These non-linear partial differen-
tial equations can be converted to a set of ordinary differential equations by spatial
discretization and solved numerically.
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A subtlety for comparing the simulations with the continuum models is that in the
simulations the confining boundaries reduce the particle accessible volume. For
a simulation starting with H0 and φ0, the corresponding continuum model has an
initial gap width L0 = H0−2a and a starting volume fraction φs = φ0H0/(H0−2a).
The wall position L(t) in the model corresponds to H (t) = L(t)H0/(H0−2a) in the
simulations. Furthermore, when comparing the stress and volume fraction profiles,
the simulation position zs with H (t) and the model position zm with L(t) are related
as

zs − a
H (t) − 2a

=
zm

L(t)
. (5.32)
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C h a p t e r 6

CONSTANT STRESS AND PRESSURE RHEOLOGY OF
COLLOIDAL SUSPENSIONS

[1] M.Wang and J. F. Brady, “Constant stress and pressure rheology of colloidal
suspensions”, Physical Review Letters 115, 158301 (2015) doi:10.1103/
PhysRevLett.115.158301,

6.1 Introduction
Amorphous materials such as metallic glasses, granular matter, and colloidal sus-
pensions exhibit a range of flow behaviors including shear-thickening [1], particle
migration [2], shear banding [3], etc. The most fundamental and universal aspect of
their rheology is a flow-arrest transition that takes place at either increased density or
reduced temperature and is summarized by various ‘jamming diagrams’, pioneered
by Liu & Nagel [4–6]. Extensive computational and experimental investigations
reveal that the flow-arrest transition is affected by the interplay among thermal fluc-
tuations [6–10] and particle geometry and interactions [11–14]. Distinct behaviors
have been observed for strong and weak thermal fluctuations, but the connection
between the two limits is an open question.

In this chapter we present a unified perspective on the flow-arrest transition spanning
the entire range between the thermal and athermal limits. For simplicity, our study
focuses on hard-sphere colloidal dispersions. Experiments and simulations at fixed
volume (fraction) have found the suspension viscosity to diverge algebraically at a
critical volume fraction: ηs ∝ (φc − φ)−δ, where φ is the volume fraction and δ
is the exponent. With strong thermal fluctuations the colloidal glass transition is
observed: φc ≈ 0.58–0.60 and δ ≈ 2.2–2.6 [7, 15–17]. In the limit of the jamming
transition where thermal fluctuations are weak: φc ≈ 0.585–0.64 and δ ≈ 2.0 [9,
18, 19]. Moreover, φc is sensitive to the particle size polydispersity [20], particle
surface asperity [5], and even the sample preparation protocol [21]. Traditionally,
the different exponents are interpreted as signatures of distinct physical processes—
the colloidal glass vs. the jamming transition [9]. Here we show that when the
suspension pressure, instead of the volume, is held fixed under shear a universal
exponent and behavior emerges.

http://dx.doi.org/doi:10.1103/PhysRevLett.115.158301
http://dx.doi.org/doi:10.1103/PhysRevLett.115.158301
http://dx.doi.org/doi:10.1103/PhysRevLett.115.158301
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A challenge to dense suspension rheology is the divergence of properties such as
viscosity and yield stress near φc. We overcome this in two ways. First, we impose
a constant shear stress rather than shear rate, which allows the system to flow or
not, and the yield stress—the stress below which the material does not flow—can
be identified. Second, we impose a constant confining pressure rather than a fixed
volume, which allows the system to dilate (or compact)—to change its volume
fraction—as necessary under flow. In this way we are able to approach the critical
point along trajectories at fixed shear stress and pressure, rather than, as is traditional,
along paths of fixed shear rate and volume fraction.

It proves revealing to discuss the behavior from a perspective often used in the
granular flow community. Although both the shear and normal stresses diverge at
the critical point, their ratio does not. For viscous suspensions the behavior can be
described in terms of the friction coefficient µ, a macroscopic, effective property of
the material, and the viscous flow number Iv [19],

µ = σ/Π and Iv = η0γ̇/Π, (6.1)

where σ is the shear stress, Π is the particle (or osmotic) pressure, η0 is the solvent
viscosity, and γ̇ is the strain rate. Using the viscous flow number Iv—the ratio
of an internal suspension time scale η0/Π to the flow time scale γ̇−1—Boyer et
al. [19] successfully unified the rheology of viscous non-Brownian suspensions and
inertial-driven granular materials.

For rapid granular flows both the shear and normal stresses scale inertially (as
∼ ρa2γ̇2) and their ratio, the friction coefficient, is independent of the strain rate,
which has led to the claim that a rate-independent friction coefficient is a signature
of (dry) friction-dominated material and flow. However, in viscous non-Brownian
suspensions (any colloidal suspension at high shear rates) bothσ andΠ scale linearly
with the strain rate (as ∼ η0γ̇) and the friction coefficient is independent of γ̇ even
though the material behaves as a liquid.

Liquid-like colloidal dispersions are not normally discussed in terms of µ because
at low shear rates (strong thermal motion) the shear stress is proportional to γ̇, but
the normal stress is dominated by the equilibrium osmotic pressure and thus µ ∼ γ̇
as γ̇ → 0. However, near the flow-arrest point, the material has a dynamic yield
stress, and µmay approach a constant as γ̇ → 0. The friction coefficient perspective
therefore enables a natural connection between Brownian suspensions and granular
materials.
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Figure 6.1: (a): The suspension steady shear viscosity ηs/η0 (left triangles) and
the long-time self-diffusivity ds

∞/d0 (right triangles), with d0 = kBT/(6πη0a), as
functions of Peσ in constant shear stress and pressure simulations at an imposed
pressure Πa3/kBT = 5. The filled (open) symbols represent the flowing (arrested)
states. Typical accumulated strain γ (top) and volume fraction φ (bottom) at Peσ =
0.5 (b), 5 (c), and 10 (d) as functions of dimensionless time tσ/η0 are also presented,
with the corresponding Peσ annotated in (a).

6.2 Method
We study the suspension rheology using Brownian dynamics (BD) simulations
without hydrodynamic interactions (HIs). In the simulations, we enforce the hard-
sphere interactions via the ‘potential free’ algorithm [22–25], and compute φ and γ̇
from the imposed σ and Π, which, when scaled with the thermal energy kBT , give,
respectively, the stress Péclet number Peσ = 6πa3σ/kBT and the dimensionless
pressure Π̄ = Πa3/kBT , with a the mean particle radius. The particle dynamics
follow the overdamped Langevin equation,

ζ ( ẋ − γ̇x2e1 −
1
3 ėx) = fp + fb, (6.2)

where x = (x1, x2, x3) is the particle position in the 1-(velocity), 2-(velocity gra-
dient), and 3-(vorticity) directions, ζ = 6πη0a is the Stokes resistance, ė is the
expansion rate, e1 is the unit vector in 1-direction, fp is the interparticle force [25],
and fb is the Brownian force, which has a mean of zero and a variance of 2kBTζ . We
impose periodic boundary conditions in 1- and 3-directions and the Lees-Edwards
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boundary condition in 2-direction. The strain (γ̇) and expansion (ė) rates are com-
puted from:

σ = (1 + 5
2φ)η0γ̇ + σ

p
12, (6.3)

Π = −(κ0 +
4
3φη0)ė − 1

3σ
p : I, (6.4)

where κ0 is the bulk viscosity of the compressible solvent 1, and σp = −nkBT I −
n
〈
x fp

〉
is the particle stress contribution, with n = N/V the number density. The

simulation box size L is then adjusted isotropically as L̇ = 1
3 ėL. The novelty of our

method is that, through a compressible solvent, the constant pressure constraint for
the overdamped system is satisfied without introducing permeable boundaries.

For each (Peσ, Π̄) pair we perform at least three independent simulations, each
contains N = 200 particles with 10% particle size polydispersity [8]. The simulation
lasts at least 104 dimensionless time unitswith step size 10−4, where the time is scaled
with 6πη0a3/kBT when Peσ < 1 and with η0/σ when Peσ ≥ 1. In the appendices,
we describe the computation of fp, and show that the selected parameters adequately
capture the physics of flow-arrest transitions.

6.3 Results and discussions
Typical rheological responses from constant stress and pressure simulations at an
imposed pressure Π̄ = 5 are shown in Fig. 6.1. The Peσ dependence of the
shear viscosity ηs = σ/γ̇ and the long-time self-diffusivity (LTSD) ds

∞, measured
from the slope of the mean-square displacement in the vorticity direction, ds

∞ =

limt→∞
1
2d〈(∆x3)2〉/dt, are presented in Fig. 6.1a. The suspension exhibits a flow-

arrest transition at Peσ ≈ 5, with the flowing data shown as filled symbols and the
arrested data as open symbols. When Peσ & 5, the shear viscosity increases sharply
with decreasing Peσ, reaching ηs/η0 ≈ 2 × 104 at Peσ ≈ 5. Accompanying the
growth in ηs is an abrupt reduction in ds

∞. At lower Peσ, the shear viscosity remains
high and the LTSD low. Fig. 6.1b–6.1d show behaviors of the accumulated strain
γ =

∫ t
0 γ̇dt and the volume fraction φ at different Peσ. The accumulated strain

grows linearly with time in the flowing state, but changes little in the arrested state.
At Peσ = 5 in Fig. 6.1c, γ exhibits instability and switches between the flowing
and arrested states. Correspondingly, φ fluctuates around a mean value for both the
flowing and arrested suspensions, but becomes unstable at the flow-arrest point. We

1Treating the solvent as a compressible fluid allows the periodic unit cell to be expanded
isotropically without violating the physics of Brownian particles in Stokes flow, c.f. Ref. [26]. Thus,
a physical permeable boundary, which can cause local ordering, etc., is not necessary.
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Figure 6.2: (Color online) The steady shear rheology of hard-sphere colloidal
suspensions with constant shear stress and pressure, (a): µ = σ/Π as a function of
Iv = η0γ̇/Π and (b): µ as a function of φ. Simulations at the same imposed pressure
Πa3/kBT are shown in the same symbols. For suspensions exhibiting flow-arrest
transitions, the filled (open) symbols represent the flowing (arrested) states. The
raw and the scaled data of Boyer et al. [19] are shown in diamonds and triangles,
respectively. In (b), the dashed lines outline the boundary of the flowing region,
and the solid lines are contours of the shear viscosity ηs/η0. The Shear Arrest Point
(φSAP, µSAP) is shown as a star.

found that the suspensions is arrested when ηs/η0 > 2 × 104 over a wide range of
imposed pressures. Consequently, this is adopted as a criterion for the flow-arrest
transition in this work.

Fig. 6.2 presents the overall steady shear rheology at constant stress and pressure
near the flow-arrest transition. Fig. 6.2a shows the friction coefficient as a function
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of the viscous number, and Fig. 6.2b shows the corresponding volume fraction. The
symbols of the same color are at the same confining pressure (shown in the figure
legend) and trace out ‘isobars’. Full symbols are flowing liquid-like systems, while
unfilled symbols denote arrested states.

Starting with solid ×’s at low confining pressures, e.g., at Π̄ = 0.95 in Fig. 6.2a, µ
grows linearly with Iv at low and high Iv with different slopes; the suspension does
not arrest. The ratio of µ and Iv is the shear viscosity, ηs/η0 = µ/Iv. At high Iv, the
suspension viscosity ηs asymtotes to the solvent viscosity η0. With increasing Π̄,
the µ-Iv curve flattens as Iv decreases, but eventually turns down such that µ ∼ γ̇ as
γ̇ → 0. The suspension flows as a liquid with an increasing zero shear-rate viscosity
corresponding to the larger φ seen in Fig. 6.2b.

When the confining pressure Π̄ ≥ 3.5, the suspension arrests and flows only if µ
exceeds a limiting value µm(Π̄), and the minimum shear rate (Iv) increases. The
imposed stress corresponding to µm is the dynamic yield stress at the imposed
pressure. Moreover, µm increases with Π̄ and, as Π̄ → ∞, µm asymptotes to a
constant value of 0.16. At high Π̄ (and high Iv for low Π̄) all data collapse onto
a single curve corresponding to the limiting behavior of non-Brownian viscous
suspensions.

Fig. 6.2b shows the corresponding µ-φ curves. At low confining pressures (the ×’s)
the volume fraction increases as the shear stress (µ) decreases. When arrested, Π̄ ≥
3.5 (open symbols), dilation always precedes flow as the shear stress is increased and
themaximumflowable volume fraction φm is always lower than the zero-shear value.
As a point of reference, the zero-shear volume fraction at Π̄ = 3.5 is φ = 0.60 for
our system. As Π̄ → ∞, φm asymptotes to a constant value and the non-Brownian
limit emerges as the µ-φ curves collapse. The flowing region in Fig. 6.2b is bounded
from below by the arrested region and from above by the non-Brownian behavior.

The rightmost point of the flowing region, highlighted as a star in Fig. 6.2b, corre-
sponds to the flow-arrest transition in the viscous non-Brownian limit. This point is
referred to as the Shear Arrest Point (SAP):

(φSAP, µSAP) = lim
Π̄→∞

(φm, µm) ≈ (0.635, 0.16) , (6.5)

which represents a limit beyond which the suspension is unable to flow regardless
of the imposed pressure and shear stress. The SAP is uniquely determined from the
constant stress and pressure rheology protocol and therefore may differ from other
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Figure 6.3: (Color online) Universal viscosity divergences (a): the shear viscosity
ηs/η0 and (b): the incremental normal viscosity ηn/η0 as functions of (φm − φ),
the volume fraction difference from arrest, for flowing suspensions with Π̄ ≥ 3.5.
The inset of (a) shows φm as a function of Π̄. The legends are identical to those in
Fig. 6.2.

‘jamming’ points [5, 6]. In fact, φSAP is lower than the maximum random jammed
(MRJ) density of the corresponding polydisperse packing φMRJ ≈ 0.645.

Also presented in Fig. 6.2b are the shear viscosity contours up to ηs/η0 = 104.
Horizontal traversal near µ = 0 recovers the equilibrium suspension behavior near
the glass transition. The viscosity diverges at φg ≈ 0.6, which is also found
experimentally in similar systems [16, 17, 27]. Vertical crossing corresponds to the
constant volume rheology and the viscosity exhibits shear-thinning. Near the SAP,
the range of µ in the flowing region reduces drastically for constant volume rheology.
On the other hand, constant stress and pressure rheology allows the suspension to
dilate and to find the SAP dynamically, a key merit of our approach.

In the flowing region near the flow-arrest transition both the shear viscosity ηs and
the incremental normal viscosity ηn diverge as shown in Fig. 6.3. The incremental



218

normal viscosity ηn characterizes the flow contribution to the osmotic pressure,

ηn = (Π − Πeq)/γ̇, (6.6)

where Πeq is the zero-shear equilibrium osmotic pressure at the same volume
fraction. Both ηs and ηn diverge algebraically when approaching the flow-arrest
transition: (ηs , ηn) ∼ (φm − φ)−2; the exponent 2 is independent of the imposed
pressure and thus valid for both strong and weak thermal fluctuations. The same
viscosity divergence exponents were found in experiments [19] and simulations [28]
of non-Brownian systems, suggesting the physics of jamming is the most important
and universal aspect of the flow-arrest transition. Thermal fluctuations only affect
the arrest volume fraction φm, as shown in the inset of Fig. 6.3a.

Note that the divergence of the shear viscosity with an exponent of 2 is not in-
consistent with exponent 2.2–2.6 reported for the colloidal glass transition. For
the glass transition, one approaches the arrested region in Fig. 6.2b horizontally by
varying the volume fraction at low µ, whereas the divergences observed here are
for approaching arrest at fixed pressure. Both where the viscosity starts to diverge,
φm, and how steep is the rise, the exponent α, depend on how the ‘mountain’ (the
viscosity contours) is approached.

The data collapse in Fig. 6.3 can be explained by the internal structural relaxations
in colloidal dispersions. The inherent relaxation from thermal fluctuations is char-
acterized by ds,0

∞ , and for glassy materials φ > φg, ds,0
∞ → 0. Comparing the shear

to the inherent Brownian forces defines a zero-shear Péclet number γ̇a2/ds,0
∞ and

shows that, in the glassy or arrested state, any finite shear rate gives a large Péclet
number. The system is driven far from equilibrium and therefore shows universal
behaviors. Indeed, this is seen in ηn: linear response would dictate that ηn ∝ γ̇

as γ̇ → 0 [29], rather than be independent of γ̇ as seen in Fig. 6.3b. There is no
linear response regime near a flow-arrest point. This may explain why the inherently
non-equilibrium isobaric flow-arrest transition of colloidal dispersions has features
in common with the athermal granular jamming transitions [30–32].

Finally, we compare our simulations to the experiments of Boyer et al. [19], whose
results are shown as diamonds in Fig. 6.2. The experimental data qualitatively agree
with the simulation results in the non-Brownian limit (Π̄ → ∞); however, their
flow-arrest critical point (φc, µc) = (0.585, 0.32) is quite different. We can achieve
quantitative agreement by scaling the experimental data from (φ, µ) to (φ′, µ′) as

µ′

µ
=
φSAP − φ

′

φc − φ
=
µSAP
µc

, (6.7)
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which are shown as triangles in Fig. 6.2 and match the simulation results. The
scaling of Eq. (6.7) implies that the fundamental physics behind the viscous non-
Brownian arrest does not change with the HIs or the possible frictional contact forces
in the experiments. Our simulations clearly capture the physics of the flow-arrest
transition.

That µc > µSAP can be understood from the lack of HIs in the simulations. Hydro-
dynamics give an additional contribution to the shear stress via the high-frequency
dynamic viscosity, which increases σ and therefore µ. However, they do not explain
the difference in the computational φSAP and the experimental φc seen in Fig. 6.2b.
One interpretation is that frictional contact forces in the experiments reduce the ar-
rest volume fraction [5, 12]. Yet, there is a simpler explanation. In the experiments
near suspension arrest, the minimum suspension height in the shear cell (8.8 mm)
is not much larger than the particle diameter (1.1 mm) [19, 33]. There is a region
of order the particle size a adjacent to the apparatus walls that is inaccessible to the
particles. Using the accessible volume rather than the total volume can increase the
volume fraction by as much as 11% and account for the difference between φSAP and
φc. Clearly, extreme care is needed when studying dense suspensions as seemingly
unimportant details can drastically affect the results.

6.4 Conclusions
This chapter demonstrates that constant stress and pressure rheology is an effective
approach to study the flow-arrest transitions of dense amorphous materials and
provides a unique perspective to distinguish the most fundamental physics in this
transition. We found the viscous non-Brownian Shear Arrest Point (SAP) of hard-
sphere colloidal suspensions from the collapse of the flow curves. The results
strongly suggest that the jamming and glass transitions are different facets of the
same phenomenon, offering the hope for a unified understanding.

6.A Computing the interparticle force
In BD the overdamped Langevin equation [Eq. (6.2)] is integrated with respect to
time. Since the interactions in hard-sphere suspensions are singular, particle overlap
is unavoidable regardless of the step size ∆t. In the ‘potential free’ algorithm, the
overlap-free condition ismaintained in a predictor-corrector fashion: in the predictor
step, the dynamics are evolvedwithout the hard-sphere potential, and in the corrector
step, the algorithm checks the particle overlap that violates the hard-sphere potential
and moves the overlapping particles back to contact pairwise along the line that



220

connects the particle centers until the suspension is overlap-free. If particle i at ri

overlaps particle j at r j , i.e., |ri j | > (ai + a j ), where ri j = ri − r j and ai and a j are
the particle radii, the particles are moved along ri j according to

∆ri = a j∆i j and ∆r j = −ai∆i j, (6.8)

where∆i j = ri j[|ri j |
−1−(ai+a j )−1]. The interparticle force on particle i is computed

according to Stokes law,
fp,i = 6πη0ai∆ri/∆t, (6.9)

and here the Newton’s third law is satisfied fp,i + fp, j = 0.

6.B System size dependence
Fig. 6.4 presents the system size dependence on the suspension shear viscosity ηs,
the long-time self-diffusivity ds

∞, and the maximum of the dynamic susceptibility
max( χ4) as functions of Peσ with different system sizes N . The imposed pressure
is Π̄ = 5. The dynamic susceptibility χ4 for an N-particle system is defined as [34],

χ4(k, t) = N[〈Fs (k, t)2〉 − 〈Fs (k, t)〉2], (6.10)

where Fs (k, t) = N−1 ∑
i eık ·[xi (t)−xi (0)] is the self-intermediate scattering function,

k is the wave vector, ı =
√
−1, and xi (t) is the particle position at time t. In Fig. 6.4c

the wave vector k is in the vorticity direction and |k |a = 3.72, near the first peak
of the static structure factor. When Peσ > 5, ηs/η0, ds

∞/d0, and max( χ4) show
little N-dependence for flowing suspensions. Near the flow-arrest transition, there
are quantitative differences at different N . For example, with increasing N , the Peσ
corresponding to the flow-arrest point shifts slightly towards lower Peσ, and the
suspensions can achieve higher max( χ4) and lower ds

∞. However, the qualitative
behaviors in Fig. 6.4 remain consistent. Using a modest system size of N = 200
captures the physics behind the flow-arrest transition with only small quantitative
differences in the N → ∞ limit, and allows us to explore a wide range of parameters
in a reasonable amount of time.

6.C Initial condition dependence
To investigate the effect of initial conditions on the BD simulation results, we
performed simulations at N = 200 for a few (Π̄, Peσ) pairs near the flow-arrest
transitions. Each (Π̄, Peσ) pair corresponds to 50 independent runs with distinct
initial configurations generated from the Lubachevsky-Stillinger algorithm [35],
which is also used in this work. Each run lasts 5 × 103 dimensionless time units
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Figure 6.4: (Color online) The system size dependence on (a): the suspension shear
viscosity ηs/η0, (b): the long-time self-diffusivity ds

∞/d0. and (c): the maximum
of the dynamic susceptibility max( χ4) as functions of Peσ for constant stress and
pressure simulations at Πa3/kBT = 5. The filled (open) symbols represent the
flowing (arrested) suspension states.
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Figure 6.5: (Color online) The initial condition dependence on (a): the average
volume fraction φ and (b): the average strain rate γ̇a2/d0, with d0 = kBT/(6πη0a),
as functions of the number of independent simulations in the group Nsamp. The
simulations are performed at Πa3/kBT = 5 (open symbols) and 50 (filled symbols).
The stress Péclet number Peσ are annotated in on the graph. The dashed lines show
the overall average of all 50 independent runs.

with a step size 10−3. Further decreasing the step size to the value used in this work
(10−4) does not alter the results. To quantify the initial condition dependence, we
randomly partitioned the results to independent groups of Nsamp = 1, 2, 3, 5, 10,
and 29 runs and compute the group average of the volume fraction φ and the scaled
strain rate a2γ̇/d0 (after the initial transient). Fig. 6.5 presents the results at Π̄ = 5
(open symbols) and 50 (filled symbols), representing the behaviors at low and high
imposed pressures, as functions of the group size Nsamp. The average from the
entire 50 runs are shown dashed lines in the corresponding color. For reference, the
flow-arrest transition takes place at Peσ ≈ 5 for Π̄ = 5 and Peσ ≈ 130 for Π̄ = 50.

Fig. 6.5 shows the group size Nsamp does not affect the average φ and γ̇ when Peσ
is higher than the yield Péclet number. Here, the suspension flows as liquid and the
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thermal and mechanical fluctuations erase any influences of the initial conditions.
However, close to the flow-arrest transitions, i.e., (Π̄, Peσ) = (50, 145) and (5, 5),
the results are more sensitive to Nsamp: both φ and γ̇ fluctuates around the mean
value without a definite trend. This fluctuation is also reflected in the large error
bars in Fig. 6.3. Fig. 6.5 further demonstrates that Nsamp ≥ 3 adequately reflects
the system behavior and justifies the computational protocol of this work. It also
validates that our results and conclusions are independent of the initial conditions.
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C h a p t e r 7

CONSTANT STRESS AND PRESSURE RHEOLOGY OF
COLLOIDAL SUSPENSIONS: STEADY STATE BEHAVIOR

AND DYNAMICS NEAR THE FLOW-ARREST TRANSITIONS

7.1 Introduction
Colloidal suspensions are ubiquitous in nature and have found widespread appli-
cations in many industrial and technological processes [1, 2]. However, our un-
derstanding in the mechanics and dynamics of dense suspensions remains limited.
Even the simplest hard-sphere colloidal suspensions, formed by dispersing micron-
sized spherical particles in a Newtonian solvent, exhibit surprisingly rich behaviors
including a glass transition [3–5], yielding [6, 7], shear thinning [8, 9], and shear
thickening [9–11]. These behaviors arise from Brownian motion, hydrodynamic
interactions (HIs), and excluded volume effects [12]. Quantitative understanding of
suspension behavior is crucial for developing novel materials, for example, “smart”
materials that autonomously respond to changes in the external environment.

In this work we focus on the suspension dynamics and rheology near the flow-
arrest transition, where the suspension resists continuous deformation like a solid
unless the imposed stress exceeds a yield stress. The flow-arrest transition is closely
related to the thermal glass transition [5] and the athermal jamming transition [13].
Their relations are succinctly summarized by the “jamming diagram” [14]: when
the thermal fluctuations dominate, the suspension behavior is controlled by the
glass transition, and when the flow dominates, the dynamics follow the jamming
transition. Although investigations in either limit are extensive [13, 15, 16], few
works are dedicated to the behavior between these limits. Moreover, considering
colloidal suspensions as a model system, the implications of our work are broad, as
flow-arrest transitions are also common to granular matter [17], polymer melt [18],
and metallic glass [19].

Recently, we [20] discovered a universal perspective that connects the glass and
jamming transitions of colloidal suspensions using constant shear stress and pressure
rheology. With constant confining pressure, the suspension shear viscosity ηs and
the incremental normal viscosity η′n were found to diverge algebraically with the
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volume fraction φ as

{ηs, η
′
n} ≈ {ks, kn} × (φm − φ)−α, (7.1)

where α, ks, and kn are constants, φm is the arrest volume fraction at the confining
pressure Π, and α = 2. Here, the incremental normal viscosity η′n = (Π − Πeq)/γ̇
with Πeq the equilibrium osmotic pressure at the corresponding φ, and γ̇ the strain
rate. For weakly polydisperse suspensions, Eq. (7.1) is valid when φG ≤ φm ≤

φSAP, where φG ≈ 0.60 is the glass transition volume fraction and φSAP ≈ 0.635
is the (protocol dependent) Shear Arrest Point (SAP) volume fraction, similar to
the jamming density [20]. The only pressure dependent quantity in Eq. (7.1) is
φm(Π), suggesting that the physics of jamming dominates the behavior of flow-
arrest transitions, and that thermal fluctuations only play a secondary role. The
key to discovering Eq. (7.1) is to hold the confining pressure constant. Indeed,
were the volume, instead of the pressure, held constant, the viscosity divergence
ηs ∼ (φc − φ)−δ shows different exponents δ in different limits: near the glass
transition (φc = φG), the exponent δ ≈ 2.2–2.6 [21–24], and near the jamming
transition (φc = φJ), δ ≈ 2.0 [25–27].

However, the limitations of Ref. [20] include neglecting Hydrodynamic Interactions
(HIs) in the simulations, and only addressing the basic mechanical characterization
of the colloidal suspensions. We address the first limitation in the next chapter
using hydrodynamic simulations. In this work we focus on the second limitation
and present a comprehensive study on the suspension mechanics, structures, and
diffusive dynamics that complements and extends the our earlier work [20]. The
role of HIs can be revealed by comparing this chapter with the next chapter.

The second goal of this work is to investigate the granular perspective on the rhe-
ological, structural, and dynamical features of colloidal suspensions using constant
shear stress and pressure rheology. Recent advances in the constitutive modeling of
granular rheology highlight the importance of the granular pressure [17, 28]. In the
inertial driven granular flows with particle size a and density ρ, the rheology is char-
acterized by the inertial number I = γ̇a

√
ρ/Π, which is the ratio of an internal time

scale a
√
ρ/Π to the flow time scale γ̇−1. For viscous non-Brownian suspensions,

Boyer et al. [26] introduced the viscous number Iv,

Iv = η0γ̇/Π, (7.2)

adapting the internal time scale to η0/Π, emphasizing the importance of viscosity.
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A combination of I and Iv characterizes the flow behaviors of, for example, wet
granular materials [29]

Regardless of the origin of particle interactions, the granular rheology characterizes
the mechanical response using the macroscopic friction coefficient,

µ = σ/Π, (7.3)

i.e., the ratio of the shear stress σ to the pressure Π. This quantity remains finite
as the material becomes arrested, where both Π and σ diverge. Experiments and
simulations suggest that the limiting friction coefficient at arrest ({I, Iv } → 0),
µc, depends on the interaction details of the materials such as presence of contact
friction, etc. For non-Brownian viscous suspensions, the experiments of Boyer et al.
[26] show that (φc, µc) = (0.585, 0.32). For colloidal suspensions without HIs,
Wang and Brady [20] found from the µ-φ flow map that suspensions arrest over a
yield surface from the glass transition to the non-Brownian limit at the SAP, where
(φSAP, µSAP) = (0.635, 0.16).

Although particle interactions change the arrest location, theories of dense amor-
phous materials [30, 31] suggest that, for non-Brownian materials, the suspension
behavior away from the arrest location is less sensitive to the interactions. The
incremental friction coefficient and volume fraction, δµ = µ − µc and δφ = φc − φ,
change as power laws of I or Iv, e.g., for dry granular materials δµ ∼ Iαµ and
δφ ∼ Iαφ . For example, scaling theories predict that αµ = αφ = 0.35 regardless of
the particle interactions and the system dimensions [31]. The theories highlight the
importance of pressure and the power of the µ-I or µ-Iv rheology in characterizing
the flow behaviors of non-Brownian materials. However, the influence of thermal
fluctuations are not well understood.

A key aspect in the µ-I or µ-Iv rheology of non-Brownian systems is that the pres-
sure and the stress, instead of the volume and the strain rate, are held constant.
For materials with flow-arrest transitions, specifying a stress allows the material to
explore the intrinsic material response (the flowing or the arrested states) without
assumptions on the macroscopic flow behaviors, and holding the pressure constant
allows the material to explore the corresponding volume without assuming a max-
imum volume fraction [32]. This approach enabled Boyer et al. [26] to determine
a critical arrest point for non-Brownian suspensions, and allowed us to construct a
flow map for Brownian suspensions [20].
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Another focus of the present work is the diffusive dynamics of flowing colloidal
suspensions across various length scales. The most common characterization of the
diffusive dynamics is the long-time self-diffusivity, which measures the diffusion on
a single particle level and is extracted from the particle mean-square displacements.
As φ increases, the self-diffusivity decreases as the particle movements are hin-
dered by its neighbors. On the other hand, the suspension also exhibits a collective
diffusivity, describing the collective diffusion on the length scale of suspensions
in response to a weak concentration gradient [33, 34]. For dilute suspensions at
equilibrium, the collective diffusivity increases with φ, and without HIs, is pro-
portional to the osmotic compressibility of the suspension. Investigations on the
collective diffusivity of dense suspensions are not yet available, and existing works
focus on dilute systems [35, 36]. Here, we approximate the collective diffusivity
by measuring the decay of the temporal correlations of the density fluctuations at
vanishing wave lengths. Also, we show that the dynamic susceptibility is crucial
for characterizing the collective particle motions near the flow-arrest transition [15,
37].

