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ABSTRACT

The proliferation of sensors and advancement of technology has led to the
production and collection of unprecedented amounts of data in recent years.
The data are often noisy, non-linear, and high-dimensional, and the effective-
ness of traditional tools may be limited. Thus, the technological advances
that enable the ubiquitous collection of data from the cosmological scale
to the subatomic scale also necessitate the development of complementary
tools that address the new nature of the data.

Recently, there has been much interest in and success with developing
topologically-motivated techniques for data analysis. These approaches
are especially useful when a topological method is sensitive to large- and
small-scale features that might not be detected by methods that require a
level of geometric detail that is not provided by the data or by methods
that may obscure geometric features, such as principal component analysis
(PCA), multidimensional scaling (MDS), and cluster analysis.

Our work explores topological data analysis through two frameworks.

In the first part, we provide a tool for detecting material coherence from a
set of spatially sparse particle trajectories via the study of a map induced
on homology by the braid corresponding to the motion of particles. While
the theory of coherent structures has received a great deal of attention and
benefited from many advances in recent years, many of these techniques are
limited when the data are sparse. We demonstrate through various examples
that our work provides a practical and scalable tool for identifying coherent
sets from a sparse set of particle trajectories using eigenanalysis.

In the second part, we formalize the local-to-global structure captured by
topology in the setting of point clouds. We extend existing tools in topologi-
cal data analysis and provide a theoretical framework for studying topologi-
cal features of a point cloud over a range of resolutions, enabling the analysis
of topological features using statistical methods. We apply our tools to the
analysis of high-dimensional geospatial sensor data and provide a statistic
for quantifying climate anomalies.
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PREFACE

Work for this thesis is motivated by the conviction that our understanding
of physical phenomena benefits greatly from a rich intersection of theory
from geometry, topology, and dynamical systems. Advances in one field
often inspire and bring forth paradigm shifts in another. When I began
my Ph.D. studies, I was particularly interested in bringing this synchrony
to computational methods for science and engineering applications. This
thesis formalizes existing tools of computational topology and introduces
new computational methods that allow us to detect dynamical structures
from a topological lens.

Topology, since its inception, has been studied and developed as an ap-
plied tool for science. Henri Poincaré, often credited as the inventor of
algebraic topology, introduced an arsenal of topological techniques and
concepts through a series of papers between 1892 and 1904 about the qual-
itative theory of differential equations and the long-term stability of a me-
chanical system. Poincaré’s topological ideas have been hailed as “probably
the greatest advance in celestial mechanics since Newton”, as his ideas “not
only breathed new life into complex analysis and mechanics; they amounted
to the creation of a major new field, algebraic topology” [1].

In the 1930s, Jean Leray (with Juliusz Schauder) developed a set of alge-
braic tools, including the definition and basic properties of the “topological
degree” of a map (related to Brouwer’s work), to study fluid dynamics [2].
Leray’s subsequent publications throughout the rest of the 1930s provided
many applications of topological principles to fluid dynamics and PDEs. ∗

In recent years, there has been a renewed interest in the interaction of geom-
etry, topology, dynamics, and computation. There is a growing realization

∗Initially, Leray’s interest in algebraic topology was tangential to his other mathematical
interests. But in 1940, Leray became a prisoner of the Germans during World War II and
spent five years in captivity in an officer’s camp, Oflag XVIIA, in Austria. “Leray feared
that if his competence as a ‘mechanic’ (‘mécanicien’, his word) were known to the German
authorities in the camp, he might be compelled to work for the German war machine, so he
converted his minor interest to his major one, in fact to his essentially unique one, presented
himself as a pure mathematician and devoted himself mainly to algebraic topology” [2].
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that one can devise more accurate numerical methods at no additional com-
putational cost by respecting (not just approximating) the appropriate geo-
metric, topological, and dynamical structures at the discrete level. Accord-
ingly, researchers have developed discrete theories of geometry and topol-
ogy, guided by the tenet that although continuous and discrete mathematics
study different structures via different tools, many important properties and
relationships can be preserved in the discrete setting under an appropriate
framework. The field of discrete differential geometry was developed in
this spirit by Mathieu Desbrun, Peter Schröder, and their collaborators [3,
4].

My personal interest in applied topology began with a series of conversa-
tions prior to my graduate studies with Gunnar Carlsson at Stanford about
his work in a field now commonly referred to as topological data analysis.
In his work with coauthors, Carlsson [5] addresses the problem of identify-
ing topological features in high-dimensional point clouds. In a particularly
persuasive application of their algorithm, Carlsson and collaborators [6]
identify a subgroup of breast cancer patients with excellent survival from
microarray data. The subgroup is invisible to traditional methods of data
analysis and does not fit into the accepted classification of breast cancers but
has a distinct statistically significant molecular signature.

Carlsson’s success in applying topological methods of studying microarray
data inspired my collaboration with Samuel Volchenboum and Stephen
Skapek at the University of Chicago, where we applied topological methods
to analyze gene expression profiles of rhabdomyosarcoma tumor samples
to predict how a patient might respond to current treatment protocols and
identify avenues for future research for therapies that are more effective
and less toxic. The time I spent with Volchenboum and Skapek marked
one of the most personally and intellectually meaningful periods of my
very impressionable younger years and led to my current fervent interest in
applied topology.

In graduate school, I had the privilege of learning applied and computational
topology from Gunnar Carlsson at Stanford; Dmitriy Morozov at Lawrence
Berkeley National Laboratory; Henry Adams (University of Utah), Marko
Budišić (University of Wisconsin-Madison), Vin de Silva (Pomona College),
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John Harer (Duke University), Konstantin Mischaikow (Rutgers University),
Amit Patel (Institute for Advanced Study), Jean-Luc Thiffeault (University
of Wisconsin-Madison), and many others at the University of Minnesota’s
Institute for Mathematics and its Applications; and David Cohen-Steiner at
Inria Sophia Antipolis. Our many helpful conversations served as a compass
for my foray into applied topology, and their voices guide much of the work
recorded here in this thesis.
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C h a p t e r 1

INTRODUCTION

In this thesis, we study and develop tools in applied computational topol-
ogy for detecting topological structures in data arising from science and
engineering applications.

The computation of the topological invariants of a space, like homology
groups from algebraic topology, can offer great utility in situations where
metrics and coordinates may not be theoretically justified or when measure-
ments may contain a lot of noise. In these instances, applied computational
topology can be leveraged to rigorously solve problems in nonlinear dy-
namics (possibly from experimental data), data analytics, computer vision,
and shape reconstruction. Kaczynski, Mischaikow, and Mrozek [7] pro-
vide an overview of some applications of homology to problems involving
geometric datasets.

Algebraic topology, though, is not only concerned with the study of topo-
logical invariants of a space but also with the study of topological invariants
of a representation (e.g., continuous map). Reeb graphs are an example of a
topological object that summarizes the structure of a constructible function
on a topological space (e.g., a Morse function on a compact manifold or a
piecewise linear function on a compact polyhedron) through the compila-
tion of local information (the path-components of level sets).

Continuous maps also induce homomorphisms on homology and cohomol-
ogy, which can provide a computationally cheap tool for rigorously detect-
ing dynamical features such as the existence of connecting orbits, periodic
orbits, and chaotic dynamics. Conley index theory illustrates the power of
homology and cohomology for reconciling the continuous dynamics of dif-
ferential equations with the finite dynamics of computers. Mischaikow [8]
provides an overview of the theory in his survey.

Additionally, topology is a powerful tool for obtaining global insights by
meaningfully storing and integrating local information. The Euler char-
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acteristic is a classic example of a topological invariant that describes the
shape and structure of a topological space by counting and summing local
information (e.g., number of vertices, edges, and faces).

This local-to-global point of view provided by topology is especially useful
in modern applications and with respect to current computational paradigms,
where data may be distributed over many local agents (or computers) that
may not continuously share information. Accordingly, applied computa-
tional topology has found useful applications in robot motion planning,
sensor networks, and control theory. We refer readers to the exposition of
de Silva and Ghrist [9] for an overview.

Our work interprets these topological ideas for the discrete setting, as we
offer new computational methods for detecting dynamical structures as well
as extend and obtain theoretical results for existing algorithms in topological
data analysis. This thesis consists of two parts.

Overview of Chapter 2: Braids and Material Coherence

In the first part, we study a map induced on homology by the motion of
a sparse set of particle trajectories as a tool for detecting material coher-
ence, which refers to temporally coherent structures (or persistent localized
features) formed by particle trajectories in the phase space [10]. Material
coherence is ubiquitous in nature and plays an important role in science and
engineering applications. The importance of coherent structures is evident
in the study of solids and fluids, granular flows, molecular dynamics [10],
atmospheric and environmental science, propulsion [11], biological defects
[12], and even in dynamical systems describing electrical circuits and finan-
cial markets [10].

Lagrangian coherent structures are a widely studied example of material
coherence. Originally coined by Haller and Yuan [13] to describe the most
repelling, attracting, and shearing material surfaces that delineate regions
with qualitatively different tracer dynamics, Lagrangian coherent structures
provide a simplified understanding of overall flow geometry and quantifi-
cation of material transport [14]. While there is no universally agreed upon
definition for Lagrangian coherent structures, many criteria are based on
geometric properties of the flow, such as the finite-time Lyapunov exponent
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field [15] or the Cauchy-Green deformation tensor [14, 16–18]. However,
these methods are limited when the data are spatially sparse.

Our work focuses on the topological aspects of a flow through the analysis
of particle trajectories, and we call upon classical results in topology, like the
Nielsen-Thurston classification theorem, in order to provide a new method
for detecting coherent sets in two-dimensional flows. By analyzing the flow
from a topological perspective, we are able to detect material coherence
even when the particle trajectories are spatially sparse. We begin by con-
verting a space-time plot of a set of particle trajectories into a topological
braid. The topological braid induces a map on homology, called the (unre-
duced) Burau representation. We show that coherent sets can be detected as
path-components of level sets of an eigenvector of the Burau representation
corresponding to the motion of the particles, and we illustrate our method
on Aref’s blinking vortex flow and a modified Duffing oscillator.

Overview of Chapter 3: Topological Data Analysis

In the second part, we formalize the local-to-global structure captured by
topology in the setting of point clouds. We extend existing tools in topo-
logical data analysis [5] and provide a theoretical framework for studying
topological features of a point cloud over a range of scales. Our work bridges
the practical algorithm, mapper, given by Singh, Mémoli, and Carlsson [5],
for visualizing a point cloud (potentially given in a very high-dimensional
ambient space) as a simplicial complex, and the theoretical work of Munch
and Wang [19], which formalizes mapper in a continuous setting (study-
ing path-components of a topological space) in order to prove convergence
between mapper constructions and Reeb spaces, a higher-dimensional ana-
logue of Reeb graphs. In our work, we show that mapper constructions
over point clouds are stable. More precisely, we show that if D1 and D2 are
finite sets in X, the distance between their mapper constructions given by
a Lipschitz continuous filter function f : X → Rd is bounded above by the
Hausdorff distance between D1 and D2, up to a Lipschitz constant.

To do so, we use category theory to store the data obtained from the mapper
algorithm as a functor, and we adapt the interleaving distance given by de
Silva et al. [20] in the setting of Reeb graphs and Munch and Wang [19] in
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the setting of Reeb spaces to give an analogous interleaving distance in the
setting of mapper constructions over point clouds (viewed as functors). We
show that dendrograms arising from single-linkage hierarchical clustering
can be given as a mapper construction, and in this case, the interleaving
distance coincides with the Gromov-Hausdorff distance between dendro-
grams [21]. As a result, stability and convergence results established by
Carlsson and Mémoli for the Gromov-Hausdorff distance between dendro-
grams applies also to the interleaving distance between dendrograms.

Finally, we introduce the hierarchical complex, which facilitates the study
of topological features captured by mapper constructions over a range of
resolutions. We construct a hierarchical complex for daily sea surface tem-
perature measurements taken over the course of several decades, and we use
persistent homology to provide a statistic for quantifying climate anomalies.

Audience

We hope that our work will appeal to an interdisciplinary audience. As
such, we include much background material. We encourage those who are
familiar with the background material to skip sections when appropriate.
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C h a p t e r 2

BRAIDS AND MATERIAL COHERENCE

We agree on a simplifying assumption that the earth has the shape of a
torus.∗

—Vladimir Igorevich Arnold [23]

2.1 Introduction

Arnold [25] launched the field of topological fluid dynamics in 1966, when he
showed that the Euler equations of motion of an ideal incompressible fluid
on a Riemannian manifold M can be viewed as geodesic flows on the group
of measure-preserving diffeomorphisms of the domain M. Arnold’s idea of
employing groups to study fluid flows shifted the paradigm of theoretical
fluid dynamics and inspired much interest and progress in the field.

Recent work has applied methods from the theory of braid groups to the
analysis of mixing in flows in a variety of ways. Motivated by Aref and
Pomphrey’s [26, 27] study of advection by point vortices on the infinite plane,
which laid the groundwork for Aref’s seminal paper on chaotic advection
[28], where the blinking vortex flow was introduced, Boyland et al. [29]
applied Nielsen-Thurston theory to study the motions of systems of point
vortices in the infinite plane. These point vortices act as stirrers that displace
the fluid. Boyland et al. use the Lagrangian motions of the point vortices to
study the Lagrangian motions of the surrounding fluid particles. The motion
of the vortices as they wrap around one another can be described using

∗In the same 1966 paper that launched the field of topological fluid dynamics, Arnold
also published the first computations of curvatures for diffeomorphism groups [22]. Nega-
tive curvature implies exponential instability of geodesics [23]. So making the assumptions
that “the earth has the shape of a torus obtained by factoring the plane by a square lattice”
and modeling the atmosphere as a two-dimensional homogeneous non-compressible non-
viscous fluid, Arnold explains that long-term weather predictions are inherently inaccurate.
In particular, a weather forecast two months in advance requires initial data with five more
digits of accuracy than the prediction accuracy.

Years later, Lukatskii [24] computes curvatures for diffeomorphism groups on the sphere.
Remarkably, his calculations give the same order of magnitude for the error of weather
forecasting.
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Artin’s braid group, which offers a precise framework for distinguishing
different regimes of vortex dynamics.

In a related work, Boyland et al. [30] study mixing of a viscous fluid by a
(periodic) stirring motion of a finite number of physical rods. The stirring
motion of n rods trace out a braid on n strands. Nielsen-Thurston theory
can then be applied to give a lower bound on topological entropy. Systems
with positive topological entropy exhibit chaotic trajectories.

Gouillart et al. [31] extend the work of Boyland et al. and study stirring
protocols in which the motion of the stirring rods is topologically trivial but
yet gives rise to a flow with positive topological entropy. In this setting,
Nielsen-Thurston theory is applied to the braid formed by considering pe-
riodic orbits of the flow in conjuction with the orbit of the stirrer. These
periodic orbits act as obstacles to material lines and thus can be considered
“ghost rods”.

The study of homeomorphisms of a surface punctured by periodic orbits is
very classical. The ideas date back to Bowden [32], and we discuss some of
these ideas in the context of mapping class groups later.

Thiffeault [33] proposes that the braiding exhibited by the motion of non-
periodic orbits can also be used to reveal the presence of topological chaos.
To characterize the complexity of the motion, he defines the braiding ex-
ponent in terms of the logarithm of the spectral radius of the Burau repre-
sentation of the braid. It was shown by Fried [34] and Kolev [35] that the
topological entropy of a braid, which is related to the Lyapunov exponent
of the flow, is bounded below by the logarithm of the spectral radius of the
braid’s Burau matrix. Thiffeault shows experimentally that the magnitude
of the braiding exponent is proportional to the Lyapunov exponent for the
blinking vortex flow.

Allshouse and Thiffeault [36] also introduce a topological method for de-
tecting material coherence from a small set of particle trajectories. Coherent
regions contain particles that possibly mix with other particles within the
region itself but do not mix with particles outside the region. Allshouse and
Thiffeault call the set of trajectories arising from particles in a coherent region
a coherent bundle. They find coherent bundles by measuring the growth
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rate of a topological loop enclosing a pair (or more) of particles (viewed as
punctures). Sets of particles enclosed by loops with negligible growth are
considered coherent.

2.2 Contributions

As a complement to Thiffeault’s work, we analyze the eigenvectors of the
Burau representation of a braid of particle trajectories to identify distinct
dynamical regimes. We provide a computationally scalable and efficient
method that detects coherent sets as levelsets of an eigenvector.

