
211

C h a p t e r 6

CONSTANT STRESS AND PRESSURE RHEOLOGY OF
COLLOIDAL SUSPENSIONS

[1] M.Wang and J. F. Brady, “Constant stress and pressure rheology of colloidal
suspensions”, Physical Review Letters 115, 158301 (2015) doi:10.1103/
PhysRevLett.115.158301,

6.1 Introduction
Amorphous materials such as metallic glasses, granular matter, and colloidal sus-
pensions exhibit a range of flow behaviors including shear-thickening [1], particle
migration [2], shear banding [3], etc. The most fundamental and universal aspect of
their rheology is a flow-arrest transition that takes place at either increased density or
reduced temperature and is summarized by various ‘jamming diagrams’, pioneered
by Liu & Nagel [4–6]. Extensive computational and experimental investigations
reveal that the flow-arrest transition is affected by the interplay among thermal fluc-
tuations [6–10] and particle geometry and interactions [11–14]. Distinct behaviors
have been observed for strong and weak thermal fluctuations, but the connection
between the two limits is an open question.

In this chapter we present a unified perspective on the flow-arrest transition spanning
the entire range between the thermal and athermal limits. For simplicity, our study
focuses on hard-sphere colloidal dispersions. Experiments and simulations at fixed
volume (fraction) have found the suspension viscosity to diverge algebraically at a
critical volume fraction: ηs ∝ (φc − φ)−δ, where φ is the volume fraction and δ
is the exponent. With strong thermal fluctuations the colloidal glass transition is
observed: φc ≈ 0.58–0.60 and δ ≈ 2.2–2.6 [7, 15–17]. In the limit of the jamming
transition where thermal fluctuations are weak: φc ≈ 0.585–0.64 and δ ≈ 2.0 [9,
18, 19]. Moreover, φc is sensitive to the particle size polydispersity [20], particle
surface asperity [5], and even the sample preparation protocol [21]. Traditionally,
the different exponents are interpreted as signatures of distinct physical processes—
the colloidal glass vs. the jamming transition [9]. Here we show that when the
suspension pressure, instead of the volume, is held fixed under shear a universal
exponent and behavior emerges.

http://dx.doi.org/doi:10.1103/PhysRevLett.115.158301
http://dx.doi.org/doi:10.1103/PhysRevLett.115.158301
http://dx.doi.org/doi:10.1103/PhysRevLett.115.158301
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A challenge to dense suspension rheology is the divergence of properties such as
viscosity and yield stress near φc. We overcome this in two ways. First, we impose
a constant shear stress rather than shear rate, which allows the system to flow or
not, and the yield stress—the stress below which the material does not flow—can
be identified. Second, we impose a constant confining pressure rather than a fixed
volume, which allows the system to dilate (or compact)—to change its volume
fraction—as necessary under flow. In this way we are able to approach the critical
point along trajectories at fixed shear stress and pressure, rather than, as is traditional,
along paths of fixed shear rate and volume fraction.

It proves revealing to discuss the behavior from a perspective often used in the
granular flow community. Although both the shear and normal stresses diverge at
the critical point, their ratio does not. For viscous suspensions the behavior can be
described in terms of the friction coefficient µ, a macroscopic, effective property of
the material, and the viscous flow number Iv [19],

µ = σ/Π and Iv = η0γ̇/Π, (6.1)

where σ is the shear stress, Π is the particle (or osmotic) pressure, η0 is the solvent
viscosity, and γ̇ is the strain rate. Using the viscous flow number Iv—the ratio
of an internal suspension time scale η0/Π to the flow time scale γ̇−1—Boyer et
al. [19] successfully unified the rheology of viscous non-Brownian suspensions and
inertial-driven granular materials.

For rapid granular flows both the shear and normal stresses scale inertially (as
∼ ρa2γ̇2) and their ratio, the friction coefficient, is independent of the strain rate,
which has led to the claim that a rate-independent friction coefficient is a signature
of (dry) friction-dominated material and flow. However, in viscous non-Brownian
suspensions (any colloidal suspension at high shear rates) bothσ andΠ scale linearly
with the strain rate (as ∼ η0γ̇) and the friction coefficient is independent of γ̇ even
though the material behaves as a liquid.

