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C h a p t e r 4

SPECTRAL EWALD ACCELERATION OF STOKESIAN
DYNAMICS FOR POLYDISPERSE COLLOIDAL SUSPENSIONS

[1] M. Wang and J. F. Brady, “Spectral Ewald Acceleration of Stokesian Dy-
namics for polydisperse suspensions”, Journal of Computational Physics
306, 443 (2016) doi:10.1016/j.jcp.2015.11.042,

4.1 Introduction
Colloidal suspensions are dispersions of small particles in a viscous solvent, and
are found in almost every aspect of our life, ranging from dairy milk to printer ink.
They have two distinguishing features: (i) Brownian motion of the particles due to
thermal fluctuations, and (ii) the long-range, non-pairwise-additive hydrodynamic
interactions (HIs) mediated by the solvent. As a result of these features, disper-
sions exhibit many surprising behaviors such as non-Newtonian rheology, glass
transitions, phase transitions, etc., and have attracted extensive scientific and engi-
neering interests [1]. Using monodisperse colloidal suspensions as a model system,
significant understanding has been achieved through theoretical, simulation, and
experimental studies.

However, naturally occurring colloidal suspensions are seldom monodisperse, and
particle size differences are often unavoidable. In addition, particle size disparity
introduces phenomena otherwise not observed in monodisperse suspensions. For
example, size polydispersity reduces suspension viscosity [2–4], softens and even
melts colloidal glasses [5], and promotes particle segregation in pressure driven
flows [6]. Apparently, these behaviors can only be understood by studying dynamics
of polydisperse colloidal suspensions.

In this work we develop a computational method based on the framework of Stoke-
sian Dynamics [7] (SD) for fast and realistic dynamic simulations of dense, poly-
disperse colloidal suspensions, with a focus on suspension rheology. Presently,
theoretical and computational studies on polydisperse colloidal suspensions, even
for the simplest case of neutrally buoyant hard-sphere particles, are scarce, and
heavily focus on the dilute or the short-time limits [8–12]: the former restricts HIs
to the two- or three-body level, and the latter ignores suspension dynamic evolution,
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particularly the influence of Brownian motion. Beyond these limiting cases, we are
only aware of the work of Ando & Skolnick [13], who studied particle diffusion in
dense polydisperse colloidal suspensions using conventional SD in the context of
biological molecular crowding. Their implementation limits HIs to the force-torque
level, and therefore is unsuitable for rheological investigations.

A difficulty in dynamic simulations of dense colloidal suspensions is the singular
HIs due to the lubrication interactions between close particle pairs. To directly
resolve HIs, a computational method must capture the flow details in the small
gap between particles. For multipole expansion based methods [7, 14, 15], a large
number of expansion terms are necessary to achieve convergence, and for methods
based on surface or spatial discretization, such as the boundary element method [16,
17] or direct numerical simulations [18–21], very fine meshing is needed in the gap.
Directly resolving lubrication interactions drastically increases the computational
cost and limits many studies to low volume fractions. For example, the force
coupling method study of Abbas et al. [22] on the dynamics of non-Brownian
bidisperse suspensions is limited to particle volume fractions below 20%.

A solution to the above difficulty is the SD framework [7], which exploits the local
and pairwise additive nature of lubrication interactions. In SD, the long-range, non-
pairwise-additive HIs are computed from the mobility perspective using low-order
multipole expansions, and for particles in close contact, lubrication corrections
are added pairwise to the corresponding resistance formalism. The corrections
are based on the solutions of two-body problems with the far-field contributions
removed. In this way, SD avoids directly resolving the singular lubrication interac-
tions. The idea of lubrication correction in SD is general enough for incorporation
to other computational methods. For example, similar lubrication corrections has
been developed for hydrodynamic multipole methods [14, 15, 23, 24], the force
coupling method [25], the lattice Boltzmann method [26], and the fictitious domain
method [27]. Moreover, with an appropriate fluid solver, the lubrication corrections
can be improved beyond the pairwise level [28]. We feel that, by incorporating the
lubrication corrections, many recent computational techniques can significantly ex-
tend their accessible parameter range without increasing the computational burden.
This point is demonstrated in the present work, which essentially combines the lubri-
cation corrections and the Spectral Ewald (SE) method of Lindbo & Tornberg [29,
30] for dynamic simulations of dense polydisperse suspensions.

The Spectral Ewald (SE) method is a new particle mesh technique for computing
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long-range electrostatic [30] or hydrodynamic [29] interactions, and has recently
been incorporated into the boundary integral method for spheroidal particles [31].
Particle mesh techniques including the Particle Mesh Ewald (PME) method [32]
and the Smooth Particle Mesh Ewald (SPME) method [33] have been extensively
used for calculating HIs with O(N log N ) computation scaling. Note that, although
algorithms based on the fast multipole method [34] can achieve a better computation
scaling–down to O(N ), they often have significant computation overheads, and re-
quire large system sizes to justify the complexity [35]. Therefore, for many dynamic
simulations, the particle mesh techniques remain the practical choice. Notable
examples are Accelerated Stokesian Dynamics (ASD) [36] which uses the PME
method for the far-field mobility evaluation, and the work of Saintillan et al. [37],
where the SPME method is employed to study fiber sedimentation. Compared to
other particle mesh techniques, the SE method is spectrally accurate, and can sepa-
rate errors from the mesh interpolation and the wave-space truncation. Both features
are essential for capturing the complicated HIs in polydisperse suspensions.

Another challenge in dynamic simulations of colloidal suspensions is Brownian
motion, which is configuration dependent due to the fluctuation-dissipation relation.
When Euler-Maruyama time integration is used, the deterministic particle drift
due to the Brownian motion must also be included [38]. As a result, computing
Brownian-related quantities requires the gradient and the square root of the mobility
tensor. Fortunately, these quantities can be evaluated in a matrix-free manner
under the framework of ASD, making dynamic studies on hundreds of colloidal
particles possible [39, 40]. Moreover, the mean-field Brownian approximation,
which estimates the mobility tensor based on the near-field HIs, is able to further
speed up the computations [39, 41]. In this work, these developments are fully
incorporated for the dynamic simulation of Brownian polydisperse suspensions.
Note that a different approach to treat the Brownian motion is based on fluctuating
hydrodynamics [42], where the thermal fluctuations are directly incorporated in the
governing fluid equations. It has been applied to the lattice Boltzmann method [43],
the force coupling method [44], and the immersed boundary method [45].

The emergence of the General Purpose Graphic Processing Unit (GPGPU) program-
ming often brings significant, sometimes orders of magnitude, speed improvements
for many existing algorithms. Recently, Kopp & Höfling [46] implemented the con-
ventional SD for infinite solvent using GPGPU with direct HI summation. Despite
the O(N2) scaling, they achieved impressive speedup over the CPU implementation.
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However, to study the dynamics of homogeneous suspensions, further extension to
periodic systems are necessary. On the other hand, GPU acceleration of the SPME
method [47, 48] in molecular dynamics provides access to millisecond-scale dy-
namics on personal computers. These acceleration techniques are applicable to
particle mesh techniques in general, and inspired the present work. In particular,
we used GPGPU programming to compute the HIs with the SE method in homoge-
neous suspensions, and realized almost an order of magnitude speedup in dynamic
simulations.

Furthermore, our computation method extends SD to compressible suspensions,
allowing dynamic simulations of constant pressure rheology [49] without introduc-
ing geometric confinement. This is possible because the flow disturbances due to
rigid particles in a compressible solvent are incompressible and satisfy the Stokes
equation [50]. Another benefit of such extension is that the suspension normal
stress, which is essential for particle migration in sheared suspensions [51–53], can
be directly evaluated.

The remainder of the chapter is arranged as follows: Sec. 4.2 establishes the basic
formalism for HIs in compressible Stokes flow. In Sec. 4.3, various aspects of mobil-
ity computations with the SE method are presented. Here, we also discuss different
approaches to incorporate particle size polydispersity and the GPGPU implementa-
tion. In Sec. 4.4, we present the Spectral Ewald Accelerated Stokesian Dynamics
(SEASD) and its mean-field Brownian approximation, SEASD-nf, for dynamic sim-
ulations of Brownian polydisperse suspensions. In Sec. 4.5 we carefully discuss the
accuracy and parameter selections for the SE method, and the computation scaling
of various SEASD implementations. Sec. 4.6 presents a series of validation calcu-
lations for monodisperse and bidisperse suspensions with SEASD and SEASD-nf:
Sec. 4.6 addresses the short-time transport properties, Sec. 4.6 evaluates the equi-
librium osmotic pressure and viscoelastic moduli, and Sec. 4.6 presents various
aspects of the steady shear rheology of Brownian suspensions. The results also
reveal the role of particle sizes in the dynamics of bidisperse suspensions. Finally,
we conclude this work with a few comments in Sec. 4.7.

4.2 Hydrodynamic interactions in (compressible) Stokes flow
The mobility and resistance formalism
We first consider a suspension of N spherical rigid particles, each with radius ai and
position ri, in an incompressible solvent of viscosity η0 and density ρ0, occupying
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a volume V . For the special case of bidisperse suspensions with particle sizes a1

and a2, the suspension composition is fully characterized by three dimensionless
parameters,

λ = a2/a1, φ = φ1 + φ2, and y2 = φ2/φ, (4.1)

where λ is the size ratio, φ is the total volume fraction, and y2 is the volume ratio of
species 2. The species volume fraction is φα = 4

3πa3
αnα, α ∈ {1, 2}, and the species

number density is nα. The total number density satisfies n = n1+n2, and the species
number fraction is xα = nα/n. Without loss of generality, we take a2 > a1.

If the particles are sufficiently small, the particleReynolds numberRep,α = ρ0aαUα/η0 �

1, where Uα is the species characteristic velocity. In this limit, the velocity field
v(r ) and the pressure field p(r ) of the solvent satisfy the Stokes equation,

∇p = η0∇
2v, ∇ · v = 0, (4.2)

supplemented by no-slip boundary conditions on particle surfaces. Due to the
linearity of Eq. (4.2), there is a linear relation between the velocity disturbance on
the surface of a particle i, u′i , and the surface force density of another particle j, f j ,

u′i (r ) = −
∫

dr′
∑

j

Mi j (r, r′; X ) · f j (r′), (4.3)

where Mi j (r, r′; X ) is a mobility operator depending on positions r and r′ and the
suspension configuration X = {r1, r2, . . .}. The surface force density is localized on
the particle surface, i.e., f j (r ) = σ(r ) · n jδ(‖r − r j ‖ − a j ), where σ is the stress
tensor, n j is the surface normal of particle j, and δ(x) is the Dirac delta function.
The stress tensor σ = −pI+ η0[∇v + (∇v)†], with † indicating transposition and I is
the idem tensor. The velocity disturbance u′i (r ) = Ui +Ωi × (r − ri)− v∞(r ), where
v∞(r ) is the ambient flow satisfying ∇ · v∞ = 0, and Ui and Ωi are respectively
the linear and angular velocities of particle i. By stacking the force density vectors
f = ( f1, f2, . . .)† and the velocity disturbance vectors u′ = (u′1, u

′
2, . . .)

† the grand
mobility operator M is constructed from elements Mi j in Eq. (4.3), such that

u′(r ) = −
∫

dr′M(r, r′; X ) · f (r′), (4.4)

for the N particles in the suspension. Eqs. (4.3) and (4.4) are known as the mobility
formalism, and the inverse relation is the resistance formalism,

f (r ) = −
∫

dr′R(r, r′; X ) · u′(r′), (4.5)
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where R(r, r′; X ) is the grand resistance operator.

The integral representations in Eqs. (4.4) and (4.5) can be equivalently expressed as
multipole expansions of f (r ) and u′(r ), f and u′ respectively, around the particle
centers, i.e.,

f (r ) → f =



F H

SH

...



and u′(r ) → u
′ =



U ′

−E∞
...



, (4.6)

where F H is the generalized hydrodynamic force, SH is the hydrodynamic stresslet,
U ′ is the generalized velocity disturbance, and E∞ is the rate of strain tensor for the
ambient flow. Note that F H = (FH,TH)†, where FH and TH are respectively the
particle hydrodynamic force and torque for all particles, and U ′ = (U − U∞,Ω −

Ω∞)†, where U − U∞ and Ω −Ω∞ are respectively the linear and angular velocity
disturbances. The hydrodynamic force, torque, and stresslet for particle i are defined
as integrals of the localized surface force density fi,

FH
i = −

∫
dr fi (r ), (4.7)

TH
i = −

∫
dr (r − ri) × fi (r ), (4.8)

SH
i = −

∫
dr 1

2 [(r − ri) fi (r ) + fi (r )(r − ri)]. (4.9)

InEq. (4.6) the ambient velocities are evaluated at particle centers, i.e.,U∞i = v∞(ri),
Ω∞i =

1
2∇× v

∞ |ri , and E∞ = 1
2 [∇v∞ + (∇v∞)†]ri . The expansions in Eqs. (4.4) and

(4.5) lead to the following infinite dimension linear relation,

u
′ = −M(X ) · f and f = −R(X ) · u′, (4.10)

where M(X ) and R(X ) are the multipole grand mobility and resistance tensors of
operators M(r, r′; X ) and R(r, r′; X ), respectively. Evidently, M = R−1, and from
the Lorentz reciprocal theorem [54], both are positive definite.

The infinite dimension vectors f and u′ can be reduced to finite dimensions by
projection [55]. To the stresslet level of f and the strain rate level of u′, we introduce
projection matrices P and Q, such that P · f = (F H,SH)† and Q · u′ = (U ′,−E∞)†.
Moreover, P ·P† = Q ·Q† = I, where I is an identity matrix. The following linear
relation holds: 

U ′

−E∞


= −M ·



F H

SH


, and R =M−1, (4.11)
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where M = QMP† is the grand mobility tensor and R = PRQ† is the grand
resistance tensor. BothM and R are exact as the projections P and Q ensure that
all the scattering of hydrodynamic interactions among the particles are captured.
For convenience, the grand resistance tensor is partitioned as

R =



RFU RF E

RSU RSE


, (4.12)

where, for example, RFU describes the coupling between the generalized force and
the generalized velocity. The linear relation in Eq. (4.11) can also be deduced from
the linearity of Eq. (4.2) without appealing to the multipole expansion, but here
we establish a connection with other works, particularly the multipole methods of
Cichocki and coworkers [15, 56]. Note that for rigid spherical particles, external
flows can only affect the first two moments of f and u′ due to symmetry and the
no-slip boundary condition.

Elements ofM and R can be computed from, for example, the induced force multi-
pole [57, 58], eigenfunction expansions [15, 24, 59], and multipole expansions [7].
To the stresslet level, M can be conveniently evaluated by combining the Faxén
formulae and the multipole expansions. For a rigid particle i in an incompressible
solvent, the Faxén formulae are [7],

Ui − U
∞ = −

FH
i

6πη0ai
+

(
1 + 1

6 a2
i ∇

2
)
v′��ri (4.13)

Ωi −Ω
∞ = −

TH
i

8πη0a3
i

+ 1
2∇ × v′��ri (4.14)

−E∞ = −
SH

i
20
3 πη0a3

i

+
(
1 + 1

10 a2
i ∇

2
)

1
2 [∇v′ + (∇v′)†]��ri, (4.15)

where the overline indicates the traceless part of the symmetric tensor, and v′(r )
is the velocity field in the absence of particle i. With the fundamental solution
of Stokes equation J(r ) and the force density f , the velocity field v′(r ) can be
computed as [54],

v(r ) = −
1

8πη0

∫
dr′J(r − r′) · f (r′). (4.16)

Expanding the force density around particle centers, we have

v′(r ) =
1

8πη0

∑′

j

(
1 + 1

6 a2
j∇

2
)

J ·FH
j +R ·TH

j −
(
1 + 1

10 a2
j∇

2
)

K : SH
j + · · · , (4.17)
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where the prime on the summation excludes the case i = j, and the functions
J, R, and K are evaluated at r − r j . In the Cartesian tensor form, R = Rαβ =
1
4ε δγ β (∇γ Jαδ − ∇δ Jαγ) and K = Kαβγ =

1
2 [∇γ Jαβ + ∇β Jαγ], with εαβγ the Levi-

Civita symbol. With Eqs. (4.13)–(4.15) and (4.17), the grand mobility tensorM for
incompressible solvents can be constructed in a pairwise fashion.

