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Abstract

It is well known that the R-polynomial can be defined for the Hecke algebra of Coxeter groups, and

the Kazhdan-Lusztig theory can be developed to understand the representations of Hecke algebra.

There is also a generalization for the existence of R-polynomial and Kazhdan-Lusztig theory for

the Hecke algebra module of standard parabolic subgroups of Coxeter groups. In recent work of

Rains and Vazirani, a generalization of standard parabolic subgroups, called quasiparabolic sub-

groups, are introduced, and the corresponding Hecke algebra module is well-defined. However, the

existence of the analogous involution (Kazhdan-Lusztig bar operator) on the Hecke algebra module

of quasiparabolic subgroups is unknown in general. Assuming the existence of the bar-operator,

the corresponding R-polynomials and Kazhdan-Lusztig polynomials can be constructed. We prove

the existence of the bar operator for the corresponding Hecke algebra modules of quasiparabolic

subgroups in finite classical Coxeter groups with a case-by-case verification (Chapter 4). As prepa-

ration, we classify all quasiparabolic subgroups of finite classical Coxeter groups. The approach is

to first find all rotation subgroups of finite classical Coxeter groups (Chapter 2). Then we exclude

the non-quasiparabolic subgroups and confirm the quasiparabolic subgroups (Chapter 3).
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Chapter 1

Introduction

1.1 Background

Coxeter groups are a class of abstract groups generated by reflections. They are important in several

areas of algebra, geometry and combinatorics. The concept of quasiparabolic sets and subgroups

of Coxeter groups was introduced in recent work by Rains and Vazirani [14]. The first motivation

for considering quasiparabolic sets was to study certain conjectures of symmetric functions using

Hecke algebra techniques [1][13]. A motivating example of a quasiparabolic set is the conjugacy

class of fixed-point-free involutions in S2n. Also, the standard parabolic subgroups are a class of

typical examples of quasiparabolic subgroups, and they are the origin of the name quasiparabolic

[14].

One problem is to classify the quasiparabolic subgroups in all finite Coxeter groups. We manage

to solve the problem for all finite classical Coxeter groups, and the quasiparabolic subgroups are

listed in Theorem 16 of Chapter 3. In the original paper of Rains and Vazirani [14], the authors

prove that all quasiparabolic subgroups are generated by rotations. Heading this direction, we first

classify the rotation subgroups of finite classical Coxeter groups. Compared with the classification

of reflection subgroups [6], the classification of rotation subgroups turn out to be much more compli-

cated, and the results are given by Theorem 3, 8, 9 and 10. Then we exclude the non-quasiparabolic

rotation subgroups, and confirm the quasiparabolic subgroups within the rotation subgroups. In

particular, we prove the quasiparabolicity of a previously conjectural class of subgroups which have

index 4 in the centralizer of the minimal fixed-point-free involutions of D2n.

The Hecke algebra is closely related to the study of Chevalley groups [8][9]. In order to study the



2

representation of Hecke algebra, Kazhdan and Lusztig introduced the R-polynomial and Kazhdan-

Lusztig polynomial [10], and the coefficients of Kazhdan-Lusztig polynomials are closely related

to intersection cohomology of Schubert varieties [11]. Thanks to the work of Deodhar [4][5], the

Kazhdan-Lusztig theory can also generalized to the Hecke algebra module of standard parabolic

subgroups of Coxeter groups. Rains and Vazirani analogously defined the Hecke algebra module

of quasiparabolic subgroups. However, there is an obstruction for the existence of the Kazhdan-

Lusztig bar operator. Based on the absence of counterexamples, the existence of K-L bar operator

is conjectured in [14]. Assuming the existence of the K-L bar operator, Marberg has calculated the

form of R-polynomials and Kazhdan-Lusztig polynomials [12]. Marberg also proved the existence

of K-L bar operators for twisted involutions [12], which are a class of motivating examples of

quasiparabolic subgroups of Coxeter groups [14]. Based on the classification of finite classical

Coxeter groups, we are able to prove the existence of K-L bar operators for quasiparabolic subgroups

of finite classical Coxeter groups as in Theorem 18.

1.2 Outline of the thesis

In the following section of Chapter 1, we review the definitions and basic properties of Coxeter

groups and their quasiparabolic subgroups. In Chapter 2, we classify the rotation subgroups of

finite classical Coxeter groups (type A, B and D). Based on the results in Chapter 2, we give

the classification for quasiparabolic subgroups of finite classical Coxeter groups in Chapter 3. In

Chapter 4, we first review the previously known results of Hecke algebras of Coxeter groups, and the

Hecke algebra modules of quasiparabolic subgroups of Coxeter groups. Then from a case-by-case

discussion, we verify the existence of Kazhdan-Lusztig bar operator of Hecke algebra modules of

quasiparabolic subgroups of finite classical Coxeter groups.

1.3 Review of Coxeter groups and their quasiparabolic sub-

groups

We first review the concepts and properties of Coxeter groups, following [7] and [14], and set up

the notation.
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Definition 1. A Coxeter system is a pair (W,S) consisting of a group W and a set of generators

S ⊂W , subject only to relations

(ss′)m(s,s′) = 1,

where m(s, s) = 1, m(s, s′) = m(s′, s) ≥ 2 for s 6= s′ in S. The elements s ∈ S are called simple

reflections of W . In addition, the conjugates of simple reflections are called reflections in W ,

and we denote this set by R(W ). Also, the product of two reflections is called a rotation in W .

For each element w ∈W , we denote l(w) to be the length of w, being the least r expressing w

as product of simple reflections w = si . . . sr. The Bruhat order of W is the weakest partial order

of W generated by the relations w′ < w if w = w′t for some t ∈ R(W ) and l(w′) < l(w).

Definition 2. As for a W -set X, we define a height function ht : X → Z, and call the pair

(X, ht) a scaled W -set, if |ht(sx)− ht(x)| ≤ 1 for all s ∈ S. The W -set (X, ht) is even if for any

pair w ∈ W , x ∈ X s.t. wx = x, one has l(w) even. Otherwise, the W -set (X, ht) is odd. For a

scaled W -set X, an element x ∈ X is W -minimal if ht(sx) ≥ ht(x) for all s ∈ S, and we make a

similar definition for W -maximal elements.

For any subset I ⊂ S, the subgroup WI generated by si ∈ I is called a standard parabolic

subgroup of W . In [14], the authors introduce a generalization of standard parabolic subgroups,

called quasiparabolic subgroups.

Definition 3. A quasiparabolic W -set is a scaled W -set X satisfying the following properties:

• For all r ∈ R(W ), x ∈ X, if ht(rx) = ht(x), then rx = x.

• For all r ∈ R(W ), s ∈ S, x ∈ X, if ht(rx) > ht(x) and ht(srx) < ht(sx), then rx = sx.

If H is a subgroup of W , consider the scaled W -set W/H with height function

ht(wH) = min
v∈wH

l(v).

Then H is a quasiparabolic subgroup of W , if W/H is a quasiparabolic W -set. H is an even

(or odd) quasiparabolic subgroup of W , if W/H is an even (or odd) quasiparabolic W -set.

For an odd subgroup H, its even subgroup H◦ is its subgroup containing all elements with even

lengths.
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In particular, if X is a quasiparabolic W -set, then there is at most one maximal (or minimal)

element in each orbit [14]. In addition, if x0 is the minimal element of an orbit O ⊂ X, then O can

be identified with the left coset W/H, where H is the stabilizer of x0 in W .

Some motivating examples of quasiparabolic subgroups are standard parabolic subgroups and

fixed-point free involutions in S2n [14]. Then we have the basic question: what are all the quasi-

parabolic subgroups in finite Coxeter groups?

Recall that the classification of indecomposable finite Coxeter group is given by: An(n ≥ 1);

Bn(n ≥ 2); Dn(n ≥ 4); En(n = 6, 7, 8); F4; Hn(n = 3, 4); I2(m)(m ≥ 5) [3]. In particular, the

product of Coxeter groups of type A, B and D are called classical Coxeter groups. We are

able to give the classification of quasiparabolic subgroups in finite classical Coxeter groups, and our

approach to attack the problem relies on case-by-case discussion.

Definition 4. Suppose H0, H are subgroups of W . If H is generated by one reflection r ∈ R(W )

and H0, where |H| = 2|H0|, then we call H is a double cover of H0 with r, and r is a double

cover reflection of H0. In addition, if r ∈ S is a simple reflection in W , then H is a simple

double cover of H0 with s, and s is a simple double cover reflection of H0.

By [14], for odd quasiparabolic subgroup H ⊂W , H must contain a simple reflection.

Theorem 1. [14] Suppose the quasiparabolic subgroup H ⊂ W contains an element of odd length.

Then it contains a simple reflection.

If H is a simple double cover of its even subgroup H0, then the quasiparabolicity of H is

determined by H0 by the following theorem.

Theorem 2. [14] If the subgroup H ⊂ W contains a simple reflection, then H is quasiparabolic if

and only if its even subgroup H ∩W 0 is quasiparabolic.

In addition, Rains and Vazirani proved that all even quasiparabolic subgroups are generated by

rotations.

Proposition 1. [14] All even quasiparabolic subgroups are generated by rotations.

We will start by classifying the rotation subgroups of finite subgroups in finite Coxeter groups

of type A.
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Chapter 2

Classification of Rotation
Subgroups in Finite Classical
Coxeter Groups

2.1 Rotation subgroups in finite Coxeter group of type A

Suppose W = An−1 = Sn, a symmetric subgroup acting on symbols 1, . . . , n. The simple reflections

si = (i i+1) where i = 1, . . . , n−1. Then the set of reflections R(W ) is equal to {(i j) : 1 ≤ i < j ≤

n}. So there are two types of rotations in Sn: 3-cycles (a1 a2 a3) and 2-rotations (a1 a2)(a3 a4).

Note that the two 2-rotations (a1 a2)(a3 a4) and (a1 a3)(a2 a4) will generate a Klein-4-group on

symbols a1, a2, a3, a4, we carry out the classification by whether or not the 3-cycles and Klein-4-

groups appear.

Proposition 2. The indecomposable double covers of subgroups generated by 3-cycles are symmetric

group Sk on k symbols.

Proof. Note that the alternating group Altk on k symbols and a 3-cycle with i common symbol(s)

(i = 1, 2) will generate the group Altk+3−i. Then by induction on the number k of symbols will

give the result.

Proposition 3. The indecomposable components H of double covers of subgroups generated by

Klein-4-groups without appearance of 3-cycles are one of the following:
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• Bk (k ≥ 2), generated by (a2i−1 a2i)(a2j−1 a2j), (a2i−1 a2j−1)(a2i a2j) (1 ≤ i < j ≤ k), and

the double cover reflection (a1 a2);

• PGL(3,2), generated by B◦3 on symbols {a1, . . . , a6} and the 2-rotation (a1 a3)(a5 a7);

• AGL(3,2), generated by B◦4 on symbols {a1, . . . , a8} and the 2-rotation (a1 a3)(a5 a7).

Proof. Suppose H1, H2 are two Klein-4-groups acting on 4 symbols. If there are 1 or 3 common

symbols, a 3-cycle will be generated. So all distinct Klein-4-groups can only act on exactly 0 or 2

common symbols.

Now we consider the maximal k for a subgroup B◦k in H.

If k ≥ 5, then it is impossible to add a Klein-4-group acting some common symbols, and without

generating 3-cycles or B◦k+1.

If k = 4, then the only expansion for the subgroup will be AGL(3, 2).

If k = 3, then the only expansion for the subgroup will be PGL(3, 2).

Proposition 4. The indecomposable components of double covers of subgroups H generated by

3-cycles and Klein-4-groups are given by Proposition 2 and 3.

Proof. Consider the subgroup Altk (k ≥ 3) and a 2-rotation acting on some common symbols. They

will generate an alternating subgroup on the orbit containing the k symbols acted by Altk. Then

for the double cover of the whole subgroup H, if an orbit has a 3-cycle action, the action on this

orbit will be the whole symmetric group or its even subgroup, the alternating subgroup. Otherwise,

the action does not contain 3-cycles and, generated by Klein-4-groups, can be given by Proposition

3.

Denote ∆Sk as the diagonal symmetric subgroup acting on 2k distinct symbols {a1, . . . , ak} and

{b1, . . . , bk}, generated by 2-rotations (ai aj)(bi bj) (1 ≤ i < j ≤ k). The Dil10 in S5 is the subgroup

acting on 5 symbols {a1, . . . , a5}, generated by 2-rotations (a1 a2)(a3 a4) and (a1 a3)(a2 a5). The

twisted Alt5 in S6 is the subgroup acting on 6 symbols {a1, . . . , a6}, generated by 2-rotations

(a1 a2)(a3 a4), (a1 a2)(a5 a6) and (a1 a3)(a2 a5). We now study the subgroups generated by

2-rotations without appearance of 3-cycles or Klein-4-groups.

Proposition 5. The indecomposable component of subgroups H generated by 2-rotations without

the appearance of 3-cycles and Klein-4-groups, is given as follows:
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• ((Z/2Z)×k)◦ (k ≥ 1);

• ∆(Sk) (k ≥ 3);

• Dil10 in S5;

• Twisted Alt5 in S6.

Proof. Consider two 2-rotations (a1 a2)(a3 a4) and (b1 b2)(b3 b4). Define the intersection type of

these two 2-rotations are (c1, c2)(c3, c4), where c1 = |{a1, a2} ∩ {b1, b2}|, c2 = |{a1, a2} ∩ {b3, b4}|,

c3 = |{a3, a4} ∩ {b1, b2}|, c4 = |{a3, a4} ∩ {b3, b4}|. In order to avoid the appearance of 3-cycles

or Klein-4-groups, the only legitimate intersection type of two distinct 2-rotations are (2, 0)(0, 0),

(1, 1)(1, 0), (1, 0)(0, 1).

For the intersection type of (1, 1)(1, 0), it will generate a subgroup Dil10 in S5. If adding some

more 2-rotations, the only expansion without appearance of 3-cycles or Klein-4-groups is twisted

Alt5 in S6.

For the intersection type of (2, 0)(0, 0), it will generate a subgroup ((Z/2Z)×3)◦. In general,

the subgroup ((Z/2Z)×k)◦ (k ≥ 3) can be generated by repeatedly adding (a1 a2)(c1 c2), where

c1, c2 are two new symbols. However, it is impossible to expand the group H1 = ((Z/2Z)×k)◦ in

another way when k ≥ 4, without the new 2-rotation having exactly 1 common symbol with some

2-rotation in H1, hence generating 3-cycles. While for the case k = 3, the only other expansion is

twisted Alt5 in S6.

For the intersection type of (1, 0)(0, 1), it will generate a subgroup ∆(S3). Similar to the

discussion for ((Z/2Z)×k)◦, the only way to expand ∆(S3) is ∆(Sk) (k ≥ 3) or twisted Alt5 in S6.

So Proposition 5 gives all subgroups generated by 2-rotations without appearance of 3-cycles or

Klein-4-groups.

Now based on Proposition 4 and 5, we are able to give a full classification of rotation subgroups

and their double covers in symmetric groups.

Theorem 3. The indecomposable subgroups H generated by rotations in symmetric groups, or the

double covers of such H, are one of the following groups, or the even subgroup of the direct product

of some of these groups:

• Sk on k symbols, where k ≥ 2;
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• Bk on 2k symbols, where k ≥ 2;

• ∆Sk on 2k symbols, where k ≥ 3;

• PGL(3, 2) on 7 symbols;

• AGL(3, 2) on 8 symbols;

• Dil10 on 5 symbols;

• Twisted Alt5 on 6 symbols;

• K4 o (∆S3) on 7 symbols;

• K4 o (∆S4) on 8 symbols.

Proof. Note that for one 2-rotation w = (a1 a2)(a3 a4), and a 3-cycle or Klein-4-group H0, the only

way adding w that will not generate a larger group generated by 3-cycles and Klein-4-groups, is

exactly when the two symbols in one 2-cycle of w fall in the symbols acted by H0. Then the even

subgroups of direct product of Sk’s and Bk’s can be generated by those 3-cycles and Klein-4-groups.

For 3-cycles, all the expansions will give the local double cover (the indecomposable com-

ponent of double cover) as Sk. For Klein-4-groups, if the local double cover is forbidden to have

3-cycles, then its local double cover is Bk acting on 2k symbols as Proposition 3. If k ≥ 3, there

will be no other way to further enlarge the group. While when k = 2, the new 2-rotations may have

distinct common 2-cycles with the original Klein-4-group, generating K4 o (∆S3) on 7 symbols or

K4 o (∆S4) on 8 symbols, and there is no other possible expansion of these two groups without

generating 3-cycles.

2.2 Rotation subgroups in finite Coxeter group of type B

and D

We view the Coxeter group W = Bn or Dn acting as signed permutations. Suppose W = Bn has

simple reflections S = {(1)−, (1 2), . . . , (n − 1 n)}, and the group W = Dn has simple reflections

S = {(1 2), (1 2), . . . , (n−1 n)}. (This is a non-standard convention, normally the simple reflections

are (n)− and (n − 1 n̄). We use (1)− and (1 2̄) in order to simplify the description in induction
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method by double cosets in Section 3.2.2 and the length function (3.1) of elements in D2n in Section

3.6.) Then the reflections of W = Dn has the form (a b) or (a b), and W = Bn has one additional

form (a)− of reflection on one sign-change.

Then the rotations of Bn and Dn must have the following form.

Proposition 6. The rotations in W = Dn have the form

• 3-cycle (a b c), or (a b c);

• 2-rotations (two disjoint 2-cycles) (a b)(c d), (a b)(c d), or (a b)(c d);

• 2-sign-change (a)−(b)−.

If W = Bn, along with the above forms, the rotations can also have the following forms.

• 2-cycle and 1-sign-change in the 2-cycle symbol set (a b)− = (a b)(b)−;

• 2-cycle and 1-sign-change out of the 2-cycle symbol set (a b)(c)−,

Our approach to classify the rotation subgroups H of W = Bn or W = Dn is similar to that

when W = An, and we will use some results about Coxeter groups of type A for the A-image of H

defined below, when W = Bn or W = Dn.

Definition 5. Suppose (W,S) and (W ′, S′) are two Coxeter systems. A Coxeter homomorphism

φ : W →W ′ is a group homomorphism such that φ(S) ⊂ S′ ∪ {1}.

Consider the Coxeter homomorphisms

Bn → An−1 ×A1

(The simple reflection (i i + 1) is mapped to (i i + 1) in An−1 and the simple reflection (1)− is

mapped to the generator of A1), and

Dn → An−1

(The simple reflection (i i + 1) is mapped to (i i + 1) in An−1 and the simple reflection (1)− is

mapped to the identity 1). The images in the group An−1 of the two maps above are called the

A-image of W = Bn or W = Dn.
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We first need to find out subgroups generated by 3-cycles in W = Bn or W = Dn. There may

be more possible cases than in An, because the 3-cycles in Bn or Dn may cause sign changes on

some symbols (i.e., some signed symbol a is mapped to −a by the rotation subgroup H).

2.2.1 The indecomposable groups generated by 3-cycles

If there is no sign change of symbols, the argument is exactly the same as for type A. We will

get the subgroups Altk(k ≥ 3) generated by 3-cycles in Sn ⊂ W . For the case when the rotation

subgroup H causes sign changes on some symbols, there must exist some 3-cycle generators which

share at least two common symbols, and the common symbols may enable these signed symbols to

be in the same orbit of their negative signed symbols.

For the case when two 3-cycles have 3 common symbols, it can be reduced to the case of distinct

sign on 1 symbol. In this case, we claim the following

Proposition 7. Suppose H is an indecomposable group generated by 3-cycles, and there exist two

3-cycles in the generators, which have the same 3 symbols but with distinct signs on 1 symbol, for

example, (a b c) and (a b c). Then H is Fn−1
2 o Altn, the subgroup of Bn with even permutations

on the symbol set {±a1, . . . ,±an} and even number of sign changes, acting on the whole n symbols

with signs.

Proof. Without loss of generality, suppose H contains (a b c) and (a b c), generating the subgroup

F2
2 o Alt3 of B3, with even permutation on the symbol set {±a1, . . . ,±an}, and an even number

of sign changes acting on signed symbols {a, b, c}. Then it will generate a 2-sign-change (a)−(b)−.

Note that the A-image of action of H on these k symbols is the same as Altn, where n ≥ 3. In

addition, H can induce all even numbers of sign changes on the n symbols.

Thus, H = Fn−1
2 o Altn, the subgroup of Bn with even permutation on the symbol set

{±a1, . . . ,±an} and even sign changes. In addition, H can not be expanded to larger subgroup of

Bn by adding (positive) 3-cycles in Bn.

For the case that no two 3-cycles have 3 common symbols, H can also induce sign changes.

Apart from the cases when H is a subgroup of An, we only have the case that there are two 3-cycles

with 2 common symbols, where there is exactly one distinct sign on the two common symbols. We

first investigate the case of subgroups generated by only two 3-cycles, with 2 common symbols.

Without loss of generality, we may assume these two 3-cycles to be (a1 a2 a3) and (a1 a2 a4).
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Example 1. The 3-cycles (a1 a2 a3) and (a1 a2 a4) generate a subgroup isomorphic to SL(2, 3) of

order 24.

If we add one more 3-cycle not belonging to the copy of SL(2, 3) above, we claim it must be

extended to Fn−1
2 oAltn.

Lemma 1. If there are n ≥ 5 symbols involved in an indecomposable subgroup H, which is generated

by 3-cycles, then H is Altn or Fn−1
2 oAltn.

Proof. If H is not Altn, then there are two 3-cycles which will cause sign changes on some symbols.

If they generate Fk−1
2 o Altk, then a 2-sign-change (a)−(b)− is generated. The positive symbol

3-cycle is included in H, and all elements in the group Fn−1
2 oAltn are included in H. In addition,

H is the subgroup of Fn−1
2 oAltn. Thus H must be Fn−1

2 oAltn, if the subgroup Fk−1
2 oAltk exists.

