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ABSTRACT

Propagation constants have been calculated for a lossy traveling-
wave tube by means of a field theory. These results have been applied
to the prediction of an attenuator power loss of the order of 2 or 3
db. compared to attenuatorless operation. It is shown that the gain
of the higher order modes i3 negligible, Admittance maiching by
means of radial admittance transformation is the underlying method
used throughout,

The Pierce~Fletcher theory in common use at this time 1s examined
in some detail to determine its range of validity. It is found to
break down when the ratio of beam to helix radius is almost unity and
when p,a is smalle Furthermore, it is shown that complex parameters
must replace the resl cnes, Q, K, and C, if one wants to extend the
Pierce notation correctly to lossy tubes, Not doing s¢ leads to dig-
crepancies of approximately 10% in the propagation constants calculated
here, There is reason to believe ithat parameters other than those used
here will not result in grealer discrepancy.

The effects of space charge bunching on saturation has been
treated, Criteria have been set for determining whether bunching is

important or not in determining saburation,
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Secyion I

INTRODUCTION

It has been known for some time that attenuators used to prevent
unwanted oscillation in traveling-wave tube amplifiers cause a con-
siderable reduction of the available power output and efficiency in
some way that has not yet been well understood, The object of this
study is to develop a partial understanding of these attenuator effects
by means of a field theory approach similar to that of Chu and
Jackson.(R~1)‘

Fige 1ol is a schematic representation of such a traveling=-wave
tube,

Heretofore, and for the immediate future, no practical method is
known by which a traveling-wave tube may be operated without an
attenuator, An attenuator is necessary in order to prevent oscillation
of a tube when it is used as an amplifier. If an attenuator were not
used, the amplified signal would undergo partial reflection at the
output end of the tube because of the imperfect match at the output;
it is impossible to obtain a perfect match over a wide band of fré-
quencies corresponding to the useful bandwidth of a traveling-wave tube.
The reflected signal will be reflected again when it reaches an im-
perfect match at the input end of the tube, If the second reflection
is larger than the initial signal that set up the twice-reflected wave,

a sizable signal could be built up from noise alone, that is, the tube

¥(R-1) refers to the first reference, (R=-2) to the
second, etc,
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will self oscillate. An attenuator placed somewhere between the input
and output of the tube can attenuate the backward reflected wave, a
wave which does not interact with the beam, without reducing the for-
ward gain of the tube below a useful value,

At present, there are several methods of introducing attenuation.
The only practical method, which does not set up reflections by its
introduction, is the application of some attenuating material such as
graphite, the density of the application being tapered so as not to
set up reflections, The lossy material may be applied in several ways,
for example, by spraying or painting aquadag onto the outside of the
tube envelope or by supporting the helix on ceramic rods which have
been made lossy by the application of graphite.,

Several processes have been suggested for the attenuator region
which would explain the observed behavior, These will be discussed
later in more detail, Here, some of the qualitative aspects of these
processes will be noted,

The first process assumes that the attenuator coating is so heavy
that for all practical purposes the attenuator region operation can be
represented by means of a conducting pipe with an electron beam drift-
ing through it., The incident electron beam is modulated in such a
fashion that there is essentially an I (B, r) distribution of the
alternating current density and velocity throughout the beam, This
is brought about from the fact that slow wave cylindrical structures
have modified Bessel function variation of Ez in the radial direction.

Inside the drift space, however, the modal distributions cor-
respond to ordinary Bessel functions, JoCtr1r) s+ These distributions

are associated with the plasma waves for a beam in a conducting pipe.
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It is obvious that the incident growing wave will have to split up
émong the various modes of the drift tube, Since each of these modes
has a different plasma wavelength, there will be a scrambling of the
modes with the result that different parts of the beam may have al-
ternating current densities essentially of opposite sign, At any
distance from the point of initiation of these modes, the various
modes will be at various incommensurable space phases with respect
to one another, The net effect will be strong local modulation at
some distance from the beginning of the attenuator region, but with
a small overall alternating current in the 32z direction over an
entire cross sectional plane compared to the peak current density
maltiplied by the area of the beam., See Fig, 1.2 .

The higher order modes have longer plasma wavelengths than the
lower order modes so that the lower ones are the ones whose signs get
changed in traveling the short distances involved with typical at-
tenuator lengths,

The effects of velocity modulation of the beam are such as to
emphasize the distortion of the modulation distribution across the
beams The velocity modulation leads to klystron bunching of the
electron beam. The bunching length and degree of bunching varies
considerably from mode to mode. Again the effect is such as to pro-
duce large local modulations of the beam. When the excitation of a
new gaining wave in a new lossless region is calculated, the size of
the newly excited growing wave turns out to be much smaller than
that of an increasing wave with the same degree of local modulation

as in the exciting beam. The result is that the beam has lost its
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ability to interact with the growing wave because of its full modula=-
tion, and furthermore, the size of the increasing wave is still
relatively small when the beam finally saturates compared to what it

could be if there were no attenuator,

Several low power tubes were built to demonstrate the effects
discussed above, The behavior agreed qualitatively with the descrip-
tion above and will be discussed later, There is no surety, however,
that the process described above is dominant,

Some mumerdical caleulations based on the hypothesis just described
did not and could not explain the experimental results obtained for a
high power traveling-wave tube built at the Hughes Aircraft Cqmpany(R_zl
The only possible explanation was that some gaining process was taking
place in the attenuator region, This led to a search for the possibility
that admittance wall amplification of some kind was taking place under
the attenuvator, and that somehow, this amplification was causing much
of the trouble encountered,

One can consider the effect of an increasing incident wave upon
the attenuating section of a traveling-wave tube, The energy asso-
ciated with the electric and magnetic fields of the wave is absorbed
by the attenuating material. This process begins while the modulation
on the beam is still below saturation level, The resistive wall as-
sociated with the attemnumator permits the beam to continue being
bunched. The result is that a "worn out" bunched beam comes out of
the attenuator region., This beam has to excite a new increasing wave
in the lossless region., It also has to be capable of getting bunched

even further in order to be able to supply energy to the new electro-
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magnetic wave that is excited, Perhaps a better way of understanding
the process is to realize that the electrons are injected into the
helix at a speed that is higher than the growing wave velocity., The
energy in the growing wave is supplied by slowing the electrons down

to the velocity of this wave., If the average velocity of the electrons
is reduced in going through an admittance wall amplifier, the amount
of subsequent velocity reduction available is reduced, Therefore, less
energy will be available to the newly excited growing wave,

Pierce (R-3) has shoun by means of his circuit theory, and it has
been verified by the present more fundamental field approach, that the
current to electric field ratio is larger in a lossy section of a
traveling-wave tube than in a lossless section, This means that a
lossy attenuator section has, at its end, a greater current associated
with each unit of electric field than would be associated with each
unit of electric field in a pure growing wave of a lossless section,
Since both the current and field are continuous, a finite length of
lossless helix is needed beyond the attenuator in order for the grow-
ing wave to grow larger than any of the others. This is needed if
one wants to have the most field associated with a given amount of
current, I saturation sets in before the point at which the current
to field ratio is restored, the fields will be low compared to what
they would be at saturation for a pure increasing wave, Since the
available output power is associated with the stored field energy, the
result is that the power output will be below that which would be

available without an attenuator,

In order to place all these arguments on a firm theoretical
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~ basis, the approach taken here is to work with the field theory of

Chu and Jackson (R-1) and Birdsall and Whinnery (R-L)., A combination
of these two methods will give the propagation constants of all the
modes involved, In addition, one will have to determine the amplitudes
of the various modes which get excited at discontinuities in the
structure propagation characteristics which vary with distance along
the tube, The determination of these amplitudes appears to be a for-
midable task indeed, Sollfrey (B-5) has presented a method of deter-
mining such excitation for a lossless traveling-wave tube, It is very
unsuitable for simple computation. It should not be conceptually dif-
ficult to extend his method to traveling-wave tubes with loss,
Sollfrey shows that a continuwum of solutions is also necessary to
describe the fields in a traveling-wave tube, He states, but does not
show, that the continuum and the higher order space charge modes are
unimportant,

Instead of describing qualitatively all the material in the pre-
ceding paragraphs in greater detail, it will prove more profitable to
examine these aspects in greater quantitative detail,

As a further result of these investigations, some questions have
‘arisen as to the range of validity of the Pierce theory. The Pierce
theory depends upon the knowledge of certain parameters which are
calculated from the field theory. The relationships permitting such
calculation have been established by Fletcher (R=6)., It appears ,
however, that the parameters calculated by Fletcher are insufficient

to describe a traveling-wave tube adequately under conditions which
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may be of considerable practical interest,

The system under consideration will have an infinite magnetic
field along the 2z axis, This will restrict motion of the electrons
to the 2z direction only. No variation in the azimuthal direction
will be considered. The beam will be assumed to be of uniform direct
velocity and charge density. Only the linearized equations of motion

will be considered. See Fig, 1.3
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Section Il

ADMITTANCE TRANSFORMATIONS

The field method for obtaining the propagation constants associated
with a given physical configuration consists of getting expressions for
the admittances of the given structure and the given beam in terms of
propagation constants and then equating the two expressions, The re-
sultant equation is then solved for values of the propagation constant.
The equation usually is a complicated transcendental equation, In
cylindrical symmetry the expressions will involve Bessel functions of
complex arguments.

The first step in getting an expression for the circuit admittance
is to derive a transformation which will transform admittance from one
radius to another, Expressions will be derived for both, TE and TM
modes of propagation., Space will be assumed isotropic and homogeneous
except for abrupt changes at boundary surfaces. Each region of space
will be characterized by a ¢ and ané . As stated in the previous
section, it will be assumed that there is no variation with @ . Time
and 2 variation is expressed by the factor ejmm" Xz'

The Maxwell curl equations can then be written in the following

manner

T (TEp) +jepE, = 0 (2.1)

and
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fﬁg -JwE, = 0

L2 e -seen, ¢ 4, e

3E,
5 B, - jop Hy = 0.
The assumption that electrons are restricted to motion along the
z direction is indicated in equations (2,2) by the inclusion of a
current term only in the second equation of the set of three,
(241) gives the equations which determine the field components of
a TE wave if H, is given, It is important to note that these equa-
tions are independent of the presence or absence of an electron beam,
(2.2) gives the equations which determine the field camponents of
a TM wave if E, is given, These equations include the effect of a
beam, If no beam is present, J, is to be set equal to zero, Other-
wise, J, is determined from the electric field and the equations of
motion,
The explicit expressions for the other field components in terms

of Ez and HZ are for TM waves

1 3 Ez
E = =)
r 2 ar
p - (243)
.40 %%
H¢ - p2 x
where
p?= - (F?%+12) (2.1)
K2 = % pE . (2.5)

and similarly for TE waves,
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£ =z joup oHy

¢ == pz 3y (206)
= . ...!.... ot

e p2 ar

One obtains the wave equations for H, and E, by means of the
usual methods from (2,1) and (2.2) respectively. Substitution of the

first equation of (2.6) into the second of (2.1) gives

12 =0
-r 5 (r p2 or Z ’
a1, (2.7)
7o T ar) L 0.

Similarly, if one substitutes the second equation of (2,3) into the

second equation of (2.2), then

12 (pdo % =
rar(r P ar) JoE By Jz
or
a 2
1.9 (p =2y _p2 = 2
'i"ar(r Br) p© E, Py dy e (2.8)

In the absence of a beam, J_= 0, and the last equation can be written

z
as
10, % 2 -
Frar (P 5)-p°E, = 0, (2.8a)
Therefore, it is seen, Ez and H, satisfy the same radial propaga-

tion equation. This equation is the modified Bessel equation of zero
order and of argument pr . This means that the solution of the radial
equation is a linear combination of modified Bessel functions. It is

2

implicit in this argument that p® is a positive number., This means

that ¢ 24K is a negative real number, k 1is the rationalized wawve
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number of a uniform plane wave in the medium under consideration., It

corresponds to the velocity of light in that mediume (2.L) gives
12 = .- p? (249)

Therefore, ,:z is a negative real number of absolute value greater
than k2 . This means that the wave is slower than the speed of
light in the medium under consideration, If § is not quite pure

imaginary as required above, p2

will not be pure real, This means
that an increasing or decreasing wave which is expressed by § being
complex, does not have a radial variation corresponding to a purely
real p o In other words, the general case of increasing and decreas-
ing waves on a slow propagating circuit will have radial variations
corresponding to modified Bessel functions of complex argument, If
the rate of increase or decrease is small in one wavelength, the

arguments of these modified Bessel functions will be almost purely

real,

The TE and TM admittances are defined by

(1) _ H (2) .
Y/ o= Eé’ Y -% . (2.30)

7(1) i¢ the TE admittance, and
Y(Q) is the TM admittance.