In constant stress and pressure rheology, when the imposed shear stress is slightly
higher than the yield stress, the suspension becomes unstable and switches between
flowing and arrested states. This instability provides a unique opportunity to explore
the dynamic aspects of the flow-arrest transition. Here, the flow-arrest transitions
are spontaneous without changing the external forcing. This is distinct from earlier
start-up/cessation investigationswhere the stress or the flow are suddenly changed [6,
7]. Comparing to the stress fluctuations [38] with a fixed strain rate, the strain rate
fluctuations are more convenient for analysis, as large stress fluctuations near the
flow-arrest transitions at fixed γ̇ is equivalent to fluctuations near zero strain rate
with a constant σ. Spatially, the flow arrest transition often involves changes in
correlation lengths both near the glass [37] and the jamming [39, 40] transitions,
suggesting the emergence of cooperative particle motions. In this work, we also
study the temporal and the spatial characteristic of the flow-arrest transitions.

The close connections among the suspension rheology, dynamics, and microstruc-
tures are also investigated. For example, the Stokes-Einstein-Sutherland (SES)
relation states that the self-diffusivity of a single particle, d0, is proportional to the
solvent thermal fluctuations, kBT , and inversely proportional to the solvent viscos-
ity η0. The SES relation is a fluctuation-dissipation relation. Although derived
from a continuum perspective involving a single particle [41], the SES relation
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holds surprisingly well for the diffusion of a tagged solvent particle in equilibrium
simple liquids [42], and its breakdown is often considered as a signature of the
departure from the equilibrium state [43]. In non-equilibrium systems, an effective
temperature is often introduced as a device to use concepts of equilibrium statistical
physics [44–46]. In these systems, the choice of the effective temperature is cru-
cial to the physical description of the system. The possibility of using an effective
temperature to connect the rheology and diffusion in dense colloidal suspensions is
considered in this study.

This chapter is arranged as follows: In Sec. 7.2we describe our simulation algorithm.
The general rheology, structural, and dynamical features of the constant shear stress
and pressure rheology are presented in Sec. 7.3. In Sec. 7.4 we focus on both the
temporal and the spatial features of suspensions near the flow-arrest transition. In
Sec. 7.5, we study the behavior of flowing suspensions using a granular perspective,
and model how the suspensions move away from arrested states. Sec. 7.6 connects
the diffusion, rheology, and structural features, and presents the universal features
using a generalized SES relation. We summarize and conclude this work in Sec. 7.7.

7.2 Simulation Method
We consider N neutrally buoyant hard-sphere particles, with radius ai for particle i,
suspended in a compressible solvent with shear viscosity η0 and bulk viscosity κ0,
occupying a total volume V . The particle radii follow the log-normal distribution
characterized by the volume averaged radius a such that a3 = N−1 ∑N

i=1 a3
i , and

the size polydispersity defined as p.d. = σa/ā with ā = N−1 ∑N
i=1 ai and σ2

a =

N−1 ∑N
i=1(a2

i − ā2). In the thermodynamic limit, both N and V diverge to infinity
but the number density n = N/V and the volume fraction φ = 4

3πa3n remain
constant. Note that, particle size polydispersity is necessary to prevent spontaneous
crystallization at high density.

Without HIs, particles in the suspension follow the overdamped Langevin equation.
For particle i under a linear flow characterized by the velocity gradient tensor G,
this is,

ζi

(
dxi

dt
− G · xi

)
= f B

i + f P
i , (7.4)

where, xi is the particle position, f P
i and f B

i are, respectively, the interparticle and
the Brownian forces acting on the particle, and ζi = 6πη0ai is the Stokes resistance
for a single particle from the solvent. The velocity gradient tensor G is a linear
combination of an isotropic extensional flow characterized by the expansion rate ė
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and a simple shear flow characterized by the strain rate γ̇, i.e.,

G = 1
3 ėI + γ̇e1 ⊗ e2, (7.5)

where I is the idem tensor, ⊗ is the open product, and e1, e2, and e3 are respectively
the unit vectors in the velocity (1), the velocity gradient (2), and the vorticity (3)
directions of the simple shear flow.

The Brownian force f B
i satisfies the fluctuation-dissipation relation,

f B
i = 0 and f B

i (t) f B
i (0) = 2kBTζ Iδ(t), (7.6)

where δ(x) is the Dirac delta function, and kBT is the thermal energy scale. The
interparticle force is computed pairwise as

f P
i =

N∑
j=1

f P
i j, (7.7)

where the force from particle j on particle i, f P
i j = −∂Vi j/∂xi, with the hard-sphere

potential Vi j = H (ai + a j − ri j ). Here, ri j = ‖xi − x j ‖ and H (x) is the Heaviside
function. Note that for a hard-sphere potential, f P

i diverges at particle contact, and
is zero everywhere else. Moreover, we impose periodic boundary condition in the
1- and 3-directions and the Lees-Edwards boundary condition in the 2-direction.
The simulation box size L is also adjusted isotropically based on ė as dL/dt = 1

3 ėL.

To impose the constant stress and pressure constraints on the suspension, we consider
the macroscopic stress balance on the suspension. Without HIs, the bulk stress of a
suspension with compressible solvent is [47],

〈Σ〉 = (κ0 +
4
3η0φ)(G : I)I + 2η0(1 + 5

2φ)E + σP, (7.8)

where the rate of strain tensor E = 1
2 (G + G†) − 1

3 (G : I)I, where † is the transpose,
and the stress due to particle interactions,

σP = −nkBT I − n
〈
x f P

〉
, (7.9)

containing contributions from thermal fluctuations and the spacial moment of inter-
particle forces [48], i.e., n

〈
x f P

〉
= V−1 ∑N

i=1 xi f
P
i . Note that σ

P depends only on
the instantaneous particle configuration due to the overdamped suspension dynam-
ics. Therefore, one can specify the imposed shear stress σ = 〈Σ〉 : (e1 ⊗ e2) and the
imposed pressure Π = −1

3 〈Σ〉 : I and solve for γ̇ and ė according to Eq. (7.8):

σ = (1 + 5
2φ)η0γ̇ + σ

P : (e1 ⊗ e2), (7.10)
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Π = −(κ0 +
4
3φη0)ė − 1

3σ
P : I, (7.11)

assuming that the imposed linear flow can be described byG in Eq. (7.5). In addition,
Eq. (7.11) shows that a compressible solvent with bulk viscosity κ0 allows isotropic
compression to be imposed without violating the physics of Brownian particles
in Stokes flow, and avoids using physical permeable boundaries which may cause
complications such as local ordering. This is indeed the novelty of our method:
through a compressible solvent, the constant pressure constraint is satisfied without
introducing boundaries.

In Brownian dynamics (BD) simulations, Eq. (7.4) is integrated with respect to
time. To resolve the singular hard-sphere potential, we adopt the “potential-free”
algorithm [49–52]. In this method, the interparticle force and the non-overlapping
conditions are maintained in a predictor-corrector fashion: at time t, the particle
configuration is first progressed according to Eq. (7.4) without considering f P

i to
t + ∆t. In the corrector step, the algorithm checks particle overlap and moves
the overlapping particles back to contact pairwise along the line that connects the
particle centers until the suspension is overlap-free. Specifically, if ri j < (ai + a j )
for particles i at j, the particles are moved along (xi − x j ) according to

∆xi = a j∆i j and ∆x j = −ai∆i j, (7.12)

where ∆i j = (xi − x j )[r−1
i j − (ai + a j )−1]. The interparticle force for the pair is

calculated based on the Stokes relation,

f P
i j = ζi∆xi/∆t. (7.13)

Here, the Newton’s third law, f P
i j + f P

ji = 0, is satisfied. Despite its simplicity,
the potential-free algorithm has been extensively used to investigate systems with
hard-sphere interactions such as start-up [6, 53] and oscillatory [54] bulk rheology,
steady and transient microrheology [55, 56], osmotic propulsion [57], and active
materials [58]. It has also been used to validate studies in dilute [59] and dense [60]
suspensions, and compares favorably with molecular dynamics simulations [61].

Using the above algorithm, we perform constant shear stress and pressure rheology
simulations with imposed shear stress σ and imposed pressure Π. Scaling σ and
Π with the thermal energy kBT leads to two key simulation parameters, the stress
Péclet number Peσ and the scaled pressure Π̄, defined as

Peσ =
6πa3σ

kBT
and Π̄ =

a3Π

kBT
. (7.14)
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As pointed out by Swan and Brady [62], Peσ is trivially connected to the strain rate
Péclet number Peγ̇ = 6πa3η0γ̇/(kBT ) through

Peγ̇ = (η0/ηs)Peσ, (7.15)

where ηs = σ/γ̇ is the suspension shear viscosity. The simulation time is scaled
with a2/d0, with the Stokes-Einstein-Sutherland diffusivity d0 = kBT/(6πη0a),
when Peσ ≤ 1, and with η0/σ when Peσ > 1. The stress-scaled time automatically
adjusts the resolution of configuration evolution with respect to the strain rate γ̇.
That is, because the dimensionless time step ∆τ = σ∆t/η0 = γ̇∆t(ηs/η0), for a
fixed ∆τ, the higher the suspension shear viscosity, the smaller the dimensionless
time step with respect to strain rate, γ̇∆t. Therefore, with a fixed ∆τ, the constant
stress and pressure rheology improves the temporal resolution of the configuration
evolution for suspensions with large ηs.

We explore a wide range of Π and σ combinations to map out the flow behaviors
using dynamic simulations. Each simulation contains N = 200 particles with a
particle size polydispersity p.d. = 0.1. For convenience, the number of particle
species with different radii is limited to 20. Increasing N does not qualitatively alter
the results. A simulation beginswith an random, non-overlapping polydisperse hard-
sphere configuration generated by a modified Lubachesvky-Stillinger algorithm [63,
64] at an estimated starting volume fraction φ0, and lasts for 5000 dimensionless
time with a step size 10−3. When computing the results, the first 1000 time units
are discarded. In this work, the suspension is considered flowing when the shear
viscosity ηs < 2000, and such that the suspensions have flown at least 2 strains.
Moreover, the solvent bulk viscosity κ0 affects how the suspension respond to the
imposed pressure by controlling the rate at which the simulation cell changes its
volume. If κ0 is too large, the suspension cannot reach the steady state volume
fraction by the end of the simulation, and if κ0 is too small, the suspension may
experience large density fluctuations. Once reaching the steady state, the suspension
rheology becomes independent of κ0. We found that with κ0/η0 = 2000, the
suspensions can reach the steady state sufficiently fast for low Π̄ without becoming
unstable at high Π̄. The volume control mechanism is slightly different from
Ref. [20], where the bulk viscosity that controls the cell volume changes depends on
the instantaneous volume fraction φ. Furthermore, for each (Π, σ) pair, we perform
at least three independent runs to eliminate the dependence on initial configurations.

To validate the simulation method, Fig. 7.1 presents the osmotic pressure Π for
polydisperse suspensions with p.d. = 0.1 as a function of φ using constant pressure
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Figure 7.1: The suspension equilibrium osmotic pressure Π/(nkBT ) as a function
of the volume fraction φ, computed using constant pressure Brownian Dynamics
simulations. The suspension size polydispersity p.d. = 0.1. The dashed line is
the osmotic pressure from Carnahan-Starling equation of state for monodisperse
suspensions. The error in φ is smaller than the symbol size.

simulations with γ̇ = 0. The error in φ is smaller than the symbol size even at the
highest imposed pressure. Fig. 7.1 also shows, in dashed line, the Carnahan-Starling
(CS) equation of state for monodisperse suspensions,

Π

nkBT
=

1 + φ + φ2 − φ3

(1 − φ)3 , (7.16)

valid up to φ ≈ 0.49. The osmotic pressure diverges near φ ≈ 0.65. The particle
size polydispersity effectively disrupts the spontaneous crystallization, evidenced
by the continuous pressure increase with respect to φ and by the suspension mi-
crostructures. The size polydispersity also reduces the osmotic pressure comparing
to the monodisperse systems, and increases the jamming volume fraction where the
pressure diverges.

7.3 General features of flowing suspensions
Shear viscosity and volume fraction
The principle outputs of the constant stress and pressure simulations are the suspen-
sion strain rate γ̇ and the volume fraction φ. At each time step, the instantaneous
strain rate γ̇ is from solving Eq. (7.10), and the instantaneous volume fraction φ is
from monitoring the size of the simulation cell L. Fig. 7.2a presents the Peσ de-
pendence of the steady state shear viscosity ηs and normal viscosity ηn for flowing
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Figure 7.2: (Color online) Simulation results as functions of the stress Péclet number
Peσ = 6πσa3/kBT at an imposed pressure Π̄ = Πa3/kBT = 50. (a): the shear and
the normal viscosities, ηs and ηn, respectively, and (b): the volume fraction φ. In
(b), the arrested results are shown as open symbol. The insets of (a) show the
time evolution of the accumulated strain γ at Peσ = 145 and 215. The inset of (b)
presents the corresponding time evolution of φ at the same Péclet numbers.

suspensions at an imposed pressure Π̄ = 50. Here, the normal viscosity,

ηn = Π/γ̇, (7.17)

accounts for the effect of the flow on the suspension pressure. At this imposed
pressure, the suspension exhibits a yield stress, and is only able to flow when the
stress Péclet number Peσ ≥ 145. For flowing suspensions, both ηs and ηn reduce
several orders of magnitude with increasing Peσ from 145 to 103. The normal
viscosity ηn is higher than the shear viscosity ηs when Peσ < 103, and becomes
lower afterwards as ηs approaches the solvent viscosity η0 as Peσ → ∞, but ηn

does not have a limiting value at high Peσ. Clearly, with a finite Π̄, in the high
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Peσ limit the particle interaction contributes negligibly to ηs due to dilation. If
the volume fraction φ were fixed, the pressure Π ∼ η0γ̇ as Peσ → ∞, and with
fixed Π̄ = Πa3/kBT , Π ∼ kBT . Therefore, to keep Π̄ constant with increasing Peσ,
suspension dilation, i.e., a decrease in φ, is necessary, leading to vanishing particle
viscosity contribution. Therefore, in the Peσ → ∞ limit, the confining pressure is
too weak to “confine” the suspension. This is different from the constant volume
hard-sphere suspension rheology [51], where the particle interactions’ contribution
to ηs is finite as Peσ → ∞, due to the formation of a particle accumulation boundary
layer near contact [65].

The insets of Fig. 7.2a show the time evolution of the accumulated strain γ(t) =∫ t
0 γ̇(τ)dτ at Peσ = 145 and 215. At Peσ = 215, the suspension flows, and γ grows
linearly with tσ/η0, suggesting that the suspension flows continuously. The slope
of the γ-t curve is inversely proportional to ηs. Close to the flow-arrest transition
at Peσ = 145, however, the accumulated strain does not grow linearly with time
and is unstable: the suspension can become arrested before flowing again. These
insets illustrates how the flow-arrest transitions can profoundly affect the suspension
dynamics. In Sec. 7.4, we further study the suspension dynamics near the flow-arrest
transitions.

Fig. 7.2b shows the average suspension volume fraction φ as a function of Peσ.
Here, the arrested states are shown in open circles and the flowing states in filled
circles. The suspension dilates (decreasing φ) with increasing Peσ both in the
flowing and the arrested states. Not shown in this figure is that at even lower Peσ,
φ approaches a constant zero-flow value. That φ decreases with increasing Peσ
in both the arrested and the flowing states suggests that dilation precedes flowing
in constant stress and pressure rheology, as the onset of flow requires more space
among neighboring particles. For flowing suspensions, the strong shear thinning
in ηs and ηn is consistent with the reduction in φ. Furthermore, when Peσ & 500,
φ decreases much slower with growing Peσ compared to the case at lower Peσ,
suggesting that the suspension undergoes qualitative changes, which are revealed in
Fig. 7.3 as the formation of string-phase structures. However, such changes are not
visible in the viscosity results of Fig. 7.2a.

The inset of Fig. 7.2b shows the time evolution of φ, also at Peσ = 145 and 215.
For flowing suspensions at Peσ = 215, the volume fraction fluctuates with time
about its mean value. Near the flow arrest transition (Peσ = 145), similarly to γ
in Fig. 7.2a, φ is also unstable. In this case, when the suspension is flowing (γ
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Figure 7.3: Equatorial slices of pair distribution function in the velocity-velocity
gradient g12(r ), velocity-vorticity g13(r ), and velocity gradient-vorticity g23(r )
planes at various Peσ with an imposed pressure Π̄ = 50. The slice width is 0.7a.
On the panel for g12(r ) at Peσ = 145 the compressional and the extensional axis are
also highlighted.

increases with time), the corresponding φ exhibits more fluctuations compared to
arrested suspensions. The volume fractions corresponding to the arrested states are
not necessarily higher than the flowing states. This suggests that the suspension
structure, not the volume fraction, is the deciding factor in the flow behaviors.

Real- and wave-space structural features
Next we examine the suspension microstructures. A common real-space structural
characterization is the pair distribution function

g(r ) =
V
N2

〈∑′

i, j

δ(r − xi + x j )
〉
, (7.18)

where the prime on the summation excludes the case of i = j. Fig. 7.3 presents the
equatorial slices of g(r ) in the velocity-velocity gradient (12-), velocity-vorticity
(13-), and velocity gradient-vorticity (23-) planes with a width of 0.7a at various
Peσ and Π̄ = 50. Also shown in Fig. 7.3 are the compressional and the extensional
axis in the shear plane.

The most striking feature of Fig. 7.3 is the formation of a “string phase” in sus-
pensions when Peσ ≥ 600. This is evidenced by the lines in the velocity direction
in g12(r ) and g13(r ), and nearly hexagonal crystalline structures in g23(r ). The
orientation of the hexagonal structures in g23(r ) can shift with different simulations.
Although the particle size polydispersity effectively disrupts the suspension crystal-
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lization at low Peσ, it does not prevent the string phase formation at higher Peσ. The
string phase also persists with increasing Peσ because HIs are absent. As is shown
in the next chapter, HIs lead to a reentrant of amorphous structures at higher Peσ.

The suspension structure remains homogeneouswhenPeσ < 600. In the shear plane,
g12(r ) exhibits increasing distortion towards the extensional axis with increasing
Peσ. At Peσ = 400, the homogeneous structural distortion is the most pronounced
in Fig. 7.3. For two nearby particles in the shear flow, they are most likely to form
a pair of close contact in the velocity direction, shown by the high probability of
g12(r ). The pair rotates from the compressional quadrant towards the extensional
quadrant, and then disengages near the extensional axis. Meanwhile, at this Peσ, the
structures of g13(r ) and g23(r ) remain isotropic. Note that the structural distortion
in g12(r ) is not apparent until Peσ = 215, where the suspension flows appreciably.

The structural distortion shown in Fig. 7.3 is intimately related to the suspension rhe-
ology. For monodisperse systems without HIs, the structural distortion contributes
to the suspension stress as [51, 66]:

n
〈
x f P

〉
+ ΠeqI =

27
2π
η0γ̇φ

2g
eq(2)

d̂

∫
r̂ r̂ f̂ (2;Ω)dΩ, (7.19)

where Ω is the solid angle, and the suspension structure is decomposed to an
equilibrium contribution geq(r ) and a flow contribution f̂ (r ) as g(r ) = geq(r )[1 +
(Peγ̇/d̂) f̂ (r )], where d̂ is a characteristic diffusion scale describing the suspension
relaxation process. With an appropriate choice of d̂, the suspension rheology entirely
depends on the structural distortion f̂ . In the constant φ study of Foss and Brady
[51], the structural distortion f̂ contribute positively to the shear viscosity, leading
to a viscosity decrease slower than a Pe−1

γ̇ decay.

From Eq. (7.19), the structural distortion in the compressional and the extensional
axis contributes most significantly to the shear viscosity. Fig. 7.4 presents the peak
values of g(r ) in these two axis, max(gcomp) and max(gext), as functions of Peσ at
the same imposed pressure of Π̄ = 50. Note that, due to symmetry, both the accumu-
lation in the compressional axis and the depletion in the extensional axis contribute
positively to Eq. (7.19) [6], and therefore, the difference max(gcomp) − max(gext)
qualitatively captures the structural contributions to the suspension viscosity.

Comparing to Fig. 7.3, themost distinguishing feature in Fig. 7.4 is that the behaviors
in max(gcomp) and max(gext) are qualitatively different between the homogeneous
and the string phase suspensions, which occurs around Peσ = 500. With Peσ < 500,
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Figure 7.4: (Color online) The peak values of the pair distribution function in the
compressional and the extensional axes, max(gcomp) and max(gext) as functions
of Peσ at the imposed pressure Π̄ = 50. The vertical dashed line represents the
estimated yield Peσ beyond which the suspension begins to flow. The inset presents
the radial variation of gcomp(r) (solid line) and gext(r) (dashed line) at various Peσ,
which are also pointed out by arrows in the main figure with their corresponding
color. The curves are shifted for clarity when Peσ ≥ 215.

both max(gcomp) and max(gext) decrease with increasing Peσ due to suspension
dilation. With fixed volume, max(gcomp) is expected to increase with increasing
Péclet number [6]. The difference, max(gcomp) − max(gext), increases with Peσ,
suggesting that the suspension structure becomes increasingly distorted. On the
other hand, for Peσ > 500, both max(gcomp) and max(gext) grow with Peσ, and
their difference disappears when Peσ ≥ 1000 due to the formation of aligned string
structures in the suspension.

The inset of Fig. 7.4 shows the gcomp(r) in solid lines and gext(r) in dashed lines
at different Peσ; the results for Peσ ≥ 215 are shifted for clarity. For Peσ = 1000
and 1500, the difference between gcomp(r) and gext(r) is almost indistinguishable
due to the formation of the string phase. On the other hand, for homogeneous
suspensions, the difference between gcomp(r) and gext(r) grows with increasing Peσ.
With increasing Peσ, the first peaks in gcomp(r) and gext(r) become narrower, and the
features beyond the first peak vanish, i.e., the distribution functions at Peσ = 145
show more pronounced undulations beyond the first peaks compared to those at
Peσ = 400. Evidently, the microstructures of the homogeneous suspension are
distinctly different from those of the string phase.
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Figure 7.5: The static structure factors S12(q), S13(q), and S23(q) at various Peσ
with an imposed pressure Π̄ = 50. Each panel depicts the structure factor S(q) in
the wave space from −10qa to 10qa in both directions.

Complementary to real-space characterizations such as the pair-distribution func-
tion g(r ), the suspension structures are also frequently assessed via wave-space
characterizations such as the static structure factor S(q) [67, 68]. Defining the
instantaneous wave-space density fluctuations [69],

nq (t) =
1
√

N

N∑
i=1

exp[iq · xi (t)], (7.20)

where q is the wave vector, the static structure factor is the instantaneous correlation,
defined as

S(q) =
〈
nq (0)n−q (0)

〉
. (7.21)

Fig. 7.5 presents the 2D static structure factors S(q) in different wave-space planes.
Here, the fundamental lattice vectors for the periodic simulation box corresponding
to the 1-, 2-, and 3-directions are respectively b1, b2, and b3, and the wave vectors
in, for example, S12(q), are q = ib1 + jb2 with integers i and j. The wave-number
in each direction in Fig. 7.5 is limited from −10qa to 10qa. In simulations with
periodic boundary conditions, themaximumwave-space resolution is 2π/L, strongly
affected by the system size.

The structural information from S(q) in Fig. 7.5 is consistent with the g(r ) char-
acterizations in Fig. 7.3. In fact, S(q) strongly resembles the g(r ) slices rotated
counterclockwise by 90◦. Thewave-space characterization confirms the string phase
formation with Peσ ≥ 600, which is especially evident with the regular hexagonal
patterns in S23(q), and otherwise homogeneous suspension structures at lower Peσ.
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In addition, the wave-space characterization is more sensitive to structural distor-
tions, i.e., at Peσ = 145, the structural distortion is already evident in S12(q), but
appears isotropic in g12(r ). Moreover, at Peσ = 400, S23(q) distorts towards the
velocity gradient direction, suggesting stronger structural correlations, which is not
captured in g23(r ). Otherwise, S23(q) and S13(q) are isotropic for homogeneous
suspensions.

Suspension diffusion
Fig. 7.6 presents various dynamic characterization of suspensions as functions of
Peσ at Π̄ = 50. The estimated flow-arrest boundary is shown as dash-dotted line.
Fig. 7.6a shows the long-time self-diffusivity in the velocity gradient direction,
ds
∞,22 (open symbols), and the vorticity direction, ds

∞,33 (filled symbols). In the
k-direction, the long-time self-diffusivity is defined as

ds
∞,kk =

1
2

lim
t→∞

d
dt

〈
∆x2

k

〉
, (7.22)

where
〈
∆x2

k

〉
is the k-directionmean-square displacement averaged over all available

times of particle trajectories. The mean-square displacements
〈
∆x2

2

〉
(dashed line)

and
〈
∆x2

3

〉
(solid line) at selected Peσ are shown in the inset of Fig. 7.6a. The

corresponding Peσ for flowing suspensions are are pointed out by arrows in the main
figure, and a dash-dotted line is present at Peσ = 115 for the arrested suspension.

In Fig. 7.6a, the scaled diffusivity ds
∞,33/d0 emerges from a infinitesimal value as the

imposed stress exceeds the yield stress to cause the suspension to flow, suggesting
that the particle inherent thermal fluctuations contribute little to the dynamics. After
the suspension begins to flow, further increasing Peσ also increases ds

∞,33/d0 as the
flow drives the particle diffusion. The increase in the diffusivity is significant, partly
due to the suspension dilation. When the suspension forms a string phase at Peσ >
500, the diffusivity stops to grow and decreases with increasing Peσ, as the string
structure limits the diffusive movements. The diffusivity in the velocity gradient
direction ds

∞,22/d0 is consistent with its vorticity direction counterpart except for
small quantitative differences. When the suspension is amorphous Peσ < 500,
ds
∞,22 > ds

∞,33 due to the linear shear flow, and in the string phase, ds
∞,33 > ds

∞,22.

The inset of Fig. 7.6a shows the time evolution of the mean-square displacement
up to a diffusive time of 2a2/d0. Within this time frame, at Peσ = 115, the
suspension is arrested, and the particles are confined to the cage formed by their
neighbors. However, at Peσ = 145, the suspension becomes flowing and the
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Figure 7.6: (Color online) Diffusive dynamics of suspensions as functions of Peσ
at Π̄ = 50. The dash-dotted vertical lines represent the estimated arrest Peσ. The
measurements in the vorticity direction, denoted by subscript 33, are shown as filled
symbols in the main figures and solid lines in the insets. In the velocity gradient
direction, denoted by subscript 22, the results are shown as open symbols and
dashed lines. (a): The scaled long-time self-diffusivities, ds

∞,33/d0 and ds
∞,22/d0.

The inset shows the time evolution of the mean-square displacement in the 3- and 2-
directions,

〈
x2

3

〉
and

〈
x2

2

〉
, at variousPeσ, which are highlighted by arrows for flowing

suspensions, and by vertical dashed lines for arrested suspensions in corresponding
colors. (b): The scaled wave-number dependent diffusivities, D33(qmin)/d0 and
D22(qmin)/d0, where qmin is the smallest measurable wave number in the unit cell.
The inset shows the time evolution of the functions f33(q, t) and f22(q, t) defined
in Eq. (7.25) at various Peσ. (c): The scaled α-relaxation times, τα,33d0/a2 and
τα,22d0/a2, measured from the decay of the self-intermediate scattering function
Fs (q, t) at qa = 3.5. The inset shows the time evolution of the corresponding
Fs (q, t) in different directions at various Peσ. (d): The maximum of the dynamic
susceptibilities, max( χ4,33) and max( χ4,22), measured at wave number qa = 3.5
in different directions. The inset shows the time evolution of the corresponding
dynamic susceptibilities χ4,αα (q, t) in different directions at various Peσ.

particle movement becomes diffusive, characterized by the linear growth of the
mean-square displacement at large times. Increasing Peσ also changes the transition
to the long-time diffusive behavior. At Peσ = 145, the particle becomes diffusive



244

from a subdiffusive regime, consistent with the cage-breaking process in sheared
suspensions. On the other hand, at Peσ = 215 and 400, before entering long-time
diffusive regime, the suspension is superdiffusive, i.e.,

〈
∆x2

〉
∝ t2, suggesting that

diffusion arises from strong particle interactions. Finally, in the string phase (Peσ =
1000 and 1500), the particles enter a sub-diffusive regime from the superdiffusive
behavior before becoming diffusive. This is because the structural formation hinders
the diffusion process, leading tomuch lower diffusivities in Fig. 7.6a. For amorphous
suspensions, the difference between the 2- and 3- directions is small, but with string
formation, the difference becomes more significant.

Another characterization of the suspension diffusive behavior is the wave-number
dependent diffusivity D(q) which characterize the suspension diffusion over dif-
ferent length scales. From a small-wave length expansion of the Smoluchowski
equation which describes the suspension dynamics [35, 36], it can be shown that in
directions perpendicular to the 1-direction, the time-dependent structure factor,

S(q, t) =
〈
nq (t)n−q (0)

〉
, (7.23)

decays as
S(q, t) = S(q) exp[−q · D(q) · qt], (7.24)

where, recall, S(q) is the static structure factor. Eq. (7.24) shows that the temporal
decay of S(q, t) from S(q) is exponential and is characterized by D(q). Eq. (7.24) is
identical for equilibrium suspensions [33, 70, 71]. Note that the zero wave-number
limit of D(q) is the suspension collective diffusivity, describing how particles
migrate in a weak concentration gradient, i.e., dc = lim|q |→0 D(q). At the wave
number qm corresponding to the peak of the static structure factor S(q), the wave
number dependent diffusivity is believed to describe the cage dynamics in the
suspension [34, 72]. At length scale smaller than a single particle, i.e., |q | → ∞, D
approaches the long-time self-diffusivity.

In this work, we are interested in the collective diffusion behaviors. However,
reaching the limit of |q | → 0 is challenging as the accessible wave numbers are
integer multiples of qmin = 2π/L. Alternatively, we focus on the diffusivities along
the 2- and 3-direction with the minimum accessible wave number, Dkk (qmin) with
k = 2, 3. We define

f kk (q, t) = −q−2 ln[Skk (q, t)/Skk (q)], (7.25)

and
Dkk (q) = lim

t→∞

d
dt

f kk (q, t). (7.26)
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The diffusivities Dkk (qmin) approximate the suspension collective behavior on the
scale of the simulation box.