In fact, we will generate this group by getting the alternating subgroup Altk on k symbols, and

a 2-sign-change on any two of the k symbols. From SL(2, 3) generated by 3-cycles (a1 a2 a3) and

(a1 a2 a4), we know that any 3 symbols will have their 3-cycle in positive or negative signs. If the

new added 3-cycle does not have new symbols, it will be in the group SL(2, 3), or it will enlarge

it to F3
2 o Alt4. If the new added 3-cycle has some new symbols, then it will have exactly one

common symbol with some 3-cycle in SL(2, 3). They will generate elements in Alt5. By adding

other 3-cycles in the original group SL(2, 3), we will generate the group Fk−1
2 oAltk, where k ≥ 5.

The lemma is proved.

By Example 1 and Lemma 1, we know all the indecomposable subgroups generated by 3-cycles

are listed as follows.

Theorem 4. All the indecomposable subgroups in Bn and Dn generated by 3-cycles are

• Alternating subgroup Altk (k ≥ 3) on k symbols;

• Fk−1
2 oAltk;

• SL(2, 3).

2.2.2 The indecomposable groups generated by K4’s, with no 3-cycles

Next we will study the indecomposable groups generated by K4’s, with no 3-cycles.
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• Subgroups generated by two K4’s

First we study all possible groups generated by two K4’s with some common symbols. Similar to

the argument in the group Sn, we have the following restrictions for two K4’s.

Proposition 8. Two K4’s can only 0 or 2 or 4 common symbols, without generating 3-cycles.

• Indecomposable groups generated by K4’s

By the argument in the group W = Sn, the A-image can only be B◦k , PGL(3, 2), AGL(3, 2).

For H = B◦k , suppose the symbols are paired by {a2i−1, a2i}. By adding possible sign changes,

it may become Fk−1
2 o B◦k , where Fk−1

2 is generated by all two pairs of symbol sign changes

(a2i−1)−(a2i)−(a2j−1)−(a2j)−; Fk
2 o B◦k , where Fk

2 is generated by pairs of symbols in same block

sign changes (a2i−1)−(a2i)−; or F2k−1
2 oB◦k , where F2k−1

2 is generated by arbitrary pairs of symbol

sign changes (a2i−1)−(a2i)−.

For PGL(3, 2), adding possible sign changes, then H = F3
2 o PGL(3, 2), where F3

2 is gener-

ated by sign changes (a1)−(a2)−(a3)−(a4)− which are generated by two K4’s on signed symbols

{a1, a2, a3, a4}, and {a1, a2, a3, a4}. Or H = F6
2 o PGL(3, 2), where F6

2 is generated by all pairs of

symbol sign changes (a1)−(a2)−.

For AGL(3, 2), adding possible sign changes, H may become F4
2 o AGL(3, 2), where F4

2 is

generated by sign changes (a1)−(a2)−(a3)−(a4)− which are generated by twoK4’s on signed symbols

{a1, a2, a3, a4}, and {a1, a2, a3, a4}. Or F7
2oAGL(3, 2), where F6

2 is generated by all pairs of symbol

sign changes (a1)−(a2)−.

Summing up the results above, we have

Theorem 5. The indecomposable groups H generated by Klein-4-groups K4 in W = Bn or W = Dn

are one of the following groups described as in the argument above:

• B◦k acting as permutations on 2k symbols;

• Fk−1
2 oB◦k acting as permutation on 2k symbols, where Fk−1

2 is generated by sign changes on

four symbols of any two pairs of symbols;

• Fk
2 oB◦k acting as permutation on 2k symbols, where Fk

2 is generated by sign changes on any

pair of symbols;
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• PGL(3, 2)

• F3
2 o PGL(3, 2)

• F6
2 o PGL(3, 2)

• AGL(3, 2)

• F4
2 oAGL(3, 2)

• F7
2 oAGL(3, 2)

2.2.3 The indecomposable groups generated by 3-cycles and K4’s

• The case of one 3-cycle and one K4

Next we consider the indecomposable groups generated by 3-cycles and K4’s.

Theorem 6. The indecomposable groups H generated by 3-cycles and K4’s are given by Theorem

4 and 5, along with

• F2 × Alt4 with alternating group acting as permutations on 4 symbols, and allowing sign

changes (a1)−(a2)−(a3)−(a4)− on all four symbols.

Proof. We first study the cases when one 3-cycle and one K4 have some common symbols.

Lemma 2. If one 3-cycle and one K4 have some common symbols, they will generate Altk (k =

4, 5, 6) or Fk−1
2 oAltk (k = 4, 5) or F2 ×Alt4.

Proof. • If the 3-cycle and K4 have three common symbols, they may have 0 or 1 distinct signs.

If they have 0 distinct signs, by the argument when W = Sn, they will generate the alternating

group Alt4.

If they have 1 distinct sign, say (a1 a2 a3) and {a1, a2, a3, a4}, then the 3-cycle (a1 a2 a4) will

be generated, and the whole group H is F2 × Alt4. Here, H contains the alternating group

acting on 4 symbols, and allowing sign changes (a1)−(a2)−(a3)−(a4)− on all four symbols. If

we add one more 3-cycle or K4 into H, it will generate Fk−1
2 oAltk (k = 4, 5, 6, 7).
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• If the 3-cycle and K4 have exactly two common symbols, they may have 0 or 1 distinct signs.

If they have 0 distinct signs, by the argument when W = Sn, they will generate the alternating

group Alt5.

If they have 1 distinct sign, say (a1 a2 a3) and {a1, a2, a4, a5}, then the whole group H is

F4
2 oAlt5. Here, H contains the alternating group acting on 5 symbols, and allowing an even

number of sign changes.

• If the 3-cycle and K4 have exactly one common symbol, then they can be embedded into S6

as when W has type A. By the argument when W = Sn, they will generate the alternating

group Alt6.

• Indecomposable groups generated by 3-cycles and K4’s

We know that if the indecomposable group contain both 3-cycles and K4’s, it must be Altk or

Fk−1
2 oAltk. Which one it is depends on whether sign changes are generated. So no more kinds of

groups can be generated other than those in Theorem 6.

2.2.4 Determining the indecomposable groups containing no 3-cycles or

K4’s

• The case of two intersecting 2-rotations

Now we will figure out the indecomposable rotation subgroups H containing no 3-cycles or K4’s.

We first investigate the possible cases for two distinct intersecting 2-rotations. Suppose there is an

original 2-rotation (a1 a2)(a3 a4), and denote by (z1, z2)(z3, z4) the intersection type of the A-image

of two 2-rotations.

After checking all possible intersection types, we know that only two 2-cycles with the inter-

secting types (2, 0)(0, 2), (1, 1)(1, 1), (1, 1)(1, 0), (2, 0)(0, 0), and (1, 0)(0, 1) can generate neither

3-cycles nor K4’s. In addition, only types (2, 0)(0, 2), (1, 1)(1, 1), and (2, 0)(0, 0) can cause sign

changes on some symbols.

We next discuss all possible groups generated by two 2-rotations, without the appearance of

3-cycles or K4’s.
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The classification goes according to the intersecting types of the first two given 2-rotations.

• The intersection type (1, 1)(1, 1)

In this case, in order to avoid the appearance of K4, we can assume the two given 2-rotations

are (a1 a2)(a3 a4) and (a1 a3)(a2 a4). We will prove that H can only be expanded by adding

2-rotations, without the appearance of 3-cycles or K4’s, as follows.

Proposition 9. There is only one expansion of Dil8 generated by (a1 a2)(a3 a4) and (a1 a3)(a2 a4),

without the appearance of 3-cycles or K4’s. This expansion is (Z/4Z)×(k−1) o Symk (k ≥ 2).

Proof. We try to add a third 2-rotation to the original group Dil8. The group Dil8 can not be

expanded only on the original four symbols, without the appearance of K4’s.

So there must be new symbols involved in the third 2-rotation.

If there is only 1 new symbol involved, then the intersecting type of the third 2-rotation and

the original two 2-rotations should be (1, 1)(1, 0), generating two copies of Dil10. However, some

3-cycle will be generated in this case, which is forbidden.

If there are exactly 2 new symbols involved, then the intersection types (2, 0)(0, 0) and (1, 0)(0, 1)

are allowed. If the third 2-rotation has intersection type (2, 0)(0, 0) with one of the given 2-rotation,

then it will have intersection type (1, 1)(0, 0) (or (1, 0)(1, 0)) with another 2-rotation, generating a

copy of K4.

Thus only the intersection type (1, 0)(0, 1) is allowed. Without loss of generality, we may as-

sume the new 2-rotation is (a1 a5)(a4 a6). Then the group is generated by (a1 a4)−(a3 a2)−,

(a1 a4)−(a5 a6)−, (a1 a2)(a4 a3), (a1 a3)(a4 a2), (a1 a5)(a4 a6), and the whole subgroup is

((Z/4Z)×2) o Sym3.

We can go on adding 2-rotations, with only the intersection type (1, 0)(0, 1), and this will

generate the subgroup ((Z/4Z)×(k−1)) o Symk, for all k ≥ 3.

In the following arguments, we can forbid the appearance the type (1, 1)(1, 1).

• The intersection type (1, 1)(1, 0)

The argument in two 2-rotations implies that if the intersection type is (1, 1)(1, 0), they will

generate group Dil10.

We now analyze indecomposable subgroups including intersection type (1, 1)(1, 0), without the

appearance of 3-cycles, K4’s and the intersection type (1, 1)(1, 1).
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Proposition 10. The indecomposable subgroups including intersection type (1, 1)(1, 0), without the

appearance of 3-cycles, K4’s and the intersection type (1, 1)(1, 1), are one of the following groups:

1. The dihedral group Dil10 acting on 5 symbols;

2. The semi-direct product F4
2 oDil10, where Dil10 acts on 5 symbols, and sign changes on all

pairs of symbols are allowed;

3. Twisted Alt5 in S6 on 6 symbols;

4. H3 acting on 6 symbols with signs;

5. The semi-direct product F5
2 o Alt5, where Alt5 is twisted Alt5 in S6 on 6 symbols, and sign

changes on all pairs of symbols are allowed.

Proof. By the argument when W = Sn, we know that the A-image can only be Dil10 or twisted

Alt5 in S6.

The base case is that there are only two 2-rotations, with intersection type (1, 1)(1, 0), say

(a1 a2)(a3 a4) and (a1 a3)(a2 a5). They will generate Dil10.

If we add the third generator and expand the group Dil10, it may not expand the A-image

permuting the 5 symbols, then sign changes on one or two 2-cycles in one 2-rotation in the Dil10

will be added. and we will get the subgroup H = F4
2 oDil10.

If the third generator expand the group Dil10 on the A-image, then by the argument in the

group Sn, the A-image must be twisted Alt5 in S6.

If no sign changes are induced, say, adding (a1 a2)(a5 a6), H will be twisted Alt5 in S6.

Otherwise, if there exist some sign changes, then we can assume that the new 2-rotation is

(a1 a2)(a5 a6). The A-image on 6 symbols will still be the twisted subgroup Alt5 in S6, and sign

changes on all 6 symbols will be generated, so the group order is at least 120. In addition, this

group can be generated by (a1 a2)(a3 a4), (a1 a4)(a3 a5), and (a1 a2)(a5 a6), which are generators

of H3. Since H3 has 120 elements, this group is actually H3.

If some more 2-rotations are introduced, note that the A-image on An can not be expanded, so

only 2-rotations causing sign changes can be introduced. Then sign changes on all pairs of symbols

can be generated, and the group is H = F5
2 o Alt5, where the A-image is twisted Alt5 in S6, and

all pairs of sign changes are allowed.
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In the following argument of this section, we can forbid the appearance of intersection type

(1, 1)(1, 0) too. Then only the intersection types (2, 0)(0, 0) and (1, 0)(0, 1) are allowed.

• The intersection type (2, 0)(0, 0)

If only the intersection types (2, 0)(0, 0) and (1, 0)(0, 1) are allowed, by the argument when

W = Sn, the A-image of H can only be (S×k2 )◦ (k ≥ 3). Suppose the A-image of the k 2-cycles

on the 2k unsigned-symbols are (a2i−1 a2i), where i = 1, . . . , k. If we also consider the signs, then

only 2-cycles (a2i−1 a2i) and (a2i−1 a2i) are allowed.

Since all these 2-cycles commute, the group will be a direct product of groups constructed by an

even number of 2-cycles (a2i−1 a2i) or (a2j−1 a2j). So the group is ((Z/2Z)×k1)◦×· · ·×((Z/2Z)×kl)◦,

where the components ((Z/2Z)×km)◦ have no common 2-cycles, and the union of all 2-cycles covers

all 2k symbols.

• The intersection type (1, 0)(0, 1)

By the argument when W = Sn, for the type of (1, 0)(0, 1), the A-image of the rotation subgroup

H is ∆Sk.

Suppose the two orbits are {a1, . . . , ak} and {ak+1, . . . , a2k}. On each orbit, the permutation

on the symbols generate the group Sk. If some sign changes happen, it must be generated by

2-rotations on same symbols, with distinct signs. Without loss of generality, we may assume they

are (a1 a2)(ak+1 ak+2) and (a1 a2)(ak+1 ak+2), or (a1 a2)(ak+1 ak+2) and (a1 a2)(ak+1 ak+2).

For the case of (a1 a2)(ak+1 ak+2) and (a1 a2)(ak+1 ak+2), all even sign changes on symbols

{a1, a2, . . . , ak} are generated. The group H will be Fk−1
2 o ∆Sk.

If there are additional two 2-rotations that can generate sign changes (ai)−(aj)− (k + 1 ≤ i <

j ≤ 2k) on symbols {ak+1, . . . , a2k}, then H will be F2(k−1)
2 o ∆Sk, where even sign changes on

both symbol sets {a1, . . . , ak} and {ak+1, . . . , a2k} are allowed.

For the case of adding (a1 a2)(ak+1 ak+2), then all even sign changes that agree on the two

symbol sets {a1, . . . , ak} and {ak+1, . . . , a2k} are generated. The group will be ∆(Fk−1
2 o Sk).

If some other sign changes (ai)−(aj)− not in ∆(Fk−1
2 o Sk) can be generated, then the whole

group will be F2(k−1)
2 o∆Sk, where Fk−1

2 acts on both symbol sets {a1, . . . , ak} and {ak+1, . . . , a2k}

as even number of sign changes.

From the arguments above in this section, we can classify all subgroups generated by 2-rotations

in Bn, without the appearance of 3-cycles or K4’s.
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Theorem 7. All subgroups not containing 3-cycles or K4’s in W = Bn or W = Dn, generated by

2-rotations, are given as follows:

• The semi-direct product (Z/4Z)×(k−1) o Symk (k ≥ 2), where (Z/4Z)×(k−1) is the zero sum-

mation subgroup of (Z/4Z)×k, with each component corresponding to powers of (2i− 1 2i)−,

and Symk corresponding to permutations among blocks {2i− 1, 2i} (1 ≤ i ≤ k);

• The dihedral group Dil10 acting on 5 symbols;

• The semi-direct product F4
2 oDil10, where Dil10 acting on 5 symbols, and sign changes on all

pairs of symbols are allowed;

• Twisted Alt5 in S6 on 6 symbols;

• H3 acting on 6 symbols with signs, where the A-image is twisted Alt5 in S6;

• The semi-direct product F5
2 oAlt5, where Alt5 is twisted Alt5 in S6 on 6 symbols, and F5

2 acts

by an even number of sign changes on the 6 symbols;

• The direct product (S×k1
2 )◦ × · · · × (S×kl

2 )◦ where the components (S×km
2 )◦ contain 2-cycles

in the form (a2i−1 a2i) or (a2i−1 a2i), (1 ≤ i ≤ k) and the union of all 2-cycles covers all 2k

symbols {a1, . . . , a2k};

• ∆Sk permuting 2k symbols;

• Fk−1
2 o ∆Sk;

• ∆(Fk−1
2 o Sk);

• F2(k−1)
2 o ∆Sk.

2.2.5 Determining the indecomposable groups having a given normal

subgroup generated by 3-cycles and K4’s, and containing no addi-

tional 3-cycles or K4’s

• The indecomposable groups with a normal subgroup with the appearance of 3-

cycles
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Now we extend to determine the indecomposable groups having a given normal subgroup as in

Theorem 4, and containing no additional 3-cycles or K4’s. We first study the groups with the

appearance of 3-cycles.

Proposition 11. Suppose a group G is generated by 3-cycles, and we add 2-rotations which share

some common cycles with G, then they will generate the subgroup H of (
∏

iGi) × G′, where each

component Gi is one of the following groups:

• Sk permuting k symbols;

• Fk−1
2 o Sk, where the A-image Sk permutes k symbols, and Fk−1

2 is the subgroup of even

number of sign changes;

• F2 × S4, where the A-image S4 permutes 4 symbols {a1, a2, a3, a4}, and F2 is the subgroup of

sign changes (a1)−(a2)−(a3)−(a4)− on all the 4 symbols.

and G′ = A×j1 is a group generated by 2-cycles, with j relations that the parity of Gi agrees with

the appearance of one corresponding 2-cycle in G′.

Proof. We first consider the group generated by one 3-cycle and one 2-rotation, which share some

common symbols. By the argument when W = Sn, if there is no sign change generated by the

3-cycle and 2-rotation, then the group will be Altk (k = 4, 5, 6, 7) or (Sl×S2)◦ (l = 3, 4). If there are

some sign changes generated by the 3-cycle and 2-rotation, then there is a 2-cycle in the 2-rotation,

which can generate sign changes along with the 3-cycle. Without loss of generality, we assume the

3-cycle is (a1 a2 a3), and the 2-cycle is (a1 a2). The other 2-cycle of the 2-rotation may have 0 or

1 common symbols with the 3-cycle (a1 a2 a3).

If there is 1 common symbol, say the 2-cycle is (a3 a4), then the 3-cycle (a1 a2 a4) will be

generated. The whole group is the direct product of F2 and Alt4, where Alt4 is the alternating

group on symbols {a1, a2, a3, a4}, and F2 corresponds the sign changes (a1)−(a2)−(a3)−(a4)− on

all 4 symbols.

If there are no common symbols, say the 2-cycle is (a4 a5), then the sign changes on any

two symbols of {a1, a2, a3} can be generated. The whole group H will be the even subgroup of

(F2
2 o S3)× S2.

Now, we can calculate the possible groups generated by more than 2 rotations. For the A-image

as Altk on k symbols, where k ≥ 5, the appearance of sign changes on 4 symbols will generate
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subgroup of F k−1
2 for all sign changes on even number of symbols.

In addition, all subgroups containing 3-cycles will have A-image as Altk acting on all the symbols,

which are in the same orbit of the 3-cycle.

So we get our claim in the proposition.

• The indecomposable groups generated by 2-rotations without the appearance of

3-cycles

We next study the groups generated by 2-rotations (including K4’s), without the appearance of

3-cycles. So for one K4 and one 2-rotation, they can only have 0 or 2 or 4 common symbols.

In addition, we can consider the largest subgroup generated by K4’s. When we add 2-rotations,

they will not generate a larger group which can be generated by only K4’s.

So if one K4 and one 2-rotation have 4 common symbols, they may only generate 2 or 4 sign

changes, which can be obtained by two K4’s, too.

If one K4 and one 2-rotation have no common symbols, they will commute, and we will have

similar properties as in the case when W = Sn.

So we only need to treat the case that one K4 and one 2-rotation have 2 common symbols. Note

that we require that there is no larger group generated by K4’s, after we add the 2-rotation. So

the two common symbols must lie in the same 2-cycle in the 2-rotation.

Note that from the argument with W in type A, if the A-image is larger than B◦k with k ≥ 3,

then when we add some 2-cycles in the group, all these 2-cycles can be treated as adding one given

2-cycle.

So we will study the possibilities in adding 2-cycles to the groups generated by K4’s.

Proposition 12. Consider adding at least one 2-cycle in a group H generated by K4’s, and suppose

H permutes at least 4 symbols. If the appearance of 3-cycles or the group K4 o (∆S3) on 7 symbols

is forbidden, then the group G must be a subgroup of (Z/2Z × Z/2Z)×k o Symk, where Symk

permutes k pairs {b2i−1, b2i} (1 ≤ i ≤ k) and keeps the A-image parity and signs of symbols, while

each (ui, vi) ∈ Z/2Z × Z/2Z indicates the parity of 2-cycles (b2i−1 b2i) and (b2i−1 b2i). All the

appearances of (b2i−1 b2i) (1 ≤ i ≤ k) are equivalent, and so is (b2i−1 b2i). In addition, G is listed

as follows:

1. Bk acting as permutation on 2k symbols, i.e., all vi’s are zero;
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2. (Z/2Z)×(2k−1) o Symk, where
∑

i ui = 0 in Z/2Z, and
∑

i vi corresponds to the parity of

(b1 b2); or where
∑

i vi = 0 in Z/2Z, and
∑

i ui corresponds to the parity of (b1 b2);

3. (Z/2Z)×(2k) oSymk, where
∑

i ui corresponds to the parity of (b1 b2), and
∑

i vi corresponds

to the parity of (b1 b2);

4. (Z/2Z)×(2k) o Symk, where
∑

i(ui + vi) corresponds to the parity of the sum of (b1 b2) and

(b1 b2).

Proof. By Theorem 5, the groups generated by K4’s have A-image B◦k , PGL(3, 2), AGL(3, 2), with

possible sign changes on all two pairs, or all pairs, or no symbols. For AGL(3, 2) and PGL(3, 2),

if we add a 2-rotation, then 3-cycles can be generated, and the group action is transitive on all

symbols, which follows as in Theorem 4. When the A-image of H is B◦k (k ≥ 3), which is generated

by {a1, a2, a2i−1, a2i}, (2 ≤ i ≤ k), then the 2-rotation can only be (2i− 1 2i) or (2i− 1 2i) in order

to avoid the appearance of 3-cycles. In addition, adding (a2i−1 a2i) is equivalent to adding (a1 a2),

adding (a2i−1 a2i) is equivalent to adding (a1 a2).