Normalized admittances can also be defined by
1) . (1) (2) o £ 4(2) '
Yr( ) = _Jg. FARTI .\ e g T (2410a)

The general solutiocn for HZ is
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H, = AT (pr) + B K (pr) .

Using equations (2.6), E¢ and H, can be written

jop

E¢ = -5 [A I,(pr) - B Ki(prﬂ
H = —%}°{% I,(pr) - B Kl(pr)] .
If at a radius a ,

(2)
""z“)"'ggi = Y(l)(a) )

then
A I (pa) + B K (pa)

- 108 4 1, (pa) - 8 Ky (pa) ]

and
& I (pb) + B Ky(pb)

— = Y(l)(b)
-%“[A I, (pb) -B Kl(Pb)]

at a radivs b .

The first equation gives

(2.11)

(2412)

(2413)

(241k)

. : 1)
A [Io(pa) - g‘g‘)ﬁ I, (pa) Y(l)(a)] = B[-Ko(pa) + Q—%—*—” K (pa) ¥ (ag} .

This equation is satisfied if

J

22 1 (pa) YW (a)

B =1I,(pa)+ 5

and

A= -K (pa) + jf%& K, (pa) ' SUOR

One then finds the admittance at radius b to be



I.(pb) +K,(pb)

Med
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- : b
jou
Io(pa) + p

1, (pa) T (a)

k() + 222 1 (pa) ¥ (a) |

= . _D
(b) jop

Il(pb) - K-l(pb)

[ Lo(pa) + 48 I (pa) T 1) ()]

-k (pa) + 22E K (p2) T (a)

and the normalized admittance defined by (2,10a) to be

I, (pb) + X,(pb)

po

I(pa) -5 & Ty(pa) ¥)(a) ]

| -%,(pa) - 5 § Ey(pa) T ()

M) = -5 ¢
1, (pb) - K, (pb)

[ To(pa) -3 & Iy(pa) Y{)(a)

| K, (pa) -3 & Ky(pa) T (a)

(2.15)

The transformation for the TM admittance is found in the same manner.,

The general solution for Ez is

E, = AI(pr)+B K,(pr)

from which one finds

]

E, -—%— [£ 1,(or) - B Kl(pr)]

H¢ = :l%g [A I,(pr) - B Kl(pr)] .

These expressions give

jwé e 1y(pa) - B Kl(pa)] -

1(2)(3)

P (A Io(pa) *+ B K (pa]]

jog [A I;(pb) - B Kl(pb)]

p

(2)

A I (pb) + B K (pb)

= 1)

(2.17)

(2.18)

(2.19)
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f B2 56 - 1,600 ¥20a)] - B[22 1 )+ 00) o)

fé%’__ I, (pa) - I (pa) 1))

I, (pb) = K, (pb) | 50 (2)
; = Ky (pa) + X (pa) Y'/(a)
() - 2 > 1 - (2.20)

I,(pb) + K, (pb) 'ég_ I, (pa) - Ty(pa) ¥¥(a)

B K (p2) + K (p2) T2)(a)

(1, (pa) - F¢ To(pa) 12 (a)

[11(p) = B 1,(pa) 182 (2)]
Ky (pa)+ - Ko (pa) 12 (a))

&) - 3 . (2.21)

I,(pb) + K,(pb)

One has available now, expressions which relate the admittances at
any two radii of a cylindrical symmetrical system, (2.15) and (2,20)
give the expressions for transforming admittances., (2.16) and (2,21)
give the corresponding information for transforming normalized admit-
tances, Cases of special interest are those where one of the radii
associated in the transformation is either infinite or zero, In such
cases, certain terms become insignificant with respect to others, and
the transformation is a function of the finite radius alones

For the TE waves with a infinite

K (pb) (1) _ P Kc(Pb)
We) - e » & © ToERe &)

For the TE waves with a zero
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MEDP ‘ﬁi%’ W) - %%. (2423)
For the TM waves with a infinite

@ ) =—§‘§§“%‘§%’ yl(f)(b) = -:755 % . (2.2h)
And finally, for TM waves with a zero

@y . 2 2?;; 1wy - %Eitg:;; : (2.25)

These relationships can also be found by noting that any solution
valid to infinity in the radial direction cannot contain Bessel func-
tions of the first kind, and that solutions containing r = 0 cannot

contain Bessel functions of the second kind.
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Section 111

HELIX CONSTRAINT

The relationships derived in the previous section merely determine
the admittance transformations. If one equates the expressions for ad-
mittances, either those of (2,22) and (2.23) or (2.2l) and (2.25) at
some radius b one finds that only the value p = 9% and p =0 will
satisfy these relationships. Irrespective of the physical significance
of these waves, their velocities would be cut of the range of interest
with regard to traveling-wave interaction, Their velocities correspond
to zero and the velocity of light respectively.

In order to get waves of interest, it is necessary to introduce
structures that modify the admittances in some manner that will permit
the propagation constants to fall within the range of interest. For
instance, a conducting pipe at some given radius would fix the admit-
tance at that radius to be infinite, This will result in TE or TM
waves with phase wvelocities greater than that of light to exist in the
region outside or inside the pipe. Other structures will have similar
effects on the admittances.

One of the most interesiing and useful structures thal one can use
is a helix. In order to simplify the discussion, an approximation to a
real helix will be used. It is assumed that a helix can be replaced by
an anisotropically conducting surface at the radius of the helix, The
surface conducts perfectly in the direction of the helix, and it does
not conduct at all perpendicularly to this direction. This has 5een
called a sheath helix in the literature. Such a sheath helix is illus=-

trated schematically by the helix in Fig. Lel « Conduction takes place
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along the © direction, that is, in the direction that makes an angle
8 with the circular section cut by a plane perpendicular to the axise.

The effect of a helix is to act as a constraint on the values of
the admittances immediately inside and outside the helix,

One can write douwn the boundary conditions.

Ezi sin @ + E¢i cos 8 = 0 (3.1)

By, sin ® + Ey cos @ = 0 (3e2)
0

EZi = EZO (Eg‘i = E¢0) (3-3)

HZi sin @ + H¢i cos © = Hzo sin @ + H¢O cos & (3els)

The subscripls designate the components of the field and whether
it is the component just inside or just outside the sheath helix, Suite
able substitutions are made to get expressions in terms of the admittances
rather than in terms of the field components,

(3+4) becomes

(1)
Y

(2)

O

JNEH

(2)
E¢i sin 6 + Yi Ezi cos & N

E¢O sin 6 +X Ezo cos 8 ,

(3+5)
{3e1) and (3.2) can be written

= e W E R
E¢i Bas tan @ , E¢o E o tan 8 .

%

These equations, in conjunction with (3.3) are substituted into

(305) to get



- I§1) Ezi tan @ sin @ + Yée) Ezi cos 8 =

= _ y(1)
= - Y B,

tan @ sin @ + Y(z) E,. cos @
i 0 i

(r$) -y Vyan? o = ¥ _ (2 (3+6)

Obviously, the same relationship will hold for the normalized ad-

mittances except for the change of sign associated with the definitions.

L - ) e - LSRR SO (3.7)



Section IV

THE LOSSLESS HELIX

In order to get some insight as to how the admittance transfor-
mations and the helix constraint are to be used, the TM admittance of
a lossless helix will be determined at a radius b smaller than the
radius of the sheath helix a o, This will give the admittance expres-
sion found by Chu and Jackson (R-1). Using the admittance expressions
will enable one, however, to do away with much of the laborious alge-
braic manipulation required to keep track of the separation constants
of the usual {ield matching technique,

The system under consideration is depicted in Fige Lel. The beam
is of radius b o One wants to have an expression for the circuit ad-
mittance at radius b as a function of propagation constant, or,
equivalently of p* . This expression is then used to match the
admittance of the electron beame The expressions for the TE admit-
tances Jjust inside and outside the helix and for the TM admittance
just outside the helix are determined from equations (2.23), (2.22),

and (2,2L) respectively.

o I {pa)
1) _. B o
Yy T 3k T(pa)
(1) .  p Ky(pa)
L= -5y 'zf:%(ﬁé'j (Lo1)

e K
¥(2) gk K (pa)

re " p Koipas .

¥Some times p will be called a propagation constant here even

though it is related to the actual propagation constant ¥ by
p2 = -¥2.%2, This will be done only when no ambiguity will
arise by doing so.

i
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Substituting these expressions in the helix constraint (3.7) yields

ik Kl(pa) L. R Ko(Pa) I,(pa) »

2 :
Yﬁi)(a) ST EGa Yk Ka) ' I, (pa) tan 8

By use of the Wronskian identity

I(z) ¥ () + L(2) Ky(2) = 3 , (4e2)
{La1) can be written as
Ky(pa) 5  tan® e
ka 1 J » [ ]
Yr(,?(a) = -J pa K {pa) Y ke I,(pa) K;(pa) (he3)

The transformation (2.21) then gives the admittance at b ,

K (pa) I (pa) pa tan® @I (pa)

Il(pa) * X, (pa) T (ka)? Il(pa)Kl(pa)
Il(pb) - Kl(Pb) _pa_ tan2 8 Ko(pa)
Y;E-z)(b) = Jka (k2)2 T (pa) ¥, (pa)
pa K (pa) I,(pa)  pa tanz@lc(pa>
Io(pb) *KO(Pb) Il(Pa) + Ko(pa) (ka)2 Il(pa) Kl(pa)

_pa_  %an?e K,(pa)
(k)2 T (pa) Ky(pa)

Use of the identity (L.2) shows that

I,(pa) + K(pa) Io(pa) 1 ,.
Ko(pa) pa K (pa)

Substituting this expression intco the expression for the admittance gives

(g—g)z cot? 0 I (pa) K, (pa) - I (pa)K (pa)

K (pa)

I; (pb) = %y (pb)

2  ka
pa.

( cot? o I, (pa) K (pa) - I(pa)K (pa) .

I (pb)+X (pb)
° ° Kzg (pa)

(Lols)

This is just the expression derived by Chu and Jackson,



Section V
THE LOSSY WIRE HELIX

In practice, helices are not made from perfectly conducting materialse
In fact, consideration of the conductivity of the helix material may be
secondary to the consideration of other necessary properties,

The real helix made from lossy wire will be approximated by a sheath
helix with imperfect conductivity along the direction of conduction. The
way such a lossy helix would enter into the calculation of the propaga-
tion constants would be through the helix constraint on the admittances.
The equation of constraint corresponding to (3.6) or (3.7) could be
found. However, in order to illustrate the labor saved by use of the
admittance transformations and equations of constraint, the field match-
ing technique will be used to solve this problem.

The system under consideration is depicted in Fig. L.1, the only
change being that the helix no longer is to be assumed to have infinite
conductivity.

For the TE wave in region 1 and 2

Hz = Al Ia(pr) (5013-)
- 3 (5.10)

Hr Al P Il(pr) ¢

By = =h i%‘f L (pr) (5.1¢)

and for region 3, outside the helix

G

A-Q Ko(pl") (5e2a)

A2 -{—— K (pr) (5420)

< A

Ay igl& K, (pr) {5.2¢)



For the TM wave in region 2, between the beam and the helix

E, = 03 Io(pr) + Ch Kb(pr) (5e3a)
EI‘ = %" [03 Il(pr> - ch Kl(pr)] (5-3b)
Hy =[i§%~ C, I (pr) - G Ki(pr)] (543c)

outside the helix,

E, = C K (pr) (5.ka)
E. = =C, K (pr) (5ekb)
H¢ = -Clé—»g—él(l(pr) . (Selic)

Since there is no perfectly conducting direction, E 1is continuous

across the helix. The boundary conditions are

E - E . - _ . .

2 COS ) 3 sin @ Ezo cos o E¢o sin @ (5.5)
Ezi sin @ + E¢i cos 8 = EZO sin & + E¢o cos @ (5.6)
HZi sin @ + Hﬁi cos @ = HZo sin & + H¢O cos O (5.7)

i

Hzi cos 9 = H¢i sin © HZO cos 0 - H¢O sm9+O‘[Ezosm9+E¢o cos 9]

(5.8)

where O” is the conductivity along the conducting direction. No current
can flow normally to this direction. The arguments of the Bessel func~
tions are taken to be pa unless otherwise indicated,

Substituting the values for the field components into the bbundary

conditions
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[CB Io*ch Ko] sin 6 = A, ‘lg-—% I, cos & = G, K sin & + Ay ek chosG
(5+9)
[c; 1,4+, K] cos 6 + 4y 3‘*"*11 sin6 = 0 K, cos 8 = A, +20 K, s5in@
P (5.10)
4m£
Al 1‘0 sin@*"'!“f)'*[CB Il'ch Kl] cos @ = .&2 I\ s5in @ = Clgf."_.g_ cos B
b (5.11}
g -
Allo cos@—‘"‘“" [03 Il"ch 1]5in9= AZ KO cos B+ Cl 9—‘}?— Kl sin® +
, (5.12)
. Jau
o [Cl Ko sine+ AZ 5 Kl cosg.