We begin with the lemma that a reducible braid α ∈ Bn that preserves a
family C of round curves can be written as a product of tubular braids with
trivial interior braiding, followed by a product of interior braids with trivial
braiding between tubular braids. Each tube is traced out by the path of a
simple closed curve in C .

Next, we show that the Burau matrix B(α)(t) of the reducible braid α acts
blockwise on a piecewise-constant vector v that respects the structure of α.
In particular, we show that if v is constant on the interior of every curve in
C , then the image B(α)(t)v is a piecewise-constant vector, constant on the
interior of every curve in α(C ) = C . Furthermore, if α is additionally a pure
braid, then we can show that B(α)(t) has an eigenvector that is piecewise-
constant on its components. Now, every reducible braid is conjugate to a
braid that preserves a family of round curves [37–39]. Since B(α)(t = 1) is a
permutation matrix, and B(α)(t) is continuous in t, it then follows that for t
close to 1, the matrix B(α)(t) has an almost piecewise-constant eigenvector,
which is our main result.

We apply our methods to study Aref’s blinking vortex flow [28] and a
modified Duffing oscillator, which was studied by Allshouse and Thiffeault
[36] to test and illustrate the detection of coherent bundles. In the analysis
of Aref’s blinking vortex flow, our method distinguishes chaotic regions
from KAM surfaces, over a range of flow strengths. Meanwhile, in our
analysis of the modified Duffing oscillator, in addition to detecting the two
dominant regions of mixing detected by Allshouse and Thiffeault, we also
detect two additional limit cycles. In these examples, we demonstrate that
our methods apply to a broad set of systems, including aperiodic flows and
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compressible flows, as long as particle positions do not coincide during the
time interval studied. We discuss preprocessing techniques and additional
considerations in Section 2.4.2.

Our approach based on topological braids is especially advantageous when
data are sparse, since it does not require nearby trajectories or derivatives of
the velocity field. However, the braid approach is not without limitations.
Accuracy is limited by the length of trajectory histories, and the analysis
requires the identification of a projection line upon which distinct trajectories
do not coincide.

Throughout this chapter, we assume S is a surface given by the connected
sum of g ≥ 0 tori, with b ≥ 0 disjoint open disks removed, and n ≥ 0
punctures.

Figure 2.1: Illustration of a tubular braid with non-trivial braiding within a
tube. This braid is equivalent to a product of tubular braids with trivial inte-
rior braiding, followed by a product of interior braids with trivial braiding
between tubular braids.
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2.3 Braid groups

There are many equivalent ways of defining the braid group. Each point of
view highlights a particular set of characteristics. In this section, we give
several definitions of the braid group, so that we can later switch among
these viewpoints as convenient.

2.3.1 Braided strands

We begin by describing mathematical braids as a collection of strands from
both a geometric and topological point of view, culminating in Artin’s clas-
sical definition of a braid.

Definition 2.1 (geometric braid [40]). Let p1, · · · , pn be distinguished points
in R2. A braid is a collection {xi}

n
i=1 of n paths xi : [0, 1] → R2

× [0, 1],
1 ≤ i ≤ n, called strands, and a permutation x of {1, · · · , n} such that each of
the following holds:

1. The strands xi ([0, 1]) are disjoint;

2. xi(0) = pi;

3. xi(1) = px(i);

4. xi(s) ∈ R2
× {s}.

A subcollection {xi j} of {xi} is called a subbraid of {xi} if {xi j} is also a braid.

A set of n disjoint particle trajectories xi : [0, 1] → X × [0, 1], 1 ≤ i ≤ n, on
a two-dimensional domain X ⊆ R2 forms a geometric braid on n strands
when the final positions xi(1) are given by a permutation of the of initial
positions xi(0), in which case, each particle trajectory xi is a strand in space-
time X × [0, 1]. When the permutation is the identity, we say that the braid
is a pure braid.

We encode a geometric braid as a topological braid by projecting the collection
of strands to a fixed plane R× [0, 1] while retaining information about how
strands pass over one another.† A crossing occurs whenever one strand

†The choice of projection line is equivalent to a choice of coordinate system. Thus, if
the set of particle trajectories forms a geometric braid, then a change in the projection line
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passes in front of or behind another. Any geometric braid can be isotoped
(i.e., deformed through a continuous family of homeomorphisms) so that
at most one crossing occurs at each horizontal level (i.e., at each value of
s ∈ [0, 1]). Thus, from each geometric braid, we can specify a topological
braid by recording the sequence of crossings.

We enumerate the strands i = 1, · · · , n according to their ordering on the
projection line. As particles move in time, and their strands cross one
another, the projection of the strands onto the projection line will change;
we update the enumeration accordingly. For 1 ≤ i < n, we let σi denote
the braid consisting of a single crossing given by passing the ith strand
behind the (i + 1)st strand (Figure 2.2). Viewed from above, the braid σi

corresponds to a clockwise half-twist of strands i and i + 1. Conversely, we
let σ−1

1 denote the single crossing given by passing the ith strand in front of
the (i + 1)st strand.

xi xi+1

Figure 2.2: Illustration of σi, the braid consisting of a single crossing given
by passing the ith strand behind xi the (i + 1)st strand xi+1. We adopt the
convention of drawing our braids from top to bottom.

A topological braid is specified by a concatenation (product) of σi. Fol-
lowing the standard practice in braid literature, we adopt the convention

changes the topological braid by conjugation. However, if the set of particle trajectories do
not form a geometric braid, then a change of projection line is not guaranteed to merely
affect the topological braid by conjugation only [41–43].
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of composing our elements from left to right. Furthermore, we adopt the
convention of drawing our braids from top to bottom.

Topological braids are classified up to isotopy. We say that two braids are
isotopic if one can be deformed into the other through a continuous family
of homeomorphisms.

Definition 2.2 (braid group on n strands). The isotopy classes of braids on
n strands form a group Bn, called the braid group on n strands.

The collection of braids σi, 1 ≤ i < n, generate the braid group Bn. In fact,
Artin [44] showed that the braid group Bn admits the following presentation:

Bn =

〈
σ1, · · · , σn−1

∣∣∣∣∣∣∣ σiσi+1σi = σi+1σiσi+1 for all i

σiσ j = σ jσi for all
∣∣∣i− j

∣∣∣ > 1

〉
.

Artin’s presentation gives the braid group an algebraic structure. Thus, a
product of σi will sometimes be referred to as an algebraic braid.

For the remainder of this document, when we say braid, we will mean
topological braid, unless otherwise specified.

2.3.2 Mapping class groups

Identifying a braid on n strands with (an isotopy class of) a homeomorphism
of an n-punctured disk confers several advantages.

First, it is intuitive to visualize the advection of an isotopy class c of a simple
closed curve by a homeomorphism of an n-punctured disk. An isotopy class
c that encloses two or more punctures may stretch or fold, depending on the
dynamics of the homeomorphism. This provides a topological parallel to
the advection of material lines in a fluid. Isotopy classes that do not grow
(or isotopy classes that grow least [36]) delineate coherent sets.

More importantly, identifying a braid on n strands with a homeomorphism
of an n-punctured disk allows us to apply the Nielsen-Thurston classification
theorem for surface homeomorphism to obtain a classification of braids. In
pursuit of tools for detecting material coherence, we study a particular class
of braids given by the Nielsen-Thurston classification system, called reducible
braids.
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We will also note that the homeomorphism viewpoint will also be an im-
portant tool in several of our proofs.

Definition 2.3 (mapping class group). The mapping class group of a surface S,
denoted

Mod(S) = π0
(
Homeo+ (S, ∂S)

)
,

is the group of isotopy classes of elements of Homeo+ (S, ∂S), the group of
orientation-preserving homeomorphisms on S that restrict to the identity on
∂S, endowed with the compact-open topology.

These groups are discussed in detail by Farb and Margalit [40].

The braid group Bn is isomorphic to the mapping class group of an n-
punctured disk Dn:

Bn ≈Mod (Dn) = π0
(
Homeo+ (Dn, ∂Dn)

)
. (2.1)

Under this isomorphism, each generator σi corresponds to the homotopy
class of a homeomorphism of Dn that has support a twice-punctured disk
and is given by a positive half-twist on this support [40, 45].

Unless otherwise specified, we will use the model of Dn given by the unit
disk centered at the origin, with n punctures arranged along the x-axis, so
that they partition the interval [−1, 1] into n + 1 equal segments.

Nielsen-Thurston classification

The Nielsen-Thurston classification theorem characterizes mapping classes.

Theorem 2.4 (Nielsen-Thurston classification [40, 46]). Let g, n ≥ 0. Each
mapping class f ∈ Mod(Sg,n) is either periodic, reducible, or pseudo-Anosov.
Further, pseudo-Anosov mapping classes are neither periodic nor reducible.

Our work focuses on reducible mapping classes. Informally, if a mapping
class is reducible, we can cut along the simple closed curves of a reduction
system and re-apply the theorem to each component of the cut surface.
Repeating the process as necessary, we can eventually obtain the result that
very mapping class has a representative that decomposes into finite order
pieces and pseudo-Anosov pieces. We describe this machinery in detail
below.



13

Definition 2.5 (essential curve). A closed curve is called essential if it is not
homotopic to a point, a puncture, or a boundary component.

Definition 2.6 (geometric intersection number). The geometric intersection
number between free homotopy classes a and b of simple closed curves in a
surface S is the minimal number of intersection points between a represen-
tative curve in the class a and a representative curve in the class b.

Remark 2.7 ([40]). The geometric intersection number i(a, b) is realized by
geodesic representatives of a and b.

Definition 2.8 (reducible). A mapping class f ∈ Mod(S) is reducible if there
is a non-empty set C = {c1, · · · , ck} of isotopy classes of essential simple
closed curves in S so that the geometric intersection number i(ci, c j) = 0 for
all i and j and so that { f (c j)} = {c j}. The collection C is called a reduction
system for f .

We are particularly interested in reducible maps defined on Dn. While the
reduction system of a map on Dn may be complicated, every reducible map
is conjugate to a braid with a reduction system consisting of a family of
geometric ellipses centered on the axis through the punctures [37–39]. We
say that a curve is round if it is isotopic to a geometric ellipse in Dn. We say
that a reduction system C is round‡ if each curve in C is round.

In general, a reducible map may admit many reduction systems. A reduction
system C is an adequate reduction system for a mapping class f ∈ Mod(S) if
cutting S along C decomposes f so that the restriction of f to each component
of S \C is either finite-order or pseudo-Anosov [48].

Birman, Lubotzky, and McCarthy [48] showed that every reducible map f
has an essential reduction system, denoted ERS( f ), such that

1. every curve§ c ∈ ERS( f ) is preserved by some power of f ;

‡Lee and Lee [47] refer to such a reduction system as a standard reduction system.
§At this point, it should be clear that many characteristics we care about (e.g.,

braids/mapping classes, reducibility, reduction systems) are given up to isotopy. Thus,
for the remainder of our discussion, we will sometimes simply say curve when we mean
the isotopy class of a curve.
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2. any curve that has non-trivial geometric intersection with some curve
c ∈ ERS( f ) is not preserved by any power of f .

The essential reduction system of a map f is unique (up to isotopy). Further-
more, the essential reduction system of f is a minimal adequate reduction
system of f , with respect to inclusion.

The essential reduction system for a mapping class f ∈Mod(S) is sometimes
called a canonical reduction system, which is defined by Farb and Margalit [40]
as the intersection of all maximal (with respect to inclusion) reduction sys-
tems for f . The two definitions are equivalent [40, 48].

Remark 2.9 ([39]). With the isomorphism (2.1) in mind, we will sometimes
use the term braid to refer to a mapping class.

We say that a braid β is periodic if for some integer r, the rth power βr is
isotopic to a full Dehn twist on the boundary of the n-punctured disk Dn.

A braid is reducible if its corresponding mapping class is reducible. Simi-
larly, a braid is pseudo-Anosov if its corresponding mapping class is pseudo-
Anosov.

Remark 2.10. An essential reduction system ERS(β) is non-empty if and
only if β is reducible and non-periodic [48].

2.3.3 Automorphisms of a free group

In order to provide an interpretation of the Burau representation as a cov-
ering space action in the next section, we use the faithful representation
of the braid group Bn as a group of (right) automorphisms of a free group
Fn = 〈x1, · · · , xn〉 on n generators [44, 49].

The representation ξ : Bn → Aut(Fn) is induced by mapping a generator σi

of the braid group Bn to the automorphism (σi)ξ of a free group Fn, given
by

xi → xixi+1x−1
i ,

xi+1 → xi,

x j → x j if j , i, i + 1.
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Remark 2.11. The automorphism (σ−1
i )ξ is given by

xi → xi+1,

xi+1 → x−1
i+1xixi+1,

x j → x j if j , i, i + 1.

2.4 Application to the analysis of flows

In this section, we detect dynamically distinct regions as levelsets of an
eigenvector of the (unreduced) Burau matrix corresponding to the motion
of the particles. To do so, we introduce the Burau representation, which
is an example of a Magnus representation [44]. We interpret the Burau
representation as a covering space action. Following this, we show that
when a reducible pure braid α has a round reduction system C , the Burau
matrix B(α)(t) has an eigenvector that is piecewise constant on the interior
of the reduction curves c j ∈ C . We conclude that for any reducible braid β,
the Burau matrix B(β)(t ≈ 1) has an eigenvector that is approximately
piecewise-constant on components of its Nielsen-Thurston decomposition.

2.4.1 (Unreduced) Burau representation

Matrix representation

The Burau representation is a homomorphism

ρn : Bn → GLn (Λ) ,

with Λ := Z [t±]. The matrix representation allow us to examine the dy-
namics of a motion of particles through a study of eigenvectors. There are
two forms of the Burau representation, the reduced and unreduced. Our
analysis focuses on the unreduced Burau representation, which is given by
mapping a generator σi of Bn to the block matrix

B (σi) (t) := Ii−1 ⊕

 1− t t
1 0

⊕ In−i−1. (2.2)

We write B(α)(t) for the Burau matrix for the braid α with parameter t.

We note that

[B (σi) (t)]
−1 = Ii−1 ⊕

 0 1
t−1 1− t−1

⊕ In−i−1.
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It can be verified that

[B (σi) (t)]
−1 = B

(
σ−1

i

)
(t).

The constant vector (1, · · · , 1) generates an invariant subspace of the ma-
trices B (σi) (t). The reduced Burau representation is obtained by taking the
quotient.

Unless otherwise specified, in this document, when we say Burau represen-
tation, we will mean the unreduced Burau representation.

The Burau representation is known to be not faithful for n ≥ 5 [50, 51]. The
case n = 4 remains open. Church and Farb [52] that the kernel of ρn is in
fact quite large for n ≥ 6. In our experience, the unfaithfulness of the Burau
representation has not been an impediment to extracting coherent sets from
physical systems.

Remark 2.12. For every constant vector v, we have that B(σ)(t)v = v for
every braid σ and all t.

Proof.

It is sufficient to prove this result for the generators B(σi)(t).

When v1 = v2, we have that 1− t t
1 0

  v1

v2

 =  (1− t)v1 + tv2

v1

 =  v1

v1

 .

Thus,

B (σi) (t) := Ii−1 ⊕

 1− t t
1 0

⊕ In−i−1

fixes constant vectors. �

Covering space action

The Burau representation has a topological interpretation as a covering space
action [53, 54].

For 1 ≤ j ≤ n, let p j =
j

n+1 , and consider an n-punctured disk

Dn =
{∣∣∣∣∣z− 1

2

∣∣∣∣∣ ≤ 1
}
\
{
p1, · · · , pn

}
.



17

Fix a basepoint p0 ∈ ∂Dn, and around each puncture p j, take a small clock-
wise loop x j, such that x j(0) = x j(1) = p0. Then π1 (Dn, p0) is freely gener-
ated by the set of homotopy classes [x j].

Let τ : π1 (Dn, p0) → Z be the epimorphism generated by τ
(
[x j]

)
= 1 for

1 ≤ j ≤ n. The kernel of τ consists of all words in {x j}
n
j=1 whose exponent

sum is zero. This is a normal subgroup. So we can define a covering space
p : D̃n → Dn corresponding to the kernel of τ.

Let F be the fiber above the basepoint p0, and consider the relative homology
group H1

(
D̃n, F

)
. By construction, the deck group of D̃n is isomorphic to Z.

Call its generator t. Then H1

(
D̃n, F

)
is free and n-dimensional as a module

over Λ = Z [t±]. The action of Bn on H1

(
D̃n, F

)
gives the (unreduced) Burau

representation.

Example 2.13. We consider the case n = 3.