Fig. 7.6b shows D22(qmin)/d0 (open symbols) and D33(qmin)/d0 (filled symbols)
as functions of Peσ at Π̄ = 50. The results are more scattered compared to the
long-time self-diffusivities in Fig. 7.6a due to the difficulties associated with the
measurement. Compared to ds

∞ in Fig. 7.6a, D(qmin) is in general slightly higher
at the same Peσ, but shares the same pattern with respect to changes in Peσ: grows
with Peσ for amorphous flowing suspensions, and decreases with Peσ in the string
phase, suggesting that the diffusive behaviors of dense suspensions are consistent at
different length scales. Note that, for equilibrium suspensions at low to moderate
concentration, ds

∞ decreases while dc grows with increasing φ.

The inset of Fig. 7.6b presents the time evolution of the function f kk with k = 2
(dashed lines) and 3 (solid lines) in Eq. (7.25). As expected, at a time scale
comparable to a2/d0, f kk becomes linear in time for flowing suspensions in both
the 2- and 3-directions. In the string phase, f kk is qualitatively different. In
particular, the difference between f22 and f33 are more significant, suggesting
that the anisotropic string structures influence the collective diffusion differently in
different directions. Moreover, for arrested suspensions, f kk is not diffusive within
the observation time frame. Indeed, the temporal evolution of f kk shares strong
similarity with

〈
∆x2

k

〉
in Fig. 7.6a.

A third characterization of the suspension dynamics, usually from dynamic light
scattering experiments, is the self-intermediate scattering function Fs (q, t), averaged
over all the available time. The function Fs is defined as

Fs (q, t) =
1
N

∑
i

〈
exp{iq · [xi (t) − xi (0)]}

〉
. (7.27)

For dilute suspensions, Fs ∼ exp(−d0q2t) due to the particle Brownian motion [1].
The decay of Fs characterizes how fast a particle in the suspension “forgets” where
it has been, and, as is customary, characterized by the α-relaxation time τα when
Fs = e−1 [4]. Fig. 7.6c presents the α-relaxation times τα,kk with k = 2 (open
symbols) and 3 (filled symbols) as functions of Peσ at Π̄ = 50. Here, τα is
computed at qa = 3.5, corresponding to a wave number near the peak of the static
structure factor. This relaxation time characterizes the suspension “cage-breaking”
dynamics.

The relaxation time τα,22 and τα,33 are similar to each other, with only quantitative
differences in the string phase. As soon as the suspension becomes flowing, τα be-
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comes finite, and quickly reduces with increasing stress for amorphous suspensions.
When the suspension enters the string phase at Peσ > 500, τα in both directions
grows significantly, suggesting that the structural formation qualitatively affects the
cage relaxation process. In fact, the changes in τα with respect to Peσ are consistent
with those of ds

∞, and Fig. 7.6a and 7.6c resemble top-down mirror images of each
other.

The inset of Fig. 7.6c shows the self-intermediate scattering function Fs for extracting
τα at selected Peσ. For an arrested suspension at Peσ = 115, Fs does not decay
significantly over an extended period of time. For flowing suspensions, on the other
hand, the decay becomes faster with increasing Peσ. Note that with the formation
of the string phase, the decay of Fs becomes qualitatively different.

Further information on the suspension dynamics can be extracted from the dynamic
susceptibility, χ4 [37],

χ4(q, t) =N


〈
*
,

1
N

∑
i

exp{iq · [xi (t) − xi (0)]}+
-

2〉

−

〈
1
N

∑
i

exp{iq · [xi (t) − xi (0)]}
〉2

(7.28)

which is closely related to the 4-point correlations in the suspension. The peak
height of χ4, max( χ4), is an important indication of dynamic heterogeneities in
dense systems [4]. For glassy systems without imposed shear [22, 37, 73], max( χ4)
is found to grow significantly near the glass transition. For sheared athermal systems
interacting with soft potentials [39, 40], a real-space counterpart of max( χ4) is
also found to grow near the jamming point. Therefore, max( χ4) may effectively
characterize the flow-arrest transitions of dense systems regardless of underlying
driving mechanisms. Fig. 7.6d shows max( χ4) in the 2- (open symbols) and the
3-directions (filled symbols) as functions of Peσ with Π̄ = 50. The inset of Fig. 7.6d
shows the temporal evolution of χ4 in both directions.

The peak of the dynamic susceptibility, max( χ4) decreases significantly with in-
creasing Peσ in both the 2- and the 3-direction. The reduction in max( χ4) suggests
the heterogeneities and fluctuations in the suspension become less significant. The
flow-arrest transitions in our systems are similar to the glass and the jamming
transitions in other systems. However, as the suspension enters the string phase,
max( χ4) increases drastically again and then decreases. This shows that near the
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amorphous-string transition, another dynamic heterogeneity emerges in the suspen-
sion dynamics.

Moreover, the temporal evolution of χ4, shown in Fig. 7.6d inset, suggests that for
arrested suspensions, e.g., at Peσ = 115, χ4 does not grow within the simulation
time frame as the particles are essentially locked in place and are unable to organize
large-scale fluctuations. For suspensions at Peσ = 145, χ4 exhibits a prominent
peak at time ∼ a2/d0. However, with increasing Peσ, the corresponding χ4 reaches
the peak at an earlier time, and the height of the peak is much lower, because as
the suspension begins to flow, the particles do not need large-scale coordination to
achieve diffusive motion. In the string phase at Peσ = 1000 and 1500, the peak
of χ4 increases again, and the qualitative features of χ4 are different, with more
prominent difference between the 2- and the 3-directions comparing to amorphous
phase results.

Fig. 7.6 shows the different facets of suspension dynamics in constant stress and
pressure rheology. The various characterizations are consistent for flowing suspen-
sions, and the differences between the 2- and 3-directions are negligible. However,
structural development qualitatively changes the diffusive dynamics. To study the
influence of pressure on the suspension rheology, we focus only on the amorphous
suspensions, and from Fig. 7.6, we also focus only on the dynamics in the vorticity
direction.

7.4 Dynamics near flow-arrest transitions
Here we investigate the suspension dynamics near the flow-arrest transitions. We fo-
cus on a few (Π̄, Peσ) pairs with Π̄ = 50 and 5 by performing at least 50 independent
simulations with distinct initial conditions for analysis.

Temporal heterogeneity
Fig. 7.7 shows the accumulated strain γ from different simulations at (Π̄, Peσ) =
(50, 145), illustrating the unstable suspension behaviors near flow-arrest transitions.
The qualitative features of γ in each simulation is similar to those in the inset of
Fig. 7.2a: the suspension switches between the flowing and the arrested states,
leading to the intermittent growth and stagnation of γ with respect to time. In some
cases, the suspension is completely stuck and is unable to flow. These unstable
behaviors lead to distinct γ trajectories in each simulation. The average γ trajectory
over 50 simulations is shown as a dashed line in Fig. 7.7. In an average sense, γ ∝ t,
and only reaches γ ≈ 12 at tσ/η0 = 5000, suggesting a highly viscous suspension.
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Figure 7.7: (Color online) The time evolution of the accumulated strain γ with
(Π̄, Peσ) = (50, 145). Different solid lines represent results from different runs.
The dashed lines are averaged from 50 independent runs.

Figure 7.8: (Color online) The probability distribution of the strain rate γ̇η0/σ at
various Peσ with the averaging time tmσ/η0 = 50. The imposed pressures are
Π̄ = 50 (a) and Π̄ = 5 (b). The inset shows the strain rate distribution with different
averaging time tm at the annotated Peσ.

Assuming that the unstable dynamics in Fig. 7.7 arises from a stationary process,
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the temporal heterogeneity can be analyzed by populating the strain rate probability
distribution, P(γ̇), at different imposed pressures and stresses. However, directly
populating the instantaneous strain rate γ̇ leads to an uninteresting broad, Gaussian-
like distribution. Although the instantaneous γ̇ is strongly affected by noise, the
smooth accumulated strain γ suggests that the noise in γ̇ strongly cancels each other
in consecutive times. Therefore, we average the strain rate over an intermediate
time tm, and populate the probability distribution of the average strain rate γ̇ from
independent segments of tm. For example, the inset of Fig. 7.8a shows the probability
P(γ̇) averaged over time intervals tmσ/η0 = 0.5, 5, and 50 at (Π̄, Peσ) = (50, 145).
With increasing tm, P(γ̇) becomes narrower and develops split peaks. At tmσ/η0 =

0.5, the distribution P(γ̇) is asymmetric, with a positive peak close to γ̇ = 0, and a
tail skewed towards positive γ̇, leading to an overall positive average γ̇. Increasing
tmσ/η0 to 5, the peak near γ̇ = 0 becomes significantly narrower, and a skewed
tail remains for γ̇ > 0. When tmσ/η0 = 50, P(γ̇) shows two contributions: a
narrow distribution around γ̇ = 0, and a wide distribution with a different peak at
γ̇ > 0. At this tm, the noise is suppressed to reveal the origin of the asymmetry
in P(γ̇) at smaller tm. The strain rate distribution shows that, near the flow-arrest
transition, the suspensions switches between an arrested state with a narrow strain
rate distribution centered at γ̇ = 0 and a flowing state with a wider γ̇ distribution
centered at γ̇ > 0. Switching between the flowing and the arrest states leads to the
γ instability in Fig. 7.7. Approximating both contributing distributions as normal
distribution N (µ, σ) with mean µ and variance σ2, we have

P(γ̇) ≈ wAN (0, σA) + (1 − wA)N (γ̇F, σF ), (7.29)

with σF � σA, γ̇F > 0, and wA the proportion of the arrested states. In Fig. 7.8, wA

can be estimated by integrating over the peak centered at γ̇ = 0. Eq. (7.29) suggests
that the suspension dynamics might be modeled as a reaction system with distinct
flowing and arrested states via non-equilibrium statistical physics [74]. However,
this is beyond the scope of the current work.

The main figure of Fig. 7.8a also presents P(γ̇) at Peσ = 175 and 215. The
contributions from the arrested state quickly diminishes, i.e., wA → 0 as the imposed
stress exceeds the yield stress σ � σm. A small arrest peak in P(γ̇) remains visible
at Peσ = 175, but it completely vanishes at Peσ = 215. Indeed the strain rate
distribution at Peσ = 215 can be fitted to a normal distribution, which is shown in
dashed-dotted line in Fig. 7.8. Away from the flow-arrest transition, the strain rate
distribution in the flowing state appears to follow a random Gaussian process.
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To highlight the influences of Π̄, Fig. 7.8b presents P(γ̇) at Π̄ = 5 with the same
tm. Although the qualitative features are similar to Fig. 7.8a, reducing Π̄ shows an
increase in the fluctuations. Near the flow-arrest transition, i.e., at Peσ = 5, P(γ̇) has
two contributions, and can be approximated via Eq. (7.29). Compared to the P(γ̇)
at (Π̄, Peσ) = (50, 145), the most distinguishing feature here is that σA associated
with the arrested state is larger, and σF associated with the flowing state is smaller.
Consequently, the instability between the flowing and the arrested states in γ(t) is
less evident compared to Π̄ = 50. At higher Peσ, P(γ̇) becomes broader due to the
stronger thermal fluctuations. Furthermore, the inset of Fig. 7.8b presents the effect
of tm on P(γ̇) near the flow-arrest transition. Increasing tm show similar effects
on P(γ̇) as the case of Π̄ = 50, but the lower confining pressure leads to stronger
thermal fluctuations at small tm.

Fig. 7.8 shows that the instability in γ near the flow-arrest transition arises from the
suspension switching between a flowing state and an arrested state. These behaviors
are present at both low and high confining pressures, but are more pronounced
at high Π̄ due to the weaker thermal fluctuations. The strain rate distribution is
sensitive to the averaging time tm, and can be approximated using Eq. (7.29) with
sufficiently large tm. The weight wA in Eq. (7.29) rapidly vanishes as the suspension
leaves the flow-arrest transition. However, understanding how Eq. (7.29) is affected
by the imposed stresses and pressures from a first principle perspective remains a
challenge.

Fig. 7.8 also reveals that each (Π̄, Peσ) pair covers a strain rate range which reduces
with increasing averaging time tm. Therefore, the suspension behaviors over the
a range of γ̇ can be analyzed with the same imposed stress and pressure. This is
different from the start-up or the cessation studies, where the suspension responses
at different γ̇ is found through a sudden change in the external forcing. The results
from the two approaches are equivalent in the linear response regime, but their
relation for non-equilibrium systems is unclear.

We analyze the suspension behaviors at different γ̇ for each (Π̄, Peσ) pair with
tm = 50η0/σ, which is long enough to suppress the thermal noises, but is also short
enough for adequately sampling the suspension responses at each γ̇. The suspension
properties are computed from different simulation segments with same average γ̇.
Fig. 7.9a and 7.9b show the volume fraction φ and long-time self-diffusivity in
the vorticity direction ds

∞, respectively, as functions of the strain rate γ̇η0/σ for
Peσ = 145, 175, and 215 at Π̄ = 50 and Peσ = 5, 8, and 10 at Π̄ = 5. The diffusivity



251

Figure 7.9: (Color online) The volume fraction, φ (a), and the stress scaled long-
time self-diffusivity in the vorticity direction, ds

∞η0/(a2σ) (b), as functions of the
time-averaged strain rate γ̇η0/σ in simulations at Peσ = 145, 175, and 215 for
Π̄ = 50 and at Peσ = 5, 8, 10 for Π̄ = 5. The averaging time tmσ/η0 = 50. The
crosses and pluses symbols are results averaged from the entire simulations at these
pressures. The inset of (b) presents the corresponding non-Gaussian parameter α2
as a function of γ̇η0/σ measured at tmσ/η0 = 50.

in Fig. 7.9b is scaled with the stress diffusion scale,

dσ = a2σ/η0, (7.30)

to highlight the influence of the imposed stress. In Fig. 7.9, the scaled strain rate is
the inverse shear viscosity, γ̇η0/σ = η0/ηs. Also presented in Fig. 7.9 are φ and
ds
∞ averaged over the multiple simulations from Fig. 7.13b and Fig. 7.16a, shown as

crosses for Π̄ = 50 and pluses for Π̄ = 5. Near the flow-arrest transitions, the φ and
ds
∞ curves can assess the suspension properties at much lower γ̇η0/σ comparing to

direct simulation-wide averages. Therefore, the analysis here is suitable for studying
suspension dynamics near the flow-arrest transitions.
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In Fig. 7.9a, each (Π̄, Peσ) pair corresponds to a unique φ(γ̇) curve that does not
overlap each other. In general, increasing γ̇ leads to a φ decrease due to suspension
dilation. Close to the flow arrest transition γ̇ = 0, the volume fraction φ becomes
sensitive to γ̇, and increases rapidly with diminishing γ̇. This is particularly obvious
at (Π̄, Peσ) = (50, 145). At lower imposed pressure, the arrest volume fraction is
reduced. The simulation-wide averages are always on the φ(γ̇) curves, except near
the flow-arrest transitions due to the arrested states. On the other hand, in Fig. 7.9b,
the dimensionless diffusivity ds

∞/dσ at different Peσ collapses to a master curve at
the same Π̄. The results also agree with the simulation-wide averages shown in the
crosses and pluses at Π̄ = 50 and 5, respectively, justifying the adopted time frame
tm = 50η0/σ.

We further characterize the suspension dynamics by computing the non-Gaussian
parameter α2(t) [75, 76] in the vorticity direction,

α2(t) =

〈
∆x3(t)4

〉
3
〈
∆x3(t)2〉2 − 1, (7.31)

which is presented in the inset of Fig. 7.9b at t = tm. The non-Gaussian parameter
α2 becomes non-zero when the particle movement ∆x3 deviates from being fully
diffusive, and is the real space equivalence of the dynamic susceptibility χ4(t). A
high α2 suggests strong collective particle motions [75].

The inset of Fig. 7.9b shows that α2 decreases from a large value at γ̇η0/σ ≈ 0 with
increasing γ̇. Near the flow-arrest transition, the low ds

∞ and the high α2 suggests that
the particles are locked by their neighbors and can only move around with collective
motion. When γ̇η0/σ � 0, α2 � 1 and ds

∞ is well defined, suggesting that the
particles can diffuse in the 3-direction. Moreover, the non-Gaussian parameter α2

at different (Π̄, Peσ) pairs almost collapses, suggesting that the higher order particle
dynamics are similar despite the different ds

∞, and are principally determined by the
strain rate.

Fig. 7.9 shows that, at a fixed imposed pressure Π, the volume fraction is a function
of both the strain rate and the shear stress, φ = φ(γ̇, σ;Π), but the dimension-
less diffusivity % = ds

∞/dσ is only a function of the strain rate, % = %(γ̇;Π).
Therefore, in constant stress and pressure rheology, the dimensionless diffusivity
q does not have explicit dependence on the shear stress σ and the volume frac-
tion φ, and can only be affected by changing γ̇ and Π. With constant imposed
stress, the average volume fraction 〈φ〉 and the average diffusivity

〈
ds
∞

〉
are com-

puted using the strain rate probability P(γ̇) as 〈φ〉 =
∫
φ(γ̇, σ;Π)P(γ̇)dγ̇ and
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Figure 7.10: (Color online) Typical time evolution of a suspension at Peσ = 145
and Π̄ = 50 near an arrest-event transition: (top) the accumulated strain γ; (center)
the average radius of the minimum enclosing circle of the particle trajectory 〈rMB〉;
(bottom) the fraction of the fast particles Nfast/N . In computing rMB, the trajectory
of the past 50η0/σ time units in the velocity gradient-vorticity plane are considered.
The transition from the flowing to the arrested states are highlighted, with the arrows
pointing out three time instances A, B, and C. The horizontal dashed lines highlight
the cutoff radius rc in the middle panel and the lower and upper limiting fast particle
fractions.

〈
ds
∞

〉
= dσ

∫
%(γ̇;Π)P(γ̇)dγ̇. For constant strain rate rheology with the corre-

sponding stress distribution P̂(σ), the average volume fraction is similar to the
case of constant stress, 〈φ〉 =

∫
φ(γ̇, σ;Π)P̂(σ)dσ. However, the average diffusiv-

ity becomes
〈
ds
∞

〉
= a2%(γ̇;Π) 〈σ〉 /η0, allowing a direct connection between the

suspension mechanics 〈σ〉 and the particle diffusion
〈
ds
∞

〉
.

Spatial heterogeneity
The flow-arrest instability in the accumulated strain γ(t) in Fig. 7.7 provides a unique
opportunity to study the particle-level details of the spontaneous arrest-flow events,
which, as we have mentioned, are distinct from the transient response in start-up or
cessation studies. Here, the imposed stresses and pressures are fixed and the events
entirely arise from the fluctuations of the system.

An arrest-flow event is defined as the shortest continuous time where the suspension
changes from an arrested state to a flowing state. These states are based on the
fraction of fast particles in the suspension, Nfast/N , i.e., in an arrested state Nfast/N ≤

10% and in a flowing state Nfast/N ≥ 90%. Fig. 7.10 illustrates a typical event from
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Figure 7.11: (Color online) (Top panel) The probability distribution of the radius
of the minimum enclosing circle rMB at time instances A, B, and C highlighted
in Fig. 7.10. The cutoff radius rc is shown in the vertical line. Also shown are
the definition of rMB and a typical particle trajectory, with more recent positions in
darker color. (Bottom panel) The suspension snapshots at instances A, B, and C.
The “fast” particles are shown in red in their full size, and the remainder are shown
as blue dots.

point A to point C at (Π̄, Peσ) = (50, 145), with the bottom panel showing the time
evolution of Nfast/N . The exact choice of the cutoff fractions (10% and 90%) does
not affect the spatial features of the event, but must ensure sufficient samples for
analysis.

To determine Nfast, we analyze the particle trajectory projected to the 23-plane
(velocity gradient-vorticity plane) over the past tm time and compute the radius of
the minimum enclosing circle rMB, such that the distance between any two points in
the trajectory does not exceed 2rMB. We consider a particle fast if its corresponding
rMB is larger than a cutoff radius rc. Here, we choose the past time duration
tm = 50η0/σ, and rc = 0.1a. A typical particle trajectory projected into the 23-
plane is shown in the top panel of Fig. 7.11. The current location at time t is red,
and the color on the trajectory gradually fades to white at time t − tm. The computed
minimum enclosing circle [77] is shown in the dashed circle. Note also that the
exact choice of rc does not affect the results significantly.

The middle panel of Fig. 7.10 presents the time evolution of 〈rMB〉 averaged over
all particles as a function of time during the arrest-flow event. The dashed line
represents the cutoff radius rc. As the suspension changes from the arrested state
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to the flowing state, 〈rMB〉 increase from below rc to above. In addition, the top
panel of Fig. 7.10 shows the accumulated strain γ as a function of time, which grows
appreciably as the suspension becomes flowing. Changes in γ and 〈rMB〉 during the
arrest-flow event are consistent with the Nfast/N evolution. However, defining the
arrest-flow event using Nfast/N provides a clear duration for the event.

Characterizing the arrest-flow event using fast particles is inspired by experiments
in colloidal glasses [75], where “mobile” particles move together in clusters as
the suspension approaches the glass transition—a direct manifestation of dynamic
heterogeneity. The length scale associated with the cluster, `c, diverges as the system
approaches glass transition, because moving one particle out of its neighboring cage
requires structural rearrangement in the entire system [15, 78, 79]. Therefore,
studying clustering behaviors of mobile particles requires large system sizes to
observe the diverging length scale and to eliminate the artifacts from periodic
simulation box.

During an arrest-flow event, the fast particles in the suspension grow from a few to
the entire system during a short period of time similarly to glassy dynamics. Taking
points A, B, and C in Fig. 7.10 as an example, the top panel of Fig. 7.11 shows
the corresponding probability distribution of rMB, P(rMB), with the cutoff radius
rc shown as a vertical dashed line. At the beginning of the event (A), P(rMB) is
peaked below rc, as the majority of the particles are arrested and are confined to
their neighboring cages. As the suspension starts flowing (B), the distribution shifts
its tail towards higher rMB. At at the end of the event (C), for the flowing suspension
P(rMB) becomes much broader, and the majority of P(rMB) lies beyond rc. The
probability distributions at A and C illustrate the distinct flowing and arrested states.
The corresponding simulation snapshots are shown in the bottom panel of Fig. 7.11.
The fast particles are shown in full sizes and in red, and the other particles are shown
as blue dots. Not clear in Fig. 7.11 is how the new fast particles appear.

The spatial organization of fast particles during an arrest-flow event has two possi-
bilities: (1) the fast particles appear randomly in an uncorrelated fashion, suggesting
that the flow-arrest transition is structurally independent, and is dominated by the
thermal fluctuations; or (2) an arrested particle can only become mobile if its neigh-
bors are also mobile. In this case, the suspension becomes flowing by propagating
fast particles, and the arrest-flow event strongly depends on the structure of the fast
particle cluster. In this sense, it is similar to the dynamic heterogeneity in a glass: in
the thermodynamic limit, the suspension becomes flowing if the correlation length
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Figure 7.12: The fraction of the neighboring particles of a fast particle that are also
fast, fn, as a function of the fraction of fast particles in the suspension, Nfast/N , near
the flow-arrest transitions at (Π̄, Peσ) = (50, 145) (filled symbols) and (5, 5) (open
symbols). The plus and cross symbols are the results when the fast particles are
randomly selected. The inset highlights the difference fn − Nfast/N .

of the fast particle cluster `c → ∞.

We analyze the structural details of the arrest-flow events to characterize the emer-
gence of fast particles. The modest system size N = 200 makes analyzing the
correlation length `c ineffective. Instead, we compare local behaviors of fast parti-
cles to the suspension-wide results. If a fast particle is enclosed by Nn neighboring
particles, and Nnf of them are also fast moving particles, we define,

fn = Nnf/Nn, (7.32)

as the fraction of fast neighbors, which inherently depends on the suspension struc-
ture. If fast particles appear randomly, we expect fn = Nfast/N . Otherwise, fast
particles prefer to be next to each other if fn > Nfast/N , while avoid each other if
fn < Nfast/N .

Fig. 7.12 presents fn, defined in Eq. (7.32), as a function of the fraction of fast
particles in the suspension, Nfast/N , which also gauges the progression of the arrest-
flow events since the time duration of these events varies. The results are averaged
over all available events at (Π̄, Peσ) = (50, 145) and (5, 5). The neighboring
particles are identified using radical tessellation [80], and the fast particles are found
using their trajectories on the 23-plane. At (Π̄, Peσ) = (5, 5), the arrest-flow event
is defined as the transition between Nfast/N = 0.1 and 0.7 due to stronger thermal
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fluctuations. Fig. 7.12 also shows the “randomized” results by randomly assigning
fast particles within the same sequences of particle configurations. As expected, the
randomized results satisfy fn = Nfast/N as the emergence of the fast particles are
independent of the existing fast particle configuration. On the other hand, for actual
fast particles, fn > Nfast/N : during an arrest-flow event, fast particles are more
likely to appear next to each other. However, the result does not indicate whether a
new fast moving particles prefers to appear next to an existing one, as the presence
of a fast particle itself is dynamical: it appears and disappears during the arrest-flow
event. Furthermore, as the fraction of fast particles becomes large (Nfast/N > 0.7),
the difference between fn and Nfast/N diminishes due to the finite system size.

The emergence of fast particles is similar at different Π̄, suggesting a universal
suspension behavior in arrest-flow events. The inset of Fig. 7.12 quantifies this
similarity by showing fn−Nfast/N , which reaches amaximumof∼ 0.06 at Nfast/N ≈

0.4. Clearly, when Nfast/N is small, the fast particles appear randomly due to
mechanical or thermal fluctuations. As Nfast/N increases, the fast particles prefer
to appear in clusters: the neighbor of a fast particle is more likely to be fast.
Although it is difficult to quantify the correlation length from fn, the results do
show that cooperative particle rearrangement is necessary for arrest-flow events. The
cooperation reaches a maximum at Nfast/N ≈ 0.4. Beyond that point, fn − Nfast/N

decreases, and the fast moving particles emerge more randomly since a significant
portion of the suspension is already fast. However, the cooperative rearrangement
is still evident as the differences are higher than the randomized results.

7.5 A granular perspective on Brownian suspension rheology
Adopting a granular perspective, we characterize different aspects of suspension
behavior using the viscous number. Focusing on amorphous systems, we exclude
from the discussions the results showing string order structures, which exhibit
qualitatively different structural and mechanical responses.

Mechanical responses
Fig. 7.13 presents the suspension shear viscosity ηs = σ/γ̇, the volume fraction
φ, and the macroscopic friction coefficient µ = σ/Π as functions of the viscous
number Iv = γ̇η0/Π for colloidal suspensions under constant imposed shear stress
σ and confining pressure Π. In Fig. 7.13, the dimensionless imposed pressure
Π̄ = Πa3/kBT = 1 to 1000, and Iv < 1 due to the string order formation at higher
Iv.
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Figure 7.13: (Color online) The suspension shear viscosity ηs/η0 (a), the volume
fraction φ (b), and the macroscopic friction coefficient µ as functions of the viscous
number Iv over a wide range of the imposed pressure Π̄. The shaded area bounded
by dashed lines are from the rheological model in Sec. 7.5, outlining the boundary
of glassy suspensions.

The shear viscosity ηs in Fig. 7.13a shows two distinct behaviors in the Iv � 1 limit:
with low imposed pressures Π̄ < 3.5, ηs asymptotes a finite value corresponding to



259

the at-rest viscosity of the equilibrium suspension with the same osmotic pressure
Π. And when Π̄ ≥ 3.5, the viscosity diverges ηs → ∞ as Iv → 0, suggesting the
suspension arrests and becomes solid-like. For convenience, we call the former sus-
pension behaviors liquid-like and the latter glassy, and show liquid-like suspensions
as open symbols and glassy suspensions as filled symbols. The shear viscosity ηs

decreases with growing Iv, i.e., the suspension shear thins in constant stress and
pressure rheology. For both liquid-like and glassy suspensions, ηs at different Π̄
collapse at high Iv, approaching the solvent viscosity η0 due to suspension dilation.
For glassy suspensions, increasing Π̄ also show a data collapse at Π̄ > 50, suggest-
ing the emergence of a non-Brownian limiting behavior. The shear viscosity ηs of
glassy suspensions at lower Π̄ are parallel to the collapsed results at small Iv.

Fig. 7.13b presents the volume fraction φ as a function of Iv for various Π̄. At
different Π̄, the behaviors of φ are similar and are almost parallel to each other: the
suspension dilates with increasing Iv, and approaches an at-rest value in the Iv � 1
limit. For liquid-like suspensions, this corresponds to the density of an equilibrium
suspension with an osmotic pressure of the imposed pressure Π. Unlike the shear
viscosity in Fig. 7.13a, φ does not collapse at high Iv at different Π̄, but exhibits
distinct limits. The volume fraction does show a high-pressure non-Brownian
collapse when Π̄ > 20. The high-pressure limiting behaviors outline a φ boundary
with respect to Iv corresponding to non-Brownian suspensions. Therefore, for a
given viscous number Iv, there is a maximum volume fraction that decreases with
increasing Iv. The double limit of Iv → 0 and Π̄ → ∞ defines the Shear Arrest Point
(SAP) [20], where the highest volume fraction in Fig. 7.13b is attained at φSAP.

Themacroscopic friction coefficient µ = σ/Π as a function of the viscous number Iv
at different Π̄ is shown in Fig. 7.13c. Since µ = Ivηs/η0, for liquid-like suspensions
with Π̄ < 3.5, the friction coefficient µ grows linearly with Iv in the Iv � 1 limit,
with the slope corresponding to the equilibrium suspension viscosity. For glassy
suspensions, as Iv → 0 the friction coefficient approaches a constant µm character-
izing the ratio of the yield stress σm to the imposed pressure. The magnitude of
µm increases with growing Iv, and approaches the SAP friction coefficient µSAP as
Π̄ → ∞. When Iv is increased from the Iv → 0 limit, µ emerges from the arrested
value µm, and the difference (µ− µm) appears to grow sublinearly with respect to Iv.
Further increasing Iv leads to linear µ growth. The friction coefficients µ at different
Π̄ collapses with as the suspension viscosity approaches the solvent viscosity η0 in
Fig. 7.13a.
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Figure 7.14: (Color online) The stress-scaled normal stress differences N1/σ (a) and
N2/σ (b) as functions of viscous number Iv for a wide range of imposed pressure
Π̄. The symbols are identical those in Fig. 7.13.

Normal stress differences are another important characterization of the suspensions
rheology. The first and the second normal stress differences, N1 and N2, defined as,

N1 = 〈Σ11〉 − 〈Σ22〉 and N2 = 〈Σ22〉 − 〈Σ33〉 , (7.33)

are presented in Fig. 7.14 over a wide range of Π̄. Consistent with earlier BD studies,
N1 is positive and N2 is negative. For a simple isotropic material, N1 and N2 should
emerge from zero as the material is deformed [81, 82]. In simulations, the departure
of N1 or N2 from zero was not observed due to the difficulties associated with stress
differences with significant fluctuations. Scaling the normal stress differences with
the imposed stress σ, the results decreases with increasing Iv as the suspension
dilates.