When these equations are solved for the matching constants, one gets

K<
C; = C - (5.13)
’ 1 (_1_<_§)2 cotée K, I ng 1+ cot® @ ”
pa ek L pa
2
g€ l+cot~ 6
(-’5‘2‘-)2 ot? 0K Iy -K Io-3 5 -
G, = & 2 : (5.14)
L ( ) cot? 0K, I. - JOE 1+ coté @
171 ovp pa
The admittance at radius b 1is then seen to be
T pa
2
r(k‘a)2 cot? 6 K, (pa)l,(pa) =K o(pa)I (pa) - Jwe Sffi__g
1, (pb) - K; (pP)| K¢ (pa) |
i Eé. 2 Jog 0332 e ]
I, (pb) + K (pb) (pa) cot® 8 K, (pa)I, (pa) = Ko(pa)I,(pa) - T T
K2, (pa) |
) 7 (5415)

or if a normalized conductivity is used
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o. = \/:g"o" (5.16)

-

2 ka
Jka csc C g

(52)2 cot? 0%, (pa)1, (pa) - K (pa)T,(pa) - 5753~ pa

Il(pb) - Kl(pb) K2 (Da)

b

i jka csci o J

k
Io(pb)+K°(pb) (ITZ-) cot QKl(pa\Il(pa) =K (pa)I (pa) QO’x‘pa -

2
K~ (pa)
L ’ (5.17)
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Section VI
PERFECT HELIX WITH AN ANISOTROPIC ADMITTANCE
SHEATH IMMEDIATELY OUTSIDE THE HELIX

The configuration under cmsideration in this section is de-
picted in Fig. 6.1 .

Y, is the surface admittance in the ¢ direction,

Y2 is the negative of the admittance in the 2z direction.
The minus sign is used in order to be consistent with the previous
admittance definitions,

The expressions for the admittances just outside the admittance

sheath are the same as those found in (L.1) except for the normaliza-

tion,

71 . Kopa) J2) _ _dee Hp2)
Jwp Kl(pa) ? o) Ko(pa) .

(6.1)

To find the TE and TM admittances just outside the helix, the
admittances of the sheath are added to those of (6.1) with due consi-

deration of the signs in the definition,

K, (pa) ] K4 (pa)
. B2y Y(f)z_[jﬁ 1 +Y2].

0 Joon Kl(Pa) p KO(paj (6.2)

The TE admittance just inside the helix is

(1) _ Io(pa)
Yi = - 5%:; TETEZT . (63)

Application of the helix constraint (3.6) yields

@) . _ tan® 9 3 2y . dog Kalpa) 6.1)
i jwpa Iy(pa) K (pa) Ty tan® @ p K, (pa) (

The admittance transformation is applied to (6.4) to get the ex-

pression for the admittance at the beam radius. The result of this transfomation
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vSection Vil

PERFECT HELIX WITH AN ANISOTROPIC ADMITTANCE
SHEATH AT A GREATER RADIUS THAN THAT OF THE HELIX

Obviously, the result of a calculation would depend a good deal
upon the model chosen to represent a traveling-wave tube, Perhaps a
suitable representation is shown in Fig, 7.1 .

The difference in the capacitivity and permeability in the region
between the helix and the admittance sheet indicates that a medium
other than vacuum can be considered to surround the helix. One may
wish to represent the glass envelope of a traveling-wave tube in this
marmer, Other configurations can also be used, depending upon the com-
plexity of the calculations that one is willing to handle, For
instance, a conducting pipe may surround the entire structure, or there
may be a region of vacuum between the helix and the dielectric, When
handling a problem which deals with several media, it must be remembered
that k and p are also functions of the particular medium, Unnor-
malized admittances are continuous across dielectric boundaries,
Normalized admittances could be used by using V[Eg as a normalizing
factor instead ofvfégl . °

If the circuit admittances are to be computed by digital computers
of suitable capacity, the introduction of complicated arrangements of
cylindrical regions should not cause any trouble, The machine can be
programmed to repeat the transformations as often as required, If it
is desired to get an analytical expression for the admittance, the
task is straightforward but very tedious, In fact, it is impractical

to consider hand calculations for obtaining admittance values at many
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‘ points in the complex p plane,

An expression has been obtained for the TM admittance of the
structure depicted in Fig, 7.1 at the inner surface of the helix
under the condition that all the volume is vacuun, In order to get
the admittance at the beam surface, another admittance transformation
is required, ©Such an expression can be obtained, but it would be
quite unmanageables No additional physical insight would be obtained
by the use of such an unwieldy expression. The admittance function
is found as described below,

The admittances ocutside the sheath at radivs ¢ are found from

(2.22) and (2.2L4). They are

rMNe) = p_ Kolee)

Jop X (pe) (7.1)
), , _ jwg Klpe)
Y (e) =- 5 K o) (7+2)

To get the admittance jusi inside the admittance sheet, the
parallel admittance of the admittance sheath and the free space ad=-

mittance is taken.

P Ko(PC) . Y
Jor Ky(pe) 1

(e =

(7.3)

(2)¢oy - _ [iee Kalpe)
Yi () [ P Ko(pc) * Yz]

Using the transformations (2.15) and (2.20), these admittances

are transformed to the helix radiuse



-3 =

15 = - Ja

[ jop [ p K (pe) I (pe) + 1, Il(pc)] + I (pec)

Jai X (pe)
I (pa) *X(p2) | jop [ p Ky(pe)
i P e KI(PC)

Kf (pc) + ¥, Kl(pC)] - K,(pc)

——— - X )
s Ljf’“ K"Epc) I (pe) +1, Il(pc)] +1 (pc)

p
[ Ry o 00 n moo)] - 560

Il(Pa> - Kl(Pa}

A

which, after simplification and the use of (L.2) becomes

Y(l)(a) _p K (pa) + jorc ¥y K, (pc) [Io(pa)Kl(pc)+ Ko(pa)ll(pc)} .
Job x (pa) - Jore¥y Ky(pe) [Ty (pa)K,(pe) - K, (pa)T, (pe)]

(7.4)
Similarly, after suitable simplification
Y(?_)( . e K]_(pa)"':}ii KO(pC)YZ[KQ(pc)Il(pa)+10(p0)K1(pa)]
Ko(pa) +§-0-)-g K, (pe)Y, [T (pe)Ky(pa) - K, (pe)I,(pa)] o

Inside the helix, the TE admittance is the same as has already

been computed by means of (2.23)

T,(a) = - 2 To(pa)

jor T (pa) ° (7.6)

Application of the helix constraint (3.6) yields
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ng)(a) = e
_jeg K(p2) + jﬁ,e K (pc) YQ[K (pe) I (pa) + I (pc) Kl(pa)]
P Ky(pa)+ g.f;% Ky(pe) L,[Io(pe) K,(pa) - Ko(pe) I (pa]]

(7.7)
ptan®e [..IO(pa) , Ky (pa) + J one Ty Ky (pe) [I(pa)iy (pe) + Ko (pa)1y (pe )]

jcéﬁ Il(pa) Kl(pa) -jope Yy Ko(pc)[Il(pa)Kl(pﬁ) - Kl(Pa)Il(PC)] |

This can be wuritten in terms of normalized admittance

(2) P& . 2
Yl‘i(a) = Jkatan 6

Io(pa), Ko(pa)+jke Yy Ky(pe)[I (pa) K (pc) + K (pa) I;(pe)]
I (pa)  Ky(pa) - jke Yp, Ko (pe)[I;(pa) Ky(pe) - Ky (pa) I(pe)]

o8
e E(pa) - 3B )ee er[K (pe) I(pa) *Io(pc) K (pa)] (%)

- Jpa ¥ K (pa) - J( —)pe Y, [Io(pC) Ko(pa) = Ky(pe) I (Pa)]

This admittance could be transformed again to get an expression
for the admittance at the beam radius, This will not be done becsuse

of the reasons given at the beginning of this section,
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Section VIII

DYNAMICS OF THE ELECTRON BEAM

Much of this section is devoted to the derivation of the resultis
of Chu and Jackson (R-1) and of Birdsall and Whinnery (R-L). They are
derived here in order to have the expressions in a desirable form.

One starts with equation (2.8) which is rewritten here,
3E 5 p?

) % I
T P B T I

i
T Jug %

. (8.1)

In addition, the equation of continuity and the linearized equation

of motion are to be used. The equation of continuity is

ap an
23t 8z (8.2)

which is equivalent to

Jup = §J ’ (803)

%

where p and J, are the alternating charge and current densities res-

pectively, The equation of motion is

_C_i:‘_f_ = E E N (80}4)
m

where e 1is the algebraic charge of the particle and m is the mass.

Relativistic effects are neglected.

The operator 4 can be replaced by

dt

4 _ dz 3 0
it T @®m TR (8.5)
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Iinearization of the equation of motion takes place by setting

%% i W The equation of motion can then be written as

e
uuaxv*jmv= ~E, , (8.6)

where v 1is the alternating velocity of the electrons, and u, is
the direct velocity of the electrons.

To terms of the first order,

where Po is the direct charge density,

Substitution of (8.3) into (8.7) gives

p. v
J, F et (8.8)
1- 1%

ja

Now, use of (8.6) gives J, entirely in terms of E, .

e po (8'9)

¥,

m(1- ) (Jw = ¥ug)

»

J@O

The right hand side of (8.1) can be written as

2 .2
ep 1 Bp P
2 0 = 'p
E, ——5"E T e E . (8.10)
P ngw? 2 3E-0% (-2 "
where
2 . € Po V
Po RE (8.11)

the plasma wave number squared, and
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o
B T s (8.12)

the wave number at the electron velocity.

Equation (6.1) can then be written

2

13 oF, 2 P

S (r57) -p EH ”-?3 )Q]EZ = 0., (8.13)
e

This equation is just a modified Bessel equation of zero order., The

solution for E; is of the form I ( r), where

2
ne = p? [l* Pp 2] ] (8.14)
(1-3p)

The H¢ that is associated with this value of Ez is found by

using equation (2.3).

By - T L)) Ey(r=0) . (8.15)

The admittance of the beam at its surface is then seen to be

jogh I11(NP)
1)y = 2 Lo (8.16)

The normalized admittance is

I;(no)
w2y - j}%%%w . (8.17)



Section IX

OBTAINING PROPAGATION CONSTANTS

This section will describe the straightforward procedure that one
would adopt to get all the discrete propagation constants of a propagating
structure with cylindrical symmetry and a coaxial electron beam.

The propagation constants correspond to the solutions of the equation
obtained by setting the circuit admittance at the beam radius %éz)(b)
equal to the electronic admittance (8.17). Let the circuit admittances
at b be designated by yb(pa) and yrb(pa) for the unnormalized and

normalized admittances respectively. The matching equation is written

ka b f1(4p)
3 5% EY) T;?ﬁi;T = yfb(Pa> s (9.1)

which can also be wriitten as

I,{nv) a
1 R s
nb Tno) ik PP ¥p(p2) . (9+2)
I b
The term q b Il%%7§; is a function of r'b alone., It can be
o]

plotted in the complex q b plane by means of twe overlaid contour

maps.

Birdsall and Whinnery (R=4) have published such plots with slightly
different labels for the coordinate axes., Their contours consist of a
set for the magnitude of the function and another set for the phase of
the functione. S8ee Fig. 9.1l. The plot is a universal curve for all
electron beams,

In order to obtain values of the propagation constants, contour

maps of the beam admittance and the circuit admittance can be drawn in
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either the pa plane or the qb plane., In fact, if some other variable

is convenient, a completely different plane may be chosen for the plots.

The intersections‘of the beam and circuit admittances can then be found,
If the intersections are to be found in the pa plane, the values

of pa are conveniently linked with the propagation constants through

equation (2.4). Since relativistic effects are neglected,

pzz "82 s (903)
and (8.1L) can then be written as

) 2 (8 a)2

(na)® = (pa) [1 --—-E—-—-—-z] . (9ek)
(pa - 2)

This equation enables one to make the calculations using pa as the in-

dependent variable rather than first using ¥a and then computing

corresponding values of pa.