The fundamental solutions
The formalism in Sec. 4.2 relies on J(r ), the fundamental solution of Stokes equa-
tion. Different boundary conditions such as periodicity [60, 61], confinement [24,
62], or a combination of both [63], can be incorporated to J(r ). For an infinite
expanse of fluid, we have the well-known Oseen tensor,

J(r ) =
1
r

(I + r̂ r̂ ), (4.18)

where r = ‖r ‖ and r̂ = r/r .

To study dynamics of homogeneous suspensions, periodic boundary conditions
are necessary to assess the HIs. In this case, the proper fundamental solution
J(r ) describes the fluid velocity disturbance due to an array of periodic forces
F

∑
p δ(r − Rp), where Rp =

∑3
d=1 pdad is the location of the periodic forcing.

Here, p = (p1, p2, p3) ∈ Z3, δ(r ) is the 3D Dirac delta function, and a1, a2, and
a3 are the Bravais lattice vectors describing the spatial periodicity. From a Fourier
expansion of the Stokes equation [Eq. (4.2)], we have for the periodic J(r ):

J(r ) = −
8π
V

(I∇2 − ∇∇)
∑
k,0

1
k4 exp(−ık · r ), (4.19)

where ı =
√
−1, the unit cell volumeV = a1·(a2×a3), thewave vector k =

∑3
d=1 jdbd

is defined by the reciprocal vectorsb1, b2, andb3, j = ( j1, j2, j3) ∈ Z3, and k2 = k ·k.
Writing the lattice and the reciprocal vectors as column vectors and definingmatrices
A = [a1a2a3] and B = [b1b2b3], we have B† = 2πA−1 and exp(ık · Rp) = 1. By
requiring k , 0 in Eq. (4.19), the external forces are balanced by the pressure
gradient [60], a necessary condition for convergent HIs [64].

A difficulty associated with HIs is the long range nature of J(r ), i.e., Eq. (4.18)
decays as r−1 in the real space and Eq. (4.19) as k−2 in the wave space. For periodic
systems, however, the conditionally converging sum in Eq. (4.19) can be split into
two exponentially fast converging series, i.e.,

J(r ) = JR(r ) + JW (r ), (4.20)
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where JR(r ) is the real-space sum, JW (r ) is the wave-space sum. Although the split-
ting in Eq. (4.20) is not unique [29], a particularly efficient scheme by Hasimoto [60]
utilizes the integral

1
k4 = π

2
∫ ∞

0
β exp(−πk2 β)dβ, (k , 0), (4.21)

and the Poisson summation formula. The result is

JR(r ) =
∑
p,0

(I∇2−∇∇)
[
rErfc(rξ) −

1
ξ
√
π

e−r2ξ2
]
, (4.22)

JW (r ) =
8π
V

∑
k,0

(I∇2−∇∇)
(
−1 −

k2

4ξ2

)
1
k4 e−

1
4 k2ξ−2

e−ık ·r, (4.23)

where ξ is the splitting parameter and Erfc(x) is the complementary error function.
Eqs. (4.20), (4.22), and (4.23) are referred to as the Ewald summation of the
Oseen tensor. The real-space sum JR only covers the neighboring periodic cells.
The parameter ξ is consistent with the convention of Beenakker[61] and satisfies
4παξ2 = 1, where α is the splitting parameter introduced by Hasimoto [60].

Extension to compressible fluid
The formalism in Sec. 4.2 is limited to an incompressible fluid, i.e., the imposed
flow must satisfy ∇ · v∞ = 0. This requirement is relaxed by imposing a uniform
rate of expansion everywhere in the fluid, such that ∇ · v∞ = E∞, and the fluid
is assumed compressible with a bulk viscosity κ0. The rigid particles, unable to
expand with the compressible fluid, generate a velocity disturbance that satisfies the
incompressible Stokes equation [50]. From the linearity of Stokes flow, this velocity
disturbance can be superimposed with other flows in the suspension, extending the
existing formalism to compressible fluids.

For a rigid particle of radius ai located at ri = 0, the velocity disturbance vs due to
a compressible flow with an expansion rate E∞ is

vs (r ) = −1
3 a3

i E∞
r

r3 . (4.24)

This isotropic flow disturbance generates an isotropic stress contribution. Introduc-
ing the pressure moment as the trace of the stresslet in Eq. (4.9), i.e.,

SH
i = −

∫
dr (r − ri) · fi (r ), (4.25)

we have SH
i = −

16
3 πη0a3

i E∞ from Eq. (4.24). Therefore, the velocity disturbance
due to a pressure moment SH

i at the origin is

vs (r ) =
1

16πη0

r

r3 SH
i = Q(r )SH

i . (4.26)
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Adding the compressible velocity disturbances vs (r ) from other particles to the
incompressible velocity disturbance v′(r ) in Eq. (4.17), the general velocity distur-
bance in a compressible suspension is

v′c(r ) = v′(r ) +
∑′

j

Q(r − r j )SH
j . (4.27)

When applying the Faxén formulae [Eqs. (4.13)–(4.15)] in compressible suspen-
sions, the velocity disturbance v′c, instead of v′, is used.

In addition to Eqs. (4.13)–(4.15), the Faxén relation for the pressure moment in a
compressible fluid is [65, 66]

SH
i = −

16
3 πη0a3

i E∞ + 4πa3
i p′(ri), (4.28)

where p′ is the pressure disturbance without the particle at ri. The pressure distur-
bance can be obtained from the pressure fundamental solution of Stokes equation,

P(r ) =
r

r3 , (4.29)

such that the pressure distribution due to a force density is

p(r ) = −
1

4π

∫
dr′P(r − r′) · f (r′). (4.30)

For the pressure disturbance p′ in Eq. (4.28), expanding the surface force densities
leads to

p′(r ) =
1

4π

∑′

j

P(r − r j ) · FH
j − ∇P : SH

j |(r−r j ) + · · · . (4.31)

Eq. (4.28) is different from the Faxén formulae in Eqs. (4.13)–(4.15) as it presents
the pressure moment or the trace of the stresslet on the left hand side. This subtle
difference highlights a distinct feature of the compressible flow disturbances: in a
compressible fluid, the pressure moment can cause particle movement satisfying
the incompressible Stokes equation, but the incompressible force moments cannot
generate compressible disturbances. As a result, the interaction part of the pressure
moment can only be evaluated after FH

i , TH
i , and SH

i are known. Otherwise, the
resulting hydrodynamic interactions contain spurious contributions due to the un-
physical coupling between the incompressible force moments and the compressible
flow disturbances.

To extend the above results for vs and SH
i to periodic boundary conditions, we note

that the divergence of Q in Eq. (4.26) satisfies

∇ · Q =
1

4η0
δ(r ), (4.32)
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since ∇2r−1 = −4πδ(r ). Therefore, for uniform expansion in compressible sus-
pensions, the particles act as fluid sources, each with a strength proportional to its
pressure moment. In a periodic system, the velocity disturbance corresponding to
an array of sources is obtained by replacing the delta function in Eq. (4.32) with∑

p δ(r − Rp). From Fourier transform, the solution is

Q(r ) =
1

4η0V
∇

∑
k,0

1
k2 e−ık ·r . (4.33)

The above wave-space sum can be split to two exponentially converging series [30,
60] using ∑

k,0

1
k2 e−ık ·r =

V
4π

∑
p,0

1
r

Erfc(rξ) +
∑
k,0

1
k2 e−

1
4 k2ξ−2

e−ık ·r . (4.34)

Similar to Q(r ), the pressure fundamental solution P(r ) in Eq. (4.29) can also be
extended to periodic systems.

4.3 The mobility computation
The mobility problem seeks the action of the grand mobility tensor M on the
force moments such as F H and SH. It can be constructed in a pairwise fashion
using the formalism in Sec. 4.2 for compressible suspensions. Naïvely, this is
an O(N2) operation for an N-particle system since the long-range HIs necessitate
considerations of all particle pairs. However, with the Ewald summation that splits
the fundamental solutions J(r ), Q(r ), and P(r ) into exponentially fast converging
wave-space and real-space series, the particle mesh techniques can improve the
computation scaling to O(N log N ). In the following, our implementation of the
mobility computation is discussed.

Wave-space computation: the Spectral Ewald (SE) method
The wave-space computation concerns the part of grand mobility tensor associated
with JW (r ) of Eq. (4.23) and the wave-space sum of Eq. (4.34) in P(r ) and Q(r ).
Using the Fast Fourier Transform (FFT) algorithm, the computation cost can be
reduced to O(N log N ). To illustrate this, let us consider the wave-space velocity
disturbance UW

i on particle i at the Rotne-Prager level, obtained by combining
Eqs. (4.13), (4.17), and (4.23), i.e.,

UW
i =

1
η0V

∑
k,0

e−ık ·ri
(
1 − 1

6 a2
i k2

)
g1(k) ·

∑
j

(
1 − 1

6 a2
j k2

)
eık ·r jFH

j , (4.35)
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and the wave-space kernel

g1(k) =
(
1 + 1

4 k2ξ−2
)

k−4e−
1
4 k2ξ−2

(Ik2 − kk). (4.36)

Different from Eq. (4.17), the summation over particle j in Eq. (4.35) is unrestricted
and includes the case of i = j. Therefore, the self interaction term for i = j, which
is from the inverse transform of Eq. (4.35) with ri = r j [61],

1
8η0π3

∫ (
1 − 1

6 a2
i k2

)2
g1(k)dk · FH

i =
ξ (9 − 10a2

i ξ
2 + 7a4

i ξ
4)

18η0π3/2 FH
i , (4.37)

should be removed. Eq. (4.35) exposes the basic idea behind many particle mesh
techniques including the PME method and the SPME method. From an inverse
Fourier transform, the real-space force distribution corresponding to the summation
over j in Eq. (4.35) is ∑

j

(1 + 1
6 a2

j∇
2)FH

j δ(r − r j ). (4.38)

The force distribution in Eq. (4.38) is assigned to a regular spatial grid by approx-
imating the delta functions by Lagrangian polynomials in the PME method [67] or
Cardinal B-splines in the SPMEmethod [33]. The interpolated forces are then trans-
formed to the wave space by FFT and the wave-space computation in Eq. (4.35) is
performed. The wave-space results is then brought back to the real space by inverse
FFTs. Subsequently, the velocity on each particle,UW

i , is interpolated back from the
grid, preferably using the same interpolation scheme for the force assignment [68].
Here, the action of the mobility tensor on the force FH, rather than the tensor itself,
is computed. The kernel g1(k) in Eq. (4.36) is effectively a low-pass filter that cuts
off the spatial signals at high k. Computationally, for M3 grid points the FFT scales
as O(M3 log M3). In FFT-based particle mesh methods, it is necessary to have
M ∝ N1/3 to ensure the overall accuracy in the mobility evaluation as the number
of near neighbors in the real-space computation is kept constant. Consequently, the
wave-space computation scales as O(N log N ).

There are two sources of error affecting the accuracy of particle mesh techniques.
The first is associated with the truncation of the wave-space sum (k-summation) in
Eq. (4.35). This is only affected by the number of grid points M in the simulation
box. The second error is the interpolation error, and arises from polynomial approx-
imation of the δ-functions in Eq. (4.38). For a simulation box of size L, this error
scales as (L/M)p, where p is the polynomial order of the approximation scheme.
Since both errors are associated with M , we cannot separate the two error sources.
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Consequently, to maintain a satisfactory overall accuracy, a large M is often used
in the wave-space computations to keep the interpolation error small, resulting in
unnecessary FFT computations.

In addition, for polydisperse suspensions, different particle sizes introduce addi-
tional complications to traditional particle mesh techniques. If the Laplacian in
Eq. (4.38) is computed in the real space in the SPME method, the interpolation
error increases to (L/M)p−2, which further increases the M requirement. For the
PME method, real-space differentiation is unsuitable due to the discontinuity of
Lagrangian polynomials, and all the computations have to be carried out in the
wave space. This significantly increases the total number of FFTs. In addition,
different particle sizes increase the complexity in the algorithm implementation.
Therefore, a simple method with flexible error control is crucial for accurate and
efficient wave-space computation in polydisperse systems.

To address these concerns, we use a new particle mesh technique, the Spectral
Ewald (SE) method [29–31] for the wave-space mobility computation. The SE
method decouples the k-space truncation and interpolation errors, and is accurate,
efficient, and flexible for polydisperse systems. To show this, we use Eq. (4.35)
again as an example and consider the general case of non-orthogonal lattice vectors.
We first introduce the fractional coordinate t = (t1, t2, t3)† ∈ [0, 1)3. For each
point r in the simulation box, r = t1a1 + t2a2 + t3a3 = A · t. Accordingly, defining
q = (q1, q2, q3)† such that k = q1b1+q2b2+q3b3 = B · q, exp(ık · r ) = exp(2πıq · t),
and k2 = q† · B† · B · q. Eq. (4.35) is rewritten in t and q as

UW
i =

1
η0V

∑
q,0

e−2πıq·ti− 1
8 θq2ξ−2 (

1 − 1
6 a2

i q
† · B† · B · q

)
e

1
4 θq2ξ−2

g1(B · q)

·
∑

j

(
1 − 1

6 a2
j q
† · B† · B · q

)
e2πıq·t j− 1

8 θq2ξ−2
FH

j , (4.39)

with two e−
1
8 θq2ξ−2 multiplied after particle positions and one e

1
4 θq2ξ−2 before g1, and

θ is a parameter. Introducing the Fourier transform pair

f̂ q =
∫

dt f (t)e2πıq·t and f (t) =
∫

dq f̂ qe−2πıq·t, (4.40)

the basic idea of SE is to note that

h(t) =
∫

dqe−2πıq·t− 1
8 θq2ξ−2

=

(
8πξ2

θ

) 3
2

exp
(
−

8π2ξ2

θ
‖ t ‖2∗

)
, (4.41)

i.e., the Fourier transform of a Gaussian remains a Gaussian, and the shape of the
Gaussian is controlled by θ. Here, ‖ · ‖∗ indicates distance computation using the



118

minimum image convention for periodic systems. The inverse Fourier transform of
the second line of Eq. (4.39) with respect to q is

H (t) =
∑

j

(
1 + 1

24 a2
j π
−2
∇
†
t · B

† · B · ∇t
)

h��(t−t j )F
H
j , (4.42)

where ∇t = (∂/∂t1, ∂/∂t2, ∂/∂t3)†. Eq. (4.42) facilitates interpolation of a discrete
force distribution onto a uniform grid of coordinate t via theGaussian shape function
h(t) in Eq. (4.41). The effect of particle size is automatically incorporated in the
grid assignment scheme in the real space. After converting the real-space H (t) to
the wave-space Ĥq using FFTs, the wave-space computation produces

Ĝq =




e
1
4 θq2ξ−2g1(B · q) · Ĥq, q , 0

0 otherwise.
(4.43)

From Parseval’s theorem, ∫
T

dt f (t)g∗(t) =
∑
q

f̂ q ĝ∗q, (4.44)

where T is a periodic lattice and (·)∗ indicates complex conjugation, Eq. (4.39)
becomes a convolution integral with the Gaussian shape function,

UW
i =

1
η0V

∫
T

dtG(t)
(
1 + 1

24 a2
i π
−2
∇
†
t · B

† · B · ∇t
)

h��(t−ti ), (4.45)

where G(t) is the inverse Fourier transform of Ĝq. Extending the SE method to
couplings beyond Rotne-Prager level is straightforward, with adjusted H (t) and
G(t) based on the Faxén laws and multipole expansions in Sec. 4.2. In this work,
we have implemented the mobility computation to the stresslet and the strain rate
level.