In Fig. 7.14a, N1 appears scattered when Iv < 0.005, but the general trend is
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deceasing with growing Iv. The positive N1 is a signature of the dominance of
interparticle or Brownian forces in suspensions [51]. If HIs dominant particle
interactions, the first normal stress difference N1 < 0 as HIs resist particle pairs
to separate. On the other hand, repulsive interparticle forces promotes the pair
separation. At higher Iv, N1 approaches zero as the string-ordered phase formation
establishes the fore-aft symmetry in g(r ) in Fig. 7.3. Moreover, at larger Iv the
results at high Π̄ collapse, showing a universal, non-Brownian N1 limit.

The second normal stress difference N2 is negative for all imposed pressures in
Fig. 7.14b. For liquid-like suspensions, N2/σ variation with Iv < 10−3 is scattered.
The general trend is that the magnitude of N2/σ decreases. With increasing Iv, the
magnitude |N2 |/σ reaches a minimum, increases slightly before decreasing again.
For glassy suspensions, the results for Iv > 10−3 collapses to the non-Brownian
limit, where |N2 |/σ increases before decreasing again. With increasing Π̄, |N2 |/σ

increases, but |N1 |/σ decreases, and as Π̄ → ∞, in general |N1 | . |N2 |. This
is consistent with the suspension structural features in Eq. (7.19): for example, in
Fig. 7.3, the structural differences near the 1- and 2-axis in g12 are more sensitive to
Peσ relative to those between the 2- and 3-axis in g23. Therefore, the normal stress
differences are direct reflection of the suspension structures.

Suspension structures
The suspension structural features, max(gcomp) and max(gext), respectively, are
presented in Fig. 7.15a and 7.15b for various imposed pressures. According to
Eq. (7.19), they are related to the structural contributions to the suspension rheol-
ogy. Recall that only amorphous suspensions—no string phases—are considered.
Beginning with the peak height of gcomp in Fig. 7.15a, max(gcomp) is insensitive
to Iv due to suspension dilation at low Π̄, and with increasing Iv, it only increases
slightly before decreasing again. At higher Π̄, max(gcomp) grows but the qualitative
features remain unchanged for liquid-like suspensions with Π̄ < 3.5 at low Iv. The
peak height max(gcomp) decreases further at higher Iv and collapses with the results
at lower Π̄. For glassy suspensions, max(gcomp) collapses and a high pressure lim-
iting behavior emerges. In this case, max(gcomp) first increases slightly, and then
decreases with increasing Iv. Note that max(gcomp) remains finite at finite Iv even
as Π̄ → ∞. In contrast, for monodisperse hard-sphere systems, the contact value of
pair distribution function diverges as the system acquires rigidity [83].

The peak values of gext, presented in Fig. 7.15b, significantly reduce with increasing
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Figure 7.15: (Color online) The peak values of the pair distribution function along
the compressional and extensional axes, max(gcomp) (a) and max(gext) (b), as func-
tions of the viscous number Iv over a wide range of imposed pressures Π̄. The
symbols are identical to those in Fig. 7.13.

Iv for all Π̄. In contrast to max(gcomp), max(gext) is more sensitive to Iv but less
sensitive to Π̄. This sensitivity grows with increasing Iv, as max(gext) reduces faster
with higher Iv, and at low Iv, max(gext) is almost constant. Furthermore, at the same
Iv, increasing Π̄ in general increases max(gcomp) but reduces max(gext). Fig. 7.15
shows the structural features of non-Brownian suspensions in the Π̄ → ∞ limit: the
suspension structural features in the extensional axis, max(gext), are more sensitive
to Iv, and less sensitive in the compressional axis for max(gcomp).

Diffusive dynamics
Fig. 7.16 presents several suspension diffusive behaviors for various Π̄, including the
long-time self-diffusivity ds

∞ in Fig. 7.16a, the wave-number dependent diffusivity
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Figure 7.16: (Color online) Different characterizations of suspension dynamics as
functions of the viscous number Iv over a wide range of imposed pressures Π̄. The
symbols are identical to those of Fig. 7.13. In (a)–(c) the diffusive quantities are
characterized by the pressure diffusion scale dΠ = Πa2/η0. All the measurements
are taken in the vorticity direction. (a): the long-time self-diffusivity ds

∞/dΠ; (b):
the wave-number dependent diffusivity measured at qmin, D(qmin)/dΠ; (c): the α-
relaxation time ταdΠ/a2 from the self-intermediate scattering function at qa = 3.5;
(d): the peak of the dynamic susceptibilitymax( χ4). In (a), the shaded area bounded
by dashed lines highlights the glassy suspension behaviors from Eq. (7.43).

at the lowest wave number D(qmin) in Fig. 7.16b, the α-relaxation time near peak
of the static structure factor τα in Fig. 7.16c, and peak of the dynamic susceptibility
in Fig. 7.16d. Here, we focus on the dynamics in the vorticity direction, since
Fig. 7.6 indicated that the dynamics measured from the velocity gradient direction
are qualitatively similar. For simplicity, we drop the 33 subscripts in the diffusive
quantities. To accommodate the wide range of Brownian and non-Brownian sus-
pension behaviors over a wide range of imposed pressures, we scale the diffusive
behaviors with a confining pressure diffusion scale

dΠ = γ̇η0/Π. (7.34)

Unlike the single-particle diffusivity d0, the diffusion scale dΠ does not correspond
to the diffusivity of an actual diffusion process.



264

Fig. 7.16a shows the long-time self-diffusivity ds
∞ as functions of Iv. For liquid-

like suspensions, e.g., at Π̄ = 1.5, ds
∞ grows with Iv from a plateau, which arises

from the at-rest suspension diffusion process. Further increasing Iv makes the flow
stronger, which eventually overcomes the particle thermal fluctuations, leading to
the diffusivity increases with Iv and scales linearly with γ̇. Upon increasing Π̄,
both the plateau diffusivity and the viscous number where the suspension departs
the plateau decrease, e.g., the plateau regimes ends at Iv ≈ 0.005 for Π̄ = 1.5,
and at Iv ≈ 0.0003 for Π̄ = 2.5. Therefore, the suspension diffusive behaviors
are becoming less affected by the at-rest particle dynamics and more affected by
the imposed flow. With the emergence of the flow-arrest transition, the diffusivity
plateau vanishes, and ds

∞ only grows with Iv. Further increasing Π̄ reduces the
diffusivity, and the results in the Π̄ � 1 limit collapse to a non-Brownian limiting
behavior. The high-pressure ds

∞ are almost parallel to each other, suggesting that
the particle diffusion is driven by the external flow, and the at-rest particle dynamics
contribute little. The results at high Iv for different Π̄ also collapse to the dilute
diffusion behaviors. Also presented in Fig. 7.16a as yellow shade is the glassy
diffusive behaviors predicted by Eq. (7.43), with the dashed lines representing the
glass and the jamming limiting behaviors. The predicted diffusion boundary agrees
well with the simulation results.

Fig. 7.16b presents the collective suspension diffusive behaviors in the vorticity
direction, D(qmin), for various Π̄. Although at different φ the corresponding qmin

are different, such differences do not affect the qualitative results. With respect to Iv,
D(qmin) is similar to ds

∞ in Fig. 7.16a despite stronger data scattering as D(qmin) is
more difficult to measure. For liquid-like suspensions, D(qmin) exhibits equilibrium
plateaus in the Iv → 0 limit, and increaseswith Iv afterwards. For glassy suspensions
with Π̄ ≥ 3.5, the collective diffusivity is lower than the liquid-like suspensions, and
in the Π̄ → ∞ limit, a non-Brownian limit emerges, suggesting the weak influences
of thermal fluctuations. The similarity between D(qmin) and ds

∞, which represents
the diffusion process at disparate suspension length scales, suggests that the same
underlying mechanism drives the suspension diffusive dynamics at various imposed
pressures.

Fig. 7.16c shows the α-relaxation time in the vorticity direction, τα, defined as
the time for the self-intermediate scattering function to decay to 1/e, for various
imposed pressures. The wave number for Fs is taken at qa = 3.5, close to the first
peak of the static structure factor, and therefore the corresponding τα characterizes
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the dynamics of nearest neighboring particle cage. Fig. 7.16c is almost an up-down
mirror image of ds

∞ in Fig. 7.16a, showing that a high ds
∞ corresponds to a low

τα. Therefore, the suspension dynamics at the length scale of the cages and the
single-particle length scale are similar. For liquid-like suspensions, τα decreases
from a plateau with increasing Iv, and for glassy suspensions, the plateau vanishes.
The crossover between the plateau and the decay occurs at different Π̄. For glassy
suspensions, the results at high Π̄ also collapse in the non-Brownian limit.

Fig. 7.16d characterizes the suspension dynamic heterogeneity via the peak of
the dynamic susceptibility max( χ4) in the vorticity direction, with χ4 defined
in Eq. (7.28), also measured at qa = 3.5. The dynamic heterogeneity max( χ4) is
qualitatively different from other dynamic characterizations in Fig. 7.16a–7.16c. For
liquid-like suspensions, max( χ4) decreases from a low Iv plateau with increasing
Iv. The value of the low Iv plateau grows with increasing Π̄, suggesting that the
at-rest dynamic heterogeneity grows with Π̄. With the emergence of the flow-arrest
transitions,max( χ4) at low Iv can reach high value, and the low Iv plateau disappears
altogether. In this case, the flow of the suspension is dominated by transient large-
scale fluctuations in dynamic heterogeneity. For Iv > 0.01, max( χ4) at different Π̄
collapses and quickly decreases below 1, suggesting that the flowing suspensions in
this limit lack large-scale fluctuations.

We further explore the quantitative similarity among ds
∞, D(qmin), and τα in

Fig. 7.17a and 7.17b by showing D(qmin) and τα, respectively, as functions of
the corresponding ds

∞. Fig. 7.17a presents the diffusivity on the suspension scale,
D(qmin), as functions of the corresponding diffusivity on the particle scale, ds

∞, with
both along the vorticity direction. The dashed line indicates that D(qmin) = ds

∞. In
general, D(qmin) grows linearly with ds

∞, and D(qmin) is slightly higher, suggesting
similar diffusion behaviors at different length scales for flowing suspensions. At low
ds
∞, D(qmin) does not follow ds

∞ linearly and is much higher, most likely because the
suspension develops large scale fluctuations to help structural rearrangement while
at the single-particle level, the particle movement is still limited by the neighboring
particle cage. The inset of Fig. 7.17a presents the ratio D(qmin)/ds

∞ as a function
of Iv. Although the results scatters due to the difficulties in measuring D(q), they
confirm that D(qmin) is in generally higher than ds

∞ for almost all Iv. The diffusivity
ratio becomes higher, up to D(qmin)/ds

∞ ≈ 5, at low Iv, and reduces with growing
Iv. The high diffusivity ratio most likely arises from the emergence of flow-arrest
transitions. The most significant data scattering is found in glassy suspensions.
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Figure 7.17: (Color online) The wave-number dependent diffusivity measured at
qmin, D(qmin) (a), and the α-relaxation time τα (b), as functions of the corresponding
long-time self-diffusivity ds

∞ over awide range of imposed pressures Π̄. The symbols
are identical to those of Fig. 7.13. The solid line in (a) represents D(qmin) ∝ ds

∞

and in (b) represents τ−1
α ∝ ds

∞. In the insets, the ratio, D(qmin)/ds
∞ (a), and the

product, ταds
∞ (b), are presented as functions of Iv. The solid lines in the insets are

horizontal. All measurements are taken in the vorticity direction.

Fig. 7.17b presents the connection between τα and ds
∞ in the vorticity direction,

with the dashed line outlining τ−1
α ∝ ds

∞. Fig. 7.17b confirms that τα is inversely
proportional to ds

∞, and the results for various Π̄ collapse onto a single curve. The
quality of the collapse is better comparing to Fig. 7.17a, since both ds

∞ and τα

describe single-particle behaviors, but D(qmin) quantifies the collective suspension
behaviors beyond the single-particle level. The relaxation time τα deviates from
being inversely proportional to ds

∞ at low ds
∞, and becomes higher than the dashed

line. The inset of Fig. 7.17b shows the product ταds
∞/a

2 as functions of Iv over a
wide range of Π̄. At moderate to high Iv, the product is almost a constant insensitive
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to Iv. At lower Iv, where the suspensions show an increase in max( χ4), the product
becomes more sensitive to Iv. This is especially true for glassy suspensions at
higher Π̄, where the product becomes much higher than the results at high Iv,
suggesting longer τα, i.e., the diffusion on the cage scale is slower than the single-
particle diffusion, consistent with the dynamic heterogeneity description of glass
transition [15]. Unlike the glass transition, however, the dynamic heterogeneity
arises from both the imposed flow and the particle thermal fluctuations.

Fig. 7.17 quantitatively demonstrates that the diffusion processes at different length
scales are consistent for homogeneous flowing suspensions. Unexpected differences
arise when the suspensions are near the flow-arrest transitions, because, in this case,
the dynamics at various length scales are different.

A model for glassy rheology
The rheology of glassy suspensions at different imposed pressures Π̄ in Fig. 7.13
shares great similarity in the behaviors near the flow-arrest transitions despite dif-
ferent arrest volume fractions φm and arrest friction coefficients µm. The similarity
is especially evident from the almost parallel volume fractions in Fig. 7.13b and
the viscosity divergence in Fig. 7.13a. A convenient way to model the suspension
behaviors is to express φ and µ as,

φ = φm − δφ and µ = µm + δµ, (7.35)

where the arrest point is (φm, µm). The changes from the arrest point can be
expressed as a power law in the viscous number,

δφ = KφIαφv and δµ = KµIαµv , (7.36)

where the “constants” Kφ and αφ characterize δφ and Kµ and αµ characterize
δµ: they may, in general, change with the imposed pressure Π. The power law
expressions of δφ and δµ in Iv have long been used to characterize the flow of
granularmaterials and non-Brownian suspensions in experiments and in simulations.
For example, constant stress and pressure experiments on non-Brownian suspension
found that αµ = αφ = 0.5 [26], and experiments in granular matter identified
αµ = 1 [28]. These expressions have been generalized to tensorial forms for
continuous modeling the flow behaviors [17]. Moreover, mean-field theories have
been developed to predict αµ and αφ [31].

If the physics of jamming dominates the flowbehaviors of the suspensions, Eq. (7.36)
should be a reasonable description of the glassy suspension behavior. The weak in-
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Figure 7.18: (Color online) The incremental volume fraction δφ = φm − φ (a)
and the incremental friction coefficient δµ = µ − µm (b) as functions of the viscous
number Iv for glassy suspensions with Π̄ ≥ 3.5. The dashed lines in the main
figures highlight the power law relation of Eq. (7.36). The insets show the limiting
volume fraction φm (a) and the limiting friction coefficient µm (b) as functions of the
imposed pressure Π̄. The dashed line in the inset of (a) shows Eq. (7.37), and the
dashed line in the inset of (b) is the non-Brownian µSAP. The legends are identical
to those in Fig. 7.13.

fluences of thermal fluctuations on the flow behaviors also suggests that the constants
Kµ, Kφ, αµ, and αφ should be independent of the imposed pressure Π̄. On the other
hand, the arrest point (φm, µm) is affected by thermal fluctuations at low imposed
pressure and approaches the SAP at high pressures. We use non-linear regression
to simultaneously solve for the constants in Eq. (7.36) as well as the arrest points in
Eq. (7.35) that best describe the rheological data in Fig. 7.13 for Iv < 0.1.

Fig. 7.18 presents the incremental volume fraction δφ and the incremental friction
coefficient δµ as functions of the viscous number Iv from the non-linear regression
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Table 7.1: The parameters for themodel of glassy suspension rheology inEq. (7.35)–
(7.38) and Eq. (7.42).

Kµ 1.38 µG 0.021 Π̄G 3.5
αµ 0.467 φG 0.603 cm 0.168
Kφ 0.157 µSAP 0.13 βy 0.552
αφ 0.32 φSAP 0.652 Kd 0.037

for glassy suspensions with Π̄ ≥ 3.5. The constants in Eq. (7.36) are given in
Table 7.1. The results show impressive collapse of δφ and δµ at imposed pressures
ranging from Π̄ = 3.5 to 1000. Moreover, for Iv < 0.1 the data follow the power
law relation of Eq. (7.36), shown as dashed lines in Fig. 7.18. With Iv > 0.1, the
incremental friction coefficient δµ becomes higher than the power relation at lower
Iv, suggesting that Eq. (7.35) needs additional terms to captures the suspension
behavior.

Fig. 7.18 demonstrates that the flow behavior of glassy suspensions can be de-
scribed using Eq. (7.36) with constants Kµ, Kφ, αµ, and αφ independent of the
imposed pressure Π̄, and therefore confirms that the physics of jamming dominates
the suspension dynamics. This is because the at-rest diffusive process in glassy
suspensions, characterized by a diffusivity dT (φ), is extremely slow as the particles
are locked by their neighbors, i.e., dT (φ)/d0 � 1. As a result, the suspension
effective Péclet number PeT = γ̇a2/dT � 1 for any finite strain rate γ̇ > 0, and
therefore the suspension dynamics is always effectively in the non-Brownian limit
and dominated by jamming.

The exponent αµ = 0.467, that characterizes the behaviors of the incremental
friction coefficient as δµ ∼ Iαµv , is close to the experimental exponent of 0.5 [26].
This explains the good agreement between the shifted experimental data and the
Brownian dynamics simulation results in Ref. [20]. Moreover, fitting the results
from hydrodynamic simulations leads to αµ = 0.485 [84], which is also close to the
δµ behaviors here, suggesting weak influences of HIs. On the other hand, that the
exponent αφ = 0.32 that characterizes the volume fraction behaviors δφ ∼ Iαφv is
25% smaller than the exponent from hydrodynamic simulations [84], 0.40, suggests
stronger influences of HIs.

The insets of Fig. 7.18 show the arrest volume fractions φm, in Fig. 7.18a, and the
arrest friction coefficient µm, in Fig. 7.18b, as functions of the imposed pressure Π̄.
Both µm and φm increases with Π̄ and approaches constant values corresponding
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to the SAP. Since the imposed pressure is sufficiently high, we can directly identify
the non-Brownian SAP (φSAP, µSAP) = (0.652, 0.13). This is slightly different from
the SAP in our previous study [20] due to the differences in the simulation protocol
described in Sec. 7.2, and more importantly, the suspension rheology model. In
Appendix 7.A we discuss the connection between the model here and the earlier
universal viscosity divergence model [20]. Moreover, the arrest volume fractions
φm and the imposed pressures Π are connected via

Π̄ = cm/(φSAP − φm), (7.37)

where the constant cm is shown in Table 7.1. Eq. (7.37) is a well-known relation for
jammed packings [85], and arises from the diverging radial distribution function at
contact near jamming. We also found that the µm and φm are well connected via

µSAP − µm

µSAP − µG
=

(
φSAP − φm

φSAP − φG

) βy
, (7.38)

where the constants βy is also in Table 7.1, and the glass point (φG, µG) =
(0.603, 0.021) corresponds to the fitting results at the glassy pressure Π̄G = 3.5.
The form of Eq. (7.38) also highlights the importance of the physics of jamming,
as µm is determined as a distance from µSAP using the volume fraction distance
from φSAP. Implicit to Eq. (7.38) is that the glassy state emerges abruptly as soon
as the imposed pressure exceed Π̄G, and the arrest friction coefficient µm suddenly
becomes finite. This critical behavior is consistent with the mode-coupling theory
picture of the glass transition.

In Fig. 7.13, the yellow shaded area shows the glassy suspension boundary from
Eq. (7.35)–(7.38) using the parameters in Table 7.1, and the dashed lines outline the
glass limit Π̄ = Π̄G and the jamming limit Π̄ → ∞. Comparing to the simulations,
the model appropriately outlines the glassy response (Π̄ > 3.5), and matches the
simulation rheological outputs including ηs, φ, and µ with respect to Iv. However,
the rheology model cannot follow the results for Iv > 0.1, especially for φ and µ,
since more terms are required to capture the δφ and δµ behavior.

Fig. 7.19 presents the friction coefficient µ as a function of the volume fraction φ.
The flowmap is qualitatively similar to our earlierwork [20]. The flowing suspension
behaviors are divided to liquid-like and glassy, with the glassy suspensions near the
flow-arrest transitions shown in yellow shaded region following the rheology model.
Each symbol represents an isobar in the flow map. For liquid-like suspensions, the
isobar becomes vertical and approaches the corresponding equilibrium fraction as
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Figure 7.19: (Color online) The macroscopic friction coefficient µ = σ/Π as
functions of the volume fraction φ for different imposed pressures Π̄ for constant
stress and pressure simulations. The legends are identical to Fig. 7.13. The shaded
region bounded by the dashed lines are from the rheologymodel outlining the region
of glassy behavior. The viscosity contours up to ηs/η0 = 103 are shown in solid
lines with annotated viscosity. The crosses show the arrest location (µm, φm) at
different imposed pressure, and the dash-dotted line outlines the yield surface from
Eq. (7.38). The Shear Arrest Point (SAP) is highlighted as a star at the intersection
of the arrested, the forbidden, and the flowing region.

µ→ 0. The glassy suspensions become flowing only if the imposed stress exceeds
the yield stress. Therefore, an arrest region emerges at the lower half of Fig. 7.19.
The volume fraction at the glassy pressure Π̄G is φG = 0.603, consistent with the
mode-coupling glass transition point from the experiments on equilibrium colloidal
suspensions with similar size polydispersity [22]. Further pressure increase leads
to the collapsed non-Brownian behavior, and outlines a non-Brownian limiting
behavior. A friction coefficient higher than non-Brownian limiting value is not
physical for the given system. Consequently, a forbidden region emerges in the
upper corner of the flow map. The intersection of the flowing, the forbidden, and
the arrest region defines the SAP (φSAP, µSAP), the non-Brownian limit for sheared
suspensions. The arrest points for the imposed pressures (φm, µm) are shown as
crosses, and the model prediction from Eq. (7.38) is shown as a dash-dotted line.
Note that at the glass transition density φG, our model assumes that the yield stress
emerges abruptly.

Also presented in Fig. 7.19 are the suspension viscosity contours up to ηs/η0 =

103. The qualitative features are identical our earlier work [20]. Without HIs, the
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Figure 7.20: (Color online) The shear viscosity ηs/η0 as a function of the volume
fraction distance to the arrest δφ = (φm − φ) for glassy suspensions with Π̄ ≥ 3.5.
The yellow shaded region bounded by dashed lines are predictions from Eq. (7.39).
The legends are identical to those in Fig. 7.13.

suspension viscosity at constant φ continues to decrease to a non-Brownian limiting
value at all volume fractions. From linear response theory, the shear stress grows
linearly with γ̇, but the normal stress is increasing proportional to γ̇2. Therefore, it
is always possible to find µ � 1 such that the shear stress is non-zero but osmotic
pressure changes little. Therefore, horizontally traversing the flow map in the limit
of µ → 0 access the viscosity of equilibrium suspensions, and one approaches
the viscosity divergence at φG differently from the constant pressure contours.
Therefore, the viscosity divergence of equilibrium suspensions is expected to be
different from the constant pressure viscosity divergence. Moreover, the rheology
model does not describe the viscosity divergence of equilibrium suspensions near the
glass transition since µm is finite. Near the boundary of the flow-arrest transitions,
the viscosity contours are largely parallel to the arrest boundary shown as a dash-
dotted line.

Fig. 7.20 explores the shear viscosity divergence of glassy suspensions as a function
of the incremental volume fraction δφ. The model in Sec. 7.5 shows that ηs changes
with δφ as

ηs

η0
= µm

(
δφ

Kφ

)− 1
αφ

+ Kµ

(
δφ

Kφ

) αµ−1
αφ

. (7.39)

The two-exponent divergence of the shear viscosity is evident in Fig. 7.20, and
Eq. (7.39) with µm = µG in the glass limit and µm = µSAP in the jamming limit
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describes the glassy suspensions results well in the yellow shaded region. Since µm

changes from µG to µSAP, the viscosity divergence does not collapse to a universal
curve presented in our earlier study [20]. In Appendix 7.A, we show that it is
possible to shift the arrest volume fraction to φ̂m to recover the earlier universal
viscosity divergence. Note that Fig. 7.18a shows the divergence of the normal
viscosity ηn ∼ δφ−1/αφ , since the viscous number is the inverse normal viscosity,
Iv = η0/ηn.

An interesting corollary from the rheology model is that the strain rate Péclet
number Peγ̇ = γ̇a2/d0 at the non-Brownian limit SAP depends on how the SAP is
approached. From Eq. (7.36) and (7.37), and the definition of Iv, the strain rate
γ̇ ∼ Π(δφ)1/αφ ∼ ∆−1

m (δφ)1/αφ where ∆m = φSAP − φm. The SAP is the double
limit where δφ → 0 and ∆m → 0, and the way the double limit is reached affects
the value of γ̇ at the SAP. For the general case of ∆m ∼ δφ

p with p > 0, the strain
rate at the SAP scales as γ̇ ∼ Peγ̇ ∼ δφ1/αφ−p. Therefore, if p > α−1

φ , approaching
the SAP (δφ → 0) Peγ̇ → ∞, the SAP corresponds to a true non-Brownian limit.
If p < α−1

φ , approaching the SAP leads to Peγ̇ → 0. Here, the SAP corresponds
to a vanishing Peγ̇, suggesting that a non-Brownian limit with Peγ̇ → ∞ does not
exist [86]. Furthermore, when p = α−1

φ , the strain rate Péclet number Peγ̇ is finite at
the SAP.

7.6 Connecting rheology, diffusion, and structure
Here we present the connections among the suspension rheology, diffusion, and
structures beyond the granular perspective discussed in Sec. 7.5.

A diffusion-rheology flow map
To illustrate the connection between the suspension rheology and diffusion, Fig. 7.21
presents the stress scaled diffusivity ds

∞/dσ as functions of the inverse shear viscosity
or the scaled strain rate, η0/ηs = γ̇η0/σ, for different imposed pressures Π̄. Scaling
the diffusivity with dσ in Eq. (7.30) leads to distinct behaviors for glassy and liquid-
like suspensions. For liquid-like suspensions, the finite zero-shear viscosity and
diffusivity lead to the divergence of ds

∞/dσ at finite η0/ηs. Slightly increasing the
stress does not significantly change the suspension viscosity, leading to rapid ds

∞/dσ
reduction. Further stress increase causes the suspension viscosity to decrease due
to suspension dilation and shear thinning. That ds

∞/dσ decreases with increasing
η0/ηs suggests that the diffusivity ds

∞ is not proportional to γ̇, a relation commonly
found in constant φ studies [51]. In the σ → ∞ limit, φ → 0 due to dilation,
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Figure 7.21: (Color online) The stress scaled long-time self-diffusivity in the vor-
ticity direction, ds

∞/dσ, with the stress diffusion scale dσ = (a2σ)/η0, as functions
of the inverse viscosity η0/ηs = γ̇η0/σ over a wide range of imposed pressures Π̄.
The symbols are identical to those of Fig. 7.13. The shaded region bounded dash
lines outlines the glassy suspension state from the model.

and therefore η0/ηs → 1. The stress-scaled diffusivity ds
∞/dσ → 0 as particles

do not have neighbors to interact with and only move with the flow due to weak
Brownian motions and low suspension volume fractions. However, this behavior
can be disrupted by the string formation, which is excluded in Fig. 7.21.

With increasing Π, liquid-like suspensions begin to develop flow-arrest transitions.
At Π̄ = 3, the stress-scaled diffusivity diverges at η0/ηs ≈ 10−3. With increasing
stress, ds

∞/dσ reaches a minimum, increases again to a maximum, and approaches
zero as η0/ηs → 1. The growth of ds

∞/dσ with respect to η0/ηs shows that the effect
of flow overcomes the effect of dilation. With further increasing Π, the suspension
enters the glass regime and ds

∞/dσ becomes qualitatively different. The divergence
of ds

∞/dσ vanishes since, for glassy suspensions, the at-rest diffusivity approaches
zero and the at-rest viscosity diverges. In Fig. 7.21, the stress-scaled diffusivity
emerges from zero at η0/ηs → 0 for glassy suspensions. Further increase in Π
slows down the growth of the stress-scaled diffusivity with respect to η0/ηs, and
the results begin to collapse as Π → ∞, forming a jamming/granular limit. The
suspension behavior beyond this limit is not physical regardless of the imposed
stresses and pressures.

Fig. 7.21 highlights the distinct behaviors of liquid-like and glassy suspensions, and
can be divided into the liquid-like region, the glass region, and the forbidden region.
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Here, we present the glass region shaded yellow with dashed lines outlining the
liquid-glass boundary and the jamming limit. As is demonstrated in Fig. 7.9b, for an
imposed pressure, ds

∞/dσ depends only on the strain rate, and is not directly affected
by the imposed stress σ. For constant strain rate rheology, Fig. 7.21 provides the
connection between suspension mechanics and the dynamics. Moreover, the ratio
of ds

∞/dσ to η0/ηs is the strain rate scaled diffusivity ds
∞/(a2γ̇). Fig. 7.21 shows

that, for glassy suspensions, there is an upper limit of ds
∞/(a2γ̇) taking place at the

flow-arrest transition for each imposed pressure, and further increase in the stress
reduces the diffusivity ds

∞/(a2γ̇). Increasing Π reduces the maximum ds
∞/(a2γ̇),

and in the non-Brownian jamming limit (Π → ∞), the at-rest diffusivity ds
∞/(a2γ̇)

reaches a minimum. In non-Brownian suspensions with hydrodynamic interactions,
increasing flow also leads to decreasing scaled diffusivity ds

∞/(a2γ̇) [87]. Clearly,
this behavior does not originate from HIs.

Emerging Stokes-Einstein-Sutherland relation
To understand the suspension dynamics, comparing the time scale of particle dif-
fusion, a2/ds

∞, to the time scale of flow, γ̇−1, defines a long-time Péclet number
Pe,

Pe = γ̇a2/ds
∞. (7.40)

The particle behaviors are driven by flow if Pe � 1 and by diffusion if Pe � 1. To
account for particle interactions, we define the interaction friction coefficient

µI = µ − (1 + 5
2φ)Iv, (7.41)

which arises from the interparticle stress σI = σ − (1 + 5
2φ)η0γ̇, and is identical

to σ12
P in Eq. (7.9) for systems without HIs. Accordingly, the interaction viscosity

is defined as ηI = µI/Iv. In the limit of vanishing flow, Iv → 0, the interaction
quantities approach the suspension quantities, µI → µ and ηI → ηs.

Fig. 7.22a presents µI as a function of Pe for a wide range of imposed pressures.
Surprisingly, all the results for liquid-like and glassy suspensions collapse on to a
single master curve, showing a universal connection between the suspension rheol-
ogy and dynamics. Liquid-like suspensions can achieve both Pe < 1 and Pe > 1.
For liquid-like suspensions, with weak imposed flow Pe � 1, the diffusion process
is dominated by thermal fluctuations characterized by the zero-shear diffusivity. On
the other hand, glassy suspensions can only reach Pe & 1, showing that the diffusion
process follows the imposed flow, as the at-rest diffusion is zero.
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Figure 7.22: (Color online) (a) The interaction friction coefficient, µI = µ − (1 +
5
2φ)Iv, as a function of the long-time Péclet number γ̇a2/ds

∞ = Pe over a wide range
of imposed pressure Π̄. The dashed line shows the linear relation of Eq. (7.42). The
inset shows the scaled product ηIds

∞/(Πa2) as a function of the volume fraction φ,
with the interaction viscosity ηI = µI/Iv. Also presented are the constant volume
Brownian Dynamics simulation results [51] at different φ. (b) The peak difference
∆p = max(gcomp) − max(gext) as a function of Pe. The dashed line represents the
linear relation ∆p = KpPe with Kp = 0.19. In (a) and (b), the symbols are identical
to those of Fig. 7.13.

