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Abstract

Quantum mechanics is a very successful theory which precisely describes the behavior

of microscopic particles. Although the theory provides counter-intuitive predictions, such

as that an object can be at two different positions at the same time and the "spooky action

at a distance" between two objects, it describes the microscopic world with unprecedental

precision. These counter-intuitive quantum behaviors of microscopic particles explain

phenomena across disparate scales, from the microscopic scale such as interactions between

sub-atomic particles, the atomic spectrum, motion of electrons in solids, and chemical

reactions, to macroscopic scale such as behavior of superfluids and superconductors, and

even the evolution of stars. So far, no example of conflicts between experiment and theory

is known, and the validity of the theory is so broad that one would expect that the quantum

theory can be applied to the macroscopic world, for example, a macroscopic massive object

such as a soccer ball can in principle be at two positions at the same time. A lot of effort has

beenmade to observe thesewierd quantum effects inmacroscopic objects, and superposition

of a molecular version of soccer ball, a fullerence molecule, has been observed. However,

quantum phenomena of human scale objects haven’t been observed due to the decoherence

effects induced by the unmonitored environmental degrees of freedom, which amacroscopic

object is usually coupled to.

The purpose of this dissertation is to study the quantum phenomena of a massive macro-

scopic object with a cavity electromechanical system, where a nanomechanical resonator

couples to a high Q microwave resonator formed by superconducting circuit. Mesoscopic

scale mechanical resonators have several unique properties that make it suitable for the

study of macroscopic quantum phenomena: first, they consist of a macroscopic number of

particles (N ∼ 1014), much more than molecules and a few order of magnitude larger than
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Bose-Einstein condensate of atomic gases. Second, they are highly engineerable, and have

a wide range in resonance frequency (from kHz to GHz) and possess extremely high quality

factor (Q ∼ 108) with meticulous design. Third, they can be macroscopic in size (a few

tens of microns) while keeping the mass relatively small (∼pg). All thuis together with the

accessibility to cryogenic temperature (∼mK) and availability of ultrasensitive detectors in

mesoscopic scale puts these nanomechanical structures into the quantum regime.

In this work, we focus on the quantum effects stemming from the Heisenberg uncertainty

principle. The first issue is the fundamental limitation to the precision of continuous

measurement. According to the Heisenberg uncertainty principle, measuring an object

would unavoidably perturbing it. Although the perturbation is very small, it would finally

limit the sensitivity when the precision of the measurement is high enough. This is the

subject of the first experiment in this dissertation. In this experiment, we detect this quantum

backaction, which is the radiation presure from the microwave quantum fluctuation in this

case, with a nanomechancial resonator. Moreover, we employ a special technique called

backaction-evading measurement (or quantum non-demolition) to avoid this measurement

backaction.

The second issue is the fundamental limit to the quantum state of an object. According

to the Heisenberg uncertainty principle, nothing is completely at rest. Even if one cools

a harmonic oscillator to the quantum ground state, it would not stay still, as there is

randommotion associated with the zero-point energy: the zero-point motion. This quantum

fluctuation places a fundamental limit on the minimum motion of an object. One way

to go beyond this limit is to squeeze the motion. By squeezing the motion, one can

generate quantum squeezed states which have fluctuations below the zero-point motion in

one quadrature at the expense of increasing the fluctuation in the other quadrature. These

states have been generated in microscopic objects such as photons and trapped ions. In the

second experiment, we employ a dissipative squeezing scheme in a cavity electromechanical

system to generate a stationary quantum squeezed state of a nanomechancial resonator with

more than 3 dB squeezing.
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Chapter 1

Introduction

1.1 The Heisenberg uncertainty principle

The Heisenberg uncertainty principle, one of the tenets of quantum theory, was formu-

lated byWerner Heisenberg in 1927. It states that it is impossible to measure simultaneously

the canonical position q and its conjugate momentum p of an object with arbitrary precision

[41], which is

∆q∆p ≥
~

2
. (1.1)

As described by Heisenberg [42], "the uncertainty principle refers to the degree of in-

determinateness in the possible present knowledge of the simultaneous values of various

quantities with which the quantum theory deals."

Wave properties of matter

The uncertainty relation can be deduced from the wave properties of matter. Here

we follow the argument by Heisenberg in his Chicago lectures of 1930 [42]. Consider

a wave packet with spatial extent ∆x made up by superposition of sinusoidal waves with

wavelengths near λ0. Then there is roughly n = ∆x/λ0 crests or throughs within ∆x.

Outside the boundary of the wave package the component waves must be canceled by

interference, and therefore the set of the component waves must contain at least n+ 1 waves
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that fall in the critical region. This gives

∆x
λ0 − ∆λ

≥ n +
1
2
, (1.2)

where ∆λ is the extent of the wavelengths of the component waves. If we expand the left

hand side of Eq. (1.2) to first order in ∆λ, we obtain

∆x∆λ
λ2

0
≥

1
2
. (1.3)

Together with the de Broglie relation p = h/λ, the group velocity of the wave package is

given by

vg =
dE
dp
=

p
m
=

h
mλ0

, (1.4)

where E = p2/2m. The spreading of the wave package is characterized by the spreading of

the group velocities

∆vg =
h

mλ2
0
∆λ. (1.5)

By defining ∆p = m∆vg and therefore by Eq. (1.3), we obtain the uncertainty relation

∆x∆p ≥
~

2
. (1.6)

In this respect, the Heisenberg uncertainty relation is the result of the intrinsic wave-like

nature of the object. It specifies the limit within which the particle picture can applied or

the concept of motion and path is meaningful, i.e., position and momentum of the particle

are well defined simultaneously.

Heisenberg’s microscope

On the other hand, the uncertainty relation can also be deduced without explicit use

of the wave picture, as described by Heisenberg with his famous Heisenberg’s microscope

experiment [42], which he used to give a physical interpretation of the uncertainty relation.

The original version of the Heisenberg’s microscope experiment considered the measure-
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Figure 1.1: Schematic of Heisenberg’s microscope experiment.

ment of the position of a microscopic particle such as electron. Here, we will describe a

modified version given by Braginsky et al. [8], which is closer to the subject discussed

in this thesis. We consider measuring the position of a macroscopic object with mass m.

In order to give a well defined position of the object, we attach to the object a stick with

diameter less than or of the order of the wavelength of light. The position of the stick x1 is

measured by arranging it close to the focal plane of the lens. The arrangement of the lens

and the photographic plate is shown in Fig. (1.1), where a is the diameter of the aperture

and L1 is the focal length of the lens. To measure the position of the stick, we send a stream

of photons with wavelength λ from the side and wait for an individual photon to be scattered

by the stick, pass through the lens’s aperture, impinge on the photographic plate, collapse,

and produce a small seed of silver. The transverse position x2 of the silver seed, relative to

the lens’s optical axis, can be determined to an accuracy much better than an optical wave-

length. Then the transverse position of the stick relative to the optical axis of the lens can

be inferred with the relation x1 = −x2L1/L2. The imprecision of the position measurement

is limited by the Abbe diffraction limit, with roughly equal probabilities, anywhere within

a distance

∆xmeasure '
1
6
λ

L1
a

(1.7)
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Figure 1.2: Schematic of von Neumann’s Doppler speed meter experiment.

of the location x1. Because the photon has momentum p = h/λ, it therefore must have

given the stick a random momentum in the x direction

∆pperturb ≥
~ω

c
a

2L1
. (1.8)

The product of Eqs. (1.7) and (1.8) gives the Heisenberg uncertainty relation

∆xmeasure∆pperturb ≥
~

2
. (1.9)

von Neumann’s Doppler speed meter

Another famous thought experiment to demonstrate the Heisenberg uncertainty relation

is the von Neumann’s Doppler speed meter [66]. In contrast to the Heisenberg’s microscope

experiment whichmeasure the object’s position, this experiment considers the measurement

of the object’s speed or momentum. As shown in Fig. (1.2), we shoot a monochromatic

single photon pulse with duration τ (and therefore frequency range ∆ω ' 1/τ due to the

wave properties) to the macroscopic object with mass m and speed v, we then measure the

energy of the reflected photon with a calorimeter. Because of the Doppler effect, the mean

frequency of the photon will change by the amount

δω

ω
=

2v
c
. (1.10)
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However, the initial energy was known only with a fractional error ∆ω/ω = 1/ωτ, and

therefore the precision of the object’s speed will be within

vmeasure =
c
2
∆ω

ω
=

c
2ωτ

. (1.11)

The photon’s reflection gives the body a precisely known momentum 2~ω/c, but the

momentum of time when the momentum is transferred is known up to the pulse duration τ.

Therefore, the object’s position is perturbed by

∆xperturb ≥
2~ω
mc

τ

2
. (1.12)

The product of the uncertainties (1.8) and (1.7) again gives the Heisenberg uncertainty

relation

∆xperturb∆pmeasure ≥
~

2
, (1.13)

where ∆pperturb = m∆vmeasure. Compare to the uncertainty relation (1.9), the roles of

position and momentum in (1.13) are interchanged.

Discussion

As pointed out by Braginsky et al [8], although the uncertainty relations (1.6) and (1.9)

look similar, their essences are fundamentally different. The uncertainty relation (1.6) is

the result of the fundamental properties of the quantum object. It simply tells us what

a quantum object has to be, i.e., a quantum object doesn’t have precisely defined values

of position and momentum simultaneously. On the other hand, the uncertainty relation

(1.9) is the fundamental property of the measurement process. In this case, the position

uncertainty is an error in the measurement, an intrinsic property of the the measurement

apparatus, which is in principle independent of the measurand. The momentum uncertainty

is the perturbation given to the object by the measuring process, which is determined by the

interaction between the quantum object and the measurement apparatus.

While theHeisenberg uncertainty relations (1.6) and (1.9) seem to have different physical

origins. In fact, the physical roots of them are the same: note that the measurement
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apparatus also follows the uncertainty principle (1.6) (in this case, the photon), and the

consequence of these unavoidable uncertainties is the random momentum perturbation

to the measurand in the manner of (1.9). On the other hand, the unavoidable random

perturbation accompanying with the measurement prevents one from prepare a state or

obtain initial conditions that violate the uncertainty principle (1.1). Therefore, the two

uncertainty relations are complementary to each other.

Quantum limit on repeated measurement

As shown in the Heisenberg’s microscope experiment and the von Neumann’s Doppler

meter experiment, due to the Heisenberg uncertainty principle, any attempt to extract

information from an object would inevitably perturb it in an unpredictable way. The

immediate consequence of this unavoidable random perturbation is that the measurement

process can affect the outcomes of the subsequentmeasurement results. Considermeasuring

the position of a freemass at time t = 0 (e.g., with theHeisenbergmicroscope)with precision

∆x (0), which would perturb the momentum by the amount ∆p (0). After a period of time

τ, the accuracy of a second position measurement is spoiled by the momentum perturbation

induced by the first measurement, which is

[∆x (τ)]2 = [∆x (0)]2 +
[
∆p (0)

τ

m

]2
≥ [∆x (0)]2 +

[
1

∆x (0)
~τ

2m

]2
≥
~τ

m
. (1.14)

As shown in Eq. (1.14), if we made the initial position measurement very precise (∆x (0) →

0), then the momentum perturbation would be very big (∆p (0) → ∞), and as a result it

would ruin the precision of the subsequent position measurement (∆x (τ) → ∞). The

minimum of the position uncertainty ∆x (τ) occurs at

∆x (0) = ∆xSQL ≡

√
~τ

2m
(1.15)

and

∆p (0) = ∆pSQL ≡

√
~m
2τ
, (1.16)
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where xSQL and pSQL are the standard quantum limits of a free mass.

Another example is measuring the position of a harmonic oscillator. similar to the

previous example, the measure of the position with precision ∆x (0) would produce a

minimum momentum perturbation ∆p (0) = ~/2∆x (0). After a period of time τ, the

precision of the second position measurement is

[∆x (τ)]2 = [∆x (0)]2 cos2ωτ +

[
∆p (0)

mω

]2
sin2ωτ

≥ [∆x (0)]2 cos2ωt +
[

~

2mω∆x (0)

]2
sin2ωt, (1.17)

where ω is the frequency of the harmonic oscillator. The minimum rms position error is

obtained at

∆x (0) = ∆xSQL ≡

√
~

2mω
(1.18)

and

∆p (0) = ∆pSQL ≡

√
~mω

2
, (1.19)

where xSQL and pSQL are the standard quantum limits of a harmonic oscillator.

At the first glance, one might think that the roles of position and momentum are

interchangeable in this case, as in the case of the Heisenberg’s microscope and the von

Neumann’s Doppler meter. Surprisingly, this is not the case. Consider measuring the

momentum (or velocity) of the free mass (e.g., with the von Neumann’s Doppler speed

meter) with precision ∆p (0) at t = 0: according to the Heisenberg uncertainty relation, it

would perturb the position of the mass by at least the amount∆x (0) = ~/2∆p (0). However,

since the momentum is a constant of motion of a free mass, the perturbation of the position

wouldn’t spoil the momentum during free evolution, and the uncertainty of the momentum

remains the same, i.e., [
∆p (τ)

]2
=

[
∆p (0)

]2 . (1.20)

Therefore, on can in principlemeasure themomentum of a freemasswith infinitely accuracy

(∆p (t) → 0) without affecting the results of the subsequent momentummeasurement. This

type of measurement is called quantum nondemolition (QND) measurement, and we will
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return to this subject in section (2.3).

1.2 Historical review

In the early days of the twentieth century, experiments were limited to a single mea-

surement of systems that consisted of huge numbers of microscopic objects, probably due

to the lack of technologies to perform repeated measurements with sufficient precision

and individually manipulate a single microscopic object. These experiments revealed the

wave properties of matters, and therefore the Heisenberg uncertainty principle (1.1), in a

statistical sense. These type of experiments can be well explained by calculation based on

time-dependent perturbation theory [26] (or Fermi golden rule [69]), which is based on the

"repeated random phase assumption". It assumes that the phase relations between wave

functions at the initial state and the final state are randomized, or equivalently that the initial

and final density matrix are always diagonal in the unperturbed basis. Therefore, one only

needs to care about the probabilities at the end of the interaction, which are given by the

squares of the wave functions. Albeit the lack of rigorous justification of this assumption,

these calculations explain the experimental observations successfully. During this time, the

effects of measurement due to the Heisenberg principle (1.9) are only conisdered in thought

experiments.

The arrival ofmaser in 1953 [35] and laser in 1960 [63] completely changed the situation.

These highly coherent light sources can generate electromegnetc fields with high spatial and

temperal coherence, in which the repeated random phase assumption doesn’t hold, whcih

inspires people to develope a quantum theory of light, and gives rise to the field of quantum

optics. The ability to prepare highly coherent states and amplify signals at a single photon

level makes the previous thought experiments realizable, and stimulates researches on the

consequences of the Heisenberg uncertainty principle on linear amplification [39, 40, 12]

and quantum mechanical measurement [43]. Furthermore, the call for the detection of

the gravitational wave in 1960, which required continuously monitoring the motion of

a macroscopic object with the sensitivities close to the quantum level, necessitated the

development of the quantum theory of continuous measurement [13, 14, 12, 102] because
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the traditional quantum theory of measurement didn’t treat the continuous case.

In addition to the development of laser, another scientific and technological breakthrough

in the late 20th century, which is visioned by Richard Feynman in his famous talk entitled

"There’s Plenty of Toom at the Bottom" in 1959 [30], is nanotechnology. By shrinking

down the size of structures or materials to nanoscale, many interesting and useful properties

appear because the feature size is of the same order as the critical size for the physical

phenomena.

Nanotechnology is a very broad notion which includes various fields of science, and

here we focus on nano-electromechanical systems (NEMS). Mechanical structures on the

nanometer scale have several attractive properties: first, the mass of nanomechanical struc-

tures can be very small (∼ 10−21 g) [61]. Second, by carefully designing the mechani-

cal strucrure, the resonance frequency of a nanomechancial resonantor can cover various

range from few kHz to few GHz [91, 61, 115, 77, 78, 28]. Third, the quality factor of

a nanomechancial resonator can be very high, as high as 108 at room temperature [67].

All these properties together make the nanomechancial resonator extremely susceptible to

external alterations. It has been applied for various types of sensitive detection, for exam-

ple, charge sensing [18], infrared thermal sensor [117], inertial sensing [37, 53, 114] and

imaging [38], magnetic resonance imaging [80], etc.

In additional to technological applications, the unique properties of the nanomechanical

system also offer an opportunity to study quantum mechanics in a massive macroscopic

system. Since the frerquency of the nanomechancial resonator can be as high as GHz, at

cryogenic temperature (∼ 10 mK), the mechancial resonator occupies it’s quantum ground

state. By tighly coupling it with a superconducting qubit as a detector, O’Connell et al. have

demonstrated the quantum motion of a macroscopic mecahnical object [68]. By reversing

the role of the nanomechanical resonator and the qubit, LaHaye et al. have demonstrated a

nanomechanical read out of a superconducting qubit [55].

The ability to tighly couple a nanomechancial resonator to various mesoscopic quan-

tum systems also enables us to continuously monitor the mechanical motion close to the

standard quantum limit (SQL), which brings the interest of quantum measurement into

nanomechanical systems and stimulates a lot of research on the quantum limit of detection
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of a nanomechancial resonator with various detection techniques [21, 19, 24]. A seminal

work is given by LaHaye et al.: by coupling a nanomechancial resonator to a superconduct-

ing single-electron transistor (SSET), they demonstrated a continuous detection of position

with resolution close to the SQL [56]. Later, by applying amicrowave cavity interferrometer

based detector, and incorporating a near quantum-limited microwave amplifier, Teuful et al.

demonstrated a position measurement with measurement imprecision below the SQL [96].

In addition to continuous position detection where the measurement precision is limited by

the SQL, by carefully modulating the coupling between the nanomechanical resonator and

a cavity in the resolved sideband regime (mechanical resonance frequency much larger than

the cavity linewidth), one can perform QND measurement of the mechanical quadrature

[23, 44]. By applying this technique, Suh et al. have demonstrate a backaction-evading

measurement of a single mechanical quadrature with measurement imprecision below the

SQL [95].

Besides detection, the backaction from the detector can generate dynamical effects to

the mechanical motion [20], and the dynamical backaction from the detector can be applied

to control the motion of the nanomechanical resonator. In particular, in sideband resolved

cavity opto/electro-mechanical systems [36, 86, 99, 33, 28, 98], where the mechanical

motion is tighly coupled to the cavity resonance frequency, the high Q cavity enables one to

selectively enhance the mechanical sidebands, and therefore the backaction from the Stokes

and anti-Stokes scattering processes. Reviews of the filed of opto/electromechanics can be

found in [49, 2]. By applying the sideband cooling technique in the opto/electro-mechancial

systems [64, 108], one can cool the motion of various nanomechanical resonators into

the quantum ground state [16, 97, 71]. The ability to actively cool the mechanics into

the ground state brings nanomechancial systems into quantum regime: the zero-point

motions of mesoscopic mechanical resonators have been observed [59, 106, 82, 100], the

quantum radiation shot noises have been detected with nanomechanical resonators [95, 73],

quantum squeezed states of light have been generated with optomechanical systems [84, 74],

entanglement between the microwave fields and the mechanical motion has been generated

[70], and recently quantum squeezed states of mesoscopic mechanical resonators have been

generated [110, 58, 72, 60] by means of the dynamical backaction [54]. The combination of
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nanomechanical resonators with high quality microresonators and other quantum systems

such as superconducting qubit opens up a lot of opportunities for practical applications

[83, 75] as well as fundamental study of quantum mechanics [].

1.3 Thesis overview

Chapter 2 discusses the consequences of the Heisenberg uncertainty principle to mea-

surement and the quantum state of motion. The quantum limit on linear amplification and

continuous position detection are analyzed. Quantum non-demolition (QND) measurement

will be introduced to go beyond the quantum limit. At the end, an introduction of the

minimum uncertainty states will be discussed.

Chapter 3 describes how to implement a cavity electromechancial system out of elec-

trical circuit and nanomechanical resonator. In this chapter, both classical and quantum

descriptions of a cavity electromechanical system are given. The quantum Langevin equa-

tions of a optomechanical system will be derived. Connection between the language of

microwave engineering to that of quantum optics will be discussed.

Chapter 4 analyzes a cavity electromechanical system under bichromatic drives with the

quantum Langevin equations derived in chapter 3. General solutions of the transmission

spectrum and noise spectra will be calculated. The backaction effects from the cavity fields

and the measurement precision of some special drive configurations are analyzed.

Chapter 5 provides the details of the experimental setup. Detailed of the design and

fabrication processes for the cavity electromechanical system will be discussed. The mea-

surement techniques and cryogenic setup in the experiments will be presented.

Chapter 6 implements the backaction-evading (BAE) measurement of a single mechani-

cal quadraturewith the cavity electromechanical system. In this experiment, we demonstrate

a single quadrature measurement with imprecision below the standard quantum limit, while

evading the measurement backaction at the same time. Moreover, by incorporating an ad-

ditional BAE setup, we observe the quantum radiation backaction force from the quantum

fluctuation of microwave field in the cavity.

Chapter 7 implements the two-tone reservoir engineering technique with the cavity
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electromechanical system to squeeze the mechanical motion. Using an independent BAE

measurement to directly quantify the squeezing, we observe more than 3 dB of squeezing

below the zero-point level, surpassing the 3 dB limit of standard parametric squeezing

techniques. Ourmeasurements also reveal evidence for an additional mechanical parametric

effect. The interplay between this effect and the optomechanical interaction enhances the

amount of squeezing obtained in the experiment.



32

Chapter 2

Theoretical background

2.1 Quantum measurement

In the last chapter, we introduced the process of measurement in quantum mechanics

with the thought experiments introduced by Heisenberg and von Neumann. Here we

will continue the discussion of measurement in quantum mechanics. Here we adopt the

definition of measurement by Landau and Lifshitz [57]: "By measurement, in quantum

mechanics, we understand any process of interaction between classical and quantum objects,

occurring apart from and independently of any observer." Here we call the "classical object"

apparatus, which is a physical object that obeys classical mechanics to a sufficient degree of

accuracy, and its state would be altered after it interacts with the quantum object. Examples

of the classical measuring devices are the photoemulsion of a photographic plate or the

supersaturated steam in a Wilson cloud chamber. The classical apparatus usually consists

of many degrees of freedom and contains considerable randomness. It follows the law of

thermodynamics and therefore is in principle irreversible; the perturbation induced by the

classical apparatus is far stronger than theminimum perturbation required by the Heisenberg

uncertainty relation (1.9). In general, there are two ways to perform measurement on a

quantum system: direct measurement and indirection measurement [8].
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2.1.1 Direct measurement and indirect measurement

The most straightforward way to measure a quantum system is to let the system directly

interact with the classical apparatus, which is called "direct measurement". For example,

measuring the traces of a particles with a Wilson chamber, measuring the motion of mi-

croparticles in the photoemulsion, ... However, as described earlier, the classical apparatus

is a pair of filthy hands: it collapses the measurand wave function and applies strong

perturbation to the measurand directly.

A better measurement can be made by "indirect measurement", examples of which

are Heisenberg’s microscope and von Neumann’s speed meter. Instead of touching the

intricate measurand with the filthy hands (the classical apparatus, e.g., the photographic

plate in the Heisenberg’s microscope and the calorimeter in von Neumann’s speed meter)

directly, a quantum proxy (e.g., photon in the thought experiments) is inserted in between

themeasurand and the classical apparatus, which is a quantum system that has been prepared

in advance in some special initial quantum state. In indirect measurement, the measurand

first interacts with the proxy to generate correlation between the measurand state and the

quantum proxy. Next, a direct measurement of some chosen observable of the proxy is

performed. The direct measurement reduces the state of the proxy and therefore the state

of the measurand due to the correlation generated in the first step. As a result, the strong

perturbation from the classical apparatus applies to the proxy instead of the measurand,

and thus the perturbation applies to the measurand by the quantum proxy remains quantum

limited.

Note that in order to reach quantum limited precision in an indirection measurement,

the experimental apparatus (the classical apparatus and the quantum proxy) has to satisfy

two conditions: First, the second step (interaction between the proxy and the classical

apparatus) of the measurement should not begin until the first step (interaction between

the measurand and the proxy) is complete. This condition isolates the measurand from the

"killing-of-the-quantum-state" influence of the classical device. Second, the second step

shouldn’t contribute significantly to the total error of the measurement. For example, the

finite size of the silver grain should be smaller than the diffraction limit of the lens.
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2.1.2 Continuous linear measurement

2.1.2.1 Linear measurement

Among the various classes of measurements, the most important class is the linear one.

Linear measurements are particularly important due to their simplicity and tight connection

to linear systems, in which the equations of motion for the related physical quantities are

linear, such as the position and momentum of a free particle or a harmonic oscillator.

This class of measurement can be fully described by a set of linear equations, for

example, in the case of the Heisenberg microscope,

x̃ = xinit + δxmeasure, (2.1)

p = pinit + δpperturb. (2.2)

Here x̃ is the result of the coordinate measurement, and p is the object’s momentum just

after the measurement. xinit and pinit are the coordinate and momentum just before the

measurement, which depend on the initial state of the object. δxmeasure and δpperturb are the

imprecision and random perturbation from the measurement. Linear measurement require

that δxmeasure and δpperturb are statistically independent of the object’s initial state, and

satisfy the uncertainty relation (1.9) and depend only on the initial state of the probe. In

other words, linear measurement required that the uncertainty relations for the observables

and its perturbed variables are state dependent, and a counter example is the spin of a

spin-1/2 particle, where the uncertainty relation of its spin in the x and y directions is

∆Sx∆Sy ≥
~

2
|〈Sz〉| , (2.3)

where Sx , Sy, and Sz are the spin in x, y, and z directions. Unlike the case of position and

momentum of a particle, in this case, the uncertainty relation of Sx and Sy dependsP on the

state of the particle.
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2.1.2.2 Continuous linear measurement

Up to this point, we have been considering the effects of the uncertainty principle in a

single measurement or repeated measurement. In real world application, continuous linear

measurement is of particular interest. The interest of continuous linearmeasurement arose in

the 1960s, when the technologies (masers [35], lasers [85, 63], parametric amplifiers [6], ...)

of making continuous linear measurements get close to the level where the quantum effects

have to be taken into account. However, the traditional quantum theory of measurement

did not treat continuous measurements. Different approaches to the analysis of continuous

quantum measurement werte developed during the 1980s [13, 14, 12, 102]. Here we

follow the approach of Braginsky et al. [8] to discuss the consequences of the Heisenberg

uncertainty principle in continuous linear measurement.

To begin the discussion, let’s go back again to the Heisenberg’ microscope experiment.

Now, instead of a single measurement of the object’s position, we track the position of

the object with a series of measurements with time interval θ, which is sufficiently short

such that the object’s position x will not change substantially between measurements. In

this case, we can average the results of several successive measurements to improve the

measurement precision. If n measurements are averaged, then the position will be known

with the precision

∆τx =
∆xmeasure
√

n
= ∆xmeasure

√
θ

τ
, (2.4)

where τ = nθ is the averaging time, which is chosen to be much shorter than the interested

time scale of the object. ∆xmeasure ∝ λ is the imprecision of a single measurement, which

is given by Eq. (1.7) in the case of Heisenberg’s microscope.