Let D3 denote a thrice-punctured disk with punctures p1, p2, p3. Fix a
basepoint p0 ∈ ∂D3. Let x1, x2, x3 be small clockwise loops in (D3, p0),
enclosing punctures p1, p2, p3, respectively.

As a Λ-module, the homology group H1

(
D̃3, F

)
has three generators, x̃1, x̃2,

x̃3, given by the lifts of x1, x2, x3, each x̃i beginning at some fixed basepoint
p̃0 ∈ F.

The generator σ1 induces a map on the fundamental group π1(D3, p0) send-
ing x1 to x1x2x−1

1 . Thus, σ1 induces a map (σ1)∗ on homology that sends x̃1

to the lift of x1x2x−1
1 , which is

x̃1 + tx̃2 − tx̃1 = (1− t)x̃1 + tx̃2.

Similarly,

(σ1)∗(x̃2) = x̃1,

(σ1)∗(x̃3) = x̃3.

Let B1 be the matrix whose (i, j)th entry is the coefficient of x̃ j in the image
(σ1)∗(x̃i). Then

B1 =


1− t t 0

1 0 0
0 0 1

 = B(σ1)(t).
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Performing the same analysis for the generator σ2, we have

(σ2)∗(x̃1) = x̃1,

(σ2)∗(x̃2) = (1− t)x̃2 + x̃3,

(σ2)∗(x̃3) = x̃2.

As before, we let B2 be the matrix whose (i, j)th entry is the coefficient of x̃ j

in the image of (σ2)∗(x̃i). Then

B1 =


1 0 0
0 1− t t
0 1 0

 = B(σ2)(t).

Relationship to algebraic intersection numbers

The matrix entries of the Burau representation can also be interpreted as
algebraic intersection numbers [50, 55].

Definition 2.14 (algebraic intersection number [40]). Let a and b be a pair
of transverse, oriented, simple closed curves in a surface S. The algebraic
intersection number î(a, b) is defined as the sum of the indices of the inter-
section points of a and b, where an intersection point is of index +1 when
the orientation of the intersection agrees with the intersection of S and −1
otherwise.

Remark 2.15 ([40]). The algebraic intersection number î(a, b) depends only
on the homology classes of a and b.

Let µ j, 1 ≤ j ≤ n, be the arcs shown in Figure 2.3.

We define a map
∫
ω j : H1

(
D̃n, F

)
→ Λ on a homology class a ∈ H1

(
D̃n, F

)
by setting ∫

a
ω j =

∑
k∈Z

tk î
(
a, tkµ j

)
,

where î
(
a, tkµ j

)
is the algebraic intersection number of the arcs a and tkµ j in

the covering space D̃n.

Then the Burau matrix B(β) of a braid β ∈ Bn has entries given by

B (β) (t)i, j =

∫
β(xi)

ω j.
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µ1 µ2 µ3 · · · µ j · · · µn

Figure 2.3: Illustration of µ j in D̃n.

Example 2.16. In Figures 2.4 and 2.5, we consider the image of the clockwise
loops xi and xi+1, respectively, under the braid σi. We consider the lifts of
σi(xi) and σi(xi+1) to the cyclic covering space D̃n. The oriented intersections
of the lifts with the arcs µi, t1µi, t2µi and µi+1, t1µi+1, t2µi+1 (illustrated by the
solid lines in each copy of Dn in D̃n) give the matrix entries for the Burau
matrix B(σi)(t) in Equation (2.2).

In particular, the lift of σi(xi) begins at p̃0, intersects µi once, then intersects
tµi+1 once, ascends to the next copy of Dn before descending again, upon
which it intersects tµi in the opposite orientation, and ends at tp̃0. (See
Figure 2.4 for an illustration.) This corresponds to the ith row of the Burau
matrix B(σi)(t), which has non-trivial entries 1 − t and t in columns i and
i + 1, respectively.

The lift of σi(xi+1) begins at p̃0, intersects µi once, and ends at tp̃0. (See
Figure 2.5 for an illustration.) This corresponds to the (i + 1)st row of the
Burau matrix B(σi)(t), which has a single non-trivial entry consisting of 1 in
column i.

Example 2.17 (tubular braid). We use the notation of Band and Boyland [56]
and refer to the braid that moves the group of η1 consecutive strands starting
at strand i behind the group of η2 consecutive strands starting at strand i+ η1

as

σi,η1,η2 =
(
σi+η1−1 · · · σi+η1+η2−2

) (
σi+η1−2 · · · σi+η1+η2−3

)
· · ·

(
σi · · · σi+η2−1

)
.

In particular, σi,1,1 = σi for all 1 ≤ i < n.
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σi (xi)

p

t2

t1

t0
µi µi+11

−t t

p0 p0

p̃0

Figure 2.4: Illustration of σi(xi) and its lift to the covering space p : D̃n → Dn.

By considering lifts of the images of the loops x j under σi,η1,η2 to the cyclic
cover D̃n (see Figure 2.7), one can prove that the Burau matrix B(σi,η1,η2) of
the braid σi,η1,η2 is a block matrix of the form:

Ii−1 ⊕


1− t t− t2

· · · tη2−1
− tη2 tη2 · · · 0

...
...

... . . .

1− t t− t2
· · · tη2−1

− tη2 0η1 · · · tη2

Iη2 0

⊕ In−i−η1−η2+1.

Given a block vector v = (v1, · · · , vn), with

v j =

b for i ≤ j < i + η1,

c for i + η1 ≤ j < i + η1 + η2,
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σi (xi+1)

p

t2

t1

t0
µi µi+11

p0 p0

p̃0

Figure 2.5: Illustration of σi(xi+1) and its lift to the covering spacep : D̃n →

Dn.

we have that

B
(
σi,η1,η2

)
(t)



v1
...

vi−1

b
...
b
c
...
c

vi+η1+η2
...

vn



=



v1
...

vi−1

b (1− tη2) + ctη2

...
b (1− tη2) + ctη2

b
...
b

vi+η1+η2
...

vn



.
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n1 n2

n2 n1

Figure 2.6: Illustration of a braid corresponding to σi,η1,η2

So when t is an η2th root of unity, the Burau matrix B(σ)(t) is a permutation
of the blocks indexed by i ≤ µ < i + η1 and i + η1 ≤ ν < i + η1 + η2 and
the identity elsewhere. For all other t, the Burau matrix B(σ)(t) maps block
vectors v that are piecewise-constant on the blocks indexed by i ≤ µ < i+ η1

and i + η1 ≤ ν < i + η1 + η2 to block vectors that are piecewise-constant on
the blocks indexed by indexed by i ≤ ν < i + η2 and i + η1 ≤ µ < i + η1 + η2.

Performing a similar analysis, one can show that the Burau matrix B(σ−1
i,η1,η2

)(t)

of the inverse σ−1
i,η1,η2

is a block matrix of the form

Ii−1 ⊕


0η2 Iη1

t−η1 · · · 0 1− t−1 t−1
− t−2

· · · t−η1−1
− tη1

. . . ...
...

...
0 · · · t−η1 1− t−1 t−1

− t−2
· · · t−η1−1

− tη1

⊕ In−1−η1−η2+1,
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σi,n1,n2 (xi)

σi,n1,n2

(
xi+n1−1

)

σi,n1,n2

(
xi+n1

)

σi,n1,n2

(
xi+n1+n2−1

)

Figure 2.7: Covering space action of σi,η1,η2 . If i ≤ j < i + η1 (top two
rows), the lift of σi,η1,η2

(
x j

)
to D̃n begins at p̃0 and goes up, intersecting the

arcs µi, tµi+1, · · · , tη2−1µi+η2 ; it then intersects tη2µη2+ j−i+1 before going back
down, upon which it intersects the arcs tη2µi+η2 , tη2−1µi+η2−1, · · · , tµi in the
opposite direction, and ends at tp̃0. If i + η1 ≤ j < i + η1 + η2 (bottom two
rows), the lift of σi,η1,η2

(
x j

)
begins at p̃0, intersects µ j−η1 , and ends on tp̃0.
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and

B
(
σ−1

i,η1,η2

)
(t)



v1
...

vi−1

b
...
b
c
...
c

vi+η1+η2
...

vn



=



v1
...

vi−1

c
...
c

bt−η1 + c (1− t−η1)
...

bt−η1 + c (1− t−η1)

vi+η1+η2
...

vn



.

Example 2.17 is an example of a tubular braid [57].

Decomposition of reducible braids

Next, we show that a reducible braid with a round reduction system can be
decomposed as a product of braiding between tubular braids σε(`)

i(`),η1(`),η2(`)

with trivial braiding within tubes, where i(`), η1(`), η2(`) are positive inte-
gers and ε(`) = ±1, followed by a product of braiding within tubular braids
with trivial braiding between tubes.

Note that given any reduction system C of a reducible braid α ∈ Bn, we can
always choose a non-empty, non-nested subset Cext consisting only of the
outermost (i.e., exterior) curves of C .

Lemma 2.18. Let α ∈ Bn be a reducible braid that preserves a non-nested round
reduction system C . For each puncture pr of Dn not enclosed by any curve of C ,
extend C by adding a round curve cr enclosing the single puncture pr. Let k be the
number of curves in (the newly extended) C . Then there exists a finite sequence
of tuples (i(`), η1(`), η2(`), ε(`)) of integers and a finite sequence of braids α j,
1 ≤ j ≤ k, each α j supported on the punctured disk with boundary given by the
curve c j ∈ C , such that

α =
∏
`

σ
ε(`)
i(`),η1(`),η2(`)

·

k∏
j=1

α j. (2.3)
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Proof.

Let E j denote the punctured disk enclosed by the circle c j ∈ C , enumerating
the disks E j in order along the axis through the punctures. Let

D̂k = Dn \

k⋃
j=1

E j.

Then α induces an automorphism α̂ on D̂k.

If we collapse each hole of D̂k to a puncture, we can regard D̂k as a k-
punctured disk. So the braid α̂ can be given by a sequence of Artin generators
for the braid group Bk:

α̂ =
∏

σ̂ε`a` ,

where 1 ≤ a` < k and ε` = ±1 for all `. Viewed from above, each gen-
erator σ̂a` corresponds to a clockwise half-twist interchanging the holes
obtained by removing Ea` and Ea`+1. Thus, each σ̂ε`a` specifies a tuple
(i(`), η1(`), η2(`), ε(`)), given by the minimum index of the punctures in
Ea` , the number of punctures in Ea` , the number of punctures in Ea`+1, and
the direction of the half-twist, respectively.

Letting α j = α |E j denote the restriction of α to E j, this completes the decom-
position.

�

Definition 2.19 (piecewise-constant vector). Let C be a non-empty finite col-
lection of pairwise-disjoint non-trivial simple closed curves such that each
curve c j ∈ C encloses at least one puncture of an n-punctured disk Dn. Cut-
ting the n-punctured disk Dn along the curves c j ∈ C , we obtain a collection
E of path-components. We say that a vector v = (v1, · · · , vn) is piecewise-
constant on components of (Dn, C ) if v` = v`′ whenever the corresponding
punctures p` and p`′ belong to the same path-component in E .

Let E j denote the punctured disk enclosed by the curve c j ∈ C . We say that
the vector v is constant on E j if v` = v`′ for all punctures p`, p`′ in E j.
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Example 2.20. Let C = {c1, c2, c3, c4} be a finite collection of pairwise-disjoint
simple closed curves such that:

• the curve c1 encloses punctures p1, · · · , pi−1,

• the curve c2 encloses punctures pi, · · · , pi+η1−1,

• the curve c3 encloses punctures pi+η1 , · · · , pi+η1+η2−1, and

• the curve c4 encloses punctures pi+η1+η2 , · · · , pn.

If v be a vector that is piecewise-constant on components of (Dn, C ), then by
Example 2.17, the image B(σi,η1,η2)(t)v is also piecewise-constant on compo-
nents of (Dn, σi,η1,η2(C )) for all t.

Lemma 2.21. Consider the braid

α =
m∏
`=1

σ
ε(`)
i(`),η1(`),η2(`)

·

k∏
j=1

α j,

from Equation (2.3), where (i(`), η1(`), η2(`), ε(`)) and α j are given in the proof of
Lemma 2.18. Let C be the non-nested family of round simple closed curves given in
the hypothesis of Lemma 2.18. If v be a block vector in Cn such that v is piecewise-
constant on components of (Dn, C ), then the image B(α)(t)v is piecewise-constant
on components of (Dn,α (C )).

Proof.

As a corollary of Remark 2.12, for each 1 ≤ j ≤ k, we have that B(α j)(t)v = v
for all vectors v that are constant on E j. So k∏

j=1

B(α j)(t)

 v = v.

Thus, without loss of generality, we need only consider braids of the form
α =

∏m
`=1 σi(`),η1(`),η2(`).

We prove the proposition by induction on m ≥ 1.¶

¶We note that an intermediate braid
∏m′
`=1 σi(`),η1(`),η2(`), where 1 ≤ m′ < m, is not

necessarily reducible. However, from the proof of Lemma 2.18, we can guarantee that
every intermediate braid is a tubular braid, where each tube is delineated by the trajectory
of some curve in C . Thus, for the purposes of induction, we do not think of C as a reduction
system but merely a non-nested family of round simple closed curves that decompose α
into its tubular structure.
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The base case is given by Example 2.17.

For the inductive case, we consider α =
∏m
`=1 σi(`),η1(`),η2(`) and the corre-

sponding Burau matrices

B(α)(t) =
m∏
`=1

B
(
σi(`),η1(`),η2(`)

)
(t).

Let α′ =
∏m−1
`=1 σi(`),η1(`),η2(`). By the inductive hypothesis,

w′ = B(σ′)(t)v

is piecewise-constant on components of (Dn,α′ (C )).

Furthermore, by construction (Lemma 2.18), the image w′ is piecewise-
constant on the component containing i(m) and on the component con-
taining i(m) + η1(m). So applying the base case (Example 2.17), we have
that

B(σi(m),η1(m),η2(m))(t)w
′

is piecewise-constant on components of (Dn,α (C )).

This proves the inductive hypothesis and thus concludes our proof.

�

Piecewise-constant eigenvectors

Combining Lemmata 2.18 and 2.21, we have the following corollary:

Corollary 2.22. Let α be a reducible braid with a round reduction system C . Let
V be a block vector in Cn that is piecewise-constant on components of (Dn, C ).
Then the image B(α)(t)V is a block vector, piecewise-constant on components of
(Dn, C ) = (Dn,α(C )).

Suppose the block vector V has value V j on E j. Then we can write

B(α)(t)


V1
...

Vk

 =


∑k
j=1 V1p1, j(t)

...∑k
j=1 Vkpk, j(t)

 ,

where each pi, j(t) is a polynomial in t.
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For each fixed t, the matrix

P =


p1,1(t) · · · p1,k(t)

... . . . ...
pk,1(t) · · · pk,k(t)


has an eigenpair (λ, v), with λ ∈ C and v ∈ Ck. Letting the jth block of V be
given by the jth entry of v, we have that (λ, V) is an eigenpair of B(α)(t).

Now, when α is additionally a pure braid, the Burau matrix B(α)(1) is the
identity. Since the Burau representation is continuous in t at t = 1, then for
every ε > 0, the Gershgorin circle theorem guarantees that there exists δ > 0
such that for all t satisfying |t− 1| < δ, we have that |λ− 1| < ε. (See Lemma
2.26 for guidance on the choice of t.)

Thus,

Proposition 2.23. Let α be a reducible pure braid with round reduction system C .
Then there exists δ > 0 such that for all t satisfying |t− 1| < δ, we have that the
Burau matrix B(α)(t) has an eigenvector that is piecewise constant on (Dn, C ).

Using that every reducible braid is conjugate to a braid with a round reduc-
tion system, we now show that every reducible pure braid has an eigenvector
that is almost piecewise-constant on its components.

Proposition 2.24. Let β ∈ Bn be a reducible pure braid with a reduction system Cβ.
For each ε > 0, there exists t ∈ C, such that the Burau matrix B(β)(t) has an
eigenvector vε(t) = v(t) + e(t), where v(t) is a vector that is piecewise-constant
on (Dn, Cβ), and e(t) is a matrix whose entries are bounded by ε, with

∣∣∣ei, j(t)
∣∣∣ < ε

for all 1 ≤ i, j ≤ n.

Proof.

There exists a braid α conjugate to β in Bn, with β = γ−1αγ for some γ ∈ Bn,
such thatαhas a round reduction system C = γ(Cβ), whose curves are given
by γ(c j), for some curve c j ∈ Cβ, where we consider γ as an automorphism
of the punctured disk as necessary [57].
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Let their corresponding Burau matrices be denoted

A(t) = B(α)(t),

B(t) = B(β)(t),

C(t) = B(γ)(t).