The following equation describes the data collapse in Fig. 7.22a for Pe . 5:

µI = KdPe, (7.42)

where the constant Kd = 0.037. This is confirmed by the dashed line in Fig. 7.22.
Rearranging Eq. (7.42) leads to

ηIds
∞/(Πa2) = Kd . (7.43)
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The inset of Fig. 7.22a presents ηIds
∞/Π as a function of the volume fraction φ. As

expected, ηIds
∞/Π ≈ 0.037 regardless of the volume fraction, the imposed stresses,

and the confining pressures. Introducing an effective temperature kBTeff = Πa3,
Eq. (7.43) resembles an SES relation with Teff . For Pe & 5, the interaction friction
coefficient µI becomes lower than the expected linear relation in Fig. 7.22. Here, the
dynamics of flow become significantly faster than the diffusive dynamics. In this
limit, the suspension begins to develop string phase structures that further suppresses
the particle diffusion, leading to this deviation. Fig. 7.22a shows that the suspension
pressure is a crucial aspect for modeling the dynamics of dense suspensions. Indeed,
this is also apparent in Eq. (7.19) for weakly sheared suspensions, where the contact
value geq(2) is proportional to the suspension pressure. Our results extend this
insight to dense and strongly sheared suspensions.

In Fig. 7.22, for glassy suspensions Pe & 1, and the minimum Pe takes place in the
limit of the glass transition. This is consistent with the highest slope of in the liquid-
glass boundary in Fig. 7.21. With Pe ≈ 1, the corresponding µI ≈ 0.03, is slightly
higher than the glass transition friction coefficient µG in Table 7.1. Therefore, as
the suspension becomes glassy, it abruptly attains a finite yield stress, consistent
with the glassy dynamics in the mode-coupling theory [4]. On the other hand, in
the non-Brownian SAP, the limiting friction coefficient µSAP ≈ 0.13 corresponds
to Pe ≈ 4.2 in Fig. 7.22a. Here, as the volume fraction reaches φSAP, the particle
diffusivity also approaches its maximum. This is also consistent with the findings
of Fig. 7.21, suggesting that for non-Brownian suspensions, particle diffusion arises
from particle interactions, which reaches maximum in the jamming limit.

Fig. 7.22a also presents the constant volume and constant strain rate simulations
of Foss and Brady [51] in triangles at different volume fractions. Despite small
differences, the earlier results agreewith the constant stress and pressure simulations.
The differences most likely arise from the monodisperse systems used by Foss and
Brady [51], which is more prone to structural developments at low and high strain
rates comparing to polydisperse systems here. The agreement shows that data
collapse in Fig. 7.22 is not specific to the constant stress and pressure rheology, and
is general for hard-sphere suspensions.

The universal SES relation revealed in Fig. 7.22a is a new discovery on the rheology
and dynamics of dense colloidal suspensions. For dense systems without shear, the
SES relation is generally violated due to dynamic heterogeneity [43], with the notable
exception of systems with ultra soft potentials [88, 89]. The results demonstrates
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the critical role of the suspension pressure in particle diffusive dynamics, and
confirms the idea that pressure sets the internal time scale of system [28]. More
specifically, the suspension pressure can be considered an effective temperature
Teff ∝ Π. Comparing to other definitions of the effective temperatures [45, 46, 90],
Teff ∝ Π is rather simple. However, it satisfies the fluctuation-dissipation relation
(the SES relation), and in the dilute limit, Teff → T . Distinct from other studies,
in this work the base state is the infinitely dilute suspension, suggesting that both
the imposed flow and the presence of particles drive the system away from the base
state.

Structure, diffusion, and rheology
In Fig. 7.22b we adopt the structural peak difference,

∆p = max(gcomp) −max(gext), (7.44)

to characterize how the suspension microstructure connects to its diffusive and
rheological behavior. The peak difference ∆p illustrates the suspension structural
distortions, and approximates the structural contributions to the hard-sphere Brow-
nian stresses in Eq. (7.19). Fig. 7.22b shows ∆p as a function of the long-time Péclet
number Pe over a wide range of confining pressures Π̄. Despite some data scatter-
ing due to difficulties in measuring the suspension structures near the flow-arrest
transition, the peak difference ∆p also collapses with respect to Pe, illustrating the
structural changes are in concert with the suspension rheology and dynamics in a
universal way.

When Pe . 5, the peak difference ∆p is linear in Pe as,

∆p = KpPe, (7.45)

where Kp ≈ 0.19, The linear relation is illustrated in dashed line in Fig. 7.22b.
Therefore, the structural distortion is independent of Π for dense suspensions even
close to the SAP. With µI ∝ Pe in Eq. (7.42), we reach a stress-structure relation,

σI = (Kd/Kp)Π∆p, (7.46)

suggesting that the shear stress is only related to the structural distortion and the sus-
pension pressure, and is also consistent with the linear response results of Eq. (7.19).
For liquid-like suspensions, ∆p emerges from zero and grows linearly with Pe, sug-
gesting that the structural distortion emerges smoothly from isotropic equilibrium
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suspensions. For glassy suspensions, however, because Pe & 1, the structural dis-
tortion is present even at the flow-arrest transition. Therefore, the glassy suspension
structures are inherently distorted, and the distortion grows with the flow. In the
high pressure limit (Π̄ → ∞), ∆p is a minimum at the SAP. Clearly, structural
distortion proceeds flow in dense suspensions. The finite structural distortion also
suggests that the SAP is inherently anisotropic, and is distinct from the isotropic
jammed state obtained from protocols such as rapid compression [63] or energy
minimization [91].

At higher Pe, ∆p becomes insensitive to Pe and reaches a plateau. For the same Pe
range, Fig. 7.22a shows that µI deviates from the linear relation µI ∝ Pe. These
behaviors show, as expected, that the suspension structures are intimately related to
the stresses. Further increasing Pe leads to string phase formation, which further
suppresses the particle diffusion and reduces the peak difference ∆p. Therefore,
Pe & 5 implies that the suspension enters a new regime, where the suspension
structures and rheology are less sensitive to Pe, preceding the order formation.

7.7 Summary and Conclusions
In this work, we studied the constant shear stress and pressure rheology of dense
hard-sphere colloidal suspensions using Brownian Dynamics simulations without
HIs. We particularly focused on the mechanical response, structural features, and
diffusive dynamics of suspensions exhibiting flow-arrest transitions. Mechanically,
comparing to constant volume rheology, fixing the confining pressure leads to dila-
tion and stronger shear thinning in the shear and normal viscosities, ηs and ηn. With
increasing confining pressure, the suspension changes from liquid-like to glassy, and
flows only if the imposed stress exceeds the yield stress. Structurally, the suspen-
sion develops string phase at high imposed stress. For amorphous suspensions, the
structural distortion increases with increasing stress. Dynamically, different charac-
terizations of the suspension diffusion, including the long-time self-diffusivity ds

∞,
the wave-space diffusivity at the minimum wave number D(qmin), the α-relaxation
time τα near the first peak of the static structure factor, and the dynamic susceptibil-
ity χ4, exhibit similar behaviors in the velocity gradient and the vorticity directions.
The formation of a string phase qualitatively alters the suspension diffusive dynam-
ics.

We analyzed the temporal and spatial dynamics of glassy suspensions near the
flow-arrest transitions. By temporal coarse graining, we found that that the strain
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rate distribution P(γ̇) near the flow-arrest transition consists of a sharp peak in
the arrested state and a broader peak at finite strain rate. Increasing the imposed
stress eliminates the peak in the arrested state, and shifts P(γ̇) towards a Gaussian.
The stress-scaled diffusivity ds

∞/dσ is independent of σ and φ and is only directly
controlled by the γ̇ and Π. In addition, by analyzing particle trajectories, we found
that the immediate neighbors of a fast particle are more likely to be fast, suggesting
that the emergence of flow from an arrested state involves cooperative motions of
fast particles in a dynamically heterogeneous fashion.

We characterized the suspension rheology using the viscosity number Iv = γ̇η0/Π,
emphasizing the importance of pressure. In the limit of Π → ∞, the suspension
approaches the non-Brownian limit, and with vanishing Iv the friction coefficient
reaches a minimum and the volume fraction reaches a maximum known as the
SAP, (φSAP, µSAP) [20]. For normal stress differences, N1 > 0 and N2 < 0 for all
imposed pressures. The suspension structural distortion, characterized by the peak
values of the pair distribution function in the compressional and the extensional
axes, max(gcomp) and max(gext), decreases with Iv and collapses in the Π → ∞
limit. Moreover, suspension diffusion behaviors over different length scales show
consistent behaviors, and reveal the non-Brownian high-pressure limiting behaviors
when scaled with pressure.

We found that glassy suspensions begin to flow from an arrest point (φm, µm),
which asymptotes the SAP in the Π → ∞ limit. Away from the arrest point, the
incremental friction coefficient δµ and the incremental volume fraction δφ change
with the viscous number following power laws in Eq. (7.36), with the same constants
for all pressures of glassy suspensions. The results show that the physics of jamming
dominates the glassy suspension behavior, and thermal fluctuations only affect the
arrest location. The results also show that the behavior of glassy suspensions can
be succinctly summarized in a simple rheology model.

We discovered connections in the suspension structure, dynamics, and mechanics.
We first constructed a diffusion-rheology map of the stress-scaled diffusivity and the
inverse shear viscosity, with distinct liquid-like and glassy suspension behaviors.
Since the stress-scaled diffusivity is only directly affected by Π and γ̇, this flow
map provides a direct connection between the suspension diffusion and rheology.
We also found that the interaction friction coefficient µI as a function of γ̇a2/ds

∞

collapses for all imposed pressures and stresses, and that µI ∝ γ̇a2/ds
∞ when

γ̇a2/ds
∞ . 5. This leads to a non-equilibrium SES relation between ηI and ds

∞
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with an effective temperature proportional to the pressure, Teff ∝ Π. In addition,
the suspension structural distortions, characterized by the peak difference ∆p, also
collapses as functions of γ̇a2/ds

∞, illustrating the close connection between the
suspension structure and rheology.

This work is a comprehensive investigation of the constant stress and pressure rhe-
ology of dense colloidal suspensions. The results demonstrate the critical role of
suspension pressure, and show that the granular perspective based on the viscous
number is effective in connecting the behaviors of Brownian and non-Brownian sus-
pensions. Our work also provides new perspectives in the mean-field modeling of
colloidal suspensions using an effective temperatures proportional to the pressure.
Moreover, the rheology and diffusion model is useful for predicting macroscopic
suspension behaviors including particle migration and mixing in complex geome-
tries and flow conditions [92].

7.A Universal viscosity divergences
The rheology of glassy suspensions in Sec. 7.5 can also be described using the
universal divergence of the shear viscosity ηs = σ/γ̇ and the incremental normal
viscosity η′n = (Π − Πeq)/γ̇ in Eq. (7.1) with α = 2 using a different set of arrest
volume fractions φ̂m. Fig. 7.23 presents ηs and η′n as functions of the incremental
volume fraction δφ̂ = φ̂m − φ. With the new set of φ̂m, both ηs and η′n collapse
and {ηs, η

′
n} ∝ δφ̂

2. The results are consistent with earlier findings [20]. The inset
of Fig. 7.23 show the shift in φ̂m from the arrest volume fraction φm in Fig. 7.18a,
∆φ = φ̂m − φm as a function of the imposed pressure Π̄. The volume fraction
difference ∆φ in the glass limit, Π̄ = Π̄G = 3.5, is almost zero, and decreases to
∆φ ≈ −0.01 in the Π → ∞ limit, reducing the φSAP from 0.652 using models in
Sec. 7.5 to 0.642 via Eq. (7.1), much closer to earlier results [20]. Clearly, the value
of φSAP depends on the model selected to describe the data.

Moreover, the constants ks and kn in Eq. (7.1) can also be interpreted using the
rheology model of Eq. (7.36), but the constant Kφ = Kφ(Π) is also a function of
the imposed pressure. Therefore, the universal viscosity divergence in Ref. [20]
suggests that

ks = µmK
1
αφ

φ and kn =

(
1 −

Πeq

Π

)
K

1
αφ

φ (7.47)

are also constants. Note that at the flow-arrest transitions, the pressure is not the
same asΠeq since dilation precedes flow. The viscosity divergence description solely
depends on the volume fraction behaviors and address changes in δµ. Therefore,
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Figure 7.23: The shear viscosity ηs (a) and the incremental normal viscosity η′n (b)
as functions of the volume fraction distance from arrest δφ̂ = φ̂m − φ. The dashed
lines present the algebraic viscosity divergence {ηs, η

′
n} ∝ δφ̂2. The inset shows

the arrest volume fraction difference ∆φ = φ̂m − φm as a function of the imposed
pressure Π̄, with φm from the inset of Fig. 7.18a. The legends are identical to those
of Fig. 7.13.

despite the same physical interpretation of the suspension behaviors, the model in
Sec. 7.5 have a wider range of applicability due to the additional descriptions on δµ.

Another interpretation of Eq. (7.1) is based on the Herschel-Bulkley rheology of the
pressure,

Π(φ, γ̇) = Πm(φ) + a(φ)γ̇αγ, (7.48)

and the existence of yield stress and pressure [93]. Expanding Eq. (7.48) at the
flow-arrest transition with zero strain rate and the volume fraction φm to a flowing
state with (φ, γ̇), we have

∆Π = −∂Π/∂φ��(φm,0)δφ + ∂Π/∂(γ̇αγ )��(φm,0) γ̇
αγ . (7.49)
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Solving for γ̇ in Eq. (7.49) with constant imposed pressure, ∆Π = 0, leads to
γ̇ ∝ δφ1/αγ . Therefore, with finite yield stress σm and yield pressure difference
(Πm−Π

eq), Eq. (7.48) suggests the viscosities {ηs, η
′
n} ∝ δφ

1/αγ . Note thatΠm(φ) >
Πeq(φ) because dilation precedes flow in glassy suspensions. With αγ = 0.5, this
interpretation connects ourworks to earlier constant volume studieswith soft particle
systems [21, 25, 32]. However, this interpretation also ignores changes in δµ and
suffers similar limitations as Eq. (7.47).
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C h a p t e r 8

CONSTANT STRESS AND PRESSURE RHEOLOGY OF
COLLOIDAL SUSPENSIONS: THE EFFECTS OF

HYDRODYNAMIC INTERACTIONS

8.1 Introduction
Dense colloidal suspensions are widely present in nature and in industry [1–3].
Their rich rheological behaviors, including yielding [4–6], shear thinning [7–9],
and shear thickening [10, 11], lead to phenomena such as flow instability [12] and
particlemigration [13, 14]. These behaviors arise from the complex interplay among
Brownian motion, hydrodynamic interactions (HIs), and interparticle forces at high
particle concentrations. To develop novel materials and applications based on dense
colloidal suspensions, a quantitative understanding of their structure, dynamics, and
rheology is necessary.

An essential feature of dense colloidal suspensions is the emergence of solid-like
behaviors, which is commonly found in amorphous materials including metallic
glasses, granular matter, and polymer melts, with increasing density, decreasing
temperature, or reducing imposed stress. The flow-arrest transitions of amorphous
materials are succinctly summarized by the “jamming diagram”, suggesting that the
system behaviors are governed by a special point J in the zero-temperature, zero-
inverse-density, and zero-stress limit [15–17]. In hard-sphere colloidal suspensions
without shear, the flow-arrest transitions are controlled by the volume fraction φ and
the thermal fluctuations, as the singular interaction potential eliminates temperature.
In the non-Brownian limit without thermal fluctuations, the flow-arrest transition
occurs near the hard-sphere jamming point at φJ ≈ 0.64, and in the Brownian limit,
it takes place at the glass transition density φG ≈ 0.58 [18, 19]. Near flow-arrest
transitions, the shear viscosity ηs apparently diverges as ηs ∼ (φm − φ)−α, with
α ∈ [2.2, 2.7] in the Brownian limit [20–23] and α ≈ 2.0 in the non-Brownian
limit [18, 24]. Do different arrest points φm and divergence exponents α imply
different underlying physics between the glass and the jamming transitions, as
opposed to the unifying view from the jamming diagram?

Part of the answer was revealed in our recent simulation study on the constant
stress and pressure rheology of dense colloidal suspensions without HIs [25]. We
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found that by imposing constant shear stress σ and pressure Π, instead of fixing the
volume fraction φ, both the shear viscosity ηs and the incremental normal viscosity
η′n diverge as

{ηs, η
′
n} = {ks, kn} × (φm − φ)−α, (8.1)

where the imposed pressure only affects φm, and ks, kn, and α are constant with
α = 2. With increasing pressure, the arrest volume fraction φm increases from
φG towards a point close to the jamming point, defined as the Shear Arrest Point
(SAP), φSAP ≈ φJ . Here, ηs = σ/γ̇ and η′n = (Π − Πeq)/γ̇, with γ̇ the strain rate
and Πeq the equilibrium suspension osmotic pressure at the corresponding φ. The
results suggested that the physics of jamming dominates the suspension behaviors
near the flow-arrest transition, and that thermal fluctuations only affect the arrest
point when the pressure, instead of the volume, is held constant. Moreover, although
the simulations did not consider HIs, the numerical results agreed well with scaled
experimental data [24], implying that the HIs do not qualitatively alter the rheology
near flow-arrest transitions, and act in a mean-field fashion. In that study, we did
not consider in detail the suspension microstructures and diffusive dynamics.

In this work, we investigate the constant stress and pressure rheology of dense col-
loidal suspensions near the flow-arrest transition using hydrodynamic simulations.
By explicitly computing HIs, we can directly evaluate the influences of HIs on the
suspension rheology, structure, and dynamics. Note that the present work and the
previous chapter [26] are both motivated by our earlier study [25], with this work
focusing on systems with HIs and the other one without HIs.

Hydrodynamic interactions are ubiquitous in colloidal suspensions and can pro-
foundly affect their behavior. For equilibrium suspensions, the dissipative HIs
cannot alter the suspension structure, but do strongly affect the short-time trans-
port properties of colloidal suspensions. For instance, in the dilute limit where
only pairwise interactions are considered, HIs significantly reduce the short-time
self-diffusivity [27] and the instantaneous sedimentation velocity [28]. At higher
concentrations, HIs significantly increase the high-frequency dynamic shear viscos-
ity, which diverges near the close packing density due to the diverging near-field
lubrication interactions [29, 30].

For sheared suspensions, the influence of HIs is evenmore profound as they also par-
ticipate the suspension structural evolution. Rheologically, the structural distortion
in sheared suspensions may activate the strong near-field lubrication interactions,
which, in turn, increase the hydrodynamic stresses and lead to continuous shear
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thickening, i.e., the mild increase in shear viscosity with increasing strain rate,
in moderately dense colloidal suspensions [8, 31–33]. Structurally, HIs keep the
suspension homogeneous and prevent particles from forming strings aligned in the
flow direction at high strain rates [33]. The string phases are always present in
simulations without HIs [34, 35], and are also observed in some experiments on
hard-sphere suspensions [36, 37]. Moreover, recent confocal microscopy experi-
ments in confined suspensions and scattering experiments in bulk suspensions have
found that particles in sheared suspensions align along the vorticity direction and
move in a “log-rolling”-like fashion [7, 38–40]. Numerical simulations in con-
fined systems reveal the necessary conditions for such vorticity alignment including
HIs and freedom to exchange particles in the velocity gradient direction [38, 41].
However, vorticity alignment has not been observed in simulations with uncon-
fined suspensions. Finally, HIs also affect particle dynamics by introducing chaotic
particle trajectories, leading to shear-induced self and collective diffusion even in
non-Brownian suspensions [42–44].

Despite their importance in sheared suspension rheology, structure, and dynamics,
HIs are difficult to compute because they are long-range and non-pairwise-additive
for distant particles and are singular for close particles [45]. Further complica-
tions include computing the Brownian forces that satisfy the fluctuation-dissipation
relation [46], and introducing size polydispersity to avoid spontaneous crystalliza-
tion [47, 48]. As a result, existing studies rely on varying degrees of simplification.
For example, many studies [5, 49] based on repulsive dense systems assumed that
HIs are mean-field-like and completely ignored them [50, 51]. However, for par-
ticles in close contact, HIs are distinct from repulsive interactions. Considering
two particles separating from each other: the repulsive interaction promotes their
departure, while the HIs resist their relative motion away from each other. Others
used simplified HIs. For instance, Ando and Skolnick [52] truncated the multipole
expansion to the force and torque levels and their simulation method is unsuitable
for rheological simulations. Mari et al. [53] completely ignored the far-field HIs in
their studies on discontinuous shear thickening. With full HIs, many investigations
are limited to monodisperse non-Brownian systems [54, 55]. Dynamic rheology
simulations of dense polydisperse colloidal suspensions with the long-range HIs
have not therefore been performed.

In this work we use a variant of the Spectral Ewald Accelerated Stokesian Dynamics
(SEASD) method [56] as the tool for the computation investigation. The SEASD
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is based on the Stokesian Dynamics framework, which captures both the far-field
and the near-field HIs by exploiting both the mobility and the resistance formalism
of Stokes flow [57]. Features of the SEASD algorithm include O(N log N ) com-
putation scaling via the spectral Ewald method [58, 59], graphic processing unit
(GPU) acceleration, and incorporation of particle size polydispersity. To meet the
challenges in dynamic simulations of dense suspensions up to the jamming den-
sity, we further adopt the near-field Brownian approximation [60], which evaluates
Brownian related quantities by assuming mean-field-like far-field HIs, and imposes
constant shear stresses and pressures in simulations.

Imposing constant stress and pressure, instead of fixing the strain rate and the volume
fraction, is especially suitable for investigating the rheology of dense suspensions.
It allows direct assessment of the suspension mechanical responses without a priori
assumptions on material behaviors. For suspensions with yield stresses, both the
solid-like and liquid-like responses can be accessed. In contrast, imposing a constant
strain rate implicitly assumes that the material deforms like a fluid, and therefore can
only measure the liquid-like behavior. In addition, increasing the imposed pressures
directly identifies the athermal limiting volume fraction without assumptions on the
flow-arrest transition. Constant stress and pressure experiments on non-Brownian
suspensions identified the limiting volume fraction φc = 0.585 [24], which is
significantly lower than the jamming density, φc < φJ . However, analysis on the
experimental set up shows that the small gap, of the order of 10 particle diameters,
may alter the suspension structures in the shear cell and likely contribute to the low
φc [25, 61]. In the non-Brownian limit, fixing the pressure also reduces the stress
fluctuations in the system [62].

Computational realization of the constant stress and pressure rheology requires spe-
cial considerations, as the dissipative nature of colloidal suspensions prevents the
use of many extended ensemble methods in non-equilibrium molecular dynam-
ics [63]. The constraints can be imposed by either introducing physical boundaries
with anisotropic volume adjustment, which is often used in studies involving gran-
ular materials [64], or by introducing compressibility in the solvent, a new method
adopted in our earlier investigation [25]. In this work, we continue with this latter
approach, which, for suspensions with HIs, relies on resolving particle interactions
in compressible flows [65]. Here, we develop a new algorithm to impose these
constraints in hydrodynamic simulations by exploiting the instantaneous nature of
HIs. The new algorithm reduces to the constant stress algorithm of Swan and Brady
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[66] with fixed volume.

A unifying perspective is emerging on the rheology of both inertia driven granular
matter and viscous driven non-Brownian suspensions [24, 67–69]. Despite distinct
particle interactions, their rheology is qualitatively similar when the mechanical
responses are characterized by a macroscopic friction coefficient,

µ = σ/Π, (8.2)

and a flow number defined by the ratio of an internal time scale associated with
the system pressure and an external flow time scale γ̇−1 [70]. Near the jamming
transitions, both shear stress σ and particle pressure Π diverge but their ratio µ

remain finite. For dry granular materials, the flow number is the inertial number
I = γ̇a

√
ρp/Π with a the particle radius and ρp the particle density. The viscous

number Iv characterizes the dynamics of non-Brownian viscous suspensions,

Iv = γ̇η0/Π, (8.3)

with η0 the solvent viscosity [24]. For systems exhibiting both the inertial and the
viscous driven dynamics, their behaviors can be characterized by combining I and
Iv, suggesting a smooth crossover between these two regimes [67]. The similarity
between µ-I and µ-Iv rheology means that developments in one system can be
applied to both. For example, the non-local formalism of granular rheology [64,
71, 72] can also be used for non-Brownian suspensions. However, it is unclear how
particle Brownian motion changes the “granular” perspective. If such an extension
were possible, a unified perspective can be established in the Brownian and non-
Brownian rheology, allowing significant improvement in the modeling of colloidal
suspensions.

In Ref. [25], we adopted the granular perspective to construct a µ-φ flow map
and identified the SAP (φSAP, µSAP) = (0.635, 0.16) as an intersection between the
arrested states and the inaccessible states and discovered the universal viscosity
divergences in Eq. (8.1). In this work we continue to use the granular perspective
to further characterize the suspension rheology beyond the flow-arrest transitions,
hoping to establish a unifying perspective between the Brownian and the non-
Brownian rheology, but now with full HIs.

Another focus of this work is on the connection between the suspensionmacroscopic
mechanical response and the diffusive particle dynamics. Perhaps the most obvious
connection is the Stokes-Einstein-Sutherland (SES) relation for dilute suspensions,
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relating the particle diffusivity to the viscosity and the thermal energy, i.e., d0η0/T is
a constant. This is derived by combining the Einstein relation connecting the single
particle diffusivity d0 and the mobility m0, d0 = kBTm0, with kBT the thermal
energy, and the Stokes drag law for the single particle mobility m0 = 6πη0a with
the particle radius a.

Although derived from the single-particle limit, the SES relation holds well for
systems beyond the dilute regime. For equilibrium molecular liquids, the SES
relation holds over awide range of temperatures down to near the glass transition [73,
74]. For equilibrium colloidal suspensions up to the glass transition density, the
SES relation remains valid with generalization to the the suspension shear viscosity
ηs and the short-time self-diffusivities ds. For long-time diffusion, mode coupling
theory predicts the SES relation remains valid [75, 76], but different interpretations
on the experimental results have lead to controversy [48, 77]. Furthermore, the
SES relation has also been generalized to viscoelastic medium for microrheology
experiments [78, 79]. Near the glass transition, the SES relation breaks down due
to the development of dynamic heterogeneity [80]. For systems interacting with
very soft potentials, the dynamic heterogeneity is suppressed and the SES relation
remains valid at higher density [81–83].

An extended SES relation for non-equilibrium sheared suspensions means that the
product of the diffusivity and the suspension shear viscosity is linear to an effective
temperature Teff for all volume fractions and all strain rates. The existence of such
a powerful relation relies on the appropriate choice of Teff , a concept pioneered
by Edwards in the statistical mechanics of granular matter [84]. The effective
temperature provides the critical connection between experiments and mean-field
theories of dense amorphous systems, such as the soft-glass rheology theory and
its mode-coupling variants [85, 86] and the shear-transformation zone theory [87,
88]. Recently, the concept of an effective temperature receives support from the
generalized fluctuation-dissipation relations [89], and is consistent among different
definitions in athermal [90, 91] and thermal [92–94] systems.

In this work, we explore whether such an extended SES relation exists for sheared
suspensions by connecting the suspension diffusive dynamics to its rheology. Ex-
isting results are mixed. For sheared amorphous systems, simulations suggest an
effective temperature defined from the osmotic compressibility does not lead to the
desired data collapse [95]. Experiments on colloidal glasses show that the particle
long-time self-diffusivity ds

∞ ∝ γ̇ β with the exponent β = 1 [96] or 0.8 [97, 98],
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suggesting that Teff ∝ σγ̇
1−β. However, these experiments focused on very limited

volume fractions and are strongly affected by structural heterogeneity such as shear
banding.

This chapter is arranged as follows: After briefly describing our simulation algorithm
in Sec. 8.2, we first focus on the features of constant stress and pressure rheology
in Sec. 8.3. We then present the rheology of colloidal suspensions from a unifying
granular perspective in Sec. 8.4. In Sec. 8.5, we explore the connection among the
suspension rheology, structure, and particle diffusion. We summarize and conclude
in Sec. 8.6.

8.2 Method
Hydrodynamic interactions in colloidal suspensions
We consider N neutrally-buoyant hard-sphere colloidal particles of different radius
ai located at ri suspended in a viscous solvent of viscosity η0 and density ρ0,
occupying a total volume V . The particle radii follow a log-normal distribution,
characterized by the volume averaged radius a, such that a3 = N−1 ∑

i a3
i , and a size

polydispersity p.d. = σa/a, with a = N−1 ∑
i ai and σ2

a = N−1 ∑
i (a2

i − a2). The
radii are sorted into M bins, with an average radius aα, α ∈ {1, . . . , M }, in each bin.
In the thermodynamic limit, both N and V grow unbounded but the number density
n = N/V and the volume fraction φ = 3

4π
∑

i a3
i /V remain unchanged.

The dynamics of colloidal particles evolve on a time scale, say ts, much longer than
the particle momentum relaxation time scale τI and the hydrodynamic time scale
τH . The former, τI =

2
9 ρpa2/η0 with ρp the particle density, characterizes the time

required for the particle momentum to dissipate a distance of order the particle size
a, and that ts � τI suggests the particle acceleration is negligible over the time scale
ts and the dynamics are overdamped. The hydrodynamic time scale, τH = ρ0a2/η0,
describes the time required for the solventmomentum to diffusive the same distance,
and that ts � τH means the Reynolds number Re = τH/ts � 1. Therefore, the HIs
among the particles are dominated by the viscous stresses, and the fluid velocity
v(x) and the pressure p(x) are governed by Stokes equation,

∇p(x) = η0∇
2v(x) and ∇ · v(x) = 0, (8.4)

supplemented by no-slip boundary conditions v = Ui +Ωi × (x − ri) at the surface
of particle i with velocity Ui and angular velocity Ωi.

Because of the linearity of Eq. (8.4), the fluid forces and their moments, i.e., the
force FH, torqueTH, and stresslets SH, are linear to the particle kinematics including
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the velocity U and the angular velocity Ω. This leads to the resistance formalism,



F
H

SH


= −R ·



U −U∞

−E∞


(8.5)

where F H = (FH,TH)† is the generalized force,U −U∞ = (U − U∞,Ω −Ω∞)†

is the generalized velocity difference with respect to U∞, Ω∞, and E∞ from the
imposed velocity field v∞, i.e., for particle i, U∞i = v∞(ri), Ω∞i =

1
2∇×v

∞ |ri , and
E∞i =

1
2 [∇v∞ + (∇v∞)†]ri . Here, the dagger represents transpose and symbols

without subscript suggest the entire suspension, e.g., U = (U1,U2, . . . ,UN )†. The
grand resistance tensor R depends only on the suspension configuration r , and can
be conveniently partitioned as

R(r ) =


RFU RF E

RSU RSE


, (8.6)

where, for example, RFU describes the coupling between the generalized force F
to the generalized velocity differenceU −U∞.