Unlike other particle mesh techniques, the SE formulation in Eqs. (4.39)–(4.45) is
exact and therefore the errors are entirely from the numerical implementations. Since
the FFT algorithm is accurate to machine precision, the sources of error include the
discretization and truncation of the shape function [Eq. (4.41)], and the numerical
integration in Eq. (4.45). Practically, the evaluation of each shape function is limited
to P3 points (P ≤ M) around the particle. Due to the exponential decay of h(t), the
truncation error decreases exponentially with increasing P. Meanwhile, the integral
in Eq. (4.45) is evaluated using trapezoidal quadrature [29, 30], which also exhibits
exponential error decay with increasing P. Therefore, the interpolation error in SE
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method depends exclusively on P for sufficiently large M , and can be separately
controlled from the k-space truncation error. The rapid, exponential error decay is
known as spectral accuracy [29, 30], and this is the namesake of the SE method.

The computation cost of the SE method also becomes apparent with the truncation
of h(t). The grid assignment in Eq. (4.42) and the convolution Eq. (4.45) are
O(N P3) for an N-particle system, and the FFTs to and from the wave space are
O[M3 log(M3)]. With M3 ∝ N , the time limiting step is the FFT, and the SE
method also scales as O(N log N ) as other particle mesh techniques.

The Gaussian shape in h(t) of Eq. (4.41) is controlled by θ, which is parameterized
as

θ =

(
2πPξ
Mm

)2
, (4.46)

on a regular grid of M3 points with P3 points for each shape function evaluation.
The shape parameter m in Eq. (4.46) ensures that at the edge of the h(t) evaluation,
i.e., t2 = P2/(2M)2, h ∝ e−m2/2. Therefore, with fixed M and P, m describes the
truncation of h(t) on the discretized grid and is consistent with the original SE
method of Lindbo & Tornberg [29, 30].

The computation efficiency of the SE method relies on rapidly computing the
O(N P3) different Gaussian shape functions h(t), which involves expensive expo-
nential evaluations. To reduce these expensive operations, Lindbo & Tornberg [29,
30] introduced the fast Gaussian gridding (FGG) technique [69] to the SE method.
In essence, the FGG technique evaluates the exponential function on a regular grid
as

e−α(δt+i∆t)2
= e−α(δt)2

×
(
e−2αδt∆t

) i
×

[
e−α(∆t)2 ] i2

, (4.47)

where α is a constant, δt is the off-grid value, ∆t is the spacing of the regular
grid, and i is an integer within the range [−P/2, P/2]. It reduces the P exponential
evaluations in each direction in the SE method to 3 exponential computations and
at most 2P multiplications. In addition, the last term of Eq. (4.47) is independent
of δt, and therefore only needs to be computed once.

Wave-space computation: the particle size effect
In Sec. 4.3 the terms associated with finite particle sizes in the Faxén laws and
the multipole expansions are incorporated in the real-space derivatives of the shape
function h(t). For example, in a simple shear flowwith lattice vectors a1 = (L, 0, 0),
a2 = (γL, L, 0), and a3 = (0, 0, L), where γ is the strain, the relevant term in
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Eqs. (4.42) and (4.45) is(
1

24 a2
i π
−2
∇
†
t · B

† · B · ∇t
)

h(t) =

8
3

(
πξai

θL

)2 {
−θ(3 + γ2) + 16π2ξ2[(1 + γ2)t2

1 + t2
2 + t2

3 − 2γt1t2]
}

h(t). (4.48)

The finite particle sizes introduce additional features to the shape function, and for
non-orthogonal simulation boxes, non-trivial anisotropy. As a result, compared to
the case of point forces, more points P are needed to resolve the details in Eq. (4.48).
On the other hand, the benefit of evaluating the particle size effects in the real space
is that fewer FFTs are involved. To compute the mobility problem of compressible
suspensions to the stresslet and the strain rate levels, only four pairs of FFTs are
necessary: three are associated with JW in Eq. (4.23), and one is associated with the
Q in Eq. (4.26).

Alternatively, the particle size effect can be completely accounted in the wave space.
This requires, for each particle j, FH

j , T
H
j , and SH

j , as well as a2
jF

H
j and a2

j S
H
j , to

be separately interpolated to the grid via h(t) and brought to the wave space for
computation. The derivatives associated with the Faxén laws and multipole expan-
sions in Sec. 4.2 are carried out in the wave space as multiplication of wave vectors.
The final results are then combined from different convolutions and weighted by
the particle sizes. To demonstrate this, we again take the wave-space Rotne-Prager
velocity, Eq. (4.39), as an example. In this approach, the grid assignment is split
into two parts:

H′(t) =
∑

j

h(t − t j )FH
j and H′′(t) =

∑
j

h(t − t j )a2
jF

H
j . (4.49)

The wave-space computation for q , 0 is also split as

Ĝ′q =e
1
4 θq2ξ−2

g1(B · q) ·
[
Ĥ′q − ( 1

6 q
† · B† · B · q)Ĥ′′q

]
, (4.50)

Ĝ′′q =(−1
6 q
† · B† · B · q)e

1
4 θq2ξ−2

g1(B · q) ·
[
Ĥ′q − ( 1

6 q
† · B† · B · q)Ĥ′′q

]
, (4.51)

and Ĝ′q = Ĝ′′q = 0 when q = 0. The wave-space velocity disturbance is a sum of
two convolutions:

UW
i =

1
η0V

∫
T

dtG′(t)h(t − ti) +
a2

i

η0V

∫
T

dtG′′(t)h(t − ti). (4.52)

Note that the convolution associated with G′′(t) is weighted by the particle size ai.
Compared to the other approach, the wave-space computation is rather straightfor-
ward for the force interpolation and convolution. With the same P, the accuracy
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is expected to be higher as the derivatives are calculated in the wave space [68].
However, the computation burden is shifted to the FFTs: for the mobility problem
to the S and E level, a total of 20 pairs of FFTs are necessary: 12 for FH

j , T
H
j , and

SH
j , three for a2

jF
H
j , and five for the traceless part of a2

j S
H
j .

A third approach, a hybridization between the wave- and the real-space approaches
above, aims to reduce the errors associated with the high order derivatives of h(t) in
the real space. It retains the real-space derivatives in the force interpolation step, but
when evaluating the Faxén laws, the second order derivatives are computed in the
wave space for improved accuracy. The first order derivatives are computed in the
real space to keep the total number of FFTs low. As a result, this hybrid approach
requires 12 FFTs: four to the wave space and eight from the wave space. Taking
Eq. (4.39) again for example, the most significant error in Sec. 4.3 is due to applying
the operator (∇†t ·B

† ·B ·∇t ) twice to h(t), once during the force interpolation, and
another time during the convolution. The hybrid approach retains the real-space grid
assignment using H (t) in Eq. (4.42), but evaluates the convolution using Eq. (4.52)
with modified Ĝ′(t) and Ĝ′′(t): in the wave-space computations, the content in the
square bracket on the right hand side of Eqs. (4.50) and (4.51) is replaced with Ĥq

in Eq. (4.42). We adopted this hybrid approach in this work to compute the HIs,
and discuss the accuracy of various approaches in Sec. 4.5.

Real-space computation
The real-space contributions to the grand mobility tensorM are computed pairwise
using the formalism in Sec. 4.2. Since JR(r ) [Eq. (4.22)] decays exponentially fast
with distance, when the parameter ξ is sufficiently large, only particle pairs within
a cutoff distance rc need to be evaluated. If each particle has on average Nnnb near
neighbors within the cutoff distance rc, the scaling for the real-space computation
is O(N Nnnb), and by keeping Nnnb constant, the real-space computation scales as
O(N ). Here, fast neighbor search algorithms such as the linked list [70] or the
chaining mesh [71] are used. These methods divide the simulation box into cells of
size slightly larger than rc and sort the particles into the cells. To find the neighbors
of a particle, only particles in the residing cell and its 26 neighboring cells are
searched.

To accommodate the iterative scheme for HI computations in Sec. 4.4, the real-
space grand mobility tensor is constructed as a sparse matrix at each time step.
After the matrix construction, the action of the real-space contributions to M is
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simply a matrix-vector multiplication. Otherwise, neighbor searching and pairwise
HI evaluations need to be carried out at every iteration. Note that we also include
the self-contributions from the wave-space computations, e.g., Eq. (4.37), and the
self-part of the pressure Faxén law [Eq. (4.28)], in the real-space grand mobility
tensor.

GPGPU acceleration of the mobility computation
The mobility computation with the SE method was first implemented on CPU and
the performance was unsatisfactory for dynamic simulations. The bottlenecks are
the force interpolation step and the convolution step. These are common speed lim-
iting steps in particle mesh techniques due to ineffective memory caching between
the particle and the grid data. For polydisperse systems in this work, the situation is
aggravated as more interpolation points P are needed for satisfactory HI resolution.
After a few optimization iterations on CPU, we realized that the key to the perfor-
mance is the memory bandwidths. Since modern GPUs typically have significantly
highermemory bandwidths compared to CPUs, in this work the entire mobility com-
putation is carried out on GPU using CUDA C, a popular GPGPU programming
model with a relatively mature environment for scientific computations.

The GPU mobility computations are carried out in Single Precision (SP) for the
highest GPU performance. The cost of the performance in SP computation is the
accuracy, as the SP arithmetics can be severely limited by the number of significant
digits compared to the Double Precision (DP). However, this is not a problem in this
work for at least three reasons: (i) For dynamic simulations with iterative solvers, the
SP accuracy is often sufficient; (ii) The SEmethod is able to reach the round-off error
of the SP arithmetics with proper parameter selection due to its spectral accuracy;
and (iii) The far-field HIs captured by the mobility computations are more smooth
compared to the near-field interactions, which are evaluated in DP on CPUs. Note
that the near-field interactions have to be evaluated in DP as they change rapidly for
close particles and become singular at particle contact. The split of the near- and the
far-field HIs in SD allows a natural mixed precision HI computation that captures
the most significant contributions from each part.

The GPGPU computations exploit the massively parallel structure of modern GPUs
by simultaneously executing a large number of similar tasks, or threads, on the data.
To maintain performance, data dependencies and communications between threads
should be minimized. This makes the GPU implementation of the SEmethod differ-
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ent from its CPU counterpart. Inspired by earlier GPU implementations of particle
mesh techniques, this work combines the grid-based method of Ganesan et al. [47]
for force interpolation and the particle-based approach of Harvey&De Fabritiis [48]
for convolution. The grid-based force interpolation keeps a list of contributing par-
ticles for each grid point, and the list is updated when the particle configurations are
changed. The grid values are computed in parallel using M3 threads: with the parti-
cle list, each thread sums the force, torque, and stresslet contributions independently
for each grid point. On the other hand, the particle-based convolution is a weighted
summation on P3 grid points for each particle. To maximize parallelization, the
summation for each particle is performed by a group of P threads cooperatively.
Each thread in the group first sums P2 grid points on the transverse plane, and for the
final result, the first thread in the group adds up the values from other threads using
the shared memory of the GPU. Moreover, on the GPU we use the cufft package
for the FFTs and the cusparse package for the sparse matrix-vector multiplication.

4.4 Dynamic simulation with Stokesian Dynamics
The framework of SD [7, 64] approximates the projected grand resistance tensor R
in Eq. (4.12) as

R = M−1 + Rnf, (4.53)

where M is the multipole grand mobility tensor, and Rnf is the pairwise additive
lubrication correction without the far-field contributions. Recall that the inversion
of M captures the many-body aspect of HIs, and the short-range correction Rnf

captures the lubrication effects. The SD recovers the exact result for two-body
problems and agrees well with the exact solutions of three-body problems [72]. It
can provide significant insights to the HIs of dense suspensions [73, 74].

Iterative computation of hydrodynamic interactions
We incorporate the SE mobility computation into the framework of SD using the
iterative scheme of Swan & Brady [63], and call the resulting method the Spectral
Ewald Accelerated Stokesian Dynamics (SEASD). Here, a matrix-free iterative
scheme is necessary as the grand mobility tensor M is not explicitly constructed.
The iterative scheme splits the overall hydrodynamic force,

F H = −RFU · U
H + RF E · E∞, (4.54)



124

whereUH is the velocity disturbances due to HIs, into a near-field part and a far-field
part. The near-field part satisfies

0 = −Rnf
FU
· UH + F H,ff + F̃ P, (4.55)

where Rnf
FU

is the FU coupling in Rnf and is stored as a sparse matrix, F̃ P =

F P + Rnf
F E · E

∞ contains the interparticle force F P and the near-field contributions
from E∞. The far-field hydrodynamic force F H,ff satisfies



UH

−E∞


= −M ·



F H,ff

SH,ff


, (4.56)

where SH,ff is the far-field stresslet from HIs. Solving Eqs. (4.55) and (4.56), the
far-field hydrodynamic forces and stresslets are



F̃ H,ff

SH,ff


= M̃−1 · *

,
(λRM − I) ·



(R̃nf
FU

)−1 · F̃ P

0


+



0
E∞


+
-
, (4.57)

where

M̃ = *
,
(I − λRM) ·



(R̃nf
FU

)−1 0
0 0


+M+

-
. (4.58)

To ensure invertibility, a diagonal matrix λRI , with λR a parameter, is added to
Rnf
FU

, i.e., R̃nf
FU
= Rnf

FU
+ λRI , and accordingly F̃ H,ff = F H,ff + λRU

H. A
convenient choice for λR is 6πη0a, where a is the reference particle radius [63].

Solving Eq. (4.57) requires nested iteration as each evaluation of M̃ contains the
solution of the near-field problem with R̃nf

FU
. The near-field problem is efficiently

solved by the GeneralizedMinimumResidual (GMRES)methodwith an Incomplete
Cholesky preconditioner with zero fill-in (IC0) [75]. To reduce the IC0 breakdown,
prior to applying the preconditioner the particles are reordered using the reverse
Cuthill-McKee algorithm. For isotropic suspensions, the near-field problem typi-
cally converges to an error of 10−4 within 10 iterations [36]. For suspensions with
strong structural anisotropy, however, the convergence becomes more difficult and
the IC0 preconditioner breaks down even with the reordering. This is resolved by
increasing λR in R̃nf

FU
, or introducing a threshold value λIC during the IC0 precon-

ditioner computation [75]. Increasing λR in R̃nf
FU

does not change the convergence
of the near-field problem, but increases the number of expensive M̃ iterations. On
the other hand, increasing λIC deteriorates the quality of the IC0 preconditioner and
increases the iterations required for the near-field problem, but has little effect on
the far-field evaluations. In dynamic simulations, both λR and λIC are adjusted for
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optimal computation efficiency. The current SEASD implementation uses the fact
that the near-field evaluation is faster than the far-field evaluation. In the event of
an IC0 breakdown, the algorithm tries to recalculate the IC0 preconditioner with an
increased λIC until the ratio λIC/λR exceeds a threshold. After that, the algorithm
also increases the parameter λR and regenerates R̃nf

FU
for further calculations. This

process is repeated until a successful IC0 preconditioner generation. Presently, the
λIC/λR threshold is 7 and the increments for λIC and λR are 5.

The pressure moment computation in SEASD also follows the near- and far-field
splitting scheme in Eqs. (4.55) and (4.56). Due to the special coupling between the
pressure moments and other force moments in compressible suspensions (Sec. 4.2),
the interaction contribution to the far-field pressure moment is evaluated after FH,ff

and the traceless part of SH,ff are solved in Eq. (4.57). On the other hand, the
near-field part of the pressure moment is evaluated along with other parts of the
stresslets using the near-field resistance functions.