When the A-image of H is B◦2 , if the appearance of group K4 o (∆S3) is forbidden, then no new

2-cycles with A-image having exactly 1 common symbol with some 2-cycle in H can appear.

So for both cases, we just need to consider adding (a1 a2) or (a1 a2).

• Suppose the original group is B◦k . If only (a1 a2) is added, then the new group is Bk, where

all bi’s are zero.

If only (a1 a2) is added, then the new group is (Z/2Z)×(2k−1) o Symk, where
∑

i ai = 0 in

Z/2Z, and
∑

i bi corresponds to one A1 component in G′ in Proposition 11 in relation with

(a1 a2).

If both (a1 a2) and (a1 a2) are added, then the new group is (Z/2Z)×(2k) o Symk, where∑
i ai corresponds to one A1 component in G′ in relation with (a1 a2), and

∑
i bi corresponds

one A1 component in G′ in relation with (a1 a2).

• Suppose the original group is Fk−1
2 oB◦k , with sign changes on even pairs of symbols allowed.

If only (a1 a2) is added, then the new group is (Z/2Z)×(2k−1) o Symk, where
∑

i bi = 0 in

Z/2Z, and
∑

i ai corresponds to the parity of (a1 a2).

If only (a1 a2) is added, then the new group is (Z/2Z)×(2k−1) o Symk, where
∑

i ai = 0 in

Z/2Z, and
∑

i bi corresponds to the parity of (a1 a2).
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If both (a1 a2) and (a1 a2) are added, then the new group is (Z/2Z)×(2k) o Symk, where∑
i ai corresponds to the parity of appearance (a1 a2), and

∑
i bi corresponds to the parity of

(a1 a2).

• Suppose the original group is Fk
2 o B◦k , with sign changes on any pairs of symbols allowed,

then the new group is (Z/2Z)×(2k−1) oSymk, where
∑

i(ai + bi) corresponds to the parity of

the sum of (a1 a2) and (a1 a2).

The cases for A-image as B◦2 is more intricate. Suppose the A-image K4 group acts on symbols

{a1, a2, a3, a4}. Then we may add 2-cycles (a1 a2), (a1 a2), (a1 a3), (a1 a3), (a1 a4), or (a1 a4).

Proposition 13. Suppose we add 2-rotations to the group H = K4 on symbols {a1, a2, a3, a4}, and

the appearance of B◦3 on 6 symbols is forbidden. If the group G is not generated by K4’s, and the

A-image of G has subgroup K4 o (∆S3), then it must be one of the following groups:

• K4 o (∆S3) acting on 7 symbols as when W has type A, with two orbits {a1, a2, a3, a4} and

{a5, a6, a7};

• F2×(K4o(∆S3)), where the subgroup F2 generated by the sign changes (a1)−(a2)−(a3)−(a4)−

on all 4 symbols {a1, a2, a3, a4};

• F2
2 o (K4 o (∆S3)), where the subgroup F2

2 corresponds to even number of sign changes on

symbols of {a5, a6, a7};

• F3
2 o (K4 o (∆S3)), where the subgroup F3

2 corresponds to even number of sign changes on

symbols in {a1, a2, a3, a4};

• F3
2o(K4o(∆S3)), where the subgroup F3

2 is generated by (a1)−(a2)−(a3)−(a4)−, (a1)−(a2)−(a5)−(a6)−,

and (a2)−(a3)−(a6)−(a7)−;

• (F2×F2
2)o(K4o(∆S3)), where the subgroup F2 corresponds to sign changes (a1)−(a2)−(a3)−(a4)−

on all 4 symbols {a1, a2, a3, a4} and the subgroup F2
2 corresponds to even number of sign

changes on symbols in {a5, a6, a7};
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• (F3
2 × F2

2) o (K4 o (∆S3)), where the subgroup F3
2 corresponds to even number of changes on

symbols in {1, 2, 3, 4} and the subgroup F2
2 corresponds to even number of changes on symbols

in {5, 6, 7};

• K4 o (∆S4) acting on 8 symbols as when W has type A, with two orbits {a1, a2, a3, a4}, and

{a5, a6, a7, a8};

• F2×(K4o(∆S4)), where the subgroup F2 is generated by the sign changes (a1)−(a2)−(a3)−(a4)−

on all 4 symbols {a1, a2, a3, a4},

• (F2×F2)o(K4o(∆S4)), where the first F2 is generated by the sign changes (a1)−(a2)−(a3)−(a4)−

on all 4 symbols {a1, a2, a3, a4}, and the second F2 is generated by the sign changes (a5)−(a6)−(a7)−(a8)−

on all 4 symbols {a5, a6, a7, a8},

• (F3
2 × F2) o (K4 o (∆S4)), where F3

2 corresponds to even number of sign changes on symbols

{a1, a2, a3, a4}, and F2 is generated by the sign changes (a5)−(a6)−(a7)−(a8)− on all 4 symbols

{a5, a6, a7, a8}

• (F3
2×F2)o (K4 o (∆S4)), generated by H and (a1 a2)(a5 a6), (a1 a3)(a5 a7), (a1 a2)(a3 a4),

(a5 a6)(a7 a8), (a1 a2)(a5 a6);

• (F3
2 × F3

2) o (K4 o (∆S4)), where the first F3
2 corresponds to even number of sign changes on

symbols {a1, a2, a3, a4}, and the second F3
2 corresponds to even number of sign changes on

symbols {a5, a6, a7, a8};

• (F2 ×K4) o S4, by adding (a1 a2)(a5 a6), (a2 a3)(a6 a7) and (a1 a2)(a7 a8) into H;

Proof. We have K4 on symbols {a1, a2, a3, a4}, and add two 2-rotations sharing exactly one common

symbol in {a1, a2, a3, a4}, then each of the 2-rotations must have exactly 2 common symbols with

K4 on {1, 2, 3, 4}, and the 2 common symbols must be in the same 2-cycle of the 2-rotations. In

addition, the remaining 2-cycles of the two 2-rotations also share exactly 1 common symbol. The

common 2-cycles may have 0 or 1 distinct signs with the K4 on {1, 2, 3, 4}, Then there are three

cases.

• The two common 2-cycles with K4 in the two 2-rotations have same signs as K4. For example,

the 2-rotations are (a1 a2)(a5 a6) and (a1 a3)(a5 a7). Then the two 2-rotations and the K4

will generate the group K4 o (∆S3).
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• For the two common 2-cycles with K4 in the two 2-rotations, one has the same signs as K4,

and the other has 1 distinct sign from K4. For example, the 2-rotations are (a1 a2)(a5 a6) and

(a1 a3)(a5 a7). They will generate F2×(K4o(∆S3)), whereK4 acts on symbols {a1, a2, a3, a4},

and F2 is generated by sign changes (a1)−(a2)−(a3)−(a4)−.

• Both of the two common 2-cycles with K4 in the two 2-rotations have 1 distinct sign from

K4. For example, the 2-rotations are (a1 a2)(a5 a6) and (a1 a3)(a5 a7). Then the 2-rotation

(a2 a3)(a6 a7) will be generated. It is equivalent to add (a1 a2)(a5 a6) and (a2 a3)(a6 a7) to

K4 on symbols {a1, a2, a3, a4}. We can treat it exactly same as the second case.

When we add more 2-rotations to the groups above, If there are no new symbols acted on by G,

then only 2-rotations with all two 2-cycles having the same symbols as some 2-rotations in the

original group can be added. It is equivalent to add sign changes of all symbols in 1 or 2 2-cycles.

Then the sign changes on symbols {a1, a2, a3, a4} may be

• no sign changes, corresponding to trivial group; or

• sign changes on all 4 symbols, corresponding to F2; or

• sign changes on an even number of symbols, corresponding to F3
2.

The sign changes on symbols {a5, a6, a7} may be

• no sign changes, corresponding to trivial group; or

• sign changes on an even number of symbols, corresponding to F2
2.

Also, the sign changes can be F3
2, generated by (a1)−(a2)−(a3)−(a4)−, (a1)−(a2)−(a5)−(a6)−, and

(a2)−(a3)−(a6)−(a7)−. Thus we are able to get the groups with A-image of K4 o (∆S3) in Propo-

sition 13, and actually all these groups contain a subgroup K4 o (∆S3) on 7 symbols.

If there are some new symbols introduced when we add new 2-rotations, we may assume we

already have the group K4 o (∆S3) on 7 symbols {a1, a2, a3, a4, a5, a6, a7} as before. There will

be only one new symbol a8 can be introduced. Without loss of generality, we may assume the

2-rotation is (a1 a2)(a7 a8) or (a1 a2)(a7 a8).

If we add (a1 a2)(a7 a8), the group K4 o (∆S4) will be generated. By adding possible sign

changes on symbols in 1 or 2 2-cycles, we will have the following groups:
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• K4 o (∆S4) acting on 8 symbols as when W has type A, with two orbits {a1, a2, a3, a4}, and

{a5, a6, a7, a8};

• F2×(K4o(∆S4)), where the subgroup F2 is generated by the sign changes (a1)−(a2)−(a3)−(a4)−

on all 4 symbols {a1, a2, a3, a4},

• (F2×F2)o(K4o(∆S4)), where the first F2 is generated by the sign changes (a1)−(a2)−(a3)−(a4)−

on all 4 symbols {a1, a2, a3, a4}, and the second F2 is generated by the sign changes (a5)−(a6)−(a7)−(a8)−

on all 4 symbols {a5, a6, a7, a8},

• (F3
2 × F2) o (K4 o (∆S4)), where F3

2 corresponds to an even number of sign changes on the

symbols {a1, a2, a3, a4}, and F2 is generated by the sign changes (a5)−(a6)−(a7)−(a8)− on all

4 symbols {a5, a6, a7, a8}

• (F3
2 × F2)o (K4 o (∆S4)), generated by H and (a1 a2)(a5 a6), (a1 a3)(a5 a7), (a1 a2)(a3 a4),

(a5 a6)(a7 a8), (a1 a2)(a5 a6);

• (F3
2×F3

2)o(K4o(∆S4)), where the first F3
2 corresponds to an even number of sign changes on

the symbols {a1, a2, a3, a4}, and the second F3
2 corresponds to an even number of sign changes

on the symbols {a5, a6, a7, a8};

If we add (a1 a2)(a7 a8), the sign changes on all 4 symbols (a1)−(a2)−(a3)−(a4)− in {a1, a2, a3, a4}

will be generated, and the group H is the semi-direct product (F2 ×K4) o S4.

If some more 2-rotations are added to H, they will generate (F3
2 × F2) o (K4 o (∆S4)) or

(F3
2 × F3

2) o (K4 o (∆S4)), which are listed before when we add (a1 a2)(a7 a8) into K4 o (∆S3) on

{a1, . . . , a7}.

Now we are able to consider all the subgroups of W = Bn or W = Dn, which are generated by

A-rotations (2-rotations or 3-cycles). We will consider which groups are able to produce 2-cycles

(A-reflections) to having non-trivial relation with other groups.

Definition 6. Suppose W is a Coxeter group, and H0 is a rotation subgroup of W . A reflection

r ∈ R(W ) is called a double cover reflection of H0, if the subgroup H, generated by H0 and r,

is a double cover of H, and there exists some other r′ 6= r ∈ R(W ) such that rr′ ∈ H0. All such

reflections r′ ∈ R(W ) and r itself gives a double cover reflection class. (It is easy to see that
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double cover reflection class gives an equivalence relation.) If a double cover reflection class contains

a simple reflection, it is a simple double cover reflection class. Suppose H1 and H2 are two

rotation subgroups acting on disjoint symbol sets, or H1 = H2 in W , r1 and r2 are respectively

double cover reflections of H1 and H2, and suppose r1 6= r2 when H1 = H2. Then the subgroup H

generated by H1 and H2 with rotation (r1 r2), is called a double cover product of H1 and H2

with rotation (r1 r2). If both r1 and r2 are in some simple double cover reflection classes, then the

double cover of H1 × H2 with r1, is called a simple double cover product of H1 and H2 with

rotation (r1 r2).

Summing up all the results in this section, we will get all subgroups generated by A-rotations

(3-cycles or 2-rotations) in W = Bn or W = Dn, by adding r1r2 where r1 and r2 are in distinct

double cover reflection class.

Summarizing the previous A-rotation subgroups, all the possible double cover reflection classes

come from the following groups:

Theorem 8. All the indecomposable A-rotation groups, which can not be written as the double

cover product of some smaller subgroups, are given as follows:

• Trivial group with one double cover reflection class (i j), or with one double cover reflection

class (i)−, or with two double cover reflection classes (i j) and (i j);

• Altk with one double cover reflection class (i j);

• Fi−1
2 oAlti with two double cover reflection classes (i j) and (i)−;

• F2 ×Alt4 with one double cover reflection class (i j);

• B◦i in S2i with one double cover reflection class (i j) where {i, j} are two symbols in one block;

• (Z/2Z×Z/2Z)×(k−1) oSymk, (k ≥ 2) with two double cover reflection classes (i j) and (i j),

where {i, j} are two symbols in one block;

• (Z/4Z)×(k−1) o Symk (k ≥ 2), with no double cover reflection class;

• SL(2, 3) generated by (a1 a2 a3) and (a1 a2 a4), with no double cover reflection class;

• PGL(3, 2), with no double cover reflection class;
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• F3
2 o PGL(3, 2), with no double cover reflection class;

• F6
2 o PGL(3, 2), with one double cover reflection class (i)−;

• AGL(3, 2), with no double cover reflection class;

• F4
2 oAGL(3, 2), with no double cover reflection class;

• F7
2 oAGL(3, 2), with one double cover reflection class (i)−;

• The dihedral group Dil10 acting on 5 symbols, with no double cover reflection class;

• F4
2 oDil10, with one double cover reflection class (i)−;

• Twisted Alt5 in Sym6 on 6 symbols, with no double cover reflection class;

• H3 where the A-image is twisted Alt5 in Sym6, with no double cover reflection class;

• F5
2 oAlt5, with one double cover reflection class (i)−;

• ∆Sk permuting 2k symbols, with no double cover reflection class;

• Fk−1
2 o∆Sk, with one double cover reflection class (i)−, where i is a symbol in the orbit where

the sign changes of Fk−1
2 act;

• ∆(F2)×k−1 o Sk, with no double cover reflection class;

• F2(k−1)
2 o ∆Sk, with two double cover reflection classes (i)− and (j)−, where i and j are two

symbols in the two orbits of ∆Sk respectively;

• K4 o (∆S3), with no double cover reflection class;

• F2 × (K4 o (∆S3)), where the subgroup F2 corresponds to the sign changes on all 4 symbols

{a1, a2, a3, a4}, with no double cover reflection class;

• F2
2o(K4o(∆S3)), where the subgroup F2

2 acts on {a5, a6, a7}, with one double cover reflection

class (a5)−;

• F3
2 o (K4 o (∆S3)), where the subgroup F3

2 acts on {a1, a2, a3, a4}, with one double cover

reflection class (a1)−;
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• F3
2o(K4o(∆S3)), where the subgroup F3

2 is generated by (a1)−(a2)−(a3)−(a4)−, (a1)−(a2)−(a5)−(a6)−,

and (a2)−(a3)−(a6)−(a7)−, with no double cover reflection class;

• (F2×F2
2)o(K4o(∆S3)), where the subgroup F2 corresponds to sign changes (a1)−(a2)−(a3)−(a4)−

on all 4 symbols {a1, a2, a3, a4} and the subgroup F2
2 corresponds to an even number of sign

changes on symbols in {a5, a6, a7}, with one double cover reflection class (a5)−;

• (F3
2 × F2

2) o (K4 o (∆S3)), where the subgroup F3
2 acts on {a1, a2, a3, a4} and F2

2 acts on

{a5, a6, a7}, with two double cover reflection classes (a1)− and (a5)−;

• K4 o (∆S4), with no double cover reflection class;

• F2×(K4o(∆S4)), where the subgroup F2 is generated by the sign changes (a1)−(a2)−(a3)−(a4)−

on one orbit {a1, a2, a3, a4}, with no double cover reflection class;

• (F2×F2)o(K4o(∆S4)), where the first F2 is generated by the sign changes (a1)−(a2)−(a3)−(a4)−

on one orbit {a1, a2, a3, a4}, and the second F2 is generated by the sign changes (a5)−(a6)−(a7)−(a8)−

on the other orbit {a5, a6, a7, a8}, with no double cover reflection class;

• (F3
2 × F2) o (K4 o (∆S4)), where F3

2 acts on one orbit {a1, a2, a3, a4}, and F2 is generated

by the sign changes (a5)−(a6)−(a7)−(a8)− on the other orbit {a5, a6, a7, a8}, with one cover

reflection class (a1)−;

• (F3
2×F2)o (K4 o (∆S4)), generated by K4 oS3 on two orbits {a1, a2, a3, a4} and {a5, a6, a7},

and rotations (a1 a2)(a3 a4), (a5 a6)(a7 a8), (a1 a2)(a5 a6), with no double cover reflection

class;

• (F3
2×F3

2)o (K4 o (∆S4)), where the first F3
2 acts on one orbit {a1, a2, a3, a4}, and the second

F3
2 acts on the other orbit {a5, a6, a7, a8}, with two double cover reflection classes (a1)− and

(a5)−;

• (F2 × K4) o S4, generated by K4 o S3 on two orbits {a1, a2, a3, a4} and {a5, a6, a7}, and

rotations (a1 a2)(a7 a8).
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2.2.6 The indecomposable groups generated by D-rotations

D-rotations are A-rotations together with the 2-sign-changes (a)−(b)−. we will see if any other

types of rotation subgroup are generated in addition to the double cover products of groups listed

in Theorem 8.

Theorem 9. The indecomposable rotation subgroups H in W = Dn can be written as the double

cover product, with A-rotations or 2-sign-changes, of the following groups:

• The A-rotation groups listed in Theorem 8;

• The semi-direct product ((Z/4Z)×(k−1)×Z/2Z)oSymk (k ≥ 2), where (Z/4Z)×(k−1)×Z/2Z

is the subgroup {(a1, . . . , an) | 2(
∑

1≤i≤n ai) = 0 ∈ Z/4Z} of (Z/4Z)×k, with each component

corresponding to (2i−1 2i)−, and Symk corresponds to permutations among blocks {2i−1, 2i}

(1 ≤ i ≤ k). It has no double cover reflection class;

• ∆Bk = ∆(Fk
2 o Sk), with no double cover reflection class.

Proof. If the added 2-sign-changes have their 2 symbols in the same orbit of the A-image, and if the

A-image is one of the groups Ak, PGL(3, 2), AGL(3, 2), Dil10, ∆Ak, K4 o (∆S3), or K4 o (∆S4).

Then all sign changes on an even number of symbols can be generated, and no new groups will be

obtained, this is because the A-image orbit with at least 2 symbols are 2-transitive,

If the A-image is Bk with k pairs of symbols {a2i−1, a2i}, and the 2 symbols are in distinct pairs,

then all sign changes on an even number of symbols can be generated, which is a group already

listed in Theorem 8.

When the 2 symbols are in the same pair, if H has a subgroup B◦k , the obtained group is already

listed in Theorem 8.

If H = (Z/4Z)×(k−1) o Symk (k ≥ 2), we will have a new group by adding 2-sign-change

(a1)−(a2)−, where a1, a2 are in the same block of the A-image B◦k .

The new group is the semi-direct product ((Z/4Z)×(k−1) × Z/2Z) o Symk (k ≥ 2), where

(Z/4Z)×(k−1)×Z/2Z is the subgroup {(a1, . . . , an) | 2(
∑

1≤i≤n ai) = 0 ∈ Z/4Z} of (Z/4Z)×k, with

each component corresponding to (2i−1 2i)−, and Symk corresponds to permutations of {2i−1, 2i}

(1 ≤ i ≤ k).

If the added 2-sign-changes have their 2 symbols in distinct orbits, only when W = ∆Ak it can

generate ∆Bk, which has no double cover reflection class.
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Otherwise, the new groups will be obtained as the double cover products of groups listed in

Theorem 9 with A-rotations and 2-sign-changes.

2.2.7 The indecomposable groups generated by B-rotations

For B-rotations, apart from D-rotations (A-rotations and 2-sign-changes), we may also have the

composition of one 2-cycle and 1 sign change: (a b)(c)−, or (a b)(c)−.

Theorem 10. All the rotation subgroups in W = Bn are obtained by double cover products of

groups in Theorem 8 and 9 with B-rotations, or

• Dil6 in B3 generated by (a1 a2)(a3)− and (a1 a3)(a2)−, with no double cover reflection class;

• Dil16 in B4 generated by (a1 a2)(a3 a4) and (a1 a3)(a2)−, with no double cover reflection

class;

• Dil8 = ∆B2 in B4 generated by (a1 a2)(a3)− and (a3 a4)(a2)−, with no double cover reflection

class.

Proof. Suppose we add (a1 a2)(a1)− or a 2-cycle-1-sign-change (a1 a2)(a3)− into the rotation sub-

group H. The element (a1 a2)(a1)− with 3-cycles or 2-rotations or 2-sign-changes will only generate

subgroups as a double cover product of those in Theorem 9.

For the rotation (a1 a2)(a3)−, if it intersects some 3-cycle, and only shares 1 or 2 common

symbols, then only the double cover product of Altk (k ≥ 3), Fk−1
2 oAltk, or the trivial group, can

be generated.

If they share 3 common symbols, there is only one new type of group Dil6 generated by (a1 a2 a3)

and (a1 a2)(a3)−. If H is expanded by some other rotations, then the subgroup Fk−1
2 oAltk acting

on a set of symbols containing a1, a2, and a3, will appear.