If intersections are to be found in the N b plane, some further
calculation is necessary to find the propagation constants in terms of
these intersections. Equation (9.4) will have to be solved for the
values of pa that correspond to each nb which is a solution,

It must be noted that if the determination of the admittance inter-
sections takes place in the pa plane, there will be an infinite number
of intersections in the vicinity of pa = B.,a . This is seen from (9.k)
and (9.,1). As pa approaches Bo?s (r]a)2 approaches infinity., This
means that the left hand term of (9.l) ranges through entire range of
complex values twice each time na ranges approximately over an
anmulus of radius difference w, in the complex plane., That is, pa 1is

I b)
an infinitely multiply-valued function of r]b Tl%;}ﬁf » This means
o
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that if one wants to determine the propagation constants in the pa
plane, only one branch of the beam admittance function should be plot=-
ted on each set of circuit curves, Furthermore, if one wanis to obtain
the values of the difference between the propagation constant and Be
accurately, that is p-ge s then the plots will have to be suitably
expanded in the vicinity of pa = 3ea o

The advantage of working in the Nnb plane is that the region in
the viecinity of p = Be is mapped conformally over the entire complex
plane, This means that all the mode intersections will be sufficiently
far apart to handle easily.

The universal beam plot will require that a different circuit plot
be drawn for every possible beam. That is, in order to use the nb
plane, a different set of curves will have to be drawn in the q b
plane to represent the circuit admittance for every set of beam charac-
teristics even though the circuit characteristics remain unchanged.
Similarly, if one works in the pa plane, a different set of beam
curves is required for each change in beam characteristics. The latter
procedure may be preferable if all one wants is the determination of
the principal modes. If computation and curve plotting is done by
machine, the same program can be used to calculate electronic curves
in the pa plane for beams of widely ranged parameters, Calculation
of the circuit admittance will tend to be strongly dependent upon the
particular structure being considered, with considerably more calcula-

tion time required to get one point,
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section X

DESCRIPTION OF THE AIMITTANCE FUNCTIONS,
RELATIONSHIFP TO PIERCE-FLETCHER THECRY

Chu and Jackson (R-1) have described the admittance function of a
helix, They have drawn a graph which shows the behavior of the admit-
tance for real values of pa » See Fig, 10,1 . This is a plot of the

function Y(z}

- given in equation (L.h). The only singularities and

zeros of the function occur for real pa » The reason for this is that
an infinite or zero admittance corresponds to no transfer of energy
between the beam and the helix. That is, either H¢ or E, is zero
at the beam surface for a zero or pole of the admittance., If there is
no transfer of energy, there can be no gain or decay of the wave, and
therefore, p will have to be real,

Examination of (k.lL) will show, taking into account the behavior
of the X functions for small values, that pa=0 corresponds to a
logarithmic branch point with a double pole. That is, the behavior is

like near % =0 , There alsc is a zerc at pa = pla , and

2 log 2
a pole at ma%a.mewmm,w pa approaches infinity, the
value of the admittance will spproach zero.

The description given above corresponds to a lossless helix with
the admittance measured at a radius which is less than that of the helix,
Examination of (L.l) shows that if a = b, then there will be no pole
corresponding to Pp e The function will then have a zero corresponding

to p?' and will have a pole at infinity. See Fig, 10.2 . Setting

b=a in (Lel) gives back (L.3). The significance of this fact is that
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a pole in the admittance function does not appear unless the admittance
is transfofmed toa radius smaller than that of the helix.

Fletcher (B-6) in his theory which enables the calculation of the
Plerce parameters in terms of the resulls from field theory useg an ad-

mittance function Y, which is defined by

v - y(2) _Jee I, (pb)

c > Io(pb) ® (10.1)

A normalized Ifc can also be defined by

jka I, (pb)

) I et
Y'I'C = Yﬁ . pa Io(pb) ® (1002)

The second terms in equations (10.1) and (10.2) correspond to the TM
admittance of a cylinder of some medium cut to the radius b . Thus,
the equation Yc ={ expresses the condition for cold propagation. The
location of the zero of Yé has a slightly larger value of pa than

the location of the zero for Y(2) o This ecan be seen by plotting

ka 11(pb ) B . .
— on the same graph as Im Y and Tinding their intersection
pa I_(pb r

for real pa . One advantage of using Yc is that the location of the

zero p a is not a function of the radius of the beam. The location

. . ka I1(pb)
of the pole is unchanged because J 55 T (pp) ° is finite everywhere
o
I3 (pb)
along the real pa axis, ka 172 becomes zero as
pa I (pb)

pa approaches infinity. Therefore, the asymptotic behavior of Yc is
just the same as that for Y(z) . It also is constant near pa = 0 so
that the nature of the singularity of ¥, in that region is also the
same as that of Y(z) o

The physical basis for the statements made above in regard fo the
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location of pp is as follows. The location of the pole corresponds

to the propagation constant of a helix with a sheath located at r=D0
which conducts only in the 2z direction, Such a sheath would fix the
TM admittance at r=b +to be infinite. Such a surface may be made
experimentally by scratching longitudinal grooves into a thin dielsctric
cylinder which has been coated with a conducting material, It is ob-
vious, that such a surface would cause a large deviation in the propaga-
tion constant from that of a helix alone if its radius were large with
respect to that of the helix radius, In fact, if it were at the helix
radius, it would completely short the helix., If b were very small,
there would be very little effect on the propagation constant.

The pole will move in from infinity to some finite location as the
difference in radii of the helix and beam surface iﬁcreases when measured
in terms of pa . In fact, for large values of p,a and reasonable
values of b/a , the P2 will be very close to p.a .

In order to get an estimate of the location of the pole and zero,
one may use the transformation (2.,21). Setting the numerator of (2.21)
equal to zero determines the value of pla, In order to get a simple
expression not involving Bessel functions, the Bessel functions are re-
placed by their asymptotic values. This makes the result dependent on
the values of pa and pb being sufficiently large for the approxi-
mation to hold. The approximation is, for the purposes at hand, quite
good for arguments as small as 2 and useful for arguments as small as
1 o The result of this gpproximation is

b
yra(p'a)  tanhp'a (1-3)

Tka i . (10.3)




Similarly, the location of the pole is found by setting the

denominator of (2.21) equal to zerc and making the same approximations.

‘ b
yra (P°p®) _ cothpa (-3
Ska oy (10.4)

For large X, tanh x approaches unity; coth x approaches unity. The
right hand sides of equations (10.3) and (10.4) will be close to each
other under large argument conditions. Since p, lies between p! and
Pp s they all will fall close to each other for large values of P2
and reasonable values of b/a , for instance b/a = 1/2 o It is also
obvious, even though equations (10.3) and (10.4) de not strictly apply,
that for small p,a the pole may be guite removed from the zero,

The discussion up to this point has been limited to the lossless
helix. Similar consideration in regard to zero and pole locations will
hold in regard to other lossless systems such as an iris loaded wave-
guide, It is of importance to know what effect the introduction of
loss would have,

It must be that the introduction of loss does not change the systiem
very drastically. The location of the pole and zero discussed above
are shifted, It is obvious that they are shifted in such a manner that
the P2 and ppa correspeond to decaying propagation constants-~they
just correspond to measurements of the propagation constants taken res-
pectively with and without the presence of a 2z conductive sheath at
the beam radius. g%%;) at any pa will in general be a function that
depends upon the conductivity parameters. In the region of interest,

the particular model by which loss is taken into account does not in
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~ itself influence the general shape of an admittance cantour map., The
reasoning behind this conclusion is purely physical although it is be~
lieved that a rigbrous basis should not be difficult to find., It may
be argued that the introduction of additional paralleling admittance by
means of lossy surfaces does not change the character of the admittances
by very muche The transformations will have a tendency to become inde-
pendent of the admittance when the difference in the radii is large in
units of pa . This has been illustrated in the derivation of (2.,22),
{2.23), (2.24), and (2.25)e Furthermore, the singularities are intro-
duced by means of the transformations themselves, For ingtance, it has
already been seen that there is no pole in the vicinity of the zero for
the lossless helix when the beam radius is taken equal to the helix
radius. The calculations made have indicated that the loss shows up on
the circuit admittance map as a combination rotation and stretching of
the admittance contours with also some translation of the region of in-

terest.

It has been mentioned that the locations of the zero and pole
correspond to measurements of propagation constants without and with a
unidirectional sheath placed at the beam radius., This provides an ex=-
perimental method of determining these constanis. For instance, a
loaded wavegulide will have many possible modes., Nevertheless, the
location of each pole and zero of the admittance function could be found
by measuring the propagation constants with and without such a sheath.
As already stated, one can approximate such a sheath by scratching in-
sulating lines on a metalized surface, The widbhs of the condueting

lines should be small compared to their spacing which should also be
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smalle It is &lso interesting, experimentally, to know the value of
oY, .
e . This can be determined in several ways. Perhaps one of
a(pa) P=D,

the best is to use a perturbation method, In this method, a finite
section of the structure is used, and the shifts in the resonant fre=-
quencies are observed when small metallic objects are placed inside the
structure. From this information, knowledge of the fields associated
with each mode can be determined,

From a knowledge of the three quantities, Po?s ppa, and g%gg) b=,

Fletcher has shown thalt one can calculate the parameters required

by the Pierce theory., His equations, in the notation used here are

2Q ka -1/2 P2
29 ) 0
fon - G ) (ppa)? = (pya)? (10.5)
a,2y3/2 Y
%=-3"p§43bcL+( ))/ (50=y . (10.6)
pP=p

Since relativistic effects are neglected, the factors 1 + (%E}é 2 may

be set equal to unity. The resulting equations are

Q. Po? (10.7)
a 2 2 °
Pe® ()2~ (p2)
oY
1 . c
= - JWP,2 peb (a{pa))p::p (10.8)
o

In order to get these relationships, Fletcher first considers the per-
formance of a thin hollow beam at radius b . He notes that the eleciric

field acting on the beam is a constant throughout the beam so that

Mg - B 1 5
Iy = E, T 2nb Ep ? (10.9)




- 53 -

where 1 is the alternating current in the beam, The Pierce electronic
equation holds for a besam where Ez is the same for all electrons with

the same value of 2 at any time.

- I
i = e ° &, . (10,10)

(3Be - ¥)2 2V,

Therefore, equation (10.9) can be written

—;~) 10,11
¢ 2nb ( B, ‘electronic ( )

The Pierce circuit eguation is

Y2y k25 aky?
EZ = - [W + “g’”‘ﬁ‘;’“‘“"‘ i (10412)
O

Using (2.4), (10.12) can be written

2 2
Yt = 1 (pO- P ) Be . 1 i .
(10,13)

5
Using the value of (7;;) in (10,13) gives the equation for

electronic
the propagation constants for the Pierce theory.

The propagation constants obtained by the two methods would be the
same if the left hand sides of the equations (10,11) and (10.13) were
identical., They are not identical, but under certain conditions they
approximate one another in the region which corresponds to the range
of the propagation constantis,.

Fige 10,1 can be taken as a typical plot of Y, if the point

pla were relabeled P2 and the normalizing factor taken out. A

typical plot of the left hand side of (10,13) is shown in Fig. 10.3.
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There are simple poles at p = # jk on the imaginary axis, and another

pole for which
02+ kY2 g, » 2002 - 9% = 0 .

There also is a zero at p =p,. » As pa approaches infinity, the

0
function approaches zero, At pa = 0 the function is finite and has
zero slope.

The propagation constants of a traveling-wave tube will be in the
vicinity of the cold circuit propagation constant, near P2 in the
complex pa plane., Under the conditions that the pole is close to the
zerc, the left hand side Y%: could be matched to Y, by choosing the
parameters K and Q so that the poles coincide and that the slope at

aY
P =Pss 3(pa) , » are equal for both ¥, and Y', . This matching

results in thi eigatuxm'which Fletcher uses to define Q and K , that
is (10.5) and (10.6) .

Fletcher treals the case of a thick beam by finding an equivalent
thin beam. The current and radius of the thin beam will be smaller than
for the solid beam. Fletcher presents a plot which gives these values
as functions of geb o

If loss is present, the same procedure still holds., The poles can
be made to coincide by the proper choice of Q , and the impedance
parameter X is determined by the slope at p.a . In the case of loss,
however, these parameters will not be real. This means, that in the
Pierce theory, the assumption that loss can be represented by the loss

factor d is not correct., d represents only the effect that loss

plays by its effect on pg, o It is necessary to account for the change
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that occurs in Q and K as well., OSome crude attempts have been made
along this line by stating that the introduction of loss reduces the
impedance. Since the space charge parameter Q enters into gain calcu-
lations rather strongly, @ must also be considered to change. The
Pierce notation can still be used to describe such situations, but the
advantages of C, Q, and X being real numbers disappear. It becomes

a difficult task indeed to calculate sets of universal gain curves in
terms of the Plerce parameters,

The validity of the Pierce theory will also depend to a large extent
upon just how well Yﬂz compares to Yc o 4 comparison of the admit-
tance plots indicates that the requirements for the approximation to be
good are that the pole and zero be close togelher and that the propaga-
tion constants of the complete structure fall close to the pole and
78TO,

The conditions that determine the separation of the pole and zero
have been discussed earlier in this section, In the case of a solid
beam, the pole and zero will be closer together than in a thin hollow
beam of the same radius because the equivalent thin beam has a reduced
radiuse.