Liquid-like colloidal dispersions are not normally discussed in terms of µ because
at low shear rates (strong thermal motion) the shear stress is proportional to γ̇, but
the normal stress is dominated by the equilibrium osmotic pressure and thus µ ∼ γ̇
as γ̇ → 0. However, near the flow-arrest point, the material has a dynamic yield
stress, and µmay approach a constant as γ̇ → 0. The friction coefficient perspective
therefore enables a natural connection between Brownian suspensions and granular
materials.
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Figure 6.1: (a): The suspension steady shear viscosity ηs/η0 (left triangles) and
the long-time self-diffusivity ds

∞/d0 (right triangles), with d0 = kBT/(6πη0a), as
functions of Peσ in constant shear stress and pressure simulations at an imposed
pressure Πa3/kBT = 5. The filled (open) symbols represent the flowing (arrested)
states. Typical accumulated strain γ (top) and volume fraction φ (bottom) at Peσ =
0.5 (b), 5 (c), and 10 (d) as functions of dimensionless time tσ/η0 are also presented,
with the corresponding Peσ annotated in (a).

6.2 Method
We study the suspension rheology using Brownian dynamics (BD) simulations
without hydrodynamic interactions (HIs). In the simulations, we enforce the hard-
sphere interactions via the ‘potential free’ algorithm [22–25], and compute φ and γ̇
from the imposed σ and Π, which, when scaled with the thermal energy kBT , give,
respectively, the stress Péclet number Peσ = 6πa3σ/kBT and the dimensionless
pressure Π̄ = Πa3/kBT , with a the mean particle radius. The particle dynamics
follow the overdamped Langevin equation,

ζ ( ẋ − γ̇x2e1 −
1
3 ėx) = fp + fb, (6.2)

where x = (x1, x2, x3) is the particle position in the 1-(velocity), 2-(velocity gra-
dient), and 3-(vorticity) directions, ζ = 6πη0a is the Stokes resistance, ė is the
expansion rate, e1 is the unit vector in 1-direction, fp is the interparticle force [25],
and fb is the Brownian force, which has a mean of zero and a variance of 2kBTζ . We
impose periodic boundary conditions in 1- and 3-directions and the Lees-Edwards



214

boundary condition in 2-direction. The strain (γ̇) and expansion (ė) rates are com-
puted from:

σ = (1 + 5
2φ)η0γ̇ + σ

p
12, (6.3)

Π = −(κ0 +
4
3φη0)ė − 1

3σ
p : I, (6.4)

where κ0 is the bulk viscosity of the compressible solvent 1, and σp = −nkBT I −
n
〈
x fp

〉
is the particle stress contribution, with n = N/V the number density. The

simulation box size L is then adjusted isotropically as L̇ = 1
3 ėL. The novelty of our

method is that, through a compressible solvent, the constant pressure constraint for
the overdamped system is satisfied without introducing permeable boundaries.

For each (Peσ, Π̄) pair we perform at least three independent simulations, each
contains N = 200 particles with 10% particle size polydispersity [8]. The simulation
lasts at least 104 dimensionless time unitswith step size 10−4, where the time is scaled
with 6πη0a3/kBT when Peσ < 1 and with η0/σ when Peσ ≥ 1. In the appendices,
we describe the computation of fp, and show that the selected parameters adequately
capture the physics of flow-arrest transitions.