Now if we reduce the interval θ between measurements to zero, as a consequence of the

uncertainty principle of photon (1.3), the imprecision of each measurement will approach

to infinity. To illustrate this point, let’s rewrite the uncertainty relation (1.3) to be

θ∆λ ≥
λ2

0
2c
, (2.5)

where θ = ∆x/c. In the previous discussion of the Heisenberg’s microscope, the wavelength
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of the photon is assumed to have a precise value, i.e., ∆λ = 0, and according to the

uncertainty relation (2.5) it requires infinite time to perform the measurement, i.e., θ → ∞

and the imprecision of the positionmeasurement is given by (1.7). Now, as themeasurement

time θ → 0, the uncertainty of the photon’s wavelength ∆λ → ∞, and therefore the

uncertainty of the object’s position ∆xmeasure → ∞. Since the average position imprecision

(2.4) and the average time τ are finite, the quantity

Sx ≡ (∆xmeasure)2 θ (2.6)

remains finite. The precision during a fixed averaging time τ can be expressed as

∆τx =

√
Sx

τ
. (2.7)

To clarify the physical meaning of Sx , let’s consider the continuous version of (2.1), which

is

x̃ (t) = x (t) + xfluct (t) , (2.8)

where x̃ (t) is the output signal of the measuring device, which is given by the sum of the

input signal x (t) and the noise xfluct (t) added by the apparatus. The quantity Sx is the

spectral density of the added noise xfluct (t).

Next, let’s consider the backaction of themeasuring device on the object. The continuous

version of (2.2) is

pafter (t) = pbefore (t) + pperturb (t) , (2.9)

where pbefore (t) and pafter (t) is the object’s momentum right before and right after the mea-

surement. pperturb (t) is the random momentum perturbation induced by the measurement,

the rms change of this momentum perturbation ∆Pperturb ∝ 1/λ, which is given by Eq. (1.8)

for Heisenberg’s microscope. The variance of the momentum increases in the manner of a

diffusive process, and after the averaging time τ, the rms momentum perturbation is

∆τp = ∆pperturb ·
√

n = ∆pperturb ·
√
τ

θ
. (2.10)
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as θ → 0 and λ → ∞, the collisions of the object with the photons become more frequent

and the change of momentum per collision becomes smaller in such a way that the rms

deviation of the momentum after a fixed time remains constant. We can define a finite

quantity

SF =
1
θ

(
∆pperturb

)2
(2.11)

and Eq. (2.10) can be expressed as

∆τp =
√

SFτ. (2.12)

The quantity SF is the spectral density of the backaction force.

By taking the product of Eqs. (2.6) and (2.6) and using the Heisenberg uncertainty

relation (1.9), we obtain

Sx · SF = (∆xmeasure)2 ·
(
∆pperturb

)2
≥
~2

4
. (2.13)

This inequality plays the same role as the Heisenberg relation (1.9) in discrete measurement,

and it establishes a universal, mutual connection between the measurement imprecision and

the measurement backaction. A general and rigorous analysis can be found in [8].

2.2 Quantum limit of amplification and detection

In the previous section, we have discussed the effects of the Heisenberg uncertainty

principle tomeasurement by considering examples such asHeisenberg’smicroscope and von

Neumann’s speed meter. In this section, we will discuss the quantum limit of measurement

in a general and rigorous context. We will first discuss the approach introduced by Haus et

al. [39] and further clarified and extended by Caves [12], which focuses on the quantum

limit in linear amplifiers of bosonic modes. Then, a more general theory for generic linear

amplifier by Clerk [19, 24] will be discussed.
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∆X1

∆X2

∆θ
X1

X2

Figure 2.1: Signal in the quadrature space.

2.2.1 Standard Haus-Caves quantum limit

Basic

Consider a narrow band linear amplifier that both of its input and output signals are

narrow band signal with bandwidth ∆ f , i.e.,

x̂ (t) = âe−iωt + â†eiωt = X̂1 cosωt + X̂2 sinωt, (2.14)

where â and â† are the annihilation and creation operators of the bosonic mode with carrier

frequency ω. The signal information is carried by the two slow varying quadratures X̂1 (t)

and X̂2 (t) on a timescale τ = 1/∆ f � 2π/ω. As shown in Fig. 2.1, the information of

the signal can be represented in the quadrature space. To illustrate the physical meaning

of the quadratures, we choose 〈X̂2〉 = 0 without loss of generality. As shown in figure, the

uncertainty in X1 corresponds to amplitude fluctuation of fractional size ∆X1/〈X̂1〉, and the

uncertainty in X2 corresponds to phase fluctuations of size ∆θ = ∆X2/〈X̂1〉. According to

quantum mechanics, the only non-zero commutator of the bosonic operator â and â† is (see

section 3.4 for detail derivation)
[
â, â†

]
= 1, (2.15)

and therefore
[
X̂1, X̂2

]
= 2i, (2.16)
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x̂ ŷ

Linear ampli�er

M̂ L̂ F̂
ρopInput Output

Figure 2.2: Schematic of a linear amplifier.

or in terms of the uncertainty relation, ∆X1 · ∆X2 ≥ 1, quantum mechanics place a funda-

mental limit to the area of the noise blub in Fig. 2.1. In the following, we will discuss the

consequences of the uncertainty principle to the added noise of a linear amplifier.

In the following discussion, the output signal of the linear amplifier is represented by

ŷ (t) = b̂e−iωt + b̂†eiωt = Ŷ1 cosωt + Ŷ2 sinωt, (2.17)

and the input signal is given by Eq. (2.14), where a schematic of the a linear amplifier

is given by Fig. 2.2. The output signal is linearly related to the input signal in a linear

amplifier, i.e.,

b̂ = M̂ â + L̂â† + F̂ , (2.18)

where M̂, L̂, and F̂ are operators that depend only on the internal modes of the amplifier,

and therefore they commute with the input mode operators â and â†.

Assumptions

First, we prepare the amplifier into an initial state which is independent of the input

state, and the initial density operator of the entire system can be written into

ρ = ρI · ρop, (2.19)

where ρI is the initial density operator for the input state and ρop is the initial density

operator of the amplifier’s internal modes. Here we work in the Heisenberg picture, where

the density operator does not change with time.
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Then, we expand the operators of the internal modes around its operating state, i.e.,

M̂ = 〈M̂〉op + δM̂, (2.20)

L̂ = 〈L̂〉op + δL̂, (2.21)

F̂ = 〈F̂ 〉op + δF̂ , (2.22)

(2.23)

where δM̂ and δL̂ are the gain fluctuations, which introduce multiplicative noises to the

output signal. δF̂ is the additive noise to the output signal. In the following discussion, we

assume the multiplicative noises δM̂ and δL̂ are negligible in the operating state, and we

set the constant shift of the output signal 〈F̂ 〉op = 0 without loss of generality. Then, the

linear relation (2.18) becomes

b̂ = Mâ + Lâ† + F̂, (2.24)

where M = 〈M̂〉op, L = 〈L̂〉op are the expectation values of the gains, and F̂ = δF̂ is the

additive noise of the amplifier.

Uncertainty relations and quantum limit on added noise

Since both the input mode and the output mode follow the bosonic commutation relation

(2.15), which implies
[
F̂, F̂†

]
= 1 − |M |2 + |L |2 , (2.25)

or in terms of the uncertainty relation

|∆F |2op ≥
1
2

���1 − |M |
2 + |L |2��� . (2.26)

We can rearrange the linear relation (2.24) in terms of quadratures

Ŷ1 = (M + L) X̂1 + F̂1, (2.27)

Ŷ2 = (M − L) X̂2 + F̂2, (2.28)
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where

F̂1 =
1
2

(
F̂ + F̂†

)
, (2.29)

F̂2 = −
i
2

(
F̂ − F̂†

)
. (2.30)

The uncertainty relation (2.25) implies

[
F̂1, F̂2

]
≥

i
2

(
1 − |M |2 + |L |2

)
, (2.31)

or in terms of uncertainty relation

∆F1 · ∆F2 ≥
1
4

���1 − |M |
2 + |L |2��� . (2.32)

The fluctuations of the output quadratures are

(∆Yi)2 = Gi (∆X1)2 + (∆Fi)2 , (2.33)

where i = 1, 2, the quadratures’ power gain G1 = (M + L)2, and G2 = (M − L)2. The

added noise is conveniently characterized by the added noise numbers

Ai ≡ |∆Fi |
2 /Gi, (2.34)

and the uncertainty relation of the added noises directly follow the commutation relation

(2.31), which is √
A1 A2 ≥

1
4

�����
1 ∓

1
√

G1G2

�����
, (2.35)

where the upper (lower) sign holds if |M | ≥ |L | (|M | ≤ |L |). The uncertainty relation

implies that, as a general rule, a reduction in the noise added to one quadrature phase

requires an increase in the noise added to the other phase.
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Phase-insensitive linear amplifier

To illustrate the quantum limit of the added noise, let’s first consider a phase-insensitive

linear amplifier, which amplifies both quadratures equally, i.e., G1 = G2 = G = M2 (phase

preserving) or G1 = G2 = G = L2 (phase conjugating), and A1 = A2 = A/2. Then the

uncertainty relation (2.35) becomes

A ≥
1
2

�����
1 ∓

1
G

�����
. (2.36)

Therefore, a high gain phase-insensitive amplifier must added at least half quanta of noise

to both quadratures at the input signal. Note that if there is no gain (G = 1), the amplifier

need not add any noise.

Phase-sensitive linear amplifier

For phase-sensitive linear amplifier, one can surpass this quantum limit (2.36) in one of

the quadrature. For example, consider an amplifier such that M2 − L2 =
√

G1G2 = G � 1,

and therefore A1 · A2 ≥
1
4

���1 −
1
G

���→
1
4 . One can design the amplifier so that it amplifies the

quadrature of interest, for example G1 � 1, and the added noise for that quadrature can be

below the quantum limit for the phase-insensitive amplifier (A1 � 1/4) in the expense of

increasing the added noise to the other quadrature (A2 � 1/4). This type of phase-sensitive

amplifier can be realized with degenerate parametric process. Another example is given by

designing an amplifier such that M = L =
√

G/2 � 1 (G1 = G and G2 = 0). The amplifier

completely give up the information in the X2 quadrature, in this case ∆F1 · ∆F2 ≥ 1/4.

Therefore, the added noise in the X1 quadrature can be below the quantum limit when the

gain is sufficiently high (A1 = ∆F1/
√

G � 1/4). This is the backaction-evading (BAE)

technique we used to monitor the mechanical motion.

2.2.2 Linear response theory

In this section, we will introduce the linear response approach developed by Clerk et

al. [19, 24] to discuss the quantum limit of a generic linear response position detector.
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x̂ ŷF̂ Î
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ρop

Figure 2.3: Schematic of a linear response detector.

Unlike the Haus-Caves approach where both the input and the output are bosonic modes,

this approach considers a generic linear detector which can be a fermonic base such as single

electron transistor (SET) or quantum point contact (QPC). Moreover, this approach directly

involves the noise properties of the detector, and allows one to derive simple neccessary

and sufficient conditions for reaching quantum limit. Note that the linear response approach

can be applied to different systems [22, 21, 24], and here we focus on the discussion of the

quantum limit of continuous position detection.

Basic

In the linear response approach, the detector is a physical system with Hamiltonian Ĥdet,

and it has an input, characterized by the operator F̂, and an output, chanracterized by the

operator Î, the schematic of the linear response detector is shown in Fig. 2.3. The input

port is linearly coupled to the signal operator x̂ with the interaction Hamiltonian

Ĥint = −Ax̂ · F̂, (2.37)

where AF̂ is the backaction applyis the quantity that to the signal source. Î is the physical

quantity that is read out at the output of the detector. In the following, we work in the

Heisenberg picture with respect to the detector Hamiltonian Ĥdet.

We consider that the coupling A is sufficiently weak such that the output of the detectort
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can be described by the linear response relation

〈Î (t)〉 = 〈Î〉0 + A
∫

dt′ χIF
(
t − t′

)
〈x̂

(
t′
)
〉, (2.38)

where 〈...〉0 indicate the expectation value with respect to the initial density matrix of

the uncoupled detector. 〈I〉0 is the input-independent value of the detector output at zero

coupling. χIF (t) is the linear-response susceptibility or gain of the detector, which is given

by the Kubo-like formula

χIF (t) = −
i
2
θ (t) 〈

[
Î (t) , F̂ (0)

]
〉0. (2.39)

In general, the detector can operate in reverse, i.e., ĤInt = −Ax̂ Î, and

〈F̂ (t)〉 = 〈F̂〉0 + A
∫

dt′ χFI
(
t − t′

)
〈x̂

(
t′
)
〉 (2.40)

with reverse gain

χFI (t) = −
i
~
θ (t)

〈[
F̂ (t) , Î (0)

]〉
0
. (2.41)

Uncertainty relation and quantum-ideal detector

Both the input and the output operators are subjected to the unavoidable noise. Here,

we quantitatively characterize this noise with the symmetric-in-frequency part of tyhe noise

spectral density. Redefining the operators F̂ → F̂ − 〈F〉0 and Î → Î − 〈I〉0, the symmetric

spectral density of the input and output are

S̄FF [ω] ≡
1
2

∫ ∞

−∞

dteiωt
〈{

F̂ (t) , F̂ (0)
}〉

0
, (2.42)

S̄I I [ω] ≡
1
2

∫ ∞

−∞

dteiωt
〈{

Î (t) , Î (0)
}〉

0
, (2.43)

S̄IF [ω] ≡
1
2

∫ ∞

−∞

dteiωt
〈{

Î (t) , F̂ (0)
}〉

0
, (2.44)

where S̄I I is the intrinsic noise in the output of the detector, S̄FF is the backaction noise seen

by the source of the input signal, and S̄IF is the correlation between the input and output
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noise.

Following the Heisenberg’s uncertainty relation

(∆A)2 (∆B)2 ≥
1
4

〈{
Â, B̂

}〉2
+

1
4

〈[
Â, B̂

]〉2
, (2.45)

the noise spectral densities have to follow the inequality [19, 24]

S̄I I [ω] S̄FF [ω] − ���S̄IF [ω]���
2
≥

�����
~ χ̃IF [ω]

2

�����

2 (
1 + ∆

[
S̄IF [ω]
~ χ̃IF/2

])
, (2.46)

where ∆ [z] =
[���1 + z2��� −

(
1 + |z |2

)]
/2 and χ̃IF [ω] ≡ χIF [ω] − χ∗FI [ω]. A quantum-

ideal detector (at a given frequency ω) is defined as one which minimize the left-hand side

of Eq. (2.46). In this work, we focus on detectors without reverse gain, i.e., χFI = 0. The

condition to have a quantum-limited detector becomes

S̄I I [ω] S̄FF [ω] − ���S̄IF [ω]���
2
=

�����
~χIF [ω]

2

�����

2 (
1 + ∆

[
S̄IF [ω]
~χIF/2

])
. (2.47)

This ideal noise requirement places a strong constraint on the properties of the detector. As

discussed in [19, 24], for a quantum-limited detector, there must exist a complex number α

such that

〈 f |I |i〉 = α〈 f |F |i〉, (2.48)

where |i〉 and | f 〉 are the initial and final states that contribute to the noise spectra S̄FF [ω]

and S̄I I [ω]. The amplitude and imaginary part of the complex number α are given by

|α [ω]| =
√

S̄I I [ω] /S̄FF [ω], (2.49)
Im {α [ω]}
|α [ω]|

= −
~χIF [ω] /2√
S̄I I [ω] S̄FF [ω]

. (2.50)

Note that in order to have a non-vanishin gain (χIF [ω] , 0), one needs Im {α [ω]} , 0. It

implies that the set of all initial states |i〉 has no overlap with the set of all final states | f 〉,

which means that a quantum limited detector cannot be in equilibrium.
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Detector backaction

As mentioned in the previous section, the detector would generate backaction force AF̂

to the source of the input signal, in this case the mechanical oscillator. In this section, we

will discuss the consequence of the backaction. The motion of the mechanical oscillator

under detection can be described by an effective classical Langevin equation,

mẍ (t) = −mω2
m x (t) −mΓm ẋ (t) + F0 (t) −mA2

∫
dt′Γdet

(
t − t′

)
ẋ
(
t′
)
− AF (t) , (2.51)

where ωm is the resonance frequency of the mechanical oscillator with mass m. F0 is the

random fluctuating force from the equilibrium phonon bath, whose spectrum is given by

the standard equilibrium relation

S̄F0F0 [ω] = mΓm~ω coth
(
~ω

2kBT

)
= mΓm~ω

(
2nT

m [ω] + 1
)
, (2.52)

where nT
m [ω] = 1/

(
e~ω/kBT − 1

)
is the average mechanical occupation. Γm is the damping

due to the equilibrium bath, and is related to the asymmetric part of the noise spectrum of

F0 by

Γm =
1
~m

SF0F0 [ω] − SF0F0 [−ω]
2ω

, (2.53)

which is a constant for equilibrium bath. Γdet is the damping induced by the detector.

Similar to Γm, it is given by the asymmetric part of the backaction force F from the detector,

that is

Γdet [ω] =
1
~m

SFF [ω] − SFF [−ω]
2ω

. (2.54)

Note that Γdet can be positive or negative depending on the operating state of the detector.

Similar to the relation (2.52) in the equilibrium bath, one can define the effective temperature

of the detector is

coth
(

~ω

2kBTeff [ω]

)
≡

S̄FF [ω]
Γdet [ω] ~ω

=
SFF [ω] + SFF [−ω]
SFF [ω] − SFF [−ω]

, (2.55)
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or interms of symmetric spectrum

S̄FF [ω] = mΓdet [ω] ~ω coth
(

~ω

2kBTeff [ω]

)
= mΓdet [ω] ~ω (2nBA [ω] + 1) , (2.56)

where nBA [ω] = 1/
(
e~ω/kBTeff[ω] − 1

)
. Note that the effective temperature Teff [ω] simply

serves as a measure of the asymmetry of the detector’s backaction noise SFF [ω]. As

discussed before, a quantum-limited detector cannot be in equilibrium, and one cannot

define a physical temperature for a quantum-limited detector. However, as discussed in

[19, 24], the power gain of a high gain quantum-limited detector is given by

Gp '

[
Im {α [ω]}
|α [ω]|

4kBTeff [ω]
~ω

]2
. (2.57)

In order to have large power gain, one needs to have a large effective detector temperature.

Another important consequence of large power gain is that the gain χIF [ω] and the noise

cross correlator S̄IF [ω] are in phase, i.e., S̄IF [ω] /χIF [ω] is purely real, up to correction

that are as small as ω/Teff [ω] [].

The solution of the position fluctuation in frequency space is given by

δx [ω] = χxx [ω] (F0 [ω] + AF [ω]) (2.58)

with the mechanical susceptibility

χxx [ω] = −
1/m(

ω2 − ω2
m

)
+ iωΓtot [ω]

, (2.59)

where Γ [ω] = Γm + A2Γdet [ω] is the total damping rate of the mechanical oscillator.

Defining the symmetrized equilibrium position noise of the mechanical oscillator with

damping Γ [ω] and average mechanical occupation nthm by

S̄xx,eq [ω,T] = ~Im { χxx [ω]}
(
2nthm + 1

)
. (2.60)
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The symmetric noise spectrum of the mechanical motion is

S̄xx [ω] = | χxx [ω]|2
(
S̄F0F0 [ω] + A2 S̄FF [ω]

)
= S̄xx,eq [ω, n̄m] (2.61)

with the effective phonon occupation

n̄m [ω] =
Γm

Γtot [ω]
nT

m [ω] +
A2Γdet [ω]
Γtot [ω]

nBA [ω] . (2.62)

Consider ωm � Γtot, the only important contributions of S̄F0F0 and S̄FF [ω] is at ω = ±ωm,

then Eq. (2.61) becomes symmetric noise spectrum of amechanical oscillator in an effective

Ohmic bath with damping rate Γtot [ωm] and equilibrium phonon occupation n̄m [ωm].

Quantum limit on added noise

After discussed the requirement of a quantum-limited detector and the detector backac-

tion to the mechanical oscillator. In this section, we will derive the quantum limit on the

added noise in the position measurement. Here we treat both the position of the mechanical

oscillator and the detector output as classically fluctuating quantities. Using the linear

relation(2.38), the fluctuation of the detector output in the frequency space is

δItot [ω] = δI0 [ω] + AχIF [ω] δx [ω] , (2.63)

where δI0 is the intrinsic fluctuation of the detector output, which has a spectral density

S̄I I [ω]. Together with the solution (2.58), the spectral density of the total noise in the

detector output is given by

S̄I I,tot [ω] = S̄I I [ω] + A2 | χIF [ω]|2 S̄xx,eff [ω] (2.64)

with the effective mechanical spectrum

S̄xx,eff [ω] = S̄xx [ω] − 2Re
{
χ∗xx [ω] S̄zF [ω]

}
, (2.65)
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where

S̄zF [ω] =
S̄IF [ω]
χIF [ω]

. (2.66)

The spectral density of the position fluctuation inferred from the output of the detector

is given by normalizing the detector output by the gain of the detector, i.e.,

S̄xx,tot [ω] ≡
S̄I I,tot [ω]

A2 | χIF [ω]|2
=

S̄I I [ω]
A2 | χIF [ω]|2

+ S̄xx,eff [ω] . (2.67)

To quantify the added noise from the detector, we can rewrite it as

S̄xx,tot [ω] =
Γm

Γtot [ω]
S̄xx,eq

[
ω, nT

m

]
+ S̄xx,add [ω] (2.68)

with the added noise defined by

S̄xx,add [ω] =
S̄I I [ω]

A2 | χIF [ω]|2
+ A2 | χxx [ω]|2 S̄FF [ω] − 2Re

{
χ∗xx [ω] S̄zF [ω]

}
. (2.69)

The first term describes the imprecision of the detector, the second term describes the

detector backaction apply to the mechanical oscillator, and the third term describes the

correlation between the imprecision and the backaction.

Herewe focus on the added noise at the resonance of themechanical oscillator (ω = ωm),

in this case, the mechanical susceptibility is purely imaginary, i.e., χxx (ωm) = i/mωmΓtot.

For a quantum-limited detector with high power gain, S̄zF [ω] is purely real. In this case,

the third term in (2.69) becomes zero. Moreover, a quantum-limited detector has to satisfy

the noise constraint (2.47), and since there is no further constraint on SIF , we can minimize

the expression by setting it equal to zero. Then the added noise (2.69) becomes

S̄xx,add =
~2

4
1

A2 S̄FF
+ | χxx |

2 A2 S̄FF . (2.70)

Here we consider ω = ωm and neglect the frequency dependence. As shown in (2.70), as

one increases the coupling A, the detector imprecision decreases but the detector backaction

increases, as shown in Fig. 2.4. In order to obtain the minimum added noise, one needs to
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Figure 2.4: Added noise as a function of coupling strength. The blue line is themeasurement
imprecision, the red line is the measurement backaction, the black curve is the total added
noise, and the dashed line represents the standard quantum limit.

attain the optimum coupling

A2
opt =

~

2
1

| χxx | SFF
=

1
4
Γtot
Γdet

~ωm

kBTeff
. (2.71)

At the optimum coupling, the detector imprecision and the detector backaction contribute

equally in the added noise, and the minimum added noise of an quantum-limited detector is

(
S̄xx,add [ωm]

)
min
= ~ | χxx [ωm]| = S̄xx,eq [ωm, 0] . (2.72)

We end up with the same result in the Haus-Caves approach for phase-insensitive amplifier,

i.e., the added noise of a high power gain quantum-limited position detector must be at

least as large as the zero-point noise of the mechanical oscillator. A general derivation for

arbitrary ω can be found in [19, 24]. Note that at the optimum couping A = Aopt, and the

power gain (2.57) at large power gain limit can be expressed as

Gp '



Im {α}
|α |

Γm + A2
optΓdet

A2
optΓdet



2

, (2.73)
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which means that in order to achieved quantum limit with large power gain, the intrinsic

damping rate of the mechanical oscillator has to be much larger than the damping induced

by the detector (Γm � A2
optΓdet). Note that if we do not require high power gain, then

S̄IF [ω] /χIF [ω] can be purely imaginary, and the detector does not need to add any noise

[19, 24].

2.3 Quantum non-demolition (QND) measurement

In section 1.1, we have shown that not every repeated measurement would generate

unpredictable result, for example, momentum measurement with von Neumann’s speed

meter. This type of measurement that the measurement result is completely predictable

from the result of the preceding measurement is called quantum nondemolition (QND)

measurement or backaction-evading (BAE) measurement. In this section, we will give a

formal discussion on the general conditions of this type of measurement [5, 15, 7].

To start the discussion, let’s consider an arbitrary quantummechanical system described

by the free system Hamiltonian Ĥsys. We measure the physical observable Â of the system

by coupling the observable to a physical apparatus, which is described by the detector

Hamiltonian Ĥdet, with the interaction Hamiltonian ĤInt. The total Hamiltonian for the

system plus apparatus is

Ĥ = Ĥsys + Ĥdet + ĤInt. (2.74)

A QND measurement of an observable Â is defined as a sequence of measurements of Â

perform in such a way that the outcomes of each measurement are predictable from the

result of the previous measurement.

2.3.1 Requirements on the observable

As described by the definition, QND measurement places a very strong restriction on

the observable Ô of the system. Consider performing the first measurement at t0, according

to the projection postulate, the state of the system would be reduced to the normalized
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eigenstates of Ô (t0), i.e.,

|ψ (t0)〉 =
∑
α

cα |O0, α〉 . (2.75)

Here we are working in the Heisenberg picture, where α labels the states in any degenerate

subspace of Ô (t0). In order to be a QND measurement, a second measurement will

give a predictable result, and the states |O0, α〉 must also be eigenstates of Ô (t1), but not

necessarily with the same eigenvalue, i.e.,

Ô (t1) |O0, α〉 = f1 (O0) |O0, α〉 , (2.76)

where f1 is an arbitrary real-value function. This implies the operator equation for a

measurement at time tk ,

Ô (tk ) = f k
[
Ô0

]
, (2.77)

or equivalently
[
Ô (ti) , Ô (tk )

]
= 0. (2.78)

If (2.78) holds only at discrete instants of time, then the observable is called a stroboscopic

QND observable. For example, for the position and momentum of a harmonic oscillator,

[x̂ (t) , x̂ (t + τ)] =
i~

mω
sinωτ, (2.79)[

p̂ (t) , p̂ (t + τ)
]
= i~mω sinωτ, (2.80)

they are stroboscopic QND observables at time spaced τ = nπ/ω. If the condition (2.78)

holds at all time, it is called a continuous QND observable. For example, consider the

quadratures of a harmonic oscillator,

X̂1 (t) = x̂ cosωt −
p̂

mω
sinωt, (2.81)

X̂2 (t) = x̂ cosωt +
p̂

mω
sinωt, (2.82)
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which are constants of motion of a harmonic oscillator, i.e.,

dX̂ j

dt
=
∂ X̂ j

∂t
−

i
~

[
X̂ j, Ĥ0

]
= 0, (2.83)

therefore they satisfy
[
X̂ j (t) , X̂ j

(
t′
)]
= 0 (2.84)

for arbitrary t and t′. The quadrature X̂1 and X̂2 are continuous QND observables.