The propagation constants will differ greatly from those correspond-
ing to p, when the reduced plasma wave number Bq is a considerable
fraction of Py o If 3q is sufficiently large, the admittances for
these propagation constants will differ considerably from each other.

The conclusions to be reached from the discussion of this section
are:

The Pierce theory is subject to error when p,a 1is small, of the
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order of unity. This is because the pole and zero will usually be
Qidely separated under such conditions. Also, the effect of the
singularities near the origin will play an important role in making
for a poor approximation.

The Pierce theory may fail if large ﬁq is used because the
propagation constants will fall outside the validity of the Fletcher
approximation,

These conditions would be likely to ocecur for high power tubes
where one tries to get small Be corresponding to small Py » and
large current densities corresponding to large ﬁp °

In the case of lossy circuits, the Pierce theory with the proper
parameters can be used to describe the tube operation to the same degree
that it can be used to describe lossless operation, but one must be pre-

pared to deal with complex parameters.
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Section XI
' HIGHER ORDER MODES

As has been pointed out in Section IX, the higher order modes have
values of pa which differ only slightly%from the value of ﬁea o In
order to operate traveling-wave tubes efficiently, the electron injec-
tion velocity must be greater than the cold helix velocity. For such
operation f,a is smaller than P2 by approximately 3qa o« Therefore,
none of the higher order modes will have propagation constants which lie
very close to the pole of Yﬁz) « Under such circumstances, to the first

approximation,
(2) ~ (2)
Y (pa) XY (Bga) . (11.1)
Equating electronic admittance to circuit admittance, using (8.17),

ka N b Il(n b)

(2)
I Tqw | r e (11.2)

If, after this equation is solved for the propagation constants, a
better set of values is desired, the procedure may be repeated using
the newly found propagation constants for a second iteration.

The behavior of the function w = 2 ;~?E; has to be investigated,
The function W has a double zero at the origin. It also has simple
poles and zeros alternating on the imaginary axis. A picture of this
behavior can be formed by noting that w is asymptotic to ~jz'un1j(z~%§g
along the imaginary 2 axis.

Obviously, the point at infinity is an essential singularity. There

are no other zeros or singularities in the complex plare. The double
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zero at the origin will be seen to be the key to the number and behavior
of the lowest order modes of a traveling-wave tube amplifier.

The functién W can be approximated in the vicinity of each of its
simple zeros by a Taylor series. If the first term of the Taylor series
is a good approximation, then one can easily see that the function will
take on all the complex values of small absolute value & near its
zeros, The permissible size of € is determined by the error that can
be tolerated in representing W by the first term of its Taylor expan-
sion., For zeros of large argument, the first term of the Taylor series
expansion is a very good approximation indeed. It turns out that in the
cases of interest, the approximation will be very good even for the first
order zero. In any event, the validity of the representation by the
first term can be checked by computing the correction introduced by the
second term of the Taylor expansion.

W can be approximated by the first term of the Taylor or Laurent

series in the vicinities of its zeros and poles,

L (2) ~ == near z = 0 (11.3)
2 I(z) — 2 . .
I (z)
~/
2 1_(2) = z,(z-2,) near zy (11.1)
where Iy(zp) = O, z2, £0,
Il(z) %y

"~
Ip(z)  — 2-%
where I (zy) =0,

Substitution of the approximation (11l.4) into (11.2) and using

expression (9.4) results in
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2 1/2 2
(Bpa) Be ab
P . re X(Q) ) (11.6)
z pb(} - ) -z = = (g.a .
n (P‘a"Bea>2 ka T e
where 2z_ is the‘nth zero of I.(z )
n 1 n *
It can be assumed that pb can be replaced by pB,b whenever it does not

occur in a difference term. When that equation is solved, one gets

pa = Bga £ apa 2 /
1 b 2] 1/2
E ~ (Bg b)? (zn * "’*’“‘izaazn Yi.z)(ﬂea)) ] . (11.7)

If a more accurate solution is desired, the value of pa from (11.7) and
the admittance for this value can be put into (11.6) which is then solved
again for pa . By iteration of this procedure, the propagation constants
of the higher order modes can be calculated to any degree of accuracy de-
sired, Even the first approximation, however, should be very good.

It can now be seen that in the case of a lossless structure, the
higher order modes will not be either growing or decaying. For lossless
circuits, the admitltance Ygf) is purely imaginary for purely real pa .
Therefore, the solution of (11.7) is pure real. The z, are imaginary.
Real values of pa correspond to constant amplitude waves,

Similarly, complex values of Iﬁz)(ﬁea) corresponding to lossy
structures will result in an increasing and a decreasing wave, The rate
of gain drops off rapidly with the increasing size of Z, .

Another way of showing that the higher order waves for a lossless
circuit are of constant amplitude without the use of the appraximaﬁions

involved in (11.7) exists, If one plots the admittance of the beam and

the admittance for the circuit as functions of qa, s one gets a plot such
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as in Fig. 111 . Since both the ecircuit and beam admititances are pure
imaginary, there will be intersections as shown which correspond to
purely real pa , and therefore, to constant amplitude waves.

The lccation of a double order zero at the origin means that if one
equates the X§2)(ﬁea) to the approximation (11.3) two values of na
will be solutions corresponding to four values of pa . The double zero,
in effect, doubles the number of modes of the system associated with it,
Actually, Yiz) is a function of pa and the electronic admittance cannot
be equated to the circuit admittance evaluated at one point alone. If
there is any appreciable gain, the resultant values for pa of the lowest
modes will be removed from cne ancther to such an extent that Yﬁg} cannot
be represented by a constant. Nevertheless, it is obvious that there
still will be four solutions corresponding to the double zero.

It is also obvicus from equation (1le7) that the higher order modes
for lossy structures will consist of pairs of growing and decaying waves.
In most cases, however, the rate of gain will be insignificant to the
rates of gain of the principal modes, ZExamination of (11,7) indicates
that the rate of gain will become small very rapidly as a funciion of
the order of the mode,

The small gains will mean that the various space charge waves will
be almost entirely independent of the structure that is invdlved. This
will be seen to be of possible importance in consideration of attemuator

saturation effects,
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Section XIT
' EXCITATION OF NEW LOWEST ORDER WAVES

AT A DISCONTINUITY OF A TRAVELING-WAVE TUBE CIRCUIT

If a traveling-wave tube consists of several sections of differing
properties such as one may find in a tube with an attenuator placed
between two lossless sections, it is important to be able to determine
what the amplitudes of the waves in the various sections are. In
general, this is a very difficult problem. As an approximation, one can
match current density, electric field, and velocity on the axis of an
electron beam at the point where the two circuits join., In this way one
need only use the three lowest forward modes of a traveling-wave tube in
order to provide the matching.

It usually can be assumed that at the end of any particular section
the increasing wave has grown to be sc large that the others can be neg-
lected. If this is not true, the method described below is still valid
if the excitations of the three waves are added together,

The current density and veleocity in a modulated electron beam can
be expressed in terms of E, for each wave, These relationships are

found from (8.6) and (8.9).

BZ
Jy = =jwt (Be%pﬁ E, (12.1)
e
= E
v = -3 @ "z . 12,2)
%, (s - p) (

The matching conditicns are



dytdytdy = J (12.5)

where the subscripts refer to the three waves of the region the beam is
entering; the subscript "in® refers to the incident wave,
Using (12.1) and (12,2) the matching conditions (12.L) and (12.5)

can be written entirely in terms of the electric field components,

! Ep E3 Ein

+ A ; =
ﬁe - Py Be -p2 Be -p3 3@ =Pin » (12.6)
E B E E,;
1 2 3 . in ;
o+ t ——— T (1207)
(Be =P (g, -p2)2 (Be - P3)° (Bg = Pip)°

There are three simultaneous eguations in three unknowns which can
be solvéd for the amplitudes of the modes excited in the section the
beam is entering. OSince the expressions are symmetrical in subscripts
1, 2, and 3, solving for E, is sufficient., The other quantities are

obtained by a permutation of indices,

1 1 1
1 1 1

Pe “Pin  Pe"Pp  Be = P3
1 1 1

(Be =Pin)” B, -0 (B - p3)2

= E, 12,8)
! 1 1 1 o (

1 1 1

Pe = P1  Pe -Pp  Be - P3
1 1 1

(Be =p1)% (Be=Pp)? (B -p3)?
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The numerator of this expression, which is called Nl’ is found to
be
(Piy =Pyl (py=py) (py=pyp)

(ﬁe - pin)2 (Be °p2)2 (3@ "p3>2

(12.9)

Similarly, the depnominator, which is called D, is found to be

(py =pp) (Py-p;3) (py-pp)
(ge = pl>2 (ge ~p2)2 (Be “PB)Z

(12.10)

N]_ (92 "’pin) (PB “"pin) (58 -p1)2
T b L .11
El D (p2 "’pl) (PB - Pl) (ﬁe -pin)2 in (12.11)

Use of (12,1) gives

2
J (Be = Pyy)
1 . e L 21 (12.12)
Tin (Be-py)°  Fin
which becomes, with aid of (12,11)
Jl _ (Pg 'pin) (PB -pin)
= (12.13)

Jin  (pp-py) (P3-pyp)

Equations (12.12) and (12.13) can be written in terms of the Pierce

incremental propagation constants, the 6 's . They are defined by
ﬁ = -jx = Be(l + j g 6) (1201&)

Therefore (12.12) and (12.13) can be written in the form



and
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Jy 51:} El
2
Jin 85 Eiy
J. - -

(12,15)

(12,16)
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Section XTII

BUNCHING EFFECTS OF HIGHER
ORDER SPACE CHARGE MODES

The possibility exists that higher order modes excited at a dis-
continuity in the characteristics of a propagating circuit cause
portions of an electron beam to saturate even though the amplitudes of
the lowest modes, those usually of interest, are relatively small. In
fact, the amplitudes of the lowest modes at saturation may be much
smaller than they would have to be in order to cause saturation by them-~
selves, Because of the difficulty in calculating the effect of these
modes, the equations derived in this section should not be taken too
literally. The resulis derived can only be taken as a qualitative des~
cription of an effect of importance. Further, but very involved calcu-
lations are possible which can put this explanation on a rigorous basis.

The configuration to be assumed for the following analysis is shown
in Fig. 131 &

It is assumed that the beam fills‘the helix and the conducting pipe,
both of radius a . The conducting pipe replaces the lossy section of a
traveling-wave tube, There is no variation with @ . The treatment of
the attenuator section as a conducting drift tube will be discussed later
to a somewhat greater extent, Restriction is made to the linearized
problem, in the mamner of Chu and Jackson (R-1), and Birdsall and
Whinnery (R-lL). A wave has been excited on the first helix in such a
way that only the inereasing wave has any substantial amplitude at the
junction of sections 1 and 2. The electromagnetic wave on this helix is

terminated at the junction (by something similar to a Maxwell demon )
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leaving only the modulated electron beam to carry signal beyond this
>point. The behavior of the electron stream in the second region is
analyzed according to the methods of Birdsall and Whinnery. After the
électron beam leaves the conducting drift space it enters the second
helix which is terminated at the juncticn. The modes of this helix are
determined by the methods of Chu and Jacksone The excitation problem
has been treated by Sollfrey (R-5), but is in a form that is unsuited
for calculation, It must be emphasized that the type of saturation
effects considered here do not arise in a beam of infinitesimal diameter.
The effects are directly due to the finite diameter of the beam, There-
fore, if the mechanism described here is important, the nonlinear
analyses up to date completely neglect this effect (R-7,8).

In what follows, it will be necessary tec be able to expand the

function IO(kr) as a summation of Jo("c nr) .