6.3 Results and discussions
Typical rheological responses from constant stress and pressure simulations at an
imposed pressure Π̄ = 5 are shown in Fig. 6.1. The Peσ dependence of the
shear viscosity ηs = σ/γ̇ and the long-time self-diffusivity (LTSD) ds

∞, measured
from the slope of the mean-square displacement in the vorticity direction, ds

∞ =

limt→∞
1
2d〈(∆x3)2〉/dt, are presented in Fig. 6.1a. The suspension exhibits a flow-

arrest transition at Peσ ≈ 5, with the flowing data shown as filled symbols and the
arrested data as open symbols. When Peσ & 5, the shear viscosity increases sharply
with decreasing Peσ, reaching ηs/η0 ≈ 2 × 104 at Peσ ≈ 5. Accompanying the
growth in ηs is an abrupt reduction in ds

∞. At lower Peσ, the shear viscosity remains
high and the LTSD low. Fig. 6.1b–6.1d show behaviors of the accumulated strain
γ =

∫ t
0 γ̇dt and the volume fraction φ at different Peσ. The accumulated strain

grows linearly with time in the flowing state, but changes little in the arrested state.
At Peσ = 5 in Fig. 6.1c, γ exhibits instability and switches between the flowing
and arrested states. Correspondingly, φ fluctuates around a mean value for both the
flowing and arrested suspensions, but becomes unstable at the flow-arrest point. We

1Treating the solvent as a compressible fluid allows the periodic unit cell to be expanded
isotropically without violating the physics of Brownian particles in Stokes flow, c.f. Ref. [26]. Thus,
a physical permeable boundary, which can cause local ordering, etc., is not necessary.
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Figure 6.2: (Color online) The steady shear rheology of hard-sphere colloidal
suspensions with constant shear stress and pressure, (a): µ = σ/Π as a function of
Iv = η0γ̇/Π and (b): µ as a function of φ. Simulations at the same imposed pressure
Πa3/kBT are shown in the same symbols. For suspensions exhibiting flow-arrest
transitions, the filled (open) symbols represent the flowing (arrested) states. The
raw and the scaled data of Boyer et al. [19] are shown in diamonds and triangles,
respectively. In (b), the dashed lines outline the boundary of the flowing region,
and the solid lines are contours of the shear viscosity ηs/η0. The Shear Arrest Point
(φSAP, µSAP) is shown as a star.

found that the suspensions is arrested when ηs/η0 > 2 × 104 over a wide range of
imposed pressures. Consequently, this is adopted as a criterion for the flow-arrest
transition in this work.

Fig. 6.2 presents the overall steady shear rheology at constant stress and pressure
near the flow-arrest transition. Fig. 6.2a shows the friction coefficient as a function
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of the viscous number, and Fig. 6.2b shows the corresponding volume fraction. The
symbols of the same color are at the same confining pressure (shown in the figure
legend) and trace out ‘isobars’. Full symbols are flowing liquid-like systems, while
unfilled symbols denote arrested states.

Starting with solid ×’s at low confining pressures, e.g., at Π̄ = 0.95 in Fig. 6.2a, µ
grows linearly with Iv at low and high Iv with different slopes; the suspension does
not arrest. The ratio of µ and Iv is the shear viscosity, ηs/η0 = µ/Iv. At high Iv, the
suspension viscosity ηs asymtotes to the solvent viscosity η0. With increasing Π̄,
the µ-Iv curve flattens as Iv decreases, but eventually turns down such that µ ∼ γ̇ as
γ̇ → 0. The suspension flows as a liquid with an increasing zero shear-rate viscosity
corresponding to the larger φ seen in Fig. 6.2b.

When the confining pressure Π̄ ≥ 3.5, the suspension arrests and flows only if µ
exceeds a limiting value µm(Π̄), and the minimum shear rate (Iv) increases. The
imposed stress corresponding to µm is the dynamic yield stress at the imposed
pressure. Moreover, µm increases with Π̄ and, as Π̄ → ∞, µm asymptotes to a
constant value of 0.16. At high Π̄ (and high Iv for low Π̄) all data collapse onto
a single curve corresponding to the limiting behavior of non-Brownian viscous
suspensions.