If the rotation (a1 a2)(a3)− intersects with some 2-rotations, there is only one new type of

group Dil16, which is generated by (a1 a2)(a3)− and (a1 a3)(a2 a4). If H is expanded by some

other rotations, then Fk−1
2 oAltk acting on the orbit containing a1, . . . , a4 will be generated.

For the intersection of two 2-cycle-1-sign-changes, H will generate one new type of group ∆(B2),

which is generated by (a1 a2)(a3)− and (a3 a4)(a1)−. There are no other subgroups without the

appearance of Fk−1
2 oAltk, or Dil6 and Dil16 described above.
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In summary, all the rotation subgroups in W = Bn will be the double cover product of the

groups in Theorem 8, 9 and 10.



32

Chapter 3

Classification of Quasiparabolic
Subgroups in Finite Classical
Coxeter Groups

3.1 Quasiparabolic subgroups in finite Coxeter group of type

A

We consider the double cosets WIwH, where WI is a standard parabolic subgroup of W , and

H ≤W is a subgroup of W . Our philosophy is to study the candidate quasiparabolic subgroups in

H among those in the standard parabolic subgroup WI , and go by induction on the set I of simple

reflections.

Proposition 14. [14] Suppose the transitive scaled W -set (X, ht) has a unique W -minimal element,

and the stabilizer of that element is a quasiparabolic subgroup. Then X is quasiparabolic. On the

other hand, if X is quasiparabolic, then the stabilizer of a minimal element of X is a quasiparabolic

subgroup of W .

If w is a minimal representative of the double coset WIwH, and H is a quasiparabolic subgroup

of W , then the left cosets WIwH/H form a transitive quasiparabolic WI -set, and by Proposition

14, the stabilizer Hw,I of the minimal element wH is a quasiparabolic subgroup of WI .

In the following examples, we may see a few standard parabolic subgroups WI , and calculate

some subgroups Hw,I of WI serving as stabilizers of minimal elements wH. (We regard W as
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An−1 = Sn on n symbols [n] = {1, 2, . . . , n}, with simple reflections si = (i i+ 1).)

Example 2. Let I = {si : 1 ≤ i ≤ n− 2}. The elements w satisfying that

w(i) =


i, 1 ≤ i ≤ j − 1;

n, i = j;

i− 1, j + 1 ≤ i ≤ n,

where j is a maximal symbol of an orbit of H, are minimal representatives of the double coset

WIwH. In particular, w is a minimal representative of the coset wH under the WI action. Then

the stabilizer Hj,I = wStabH,jw
−1 ≤WI of wH is obtained by relabeling the symbols as follows,

• Taking the stabilizer StabH,j of symbol j in H;

• deleting the symbol j;

• moving the symbols from j+ 1 to n one smaller than before, so that the symbol lies in [n− 1].

Since WIwH/H is a quasiparabolic WI-set, the stabilizer Hj,I of wH, is quasiparabolic in WI .

Similarly, if j is a minimal symbol of an orbit of H, we can pick I = {si : 2 ≤ i ≤ n− 1}, and

obtain the stabilizer Hj,I by,

• taking the stabilizer StabH,j of symbol j in H;

• deleting the symbol j;

• moving the symbols from 1 to j − 1 one larger than before. (For convenience of induction,

we may translate the new symbols between 2 and n, to 1 to n − 1, so that the symbols lie in

[n-1].)

If H is a quasiparabolic subgroup of W , then Hj,I is a quasiparabolic subgroup of WI .

Now we will list a few subgroups H of Sn, which are not quasiparabolic, and they will be helpful

in ruling out many subgroups which are not quasiparabolic.

Example 3. In the group W = S4, the subgroup H1 = Alt3 generated by the 3-cycle (1 2 4), the

subgroup H2 = ∆(Z/2Z) generated by the 2-rotation (1 3)(2 4), and the subgroup H3 = ∆(Z/2Z)

generated by the 2-rotation (1 4)(2 3) are not quasiparabolic.
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In the group W = S5, the subgroup H1 = ∆(Z/2Z) generated by the 2-rotation (1 3)(4 5),

the subgroup H2 = K4 acting on symbols 1, 3, 4, 5, and the subgroup H3 = K4 acting on symbols

1, 2, 4, 5, are not quasiparabolic.

The examples suggest that the subgroups H, whose orbits are not on consecutive symbols, are

not quasiparabolic in W = Sn.

More precisely, for any two symbols i, j ∈ [n] (i < j), if ∃h ∈ H, s.t., h(i) = j, then ∀k satisfying

i < k < j, ∃h̃ ∈ H, s.t., h(i) = k. In this case, we say H has consecutive orbits.

Theorem 11. For any quasiparabolic subgroup H of Sn, H has consecutive orbits.

Proof. Suppose H is a quasiparabolic subgroup and has an orbit on non-consecutive symbols. We

will obtain a contradiction by the induction method in Example 2.

If H is an odd subgroup, the components will be given by Theorem 3. Now consider the

component with a non-consecutive orbit.

If the component is Sk, then a copy of S2 with two non-consecutive symbols will be obtained, but

a quasiparabolic S2 should contain a simple reflection, forcing the orbit to contain two neighboring

symbols. So the original H is not quasiparabolic.

If the component is Bk, then a copy of B2 with four non-consecutive symbols will be obtained.

By taking their even subgroup K4, by Example 3, the K4 with non-consecutive four symbols will

not be quasiparabolic. So the original H is not quasiparabolic.

If the component H0 is the even subgroup of a direct products of Sk’s and Bk’s, then we are

able to delete symbols as in Example 2 and claim H is not quasiparabolic. In particular, if some S◦k

has non-consecutive orbits, we will have symbols such that a < b < c and a, c is in the orbit, but b

is not. We are able to reduce H0 to be ∆(Z/2Z) and keep the symbols a, b, c, so the ∆(Z/2Z) has

non-consecutive orbits, and hence is not quasiparabolic. On the other hand, if some B◦k has non-

consecutive orbits, it can be reduced to K4 on non-consecutive orbit, hence is not quasiparabolic.

So H is not quasiparabolic in this case.

If the component is ∆Sk, Dil10, or twisted Alt5 in S6, it can be reduced to ∆(Z/2Z) with

non-consecutive orbits. So the original H is not quasiparabolic.

If the component is PGL(3, 2) or AGL(3, 2), it can be reduced to B◦3 with non-consecutive

orbits. So the original H is not quasiparabolic.
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If the component is K4 o (∆S3) or K4 o (∆S4), it can be reduced to (B2 × S2)◦ or ∆S3 on

non-consecutive orbits. Hence the original H is not quasiparabolic.

From this discussion on all subgroups generated by rotations, or their double covers, H can

be reduced to one of the cases in Example 3, which are not quasiparabolic. So a quasiparabolic

subgroup H must have all its orbits acting on consecutive symbols.

Example 4. Let I = {si : i 6= n− 2}. Consider the elements w satisfying that

w(i) =



i, 1 ≤ i ≤ j − 1;

n− 1, i = j;

i− 1, j + 1 ≤ i ≤ k − 1;

n, i = k;

i− 2, k + 1 ≤ i ≤ n,

where j < k are two symbols in [n], such that for any w′ ∈ H, w′(j) + w′(k) ≤ j + k. Then these

types of w are minimal representatives of the double coset WIwH. In particular, w is a minimal

representative of the coset wH under WI action. Then the subgroup Hj,k,I = wStabH,j,kw
−1 ≤WI

of wH, is obtained by,

• taking the subgroup StabH,j,k = {w ∈ H : {w(j), w(k)} = {j, k}} in H;

• moving symbols j, k correspondingly to n− 1, n, and keeping the order of the other symbols,

so that the element lies in WI .

Since WIwH/H is a quasiparabolic WI-set, the subgroup Hj,k,I is quasiparabolic in WI .

A similar operation can be done for the two smallest symbols in one orbit, and it will be omitted

here.

In the following examples, we will give a few quasiparabolic subgroups of Sn, besides the standard

quasiparabolic subgroups.

Definition 7. Suppose W is a Coxeter group. Denote W+ the semidirect product of W by the

group of permutations of S that induce Coxeter automorphisms of W . An involution ι ∈ W+ is

perfect if for all r ∈ R(W ), (rι)4 = 1.
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Example 5. [14] The W -action by conjugation on the perfect involutions I, with height function

(l(ι)−n)/2, makes I a quasiparabolic W -set. One orbit of I is the set of fixed-point-free involutions.

Then the stabilizer of the minimal (or maximal) element, which is Bn with the n blocks as symbols

{1, 2}, . . . , {2n− 1, 2n} (or {1, 2n}, . . . , {n, n+ 1}), is a quasiparabolic subgroup.

By [14], the image and preimage of quasiparabolic subgroups under Coxeter homomorphism are

also quasiparaoblic.

Proposition 15. [14] Let φ : W →W ′ be a Coxeter homomorphism. If H ⊂W is quasiparabolic,

then so is φ(H); if H ′ ⊂W ′ is quasiparabolic, then so is φ−1(H ′).

Example 6. [14] The image of the Coxeter homomorphism

Sn
∆−→ Sn × Sn ↪→ Sm, where m ≥ 2n,

with the symbol i mapped to a1 + i (or a1 + (n + 1 − i)) and a2 + i (or a2 + (n + 1 − i)), where

0 ≤ a1 ≤ a2 − n ≤ m − 2n, gives a subgroup H = ∆Sn in W = Sm. Since H is the image of a

quasiparabolic subgroup of Sn × Sn under a Coxeter homomorphism, H is quasiparabolic in W .

Example 7. For the group AGL(3, 2) in S8, if the group AGL(3, 2) in S8 is generated by B◦4 ’s

with the two possible quasiparabolic case in Example 5, then it will be a quasiparabolic subgroup.

For the group PGL(3, 2) in S7, if the group PGL(3, 2) in S7 is generated by B◦3 with blocks

{1, 2}, {3, 4}, {5, 6} and B3 with blocks {2, 7}, {3, 6}, {4, 5}, then it will be a quasiparabolic subgroup.

For the group K4 o (∆S4) in S8, if the group K4 o (∆S4) in S8 is generated by K4 on symbols

{1, 2, 3, 4} and {5, 6, 7, 8}, and ∆S4 in Example 6, then it is quasiparabolic. Also, if it is generated

by K4 on symbols {1, 2, 3, 4} and {5, 6, 7, 8}, and 2-rotations (1 2)(6 7) and (2 3)(5 6), then it is also

quasiparabolic. When we take the stabilizer of the symbol 8, we will get corresponding quasiparabolic

subgroup K4 o (∆S3) of S7.

For the group Alt5 in S6, if the group Alt5 in S6 is generated by 2-rotations (1 2)(3 4), (1 2)(5 6)

and (2 3)(4 5), then it is quasiparabolic. When we take the stabilizer of the symbol 6, we will get a

corresponding quasiparabolic subgroup Dil10 of S5.

We will next show that there will not be more quasiparabolic subgroups than those in the

examples.
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Proposition 16. For the subgroup H = B◦n in W = S2n, H is quasiparabolic if and only if H is

described in Example 5.

Proof. For the case n = 2, B◦2 = K4 on 4 symbols, which is trivial.

For the case n ≥ 3, consider the subgroup H1 obtained by modifying H in Example 2 for the

symbol 1. Then we know the other symbol paired with symbol 1 in same block should be 2 or n,

otherwise the stabilizer H1 of the symbol 1 will have non-consecutive symbols in one orbit, and H1

will not be quasiparabolic. This forces H non-quasiparabolic. Similarly, the symbol n should be

paired with the symbol 1 or n− 1. So we have two cases:

1. the symbol 1 is paired with the symbol 2, and the symbol n is paired with the symbol n− 1;

2. the symbol 1 is paired with the symbol n.

The two cases will give the two possible quasiparabolic H = B◦n subgroups in W = S2n.

• If the symbol 1 is paired with the symbol 2, and the symbol n is paired with the symbol n−1,

we claim H must have its n blocks as {2i−1, 2i} (1 ≤ i ≤ n). Otherwise, suppose 2j−1 is the

smallest odd symbol that is not paired with 2j, then by deleting all symbols 1, 2, . . . , 2j − 2

with the operation from Example 2, we have H ′ = B◦n−j+1 < W ′ = S2(n−j+1) on symbols

2j−1, 2j, . . . , 2n, but the symbol 2j−1 is not paired with the symbol 2j or symbol n, forcing

H ′ to be non-quasiparabolic in W ′, so H is non-quasiparabolic, too.

• If the symbol 1 is paired with the symbol n, we claim H must have its n blocks as {i, 2n+1−i}

(1 ≤ i ≤ n). Otherwise, suppose 1 < j < n is the smallest symbol that is not paired with

2n+ 1− j. Then by deleting all symbols 1, 2, . . . , j − 2 with the operations from Example 2,

we have H ′ = B◦n−j+1 < W ′ = S2(n−j+1) on symbols j − 1, j, . . . , 2n− j + 2, and the symbol

j−1 is paired with 2n−j+2, while j is not paired with 2n−j+1. Now consider the subgroup

H ′′ = B◦n−j−1 × (∆S2) of W ′′ = S2(n−j) × S2, obtained by modifying H ′ as in Example 4.

Then H ′′ will have an orbit consisting of symbols j′ and 2n− j + 2, while j′ < 2n− j + 1. So

H ′′ has an orbit with non-consecutive symbols, forcing H ′′ to be non-quasiparabolic in W ′′.

Then H is non-quasiparabolic in W , too.

In summary, all quasiparabolic subgroups H = B◦n are described in Example 5.
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Proposition 17. For the subgroup H = ∆Sn in W = Sm, where m ≥ 2n, H is quasiparabolic in

W if and only if H is described in Example 6.

Proof. From Theorem 11, the two orbits of H = ∆Sn should be consecutive. We suppose the two

orbits are {a1 + 1, . . . , a1 + n} and {a2 + 1, . . . , a2 + n}, where 0 ≤ a1 ≤ a2 − n ≤ m − 2n. By

the operation from Example 2, the symbol a1 + 1 and the symbol a1 + n should be paired with

the symbol a2 + 1 or a2 + n. By the operation from Example 4 inductively as in the case of Bn

above, H is uniquely determined after we fix the symbol in the orbit {a2 + 1, . . . , a2 + n} pairing

to a1 + 1.

Proposition 18. The quasiparabolic subgroups isomorphic to AGL(3, 2), PGL(3, 2), K4 o (∆S3),

K4 o (∆S4), Dil10, and twisted Alt5, are all given in Example 7 (up to an isomorphism of the

Coxeter diagram of Sn).

Proof. For the subgroup PGL(3, 2) in S7, the stabilizer of the symbol 7 is B◦3 , which should be

paired by {1, 2}, {3, 4}, {5, 6} or {1, 6}, {2, 5}, {3, 4}. Also the stabilizer of the symbol 1 is B◦3 ,

which should be paired by {2, 3}, {4, 5}, {6, 7} or {2, 7}, {3, 6}, {4, 5}. Since there are no two

K4’s having exactly 3 common symbols in PGL(3, 2), the quasiparabolic subgroup PGL(3, 2) in

S7 should be described as in Example 7.

For the subgroup AGL(3, 2) in S8, the stabilizer of the symbol 1 or the symbol 8 is PGL(3, 2),

which should be quasiparabolic as in Example 7. Then the only possibility is described in Example

7.

Consider the subgroup K4 o (∆S3) in S7, with orbits {1, 2, 3, 4} and {5, 6, 7}, the stabilizer of

the symbol 1 is ∆S3. Then the simple reflections (2 3) and (3 4) should be paired with the simple

reflections (5 6) or (6 7), giving the two possible quasiparabolic subgroups in Example 7.

For the subgroup K4 o (∆S4) in S8, if the stabilizer of symbol 8 is K4 o (∆S3), then the simple

reflections (1 2) and (2 3) should be paired with the simple reflection (5 6) or (6 7), giving the two

possible quasiparabolic subgroups in Example 7.

For the subgroup Dil10 in S5, the stabilizer of the symbol 5 is ∆S2, which should be (1 2)(3 4).

Similarly, the quasiparabolic subgroup Dil10 should also have (2 3)(4 5).

For the subgroup twisted Alt5 in S6, the stabilizer of symbol 1 or 6 is Dil10, which has been

determined above. So the quasiparabolic subgroup twisted Alt5 should also be described as in

Example 7.
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(Si1 × . . .×Sik ×Bj1 × . . .×Bjl)
◦ is the even subgroup of Si1 × . . .×Sik ×Bj1 × . . .×Bjl . So we

only need to find all possible quasiparabolic subgroup of the form Si1 × . . .× Sik ×Bj1 × . . .×Bjl

in group Sn.

In fact, all Si’s and Bj ’s need to have consecutive symbols, and Bj ’s should have symbols paired

as in Example 5. In particular, we need to rule out a case which is not treated before. For the

quasiparabolic subgroup B2, we can not have the pairing on the symbols {1, 3} and {2, 4}, since

the stabilizer of symbol 4 is S2 on symbol 1 and 3, which is non-quasiparabolic.

When all the Si’s and Bj ’s are quasiparabolic, then their direct product is quasiparabolic. We

list these quasiparabolic subgroups in the following theorem.

Theorem 12. The subgroup (Si1 × . . .×Sik ×Bj1 × . . .×Bjl)
◦ in Sn is quasiparabolic if and only

if

1. All Si’s and Bj’s acts on consecutive symbols AND

2. All Bj’s have symbols paired as in one of the two cases in Example 5.

Combining Theorem 12 and Proposition 17 and 18, all even quasiparabolic subgroups of Sn are

given by the examples in Theorem 12, Example 6 and 7. Note that only the case in Theorem 12 can

serve as the even subgroup of some odd quasiparabolic subgroup, by adding one simple reflection

as a generator. Then we state the classification of all quasiparabolic subgroups at the end of this

part as a theorem.

Theorem 13. All quasiparabolic subgroups of W = Sn are the direct product of these groups acting

on consecutive symbols:

1. Si;

2. Bj on j pairs of symbols satisfying one of the cases in Example 5;

3. (Si1 × . . .× Sik ×Bj1 × . . .×Bjl)
◦ as in Theorem 12;

4. ∆Si as in Example 6;

5. K4 o (∆S3) acting on 7 symbols as in Example 7;

6. K4 o (∆S4) acting on 8 symbols as in Example 7;
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7. PGL(3, 2) acting on 7 symbols as in Example 7;

8. AGL(3, 2) acting on 8 symbols as in Example 7;

9. Dil10 acting on 5 symbols as in Example 7;

10. Twisted Alt5 in S6 as in Example 7.

3.2 Preparation work for quasiparabolic subgroups in finite

Coxeter groups of type B and D

3.2.1 Connection between quasiparabolic subgroups in Bn, Dn and those

in An

In this part, we are going to use Coxeter homomorphism to get information about quasiparabolic

subgroups in finite Coxeter groups of type B and D from those in finite Coxeter groups of type A.

We present the Coxeter group W = Bn or Dn acting as signed permutations. Suppose W = Bn has

simple reflections S = {(1)−, (1 2), . . . , (n−1 n)}. Denote si = (n− i n+1− i) where 1 ≤ i ≤ n−1,

and sn = (1)−. The group W = Dn has simple reflections S = {(1 2), (1 2), . . . , (n− 1 n)}. Denote

si = (n− i n+ 1− i) where 1 ≤ i ≤ n− 1, and sn = (1 2̄).

For the Coxeter homomorphisms

Bn → An−1 ×A1,

and

Dn → An−1,

the A-image of quasiparabolic subgroup H of Bn or Dn should have their orbits on consecutive

symbols, similar to the case in An.

3.2.2 Induction method by double cosets

Similar to the method of classifying quasiparabolic subgroups in An, we may go through some

standard parabolic subgroups, and see the operation on subgroups H in Bn and Dn.
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Example 8. Suppose W = Bn with the given simple reflections at the beginning of Section 2.2.

Let I = {(1)−, (1 2), . . . , (n − 2 n − 1)} ⊂ S, and let WI be the corresponding standard parabolic

subgroup. Suppose H is quasiparabolic in W , and j is a maximal symbol (including the sign) in an

orbit of H. If j > 0, we consider the element w ∈W satisfying that

w(i) =


i, 1 ≤ i ≤ j − 1;

n, i = j;

i− 1, j + 1 ≤ i ≤ n,

while if j < 0, let w ∈W satisfy that

w(i) =


i, 1 ≤ i ≤ −j − 1;

−n, i = −j;

i− 1, −j + 1 ≤ i ≤ n.

Then w is a minimal representative of the double coset WIwH. In particular, w is a minimal

representative of the coset wH under the WI action. Denote StabH,j as the stabilizer of symbol j

in H. Then the stabilizer Hj,I = wStabH,jw
−1 ≤WI of wH, is obtained by,

• taking the stabilizer StabH,j of the symbol j in H;

• deleting the symbol j (and −j);

• moving the symbols from j + 1 to n one smaller than before (and symmetrically for −(j + 1)

to −n), so that the elements are acted on by WI .

Since WIwH/H is a quasiparabolic WI-set, the stabilizer Hj,I of wH, is quasiparabolic in WI .

When W = Dn, still letting I = {(1 2), (1 2), . . . , (n− 2 n− 1)} ⊂ S, let WI be the correspond-

ing standard parabolic subgroup. Suppose H is quasiparabolic in W , and j is a maximal symbol

(including the sign) in an orbit of H. If j > 0, we consider the element w ∈W satisfying that

w(i) =


i, 1 ≤ i ≤ j − 1;

n, i = j;

i− 1, j + 1 ≤ i ≤ n,
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while if j < 0, let w ∈W satisfy that

w(i) =



−1, i = 1;

i, 2 ≤ i ≤ −j − 1;

−n, i = −j;

i− 1, −j + 1 ≤ i ≤ n.