The overdamped Langevin equation describes the dynamics of colloidal particles,

0 = F H + F P + F B, (8.7)

where F P is the generalized force from interparticle conservative potentials, and
F

B is the stochastic Brownian force satisfying the fluctuation-dissipation relation

F
B(t) = 0 and F B(t)F B(0) = 2kBTRFUδ(t). (8.8)

With Eq. (8.5), the suspension configuration change ∆X, including both the trans-
lational and rotational degrees of freedom, over a small time ∆t, can be solved by
integrating Eq. (8.7) as

∆X =
[
U

E +UB +UP
]
∆t + ∆XB, (8.9)

where ∆XB is the stochastic Brownian displacement satisfying

∆X
B = 0 and ∆XB

∆X
B = 2kBT∆tR−1

FU
, (8.10)

and UE, UP, and UB are, respectively, the deterministic velocity contributions
from the imposed flow, the interparticle force, and the Brownian drift:

U
E =U∞ + R−1

FU
· RF E · E

∞, (8.11)
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U
P = R−1

FU
· F

P, (8.12)

U
B = kBT∇ · R−1

FU
. (8.13)

Note that UB arises due to the configuration dependent Brownian force F B, and
the divergence operator in Eq. (8.13) acts on the last index of R−1

FU
.

Spatially averaging the Cauchy stress in the suspension leads to the suspension total
stress without the fluid thermodynamic pressure [99, 100],

〈Σ〉 =2η0
〈
(E∞)′

〉
+ (κ0 −

2
3η0)E∞I

− nkBT I + n(〈SE〉 + 〈SP〉 + 〈SB〉), (8.14)

where the average operator 〈·〉 = V−1 ∑
i (·)i, the traceless strain rate (E∞)′ and the

rate of expansion E∞ satisfy (E∞)′ + 1
3 E∞I = E∞, κ0 is the solvent bulk viscosity,

and the superscripts in 〈SE〉, 〈SP〉, and 〈SB〉 have the same meaning as those in
Eq. (8.10). Here, the solvent is compressible for imposing the constant pressure
constraint. The stresslets are computed from the resistance tensors,

〈SE〉 = − 〈RSU · R
−1
FU
· RF E − RSE〉 : 〈E∞〉, (8.15)

〈SP〉 = − 〈(RSU · R
−1
FU
+ r I) · FP〉, (8.16)

〈SB〉 = − kBT〈∇·(RSU · R
−1
FU

)〉, (8.17)

where the divergence operator in Eq. (8.17) acts on the last index in the parenthesis.
Accordingly, the suspension shear viscosity is decomposed as

ηs = η0 + η
E + ηB + ηP. (8.18)

Note that for hard-sphere colloidal suspensions, the first and the second terms in
Eq. (8.16) cancel exactly, and therefore interparticle force contribution to the stresslet
is zero [99].

The constant stress and pressure dynamics
In a simple shear flow, the imposed velocity field v∞ = (γ̇x2, 0, 0), where γ̇ is the
strain rate and x = (x1, x2, x3) is the position in the 1- (the velocity), 2- (the velocity
gradient), and 3- (the vorticity) direction. The suspension dynamics and mechanics
can be respectively solved from Eq. (8.9) and (8.14).

For simulations with constant imposed shear stress σ and pressure Π, we solve for
the corresponding strain rate γ̇ and expansion rate ė, which lead to v∞(x) and the
configuration evolution in Eq. (8.9). The computation exploits the instantaneous
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nature of the Stokes equations and proceeds as follows: At each time t with the
suspension configuration r (t), the resistance tensors in Eq. (8.6) are known. We
first evaluate the velocity and stress contributions from the interparticle force, SP

and UP, and the Brownian motion, SB, UB, and ∆XB. The suspension is then
subjected to two unit test flows, v̂∞γ = (x2, 0, 0) and v̂∞e =

1
3 (x1, x2, x3). From the

linearity of Stokes flow, with an imposed flow v∞ = γ̇ v̂∞γ + ėv̂∞e , the flow stresslet

SE = γ̇ŜE
γ + ėŜE

e , (8.19)

where, ŜE
γ is from v̂∞γ and ŜE

e is from v̂∞e . From Eq. (8.14), the suspension shear
stress and pressure balances are

σ =γ̇η0 + n(γ̇ ŜE
γ,12 + ėŜE

e,12 + SP
12 + SB

12), (8.20)

−Π =κ0ė − nkBT + 1
3 n(γ̇ ŜE

γ + ėŜE
e + SP + SB), (8.21)

where, for example, SB
12 is the 12-component of

〈
SB

〉
and SB = I :

〈
SB

〉
. Therefore,

we solve for γ̇ and ė from Eq. (8.20) and (8.21), and reconstruct SE from Eq. (8.19).
To advance the particle dynamics, we use Eq. (8.9) with

U
E = γ̇ Û

E
γ + ė Û

E
e , (8.22)

where ÛE
γ is from v̂∞γ and ÛE

e is from v̂∞e . The size of the simulation box L, with
V = L3, is adjusted according to dL/dt = 1

3 ėL.

The constant stress and constant pressuremethod above is an extension of themethod
of Wang and Brady [25] for simulations without HIs. Our method reduces to the
constant stress and fixed volume method of Swan and Brady [66] when ė = 0.

In this work, we focus on polydisperse suspensions with size polydispersity p.d. =
0.1, particle number N = 100, and the species number M = 10. In the constant
stress and pressure simulations, the suspension dynamics are controlled by the stress
Péclet number Peσ and the dimensionless pressure Π̄,

Peσ = σa2/(η0d0) and Π̄ = Πa3/(kBT ), (8.23)

with the single particle diffusivity d0 = kBT/(6πη0a). The stress Péclet number
Peσ is connected to the strain rate Péclet number Peγ̇ as

Peγ̇ = (η0/ηs)Peσ = γ̇a2/d0. (8.24)

To resolve the dynamics, the time is scaled with a2/d0 when Peσ ≤ 1 and with η0/σ

when Peσ > 1. For each combination of (σ,Π), we perform a long simulation at
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the corresponding (Peσ, Π̄) with a dimensionless time τ = 5000 and a step size
∆τ = 10−2 for Π̄ < 100 and ∆τ = 2.5 × 10−3 for Π̄ ≥ 100. The simulations start
with random configurations generated by the polydisperse Lubachevsky-Stillinger
algorithm [101, 102]. When computing the results, the data from the first τ = 1000
are discarded. In the appendix we describe the computation of HIs using the SEASD
method with near-field Brownian approximation, and the algorithm validation using
the constant stress computations.

A feature of the constant stress simulations is that, with a fixed time step at Peσ > 1,
the temporal resolution of the configuration evolution improves automatically with
increasing suspension shear viscosity. This is because the step size ∆τ = ∆tσ/η0 =

∆γ(ηs/η0), where the strain step ∆γ = γ̇∆t characterizes the temporal resolution.
Therefore, the same dimensionless time step ∆τ may be used for both the solid-like
and the liquid-like suspensions. In contrast, with fixed γ̇, it is necessary to reduce
the step size near the flow-arrest transitions to resolve the configuration evolution. In
addition, larger time steps can be used in constant stress simulations. For example,
when the shear viscosity ηs/η0 ≈ 10, typical for suspensions at φ ≈ 0.45 [33],
∆τ = 10−2 with constant stress is equivalent to ∆γ = 10−3, a typical step size in
constant strain rate studies [44, 54].

Furthermore, to prevent singular particle overlap in dynamic simulations with con-
stant time step ∆τ, we introduce an additional excluded volume radius bi > ai for
each particle. Here, the excluded volume parameter δ = 1 − ai/bi = 5 × 10−4,
corresponding to a 1.5 × 10−3 change in volume fractions. From simulations on
bidisperse suspensions [56], introducing δ does not change the suspension rheology
at low to moderate Peγ̇, but slightly reduces the shear viscosity when Peγ̇ � 1.
In this work we enforce the excluded volume condition using the potential-free al-
gorithm [34, 103], and monitor the stress contribution from the excluded volume
effects. To minimize the impact of this procedure, a simulation is valid only if the
excluded volume effect contributes less than 1% to the total stress.

8.3 Features of constant stress and pressure rheology
In this section we focus on the features of constant stress and pressure rheology at
two imposed pressures, Π̄ = 1.5 and 50. At low imposed pressure, e.g., Π̄ = 1.5,
colloidal suspensions flow like a liquid and do not exhibit a yield stress. With high
imposed pressure, e.g., Π̄ = 50, the suspensions become glassy and develop a yield
stress, i.e., they flow only if the imposed stress exceeds the yield stress.
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Figure 8.1: (Color Online) The constant stress and pressure rheology of a polydis-
perse suspension with polydispersity p.d. = 0.1 as functions of Peσ at Π̄ = 1.5 [(a),
(c)] and at Π̄ = 50 [(b), (d)]. In (a) and (c), the results with full HIs are shown in
open symbols in the main figure and dashed lines in the inset, and the results with
near-field Brownian approximation are shown in filled symbols and solid lines. In
(b) and (d), the thin lines indicate the Peσ for the insets with corresponding colors,
and the black dashed line outlines the flow-arrest transition. (a) The suspension
shear viscosity ηs/η0. Inset: the time evolution of the accumulated strains γ at
Peσ = 0.3, 1.8, 7.1, 28.3, and 178.4. (b) The suspension shear viscosity ηs/η0
(filled circle), the Brownian contribution ηB/η0 (up triangle) and the flow contri-
bution ηE/η0 (down triangle). Insets: time trace of the accumulated strain γ at
Peσ = 150 and 170. (c) The steady state volume fraction φ. Inset: time traces of the
instantaneous volume fraction at the same Peσ as (a). (d) The steady state volume
fraction φ. The arrested results are shown in open circles and the flowing results in
filled circles. Inset: time trace of the volume fraction φ at Peσ = 150 and 170.

Rheology: shear viscosity and volume fraction
Fig. 8.1 presents the suspension rheological behaviors in shear viscosity ηs and
volume fraction φ. The shear viscosity is the ratio of the imposed stress σ and the
mean strain rate 〈γ̇〉, i.e., ηs = σ/ 〈γ̇〉. The error bars in Fig. 8.1 are estimated by
splitting the long simulations runs into independent segments of 500 dimensionless
time units each. The liquid-like results at Π̄ = 1.5 are shown in Fig. 8.1a and 8.1c,
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and the glassy results at Π̄ = 50 are shown in Fig. 8.1b and 8.1d.

We beginwith liquid-like suspensions at Π̄ = 1.5. Fig. 8.1a shows the shear viscosity
ηs/η0 as a function of the stress Péclet number Peσ. Despite some fluctuations, in the
Peσ → 0 limit, the shear viscosity ηs approaches a finite value corresponding to the
zero-shear viscosity of an equilibrium suspension with the same osmotic pressure
as the imposed pressure Π. With increasing Peσ, ηs decreases continuously, and
quickly approaches the solvent viscosity, i.e., ηs → η0 as Peσ → ∞. The lack of
shear-thickening and a finite high-shear viscosity are the key features of the constant
stress and pressure rheology as the suspension dilates with growing Peσ. This is
because the imposed pressure is scaled with kBT , but the suspension pressure scales
as f (φ)η0γ̇, with the function f (φ) ∼ φ2 at small φ, and therefore the suspension
dilates so the pressure matches the imposed value.

The inset of Fig. 8.1a presents the time trace of the accumulated strain γ(t) =∫ t
0 γ̇(τ)dτ for several Peσ. For continuously deforming, liquid-like suspensions,
γ(t) increases linearly with time. The inverse slope of the accumulated strain with
respect to the dimensionless time tσ/η0 is the suspension shear viscosity ηs/η0.
Therefore, the higher the suspension shear viscosity, the slower γ increases with
time. For suspensions with similar shear viscosities, e.g., Peσ = 0.3 and 1.8,
their accumulated strains almost overlap. The accumulated strain γ(t) exhibits
more fluctuations at low Peσ relative to results at high Peσ due to stronger thermal
fluctuations.

Fig. 8.1c shows the steady state volume fraction φ as a function of Peσ, and the inset
presents the time trace of the instantaneous φ. When Peσ < 1, changing Peσ does
not significantly alter φ, and in the Peσ → 0 limit, the volume fraction φ corresponds
that of an equilibrium suspension with an osmotic pressure equal to the imposed
pressure. At higher Peσ, increasing Peσ reduces φ because the suspension dilates
in response to the increase in suspension pressure from the growing imposed stress.
The reduction in φ is drastic with respect to Peσ: at Peσ = 178, the volume fraction
has already decreased from ∼ 0.49 to below 0.3. The inset of Fig. 8.1c shows that
the volume fraction for all cases fluctuates around a constant value, confirming that
the suspension is at steady sate. Moreover, the fluctuations in φ are more significant
at lower φ, due to the lower suspension bulk viscosity [104]. As the bulk viscosity
characterizes the suspension’s resistance to expansion, lower volume fraction makes
responding to an imposed pressure easier for the suspension, and therefore allows
larger fluctuations.
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Fig. 8.1a and 8.1c also compare the results from full hydrodynamic computations
(open symbols and dashed lines) and near-field Brownian approximations (filled
symbols and solid lines). Despite small quantitative differences, the two methods
agree well with each other. This is consistent with the results in constant φ and γ̇
simulations in bidisperse suspensions [56]. Considering the tremendous time saving
from the near-field Brownian approximation, it is adequate for the constant stress
and pressure dynamic simulations of polydisperse suspensions in this work.

When the imposed pressure Π̄ > 3, the colloidal suspension becomes glassy and a
yield stress emerges without apparent structural signatures. Note that at equilibrium,
Π̄ = 3 corresponds to φ ≈ 0.56. Therefore, the suspension shear viscosity ηs

diverges at low imposed stress. Determining the exact value of the yield stress
is difficult as it depends on the observation time scale—the longer one waits, the
more likely for one to observe flow [16]. In practice, however, the flow-arrest
transition can be determined by a viscosity threshold, beyond which the suspension
is considered arrested. Here, the threshold viscosity is ηs/η0 = 2000. For typical
simulations with dimensionless time τ = 5000, this viscosity threshold corresponds
to a minimum strain γ ≈ 2.5 for the flowing suspensions at Peσ > 1.

Fig. 8.1b and 8.1d illustrate the constant stress and pressure rheology of glassy
suspensions at Π̄ = 50. Fig. 8.1b presents the various components of the shear
viscosity. From the simulations, the yield stres corresponding to Peσ ≈ 175 is
shown as a dashed vertical line in the figures. When the imposed stress is lower than
the yield stress, the suspension is arrested and unable to flow. This is confirmed
in the time traces of the accumulated strain γ at Peσ = 150 and 170 in the inset
of Fig. 8.1b. When close to the yield stress, e.g., at Peσ = 170, the suspension
appears unstable, switching between flowing and arrested behaviors. In this case,
the computed viscosity exhibits large fluctuations. Further reducing the imposed
stress, the suspension becomes completely arrested. In the inset of Fig. 8.1b, the
accumulated strain cannot exceed 0.01 at Peσ = 150 even over an extended period
time of tσ/η0 = 4000.

The shear viscosity ηs/η0 in flowing suspensions shows strong shear thinning in
Fig. 8.1b. Over two decades of Peσ the viscosity reduces more than three orders of
magnitude. The Brownian viscosity ηB, shown as up triangles, is responsible for the
strong shear-thinning behaviors near the flow-arrest transition. The flow viscosity
ηE, shown as down triangles, changes more slowly compared to ηB near the flow
arrest transition. At higher Peσ, ηE also decreases with increasing Peσ, and the
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shear thinning of ηE with growing Peσ is much weaker comparing to ηB. Unlike the
constant volume simulations where ηE reaches a high-shear rate limiting value, the
decrease in ηE in constant stress and pressure rheology results from dilation of the
suspension.

Fig. 8.1d presents the suspension volume fraction φ as functions of Peσ at Π̄ = 50.
Here, the volume fractions at the arrest state are shown in open symbols and the
flowing state in filled symbols. In Fig. 8.1d, with increasing Peσ, the suspension
always dilates regardless of flowing or not from φ ≈ 0.645 at Peσ ≈ 60 to less than
0.3 at Peσ = 104. The dilation before flow is necessary in order for the suspension
to rearrange its structure and to allow two particles to pass each other. Furthermore,
the volume fraction shows a kink near Peσ = 103 at φ ≈ 0.57. After Peσ = 103, the
dilation becomes stronger with increasing Peσ. The kink in φ at Peσ = 103 is not
observed for suspensions at lower imposed pressures, e.g., in Fig. 8.1c at Π̄ = 1.5.
From the structural examinations in Sec. 8.3, we found that this kink is related to
the shear-induced string formation in polydisperse suspensions.

The time traces of the φ for arrested suspensions, also at Peσ = 150 and 170, are
shown in the inset of Fig. 8.1d. Far from the flow-arrest transition, i.e., at Peσ = 150,
φ fluctuates with small variation. Near the flow-arrest transition, i.e., at Peσ = 170,
φ also show intermittent behaviors and becomes unstable when the corresponding
accumulated strain γ exhibits significant increases in the inset of Fig. 8.1b. The
unstable behaviors stop when γ stops growing at tσ/η0 & 2200.

Structures: the pair distribution function
We investigate the suspension structure by computing the steady state pair distribu-
tion function

g(r ) =
V
N2

〈∑′

i, j

δ(r − ri + r j )
〉
, (8.25)

where the prime on the summation excludes the case of i = j, and δ(x) is the
Dirac delta function. It is the conditional probability of finding a second particle
at location r given the first particle. Fig. 8.2 shows the equatorial slices of g(r )
with width 0.7a on the velocity-velocity gradient (12), velocity-vorticity (13), and
velocity gradient-vorticity (23) planes for suspensions with Π̄ = 1.5 at selected
Peσ. Changing the width of the slice has little qualitative influences on the results.
With HIs, the suspension remains homogeneous for all Peσ. This is distinct from
simulations without HIs, where the particles spontaneously align in the velocity
direction, forming string-like structures at high Peσ. In the shear plane, g12(r ) is
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Figure 8.2: Equatorial slices of the pair distribution function g(r ) on the velocity-
velocity gradient (12), velocity-vorticity (13), and velocity gradient-vorticity (23)
planes of suspensions with an imposed pressure Π̄ = 1.5 at various Peσ. The
suspension size polydispersity p.d. = 0.1. The width of the slice is 0.7a. The
compression and the extension axes are also highlighted.

almost isotropic at Peσ = 0.2. With increasing Peσ, for example, at Peσ = 17.8, the
neighboring particles begin to accumulate at the particle front in the flow direction,
suggesting the formation of a particle pair. The pair then rotates, first quickly
in the compressional quadrant, as indicated by the lower probability density near
the compressional axis, and then slowly in the extensional quadrant. Near the
extensional axis, the particle pair disengages. Further increase in Peσ compresses
the first ring of g12(r ), suggesting a boundary layer formation [105]. However,
the overall intensity of g12(r ) decreases with increasing Peσ due to the suspension
dilation. Moreover, a particle depletion wake emerges near the extensional axis
when Peσ > 44.7 because, compared to the flow, the diffusion is too weak to drive
the particles towards the low density region.

In Fig. 8.2, the g(r ) slices in the 13-plane, g13(r ), exhibit weaker anisotropy com-
pared to g12(r ). Starting from an isotropic structure at Peσ = 0.2, g13(r ) first show
particle accumulation in the velocity direction (left-right in the figure) relative to the
vorticity direction (up-down in the figure) with increasing Peσ. This is especially
pronounced at Peσ = 44.7. However, at higher Peσ, this trend is reversed along with
the formation of depletion wake in g12(r ). For example, at Peσ = 178, slightly more
particles are present in the vorticity direction compared to the velocity direction,
suggesting the a weak particle alignment in the vorticity direction. Finally, the g(r )
slice in the 23-plane, g23(r ), is always isotropic. At Π̄ = 1.5, the principle influence



307

Figure 8.3: Equatorial slices of pair distribution function g(x) on the 12-, 13-,
and 23-planes of suspensions with imposed pressure Π̄ = 50 at various Peσ. Other
parameters are identical to Fig. 8.2.

of increasing Peσ on g23(r ) is the reducing suspension structural features beyond
the nearest neighbors and the decreasing peak values associated with the nearest
neighbors.

Fig. 8.3 presents the equatorial slices of g(r ) for suspensions at Π̄ = 50. As indicated
in Fig. 8.1d, the at-rest volume fraction at this imposed pressure is well above the
monodisperse fluid-solid phase transition, and therefore the colloidal suspension is
prone to crystallization. At the lowest Peσ in Fig. 8.3, the suspension structure is
isotropic without indications of structural formation, suggesting that introducing a
small size polydispersity effectively suppresses the spontaneous crystallization.

Increasing Peσ reveals that the size polydispersity p.d. = 0.1 is not sufficient to
prevent formation of string phases at intermediate Peσ, i.e., at Peσ = 595 and
1000 in Fig. 8.3, the particles align in the flow direction and organize to hexagonal
structures in the 23-plane. The string phase is less sensitive to the particle size
polydispersity compared to the equilibrium crystallization, i.e., a size polydispersity
sufficient to prevent spontaneous crystallization is not enough to prevent string order
formation.

Even in the string phase the stress is dominated byHIs, as the stress contribution from
the excluded volume effects is only 0.6% of the total stress at Peσ = 595 and 0.3%
at Peσ = 1000. The Péclet numbers with the string phase in Fig. 8.3 correspond to
the location of the volume fraction “kink” in Fig. 8.1d. At other imposed pressures,
the string phase formation is observed when Π̄ ≥ 20 with volume fractions between
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φ = 0.56 and 0.58. Similar string phases are found in non-hydrodynamic Brownian
dynamics simulations [34], in Accelerated Stokesian Dynamics simulations of non-
Brownian monodisperse suspensions at 0.5 < φ < 0.6 [54], and in experiments [36,
37]. Their formation is commonly attributed to the the repulsive interparticle forces.
It is unlikely the case here as the stress contribution from interparticle forces is low.
Another interpretation is that HIs are localized and dominated by the pairwise
lubrication interactions for very dense systems. The localized HIs may behave
similarly to repulsive forces in non-hydrodynamic systems, and promote the string
phase formation. On the other hand, at higher φ the limited available space cannot
geometrically accommodate the string formation in suspensions.

Surprisingly, the string phase in Fig. 8.3 melts at higher Peσ. This is different
from simulations without HIs, where the string order persists at higher Peσ [26]. A
possible explanation is suspension dilation, as suspensions at lower φ are dominated
by the long-range, non-pairwise-additive aspect of the HIs, which disrupts the string
order formation. This explanation is also consistent with the observations in Fig. 8.2.

Beyond the melting of the string phase structures, the structural evolution of amor-
phous suspensions at Π̄ = 50 in Fig. 8.3 is similar to those at Π̄ = 1.5 in Fig. 8.2
with more pronounced structural features. For example, in the 12-plane, the particle
depletion wake also approaches the velocity axis with increasing Peσ. In the 13-
plane, the anisotropy in g13(r ) at Peσ = 104 is evident and clearly suggests a strong
preference for the particles to align in the vorticity direction.

We have found that the vorticity alignment is present for all imposed pressures Π̄
with high Peσ. Experimentally, the vorticity particle alignment was first discovered
in sheared suspensions with strong confinement [7, 38], and was also recently found
in experiments of sheared bulk suspensions [39, 40]. Numerical evidence, however,
has been limited to simulations in confined systems [38, 41]. This work is the
first numerical study for bulk suspensions that exhibits such alignment. Our results
suggest that the vorticity particle alignment does not require confinement, high
volume fractions, or Brownian motion. Therefore, it must originate from pairwise
HIs. Indeed, the vorticity particle alignment is a consequence of the periodic particle
trajectory in simple shear flow. Batchelor and Green [106] showed that the particle
trajectories in simple shear flows contain a region of closed trajectories extending to
infinity in the vorticity direction, and in this region, a particle pair undergoes periodic
motion. As a result, when a particle enters the closed trajectory region of another
particle, it is effectively locked in a periodic orbit until it encounters another particle.
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Such hydrodynamic “trapping” increases the probability of particle presence in the
vorticity direction, and therefore leads to the preferred vorticity alignment.

Quantitative details of the pair distribution function g(r ) significantly affect the
suspension stress. In the Peγ̇ � 1 limit, the dominant hydrodynamic stresslet SE

can be approximated from the boundary-layer approximation [33, 107]

SE
b.l. ∼η

′
∞(φ)γ̇φ2g∞(2; φ)×∫
r̂ ·E· r̂<0

r̂ r̂ ( r̂ · E · r̂ )ḡ(θ, ϕ)dΩ, (8.26)

where r̂ is the unit vector in the radial direction, η′∞ is the high-frequency dynamic
shear viscosity, g∞(2; φ) is the pair distribution function outside the boundary layer,
ḡ(θ, ϕ) is the O(1) angular variation within the boundary layer, and Ω is the solid
angle. From a radial-balance approximation, ḡ(θ, ϕ) ∝ −r̂ · E · r̂ [107]. In the
Peγ̇ � 1 limit, on the other hand, the deviatoric part of the Brownian stresslet SB is
estimated as [33, 50]

n
〈
SB

〉
+ Π0I = −

27
2π
η0γ̇φ

2g
0(2, φ)

d̂(φ)
×∫

r̂ r̂ f̂ (2; θ, ϕ)dΩ, (8.27)

where Π0 is the equilibrium osmotic pressure, g0(2, φ) is the equilibrium contact
value of the pair distribution function, d̂(φ) is a characteristic diffusion scale relative
to the single particle value, and f̂ (r ) is the distortion of the equilibrium pair distri-
bution function g(r )/g0(r ) = 1+[Peγ̇/d̂(φ)] f̂ (r ). Eq. (8.26) and (8.27) are derived
for monodisperse suspensions, and are helpful for formulating scaling arguments to
collapse the rheology results in the liquid-like regime [33, 54]. In addition, they
also reveal that the most significant structural contributions are from the extensional
and the compressional axes indicated in Fig. 8.2 and 8.3. Furthermore, Eq. (8.26)
and (8.27) show that both the extensional and the compressional quadrant contribute
positively to ηB and ηE in their respective regimes.

Fig. 8.4 presents the peak values of the of the pair distribution on the compressional
axis, max(gcomp) (filled symbols), and on the extensional axis, max(gext) (open
symbols), as functions of Peσ at Π̄ = 1.5 and Π̄ = 50. The insets of Fig. 8.4 also
show gcomp(r) (solid lines) and gext(r) (dashed lines) as selected Peσ. Here, the
data at different Peσ are shifted for clarity. For liquid-like suspensions at Π̄ = 1.5 in
Fig. 8.4a, at Peσ = 0.2, max(gcomp) and max(gext) are almost identical, consistent
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Figure 8.4: (Color online) The maximum value of the pair distribution functions
on the compressional and the extensional axes, max(gcomp) (filled symbols) and
max(gext) (open symbols), respectively, as functions of Peσ at (a) Π̄ = 1.5 and (b)
Π̄ = 50. The insets show gcomp(r) (solid lines) and gext(r) (dashed lines), obtained
from the equatorial slices of g(r ) in the 12-plane with a width of 0.7a, at selected
Peσ annotated by arrows in the main figure. The gcomp(r) and gext(r) results are
shifted for clarity. In (b) the estimated flow-arrest transition Peσ is shown in the
vertical dashed line.

with the almost isotropic suspension structure in Fig. 8.2. With increasing Peσ,
max(gcomp) first increases, reaches a maximum at Peσ = 2.8, and then decreases.
On the other hand, max(gext) first decreases slowly when Peσ < 2.8, and reduces
more quickly with respect to Peσ until Peσ = 28.3, where max(gext) grows mildly
with Peσ again. These rich structural features arise from the HIs in the constant
stress and pressure rheology. The inset of Fig. 8.4a provides further insights to the
structural changes. Increasing Peσ reduces the width of the first peak of gcomp(r) and
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flattens the undulation of gcomp(r) beyond the first peak, suggesting a compression
of neighboring particles and the dominance of pair interactions in this direction with
high imposed stresses. On the other hand, increasing Peσ shifts the location of the
gext(r) maximum away from the particle surface, reduces the undulations beyond
the first peak, and also qualitatively changes the shape of gext(r), e.g., gext(r) at
Peσ = 28.3 is notably different from the near-equilibrium structure at Peσ = 0.3.
Comparing to Fig. 8.2, the changes in gext(r) is associated with the development of
the particle depletion wake in the extensional quadrant.

The structural features in the compressional and the extensional axes at Π̄ = 50 are
presented in Fig. 8.4b. Despite slightly scattered data, max(gcomp) and max(gext)
are different from the onset of flow near the flow-arrest transition, suggesting that the
flow of glassy suspensions is inherently far from equilibrium. With increasing Peσ
up to Peσ = 1000, both max(gcomp) and max(gext) decrease, and their difference is
also diminishing. In fact, max(gcomp) and max(gext) become almost identical with
the string phase formation. After the dissolution of the string phase at Peσ > 103,
max(gcomp) first increases and then decreases, and max(gext) increases mildly with
growing Peσ, similarly to the high Peσ behaviors at Π̄ = 1.5. In the inset of
Fig. 8.4b, gcomp(r) and gext(r) at Peσ = 200 and 400 exhibit fluctuations due to the
slow suspension structural evolution. At Peσ = 594.7, the formation of string order
phase qualitatively changes gcomp(r) and gext(r) from amorphous suspensions at
other Peσ, including the formation of significant undulations beyond the first peak.
The structural features of gcomp(r) and gext(r) at Peσ = 2375 and 104 are similar to
those at Peσ = 28.3 and 178.4 at Π̄ = 1.5 in Fig. 8.4a.

Dynamics: long-time self-diffusivity
The diffusive dynamics of the suspension are characterized by the long-time self-
diffusivities in the velocity gradient direction ds

∞,22 and the vorticity direction ds
∞,33.

The diffusivity in direction k is calculated as

ds
∞,kk =

1
2

lim
t→∞

d
〈
∆x2

k

〉
dt

, (8.28)

where
〈
∆x2

k

〉
is the particle mean-square displacement computed from all available

data.