2.3.2 Requirements on the interaction

In addition to the condition on the free quantum system (2.78), in order to perform a

QNDmeasurement, one needs to carefully design the interaction between the apparatus and

the system: the measurement should not perturb the observable Ô, which means that

[
ÔI (t) , ĤI

(
t′
)]
= 0, (2.85)

where ÔI (t) and ĤI (t′) are the interaction picture operators, i.e.,

ÔI (t) =Û†0 (t, t0) Ô (t) Û0 (t, t0) , (2.86)

ĤI (t) =Û†0 (t, t0) Û†M (t, t0) Ĥ (t) Û0 (t, t0) ÛM (t, t0) , (2.87)

where Û0 (t, t0) and ÛM (t, t0) are the time evolution operators for the system and the

apparatus. A simple way to satisfy this condition is to interact the observable linearly to the

apparatus, i.e.,

ĤI = −A (t) ÔF̂, (2.88)

where F̂ is some observable of the apparatus and K is the coupling between the apparatus and

the observable. In section 4.3.2, we will give a physical realization of QND measurement

of the quadrature with an opto/electro-mechanical system.
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2.4 Squeezed state of a harmonic oscillator

After discussed the effects of the Heisenberg uncertainty principle on detection (Eq.

(1.9)), in this section, we will consider the consequences of the Heisenberg uncertainty

principle to the quantum state of the system (Eq. (1.9)), i.e., what kind of quantum states

would minimize the uncertainty relation, i.e.,

∆x · ∆p = ��
〈
{ x̂, p̂} +

[
x̂, p̂

]〉�� /2 =
~

2
. (2.89)

The answer of this question is first given by Schrödinger in 1926 [87], and further generalized

by the others [34, 51, 52, 92, 116, 90]. In order to satisfy the minimum uncertainty relation

(2.89), the state needs to satisfy two conditions:

1. 〈ψ | { x̂, p̂} |ψ〉 = 0, (2.90)

2. β̂ |ψ〉 = β |ψ〉 , (2.91)

where β̂ =
(
x̂ + iµp̂

)
/
√

2µ and β =
(
〈x̂〉 + iµ 〈p̂〉

)
/
√

2µ, and condition one requires that

µ ∈ Re.

Defining the annihilation operator,

â =
√

mω
2

(
x̂ +

i
mω

p̂
)
=

1
2

(
X̂1 + i X̂2

)
. (2.92)

Here we consider a harmonic oscillator with mass m and frequency ω, its motional quadra-

tures X̂1 and X̂2 are given by

X̂1 =â + â† = x̂/xzp, (2.93)

X̂2 = − i
(
â − â†

)
= p̂/mωxzp. (2.94)

Now the operator β̂ can be written in terms of the annihilation and creation operators as

β̂ = â cosh (r) + â† sinh (r) (2.95)
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Figure 2.5: (a) Example of coherent state. (b) Example of squeezed state.

with

r = cosh−1
(

1 + µλ2

2λ√µ

)
. (2.96)

The operator β̂ is an annihilation operator of a Bogoliubov mode, which is simply a

Bogoliubov transformation of the annihilation and creation operators that conserve the

commutator relation, i.e.,
[
β̂, β̂†

]
=

[
â, â†

]
= 1. (2.97)

The states that satisfy the minimum uncertainty relation can be characterized by a complex

parameter α = 1
2 (X1 + iX2) and real parameter r , or |ψ〉 = |r, α〉.

2.4.1 Coherent state

First, let’s consider a special case where r = 0. Then, condition (2.91) becomes

â |α〉 = α |α〉 , (2.98)

and the quantum state that satisfy Eq. (2.98) is called coherent state, which is given by

|α〉 = D̂ (α) |0〉 = e−|α |
2/2

∞∑
n=0

αn
√

n!
|n〉 , (2.99)
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where D̂ (α) = exp
(
αâ† − α∗â

)
is the displacement operator. The coherent state has the

following expectation values and variances:

〈
X̂1 + i X̂1

〉
= 2α, (2.100)

∆X1 = ∆X2 = 1, (2.101)

〈n̂〉 = |α |2 , (2.102)

∆n =
√

n, (2.103)

where n̂ = â†â is the number operator. Fig. 2.4a shows a coherent state in the quadrature

space.

2.4.2 Squeezed state

Having obtained the special solution for r = 0, finding the eigenstates of the Bogoliubov

mode β̂ is equivalent to finding an operator Ŝ which can transform the Bogoliubov mode β̂

into â by means of similarity transformation, which is given by the unitary squeeze operator

[90, 103]

Ŝ [ε] = exp
[
1
2

(
ε∗â2 − ε â†2

)]
. (2.104)

Here we consider a more general transformation that ε = re2iφ, which is a complex number.

The squeeze operator obeys the relations

Ŝ† (ε ) = Ŝ−1 (ε ) = Ŝ (−ε ) (2.105)

and has the following transformation properties:

Ŝ (ε ) âŜ† (ε ) = â cosh r + â†e−2iφ sinh r, (2.106)

Ŝ (ε ) â† Ŝ† (ε ) = â† cosh r + âe−2iφ sinh r, (2.107)

Ŝ (ε )
(
Ŷ1 + iŶ2

)
Ŝ† (ε ) = Ŷ1er + iŶ2e−r, (2.108)
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where

Ŷ1 + iŶ1 =
(
X̂1 + i X̂2

)
e−iφ (2.109)

is the rotated complex amplitude. When φ = 0, then Eq. (2.106) becomes (2.95). The

eigenstate of the Bogoliubov operator β̂ is given by applying the squeeze operator Ŝ (ε ) to

the coherent state |α〉, which is

|α, ε〉 = D̂ (α) Ŝ (ε ) |0〉 , (2.110)

this state is called squeezed state, which has the following expectation values

〈
X̂1 + i X̂2

〉
=

〈
Ŷ1 + iŶ2

〉
eiφ = 2α, (2.111)

∆Y1 = er, ∆Y2 = er, (2.112)

〈n̂〉 = |α |2 + sinh2 r, (2.113)

(∆n)2 =
���α cosh r − α∗e2iφ sinh r ���

2
+ 2 cosh2 r sinh2 r . (2.114)

The squeezed state has unequal uncertainties in the quadratures Y1 and Y2, as shown by the

error ellipse in in Fig. 2.5. The principle axes of the ellipse lie along the rotated quadratures

Y1 and Y2. Note that

∆x · ∆p =
~

2
∆X1∆X2 =

~

2

√
1 + 4 sinh2 r cosh2 r sin2 2φ, (2.115)

only when φ = 0, the squeezed state minimizes the uncertainty relation (2.89).

2.4.3 Discussion

The minimum uncertainty state is one of the most important type of quantum states,

which has long been applied to various fields of theoretical physics such as quantum field

theory, quantum statistical mechanics, solid state physics, etc. [50, 29, 116]. These quantum

states become widely recognized in the experimental side (particularly in optics) during the

1960’s due to the works of Glauber [34], Klauder [51, 52], and Sudarshan [92]. Together



58

with the invention of maser and laser, which makes these quantum states become available

in experiment. These states provide a lot of applications, such as ultra-sensitive detection

[15] and quantum information processing [9, 104].

The statistical properties of the coherent light were first observed by Arechi in 1965

[1]. Twenty years later, squeezed light was observed by several groups in various systems

[89, 88, 113, 62]. Nowadays, More than 10 dB squeezing has been realized via optical

parametric oscillation [101]. Recently, squeezed light has been generated in an on-chip

optomechanical system [84]. Besides electromagnetic wave, the quantum squeezed states

of motion have been observed in microscopic degrees of freedom such as the motion of a

trapped ion [65, 48] or lattice vibration in solid [32]. In macroscopic degrees of freedom

such as the center ofmassmotion of a nanomechanical resonator, thermal squeezed state was

first demonstrated by Rugar et al. with the parametric driving technique [79]. Until recently,

quantum squeezed states of nanomechanical resonators have been generated [110, 58, 72, 60]

via the reservoir engineering squeezing technique [54] in electromechanical systems. We

will introduce this dissipative squeezing technique in section 4.3.3.
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Chapter 3

Cavity electromechanics with
superconducting circuits

This chapter describes the procedure of building a cavity electromechanical system out

of electrical circuits and a mechanical oscillator. First, a classical description of circuits

and the mechanics will be given. Because the experimental temperature is 10 mK and the

energy scales of the circuit (∼ 5 GHz) correspond to temperature of 250 mK, a quantum

description of the circuits and the mechanical oscillator is used to fully understand the

behavior of the electromechanical system. Connection between the language of microwave

engineering to that of quantum optics will be discussed. At the end, the quantum theory is

used to describe the cavity electromechanical system.

3.1 Lumped element microwave resonator

In cavity opto/electromechanics, a harmonic mode in the cavity is coupled to the me-

chanical oscillator. Inmicrowave domain, the cavity can be realized using electrical circuits.

Fig. 3.1a is the optical micrograph of our device, which is a lumped element supercon-

ducting microwave resonator: a parallel plate vacuum gap capacitor in parallel with a spiral

inductor. The mechanical element in this device is the top gate of the capacitor, which is

a high Q suspended aluminum membrane. In order to excite and read-out the microwave

resonance, the LC resonator is capacitively coupled to transmission lines. The equivalent

circuit is shown in 3.1b, the lumped element resonator is represented by the RLC resonator

(blue), and the couplers are represented by the capacitors on the input and the output sides
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Figure 3.1: Cavity electromechanics. (a) An optical micrograph of a circuit cavity elec-
tromechanical system,which is a lumped elementLC resonatorwith amovable capacitor. (b)
The equivalent circuit of the circuit cavity electromechanical system in (a). (c) Impedance
of the RLC resonator, the blue curve is the amplitude and the red curve is the phase.

(black).

In this section, we will focus on the microwave resonator (blue lines in Fig. 3.1b). By

applying the Kirchhoff’s current law, the equation of motion of the magnetic flux in the

inductor is
d2Φ

dt2 +
1

RC
dΦ
dt
+
Φ

LC
= 0, (3.1)

and the solution of this differential equation is

Φ (t) = Φ0 exp
[
i (ωc + iκ) t + φ

]
, (3.2)

where the frequency ωc = 1/
√

LC and the decay rate κ = 1/RC. In frequency domain, the

circuit can be described by its impedance Z (ω), which is given by

Z (ω) =
(

jωC +
1

jωL
+

1
R

)−1
. (3.3)

Near resonance, we can expand Z (ω) to first order in δω = ω − ωc, which yields

Z (ω) '
R

1 + 2 jQδω/ωc
, (3.4)

where Q = ωc/κ is the quality factor of the cavity, which is the number of oscillation within

the cavity decay time τ = 1/κ = RC before the system comes to equilibrium. Fig. 3.1c



61

I (z, t)

V (z, t)

I (z + dz, t)

V (z + dz, t)

Z0

v

z = 0

cdz

dz

φ (z, t) φ (z + dz, t)

ldz

+

-

+

-

I (z, t)

+

-
V (z, t)

z = 0

(a)

(b)

V

V

Figure 3.2: Transmission line. (a) A schematic of a transmission line with impedance Z0
and phase velocity v. Vin,out are the incoming and outgoing voltages (relative to z = 0).
I (z, t) and V (z, t) are the current and voltage. (b) The equivalent circuit of the transmission
line in (a). c and l are the capacitance and inductance per unit length, φ(z, t) is the node
phase.

shows the real and imaginary part of the impedence Z (ω). The motion of the mechanical

oscillator varies the resonance frequency of the LC circuit through the modulation of the

capacitance. By measuring the frequency modulation of the impedance, we can detect the

mechanical motion.

3.2 Classical transmission line theory

In order to probe the resonator, we need to connect the circuit to the outside world. In

microwave domain, it can be realized by connecting the electrical resonator to transmission

line. In this section, we follow [24] to give an introduction to the transmission line theory

and the classical input-output theory.

3.2.1 Transmission line theory

Fig. 3.2a is the coaxial transmission line, which is generally used to guide microwave

signals. Because the physical dimensional of the transmission line is much longer than the
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wavelength of the microwave signal used to drive the circuit, the voltages and currents can

vary in magnitude and phase along the line. An ideal transmission line can be considered as

a perfectly conducting wire with inductance per unit length of l and capacitance to ground

per unit length c, the equivalence circuit of the transmission line is given by Fig. 3.2b.

Applying the Kirchhoff’s voltage and current law, we arrive at the dynamical equations

of the voltages and currents in the transmission line,

∂V
∂z

(z, t) = −l
∂I
∂t

(z, t) , (3.5)

∂I
∂z

(z, t) = −c
∂V
∂t

(z, t) . (3.6)

Eqs (3.5) and (3.6) can be decoupled by introducing the left and right propagating modes

V (z, t) = VR (z, t) + VL (z, t) , (3.7)

I (z, t) =
1
Z0

[VR (z, t) − VL (z, t)] , (3.8)

where Z0 =
√

l/c is the characteristic impedance of the transmission line, which gives

∂VR

∂t
+ v

∂VR

∂x
= 0, (3.9)

∂VL

∂t
− v

∂VL

∂x
= 0, (3.10)

where v = 1/
√

lc is the phase velocity of the electromagnetic wave in the transmission line.

Since the transmission line is dispersionless (v is constant), the solution of these equations

can be propagated by uniform translation without changing shape,

VR (z, t) = Vin

(
t −

z
v

)
, (3.11)

VL (z, t) = Vout

(
t +

z
v

)
, (3.12)

where Vin and Vout are arbitrary functions. Here, we define the right propagating mode as

the incoming mode and the left propagating mode as the outgoing mode. For an infinite

transmission line, the right propagating mode Vin and the left propagating mode Vout are
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Figure 3.3: A transmission loaded by a system with impedance Z .

completely independent.

For most of the applications, the transmission line is terminated at z = 0 by some system

(Fig. 3.3a). In this case, the two solutions (3.12) and (3.11) will be related by the boundary

condition,

V (z = 0, t) = Vin (t) + Vout (t) , (3.13)

I (z = 0, t) =
Vin (t)

Z0
−

Vout (t)
Z0

. (3.14)

We can rearrange Eq. (3.14) to

Vout (t) = Vin (t) − Z0I (z = 0, t) . (3.15)

The first term in the right hand side is the contribution of the incoming wave, the second

term is from the current injected by the system dynamics. Therefore, one can probe the

system by measuring the output field of a transmission line. The net power flowing into the

load is equal to

P =
1
Z

[
V 2
in (t) − V 2

out (t)
]
. (3.16)

3.2.2 The effects of a transmission line to the system

The transmission line not only enables us to probe the system, but also loads the system

and influence its dynamics. For example, if we turn off the input field in Eqs. (3.13) and

(3.14), the response of the transmission line at z = 0 is equal to the response of a resistance

with resistivity equal to the characteristic impedance of the line Z0. The semi-infinite
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Figure 3.4: (a) A transmission line loaded by an LC circuit. (b)(c) The equivalent circuit
of (a), where the effect of the transmission line to the LC circuit is equivalent to a noisy
resistor. (b) Noise current source in parallel to a resistor. (c) Noise voltage source in series
with a resistor.

transmission line simply carries the energy away from the system as propagating wave.

The infinite extent of the line allow us to introduce dissipation with only reactive elements,

which enables us to formulate a quantum theory of a resistor, we will explore this topic

later.

Although the transmission line induces dissipation, it also enables us to control the

system. To make it clear, let’s combine Eqs. (3.13) and (3.14) to eliminate the output field

Vout, then we can express the system current and voltage in terms of the input field,

I (z = 0, t) =
2Vin (t)

Z0
−

V (z = 0, t)
Z0

, (3.17)

where the first term in the right hand side is the external drive that is used to control the

system, the second term describes the dissipation induced by the transmission line. For

example, consider a LC resonator couples to a semi-infinite transmission line as shown in

Fig. 3.4a. Using the Kirchhoff’ current law, the equation of motion of the magnetic flux in

the inductor is
d2Φ

dt2 +
1

Z0C
dΦ
dt
+
Φ

LC
=

2
Z0C

Vin (t) , (3.18)
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the second term in Eq. (3.17) results in the damping.

3.2.3 Classical statistical mechanics of a transmission line

Compare Eq. (3.18) to Eq. (3.1), the transmission line behaves effectively as a resistor.

The effect of the transmission line to the LC resonator is equivalent to a thermal bath.

Consider connecting a LC resonator to a transmission line at temperatureT without external

drive, the thermal fluctuation of the transmission line would drive the system into thermal

equilibrium. In this case, Eq. (3.18) is the Langevin equation and the input voltage Vin (t)

represents the Langevin force from the bath (the transmission line). To obtain the spectral

density of the fluctuating field Vin (t), one can write the solution of Eq. (3.18) in frequency

space and solve for Φ[ω], which gives

Φ[ω] = K[ω]Iin[ω] =
2/Z0C

(ω2
c − ω2) − iω/Z0C

Vin[ω], (3.19)

where K[ω] is the response of the system. The spectrum of the flux is related to the spectrum

of the fluctuating input voltage by

S̄ΦΦ[ω] = |K[ω]|2 S̄VinVin[ω]. (3.20)

Here S̄[ω] = S[ω] + S[−ω] is the single side spectral density. In thermal equilibrium, the

energy of the LC resonator is

Ē = 2 ×
1

2L
〈Φ2〉 =

1
L

∫ ∞

0

dω
2π

S̄ΦΦ[ω] = kBT . (3.21)

For high Q resonator (ωc � 1/Z0C), the response |K[ω]|2 is a sharp resonance at the

resonance freqeuncy ωc, and therefore

Ē = S̄VinVin[ωc]
1
L

∫ ∞

0

dω
2π
|K[ω]|2 = S̄VinVin[ωc]/Z0 = kBT . (3.22)
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In principle, one can couple LC resonators at arbitrary resonance frequency without chang-

ing the interaction with the heat bath. Therefore, Eq. (3.22) implies

S̄VinVin[ω] = Z0kBT . (3.23)

A transmission line at temperature T generates a white input voltage noise. This relation

between the spectral density of the Langevin force and the dissipation induced by the bath

is the famous fluctuation-dissipation theorm (or Nyquist’s theorem).

If we define a noise current In =
2Vin
Z0

, the transmission line is equivalent to a noisy

current source in parallel to a resistor (Fig. 3.4b) with current noise

S̄In In [ω] =
4kBT

Z0
. (3.24)

It can also be described by it’s Noton’s equivalent circuit (Fig. 3.4b), which is a noisy voltage

source (Vn = Z0In) in series with a resistor with voltage noise

S̄VnVn [ω] = Z2
0 S̄In In [ω] = 4Z0kBT . (3.25)

3.2.4 Capacitively coupled RLC resonator

In the previous sections, we have discussed a LC resonator directly couples to a trans-

mission line. The quality factor of a resonator couple to a transmission line with impedance

Z0 is

Q =
ωc

κ
= ωc Z0C. (3.26)

For the lumped element resonator in our experiment, the resonance frequency ωc ' 2π ×

5GHz and the capacitance C ' 100fF. If we directly connect it to a 50Ω transmission

line, the external quality factor would be too small (Qext ' 0.1). One way to reduce the

dissipation from the transmission line is to couple it through a small capacitor [45].

In our experiment, two transmission lines are capacitively coupled to the resonator with

input coupling capacitor CL and output coupling capacitor CR (Fig. 3.5a), which has the

equivalent circuit Fig. 3.5b. Here we account for the internal losses of the resonator with
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Figure 3.5: (a) An RLC resonator capacitively coupled to two transmission lines with cou-
pling capacitors CL,R. (b) Equivalent circuit of (a). (c) The Norton equivalent circuit of (b).
The series coupling capacitors CL,R and impedances Z0 have been replaced with the Norton
equivalent parallel network with capacitors C′L,R and impedances Z′0. (d) Capacitively cou-
pled transmission line with impedance Z0 and capacitorCσ is equivalent to directly coupled
transmission line with impedance Z′σ.
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the resistor R. The Norton equivalent circuit is shown in Fig. 3.5c with

Z′σ =
1 + q2

σ

q2
σ

Z0, (3.27)

C′σ =
1

1 + q2
σ

Cσ, (3.28)

where qσ = ωZ0Cσ, σ = L, R. For our device, Cσ ' 1 fF and qσ ' 1.6 × 10−3 � 1,

therefore Z′σ ' Z0/q2
σ and C′σ ' Cσ. The total capacitance becomes Ctot = C + CL + CR.

Since C � CR,L for our device, we will neglect the resonance frequency shift due to the

coupling capacitances (ω′c = 1/
√

LCtot ' ωc). Therefore, couples a transmission line with

impedance Z0 and coupling capacitance Cσ is equivalent to directly couples a transmission

line with impedance Z′σ (Fig. 3.5d). The quality factor of the loaded resonator is given by

Q = ( 1
Qint
+ 1

QL
+ 1

QR
)−1 with

Qint =
R

ZLC
, (3.29)

QL,R =
Z′0

ZLC
=

1
q2

L,R

Z0
ZLC

, (3.30)

where ZLC =
√

L/Ctot. The external quality factor QL,R is enhanced by the factor 1/q2
L,R.

For our device, QL,R is around 40 × 103.

For a RLC resonator couples to two transmission lines as shown in Fig. 3.5d, the

equation of motion of the magnetic flux Φ in the inductor can be obtained by generalizing

Eq. (3.17) to

I (z = 0, t) =
∑

σ=I,L,R

(
2Vσ,in (t)

Z′σ
−

V (z = 0, t)
Z′σ

)
, (3.31)

where I represent the internal port with Z′I = R that account for the dissipation from the

resistor, and L, R represent the input and output transmission lines with Z′L,R = Z0/q2
L,R.

Then, the equation of motion of the magnetic flux in the inductor is

d2Φ

dt2 + κ
dΦ
dt
+ ω2

cΦ = 2κVin (t) , (3.32)
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where

κ =
∑

σ=I,L,R

κσ, (3.33)

Vin (t) =
∑

σ=I,L,R

κσ
κ

Vσ,in (t) , (3.34)

κσ = 1/Z′σCtot. (3.35)

If the resistor and the transmission lines are in thermal equilibrium at temperature T ,

according to (3.23) the noise spectrum of Vσ,in is

S̄Vσ,inVσ′,in[ω] = ZσkBTδσ,σ′ . (3.36)

3.2.5 Classical Langevin equation of a mechanical oscillator

Although the discussion in the previous sections focus on the dynamics of a LC circuit

couple to a transmission line, the results can be applied to describe a mechanical oscillator

coupled to a dissipative environment by making the following analogue in Eq. (3.18):

C → m,

1
Z0
→ mΓm,

1
LC
→ ω2

m,

Φ→ x,

2
Z0

Vin → Fn,

(3.37)

where m is the mass of the oscillator, Γm is the damping rate, and ωm is the mechanical

resonance frequency, which gives the Langevin equation of a mechanical oscillator

m
d2x (t)

dt2 + mΓm
dx (t)

dt
+ mω2

m x = Fn (t) . (3.38)
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The force noise of the bath is given by

S̄FnFn [ω] = 4mΓmkBT . (3.39)

3.3 Classical electromechanics in dissipative environment

After introducing the Langevin equations of the LC circuit and themechanical oscillator,

we are now in the position to describe the classical dynamics of an electromechanical system.

The capacitance of the LC circuit is modulated by the motion of the membrane. For

small displacement from the equilibrium position, the capacitance is linearly related to the

displacement

Ctot (x) = Ctot (0) +
∂C
∂x

x. (3.40)

The coupling between the LC circuit and the motion of the membrane is given by the

capacitive energy

Ecap =
1
2

Ctot (x) V 2, (3.41)

which gives the radiation pressure

Frad = −
∂Ecap

∂x
= −

1
2
∂C
∂x

V 2. (3.42)

The classical dynamics of a driven electromechanical system is governed by the nonlinear

coupled Langevin equations

Ctot (x)
d2Φ

dt2 +
1
Z0

dΦ
dt
+
Φ

L
= In (t) + Id (t) , (3.43)

m
d2x
dt2 + mΓm

dx
dt
+ mω2

m x = Fn (t) −
1
2
∂C
∂x

[V (t)]2 , (3.44)

where In (t) and Fn (t) are the noise current and the Langevin force from the dissipative

environments, and Id (t) is the external drive current. The output voltage of the transmission

line is given by

Vσ,out (t) = Vσ,in (t) − Zσ I (t) , (3.45)
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with

I (t) =
∑

σ=I,L,R

(
2Vσ,in (t)

Zσ
−

V (t)
Zσ

)
. (3.46)

In general case, the nonlinear Langevin equations (3.43) and (3.44) have no analytical

solution without making approximation. For high Q microwave resonator and mechanical

oscillator in strong driving regime as considered in this work, several approximations can

be made to simplify these equations. The solutions of the classical equations have been

discussed in [45]. We will postpone the discussion of the solutions after quantizing the

system.

3.4 Quantization of a harmonic oscillator and a transmis-

sion line

This section briefly discusses the procedure to quantize a harmonic oscillator, which

can be an electrical circuit or mechanical oscillator. The results are extended to quantize a

transmission line.

3.4.1 Quantization of a harmonic oscillator

Let’s begin with a harmonic oscillator with mass m and frequency ωm. The Lagrangian

of a harmonic oscillator is

L =
1
2

mẋ2 −
1
2

mω2
m x2. (3.47)

The corresponding canonical conjugate momentum is

p =
∂L
∂ ẋ
= mẋ, (3.48)

from which we obtain the Hamiltonian

H = pẋ − L =
p2

2m
+

1
2

mω2
m x2. (3.49)
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To quantize the harmonic oscillator, we replace the classical variable x and p by the

corresponding operators x̂ and p̂, and impose the canonical commutation relation

[
x̂, p̂

]
= i~. (3.50)

Define the annihilation and creation operators

b̂ =
√

mωm

2~

(
x̂ + i

p̂
mωm

)
, (3.51)

b̂† =
√

mωm

2~

(
x̂ − i

p̂
mωm

)
, (3.52)

with the commutation relation
[
b̂, b̂†

]
= 1. (3.53)

The position and momentum operators can be expressed in terms of the creation and

annihilation operators as

x̂ = xzp
(
b̂ + b̂†

)
, (3.54)

p̂ = −mωm xzpi
(
b̂ − b̂†

)
, (3.55)

where xzp =
√
~/2mωm is the zero-point motion. The Hamiltonian (3.48) can be written as

Ĥ = ~ωm

(
N̂ +

1
2

)
, (3.56)

where N̂ = b̂†b̂ is the number operator with discrete eigenvalue n = 0, 1, 2, .... Therefore,

a quantum harmonic oscillator has discrete energy En = ~ωm(n + 1
2 ). Note that even at

the ground state (n = 0), a quantum harmonic oscillator has non-zero E0 = ~ωm/2. This

minimum energy is the zero-point energy, which is the consequence of the wave-like nature

of matter.

The same procedures can be applied to quantize an LC circuit. The Lagrangian of a LC

is

L =
1
2

CΦ̇2 −
1

2L
Φ

2, (3.57)
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where Φ is the magnetic flux in the inductor. The corresponding conjugate canonical

momentum is

Q =
∂L
∂Φ̇
= CΦ̇, (3.58)

which is the charge in the capacitor. The Hamiltonian is given by

H = QΦ̇ − L =
Q2

2C
+

1
2L
Φ

2. (3.59)

Compare (3.57) to (3.49), we can transfer the results of the harmonic oscillator to the

quantized LC circuit simply by changing the notations:

m → C,

ωm → ωc = 1/
√

LC,

x → Φ,

p→ Q.

(3.60)

Then we have
[
Φ̂, Q̂

]
= i~. (3.61)

Φ̂ =

√
~Z
2

(
â + â†

)
, (3.62)

Q̂ = −i

√
~

2Z

(
â − â†

)
, (3.63)

Ĥ = ~ωc

(
N̂ +

1
2

)
, (3.64)

where â(â†) is the annihilation (creation) operator of the resonator mode, Z =
√

L
C is the

characteristic impedance of a LC circuit.