Then B(t) = C(t)A(t)C(t)−1. (Note that we compose braids from left to right
but compose matrices from right to left.)

Since C(t) is continuous in t at t = 1, there exists δC > 0 such that for all t
satisfying |t− 1| < δC, we have that∥∥∥C(t) −C(1)

∥∥∥ < ε. (2.4)

(See Lemma 2.26.)

By Proposition 2.23, since α is a reducible pure braid with a round reduction
system C , there exists δA > 0 such that for all t satisfying |t− 1| < δA, the
Burau matrix A(t) has an eigenvector v(t) that is piecewise-constant on
(Dn, C ).

So for all t within δ = min{δA, δC} of one, we have that Equation (2.4) holds
and that A(t) has an eigenvector v(t) that is piecewise-constant on (Dn, C ).

Without loss of generality, assume
∥∥∥v(t)

∥∥∥ = 1. Note that C(t)v(t) is an
eigenvector of B(t),

B(t)C(t)v(t) = C(t)A(t)C(t)−1C(t)v(t) = C(t)A(t)v(t) = C(t)v(t),

but not necessarily piecewise-constant on (Dn,γ−1(C )), where γ−1(C ) is the
reduction system Cβ for β. On the other hand, since C(1) is a permutation
matrix, the vector C(1)v(t) is piecewise-constant on (Dn,γ−1(C )) but not
necessarily an eigenvector of B(t).

Since∥∥∥C(t)v(t) −C(1)v(t)
∥∥∥ ≤ ∥∥∥C(t) −C(1)

∥∥∥ ∥∥∥v(t)
∥∥∥ = ∥∥∥C(t) −C(1)

∥∥∥ < ε,

the vector C(t)v(t) satisfies the proposition.

�

Remark 2.25. Since the Burau representation is not faithful, we cannot guar-
antee that the eigenvector v(t) is non-constant.
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Continuity of the Burau representation

Since the Burau representation is continuous in t at t = 1, then for every
braid γ and every ε > 0, there exists t such that

∥∥∥B(γ)(t) − B(γ)(1)
∥∥∥ < ε.

Informally, since the Burau matrix B(γ)(1) is a permutation matrix, then for
t ≈ 1, the Burau matrix B(γ)(t) is approximately a permutation matrix. In
the following lemma, we quantify this approximation.

Lemma 2.26. Let γ ∈ Bn, with γ =
∏L

j=1 σa j . Then for all 0 < |t| < 1, we have∥∥∥B(γ)(t) − B(γ)(1)
∥∥∥ ≤ L (n + 1)

L−1
2
√

2 |1− t| ,

where ‖·‖ is the Frobenius matrix norm,

‖B‖ =

 n∑
j=1

n∑
i=1

∣∣∣bi, j
∣∣∣2

1/2

.

Proof.

For each generator σi ∈ Bn and t ∈ C such that |t| ≤ 1, we have∥∥∥B(σi)(t)
∥∥∥2

= n− 1 + |1− t|2 + |t|2 ≤ n + 1,∥∥∥B(σi)(1)
∥∥∥2

= n,

and ∥∥∥B(σi)(t) − B(σi)(1)
∥∥∥2

= 2 |1− t|2 .

So for a braid γ =
∏L

j=1 σa j , we have that∥∥∥∥∥∥∥∥
L∏

j=1

B(σa j)(t) −
L∏

j=1

B(σa j)(1)

∥∥∥∥∥∥∥∥ ,

=

∥∥∥∥∥∥∥∥
L∑

j=1


j−1∏
i=1

B(σa j)(t)

 · (B(σa j)(t) − B(σa j)(1)
)
·

 L∏
i= j+1

B(σai)(1)


∥∥∥∥∥∥∥∥ ,

≤

L∑
j=1

∥∥∥∥∥∥∥∥


j−1∏
i=1

B(σa j)(t)

 · (B(σa j)(t) − B(σa j)(1)
)
·

 L∏
i= j+1

B(σai)(1)


∥∥∥∥∥∥∥∥ ,

≤

L∑
j=1


j−1∏
i=1

∥∥∥B(σa j)(t)
∥∥∥ · ∥∥∥B(σa j)(t) − B(σa j)(1)

∥∥∥ ·  L∏
i= j+1

∥∥∥B(σai)(1)
∥∥∥ ,

≤ L (n + 1)
L−1

2
√

2 |1− t| . �



31

Corollary 2.27. Let ε > 0. For t ∈ C, with 0 < |t| < 1, such that

|1− t| <
√

2ε
2L

(n + 1)−
L−1

2 .

Then
∥∥∥B(γ)(t) − B(γ)(1)

∥∥∥ < ε.

2.4.2 Numerical implementation

In the following section, we compute the Burau matrix for two different
dynamical systems and visualize corresponding eigenvectors whose level-
sets correspond to components of the Nielsen-Thurston decomposition.

Given trajectories x j : [0, 1] → R2
× [0, 1], 1 ≤ j ≤ n, we use braidlab [43] to

compute the algebraic braid β corresponding to the motion of the particles,
with respect to some fixed projection line. Prior to computing the algebraic
braid, some preprocessing and extra consideration are necessary.

(i) Resolving coincident projections. We note that when our initial po-
sitions are given by grid points of a regular grid, it can be helpful to
perturb the initial positions and/or choose a projection line that is not
parallel to the grid lines (i.e., not the x- or y-axis). This will help resolve
some coincident trajectories in the projection, allowing the algebraic
braid (i.e., sequence of σi) to be computed.

(ii) Enforcing closure. In general, sets of trajectories do not form true
geometric braids, since the set of particle positions at initial time and
the set of particle positions at final time are not necessarily the same. In
such a setting, changing the projection line (to form an algebraic braid)
will not necessarily result in a conjugate braid [41, 42]. To rectify this,
in the examples that follow, for each trajectory

(
x j (t0) , · · · x j (tN)

)
, we

append the initial position x j (t0) to form the closed trajectory(
x j (t0) , · · · x j (tN) , x j (t0)

)
.

We note that there are many ways one may choose to enforce closure.
In braidlab, Thiffeault provides a closure method that simply draws
line segments from the final points to the initial points in such a way
that no new crossings are created in the projection along the x-axis [43].
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By enforcing closure in a way that yields a pure braid, we are able to
apply Proposition 2.24 to extract components of a reducible braid.

Once the algebraic braid is computed, we map each generator σi of the
algebraic braid to its corresponding Burau matrix, given in Equation (2.2),
and we instantiate the Burau matrices with a fixed real-valued t such that
t ≈ 1. (Corollary 2.27 can be used to choose the value of t.) The product∏

B(σb`)(t ≈ 1), where β =
∏
` σb` , is the Burau matrix corresponding to the

braid of trajectories.

We should note that an eigenvector found in this manner may not necessarily
delineate all components of a reducible braid. In fact, for a pure braid β,
all vectors of the form (0, · · · , 0, 1, 0, · · · , 0) are eigenvectors of B(β)(1). In
practice, these vectors are easy to distinguish from eigenvectors that reveal
dynamical structure.

The assiduous reader may note that most theorems in this document were
proven for the more general case t ∈ C. These proofs also hold for t ∈ R. In
practice, instantiating the Burau matrices to a real-valued t ∈ R halves the
number of arithmetic operations required, and no fidelity is forfeited.

2.5 Examples

We demonstrate the relevance of our contributions on two examples: the
blinking vortex flow and the (modified) Duffing oscillator.

2.5.1 Blinking vortex flow

The blinking vortex flow was introduced by Aref as an idealization of stir-
ring [44]. The flow is given by a pair of vortices separated by a finite
distance, blinking on and off periodically in an alternating fashion in an
incompressible, inviscid fluid. We consider a modified version of this flow
in an unbounded domain (modeled on the complex plane).

The velocity field due to a single point vortex located at x = a on the x-axis
is given by

ṙ = 0,

θ̇ =
Γ

2πr
,
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Figure 2.8: Illustrations of Poincaré sections for Aref’s blinking vortex flow;
from left to right, top to bottom: µ = 1, 5, 10, 20, 30, 35, 40, 50.
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where Γ is the strength of the vortex, and r =
√
(x− a)2 + y2 is the distance

to the center of the vortex.

The mapping, in dimensionless form [58], induced by two identical vortices
at ξi = ±a, each acting for time T, is given by the twist map x

y

 7→  ξi + (x− ξi) cos ∆θ− y sin ∆θ
(x− ξi) sin ∆θ+ y cos ∆θ

 ,

where ∆θ =
µ
r2 , with µ = ΓT

2πa2 , and r =

√
(x− xi)

2 + y2. The parameter µ
is the flow strength, and its value controls the behavior of the system. We
make distances dimensionless with respect to a and place the vortices at
ξi = ±1.

When both vortices act simultaneously (T = 0, µ = 0), the system is in-
tegrable. We perturb the system by increasing µ from zero and study the
Poincaré sections t = kT, k ∈ Z (See Figure 2.8). Chaotic regions appear for
all µ > 0 [59]. For small values of µ, small chaotic regions exist near the
elliptic and hyperbolic points. As µ increases, the size of the chaotic regions
grow, destroying confining KAM surfaces as the chaotic regions merge.

Using the methods described above, we give eigenvectors for the blinking
vortex flow for µ=0.01, 0.05, 0.10, 0.20, 0.35, 0.50 in Figure 2.9.

2.5.2 Modified Duffing oscillator

In this example, we study a modified Duffing oscillator, given by

ẋ = y + α cos (ωt) ,

ẏ = x
(
1− x2

)
− δy + γ cos (ωt) ,

(2.5)

with α = 0.1, γ = 0.14, δ = 0.08, ω = 1.

This compressible system is also studied by Allshouse and Thiffeault [36]
with the same parameters as an example a system with two primary regions
of mixing: (i) the limit cycle and its basin of attraction (yellow in Figure 2.10)
and (ii) the rest of the domain (blue/green).

A limit cycle (Figure 2.11) is an isolated closed trajectory [60]. A trajectory is
isolated if neighboring trajectories are not closed; they spiral toward or away
from the limit cycle.
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Figure 2.9: Eigenvectors of Burau matrix computed from trajectories
of Aref’s blinking vortex flow; from left to right, and top to bottom:
µ=0.01, 0.05, 0.10, 0.20, 0.35, 0.50.

We say that a limit cycle is stable (or attracting) if all neighboring trajectories
approach the limit cycle. Otherwise, we say that the limit cycle is unstable.
A stable limit cycle is an example of an attractor.

Informally, an attractor is a set to which all neighboring trajectories converge.
The concept of an attractor generated great interest when Ruelle and Takens
suggested that turbulent behavior in fluids might be due to the presence
of “strange” attractors [61]. Although attractors play an important role in
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Figure 2.10: Attractors of the modified Duffing oscillator. A coloring of
initial particle positions by their position at time t = 250.

dynamical systems, there is no universal agreement over the most useful
definition. We refer the reader to [62] and [61] for a discussion of the
literature.

Following the exposition of [60], we say that a closed set A is an attractor if
the following are true:

(1) A is an invariant set: any trajectory x(t) that starts in A stays in A for
all time;

(2) A attracts an open set of initial conditions: there is an open set U ⊃ A
such that if x(0) ∈ U, then the distance from x(t) to A tends to zero as
t→∞. The largest such U is called the basin of attraction of A;

(3) A is minimal: there is no proper subset of A satisfying conditions (1)
and (2).

Trajectories of the modified Duffing oscillator belong to one of three types,
each illustrated in Figure 2.12 with the corresponding colors. The yellow
region corresponds to the yellow limit cycle and its basin of attraction. The
green regions attract to one of the two green limit cycles. The blue region
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Figure 2.11: Three limit cycles of the modified Duffing oscillator.

attracts to neither the yellow limit cycle nor the green limit cycles during
the time period studied.
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Figure 2.12: Phase portrait of the modified Duffing oscillator

Using the methods described above, we give eigenvectors for the modified
Duffing oscillator in Figure 2.13. In addition to the two initial conditions
found by Allshouse and Thiffeault [36], we are able to detect two additional
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limit cycles (green in Figure 2.10).

We note that since the modified Duffing oscillator is a compressible system,
particle positions can in fact coincide. In order to form a well-defined braid,
we select a sufficiently sparse sampling of the domain and a time window so
that the dynamics are reasonably well-captured yet no two particles coincide
at any time. Allshouse and Thiffeault [36] argue that the ability of the braid
theoretic approach to detect coherent sets even in an incompressible flow is
a testament to the wide applicability of the method.
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Figure 2.13: Eigenvectors of the Burau matrix computed from trajectories of
the modified Duffing oscillator depict three types of initial condition.

2.6 Discussion and future directions

2.6.1 A faithful representation of the braid group

In this work, we have chosen to use the Burau representation for the analy-
sis of spatially sparse particle trajectories. The Burau representation is not
faithful but confers computational advantages in both space and time, com-
pared to the faithful Lawrence-Krammer representation, which is given by
n(n−1)

2 ×
n(n−1)

2 matrices [63]. If a greater level of topological and dynam-
ical detail is preferred, we may wish to consider the Lawrence-Krammer
representation instead.

2.6.2 Parallelism

The algorithm that we describe in this chapter lends itself naturally to paral-
lelism. We do not discuss the details here, but we note that the matrix chain
multiplication required by our algorithm is amenable to optimization. In
particular, in addition to the usual considerations of the matrix chain mul-
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Figure 2.14: Allshouse and Thiffeault detect two types of initial conditions
for the modified Duffing oscillator [36]. The dots (numbered from left to
right) are the initial conditions for the trajectories that are studied further
by Allshouse and Thiffeault as representative trajectories for the two types
of initial conditions.

tiplication problem [64, 65], we remark that by taking the sequence of braid
generators into account, then depending on the flow, we can potentially
partition the braid β =

∏L
` σb` into subsequences of neighboring generators

(e.g., each subsequence consists only of generators σi− j, σi− j+1, · · · , σi+ j, for
small j). This effectively partitions the sequence of matrix multiplications
into subsequences that each consist of (mostly) sparse matrix multiplica-
tions, thereby reducing the computational requirements of our analysis.
Future work may wish to formalize these and other computational consid-
erations.
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C h a p t e r 3

TOPOLOGICAL DATA ANALYSIS

3.1 Introduction

The proliferation of sensors and advancement of technology has led to the
production and collection of unprecedented amounts of data in recent years.
The data are often noisy, non-linear, and high-dimensional, and the effec-
tiveness of traditional tools may be limited.

Recently, there has been a lot of interest in and success with develop-
ing topologically-motivated techniques to analyze high-dimensional data.
These approaches are especially useful when a topological method is sensi-
tive to large- and small-scale features that might not be detected by analysis
methods that may obscure geometric features, such as principal compo-
nent analysis (PCA), multi-dimensional scaling (MDS), and cluster analysis.
Topological data analysis has found success in many applications, includ-
ing the identification of finer stratifications of breast cancer patients, voting
patterns of the House of Representatives, and playing styles of NBA play-
ers [66]; the modeling and forecast of contagions on networks [67]; and the
detection of intruders in sensor networks [68].

In many situations when we are given data points in the form of very long
vectors, only a few coordinates or dimensions might be relevant to the
question(s) of interest. The data may have been generated by an underly-
ing system with far fewer degrees of freedom than the ambient dimension
might suggest, and the data may live on or, in the presence of noise, near
a submanifold of the ambient space. Manifold learning is concerned with
estimating the geometric or topological properties of the submanifold of
interest from the points given.

In this section, we are interested in computing topological invariants, namely
homology, that provide a good characterization of the submanifold from the
data points given. Niyogi, Smale, and Weinberger [69] proved that in the
case where data are drawn by sampling a probability distribution that has
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support on or near a submanifold of Euclidean space, it is possible to “learn”
the homology of the submanifold with high confidence.

We begin by defining some simplicial complexes that can be used to sum-
marize the shape of a space X. We also provide an overview of previous
work on Reeb graphs and their higher-dimensional analogues, Reeb spaces,
which allow us to summarize the structure of a topological space X with
respect to level sets of a continuous function f : X→ Rd, d ≥ 1.

Reeb graphs and Reeb spaces can also be adapted for the setting of point
clouds using a construction called mapper, which was introduced by Singh,
Mémoli, and Carlsson [5]. In their preprint, Carrière and Oudot relate
1-dimensional mapper constructions of a topological space X and a con-
tinuous real-valued function f : X → R to the corresponding Reeb graph
and show that 1-dimensional mapper constructions are stable under pertur-
bations. Munch and Wang use category theory to provide a more general
framework and relate mapper constructions for a topological space X and a
continuous multivariate function f : X → Rd, d ≥ 1, to the corresponding
Reeb space. They show that categorical Reeb spaces and categorical map-
per constructions converge under an interleaving distance between their
categorical representations.