Fig. 6.2b shows the corresponding µ-φ curves. At low confining pressures (the ×’s)
the volume fraction increases as the shear stress (µ) decreases. When arrested, Π̄ ≥
3.5 (open symbols), dilation always precedes flow as the shear stress is increased and
themaximumflowable volume fraction φm is always lower than the zero-shear value.
As a point of reference, the zero-shear volume fraction at Π̄ = 3.5 is φ = 0.60 for
our system. As Π̄ → ∞, φm asymptotes to a constant value and the non-Brownian
limit emerges as the µ-φ curves collapse. The flowing region in Fig. 6.2b is bounded
from below by the arrested region and from above by the non-Brownian behavior.

The rightmost point of the flowing region, highlighted as a star in Fig. 6.2b, corre-
sponds to the flow-arrest transition in the viscous non-Brownian limit. This point is
referred to as the Shear Arrest Point (SAP):

(φSAP, µSAP) = lim
Π̄→∞

(φm, µm) ≈ (0.635, 0.16) , (6.5)

which represents a limit beyond which the suspension is unable to flow regardless
of the imposed pressure and shear stress. The SAP is uniquely determined from the
constant stress and pressure rheology protocol and therefore may differ from other
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Figure 6.3: (Color online) Universal viscosity divergences (a): the shear viscosity
ηs/η0 and (b): the incremental normal viscosity ηn/η0 as functions of (φm − φ),
the volume fraction difference from arrest, for flowing suspensions with Π̄ ≥ 3.5.
The inset of (a) shows φm as a function of Π̄. The legends are identical to those in
Fig. 6.2.

‘jamming’ points [5, 6]. In fact, φSAP is lower than the maximum random jammed
(MRJ) density of the corresponding polydisperse packing φMRJ ≈ 0.645.

Also presented in Fig. 6.2b are the shear viscosity contours up to ηs/η0 = 104.
Horizontal traversal near µ = 0 recovers the equilibrium suspension behavior near
the glass transition. The viscosity diverges at φg ≈ 0.6, which is also found
experimentally in similar systems [16, 17, 27]. Vertical crossing corresponds to the
constant volume rheology and the viscosity exhibits shear-thinning. Near the SAP,
the range of µ in the flowing region reduces drastically for constant volume rheology.
On the other hand, constant stress and pressure rheology allows the suspension to
dilate and to find the SAP dynamically, a key merit of our approach.

In the flowing region near the flow-arrest transition both the shear viscosity ηs and
the incremental normal viscosity ηn diverge as shown in Fig. 6.3. The incremental
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normal viscosity ηn characterizes the flow contribution to the osmotic pressure,

ηn = (Π − Πeq)/γ̇, (6.6)

where Πeq is the zero-shear equilibrium osmotic pressure at the same volume
fraction. Both ηs and ηn diverge algebraically when approaching the flow-arrest
transition: (ηs , ηn) ∼ (φm − φ)−2; the exponent 2 is independent of the imposed
pressure and thus valid for both strong and weak thermal fluctuations. The same
viscosity divergence exponents were found in experiments [19] and simulations [28]
of non-Brownian systems, suggesting the physics of jamming is the most important
and universal aspect of the flow-arrest transition. Thermal fluctuations only affect
the arrest volume fraction φm, as shown in the inset of Fig. 6.3a.

Note that the divergence of the shear viscosity with an exponent of 2 is not in-
consistent with exponent 2.2–2.6 reported for the colloidal glass transition. For
the glass transition, one approaches the arrested region in Fig. 6.2b horizontally by
varying the volume fraction at low µ, whereas the divergences observed here are
for approaching arrest at fixed pressure. Both where the viscosity starts to diverge,
φm, and how steep is the rise, the exponent α, depend on how the ‘mountain’ (the
viscosity contours) is approached.

The data collapse in Fig. 6.3 can be explained by the internal structural relaxations
in colloidal dispersions. The inherent relaxation from thermal fluctuations is char-
acterized by ds,0

∞ , and for glassy materials φ > φg, ds,0
∞ → 0. Comparing the shear

to the inherent Brownian forces defines a zero-shear Péclet number γ̇a2/ds,0
∞ and

shows that, in the glassy or arrested state, any finite shear rate gives a large Péclet
number. The system is driven far from equilibrium and therefore shows universal
behaviors. Indeed, this is seen in ηn: linear response would dictate that ηn ∝ γ̇

as γ̇ → 0 [29], rather than be independent of γ̇ as seen in Fig. 6.3b. There is no
linear response regime near a flow-arrest point. This may explain why the inherently
non-equilibrium isobaric flow-arrest transition of colloidal dispersions has features
in common with the athermal granular jamming transitions [30–32].