3.4.2 Quantization of a transmission line

In the following, we will extend the results of the quantized LC circuit to quantize a

transmission line [4]. As shown in Fig. 3.2, a transmission line with impedance Z0 and
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phase velocity v can be described by a chain of LC resonator with capacitance per unit

length c and inductance per unit length l. The Lagrangian of a transmission line of length

d is

L =
∫ d

0



1
2

cφ̇ (z, t)2 −
1
2l

(
∂φ

∂z
(z, t)

)2
dz, (3.65)

where φ(z, t) is the node flux. The equation of motion of φ(z, t) is given by the Eular-

Lagrange equation ∂L
∂φ − ∂i

(
∂L

∂(∂iφ)

)
,

∂2φ

∂t2 − v2 ∂
2φ

∂z2 = 0, (3.66)

where v = 1√
lc

is the phase velocity of the transmission line. A general solution can be

written as

φ (x, t) =
∞∑

n=1
Φn (t) cos (knz + αn) , (3.67)

with

Φn (t) = An cos
(
ωnt + βn

)
, (3.68)

where kn, αn, An, and βn are depended on the boundary conditions. The frequency

ωn = vkn.

For an open transmission line, the boundary condition is I = 1
l
∂φ
∂x |z=0,d = 0, which gives

αn = 0 and kn = nπ/d. If we substitute the solution (3.67) into (3.65), the Lagrangian of

the transmission becomes

L =
∞∑

n=1

(
1
2

CnΦ̇
2
n −

1
2Ln
Φ

2
n

)
, (3.69)

which is equivalent to the Lagrangian of infinite uncoupled LC resonators with capacitances

Cn = cd/2 and inductances Ln =
2ld

(nπ)2 . The canonical conjugate momentum is given by

Qn =
∂L
∂Φ̇n

= CΦ̇n, (3.70)
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and the Hamiltonian is

H =
∞∑

n=1
QnΦ̇n − L =

∞∑
n=1

(
Q2

n

2Cn
+

1
2Ln
Φ

2
n

)
. (3.71)

We can follow the procedures in the last section to quantize the individual LC resonator in

the transmission line.

We first impose the canonical commutation relation

[
Φ̂n, Q̂m

]
= i~δn,m. (3.72)

The magnetic flux Φn and the charge Qn can be written as

Φ̂n =

√
~Zn

2
(
ân + â†n

)
, (3.73)

Q̂n = −i

√
~

2Zn

(
ân − â†n

)
, (3.74)

where Zn =
√

Ln/Cn = 2Z0/nπ, ân and â†n are the annihilation and creation operators of the

mode in the n th LC resonator in the transmission line, and they satisfy the commutation

relation
[
ân, â†m

]
= δn,m. (3.75)

Substitute (3.73) and (3.74) into (3.71), the Hamiltonian becomes

Ĥ =
∞∑

n=1
~ωn

(
â†nân +

1
2

)
, (3.76)

where ωn = 1/
√

LnCn.

After quantized the transmission line. The node flux operator corresponding to (3.67)

is given by

φ̂ (z, t) =
∞∑

n=1

√
~Zn

2
(
âne−iωnt + â†neiωnt

)
cos (knz) , (3.77)
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and the voltage is

V̂ (z, t) =
∂φ

∂t
(z, t) = −i

√
2v
d

∞∑
n=1

√
~ωn Z0

2
(
âne−iωnt − â†neiωnt

)
cos (knz) . (3.78)

The voltage (3.78) can be written as the sum of the right propagating solution V̂in and left

propagating solutions V̂out

V̂ (z, t) = V̂in

(
t −

z
v

)
+ V̂out

(
t +

z
v

)
, (3.79)

with

V̂in

(
t −

z
v

)
= − i

∫ ∞

0

dω
2π

√
~ωZ0

2
{
âin [ω] e−iω(t− z

v ) − (âin [ω])† eiω(t− z
v )

}
, (3.80)

V̂out

(
t +

z
v

)
= − i

∫ ∞

0

dω
2π

√
~ωZ0

2
{
âout [ω] e−iω(t+ z

v ) − (âout [ω])† eiω(t+ z
v )

}
. (3.81)

The right and left propagating modes are

âin [ω] =2π
√

v

2d

∑
k>0

âkδ (ω − ωk ) , (3.82)

âout [ω] =2π
√

v

2d

∑
k<0

âkδ (ω − ωk ) , (3.83)

and here we rewrite the summation of n into summation of k. By taking the continuum

limit d → ∞, the only non-zero commutator of the operators âin [ω] and âout [ω] are

[
âin [ω] ,

(
âin

[
ω′

] )†]
= 2πδ

[
ω − ω′

]
, (3.84)

[
âout [ω] ,

(
âout

[
ω′

] )†]
= 2πδ

[
ω − ω′

]
. (3.85)

If the transmission line is in thermal equilibrium, then

〈
(âin [ω])† âin

[
ω′

]〉
= 2πδ

[
ω − ω′

]
nth [ω] , (3.86)

where nth [ω] = 1/
(
exp ~ωkBT − 1

)
is the Bose-Einstein distribution.



77

After quantizing the field, we can calculate the quantum statistics of the voltage. The

noise spectrum of the input voltage is

S̄VinVin [ω] =
∫

dt〈{V̂in (t) , V̂in (0)}〉eiωt =
Z0
2
~|ω | coth

(
~ |ω |

2kBT

)
. (3.87)

For kBT � ~ω, Eq. (3.87) reduces to the classical result Eq. (3.23). As discussed

in subsection 2.2.5, a semi-infinite transmission line is equivalent to a resistor, and the

quantum noise from a resistor is given by the noise voltage at the open terminal of the

transmission line (V = 2Vin), and therefore

S̄VV [ω] = 4S̄VinVin [ω] = 2Z0~|ω | coth
(
~ |ω |

2kBT

)
. (3.88)

3.5 Quantum Langevin equations and approximations

After individually quantized a LC circuit and a transmission line. In this section, we

will combine both results to describe the quantum dynamics of a LC circuit coupled to a

transmission line. We will also discuss the connection between the quantum circuit theory

and the input-output theory in quantum optics [31, 11].

3.5.1 Quantum Langevin equation of a LC circuit

The quantum dynamics of a LC circuit couple to a transmission line is described by

the quantum Langevin equation, which is given by replacing the magnetic flux Φ and the

input voltage Vin in the Langevin equation (3.18) with the corresponding operators (3.63)

and (3.80), which gives

d2Φ̂

dt2 +
1

Z0Ctot

dΦ̂
dt
+
Φ̂

LCtot
=

1
Ctot

În (t) , (3.89)

where În (t) = 2
Z0

V̂in (t). For high Q resonator as the case of our experiment, several

approximations can be made to simplify Eq. (3.89). In our experiment, we only focus on

the dynamics in a narrow bandwidth around the cavity resonance frequency. In this case,
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we can rewrite the input voltage (3.80) to

V̂in (t) ' −i

√
~Zωc

2

(
e−iωct

∫ ∞

−ωc

dω
2π

âin [ω + ωc] e−iωt − H.c.
)
. (3.90)

Since the cavity field only response around the cavity resonance frequency, we can extend

the integral from −ωc to −∞. Defining the envelope operator of the input field,

âin (t) =
∫ ∞

−∞

dω
2π

âin [ω + ωc] e−iωt, (3.91)

which satisfies the commutation relation

[
âin (t) , â†in

(
t′
)]
= δ

(
t − t′

)
, (3.92)

and the input voltage is simplified to

V̂in (t) = −i

√
~Zωc

2
(
âin (t) e−iωct − â†in (t) eiωct

)
. (3.93)

The flux operator (3.63) in a frame rotating at ωc is given by

Φ̂ (t) =

√
~Z
2

(
â (t) e−iωct + â (t)† eiωct

)
, (3.94)

where â (t) and â (t)† represent the envelope of the field. If we substitute Eq. (3.93) and

Eq. (3.94) into the quantum Langevin equation (3.89) and separate the parts oscillating at

eiωt and e−iωt , we obtain

1
2ωc

i
d2â
dt2 +

dâ
dt
+

1
2Q

i
dâ
dt
+
κ

2
â =
√
κâin (t) . (3.95)

By making the slow varying envelope approximation ( d2 â
dt2 � ωc

dâ
dt ) and considering high

quality resonator (Q � 1), we can reduce Eq. (3.95) to a first order differential equation.
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Transforming back to the lab frame, we obtain

dâ (t)
dt
+

(
iωc +

κ

2

)
â (t) =

√
κâin (t) . (3.96)

For multi-ports system, the corresponding input-output relation (3.15) is

âσ,out (t) = âσ,in (t) −
√
κσ â (t) , (3.97)

where σ is the index of the port. Eq. (3.96) and Eq. (3.97) can also be obtained from the

input-output theory in quantum optics, a brief discussion of the input-output theory is given

in appendix A.

3.5.2 Quantum Langevin equation of a mechanical oscillator

Similar to the analogue between the classical Langevin equation of a LC circuit and a

mechanical oscillator, the quantum Langevin equation of a mechanical oscillator is given

by making the analogues (3.37). The resulting quantum Langevin equation is

m
d2 x̂ (t)

dt2 + mΓm
dx̂ (t)

dt
+ mω2

m x̂ = F̂n (t) . (3.98)

The noise spectrum of the Langevin force F̂n is

S̄FnFn [ω] = 2mΓm~|ω | coth
(
~ω

2kBT

)
. (3.99)

For high Q mechanical oscillator, the same approximation in the last section can be made.

The quantum Langevin equation (3.98) can be simplified to

db̂ (t)
dt
+

(
iωm +

Γm

2

)
b̂ (t) =

√
κb̂in (t) , (3.100)

where b̂ (t) is the annihilation operator of the mechanical mode.
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3.5.3 Quantum Langevin equations of an electromechanical system

Similar to the quantum Langevin equations of the LC circuit and the mechanical os-

cillator, the quantum Langevin equation of a cavity electromechanical system is given by

replacing the classical variables in Eqs. (3.43) and (3.44) with the corresponding operators,

which gives

d2Φ̂

dt2 +
1

Z0Ctot ( x̂)
dΦ̂
dt
+

Φ̂

LCtot ( x̂)
=

1
Ctot

[
În (t) + Id (t)

]
, (3.101)

m
d2 x̂
dt2 + mΓm

dx̂
dt
+ mω2

m x̂ = F̂n (t) + F̂rad (t) . (3.102)

Here we include the external drive current Id (t) in Eq. (3.101). The second term in the

right hand side of Eq. (3.102) is the radiation pressure from the cavity field, which is given

by F̂rad (t) = −1
2
∂C
∂x

[
V̂ (t)

]2
. By making the same approximations in the previous sections,

Eqs. (3.101) and (3.102) can be simplified to

dâ (t)
dt
+

[
iωc ( x̂) +

κ

2

]
â (t) =

√
κ [âin (t) + αin (t)] , (3.103)

db̂ (t)
dt
+

(
iωm +

Γm

2

)
b̂ (t) =

√
κb̂in (t) + i

xzp
~

F̂rad (t) , (3.104)

where αin (t) is the external drive field. For multi-port cavity âin (t) =
∑
σ

√
κσ
κ âσ,in (t)

and αin (t) =
∑
σ

√
κσ
κ ασ,in (t), where σ is the index of the ports. We ignore the position

dependent of κ in Eq.(3.103) because it is very small compare to ωc. If we define the

electromechanical coupling,

g0 = −
∂ωc

∂x
xzp =

ωc

2
1

Ctot

∂C
∂x

xzp, (3.105)

and expand the ωc ( x̂) to the first order, the quantum Langevin equations of the electrome-

chanical system can be written to

dâ (t)
dt
+

(
iωc +

κ

2

)
â (t) −

√
κâin (t) =

√
καin (t) + ig0

[
b̂ (t) + b̂† (t)

]
, (3.106)
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db̂ (t)
dt
+

(
iωm +

Γm

2

)
b̂ (t) −

√
κb̂in (t) = ig0

[
â†â (t) +

1
2

]
. (3.107)

In the following chapter, we will used the quantum Langevin equations (3.106) and (3.107)

to study the quantum behavior of the cavity electromechanical system. The 1/2 on the

right hand side of Eq. (3.107) is the static radiation pressure from the quantum fluctuation

of the cavity field, which have no dynamical effect on the system. We will neglect this

contribution in the following discussions.

The quantum Langevin equations (3.106) and (3.107) can also be derived from the the

input-output theory in quantum optics. The total Hamiltonian of the electromechanical

system is

Ĥ = Ĥcav + Ĥmech + ĤInt + Ĥdr, (3.108)

with

Ĥcav = ~ωc â†â, (3.109)

Ĥmech = ~ωm b̂†b̂, (3.110)

ĤInt = −~g0â†â
(
b̂† + b̂

)
, (3.111)

Ĥdr = ~
∑
σ

√
κσ

[
α∗in (t) â + αin (t) â†

]
, (3.112)

where Ĥcav is the Hamiltonian of the optical or microwave cavity. ωc is the cavity resonance

frequency and â
(
â†

)
is the annihilation (creation) operator of the cavity photon. Ĥmech

is the Hamiltonian of the mechanical oscillator, ωm is the resonance frequency of the

mechanical oscillator, b̂
(
b̂†

)
is the annihilation (creation) operator of the phonon, ĤInt

is the electromechanical interaction with electromechanical coupling g0, and Ĥdr is the

Hamiltonian of the external drives. Then the quantum Langevin equations (3.106) and

(3.107) are given by the Heisenberg equations

˙̂a =
i
~

[
Ĥ′, â

]
−
κ

2
â +
√
κd̂in, (3.113)

˙̂b =
i
~

[
Ĥ′, b̂

]
−
Γm

2
b̂ +

√
Γm ĉin. (3.114)
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Chapter 4

Cavity electromechanics with
bichromatic drives

In the previous chapter, we have introduced a quantum theory to describe an electrome-

chanical system. Here we will apply this theory to study the dynamics of an electrome-

chanical system under bichromatic drives. In this work, we study the stationary behavior of

the system through the measurement of the transmission spectrum and the noise spectrum.

In this section, we will calculate these spectra with the quantum Langevin equations. The

behavior of the system under some special drive configurations will be discussed. The

derivations in this chapter represent a combination of results from our theory collaborators

(Andreas Kronwald, Anja Metelmann and Aashish Clerk) and my own calculations.

ωc

ωm ωm

∆

δδ

ω− ω+

Figure 4.1: Schematic of the pump configuration in the frequency domain. The blue
Lorentzian represents the cavity resonance, and the red and blue arrows represent the drive
tones.
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4.1 Standard formalism and general solution

In this section, we study a two port cavity electromechanical system under bichromatic

drive. In the following, we will discuss the standard formalism and approximations to

calculate the noise spectra of the system. Consider driving from the input port (L) of the

cavity, the Hamiltonian of the drive is

Ĥdr = ~
√
κL

∑
ν=±

αν
(
âeiωνt + â†e−iωνt

)
, (4.1)

where κL is the coupling of the cavity to the input port, ω± = ωc +∆± (ωm + δ) and α± are

frequencies and amplitudes of the red and blue detuned drives. ∆ and δ are the detunings

of the drives, which are indicated by the schematic Fig. 4.1.

4.1.1 Rotating frame

To simplify the calculation, we transform into a framewith respect to Ĥ0 = ~ (ωc + ∆) â†â+

~ (ωm + δ) b̂†b̂with the unitary transformation Û = eiĤ0t/~. The Hamiltonian in the rotating

frame is given by

Ĥ′ =Û ĤÛ† − Ĥ0

= − ~∆â†â − ~δb̂†b̂ + ~g0â†â
[
e−i(ωm+δ)t b̂ + ei(ωm+δ)t b̂†

]

+ ~
√
κL

∑
ν=±

αν
[
âeνi(ωm+δ)t + â†e−νi(ωm+δ)t

]
. (4.2)

The quantum Langevin equations in the rotating frame are

˙̂a =
(
i∆ −

κ

2

)
â + ig0â

[
e−i(ωm+δ)t b̂ + ei(ωm+δ)t b̂†

]

− i
[
α+e−i(ωm+δ)t + α−ei(ωm+δ)t

]
+
√
κâin, (4.3)

˙̂b =
(
iδ −

Γm

2

)
b̂ + ig0â†âei(ωm+δ)t +

√
Γm b̂in, (4.4)
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where âin =
∑
σ=L,R,I

√
κσ
κ âσ,in is the total input noise of the photon bath, where âσ,in

describes the input fluctuations to the cavity from channel σ with dampling rate κσ. σ = L

and R correspond to the input and the output ports of the cavity, while σ = I corresponds

to the internal loss. The noise operator b̂in describes the noise from the phonon bath with

intrinsic damping rate Γm. The non-zero commutators of the input field operators are

[
âσ,in (t) , â†σ′,in

(
t′
)]
=δσ,σ′δ

(
t − t′

)
, (4.5)

[
b̂in (t) , b̂†in

(
t′
)]
=δ

(
t − t′

)
. (4.6)

They have the following statistics

〈
â†σ,in (t) âσ′,in

(
t′
)〉
=nthσδσ,σ′δ

(
t − t′

)
, (4.7)〈

b̂†in
(
t′
)

b̂in (t)
〉
=nthmδ

(
t − t′

)
, (4.8)

where nthσ is the photon occupation at port σ, nthm is the phonon bath occupation.

4.1.2 Standard linearization

For the electromechanical system considered in this work, the single phonon electrome-

chanical coupling is very weak (g0 � κ). In order to enhance the electromechanical

interaction, we drive the cavity with strong classical coherent fields. To simplify the

calculation, we apply a shift to the cavity field and phonon field

â →ᾱ + â, (4.9)

b̂→ β̄ + b̂, (4.10)

where ᾱ and β̄ are the classical solutions of the quantum Langevin equations (4.3) and (4.4)

that are first order in g0, i.e.,

˙̄α +
(
κ

2
− i∆

)
ᾱ = −i

√
κL

[
α+e−i(ωm+δ)t + α−ei(ωm+δ)t

]
, (4.11)
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˙̄β +
(
Γm

2
− iδ

)
β̄ = ig0 |ᾱ |

2 ei(ωm+δ)t . (4.12)

The steady state solutions are given by

ᾱ =ᾱ+e−i(ωm+δ)t + ᾱ−ei(ωm+δ)t, (4.13)

β̄ = − i
g0 |ᾱ |

2(
Γm
2 − iδ

) ei(ωm+δ)t, (4.14)

with

ᾱ± = −i
√
κL

κ
2 − i (∆ ± ωm ± δ)

α±. (4.15)

The intracavity photon numbers corresponding to the two drives are given by n±p = |ᾱ± |
2 .

Linearizing the Langevin equations into first order in the small fluctuations â and b̂, and

subtracting the classical parts, we obtain the dynamics of the quantum fluctuations

˙̂a +
(
κ

2
− i∆

)
â −
√
κâin =i

(
G−b̂ + G+b̂†

)
+

i
[
G+b̂e−2i(Ω+δ)t + G−b̂†e2i(Ω+δ)t

]
, (4.16)

˙̂b +
(
Γm

2
− iδ

)
b̂ −

√
Γm b̂in =i

(
G∗−â + G+â†

)
+

i
(
G∗+e2i(Ω+δ)t â + G−e2i(Ω+δ)t â†

)
, (4.17)

where G± = g0ᾱ± are the enhanced electromechanical couplings. Here we neglect the

cavity frequency shift g0
[
e−i(ωm+δ)t β̄ + ei(ωm+δ)t β̄∗

]
, which is very small in the parameters

regime of our experiment.

4.1.3 Rotating wave appoximation

From the resulting linearized quantum Langevin equations (4.16) and (4.17), we find

that the linearized electromechanical system can be described by the effective Hamiltonian

Ĥlin = ĤRWA + ĤCR, (4.18)
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where

ĤRWA = −~∆â†â − ~δb̂†b̂ − ~
[(

G−b̂ + G+b̂†
)

a† +
(
G∗−b̂† + G∗+b̂

)
â

]
(4.19)

describes the resonant part of the linearized electromechanical interaction whereas

ĤCR = − ~
[
G+b̂e−2i(ωm+δ)t + G−b̂†e2i(ωm+δ)t

]
â†

− ~
[
G∗+b̂†e2i(ωm+δ)t + G∗−b̂e−2i(ωm+δ)t

]
â

describes the off-resonant electromechanical interactions. The linearized quantumLangevin

equations (4.16) and (4.17) can be obtained by

˙̂a =
i
~

[
Ĥlin, â

]
−
κ

2
â +
√
κâin, (4.20)

˙̂b =
i
~

[
Ĥlin, b̂

]
−
Γm

2
b̂ +

√
Γm b̂in. (4.21)

In good cavity limit (ωm � κ), the off-resonant part rotate much faster than the time scale of

the cavity field. Therefore the average effect of the non-resonance terms are very small. In

this case, we can neglect the off-resonance term ĤCR in this limit, which is the rotating wave

approximation (RWA). Then the linearized quantum Langevin equations are simplified to

˙̂a +
(
κ

2
− i∆

)
â =
√
κâin + i

(
G−b̂ + G+b̂†

)
, (4.22)

˙̂b +
(
Γm

2
− iδ

)
b̂ =

√
Γm b̂in + i

(
G∗−â + G+â†

)
. (4.23)

Corrections due to the off-resonance is discussed in appendix B.

4.1.4 Output spectra

In the experiment, we study the dynamics of the electromechanical system through the

transmission spectrum and the noise spectrum of the cavity. To calculate these spectra,

we transform the quantum Langevin equations into frequency domain with the Fourier
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transformation

Â [ω] =
∫

dt Â (t) eiωt . (4.24)

Â† [ω] =
∫

dt Â† (t) eiωt =
(
Â [−ω]

)†
. (4.25)

The transformed quantum Langevin equations are

χ−1
c [ω + ∆] â [ω] =

√
κâin [ω] + i

(
G−b̂ [ω] + G+b̂† [ω]

)
,

χ−1
c [ω − ∆] â† [ω] =

√
κâ†in [ω] − i

(
G∗−b̂† [ω] + G∗+b̂ [ω]

)
,

χ−1
m [ω + δ] b̂ [ω] =

√
Γm b̂in [ω] + i

(
G∗−â [ω] + G+â† [ω]

)
,

χ−1
m [ω − δ] b̂† [ω] =

√
Γm b̂†in [ω] − i

(
G−â† [ω] + G∗+â [ω]

)
,

(4.26)

where χc [ω] = 1
κ/2−iω and χm [ω] = 1

Γm/2−iω are the susceptibilities of the cavity field and

the mechanical motion.

If we define the vectors D̂ =
(
â, â†, b̂, b̂†

)T
, D̂in =

(
âin, â

†

in, b̂in, b̂
†

in

)T
and the diagonal

matrix L = diag
(√
κ,
√
κ,
√
Γm,
√
Γm

)
.We can write the quantum Langevin equations into

matrix form (
χ [ω]

)−1 D̂ [ω] = L · D̂in [ω] , (4.27)

with the susceptibility matrix

(
χ [ω]

)−1
≡

*.........
,

χ−1
c [ω + ∆] 0 −iG− −iG+

0 χ−1
c [ω − ∆] iG∗+ iG∗−

−iG∗− −iG+ χ−1
m [ω + δ] 0

iG∗+ iG− 0 χ−1
m [ω − δ]

+/////////
-

, (4.28)

and the solution of the cavity fields and the phonon fields are given by

D̂ [ω] = χ [ω] · L · D̂in [ω] . (4.29)

In the experiment, we measure the transmission signal through the output port (R) of
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the cavity, which is given by the input-output relation

âR,out [ω] = âR,in [ω] −
√
κRâ [ω] . (4.30)

Substituting the solution of the intracavity field â [ω] from Eq. (4.29) into Eq. (4.30), we

obtain the solution of the output field

d̂R,out [ω] =d̂R,in [ω] −
√
κRκ

(
χ [ω]

)
11 d̂in [ω] −

√
κRκ

(
χ [ω]

)
12 d̂†in [ω]

−
√
κRΓm

(
χ [ω]

)
13 ĉin [ω] −

√
κRΓm

(
χ [ω]

)
14 ĉ†in [ω] . (4.31)

Note that here we write the field in the rotating frame, and to transform it back to the lab

frame, one simply need to shift the origin to ωc + ∆, i.e., ω → ω − ωc − ∆.

4.1.4.1 Complex transmission spectrum

One of the most important spectra in the experiment is the complex transmission spec-

trum (S21), from which we can precisely extract the resonance frequencies (ωc, ωm), the

linewidths (κ, Γm) and the enhanced electromechanical couplings (G±) of the electrome-

chanical system. In the experiment, a vector network analyzer (VNA) is used to send a weak

probe tone αL,in from the input port (L) of the device and compare it with the corresponding

transmitted signal αR,out from the output port (R). The VNA sweeps the frequency of the

probe to measure the complex transmission S21 as a function of frequency. The transmission

spectrum can be theoretically calculated by replacing the operators with the corresponding

coherent classical fields (i.e, âL,in [ω]→ αL,in [ω] and the other equal to zero), which gives

S21 [ω] =
αR,out

αL,in
= −
√
κLκR

(
χ [ω]

)
11 . (4.32)

4.1.4.2 Output noise spectrum

Another important spectrum is the noise spectrum of the microwave field emitted from

the output port (R) of the device. From the noise spectrum, we can extract the cavity

occupation nthc and the mechanical occupation nthm from the noise spectrum. To measure
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the output noise spectrum, we perform a linear detection with a spectrum analyzer, which

is essentially equivalent to a diode plus filter [24]. The diode serves as a large bandwidth

square-law power detector that is sensitive to the integrated voltage noise over the full

frequency domain. To selectively measure the noise power at a certain frequency ω0, a

well-behaved and normalized bandpass filter function f [ω], which is peaked at ±ω0, is

used to pick up the power at the designated frequency. The voltage at the output of the filter

and the input of the diode is

Vf [ω] = f [ω] Vout [ω] , (4.33)

where Vout [ω] is the output field from the device. With the filter in place, the diode output

is proportional to

I =
∫ ∞

−∞

dω | f [ω] |2SVoutVout [ω] . (4.34)

Since the filter function is real value in time domain, its Fourier transform is a symmetric

in the frequency domain. For narrow band filter, the filter function can approximated by

| f [ω] |2 =
1
2

[δ (ω − ω0) + δ (ω + ω0)] . (4.35)

Therefore, the measured noise power at the diode is proportional to the symmetric noise

spectrum

I =
1
2

(
SVoutVout [ω0] + SVoutVout [−ω0]

)
= S̄VoutVout [ω0] . (4.36)

With the solution (4.31), the noise spectrum from the output port of the cavity can be

calculated by

S̄I I [ω] =
1
2

∫
dt

〈{
Î (0) , Î (t)

}〉
eiωt =

1
2

∫
dω′

2π
〈{

Î
[
ω′

]
, Î [ω]

}〉
, (4.37)

and here we express the spectrum in terms of quanta, i.e.,

Î = i

√
2
~Zωc

V̂out = −i
(
âR,out − â†R,out

)
. (4.38)

Since we can only access the positive frequency of the spectrum, the spectrum can be
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simplified to

S̄I I [ω] =
1
2

∫
dω′

2π
〈{

â†R,out
[
ω′

]
, âR,out [ω]

}〉
=

1
2
+ nthR + κR S̄ [ω] , (4.39)

with

S̄ [ω] =κ
[��
(
χ [ω]

)
11

��2 + ��
(
χ [ω]

)
12

��2
] (

nthc +
1
2

)
+ Γm

[��
(
χ [ω]

)
13

��2 + ��
(
χ [ω]

)
14

��2
] (

nthm +
1
2

)
− 2Re

{(
χ [ω]

)
11

(
nthR +

1
2

)}
.