The near-field pairwise lubrication correctionsRnf are based on the exact solutions of
two-body problems in series form [65, 66, 76, 77] up to s−300, where s = 2r/(ai+a j ),
with ai and a j the radii of the pair, is the scaled particle center-center distance. In
the simulations, the lubrication corrections are activated when s < 4: for s > 2.1 the
interpolation of tabulated data and for s ≤ 2.1 the analytical expressions are used.
Note that Rnf constructed from two-body problems contains both the relative and
the collective motions of the particle pair and, as pointed out by Cichocki et al. [23],
the lubrication corrections corresponding to the collective motion can destroy the
far-field asymptotes beyond the pair level. However, for dense suspensions, this
only leads to a minor quantitative difference on the suspension static properties [11]
in conventional SD. Therefore, we retain the full lubrication correction here for
consistency with the existing SD framework. The SD implementations of Ando &
Skolnick [13] removed the pair collective motion in the lubrication corrections.

Far-field preconditioner
Here we introduce a preconditioner for M̃ to reduce the number of expensive far-field
mobility evaluations when solving Eq. (4.57). Since M̃ is not explicitly constructed,
the preconditioner needs to be built from a suitable approximation. For mobility
problems without the lubrication corrections, Saintillan et al. [37] and Keaveny [44]
found substantial iteration improvement even with the diagonal mobility approxi-
mation. Unfortunately, the approximation of M̃ is more involved due to the presence
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Figure 4.1: The number of far-field iterations, i.e., the number of the grand mobility
tensor M̃ evaluations, as a function of the GMRES residual with (solid line) and
without (dashed line) the far-field preconditioner for a bidisperse suspension of
N = 200, λ = 2, x2 = 0.3, and φ = 0.2.

of (R̃nf
FU

)−1. In this work, a block diagonal approximation of M̃ for the far-field
preconditioner is adopted. First, the near-field resistance tensor R̃nf

FU
is approxi-

mated by N blocks of 6 × 6 submatrices along its diagonal. Using the direct sum
notation, this is

⊕N
i=1(R̃nf

FU
)ii, where

⊕
is the direct sum, and (R̃nf

FU
)i j is the

block submatrix between particles i and j in R̃nf
FU

. To approximate M̃, we use

(R̃nf
FU

)−1 ≈

N⊕
i=1

[(R̃nf
FU

)ii]−1, (4.59)

which only involves N inversion of 6 × 6 matrices. The mobility tensor M is
approximated by its block-diagonal components using direct Ewald summation, i.e.,
for each particle, the approximation only considers the interactions with its periodic
images. To obtain the preconditioner, we apply the Incomplete LU decomposition
with zero fill-in (ILU0) [75] on the approximated M̃, which is constructed following
Eq. (4.58) with the approximated (R̃nf

FU
)−1 and M. Unlike Saintillan et al. [37],

including close pair interactions has an adverse effect on the preconditioner due to
the diagonal approximation of R̃nf

FU
.

The effectiveness of this preconditioner on the far-field iteration is demonstrated
in Fig. 4.1 and Table 4.1. In this case, the HIs corresponding to random forces
and strain rates are solved for a random bidisperse suspension of 200 particles with
λ = 2, x2 = 0.3, and φ = 0.2, and the SE parameters are ξ = 0.5, (M, P) = (64, 15),
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rc = 4(ai + a j ), and m = 8. For these parameters, the far-field preconditioner
substantially reduces the number of GMRES iterations and the computation time by
a factor between 2.5 and 3, depending on the GMRES residual. The time required
for constructing the approximate M̃ and its ILU0 decomposition is far less than the
GMRES computation time, even with the GPU acceleration at a residual of 10−2.
Therefore, for the parameters in Fig. 4.1, using the far-field preconditioner is always
justified. Generally speaking, however, the preconditioner is preferred for small
GMRES residual, and the exact break-even point depends on the SE parameters
such as M , P, and rc. Moreover, since the preconditioner construction is an O(N )
operation and the M̃ evaluation scales as O(N log N ), preconditioning is always
justified for large systems. In addition, in dynamic simulations, further time saving
is possible by updating the preconditioner every few time steps.

Dynamic simulation of Brownian suspensions
Particle dynamics in a suspension are described by the generalized N-body Langevin
equation,

m ·
dU
dt
= F H + F P + F B, (4.60)

where m is the generalized mass/moment of inertial matrix, U is the generalized
particle velocity andF H, F P, andF B are the forces on particles. The hydrodynamic
forceF H arises from theHIs and can be computed fromEq. (4.54). The interparticle
force F P originates from the interparticle potentials. The Brownian force F B is
due to thermal fluctuations in the solvent, and from the fluctuation-dissipation
theorem [78], F B satisfies

F B(t) = 0 and F B(0)F B(t) = 2kBTδ(t)RFU . (4.61)

Here, the overline denotes an average over the solvent fluctuations and kBT is the
thermal energy scale.

The configuration evolution is obtained by integrating Eq. (4.60) twice over an
appropriate time scale ∆t, and the result is [38, 79]

∆X =
[
U∞ + R−1

FU
·
(
RF E · E∞ + F P

)]
∆t + kBT∇ · R−1

FU
∆t + ∆XB, (4.62)

where∆X is the suspension configuration change over time∆t,U∞ is the generalized
velocity from the imposed flow, and ∆XB is the Brownian displacement which
satisfies

∆XB = 0 and ∆XB∆XB = 2kBT∆tR−1
FU

. (4.63)



129

The second term on the right hand side of Eq. (4.62) is the deterministic drift due
to the configuration dependent Brownian force F B, and the divergence operator
is acting on the last index of R−1

FU
. The divergence can be numerically evaluated

following Banchio & Brady [39].

The suspension bulk stress is obtained by spatially averaging the Cauchy stress [50,
51], i.e.,

〈Σ〉 = −〈p〉f I+2η0
〈
E∞

〉
+ (κ0−

2
3η0)E∞I− nkBT I+ n(〈SE〉+ 〈SP〉+ 〈SB〉), (4.64)

where 〈p〉f is the average solvent pressure, 〈·〉 is the volume average over the entire
suspension, κ0 is the fluid bulk viscosity, and n is the particle number density. The
particle stresslets SH are broken down as SH = SE + SP + SB, where SE is the
contributions from the imposed flow, SP from the interparticle potential, and SB

from the Brownian motion. Their suspension averages are expressed in resistance
tensors

〈SE〉 = − 〈RSU · R
−1
FU
· RF E − RSE〉 : 〈E∞〉, (4.65)

〈SP〉 = − 〈(RSU · R
−1
FU
+ r I) · FP〉, (4.66)

〈SB〉 = − kBT〈∇·(RSU · R
−1
FU

)〉, (4.67)

where the divergence in Eq. (4.67) is applied to the last index in the bracket. For
hard-sphere suspensions, 〈SP〉 = 0 as the HI and the interparticle force contributions
exactly cancel each other [51]. The Brownian stresslet 〈SB〉 can also be computed
using the modified mid-point scheme [39].

In dynamic simulations, the Brownian displacement ∆XB is evaluated from the
Brownian force F B in Eq. (4.61) as

∆XB = R−1
FU
· F B

∆t. (4.68)

Following Banchio & Brady [39], the Brownian force can be split into a near-field
part and a far-field part,

F B = F B,nf + F B,ff . (4.69)

Both F B,nf and F B,ff have zero mean and satisfy

F B,nfF B,nf =
2kBT
∆t

Rnf
FU

, (4.70)

F B,ffF B,ff =
2kBT
∆t

(M−1)FU, (4.71)

F B,ffF B,nf =0, (4.72)
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where (M−1)FU is the FU block of the inverted far-field grand mobility tensor.
The pairwise-additive lubrication corrections allow pairwise evaluation of the near-
field Brownian force F B,nf [39]. SinceM is not explicitly constructed, to compute
F B,ff , it is necessary to solve



F B,ff

∆SB


=

2kBT
∆t

(M−1/2) · Ψ, (4.73)

where Ψ is a Gaussian noise of zero mean and unit variance, and ∆SB is the
fluctuation part of the Brownian stress in Eq. (4.67). The inverse square root of the
grand mobility tensor M−1/2 in Eq. (4.73) can be approximated using Chebychev
polynomials with eigenvalue estimations [39, 80], or solved as an Initial Value
Problem (IVP) [40, 81], which was first used by Swan & Brady [40] in ASD. The
solution of the following IVP [82] with matrix A,

dx
dτ
= −1

2 [τI + (1 − τ)A]−1 · (A − I ) · x, x(0) = c, (4.74)

at τ = 1 satisfies x(1) = A−1/2 · c. Swan & Brady [40] devised a numerical scheme
to solve Eq. (4.74) in ASD: at each time step with step size ∆τ, Eq. (4.74) is marched
first with a Euler forward half-step then a Euler backward half-step, i.e.,

xi+ 1
2
− xi

∆τ/2
= − 1

2 [τiI + (1 − τi)A]−1 · (A − I ) · xi, (4.75)

xi+1 − xi+ 1
2

∆τ/2
= − 1

2 [τi+1I + (1 − τi+1)A]−1 · (A − I ) · xi+1. (4.76)

With A = M and c = (2kBT/∆t)Ψ, Eq. (4.73) is solved at τ = 1. In SEASD,
both Eqs. (4.75) and (4.76) are solved iteratively, usually with a smaller tolerance
compared to ∆τ. The results with ∆τ = 0.1 are often satisfactory.

For dynamic simulation of Brownian suspensions under a simple shear flow with
strain rate γ̇, the ratio of the convective transport rate γ̇ and the diffusive transport
rate kBT/(6πη0a3

p) defines the Péclet number,

Pe =
6πη0a3

pγ̇

kBT
. (4.77)

Small Pe indicates Brownian motion dominance, and large values suggest negligible
Brownian influences. For bidisperse suspensions, we define Pe based on the size of
the small particles to capture the dynamics of the most rapid changes, i.e., ap = a1.
In dynamic simulations, the time in Eq. (4.62) is scaled according to the Péclet
number: when Pe ≤ 1, it is scaled with the diffusive time scale of the small
particles, 6πη0a3

1/(kBT ), and when Pe > 1, the convective time scale γ̇−1.
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The mean-field Brownian approximation
The most time-consuming step in dynamic simulations of Brownian suspensions
is computing F B,ff from Eq. (4.73) due to the large number of M evaluations,
although the IVP approach in Sec. 4.4 is expected to be faster than the Chebychev
approximation [40]. Further speed improvement is possible by introducing a mean-
field approximation of theBrownian-related quantities [39]. In this approach, the far-
field grandmobility tensorM is approximated as a diagonal matrix for all Brownian-
related computations, and the full HI computations are retained for the flow-related
quantities such as SE. As a result, this method retains the O(N log N ) scaling, but
with an order of magnitude smaller prefactor for monodisperse suspensions [39].
The diagonal approximation ofM uses the single particle result for the ES coupling,
and the far-field translational and rotational short-time self-diffusivities for theUF
coupling. These far-field values are fromMonte-Carlo computations of equilibrium
configurations at the same volume fraction without the lubrication corrections.
Extending this approach to polydisperse suspensions is trivial: the suspension far-
field diffusivities in the diagonal elements are replaced by the far-field diffusivities
for each species. The mean-field Brownian approximation is especially suitable
for studying dense suspension rheology, where the HIs are dominated by the near-
field lubrication interactions. Following Brady & Banchio [39], we designate this
approximation scheme SEASD-nf.

4.5 Accuracy and performance
Mobility computation accuracy
The accuracy of the mobility computation is characterized by the relative ∞-norm
of the strain rate, i.e.,

e∞,r (E) = max
i∈{1,...,N }

‖ESE
i − E∗i ‖
‖E∗i ‖

, (4.78)

where ESE
i is the particle strain rate from the SE method and E∗i is a well-converged

value from direct Ewald summation. Other error measurements can be similarly
defined. For example, e∞,r (U) for the linear velocity was used by Lindbo & Torn-
berg [29] to characterize the accuracy of the SE method for point forces. For the
stresslet-strain rate level mobility computation here, we found e∞,r (E) the most
stringent error criteria, possibly because more derivatives are involved in Eq. (4.15).

To facilitate quantitative discussions, in this section we focus on a random bidisperse
hard-sphere system of N = 50, φ = 0.05, λ = 2, and x2 = 0.3. The imposed force,
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Figure 4.2: The wave-space accuracy measured by e∞,r (E) [Eq. (4.78)] as a
function of the interpolation point P (a–c) and the CPU wall time in seconds (d–f)
with various shape parameter m at M = 64 and ξa1 = 0.1. The particle size
effects are incorporated using (a), (d): the real-space, (b), (e): the hybrid, and
(c), (f): the wave-space approaches in Sec. 4.3. The values of m are annotated
in each figure. The solid and dashed lines represent the case of γ = 0 and 0.5,
respectively. The dashed dotted lines show the exponential minimum error decay,
e∞,r (E) ∼ exp(−Pπ/2).

torque, and stresslet on each particle are randomly drawn from a normal distribution,
and scaled to ensure ‖Fi‖ = 1, ‖Ti‖ = 1, and ‖Si‖ = 1. The simulation box lattice
vectors are a1 = (L, 0, 0), a2 = (γL, L, 0), and a3 = (0, 0, L), with γ the strain. The
computations are carried out in DP accuracy on CPU.

Wave-space accuracy

Fig. 4.2 presents the accuracy of wave-space computations using different SE im-
plementations with orthogonal (γ = 0) and sheared (γ = 0.5) simulation boxes in
solid and dashed lines, respectively. The error e∞,r (E) is shown as functions of the
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interpolation point P and the CPU wall time (in seconds) with various shape param-
eter m at M = 64 and ξa1 = 0.1. Different particle size incorporation approaches
discussed in Sec. 4.3 are presented: in Fig. 4.2a and 4.2d the real-space approach,
in Fig. 4.2b and 4.2e the hybrid approach, and in Fig. 4.2c and 4.2f the wave-space
approach.

There are several key observations in Fig. 4.2a–4.2c. First of all, the errors associated
with orthogonal and sheared simulation boxes are almost identical. This validates the
general formalism for non-orthogonal simulation boxes in Sec. 4.3. Secondly, the SE
method is sensitive to P and m, which respectively correspond to the discretization
and truncation of the shape function h(t). At a given m, e∞,r (E) first decreases
exponentially, followed by a much slower reduction with increasing P. The two-
stage reduction of e∞,r (E) is well understood for point forces [29]: the exponential
decrease is due to the improved resolution of the shape function, and the slower
reduction is associated with the Gaussian truncation from the shape parameter m.
Therefore, at large P andm the result is expected to be accurate; indeed, in Fig. 4.2 the
minimum errors are all close to themachine precision. Such accuracy is inaccessible
using the PME or the SPME method at this grid number (M = 64) due to the
inherent coupling between the interpolation and the wave-space truncation errors.
Moreover, for a given P, e∞,r (E) first decreases to a minimum and then increases
with increasing m. At the minimum, e∞,r (E) is transitioning from exponential
to slower decay, and the errors from the shape resolution are about the same as
the errors from the Gaussian truncation. From the error estimation of Lindbo &
Tornberg [29, 30], at a given P, the minimum wave-space error e∞,r (E) and the
corresponding shape parameter m are

e∞,r (E) ∼ exp(−Pπ/2) and m ∼
√
πP, (4.79)

respectively. The asymptotic exponential decay of the minimum e∞,r (E) is also
shown as dash-dotted lines in Fig. 4.2. The exponential decay of the minimum error
with respect to P to the round-off precision at large P and m clearly demonstrate the
spectral accuracy [83] of the SE method.

In Fig. 4.2a–4.2c, different particle size incorporation approaches exhibit similar
qualitative behaviors with quantitative differences. For example, to achieve an
accuracy of e∞,r (E) ∼ 10−4 at the optimal m, in Fig. 4.2a, 4.2b, and 4.2c the
required P are respectively 15, 13, and 9, corresponding to the real-space, hybrid,
and wave-space approaches discussed in Sec. 4.3. The latter two approaches reduce
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the h(t) evaluations by 35% and 78% compared to the real-space approach at a
cost of the number of required FFTs. Therefore, there is a subtle balance between
the number of interpolation points P and the number of FFTs in the SE method
implementation. This balance is quantified in Fig. 4.2d–4.2f. In terms of the wall
times, the real-space and the hybrid approaches are comparable, and both are much
faster than the wave-space approach, which involves extensive FFT computations.
Clearly, the accuracy gain in the wave-space approach cannot justify the large wall
time over the entire P range. Meanwhile, for a given accuracy, the hybrid approach
is slower than the real-space approach when e∞,r (E) & 10−4, and becomes faster
when e∞,r (E) . 10−4. Since fast computationswith high accuracy aremore relevant
for dynamic simulations, the hybrid approach in Fig. 4.2b and 4.2e is adopted in
SEASD.