Fig. 8.5a present ds
∞,33 as functions of Peσ at Π̄ = 1.5. At this imposed pressure, the

zero-shear diffusivity is finite, and ds
∞,33 increases with Peσ. The inset of Fig. 8.5

shows the mean square displacement
〈
∆x2

3

〉
as functions of the dimensionless time
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Figure 8.5: (Color online) Long-time self-diffusivity in the vorticity (3-) and the
velocity gradient (2-) direction, ds

∞,33/d0 and ds
∞,22/d0, respectively, at (a) Π̄ = 1.5

and (b) Π̄ = 50. (a): ds
∞,33/d0 computed with full HIs (open symbols) and with

the near-field Brownian approximation (filled symbols). Inset: the time trace of the
mean-square displacement in the 3-direction,

〈
∆x2

3

〉
at different Peσ. The solid lines

are from the near-field Brownian approximation and the dash-dotted lines are from
full calculations. (b): ds

∞,33/d0 (filled circles) and ds
∞,22/d0 (open squares) from

near-field Brownian approximation as functions of Peσ. Inset: the time trace of the
mean-square displacement in the 3-direction

〈
∆x2

3

〉
(solid lines) and the 2-direction〈

∆x2
2

〉
(dashed lines) at different Peσ.

ta2/d0: at small Peσ,
〈
∆x2

3

〉
is observed to first grow sublinearly, and then linearly

with time. Since the particle dynamics in the Peσ � 1 limit are dominated by
Brownian motion,

〈
∆x2

3

〉
is expected to grow linearly with time at a smaller time

scale not captured in the figure, and its rate of growth characterizes the translational
short-time self-diffusivity dt

s. With Peσ � 1, e.g. Peσ = 178.4,
〈
∆x2

3

〉
grows
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linearly with time at long times, but proportional to t2 when td0/a2 < 0.02. This
is because in the short-time limit, the particle dynamics are dominated by the
flow, i.e.,

〈
∆x2

〉
∼ (γ̇t)2. However, at larger time scale, the extensive interaction

with neighboring particles restores the diffusive motion. Moreover, Fig. 8.5a also
compares the results from full hydrodynamic computations and from the near-field
Brownian approximation. Their agreement is satisfactory despite small quantitative
differences.

The suspension dynamics at Π̄ = 50 are shown in Fig. 8.5b, where both ds
∞,33 and

ds
∞,22 are presented in the main figure and

〈
∆x2

2

〉
and

〈
∆x2

3

〉
in the inset. There

are several noteworthy features. First, when the imposed stress is much smaller
than the yield stress, e.g. at Peσ = 150, the suspension arrests and the long-time
self-diffusivities vanish. At this Peσ, the mean square displacement does not grow
linearly with time, but rather reaches a constant value characterizing the size of the
confining cage. Close to the flow-arrest transition, e.g., at Peσ = 170, the suspension
becomes activated and there is a small but finite diffusivity. Unlike the liquid-like
suspensions at Π̄ = 1.5 in Fig. 8.5a, the suspensions do not exhibit a zero-shear
diffusivity. As the imposed stress exceeds the yield stress, the diffusivities grow
with Peσ, and exhibit little anisotropy, i.e., ds

∞,33 ≈ ds
∞,22. At higher Peσ, however,

the diffusivities decrease due to the string order formation seen in Fig. 8.3. The
qualitative influences of structural formation in the suspension dynamics are also
evidenced by the distinct

〈
∆x2

2

〉
and

〈
∆x2

3

〉
at Peσ = 103 in Fig. 8.5b inset. Moreover,

with the dissolution of the string order phase at higher Peσ, ds
∞,22 becomes much

higher than ds
∞,33, suggesting anisotropy in the suspension dynamics. From the

inset, the particles move more easily in the 2-direction due to the enhanced velocity
fluctuations in the non-Brownian limit [43].

8.4 A granular perspective on colloidal rheology
Here we examine the constant stress and pressure rheology of dense colloidal sus-
pensions using a granular perspective. The results with string order formation are
not included because, as is shown in Sec. 8.3, the string order phase introduces
qualitatively different suspension behaviors.

Mechanical responses
Fig. 8.6 presents the shear viscosity ηs/η0, the volume fraction φ, and the macro-
scopic friction coefficient µ = σ/Π as functions of the viscous number Iv = γ̇η0/Π

defined in Eq. (8.3) over a wide range of imposed pressures Π̄ from the constant
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Figure 8.6: (Color online) The suspension shear viscosity ηs/η0 (a), the volume
fraction φ (b), and the macroscopic friction coefficient µ = σ/Π as functions of the
viscous number Iv = γ̇η0/Π with different imposed pressures Π̄. Also presented
are the non-Brownian results from experiments [24] (black open diamonds) and
Accelerated StokesianDynamics (ASD) simulations at fixed strain rate γ̇ and volume
fraction φ [54] (black open left triangles). The shaded area bounded by dashed lines
are from the rheological model outlining the boundary of glassy suspensions. The
experimental results shifted upwards to φSAP are also presented in (b) (black open
down triangles).
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stress and pressure simulations. In Fig. 8.6 the liquid-like suspensions, which do not
develop a yield stress, are shown as open symbols, and glassy suspensions, which
exhibit flow-arrest transitions, are shown as filled symbols. Using Iv highlights the
importance of pressure on the suspension rheology. Consistent with Fig. 8.1, with
constant imposed pressure, ηs/η0 and φ decrease, and µ increases with increasing
Iv. In the limit Iv → ∞, the shear viscosity ηs approaches the solvent viscosity
η0, the volume fraction φ asymptotes zero, and the friction coefficient µ grows
without bound due to suspension dilation. Fig. 8.6 is similar to the results without
HIs [25, 26] with quantitative differences. In addition, for comparison Fig. 8.6
also present results from the experiments of Boyer et al. [24] and the Accelerated
Stokesian Dynamics (ASD) simulations of Sierou and Brady [54] on non-Brownian
suspensions.

Fig. 8.6a shows the suspension shear viscosity ηs/η0. Liquid-like suspensions occur
at low imposed pressures Π̄ < 3.5, and they exhibit a zero-shear viscosity in the
Iv → 0 limit, which grows with increasing Π̄. At higher confining pressures,
Π̄ ≥ 3.5, the zero-shear viscosity disappears as the suspension develops yield
stresses. When Iv � 1, the data collapse towards the solvent viscosity η0 at all
imposed pressures due to suspension dilation. For small Iv, the differences among
the isobaric ηs decrease with increasing Π̄. As Π̄ → ∞, a non-Brownian limit is
expected to emerge. However, the highest pressure with Iv < 0.1 in our simulations
is Π̄ = 50. At higher imposed pressure, reaching a low Iv without significant stress
contributions from the interparticle forces is computationally difficult. Reducing
the dimensionless time step ∆τ from 0.01 to 0.0025 only marginally reduces the
viscous number Iv where the interparticle force stress contribution is less than 1%.
Therefore, despite an evident tendency, the imposed pressures Π̄ in the simulations
is not high enough to achieve the limiting non-Brownian viscosity.

In Fig. 8.6a the suspension viscosity in the non-Brownian limit is established from
the non-Brownian experiments [24] and ASD simulations [54], shown in open
diamonds and triangles in black, respectively. The experiments and simulations
complement the entire Iv range with Iv . 0.1 from the experiments and Iv & 0.1
from the simulations. At Iv ≈ 0.1, the experimental and the numerical results
overlap and agree well, showing consistent non-Brownian suspension behaviors.
The small difference between the non-Brownian experiments and simulations may
arise from different interparticle forces [54]. The suspension viscosity from the
constant stress and pressure simulation agree well with the non-Brownian simulation
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data for Iv & 0.1. At Iv < 0.1, the experiments suggest that the viscosities at Π̄ = 50
have not yet reached the non-Brownian limit.

Fig. 8.6b presents the volume fraction φ as a function of Iv at various imposed
pressures. Consistent with Fig. 8.1, the results show that, for a given Iv, increasing
the imposed pressure compresses the suspension, and at fixed pressure, increasing
Iv dilates the suspension. For Iv � 1, the volume fraction asymptotes a value
corresponding to the Iv → 0 limit. When Iv > 1, the volume fractions collapse
to a non-Brownian limiting behavior with φ < 0.35 for all imposed pressures Π̄.
With Iv < 1, only a tendency for data collapse is found with Π̄ ≥ 10. Similarly to
Fig. 8.6a, our imposed pressure Π̄ is not high enough for the non-Brownian limiting
behavior to be reached in the double limit Iv → 0 and Π̄ → ∞.

The non-Brownian results from earlier simulations and experiments are also pre-
sented in Fig. 8.6b. At the common Iv range covered by both the experiments and
the simulations, the volume fraction results are inconsistent. At Iv ≈ 0.1, φ from
the ASD simulations [54] are significantly higher than the experimental data, due
to the significantly lower maximum volume fraction φc ≈ 0.585 in the experiments.
Simply shifting the experimental φ upwards by an amount of (φSAP − φc) restores
the consistency in the non-Brownian results. In Fig. 8.6b, the shifted experimental
data are shown in down triangles. The SAP volume fraction φSAP is independently
determined from the constant stress and pressure simulation data without the knowl-
edge of earlier non-Brownian results, and is described in later. When Iv > 0.1, the
shifted non-Brownian φ is slightly lower than the collapsed data from the constant
stress and pressure simulations, most likely due to the particle size polydispersity in
the latter. On the other hand, in the Iv � 1 limit, the volume fraction behaviors at
Π̄ = 50 is close to the shifted non-Brownian results.

Fig. 8.6c presents the macroscopic friction coefficient µ as a function of Iv. For
liquid-like suspensions with Π̄ < 3.5, µ increases linearly with Iv when Iv � 1
because the ratio µ/Iv = ηs/η0, and the initial linear increase in µ characterizes
the suspension’s zero-shear viscosity. For glassy suspensions with Π̄ ≥ 3.5, the
suspensions develop a yield stress, as µ asymptotes a constant, finite value in the
limit Iv → 0. Similar to Fig. 8.6a and 8.6b, the friction coefficient data collapse for
all imposed pressures when Iv � 1, and a tendency of data collapse is evident with
Π̄ ≥ 10 when Iv � 1. The results from earlier non-Brownian experiments and ASD
simulations are also presented in Fig. 8.6c. The non-Brownian experiments and
simulations agree for the overlapping viscous numbers near Iv ≈ 0.1, suggesting
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Figure 8.7: (Color online) The first and the second normal stress differences scaled
with the shear stress, N1/σ (a) and N2/σ (b), as functions of the viscous number
Iv at various imposed pressures Π̄. Also presented are the non-Brownian ASD
simulation results [54]. The legends are identical to those of Fig. 8.6.

a consistent behavior similar to the consistent viscosity in Fig. 8.6a. The non-
Brownian friction coefficient µwith Iv & 0.1 agree well with the collapsed constant
stress and pressure simulation results. When Iv . 0.1, however, the experiments of
Boyer et al. [24] show a higher limiting friction coefficient compared to the limiting
µ at Π̄ = 50. Our results suggest that, the expected µ from simulations in the Π̄ → ∞
and Iv → 0 limits should be consistent with the non-Brownian experimental results
here.

The first and the second normal stress differences, N1 and N2, are computed from
the total stress 〈Σ〉 as,

N1 = 〈Σ11〉 − 〈Σ22〉 , (8.29)

N2 = 〈Σ22〉 − 〈Σ33〉 . (8.30)
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Fig. 8.7a and 8.7b respectively present the scaled normal stress differences, N1/σ

and N2/σ, as functions of the viscous number Iv at different imposed pressures
Π̄. In the high Iv regime (Iv > 0.5 for N1 and Iv > 0.1 for N2), both N1 and N2

are negative, and collapse to non-Brownian limiting behaviors at different Π̄. The
negative N1 is the signature of HIs in the suspensions, because, to separate a particle
pair, the HIs pull the pair together, while the interparticle forces push it apart. The
former lead to negative N1, while the latter to positive [33, 54, 56]. The magnitude
of N1/σ and N2/σ decreases with increasing Iv due to suspension dilation. This
is in contrast to the fixed volume rheology where N1 and N2 asymptote high-shear
limiting values [33, 56]. The non-Brownian ASD simulation results [54] are also
presented in Fig. 8.7, and they agree well with the collapsed constant stress and
pressure simulations, except for N1 at Iv = 0.1. The first normal stress difference
N1 near Iv = 0.1 are close to zero for all imposed pressures, and with Iv > 0.1,
they first reach a negative minimum before increasing again. The non-Brownian
simulation results only show increase in N1 with growing Iv, as fluctuations in φ
about its average value for Iv ≈ 0.1 may reduce |N1 | compared to the corresponding
fixed φ simulations.

In the low shear limit, dilute theories [105, 108] predict that N1 increases and N2

decreases from zero in a fashion proportional γ̇2. The simulation results in Fig. 8.7
do not reveal such behaviors, suggesting that Iv is not sufficiently low. On the
other hand, N1 and N2 behave distinctly in the low Iv regime. In Fig. 8.7a, N1 is
largely negative when Iv < 10−3. The general trend is that, with increasing Π̄, N1

at Iv < 10−5 shifts from negative to positive. In the range 10−3 < Iv < 0.1, N1

becomes loosely collapsed. It first becomes slightly positive and decreases after
reaching a maximum. The second normal stress difference N2 in Fig. 8.7b reduces
from the lower Iv limit and reaches a local minimum before collapsing to the high
Iv behaviors. The N2 values at Iv < 10−5 decrease from positive to negative with
increasing Π̄, and become increasingly noisy. The low Iv behaviors in Fig. 8.7a and
8.7b demonstrate the complex interplay of between Brownian motion and HIs in
polydisperse suspensions.

Structural peaks
The peak values of pair distribution function along the compressional and the
extensional axes, max(gcomp) and max(gext), are key suspension structural features.
As discussed in Sec. 8.3, they are closely related to the suspension rheology, and
are strongly affected by the particle Brownian motion and HIs. Fig. 8.8 presents
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Figure 8.8: (Color online) The peak values of the pair distribution function along
the compressional and the extensional axes, max(gcomp) (a) and max(gext) (b), as
functions of the viscous number Iv at various imposed pressures Π̄. The legends are
identical to those of Fig. 8.6.

max(gcomp) and max(gext) as functions of the viscous number Iv over different
imposed pressures Π̄.

Fig. 8.8a focuses on the peak value of the pair distribution function along compres-
sional axis, max(gcomp). For liquid-like suspensions with Π̄ < 3.5, max(gcomp)
first increases and then decreases with increasing Iv. The decrease of max(gcomp)
at different Π̄ largely collapse. With increasing Π̄ the peak value max(gcomp) in
the equilibrium limit also grows, and joins the collapsed max(gcomp) decrease at a
smaller Iv. For glassy suspensions with Π̄ ≥ 3.5, max(gcomp) also collapses at small
Iv: the initial increase takes place at Iv < 10−4, followed by a plateau until Iv ≈ 10−3.
Further increase in Iv lead to decrease in max(gcomp). With Iv & 0.1, max(gcomp)
discontinuously drops to max(gcomp) ≈ 2, reaches a maximum, and decreases again
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Figure 8.9: (Color online) The long-time self-diffusivity in the vorticity direction
scaled with the pressure diffusion scale ds

∞/dΠ, where dΠ = a2Π/η0, as functions
of the viscous number Iv at various imposed pressures Π̄. Also presented are the
non-Brownian ASD simulation results [43, 54]. The yellow shaded region bounded
by dashed liens are predictions from Eq. (8.43). The legends are identical to those
of Fig. 8.6.

along with the lower Π̄ results. The discontinuous behavior of max(gcomp) is likely
associated with the string phase structures in Fig. 8.3.

Fig. 8.8b shows the changes of max(gext) with respect to Iv at various Iv. In the
extensional axis, the peak values of gext collapse better compared to max(gcomp)
in Fig. 8.8a: with increasing Iv, max(gext) first decreases, reaching a minimum at
Iv ≈ 0.1, and then increases slightly. The data in the Iv → 0 limit are somewhat
scattered, but unlike max(gcomp), they do not show different low Iv limiting values
at different Π̄. Moreover, the range of Iv corresponding to max(gext) increases is
also the Iv range where max(gcomp) becomes discontinuous, suggesting that they are
caused by the same mechanism, possibly due to the stronger HIs among particles.
Fig. 8.8 highlights the importance of the compressional quadrant on the structural
contributions to the suspension rheology in the low Iv limit.

Long-time self-diffusivity
We characterize the particle diffusive dynamics using the long-time self-diffusivity
in the vorticity direction, ds

∞,33, and for simplicity refer to it as ds
∞ in the following

discussion. Usually, the diffusion of Brownian suspensions is compared with the
single-particle Stokes-Einstein-Sutherland diffusivity d0, as is the case of Fig. 8.5.
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However, for strongly driven suspensions far from equilibrium, a different diffusion
scale may necessary as thermal fluctuations may be irrelevant for the suspension
dynamics. For the constant stress and pressure simulations in this work, we choose
the pressure diffusion scale,

dΠ = a2
Π/η0, (8.31)

for the characterization of the diffusivity ds
∞.

Fig. 8.9 presents the scaled diffusivity ds
∞/dΠ as functions of the viscous number

for different Π̄, with liquid-like suspensions (Π̄ < 3.5) in open symbols and glassy
suspensions (Π̄ ≥ 3.5) in filled symbols. For liquid-like suspensions, ds

∞/dΠ
increases with Iv from a plateau corresponding to the equilibrium at-rest value.
Increasing Π̄ reduces the at-rest diffusivity ds

∞/dΠ, as both the equilibrium self-
diffusivity decreases with the volume fraction φ and the pressure increases with φ.
In addition, increasing Π̄ also reduces the viscous number Iv where ds

∞/dΠ departs
from the at-rest values, e.g., at Π̄ = 1, ds

∞ departs the plateau at Iv ≈ 10−2, and at
Π̄ = 2.0, the departure viscous number is Iv ≈ 10−3. With Iv > 0.1, the difference
in ds

∞/dΠ between different Π̄ reduces significantly.

For glassy suspensions, ds
∞/dΠ does not show a plateau and always increases with

increasing Iv. The lack of a plateau suggests that the at-rest diffusion vanishes,
i.e., as ds

∞/dΠ → 0 as Iv → 0. Therefore, in the glassy regime, particles are
frozen by their neighbors at γ̇ = 0, and the diffusion process is restored with flow
(γ̇ , 0). The pressure scaled diffusivity ds

∞/dΠ for glassy suspensions is lower
than its liquid-like counterpart and decreases with further pressure increase. In the
non-Brownian high-pressure limit Π → ∞, ds

∞/dΠ collapses to a jamming limit as
evidenced by the data collapse trend in Fig. 8.9. In this limit, ds

∞/dΠ remains finite
despite diverging pressure, and grows with Iv. Fig. 8.9 highlights the importance
of pressure in suspension dynamics, an frequently overlooked aspect in studies at
lower Π or φ. Note that Eq. (8.31) is similar to the single-particle d0 by replacing
the thermal energy scale kBT with a pressure energy scale a3Π. The collapse of
ds
∞/dΠ in the high pressure limit suggests that the pressure may be considered a

measure of the internal fluctuations in the system, which are explored in Sec. 8.5.

Fig. 8.9 also presents the non-Brownian ASD simulation results [43, 54] (in black
open left triangles) for comparison, as they are the only rheology studies with
appropriate normal stress and diffusion characterizations. The non-Brownian results
agree well with the high pressure results with Iv > 0.1, providing an independent
validation for the constant stress and pressure simulations. The shaded region
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bounded by dashed lines in Fig. 8.9 is the glassy regime predicted by the model
presented Sec. 8.4 together with the universal collapse found in Sec. 8.5. The non-
Brownian limit from the model, shown as the lower dashed line in Fig. 8.9, can only
achieved with simulations at higher imposed pressures.

A model for glassy rheology
Fig. 8.6 shows that the rheological behavior of glassy suspensions (Π̄ ≥ 3.5 in
filled symbols) is similar to the non-Brownian limiting behavior. For example, all
glassy suspensions exhibit a viscosity divergence and the emergence of yield stress
as Iv → 0. Physically, as the suspensions become glassy with sufficiently high
imposed pressure, its at-rest dynamics become extremely slow and its flow behavior
becomes dominated by the external forcing. In other words, if we characterize
the at-rest dynamics of suspensions using a diffusivity dT , in the glassy state, the
particles are effectively locked by their neighbors, and therefore dT/d0 vanishes.
Therefore, as soon as the suspension begins to flow, the effective Péclet number
PeT = γ̇a2/dT � 1 as long as γ̇ is finite. Consequently, it is clear that the non-
Brownian dynamics dominate the behavior of glassy suspensions. This is one of the
principle conclusions of our earlier work [25].

The rheology of non-Brownian suspensions beyond the flow-arrest transition can be
characterized by the departure of φ and µ from their arrest values,

φ = φm − δφ and µ = µm + δµ, (8.32)

where µm and φm are the limiting arrest friction coefficient and volume fraction,
and δµ and δφ characterize how the suspension departures from the arrested state.
For non-Brownian systems, δµ and δφ depends only on the viscous number, and
assuming a power law,

δφ = KφIαφv and δµ = KµIαµv , (8.33)

where Kφ, αφ, Kµ, and αµ are constants. Eq. (8.33) describes a wide range of
experiments and simulations of non-Brownian systems, and is also suggested from
theoretical investigations [68, 69].

We characterize the glassy rheology for Iv < 1 in Fig. 8.6 using Eq. (8.32) and
(8.33). Since the physics of jamming dominates the glassy suspension behavior,
we speculate that the power law relations in Eq. (8.33) are unaffected by thermal
fluctuations and are independent of the imposed pressure Π̄. Meanwhile, the arrest
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Figure 8.10: (Color online) The incremental volume fraction δφ = φm − φ (a) and
friction coefficient δµ = µ− µm (b) as functions of the viscous number Iv for glassy
suspensions with Π̄ ≥ 3.5. The dashed lines in the main figures show Eq. (8.33)
with parameters in Table 8.1. The insets show the limiting volume fraction φm (a)
and the limiting friction coefficient µm (b) as functions of the imposed pressure Π̄.
The dashed line in the inset of (a) shows Eq. (8.34), and the dashed line in the inset of
(b) is the non-Brownian µSAP. Also presented are the non-Brownian experimental
results [24] in open black diamonds. The legends are identical to those in Fig. 8.6.

volume fraction φm and friction coefficient µm change with the imposed pressure.
We find the optimal parameters that best describe the results in Fig. 8.6 using non-
linear regression. Note that the non-Brownian limiting results from experiments
[24] and simulations [54] are not considered in the regression process, and can be
used as an independent check.

Fig. 8.10 presents δφ and δµ as functions of Iv for glassy suspensions with Π̄ ≥ 3.5.
The parameters for Eq. (8.33) from the regression analysis are shown in the first two
columns of Table 8.1. Here, the volume fraction exponent αφ = 0.40 is close to
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the theoretical prediction of 0.35 [68], and is consistent with simulations of inertial
systems [109] and non-Brownian viscous systems without HIs in the zero-pressure
limit [62], where both studies have found αφ = 0.39. The friction coefficient
exponent αµ = 0.485 is close to the non-Brownian experiments of Boyer et al. [24]
which have a value of 0.5. The fitted φm and µm as functions of the imposed pressure
Π̄ are presented in the corresponding insets. The excellent data collapse suggests
that Eq. (8.33) adequately describes the glassy suspension behavior for imposed
pressures Π̄ from 3.5 to 200. Also presented in Fig. 8.10 are the non-Brownian
experimental results [24]. The simulation results agree with the experiment when
the experimental critical friction coefficient µc is shifted from 0.32 to 0.308 with
the original critical volume fraction φc = 0.585. Here, Eq. (8.33) also satisfactorily
describes the non-Brownian experimental data, which are not considered in the
regression analysis. Fig. 8.10 shows that Eq. (8.33) with a single set of parameters
describes glassy suspension behavior for Π̄ ≥ 3.5 including the non-Brownian limit.
It confirms our assertion that the dynamics of glassy dynamics are dominated by
jamming, and that thermal fluctuations only affect the location of the flow-arrest
transitions.

The insets of Fig. 8.10 show the locations of the flow-arrest transitions, (µm, φm),
at different imposed pressures Π̄ ≥ 3.5. In constant stress and pressure rheology,
the smallest pressure where the suspension begins to exhibit flow-arrest transitions
is called the glass transition pressure Π̄G, and in this work Π̄G = 3.5, with the
corresponding glassy arrest location (µG, φG) = (0.03, 0.585) from Fig. 8.10. The
volume fraction φG is consistent with the hard-sphere colloidal glass transition,
which is often marked by the divergence of the viscosity or the relaxation time [18,
22]. The finite µG at the glass transition suggests the sudden appearance of a yield
stress, consistent with mode-coupling theory predictions [110]. To find the flow-
arrest transition location in the Π̄ → ∞ limit—the SAP—it is necessary to consider
the non-Brownian experimental results [24], as the maximum imposed pressures for
Iv � 1 are not sufficiently high. From the excellent collapse of δµ in Fig. 8.10b,
we adopt the adjusted experimental limiting friction coefficient µc = 0.308 = µSAP.
Determining φSAP is more subtle, because, as is shown in Fig. 8.6b, the original
experimental φ is incompatible with the numerical results. Here, we found that the
arrest volume fractions φm > 0.60 with Π̄ ≤ 50 satisfy the expression,

Π̄ = cm/(φSAP − φm), (8.34)

and the fitting shows that φSAP = 0.643. Eq. (8.34) is appropriate here as it also



325

Table 8.1: The parameters for themodel of glassy suspension rheology inEq. (8.32)–
(8.35) and Eq. (8.43).

Kµ 2.85 µG 0.03 Π̄G 3.5
αµ 0.485 φG 0.585 cm 0.202
Kφ 0.283 µSAP 0.308 βy 0.211
αφ 0.40 φSAP 0.643 Kd 0.037

describes the pressure of nearly jammed hard-sphere systems [111]. A check for the
validity of φSAP is that, by shifting the experimental data upwards by (φSAP − φc) in
Fig. 8.6b, the shifted results smoothly connect the non-Brownian ASD simulations
near Iv ≈ 0.1. Therefore, with non-Brownian experimental results and extrapolation,
the Π̄ → ∞ limit of the flow-arrest point, the SAP, is (µSAP, φSAP) = (0.308, 0.643).

Finally, the following expression describes the relation between φm and µm in the
inset of Fig. 8.10:

µSAP − µm

µSAP − µG
=

(
φSAP − φm

φSAP − φG

) βy
, (8.35)

with βy = 0.211. Eq. (8.32)–(8.35) present a simple model for the rheology glassy
suspensions valid for imposed pressure Π̄ > Π̄G. Table 8.1 summarizes the model
parameters. In Fig. 8.6 the model results in the glassy limit at Π̄ = Π̄G and the
jamming limit at Π̄ → ∞ are shown in dashed lines and the region bounded by
these lines are colored yellow to show the glassy region. Fig. 8.6 shows that the
simple model is valid near the flow arrest transitions for Iv . 0.1. At higher Iv, the
model underestimates µ, and cannot capture the qualitative trend of the changes in
φ when φ < 0.4. Compared to models based on volume fractions [21, 112], the
rheology model in Eq. (8.32)–(8.35) is simple yet powerful, with Eq. (8.32) and
(8.33) highlighting the dominance of jamming physics, and Eq. (8.34) and (8.35)
describing the adjustments from thermal fluctuations.

The flow map
Fig. 8.11 presents the µ-φ flow map at various imposed pressures Π̄. The flow
map is qualitatively similar to the results without HIs [25]. At a given Π̄, the
suspension dilates with increasing µ. The zero shear limit corresponds to µ → 0
in Fig. 8.11. For liquid-like suspensions, φ in the zero shear limit asymptotes the
equilibrium value corresponds to the imposed pressure Π̄. At Π̄ ≥ 3.5, the glassy
suspensions stops to flow when µ < µm as the imposed stress is less than the yield
stress σm. In Fig. 8.11, a region of arrested states emerges at the bottom right
corner. The boundary for the arrested region, i.e., the yield surface, is shown in
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Figure 8.11: (Color online) The macroscopic friction coefficient µ = σ/Π as
functions of the volume fraction φ over a wide range of imposed pressures Π̄ for
constant stress and pressure simulations. Also shown are the original and shifted
non-Brownian experiments Boyer et al. [24], and the ASD simulations of Sierou
and Brady [54]. The shifted experimental results shift the volume fraction data by
(φSAP − φc) with φc = 0.585. The legends are identical to Fig. 8.6. The shaded
region bounded by the dashed lines are from the rheologymodel outlining the region
of glassy behavior. The viscosity contours up to ηs/η0 = 103 are shown as solid
lines with annotated viscosity. The crosses show the arrest location (µm, φm) at
different imposed pressures, and the dash-dotted line outlines the yield surface from
Eq. (8.35). The Shear Arrest Point (SAP) is highlighted as a star at the intersection
of the arrested, the inaccessible, and the flowing region.

crosses in Fig. 8.11. With increasing imposed pressure Π̄, the limiting friction
coefficient µm increases until reaching the non-Brownian limit µSAP. That µm

grows with increasing imposed pressure suggests that δσm/δΠ ≥ µm, with the
equal sign established at the SAP. That is, increasing the imposed pressure causes
a larger increase in the yield stress δσm predicted by the current limiting friction
coefficient µmδΠ until reaching the non-Brownian limit. In the Π̄ → ∞ limit, the
suspension dynamics are expected to collapse to the non-Brownian behaviors. With
φ ≤ 0.55, the high-pressure data collapse is evident for Π̄ = 100 and Π̄ = 200.
However, at larger φ, the constant stress and pressure simulation results only show
a tendency to collapse. In Fig. 8.11, the non-Brownian limit is established by the
φ-shifted experimental results. Since the hydrodynamic simulations can capture the
suspension behaviors with HIs, unlike simulations without HIs [25], shifting the
experimental friction coefficient is not necessary. This also confirms the mean-field
hydrodynamic arguments in our earlier work. In the µ-φ flowmap, the region beyond
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the non-Brownian limit is physically inaccessible, and is shown as “forbidden” in
Fig. 8.11. At the intersection of the forbidden, the arrested, and the flowing regions,
the SAP emerges at the highest volume fraction attainable in the flowing suspensions.

In Fig. 8.11, the glassy suspension behaviors from the rheology model are shaded
in yellow. The regions are bounded by three curves: two outline the µ(φ) behaviors
at Π̄ = Π̄G and Π̄ → ∞, one from the yield surface in Eq. (8.35). Note that at φG,
the yield surface is vertical up to the glassy friction coefficient µG as we assume a
physical scenario predicted by the mode-coupling theory [110, 113]: that as soon as
the volume fraction exceeds φG, the suspension develops a finite static yield stress
corresponding to µG. The glassy region predicted by the rheology model agrees
well with the simulation and experimental results near the flow-arrest transitions.

Fig. 8.11 also shows the shear viscosity contours up to ηs/η0 = 103. The con-
tours show that, at a constant volume fraction φ ≤ 0.57, the shear viscosity first
decreases and then increases with increasing µ, suggesting continuous shear thicken-
ing, which is also observed in constant volume simulations [8, 32, 33]. Continuous
shear thickening arises from HIs among particles by forming “hydroclusters” in the
suspensions. However, with φ > 0.57, shear thickening behaviors disappear from
the viscosity contours. One may argue that in the constant stress and pressure sim-
ulations, the strain rates at high volume fractions are not high enough to reveal the
shear thickening behaviors. For example, at φ = 0.60, the strain rate Péclet number
corresponding to an impose pressure Π̄ = 50 is Peγ̇ ≈ 6.1, as in Fig. 8.1b and 8.1d,
φ = 0.60 corresponds to Peσ = 400 and ηs/η0 = 65, and Peγ̇ can be obtained from
Eq. (8.24). However, for dense suspensions, experiments [114] and simulations [33]
also show that the onset Peγ̇ of shear thickening behaviors decreases with increasing
volume fractions, and Peγ̇ ≈ 6 may not be low at this volume fraction. Another
possibility is that the continuous shear thickening disappears at high φ, as the de-
creasing Brownian viscosity contribution ηB from a high value masks the increase
in the flow viscosity ηE, and that ηE cannot grow without bound as any small steric
effects may significantly limit its value.