4.1.5 Quadrature spectrums of the electromechanical system

In addition to the output field of the cavity, another useful physical quantities are the

quadratures of the cavity field and the mechanical motion, which are particularly useful

when considering squeezed state. The quadratures of the cavity field and the mechanical

motion are defined by
Û1 = â† + â, Û2 = i

(
â† − â

)
,

X̂1 = b̂† + b̂, X̂2 = i
(
b̂† − b̂

)
.

(4.40)

The corresponding input operators satisfy the following relations:

〈
X̂1,in (t) X̂1,in (t′)

〉
=

(
2nT

m + 1
)
δ (t − t′) ,

〈
X̂1,in (t) X̂2,in (t′)

〉
= iδ (t − t′) ,〈

X̂2,in (t) X̂2,in (t′)
〉
=

(
2nT

m + 1
)
δ (t − t′) ,

〈
X̂2,in (t) X̂1,in (t′)

〉
= −iδ (t − t′) ,〈

Û1,in (t) Û1,in (t′)
〉
=

(
2nT

c + 1
)
δ (t − t′) ,

〈
Û1,in (t) Û2,in (t′)

〉
= iδ (t − t′) ,〈

Û2,in (t) Û2,in (t′)
〉
=

(
2nT

c + 1
)
δ (t − t′) ,

〈
Û2,in (t) Û1,in (t′)

〉
= −iδ (t − t′) .

(4.41)

The quantum Langevin equations of the quadratures are

˙̂U1 +
κ

2
Û1 =

√
κÛ1,in − ∆Û2 − ḠX̂2,

˙̂U2 +
κ

2
Û2 =

√
κÛ2,in + ∆Û1 + G̃X̂1,

˙̂X1 +
Γm

2
X̂1 =

√
Γm X̂1,in − δX̂2 − ḠÛ2,

˙̂X2 +
Γm

2
X̂2 =

√
Γm X̂2,in + δX̂1 + G̃Û1,

(4.42)
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where Ḡ = G− − G+ and G̃ = G− + G+. In frequency domain, the quantum Langevin

equations are
χ−1

c [ω] Û1 [ω] =
√
κÛ1,in [ω] − ∆Û2 [ω] − ḠX̂2 [ω] ,

χ−1
c [ω] Û2 [ω] =

√
κÛ2,in [ω] + ∆Û1 [ω] + G̃X̂1 [ω] ,

χ−1
m [ω] X̂1 [ω] =

√
Γm X̂1,in [ω] − δX̂2 [ω] − ḠÛ2 [ω] ,

χ−1
m [ω] X̂2 [ω] =

√
Γm X̂2,in [ω] + δX̂1 [ω] + G̃Û1 [ω] .

(4.43)

If we define the vectors Q̂ =
(
Û1, Û2, X̂1, X̂2

)T
, Q̂in =

(
Û1,in, Û2,in, X̂1,in, X̂2,in

)T
, then

we can write the quantum Langevin equations in matrix form

(
χQ [ω]

)−1
Q̂ [ω] = L · Q̂in [ω] , (4.44)

with the susceptibility matrix

(
χQ [ω]

)−1
≡

*.........
,

χ−1
c [ω] ∆ 0 Ḡ

−∆ χ−1
c [ω] −G̃ 0

0 Ḡ χ−1
m [ω] δ

−G̃ 0 −δ χ−1
m [ω]

+/////////
-

. (4.45)

The solution of the cavity quadratures and mechanical quadratures are given by

Q̂ [ω] = χQ [ω] · L · Q̂in [ω] . (4.46)

The quadrature noise spectra of the cavity and the mechanics can be calculated with the

solutions (4.46), which are given by

S̄Qi [ω] =
1
2

∫
dω′

2π
〈{

Q̂i
[
ω′

]
, Q̂i [ω]

}〉
=κ

{���
(
χQ [ω]

)
i1

���
2
+

���
(
χQ [ω]

)
i2

���
2} (

2nthc + 1
)

+ Γm

{���
(
χQ [ω]

)
i3

���
2
+

���
(
χQ [ω]

)
i4

���
2} (

2nthm + 1
)
. (4.47)
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4.2 Single tone electromechanics

Having introduced a generic quantum theory to describe an electromechanical system

under bichromatic drives. In the following sections, we will consider some special drive

configurations and discuss the effects of the radiation backaction. In this section, we will

consider an electromechanical system driven by a single red-detuned tone and a single

blue-detuned tone.

4.2.1 Single red-detuned tone

We first consider the behavior of an electromechanical system driven by a single red-

detuned tone at ω− = ωc − ωm. In this case, the Hamiltonian is given by setting G+ = 0

and ∆ = δ = 0 in Eq. (4.19), which yields

Ĥ = −~G−
(
b̂â† + b̂†â

)
. (4.48)

The quantum Langevin equations in the frequency space are

χ−1
c [ω] â [ω] =

√
κâin [ω] + iG−b̂ [ω] , (4.49)

χ−1
m [ω] b̂ [ω] =

√
Γm b̂in [ω] + iG−â [ω] . (4.50)

Mechanical noise spectrum: sideband cooling

To examine the effects of the dynamical backaction to the mechanical motion, we

calculate the spectral density of the mechanical motion. Substituting Eq. (4.49) into Eq.

(4.50), we can express the phonon annihilation operator in terms of the input fields

b̂ [ω] =
√
Γm χ̄m [ω] b̂in [ω] + iG−

√
κ χc [ω] χ̄m [ω] âin [ω] , (4.51)

where

χ̄m [ω] =
1

Γm/2 − iω + G2
− χc [ω]

(4.52)
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is the effective mechanical susceptibility. The dynamical backaction generated by the

driven cavity modifies the dynamics of the mechanical resonator. In weak coupling regime

(κ � G−), the effective mechanical susceptibility can be simplified to

χ̄m [ω] =
1(

Γm + Γopt
)
/2 − iω

. (4.53)

The dynamical backaction generated by the red-detuned tone damp the mechanical motion

with the optical damping rate Γopt = 4G2
−/κ.

Using the solution (4.51), we can calculate the mechanical spectrum

Sbb [ω] =
∫ ∞

−∞

dω′

2π
〈
b̂†

[
ω′

]
b̂ [ω]

〉
= 4

(
κ2 + 4ω2

)
Γmnthm + 4G2

−κnthc(
4G2
− + Γmκ

)2
+ 4

(
Γ2

m + κ2 − 8G2
−

)
ω2 + 16ω4

.

(4.54)

The first term is the contribution of the Langevin force from the phonon bath, the second

term is the random radiation backaction from the cavity photon. Themechanical occupation

is given by the integral of the mechanical spectrum

n̄m =

∫ ∞

−∞

dω
2π

Sbb [ω] =
Γm (Γtot + κ)
Γtot (κ + Γm)

nthm +
κΓopt

Γtot (κ + Γm)
nthc , (4.55)

where Γtot = Γm + Γopt is the total mechanical linewidth.

In weak coupling regime (κ � G−), the mechanical spectrum can be simplified to

Sbb [ω] =
Γtot

(Γtot/2)2 + ω2
n̄m, (4.56)

and the mechanical occupation can be expressed by the detailed balance equation

n̄m =
Γm

Γm + Γopt
nthm +

Γopt

Γm + Γopt
nthc . (4.57)

The driven cavity serves as a cold reservoir to the mechanical oscillator, the dynamical

backaction damps the mechanical motion and cools the mechanical oscillator [64, 108].

When the optical damping rate dominates (Γopt � Γm), the mechanical occupation asymp-

tote to the cavity occupation nthc , which is usually much smaller than the occupation of the



94

phonon bath nthm . The effect of the counter rotating term to the mechanical occupation can

be found in [27, 76], which gives

n̄m =
Γm

Γtot
nthm +

Γopt

Γtot


nthc *

,
1 + 2

(
κ

4ωm

)2
+
-
+

(
κ

4ωm

)2
. (4.58)

In our experiment, the cavity heats up as we increase the pump power, which produces

nonzero nthc . In our experiment, the sideband factor
(

κ
4ωm

)2
' 2 × 10−4 is very small

compared to nthc . Therefore, the corrections from the counter rotating terms are negligible.

Transmission spectrum: electromechanical induced transparency

The transmission spectrum of an electromechanical system under a red-detuned drive

is given by setting G+ = 0 and ∆ = δ = 0 in Eq. (4.32), which gives

S21 [ω] = −
√
κLκR

κ/2 − iω + G2

Γm/2−iω

. (4.59)

In weak coupling regime (G � κ), the effective mechanical linewidth Γtot is much smaller

than the cavity linewidth κ. If we focus on the region around the cavity resonance, the

transmission spectrum can be simplified to

S21 [ω] = −2
√
κRκL

κ

Γm/2 − iω
Γtot/2 − iω

= −2
√
κRκL

κ

(
1 −

Γopt/2
Γtot/2 − iω

)
. (4.60)

The destructive interference between the mechanical sideband and the probe field generates

a Lorentzian dip at ω = 0 in the cavity transmission spectrum. This effect is known as the

optomechanical induced transparency (OMIT) [81, 107].
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Output noise spectrum: noise squashing

The output noise spectrum is given by setting G+ = 0 and ∆ = δ = 0 in Eq. (4.39),

which yields

S̄I I [ω] = nthR +
1
2
+ 4κR

4G2
−Γm

(
nthm − nthR

)
+

(
Γ2

m + 4ω2
)
κ
(
nthc − nthR

)
(
4G2
− + Γmκ

)2
+ 4

(
Γ2

m + κ2 − 8G2
−

)
ω2 + 16ω4

. (4.61)

In weak coupling regime, it can be simplified to

S̄I I [ω] = S̄0 [ω] +
κR

κ
ΓoptS′bb [ω] . (4.62)

The output noise spectrum consists of the noise spectrum of the up-converted mechanical

sideband S′bb [ω] sits on top of the noise background S̄0 [ω], which is given by

S′bb [ω] =
Γtot

(Γtot/2)2 + ω2
(n̄m − neff) , (4.63)

S̄0 [ω] = nthR +
1
2
+

κRκ

(κ/2)2 + ω2

(
nthc − nthR

)
, (4.64)

where neff = 2nthc − nthR . Note that when there is nonzero cavity occupation, the area of the

up-converted mechanical sideband is not simply proportional to n̄m, but n̄m − neff. This

reduction of noise quanta in the mechanical sideband is known as the noise squashing effect

[76, 83, 106], which is due to the destructive interference between the cavity noise and the

transduction of the radiation pressure noise.

Inferred mechanical spectrum

The inferred mechanical spectrum is given by normalizing the output spectrum by the

gain κR
κ Γopt, which is

S̄xx,tot [ω]
x2
zp

=
S̄I I [ω]
κR
κ Γopt

=
κ S̄0 [ω]
κRΓopt

+
Γtot

(Γtot/2)2 + ω2
(n̄m − neff) . (4.65)
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For ideal cavity where nthc = nthR = neff = 0, the inferred mechanical spectrum becomes

S̄xx,tot [ω]
x2
zp

=
κ

2κRΓopt
+

Γtot

(Γtot/2)2 + ω2
n̄m. (4.66)

=
κ

2κRΓopt
+

(
Γm

Γtot

)
Γtot

(Γtot/2)2 + ω2
nthm . (4.67)

The Lorentzian part of the spectrum (second term in Eq. (4.66)) has the expected form for

phonon emission of a mechanical oscillator with average phonon number n̄m. Note that

there is no backaction in Eq. (4.67). At the first glance, it seems violating the quantum

limit on the detector noise. However, in this case, the dynamical backaction dampens the

mechanical motion and increases the mechanical linewidth. The total mechanical linewidth

Γtot = Γm+Γopt is larger than the intrinsic mechanical linewidth Γm. As discussed at the end

of section 2.2.2, this detector would have no power gain, and therefore there is no restriction

to the added noise of the detector.

4.2.2 Single blue-detuned tone

For an electromechanical system driven by a single blue-detuned drive, the Hamiltonian

is given by setting G− = 0 and ∆ = δ = 0 in Eq. (4.19), which yields

Ĥ = −~G+
(
b̂â + b̂†â†

)
. (4.68)

The quantum Langevin equations in the frequency space are

χ−1
c [ω] â [ω] =

√
κâin [ω] + iG+b̂† [ω] , (4.69)

χ−1
m [ω] b̂† [ω] =

√
Γm b̂†in [ω] − iG∗+â [ω] . (4.70)

Mechanical noise spectrum: amplification

Substituting Eq. (4.69) into Eq. (4.70), we obtain

b̂† [ω] =
√
Γm χ̄m [ω] b̂†in [ω] − iG+

√
κ χc [ω] χ̄m [ω] âin [ω] , (4.71)
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where

χ̄m [ω] =
1

Γm/2 − iω − G2
+ χc [ω]

(4.72)

is the effective mechanical susceptibility. In weak coupling regime (κ � G+), it can be

simplified to

χ̄m [ω] =
1(

Γm − Γopt
)
/2 − iω

. (4.73)

The dynamical backaction generated by the blue-detuned tone amplifies the mechanical

motion and narrow the mechanical linewidth with the optical anti-damping rate Γopt =

4G2
+/κ. When Γopt approaches the intrinsic damping rate Γm, the mechanical oscillator

starts to self-oscillate and becomes unstable. Therefore we only consider weak coupling

regime in this subsection.

Using the solution (4.71), the mechanical spectrum is given by

Sb†b† [ω] =
∫ ∞

−∞

dω′

2π
〈
b̂
[
ω′

]
b̂† [ω]

〉
=

Γtot

(Γtot/2)2 + ω2
(n̄m + 1) , (4.74)

where Γtot = Γm − Γopt. The effective mechanical occupation is

n̄m =
Γm

Γm − Γopt
nthm +

Γopt

Γm − Γopt

(
nthc + 1

)
. (4.75)

In blue-detuned case, the anti-damping induced by the dynamical backaction narrow the

mechanical linewidth, therefore amplifying the mechanical motion and increasing the me-

chanical occupation.

Transmission spectrum: electromechanical induced amplification

The transmission spectrum of an electromechanical system driven by a blue-detuned

tone is given by setting G− = 0 and ∆ = δ = 0 in Eq. (4.32), which gives

S21 [ω] = −
√
κLκR

κ/2 − iω − G2
+

Γm/2−iω

. (4.76)
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The transmission spectrum around the cavity resonance can be simplified to

S21 [ω] = −2
√
κRκL

κ

Γm/2 − iω
Γtot/2 − iω

= −2
√
κRκL

κ

(
1 +

Γopt/2
Γtot/2 − iω

)
. (4.77)

In this case, themechanical sideband and the probe field interfere constructively and generate

a Lorentzian peak at ω = 0 in the cavity transmission spectrum. This effect is known as the

optomechanical induced amplification (OMIA) [81].

Output noise spectrum: noise anti-squashing

The output noise specteum is given by setting G− = 0 and ∆ = δ = 0 in Eq. (4.39). In

weak coupling regime, it can be expressed as

S̄I I [ω] = S̄0 [ω] +
κR

κ
ΓoptS′b†b† [ω] (4.78)

with

S′b†b† [ω] =
Γtot

(Γtot/2)2 + ω2
(n̄m + 1 + neff) . (4.79)

The output noise spectrum consists of the noise spectrum of the up-converted mechanical

sideband S′
b†b†

[ω] sits on top of the noise background S̄0 [ω]. When there is nonzero cavity

occupation, the area of the mechanical sideband is not simply proportional to n̄m + 1, but

n̄m + 1 + neff. The extra noise quanta in the mechanical sideband is due to the constructive

interference between the cavity noise and the transduction of the radiation pressure noise,

which is known as the noise anti-squashing effect [83, 105].

Inferred mechanical spectrum

The inferred mechanical spectrum is given by normalizing the output spectrum by the

gain κR
κ Γopt, which is

S̄xx,tot [ω]
x2
zp

=
S̄I I [ω]
κR
κ Γopt

=
κ S̄0 [ω]
κRΓopt

+
Γtot

(Γtot/2)2 + ω2
(n̄m + 1 + neff) . (4.80)
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For ideal cavity where nthc = nthR = neff = 0, the inferred mechanical spectrum becomes

S̄xx,tot [ω]
x2
zp

=
κ

2κRΓopt
+

Γtot

(Γtot/2)2 + ω2
(n̄m + 1) . (4.81)

=
κ

2κRΓopt
+

(
Γm

Γtot

)
Γtot

(Γtot/2)2 + ω2

(
nthm + nBA + 1

)
, (4.82)

where nBA = Γopt/Γm is the backaction in terms of quanta. The Lorentzian part of the

spectrum (second term in Eq. (4.81)) has the expected form for phonon absorption of a

mechanical oscillator with average phonon number n̄m.

4.2.3 Motional sideband asymmetry

As shown in Eqs. (4.66) and (4.81), the inferred mechanical spectra is asymmetric with

respect to the detuning. In red-detuned case (ωc−ωp = ωm), the area of the Lorentzian part

of the spectrum is equal to the mechanical occupation, i.e., I− = n̄m. While in blue-detuned

case (ωc − ωp = −ωm) I+ = n̄m + 1 . This asymmetry reflects the ability of an quantum

harmonic oscillator to emit and absorb energy; for a harmonic oscillator at ground state

(n̄m = 0), it has no ability to emit energy (I− = 0), but it can absorb energy (I+ = 1).

In this section, we will give an alternative explanation to the sideband asymmetry by

using the linear response analysis discussed in section 2.2.2 [106]. To start the discussion,

let’s identify the coupling A and the input operator of the detector F̂ in the interaction

Hamiltonian (2.37). For an electromechanical system driven by a single tone at ωp, in a

frame rotating at ωp, the linearized interaction Hamiltonian is

ĤInt = −
~G
xzp

x̂
(
â + â†

)
, (4.83)

where G = g0ᾱ is the enhanced electromechanical coupling with ᾱ = −
√
κ

κ/2+i∆p
αp, ∆p =

ωc − ωp is the detuning of the drive. Here we choose αp such that ᾱ is real without loss of

generality. Then, one can easily identify A = ~Gxzp
and F̂ = â + â†. The uncoupled cavity
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satisfies the quantum Langevin equation

˙̂a +
(
κ

2
+ i∆p

)
â = −

√
κâin. (4.84)

Here we consider a two port cavity, the output of the detector is the transmitted voltage at

the output port, which is

Î = −i
(
âR,out − â†R,out

)
. (4.85)

The linear-response susceptibility of the detector is given by Eq. (2.39), which gives

χIF [ω] = −
1
~

√
κR

(
χc [ω] + χ∗c [ω]

)
, (4.86)

where

χc [ω] =
1

κ/2 − i
(
ω − ∆p

) (4.87)

is the susceptibility of the cavity fields. The damping induced by the detector is given by

Eq. (2.54), which gives

Γdet [ω] =
κ

~2 x2
zp

(
| χc [ω]|2 − | χc [−ω]|2

)
. (4.88)

The noise correlators of the detector backaction F̂ and imprecision Î are given by Eqs.

(2.42), (2.43), and (2.44). For a two port electromechanical system driven by a single tone,

they are

S̄FF [ω] =κ
(
| χc [ω]|2 + | χc [−ω]|2

) (
nthc +

1
2

)
, (4.89)

S̄I I [ω] =
(
nthR +

1
2

)
+ κRκ

(
| χc [ω]|2 + | χc [−ω]|2

) (
nthc − nthR

)
, (4.90)

S̄IF [ω] =i
√
κR

(
χ∗c [ω] − χc [−ω]

) (
nthR +

1
2

)
− iκ
√
κR

(
| χc [ω]|2 − | χc [−ω]|2

) (
nthc +

1
2

)
. (4.91)

The inferred mechancial spectrum is given by Eq. (2.67) with the effective mechanical
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spectrum

S̄xx,eff [ω] = | χxx [ω]|2
(
S̄F0F0 [ω] + A2 S̄FF [ω]

)
− 2Re

{
χ∗xx [ω] S̄zF [ω] ,

}
(4.92)

where χxx [ω] is the mechanical susceptibility which is given by Eq. (2.59), and S̄zF [ω] =

S̄IF [ω] /χIF [ω]. For ∆p = ±ωm, the inferred mechancial spectrum (2.67) reduced to Eqs.

(4.66) and (4.81). Here we focus on the origin of the sideband asymmetry; note that the

only contribution that is asymmetric at ∆p is the cross correlator S̄zF [ω], which is given by

S̄zF
[
∆p

]
≡

S̄IF [ω]
χIF [ω]

= ±i~
(
2nthc − nthR +

1
2

)
, (4.93)

where the plus sign (minus sign) corresponds to the drive detuning ∆p = +ωm (∆p = −ωm).

The cross correlator is purely imaginary and changes sign for ∆p = ±ωm, which gives rise

to the noise squashing and anti-squashing effects. It is clear that the asymmetry between

the spectra at ∆p = ±ωm is entirely due to the detector backaction-imprecision correlation

described by S̄zF , which is simply the squashing and anti-squashing of the cavity quantum

fluctuation.

In addition, as discussed in section 2.2.2, when the cross correlator S̄zF is purely

imaginary, the rhs of the noise constraint (2.46) can be reduced below ~2/4. It achieves the

minimum value of 0 in the special case when nthc = 0 and S̄zF = ±i~/2, i.e.,

S̄I I [ω] S̄FF [ω] = ���S̄IF [ω]���
2
. (4.94)

The detector backaction and the imprecision are perfectly correlated. In this case, the

detector does not need to generate any added noise. However, as discussed in [24, 19], the

detector does not provide any power gain. Therefore, it doesn’t violate any quantum limit

on position detection.
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4.3 Two-tone electromechanics

After discussed the effects of a single drive tone in an electromechanical system. In

this section, we will study the behavior of an electromechanical system under two drive

tones. We consider three special pump configurations: the balanced detuned two-tone

configuration to examine the measurement backaction, the balanced two-tone configuration

to perform the backaction evading measurement of a single mechanical quadrature, and the

two-tone reservoir engineering scheme to squeeze the mechanical motion.

4.3.1 Balanced detuned two-tone: Measurement backaction

As discussed in section 2.2.2, in order to have large power gain, the intrinsic mechan-

ical linewidth has to be much larger than the damping induced by the detector. For an

electromechanical system in the sideband resolved regime, it can be realized by driving the

electromechancial system at ω± = ωc ± (ωm + δ) with equal amplitude. In this section,

we consider κ � δ � Γm. At this drive configuration, the Hamiltonian is given by setting

∆ = 0 and G− = G+ = G in Eqs. (4.19), which yields

Ĥ = −~δb̂†b̂ − ~G
(
b̂† + b̂

) (
d̂† + d̂

)
. (4.95)

The quantum Langevin equations in frequency space are given by

χ−1
c [ω] â [ω] =

√
κâin [ω] + iG

(
b̂ [ω] + b̂† [ω]

)
, (4.96)

χ−1
m [ω + δ] b̂ [ω] =

√
Γm b̂in [ω] + iG

(
â [ω] + â† [ω]

)
, (4.97)

and their conjugate equations.

Mechanical noise spectrum

We first examine the noise spectrum of the mechanical motion. Substituting Eq. (4.96)

and its conjugate equation into Eq. (4.97), the solution of the mechanical annihilation
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operator can be written as

b̂ [ω] = χm [ω + δ]
(√
Γm b̂in [ω] + iG

√
κ χc [ω] âin [ω] + iG

√
κ χc [ω] â†in [ω]

)
. (4.98)

Since we are driving the system with both the red and the blue detuned tones with equal

power, the dynamical backaction induced by the two drive tones cancel each other. The only

effect of the radiation backaction is the random radiation pressure that drives the mechanics

into random motion and increases the mechanical occupation. The noise spectrum of the

mechanical motion is

Sxx [ω] =
∫ ∞

−∞

dω′

2π
〈
x̂
[
ω′

]
x̂ [ω]

〉
= x2

zp
(
Sbb [ω] + Sb†b† [ω]

)
=x2

zp
Γm

(Γm/2)2 + (ω + δ)2 n̄m + x2
zp

Γm

(Γm/2)2 + (ω − δ)2
(
n̄m + β

)
(4.99)

with the effective mechanical occupation

n̄m = nthm + nBAm , (4.100)

where nBAm =
Γopt
Γm

(
2nthc + α

)
is the measurement backaction interms of quanta. Here we

separately designate the vacuum fluctuation of the cavity photon and the phonon by α and

β, which are both equal to one. Note that even the cavity is in ground state
(
nthc = 0

)
, and

the measurement backaction is not equal to zero. The radiation pressure generated by the

quantum fluctuation of the cavity field produces minimum measurement backaction to the

mechanics, which is the quantum radiation backaction.

Transmission spectrum

The transmission spectrum of an electromechanical system is given by setting G− =

G+ = G and ∆ = 0 in Eq. (4.32). For κ � Γopt and κ � δ � Γm, the transmission

spectrum near the cavity resonance is

S21 = −2
√
κRκL

κ

[
1 −

Γopt/2
Γtot/2 − i (ω + δ)

+
Γopt/2

Γtot/2 − i (ω − δ)

]
. (4.101)



104

The second term comes from the destructive interference between the probe field and the up-

converted motional sideband of the red-detuned drive, which reduce the cavity transmission

at ω = −δ. The third term comes from the constructive interference of the probe field

and down-converted motional sideband of the blue-detuned drive, which amplify the cavity

transmission at ω = δ.

Output noise spectrum

The noise spectrum of the output field is given by setting ∆ = 0 and G− = G+ = G in

Eq. (4.39). In weak coupling regime, it can be simplified to

S̄I I [ω] = S̄0 [ω] +
κR

κ
Γopt

(
S′bb [ω + δ] + S′b†b† [ω − δ]

)
. (4.102)

The output noise spectrum consists of the noise background S̄0 [ω], the noise spectrum of the

up-converted mechanical sideband S′bb [ω], and the noise spectrum of the down-converted

mechanical sideband S′
b†b†

[ω], which are given by

S̄0 [ω] = nthR +
α

2
+

κRκ

(κ/2)2 + ω2

(
nthc − nthR

)
, (4.103)

S′bb [ω] =
Γm

(Γm/2)2 + ω2

[(
n̄m +

β

2

)
−

(
neff +

α

2

)]
, (4.104)

S′b†b† [ω] =
Γm

(Γm/2)2 + ω2

[(
n̄m +

β

2

)
+

(
neff +

α

2

)]
, (4.105)

where Γopt = 4G2

κ , neff = 2nthc − nthR , α and β are the quantum fluctuations of the photon and

phonon. Similar to the single tone case, when there is non zero cavity occupation (neff , 0),

the interference between the cavity noise and the transduction of the radiation pressure noise

would generate noise squashing and anti-squashing effects in the up and down-converted

mechanical sidebands.
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Inferred mechanical spectrum

The inferred mechanical spectrum is given by normalizing the output spectrum by the

gain κR
κ Γopt, which is

S̄xx,tot [ω] =
S̄I I [ω]
κR
κ Γopt

=
κ S̄0 [ω]
κRΓopt

+
(
S′bb [ω + δ] + S′b†b† [ω − δ]

)
. (4.106)

For ideal cavity where nthc = nthR = neff = 0, the inferred mechanical spectrum becomes

S̄xx,tot [ω] =
κ

2κRΓopt
+

Γm

(Γm/2)2 + (ω + δ)2

(
nthm + nBAm +

β − α

2

)
+

Γm

(Γm/2)2 + (ω − δ)2

(
nthm + nBAm +

β + α

2

)
. (4.107)

Taking α = β = 1, the noise spectrum of the mechanical sidebands in (4.107) reduce to

(4.99). However, the physical origin of the asymmetry between the mechanical sidebands

are completely different. In (4.99), the asymmetry of the mechanical noise spectrum

comes from the quantum fluctuation of the mechanical motion. However, in the inferred

mechanical spectrum (4.107), the asymmetry orginate from the quantum fluctuation of the

cavity photon. As discussed in the previous section for the single drive case, the sideband

asymmetry is entirely due to the detector backaction-imprecision correlation, which is

simply the noise squashing and anti-squashing effects of the cavity quantum fluctuation.