Finally, Fig. 4.2 shows that, in addition to the spectral accuracy and the ease of
implementation, the SE method also allows flexible error control by adjusting P and
m without changing the grid points M . As a result, the errors from the wave-space
summation and the interpolation can be separated, and this permits more flexible
error control when computing HIs in polydisperse systems. On the other hand, such
error separation is not possible in other particle mesh techniques such as the PME
and the SPME methods.

Overall mobility accuracy

Both the wave-space and the real-space computations affect the overall mobility
accuracy, and the controlling parameters are the grid point M , the interpolation
point P, the Gaussian shape parameter m, the real-space cutoff radius rc, and the
splitting parameter ξ. Out of the five parameters, only changes in ξ and m do not
affect the computational cost since adjusting M affects the FFT size, changing rc

influences the number of near neighbors, etc. With a fixed computation cost, i.e.,
fixed M , P, and rc, it is desirable to find the combination of m and ξ that minimizes
the overall error. Alternatively, with accurate error estimations, the parameter
selection can start from a desired tolerance [30]. However, error estimations for
hydrodynamic interactions beyond the point force level are unavailable and difficult
to obtain. Therefore, the simple and pragmatic approach with fixed computational
costs is adopted here.

Fig. 4.3 and 4.4 present the effects of m and ξ on the overall mobility accuracy with
various P and rc for M = 64 and 32, respectively. The wave-space computation uses
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Figure 4.3: (Color online) The overall accuracy measured in e∞,r (E) as a function
of the splitting parameter ξa1 and the shape parameter m at M = 64 for a real-space
cutoff radius rc = 2(ai+a j ) (left column), 4(ai+a j ) (middle column), and 6(ai+a j )
(right column), and the interpolation point P = 9 (top row), 15 (middle row), and
21 (bottom row). The thick black lines represent m =

√
πP. The simulation cell

is orthogonal (γ = 0), and the particle size effects are accounted using the hybrid
approach.
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Figure 4.4: (Color online) The overall accuracy measured in e∞,r (E) as a function of
the splitting parameter ξa1 and the shape parameter m with M = 32 for a real-space
cutoff radius rc = 2(ai+a j ) (left column), 4(ai+a j ) (middle column), and 6(ai+a j )
(right column), and the interpolation point P = 9 (top row) and 15 (bottom row).
The thick black lines represent m =

√
πP. The simulation cell is orthogonal (γ =

0), and the particle size effects are accounted using the hybrid approach.

the hybrid approach in Sec. 4.3, and the simulation box is orthogonal (γ = 0). The
thick black lines in these figures represent the optimal shape parameter m = C

√
πP

with C = 1. Although Lindbo & Tornberg [29, 30] established that the optimal m

for the wave-space accuracy takes place with C slightly below unity, here the choice
of C = 1 is for simplicity. Note that in our implementation, the cutoff radius rc

depends on the particle pair radii ai and a j .

It proves revealing to discuss Fig. 4.3 and 4.4 from the perspective of error sources.
As mentioned earlier, the SE method allows separate controls in the real-space and
wave-space truncation errors and the wave-space interpolation error. Earlier inves-
tigations of the SE method [29, 30] showed that the wave-space truncation errors
for both the electrostatic and the hydrodynamic interactions decay as e−[πκ∞/(ξL)]2

with κ∞ = 1
2 (M −1), and the real-space truncation errors decay as e−ξ

2r2
c . The same
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results should hold for the mobility computations here. The interpolation error,
controlled by P and m, also affects the overall accuracy.

Parameters M (through κ∞) and ξ influence the wave-space truncation errors. Com-
paring Fig. 4.3 and 4.4 shows the effects of M . Note that the color scales in these
figures are different, and the minimum e∞,r (E) in Fig. 4.3f and 4.4f is approximately
the same. The qualitative features the two figures are similar. Quantitatively, de-
creasing M increases the wave space truncation error, and it shrinks the parameter
space corresponding to e∞,r (E) < 1. Consequently, at M = 32, the accuracy of the
mobility evaluation is more sensitive to ξa1 compared to the case of M = 64. On the
other hand, the wave-space truncation error grows with ξ. For all plots in Fig. 4.3
and 4.4, the overall error e∞,r (E) increases with ξa1 after it reaches a minimum.
Apparently, the wave-space truncation error dominates the accuracy at large ξa1.

The real-space truncation errors are directly affected by ξ and rc. Contrary to
the wave-space truncation error, increasing ξ improves the real-space accuracy in
Fig. 4.3 and 4.4. The real-space truncation error dominates the overall accuracy at
small ξa1. The overall error e∞,r (E) reaches a minimum at intermediate ξa1 when
the wave- and the real-space errors are approximately the same. Comparing rows
in Fig. 4.3 and 4.4 illustrates that reducing rc increases the real-space truncation
error and shifts the e∞,r (E) minimum towards larger ξa1, e.g., Fig. 4.3g–4.3i. It
also shows a lesser reduction in e∞,r (E) with increasing ξ at small ξa1. With the
small rc in Fig. 4.3g, the minimum in e∞,r (E) takes place at ξa1 > 1.

The SE interpolation error, controlled by m and P, also affects the overall accuracy.
Consistentwith observations in Fig. 4.2, the overall error e∞,r (E) reaches aminimum
with increasing m. The influences of m on e∞,r (E) are less obvious when the overall
accuracy is dominated by the real-space truncation error, e.g., when ξa1 < 0.46
in Fig. 4.3i. Comparing columns in Fig. 4.3 and 4.4, e.g., Fig. 4.3i, 4.3f, and
4.3c, shows that reducing P increases the interpolation error due to poor Gaussian
resolution and shifts the e∞,r (E) minimum towards lower m. Moreover, the overall
accuracy deteriorates at large m and small P, e.g., in Fig. 4.3c, e∞,r (E) > 1 when
m > 8. In addition, the thick black lines representing m =

√
πP provide a good

approximation to the regions of the highest accuracy in both Fig. 4.3 and 4.4. This
approximation, although not exact, substantially simplifies the search for the optimal
ξ.

The influences of the particle number N on the overall mobility accuracy is presented
in Fig. 4.5 for M = 32 and 64. The simulation box size is fixed at L/a1 = 23.5 in
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Figure 4.5: (Color online) The overall mobility accuracy measured in e∞,r (E) as
a function of the splitting parameter ξ with N = 50, 100, and 200, and M = 32
(filled symbols) and 64 (open symbols) for (a): constant box size L/a1 = 23.5 and
(b): constant volume fraction φ = 0.05. Changes are based on the baseline case in
Sec. 4.5. Other parameters are P = 13, m = 6.7, and rc = 4(ai + a j ).

Fig. 4.5a, and the suspension volume fraction is fixed at φ = 0.05 in Fig. 4.5b. Other
parameters remain unchanged from the baseline case, and the mobility computation
parameters are P = 13, m = 6.7, and rc = 4(ai+a j ). The mobility accuracy is more
sensitive to changes in L than changes in φ. In Fig. 4.5a, e∞,r (E) changes little,
but in Fig. 4.5b, the e∞,r (E) minimum increases drastically with different N . The
almost identical reduction in e∞,r (E) at small ξa1 suggests that the real-space error
are not significantly affected by N in either case. The different e∞,r (E) at higher
ξa1 in Fig. 4.5b shows that the wave-space computation is sensitive to the box size
at fixed P and m. This is well-known for particle mesh techniques in general [29,
68]. Therefore, to retain the computational accuracy with larger systems at the same
volume fraction, it is necessary to increase the grid point M or the interpolation
point P. Note that the same qualitative error behaviors are found in the pressure
moment computations.

Accuracy of the GPGPU implementation
The accuracy of the GPU mobility computation discussed in Sec. 4.3 is presented
in Fig. 4.6. The GPU computations are clearly accurate enough for dynamic sim-
ulations. Fig. 4.6a shows the GPU wave-space accuracy as a function of the inter-
polation point P for various shape parameters m in orthogonal (γ = 0) and sheared
(γ = 0.5) simulation boxes. Here, the particle size effects are incorporated using
the hybrid approach in Sec. 4.3, and the SE method parameters are identical to those
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Figure 4.6: The accuracy of GPGPU mobility computation measured in e∞,r (E).
(a): the wave-space accuracy as a function of P for various m with the same
parameters in Fig. 4.2b. The GPU results are shown in black lines, and the CPU
results in Fig. 4.2b are reproduced in gray lines. The values of m are annotated in the
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(b): The overall mobility accuracy from the GPU (solid lines) and the CPU (dashed
lines) computations as a function ξa1 with rc = 4(ai + a j ) and m =
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corresponding M and P are annotated in the figure.

of Fig. 4.2b. Moreover, for comparison the data in Fig. 4.2b are reproduced in gray.
In Fig. 4.6a, the GPU results in black are indistinguishable from the CPU results in
gray when e∞,r (E) > 10−5 for all m and γ, indicating that the GPU computations are
only limited by the SP arithmetics. When the error e∞,r (E) reaches 10−5, increasing
the interpolation point P does not improve the accuracy on GPUs, while the error
from the DP arithmetics on CPU continues to decrease until e∞,r (E) ∼ 10−14. In
addition, the wave-space errors remain e∞,r (E) ∼ 10−5 after reaching the SP limit,
i.e., increasing P does not adversely affect the wave-space accuracy.

The overall GPU mobility accuracy as a function of ξa1 is presented in Fig. 4.6b
for two M and P combinations with m =

√
πP and rc = 4(ai + a j ) in orthogonal

simulation boxes. The errors e∞,r (E) are computed using the baseline case of
Sec. 4.5. The GPU results are shown in solid lines and the CPU results in dashed
lines. When the overall error e∞,r (E) > 10−4, i.e., the case of (M, P) = (32, 13)
in Fig. 4.6b, the GPU and the CPU results are indistinguishable from each other.
However, the differences are evident for the case of (M, P) = (64, 21). When
0.5 < ξa1 < 0.85, the GPU computations deviate from the CPU results with larger
errors due to the SP arithmetics. Beyond this range, the CPU and the GPU results
overlap again. In both cases, the accuracy achieved by theGPUmobility computation
is sufficient for dynamic simulations, where the error tolerance is typically set at
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Figure 4.7: (Color online) The wall times (in second) of 100 time steps in dynamic
simulations at Pe = 1 as functions of the particle number N using the conventional
SD, SEASD, and SEASD-nf. The open symbols represent the CPU mobility com-
putation and the filled symbols the GPU mobility computation. The dashed line
show the O(N2.2) scaling, and the dash-dotted line show the O(N log N ) scaling.
The suspension is bidisperse with λ = 2, y2 = 0.5, and φ = 0.45 starting from
equilibrium configurations.

10−3. The results in Fig. 4.6 dispel any concerns over the SP accuracy in the GPU
mobility computations for dynamic simulations.

Overall performance
To assess the performances of various SEASD implementations, we measure the
wall time to march 100 steps in a dynamic simulation of Brownian suspensions at
Pe = 1, starting from an equilibrium bidisperse configuration with λ = 2, y2 = 0.5,
and φ = 0.45. This composition is different from the baseline case in Sec. 4.5,
and is selected to reflect the SEASD performance in dense systems. The mobility
parameters are fixed at P = 11, rc = 4(ai + a j ), ξ = 0.35 and m = 5.8, and the
grid point M changes as M ∝ N1/3 starting from M = 24 at N = 27. These
parameters are adequate for dynamic simulations, as is demonstrated in Sec. 4.6 and
4.6. The tolerances of the iterative solvers are 10−3. In the SEASD, the far-field
Brownian forces are calculated using Eqs. (4.75) and (4.76) with ∆τ = 0.2, and in
the SEASD-nf, the far-field diffusivities are from Table 4.3. All the timing results
are collected from a workstation with Intel i7-3770K CPU and NVIDIA GeForce
GTX 680 GPU.

Fig. 4.7 presents the overall performance in terms of the wall time as a function of
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Table 4.2: The GPU/CPU speedup of various parts of a mobility computation with
different system size N . The CPU baseline time (in seconds) is shown in parenthesis.

GPU/CPU speedup (CPU baseline time in seconds)

N wave-space
setup

wave-space
evaluation

real-space
setup

real-space
evaluation

64 13.0 9.5 3.9 8.2
(0.00319) (0.00604) (0.00222) (0.00059)

512 72.6 16.1 2.7 10.0
(0.0338) (0.0514) (0.0543) (0.00921)

1728 77.4 13.4 2.6 10.8
(0.126) (0.191) (0.217) (0.0353)

4096 83.6 23.1 2.6 9.9
(0.329) (0.607) (0.543) (0.0801)

the system size N for various SEASD implementations. The open symbols represent
the CPU results and the filled symbols represent the GPU results. For comparison,
Fig. 4.7 also shows the wall time from the conventional SD [11, 12, 84] in red
squares. Various SEASD implementations show the expected O(N log N ) asymp-
totic scaling, highlighted by the dash dotted line in Fig. 4.7. On the other hand, the
conventional SD scales as O(N2.2), highlighted by the dashed line. This scaling
is due to the combined effect of the pairwise grand mobility tensor construction
and the explicit matrix inversion, and should recover O(N3) at higher N . Compar-
ing the wall times between the GPU and CPU implementations demonstrates the
power of GPGPU programming in dynamic suspension simulations. At large N ,
the GPU/CPU speedup can reach 7 for SEASD and on average 3 for SEASD-nf.
Therefore, by combining the GPGPU programming and the SEASD-nf algorithm,
a total speedup of ∼ 20 can be achieved. Such speedup makes studying suspension
dynamics in larger systems and at longer times feasible. Compared to SEASD,
SEASD-nf benefits less from the GPGPU programming because the algorithm has
fewer far-field mobility evaluations. Moreover, in Fig. 4.7, the wall time for the GPU
SEASD-nf at large N does not grow monotonically with N , and this is because the
FFT computation in cufft strongly depends on the grid point M , which follows
M ∝ N1/3. Finally, at N ≈ 216, the wall time between the CPU SEASD and SD
breaks even, and at N ≈ 50, and wall times among the GPU SEASD, the CPU
SEASD-nf, and SD are about the same. For all the system sizes studied here, the
GPU SEASD-nf is always faster than the conventional SD.

To complement the overall time measurements in Fig. 4.7, Table 4.2 presents the
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corresponding GPU/CPU speedup and the baseline CPU time for various parts
in a mobility evaluation at different N . Both the wave-space and the real-space
evaluations require a setup step that only needs to run once for each configuration.
The table demonstrates that the GPGPU programming significantly improves the
wave-space computations. At N = 4096 the wave-space GPU/CPU speedup for
the setup step is 83.6 and for the evaluation step is 23.1. In contrast, the GPU
performance for the real-space evaluation is less impressive. For N = 4096, the
speedup for the real-space setup and evaluation are 2.6 and 9.9, respectively. The
data from Table 4.2 show that the bottleneck for the GPU mobility evaluation is the
real-space setup. Moreover, the near-field computations, which are carried out on
CPU, reduce the overall speedup in dynamic simulations.

4.6 Static and dynamic simulation results
Short-time transport properties
In this section we present static SEASD simulation results on the short-time trans-
port properties of monodisperse and bidisperse hard-sphere suspensions. With the
iterative computation scheme in Sec. 4.4, the short-time translational and rotational
self-diffusivities, instantaneous sedimentation velocities, and high-frequency dy-
namic shear and bulk viscosities can be straightforwardly evaluated. Other transport
properties can also be calculated with an appropriate computation scheme.