To understand the lack of shear thickening in Fig. 8.11 at high φ, we performed
constant stress and volume simulations over a wide range of imposed stresses at
φ = 0.6. Fig. 8.12 presents the resulting shear viscosity ηs and its flow and
Brownian contributions, ηE and ηB, as functions of Peσ ranging from 10 to 105.
The strain rate Péclet number Peγ̇ corresponding to Peσ = 105 is Peγ̇ = 1537.
With increasing Peσ, ηB decreases drastically towards zero. However, ηE increases
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Figure 8.12: The shear viscosity ηs/η0 and its flow and Brownian contributions,
ηE/η0 and ηB/η0 as functions of stress Péclet number in constant stress and volume
simulations at φ = 0.60with the particle size polydispersity p.d. = 0.1. The duration
of each simulation is τ = 2000 with a step size ∆τ = 0.01.

mildly, and reaches a high Peσ limiting value. Because the excluded volume radius
is slightly larger than the hydrodynamic radius in the simulations, ηE cannot not
continuously grow with Peσ. The effect of this interparticle force is evident from
the difference between ηE and ηs in the Peσ → ∞ limit. The net result is that
ηs exhibits only shear thinning with increasing Peσ until reaching the high Peσ
viscosity. The increase in ηE is masked by the strong reduction of ηB. Therefore, in
hydrodynamic simulations, even weak excluded volume effects can make the shear
thickening disappear at high φ.

Fig. 8.11 and 8.12 also suggest that the experimentally observed discontinuous shear
thickening [114, 115] cannot occur in hard-sphere suspensions with pure HIs. Other
mechanisms must be operative. A popular interpretation of the discontinuous shear
thickening is the frictional contact mechanism [53, 116, 117]. Although appealing
for its simplicity and effectiveness, this interpretation directly uses the macroscopic
concept of frictional interactions in granular materials to colloidal particles, which
are several orders of magnitude smaller.

The viscosity contours in Fig. 8.11 near flow-arrest transitions are almost parallel
to the arrest boundary shown in dash dotted line. From Eq. (8.32) and (8.33), the
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suspension viscosity ηs can be expressed in δφ as,

ηs

η0
= µm

(
δφ

Kφ

)− 1
αφ

+ Kµ

(
δφ

Kφ

) αµ−1
αφ

. (8.36)

Since both exponents αµ and αφ are positive, ηs exhibits a two-exponent divergence
with respect to δφ. At small δφ, the divergence is characterized by the exponent
−1/αφ, and at large δφ, the divergence is characterized by (αµ − 1)/αφ. Equating
the first and the second terms in Eq. (8.36) leads to the crossover the volume fraction
difference δφc and the crossover shear viscosity ηsc separating the two divergence
regimes:

δφc = Kφ

(
µm

Kµ

) αφ
αµ

and
ηsc

η0
= 2µm

(
µm

Kµ

)− 1
αµ

. (8.37)

With the parameters inTable 8.1, the crossover point in the glass limit is (δφc, ηsc/η0) =
(0.0066, 718) and in the jamming limit is (0.045, 60.5). Since there is an observa-
tion window of δφ and ηs, the crossover is more apparent with large δφc and small
ηsc. For example, the crossover point for non-Brownian soft-potential systems in
the zero-pressure limit [62] is (0.0183, 6.3), making the two-exponent behaviors
apparent.

For non-Brownian suspensions, Boyer et al. [24] found αφ = 0.5, leading to a
leading order viscosity divergence ηs ∝ δφ

−2. In simulations without HIs, a similar
viscosity divergence was discovered as in Eq. (8.1), with ks and kn independent of
Π̄, suggesting the dominance of the jamming physics. In fact, the universal viscosity
divergence in Eq. (8.1) can also be interpreted using Eq. (8.32) and (8.33). Assuming
that in Eq. (8.33), Kφ is now a function of the imposed pressure Π, and with a new
set of limiting volume fractions φm, the volume fraction difference δφ = Kφ(Π)Iαφv .
Therefore, the universal shear viscosity ηs and the incremental normal viscosity η′n
divergences in Ref. [25] suggests that the constants ks and kn in Eq. (8.1) are

ks = µmK
1
αφ

φ and kn =

(
1 −

Πeq

Π

)
K

1
αφ

φ , (8.38)

also with αφ = 0.5. Here, Πeq(φ) , Π at the flow arrest transitions as the suspen-
sions have to dilate before flowing. This interpretation relies on the existence of a
yield stress and yield pressure, and does not reveal Kµ and αµ in Eq. (8.33). Re-
cently, the exponent αφ = 0.5 is also discussed using the Herschel-Bulkley rheology
of the osmotic pressure [118]. Despite the same underlying physical messages, the
model in Sec. 8.4 is more general due to the additional description on the friction
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Figure 8.13: (Color online) The shear viscosity ηs/η0 as a function of the volume
fraction distance to the arrest δφ = (φm − φ) for glassy suspensions with Π̄ ≥ 3.5.
The non-Brownian experimental results of Boyer et al. [24] are also presented as
black open diamonds. The yellow shaded region bounded by dashed lines are
predictions from Eq. (8.36). The dash-dotted line shows an alternative viscosity
divergence ∝ δφ−2. The legends are identical to Fig. 8.6.

coefficient µ. More importantly, although the model associated with Eq. (8.1) works
for simulations without HIs, it does not fit the SEASD results well.

Fig. 8.13 examines the viscosity divergence near the flow-arrest transition, and
presents the shear viscosity ηs as functions of the the volume fraction difference
from the arrest δφ = φm − φ for glassy suspensions with Π̄ ≥ 3.5. The glass and
the jamming limits of Eq. (8.36) are also presented in Fig. 8.13 in dashed lines. The
constant stress and pressure simulation results agree with Eq. (8.36), and generally
lie in an area bounded by the glass and the jamming limits highlighted in yellow.
However, the non-Brownian experimental results [24] are rather scattered, as the
small discrepancies in Fig. 8.10 are amplified in Fig. 8.13. Due to the disparate
crossover points in the glass and in the jamming limits, near δφ = 0.01 the viscosity
appears to diverge at two different exponents. Moreover, by focusing on the data
with ηs/η0 > 100, the dash-dotted line Fig. 8.13 suggests that a divergence of δφ−2

also loosely describes the simulation results. That the data are close to the crossover
viscosity ηsc leads to the ambiguity in the divergence exponent, i.e., any exponent
between −1/αφ and (αµ − 1)/αφ may appear reasonable.

Finally, the divergence of the the normal viscosity, ηn = Π/γ̇ [24], is shown in
Fig. 8.6a, as the inverse scaled normal viscosity is the viscous number Iv = η0/ηn.
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Figure 8.14: (Color online) (a) The interaction friction coefficient µI = µ − (1 +
5
2φ)Iv as functions of the strain rate scale γ̇a2/ds

∞. The dashed line indicates the
linear relation µI = Kd γ̇a2/ds

∞withKd in Table 8.1. The black open left triangles are
the non-Brownian ASD simulation results [43, 54]. Inset: the product (ηIds

∞/(Πa2)
as functions of volume fraction φ. The interaction viscosity ηI = µI/Iv. (b) The peak
difference∆p = max(gcomp)−max(gext) as functions of the strain rate scale γ̇a2/ds

∞.
The dashed lines represents a linear relation ∆p = Kpγ̇a2/ds

∞ with Kp = 0.19. In
(a) and (b), the legends are identical to those of Fig. 8.6.

Therefore, from Eq. (8.33) we have ηn/η0 = (δφ/Kφ)−1/αφ with the constants from
Table 8.1.

8.5 Universal behaviors for dense suspensions
Here we explore the universal connection among suspension structure, diffusion,
and rheology for all imposed pressures. These relations are valid regardless of
the way the external forces are imposed, and reveal the fundamental suspension
behaviors.
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An effective Stokes-Einstein-Sutherland relation
The pressure scaled diffusivity ds

∞/dΠ in Fig. 8.6a and the suspension shear viscosity
ηs/η0 in Fig. 8.9 are close to up-down mirror images of each other with respect to
the viscous number Iv, i.e., where ηs/η0 is high, the corresponding ds

∞/dΠ is low,
suggesting that the product ηsds

∞/(η0dΠ) may be constant. The exception is the
Iv � 1 limit, where the shear viscosity ηs/η0 collapses stronger than ds

∞/dΠ, as in
the dilute limit ηs → η0, but ds

∞ does not approach dΠ. To eliminate this exception,
we introduce an interaction stressesσI that removes the single-particle contributions,
i.e., σI = σ − (1 + 5

2φ)η0γ̇. This stress definition leads to the interaction friction
coefficient µI and the interaction viscosity ηI,

µI = µ − (1 + 5
2φ)Iv and ηI/η0 = µ

I/Iv . (8.39)

In the Iv � 1 limit, µI → µ and ηI → ηs. The inset of Fig. 8.14a shows the product
ηIds
∞/(η0dΠ) = ηIds

∞/(Πa2) as functions of the volume fraction φ for all imposed
pressures Π̄.

The combination ηIds
∞/(Πa2) collapses impressively without any fitting parameters

over a wide parameter spacewith over 5 orders ofmagnitude in Peσ and over 2 orders
of magnitude in Π̄. The collapsed results decrease slightly from 0.06 to 0.038
with increasing φ up to φ ≈ 0.52, and become approximately constant afterwards.
Consistent with the observation of the up-down mirror images in Fig. 8.6a and
Fig. 8.9, the inset of Fig. 8.14a suggests an effective SES relation for φ & 0.52, i.e.,

ds
∞ =

kBTeff

6πηIaz
, (8.40)

with the effective temperature

kBTeff = Πa3
z (8.41)

and the characteristic length scale az ≈ 0.8a. Eq. (8.40) explicitly confirms the idea
of effective temperature discussed in Sec. 8.4. It is valid for non-equilibrium sheared
suspensions with both strong and weak thermal fluctuations, and, as is shown in the
companion paper [26], is not affected by HIs. The characteristic scale az is close
to the size of the activation zone in the shear transformation zone interpretation
of hard-sphere rheology [119]. In the high shear limit, the effective temperature
is proportional to the strain rate, Teff ∝ γ̇, consistent with other definitions of
effective temperatures [13, 96]. In particular, the effective temperature defined
in the experiments of Eisenmann et al. [96] is proportional to the shear stress,
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since they focused on only one volume fraction at low strain rate. As is shown
in Fig. 8.6c, with Iv → 0, σ = µmΠ, i.e., both σ and Π are suitable for defining
an effective temperature near the flow-arrest transitions. However, for a universal
collapse shown in the inset of Fig. 8.14a, Teff ∝ Π is necessary. In the limit of
dilute equilibrium suspensions, the effective temperature is restored to the actual
temperature Teff → T and az → a. Unlike other studies [90, 92, 95], here the
base state is the infinitely dilute equilibrium suspension. Both the imposed flow
and the presence of particles drive the system from the base state. The effective
SES relation in Eq. (8.40) suggests a novel mean-field perspective on the rheology
of non-equilibrium colloidal suspensions, highlighting the importance of osmotic
pressure.

Themain figure of Fig. 8.14a shows another perspective of the effective SES relation,
and presents the interaction friction coefficient µI as a function of the long-time
Péclet number,

Pe = γ̇a2/ds
∞ = IvdΠ/ds

∞, (8.42)

i.e., the strain rate scaled by the vorticity direction long-time self-diffusivity. In the
high shear limit, the long-time diffusivity with fixed φ becomes proportional to the
strain rate, ds

∞ ∝ γ̇ [33, 96], and Pe becomes a constant. In contrast, a larger Pe
range can be accessed using constant stress and pressure rheology due to suspension
dilation.

Without any fitting parameters, all simulation data collapse onto a universal curve
in Fig. 8.14a. The collapsed µI is linear to the scaled strain rate up to Pe ≈ 10,
becomes slightly scattered at Pe ≈ 20, and collapses again. The collapsed data are
adequately described by the following linear relation,

µI = KdPe, (8.43)

where the constant Kd = 0.037. Scaling the strain rate with the diffusivity in the
velocity gradient direction gives similar results. The diffusivity prediction from
Eq. (8.43) in the glass and the jamming limit are presented in Fig. 8.9.

For liquid-like suspensions, the particles can diffuse even without flow, and therefore
Pe can reach low values. In Fig. 8.14a, the minimum is reached at Π̄ = 1 with
Pe ≈ 0.08. However, for glassy suspensions, Fig. 8.14a shows that only Pe & 1
is possible. Therefore, the rate of dispersion, ds

∞/a
2, is at most as fast as the rate

of convection, characterized by γ̇, i.e., the particle diffusion is driven by the flow,
not by the thermal fluctuations. This is because for glassy suspensions, the at-rest
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diffusivity dT/d0 � 1 leading to an effective Péclet number PeT � 1 for any finite
γ̇, and therefore the physics of non-Brownian jamming dominates the suspension
dynamics [25]. Moreover, the collapsed results also suggest that the volume fraction
φ is unimportant.

The lowest imposed pressure corresponds toPe ≈ 1 in glassy suspensions is Π̄ = 3.5,
and the corresponding friction coefficient µI ≈ 0.03 in Fig. 8.14a. Therefore,
Fig. 8.14a suggests that as soon as the suspension becomes glassy, a finite yield
stress emerges discontinuously, consistent with the mode-coupling theory predic-
tions [113] and the rheology model presented in Sec. 8.4. At this limit, since the
suspension only begins to flow, Iv � 1 and therefore µI → µ. Therefore, Fig. 8.14a
independently validates the glass transition friction coefficient, µG = 0.03, in the
rheology model of Sec. 8.4.

Fig. 8.14a also predicts the suspension diffusion near the athermal jamming limit.
The non-Brownian ASD simulation results up to φ = 0.50 [43, 54] are presented
in black open left triangles and agree well with simulations at finite Π̄ along the
same master curve of Eq. (8.43). The long-time Péclet number Pe increases with
decreasing φ. Therefore, the diffusivity at the SAP can be read from the figure.
With the experimental SAP friction coefficient µSAP = 0.308, the corresponding
Pe ≈ 8.3 in Fig. 8.14a, suggesting a long-time self-diffusivity ds

∞ = 0.12γ̇a2.
Surprisingly, the maximum diffusivity in non-Brownian suspensions is found at the
highest volume fraction near the SAP due to strong interactions with neighboring
particles.

Structure, rheology, and dynamics
Fig. 8.14b explores the connection between the suspension structures and dynamics
by plotting the compressional and extensional axes pair distribution function peak
difference,

∆p = max(gcomp) −max(gext), (8.44)

as functions of Pe. The peak difference ∆p approximates the structural integral∫
r̂ r̂g(2,Ω)dΩ. Despite some data scattering, a trend in how ∆p changes with Pe

is evident: with increasing Pe, ∆p first increases, reaches a maximum at Pe ≈ 7,
and then decreases. With fixed φ, the peak difference ∆p grows with the suspension
structural anisotropy, and constant Π and σ, the influences of suspension dilation is
also important.

When Pe . 7, the growth of ∆p with Pe is roughly linear, shown in a dashed line in
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Fig. 8.14b,
∆p = KpPe, (8.45)

with the constant Kp = 0.19. Combining with Fig. 8.14a, the results suggests that
the suspension interaction shear stress σI ∝ ∆pΠ, i.e., the suspension shear stress
contains multiplicative contributions from the osmotic pressure and the structural
anisotropy. Moreover, for liquid-like suspensions, the structural anisotropy increases
from 0 at low Pe. However, for glassy suspensions, at the onset of flow Pe ≈ 1, the
structural anisotropy is already finite, confirming that the structural change precedes
flow as is shown in Fig. 8.1d.

At a critical Pe, the anisotropy reaches a maximum before the suspension begins
to dilate, leading to ∆p reduction. Here, the critical Pe is roughly the same for all
Π̄, as particle diffusion is intimately connected to the suspension structures. Since
Pe is the inverse of the diffusivity, Fig. 8.14b suggests that the structural change is
due to the limited diffusion comparing to the flow. Further reduction in ∆p appears
branched near Pe ≈ 20, where µI also becomes more scattered in Fig. 8.14a. Here,
the two branches exhibit different ∆p reduction with respect to Pe. Since results with
apparent string formation are not considered in Fig. 8.14b, the more sensitive branch
may arise from the formation of subtle structures not as obvious as the strings. The
less sensitive branch, on the other hand, arises from suspension dilation in the high
shear limit. From Fig. 8.2 and 8.3, this reduction is also related to the vorticity
direction particle alignment.

8.6 Summary and Conclusions
We studied the rheology, structure, and dynamics of the constant stress and pressure
rheology of dense colloidal suspensions over a wide parameter space including 5
decades of imposed stresses and 2 decades of imposed pressureswithHIs. To achieve
this, we developed a computational method based on the SEASD method to impose
the constant stress and pressure constraint by solving the instantaneous suspension
mechanical balance. To further improve the computational speed, we adopted the
near-field Brownian approximation, which used a mean-field approximation for the
far-field part of the Brownian forces.

With fixed pressure, the suspension dilates and continues to shear thin with in-
creasing imposed stresses. The suspension behaviors can be broadly divided to
the liquid-like and glassy. Liquid-like suspensions do not exhibit flow-arrest tran-
sitions at low imposed stresses, but glassy suspensions do. Structurally, liquid-like
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suspensions are homogeneous at all imposed stresses, and high pressure glassy sus-
pensions show string order formation with increasing imposed stresses. Further
stress increase melts the string structures. At high imposed stress, the particles
exhibit preferential alignment in the vorticity direction due to the closed trajectory
of particle pairs in simple shear flows. The particle long-time self-diffusivity of
colloidal exhibits little anisotropy at low imposed stress. The diffusivity decreases
drastically with string order formation. At high imposed stresses after stringmelting,
the diffusivity show increasing anisotropy in the vorticity and the velocity gradient
directions.

We examined the flow behaviors of amorphous suspensions using a granular per-
spective, and characterized the rheology using the macroscopic friction coefficient µ
and the viscous number Iv. Our simulation results agree well with the non-Brownian
experiments [24] and ASD simulations [43, 54] including the shear viscosity ηs,
the normal stress differences N1 and N2, and the long-time self-diffusivity ds

∞. By
constructing a µ-φ flow map, we also found that shear thickening occurs when the
volume fractions are held constant with φ < 0.57.

We discovered universal connections among the suspension rheology, diffusion, and
diffusion in parameter-free data collapses. By introducing an interaction friction
coefficient µI , we discovered that µI ∝ γ̇a2/ds

∞, suggesting that the suspension
dynamics are controlled by an effective temperature proportional to the osmotic
pressure, Teff ∝ Π, and the diffusivity can be predicted via an effective SES rela-
tion. Moreover, the structural features of the suspension, characterized by the peak
difference ∆p, also collapse for different imposed pressures. Our discoveries here
suggests that the suspension dynamics can be described in a mean-field fashion
using the concept of effective temperature Teff . Our novelty in this work is that the
effective temperature is connected to pressure, and is based on a base state with both
γ̇ → 0 and φ→ 0.

Based on the simulation results, we developed a model for glassy suspensions
near the flow-arrest transitions. We found that the friction coefficient and the
volume fraction changes from the arrest value following universal power laws of Iv
regardless of the imposed pressures Π̄, suggesting that physics of jamming dominates
the glassy suspension behaviors, and that the thermal fluctuations only affect the
arrest locations. Our model is the only available model that can simultaneously
predict the rheological and the diffusive behaviors of glassy suspensions. With a
complementary model for liquid-like suspensions, we can completely describe the
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suspension behaviors. However, the development of a rheologymodel for liquid-like
suspension is deferred to future works.

This study is the first comprehensive hydrodynamic investigations on the behaviors
of dense suspensions, and demonstrate that the influences of HIs are quantitative
for amorphous systems. Our work suggests that the flowing behaviors of dense sus-
pensions should be described in a mean-field fashion using the concept of effective
temperatures. Our work also points out that pressure is an extremely crucial quantity
in understanding the behaviors of non-equilibrium flowing systems.

8.A Computing hydrodynamic interactions
We compute HIs in polydisperse hard-sphere Brownian suspensions using the
SEASD method with near-field Brownian approximation [56]. The framework of
Stokesian Dynamics [57] resolves the long-range non-pairwise-additive far-field and
diverging near-field lubrication interactions in suspension hydrodynamics by com-
bining the mobility and the resistance formalism. It computes the grand resistance
tensor R as

R = (M∞)−1 + (R2B −R
∞
2B), (8.46)

withM∞ the far-field grand mobility tensor and (R2B − R
∞
2B) the pairwise grand

resistance tensor from the exact solutions of two-body hydrodynamic problems
with the far-field contribution removed. The far-field resistance contribution R∞2B
is the inversion ofM∞ for two particles. InvertingM∞ captures the long-range
non-pairwise-additive aspect of the HIs, and (R2B − R

∞
2B) recovers the near-field

diverging lubrication interactions. In the SEASD method, the action ofM∞ on
a vector is computed using Spectral Ewald method [58, 59], and (R2B − R

∞
2B) is

constructed pairwise with cutoff distance, currently set at 2(ai + a j ) for each pair
due to the short-range lubrication interactions.

The near-field Brownian approximation adopts amean-field approach to treat the far-
field HIs forUB [Eq. (8.13)], ∆XB [Eq. (8.10)], and SB [Eq. (8.17)], and retains the
full hydrodynamic computations for other quantities. In computing the Brownian-
related quantities, the far-field grand mobility tensorM∞ is approximated as a diag-
onal matrix, using dt,ff

s for the elements corresponding to the velocity-force coupling,
and dr,ff

s for the elements corresponding to the angular velocity-torque coupling. For
the strain rate-stresslet coupling, the single-particle relation E∞ = SH/( 20

3 πη0a3)
is used. Here, dt,ff

s and dr,ff
s are the far-field short-time translational and rotational

diffusion coefficients of equilibrium suspensions at the same composition and vol-
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Figure 8.15: The mean far-field translational and rotational diffusion coefficients,〈
dt,ff

s

〉
and

〈
dr,ff

s

〉
, respectively, as functions of volume fraction φ for a polydisperse

suspension with polydispersity p.d. = 0.1. The dashed and dash-dotted lines are
cubic polynomial fit to the calculation results.

ume fractions. They can be obtained from static calculations without the near-field
lubrication contributions.

In this work, we consider the polydisperse suspension an effective medium charac-
terized by the mean single-particle translational and rotational diffusion coefficients〈
dt

0

〉
= N−1 ∑

i dt
0,i and

〈
dr

0

〉
= N−1 ∑

i dr
0,i, respectively, with dt

0,i = kBT/(6πη0ai)
and dr

0,i = kBT/(8πη0a3
i ), and compute a single effective far-field diffusion coeffi-

cient for all particle species. This approach eliminates the need to identify different
particle species in the approximated far-field mobility tensor, and is consistent with
the mean-field idea behind the near-field Brownian approximation.

Fig. 8.15 shows the mean far-field translational and rotational diffusion coefficients,〈
dt,ff

s

〉
and

〈
dr,ff

s

〉
, respectively, for polydisperse suspensions with polydispersity

p.d. = 0.1 as functions of volume fraction φ. The configurations are generated
by a polydisperse Lubachevsky-Stillinger algorithm [101, 102] followed by a brief
equilibration [30]. The system size N = 800 and the species number M = 10,
and each point in Fig. 8.15 is averaged over 500 independent configurations. Note
that

〈
dt,ff

s

〉
exhibits a strong system size dependence proportional to N

1
3 , and this

effect has been corrected in Fig. 8.15 with the far-field high-frequency dynamic
viscosity [56]. The finite size effect in

〈
dr,ff

s

〉
is negligible. The simulation results can

be satisfactorily fit by a cubic polynomial in φ up to the close packing density. These
fitted polynomials are used in the dynamic simulations for computing Brownian
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Figure 8.16: (Color online) The total suspension viscosity ηs/η0 and its flow and
Brownian contributions, ηE/η0 and ηB/η0, respectively, as functions of the strain
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volume ratio at φ = 0.45. All computations are from SEASD method with full
hydrodynamic interactions. The lines are from constant strain rate simulations [56].
The symbols are from constant stress simulations with dimensionless step size
∆τ = 10−3 (filled symbols) and ∆τ = 10−2 (open symbols).

related quantities.

8.B Validation via constant stress simulations
As indicated in Sec. 8.2, with ė = 0, the constant stress and pressure algorithm
reduces to the constant stress, fixed volume algorithm of Swan and Brady [66]. For
homogeneous suspensions below the glass transition, imposing a constant stress
is equivalent to imposing a corresponding strain rate at steady state. Therefore,
the constant stress and pressure algorithm can be partially validated by comparing
results from constant stress simulations with known constant strain rate data.

We performed constant stress simulations at different dimensionless time steps ∆τ
for bidisperse colloidal suspensions of size ratio 2 and equal volumes for both species
at a total volume fraction φ = 0.45 with full HIs. Fig. 8.16 compares the constant
stress suspension shear viscosity, ηs, and its flow and Brownian contributions, ηE

and ηB, respectively, with the constant strain rate results [56]. The constant stress
results, originally expressed as functions of Peσ, are converted to functions of Peγ̇
using Eq. (8.24). Note that, for hard-sphere suspensions, the interparticle force does
not contribute to the stress, and therefore ηP = 0. Qualitatively, increasing Peγ̇ leads
to rapid reduction in ηB and slow growth in ηE. At high Peσ, the Brownian viscosity
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ηB reduces to zero but the flow viscosity ηE asymptotes a constant. As a result,
the suspension viscosity ηs first decreases and then increases mildly with growing
Peγ̇. A key feature of the constant volume rheology is the existence of a high-shear
viscosity as Peγ̇ → ∞.

In Fig. 8.16, the good agreement between the constant stress results, shown in
symbols, and the constant strain rate data, shown in dots, at least partially validate
the constant stress and pressure algorithm in Sec. 8.2. In addition, Fig. 8.16 also
compares the effect of the dimensionless time step size with ∆τ = 10−2 and 10−3. In
the low Peγ̇ limit, the Brownian viscosity ηB at ∆τ = 10−3 show larger fluctuations,
but the flow contribution ηE with different time steps agree well. In the high Peγ̇
limit, on the other hand, ηB agrees well, but ηE exhibit small differences at different
∆τ, suggesting subtle differences in particle configurations. Despite these small
quantitative differences, different time steps lead to the same suspension rheology,
justifying using ∆τ = 10−2 in most dynamic simulations in this work.
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C h a p t e r 9

CONCLUSION AND OUTLOOK

This thesis presented a comprehensive investigation on various aspects related to the
constant stress and pressure rheology of polydisperse colloidal suspensions. Using
bidisperse suspensions as a model system, we first investigated the effects of particle
sizes on the suspension short-time transport properties. Our results showed that
introducing a second species of different particle size leads to qualitative differences
in the suspension transport properties such as the sedimentation velocity. However,
inmany cases, the influences of particle sizes are only quantitative. We found that the
pairwise additive approximation with proper structural input is valid in most cases
up to a volume fraction of φ = 0.1, demonstrating the strong influences of many-
body effects in transport properties. In contrast, the semi-analytical approximation
scheme with partial resummation of the many-body hydrodynamic interactions is
valid up to φ = 0.4.

Our work on the short-time transport properties serves as a critical reference for
future experiments and simulations on bidisperse systems, and provides insight and
guidance on using particle sizes to tune the suspension transport properties. The
approximation scheme on the hydrodynamic functions signficantly simplifies the in-
terpretation of scattering experiments for bidisperse suspensions. The computational
scheme can be straightforwardly extended to other systems such as charge-stabilized
colloidal suspensions. In this case, in addition to the size differences, the charge
differences also affect the transport properties by changing the suspension struc-
tures. With proper structure predictions, we can significantly extend our capability
to predict transport properties in other colloidal systems.

We also developed the Spectral Ewald Accelerated Stokesian Dynamics (SEASD)
for computing hydrodynamic interactions in polydisperse colloidal suspensions.
The main advantages of the SEASD include the polydisperse capability, the flexible
error control via the Spectral Ewald (SE) method, and the GPU acceleration. We
extensively validated the SEASD, and found that SEASD-nf, the near-field Brow-
nian approximation of the algorithm, can quantitatively capture the hydrodynamic
interactions in the rheology of bidisperse suspensions.

Comparing to other Particle-Mesh-Ewald (PME) techniques, the SE method is
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simple and allows full error controls. The SEASD method can be conveniently
extended to compute the hydrodynamic interactions of active particles with surface
velocities. By casting the swimming model with surface velocity [1] into a form
independent of the reference frame [2], we can adapt the SEASD to study dynamics
of swimming particles. Furthermore, an area for improvement in the current SEASD
is the computation of Brownian force, which is the most time-consuming step in
dynamic simulations of colloidal systems. A possibility is to exploit the symmetry of
the computation kernel, similarly to the approach in fluctuating hydrodynamics [3].

Our investigations on the film drying process of colloidal suspensions revealed the
critical role of the confining boundary on the stress and structures of the colloidal
suspensions. Interestingly, both fast and slow boundary motion contribute to struc-
tural formation, and the most amorphous structures occurs at a moderate boundary
velocity. The simple continuum model is surprisingly effective for predicting the
structural and stress evolution, but cannot capture the boundary-layer-like stress dis-
tributions and the volume fraction distribution at fast boundary motion. The model
can be improved by incorporating non-local effects in way similarly to Kamrin and
Koval [4].

We exhaustively investigated the behaviors of dense colloidal suspensions including
the suspensionmechanics, structures, and diffusive dynamics with constant imposed
stress and pressure, and evaluated the role of hydrodynamic interactions through
non-hydrodynamic and hydrodynamic simulations. We found that hydrodynamic
interactions profoundly affect the suspension structures, but only quantitatively
changes the behaviors of amorphous and glassy suspensions. We devised a simple
model to describe the rheology and diffusion of glassy suspensions, highlighting
the role of jamming physics on the suspension dynamics. We also discovered
an universal collapse of simulation data representing an effective Stokes-Einstein-
Sutherland (SES) relation with an effective temperature proportional to the osmotic
pressure. This revelation suggests that a mean-field description for the rheology and
dynamics of dense suspensions is possible.

We can use the rheology model as a constitutive relation to predict macroscopic
behaviors of glassy suspensions using the approach of Jop et al. [5]. An example
is microrheology in glass: i.e., the structure and stress of the glassy suspensions
in response to a moving probe. The model prediction can be compared with the
simulations and Mode Coupling Theory predictions [6]. Another point of interest
is the validity of the effective SES relation beyond the hard-sphere systems.
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