4.3.2 Balanced two-tone: Backaction evading measurement (BAE)

As discussed in section 2.2 and shown in the previous subsections, Heisenberg uncer-

tainty principle place a fundamental limit to continuous position measurement, one way

to surpass this limit is to perform quantum nondemolition (QND) measurement of special

observable as introduced in section 2.3. In this subsection, we will describe how to imple-

ment QNDmeasurement of a single mechanical quadrature with a cavity electromechanical

system [23, 44, 45]. To this end, we drive the system with two drive tones with frequency

equal to ωc + ∆ ±ωm and phase equal to ∓φ. Then, the Hamiltonian of the system is given
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by setting G± = Ge∓iφ and δ = 0 in Eq. (4.19), which yields

Ĥ = −~∆â†â − ~GX̂φ

(
â† + â

)
, (4.108)

where X̂φ = cos φX̂1 − sin φX̂2 is the mechanical quadrature at phase φ. In the following,

we set φ = 0 without loss of generality. Eq. (4.108) provides the QND interaction for the

measurement of the mechanical quadrature X1. The quantum Langevin equations of the

quadratures in the frequency space is given by setting G− = G+ = G and δ = 0 in Eqs.

(4.43), which yields

χ−1
c [ω] Û1 [ω] =

√
κÛ1,in [ω] − ∆Û2 [ω] ,

χ−1
m [ω] X̂2 [ω] =

√
Γm X̂2,in [ω] + 2GÛ1 [ω] .

χ−1
c [ω] Û2 [ω] =

√
κÛ2,in [ω] + ∆Û1 [ω] + 2GX̂1 [ω] ,

χ−1
m [ω] X̂1 [ω] =

√
Γm X̂1,in [ω] .

(4.109)

Note that the mechanical quadrature X̂1 is decoupled from the others. The cavity field is

only sensitive to the X1 quadrature and all the measurement backaction is applied to the

unmeasured X2 quadrature. Therefore, the mechanical quadrature X̂1 is a QND observable.

Mechanical quadrature noise spectrum

By solving the coupled quantum Langevin equations (4.109), we can calculate the noise

spectra of the mechanical quadratures, which are given by

S̄X1 [ω] =
1
2

∫
dω′

2π
〈{

X̂1
[
ω′

]
, X̂1 [ω]

}〉
=

Γm

(Γm/2)2 + ω2

(
2nthm + 1

)
, (4.110)

S̄X2 [ω] =
1
2

∫
dω′

2π
〈{

X̂2
[
ω′

]
, X̂2 [ω]

}〉
=

Γm

(Γm/2)2 + ω2

[
2
(
nthm + nba

)
+ 1

]
, (4.111)

the mechanical quadrature X̂1is unaffected by the measurement, all the measurement back-

action (both classical and quantum) is applied to the unmeasured quadrature X̂2 with the
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backaction quanta

nba =
Γopt

Γm



(
nthc +

1
2

)
+

(
4∆
κ

)2
ΓoptΓm

(Γm/2)2 + ω2

(
nthm +

1
2

)
, (4.112)

where Γopt = 1
1+(2∆/κ)2

4G2

κ .

Transmission spectrum

The transmission spectrum of an electromechanical system is given by setting G− =

G+ = G and δ = 0 in Eq. (4.32), which yields

S21 = −

√
κRκL

κ/2 − i (ω + ∆)
. (4.113)

The interferences between the probe field and motional sidebands of the two drives cancel

each other, which doesn’t modify the cavity transmission spectrum.

Output noise spectrum

The output noise spectrum is given by setting G− = G+ = G and δ = 0 in Eq. (4.39),

which yields

S̄I I [ω] = S̄0 [ω] +
κR

κ
Γopt S̄X1 [ω] . (4.114)

The output noise spectrum consists of the transduced mechanical quadrature noise spectrum

and the noise background

S̄0 [ω] = nthR +
1
2
+

κRκ

(κ/2)2 + (ω + ∆)2

(
nthc − nthR

)
. (4.115)

Inferred mechanical quadrature spectrum

The inferred mechanical quadrature spectrum is given by normalizing the output noise

spectrum by the gain κR
κ Γopt, which is

S̄xx,tot [ω] =
S̄I I [ω]
κR
κ Γopt

=
κ S̄0 [ω]
κRΓopt

+ S̄X1 [ω] . (4.116)
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Since there is no backaction apply to the X1 quadrature, one can achieve imprecision below

the quantum limit of the position measurement by increasing the gain Γopt of the detector.

Analysis including the bad cavity effect for ∆ = 0 is given in [23], and it contributes an

additional backaction

nbad =
nba
32

(
κ

ωm

)2
(4.117)

in both mechanical quadratures.

4.3.3 Two-tone reservoir engineering: Mechanical squeezing

In the previous section, we have explored the dynamical effects of the radiation pressure

in an electromechanical system driven by a single tone: by controlling the detuning of the

drive tone, one can manipulate the dynamical radiation pressure to damp or amplify the

mechanical motion. We have also shown that by driving the electromechanical system with

equal amplitude at ωc ±ωm, one can cancel the backaction from the two tones and perform

a BAE measurement of a single mechanical quadrature. Here we will explore the effects

of the dynamical backaction of a cavity electromechanical system under two drive tones by

perturbing the BAE measurement setup. We consider driving the cavity with two tones at

ω± = ωc ± ωm with different amplitude [54]. The Hamiltonian of the system is given by

setting ∆ = δ = 0 in Eq. (4.19), which yields

Ĥ = −~
[(

G−b̂ + G+b̂†
)

a† +
(
G∗−b̂† + G∗+b̂

)
â

]
. (4.118)

If we define the Bolgoliubov mode of the mechanical oscillator

β̂ = cosh (r) b̂ + sinh (r) b̂†, (4.119)

where r = tanh−1 (G+/G−) is the squeezed parameter. The Hamiltonian can be expressed

as

Ĥ = −~G
(
â† β̂ + â β̂†

)
, (4.120)
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where the coupling G =
√

G2
− − G2

+. Here we consider G− > G+ to ensure stability. The

Hamiltonian is in beam-splitter form as in the sideband cooling case. However, instead of

cooling the mechanical mode b̂, it cools the Bogoliubov-mode β̂. Because the vacuum of

β̂ is the squeezed state Ŝ (r) |0〉 (where Ŝ (r) = exp
[
r
(
b̂b̂ + b̂†b̂†

)]
). This cooling directly

leads to stationary squeezed state with squeezed quadrature variance

〈X̂2
1 〉 = e−2r

(
1 + 2〈 β̂† β̂〉 + 〈 β̂ β̂〉 + 〈 β̂† β̂†〉

)
. (4.121)

The cavity acts as an engineered reservoir that cools themechanical oscillator into a squeezed

state.

Bolgoliubov mode spectrum

We first examine the Bolgoliubov mode of the mechanical motion. The quantum

Langevin equations of the cavity field and the Bolgoliubov mode in the frequency space are

χ−1
c [ω] â [ω] =

√
κâin [ω] + iGb̂ [ω] , (4.122)

χ−1
m [ω] β̂ [ω] =

√
Γm β̂in [ω] + iGâ [ω] . (4.123)

Substituting Eq. (4.122) into Eq. (4.123), we can express the Bolgoliubov mode in terms

of the input field, which yields

β̂ [ω] =
√
Γm χ̄m [ω] β̂in [ω] + iG

√
κ χc [ω] χ̄m [ω] âin [ω] . (4.124)

The Bolgoliubov mode spectrum is given by

S̄β β [ω] =
∫ ∞

−∞

dω′

2π
〈
β̂†

[
ω′

]
β̂ [ω]

〉
= 4

(
κ2 + 4ω2

)
Γmnthβ + 4G2κnthc(

4G2 + Γmκ
)2
+ 4

(
Γ2

m + κ2 − 8G2
)
ω2 + 16ω4

,

(4.125)

where nthβ =
(

G−
G

)2
nthm +

(
G+
G

)2 (
nthm + 1

)
is the Bolgoliubov mode occupation of the phonon

bath. The Bolgoliubov mode occupation is given by the integral of the spectrum, which
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gives

n̄β =
∫ ∞

−∞

dω
2π

Sβ β [ω] =
Γm (Γtot + κ)
Γtot (κ + Γm)

nthβ +
κΓopt

Γtot (κ + Γm)
nthc , (4.126)

where Γtot = Γm + Γopt and Γopt = 4G2/κ.

In weak coupling regime (κ � G), the Bolgoliubov mode spectrum can be simplified

to

Sβ β [ω] =
Γtot

(Γtot/2)2 + ω2
n̄β . (4.127)

Similar to sideband cooling with a single red-detuned drive, the Bolgoliubov mode occu-

pation can be expressed by the detailed balance equation

n̄β =
Γm

Γm + Γopt
nthβ +

Γopt

Γm + Γopt
nthc . (4.128)

In this case, the driven cavity serves as a cold reservoir to the Bolgoliubov mode. The

dynamical backaction induced by the two tones dissipatively drives the mechanics into a

stationary squeezed state.

Mechanical quadrature spectrum

Wecan also examine themechanical squeezing by calculating themechanical quadrature

spectra. The quantum Langevin equations in the frequency space are given by setting

∆ = δ = 0 in Eqs. 4.43, which yields

χ−1
c [ω] Û1 [ω] =

√
κÛ1,in [ω] − ḠX̂2 [ω] , (4.129)

χ−1
m [ω] X̂2 [ω] =

√
Γm X̂2,in [ω] + G̃Û1 [ω] , (4.130)

χ−1
c [ω] Û2 [ω] =

√
κÛ2,in [ω] + G̃X̂1 [ω] , (4.131)

χ−1
m [ω] X̂1 [ω] =

√
Γm X̂1,in [ω] − ḠÛ2 [ω] . (4.132)

There are two decoupled set of equations. Compare to the quantum Langevin equations in

the BAE measurement (Eqs. (4.109)), the X̂1 quadrature is not intact due to the imbalanced

drive (Ḡ = G− −G+ > 0). The cavity quadratures Û1,2 measure and perturb the mechanical

quadratures X̂2,1, which can be viewed as a coherent feedback process. We will show that
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Figure 4.2: The squeezed quadrature occupation (4.135) with different drive ratio
G+/G−. Different curves represent different total pump photon number (ntotp = n−p + n+p ).
ntotp = 102 (blue), 103 (red), 104 (yellow), 105 (purple), 106 (green). The shade blue region
indicates quantum squeezing (i.e. 〈X̂1〉/〈X̂1〉zp < 1). For both plots, Γm = 2π × 10Hz,
κ = 2π × 330kHz, and g0 = 2π × 130Hz. (a) Ideal cavity and mechanical oc-
cupations (nthc = 0, nthm = 40). (b) Includes cavity heating and mechanical heating
(nthc = 0.8, nthm = 100).

the dynamical backaction from this coherent feedback leads to the stationary mechanical

squeezing.

Solving the quantum Langevin equations, we obtain the solutions of the mechanical

quadratures

X̂1,2 [ω] =
√
Γm χ̄m [ω] X̂1,2,in [ω] −

√
κ (G− ∓ G+) χc [ω] χ̄m [ω] Û2,1,in [ω] . (4.133)

The mechanical quadrature spectra are given by

S̄X1,2 [ω] =
1
2

∫
dω′

2π
〈{

X̂1,2
[
ω′

]
, X̂1,2 [ω]

}〉
=4

(
κ2 + 4ω2

)
Γm

(
2nthm + 1

)
+ 4 (G− ∓ G+)2 κ

(
2nthc + 1

)
(
4G2 + Γmκ

)2
+ 4

(
Γ2

m + κ2 − 8G2
)
ω2 + 16ω4

. (4.134)
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Integrating the quadrature spectra, we obtain the mechanical quadrature variances

〈
X̂2

1,2

〉
=

4G2 + κ (κ + Γm)
(κ + Γm)

(
4G2 + κΓm

) Γm
(
2nthm + 1

)
+

4 (G− ∓ G+)2

(κ + Γm)
(
4G2 + κΓm

) κ (
2nthc + 1

)
.

(4.135)

In weak coupling regime (κ � G, Γm), the mechanical quadrature spectra and the mechan-

ical quadrature variances can be simplified to

S̄X1,2 [ω] =
Γtot

(Γtot/2)2 + ω2
〈X̂2

1,2〉, (4.136)

〈X̂2
1,2〉 =

Γm

Γtot

(
2nthm + 1

)
+
Γ∓opt

Γtot

(
2nthc + 1

)
, (4.137)

where Γ∓opt = 4 (G− ∓ G+)2 /κ.

To illustrate the squeezing mechanism, let’s define Γopt,± = 4G2
±/κ, then the mechanical

quadrature variances can be expressed as

〈X̂2
1,2〉 = (2n̄m + 1) ∓ 2

√
Γopt,−Γopt,+

Γtot

(
2nthc + 1

)
. (4.138)

The first term in Eq. (4.138) represents the damping of both mechanical quadratures due to

the excess power of the red-detuned drive, the average mechanical occupation is given by

n̄m =
Γm

Γtot
nthm +

Γopt,−

Γtot
nthc +

Γopt,+

Γtot

(
nthc + 1

)
, (4.139)

The second term in Eq. (4.138) comes from the interference of the coherent feedback forces

generated by two drives (the second term in the right hand side of Eqs. (4.130) and (4.132)),

which produce negative correlation in the X1 quadrature and positive correlation in the X2

quadrature. Different from the standard parametric squeezing scheme [79] which damps

the fluctuation in one of the quadrature and amplifiers the other one. The two-tone reservoir

engineering scheme damp both of the quadratures, and squeeze the mechanical motion by

producing negative correlation in the squeezed quadrature.

To quantify the amount of squeezing, we parametrize the enhanced electromechnical

coupling rate G± = G
2

(
1 ∓ f

)
, where f ∈ [0, 1). The quadrature occupations can be
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written as

〈X̂2
1 〉 =

1
1 + f C

(
2nthm + 1

)
+

f C
1 + f C

f
(
2nthc + 1

)
, (4.140)

〈X̂2
2 〉 =

1
1 + f C

(
2nthm + 1

)
+

C

1 + f C

(
2nthc + 1

)
, (4.141)

where C = 4G2/κΓm is the cooperativity. Consider f C � 1, then

〈X̂2
1 〉 →

1
f C

(
2nthm + 1

)
+ f

(
2nthc + 1

)
, (4.142)

〈X̂2
2 〉 →

1
f C

(
2nthm + 1

)
+

1
f

(
2nthc + 1

)
. (4.143)

As shown in (4.142), one can make the contribution 2nthc + 1 negligible by choosing a small

enough f . For any f , one can always increase the cooperativity C to damp the contribution

2nthm + 1. Therefore, in principle, this scheme can generate arbitrary large mechanical

squeezing. However, in reality, technical problems such as baths heating and mechanical

parametric instability [44] induced by thermal effects [93] or nonlinearities [94] limit the

accessibility of the parameters f and C. Nevertheless, as shown in Fig. 4.2, this scheme

can squeeze the mechanical quadrature below the zero-point level with reasonable device

parameters.

Driven response

The driven response is given by setting δ = ∆ = 0 in Eq. (4.32)

S21 [ω] = −
√
κRκL

κ/2 − iω + G2

Γm/2−iω

, (4.144)

which is in the same form as Eq. 4.59. Similar to sideband cooling, in weak coupling

regime, the interference between the mechanical sidebands and the probe field generates a

Lorentzian dip with linewidth equal to the mechanical damping rate at ω = 0.
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Output spectrum

The output spectrum is given by setting δ = ∆ = 0 in Eq. (4.39), which gives

S̄I I [ω] = nthR +
1
2
+ 4κR

κ
(
Γ2

m + 4ω2
) (

nthc − nthR
)
+ 4ΓmG

2
(
nthβ − nthR

)
(
4G2 + Γmκ

)2
+ 4

(
Γ2

m + κ2 − 8G2
)
ω2 + 16ω4

. (4.145)

In weak coupling regime, it can be simplified to

S̄I I [ω] = S̄0 [ω] +
κR

κ
ΓoptS′β β [ω] , (4.146)

with

S′β β [ω] =
Γtot

Γ2
tot/4 + ω2

(
n̄β − neff

)
, (4.147)

which is in the same form as the cooling spectrum (4.62). However, the mechanical

sideband now represents the Bolgoliubov mode. Similar to the cooling case, the nonzero

cavity fluctuation generates noise squashing effect which reduces the area of the mechanical

sidebands spectrum by neff.
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Chapter 5

Device fabrication and Measurement

This chapter discusses the devices and the measurement setup of the experiment. Start-

ing with the discussion of the design and the fabrication processes of the cavity electrome-

chanical system. A brief review of the devices developed by the Schwab group will be

presented, the problems and difficulties of different devices will be discussed. The detailed

fabrication procedures of the devices will be given. Then, the measurement techniques and

cryogenic setup in the experiments will be discussed.

5.1 Device design

The Schwab group has been developed superconducting electromechanical system for

years. The first generation of superconducting electromechanical device was developed

when the Schwab group was back to Maryland and Cornell [45]. In this device, the

mechanical element is a doubly-clamped silicon-nitride (SiN) beam. The beam is covered

by aluminum thin film to serve as a electrode, capacitively couple to a superconducting

half-wave resonator. Fig. 5.1 is a SEM micrograph of the device. With this type of

devices, they have shown the seminal works of sideband cooling [76] and back-action

evasion measurements [44] close to the quantum regime.

Two technical issues that prevent these devices reaching the quantum regime. The first

issue is that the electromechanical coupling for this type of device is relatively weak. The
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Figure 5.1: Superconducting electromechanical device developed by the Schwab group at
Maryland. The mechanical element is the metalized SiN nanobeam (red).

electromechanical coupling rate of this type of system is given by

g0 = −
∂ωc

∂x
xzp =

ωc

2
1
C
∂Cg

∂x
xzp ∼

1
2
η
ωc

d
xzp, (5.1)

where Cg is the portion of the capacitance that is modulated by the motion of the beam,

η = Cg/C is the participation factor. In the last step, we make the assumption that

∂Cg/∂x ∼ Cg/d. For the nanobeamdevice, the participation factor is very small (η ∼ 1e−4),

which ends up with a small electromechanical coupling rate g0 ∼ 2π × 1 Hz. In order to

achieve large cooperativity factorC =
4g2

0
κΓm

np, one needs to drive the device with very strong

drive tones, which heat up the thermal bath of the mechanical oscillator and the microwave

cavity and limit the minimum mechanical occupation in the sideband cooling [76].

Another issue of the nanobeam devices is the power dependent frequency shift of the

mechanical oscillator induced by the 2nd order coupling. If we consider the dependence of

the cavity resonance frequency in x into second order, the 2nd order term generates a power

dependent spring shift ∆ωm =
ωm

2
kEM

k , where k is the bare mechanical spring constant and

the induced electromagnetic spring constant is

kEM =
~ωc

2
|α (t) |2

∂2C
∂x2 . (5.2)

In the BAE measurement where the cavity power is beating at twice the mechanical reso-

nance frequency, this power dependent frequency shift would generate mechanical paramet-
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ric amplification. When the mechanical frequencymodulation∆ωm equal to the mechanical

linewidth γm, the mechanical oscillator start to self-oscillate and become unstable. Consider

the ratio
∆ωm

γm
=

Qm

2
kEM

k
∼

(
Γopt

ωm

) (
Qm

Qc

) (
1
η

)
. (5.3)

Since η is very small for nanobeam device, which limit the miximum
(
Γopt

)
max
∼ 10 kHz.

Both of the problems are due to the small participation ratio η. To increase the partici-

pation ratio, one need to increase the modulated capacitance Cg, which can be realized by

replacing the electrode from 1D nanobeam structure by 2D planar structure [17]. The work

in the Schwab group at Caltech focused on the development of lumped element microwave

resonator with vacuum gap planar capacitor and lumped element spiral inductor, the top

gate of the capacitor is a suspended metal membrane, which is the mechanical element of

the electromechanical system. Compare to the nanobeam design, the membrane design

has much higher stiffness and modulated capacitance. For example, for a 5 GHz lumped

element resonator with 40 × 40 µm2 paralleled plate capacitor with 100 nm vacuum gap.

The modulated capacitance Cg ' 30 fF, which accounts for 80% of the total capacitance,

i.e. η ' 0.8. This design mitigates both of the difficulties in the nanobeam devices for

cooling and BAE measurement. In the following, we will discussed the development and

fabrication of this type of devices.

5.2 Device fabrication

This section discuss focuses on the fabrication process of the planar electromechanical

device developed in the Schwab group. The difficulties through the development of the

devices are discussed. The detailed fabrication procedure of the devices in this work are

given.

The planar electromechanical devices consist of a spiral inductor shunted by a vacuum

gap paralleled plate capacitor. Fig. 5.3 and Fig. 5.4 are some of the devices developed

by the Schwab group. In order to fabricate the suspended structure such as the top gate of

the capacitor and the bridges, a three layer process is used. Fig. 5.2 outlines the general
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Figure 5.2: Outline of device fabrication processes. Blue, gray, brown, and green colors
represent the substrate, metal, resist, and the sacrificial layer respectively.
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fabrication procedures. We start with cleaning the the substrate with a modified RCA clean

and BOE oxide stripe (Fig. 5.2a). Then, a metal layer is deposited on the substrate (Fig.

5.2b). The bottom layer is patterned with standard optical lithography (Fig. 5.2c) and the

metal is removed by either wet etching or dry etching (Fig. 5.2d). After cleaning off the

photoresist (Fig. 5.2e), a layer of sacrificial material is deposited on top of the bottom layer

(Fig. 5.2f). Then, the sacrificial layer is being patterned (Fig. 5.2g) and a layer metal

is deposited on top of it (Fig. 5.2h). The top layer is patterned (Fig. 5.2i) and etched

(Fig. 5.2j). The sacrificial layer is then removed with solvent or plasma depending on the

material of the sacrificial layer (Fig. 5.2k). Finally, the device is dry with the critical point

dryer if the sacrificial layer is removed by solvent, then cleaned with O2 plasma.

5.2.1 Previous works in the Schwab group

Our group has developed several electromechanical devices with different materials.

The development of the device is a long journey, and the results are the efforts of several

postdocs and graduate students. A brief review of the device development is given here.

Detailed discussion can be found in [105].

The first generation of device in the Schwab group at Caltech is made of sputtered

NbTiN on high resist silicon substrate (Fig. 5.3a) which is aiming for highmicrowave Q and

reduce the nonlinearities associatedwith two-level system defects [3]. The sacrificial layer is

sputtered SiO2, which is removed in a buffered-oxide etch (BOE) release soak. However, this

device showed lowmicrowave Q and significant Ohmic heating at the pump powers required

for sufficient electromechanical coupling. Moreover, the mechanical mode has a small

enough specific heat and fast enough thermal time constant for the phonon bath to follow

the modulation of cavity power, which generates thermal-induced mechanical parametric

instability at the required power in the BAE measurement and limits the measurement

imprecision to 2.5xzp [93].

In order to reduce the Ohmic heating and the mechanical bath heating, the next device

utilize thermal-evaporated aluminum and SiN membrane as the mechanical element due to

the group’s past experience (Fig. 5.3b). The sacrificial layer of this device is made out of
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(a)

(b)

Figure 5.3: Superconducting devices developed by the Schwab group at Caltech. (a) NbTiN
device. (b) Al device on SiN.

e-baem evaporated germanium, which can be removed by dry XeF2 etch [25]. Although no

Ohmic heating and the mechanical bath heating in this device, it showed significant TLS

nonlinearities. The TLS nonlinearities induce mechanical parametric instability and limit

the precision of the BAEmeasurement to 1.4xzp. This TLS defects may be due to the choice

of sacrificial layer (germanium alloys with aluminum) and the sacrificial etch (XeF2 slowly

attacks nitride).

5.2.2 Polymer sacrificial layer with sputtered aluminum

With the experiences from the previous works that the choice of the sacrificial and the

etching process of it seems to be critical to the quality of the device, we next focus on

developing a sacrificial layer that interacts weakly with the metal and the substrate, and

requires gentle etching to be removed. Polymer such as e-beam resist or photoresist satisfies

both of the requirement. For the next device, we use PMGI as a sacrificial layer which can

be removed with Remover-PG. E-beam evaporated aluminum is used for better deposition

control. The device showed improved TLS behavior. However, the stress in the top gate
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(a) (b)

Figure 5.4: (a) Optical micrographs of the device. (b) SEM micrograph of the suspended
aluminum membrane.

was difficult to controlled, which make it difficult to make a small gap.

To control the stress of themetal thin film of the top gate, replacing the e-beamdeposition

with sputter deposition will require minimal recipe modification. However, the sputtered

aluminum film has three issues: first, the sputtered aluminum film is not completely

removed with transene etchant. It was left with sparkled aluminum oxide residue which was

confirmed by energy-dispersive X-ray spectroscopy (EDS). Second, sputtered aluminum

film form hillock after annealed above 130◦, which would perturb the behavior of the gap.

Third, the sputtered aluminum has very poor adhesion with the PMGI even after roughening

up the PMGI surface with reactive-ion etch, which is not compatible to the aluminum wet

etching process.

The first issue can be solved by a second aluminum etch with low dosage of TMAH,

which is common to photoresist developers (e.g., CD-26, MF-319), which can completely

remove the residue. The second and the third issues require another polymer sacrificial layer

which can be processed with lower bake temperature (< 130 ◦C) and has good adhesion with

sputtered aluminum. We then tried Microposit S1800 series photoresist for the sacrificial

layer which require only 115 ◦C. We started with S1813, which can be spined down to

1.5 µm. In order to obtain reasonable electromechanical coupling rate, we need to thin

down the sacrificial layer, which can be realized by a weak flood-exposure with a calibrated

exposure time ∼ 0.1” before developing the photoresist. Followed by a short (∼ 20”) RIE

with O2 plasmma to roughen the sacrificial layer, the resulting polymer sacrificial layer has
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good adhesion with the sputtered aluminum. With this technique, we can control the gap to

∼ 100 nmwith careful calibrate the duration of the double exposure. Fig. 5.4 are the optical

and SEM micrograph of the device with sputtered aluminum and S1813 sacrificial layer.

We also tried a thinner photoresist S1805, which can be spin coated to ∼ 500 nm, aiming

for precise control of the thickness. However, the S1805 was hardened by the processes

and couldn’t be removed to release the top gate. A detailed fabrication recipe is given in

appendix C.



123

Arlon 
circuit board

BeCu clip

2cm

SMA
connector

Microwave
switch mu-metal

shield

(a) (b)
Sample

Figure 5.5: (a) Photograph of a device mounted on a sample package. (b) Mixing plate of
the dilution refrigerator. The sample packages are mounted on the mixing plate and shielded
with mu-metal shields. The two Radiall microwave switches (R573423600) enable us to
measure up to six devices in the same cool down.

5.3 Measurement setup

5.3.1 Device packaging

The devices are processed on 6mm × 3mm silicon chips. Which are mounted in a old-

plated copper sample package using beryllium copper clips (Fig. 5.3.1a), a small amount

of PMMA photoresist is applied to the bottom of the chip for additional thermalization.

The ground plane of the chip is wirebounded to the sample package with aluminum wire.