The suspension short-time limit refers to a time scale t satisfying τI � t � τD, where
τI is the inertial time and τD is the diffusion time. The inertia time τI =

2
9 ρpa2

p/η0,
where ρp and ap are the characteristic particle density and radius, describes the
time required for the particlemomentum to dissipate by interacting with the solvent.
When τI � t, the particle momentum dissipates almost instantaneously and the par-
ticle dynamics are completely overdamped. The diffusion time τD = 6πη0a3

p/kBT

characterizes the time scale of suspension configuration change and t � τD ensures
that the transport properties entirely arise from the (instantaneous) HIs. Therefore,
they are only determined by the configuration X , and can be calculated by sampling
independent but equivalent configurations. In this work we use the Monte-Carlo
procedure of Wang & Brady [11]: the hard-sphere configurations are first gener-
ated by an event-driven Lubachesky-Stillinger algorithm [85, 86], followed by a
short equilibration. The transport properties are then computed statically. Here
we compare the results from the SEASD with CPU mobility computation with our
recent conventional SD results [11]. Although the SEASD and the SD are based
on the same formalism, the grand mobility tensorM constructed from SD includes
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an additional mean-field quadrupole term [64], which can have quantitative conse-
quences. For bidisperse hard-sphere suspensions, we focus on the composition with
λ = 2 and y2 = 0.5. In the SEASD computations, the system size is N = 800, and
the results are averaged over 500 independent configurations. Note that for simple
cubic array of monodisperse particles, SEASD produces identical results as those
of Sierou & Brady [36].

Short-time translational and rotational self-diffusivities

Themicroscopic definition of the short-time translational and rotational self-diffusivities,
dt

s,α and dr
s,α respectively, for homogeneous suspensions are,

dt
s,α =

kBT
Nα

〈∑
i∈α

q̂ · µtt
ii · q̂

〉
, and dr

s,α =
kBT
Nα

〈∑
i∈α

q̂ · µrr
ii · q̂

〉
, (4.80)

where q̂ is a vector of unit length for the averaging process and µtt
ii and µrr

ii are
respectively the diagonal blocks of the linear velocity-force and angular velocity-
torque couplings in R−1

FU
. Note that i ∈ α in Eq. (4.80) suggests the summation is

restricted to particles of species α. The diffusivities are computed using the matrix-
free approach of Sierou&Brady [36]: the velocity disturbanceUR corresponding to
a stochastic external force F R satisfying 〈F R〉 = 0 and 〈F RF R〉 = I is evaluated.
It is straightforward to show that the ensemble average

〈
URF R

〉
= diag(R−1

FU
),

allowing extraction of the diffusivities in Eq. (4.80).

The computed short-time translational self-diffusivities dt
s,α exhibit a strong N−1/3

size dependence due to the periodic boundary conditions. The size dependence
from an N-particle system can be eliminated by adding the following quantity to the
results,

∆N dt
s,α =

1.76dt
0,1

(x1 + x2λ3)
1
3

η0
ηs

(
φ

N

) 1
3
, (4.81)

where dt
0,1 = kBT/(6πη0a1) is Stokes-Einstein-Sutherland diffusivity for species 1,

and ηs is the high-frequency dynamic shear viscosity from the same configurations.
The shear viscosity exhibits little size dependence, and can be directly used. The
effectiveness of Eq. (4.81) has been demonstrated by Wang & Brady [11] in the
wave-number-dependent hydrodynamic functions. The results here always contain
this finite size N correction.

Fig. 4.8a and Fig. 4.8b respectively present dt
s,α/d

t
0,α and dr

s,α/d
r
0,α of monodisperse

and bidisperse suspensions, where the single particle translational and rotational
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Figure 4.8: (Color online) The species short-time (a): translational and (b): rota-
tional self-diffusivities, dt

s,α and dr
s,α respectively, as functions of the total volume

fraction φ for monodisperse and bidisperse hard-sphere suspensions with λ = 2,
y2 = 0.5. The results are scaled with the single particle translation and rotational
diffusivity, dt

0,α and dr
0,α, respectively. The SEASD results are shown in symbols

and the conventional SD results from Wang & Brady [11] are shown as lines.

Table 4.3: The polynomial coefficient fitted from the far-field diffusivities in Fig. 4.9.
The data is for polydisperse suspensions with λ = 2 and y2 = 0.5. The far-field
self-diffusivity dff

s can be expressed as dff
s /d0 = 1 + c1φ + c2φ

2 + c3φ
3, where d0 is

the single particle diffusivity.

dt,ff
s,1 dt,ff

s,2 dr,ff
s,1 dr,ff

s,2

c1 −1.27 −1.70 −0.207 −0.538
c2 0.536 1.005 −0.131 −0.312
c3 −0.018 −0.12 −0.091 0.19

self-diffusivities are dt
0,α = kBT/(6πη0aα) and dr

0,α = kBT/(8πη0a3
α). The SEASD

results, shown in symbols, agree well with the conventional SD results shown in
lines. As expected, both dt

s,α and dt
s,α decrease with increasing volume fraction φ,

and for bidisperse suspensions, the small particles show diffusivity enhancement
while the large particles exhibit diffusivity supression. Compared to dt

s,α, dr
s,α are

less sensitive to the volume fractions φ, but more sensitive to the particle sizes λ.
The SEASD results for large particles show larger error bars compared to the SD
results [11], most likely due to the stochastic computation procedure.

We have also calculated the far-field short-time translational and rotational self-
diffusivities dt,ff

s,α and dr,ff
s,α , where “ff” suggests only the far-field HIs without the

lubrication corrections are considered. They are the input for subsequent SEASD-nf
computations in Sec. 4.6 and 4.6. The N−1/3 size dependence in the far-field trans-
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Figure 4.9: (Color online) The species far-field short-time translational and rota-
tional self-diffusivities, dt,ff

s,α and dr,ff
s,α , respectively, as functions of the total volume

fraction φ for bidisperse hard-sphere suspensions with λ = 2 and y2 = 0.5. The
results are scaled with the single particle translation and rotational diffusivity, dt

0,α
and dr

0,α, respectively. The symbols are the computation results, and the dashed and
the dash-dotted lines are polynomial fittings for the small and the large particles,
respectively.

lational diffusivity dt,ff
s,α is corrected using Eq. (4.81) with the corresponding far-field

viscosity. Fig. 4.9 shows dt,ff
s,α and dr,ff

s,α for bidisperse suspensions up to φ = 0.62.
Compared to Fig. 4.8, the far-field diffusivities exhibit weaker volume fraction
dependence, and they do not have sharp reductions at high volume fractions. Con-
sistent with Fig. 4.8, dr,ff

s,α also exhibits stronger particle size dependence compared
to its translational counterpart. In general, the φ dependence of any scaled far-field
diffusivity dff

s /d0, with d0 the corresponding single-particle data, can be adequately
captured by a cubic polynomial dff

s /d0 = 1+c1φ+c2φ
2+c3φ

3, where the coefficients
ci, i ∈ {1, 2, 3}, only depend on the suspension composition. The fitting coefficients
for bidisperse suspensions with λ = 2 and y2 = 0.5 are presented Table 4.3. The
polynomial fittings, also shown in Fig. 4.9 in dashed and dash-dotted lines for the
small and the large particles, respectively, indeed describe the data. Not shown in
Fig. 4.9 are the SEASD far-field diffusivities for monodisperse suspensions, which
are identical to those of Banchio & Brady [39].
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Figure 4.10: (Color online) The scaled species instantaneous sedimentation veloc-
ities, Us,α/U0,α, as functions of the total volume fraction φ for monodisperse and
bidisperse hard-sphere suspensions with λ = 2 and y2 = 0.5. The single particle
sedimentation velocity is U0,α. The SEASD results are shown in symbols and the
conventional SD results from Wang & Brady [11] are shown as lines.

Instantaneous sedimentation velocity

The species instantaneous sedimentation velocitiesUs,α are computed by applying a
uniform external force Fα to each species. For bidisperse suspensions, the sedimen-
tation velocityUs,α also depends on the species density ratio [8], γ = ∆ρ2/∆ρ1, with
∆ρα = ρα − ρ0 the density difference of species α. The species force ratio satisfies
F2/F1 = γλ3, and here we set γ = 1 to facilitate comparison with earlier results.
To eliminate the N−1/3 size dependence, the following corrections are added to the
results:

∆NUs,1 =
1.76U0,1

(x1 + x2λ3)
1
3

η0
ηs

(
φ

N

) 1
3

[
S11(0) + λ3γ

√
x2
x1

S12(0)
]
, (4.82)

∆NUs,2 =
1.76U0,1

(x1 + x2λ3)
1
3

η0
ηs

(
φ

N

) 1
3

[√
x1
x2

S21(0) + λ3γS22(0)
]
, (4.83)

where U0,α = Fα/(6πη0aα) is the single particle sedimentation velocity and Sαβ (0)
is the partial static structural factors in the zero wave number limit. Eqs. (4.82) and
(4.83) are based on the finite-size correction for partial hydrodynamic functions [11].
Here, the partial static structural factors are computed from the polydisperse Percus-
Yevic integral equations [87–90].

Fig. 4.10 presents the SEASD Us,α/U0,α in symbols, which are not identical to the
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conventional SD results shown in lines. The difference is especially pronounced
at high volume fractions. For monodisperse suspensions, the SEASD and the
conventional SD agree with each other satisfactorily up to φ ≈ 0.3, and at higher
φ, the SEASD results become significantly higher. This difference is from the
mean-field quadrupole term, which is absent in SEASD. Despite the quantitative
differences, the SEASD monodisperse sedimentation velocity remain positive and
physical. A similar overestimation of the sedimentation velocity is also found when
comparing ASD results [36] and the conventional SD results [64] for simple cubic
arrays.

The differences between the SEASD and the conventional SD results are more
significant for bidisperse suspensions. ForUs,2 of the large particles, the differences
are not evident until φ = 0.3, and for Us,1 of the small particles, the differences are
obvious even at φ ≈ 0.2. Moreover, Us,1 exhibits a minimum and increases with φ
at higher volume fraction, leading to a crossing of Us,1 and Us,2 at φ = 0.45. These
unphysical behaviors are caused by inaccurate HI computations at the stresslet-strain
rate level. Apparently, the HIs of the small particles, which are surrounded by many
large particles, are more complex than those of the large particles and more difficult
to capture accurately. Note that for sedimentation the lubrication interactions are
not important and one must rely on the far-field mobility for all HIs.

Fig. 4.10 also illustrates that the sedimentation problems in dense bidisperse sus-
pensions, even at λ = 2, is challenging for SEASD. Incorporating the mean-field
quadrupole term [64], (1 − 1

5φ), in the grand mobility tensor can significantly
improve the results [11]. For the conventional SD, such incorporation involves
multiplying (1 − 1

5φ) to the quadrupole terms in the velocity-force coupling of the
grand mobility tensor [64]. However, including this term in the SEASD, or any par-
ticle mesh approaches, is more involved due to the wave-space computation. One
method is to multiply (1− 1

5φ) to the quadrupole term in the Faxén’s law, Eq. (4.13).
This modification produces undesired changes in the velocity-torque and velocity-
stresslet couplings, and has to be corrected by a separate wave-space computation
that applies 1

30φa2
i ∇

2 to the velocity disturbances from the torques and stresslets.
Apparently, this additional wave-space correction increases the computational cost
and the algorithm complexity, and therefore is not implemented in this work.
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Figure 4.11: (Color online) The high-frequency dynamic (a): shear viscosity ηs and
(b): bulk viscosity κs as functions of the total volume fraction φ for monodisperse
and bidisperse hard-sphere suspensions with λ = 2 and y2 = 0.5. The results are
scaled with the solvent viscosity η0, and only the particle contributions, ηs/η0 − 1
and (κs − κ0)/η0 are presented. The SEASD results are shown as symbols and the
conventional SD results [11] are shown as lines.

High-frequency dynamic shear and bulk viscosities

The high-frequency dynamic shear and bulk viscosities, ηs and κs, are respectively
defined as,

ηs = η0 + n〈SE〉xy/γ̇, and κs = κ0 +
1
3 n〈SE〉 : I/ė, (4.84)

where γ̇ is the imposed strain rate, ė is the imposed uniform expansion rate, SE is
the hydrodynamic stresslet in Eq. (4.65), and the subscript xy denotes the velocity-
velocity gradient component. They are directly computed from SEASD and exhibit
little size dependencies. Experimentally, ηs and κs are measured by imposing high-
frequency, low-amplitude deformations, such that the suspension microstructures
are only slightly perturbed, and the Brownian stress contributions are out of phase
with the applied deformations [91].

Fig. 4.11a and 4.11b present the volume fraction φ dependence of the particle
contributions to the high-frequency dynamic shear and bulk viscosities, ηs/η0 − 1
and (κs − κ0)/η0, respectively. The SEASD calculations are shown in symbols, and
the corresponding conventional SD results are shown in lines. For ηs, the SEASD
and the conventional SD results agree well over the entire φ range. The results
for monodisperse and bidisperse suspensions with λ = 2 are almost identical when
φ < 0.55. At higher volume fractions, the monodisperse ηs are more sensitive to
φ compared to the bidisperse results, as introducing particles of difference sizes
significantly alters the suspension hydrodynamic environment in this limit. Unlike
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the sedimentation velocities, for the shear viscosity lubrication interactions are
important at high φ.

For the high-frequency dynamics bulk viscosity κs in Fig. 4.11b, the SEASD and
the conventional SD results show qualitative agreement with noticeable quantita-
tive differences at moderate φ: the SEASD results are higher and less sensitive to
the particle size ratio λ. The differences are caused by different pressure moment
computation procedures. Recall that the far-field grand mobility tensor M is not
symmetric by construction, and the symmetry of M−1 must be restored for subse-
quent calculations. This is done in the conventional SD by explicitly copying matrix
elements after the matrix inversion [92]. This is not applicable for the matrix-free
computation of M in SEASD. Here, the pressure moment is computed from the
far-field forces and stresses. Fig. 4.11b shows that the two conceptually equivalent
approaches do lead to small quantitative differences. Moreover, for dense suspen-
sions, such differences are masked by the dominance of lubrication interactions.
Therefore, the SEASD and the conventional SD results agree well at low and high
φ. Near the close packing limit, κs for bidisperse suspensions is significantly lower
than that of the monodisperse case, since the particle size polydispersity improves
the particle packing.

Equilibrium suspensions
Here we present the dynamic simulation results with SEASD and SEASD-nf for
monodisperse and bidisperse Brownian suspensions at zero Péclet number. In
particular, we are interested in the following equilibrium properties: the osmotic
pressure Π, the high-frequency dynamic bulk modulus K′∞, and the high-frequency
dynamic shear modulus G′∞. The dynamic simulations are carried out with 100
particles over 200 diffusive time units with a time step ∆tdt

0,1/a
2
1 = 10−3. The

mobility computation in SEASD is performed on GPUs with M = 32, P = 11, and
rc = 4(ai+a j ), and the far-fieldBrownian force is calculated using the IVPmethod in
Sec. 4.4with∆τ = 0.1. The tolerance for the iterative solver is 10−3 and the tolerance
for matrix inversion in Eqs. (4.75) and (4.76) is 0.02. The composition of bidisperse
suspensions are λ = 2 and y2 = 0.5. Therefore, for the SEASD-nf computations the
coefficients in Table 4.3 are used. Note that with Pe = 0, SEASD-nf computations
do not contain far-field mobility evaluations.
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Figure 4.12: (Color online) The equilibrium osmotic pressure Π/(nkBT ) of
monodisperse and bidisperse Brownian suspensions with λ = 2 and y2 = 0.5,
as a function of volume fraction φ. The dashed line represents the CS equation of
state, Eq. (4.86), and the dash-dotted line represents the BMCSL equation of state,
Eq. (4.87).