Similar to the case of W = Bn, we will obtain the stabilizer Hj,I , quasiparabolic in WI by

• taking the stabilizer StabH,j of symbol j in H;

• deleting the symbol j (and −j);

• moving the symbols from j + 1 to n one smaller than before (and symmetrically for −(j + 1)

to −n). In addition, if j < 0, we need to add a negative sign for symbol 1, so that the element

lies in WI .

Example 9. Suppose W = Bn with the given simple reflections at the beginning of Section 2.2.

Let I = {(1)−, (1 2), (2 3), . . . , (n − 3 n − 2), (n − 1 n)} ⊂ S, and let WI be the corresponding

standard parabolic subgroup. Let H be quasiparabolic in W , and let j < k be two signed symbols in

±[n] = {±1, . . . ,±n}. Suppose l ∈ ±[n], define

wl =

 s1 . . . sn−l, l > 0;

s1 . . . sn−1snsn−1 . . . sn+1−l, l < 0.

If for all w′ ∈ H such that {w′(j), w′(k)} = {j, k}, w′(j) + w′(k) ≤ j + k, then the following

w = wjwk ∈W is a minimal representative element of the double coset WIwH.

In particular, w is a minimal representative of the coset wH under the WI action. Denote by

StabH,j the stabilizer of symbol j in H. Then the stabilizer Hj,I = wStabH,jw
−1 ≤ WI of wH, is

obtained by,

• taking the stabilizer StabH,j of symbol j in H;

• moving the symbols j, k to n− 1, n and keeping the signs and order of other symbols, so that

the element are acted on by WI .

Since WIwH/H is a quasiparabolic WI-set, the stabilizer Hj,k,I of wH, is quasiparabolic in WI .
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When W = Dn, still letting I = {(1 2), (1 2), (2 3), . . . , (n − 3 n − 2), (n − 1 n)} ⊂ S, WI be

the corresponding standard parabolic subgroup, H be quasiparabolic in W , and j < k are two signed

symbols in ±[n]. Suppose l ∈ ±[n], define

wl =

 s1 . . . sn−l, l > 0;

s1 . . . sn−2snsn−1 . . . sn+1−l, l < 0.

If for all w′ ∈ H such that {w′(j), w′(k)} = {j, k}, w′(j) + w′(k) ≤ j + k, then the following

w = wjwk ∈W is a minimal representative element of the double coset WIwH.

Similar to the case of W = Bn, we will obtain the stabilizer Hj,I , quasiparabolic in WI by

• taking the stabilizer StabH,j of symbol j in H;

• moving the symbols from j, k to n − 1, n and keeping the signs and order of other symbols

(possibly changing the sign of the new symbol 1), so that the element lies in WI .

3.2.3 Orbits not including its negative symbols

Suppose H is quasiparabolic in W = Bn or W = Dn. In this part, we will show that those orbits of

H not including its negative symbols will include symbols with same signs for the case of W = Bn,

and either itself or its dual (by the nontrivial diagram automorphism switching 1 and -1) will have

the same signs as the case of W = Dn.

Similar to the method for the case when W has type A, we will list a few non-quasiparabolic

cases in small Bn or Dn, and use the induction operation to rule out those non-quasiparabolic

subgroups in general Bn or Dn.

Example 10. Suppose W = B2, then the subgroup H1 = Z/2Z generated by (1 2) is not a quasi-

parabolic subgroup of W .

Suppose W = B2 × B2, then the subgroups H1 = ∆(Z/2Z) generated by (1 2)(1′ 2′) and H2 =

∆(Z/2Z) generated by (1 2)(1′ 2′), are not quasiparabolic in W .

Suppose W = B3, then the subgroup H1 = Alt3 generated by (1 2 3) or (1 2 3) or (1 2 3) is not

a quasiparabolic subgroup of W .

Suppose W = B4, then the subgroup H1 = ∆(Z/2Z) generated by (1 2)(3 4), the subgroup

H2 = ∆(Z/2Z) generated by (1 2)(3 4), the subgroup H3 = ∆(Z/2Z) generated by (1 2)(3 4),
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are not quasiparabolic subgroups of W . The subgroup H4 = K4 with an orbit on 4 signed-symbols

{1, (±)2, (±)3, (±)4}, except when these 4 symbols have the same signs (i.e., at least one of symbols

2,3,4 has negative sign), is also not a quasiparabolic subgroup of W . From the non-quasiparabolicity

of H2, the group B2, whose even subgroup is B◦2 = H2 = K4 on 4 signed-symbols not in same signs,

is also non-quasiparabolic.

Example 11. Suppose W = D3 (also the same as A3, but we let W act on 3 signed-symbols), the

subgroup H1 = Z/2Z generated by (2 3), and the subgroup H2 = Alt3 generated by (1 2 3) (or the

dual generated by (1 2 3),) are not quasiparabolic subgroups of W .

Suppose W = D3 × D3, the subgroup H1 = ∆(Z/2Z) generated by (2 3)(2′ 3′), the subgroup

H2 = ∆(S3) generated by (1 2 3)(1′ 2′ 3′), the subgroup H3 = ∆(S3) generated by (1 2 3)(1′ 2′ 3′),

are not quasiparabolic subgroups of W .

Suppose W = D4, the subgroup H1 = ∆(Z/2Z) generated by (1 2)(3 4), the subgroup H2 = K4

with an orbit of 4 signed-symbols {1, 2, (±)3, (±)4}, when these 4 symbols do not have the same signs

(i.e., at least one of symbols 3,4 has negative sign), and the subgroup H3 = Alt3 generated by 3-cycle

on {2, (±)3, (±)4}, when these 3 symbols do not have the same signs (i.e., at least one of symbols

3,4 has negative sign), are not quasiparabolic subgroups of W . From the non-quasiparabolicity of

H2, the group B2, whose even subgroup is B◦2 = H2 = K4 on 4 signed-symbols, where symbols 2,3,4

are not in the same signs, is also non-quasiparabolic in W .

Suppose W = D5, then the subgroup H1 = ∆(Z/2Z) generated by (2 3)(4 5), and the subgroup

H2 = K4 acting on 4 signed-symbols {2,−3, 4, 5}, are not quasiparabolic subgroups of W . By the

non-quasiparabolicity of H2, the group B2 whose even subgroup is B◦2 = H2 = K4 on signed-symbols

{2,−3, 4, 5} is also non-quasiparabolic in W .

Definition 8. A subgroup H of finite classical Coxeter group W has A form, if

• H = HA, where HA is the A-image of H, and HA is quasiparabolic in the A-image of W .

• Each orbit of H should have symbols with same signs (excluding the symbol 1 when the direct

product component of W has type D).

With these small non-quasiparabolic cases, we are able to prove the following theorem that all

symbols in an orbit, which does not include a symbol and its negative, should have A form.
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Theorem 14. Suppose W is a finite classical Coxeter group, and H is a quasiparabolic subgroup

of W . If i is a symbol that is not in the same orbit as −i under the action of H, then H should

have A form.

Proof. Recall the classification of quasiparabolic subgroups in Sn on consecutive symbols in Theo-

rem 13,

• Si;

• Bj ;

• (Si1 × . . .× Sik ×Bj1 × . . .×Bjl)
◦;

• ∆Si;

• K4 o S3 acting on 7 symbols;

• K4 o S4 acting on 8 symbols;

• PGL(3, 2) acting on 7 symbols;

• AGL(3, 2) acting on 8 symbols;

• Dil10 acting on 5 symbols;

• Twisted Alt5 in Sym6.

Each orbit O of the H-action not including a symbols and its negative must become one of the

orbits in the above subgroups. Suppose O has two symbols (not including the symbol 1 in the case

of W has type D) with distinct signs. We list the set of positive symbols O+ = {i1, . . . , ik}, and

the set of negative symbols O− = {−j1, . . . ,−jl}, where i1 < . . . < ik and j1 < . . . < jl. By the

operation in Example 8 and 9, we can finally get the following subgroups on symbols of distinct

signs, which are non-quasiparabolic, forcing H to be non-quasiparabolic.

• When O is the orbit of Si, by the operation in Example 8, we may inductively delete the

symbols ik, ik−1, . . . , i2 and −jl,−jl−1, . . . ,−j2. We will get Z/2Z on symbols (not including

symbol 1 when W has type D) with distinct signs, which is non-quasiparabolic.
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• When O is the orbit of Bi, we first conduct the operation in Example 8, so that O+ and O−
are non-empty, and (at least) one of O+ or O− (we may suppose it’s O+) has 1 or 2 remaining

symbols. If both O+ and O− have 1 or 2 remaining symbols, then Z/2Z or B2 on symbols

(not including symbol 1 when W has type D) on distinct signs will be obtained, which are

non-quasiparabolic.

Otherwise, when O+ has 2 symbols i1, i2 remaining, if they are in the same pair, we are able

to delete all but two symbols in O− to get B2 ⊂ S4 in W = B4 or W = D4 where the symbols

2, 3, 4 does not have same signs, which are non-quasiparabolic by Example 10 and 11. If the

2 symbols remaining in O+ are in distinct pairs, we are able to conduct the operation in

Example 8 to eliminate the symbol i2 in O+, and leave O+ with exactly 1 symbol i1.

When O+ has 1 symbol i1, suppose i1 is paired with some −ji ∈ O−. We conduct the

operation in Example 8, until −ji+1, or we have H = B2 with 4 remaining symbols not

with the same signs. In this case we are able to show H is non-quasiparabolic by Example

10 and 11. Now the remaining symbols are i1,−j1,−j2, . . . ,−ji with i ≥ 5, where i1 and

−ji are in the same pair. We operate as in Example 9 for the symbols ji−1, ji. Then we

will have a component K4 including the symbols i1,−jj−1,−ji not in same signs, which is

non-quasiparablic.

• When O is the orbit of the Si’s component or the Bj ’s component of (Si1 × . . .× Sik ×Bj1 ×

. . .× Bjl)
◦, we follow a similar argument as when O is the orbit of the Si or Bj , to prove O

should have same signs.

• When O is the orbit of ∆Ai, by the operation in Example 8, we may inductively delete

the symbols ik, ik−1, . . . , i2 and −jl,−jl−1, . . . ,−j2. We will get ∆(Z/2Z) with at least one

orbit on symbols (not including symbol 1 when W has type D) with distinct signs, which is

non-quasiparabolic.

• When O is the orbit of the 3-symbol orbit of K4 o S3 in W = W1 ×W2, where W1 = B3 or

D3 (when W = D3, we require symbols 2, 3 have distinct signs) or D4 (when W = D4, we

require O on symbols 2, 3, 4) and W2 = S4 or B4 or D4. we are able to reduce it to Alt3 on 3

symbols not with same signs (not including symbol 1), which is non-quasiparabolic.

• When O is the orbit of the 4-symbol orbit of K4 oS3, or K4 oS4, or PGL(3, 2), or AGL(3, 2)



47

we are able to reduce it to K4 on 4 symbols not with same signs (not including symbol 1),

which is non-quasiparabolic.

• When O is the orbit of Dil10, or twisted Alt5 in S6, we will get ∆(Z/2Z) with at least one

orbit on symbols (not including symbol 1 when W has type D) with distinct signs, which is

non-quasiparabolic.

In summary, if O is an orbit of a quasiparabolic subgroup H of W , and O does not contain a

symbol and its negative, then all symbols in O (excluding symbol 1 for the orbit acted by a type D

component of W ) should have the same signs.

3.3 Restriction on sign changes for quasiparabolic subgroups

We claim the sign changes on some orbits are forbidden if some smaller orbits do not have ‘enough’

sign changes.

Example 12. For W = B3 or W = D3, the subgroup H1 = F2 generated by (1)−(3)− or (2)−(3)−,

and the subgroup H2 = B◦2 are not quasiparabolic. For W = B3, the subgroup H = Z/2Z generated

by (1 2)(3)− or (1 2)(3)− or (1)−(2 3) is also not quasiparabolic.

From Example 12, if the subgroup H has some orbit with sign changes, and the sign changes

are independent with the sign changes on k smaller symbols (i.e., symbols closer to 1), and those

smaller k symbols do not have Fk
2 of arbitrary sign changes on these k symbols as a subgroup, then

H can be reduced to Example 12 by repeating the operations in Example 8. So H will not be

quasiparabolic in W .

Example 13. For W = B4 or W = D4, the subgroup H = ∆(F2×Z/2Z) generated by {(1 2)(3 4), (1 2)(3 4)}

or {(1 2)(3 4), (1 2)(3 4)}, is not quasiparabolic in W .

From Example 13, if a subgroup H can be reduced to ∆(F2 × Z/2Z) as in the example, it will

not be quasiparabolic. Next we will give some eligible sign changes for quasiparabolic subgroups

when W has components of type B or D.

Definition 9. A subgroup H of W = Bn has B form, if

• H = Fm
2 oHA, where Fm

2 is the subgroup of arbitrary sign changes on symbols 1, . . . ,m, and

HA is the A-image of H.
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• HA is quasiparabolic in Sn.

• For orbits of H without sign changes, they should have symbols with the same signs.

When W has multiple components, a component Wi of type B has B form under H if

• the subgroup Fm
2 on arbitrary sign changes on symbols 1, . . . ,m is included in H, and H does

not generate sign changes on other symbols m+ 1, . . . , n.

• H ∪Wi has quasiparabolic A-image in Sn.

• The orbits of H in symbols m+ 1, . . . , n have symbols with the same signs.

Definition 10. A subgroup H of W = Bn or W = Dn has D form if

• H = Fm−1
2 o HA, where Fm−1

2 is the subgroup of an even number of sign changes on the

symbols 1, . . . ,m, and HA is the A-image of H. Or when W = Bn, H = (Fm
2 oHA)◦, where

Fm
2 is the subgroup of arbitrary sign changes on symbols 1, . . . ,m, and HA is the A-image of

H.

• HA is quasiparabolic in Sn.

• The orbits of H without sign changes have symbols with the same signs.

When W has multiple components, a component Wi of type B or type D has D form under H if

• the subgroup Fm−1
2 on an even number of sign changes on the symbols 1, . . . ,m are included

in H, and H does not generate sign changes on the other symbols m+ 1, . . . , n.

• H ∪Wi has quasiparabolic A-image in Sn.

• The orbits of H in symbols m+ 1, . . . , n have symbols with the same signs.

Definition 11. A subgroup H of W = Dn has D2 form if

• H = D2 × (HA,1)◦ × (HA,2)◦. Here HA,1 and HA,2 are odd quasiparabolic subgroups of Sn−2

on disjoint symbols sets in 3, . . . , n, without sign changes. D2 acts on the symbols 1, 2, and

the simple reflections (1 2) and (1 2) correspond to the parity of HA,1 and HA,2, respectively.

For the case HA = Bn or HA = B◦n, H may also have special-D form or even-special-D form as

follows.
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Definition 12. A subgroup H of W = Dn has special-D form if

• H = Fm
2 oHA, where Fm

2 is the subgroup of an even number of sign changes on the m blocks

{1, 2}, . . . , {2m − 1, 2m}, or when m = 2, it can also have blocks {1, 4}, {2, 3}. In addition,

HA is the A-image of H, equal to B◦m, or Bm in S2m, generated by (2i − 1 2i)(2j − 1 2j),

(2i − 1 2i)(2j − 1 2j) and (2i − 1 2j − 1)(2i 2j) (1 ≤ i < j ≤ m), or its image under the

Coxeter automorphism.

• HA is quasiparabolic in Sn.

• The orbits of H without sign changes have symbols with the same signs.

Definition 13. A subgroup H of W = Dn has even-special-D form if

• H = Fm−1
2 oHA, where Fm−1

2 is the subgroup consisting of an even number of sign changes

on the m blocks {1, 2}, . . . , {2m−1, 2m}, or when m = 2, it can also have blocks {1, 4}, {2, 3}.

In addition, HA is the A-image of H, equal to B◦m or Bm in S2m, generated by (2i−1 2i)(2j−

1 2j), (2i − 1 2i)(2j − 1 2j) and (2i − 1 2j − 1)(2i 2j) (1 ≤ i < j ≤ m), or its image under

the Coxeter automorphism.

Also, H = F3
2 o PGL(3, 2) by adding (1 3)(5 7) into the copy of F2

2 o B◦3 above, or H =

F4
2 oAGL(3, 2) by adding (2 4)(6 8) into the copy of F3

2 o PGL(3, 2) above.

• HA is quasiparabolic in Sn.

• The orbits of H without sign changes have symbols with the same signs.

There are also a few examples of even quasiparabolic subgroups, which can generate sign changes

on their orbits.

Example 14. For W = B3, the subgroup H = Dil6 generated by (1)−(2 3) and (2)−(1 3) is

quasiparabolic.

For W = B4, the subgroup H = Dil16 generated by (1 2)(3 4) and (2 3)(1)− is quasiparabolic.

For W = D4, the subgroup H = F2 × Alt4 generated by (1 2 3), (1 2 4) and (1 2)(3 4) is

quasiparabolic.

For W = D6, the subgroup H = H3 generated by (1 2)(3 4), (2 3)(4 5) and (1 2)(5 6) is

quasiparabolic.
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3.4 Ruling out non-quasiparabolic subgroups of Bn and Dn

We will list out some examples of non-quasiparabolic subgroups generated by rotations.

Example 15. The subgroups generated by 3-cycles, when the orbit O is closed under negation, may

be Fk−1
2 o Altk, F2 × Alt4 or SL(2, 3), but the SL(2, 3) can not be quasiparabolic, by checking all

possibilities.

The group H = F2 × Alt4 generated by (1 2 3), (2 3 4) and (1 2)(3 4) is quasiparabolic in

W = D4, but no other F2 × Alt4 is quasiparabolic in either W = B4 or W = D4. (Except for

changing the sign of the symbol 1 in all the two 3-cycles).

Example 16. For subgroups H = Dil8 ≤W generated by 2-rotations {(a1 a2)(a3 a4), (a1 a3)(a2 a4)}

on {±1,±2,±3,±4}, where W = B4 or W = D4, the element w = (1)−(2)−(3)−(4)− with sign

changes on all 4 symbols is in H. We may assume that the generators have the 2-cycle involving

the symbol 4 having 2 symbols with the same signs. There are 6 cases for W = B4 and 3 cases for

W = D4, which are all non-quasiparabolic. (These cases have generators {(1 2)(3 4), (1 3)(2 4)}, or

{(1 3)(2 4), (1 2)(3 4)}, or {(1 2)(3 4), (1 4)(2 3)}, or {(1 4)(2 3), (1 2)(3 4)}, or {(1 3)(2 4), (1 4)(2 3)},

or {(1 4)(2 3), (1 3)(2 4)}).

The subgroup H = (Z/4Z × Z/2Z) o S2, which is obtained by adding (a3)−(a4)− to the group

Dil8 above, is also non-quasiparabolic in either W = B4 or W = D4.

So the subgroups (Z/4Z)×(k−1) o Sk (k ≥ 2), and ((Z/4Z)×(k−1) × Z/2Z) o Sk (k ≥ 2) are

non-quasiparabolic.

Example 17. For subgroups H = F2 ×K4 ≤ W , where W = B4 or W = D4, and F2 corresponds

to sign changes on all 4 symbols. Then the subgroup must contain a subgroup K4, and all K4’s by

changing two signs of the 4 symbols of the original K4. So we may assume the original K4 having 0

or 1 symbols with negative signs. If the K4 has 1 negative symbol, then we may assume it is symbol

1, because we can freely change any two symbols’ signs simultaneously in the 2-cycle presentation

of 2-rotations. There are 2 possibilities of H generated by {(1 2)(3 4), (1 3)(2 4), (1 2)(3 4)}, or

{(1 2)(3 4), (1 3)(2 4), (1 2)(3 4)}. For the case W = B4, all these 2 cases are not quasiparabolic.

While for the case W = D4, these 2 cases are dual to each other, and they are quasiparabolic

subgroups of W = D4. In fact, these two quasiparabolic subgroups are small cases of the conjectural

quasiparabolic subgroups in [14]. We will prove the quasiparabolicity of the general case in Section
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3.6. However, when we consider W = D5 and the subgroup H = F2 ×K4 acts on symbols 2,3,4,5

(suppose (1 2) ∈ S), then H is not a quasiparabolic subgroup of W .

Example 18. Let H = F2
2 oK4 ≤ W , where W = B4 or W = D4. We take the stabilizer of the

symbol 4 under the operation in Example 8, then the stabilizer is F2 on sign changes of 2 symbols.

From Example 12, the groups F2 of sign changes on symbols {2, 3} or {1, 3}, are not quasiparabolic.

So the symbol 4 should be paired with symbol 3 on the sign changes.

Then there are 2 cases of H = F2
2 o K4, generated by {(1 2)(3 4), (1 3)(2 4), (1 2)(3 4)}, or

{(1 2)(3 4), (1 3)(2 4), (1 2)(3 4)},

When W = B4, then the H generated by {(1 2)(3 4), (1 3)(2 4), (1 2)(3 4)} is quasiparabolic.

In fact, it is the n = 2 case of the even subgroup of the centralizer of the minimal fixed-point-

free involutions of B2n, which is quasiparabolic by [14]. In contrast, the remaining case is not

quasiparabolic. When W = D4, then the two cases of H are dual to each other, and both are

quasiparabolic. They are also the n = 2 case of the even subgroup of the centralizer of the minimal

fixed-point-free involutions of D2n, which is quasiparabolic.

Example 19. From the classification of rotation subgroups, there are 3 possibilities for the sub-

groups H of W with A-image of quasiparabolic PGL(3, 2). These are PGL(3, 2), F6
2 o PGL(3, 2)

with an even number of sign changes, and F3
2 o PGL(3, 2) generated by sign-changes on 4 symbols

a, b, c, d with (ab)(cd) ∈ H. From Example 17, when we fix the symbols 5,6,7, then the stabilizer is

F2×K4, which is not quasiparabolic in B4. So F3
2oPGL(3, 2) is not quasiparabolic in B7. However,

if W = D7, then the subgroup F3
2 o PGL(3, 2) is quasiparabolic, if it is generated by (1 2)(3 4),

(1 2)(5 6), (1 3)(2 4), (3 5)(4 6), (1 3)(5 7) and (1 2)(3 4).