Finally, we compare our simulations to the experiments of Boyer et al. [19], whose
results are shown as diamonds in Fig. 6.2. The experimental data qualitatively agree
with the simulation results in the non-Brownian limit (Π̄ → ∞); however, their
flow-arrest critical point (φc, µc) = (0.585, 0.32) is quite different. We can achieve
quantitative agreement by scaling the experimental data from (φ, µ) to (φ′, µ′) as

µ′

µ
=
φSAP − φ

′

φc − φ
=
µSAP
µc

, (6.7)
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which are shown as triangles in Fig. 6.2 and match the simulation results. The
scaling of Eq. (6.7) implies that the fundamental physics behind the viscous non-
Brownian arrest does not change with the HIs or the possible frictional contact forces
in the experiments. Our simulations clearly capture the physics of the flow-arrest
transition.

That µc > µSAP can be understood from the lack of HIs in the simulations. Hydro-
dynamics give an additional contribution to the shear stress via the high-frequency
dynamic viscosity, which increases σ and therefore µ. However, they do not explain
the difference in the computational φSAP and the experimental φc seen in Fig. 6.2b.
One interpretation is that frictional contact forces in the experiments reduce the ar-
rest volume fraction [5, 12]. Yet, there is a simpler explanation. In the experiments
near suspension arrest, the minimum suspension height in the shear cell (8.8 mm)
is not much larger than the particle diameter (1.1 mm) [19, 33]. There is a region
of order the particle size a adjacent to the apparatus walls that is inaccessible to the
particles. Using the accessible volume rather than the total volume can increase the
volume fraction by as much as 11% and account for the difference between φSAP and
φc. Clearly, extreme care is needed when studying dense suspensions as seemingly
unimportant details can drastically affect the results.

6.4 Conclusions
This chapter demonstrates that constant stress and pressure rheology is an effective
approach to study the flow-arrest transitions of dense amorphous materials and
provides a unique perspective to distinguish the most fundamental physics in this
transition. We found the viscous non-Brownian Shear Arrest Point (SAP) of hard-
sphere colloidal suspensions from the collapse of the flow curves. The results
strongly suggest that the jamming and glass transitions are different facets of the
same phenomenon, offering the hope for a unified understanding.

6.A Computing the interparticle force
In BD the overdamped Langevin equation [Eq. (6.2)] is integrated with respect to
time. Since the interactions in hard-sphere suspensions are singular, particle overlap
is unavoidable regardless of the step size ∆t. In the ‘potential free’ algorithm, the
overlap-free condition ismaintained in a predictor-corrector fashion: in the predictor
step, the dynamics are evolvedwithout the hard-sphere potential, and in the corrector
step, the algorithm checks the particle overlap that violates the hard-sphere potential
and moves the overlapping particles back to contact pairwise along the line that
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connects the particle centers until the suspension is overlap-free. If particle i at ri

overlaps particle j at r j , i.e., |ri j | > (ai + a j ), where ri j = ri − r j and ai and a j are
the particle radii, the particles are moved along ri j according to

∆ri = a j∆i j and ∆r j = −ai∆i j, (6.8)

where∆i j = ri j[|ri j |
−1−(ai+a j )−1]. The interparticle force on particle i is computed

according to Stokes law,
fp,i = 6πη0ai∆ri/∆t, (6.9)

and here the Newton’s third law is satisfied fp,i + fp, j = 0.