3.2 Contributions

As we provide an overview of previous work, we use the techniques of
de Silva et al. [20] to show that the interleaving distance between mapper
constructions for continuous maps f : X → Rd, g : X → Rd, d ≥ 1, from
a topological space X to a d-dimensional parameter space is stable with
respect to the supremum norm (Proposition 3.21).

We then extend Munch and Wang’s work. We propose that the data of
mapper constructions over point clouds can be stored as a functor. Following
the advice of Singh, Mémoli, and Carlsson [5], we consider clusters to be the
discrete analog of the path-components studied by Munch and Wang [19].
For each pair f = (X, f ), where X is a finite set and f : X → Rd is a filter
function into a d-dimensional parameter space, and for a given finite open
cover U of the image of f , the nerve K = N(U), and clustering parameter
δ ≥ 0, we associate a functor Ċ f

K,δ : Cell(K)op
→ Set, called the abstract
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mapper from the category of Cell(K)op.

For each fixed δ, the functor Ċ f
K,δ corresponds to a mapper construction at

a fixed clustering resolution. In order to compare mapper constructions
over a range of clustering resolutions, we introduce the hierarchical abstract
mapper, which is given by a family of abstract mappers

{
Ċ f

K,δ

}
δ≥0

.

Now, each functor Ċ f
K,δ : Cell(K)op

→ Set can be pushed into the category

SetOpen(Rd) and viewed as a functor C̊ f
K,δ : Open(Rd)→ Set, which enables

us to define an interleaving distance between hierarchical abstract mappers
C̊

f
K =

{
C̊ f

K,δ

}
δ≥0

over point clouds.

We prove that, as the resolution of the cover U, given by

res(U) := sup
{
diam(Uα) | Uα ∈ U

}
,

goes to zero, the interleaving distance between abstract mappers over point
clouds are stable in two aspects:

Theorem 3.38. Let (X, d) be a finite metric space. Let f , g : X → Rd be filter
functions into a d-dimensional parameter space Rd. Then as res(U)→ 0, where U
is a finite open cover for image( f )∪ image(g), we have that

dI(C̊ f
K,δ, C̊g

K,δ) ≤ ‖ f − g‖∞

for all δ ≥ 0.

Theorem 3.41. Let X and Y be compact subsets of a metric space (Z, d). Let
f : X ∪Y→ Rd be a Lipschitz continuous filter function into Rd, with Lipschitz
constant L ∈ R. Denote the restrictions of f to X and Y by fX : X → Rd and
fY : Y → Rd, respectively. Then as res(U) → 0, where U is an open cover for
image( f )∪ image(g), we have that

dI(C̊ fX
K , C̊ fY

K ) ≤ max
(
dH(X, Y), L · dH(X, Y)

)
,

where dH(X, Y) is the Hausdorff distance between X and Y.

Theorem 3.41 relates mapper constructions over point clouds to mapper
constructions over topological spaces.
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Furthermore, we show that hierarchical abstract mappers correspond to
dendrograms of single-linkage hierarchical clustering when we take the
filter function f : X → R to be a constant function. In these cases, we
show that the interleaving distance between hierarchical abstract mappers
over two different sets X and Y is bounded above by the Gromov-Hausdorff
distance between the dendrograms over X and Y.

Finally, we give an algorithm for hierarchical mapper constructions, which
allow the study of topological features of mapper constructions over a range
of clustering resolutions, enabling the analysis of topological features using
statistical methods. We apply our tools to the analysis of high-dimensional
geospatial sensor data and provide a statistic for quantifying climate anoma-
lies.

3.3 Simplicial complexes

It is desirable to work with simplicial complexes because the homology of a
simplicial complex is easily computable [70, 71].

Here, we give a brief description of simplicial complexes. We refer the reader
to [72, 73] for a more in-depth discussion.

Abstract simplicial complexes

Definition 3.1 (abstract simplicial complex). An abstract simplicial complex
is a collection Σ of finite non-empty sets, such that if σ ∈ Σ, and τ is a
non-empty subset of σ, then τ ∈ Σ.

An element σ of Σ is a simplex of Σ. Each non-empty subset τ of a simplex σ
is a face of σ. The vertex set V of Σ is the collection of the one-point elements
of Σ. We do not distinguish between the vertex v ∈ V and the 0-simplex
{v} ∈ Σ.

The dimension of a simplex is one less than the number of its elements. The
dimension of a simplicial complex is the greatest dimension of its simplices or
is infinite if there is no such greatest dimension.

A subcollection of Σ that is itself a simplicial complex is called a subcomplex
of Σ.
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Nerve and Nerve Lemma

Given a topological space X, there are many different simplicial complexes
that can be constructed from it. One particularly useful construction that
we will devote our attention to is the nerve.

Definition 3.2 (nerve). Let A be a collection of subsets of the space X. The
nerve of A, denoted N (A), is the abstract simplicial complex with vertices
consisting of the elements of A and simplices given by the finite subcollec-
tions

{
Ai0 , · · · , Ain

}
of A such that

Ai0 ∩ · · · ∩Ain , ∅.

When A is a covering of X, the nerve N (A) can be thought of as a combina-
torial representation of X.

The nerve of X is a useful construction because the Nerve Lemma [74, 75]
provides criteria that guarantee that the nerve of a covering of X is homotopy
equivalent to X.

Theorem 3.3 (Nerve Lemma [73]). Let X be a paracompact space. If U is an
open cover of X such that every non-empty intersection of finitely many sets in U

is contractible, then X is homotopy-equivalent to the nerve N (U).

Throughout this thesis, we assume all covers are good open covers so that
the Nerve Lemma applies.

Čech complexes

When X is a metric space, we can consider the covering of X by ε-balls to
form a Čech complex.

Definition 3.4 (Čech complex). Let (X, d) be a metric space. For ε > 0, let
A ⊆ X such that X =

⋃
a∈A Bε(a), where Bε(a) := {x ∈ X : d(x, a) < ε} is a ball

of radius ε centered at a ∈ A. The Čech complex of (A, ε), denoted C̆ (A, ε), is
the nerve of the covering

{
Bε (a)

}
a∈A.

The Čech complex can be used to approximate the homology of a manifold.

Theorem 3.5 ([76]). Let M be a compact Riemannian manifold. There exists a
positive number e so that C̆ (M, ε) is homotopy equivalent to M whenever ε ≤ e.
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Moreover, for every ε ≤ e, there is a finite subset V ⊆ M so that the subcomplex
C̆ (V, ε) ⊆ C̆ (M, ε) is also homotopy equivalent to M.

Vietoris-Rips complexes

Unfortunately, the Čech complex can be computationally intensive to com-
pute. One can consider the Vietoris-Rips complex as an alternative, which
allows us to consider only pairs instead of all subcollections.

Definition 3.6 (Vietoris-Rips complex). Let (X, d) be a metric space. The
Vietoris-Rips complex VR (X, ε) is the simplicial complex with vertex set X,
such that a set {x0, · · · , xk} spans a k-simplex if and only if d

(
xi, x j

)
≤ ε for all

0 ≤ i, j ≤ k.

We can relate the Čech complex and Vietoris-Rips complex through the
following inclusions:

Proposition 3.7 ([76]). For ε > 0, we have the inclusions

C̆ (X, ε) ⊆ VR (X, ε) ⊆ C̆ (X, 2ε) .

3.4 Persistent homology

Persistent homology is motivated by the desire to distinguish noise from
features in data and the need to examine data over a range of scales. We
use persistent homology to measure the scale, or resolution, of a topological
feature.

We follow the expositions of Edelsbrunner and Harer [77, 78] as we introduce
background material for persistent homology. Although persistence can be
defined for any sequence of vector spaces connected by homomorphisms, in
our applications, we are only concerned with persistent homology for sim-
plicial complexes. We refer the reader to [72, 73] for a thorough discussion
of homology.

Throughout this chapter, we consider only homology with Z/2Z coeffi-
cients. We write Hr (X) for Hr (X; Z/2Z), and we call its rank the rth Betti
number of X, denoted βr (X).
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Filtrations

In order to define persistent homology for simplicial complexes, we intro-
duce the notion of a filtration of a simplicial complex given by a monotonic
map.

Definition 3.8 (monotonic). Let K be a simplicial complex. We say that
a function f : K→ R is monotonic if it is non-decreasing along increasing
chains of faces; that is, f (τ) ≤ f (σ) whenever τ is a face of σ.

If f : K→ R is monotonic, then the sublevel set

K(a) = f−1 (−∞, a]

is a subcomplex of K for every a ∈ R.

In particular, if K is a simplicial complex with m simplices, then we can find
an increasing sequence of n + 1 ≤ m + 1 different subcomplexes:

∅ = K0 ⊆ K1 ⊆ · · · ⊆ Kn = K.

Letting a1 < · · · < an be the images of the simplices in K under f : K → R,
and a0 = −∞, we have Ki = K (ai) for each i.

We call this nested sequence of subcomplexes a filtration of (K, f ).

The inclusion maps Ki−1 → Ki between subcomplexes induce the following
homomorphisms by functorality:

0 = H∗ (K0)→ H∗ (K1)→ · · · → H∗ (Km) = H∗ (K) .

As simplices get added to Ki−1 to form Ki, new homology classes may come
into existence, and existing homology classes may become trivial or merge
with one another.

Persistent homology groups

Definition 3.9 (pth persistent homology groups). Let f i, j
p : Hp (Ki)→ Hp

(
K j

)
be the homomorphism induced by the inclusion Ki → K j, for i ≤ j. The pth
persistent homology groups are the images

Hi, j
p = im f i, j

p ,
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for 0 ≤ i ≤ j ≤ n.

The ranks of these groups are called the pth persistent Betti numbers

β
i, j
p = rank Hi, j

p .

Note that the persistent homology groups Hi, j
p consist of homology classes

of Ki that still exist in K j, and Hi,i
p = Hp (Ki).

A homology class α ∈ Hp (Ki) is born at Ki if it is not in the image of the map
induced by the inclusion Ki−1 ⊂ Ki. We say α dies entering K j if the image
of the map induced by Ki−1 ⊂ K j−1 does not contain the image of α but the
image of the map induced by Ki−1 ⊂ K j does. The persistence of α is a j − ai

or j − i, depending on the application. A class is essential if it does not die
within the filtration.

Persistence diagrams

A persistence diagram is a multiset of points in the extended plane R2
∞.

Let µi, j
p be the number of p-dimensional classes born at Ki and dying enter-

ing K j. Then the pth persistence diagram of the filtration of (K, f ), denoted
dgmp( f ), consists of points (ai, a j), each with multiplicity µi, j

p .

3.5 Reeb graphs and Reeb spaces

3.5.1 Reeb graphs

In addition to studying the shape of a topological space X, we can also study
properties of a topological space X through the level sets of a continuous
function f : X→ R. A tool for tracking and visualizing the path-components
of the level sets of f is the Reeb graph. Since Reeb graphs depend on the
choice of map f : X → R, different functions can be used to study different
properties of a space.

Reeb graphs were originally introduced in the context of Morse theory [79].
They can be used to select meaningful level sets and have been used as a
tool for shape comparison [80, 81], data skeletonization [82], and surface
denoising [83]. Furthermore, since Reeb graphs are fast to compute [84, 85],
they can be useful for analyzing very large datasets.
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Geometric Reeb graphs

The geometric Reeb graph provides an intuitive summary of the structure
of the level sets of a pair (X, f ).

Definition 3.10 (geometric Reeb graph [20]). Let X be a topological space,
and let f : X→ R be a continuous real-valued function. For x, x′ ∈ X, we
write x ∼ f x′ if x and x′ belong to the same path-component of a level set
f−1(a), for some a ∈ R. The quotient space X/ ∼ f is the (geometric) Reeb
graph of (X, f ).

Example 3.11 (height function). We illustrate the Reeb graph of a surface
given by the height function in Figure 3.1.

Figure 3.1: Reeb graph of height function.

In general, the quotient space X → X/ ∼ f may be poorly behaved. Thus,
we restrict ourselves to a class of constructible pairs (X, f ).

Definition 3.12 (R-Top [20]). Let R-Top be the category whose objects con-
sist of pairs (X, f ), where X is a topological space and f : X → R is a
continuous map, and whose morphisms φ : (X, f ) → (Y, g) are continuous
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maps φ : X→ Y such that the following diagram commutes:

X
φ

//

f ��

Y

g��
R

Definition 3.13 (R-Topc [20]). We say that an object of R-Top is constructible
if it is isomorphic to some (X, f ) constructed in the following manner: given
a finite set A = {a0, · · · , an}, listed in increasing order,

• specify a locally path-connected space Vi for each 0 ≤ i ≤ n,

• specify a locally path-connected space Ei, for each 0 ≤ i < n, and

• specify continuous maps li : Ei → Vi and ri : Ei → Vi+1.

Let X be the quotient space
⊔

i

Vi × {ai}

⊔
⊔

i

Ei × [ai, ai+1]


 / ∼,

with (li(x), ai) ∼ (x, ai) and (ri(x), ai+1) ∼ (x, ai+1) for all i and all x ∈ Ei, and
let f : X→ R be the projection onto the second factor.

We denote the full subcategory of constructible (X, f ) ∈ R-Top by R-Topc.

Examples of constructible (X, f ) include Morse functions on compact man-
ifolds and piecewise linear functions on compact polyhedra.

Abstract Reeb graphs

In many applications, it is important to ensure that two Reeb graphs are
similar when the functions they arise from are similar. To do so, de Silva
et al. [20] show that the data of a Reeb graph can be stored abstractly
as a functor. In this setting, they define the interleaving distance between
pairs of Reeb graphs and show that the interleaving distance is stable under
perturbations. We summarize some of their definitions and results here and
call on them later.
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Definition 3.14 (abstract Reeb graph [20]). Let X be a topological space, and
let f : X→ R be a continuous real-valued function. Let Open(R) denote the
category with objects consisting of open sets in R and arrows I→ J between
two objects if and only if I ⊆ J.

The abstract Reeb graph of (X, f ) is a functor F : Open(R) → Set that maps
each open set I ⊆ R to the set of path-components of f−1(I), denoted F(I),
and each arrow I ⊆ J to the set map F(I) → F(J) induced by the inclusion
f−1(I) ⊆ f−1(J), denoted F[I ⊆ J].

Note that an abstract Reeb graph is an object in the category of functors
SetOpen(R).

Let C : R-Top → SetOpen(R) denote the functor that maps f = (X, f ) to its
Reeb graph C( f ) = F, with

F(I) = π0 f−1(I), F[I ⊆ J] = π0[ f−1(I) ⊆ f−1(J)],

where we let π0 denote the set of path-components of a space.

Interleaving distance between Reeb graphs

Interleavings are approximate isomorphisms. An isomorphism between func-
tors F, G : Open(R)→ Set is a pair of families of maps

φI : F(I)→ G(I), ψI : G(I)→ F(I)

that are natural with respect to inclusions I ⊆ J such that φI and ψI are
inverses for all I.

An ε-interleaving gives some leeway by allowing the codomains of φI and
ψI to be given by an ε-expansion of I.

Definition 3.15 (ε-interleaving between Reeb graphs). For an open interval
I = (a, b) ⊆ R, let Iε = (a− ε, b + ε).

An ε-interleaving between two Reeb graphs F, G : Open(R) → Set is a pair
of families of maps

φI : F(I)→ G(Iε), ψI : G(I)→ F(Iε)

that are natural with respect to inclusions I ⊆ J and satisfy

ψIε ◦φI = F[I ⊆ I2ε], φIε ◦ψI = G[I ⊆ I2ε]
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for all I.

F(I)

F[I⊆I2ε]

��

φI

''

G(I)

G[I⊆I2ε]

��

ψI

''
G(Iε)

ψIεww

F(Iε)

φIεww
F(I2ε) G(I2ε)

When there exists an ε-interleaving between Reeb graphs F and G, we say
that F and G are ε-interleaved.

Definition 3.16 (interleaving distance). The interleaving distance between two
Reeb graphs F, G : Open(R)→ Set is given by

dI(F, G) = inf {ε | F, G are ε-interleaved } .

(We take the infimum of an empty set to be∞.)

De Silva et al. [20] show that the interleaving distance on the space of
Reeb graphs is an extended pseudometric. (It takes values in [0,∞], with
dI(C( f ),C( f )) = 0, is symmetric, and satisfies the triangle inequality.)