From the classification of rotation subgroups, there are 3 possibilities for the subgroup H of W

with A-image of quasiparabolic AGL(3, 2). These are AGL(3, 2), F7
2 o AGL(3, 2) with an even

number of sign changes, and F4
2 o AGL(3, 2) generated by sign-changes on 4 symbols a, b, c, d with

(ab)(cd) ∈ H. From Example 17, when we fix the symbol 8, we will obtain F3
2 o PGL(3, 2), which

is not quasiparabolic in B7. So F4
2 o AGL(3, 2) is not quasiparabolic in B8. However, if W = D8,

then the subgroup F4
2 o AGL(3, 2) is quasiparabolic, if it is generated by the above quasiparabolic

F3
2 o PGL(3, 2) in D7 ⊂ D8, and the 2-rotation (5 6)(7 8).
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3.5 Quasiparabolic subgroups with A-image as indecompos-

able quasiparabolic subgroups

Example 20. For the case that the A-image of H is Si, when W = Dn, the only possibilities are

H = Si, or H = Fi−1
2 o Si with an even number of sign changes, or H = F2 × S4 with its even

subgroup F2×Alt4 in Example 14. While W = Bn, there is one more possibility of H = Fi
2oSi with

arbitrary sign changes, but H = F2 × S4 is no longer quasiparabolic in W = Bn. When H = Si,

H = Fi−1
2 o Si or H = Fi

2 o Si, H is quasiparabolic in W if and only if W has B form or D form.

When H = F2 × S4 in W = Dn, H can only act on the symbols 1, 2, 3, 4. (The F2 × S4 acting

on 2, 3, 4, 5 is non-quasiparabolic, as is F2×S4 acting on 1, 2, 3, 4 except for the group with the even

subgroup F2 ×Alt4 in Example 14 or its image under the Coxeter homomorphism.)

When H = Dil6 or H = Dil16 in Theorem 10, the only possible quasiparabolic groups are given

by Example 14. While if H = Dil8 in Theorem 10, H is non-quasiparabolic in B4.

Example 21. For the case that the A-image of H is Bj, when W = Dn, the subgroups H = Bj in

A form, or H = F2j−1
2 o Bj in D form, or H = Fj

2 o Bj in special-D form, or H = Fj−1
2 o Bj in

even-special-D form, are quasiparabolic. While if W = Bn, the subgroup H = Fj−1
2 oBj will not be

quasiparabolic, and there is one more quasiparabolic subgroup which is H = F2j
2 oBj in B form.

For H = Fj
2 o Bj (or H = Fj−1

2 o Bj), only the subgroup satisfying special-D form (or even-

special-D form) can be quasiparabolic. When j = 2, only the groups in special-D form (or even-

special-D form) can be quasiparabolic. So H must act on the symbols ±1, . . . ,±2j.

In addition, H should have pairing {2i − 1, 2i} (1 ≤ i ≤ j). The other pairing {i, 2j + 1 − i}

can not generate a quasiparabolic subgroup, because after the operation in Example 8 for the symbol

2j, the symbol 1 will be stabilized, and then we will have Fj−1
2 o Bj−1 (or Fj−2

2 o Bj−1) acting on

symbols {2, 3 . . . , 2j − 1}, which is non-quasiparabolic.

In addition, H should contain the elements (2i − 1 2i + 1)(2i 2i + 2) (i ≥ 2 for W in type

D). Otherwise, since (2i− 1)−(2i)−(2i+ 1)−(2i+ 2)− ∈ H, and H contains K4 acting on symbols

{±(2i − 1), . . . ,±(2i + 2)}, then (2i − 1 2i)(2i + 1 2i+ 2) ∈ H. After the operations in Example

8 for symbols larger than 2i + 2, we will reduce the A-image of the group to Bi+1 on symbols

1, . . . , 2i + 2. Then by applying the operation in Example 9 for symbols 2i, 2i + 2, and we will

have an orbit {2i − 1,−2i}, with symbols with distinct signs (i ≥ 2 when W has type D). So H is

non-quasiparabolic. Thus the only quasiparabolic H = Fj
2 o Bj (or H = Fj−1

2 o Bj) should have



53

special-D form (or even-special-D form) as in Definition 12 (or 13).

Example 22. For the case that the A-image of H is (Ai1× . . .×Aik×Bj1× . . .×Bjl)
◦, by Example

12, the quasiparabolic subgroups should be in the form of

• (Ai1 × . . .×Aik ×Bj1 × . . .×Bjl)
◦ in A form without sign changes, or

• Fm−1
2 o (Ai1 × . . .×Aik ×Bj1 × . . .×Bjl)

◦ in D form with an even number sign changes on

symbols 1, . . . ,m, or in B form with arbitrary sign changes on symbols 1, . . . ,m− 1.

• D2×H◦A,1×H◦A,2 in D2 form with D2 having simple reflections (1 2) and (1 2) corresponding

to the parity of HA,1 and HA,2.

If H is not in the form above, then we may find

• some orbits without sign changes containing symbols with distinct signs, which forces H to

become non-quasiparabolic by Theorem 14, or

• H does not have sign changes in B form or D form, which is not quasiparabolic.

Example 23. For the case that the A-image HA of H is ∆Sk, a quasiparabolic subgroup should

have quasiparabolic A-image. In addition, suppose H generates sign changes on some orbits, then

one orbit should be 1, 2, . . . , k, and the other orbit is l, l+ 1, . . . , l+ k− 1. In addition, the symbol i

should be paired with l + i, otherwise, we will finally have Fj
2 o (∆Z/2Z) (j = 1, 2, 3, 4) on symbols

2, 3, 4, 5, which is non-quasiparabolic.

The quasiparabolic subgroups can be

• H = ∆Sk,

• H = Fk−1
2 o ∆Sk in D form,

• H = Fk
2 o ∆Si in B form,

• H = F2k−1
2 o ∆Si in D form,

• H = F2k
2 o ∆Si in B form.

There are no other subgroups generated by rotations with A-image HA = ∆Si when W is indecom-

posable.
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If W = W1×W2 has two direct product components W1, W2, and the two orbits of H are acted

separately by W1 and W2, except for the cases which H having A form, B form, or D form on W1

and W2, we still have the possibilities ∆(Fk
2 o Sk) = ∆(Bk) or ∆(Fk−1

2 o Sk) = ∆(Dk). ∆(Bk) is

quasiparabolic in Bn1
×Bn2

, and ∆(Dk) is quasiparabolic in Dn1
×Dn2

, if ∆(Dk) is generated by

(i i + 1)(i′ (i + 1)′) and (i i+ 1)(i′ (i+ 1)′), and ∆(Bk) is generated by (i i + 1)(i′ (i + 1)′) and

(i)−(i′)−, for 1 ≤ i < k, and i′ ∈ {1′, . . . , (k − 1)′}, where W1 acts on symbols 1, . . . , n1, and W2

acts on symbols 1′, . . . , n′2. However, ∆(Dk) is non-quasiparabolic in W when W1 or W2 has type

B.

Other copies of ∆(Dk) or ∆(Bk) may contain some elements (i i + 1)(i′ (i+ 1)′) (i ≥ 2 if Wi

has type D). First apply the operation in Example 8 for symbols i + 2, . . . , k, and get ∆(Dj) or

∆(Bj). Then by applying the operation in Example 9 for the symbols i, i + 1, then we will have a

component ∆(Z/2Z) generated by (i i+ 1)(i′ (i+ 1)′), containing an orbit of symbols with distinct

signs. Thus only the copies of ∆(Dk) or ∆(Bk) containing (i i+ 1)(i′ (i+ 1)′) as in the paragraph

above can be quasiparabolic in W = W1 ×W2.

Example 24. For the case that the A-image HA of H is K4 o (∆S3), if W = Bn, then the

quasiparabolic subgroups are

• H = K4 o (∆S3) in A form,

• H = F2
2 o (K4 o (∆S3)) in D form,

• H = F3
2 o (K4 o (∆S3)) in B form,

• H = F3
2 o (K4 o (∆S3)) in D form,

• H = F4
2 o (K4 o (∆S3)) in B form,

• H = F6
2 o (K4 o (∆S3)) in D form,

• H = F7
2 o (K4 o (∆S3)) in B form.

When W = Dn, only the above subgroups in A form or D form can remain as quasiparabolic

subgroups of W , also H = F2 × (K4 o (∆S3)) in even-special-D form with sign changes on all

symbols {1, 2, 3, 4} is quasiparabolic. Other subgroups generated by rotations are not quasiparabolic

in W .
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Assume W = W1 × W2 has two direct product components. There are some other possible

quasiparabolic subgroups besides the previous ones.

• For H = (F2×F2
2)o (K4 o (∆S3)) generated by (1 2)(3 4), (1 3)(2 4), (1 2)(3 4), (1 2)(1′ 2′),

(2 3)(2′ 3′) and (1 2)(1′ 2′), H is quasiparabolic in W = D4 ×B3 or W = D4 ×D3.

• For H = (F3
2 × F2

2) o (K4 o (∆S3)), where the subgroup F3
2 acts on the symbols 1, 2, 3, 4 and

F2
2 acts on symbols 1′, 2′, 3′, H is quasiparabolic in W if W1 acting on the symbols 1, 2, 3, 4

and W2 acting on 1′, 2′, 3′ has type B or D, with two possible double cover reflection classes

(1)− when W1 has type B, and (1′)− when W2 has type B.

• For H = F3
2o(K4o(∆S3)), which is generated by K4o(∆S3) acting on 1, 2, 3, 4 and 1′, 2′, 3′,

and the 2-rotation (1 2)(1′ 2′), H is quasiparabolic in W = D4 ×D3.

Example 25. For the case that the A-image HA of H is K4 o (∆S4), if W = Bn, then the

quasiparabolic subgroups are

• H = K4 o (∆S4) in A form,

• H = F3
2 o (K4 o (∆S4)) in D form,

• H = F4
2 o (K4 o (∆S4)) in B form,

• H = F7
2 o (K4 o (∆S4)) in D form,

• H = F8
2 o (K4 o (∆S4)) in B form.

When W = Dn, only the above subgroups in A form or D form are quasiparabolic subgroups of

W . In addition the subgroup H = F2 × (K4 o (∆S4)) in even-special-D form with sign changes

on all symbols {1, 2, 3, 4} is quasiparabolic in D8. The copy of H = (F2 ×K4) o S4 generated by

K4 o S3 on 1, 2, 3, 4 and 5, 6, 7, and the 2-rotation (1 2)(7 8), is quasiparabolic in D8. (Actually

this H = (F2 ×K4)o S4 is the image of the subgroup F3
2 o (K4 o (∆S3)) in D4 ×D3 = D4 ×A3 in

Example 24 under the injective Coxeter homomorphism D4×A3 → D8.) Other subgroups generated

by rotations are not quasiparabolic in W .

Assume W = W1 × W2 has two direct product components. There are some other possible

quasiparabolic subgroups besides the previous ones.
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• For H = (F2×F3
2)o (K4 o (∆S4)) generated by (1 2)(3 4), (1 3)(2 4), (1 2)(3 4), (1 2)(1′ 2′),

(2 3)(2′ 3′), (3 4)(3′ 4′) and (1 2)(1′ 2′), H is quasiparabolic in W = D4×B4 or W = D4×D4.

• For H = (F2×F2)o(K4o(∆S4)) generated by K4o(∆S4) acting on 1, 2, 3, 4 and 1′, 2′, 3′, 4′,

and the 2-rotations (1 2)(3 4) and (1′ 2′)(3′ 4′), H is quasiparabolic in W = D4 ×D4.

• For H = (F3
2 × F3

2) o (K4 o (∆S4)), where the subgroup F3
2 acts on symbols 1, 2, 3, 4 and F3

2

acts on symbols 1′, 2′, 3′, 4′, H is quasiparabolic in W if W1 acting on symbols 1, 2, 3, 4 and

W2 acting on 1′, 2′, 3′, 4′ has type B or D, with two possible double cover reflection classes

(1)− when W1 has type B, and (1′)− when W2 has type B.

• For H = F4
2 o (K4 o (∆S4)), which is generated by K4 o (∆S4) acting on 1, 2, 3, 4 and

1′, 2′, 3′, 4′, and the 2-rotation (1 2)(1′ 2′), H is quasiparabolic in W = D4 ×D4.

Example 26. Assume that the A-image HA of H is PGL(3, 2). If W = Bn, the quasiparabolic

subgroups are H = PGL(3, 2) in A form, or H = F6
2oPGL(3, 2) in D form, or H = F7

2oPGL(3, 2)

in B form. When W = Dn, H = F7
2 o PGL(3, 2) will not be a subgroup of W , while H = F3

2 o

PGL(3, 2) in even-special-D form with sign changes on the symbols {1, . . . , 7}, is a quasiparabolic

subgroup of W .

Example 27. Assume that the A-image HA of H is AGL(3, 2). If W = Bn, the quasiparabolic

subgroups are H = AGL(3, 2) in A form, or H = F7
2oAGL(3, 2) in D form, or H = F8

2oAGL(3, 2)

in B form. When W = Dn, H = F8
2 o AGL(3, 2) will not be a subgroup of W , while H = F4

2 o

AGL(3, 2) in even-special-D form with sign changes on the symbols {1, . . . , 8}, is a quasiparabolic

subgroup of W .

Example 28. Assume that the A-image HA of H is Dil10. When W = Bn or W = Dn, the

quasiparabolic subgroups are H = Dil10 in A form, or H = F4
2oDil10 in D form, or H = F5

2oDil10

in B form.

Example 29. Assume that the A-image HA of H is Alt5 in Sym6. When W = Bn or W = Dn,

the quasiparabolic subgroups are H = Alt5 in A form, or H = F5
2oAlt5 in D form, or H = F6

2oAlt5
in B form.
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3.6 A class of quasiparabolic subgroups which have index 4

in the centralizer of the minimal fixed-point-free involu-

tions of D2n

We denote by H̃ = Fn−1
2 o Bn the centralizer of the minimal fixed-point-free involutions of D2n,

and by H = Fn−2
2 oB◦n an index 4 subgroup of H̃, generated by the B◦n on the n pairs of symbols,

and Fn−2
2 by allowing sign changes on even pairs of symbols acted on by B◦n.

From Theorem 4.3 in [14], H̃ is a quasiparabolic subgroup of W = D2n, i.e., the left cosets of

H̃ in W form a quasiparabolic W -set.

We will directly write down the standard minimal representative w of the left coset wH̃, and

wH, and find the relationship between the two W -sets W/H̃ and W/H.

Recall that for any w ∈W = D2n, the length of w is given by [2]

l(w) = |{(i, j) : 1 ≤ i < j ≤ 2n,w(i) > w(j)}|+ |{(i, j) : 1 ≤ i < j ≤ 2n,−w(i) > w(j)}|. (3.1)

Note that given an element w in the left coset wH̃, w has n blocks (w(1), w(2)), . . . , (w(2n −

1), w(2n)). The following w′ ∈W still gives w′H̃ = wH̃.

• w′(i) =


w(i) if i 6= 2j − 1, 2j

w(2j) if i = 2j − 1

w(2j − 1) if i = 2j

by switching the two symbols within one block;

• w′(i) =



w(i) if i 6= 2j − 1, 2j, 2k − 1, 2k

w(2k − 1) if i = 2j − 1

w(2k) if i = 2j

w(2j − 1) if i = 2k − 1

w(2j) if i = 2k

by switching two blocks;

• w′(i) =

 w(i) if i 6= 2j − 1, 2j

−w(i) if i = 2j − 1, 2j
by changing the signs of the two symbols in one block.

Now we may describe the standard form of a minimal representative w in a left coset wH̃.

Definition 14. For w ∈ W = D2n, a block (w(2i − 1), w(2i)) is in unit-form if w(2i) > |w(2i −
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1)| > 0. If a block is not in unit-form, then their unit-form (Uw(2i − 1), Uw(2i)) is the image

(wa(2i − 1), wa(2i)), with the composition action under a ∈ K4, where K4 is a group generated

by reflections (2i − 1 2i) and (2i − 1 2i), and the two signed symbols wa(2i − 1), wa(2i) satisfying

wa(2i) > |wa(2i − 1)| > 0. A block (w(2i − 1), w(2i)) is smaller than (w(2j − 1), w(2j)) if and

only if the smaller signed symbol in the unit form of (w(2i − 1), w(2i)) is smaller than that of

(w(2j − 1), w(2j)), i.e., min{Uw(2i− 1), Uw(2i)} < min{Uw(2j − 1), Uw(2j)}.

Proposition 19. Any left coset wH̃ will contain a minimal representative in the following form:

• In each block, w(2i− 1), w(2i) satisfies w(2i) > |w(2i− 1)| > 0, i.e., (w(2i− 1), w(2i)) is in

unit-form.

• The blocks are arranged so that w(1) < w(3) < . . . < w(2n− 1).

Proof. By (possibly) switching the two symbols within one block and changing the signs of the two

symbols within one block, we are able to assume w(2i) > |w(2i − 1)| > 0. By sorting the blocks,

we are able to assume w(1) < w(3) < . . . < w(2n − 1). So there exists an element w as described

in Proposition 19 in every left coset wH̃.

The remaining task is to show the elements in Proposition 19 are minimal representatives of

wH̃. In fact, from (3.1) for the length of w in W = D2n, w(i) > w(i+ 1) ⇐⇒ w > ws2n−i, where

s2n−i = (i i+ 1). So the minimal representative element w must satisfy w(2i) > w(2i− 1) for each

block. In addition, by allowing sign changes of the two symbols in one block (and possibly switching

the two elements within the block) we may force w(2i) > |w(2i − 1)| > 0 without increasing the

length. Also, for any two neighboring blocks w(2i−1), w(2i) and w(2i+1), w(2i+2), if w(2i+2) >

|w(2i + 1)| > 0 and w(2i + 1) > w(2i − 1), then switching these two blocks without changing

the signs and the order of two symbols within each block, will not decrease the length. Thus, for

any representative w′ ∈ wH̃, if we arrange the n blocks so that w(1) < w(3) < . . . < w(2n − 1),

and w(2i) > w(2i − 1) as in the form of Proposition 19, we will not increase the length of the

representative. Thus, wH̃ contains such a minimal representative w.

Next, we will describe the minimal representative w0 in a left coset wH, which is obtained

similarly to that in wH̃.

Proposition 20. Any left coset wH will contain a minimal representative w0 in the following form:
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• In each block, when i ≥ 2, w0(2i− 1), w0(2i) satisfies w0(2i) > |w0(2i− 1)| > 0, i.e., (w0(2i−

1), w0(2i)) is in unit-form.

• The blocks are arranged so that max{min{w0(1), w0(2)},min{−w0(1),−w0(2)}} < w0(3) <

. . . < w0(2n− 1).

Proof. The subgroups H allow all operations in H̃ with some more restrictions:

• The number of operations that switch the two symbols within one block should be even.

• The number of operations that change the signs of the two symbols in one block should be

even.

For any element w in wH, when i > 1, we may apply the operations as follows:

• If w(2i− 1) > |w(2i)| > 0, then switch w(2i− 1), w(2i) and also switch w(1), w(2);

• If −w(2i − 1) > |w(2i)| > 0, then switch w(2i − 1), w(2i) and also switch w(1), w(2), and

change the signs of the four symbols;

• If−w(2i) > |w(2i−1)| > 0, then change the signs of the four symbols w(2i−1), w(2i), w(1), w(2).

From (3.1), all these three operations will not increase the length of w. Similar to the case of wH̃,

we will be able to arrange the blocks with w(2i) > |w(2i− 1)| > 0, for all i ≥ 2.

Similar to the case in Proposion 19, switching two neighboring blocks w(2i − 1), w(2i) and

w(2i + 1), w(2i + 2) will not increase the length, if each block has unit-form and w(2i − 1) >

w(2i + 1). Also, we can switch the first block and second block and set the second block in unit

form, without increasing the length, so that max{min{w(1), w(2)},min{−w(1),−w(2)}} < w(3).

Thus any element w in wH can be switched to the given form in the proposition under the operations

above, without increasing its length.

Now we are able to prove the quasiparabolicity of the subgroup H in W .

Theorem 15. The subgroup H is quasiparabolic in W = D2n.

Proof. From the form of the minimal representatives of w1 in wH, w1 will have exactly one of the

four forms related to minimal representative w0 in wH̃: w0, w0(1 2) = w0s2n−1, w0(1 2) = w0s2n,

or w0(1)−(2)− = w0s2n−1s2n. Denote the four forms above as the K4-forms of w1. Which one of

the four forms is determined by the relation of w(1), w(2) in the first block:
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• If w1(2) > |w1(1)| > 0, then w1 = w0;

• If w1(1) > |w1(2)| > 0, then w1 = w0s2n−1;

• If −w1(1) > |w1(2)| > 0, then w1 = w0s2n;

• If −w1(2) > |w1(1)| > 0, then w1 = w0s2n−1s2n.

We will be able to write W/H = W/H̃ ×K4. For wH = (wH̃, a), where a ∈ K4 = {1, (1 2) =

s2n−1, (1 2) = s2n, (1)−(2)− = s2n−1s2n}, the height is given by ht(wH) = ht((wH̃, a)) = ht(wH̃)+

l(a). In addition, the action of the simple reflections si ∈ S is given as follows:

• When 1 ≤ i ≤ n− 1, si = (2n− i 2n− i+ 1), if there exists some j s.t., {w(2j − 1), w(2j)} ⊂

{±(2n− i),±(2n− i+ 1)}, i.e., siwH̃ = wH̃, then

siwH = si(wH̃, a) =

 (wH̃, (1 2)a) if w(2j − 1) and w(2j) have the same sign;

(wH̃, (1 2)a) if w(2j − 1) and w(2j) have distinct signs.