Io(k:r) = zej' An Jo(tnr) where Jo(T'na) = 0 (1361)
n=1
where a
A = 2 5 J- r I, (k) I, (T pF) dar . (1342)
[a‘ﬁﬁtnaﬂ o

This can be wWritten

a
A = [a 2 (; ]2 f r Jo(Jkr) Jo(T r) ar , (13.3)
1'VYn 0
because
=Y
Iy(z) = 3§ 9, (52) (13.1)

Lommel (R~9) has shown that
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x
@ - ?) J‘ x J_(ax) J,(px) ax
o
= x [Jn(ax)ﬁ Iy (Bx) = dp(Bx) = Jn(cnx)].
Restricting (13.5) to n = 0, and replacing B by jk and a =T ns
one gets

a
{cia» kg) S r Jo(jkr) Jo(t nr} dr
[¢}

(13.6)
4 d
= a gJo(I'nr) o Io(kr)-Io(kr) ar JO('cnr}}
rEa ,
Therefore,
2T I (ka)
A - . (13.7)

n AT 2+ x2) 5, (T 2

The assumption is made that the radial distributions of alternating
current density and velocity in the electron beam take on the same radial
form as that of the longitudinal electric field propagating on the cold
sheath helix, the form I (pr) I (Bg T) o

The incident velocity and current densities on the axis at the junc-
tion of the sheath helix and the drift pipe are designated by the complex

quantities v, and i, respectively. Their distributions are given by

O

v = v, I(Bg ) (1348)

and

i = i, I,(BeT) (13.9)

Equation (8.13) describes the radial behavior of the longitudinal
field. The conducting pipe establishes the boundary conditions. (8e13)

can be written in the fom
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3k,
— 2
= (v 50+ (07 -1)

B 2
(pf)g 2" 1l 5, = 0. (13.10)
e

el el

The solutions for the field will contain cut-off modes for typical
parameters, These will not be important, The other solutions, the im=
portant ones, will correspond to the plasma waves on a beam in a
conducting pipe. These modes will have values of p which are close to

Be ¢ Under this condition, (13.10) can be written

oE,, 2
123 , =z, o P )
r3r Far) TR -po)2 ] B, = 0 (13.11)

let U be defined bty

2
T2 = p2 P - 1] . (13.12)
n ° L, -8e)

The solution for P, is

Pp

Pp = Bet 72 9 (13.13)

2
1+ E"Z">
e
where Py is one of the allowable values of p in (13.,10). To find the
equation for determining these P, s one notes that the solution to (13.10)
is

E, = J,(Tyr) & (13.1h)

The condition that EZ be zero at the surface of the conducting pipe is
then given by
Jo (Tha) = 0. (13,15)

Thus, there are two waves corresponding to each of an infinite number of

values of n , one that is faster and one that is slower than the speed
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of the electrons. These will be designated by pln and p2n respeC-=
tively.
One now tries to expand 1 and v in series;
® =JP1n 2 .
: ~JPon 2
i = Z: J('cna) [Aln e + AZn e ] 3 (13.16)
n=171
= iPyp 7 JPoy, 2
- “vFin “vFon ]
v o= Z J(Tpa) [Bln e + A2n e o (13617)
n=1

The coefficients can be determined from (13.8) and (13.9) and the

work deriving (13.7)

" 2iy, T, Io(Be2)
Aln “en a('cn2 + B 2)J1(’Cna)

e

(13.18)

i

2v Ty I,(Bea)
By * By = . (13.19)
a(tn * ﬁe )Jl(l'.na)

Use of (8.8) relates the A's and B's .

P1n
(l"‘ Be)

Bin = ———— Ay, -
Po

i

Doy (13.20)
(1 - £8)
Be A
Bon oo 2n *

il

(13.18) through (13.31) yield

, 2Tyn Io(Bea) [VO Po Be = 1olBe - p2n>]
In TT aTlepl) (Tya) ey, -ppy)

’ (13.21)
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2T, 1(802) [, po Be =163, =7y,
A, =

aC 24823 (T12) (pyy - Poy

with similar expressions for Bln and B2n N

Taking into account

i can be expressed by

N 2tn IO(Bea) Jo(‘cnr) e—jﬁez
4 = E
n =1 awnz* 323>Jl(tna)

i, co Bp :
S
° " 1+ T gfH1/2

Be
i
3 2
p Bp 2
+ e (1+ E%.)l/z v, Po BE sin P T2 10|
Pe p 1+ _—_%?)
Pe

and v by

o 2l I,(p2) Jo(Tpr) ~3Be 2
e

)

2 2
n=1 a(Th+*B8,)9(T2) Bp 2 .
(1+ 23)7
B 32 i, B : e
[ o pt RV éism | ‘!;en2 1/2 |+
(a ﬁ_:g—) (1 + ;T)
e

(13.22)

(13.23)

(13.2h)
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(13.2L) and (13.25) give the current density and velocity at any
point in the drift tube. The problem of determining the excitation
caused by such distributions on another section of lossless helix still
remains., The solution of this problem is very difficult indeed (R-5).
In order to get an answer, many assumptions are made which are not
rigorously justified, It is not known just how much error these as-
sumptions introduce.

One treats the principal modes of the helix as if they were three
of a complete orthogonal set of modes, One then uses the usual method
for getting the component of the incident distribution which contri-
butes to these modes, It is then assumed that the rest of the
distribution sets up space charge waves, the remaining modes, on the
helix,

The "I " component of the current is then duly defined by

a
Sf(r) I, (Ber)r dr
)

ro = = > ° (1‘3.26)
j‘ I, (Bgx) rar
O

In order to determine the magnitude of this compoment it will be

necessary to evaluate two integrals.

- al, I (p,a) (T 2)
[ 0t 1,600 r o T2 :’5 At (13.27)
] e
and
a 2 [z )]2 Ej (e ﬂz
a a - &
S Io(Br) 2 rr = et - LA . (13.28)
s}
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(13.27) has been determined already by the derivation of (13.7).

To get (13.28) one starts with another Lommel integral (B=9)

X
2 jh x [}n(axilz dx
o

2

@2 2 x?) [a0e0)] + x ==, @] . .29

Taking n = 0, a = jk, and putting x = a yields the desired result,
Application of (13.26) to the current distribution at 2z which is

given by (13.24), the "IG" component of the current is found to be

[I (8 a)] w  (T,2)? o e
[I (8 a>] [11(%&)] E= 1 @)%+ (pa)°
(13.30)
cos Bp 2 Too/2 Pe o Ppt ]
i ——— 4§ (1F ) =— sin 5
Be ﬁe

Similarly, the “IQ” component of the velocity distribution can

be found,
2
Y O S . WP
Lo~ [ho(eea)] - [L B2 n=1 (’tna)2+(ﬁea)2‘3 . (13.31)
p
2
sin Tn 1/2
v ea;3¢ cos_...__?.p.”f__..._ a»ji?; .%2 (1*332) w\
1 ;__rfz_)l/a Po Pe (), E%f{)l/a J
Be 8

The further assumption that the electric field is zero at the
input to the second helix permits the determination of the amplitndes
of the three principal traveling-wave tube modes which are excited.

If the characteristics of the wave incident upon the drift tube
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are known, in this case the incident wave is assumed to be an increas-
ing traveling-wave tube wave, the velocity and current are related.

In order to simplify the caleculations, it is assumed that the current
and velocity are related to each other as in an increasing traveling-

wave tube wave under small C and small QC conditions. (R=-3)

a1

T = ; (13.32)
ge pO

Y=g e C (B . (13.33)

for the increasing wave. Therefore

L
I3

v _ O
iTe ®
o

The expressions for v and i, (13.23) and (13.2L4) can be written

entirely in terms of 1, .

0
. . ~JBe 2 T »? I (Tpr)
=2i I (B a) o
i 0 "o ﬁe e IAZ; 1 (Tn&)z . (‘38&)2 Jl(t- na)
(13.34)
L 2 %
2z = Tne.1/2 ?_63 . Po
cos Pp ENYE * Je s 1+ nZ) Cﬁp sin T2y 12
(1 +Ln ) Pe (l +"""2)
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The expression for the current density (Lh) has two terms. The

first is that due to initial current modulation; the second, which con=-

tains the factor C, is that due to initial velocity modulation.

T 1/2
(1 + n2 ) increases without bound as one considers larger and

e
larger n . The wavelengths of the modes become greater and greater/
1/2
with larger and larger n in proportion to the value of (1 + 'Una) N
Pe

The current amplitude due to current modulation starts at a maximum,
but the current amplitude due to velocity modula’tlon starts at zero and

. T n’
increases with 2z o Furthermore, since (1 + -—-—2- appears as a
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factor in the term due to veleocity modulation, the amplitudes of these
terms increase without bound as n  is taken larger and larger. But the
value of z for which these terms reach their maximum zlso increases with
n . For large enough values of g.a, B.a = about 3, the coefficients in
the expansion for Io(ﬁer) first increase and then decrease slowly to
zero for increasing n . If one were to observe the current due to
initial velocity modulation at a large value of 2z , one would find that
for low values of n , the current in each mode would increase faster
than the coefficients of the expansion of Io(ﬁer) s, that is as higher
and higher values of n are considered, the values of these terms would
decrease because of the increasing wavelengths of the sine envelope of
the current due to velocity modulation,

The expression for the welocity dlso contains two terms, The first,
containing a factor C, represents velocity due to initial velocity modula-
tion, The second represents velociiy due to initial current medulation.
Here there are no terms with amplitudes that increase without bound as n
increases without boundg

These equations should not be taken to mean that many physical quan-
tities become infinite., The equations merely indicate that the bunching
ability of high order space charge waves is very large. In order to
realize large bunched current densities from small initial velocity
modulation it would be necessary to use a very long drift tube, The
current density will fall off away from the axis, Different parts of
the beam will have opposite phases. Also, when one considers the com-
bined effect of bunching of many space charge waves, it must be realized

that there will be much cancellation of the actual current densities
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because the phases of the current density associated with the various
space charge waves will vary considerably from one another, For these
reasons, the current density does not become quite as large as an initial
cursory consideration may indicate,

As a disturbance travels down the drift space with an initial
Ie(ﬁer) radial distribution, the individual components change phase with
increasing 2z . The radial distribution profile changes radieally with
z o, For example, the lowest order mode, because of its relatively short
wavelength, changes phase by 180° before the phases of the other modes
change substantially. See Fig, 1.2 . For larger values of 2 s the
phase shifts for the other modes also become significant, In addition,
the current arising out of the velocity modulation of the higher order
modes begins to get significant. All this contributes to a jagged radial
current distribution profile,

The problem as it now stands is to determine the current densities
and other quantities along a sheath helix containing an electron beam,
excited by the distributions of current and velocity found at the end of
the drift space considered above. Once the current distribution in the
stream for the second helix has been found, criteria for saturation can
be established. It will be shown that the current which is to be consi-
dered is not that of the usable signal alone,

If one were to examine the secular equation for the propagation
constants found by Chu and Jackson for an electron stream filling the
helix, one would find an infinity of modes with purely imaginary propa-
gatlon coefficients, in pairs, clustered about a limit point JjBe . These

correspond to the plasma waves of a finite diameter beam in emply space



o B0 -

but modified slightly by the presence of the helix,

An agsumption is made now. Thers are ”IO components® in the current
and velocity profiles at the end of the drift tube. These parts,
together with the zero electric field excite the increasing, decreasing
and constant forward waves of the simple circuit theory. "wWhat is left
over? continues to propagate in the form of plasma waves mentiocned in
the preceding paragraph. The radial distribution profile of these
plasma waves will be quite jagged.

In the linear problem, the ”IO” part of the input signal will
split into three forward waves, one of which will grow exponentially to
be much greater than any of the others at an apprecisble distance down
the helix., The remainder of the input will propagate as plasma waves
with all the bunching and debunching processes that are associated with
them, Furthermore, because of the jaggedness of the current and velocity
radial distribution profiles at the input of the helix, the "IO” part
that increases will be a relatively small fraction of the peaks in the
profile--perhaps a fifth of the profile peak, See Fig, 13.2 o The re-
mainder of the input, that is, the plasma waves with no "I " component,
will be called hash from now on. It will be assumed that the hash can-
not ever give rise to usable signal as it proceeds down the itube, Since
the amplitude of the ”Io” part of the input at the second helix is a
small fraction of the hash level, the hash will cause current saturation
in the stream while the useful signal is still many decibels below the
hash, That is, increasing the excitation of the first helix will cause
a nonlinear cessation of amplification in the second helix even though

the electron stream is not fully modulated by useful signal,
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To carry the argument cne step further, consider the graphs of
Fige 1363 » Fige 1363 is based on a rough calculation for a tube of
B = 2065 radians/meter for 1600 voli electrons and with Sp = 276
radians /meter. Operation is at 3000 mc. The length of the drift space
was taken to be about 0,15 meters--squivalent to one-half a space charge
wavelength for the lowest order drift space mode, This corresponds to a
reversal of the Jo(tflr) component at the end of the drift space, The
hash amplitudes were calculated only at the start of the second helix
and at the point one space charge wavelength from the start of the second
helix, Then various rates of growth with distance were assumed for the
hash. It is the author's guess that the hash would grow at a rate be-
tween a 1/2 and 1 power variation with distance along the helix, The
difference in the results cbiained by choice of either one or the other
of these variations is less than the other errors which are involwed.
The assumption of continued growth of the hash is based on the differing
degrees to which bunching takes place for the higher order modes, the
fact that the bunching distance increases with the order of the mode, and
the contimued bunching taking place inside the helix.

It is now necessary to interpret the graphs of Fig., 13.3 o At the
start of the second helix, the hash is about 12 db, above the signal
level, For a reasonably high rate of gain, the signal will be larger
than the hash at some distance down the second helix, If the input is
inereased until nonlinear operation takes place at the end of the drift
tube, the signal will never be able to grow out of the hash, In order
to get the full output available from the beam, the tube must be long

enough so that the signal is out of the hash at the end of the tube.
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Due to the jaggedness of the current profile, not all parts of the
beam should saturate together, Saturation would then show up gradually
as the input signal is increased and the various portions of the beam
begin to saturate.