3.5.2 Reeb spaces

We can also study higher-dimensional analogues of Reeb graphs, called
Reeb spaces. Reeb spaces are generalizations of Reeb graphs, obtained when
a real-valued map f : X→ R is replaced by a multivariate map f : X→ Rd.

Munch and Wang define Reeb spaces using categorical tools and show that
categorical representations of Reeb spaces and categorical representations
of mapper constructions converge in the interleaving distance [19]. We
summarize their definitions and some of their results here and reference
them in later sections.

Geometric Reeb spaces

Definition 3.17 (geometric Reeb space [19]). Let X be a topological space,
and let f : X→ Rd be a continuous function. For x, x′ ∈ X, we write x ∼ f x′

if x and x′ belong to the same path-component of a level set f−1(a), for some
a ∈ Rd. The quotient space X/ ∼ f is the geometric Reeb space of (X, f ).
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Abstract Reeb spaces

Definition 3.18 (abstract Reeb space [19]). Let X be a topological space, and
let f : X→ Rd be a continuous function. Let Open(Rd) denote the category
with objects consisting of open sets in Rd and arrows I → J between two
objects if and only if I ⊆ J.

The abstract Reeb space of (X, f ) is a functor F : Open(Rd) → Set that maps
each open set I ⊆ Rd to the set of path-components of f−1(I), denoted F(I),
and each arrow I ⊆ J to the set map F(I) → F(J) induced by the inclusion
f−1(I) ⊆ f−1(J), denoted F[I ⊆ J].

Note that an abstract Reeb space is an object in the category of functors
SetOpen(Rd).

Let Rd-Top be the category whose objects consist of pairs (X, f ), where X is
a topological space and f : X→ Rd is a continuous map, and whose arrows
are function-preserving maps (X, f )→ (Y, g).

As before, we let C : Rd-Top→ SetOpen(Rd) denote the functor that maps
f = (X, f ) to its Reeb space C( f ) = F, with

F(I) = π0 f−1(I), F[I ⊆ J] = π0[ f−1(I) ⊆ f−1(J)].

Interleaving distance between Reeb spaces

Definition 3.19 (ε-interleaving between Reeb spaces [19]). For an open set
I ⊆ Rd, let Iε = {x ∈ Rd : d(x, I) < ε} denote the ε-expansion of I. An ε-
interleaving between two abstract Reeb spaces F, G : Open(Rd) → Set is
a pair of families of maps

φI : F(I)→ G(Iε), ψI : G(I)→ F(Iε)

that are natural with respect to inclusions I ⊆ J and satisfy

ψIε ◦φI = F[I ⊆ I2ε], φIε ◦ψI = G[I ⊆ I2ε]

for all I.
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F(I)

F[I⊆I2ε]

��

φI

''

G(I)

G[I⊆I2ε]

��

ψI

''
G(Iε)

ψIεww

F(Iε)

φIεww
F(I2ε) G(I2ε)

Where there exists an ε-interleaving between Reeb spaces F and G, we say
that F and G are ε-interleaved.

Definition 3.20 (interleaving distance [19]). The interleaving distance between
two Reeb spaces F, G : Open(Rd)→ Set is given by

dI(F, G) = inf {ε | F, G are ε-interleaved } .

(We take the infimum of an empty set to be∞.)

Munch and Wang [19] show that the interleaving distance on the space of
abstract Reeb spaces is an extended pseudometric.

Stability of interleaving distance for Reeb spaces

De Silva et al. [20] prove a stability result for interleaving distance on the
space of Reeb graphs. At the time of writing, an analogous result for Reeb
spaces has not been recorded. The ideas used to prove stability for Reeb
graphs carry over to the setting of Reeb spaces. We state the analogous
result for Reeb spaces and give a proof here.

Proposition 3.21. Let f = (X, f ), g = (Y, g) ∈ Rd-Top. Then

dI(C( f ),C(g)) ≤ ‖ f − g‖∞.

Proof.

Suppose ‖ f − g‖∞ ≤ ε.

Let I ⊆ Rd be an open set. Since ‖ f − g‖∞ ≤ ε, we have that ‖ f (x)− g(x)‖ ≤ ε
for all x ∈ X. In particular, if x ∈ f−1(I), then f (x) ∈ I and g(x) ∈ Iε. Thus,

f−1(I) ⊆ g−1(Iε).
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Similarly, we have
g−1(I) ⊆ f−1(Iε).

Thus, we can define
φI = π0[ f−1(I) ⊆ g−1(Iε)]

and
ψI = π0[g−1(I) ⊆ f−1(Iε)].

Naturality with respect to inclusions I ⊆ J follows immediately.

Furthermore, since inclusions commute, we have that

ψIε ◦φI = F[I ⊆ I2ε], φIε ◦ψI = G[I ⊆ I2ε]

for all I.

Thus, there is an ε-interleaving between C( f ) and C(g) for all ε ≥ ‖ f − g‖∞.
It follows that

dI(C( f ),C(g)) ≤ ‖ f − g‖∞.

�

3.6 Mapper constructions

The mapper algorithm was introduced by Singh, Mémoli, and Carlsson [5]
to produce a construction that summarizes the topological properties of a
point cloud.

Carriére and Oudot [76] describe 1-dimensional mapper constructions as a
pixelized version of Reeb graphs, appropriate for studying point clouds.

Singh, Mémoli, and Carlsson [5] state without proof that in the case where
f : X → R is a continuous real-valued function, the mapper construction
is a stochastic version of the Reeb graph. For a sufficiently fine covering of
image( f ), the mapper construction recovers the Reeb graph of f precisely.

In the more general setting where f : X → Rd is a continuous multivariate
function from a topological space X, Munch and Wang [19] give a formal
convergence between Reeb spaces and mapper constructions in the inter-
leaving distance.

In this section, we provide an overview of mapper constructions as they
were originally introduced by Singh, Mémoli, and Carlsson [5].
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3.6.1 Classical mapper construction for topological spaces

The mapper construction was introduced as a simplicial complex, given by
the nerve of the pullback of an open cover by a continuous function [5].

Definition 3.22 (classical mapper construction for topological spaces [76]).
Let X be a topological space. Given a continuous map f : X→ Y and a finite
open cover U of Y, the mapper construction over X is the nerve of the pullback
f ∗(U), where we write f ∗(U) for the covering of X given by the collection of
path-components of f−1(U), U ∈ U.

3.6.2 Classical mapper construction for point clouds

In the setting of point-clouds, we consider clustering as the discrete coun-
terpart to path-components of a topological space [76]. In this document,
we use single-linkage hierarchical clustering as our clustering algorithm of
choice, but depending on the application, other clustering algorithms may
be appropriate as well.

Definition 3.23 (single-linkage clustering [21, 86]). Let (X, dX) be a finite
metric space. For each δ ≥ 0, define a relation ∼δ, where x ∼δ x′ if and only if
there is a sequence x0, · · · , xk ∈ X so that x0 = x, xk = x′, and dX(xi, xi+1) ≤ δ

for all i.

Note that ∼δ is in fact an equivalence relation.

Furthermore, the set of clusters given by ∼δ is exactly the set of path-
components of the Vietoris-Rips complex VR(X, δ) [76], which we use to
define the mapper construction for point clouds.

Definition 3.24 (classical mapper construction for point clouds [76]). Given a
point cloud X, a map f : X→ Y, and a finite open cover U of Y, let V denote
the set of path-components of the Vietoris-Rips complexes V( f−1(U), δ),
U ∈ U. The mapper construction over X is the nerve of V.

The map f : X → Y is often referred to as a filter function for X [5, 66] or
a reference map to the reference space Y [76]. Oftentimes, f is a real-valued
function that captures geometric or statistical properties of the data. We can
also choose f to be application-specific [6].
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Examples of filter functions. The choice of filter function(s) is critical to the
successful extraction of features of relevance. A different filter function may
result in a simplicial complex with a different shape, highlighting different
features of the data. Some filter functions may not produce any features of
interest. We give a few examples of effective filter functions and highlight
some corresponding applications.

• Density estimation using a Gaussian kernel,

fr(x) = Cr

∑
y

exp
(
−d(x, y)2

r

)
,

for r > 0, was employed as a filter function to differentiate between type
1 and type 2 diabetes based on six quantities: age, relative weight, fast-
ing plasma glucose, area under the plasma glucose curve for the three-
hour oral glucose tolerance test (OGTT), area under the plasma insulin
curve for the OGTT, and steady-state plasma glucose response [5].

• L-infinity centrality, given by the maximum distance to any other data
point in the data set,

f (x) = max
y∈X

d(x, y),

was used to robustly identify subpopulations of breast cancer patients
that are consistent between two different data sets of gene expression
profiles [66]. The identification of subpopulations of cancer patients
who might benefit from targeted therapy is the focus of much research,
as there is often much variability in patient outcomes under current
treatment protocols. However, it is often difficult to identify the same
subpopulation in different data sets, when the data are generated on
different platforms, different sets of patients, and at different times.
Topological data analysis is able to overcome some of the challenges
introduced by the noise and complexity of genomic data.

• The pth eccentricity functions,

Ep(x) =


∑

y∈X d(x, y)p

N


1
p

,
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where 1 ≤ p < ∞, and

E∞(x) = max
y∈X

d(x, y),

were initially introduced by Hamza and Krim [87] for object represen-
tation and recognition. Singh et al. [5] use E1(x) as a filter function in
order to summarize and compare shapes.

In addition to a choice of filter function f : X → Y, the mapper algorithm
also requires a choice of a finite overlapping cover U of the image of f ,
which can vary by the size of the sets in the cover and the amount of overlap
between sets.

In the setting of point clouds, the mapper construction requires an additional
choice of resolution parameter: the clustering threshold.

Singh et al. [5] propose that in order to find the number of clusters, one can
use the edge length at which each cluster is merged; the distance within
each cluster should be smaller than the distance between clusters. For each
preimage f−1(U), which we call a bin, we can select an integer k and build a
k-interval histogram of the values for each transition in the clustering. The
clustering threshold for the mapper construction is then chosen as the last
threshold before the first gap in the histogram [66]. Although this heuristic
has worked well for many data sets, it has some limitations. If the densities
of the clusters vary, only clusters with comparatively high densities will be
selected. Furthermore, it is possible to construct examples where clusters
are distributed in such a way such that the mapper algorithm will recover
the incorrect clustering [5].

In order to address these limitations, we propose hierarchical mappers, which
we describe abstractly as a collection of abstract mappers in Section 3.7.3
and combinatorially as a simplicial complex in Section 3.8.2.

3.7 Abstract mapper and hierarchical abstract mapper

Abstract mappers are introduced by Munch and Wang [19] to show that for
a finite open cover U = {Uα}α∈A of the image of f , as the resolution of the
cover,

res(U) := sup
{
diam(Uα) | Uα ∈ U

}
, (3.1)
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goes to zero, mapper constructions converge to Reeb spaces. In order to
relate mapper constructions to Reeb spaces, Munch and Wang store the
data of classical mapper constructions for topological spaces as a functor,
which they call the categorical mapper. We use the terms abstract mapper
and categorical mapper interchangeably in this document. We summarize
Munch & Wang’s definition of abstract mapper for topological spaces and
their convergence results below. In our work, we introduce abstract mapper
for point clouds and hierarchical abstract mapper for point clouds, in order
to offer tools for studying mapper constructions for point clouds over a
range of resolutions.

3.7.1 Abstract mapper for topological spaces

For a pair (X, f ), where X is a topological space and f : X → Rd is a
continuous map, and finite open cover U = {Uα}α∈A of the image of f , let K
denote the simplicial complex for the nerve of U.

For each simplex σ ∈ K, let
Uσ =

⋂
α∈σ

Uα (3.2)

denote the open set in Rd associated to σ. Note that for σ ≤ τ, we have

Uσ =
⋂
α∈σ

Uα ⊇

⋂
β∈τ

Uβ = Uτ.

Thus, for a pair σ ≤ τ, we are interested in the map

π0 f−1 (Uσ)← π0 f−1 (Uτ) .

Let Cell(K) be the category whose objects consist of simplices of K and
whose morphisms σ → τ are given by the face relation σ ≤ τ. We consider
the opposite category, Cell(K)op, whose objects consist of the simplices of K
and whose morphisms τ→ σ are given by the face relation σ ≤ τ.

Definition 3.25 (abstract mapper [19]). The abstract mapper of (X, f ) for the
finite open cover U of image( f ) is a functor C f

K : Cell(K)op
→ Set given by

C f
K(σ) := π0 f−1 (Uσ) .

Note that the abstract mapper of (X, f ) is an object of the category SetCellop
.
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We can thus define a functor, C∆
K : Rd-Top → SetCellop

, mapping objects

(X, f ) to C f
K, as given above, and morphisms (X, f ) → (Y, g), a function-

preserving map, to C f
K → Cg

K, a natural transformation [19].

3.7.2 Convergence of abstract mappers to abstract Reeb spaces

In order to compare abstract mappers, objects in the category SetCellop
, to

Reeb spaces, objects in the category SetOpen(Rd), we must push functors
C f

K : Cell(K)op
→ Set to functors Open(Rd)→ Set.

Munch and Wang define the functor PK : SetCellop
→ SetOpen(Rd) to push

the abstract mapper into the category SetOpen(Rd). We summarize their
construction and results here.

For an open set A ⊆ Rd, define

KA = {σ ∈ K | Uσ ∩A , ∅}.

Remark 3.26. If I and J are open sets of Rd such that I ⊆ J, then KI ⊆ KJ.

Given a functor F : Cell(K)op
→ Set, define the functorPK(F) : Open(Rd)→

Set by
PK(F)(I) = colim

σ∈KI
F(σ),

for all I ∈ Open(Rd).

Munch and Wang then prove the following equivalence.

Proposition 3.27 ([19]). Let F : Open(Rd)→ Set be a functor that maps an open
set I to a set π0 f−1

(⋃
σ∈KI

Uσ
)
, with morphisms induced by π0 on the inclusions.

Then the functor PKCK(X, f ) is equivalent to F.

Applying this mapping, which pushes abstract mappers from the category
SetCellop

to the category SetOpen(Rd), Munch and Wang give the following
convergence result between the Reeb space C(X, f ) and PKCK(X, f ), the
abstract mapper pushed into the category SetOpen(Rd) .

Theorem 3.28 ([19]). Let X be a compact topological space, and let f : X→ Rd be
a continuous multivariate function. Let U be a finite open cover of image( f ) ⊆ Rd,
and let K be the abstract simplicial complex given by the nerve of U. Then

dI(C(X, f ),PKCK(X, f )) ≤ res(U).
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3.7.3 Abstract mapper and hierarchical abstract mapper for point clouds

The abstract mapper stores the data of classical mapper constructions for
topological spaces as a functor. This enables a formal comparison between
mapper constructions and Reeb spaces. Theorem 3.28 states that as the
resolution of the cover U goes to zero, the abstract mapper converges to the
Reeb space.

When the underlying space is instead a point cloud, the classical mapper con-
struction no longer consists simply of the nerve of a set of path-components.
Instead, the classical mapper construction for point clouds is given by the
nerve of the set of path-components of a Vietoris-Rips complex (Definition
3.24).

In this section, we store the data of classical mapper constructions for point
clouds as a functor. This enables us to compare mapper constructions aris-
ing from a sampling or approximation of a topological space to the mapper
construction, or Reeb space, of the topological space. Furthermore, we intro-
duce the hierarchical abstract mapper, which enables the study of features
captured by mapper constructions over a range of scales.

Let (X, d) be a finite metric space, such that the underlying set X is a subset
of Rn. As before, we let f : X→ Rd be a map into a d-dimensional parameter
space andU be a finite open cover of the image of f . We denote the simplicial
complex for the nerve of U by K, and for each simplex σ ∈ K, we denote the
associated open set in Rd by Uσ =

⋂
α∈σ

Uα.

Definition 3.29 (ε-expansion). We define the ε-expansion of open sets on a
metric space X ⊆ Rn as a functor

Ωε
Rn : Open(X)→ Open(Rn),

mapping objects I of Open(X) to

Iε := {x ∈ Rn : d(x, I) < ε},

and mapping morphisms I ⊆ J to Iε ⊆ Jε.

When the ambient space Rn is clear from context, we omit the subscript and
simply write Ωε for Ωε

Rn .
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Remark 3.30. Let I be an open set of Rd such that Uσ ∩ I , ∅. Then

Uσ ⊆ Ires(U).