While if siwH̃ 6= wH̃, then we may possibly switch two neighboring blocks, if their minimal

symbols are ±(2n− i) and ±(2n− i+ 1) respectively. Then siwH = si(wH̃, a) = (siwH̃, a).

• For the simple reflection s2n = (1 2), if s2nwH̃ = wH̃, then

s2nwH = s2n(wH̃, a) =

 (wH̃, (1 2)a) if w(2j − 1) and w(2j) have the same sign;

(wH̃, (1 2)a) if w(2j − 1) and w(2j) have distinct signs.

While if s2nwH̃ 6= wH̃, then the two symbols 1,2 must be minimal symbols in their blocks

(in unit-form), and these two blocks are neighbor to each other in the minimal representative

form. So we only need to possibly switch these two blocks and keep all but the smallest block

in unit-form, without changing the K4-form of w. Thus s2nwH = s2n(wH̃, a) = (s2nwH̃, a).

From the action of the simple reflections, we will be able to write down the action of general reflection

t = (i j) on left cosets W/H = W/H̃×K4. If twH̃ = wH̃, then twH = t(wH̃, a) = (wH̃, ta), where

ta =

 (1 2)a if (i, j has same signs) xor (w−1(i), w−1(j) has distinct signs);

(1 2)a if (i, j has distinct signs) xor (w−1(i), w−1(j) has distinct signs);



61

If twH̃ 6= wH̃, when i, j have the same signs (i < j), then

t = (i j) = s2n−j−1s2n−j−2 . . . s2n−i+1s2n−is2n−i+1 . . . s2n−j−1.

Suppose bi is the signed symbol so that for some 1 ≤ ki ≤ n, {w(2ki − 1), w(2ki)} = {bi, i} or

{w(2k − 1), w(2k)} = {bi,−i}. (Similar definition for bj .) If |i| < |bi| < |j|, then if w(2ki −

1), w(2ki) have the same signs, then the block {w(2ki − 1), w(2ki)} contributes a multiplication of

(1 2) in the K4 part; if w(2ki − 1), w(2ki) have distinct signs, then the block {w(2ki − 1), w(2ki)}

contributes a multiplication of (1 2) in the K4 part. A similar contribution is made by the block

{w(2kj − 1), w(2kj)} in the K4 part.

When i, j have distinct signs (|i| < |j|), then

t = (i j) = s2n−i−1 . . . s2n−1s2n−j−1 . . . s2n−2s2ns2n−2 . . . s2n−j−1s2n−1 . . . s2n−i−1.

Also denote bi and ki as before. If |bi| < |i| < |j|, then the block {w(2ki − 1), w(2ki)} contributes

a multiplication of (1 2)(1 2) in the K4 part. A similar contribution is made by w(2kj − 1), w(2kj)

in the K4 part.

If |i| < |bi| < |j|, then the block {w(2ki − 1), w(2ki)} contributes a multiplication of (1 2)

(or (1 2)) in the K4 part, if w(2ki − 1), w(2ki) have distinct signs (or the same sign). However,

the block {w(2kj − 1), w(2kj)} contributes a multiplication of (1 2) (or (1 2)) in the K4 part, if

w(2kj − 1), w(2kj) have the same sign (or distinct signs).

Now we are able to verify the quasiparabolic property of H, with the aid of the quasiparabolicity

of H̃.

First we prove a lemma

Lemma 3. Suppose t ∈ T (W ) is a reflection, H̃ and H are as before. If twH > wH, then

twH̃ ≥ wH̃.

Proof. Let wH = (wH̃, a) ∈W/H̃×K4. Suppose twH > wH and twH̃ < wH̃. Then the difference

of the height of twH and wH from the K4 part must be at least 2. Then the K4 part of wH must

be the identity, and the K4 part of twH must be (1 2)(1 2). From the argument above for the

action of t on the K4 part, there are only the following possible cases:
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• t = (i j), where i, j have the same sign. |i| < bi, bj < |j|, and exactly one block {w(2ki −

1), w(2ki)} and {w(2kj − 1), w(2kj)} have the same sign.

If the block {w(2ki − 1), w(2ki)} have the same sign, then by Proposition 19, since wH has

unit-form in the K4 part, we may assume bj < 0, 0 < i < bi < j, kj < ki. However,

twH < wH in this case, which is impossible.

If the block {w(2kj − 1), w(2kj)} have the same sign, then by Proposition 19, since wH has

unit-form in the K4 part, we may assume 0 < bi, bj < j, ki < kj , but ht(twH)− ht(wH) ≥ 3,

forcing twH̃ > wH̃. A contradiction is achieved.

• When t = (i j), |i| < |bi|, |bj | < |j|, and 0 or 2 blocks {w(2ki − 1), w(2ki)} and {w(2kj −

1), w(2kj)} have the same sign.

If 2 blocks have the same sign, by Proposition 19, we may have 0 < i < bi, bj < j and ki < kj ,

then ht(twH)− ht(wH) ≥ 3, forcing twH̃ > wH̃, which is impossible.

If no blocks have the same sign, we may have kj < i < 0 < ki < j, and kj < ki. Then

ht(twH) < ht(wH), which is impossible.

• Assume t = (i j), and one of |bi|, |bj | is smaller than |i|, and the other is larger than |j|. Then

twH = t′wH, where t′ = (bi bj) or t′ = (bi bj), which we have discussed in the previous two

cases.

In sum, all the cases above are impossible. So when twH > wH, we must have twH̃ ≥ wH̃.

In fact, W/H = W/H̃ × K4 is an even W -set, so we only need to verify QP2: If ht(rwH) >

ht(wH) and ht(srwH) < ht(swH), then rw = sw.

From the lemma, we are able to see that ht(rwH̃) ≥ ht(wH̃) and ht(srwH̃) ≤ ht(swH̃).

• If ht(rwH̃) > ht(wH̃), by the quasiparabolic property of H̃, we have ht(srwH̃) < ht(swH̃),

and rwH̃ = swH̃. In addition, the K4 part of swH is equal to that of wH. Suppose

s = (i i+ 1), then r switches the two symbols bi, bi+1.

If bi, bi+1 have the same sign, then r = (bi bi+1), and we will not change the K4 part of wH.

If bi, bi+1 have distinct signs, then r = (bi bi+1), and we will not change the K4 part of wH,

too.
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• If ht(rwH̃) = ht(wH̃), then rwH̃ = wH̃ and srwH̃ = swH̃. Note that the actions of r and s

on the K4 part commute, and the action of s on the K4 part for rwH̃ and wH̃ are the same.

So by rwH > wH, srwH < swH, we have rwH = swH.

The quasiparabolic property of H can thus be derived from the quasiparabolic property of H̃ in

W = D2n.

3.7 Quasiparabolic subgroups of products of finite Coxeter

groups

We have studied all the indecomposable quasiparabolic subgroups H in finite classical Coxeter

groups W . Since all quasiparabolic subgroups H are rotation subgroups or their simple double

covers, and by operations in Example 2 and 8, all components in the double cover product H

should be quasiparabolic, we see that any quasiparabolic subgroups will be double cover products

of these smaller quasiparabolic subgroups.

In addition, we will prove H will be a simple double cover product of the smaller quasiparabolic

subgroups.

Proposition 21. Suppose H1 and H2 are two quasiparabolic subgroups in a finite classical Coxeter

group W , and H1 and H2 act on disjoint symbol sets. If r1 and r2 are representatives of double

cover reflection classes of H1 and H2 respectively, and at least one of them is in a simple double

cover reflection class, then the double cover product H of H1 and H2 with reflection r1r2 is not

quasiparabolic.

Proof. If exactly one of r1 and r2 is in a simple double cover reflection class, then if H is quasi-

parabolic, the double cover H̃ = H̃1×H̃2 of H with r1 (or identically with r2), is also quasiparabolic.

Then the double cover H̃1 and H̃2 of H1 and H2 with reflections r1 and r2 are quasiparabolic. How-

ever, one of H̃1 and H̃2 does not have simple reflections, so it is not quasiparabolic by Lemma 2.12

in [14]. By this contradiction, H is not quasiparabolic if exactly one of r1 and r2 is in a simple

double cover reflection class.

If none of r1 and r2 is in a simple double cover reflection class, then if r1 and r2 are in distinct

direct product components of W , we are able to apply the operations in Example 2 and 8 to delete
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the symbols not acted by r1, and reduce r1 to a simple reflection. This will be (1 2) if r1 is in

component of type A; (1 2) or (1 2) if r1 is in component of type D; (1 2) or (1)− or (1 2) if r1 is

in component of type B. If r1 is operated to (1 2), we may assume (1 2) is in component B2, then

(1 2) is equivalent to (2)− in B2, which can be operated to (1)− by Example 8. As long as r1 is

operated to a simple reflection, then by the same argument as in the paragraph above, we are able

to show the group obtained from H is non-quasiparabolic, thus H is also non-quasiparabolic.

If r1 and r2 are in the same direct product component of W , first by the consecutive property

of the orbit, we may assume that the two symbols a1, b1 acted by r1 are both smaller than the two

symbols a2, b2 acted by r2. Then we may also apply the operations in Example 2 and 8 to delete

the symbols less than a2, b2 other than a1, b1,, and transform r1 to simple reflection, or delete all

symbols other than a1, b1, a2, b2, and get a non-quasiparabolic ∆(Z/2Z) generated by (1 2)(3 4) or

(1 2)(3 4) in B4. So H can not be quasiparabolic.

In summary, if a double cover product of two quasiparabolic subgroup is still quasiparabolic, it

should be a simple double cover product.

Now we list all indecomposable quasiparabolic subgroups in finite classical Coxeter groups W .

Theorem 16. All quasiparabolic subgroups H are the simple double cover products of the following

quasiparabolic subgroups, their images of the following inductive Coxeter homomorphisms and the

even subgroups of their pre-images of following projective Coxeter homomorphisms.

The quasiparabolic subgroups are listed as follows:

• Trivial group in A1, B1 or D2;

• Altk in Ak−1;

• B◦k in A2k−1 generated by (2i − 1 2i)(2j − 1 2j) and (2i − 1 2j − 1)(2i 2j), or generated by

(i 2k + 1− i)(j 2k + 1− j) and (i j)(2k + 1− i 2k + 1− j);

• Fk−1
2 oB◦k in D2k generated by (2i−1 2i)(2j−1 2j), (2i−1 2j−1)(2i 2j), and (2i−1 2i)(2j−

1 2j);

• Fk
2oB◦k in B2k generated by (2i−1 2i)(2j−1 2j), (2i−1 2j−1)(2i 2j), and (2i−1 2i)(2j−1 2j);

• F2 ×Alt4 in D4 generated by (1 2 3), (2 3 4) and (1 2)(3 4);
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• PGL(3, 2) in A6 generated by quasiparabolic B◦3 in S6 generated by (2i− 1 2i)(2j− 1 2j) and

(2i− 1 2j − 1)(2i 2j), and 2-rotation (1 3)(5 7);

• F3
2 oPGL(3, 2) in D7 generated by quasiparabolic PGL(3, 2) in S7, and 2-rotation (1 2)(3 4);

• AGL(3, 2) in A7 generated by quasiparabolic B◦4 in S8 generated by (2i− 1 2i)(2j− 1 2j) and

(2i− 1 2j − 1)(2i 2j), and 2-rotation (1 3)(5 7);

• F4
2 oAGL(3, 2) in D8 generated by quasiparabolic AGL(3, 2) in S8, and 2-rotation (1 2)(3 4);

• Dil10 in A4 generated by (1 2)(3 4) and (2 3)(4 5);

• Twisted Alt5 in A5 generated by (1 2)(3 4), (2 3)(4 5) and (3 4)(5 6);

• H3 in D6 generated by (1 2)(3 4), (2 3)(4 5) and (1 2)(5 6);

• Dil6 in B3 generated by (1)−(2 3) and (2)−(1 3);

• Dil16 in B4 generated by (1 2)(3 4) and (2 3)(1)−;

• ∆Sk in Ak−1 ×Ak−1 generated by (i j)(i′ j′);

• ∆Dk in Dk ×Dk generated by (i j)(i′ j′) and (1 2)(1′ 2′);

• ∆Bk in Bk ×Bk generated by (i j)(i′ j′) and (1)−(1′)−;

• K4o(∆S3) in A3×A2 generated by quasiparabolic ∆S3 in A2×A2, and 2-rotation (1 2)(3 4);

• F2 × (K4 o (∆S3)) in D4 × A2 generated by quasiparabolic K4 o (∆S3) in A3 × A2, and

2-rotation (1 2)(3 4);

• F3
2 o (K4 o (∆S3)) in D4×D3 generated by quasiparabolic F2× (K4 o (∆S3)) in D4×A2 and

2-rotation (1 2)(1′ 2′);

• K4o(∆S4) in A3×A3 generated by quasiparabolic ∆S4 in A3×A3, and 2-rotation (1 2)(3 4);

• F2 × (K4 o (∆S4)) in D4 × A3 generated by quasiparabolic K4 o (∆S4) in A3 × A3, and

2-rotation (1 2)(3 4);

• (F2
2) o (K4 o (∆S4)) in D4 ×D4 generated by quasiparabolic F2 × (K4 o (∆S4)) in D4 ×A3,

and 2-rotation (1′ 2′)(3′ 4′);
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• (F4
2)o (K4 o (∆S4)) in D4×D4 generated by quasiparabolic (F2

2)× (K4 o (∆S4)) in D4×D4,

and 2-rotation (1 2)(1′ 2′);

The inductive Coxeter homomorphisms are listed as follows:

• An ×W ′ → An+1 ×W ′;

• Bn ×W ′ → Bn+1 ×W ′;

• Dn ×W ′ → Dn+1 ×W ′;

• An1 ×An2 ×W ′ → An1+n2+1 ×W ′;

• Bn1 ×An2 ×W ′ → Bn1+n2+1 ×W ′;

• Dn1
×An2

×W ′ → Dn1+n2+1 ×W ′.

The projective Coxeter homomorphisms are listed as follows:

• Bn ×W ′ → An−1 ×W ′;

• Dn ×W ′ → An−1 ×W ′.
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Chapter 4

The Kazhdan-Lusztig Theory of
Quasiparabolic Subgroups

4.1 Hecke algebra modules of quasiparabolic sets

In this section, we recall some basic results and notation about Hecke algebra modules of quasi-

parabolic sets. The Hecke algebra HW (q) of a Coxeter system (W,S) is the Z[q]-algebra with

generators T (s) for s ∈ S with relations [10]

T (s)T (w) =T (sw), if l(sw) > l(w);

T (s)2 =(q − 1)T (s) + qT (1).

The Hecke algebra HW (q) has a basis T (w) for w ∈ W . We are able to define the Kazhdan-

Lusztig bar operator T (w) = (T (w−1))−1, and expand T (w) as the linear combination of T (x)

with x ≤ w over Z[q, q−1] with q̄ = q−1 [10].

T (w) = εwq
−1
w

∑
x≤w

εxRx,w(q)T (x), (4.1)

where Rx,w ∈ Z[q] is a polynomial of degree l(w)− l(x) in q, and Rw,w(q) = 1, εw = (−1)l(w) and

qw = ql(w). From the existence of the R-polynomial of HW (q), we are able to build Kazhdan-Lusztig

theory. See [7].

For a quasiparabolic W -set X, we are able to define HW (q)-modules H±X(q) with a basis x ∈ X
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as follows:

Definition 15. [14] Let T (X) be the free Z[q]-module with basis T (x) for x ∈ X. For s ∈ S, define

endomorphisms T±(s) of T (X) by

T±(s)T (x) =


T (sx) ht(sx) > ht(x);

ε±T (x) ht(sx) = ht(x);

(q − 1)T (x) + qT (sx) ht(sx) < ht(x).

(4.2)

Here ε+ = q and ε− = −1 are the action of the generators T (s) of HW (q) under the trivial

representation 1+ and the sign representation 1−. Then the map T (s) → T±(s) gives T (X) a

HW (q)-module structure, denoted by H±X(q).

We are also curious about building the Kazhdan-Lusztig theory onH±X(q), however, the existence

of the R-polynomial is not known in general. Assuming the existence of the R-polynomial, an

analogue Kazhdan-Lusztig theory can be derived. See [12].

In fact, the existence of the R-polynomial is equivalent to the following conjecture.

Conjecture 1. [14] Let H ⊂ W be a quasiparabolic subgroup, and (W/H)− denote the scaled

W -set (W/H,−ht). Then there is an isomorphism with coefficients in Z[q, q−1]

H±W/H(q) ' H±(W/H)−(q) (4.3)

of HW (q)-modules in which T±(H) maps to T±(H).

Equivalently, this isomorphism exists iff the annihilator of T±(H) in H(W/H)±(H) is mapped

into the annihilator of T±(H) in H(W/H)∓(H) by the Hecke algebra bar operator in HW (q).

In other words, suppose w1 and w2 are both minimal representative of the left coset wH, then

T (w1)T+(H) = T (w2)T+(H), and T (w1)T−(H) = T (w2)T−(H).

In [4] and [5], Deodhar studied the Hecke algebra module for standard parabolic subgroups WI

in W , and developed the analogues of R-polynomials and Kazhdan-Lusztig theory. Note that for

any w ∈ W , there is a unique decomposition w = wIwI , where wI ∈ WI , and wI is the unique

minimal representative of the left coset wWI . So the existence of the bar operator of the Hecke

algebra module for a standard parabolic subgroup WI is trivial. Another motivating example of a

quasiparabolic set is the set I of perfect involutions in W+, where W+ is the semidirect product
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of W by the Coxeter automorphisms of W . In this case, the K-L bar operator for its Hecke algebra

module also exists [12].

Now we consider other quasiparabolic sets.

4.2 The existence of K-L bar operator for Hecke algebra

modules of quasiparabolic subgroups in finite classical

Coxeter groups

By Proposition 7.4 in [14], if a quasiparabolic W -set X and a W ′-set X ′ have K-L bar operators

on their Hecke algebra modules, then so does the quasiparabolic W ×W ′-set X ×X ′.

By Theorem 7.6 in [14], if H is a quasiparabolic subgroup of WI , and the Hecke algebra module

HWI/H has a K-L bar operator, then so does the Hecke algebra module HW/H , by the isomorphism

of the induced representation

H(W/H)+(q) ' Ind
HW (q)
HI(q) H(WI/H)+(q) ' Ind

HW (q)
HI(q) H(WI/H)−(q) ' H(W/H)−(q)

from

H(WI/H)+(q) ' H(WI/H)−(q).

Also, by Lemma 7.9 in [14], the annihilator IW/H of T (H) in HW/H(q) is generated by T (w)−

T (w′), where w and w′ are distinct minimal representatives of the left coset wH. In addition, IW/H

can be generated by the elements T ((st)k/2w) and T ((ts)k/2w), where (st)k/2w and (ts)k/2w are

two distinct minimal representatives of (st)k/2wH. Here (st)k/2wH is the maximal point of the

〈s, t〉-orbit of wH, and wH is the minimal point of the 〈s, t〉-orbit of wH.

Now we are able to prove that the quasiparabolic ∆(W ) in W ×W has a Kazhdan-Lusztig bar

operator in its Hecke algebra module.

Proposition 22. The Hecke algebra module H(W×W )/(∆W ) has a Kazhdan-Lusztig bar operator.

Proof. Suppose the first W = W1 has simple reflections S = {s1, . . . , sn}, and the second W = W2

has simple reflections S′ = {s′1, . . . , s′n}. Note that all left cosets w∆(W ) has minimal repre-

sentatives w ∈ W1, and (W × W )/∆(W ) ' W (= W1) as a W (= W1)-set. For the generators
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T ((st)k/2w)− T ((ts)k/2w) in the annihilator of T (H), (H = ∆(W )) we may assume w ∈ W1. If s

or t is in W2, then they commute with all w ∈ W1, and thus we may move s or t to the right of

(st)k/2w and get s0 or t0 in W1 such that s0∆(W ) = s∆(W ), t0∆(W ) = t∆(W ).

Then T ((st)k/2wH)−T ((ts)k/2wH) = T (w1H)−T (w2H), where w1, w2 ∈W1, and (st)k/2wH =

w1H, (ts)k/2wH = w2H. From the existence of the K-L bar operator in the W -set W , we know

T (w1H)−T (w2H) = 0, thus T ((st)k/2w)−T ((ts)k/2w) also lies in the annihilator of T (H). So the

Hecke algebra module H(W×W )/(∆W ) has the Kazhdan-Lusztig bar operator.

Besides, the following lemma may also be useful to reduce the number of generators in the

annihilator of T (H) we need to check, when we try to prove the existence of the K-L bar operator.

Lemma 4. Consider a Coxeter group W , and a subgroup H is quasiparabolic in W . Suppose WI

is a standard parabolic subgroup of W , and HI = WI ∩H. If |W/H| = |WI/HI | <∞, then for any

w ∈ WI , if w is a minimal representative of wHI in WI , then w is also a minimal representative

of wH in W . Thus the Hecke algebra modules HWI/HI
(q) and HW/H(q) are isomorphic as HWI

-

modules.

Proof. This follows directly from the deletion criterion of quasiparabolic subgroups (Corollary 2.8

in [14]). All minimal representatives w of wHI in WI will be automatically become minimal

representatives of wH in W . The condition |W/H| = |WI/HI | < ∞ ensures that no more left

cosets exist in W/H other than those in WI/HI .

Now we are able to prove if the Hecke algebra module of a quasiparabolic subgroup H in W has

a K-L bar operator, then so does the Hecke algebra module for the pre-image φ−1(H) of H under

a projective Coxeter homomorphism φ, if W is a subgroup of its pre-image φ−1(W ).

