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ABSTRACT 

The chemical, structural, and electronic properties of semiconductor surfaces are 

known to strongly influence the energetics at semiconductor interfaces. Inexpensive and 

scalable wet chemical modification of semiconductor surfaces provides a means to impart a 

desired functionality at semiconductor interfaces for the development of new devices based 

on precise and cost-effective chemistry. This thesis is composed of three studies that 

focused on identifying the spectroscopic, electronic, and mechanistic properties of reactions 

at Si surfaces. First, ethynyl- and propynyl-terminated Si(111) surfaces were prepared and 

characterized by vibrational and photoelectron spectroscopy as well as electrochemical 

scanning-tunneling microscopy. Ethynyl-terminated Si(111) exhibited ≡C−H, C≡C, Si−C 

stretching signals and a fractional monolayer (ML) coverage (Φ) of ΦSi−CCH = 0.63 ± 0.08 

ML and ΦSi−OH = 0.35 ± 0.03 ML. Propynyl-terminated Si(111) showed (C−H)CH3 bending, 

Si−C stretching, and C≡C stretching with ΦSi−CCCH3 = 1.05 ± 0.06 ML. Deprotonation of 

ethynyl-terminated Si(111) surfaces formed a unique surface-bound lithium acetylide that 

acted as nucleophile. This work provides definitive spectroscopic and microscopic 

evidence for the covalent attachment of ethynyl and propynyl groups to the Si(111) surface.  

Second, Si(111) surfaces were modified with 3,4,5-trifluorophenylacetylene (TFPA) 

groups to impart a positive dipole at the Si(111) surface. This negative surface dipole 

provides the necessary band-edge shift at the Si surface to maximize the interface between 

p-type Si and the proton reduction half reaction. Vibrational and photoelectron 

spectroscopy provided evidence for the attachment of TFPA groups to the Si(111) surface. 

Mixed methyl/TFPA monolayers were prepared and characterized using electrochemical 



 ix 

and photoelectrochemical methods to show that the band-edge positions and open-circuit 

voltages were shifted positive with increasing fractional TFPA coverage on the surface. 

This work demonstrates that monolayer chemistry can be used to manipulate the band-edge 

positions of Si surfaces as a function of surface composition. 

Finally, mechanistic studies of the reaction of liquid methanol with hydride-

terminated Si(111) surfaces in the presence of an oxidant were carried out. Vibrational and 

photoelectron spectroscopy showed that acetylferrocenium, ferrocenium, and dimethyl-

ferrocenium could serve as oxidants to promote an increased rate of methoxylation of the 

H–Si(111) surface in the dark. Illumination of intrinsic and n-type surfaces resulted in an 

increased rate of methoxylation, resulting from a positive shift in energy of the electron 

quasi-Fermi level in the presence of light. The results are described in the context of a 

kinetic charge transfer formalism that is consistent with the experimentally observed results. 

This work provides a general framework to describe the kinetics of charge transfer 

reactions that occur on semiconductor surfaces. 
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