Definition 3.31. The abstract mapper of (X, f ) as a functor from Cell(K)op for
the cover U and clustering parameter δ is a functor Ċ f

K,δ : Cell(K)op
→ Set

given by
Ċ f

K,δ(σ) := π0Ωδ f−1(Uσ).

For σ ≤ τ, we let the map Ċ f
K,δ(τ) → Ċ f

K,δ(σ) be the set map induced by the
inclusion

π0Ωδ f−1(Uτ) ⊆ π0Ωδ f−1(Uσ).

To define an interleaving distance between mapper constructions over point
clouds, we will push objects in the category SetCellop

to the category SetOpen(Rd+1).

Remark 3.32. If I and J are open sets in Rd such that I ⊆ J, then⋃
σ∈KI

Uσ ⊆
⋃
τ∈KJ

Uτ.

Definition 3.33. The abstract mapper of (X, f ) as a functor from Open(Rd) for
the cover U and clustering parameter δ is a functor C̊ f

K,δ : Open(Rd) → Set
given by

C̊ f
K,δ(I) := π0Ωδ f−1

⋃
σ∈KI

Uσ

 .

For I ⊆ J, we let the map C̊ f
K,δ(I) → C̊ f

K,δ(J) be the set map induced by the
inclusion

π0Ωδ f−1

⋃
σ∈KI

Uσ

 ⊆ π0Ωδ f−1

⋃
τ∈KJ

Uτ


implied by Lemma 3.32.

Definition 3.34. The hierarchical abstract mapper of (X, f ) from Open(Rd) is
the collection C̊ f

K =
{
C̊ f

K,δ

}
δ≥0

of functors C̊ f
K,δ : Open(Rd)→ Set.
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Definition 3.35 (ε-interleaving). Let X and Y be finite sets of the metric
space (Rn, d). Let f : X → Rd and g : Y → Rd be maps into d-dimensional
parameter spaces. Denote f = (X, f ) and g = (Y, g). An ε-interleaving
between the hierarchical abstract mappers C̊ f

K, C̊g
K,δ is a pair of two-parameter

families of maps

φI,δ : C̊ f
K,δ(I)→ C̊g

K,δ+ε(I
ε), ψI,δ : C̊g

K,δ(I)→ C̊ f
K,δ+ε(I

ε)

that are natural with respect to inclusions I ⊆ J and such that the following
diagrams commute for every δ ≥ 0:

C̊ f
K,δ(I)

��

φI,δ

&&

C̊g
K,δ(I)

��

ψI,δ

&&

C̊g
K,δ+ε(I

ε)

ψIε,δ+εxx

C̊ f
K,δ+ε(I

ε)

φIε,δ+εxx

C̊ f
K,δ+2ε(I

2ε) C̊g
K,δ+2ε(I

2ε)

where the maps C̊ f
K,δ(I) → C̊ f

K,δ+2ε(I
2ε) , C̊g

K,δ(I) → C̊g
K,δ+2ε(I

2ε) are induced
by the inclusions

Ωδ f−1

⋃
σ∈KI

Uσ

 ⊆ Ωδ f−1

 ⋃
σ∈KI2ε

Uσ

 ⊆ Ωδ+2ε f−1

 ⋃
σ∈KI2ε

Uσ


Ωδg−1

⋃
σ∈KI

Uσ

 ⊆ Ωδg−1

 ⋃
σ∈KI2ε

Uσ

 ⊆ Ωδ+2εg−1

 ⋃
σ∈KI2ε

Uσ


When there exists an ε-interleaving between two hierarchical abstract map-
pers C̊ f

K and C̊g
K, we say that C̊ f

K, C̊g
K are ε-interleaved.

Definition 3.36 (interleaving distance). The interleaving distance between two
hierarchical abstract mappers C̊ f

K and C̊g
K is given by

dI(C̊ f
K, C̊g

K) = inf
{
ε
∣∣∣∣ C̊ f

K, C̊g
K are ε-interleaved

}
.

Proposition 3.37. The interleaving distance dI( · , · ) defines a pseudometric on
the space of hierarchical abstract mappers as functors Open(Rd)→ Set.
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Proof.

Letφ1
I,δ,ψ

1
I,δ define an ε1-interleaving between C̊ f

K, C̊g
K, and letφ2

I,δ,ψ
2
I,δ define

an ε2-interleaving between C̊g
K, C̊h

K. Then the compositions

φI,δ = φ2
Iε1 ,δ+ε1

◦φ1
I,δ, ψI,δ = ψ1

Iε2 ,δ+ε2
◦ψ2

I,δ

define an (ε1 + ε2)-interleaving between C̊ f
K, C̊h

K:

C̊ f
K,δ(I)

��

φ1
I,δ

��

C̊h
K,δ(I)

��

ψ2
I,δ

��

C̊g
K,δ+ε1

(Iε1)

φ2
Iε1 ,δ+ε1

��

C̊g
K,δ+ε2

(Iε2)

ψ1
Iε2 ,δ+ε2

��

C̊h
K,δ+(ε1+ε2)

(Iε1+ε2)

ψ2
Iε1+ε2 ,δ+(ε1+ε2)

��

C̊ f
K,δ+(ε1+ε2)

(Iε1+ε2)

φ1
Iε1+ε2 ,δ+(ε1+ε2)

��

C̊g
K,δ+(ε1+2ε2)

(Iε1+2ε2)

ψ1
Iε1+2ε,δ+(ε1+2ε2)

��

C̊g
K,δ+(2ε1+ε2)

(I2ε1+ε2)

φ2
Iε1+2ε2 ,δ+(2ε1+ε2)

��

C̊ f
K,δ+2(ε1+ε2)

(I2(ε1+ε2)) C̊h
K,δ+2(ε1+ε2)

(I2(ε1+ε2))

Thus, the triangle inequality holds for the interleaving distance. It follows
from definition that the interleaving distance is symmetric and dI(C̊ f

K, C̊ f
K) = 0.

�
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Theorem 3.38. Let (X, d) be a finite metric space. Let f , g : X → Rd be filter
functions into a d-dimensional parameter space Rd. Then as res(U)→ 0, where U
is a finite open cover for image( f )∪ image(g), we have that

dI(C̊ f
K,δ, C̊g

K,δ) ≤ ‖ f − g‖∞

for all δ ≥ 0.

Proof.

Let ε >
∥∥∥ f − g

∥∥∥
∞

. Let U be a finite open cover of image( f )∪ image(g) such
that

res(U) +
∥∥∥ f − g

∥∥∥
∞
≤ ε.

We wish to show that

f−1

⋃
σ∈KI

Uσ

 ⊆ g−1

 ⋃
σ∈KIε

Uσ

 , (3.3)

for all open I ⊆ Rd.

Consider x ∈ f−1
(⋃

σ∈KI
Uσ

)
. Then there exists σ such that Uσ ∩ I , ∅ and

f (x) ∈ Uσ. By Remark 3.30, we have that f (x) ∈ Ires(U). Since

∣∣∣ f (x) − g(x)
∣∣∣ ≤ ∥∥∥ f − g

∥∥∥
∞
< res(U) +

∥∥∥ f − g
∥∥∥
∞
≤ ε,

we have that g(x) ∈ Ires(U). SinceU is a cover of image(g), then x ∈ g−1
(⋃

σ∈KI
Uσ

)
.

So the inclusion (3.3) holds.

Similarly, we have that

g−1

⋃
σ∈KI

Uσ

 ⊆ f−1

 ⋃
σ∈KIε

Uσ

 . (3.4)

The inclusions 3.3 and 3.4 imply that for all δ ≥ 0, we have the following
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diagram of inclusions

Ωδ f−1
(⋃

σ∈KI
Uσ

)
**

��

Ωδg−1
(⋃

σ∈KIε
Uσ

)
//

tt

Ωδ+εg−1
(⋃

σ∈KIε
Uσ

)
uu

Ωδ f−1
(⋃

σ∈KI2ε
Uσ

)
//

��

Ωδ+ε f−1
(⋃

σ∈KI2ε
Uσ

)
��

Ωδ+ε f−1
(⋃

σ∈KI2ε
Uσ

)
// Ωδ+2ε f−1

(⋃
σ∈KI2ε

Uσ
)

and

Ωδg−1
(⋃

σ∈KI
Uσ

)
**

��

Ωδ f−1
(⋃

σ∈KIε
Uσ

)
//

tt

Ωδ+ε f−1
(⋃

σ∈KIε
Uσ

)
uu

Ωδg−1
(⋃

σ∈KI2ε
Uσ

)
//

��

Ωδ+εg−1
(⋃

σ∈KI2ε
Uσ

)
��

Ωδ+εg−1
(⋃

σ∈KI2ε
Uσ

)
// Ωδ+2εg−1

(⋃
σ∈KI2ε

Uσ
)

Applying π0, we obtain an ε-interleaving given by the outermost arrows of
the commutative diagrams:

φI,δ : C̊ f
K,δ(I)→ C̊g

K,δ+ε(I
ε), ψI,δ : C̊g

K,δ(I)→ C̊ f
K,δ+ε(I

ε).

Thus,
dI(C̊ f

K, C̊g
K) ≤ ‖ f − g‖∞

for all δ ≥ 0.

�

Remark 3.39. The uppermost triangle in each commutative diagram shows
that whenever

∥∥∥ f − g
∥∥∥
∞
< ε, the abstract mappers C̊ f

K,δ and C̊g
K,δ for each

fixed δ ≥ 0 are ε-interleaved with respect to inclusion. This is consistent
with the notion of ε-interleaving as defined by Chazal et al. [88].
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Definition 3.40 (Hausdorff distance). Let (Z, d) be a compact metric space.
The Hausdorff distance between any two compact subsets X, Y ⊆ Z is

dH(X, Y) := max
(
max
x∈X

min
y∈Y

d(x, y), max
y∈Y

min
x∈X

d(x, y)
)

.

Theorem 3.41. Let X and Y be compact subsets of a metric space (Z, d). Let
f : X ∪Y→ Rd be a Lipschitz continuous filter function into Rd, with Lipschitz
constant L ∈ R. Denote the restrictions of f to X and Y by fX : X → Rd and
fY : Y → Rd, respectively. Then as res(U) → 0, where U is an open cover for
image( f )∪ image(g), we have that

dI(C̊ fX
K , C̊ fY

K ) ≤ max
(
dH(X, Y), L · dH(X, Y)

)
,

where dH(X, Y) is the Hausdorff distance between X and Y.

Proof.

Let ε > max
(
dH(X, Y), L · dH(X, Y)

)
. LetUbe a finite open cover of image( f )

such that

res(U) + L · dH(X, H) ≤ ε.

We wish to show that

f−1
X

⋃
σ∈KI

Uσ

 ⊆ Ωε f−1
Y

 ⋃
σ∈KIε

Uσ

 . (3.5)

Consider x ∈ f−1
X

(⋃
σ∈KI

Uσ
)
. Then there exists a simplex σ such that

Uσ ∩ I , ∅ and fX(x) ∈ Uσ ⊆ Ires(U). By definition of Hausdorff distance,
there exists y ∈ Y such that

∣∣∣x− y
∣∣∣ < dH(X, Y) < ε. Furthermore, by Lips-

chitz continuity, we have that∣∣∣ f (x) − f (y)
∣∣∣ ≤ L ·

∣∣∣x− y
∣∣∣ ≤ L · dH(X, Y).

So f (y) ∈ Ires(U)+L·dH(X,Y)
⊆ Iε and y ∈ f−1

Y

(⋃
σ∈KIε

Uσ
)
. Hence,

x ∈ Ωε f−1
Y

 ⋃
σ∈KIε

Uσ

 .
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So the inclusion (3.5) holds. It follows that

Ωδ f−1
X

⋃
σ∈KI

Uσ

 ⊆ Ωδ+ε f−1
Y

 ⋃
σ∈KIε

Uσ

 . (3.6)

Similarly,

Ωδ f−1
Y

⋃
σ∈KI

Uσ

 ⊆ Ωδ+ε f−1
X

 ⋃
σ∈KIε

Uσ

 . (3.7)

The inclusions (3.6) and (3.7) imply that for all δ ≥ 0, we have

π0Ωδ f−1
X

⋃
σ∈KI

Uσ

 ⊆ π0Ωδ+ε f−1
Y

 ⋃
σ∈KIε

Uσ

 ,

π0Ωδ f−1
Y

⋃
σ∈KI

Uσ

 ⊆ π0Ωδ+ε f−1
X

 ⋃
σ∈KIε

Uσ

 ,

which induce an ε-interleaving

φI,δ : C̊ fX
K,δ(I)→ C̊ fY

K,δ+ε(I
ε), ψI,δ : C̊ fY

K,δ(I)→ C̊ fX
K,δ+ε(I

ε).

So
dI(C̊ fX

K , C̊ fY
K ) ≤ max

(
dH(X, Y), L · dH(X, Y)

)
.

�

3.7.4 Correspondence between single-linkage hierarchical clustering and
hierarchical mapper constructions

In this section, we show that partitions of a finite metric space (X, d) ob-
tained as an output of single-linkage clustering can be obtained as mapper
constructions over X.

Preliminaries

For a finite set X, let P(X) denote set of all partitions of X.

Definition 3.42 (persistent set [86]). A persistent set is a pair (X,θX), given
by a finite set X and a function θX : [0,∞) → P(X) from the positive real
numbers to the set of all partitions of X, such that the following properties
hold:
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1. if r ≤ s, then θX(r) refines θX(s);

2. for any r, there exists ε > 0 such thatθX(r′) = θX(r) for all r′ ∈ [r, r + ε].

Definition 3.43 (dendrogram). Let (X,θX) be a persistent pair. If there exists
t > 0 such that θX(t) consists of the single block partition for all r ≥ t, then
(X,θX) is a dendrogram.

Example 3.44 (single-linkage hierarchical clustering [21, 86]). For each finite
metric space (X, dX), we can associate a persistent pair (X,θX), where for
each r ≥ 0, blocks of the partition θX(r) consist of the equivalence classes
of ∼r. The pair (X,θX) is the dendrogram for single-linkage hierarchical
clustering over (X, dX).

Let (X, d) be a finite metric space, X ⊆ Rn, and let χX : X → R be the
constant function χX(x) = 0, with finite open cover U of image(χX).

For every open set I ⊆ R containing zero,

Ωδχ−1
X

⋃
σ∈KI

Uσ

 = ΩδX

consists of path-components such that x, x′ ∈ X belong to the same path-
component if and only if there exists a sequence of points x0, · · · , xk ∈ X such
that x0 = x, xk = x′, and d(xi, xi+1) ≤ δ. That is, path-components of ΩδX
are exactly the ∼δ equivalence classes of X.

Thus, there is a correspondence between the output of single-linkage clus-
tering at the clustering resolution δ, denoted θX(δ), and the abstract mapper
C̊χX

K,δ, which we denote C̊X
K,δ for simplicity.

Furthermore, if we define ΞX
K : [0,∞) → SetOpen(Rd) by ΞX

K(r) = CX
K,δ, we

have a correspondence between single-linkage hierarchical clustering and
hierarchical abstract mappers.

Interleaving distance and Hausdorff distance

Proposition 3.45. Let X and Y be finite sets of Rn. Let χX : X → R and
χY : Y → R be the constant zero functions on X and Y. Denote their hierarchical
mapper constructions by C̊X

K and C̊Y
K,δ, respectively. Then

dI(C̊X
K , C̊Y

K) ≤ dH(X, Y),
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for all δ ≥ 0.

Proof.

Constant functions are 0-Lipschitz. So by Proposition 3.41, the inequality
holds.

�

Interleaving distance and Gromov-Hausdorff distance

Definition 3.46. For a finite metric space (X, d), define u : X ×X→ R by

u(x, x′) = min
{
r ≥ 0 | x ∼r x′

}
.

Remark 3.47. u : X ×X→ R is in fact an ultrametric:

1. u(x, x′) ≥ 0 for all x, x′ ∈ X;

2. u(x, x′) = 0 iff x = x′;

3. u(x, x′) = u(x′, x);

4. u(x, z) ≤ max(u(x, y), u(y, z)).

Carlsson and Mémoli [21] give a bijection between dendrograms and ultra-
metric spaces.

Repeatedly applying Condition 4, known as the strong inequality or ultramet-
ric inequality, we obtain

uD(x1, xk) ≤ max(uD(x1, x2), uD(x2, x3), · · · , uD(xk−1, xk)). (3.8)

Definition 3.48 (distortion [21]). Let X, Y be finite sets. Define the distortion
of f : X→ Y by

dis( f ) := max
x,x′∈X

∣∣∣uX(x, x′) − uY( f (x), f (x′))
∣∣∣ .