The chip waveguides are wirebounded to the ground coplanar waveguide transmission

lines on the arlon PCB which is impedance matched to the silicon silicon wafer. The

arlon circuit boards are indium soldered to the sample package and the center pins of

the PCB transmission lines are soft soldered to the center pin of the SMA connectors.

Southwest Microwave SMA connector (214-5 series) is used convert the signal from the
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coaxial transmission lines to the grounded coplanar waveguides. We have also tested the

Non-magnetic version of the SMA connector from Southwest Microwave, but no apparent

improvement of the microwave Q was observed.

The sample package is mounted on a cold finger in the mixing plate of the dilution fridge

and surrounded by a mu-metal shield (Fig. 5.3.1b). A cryoperm radiation shield is mounted

on the mixing plate to provide additional magnetic shielding. We have explored different

magnetic shielding configuration [109], but no obvious improvement in performance is

observed.

5.3.2 Fridge circuit

All measurements in this work are performed on the Oxford Kelvinox 400 dilution

refrigerator. The fridge is mounted to a floating optical table supported on sand-filled

stainless steel pillars for vibration isolation, and is located within a shielding room to

minimize electrical noise. Low-temperature thermometry is provided by calibrated RuO

thermometers supplied by Oxford which is reliable down to 20 mK. an AVS-47B resistance

bridge is used to read out the temperature. A Picowatt TS-530A temperature controller is

used to control the temperature of the fridge through a heater at the mixing chamber stage.

In order to probe the devicewithmicrowave, we need to connect the device on themixing

plate of the fridge to room temperature with microwave cables. Therefore, the microwave

cables in the fridge need to have very low thermal conductivity to thermally isolate the fridge

to room temperature. In addition to conduction, the Johnson noise from dissipative elements

at room temperature can heat up the fridge through the microwave cables, which is required

to either be blocked or attenuated. Fig. 5.6 shows the two fridge wiring configurations in

the measurement of device 1 (Fig. 5.6a) and device 2 (Fig. 5.6b). In both configurations,

the input line is mainly composed of CuNi coaxial cables (blue lines in Fig. 5.6), which

provide similar thermal conductivity and better microwave transmission as compared to

stainless-steel coaxial cable. The output line is mainly composed of superconducting Nb

coaxial cables (red line in Fig. 5.6) to reduce cable losses.

In the measurement of device 1, cryogenic attenuators with 10, 5, 8, 16 dB attenuation
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Figure 5.6: Comparison of the fridge circuits for device 1 and 2. The blue lines and
the red lines represent the CuNi cables and the Nb cables. (a) Fridge circuit for device
1. The attenuators with 39 dB attenuation are placed at different temperature stages to
provide sufficient noise reduction to attenuate the Johnson noise from room temperature.
Two cryogenic circulators are placed at the 100 mK stage to block the 4 K noise from the
HEMT amplifier. (b) Fridge circuit for device 1. The attenuation is provided by a single
20 dB attenuator at the 4 K stage and a directional coupler at the mixing plate. One of the
circulators is thermally anchored to the mixing plate of the fridge.
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Figure 5.7: Microwave switches and devices.

are installed in the input line and thermally anchored at the 4 K, 1 K, 100 mK, and 10 mK

stages of the fridge (Fig 5.6a). Two mu-metal shielded cryogenic circulators are placed at

the 100mK stage, which provide about 40 dB isolation to the 4 K noise from the cryogenic

amplifier. After the circulators, a high electron mobility transistor (HEMT) amplifier (CIT-

4254-077) from Weinreb group at Caltech is used to amplify the signal, which provides

38 dB gain and has an input noise temperature of 3.5 K at 5 GHz. The effective noise

temperature of the output line is 5.42 ± 0.03 K due to ∼ 2 dB of losses between the device

and the amplifier [109]. From the measurement of the cavity noise spectrum, an additional

noise (TR = 50 mK or nthR ' 0.2) from the output port is observed, which may be due to the

power dissipated by the circulators at 100 mK stage.

In order to reduce power dissipated on the mixing plate and eliminate the additional

noise power from the output line, we modified the fridge wiring in the measurement of

device 2. As shown in Fig. 5.6b, a single cryogenic attenuator is placed at the 4K stage

and a 20dB directional coupler is placed on the mixing plate. The transmitted port of the

directional coupler is connected to a 50Ω at the 4K stage and the coupled port is connected

to the device. Therefore the majority of the power going into the coupler is dissipated at

the 4 K stage, which has much higher cooling power. In addition, one of the circulators is

moved from 100 mK stage to the mixing plate to thermally anchor it to the base temperature

of the fridge. After these modifications, the additional noise is eliminated.

Since it takes days to cool the fridge down to base temperature. To facilitate the

measurement, two Radiall microwave switches (R573423600) are mounted on the mixing

plate, which enable us to measure up to six devices in the same cool down. To reset and
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Figure 5.8: Schematic of the measurement circuit. Microwave sources are combined to
provide the desired drive signal. Filter cavities are used to filter the excess phase noise
of the pumps. The optional noise injection circuit can add classical noise to the device
for calibration. The input signal at room temperature is attenuated by 40 dB at different
temperature stages in the dilution fridge to remove the room temperature johnson noise.
The transmitted signal goes through the circulators and is amplified by a HEMT amplifier,
then further amplified by a low noise amplifier at room temperature. The resulting output
signal is fed into a spectrum analyzer or a vector network analyzer.

switch to a new connection of the switch, a pulses current is sent to the fridge to drive

the actuator. This process would heat the mixing stage up to ∼ 100 mK. The fridge then

takes about 30 minutes to cool back to the base temperature. Although the switch has six

connections, due to the limitation of the available dc lines in the fridge, we only used five

of the connections. Cables with the same type and same length as those connecting the

device and the switches are installed in the first connection for calibrations. Therefore, we

can measure four devices in a single cool down.

5.3.3 Room temperature circuit

Fig. 5.8 shows the simplified schematic diagramof themeasurement circuit. Microwave

sources are filtered by filter cavities [45, 109] to remove the excess phase noise at room

temperature and sent to the fridge from the input port. An optional noise injection circuit



128

VCO

2ω

11MHz 28dB 1.9MHz

26dB

Tektronix
AFG 3102

Mini Circuits
ZRPD-1+

phase detector

frequency
doubler

Sub-harmonic generator (ω/2)

(b)(a)

ω/2

ω/2

SR 884 
lock-in

Agilent 
E8267C

Agilent 
E8257D

R&S 
SMA 100A

∅D∅

Eclipse
EZR 0118E3

Pasternack
PE8003-P

HP
83732B

Figure 5.9: Schematic of the drive circuit. (a) The phase locking circuit. (b) The subhar-
monic circuit.

amplifies the room temperature Johnson noise from a 50 Ω load to generate pseudo-white

noise at the resonance of themicrowave cavity, which allowus to control the classical noise of

the cavity for calibration. The signal from the output port of the fridge is further amplified

by 25 dB with a room temperature low noise amplifier (MiTeq LCA 0408) with noise

temperature of 120 K. In the experiment, we measure the noise spectrum with a spectrum

analyzer (Agilent N9020A) or the driven response with a vector network analyzer (Agilent

N5230A or Agilent 8753ES). All sources and measurement devices are synchronized to the

10 MHz rubidium frequency standard (SRS FS725).

Drive circuit

In the double BAEmeasurement and the BAEmeasurement of squeezed state, the cavity

is driven by two pairs of microwave drive fields. A pair of pump fields

αpump =
[
α+e−i(ωmt+φ0) + α−ei(ωmt+φ0)

]
e−iωct (5.4)
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are used to prepare themechanical state. Where the phase φ0 determine a particular direction

of the mechanical state (e.g. the direction of the mechanical quadrature X̂1). Another pair

of weaker probe fields

αprobe =
[
αe−i(ωmt+φprb) + αei(ωmt+φprb)

]
e−i(ωc+∆)t (5.5)

are used to probe the mechanical state with the BAE measurement. The relative phase

φ = φprb − φ0 determines the direction of the measured mechanical quadrature X̂φ relative

to X̂1 with

X̂φ = cos φX̂1 − sin φX̂2. (5.6)

The relative phase between the pumps and the probes can be measured by comparing

the relative phase of their power beat with a lock-in (Fig. 5.9a). To do that, part of the

pumps and the probes are split and fed into power diodes. The output signals from the

power diodes are proportional to the power of the pumps and the probes fields, which are

|αpump |
2 = A2

+ + A2
− + 2A+A− cos

(
2ωmt + 2φ0

)
, (5.7)

|αprobe |
2 = 2A2 + 2A2 cos

(
2ωmt + 2φprb

)
. (5.8)

The relative phase of the power is equal to 2φ, which span from 0 to 4π. Because the lock-in

is sensitive to a single branch of phase spanning 2π, in order to cover the full-period in φ,

the signal from the power diodes are fed into a sub-harmonic circuit (Fig. 5.9b) before

compared with the lock-in. The sub-harmonic circuit generate a harmonic signal at ωm

that is phase locked to the diode signal; it uses an arbitrary function generator to produce

a reference harmonic signal at ωm, double it with a frequency doubler, and phase lock it

to the diode signal. Then, the relative phase of the resulting signals are compared with a

lock-in.

For open loop control, the phase stability is set by the phase drifts of the microwave

sources. In our setting, all of the microwave generators are synchronized with a 10 MHz

rubidium standard, which provides rms phase drifts on the scale of one degree per 10

minutes. However, our measurements need to average the data for hours. In order to keep
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the phase drifts small, we separate the spectrum of long average into multiples spectra with

a 5 minute average, and adjust the phases for every measurement to keep the phase drift

below a degree. In the measurement of device 2, we switch the SMA100A to HP83732B in

order to reach the desired frequency range, which worsen the phase stability to one degree

per minute. To remedy this issue, we implement a continuous feedback control with a

computer to correct the phase per second.
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Chapter 6

Backaction evading (BAE) measurement

In this chapter, we will implement a backaction evading (BAE) measurements of the

mechanical quadrature with a superconducting electromechanical device. In the first part

of the experiment, we will discuss and compare the measurement imprecision and the

measurement backaction of a position measurement in balanced detuned two-tone (DTT)

configuration and amechanical quadraturemeasurement in the two-tone BAE configuration.

Using the BAE technique, we realized detection of a single mechanical quadrature with

measurement imprecision below the standard quantum limit and reduction of the quantum

backaction at the same time. In the second part of the experiment, in addition to the strong

BAE pumps, we add another pair of weak BAE probes to detect the measurement backaction

induced by the quantum fluctuation of the electromagnetic fields in themicrowave resonator.

The fridge circuit of the experiments is shown in Fig. 3.6a. The experiments in this chapter

are performed in device 1 with the following device parameters:

Parameter Value Descriptions

ωm/2π 4.0 MHz Mechanical resonance frequency

Γm/2π 10 Hz Mechanical linewidth

ωc/2π 5.45 GHz Cavity resonance frequency

κ/2π 860 kHz Cavity linewidth

g0/2π 15.5 Hz Electromechanical coupling

xzp ∼ 1.8 fm zero-point motion

Table 6.1: Parameters of device 1.
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(a) (b)

Figure 6.1: Device calibrations. (a) Thermal calibration of the motional sidebands power.
The inset is the motional sideband spectrum at base temperature. (b) Linewidth brodening
with backaction damping. In addition to a red detuned drive, a weak probe sweeping near
the cavity resonance is applied, and its absorption shows the resonant mechanical response.
Blue circle, mechanical damping rate; blue line, backaction damping theory fit. The inset
is the example of the absorption spectra at np ' 5 × 103, 3 × 104, and 1 × 105 from top to
bottom.

6.1 Calibrations

Thermal calibration

In the experiments, we measure the output noise spectrum of the mechanical sideband

to quantify the measurement imprecision and the measurement backaction. Therefore, we

need to calibrate the noise power of the measured mechanical sideband to the mechanical

occupation. To do that, we drive the system with a single red detuned tone atω− = ωc−ωm.

We keep the pump power sufficiently low such that the optical damping rate is much smaller

than the intrinsic mechanical linewidth (Γopt � Γm/100) and the cavity heating effect is

negligible (nthc ' 0). Then we measure the noise power of the up-converted mechanical

sideband Pm and the transmitted power of the red detuned drive P− at the calibrated
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temperature, which are given by

Pm =G[ωc]~ωc
κR

κ
Γoptnthm, (6.1)

P− =G[ωc]~ωpκRn−p, (6.2)

where Γopt =
4g2

0
κ n−p and n−p is the intracavity photon number generated by the red detuned

tone. G[ω] is the gain of the measurement chain which is flat in the measurement bandwidth

of the experiments. The gain factor can be eliminated by normalizing the sideband power

by transmitted pump power,

Pm

P−
=

(
2g0
κ

)2
nthm =

1
b−

kbT
~ωm

, (6.3)

where b− =
(
2g0/κ

)−2 is the calibration factor and kb is the Boltzmann constant. For

this device, the cavity linewidth κ ' 869 kHz is observed to be constant over the relevent

pump power. Because the normalized sideband power is linear in the temperature of the

mechanical bath, we can extract the calibration factor b− by measuring the normalized

sideband power at different bath temperatures (Fig. 6.1a). From the linear fit, we obtain

b− = (9.92 ± 0.16) × 108 and therefore g0 = 2π × 13.8 Hz, by which we can convert the

normalized sideband power into mechanical occupation

nm = b− ·
(

Pm

P−

)
= (9.92 ± 0.16) × 108 ·

(
Pm

P−

)
. (6.4)

Linewidth broadening

In addition to the mechanical occupation, another quantity we want to measure is

the intracavity photon number np, which can be obtained by the backaction damping

measurement. Similar to the thermal calibration, we drive the system with a single red

detuned tone at ω− = ωc − ωm to damp the mechanical motion. The optical damping rate
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is linear to the intracavity photon number and therefore the transmitted pump power

Γopt =
4g2

0
κ

n−p = a−

(
4
κ

)
P−, (6.5)

where a− = g2
0/G [ωc] ~ωpκR is the calibration factor. As discussed in section 4.2.1, the

interference between the probe field and the red-detuned drive would generate a Lorentzian

dip with mechanical linewidth Γtot = Γm + Γopt in the transmission spectrum. By fitting

the interference signal in the transmission spectrum (inset in Fig. 6.1b), we can extract the

mechanical linewidth Γtot. Fig. 6.1b shows the total mechanical linewidth with different

intracavity photon number. From the fit, we obtain Γm = 10 Hz and the calibration of the

intracavity photon number

np = *
,

a−
g2

0

+
-

P− = (2.25 ± 0.7) × 1011
(
W−1

)
P−. (6.6)

6.2 Backaction evading measurement: Beating the SQL

In this section, we will discuss the experimental results of the backaction evading (BAE)

measurement. Using the BAE technique, we realize a mechanical quadrature measurement

with measurement imprecision below the standard quantum limit and evading the measure-

ment backaction at the same time.

6.2.1 Definitions of imprecision and backaction

In the experiment, the noise spectrumof themechanical sideband ismeasured to quantify

the measurement sensitivity. Before discussing the experimental results, here we provide

the definitions of the measurement imprecision and the measurement backaction in terms

of the measured noise spectra.

6.2.1.1 Quadrature measurement in BAE configuration

We will first discuss the precision of the mechanical quadrature measurement with the

BAE technique, in order to compare the precision of the quadrature measurement and the
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position measurement. In this section, we define the mechanical quadratures with

X̂1 = xzp
(
b̂ + b̂†

)
, X̂2 = −ixzp

(
b̂ − b̂†

)
. (6.7)

The position of the mechanical oscillator can be expressed as

x̂ = X̂1 cos (ωmt) + X̂2 sin (ωmt). (6.8)

As discussed in section 4.3.2, in order to perform a BAE measurement of a single

mechanical quadrature, the cavity is driven by two drive tones with equal power at ωc ±ωm

to generate the required modulation of the electromechanical coupling. The up-converted

sideband of the red detuned tone and the down-converted sideband of the blue detuned tone

are overlapped at the center of the cavity resonance. The measured noise spectrum of the

mechanical sideband at the output of the measurement chain is

S̄BAE
out [ω] = G [ωc] ~ωc *

,
S̄add + S̄0 +

κR

κ
Γopt

S̄X1 [ω]
x2
zp

+
-
, (6.9)

where S̄0 is the noise floor of the electromechanical system (Eq. (4.115)), which is flat

in the bandwidth of the mechanical sideband spectrum. S̄add is the added noise of the

measurement chain, which is dominated by the add noise of the HEMT amplifier in our

experiment. S̄X1 [ω] is the noise spectrum of the mechanical quadrature (Eq. (4.110)).

Using the thermal calibration, the measured mechanical quadrature spectrum is given

by normalizing the output noise spectrum with the transmitted power of the red detuned

tone, which gives

S̄BAE
X1,tot [ω]

x2
zp

=

(
b−
P−

)
S̄BAE
out [ω] =

S̄BAE
X1,imp

x2
zp
+

S̄X1 [ω]
x2
zp

, (6.10)

where
S̄BAE
X1,imp

x2
zp
=

Fb−
κRnp

is the noise floor of the mechanical quadrature measurement and

F = S̄add + S̄0 is the total noise floor of the output spectrum.

The measured mechanical quadrature variance for the BAE measurement is the sum of
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the measurement imprecision and the mechanical quadrature occupation

〈X̂2
1 〉

BAE
tot

x2
zp

=
〈X̂2

1 〉
BAE
imp

x2
zp

+
〈X̂2

1 〉

x2
zp
, (6.11)

which are given by

〈X̂2
1 〉

BAE
imp

x2
zp

=
S̄BAE

X1,imp

x2
zp

Γm

4
=

(
κ

κR

) (
F
4

) (
Γm

Γopt

)
, (6.12)

〈X̂2
1 〉

x2
zp
=

S̄X1 [0]
x2
zp

Γm

4
= 2nthm + 1. (6.13)

For ideal BAE measurement, the backaction is entirely routed to the unmeasured me-

chanical quadrature X̂2 with

〈X̂2
2 〉

x2
zp
=

S̄X2 [0]
x2
zp

Γm

4
= 2

(
nthm + nba

)
+ 1, (6.14)

where S̄X2 [ω] is the noise spectrum of the mechanical quadrature X̂2 (Eq. (4.111)) and

nba =
Γopt
Γm

(
nthc +

1
2

)
is the measurement backaction induced by the BAE measurement. No

backaction is applied to the measured mechanical quadrature X̂1. As shown in Eq. (6.12),

the measurement imprecision is proportional to the inverse of the intracavity pump photon

number. Ideally, one can make the measurement imprecision arbitrarily small by increasing

the pump power. In practice, cavity and mechanical nonlinearities would pose limits to the

applied power, which limits the measurement imprecision above the standard quantum limit

in the previous experiments [44, 93, 94].

6.2.1.2 Position measurement in DTT configuration

To quantify the reduction of the backaction in the BAE measurement, we compare

the result from the BAE measurement with the result from a position measurement in

the detuned two tones (DTT) configuration. As discussed in section 4.3.1, in the DTT

configuration, the cavity is driven by two pumps with equal power at ωc ± (ωm + δ). We

choose κ � δ � Γm such that both of the mechanical sidebands are well separated with
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each other and sited well inside the cavity resonance. At the output of the measurement

chain, the noise spectrum of the two mechanical sidebands are

S̄DTT
out [ω] = G [ωc] ~ωc




S̄add + S̄0 +
κR

κ
Γopt

SDTT
x [ω]

x2
zp



, (6.15)

where
SDTT

x [ω]
x2
zp

= S′bb [ω + δ] + S′b†b† [ω − δ] (6.16)

is the noise spectra of the up and down-converted mechanical sidebands, which are given

by

S′bb [ω] =
Γm

(Γm/2)2 + ω2

(
n̄DTTm − neff

)
, (6.17)

S′b†b† [ω] =
Γm

(Γm/2)2 + ω2

(
n̄DTTm + 1 + neff

)
, (6.18)

where n̄DTTm = nthm + nDTTba is the mechanical occupation, nDTTba =
Γopt
Γm

(
2nthc + 1

)
is the

backaction heating in terms of quanta and neff = 2nthc − nthR is the noise squashing/anti-

squashing quanta.

Using the thermal calibration, the measured mechanical spectrum is given by normal-

izing the output spectrum with the transmitted power of the red detuned drive

SDTT
x,tot [ω]

x2
zp

=

(
b−
P−

)
S̄DTT
out [ω] =

S̄DTT
x,imp

x2
zp
+

SDTT
x [ω]

x2
zp

, (6.19)

where
S̄DTT
x,imp

x2
zp
=

Fb−
κRnp

is the noise floor of the measurement. Note that SDTT
x [ω] contains the

noise squashing/anti-squashing factor neff, which can be eliminated by symmetrizing the

spectrum
S̄DTT

x,tot [ω]
x2
zp

=
1
2

*
,

SDTT
x,tot [ω]

x2
zp

+
SDTT

x,tot [−ω]
x2
zp

+
-
=

S̄DTT
x,imp

x2
zp
+

S̄DTT
x [ω]

x2
zp

, (6.20)

where

S̄DTT
x [ω] =

1
2

(
SDTT

x [ω] + SDTT
x [−ω]

)
= S̄0

x [ω] + S̄DTT
x,ba [ω] (6.21)

is the symmetrized noise spectrum of the mechanical motion. The first term is the con-
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tribution of the phonon bath, and the second term is the contribution of the measurement

backaction, both of which are given by

S̄0
x [ω] = x2

zp
Γm

(Γm/2)2 + (|ω | − δ)2

(
nthm +

1
2

)
, (6.22)

S̄DTT
x,ba [ω] = x2

zp
Γm

(Γm/2)2 + (|ω | − δ)2 nDTTba . (6.23)

Themeasured position variance for theDTTmeasurement is the sumof themeasurement

imprecision and the fluctuation of the mechanical motion

〈x̂2〉DTTtot

x2
zp

= *
,

S̄DTT
x,tot [−δ]

x2
zp

+
S̄DTT

x,tot [δ]
x2
zp

+
-

Γm

4
=
〈x̂2〉DTTimp

x2
zp
+
〈x̂2〉DTT

x2
zp

. (6.24)

The measurement imprecision for the DTT measurement is

〈x̂2〉DTTimp

x2
zp

= 2
S̄DTT

x,imp

x2
zp

Γm

4
=

(
κ

κR

) (
F
2

) (
Γm

Γopt

)
. (6.25)

Similar to BAE measurement, the measurement imprecision is proportional to the inverse

of the pump power. However, for position measurement, the measurement backaction gen-

erates additional fluctuation to the mechanical motion. The total variance of the mechanical

motion is the sum of the thermal fluctuation 〈x̂2〉0 and the measurement backaction 〈x̂2〉DTTba

〈x̂2〉DTT

x2
zp

= *
,

S̄DTT
x [δ]

x2
zp

+
S̄DTT

x [−δ]
x2
zp

+
-

Γm

4
=
〈x̂2〉0

x2
zp
+
〈x̂2〉DTTba

x2
zp

, (6.26)

where

〈x̂2〉0

x2
zp
= *

,

S̄0
x [−δ]
x2
zp
+

S̄0
x [δ]
x2
zp

+
-

Γm

4
= 2nthm + 1, (6.27)

〈x̂2〉DTTx,ba

x2
zp

= *
,

S̄DTT
x,ba [−δ]

x2
zp

+
S̄DTT

x,ba [δ]

x2
zp

+
-

Γm

4
= 2nDTTba = 2

Γopt

Γm

(
2nthc + 1

)
. (6.28)

As shown in Eq. (6.28), the measurement backaction is proportional to the pump power.
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ω

δ = 0

ω− ω+

ωcool

ωm + δ ωm + δ

ωm + δc

Figure 6.2: Schematic diagram of the pumps configuration. The blue Lorentzian represents
the cavity resonance. The green arrow represents the cooling drive. The two purple
arrows represent the balanced tones for the position measurement in the DTT configuration
(δ � Γm) or BAE measurement of the mechanical quadrature (δ = 0). The inset shows
examples of the mechanical spectra in DTT and BAE configurations.

Therefore, one cannot make the total added noise of the position measurement

〈x̂2〉DTTadd /x2
zp = 〈x̂

2〉DTTimp /x2
zp + 〈x̂

2〉DTTba /x2
zp (6.29)

arbitrarily small by ramping up the pump power.

6.2.2 Experimental results

Having analyzed the measurement precision in BAE and DTT configurations, we will

now discuss the experimental results. In this experiment, we implement BAE measurement

of a single mechanical quadrature with the superconducting electromechanical device. We

will quantify and compare the measurement imprecision and the measurement backaction

of a single mechanical quadrature measurement with the BAE scheme and the position

measurement with the DTT scheme.

Fig. 6.2 shows the pump configuration of the experiment. We drive the cavity with two



140

balanced tones at ω± = ωc ± (ωm + δ) to perform a single mechanical quadrature measure-

ment in BAE configuration (δ = 0 Hz) or a position measurement in DTT configuration

(δ = 2π × 5 Hz). In order to suppress the mechanical frequency jitter, a third red detuned

tone is driving the cavity at ωcool = ωc − (ωm + δc) with δc = 2π × 35 kHz to broaden

the mechanical linewidth. We quantify the measurement imprecision and the measurement

backaction with the following protocol:

1. Set the initial mechanical state:

We first turn on the cooling tone (red arrow in Fig. 6.2) with ncoolp ' 105 to broaden

the mechanical linewidth to Γm,init = 2π × 100 Hz. We measure the noise power of

the up-converted mechanical sideband Pcool
m and the transmitted pump power Pcool

− of

the cooling tone to quantify the initial mechanical occupation, which is given by

nthm,init = b−
Pcool

m

Pcool
−

' 13, (6.30)

which corresponds to 〈x̂2〉init/xzp = 〈X̂2
1 〉init/xzp = 2nthm,init + 1 ' 27. The green curve

in Fig. 6.3a is the spectrum of the mechanical sideband and the green dots in Fig.

6.3b are the initial mechanical fluctuation in each measurement.

2. Position measurement in DTT configuration:

Then, we turn on the balanced tones with δ = 2π × 5 kHz and intracavity pump

photon number np to perform the position measurement in the DTT configuration.

We measure the noise spectra of the corresponding mechanical sidebands S̄DTT
out [ω]

and the transmitted pump power of the red detuned drive P−. The balancing condition

of the two tones is ensured by matching the mechanical linewidth Γm to Γm,init within

2π × 5 kHz.

We use the thermal calibration b− to convert the normalized output noise spectrum

to the mechanical noise spectrum SDTT
x,tot [ω] with Eq. (6.19), an example of the

measured mechanical spectrum is shown in the inset of Fig. 6.2 (blue curves). The

measurement imprecision 〈x̂2〉DTTimp /x2
zp and the mechanical fluctuation 〈x̂2〉DTT/x2

zp

in the DTT measurement are given by Eqs. (6.25) and (6.26). The blue curve in
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Fig. 6.3a is the symmetrized mechanical spectrum S̄DTT
x,tot [ω] around the mechanical

resonance. The blue dots in Fig. 6.3b are the mechanical fluctuation in the DTT

configuration with different np.