Proposition 23. Suppose φ : W1 → W2 is a projective Coxeter homomorphism, and the short

exact sequence

1→ ker(φ)→W1 →W2 → 1

splits. Let H2 be quasiparabolic in W2, and let H1 = φ−1(H2) be the pre-image of H2. Suppose the

HW2
(q)-Hecke algebra module HW2/H2

(q) has a K-L bar operator. Then the HW1
(q)-Hecke algebra

module HW1/H1
(q) has a K-L bar operator.
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Proof. The W2-sets W2/H2 and W1/H1 are isomorphic. Since W2 can be viewed as a subgroup of

W1, then for any generators T ((st)k/2wH1)−T ((ts)k/2wH1) of the annihilator of T (H1) is HW1/H1
.

The elements s, t, w can be projected to W2 and

T [(st)k/2wH1]− T [(ts)k/2wH1] = T [(φ(s)φ(t))k/2φ(w)H2]− T [(φ(t)φ(s))k/2φ(w)H2],

where φ(s), φ(t), φ(w) ∈W2, and (φ(s)φ(t))k/2φ(w)H2 = (φ(t)φ(s))k/2φ(w)H2. By the existence of

the K-L bar operator of HW2/H2
,

T [(φ(s)φ(t))k/2φ(w)H2]− T [(φ(t)φ(s))k/2φ(w)H2] = 0.

So HW1/H1
also has a K-L bar operator.

In [12], Marberg proved that a quasiparabolic (X,ht) admits a K-L bar operator if and only

if its even double cover (X̃, h̃t) admits a bar operator. Using a similar idea, we will show that a

quasiparabolic (W/H, ht) admits a K-L bar operator if and only if its double simple cover (W/H̃, ht)

admits a K-L bar operator.

Theorem 17. Suppose H is quasiparabolic in W and H̃ is a simple double cover of H with simple

reflection t. Then a quasiparabolic (W/H, ht) admits a K-L bar operator if and only if (W/H̃, ht)

admits a K-L bar operator.

Proof. We follow the proof of Theorem 3.3 in [12].

Define a W ×A1-set (W/H̃ × F2,ht′) as follows:

ht′(wH̃, 0) = ht(wH̃),

and

ht′(wH̃, 1) = ht(wH̃) + 1.

The W ×A1-action on (W/H̃ ×F2,ht′) is as follows: For s ∈ S(W ), if swH̃ 6= wH̃, or swH = wH,

then s(wH̃, a) = (swH̃, a).

Otherwise if swH̃ = wH̃ and swH 6= wH, then s(wH̃, a) = (swH̃, a+ 1).

For s ∈ A1, s(wH̃, a) = (wH̃, a+ 1).
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So for any (w1, a1) ∈W ×A1, its action on W/H̃×F2 is given by (w1, a1)(wH̃, a) = (w1wH̃, a+

a1 + δ), where

δ =

0 if ht(w1wH̃)− ht(wH̃) ≡ ht(w1wH)− ht(wH) (mod 2),

1 if ht(w1wH̃)− ht(wH̃) ≡ ht(w1wH)− ht(wH) + 1 (mod 2).

We will next check that (W/H̃ × F2,ht′) is a quasiparabolic W ×A1-set.

Lemma 5. The W ×A1-set (W/H̃ × F2, ht′) is quasiparabolic.

Proof. We check the two conditions in the definition of quasiparabolic subgroups.

• If r ∈ R(W×A1) = R(W )∪R(A1), and ht′[r(wH̃, a)] = ht′[(wH̃, a)], we will verify r(wH̃, a) =

(wH̃, a).

In fact, if ht′[r(wH̃, a)] = ht′[(wH̃, a)], we must have r ∈ R(W ). We will prove rwH̃ = wH̃.

Otherwise, without loss of generality, we may suppose rwH̃ > wH̃, then from ht′[r(wH̃, a)] =

ht′[(wH̃, a)], we will have a = 1, r(wH̃, a) = r(wH̃, 1) = (rwH̃, 0), ht(rwH̃) = ht(wH̃) + 1,

and ht(rwH) ≡ ht(wH) (mod 2). Since ht(rwH)−ht(rwH̃) and ht(wH)−ht(wH̃) are equal

to 0 or 1. So ht(rwH)− ht(wH) is equal to 0 or 2.

If ht(rwH) = ht(wH), then since H is quasiparabolic in W , we have rwH = wH, and then

rwH̃ = wH̃.

Otherwise, ht(rwH) = ht(wH)+2, and then ht(rwH̃) = ht(rwH)−1 and ht(wH̃) = ht(wH).

So ht(rwtH̃) = ht(rwtH) and ht(wtH̃) = ht(wtH) − 1. We will get ht(rwtH) = ht(wtH),

then rwtH = wtH, forcing rwH̃ = rwtH̃ = wtH̃ = wH̃.

So QP1 holds for the W ×A1-set W/H̃ × F2.

• If r ∈ R(W × A1) = R(W ) ∪ R(A1), s ∈ S(W × A1), ht′[r(wH̃, a)] > ht′(wH̃, a) and

ht′[sr(wH̃, a)] < ht′[s(wH̃, a)], we will verify r(wH̃, a) = s(wH̃, a).

If r ∈ R(W ) and s ∈ S(W ), from ht′[r(wH̃, a)] > ht′(wH̃, a) and ht′[sr(wH̃, a)] < ht′[s(wH̃, a)],

we know that rwH̃ ≥ wH̃ and srwH̃ ≤ swH̃.

? If one of these equalities holds, then the other also holds. In this case, a = 0, r(wH̃, a) =

r(wH̃, 0) = (wH̃, 1), and sr(wH̃, a) = sr(wH̃, 0) = s(wH̃, 1) < s(wH̃, 0). Thus

s(wH̃, a) = s(wH̃, 0) = (wH̃, 1) = r(wH̃, a).
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? If none of the equalities hold, then rwH̃ > wH̃ and srwH̃ < swH̃. Since H is

quasiparabolic in W , we have rwH̃ = swH̃. Note that ht′[r(wH̃, a)] − ht′(wH̃, a) =

ht(rwH̃, a)− ht(wH̃, a) = 1 and ht′[s(wH̃, a)]− ht′[sr(wH̃, a)] = swH̃ − srwH̃ = 1, so

the F2 part of r(wH̃, a) and s(wH̃, a) are all equal to a. Then r(wH̃, a) = s(wH̃, a).

• If r ∈ R(W ) and s ∈ S(A1), then ht′[r(wH̃, a)] > ht′[(wH̃, a)] and ht′[r(wH̃, a + 1)] <

ht′[(wH̃, a+ 1)]. So we must have r(wH̃, a) = (wH̃, a+ 1) = s(wH̃, a).

• If r ∈ S(A1) and s ∈ S(W ), then ht′[(wH̃, a + 1)] > ht′[(wH̃, a)] and ht′[s(wH̃, a + 1)] <

ht′[s(wH̃, a)]. So s(wH̃, a) = (wH̃, a+ 1) = r(wH̃, a).

• If r ∈ S(A1) and s ∈ S(A1), then r(wH̃, a) = (wH̃, a+ 1) = s(wH̃, a).

We now go back to the proof of Theorem 17. For any w ∈W where w is a minimal representative

in wH, if w is also a minimal representative in wH̃, then wH = (wH̃, 0). Otherwise, wt is a minimal

representative in wH̃, then wH = (wH̃, 1).

So (W/H,ht) is isomorphic to (W/H̃ × F2,ht′) as W-sets.

Now it is obvious how to construct Hecke algebra modules H(W/H̃×F2)±(q) over HW×A1(q).

Note that since s0 ∈ A1 commutes with all elements in w ∈ W , H(W/H̃×F2)±(q) admits a K-L bar

operator if and only if H(W/H)±(q) admits a K-L bar operator.

In addition, we have injective homomorphisms ofHW (q)-modules [12] and [14], fromH(W/H̃)±(q)

to H(W/H̃×F2)+(q) with

T(W/H̃)+(wH̃) 7→ (T (s0)− ε−)T(W/H̃×F2)+((wH̃, 0));

T(W/H̃)−(wH̃) 7→ (T (s0)− ε+)T(W/H̃×F2)+((wH̃, 0)).

Note that T (s0)−ε− and T (s0)−ε+ are bar invariant in HW×A1
(q), and commute with all elements

in the subalgebra of HW (q). So if H(W/H̃×F2)+(q) has a K-L bar operator, then H(W/H̃)±(q) also

has a K-L bar operator.

For the reverse direction, suppose H(W/H̃)±(q) admits a K-L bar operator, and note that

T(W/H̃)+(H̃)− T(W/H̃)−(H̃) = (ε+ − ε−)T(W/H̃×F2)+((H̃, 0)) = (q + 1)T(W/H̃×F2)+((H̃, 0)).



74

If H(W/H̃)±(q) admits a K-L bar operator, note that for any (w1H̃, a) = (w2H̃, a) ∈W/H̃ × F2,

(q + 1)T ((w1, a))T(W/H̃×F2)+((H̃, 0))

=T (a)T (w1)T(W/H̃)+(H̃)− T (a)T (w1)T(W/H̃)−(H̃)

=T (a)T (w2)T(W/H̃)+(H̃)− T (a)T (w2)T(W/H̃)−(H̃)

=(q + 1)T ((w2, a))T(W/H̃×F2)+((H̃, 0)).

Thus

T ((w1, a))T(W/H̃×F2)+((H̃, 0)) = T ((w2, a))T(W/H̃×F2)+((H̃, 0)),

and H(W/H̃×F2)+(q) also admits a K-L bar operator.

By Theorem 17, since the centralizer Fk
2oBk of the minimal perfect involution in D2n is obtained

by applying the simple double cover twice with reflections (1 2) and (1 2) on the subgroup Fk−1
2 oB◦k ,

and the Hecke algebra module of Fk
2 o Bk in D2n admits a K-L bar operator [12], we are able to

conclude that the quasiparabolic subgroup Fk−1
2 oB◦k also admits a K-L bar operator.

Recall that the stabilizer of the minimal perfect involution (and its even subgroup), has a K-L

bar operator for its Hecke algebra module [12]. The quasiparabolic subgroups B◦k in A2k−1 and

Fk
2 oB◦k in B2k will both have bar operators for their Hecke algebra modules.

In addition, the operations of taking simple double covers and double cover products also pre-

serve the property that the corresponding Hecke algebra module admits a K-L bar operator.

Now all the indecomposable components listed in Theorem 16, which can be arbitrary large,

including

• Altk in Ak−1;

• B◦k in A2k−1;

• Fk−1
2 oB◦k in D2k;

• Fk
2 oB◦k in B2k;

• ∆Sk in Ak−1 ×Ak−1;

• ∆Dk in Dk ×Dk;
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• ∆Bk in Bk ×Bk,

admit K-L bar operators for their Hecke algebra modules.

For the remaining cases, we only need to check T ((st)k/2wH) = T ((ts)k/2wH), for all the

generators T ((st)k/2w)− T ((ts)k/2w) of the annihilator IW/H of T (H).

We will next prove a lemma that will help us to reduce lots of discussion for the remaining cases.

Lemma 6. Suppose W,H,WI , HI satisfy the same conditions as in Lemma 4. In addition, suppose

w ∈WI is a minimal representative of wH, s, t ∈ S, swH = twH, m(s, t) ∈ {2, 3}, and t commutes

with all w ∈ WI . If the HWI
-modules HWI/HI

(q) ' HW/H(q) admit a K-L bar operator, and t is

in the same simple double cover reflection class as some s0 ∈WI , then T (swH) = T (twH).

Proof. We prove the lemma by induction on the length of w. When the length l(w) = 0, it is trivial

to see that T (sH) = q−1(T (sH)− (q − 1)) = q−1(T (tH)− (q − 1)) = T (tH).

Suppose the lemma holds for all w ∈ W with l(w) < l, then for l(w) = l, we will prove

T (swH) = T (twH). Actually, since t commutes with w, we have T (twH) = T (wtH) = T (ws0H).

We write w = s1 . . . sn, then swH = ws0H is a 〈s, s1〉-maximal element in W/H. and the length

of the 〈s, s1〉-orbit is greater than 1. Since m(s, t) ∈ {2, 3}, the length of the 〈s, s1〉-orbit is equal

to m(s, t), and from the induction hypothesis, the K-L bar operator exists for elements with length

less than l, so we have T (swH) = T (ws0H) = T (twH).

Now we are able to check the remaining cases in Theorem 16.

• H = F2 ×Alt4 in D4 generated by (1 2 3), (2 3 4) and (1 2)(3 4):

For I = {(1 2), (2 3), (1 2)} or I = {(1 2), (2 3)(3 4)}, we have W/H = WI/HI , and HI = Alt3

in WI = D3 which admits a K-L bar operator. By Lemma 4, we only need to check the case

swH = twH when t = (1 2), s = (3 4), which admits T (swH) = T (twH).

• H = Dil6 in B3 generated by (1)−(2 3) and (2)−(1 3):

For I = {(1 2), (1)−}, we have W/H = WI/HI , and HI is the trivial group in WI = B2 which

admits a K-L bar operator. By Lemma 4, we only need to check the case swH = twH when

t = (2 3), s = (1 2) or t = (1)−. They satisfy T (swH) = T (twH).

• H = Dil16 in B4 generated by (1 2)(3 4) and (1)−(2 3):
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For I = {(2 3), (1 2), (1)−}, we have W/H = WI/HI , and HI = (W{(2 3),(1)−})
◦ = ∆(Z/2Z)

in WI = B3 which admits a K-L bar operator. By Lemma 4, we only need to check the case

swH = twH when t = (3 4), s ∈ I. They satisfy T (swH) = T (twH).

• Dil10 in S5 generated by (1 2)(3 4) and (2 3)(4 5):

For I = S − {(1 2)} or I = S − {(4 5)}, we have W/H = WI/HI , and HI = ∆(Z/2Z) in

∆S2 < WI = S4 which admits a K-L bar operator. By Lemma 4, we only need to check the

case swH = twH when s = (1 2), t = (4 5). They satisfy T (swH) = T (twH).

• H = H3 in D6 generated by (1 2)(3 4), (2 3)(4 5) and (1 2)(5 6):

For I = S − {(5 6)}, we have W/H = WI/HI , and HI = Dil10 in S5 < WI = D5 which

admits a K-L bar operator. By Lemma 4, we only need to check the case swH = twH when

t = (5 6), s ∈ I. They satisfy T (swH) = T (twH).

• When H is twisted Alt5 in S6 generated by (1 2)(3 4), (2 3)(4 5) and (1 2)(5 6):

For I = S − {(4 5), (5 6)}, we have W/H = WI/HI . Let J = I ∪ {(4 5)} = S − {(5 6)}, then

W/H = WJ/HJ and HJ = Dil10 in S5 admit a K-L bar operator. In addition, t = (5 6)

commutes with all w ∈ WI , and by Lemma 4 and 6, we know H in W admits a K-L bar

operator.

• H = PGL(3, 2) in S7 generated by a quasiparabolic copy of B◦3 in S6 generated by (2i −

1 2i)(2j − 1 2j) and (2i− 1 2j − 1)(2i 2j), and the 2-rotation (1 3)(5 7):

For I = S − {(5 6), (6 7)}, we have W/H = WI/HI . Let J = I ∪ {(5 6)} = S − {(6 7)},

then W/H = WJ/HJ and HJ = B◦3 in S6 admits a K-L bar operator. In addition, t = (6 7)

commutes with all w ∈ WI , and by Lemma 4 and 6, we know H in W admits a K-L bar

operator.

• H = F3
2 o PGL(3, 2) in D7 generated by a quasiparabolic copy of PGL(3, 2) in S7, and the

2-rotation (1 2)(3 4):

For I = S − {(5 6), (6 7)}, we have W/H = WI/HI . Let J = I ∪ {(5 6)} = S − {(6 7)}, then

W/H = WJ/HJ and HJ = F2
2 oB◦3 in D6 admits a K-L bar operator. In addition, t = (6 7)

commutes with all w ∈ WI , and by Lemma 4 and 6, we know H in W admits a K-L bar

operator.
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• H = AGL(3, 2) in S8 generated by a quasiparabolic copy of B◦4 in S8 generated by (2i −

1 2i)(2j − 1 2j) and (2i− 1 2j − 1)(2i 2j), and the 2-rotation (1 3)(5 7):

For I = S − {(6 7), (7 8)}, we have W/H = WI/HI . Let J = I ∪ {(6 7)} = S − {(7 8)},

then W/H = WJ/HJ and HJ = PGL(3, 2) in S7 admits a K-L bar operator. In addition,

t = (7 8) commutes with all w ∈WI , and by Lemma 4 and 6, we know H in W admits a K-L

bar operator.

• H = F4
2 o AGL(3, 2) in D8 generated by a quasiparabolic copy of AGL(3, 2) in S8, and the

2-rotation (1 2)(3 4):

For I = S − {(6 7), (7 8)}, we have W/H = WI/HI . Let J = I ∪ {(6 7)} = S − {(7 8)}, then

W/H = WJ/HJ and HJ = F3
2 o PGL(3, 2) in D7 admits a K-L bar operator. In addition,

t = (6 7) commutes with all w ∈WI , and by Lemma 4 and 6, we know H in W admits a K-L

bar operator.

• H = K4 o (∆S3) in S4 × S3 generated by a quasiparabolic copy of ∆S3 in S3 × S3, and the

2-rotation (1 2)(3 4):

For I = S − {(1 2)} or I = S − {(3 4)}, we have that HI = ∆S3 in WI = S3 × S3 admits a

K-L bar operator. For I = S − {(1′ 2′)} or I = S − {(2′ 3′)}, we have that HI = (K4 × S2)◦

in WI = S4 × S2 admits a K-L bar operator. In both cases, W/H = WI/HI , then for any

s, t ∈ S, there exists at least one of the above four I’s such that s, t ∈ I. By Lemma 4, we

know H in W admits a K-L bar operator.

• H = F2 × (K4 o (∆S3)) in D4 × S3 generated by a quasiparabolic copy of K4 o (∆S3) in

S4 × S3, and the 2-rotation (1 2)(3 4):

For I = S − {(1 2)} or I = S − {(3 4)}, we have that HI = ∆S3 in S3 × S3 < WI = D3 × S3

admits a K-L bar operator. For I = S − {(1′ 2′)} or I = S − {(2′ 3′)}, we have that HI =

F2× (B2×S2)◦ in WI = D4×S2 admits a K-L bar operator. In both cases, W/H = WI/HI ,

then for any s, t ∈ S, there exists at least one of the above four I’s such that s, t ∈ I. By

Lemma 4, we know H in W admits a K-L bar operator.

• H = F3
2 o (K4 o (∆S3)) in D4×D3 generated by a quasiparabolic copy of F2× (K4 o (∆S3))

in D4 × S3, and the 2-rotation (1 2)(1′ 2′):
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For I = S − {(1 2)} or I = S − {(3 4)}, we have that HI = ∆(F2 × S3) in WI = D3 × D3

admits a K-L bar operator. For I = S − {(1′ 2′)}, we have that HI = F2 × (B2 × S2)◦ in

WI = D4 × A2 admits a K-L bar operator. In both cases, W/H = WI/HI , then for any

s, t ∈ S, there exists at least one of the above three I’s such that s, t ∈ I. By Lemma 4, we

know H in W admits a K-L bar operator.

• H = K4 o (∆S4) in S4 × S4 generated by a quasiparabolic copy of ∆S4 in S4 × S4, and the

2-rotation (1 2)(3 4):

For I = S − {(1 2)}, I = S − {(3 4)}, I = S − {(1′ 2′)}, or I = S − {(3′ 4′)} we have that

HI = K4 o (∆S3) in WI = S4 × S3 admits a K-L bar operator. In addition, W/H = WI/HI ,

then for any s, t ∈ S, there exists at least one of the above four I’s such that s, t ∈ I. By

Lemma 4, we know H in W admits a K-L bar operator.

• H = F2 × (K4 o (∆S4)) in D4 × S4 generated by a quasiparabolic copy of K4 o (∆S4) in

S4 × S4, and the 2-rotation (1 2)(3 4):

For I = S−{(1 2)} or I = S−{(3 4)}, we have thatHI = K4o(∆S3) in S3×S4 < WI = D3×S4

admits a K-L bar operator. For I = S − {(1′ 2′)} or I = S − {(3′ 4′)}, we have that

HI = F2 × (K4 × (∆S3)) in WI = D4 × S3 admits a K-L bar operator. In both cases,

W/H = WI/HI , then for any s, t ∈ S, there exists at least one of the above four I’s such that

s, t ∈ I. By Lemma 4, we know H in W admits a K-L bar operator.

• H = (F2
2)o (K4o (∆S4)) in D4×D4 generated by a quasiparabolic copy of F2× (K4o (∆S4))

in D4 × S4, and the 2-rotation (1′ 2′)(3′ 4′):

For I = S − {(1 2)}, I = S − {(3 4)}, I = S − {(1′ 2′)}, or I = S − {(3′ 4′)}, we have that

HI = F2× (K4o (∆S3)) in D4×S3 < WI = D4×D3 admits a K-L bar operator. In addition,

W/H = WI/HI , then for any s, t ∈ S, there exists at least one of the above four I’s such that

s, t ∈ I. By Lemma 4, we know H in W admits a K-L bar operator.

• H = F4
2o (K4o (∆S4)) in D4×D4 generated by a quasiparabolic copy of (F2

2)o (K4o (∆S4))

in D4 ×D4, and the 2-rotation (1 2)(1′ 2′):

For I = S − {(1 2)}, I = S − {(3 4)}, I = S − {(1′ 2′)}, or I = S − {(3′ 4′)}, we have

that HI = F3
2 o (K4 o (∆S3)) in WI = D4 × D3 admits a K-L bar operator. In addition,
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W/H = WI/HI , then for any s, t ∈ S, there exists at least one of the above four I’s such that

s, t ∈ I. By Lemma 4, we know H in W admits a K-L bar operator.

Since taking double cover products, images of inductive Coxeter homomorphisms, and the two

projective Coxeter homomorphisms in Theorem 16 also preserve the existence of the K-L bar op-

erator, we are able to claim the following theorem.

Theorem 18. If W is a finite classical Coxeter group, then Conjecture 1 holds.
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