For the purposes of the preceding caleulations it was assumed that
the following was true.

l. The beam filled the helix,

2o The beam filled the drift tube,

3¢ The higher order plasma waves in the helix behaved as if a
drift tube surrounded the beam.

The last assumption was made just to enable the rough calculation
Just deseribed to be completed,

Actually, beams seldom fill the helix, In that case, the I (B.r)
radial variation of wvelocity and current still holds for low C and no
space charge effects,

The second assumption also has implicitly implied that the attemuator
acts as a drift tube, Firstly, if the beam does not fill the drift tube,
one can still find the propagation constants of the waves which exist on
the electron beam, Calculations can be made by placing an imaginary
pipe Just around the beam and hoping that the results will not be badly
offs Secondly, one can make an attempt to get expressions in place of
(13.23) and (13.24) by a method similar to that of Sollfrey. In any
event, it is known that general physical properties of the plasma waves
are not greatly affected by the presence or absence of a conducting pipe
surrounding the beam, Furthermore, it has been shown in Sections XI and
XVI that admittance wall amplification is negligible for the higher order

Space charge wavess
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The amplitudes of the current modes contributed by the current
modulation at the beginning of the drift pipe do not change very much
with distance.‘ It can also be seen from (13.34) that any change will
be toward a smaller contribution, Therefore, the amplitudes of these
current modulation contributions cannot be any greater in order of
magnitude than the amplitude of the initial current incident upon the
drift tube. The worst that could happen is that some of the modes may
reverse sign or change phase, but no current peaks much greater than
this initial amplitude will resul"E if the current at the end of the
drift tube would be due to only the initial current modulation. If,
however, the part due to initial velocity modulation is also included,
the amplitude of the current at the end of the drift pipe due to this
velocity modulation can be much greater than the amplitude contributed
by the current modulation, In that case, current peaks will be built
up which may be several times as great as the initial current ampli-
tude at the beginning of the drift space,

In order for a contribution to the current in a particular mode

due to velocity modulation to be significant, it is necessary from

t.21/2 Be
(13.34), that (1 + —-332—) C = be comparable to unity. If
ﬁe P

emphasizes

tn2>1/2
;32

e
the higher order mode effect of velocity modulation, The reason that

c f— is of the order of unity, the term (1 +

very high order terms do not contribute very greatly is because of the

sin —EE—%- /2 factor. Nevertheless, for very large n , the small
1+t “
2
Pe
argument expansion for the sine shows that the contribution to the

1 Pe
current in that mode due to initial velocity modulation is ¢z C IR
n P
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In view of these considerations, it must be realized that a tube
with large c gf-’- will be very susceptible to velocity modulation bunch-
ing saturation ifi‘ects. A tube with small C g‘z will be rather immune,
The former situation will apply to typical low power tubes whereas the

latter will apply to typical high power tubes using small B,, large Bp,

C
large C, but with —3— small.
p
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Section XIV

SATURATION MECHANISMS

In the previous section, one mechanism by which saturation due to
attenuators may occur was described, Because of the strong assumptions
that were made to enable calculation, the validity of such calculations

is quite open to question., Furthermore, it has been shown that mode
bunching effects cannot account for saturation in some high power travel-
ing=-wave tubes,

The material culminating in Section IX indicates that growing waves
can exist in attenuator sections of traveling-wave tubes. Based on cal-
culations which will be described later, another mechanism with a stronger
basis will be described in this section to gccount for attenmuator satura-
tion effects.

It is supposed that one has obtained all the propagation constants
associated with all the various sections of a traveling-wave tube. One
can use the methods of Section XII to follow the current density amplitude
and the electric field amplitude of the increasing wave along the length
of a traveling-wave tube., See Fig, 1,1 . The information is plotted on
a logarithmic scale, In the lossless regions, the current and field are
normalized so as to be represented by the same line, The straight line
indicates an exponential buildup of the wave along the tube.

When the attenuator region is reached, a new set of waves is ex-
cited. The level of the current in the increasing wave in this region is
greater than the incident levele The field that is associated with that
current however is smaller, The current and field can then be plotited as

two parallel lines with the field below the current. The slope of these
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lines will be somewhat smaller than the slope in the lossless regidn,
This will indicate the loss of gain introduced by the conductive coating,

At the end cf’tha attenuator region, a new lossless region begins, If
one assumes that the gain and length of the attenuator region are suffi-
ciently large so that only an increasing wave is incident upon the lossless
region, it becomes an easy matter fo calculate the amplitudes of the three
waves set up in the new lossless regione Even if the gain and the length
of the attenuator were not sufficiently long enough to give only an inci-
dent increasing wave, the calculations are still possible if one uses all
the waves in the attenuator region. The use of only an increasing wave
upon the attenuator lossless helix section will be simpler, however, for
illustrative purposes.

The lines representing current and field in the increasing wave will
again fall upon each other and have the same slope as they had in the
first lossless section. The current in this increasing wave will be at
a lower level than the level of the incident increasing wave from the at-
tenuator,

Since the total field and current are continuocus, it is easy to see
that in the section of the second lossless helix near the attemuator, the
current that corresponds to a given field is considerably greater than
the current which corresponds to that field if only an increasing wave
were present. It is, however, this larger current that causes saturation,
Physically, one may argue that in the lossy region, the addition gf con=-
ductance in parallel with the other admittance lowers the impedance of
the structure, The lowered impedance means that a larger current will
be present for a fixed amount of field.

From the point of view presented here, one sees that one way to make
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a tube efficient is to make the gain of the lossless ocutput section
large enough so that only an increasing wave will e present at the
point where the signal level on the tube becomes large encugh to cause

nonlinear operation.
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Section XV

THE USE OF COMPUTING MACHINERY
FOR CALCULATIONS

Digital computing machinery offers many advantages in obltaining
suitable results. Primarily, the calculations are of such a nature
that complete hand calculation is unfeasible. Furthermore, many Bessel
functions of complex argument are needed for the calculation. The
author knows of only one set of tables where such functions are available.
The use of these tables would require much interpolation in addition to
the table sesarchinge.

Machine computation is very useful if the same calculation must be
repeated very many times. This is just what must be done in order to
get enough information for plotiing the various admitiance functions.
Transcendental functions of various kinds can be calculated by the
machine as they are needed. Although this may seem like wasted effort,
the avoidance of table searching more than compensates for the disadvan-
tages., Flotting machines are alsc available which can take punched cards
and plot points on a sheet of paper. They have not been used for the
work described here.

The digital computing machinery available at the Institute at the
present time is very meager indeed; only an I.B.M. punched card computer,
60lL, is available for use, This machine does have some additional
features, however, which are not found on the standard 604 machine and
which greatly increase its capabilities. Its chief defects are the fol-

lowing:
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le There is a lack of storage. The storage of the machine is very
limited and this makes 1t necessary to punch out intermediate results.

It is very difficult to work with complex numbers because the real part
and imaginary part must be stored separately in individual storage units,
thereby rapidly filling up the available storage. The number of places
available in the storage is alsc limited, It limits one to quotients with
no more than five significant figures.

2. Programming the machine is done by means of a beoard and patch
cords. A limited number of steps is available for each pass of the cards,
This means that for a very long calculation intermediate resulis must be
punched out on cards. In order to store a program, the board which has
the appropriate wiring must be stored, This is very difficult if there
is not a sufficient number of boards available to meet the requirements
of all the persons using the machine,.

3e The machine is slow compared to more modern equipment,

In spite of all these disadvantages, any attempt to make the computa-
tions without a machine would appear hopeless,

In general, the author believes that further calculations using only
the 60l should not be attempted., For this reason the entire set of
programs will not be presented here, A sample program is given just to
indicate the method. See Table 15.1 .

In order to make efficient caleulations, other machines should be
used, An I,B.M. 650 or the Electrodata "Datatron should be suitable,

An I.B,M, 701 would even be better. These machines are capable of stor-
ing program instructions in the same memory system as is used for storing

numerical information, This enables long programs to be stored in the
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machine, The machines mentioned all have storage capacities of at
least severél thousand words of ten decimal digits each, compared to
less than ten words of fewer digits for the 60L, Furthermore, once
the machine has been programmed from punched cards or tape, the card
or tape with the program can be stored for future use leaving the
machine free for other problems. Also, because of the large storage
available, the machines are capable of being progremmed to get the re-
quired propagation constants by some process, possibly Newtonls method,
which does not require the plotting of contour maps of the admittance
functions. The extra storage greatly increases the possibilities for
machine computatione.

Sollfrey has expressed the solution for the field quantities of a
traveling-wave tube with arbitrary excitation in terms of a Laplace
transforme The standard methods for evaluation of the inverse trans-
form are quite impossible for this transform if one desires the
rigorous answer, One can evaluate the inverse transform by a numerical
integration. This will give the full effect of the higher order space
charge waves as well as that of the continuwm associated with a branch
cut., Again, for such a process, a suitable general purpose computer
with considerable storage would be necessary. A 701 or eguivalent

would probably be required to handle such a job,
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Section XVi

CALCULATED RESULTS OF THE FIELD THEORY

A region of pa plane in the vicinity of P2 of the helix was
chosen. This region was divided by a rectangular gride. For each ine-
tersection of the grid lines, values of the circuit admitltance were
calculated for various conductivities of the lossy coatings The admit-
tance was calculated for a radius Jjust inside the sheath helix. The
results of Section V were used for this calculation., Onece having deter-
mined the admittance of the circuit for a given pa , a point can be
entered upon the complex admittance plane, When all such points have
been entered, they can be joined together by lines to form a contour
map relating the admittance to the propagation constant,

One performs a similar admittance calculation for the electron
beam. The caleulation can be repeated for various beams. The results
of such caleculations are plotted in the same manner as the results of
the circuit admittance calculatione A given beam admittance value will
be attained by an infinite number of propatation constants with a limit
point corresponding to the velocity of the beam because of the essential
singularity at B, . The plot of interest corresponds to that region of
pa which corresponds to the largest deviations from velocity synchronism
which gives sclutions.

In order to get the propagation constants corresponding to a given
circuit and electron beam, one takes the corresponding plots and\superm
imposes them, A light table dis a convenient means for doing so. Then

one determines the propagation constants which give the same values of
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admittance on both maps, the electronic and the circuit maps. This can
be done essily by finding the intersections between the corresponding
contours of the real part of the propagation constants and then drawing
a line through these points, doing the same thing for the imaginary con-
tours, and then finding the intersection between the two lines so
deﬁerﬁined.

On a suitable computer, one would be able to program the machine
to determine the propagation constants by means of an iterative procedure
without the necessity of resorting to the drawing of admittance contour
maps.

In any event, the final result will be the determination of the
three principal forward waves asscoclated with a traveling-wave tube,
Using the results of Section XII one can calculate the amplitudes of the
waves that are excited in various regioms. It is assumed that all the
other modes are not present in any appreciable amount,

Such calculations have been made for a helix with a conductive
sheath at a radius double that of the helix, This relative value of
radil was chosen in order to simulate to some degree the effects of
dielectric loading., Several differing values of conductivity were chosen.
The normalized conductivities used were 0, 0,5, 0.25, 0.1, and 0,05 for
cases 0, 1, 2, 3, and L respectively, Other parameters were ka = 0,153,
tan? 8/ka = 0,1025 . The admittance map s for these cases appear in
Figs. 16,1 through 16,5 , The cold circuit propagation constants are
listed in table 16,1 . It is interesting to note that the cold circuit

attenuation is a maximum for an intermediate wvalue of conductance, This
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is to be expected when one considers the behavior if there were in-
finite conductivity at r =c¢ o It is of importance to note that the
velocity of propagation i1s lowered with increasing conductivity.

Fig., 16.6 is an admittance map for anelectron beam with ﬁpa = 0,06
and ﬁea = 0,900, and b = a . The plot for positive imaginary pa
is found by reflection by the imaginary admittance axis,

Figs. 16.1 through 16.5 have the intersections with Fig. 16,6 in-
dicated, These intersections correspond to the propagation constants.,
Some of these intersections are not in the region for which calcula~
tions have been made. It is, nevertheless, rather easy toc get a good
estimate of where they ought to be by visual means. These propagation
constants are listed in Table 16,2 .

t is of interest to determine saturation based on the mechanism
described in Section XIV and the associated figure, Fige 1lel o The
quantity of interest would be the ratio of the current to field in the
attenuator region, compared to the ratic of current to field in the
lossless region. If the current and field are normalized so as to fall
on the same line in the lossless region as in Fig, 1lli.1, then the quan-
tity of interest will be the difference in height between the two lines
in the attenuator region, 1 , expressed in decibels, These guantities,
and a few related ones have been calculated and are presented in Table
1643 « The calculation is made for a traveling-wave tube using the
structure corresponding to case 0O , for the lossless section. The
attenuator section corresponds to the cases 1, 2, 3, and L .