6.B System size dependence
Fig. 6.4 presents the system size dependence on the suspension shear viscosity ηs,
the long-time self-diffusivity ds

∞, and the maximum of the dynamic susceptibility
max( χ4) as functions of Peσ with different system sizes N . The imposed pressure
is Π̄ = 5. The dynamic susceptibility χ4 for an N-particle system is defined as [34],

χ4(k, t) = N[〈Fs (k, t)2〉 − 〈Fs (k, t)〉2], (6.10)

where Fs (k, t) = N−1 ∑
i eık ·[xi (t)−xi (0)] is the self-intermediate scattering function,

k is the wave vector, ı =
√
−1, and xi (t) is the particle position at time t. In Fig. 6.4c

the wave vector k is in the vorticity direction and |k |a = 3.72, near the first peak
of the static structure factor. When Peσ > 5, ηs/η0, ds

∞/d0, and max( χ4) show
little N-dependence for flowing suspensions. Near the flow-arrest transition, there
are quantitative differences at different N . For example, with increasing N , the Peσ
corresponding to the flow-arrest point shifts slightly towards lower Peσ, and the
suspensions can achieve higher max( χ4) and lower ds

∞. However, the qualitative
behaviors in Fig. 6.4 remain consistent. Using a modest system size of N = 200
captures the physics behind the flow-arrest transition with only small quantitative
differences in the N → ∞ limit, and allows us to explore a wide range of parameters
in a reasonable amount of time.

6.C Initial condition dependence
To investigate the effect of initial conditions on the BD simulation results, we
performed simulations at N = 200 for a few (Π̄, Peσ) pairs near the flow-arrest
transitions. Each (Π̄, Peσ) pair corresponds to 50 independent runs with distinct
initial configurations generated from the Lubachevsky-Stillinger algorithm [35],
which is also used in this work. Each run lasts 5 × 103 dimensionless time units
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Figure 6.4: (Color online) The system size dependence on (a): the suspension shear
viscosity ηs/η0, (b): the long-time self-diffusivity ds

∞/d0. and (c): the maximum
of the dynamic susceptibility max( χ4) as functions of Peσ for constant stress and
pressure simulations at Πa3/kBT = 5. The filled (open) symbols represent the
flowing (arrested) suspension states.
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Figure 6.5: (Color online) The initial condition dependence on (a): the average
volume fraction φ and (b): the average strain rate γ̇a2/d0, with d0 = kBT/(6πη0a),
as functions of the number of independent simulations in the group Nsamp. The
simulations are performed at Πa3/kBT = 5 (open symbols) and 50 (filled symbols).
The stress Péclet number Peσ are annotated in on the graph. The dashed lines show
the overall average of all 50 independent runs.

with a step size 10−3. Further decreasing the step size to the value used in this work
(10−4) does not alter the results. To quantify the initial condition dependence, we
randomly partitioned the results to independent groups of Nsamp = 1, 2, 3, 5, 10,
and 29 runs and compute the group average of the volume fraction φ and the scaled
strain rate a2γ̇/d0 (after the initial transient). Fig. 6.5 presents the results at Π̄ = 5
(open symbols) and 50 (filled symbols), representing the behaviors at low and high
imposed pressures, as functions of the group size Nsamp. The average from the
entire 50 runs are shown dashed lines in the corresponding color. For reference, the
flow-arrest transition takes place at Peσ ≈ 5 for Π̄ = 5 and Peσ ≈ 130 for Π̄ = 50.

Fig. 6.5 shows the group size Nsamp does not affect the average φ and γ̇ when Peσ
is higher than the yield Péclet number. Here, the suspension flows as liquid and the
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thermal and mechanical fluctuations erase any influences of the initial conditions.
However, close to the flow-arrest transitions, i.e., (Π̄, Peσ) = (50, 145) and (5, 5),
the results are more sensitive to Nsamp: both φ and γ̇ fluctuates around the mean
value without a definite trend. This fluctuation is also reflected in the large error
bars in Fig. 6.3. Fig. 6.5 further demonstrates that Nsamp ≥ 3 adequately reflects
the system behavior and justifies the computational protocol of this work. It also
validates that our results and conclusions are independent of the initial conditions.
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