Osmotic pressure

The osmotic pressure of an equilibrium suspension is defined as

Π = nkBT − 1
3 n〈SB〉 : I, (4.85)

where 〈SB〉 is the Brownian stresslet in Eq. (4.67). For rigid particles with no-
slip boundary conditions, Brady [51] showed that the osmotic pressure is purely
hydrodynamic in origin, and is identical to that of a hard-sphere fluid. The osmotic
pressure of monodisperse suspensions is well described by the Carnahan-Starling
(CS) equation up to the fluid-solid transition,

Π

nkBT
=

1 + φ + φ2 − φ3

(1 − φ)3 . (4.86)

The CS equation of state is extended to polydisperse suspensions as the Boublik-
Mansoori-Carnahan-Starling-Leland (BMCSL) equation [93]:

Π

nkBT
=

1 + φ + φ2 − 3φ(z1 + z2φ) − z3φ
3

(1 − φ)3 , (4.87)

where z1 = ∆12(1 + λ)/
√
λ, z2 = ∆12(y1λ + y2)/

√
λ, and z3 = [(y2

1 x1)1/3 +

(y2
2 x2)1/3]3 with ∆12 =

√
y1y2
√

x1x2(λ − 1)2/λ.
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Fig. 4.12 presents the equilibrium osmotic pressure of monodisperse and bidis-
perse suspensions with λ = 2 and y2 = 0.5 as functions of φ using SEASD and
SEASD-nf. The CS [Eq. (4.86)] and the BMCSL [Eq. (4.87)] equations of state
at the corresponding bidisperse compositions are shown in dashed and dash-dotted
lines, respectively. Also shown in Fig. 4.12 are the static computation results with
N = 200, denoted “static”. The static computations do not consider particle dy-
namics, and calculate the osmotic pressure by taking a full Brownian step from
independent particle configurations in a Monte-Carlo fashion. In Fig. 4.12, at each
volume fraction 500 independent configurations are used in the static computations.

The osmotic pressures from the SEASD, the SEASD-nf, and the static computations
agree with the CS and BMCSL predictions in Fig. 4.12. The static computations
show the best agreement over the entire φ range, and this directly validates the
Brownian stress computation method in Sec. 4.4. The dynamic SEASD results are
slightly higher than the theoretical predictions because the configuration evolution
is affected by the finite ∆τ in the far-field Brownian force computation. The slight
difference is well within the discretization errors of Eqs. (4.75) and (4.76). Note
that, as long as the tolerances for the iterative solution of Eqs. (4.75) and (4.76)
are smaller than the discretization step size ∆τ, the principal source of error is the
time discretization. We have verified that reducing the iterative solver tolerance
with fixed ∆τ does not improve the results. Finally, the agreement in the bidisperse
osmotic pressures from SEASD-nf and the BMCSL equation validates the extension
of the mean-field Brownian approximation to polydisperse systems. The SEASD-nf
results are only slightly lower than the theoretical predictions, which is acceptable
considering the substantial speedup offered by this approach.

High-frequency dynamic moduli

The suspension high-frequency dynamic bulk and shear moduli, K′∞ and G′∞ re-
spectively, can be computed from the short-time limit of the pressure-pressure and
stress-stress autocorrelation functions [92, 94, 95], i.e.,

K′∞ = lim
t→0

V
kBT
〈δΠ(t)δΠ(0)〉 , and G′∞ = lim

t→0

V
kBT
〈σ(t)σ(0)〉 , (4.88)

where δΠ is the osmotic pressure fluctuations and σ is the off-diagonal components
of the bulk stress 〈Σ〉 in Eq. (4.64). Note that the viscoelasticity of colloidal
suspensions is entirely of hydrodynamic origin, and without HIs, e.g., in hard-
sphere fluids, these moduli are infinite.
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Figure 4.13: (Color online) The high-frequency dynamic moduli: (a) the bulk mod-
ulus K′∞a3

1/(kBT ), and (b) the shear modulus G′∞a3
1/(kBT ), as functions of volume

fraction φ for equilibrium monodisperse and bidisperse Brownian suspensions with
λ = 2 and y2 = 0.5. The results are computed from SEASD (filled symbols) and
SEASD-nf (open symbols).

Fig. 4.13a and 4.13b respectively presentK′∞ andG′∞ ofmonodisperse and bidisperse
suspensions as functions of φ from the same SEASD and SEASD-nf dynamic
simulations of Fig. 4.12. Both K′∞ and G′∞ grow rapidly with φ, and at the same
volume fraction, the monodisperse moduli are always higher. In Fig. 4.13a, the
bulk modulus K′∞ computed from SEASD and SEASD-nf share the same qualitative
behaviors. However, the SEASD results are almost always higher than the SEASD-nf
results except at small φ, and their differences grow with increasing φ. This is
consistent with the growing differences in Π with increasing φ in Fig. 4.12. On
the other hand, in Fig. 4.13b the differences in the shear modulus G′∞ between the
SEASD and the SEASD-nf results decrease with increasing φ, with the SEASD-nf
data higher at low volume fractions. Note that the bidisperse SEASD results show
large fluctuations when φ = 0.2 ∼ 0.25, most likely due to the small number of
large particles at N = 100 and the particular particle spacing at this volume fraction.
Finally, small differences in fluctuation quantities such as K′∞ and G′∞ are expected
for SEASD and SEASD-nf because the Brownian stresses are computed differently.
However, the same qualitative behaviors are followed in both methods.

Rheology of bidisperse suspensions
The final validation of SEASD and SEASD-nf is the steady shear rheology of
Brownian suspensions at constant strain rate. Both monodisperse and bidisperse
hard-spehre suspensions are considered: the volume fractions are fixed at φ =
0.45 in both cases, and the bidisperse composition is λ = 2 and y2 = 0.5. The
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Figure 4.14: (Color online) Different viscosity contributions to the rheology of
monodisperse and bidisperse hard-sphere suspensions: (a) the Brownian viscosity
ηB/η0 and (b) the flow viscosity ηE/η0, as functions of Pe. The volume fraction
φ = 0.45 in both cases, and the bidisperse composition is λ = 2 and y2 = 0.5.

results are extracted from the SEASD and the SEASD-nf simulations with GPU
mobility computation over a wide range of Péclet number Pe = 6πη0a3

1γ̇/(kBT ).
Moreover, we introduce a small excluded volume on each particle to emulate the
effects of surface asperities or polymer coating and to prevent particle overlap. It is
characterized by,

δ = 1 − ai/bi, (4.89)

where bi is the excluded volume radius for each particle. The SEASD and SEASD-nf
simulations are carried out at δ = 5 × 10−4 with N = 200 over 150 dimensionless
time units with a step size 10−3. Other simulation parameters are similar to those in
Sec. 4.6. The data are averaged in segments after the steady state is reached, usually
after 20 dimensionless time units. As is customary, the x-direction is the velocity
direction, the y-direction is the velocity gradient direction, and the z-direction is the
vorticity direction.

Shear viscosity

Fig. 4.14a and 4.14b respectively present the Brownian viscosity ηB and the flow
viscosity ηE as functions of the Péclet number. These viscosities are defined as

ηB = n〈SB〉xy/γ̇ and ηE = n〈SE〉xy/γ̇, (4.90)

with 〈SB〉 in Eq. (4.67) and 〈SE〉 in Eq. (4.65). In this figure, the monodisperse data
are shown in squares and the bidisperse data in triangles, with the SEASD results
in filled symbols and the SEASD-nf results in open symbols. For comparison,
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the SD results of Foss & Brady [73] for monodisperse suspensions are presented
in open circles. To clarify the effects of the excluded volume parameter δ on
viscosities, another set of monodisperse SD simulations with N = 30 are performed
at δ = 5×10−4 and 10−5, and the results are shown as crosses and pluses respectively.
In all cases, the stress contributions from the inter-particle forces are negligible, and
therefore are not shown.

In Fig. 4.14 both the Brownian viscosity ηB and the flow viscosity ηE exhibit
the expected behaviors: with increasing Pe, ηB decreases (shear-thinning) and ηE

grows (shear-thickening). In addition, there are several important observations.
First of all, the excluded volume parameter δ introduces quantitative effects on
the suspension rheology. Comparing the SD results with δ = 5 × 10−4 and 10−5,
increasing δ enhances the shear-thinning of ηB and weakens the shear-thickening
of ηE , especially at high Pe. At low Pe, the effect of δ is almost unnoticeable.
The SD results at δ = 10−5 agree well with those of Foss & Brady [73], and the
results at δ = 5×10−4 are consistent with the monodisperse SEASD and SEASD-nf
results, with larger differences shown in ηE . This difference is most likely due
to the number of particles in the computations. Next, the bidisperse Brownian
viscosity ηB is always lower than the monodisperse value at all Pe, and for the
flow viscosity ηE , their difference is most apparent at high Pe. The large difference
in ηE at high Pe suggests distinct HIs and structures between the monodisperse
and the bidisperse suspensions, since Fig. 4.11a suggests ηE is insensitive to the
equilibrium suspension structures at φ = 0.45. Finally, the SEASD and SEASD-nf
results in Fig. 4.14 almost always overlap each other, showing that the mean-field
Brownian approximation is valid over the entire Péclet number range. At high
Pe, the Brownian viscosity ηB from SEASD shows larger fluctuations compared to
the SEASD-nf results as the Brownian stresses are difficult to compute with highly
anisotropic structures. However, these fluctuations do not affect the overall viscosity
since the Brownian contribution at high Pe is insignificant.

Non-equilibrium osmotic pressures

Fig. 4.15a and 4.15b present the Brownian and the flow contributions to the suspen-
sion osmotic pressure,

Π
B = nkBT − 1

3 n〈SB〉 : I and ΠE = −1
3 n〈SE〉 : I, (4.91)

respectively, as functions of Péclet number Pe. In these figures, the scaling for
the Brownian contribution is nkBT and the scaling for the flow contribution ΠE is
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Figure 4.15: (Color online) Different contributions to the osmotic pressures of
monodisperse and bidisperse hard-sphere suspensions: (a) the Brownian contribu-
tion scaled with nkBT , ΠB/(nkBT ), and (b) the flow contribution scaled with η0γ̇,
ΠH/(γ̇η0), as functions of Pe. The volume fraction is φ = 0.45 in both cases, and
the bidisperse composition is λ = 2 and y2 = 0.5.

η0γ̇. Similar to Fig. 4.15, the monodisperse data are presented in squares and the
bidisperse data in triangles, with the SEASD results in filled symbols and SEASD-nf
results in open symbols. Fig. 4.15 also presents the N = 30monodisperse SD results
with δ = 5×10−4 and 10−5 in crosses and pluses, respectively. Similarly to the shear
stresses, the inter-particle contribution to the osmotic pressures is also negligible.

In Fig. 4.15, both ΠB/(nkBT ) and ΠE/(γ̇η0) grow with increasing Pe when Pe <
100. The Brownian contribution ΠB/(nkBT ) asymptotes the equilibrium value as
Pe → 0. At higher Pe, the influence of the excluded volume parameter δ becomes
apparent. For the Brownian osmotic pressure contribution ΠB/(nkBT ), the SD
results at δ = 10−5 continuously grow with Pe up to Pe = 104, the highest value in
our study, while with δ = 5 × 10−4, a maximum in ΠB/(nkBT ) around Pe = 103 is
apparent. After themaximum,ΠB/(nkBT ) decreases slowlywith growingPe. In this
case, the parameter δ not only brings quantitative, but also qualitative differences.
On the other hand, the flow osmotic pressure contribution ΠE/(γ̇η0) increases and
reaches a plateau at high Pe. Comparing the SD results with δ = 5 × 10−4 and
10−5, increasing δ reduces the final plateau value of ΠE/(γ̇η0) at a smaller Pe.
Apparently, the high Pe osmotic pressure is very sensitive to the excluded volume
parameter δ. In terms of the normal viscosity, i.e., Π/γ̇ with Π = ΠB + ΠE ,
increasing δ weakens the shear thickening of the normal viscosity. Furthermore,
the SD results at δ = 10−5 agree qualitatively with the results of Yurkovetsky &
Morris [53], with slight quantitative difference due to different osmotic pressure
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computations. At δ = 5 × 10−4, the Brownian osmotic pressures ΠB from SD and
SEASD almost overlap each other in Fig. 4.15a, and ΠE from SEASD is lower than
the SD results in Fig. 4.15b. Similarly to Fig. 4.14b, the difference is most likely
due to the small system sizes in the SD computations. Moreover, the SEASD ΠB

also exhibits larger error bars at high Pe due to the Brownian stress computation,
but such errors are of little consequences on the suspension total osmotic pressures.

For the bidisperse results shown in triangles in Fig. 4.15, the Brownian osmotic
pressure ΠB is always lower than its monodisperse counterpart, and the bidisperse
ΠE is first slightly higher than the monodisperse results at low Pe and then lower
at high Pe. The crossing of the monodisperse and bidisperse ΠE demonstrates the
complex interplay between HIs and structures in polydisperse systems.

The SEASD-nf results in Fig. 4.15 agree qualitatively with the SEASD compu-
tations. However, for ΠB, there are quantitative differences at both λ = 1 and
λ = 2, with the SEASD-nf results systematically lower. This difference is inher-
ently associated with the far-field Brownian force computations in Sec. 4.4 and the
mean-field Brownian approximations, and is also encountered in Fig. 4.12. How-
ever, the quantitative discrepancies in ΠB are still within the discretization errors
of ∆τ in Eqs. (4.75) and (4.76). On the other hand, for ΠE , the SEASD-nf and
SEASD results almost always overlap each other over the entire Pe range for both
bidisperse and monodisperse suspensions. SEASD-nf satisfactorily captures both
contributions of the suspension osmotic pressures, ΠB and ΠE .

Normal stress differences

The first normal stress difference N1 and the second normal stress difference N2,
defined as

N1 = 〈Σ〉xx − 〈Σ〉yy and N2 = 〈Σ〉yy − 〈Σ〉zz, (4.92)

describe the stress anisotropy in sheared suspensions, and are important for under-
standing phenomena such as the shear-induced particle migrations [52]. The normal
stress differences N1 and N2 are respectively shown in Fig. 4.16a and Fig. 4.16b.
The monodisperse data are shown in squares and the bidisperse data in triangles,
with SEASD results in filled symbols and SEASD-nf results in open symbols. In
addition, in Fig. 4.16, the SD results of Foss & Brady [73] are presented in circles,
and the SD computations at N = 30 with δ = 5 × 10−4 and 10−5 are respectively
shown in crosses and pluses.
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Figure 4.16: (Color online) The normal stress differences: (a) the first normal stress
difference N1 and (b) the second normal stress difference N2 as functions of Péclet
number Pe. The volume fraction is φ = 0.45 in both cases and the bidisperse
composition is λ = 2 and y2 = 0.5.

In general, the first normal stress difference N1 in Fig. 4.16a changes from positive
to negative with increasing Pe, and the second normal stress N2 in Fig. 4.16b
remains negative for all Pe studied and exhibits weak Pe dependence. The data with
small systems are strongly scattered, particularly at small Pe. For monodisperse
suspensions, the excluded volume parameter δ has little effect on N1 or N2, as there
lacks a qualitative difference for the SD results at δ = 5×10−4 and 10−5 in Fig. 4.16.
These SD results in general agree with the data of Foss & Brady [73] when Pe > 1.
At smaller Pe, the data exhibit large errors due to fluctuations in Brownian stresses,
making quantitative comparisons difficult.

In Fig. 4.16 the SEASD results at λ = 1 follow the SD data with the same qualitative
behaviors. The differences at low Pe is likely associated with the difficulties in
measuring the fluctuating Brownian normal stresses. In addition, the SEASD results
show clearer trends at high Pe thanks to larger system sizes: both N1 and N2

asymptote toward constant values with increasing Pe. Particle size polydispersity
weakens the influences of Pe on the first normal stress difference N1. In Fig. 4.16a,
the bidisperse N1 are less sensitive to Pe compared to the monodisperse case, and
as Pe → ∞, the bidisperse N1 asymptotes towards a negative value with a smaller
magnitude. On the other hand, the size polydispersity has little effect on the
second normal stress N2, as the bidisperse N2 almost overlaps the monodisperse N2,
especially at large Pe.