In order to understand the saturation beyond the end of the alt-

temuator on the basis of the discussion presented here, it is necessary
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to caleulate the build up of current and field, the sum of the three
forward waves, From such a procedure, one determines the degree %o
which the field’and current @e represented by the increasing wave
alone. The three waves were sumed for Case 2 for various distances
beyond the end of the attenvator, The current to field ratios at
these points were compared to the current to field ratic for a purely
increasing wave, The results of these calculations are shown in

Fige 1647 . This shows that the effects of the attenuator in changing
the current to field ratios of the waves continue to be present at
reasonable distances beyond the atiemuator,

Experimental work done at the Hughes Aircraft Company (B-2) has
shown that the attenvator loss in power output is about two or three
decibels, Maximum power for typical operation is obtained beyond the
end of the attenuator for their tubes, The calculation performed here
indicates that the power loss should not be that great beyond the at-
tenuators It is believed that the discrepancy lies in the fact that
the attenuator used in the Hughes tube is more closely coupled to the
helix than the attenuator for which calculations have been made.

The maximum loss obtainable by the adjustment of the attenuator
conductivity for the cases calculated here is about 3,0 db, per guide
wavelength. The losses associated with the Hughes tube attemator are
about 8 or 9 dbe per guide wavelenpgbh. The Hughes tube was constructed
with a rather thin wall envelcpe. The envelope was thin enough so that
even upon taking into account dielectric loading, the ratio of equi-
valent attemuator radius to helix radius ratio is considerably less than

2. For the calculations performed here, the ratic c¢/a was chosen to
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be equal to 2 in order to emphasize the effect of dielectric loading.

An attenuator which is strongly c oupled to the helix will introduce
considerably more loss than one that is coupled more locsely. It is now
easy to see why such an attenuator will have a stronger effect on the
propagation constants. It then appears to be wery likely that a more
strongly coupled attenuator will cause the changes in the current to
field ratios at the end of the attenuator to be larger than for a weakly
coupled atienuator with the same conductivity. Such a situation would
reguire more gain in order for the increasing wave o be much larger
than the constant and decreasing waves since large changes in the propa-
gation constants will sxcite large decaying and fast waws.

It is of interest to campare the resulis of the field calculations
to those predicted by the Plerce-Fletcher theory. The values of K and
Q@ that were used in the comparison were read directly off the graphs
published by Fletcher. There may be considerable error introduced by
such direct use of the curves,

The published curves correspond to a helix in empty space., That is,
they do not strictly apply to lossy helices, But, in the absence of any
better calculations, they were made to do, The introduction of loss is
represented by d in the Pierce theory. Actually, introduction of loss
also results in 2 change of phase velocity. This can be taken into ac-
count by the use of a complex d . This turns out, however, to be
eguivalent to using a value of b which corresponds to the lossy phase
velocity. It is not correct to merely introduce a real d without |
similtaneocusly modifying b .

K and Q actually are complex mumbers for lossy helices, and their
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absolute values change as the circuit properties are changed: it is

to be expected then, that there will be poorer agreement between the
field and Pierce values for the propagation constants for lossy helix
tubes., This is indeed found to be true. The discrepancy between the
field and Pierce values for the increasing wave incrementsal propagation
constants for the lossless case 1s about 5 percent. The corresponding
discrepancy for the leossy Case 2 is aboubt 10 percenmt. For the lossless
case, the discrepancy is only slightly larger than the accuracy one can
expect to get by reading values off the Fletcher curves, For the lossy
case, the discrepancy becomes markedly larger than can be attributed to
error in reading the curves. This indicates that the Plerce-Fletcher
theory does not adequately account for the effects of loss,

The results of these calculations appear in Table 16.L .

It is somewhat difficult to predict what the discrepancies betuween
the Pilerce and field theories will be for other parameters, Larger
values of B.a will correspond to tules which agree more closely to the
Pierce~iletcher theory if no loss is introduced., The absolute value of
€@ will be larger for such tubes, and the effect of loss on Q is
presently guantitatively unknown. Larger currents will increase the
incremental propagation constants which in turn will make the Fletcher
approximation more ilnaccurale.

Finally, it is of interest to get an estimate of what kind of ampli-
fication can be expected in the higher order modes of a lossy helix
traveling-wave tube. For Case 2, the admittance to be used for
pa = 0,900, is ¥(?) = -0.0320 + j0.0170 . The 1z, corresponding to

n

the first higher order mode is j3.832. Substitution of these values
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FIELD THEORY PIERCE THEORY

PROPERTY VALUE VALUE
Lossless and Lossy

K | - 208

Q - 0.261

I, 7548 ma 75.8 ma

v, 7LLO e

C - 0.,0809

Qe - 00211
Lossless only

b — 0.92

§ increasing 0851 = 306906 06812 = 30.870
Lossy only

b - 1567

d - 0.71h

§ increasing 0,507 = j0e933 0.437 - 30.854L

£ / z 0473 0468

v lossless

Table 1664
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into (11.7) results i

pa = 0,900 + 0,0136 + jO,00152 .

Therefore, the rate of gain for this mode is quite small indeed com-

pared to the gain of the principal mode.
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Section XVII

CALCULATED AND EXPERIMENTAL RESULTS
FROM THE BUNCHING THECRY

Attempts have been made to find out the correlation between the ex-

periment and the bunching theory of Section XITI., Caleulations were made

for a tube with the following parameters.

Vo = 650 V

IO = (0o5 ma

b = 1027 mm

i

beam diameter

#

Z2a = 2,31 mm mean helix diameter

Ag = 00518 om

B2 = Lok

Bp = LbO/m
Be = 1218/m
C = 0,034
QL = 0,11

It iz assumed that a beam of radivs a 1is incident upon the attenua-
tor which is assumed to be equivalent to a drift pipe. The plasma fre-
guency of the actual beam is assumed to be equal to the plasma frequency
of the beam in a closely fitted drift pipe. With these assumptions, and
the results of Section XIII, current and velocity profiles have been
compubted for the beam at variocus distances from the beginning of the
drift pipe. These are illustrated in Figs. 17.1 through 17.4 . The
caleulations were made using a finite number of the space charge wave
modes.

It is noted that the peaks of the distributions shown in Figs. 17.1
through 17.4 occur for values of r which are almost but not quite equal

to a » One may say, to a reasonable degree of approximation, that the
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peaks occur for r = 0.9 a o Then the ratic of the pesk current density
to the peak initial current density at the beam edge, may be computed as
a function of distance along the drift pipe. This ratio can be expressed

2.5
1(m T 2 Jo(o.9rna>
Hin ®©,2)% + (8, a>2 I, (T 42)

cos —w~§§§~5~5m 1ﬁﬁ(z;n G Be in @ ‘
1+ (21 e tn

The results of this calculation are shown in Fig. 17.5  These results

(17.1)

are also listed in Table 17.1 »

The "IO” parts of the current density can be found by means of (13,26)
which is applied in the form of (13¢30). 4 similar caleculation for
velocity is also possible using (13.31). The results for various values
of drift pipe length are listed in Table 17.2 .

Table 17.3 gives a summary of the radial distributions of alternating
velocity. Table 17.L gives the ”IO” components of current and velocity
at various distances along the driflt tube,

Using Fig, 17.5, one can determine the relative input powers at the
beginning of the drift pipe which would give equal peak current densities
at various distances along the drift pipe. If one postulates that satura-
tion sets in when the peak current density reaches the direct current
density, then these relative powers will be the relative power inputs re~
quired to cause saturation at the end of a drift pipe.

Measurements were taken on the tube described above, Figs. 17,6 and
177 show the results of these measuremenis. The plots indicate the
relative power required to cause saturation as a function of the position
at which saturation effects are measured, The first one is plotted in
terms of distance beyond the attenuator. The second is in terms of rela-

tive position, the length of the attenuator being the parameter for the
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curves, The expected relative differences in power levels required to
produce saturation are indicated on the plots. The agreement for the two
shortest atbtenuators with the theoretical value is fair., The experimental
power level difference for the two longest attenuators is greater than
vhat was expected, The discrepancy is due to the incompleteness of +the
theory. It is especially probable that the large length of the attenua~-
tors and the impossibility of representing the attenuator by a drift pipe
result in considerable amplification under the attenuator, Such a
situation would require less power input in order to cause saturation.

Variation of power output as a function of distance along the tube
is indicated in Figs. 17.8 and 17.9 for two different attenuator lenpgths.
These plots show the over-all behavior of a traveling-wave tube as a func-
tion of drive and attenuator length.

The experimental arrangement is indicated in Fig., 17.10 . The probe
conslists of a single turn of wire which encircles the tube ai a sufficient
distance to prevent reflections being set up on the tube. The output of
the probe was detected and‘amplified. The signal source was square wave
modulated. Cold measurements were used to obtain power calibrations. The
calibration enables one to determine the power level in terms of the
voltage at the oscillograph. The tube was mounted in a magnet providing
a longitudinal field of about L0O0O gauss,

In order to get an estimate of the power input required to cause
saturation at points beyond the attenuator, some further calculations are
required, The "I " components of current and velocity are subtracted from
the cwrrent distributions found at the end of the attenuator, The’remainw

ing distribution, the hash, is then assumed to continue along the beam in

the form of space charge waves, Saturation is assumed to set in when the
peak current density in the current density distribution becomes equal to

the direct current density. The results of these calculations appear super-

imposed upon the curves of Fig, 17.6 in Fig. 17.11 &
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Section XVIII
CONCLUSION AND SUGGESTIONS FOR
FURTHER INVESTIGATION

Saturation in traveling-wave tubes with attenuators cccurring
at lower levels than saturation in similar tubes operating without
attenuators can occur in several ways,

It is believed that the mechanism of mosit importance in high
power causes the current to field ratio to increase by the introduc-
tion of attenuation., At present only a limited number of calculatiocns
have been performed, It would be very desirable to have the results
of calculations covering a greater Tange of parameters, One could also
use models which come closer to the actual configurations of itraveling-
wave tubes than the ones that have been used for the caleulations
presented here, For instance, caleculations should take into considera-
tion the presence of glass envelopes,

The other mechanism which has been proposed to explain saturation
consists of space charge wave bunching of the higher order modes, The
caleulations which have been performed on the basis of this mechanism
have been very crude. 1t would be of great value to be able to calcu-
late the actual contribution to saturation of these higher order modes,
Some criteria have been given earlier which indicate when such contri-
bution would be important., To put the matter on a rigorous basis, the
author suggests that Sollfrey's work (R-5) be extended to include the
effects of dielectrics and lossy surfaces. Then machine calculation of
the inverse transform can be used to détermine the behavior of the tube

taking imto account all the effects of higher order modes as well as
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the effects of the changes in propagation constants of the three prin-
cipal modes introduced by addition of loss. An IBM 701 computer or
equivalent will pfobably be required to run such calculations.

The work described above suffers from being a linear theory. It
may be necessary to go to a nonlinear theory in order to get to a
thorough understanding of the situation. In the nonlinear computations
which have been performed to date, {R=7,8),the calculations have been
performed while neglecting several important considerations, They
start with purely increasing waves, It is very important to consider
saturation when all three waves are taken into account because the in-
troduction of an attenuator excites the other waves, The calculations
also are based on the Pierce theory., It has already been shown that
the Plerce theory must be modified in the presence of loss, Investiga-
tion of the variation of the parameters Q and K with loss needs to
be carried out. Furthermore, if it turns out that the higher order
modes are significant, it will be necessary to perform nonlinear analyses
of finite diameter beams.

It may be necessary to develop new methods of treating the problem
which do away with the necessity of using large compubing machines,
That is, better application of the human brain may solve the problem
better than the frontal attack of large computing batteries,

Finally, it is well to ask, "What does this all mean with respect
to achieving higher efficiency from traveling=-wave tubes?" The answer
to such a question is not very satisfactory. It seems that the iﬁtrc«
duction of attenuation will always give attenuator troubles. It may be

possible to compare the behavior of various attenuator designs on paper,

but the author believes that even the best atienuator obltained by such a
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method will not be wvery good, Design procedure would be largely
empirical--several tentative designs being compared by computation.

In order té get about attemuator saturation effects it will
probably be necessary to do something drastic, such as changing helix
pitch under the attenuator,

There is much left to be done if one wants to understand the
operation of attenuating sections. But, it is believed that the mate-
rial presented above gives a fairly clear picture of the processes
which are occurring, It should be able to serve as a starting point

for an attempt to eliminate the bad effects of attenuators,
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