Definition 3.49 (joint distortion [21]). Let X, Y be finite sets. Define the joint
distortion of f : X→ Y and g : Y→ X by

dis( f , g) := max
x∈X,y∈Y

∣∣∣uX(x, g(y)) − uY( f (x), y)
∣∣∣ .
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Definition 3.50 (Gromov-Hausdorff distance [21]). Let X and Y be finite sets.
Define the Gromov-Hausdorff distance between the dendrograms (X, uX) and
(Y, uY) for single-linkage hierarchical clustering over X and Y, respectively,
as

dGH(X, Y) :=
1
2

min
f ,g

max (dis( f ), dis(g), dis( f , g)) ,

where f : X→ Y and g : Y→ X are functions between X and Y.

Proposition 3.51. Let X and Y be finite sets in (Rn, d). Then

dI(C̊X
K , C̊Y

K
) ≤ 2 · dGH((X, uX), (Y, uY)),

where dGH((X, uX), (Y, uY)) is the Gromov-Hausdorff distance between the ultra-
metric spaces (X, uX) and (U, uY).

Proof.

Suppose ε ≥ 2 · dGH ((X, uX), (Y, uY)). Then there exist maps f : X→ Y and
g : Y→ X such that

max(dis( f ), dis(g), dis( f , g)) ≤ ε. (3.9)

Since the joint distortion of f and g, dis(φ,ψ), is bounded above by ε, then∣∣∣uX(x, g(y)) − uY( f (x), y)
∣∣∣ ≤ ε for all x ∈ X and y ∈ Y. In particular, for

y = φ(x), we have that

uX(x, g( f (x))) =
∣∣∣uX(x, g( f (x)) − uY( f (x), f (x))

∣∣∣ ≤ ε. (3.10)

Similarly,
uY( f (g(y)), y) ≤ ε. (3.11)

It is sufficient to show that for all δ ≥ 0, there exists a pair of maps

φδ : π0ΩδX→ π0Ωδ+εY, ψδ : π0ΩδY→ π0Ωδ+εX

such that the following diagrams commute:

π0ΩδX

⊆

��

φδ

''

π0ΩδY

⊆

��

ψI,δ

''

π0Ωδ+εY

ψδ+εww

π0Ωδ+εX

φδ+εww

π0Ωδ+2εX π0Ωδ+2εY
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We define a map f δ : ΩδX → Ωδ+εY as follows: for each path-component
Xi of ΩδX,

• if Xi contains at least one point of the image g : Y → X, then we
choose an arbitrary xi ∈ Xi ∩ image(g), and we map every point of the
path-component Xi to f (xi);

• if Xi intersects trivially with the image of g, then we pick an arbi-
trary representative xi ∈ Xi ∩X, and we map every point of the path-
component Xi to f (xi).

We define an analogous map gδ : ΩδY→ Ωδ+ε.

Since the image of each path-component of ΩδX and ΩδY under f δ and
gδ, respectively, is a single point, then f δ and gδ induce well-defined maps
φδ : π0ΩδX→ π0Ωδ+εY and ψδ : π0ΩδY→ π0Ωδ+εX.

We now show that the diagrams commute.

If for all path-components Xi of ΩδX, we have that uY( f (x), f (x′)) ≤ δ+ ε for
all x, x′ ∈ Xi, then f : X→ Y induces a well-defined map f δ : ΩδX→ Ωδ+εY.
And if, additionally, each path-component of Ωδ+εY contains at most one
point of the image of f : X → Y, then commutativity of the diagram on the
left follows from inequality 3.10, for any choice of gδ+ε : Ωδ+εY → Ωδ+2ε,
as described above.

So suppose a path-component Xi of ΩδX contains x, x′ ∈ X, thus possibly
requiring a (non-trivial) choice for the image of Xi under f δ. Suppose also
that there exists y = f (x′′) ∈ image( f ) such that y and f (x′) belong to the
same component of Ωδ+ε, thus possibly requiring a (non-trivial) choice for
the image of f (x′) under gδ+ε.

Note that we do not require that x , x′ or that f (x′) , f (x′′). Thus, in order
to prove that the diagram on the left commutes, it is sufficient to show that
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uX(x, g( f (x′′))) ≤ δ+ 2ε:

uX(x, g( f (x′′)))

≤ max (uX(x, g( f (x))), uX(g( f (x)), g( f (x′′)))) , by the ultrametric inequality

≤ max(ε, uX(g( f (x)), g( f (x′′)))), by inequality (3.10)

≤ max(ε, uY( f (x), f (x′′)) + ε), since dis(g) ≤ ε by (3.9)

≤ max(ε, max(uY( f (x), f (x′)), uY( f (x′), f (x′′))) + ε)

≤ max(ε, max(δ+ ε, uY( f (x′), f (x′′))) + ε), since dis( f ) ≤ ε, uX(x, x′) ≤ δ

≤ max(ε, max(δ+ ε, δ+ ε) + ε), since f (x′) ∼δ+ε f (x′′)

≤ max(ε, δ+ 2ε)

≤ δ+ 2ε

Similarly, we can show that the diagram on the right also commutes. Thus,
φδ : π0ΩδX→ π0Ωδ+εY andψδ : π0ΩδY→ π0Ωδ+εX define an ε-interleaving
between C̊X

K and C̊Y
K.

�

3.8 Application to the analysis of geospatial sensor data

Hierarchical mapper constructions allow for the comparison of mapper con-
structions over a range of clustering resolutions, much like dendrograms
(produced by hierarchical clustering) allow for the comparison of clusters
over a range of distances.

In cases where mapper constructions contain non-trivial topological features
like loops, persistent homology can be applied to hierarchical mapper con-
structions in order obtain the distribution of scales at which features (versus
noise) exist.

In this section, we summarize the algorithm for computing mapper con-
structions, as given by Carlsson [76], and extend the process to provide an
algorithm for computing hierarchical mapper constructions. We then apply
the algorithm to a time series of daily sea surface temperatures, in order to
provide a statistic, the persistence of 1-dimensional classes, to compare in-
terannual climate variability. The persistence of the 1-dimensional classes in
the hierarchical mapper construction form a clear bimodal distribution, with
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a gap between the two modes (Figure 3.5, bottom graph), differentiating the
El Niño/La Niña phases from the rest of the El Niño Southern Oscillation.

3.8.1 Algorithm for mapper constructions

The mapper construction described in Definition 3.24 can be obtained via
the following algorithm [76]:

1. Define a filter function f : X→ Y from the point cloud X.

2. Select a finite covering U = {Uα}α∈A of Y.

3. Select a clustering threshold δ, and perform single-linkage clustering
on the subsets Xα = f−1(Uα). This results in a covering of X by pairs
(α, c), where α ∈ A and c is a cluster in Xα.

4. Construct a simplicial complex C̆(X, f ,U, δ) whose vertex set consists
of all such pairs (α, c), and a family {(α0, c0), · · · , (αk, ck)} spans a k-
simplex if and only if the corresponding clusters have a point in com-
mon.

3.8.2 Algorithm for hierarchical mapper constructions

The hierarchical mapper construction begins much like the mapper con-
struction, but instead of selecting a single clustering threshold, we consider
a finite sequence of clustering thresholds δ1 < · · · < δ j < · · · < δm.

1. Define a filter function f : X→ Y from the point cloud X.

2. Select a finite covering U = {Uα}α∈A of Y.

3. For each clustering threshold δ j, perform single-linkage clustering on
the subsets Xα × {δ j} = f−1(Uα)× {δ j}, resulting in triples (α, c, δ j) that
cover X × {δ j}, with α ∈ A and c a cluster in Xα × {δ j}.

4. Construct a simplicial complex whose vertex set consists of all such
triples (α, c, δ j) and whose k-simplices are of one of the following forms:

• {(α0, c0, δ j), · · · , (αk, ck, δ j)} spans a k-simplex if and only if the
corresponding clusters have a point in common;
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Figure 3.2: (left) Simplices within clustering thresholds. (center) 1-simplices
between clustering thresholds. (right) 2-simplices between clustering
thresholds.

• {(α, c j,0, δ j), · · · , (α, c j,k, δ j), (α, c j+1,0, δ j+1), · · · , (α, c j+1,k′ , δ j+1)} spans
a (k + k′ + 1)-simplex if and only if for each (α, c j+1,`′), the corre-
sponding cluster (at threshold δ j+1) contains all clusters (at thresh-
old δ j) corresponding to (α, c j,`), 0 ≤ ` ≤ k.

Figure 3.3: Top (left) and cross-sectional (right) views of the hierarchical
mapper construction depicted in Figure 3.2.

3.8.3 Study of sea surface temperatures using persistent homology

In this example we examine sea surface temperatures as an example of a
high-dimensional oscillator. The annual cycle is the dominant signal that
is captured at the interannual timescale, but there is additional interannual
variability introduced by oscillations such as the El Niño Southern Oscilla-
tion (ENSO). We study the magnitude of these oscillations using persistent
homology.
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Data

We use Advanced Very High Resolution Radiometer (AVHRR-only) data
from the NOAA 1/4◦ Daily Optimum Interpolation Sea Surface Temper-
ature analysis [89], constructed by combining observations from different
platforms (e.g., satellites, ships, buoys) on a regular 720 × 1440 global grid,
from September 1, 1981 to January 15, 2016.

Construction

We construct a hierarchical mapper complex from global sea surface tem-
peratures. We let X be the set of data points given by (t, xt), where xt is a
grid of global sea surface temperatures for time t.

We let the filter function f : X → S1 be given by projecting the time series
onto a circle (representing the annual cycle). The filter function f maps each
sample to its day of year. Let U = {Ui}

12
i=1 be an open cover of S1, such that

Ui = (ri − δ, si + δ), where ri is the first day of the ith month, si is the last
day of the ith month, and δ is fourteen days (two weeks). (It is understood
that ri − δ and si + δ are computed modulo a year. e.g., December 31 plus
one day is January 1.)

We then construct a hierarchical mapper complex for (X, f ) using the al-
gorithm described in Section 3.8.2. We measure the distance between two
daily sea surface temperature measurements x and x′ in X by the L2-norm.
We display the output in Figure 3.4.

Remark 3.52. There exist resolution parameters δ1, δm > 0 such that the
mapper construction given by f̄ ∗X(U× {δm}) is a circle, and the mapper con-
struction given by f̄ ∗X(U× {δ1}) is a spiral.

For a fixed δ such that δ1 < δ < δm, the mapper construction given by
f̄ ∗X(U× {δ}) may contain loops (nontrivial 1-dimensional homology classes).
Each loop is a depiction of interannual variability detected at the resolution
parameter δ.

Measuring persistence

We use Dionysus [90] to compute 1-dimensional persistence classes of the
hierarchical mapper complex. Constructing the histogram of the persistence
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of 1-dimensional classes, we find that there is a gap between 1-dimensional
classes corresponding to the most salient sea surface temperature anoma-
lies and 1-dimensional classes corresponding to the remaining sea surface
temperature observations. (See Figure 3.5.)

We find that the most salient signals occur during June-July-August (JJA)
and December-January-February (DJF).

3.9 Discussion and future directions

The mapper construction has found success in many applications and has
stood out as a tool for extracting insights in complex, noisy, high-dimensional
data. In this chapter, we have provided a practical and theoretical frame-
work to analyze mapper constructions over a range of scales. The hierarchi-
cal mapper construction enables a systematic study of features and noise, as
well as the application of statistics. Future work may identify and investi-
gate the statistical tools that support the rigorous interpretation and analysis
of mapper constructions and hierarchical mapper constructions.
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Figure 3.4: Mapper constructions for global sea surface temperatures. Loops
correspond to non-trivial 1-dimensional persistence classes.
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Figure 3.5: (top) Persistence diagram of 1-dimensional persistence classes,
depicting the birth and death of each class. (bottom) Histogram of 1-
dimensional persistence classes of hierarchical mapper construction of
global sea surface temperatures.
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NOMENCLATURE

Bn the braid group on n strands 11

B(α)(t) the Burau matrix for the braid α with pa-
rameter t

15

σi the braid consisting of a single crossing
given by passing the ith strand behind the
(i + 1)st strand

10

σi,η1,η2 the braid that moves the group of η1 consec-
utive strands starting at strand i behind the
group of η2 consecutive strands starting at
strand i + η1

19

Cell(K) the category whose objects consist of sim-
plices of K and whose morphisms σ→ τ are
given by the face relation σ ≤ τ

59

Cell(K)op the category whose objects consist of the
simplices of K and whose morphisms τ→ σ

are given by the face relation σ ≤ τ

59

R-Top the category whose objects consist of pairs
(X, f ), where X is a topological space and
f : X → R is a continuous map, and whose
morphisms φ : (X, f ) → (Y, g) are continu-
ous function-preserving maps φ : X→ Y

49

R-Topc full subcategory of constructible (X, f ) ∈
R-Top

50
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Rd-Top the category whose objects consist of pairs
(X, f ), where X is a topological space and
f : X→ Rd is a continuous map, and whose
morphisms φ : (X, f ) → (Y, g) are continu-
ous function-preserving maps φ : X→ Y

53

dGH(X, Y) Gromov-Hausdorff distance between X and
Y

70

dH(X, Y) Hausdorff distance between X and Y 67

Iε ε–expansion of (an open) set I 61

K simplicial complex for the nerve of U 59

π0 set path–components of a space 51

P(X) set of all partitions of a finite set X 68

res(U) resolution of a cover U = {Uα}α∈A, where
res(U) := sup

{
diam(Uα) | Uα ∈ U

} 58

∼δ x ∼δ x′ if and only if there is a sequence
x0, · · · , xk ∈ X so that x0 = x, xk = x′, and
dX(xi, xi+1) ≤ δ

56

σ a simplex 44

τ a simplex 44

U finite open cover 56

Uσ the open set Uσ =
⋂
α∈σ

Uα associated to σ 59
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Topology from Isosurfaces. ACM Trans. Graph. 23, 190–208. issn: 0730-
0301 (Apr. 2004).

84. Pascucci, V., Scorzelli, G., Bremer, P.-T. & Mascarenhas, A. Robust On-
line Computation of Reeb Graphs: Simplicity and Speed. ACM Trans.
Graph. 26. issn: 0730-0301. doi:10.1145/1276377.1276449 (2007).

85. Pascucci, V., Scorzelli, G., Bremer, P.-T. & Mascarenhas, A. Robust On-
line Computation of Reeb Graphs: Simplicity and Speed in ACM SIGGRAPH
2007 Papers (ACM, San Diego, California, 2007). doi:10.1145/1275808.
1276449.

86. Carlsson, G. & Mémoli, F. Classifying Clustering Schemes. Foundations
of Computational Mathematics 13, 221–252 (2013).

http://dx.doi.org/10.1090/conm/453/08802
http://dx.doi.org/10.1090/conm/453/08802
http://dx.doi.org/10.1145/383259.383282
http://papers.nips.cc/paper/4375-data-skeletonization-via-reeb-graphs.pdf
http://papers.nips.cc/paper/4375-data-skeletonization-via-reeb-graphs.pdf
http://dx.doi.org/10.1145/1276377.1276449
http://dx.doi.org/10.1145/1275808.1276449
http://dx.doi.org/10.1145/1275808.1276449


91

87. Hamza, A. B. & Krim, H. in Discrete Geometry for Computer Imagery
(eds Nyström, I., di Baja, G. S. & Svensson, S.) 378–387 (Springer Berlin
Heidelberg, 2003). doi:10.1007/978-3-540-39966-7_36.

88. Chazal, F., Cohen-Steiner, D., Glisse, M. & Guibas, L. Proximity of
Persistence Modules and Their Diagrams. Symposium on Computational
Geometry ’09 237–246 (2009).

89. Reynolds, R. W. et al. Daily High-Resolution-Blended Analyses for Sea
Surface Temperature. Journal of Climate 20, 5473–5496.

90. Morozov, D. Dionysus: a library for computing persistent homology
(2007).

http://dx.doi.org/10.1007/978-3-540-39966-7_36

	Acknowledgements
	Abstract
	Table of Contents
	List of Illustrations
	Preface
	Introduction
	Braids and Material Coherence
	Introduction
	Contributions
	Braid groups
	Application to the analysis of flows
	Examples
	Discussion and future directions

	Topological Data Analysis
	Introduction
	Contributions
	Simplicial complexes
	Persistent homology
	Reeb graphs and Reeb spaces
	Mapper constructions
	Abstract mapper and hierarchical abstract mapper
	Application to the analysis of geospatial sensor data
	Discussion and future directions

	Nomenclature
	Bibliography