The SEASD-nf and the SEASD results agree satisfactorily when Pe ≥ 10 for both
the monodisperse and bidisperse suspensions. As expected, larger differences are
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Figure 4.17: (Color online) The fraction of stresses taken up by the small particles
(species 1) in a bidisperse suspension: (a) the fraction of the shear stress and (b)
the fraction of the normal stress. The stress fractions are shown as functions of Pe.
The composition of the bidisperse hard-sphere suspension is φ = 0.45, λ = 2, and
y2 = 0.5.

found at low Pe, as the mean-field Brownian approximation in SEASD-nf explicitly
removes the anisotropy in the far-field mobility tensor. However, the SEASD-nf
results still capture the qualitative aspects of N1 and N2 even in the low Pe limit.

Finally, we note in passing that the shear-induced particle migration takes place
in bounded suspensions with spatially varying strain rate, e.g., the Poiseuille flow,
and it can be computationally investigated by introducing confining boundaries.
For the SEASD, this is conceptually straightforward: we only have to replace the
unbounded fundamental solution to the one with the confining boundaries [63], and
use the spectral Ewald method for doubly periodic systems [96].

Species stress distribution

Stress distributions across different species are key to understand the phenomena
of particle migration and segregation in polydisperse suspensions [97], and are
presently only accessible from simulations. Fig. 4.17 presents the stress distribution,
expressed as the stress fraction taken up by the small particles (species 1), as
functions of Pe for bidisperse suspensions with φ = 0.45, λ = 2, and y2 = 0.5.
Fig. 4.17a shows various shear stress fractions. In terms of the definitions in
Eqs. (4.64)–(4.67), σ1/σ (circles), σB

1 /σ
B (squares) , and σE

1 /σ
E (triangles) in

Fig. 4.17a are

σ1/σ =x1〈Σ〉1,xy/〈Σ〉xy,
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σB
1 /σ

B =x1〈SB〉1,xy/〈SB〉xy,

σE
1 /σ

E =x1〈SE〉1,xy/〈SE〉xy, (4.93)

where 〈·〉α indicates averaging with respect to species α. Fig. 4.17b presents various
normal stress fractions. The normal stress fractions S1/S (circles), SB

1 /SB (squares),
and SE

1 /SE (triangles) in Fig. 4.17b are similarly defined as

S1/S =x1(I : 〈Σ〉1)/(I : 〈Σ〉),

SB
1 /SB =x1(I : 〈SB〉1)/(I : 〈SB〉),

SE
1 /SE =x1(I : 〈SE〉1)/(I : 〈SE〉). (4.94)

In both figures, the SEASD results are shown in filled symbols and the SEASD-nf
results are shown in open symbols.

Fig. 4.17a illustrates that the total shear stress is roughly equally partitioned between
the two species, and the fraction σ1/σ is almost constant with respect to Pe. This is
largely because the flow shear stress fraction σE

1 /σ
E is insensitive to Pe. The Brow-

nian shear stress fraction σB
1 /σ

B, on the other hand, exhibits weak Pe dependence:
the ratio σB

1 /σ
B increases with Pe from less than 0.45 at Pe = 0.1 to close to 0.6

at Pe = 100. At higher Pe, the Brownian stress fraction shows large fluctuations,
also due to the difficulties associated with the anisotropic structures. However,
in this limit, the Brownian contribution to the total stress is small, and the large
fluctuations in Fig. 4.17a is inconsequential. On the other hand, the total normal
stress fraction S1/S in Fig. 4.17b shows stronger Pe dependence, and it decreases
from 0.6 at Pe = 0.1 to 0.45 at Pe = 104. Contrary to shear stress distributions in
Fig. 4.17a, the Brownian normal stress distribution SB

1 /SB is almost constant at 0.6,
but SE

1 /SE increases from 0.3 at Pe = 0.1 and asymptotes towards 0.45 as Pe→ ∞.
Since the Brownian stresslet dominates at low Pe and the flow stresslet dominates
at high Pe, the normal stress distributions in Fig. 4.17b are distinctively affected by
both the flow and the Brownian contributions. Fig. 4.17 demonstrates that both the
shear and the normal stresses in bidisperse suspensions are distributed based on the
species volume and the distribution weakly depends on Pe. This is a useful insight
for modelling polydisperse systems.

The stress distributions from SEASD-nf accurately capture the SEASD results
except the Brownian shear stress distribution σB

1 /σ
B at high Pe in Fig. 4.17a,

where the SEASD-nf results is slightly lower. This difference, however, is expected
since the mean-field Brownian approximation ignores the structural anisotropy in
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Figure 4.18: (Color online) The species long-time self-diffusivities: (a) the velocity
gradient direction diffusivity dt,yy

∞,α and (b) the vorticity direction diffusivity dt,zz
∞,α

of monodisperse and bidisperse hard-sphere suspensions as functions of Pe. The
volume fraction is φ = 0.45 for both cases, and the bidisperse composition is λ = 2
and y2 = 0.5.

the suspension. Moreover, the discrepancies are only evident at Péclet numbers
where the Brownian stress does not affect the overall suspension rheology. From
this perspective, the overall quality of the SEASD-nf approximation is deemed
satisfactory.

Long-time diffusion

An important characterization of the overall suspension dynamics is the translational
long-time self-diffusivities. The long-time limit refers to a time scale t � τD,
where, recall that, τD = 6πη0a3

p/kBT is the single particle diffusive time scale. In
this limit, the particle movement is diffusive due to extensive interactions with its
neighbors. The corresponding diffusivities are obtained from the particle mean-
square displacement. In the velocity gradient and the vorticity directions, these
self-diffusivities are respectively defined as

dt,yy
∞,α = lim

t→∞
1
2d〈(∆y)2〉α/dt and dt,zz

∞,α = lim
t→∞

1
2d〈(∆z)2〉α/dt, (4.95)

where ∆y and ∆z are the particle trajectory fluctuations in y- and z-directions.
Fig. 4.18a and 4.18b respectively present the long-time diffusivities dt,yy

∞,α and dt,zz
∞,α as

functions of the Péclet number. The monodisperse results are shown in squares. For
bidisperse suspensions, the small and the large particle long-time self-diffusivities
are presented in triangles and circles, respectively. For comparison, Fig. 4.18 also
shows the results from Foss & Brady [73] in crosses. Moreover, the SEASD and the
SEASD-nf results are shown in filled and open symbols, respectively.
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For monodisperse suspensions in Fig. 4.18, both dt,yy
∞ and dt,zz

∞ grow with Pe due to
the imposed shear flow, with the velocity direction diffusivity dt,yy

∞ slightly higher.
At low Pe, dt,yy

∞ and dt,zz
∞ grow weakly with Pe, and at large Pe, both diffusivities are

proportional to Pe. The SEASD results are consistent with the SD results of Foss
& Brady [73] at intermediate Pe. The differences at large and small Pe are most
likely due to the system size, as in this work N = 200 while in Foss & Brady [73]
N = 27. For bidisperse suspensions, the long-time self-diffusivities dt,yy

∞,α and dt,zz
∞,α

for both species exhibit similar Pe dependencies as themonodisperse case. However,
introducing a second species to the suspension apparently enhances the long-time
self-diffusivities of both species, particularly at high Pe. This mutual diffusivity
enhancement is in contrast to the short-time diffusivities in Fig. 4.8a, where at
φ = 0.45, the small particle diffusivity enhancement is always accompanied by
the large particle diffusivity supression. Moreover, the diffusivity enhancement in
y-direction is stronger than those in z-direction.

In Fig. 4.18 the diffusivities from SEASD-nf in general agree with the SEASD
results for both monodisperse and bidisperse suspensions. At low Pe, the SEASD-nf
diffusivity is lower, particularly for the large particles. The agreement between
SEASD and SEASD-nf improves with increasing Pe due to the reduced influences
of Brownian motion.

Suspension structures

Finally, we examine the structures of sheared bidisperse suspensions via the pro-
jections of the partial pair-distribution functions gαβ (r ), which are defined as the
conditional probability of finding another particle in species β given a particle of
species α, i.e.,

gαβ (r ) =
1

nαnβ

〈∑′

i∈α,
j∈β

1
V
δ(r − ri + r j )

〉
. (4.96)

They are related to the pair-distribution function g(r ) through

g(r ) =
∑
α,β

xαx βgαβ (r ). (4.97)

Fig. 4.19, 4.20, and 4.21 present projections of g(r ) and gαβ (r ) on the velocity-
velocity gradient (xy-) plane, the velocity-vorticity (xz-) plane, and the velocity
gradient-vorticity (yz-) plane, respectively, at selected Péclet numbers. These fig-
ures are based on particle trajectories from SEASD simulation, and are indistin-
guishable from the SEASD-nf results.
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Figure 4.19: (Color online) The velocity-velocity gradient (xy-) plane projection of
the pair-distribution function g(r ) and the partial pair-distribution functions gαβ (r )
at various Pe for bidisperse suspensions with φ = 0.45, λ = 2, and y2 = 0.5.
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Figure 4.20: (Color online) The velocity-vorticity (xz-) plane projection of the
pair-distribution function g(r ) and the partial pair-distribution functions gαβ (r ) at
various Pe for bidisperse suspensions with φ = 0.45, λ = 2, and y2 = 0.5.
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Figure 4.21: (Color online) The velocity gradient-vorticity (yz-) plane projection of
the pair-distribution function g(r ) and the partial pair-distribution functions gαβ (r )
at various Pe for bidisperse suspensions with φ = 0.45, λ = 2, and y2 = 0.5.

Fig. 4.19 clearly displays the structural anisotropy caused by the shear flow in the
xy-plane, characterized by the distortion of the otherwise isotropic pair-distribution
rings. With increasing Pe, the overall pair-distribution function g(r ) shows an accu-
mulation of neighboring particles in the compressional quadrant. This is indicated
by the brightening and thinning of the rings at 2a1, a1 + a2, and 2a2, corresponding
to the particle pairs of two small particles, a large and a small particle, and two large
particles, respectively. Meanwhile, the particle pairs are depleted in the extensional
quadrant.

Specific changes in different particle pairs are revealed by examining the corre-
sponding partial pair-distribution function gαβ (r ) in Fig. 4.19. The distribution of
the small-small particle pairs is presented in g11(r ). Similarly to g(r ), g11(r ) is in-
creasingly distorted and compressed in the compressional quadrant with increasing
Pe, forming a boundary layer. At higher Pe, the pair structure remain approximately
unchanged. In the extensional quadrant, the pair breakup point shifts from the ex-
tensional axis towards the velocity (x-) direction due to the lubrication interactions,
with a clear tail of high probability outlining the trajectory of small-small pair disen-
gagement. The distribution of the small-large particle pairs in g12(r ) shows a similar
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structural distortion in the compressional quadrant with increasing Pe. Moreover, in
the extensional quadrant, the trajectory of particle disengagement is more diffusive
compared to g11(r ) at the same Pe. This suggests that particle movement in bidis-
perse suspensions are facilitated by the breakup of small-large particle pairs, and
partially explains the mutual enhancement of long-time self-diffusivity in Fig. 4.18.
For the distribution of large-large particle pairs, g22(r ) also exhibits anisotropy with
increasing Pe in Fig. 4.19. However, due to the limited particle number, information
beyond the first coordinate shell is difficult to analyze.

Fig. 4.20 displays the total and partial pair-distribution function projections in the xz-
plane. Unlike the xy-plane projections in Fig. 4.19 which exhibits strong anisotropy,
the suspension structures here are less sensitive to Pe. With increasing Pe, the
particles are compressed towards each other, which is evidenced by the thinning and
brightening of the first coordinate shells. More interestingly, at higher Pe ≥ 100,
g12(r ) shows a belt of particle enrichment along the flow direction, while g11(r ) and
g22(r ) exhibit a corresponding particle depletion. This indicates that the small-large
pairs are preferred in the xz-plane, and that the shear flow promotes species mixing
in the flow direction.

Fig. 4.21 shows the projection of g(r ) and gαβ (r ) in the yz-plane. With increasing
Pe, the shear flow also compresses the particle pairs in this plane without apparent
anisotropy. Note that even at Pe = 104, the suspension does not exhibit string
ordering [98] due to the HIs. The lack of structural formation is also confirmed by
the continuous increase of the long-time self-diffusivities dt,yy

∞,α and dt,yy
∞,α with Pe in

Fig. 4.18.

4.7 Conclusions
In this chapter we presented the Spectral Ewald Accelerated Stokesian Dynamics
(SEASD) for dynamic simulations of polydisperse colloidal suspensions. Using
the framework of Stokesian Dynamics (SD), SEASD can accurately and rapidly
compute HIs in dense polydisperse suspensions. Other features of SEASD include
(i) direct inclusion of the solvent compressibility and pressure evaluations, (ii) the
use of the Spectral Ewald (SE) method for accurate mobility computation with
flexible error control, (iii) a far-field preconditioner to accelerate the convergence of
the nested iterative scheme, (iv) GPGPU accelerated mobility evaluation for almost
an order of magnitude speed improvement, and (v) the incorporation of SEASD-nf,
an extension of the mean-field Brownian approximation of Banchio & Brady [39]
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to polydisperse suspensions.

We extensively discussed the accuracy ofmobility computation using the SEmethod,
established the baseline for parameter selection, and demonstrated the adequate ac-
curacy in the GPU single precision (SP) mobility computation. We found that com-
pared to the full SEASD computations, SEASD-nf can achieve significant speedup
without substantially sacrificing accuracy. Indeed, for all the dynamic simulations
in this work, the SEASD and the SEASD-nf results agree satisfactorily. In addition,
we verified the O(N log N ) computational scaling of SEASD and SEASD-nf in
dynamic simulations.

We rigorously validated SEASD and SEASD-nf for monodisperse and bidisperse
colloidal suspensions via: (i) the short-time transport properties, (ii) the equilib-
rium osmotic pressure and viscoelastic moduli, and (iii) the steady Brownian shear
rheology at φ = 0.45. For (i), the SEASD diffusivities and shear viscosity agree
with the conventional SD calculations. The SEASD sedimentation velocity differ
qualitatively from the SD results due to the absence of a mean-field quadrupole
term in the mobility computation. For the bulk viscosity computation, different
procedures to eliminate the spurious HIs lead to slight differences in the SEASD
and the SD results. In (ii), SEASD and SEASD-nf reproduced the equilibrium
suspension osmotic pressure for monodisperse and bidisperse suspensions within
the error tolerance, with the SEASD data higher. For the steady shear rheology in
(iii), the agreement between SEASD-nf and SEASD is satisfactory in the suspen-
sion mechanics, dynamics, and structures. Moreover, we found that the particle size
polydispersity reduces the suspension viscosity and osmotic pressure, and enhances
the long-time translational self-diffusivities of both species. Our rheological simu-
lations also improve our understanding on the structure, dynamics, and rheology of
polydisperse suspensions.

The SEASD and the SEASD-nf developed in this work are important tools for study-
ing dynamics of dense, polydisperse colloidal suspensions, and have significantly
extended the parameter space accessible to computational studies. For example,
they can provide otherwise inaccessible details on a wide range of experimental ob-
servations including the yielding phenomena in glass rheology and the continuous
and discontinuous shear-thickening. Furthermore, the computational framework
can be conveniently extended to other systems, e.g., with geometric confinement or
with autonomous propulsion.

Finally, through SEASD and SEASD-nf we have demonstrated the generality and
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versatility of the SD framework, particularly the splitting of the far- and near-field
interactions: with a suitable far-field computation, the lubrication interactions can
be added pairwise for free. We believe that many far-field HI computational methods
can and should be used with the SD framework to expand their accessible parameter
range, particularly for dense systems.
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