3. Mechanical quadrature measurement in BAE configuration:

To perform BAE measurement of the mechanical quadrature, we overlap the two

mechanical sidebands at the center of the cavity resonance (δ = 0 Hz). Similar

to the DTT measurement,we measure the output noise spectrum of the overlapped

mechanical sideband S̄BAE
out [ω] and the transmitted power of the red detuned tone P−,

then convert the output spectrum to the mechanical quadrature spectrum S̄BAE
X1,tot [ω]

with Eq. (6.10). Examples of the measured mechanical quadrature spectrum are

shown in the inset of Fig. 6.2 (red curve) and Fig. 6.3a (red curve). Themeasurement

imprecision 〈X̂2
1 〉imp/x2

zp and themechanical quadrature fluctuation 〈X̂2
1 〉/x2

zp are given

by Eqs. (6.12) and (6.13). The red dots in Fig. 6.3b are the mechanical quadrature

fluctuation measured in the BAE configuration with different np.

4. Extract the measurement backaction of the DTT and BAE measurement.

To extract the backaction from the measurements, we compare the measured mechan-

ical fluctuation of the DTT (〈x̂2〉DTT/x2
zp) and BAE measurements (〈X̂2

1 〉/x2
zp) to the

initial mechanical fluctuation (〈x̂2〉init/xzp and 〈X̂2〉1,init/xzp ), which gives

〈x̂2〉ba = 〈x̂2〉DTT − 〈x̂2〉init = 〈x̂2〉dissba + 〈x̂
2〉DTTba , (6.31)

〈X̂2
1 〉ba = 〈X̂

2
1 〉 − 〈X̂

2
1 〉init = 〈X̂

2
1 〉

diss
ba , (6.32)

where 〈x̂2〉dissba and 〈X̂2
1 〉

diss
ba are the backaction from source other than the the detected

field, which cannot be avoided in the BAE measurement. In our experiment, this

extra backaction is due to the increase in mechanical fluctuations due to thermal

dissipation in the device. The balanced tones heat up the mechanics, and therefore

the mechanical fluctuation in the DTT measurement (nthm,DDT) and BAE measurement

(nthm,BAE) are higher than the initial mechanical fluctuation nthm,init, which gives the
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addition measurement backactions

〈x̂2〉dissba = 2
(
nthm,DTT − nthm,init

)
x2
zp, (6.33)

〈X̂2
1 〉

diss
ba = 2

(
nthm,BAE − nthm,init

)
x2
zp. (6.34)

Fig. 6.3b shows the increase of the mechanical fluctuation due to the measurement

backaction at different np.

Fig. 6.3c shows the total measurement backaction, 〈x̂2〉ba and 〈X̂2
1 〉ba, and the mea-

surement imprecision, 〈x̂2〉imp and 〈X̂2
1 〉imp, in the DTT and BAE configurations at various

intracavity pump photon number. In the position measurement with DTT configuration, as

themeasurement imprecision decreases (blue circles), the measurement backaction increase

(blue dots). At np = 2.3 × 106, the mechanical occupation increases from 13.0 ± 0.5 to

68.5 ± 0.1, consistent with a small finite microwave occupation factor (nc ' 0.6 ± 0.1) in

addition to the quantum fluctuations. In contrast, we do not observe a large increase in

the mechanical fluctuations in BAE as the imprecision decreases (red dots). The expected

backaction into the measured mechanical quadrature due to the finite sideband resolution

is 0.12x2
zp at np = 4.7 × 106. The measured backaction of 〈X̂2

1 〉ba ' 10x2
zp is likely due to

thermal dissipation in our device. Nonetheless, we demonstrate avoidance of the backaction

noise by 10.7 ± 0.3 dB at np = 2.3 × 106 compared with the position measurement. Most

important, we show that the backaction 〈X̂2
1 〉ba is 8.5±0.4 dB below the level set by quantum

fluctuations of the microwave field, which is 2
(
Γopt/Γm

)
x2
zp at np = 4.7 × 106.

In addition, the quadrature imprecision is below x2
zp at this point: 〈X̂2

1 〉imp = (0.57 ± 0.09) x2
zp

(inset in Fig. 6.3c). This is approximately a factor of 200 above that of quantum-limited

imprecision, which is consistent with the detection efficiency determined by κR/κ ' 0.5,

the microwave loss between the device and amplifier (' 2 dB), and the noise temperature

of the amplifier at 4 K stage.
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(a) (b)

(c)

Figure 6.3: (a) The increase in the motional sideband area in DTT (blue) or in BAE
(red), compared to the no balanced tones case (green), identifies the total measurement
backaction. The spectra are centered at the mechanical resonance. (b) The mechanical
fluctuations measured in DTT (blue) and BAE (red) at different pump strengths of the
balanced tones. The green dots are the corresponding mechanical fluctuations measured
without the balanced tones. (c) Measure imprecision (circles) and measurement backaction
(dots) of position measurement in DTT configuration (blue) and mechanical quadrature
measurement in BAE configuration (red). The solid blue line represents a fit to themeasured
backaction, including classical noise in the cavity. The solid green line is the expected
quantum backaction from microwave shot noise. The dashed blue line shows a fit to the
measured imprecision, and the dashed green line is the imprecision below the zero point.
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Figure 6.4: Schematic of the pump configuration in the double BAE experiment. The green
arrow represents the cooling tone. The two red arrows represent the strong BAE pumps.
The two blue arrows represent the weak BAE probe. The upper left inset is the schematic of
the Wigner function, the green circle represents the thermal state cooled by the cooling tone
(green arrow), the red ellipse represents the added noise from the BAE pump. (red arrows),
and the blue dashed arrow represents the quadrature measured by the BAE probes. The
upper right inset is the schematic of the mechanical sideband spectra. The red Lorentzian
represents the sideband spectrum corresponding to the BAE pumps, and the blue Lorentzian
represents the sideband spectrum corresponding to the BAE probes.

6.3 double BAE:Measurement of the quantumbackaction

After demonstrating the backaction evadingmeasurement of a singlemechanical quadra-

ture, in this section, we will probe the phase dependent backaction induced by the BAE

measurement. As discussed in the previous section, the quadrature variances of the me-

chanical motion under a BAE measurement is given by

〈X̂2
1 〉/x2

zp = 2nthm + 1, (6.35)

〈X̂2
2 〉/x2

zp = 2
(
nthm + nba

)
+ 1, (6.36)

where nba is themeasurement backaction. The BAEmeasurement route all the backaction to

the unmeasured mechanical quadrature X̂2. Therefore, the state of the mechanical oscillator

under a BAE measurement is no longer a thermal state (the green circle in the upper left

inset of Fig. 6.4). The BAE measurement breaks the rotational symmetry with the phase

dependent measurement backaction. The mechanical quadrature variance at phase φ of this
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state is

〈X̂2
φ〉/x2

zp = cos2 (
φ
)
〈X̂2

1 〉/x2
zp + sin2 (

φ
)
〈X̂2

2 〉/x2
zp

=
(
2nthm + 1

)
+ 2nba sin2 (

φ
)
, (6.37)

where X̂φ = cos
(
φ
)
X̂1−sin

(
φ
)
X̂2. The second term in Eq. (6.37) is the contribution of the

phase dependent measurement backaction. In this section, we will detect this measurement

backaction by applying an additional weak BAE measurement.

Fig. 6.4 is the schematic of the pump configuration. Similar to the BAE measurement,

a red detuned tone (green arrow) is applied to damp the mechanical motion, and the green

circle in the upper left inset represents theWigner function of the mechanical state cooled by

the cooling tone. In addition to the cooling tone, a pair of strong balanced tones (red arrows)

is driving the cavity at ωc ± ωm to generate the phase dependent measurement backaction

(second term in Eq. (6.37)). The red part of the ellipse in the upper left inset represents

the measurement backaction. In order to detect the measurement backaction, another pair

of weaker balanced tones (blue arrows) are driving the cavity at ωc + ∆ ± ωm with phases

equal to ±φ (relative to the strong BAE pumps (red arrows)) as a BAE probe to detect the

mechanical quadrature X̂φ (the blue dashed arrow in the upper left inset). The detuning

∆ � Γm such that there is no interference between the BAE pump and the BAE probe.

The power of the BAE probe is kept sufficiently small such that the backaction induced

by the BAE probe is negligible. The upper right inset is the schematic of the mechanical

sidebands.

Fig. 6.5, a and b compare the measured quadrature variance of the BAE measurements

from the BAE pumps (red circles) and the BAE probes (blue circles) at different phase φ.

At φ = 0, both the BAE pumps and BAE probes are measuring the minimum mechanical

quadrature X1, demonstrating the avoidance of the backaction from the noise in the detected

microwave field. At φ = π/2, the BAE probes are measuring the orthogonal mechanical

quadrature X2 while the BAE pumps are measuring the mechanical quadrature X1. The

maximal increases in fluctuations in the BAE probes signal demonstrate the measurement

backaction from the BAE pumps. The blue curves in Fig. 6.5a(b) are the fits to Eq. (6.37)
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(a) (b)

Figure 6.5: (a) An example of measured mechanical fluctuations along the BAE pump axis
(red circles) and the probe axis (blue circles). φ is the angle between these two axes. The
blue line is a fit to Eq. (6.37). (b) Polar plot of (a), defining X1 and X2 along the direction
of minimum and maximum fluctuation, respectively.

with nthm and nba as fit parameters. The measurement backaction in the X2 quadrature is

〈X̂2
2 〉ba/x2

zp = 〈X̂
2
φ=π/2〉/x2

zp − 〈X̂
2
φ=0〉/x2

zp = 2nba. (6.38)

As discussed in section 2.9.2, the measurement backaction follows the relation

2nba =
Γopt

Γm

(
2nthc + 1

)
, (6.39)

where the term proportional to 2nthc is the classical backaction associated with the classical

microwave noise and the term proportional to the +1 is the quantum backaction associated

with the quantum fluctuations of the microwave field.

To explore the relation Eq. (6.39) of the measurement backaction, one can change

the cavity occupation nthc by injecting microwave noise from room temperature into the

device with the noise injection circuit described in the previous chapter. Fig. 6.6a

shows the quadrature dependent noise at different injected noise power, the measurement

backaction increases with the injected noise power. To measure the cavity occupation nthc ,



147

(b)

(a)

(c)

Figure 6.6: (a) Mechanical fluctuation along the probe axis at different microwave noise
powers: ∆η = 5.71, 9.17, 13.41, and 20.99 (±0.04) aW/Hz (brown, green, blue, and red
dots, respectively). (b) Noise spectrum of the cavity resonance with occupation nthc = 0.9.
∆η is the noise density from the noise floor at the cavity resonance, which is proportional to
nthc . The sharp peak at the center is themechanical sideband at np = 1.3×106. (c) Backaction
in the X2 quadrature normalized by the quantum backaction 〈X̂2

2 〉qba as a function of the
noise density from the noise floor at the cavity resonance ∆η.
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we concurrently measure the output noise power density of the cavity resonance (Fig. 6.6b)

S̄out [ωc] = G [ωc] ~ωc

[
S̄add +

1
2
+ nthR +

4κR

κ

(
nthc − nthR

)]
, (6.40)

and the system noise floor

S̄thru
out [ωc] = G (ωc] ~ωc

(
S̄add +

1
2

)
(6.41)

by switching to the through port with the microwave switch. After subtracting off the noise

floor, we obtain a linear relation between the cavity occupation and the measured noise

density

nthc = α∆η + β, (6.42)

where ∆η = S̄out [ωc] − S̄thru
out [ωc], α = κ/4κRG [ωc] ~ωc and β =

( 4κR−κ
κ

)
nthR . The

measurement backaction is related to ∆η by

〈X2
2 〉ba

〈X2
2 〉qba

= 2nthc + 1 = 2α∆η +
(
1 + β

)
, (6.43)

where 〈X2
2 〉qba = Γopt/Γm is the quantum backaction. Fig. 6.6b shows the observed 〈X̂2

2 〉ba

versus ∆η, which follows the expected linear relation. From the linear fit (blue line), we

extract the slope α = 0.22 ± 0.02 (aW/Hz)−1 and β = 0.1 ± 0.1. The extrapolation to

∆η = 0 demonstrates the measurement backaction induced by the quantum fluctuation from

the microwave field. The nonzero β indicates that there is excess noise at the output port of

the device.

To estimate the excess noise at the output port nthR , we measure the microwave noise

spectrum without any microwave pump. In this setup, we assume the cavity occupation is

solely due to the noise radiating into the device from the output port of the device, so that

nthc =
κR
κ nthR . This noise at the output port of the device generates a dip in the broadband

noise floor (Fig. 6.7)

S̄out [ω] =
1
α

[
κ2

κ2 + 4 (ω − ωc)2

(
κR

κ
− 1

)
nthR +

(
κ

4κR

) (
nthR +

1
2
+ S̄add

)]
. (6.44)
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Figure 6.7: Cavity noise spectrum with no pump and no injected noise.

Taking κR = 2π × 450 kHz from an independent measurement at 300 mK and fitting the

measured spectrum with Eq. (6.44) (blue curve in Fig. 6.7), we extract κ = 2π × 860 kHz

and nthR ' 0.2 (orTR = 50 mK), which gives β ' 0.2, consistent to our observation 0.1±0.1.

This excess noise at the output port of the device maybe due to the power dissipated by the

circulators at 100 mK stage.
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Chapter 7

Mechanical squeezing

In this chapter, we will implement the reservoir engineering technique based on two-

tone driving [54] to generate and stabilize a quantum squeezed state of a micron-scale

mechanical oscillator in an electromechanical system. In the first part of the experiment, we

quantify the quadrature variances with the output spectrum of the electromechanical system

and demonstrate the generation of the mechanical quantum squeezed state of a macro-

scopic mechanical object. In the second part of the experiment, we apply an independent

backaction evading (BAE) measurement to directly quantify the squeezing. From the BAE

measurement, we observe 4.7 ± 0.9 dB of squeezing below the zero-point level, surpassing

the 3 dB limit of standard parametric squeezing techniques. The BAE measurement also

reveals evidence for an additional mechanical parametric effect is observed. The interplay

between this effect and the electromechanical interaction enhances the amount of squeezing

obtained in the experiment.

As discussed at the end of the last chapter, an excess noise (∼ 50 mK) at the output

port of the device is observed, which maybe due to the power dissipated to the cryogenic

circulators at the 100 mK stage. In order to remedy this issue, we move the circulators to

the mixing plate in the following experiments (Fig. 3.6b). After relocating the circulators,

the noise dip (Fig. 4.7) at the cavity resonance disappear. The cavity noise spectrum is flat

in the absence of microwave drive and injected noise and we assume nthR = 0 throughout the

experiments discussed in this chapter. The experiments are performed with device 2, which

has the following parameters:
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ωc
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X
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Figure 7.1: Pump schematic of the reservoir engineering configuration. The inset is the
schematic of dissipativemechanical squeezing. The gray circle represents the initial thermal
state in phase space. The engineered reservoir generates phase dependent dissipation that
relaxes the mechanics into a squeezed state, which is represented by the blue ellipse. The
gray dashed circle represents the zero-point level.

Parameter Value Descriptions

ωm/2π 5.8 MHz Mechanical resonance frequency

Γm/2π 8 Hz Mechanical linewidth

ωc/2π 6.08 GHz Cavity resonance frequency

κ/2π 330 kHz Cavity linewidth

g0/2π 130 Hz Electromechanical coupling

xzp ∼ 1.8 fm zero-point motion

Table 7.1: Parameters of device 2.

7.1 Reservoir engineering mechanical squeezing

In this section, we apply the reservoir engineering technique introduced in section 2.9.3

to squeeze the mechanical motion. We drive the cavity with a stronger red detuned tone

at ωc − ωm (red arrow in Fig. 7.1) and a weaker blue detuned tone at ωc + ωm (blue

arrow in Fig. 7.1) to couple the cavity with the Bogoliubov mode of the mechanical

oscillator. The cavity cools the Bolgoliubov mode with the dynamical backaction generated

by the microwave drives and dissipatively drives the mechanics into a stationary squeezed
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Figure 7.2: Calibrations of the mechanical squeezing experiment. (a) Pump configuration
of the enhanced electromechanical coupling (G−) calibration. (b) Pump configuration of
the enhanced electromechanical coupling (G+) calibration. (c) Calibrations of the enhanced
electromechanical couplings G±, the inserts are the transmission spectrums corresponding
to the solid circles. (d) Calibration of the normalized motional sideband power, the insert
is the sideband spectrum at the base temperature.

state (inset in Fig. 7.1). The mechanical sidebands of the two drive tones generate the

Bolgoliubov mode signal at the center of the cavity resonance, which enables us to extract

the quadrature variances of the mechanical squeezed state from the output noise spectrum

of the electromechanical system.

7.1.1 Calibrations

In the experiment, we measure the output noise spectrum of the electromechanical

system driven by the two drive tones

S̄out [ω] = G [ωc] ~ωc

{
S̄add +

1
2
+ κR S̄

[
G−,G+,∆, δ, κ, Γm, nthc , n

th
m

]}
, (7.1)

where G [ω] and S̄add are the total gain and the added noise at the output of the measurement

chain, which are flat throughout the bandwidth of the experiment. S̄
[
G−,G+,∆, δ, κ, Γm, nthc , n

th
m

]

is the noise spectrum of the electromechanical system which is given by Eq. (2.173). We

spend an equal time interleaving measurement to measure the noise spectrum without any

microwave drive to extract the noise floor

S̄0
out [ω] = G [ωc] ~ωc

{
S̄add +

1
2

}
. (7.2)
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After subtracting the noise floor from the output noise spectrum, we obtain

∆S̄out [ω] = S̄out [ω] − S̄0
out [ω] = G [ωc] κR~ωc S̄

[
G−,G+,∆, δ, κ, Γm, nthc , n

th
m

]
. (7.3)

In order to fit the spectrum ∆S̄out [ω] to quantify the mechanical squeezing, an independent

measurement of the prefactor G [ωc] κR~ωc is required, which can be obtained from the

calibrations of the enhanced electromechanical couplings and the thermal calibration.

7.1.2 Calibration of the enhanced electromechanical couplings

To obtain the calibrations of the enhanced electromechanical couplings G±, we measure

the transmitted power of the microwave drives

P± = G [ω±] κR~ω±λ [ω±] n±p, (7.4)

where λ [ω±] are the correction factors due to the parasitic channel [106] and n±p are the

intracavity pump photon number induced by the red/blue detuned drives. The square of the

enhanced electromechanical couplings are linear to the transmitted pump powers

G2
± = g2

0n±p = a± × P±, (7.5)

with the calibration factors a± = 1
G[ω±]κR~ω±

g2
0

λ[ω±] .

We start with the calibration of the enhanced electromechanical coupling G− induced

by the red detuned tone. To do that, a single red detuned tone is applied at ωc − ωm

with transmitted power P− (Fig. 7.2a). A network analyzer is used to generate a weak

probe and sweep it through the center of the cavity resonance to measure the transmission

spectrum of the mechanical sideband. The enhanced electromechanical coupling G− can

be extracted by fitting the transmission spectrum with the electromechanical model Eq.

(2.171). By measuring the transmission spectrum with various transmitted power P− and

fitting with the linear relation (7.5) (the red line in Fig. 7.2c), we obtain the calibration

a− = (7.49 ± 0.10) × 1017 rad2s−1W−1 and the intrinsic mechanical linewidth Γm = 2π × 8
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Hz.

A similar method is used to calibrate the enhanced electromechanical coupling G+

induced by the blue detuned tone. In this case, a blue detuned tone is placed at ωc +

ωm + δ with transmitted power P+, where δ = 2π × 30kHz � κ. Since the blue detuned

tone would amplify the mechanical motion and narrow the mechanical linewidth, the

mechanical resonator becomes unstable when the cooperativity C+ =
4G2
+

κΓm
approaches to

unity. In order to keep the mechanics stable, a constant red detuned tone is applied at

ωc − ωm − δ to damp the mechanical motion (Fig. 7.2b). Similar to the calibration of

G−, we measure the transmission spectrum and extract the enhanced electromechanical

coupling rate G+ by fitting the transmission spectrum with the electromechanical model

Eq. (2.171). By measuring the transmission spectrum at various transmitted power P+ and

fitting with the linear relation (7.5) (the blue line in Fig. 7.2c), we obtain the calibration

a+ = (3.23 ± 0.07) × 1018 rad2s−1W−1.

7.1.3 Thermal calibration

Having calibrated the enhanced electromechanical couplings, we turn to the thermal

calibration of the motional sideband noise power. To do that, a single red detuned tone is

placed atω− = ωc−ωm with sufficiently small pump power such that the electromechanical

damping effect is negligible (Γ−opt =
4G2
−

κ � Γm). We then measure the noise power of

the up-converted motional sideband Pm, over a range of calibrated cryostat temperature T

(Fig. 7.2d). Due to the weak temperature dependence of the cavity linewidth κ, we monitor

the cavity linewidth at each measurement temperature. The resulting normalized sideband

power is given by (
κ

κ̄

)2 Pm

P−
= b−

(
2
κ̄

)2 kBT
~ωm

, (7.6)

where P− is the transmitted power of the red detuned tone, κ̄ is the average value of the cavity

linewidth over the respective temperatures and b− =
G[ωc]ωc

G[ω−]ω−
g2

0
λ[ω−] is the thermal calibration.

The linear fit in Fig. 7.2d gives b− = (2.53 ± 0.07) × 105 (rad/s)2, which enables us to

convert the normalized noise power into quanta. The prefactor G [ωc] κR~ωc is given by

the ratio of the thermal calibration b− and the calibration of the enhanced electromechanical



155

coupling a− (i.e. G [ωc] κR~ωc = b−/a−), which allow us to relate the measured noise

spectrum and transmitted powers to the electromechanical model

∆S̄out [ω] =
b−
a−

S̄
[
G−,G+,∆, δ, κ, Γm, nthc , n

th
m, ω

]
. (7.7)

7.1.4 Experimental results

7.1.4.1 Sideband cooling

Before squeezing the mechanical motion, a sideband cooling experiment is performed

to characterize the device performance. To do that, a single red detuned drive is applied at

ωc − ωm at various pump power. The output spectrum of the mechanical sideband and the

cavity resonance aremeasured to quantify the effectivemechanical occupation n̄m. Fig. 7.3a

shows the mechanical sideband spectra in the weak coupling regime. The optical damping

rate increases with the intracavity pump photon number (np) and broadens the mechanical

linewidth. As shown in Eq. (2.203), the power of the mechanical sideband is proportional

to n̄m − 2nthc due to the noise squashing effect. In order to extract the effective mechanical

occupation, we concurrently measure the noise spectrum of the cavity resonance to obtain

the cavity occupation nthc . Fig. 7.3c shows the effective mechanical occupation (red circles)

and the cavity occupation (blue circles). As shown in Fig. 7.3c, the cavity occupation

increases with the intracavity pump photon number, which limits the minimum achievable

mechanical occupation. At np = 4.1 × 104, the noise squashing 2nthc is larger than the

mechanical occupation n̄m, which generates a noise dip at the cavity resonance (blue circles

in Fig. 7.3a). As we further increase np, the noise squashing increases and finally evolves

into normal mode splitting in strong coupling regime (G � κ), as shown in Fig. 7.3b.

In strong coupling regime, the output noise spectrum is not simply a mechanical sideband

sits on top of the center of the cavity noise. In this regime, we use the full formula Eq.

(2.202) to fit the output spectrum and extract the phonon bath occupation nthm and the cavity

occupation nthc , then calculate the effective mechanical occupation n̄thm with Eq. (2.196).

As shown in Fig. 7.3c, the minimum mechanical occupation of this device is equal to 0.3

phonon, which is limited by the cavity heating effect. This cavity heating maybe due to
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Figure 7.3: (a) Noise spectra of the up-converted mechanical sideband in weak coupling
regime. (b) The noise spectra of the cavity resonance in the strong coupling regime. (c)
Mechanical occupation (red squares) and cavity occupation (blue circles) extracted from
the noise spectra.
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Figure 7.4: The driven responses at different pump photon ratios. (a) Driven responses in
cavity span. (b) Driven responses near the interference signal.

the fluctuations of the two-level system (TLS) defects in the devices. A phenomenological

TLS model predicts nthc ∝
√np [94], which is consistent with the observed cavity heating at

large np (blue line in Fig. 7.3c).

7.1.4.2 Mechanical squeezing

Being able to cool the mechanical motion to the ground state is a good sign to generate

the mechanical quantum squeezed state. To do that, we start ramping up the power of the

blue detuned tone at ωc − ωm to cool the Bolgoliubov mode of the mechanics and squeeze

the mechanical motion. As discussed in section 2.9.3, the mechanical squeezing generated

by two-tone reservoir engineering technique is very sensitive to the power ratio of the blue

and the red detuned tones. In this experiment, we keep the total pump photon number

ntotp = n−p + n+p = 1.85× 105, and squeeze the mechanical motion with various pump photon

ratio n+p/n
−
p .

At each pump photon ratio, we measure the transmitted pump power of the microwave

drives, from which we obtain the enhanced electromechanical couplings G± with the cal-
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Figure 7.5: Output noise spectrum at different pump photon ratios. (a) Output noise spectra
of the cavity resonance. (b) The noise spectrum near the mechanical sidebands.

ibrations a±. The resonance frequencies of the cavity and the mechanical mode can be

changed with the powers of the microwave drives due to thermal effects [93] or nonlin-

earties [94]. In order to precisely align the frequencies of the drive tones at ωc ± ωm, we

measure the driven response (S21) of the system to extract the detunings and correct the fre-

quencies of the drives. Fig. 7.4a shows examples of the measured driven responses (dots)

and the corresponding fits (solid curves) at various pump photon ratios. The mechanical

sidebands and the probe field interfere destructively at the center of the cavity resonance

and generate a Lorentzian dip with linewidth equals to the effect mechanical damping rate

Γeff = Γm +4G2/κ, which decreases as we increase the pump photon ratio. Fig. 7.4b shows

the driven responses near the interference signals. By fitting the driven response data with

Eq. (2.171), we can extract the detunings (δ, ∆), the mechanical resonance frequency (ωm)

and the frequency of the cavity resonance (ωc), which enable us correct the frequencies

of the drive tones. By iterating this procedures, we can precisely set the powers and the

frequencies of the microwave drives.

Having determined the powers and frequencies of the twomicrowave drives, wemeasure
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Figure 7.6: (a) Cavity occupation extracted from the noise spectrum. The dashed line is
a linear fit of the pump ratio dependent heating. (b) Phonon bath heating rate extracted
from the noise spectrum. (c) Squeezed quadrature variance (blue circles) and anti-squeezed
quadrature variance (red squares) extracted from the noise spectra. The black dashed line
indicates the quadrature variance at the zero-point level. The solid curves are the predictions
fromEq. (2.241) with constant cavity andmechanical occupations extracted from the output
spectrum at n+p = 0. The dashed curves are the predictions including the cavity heating
effect extracted from the experiment.

the output noise spectrum S̄out, interleaved with the unpumped noise floor S̄0
out. Fig. 7.5

shows examples of the measured output spectra with various pump photon ratios. As shown

in Fig. 7.5a, the cavity heat up as we increase the pump photon ratio. Similar to the

cooling spectrum (Fig. 7.3b), the noise squashing effect generates a Lorentzian dip with

linewidth Γtot at the center of the cavity resonance (Fig. 7.5a). By fitting the spectra with

the electromechanical model (2.243), we can extract the cavity occupation (Fig. 7.6a) and

phonon bath heating rate (Fig. 7.6b).

With the extracted parameters from the driven responses and the output spectra, we can

estimate the mechanical quadrature occupations with Eq. (2.238). Fig. 7.6c shows the

quadrature occupations as a function of the pump photon ratio. The blue circles and red

squares are the squeezed and anti-squeezed quadrature occupation respectively. The dashed

line indicates the quadrature occupation at the zero-point level. The solid curves are the
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predictions from Eq. (2.241) with constant cavity and mechanical occupations extracted

from the output spectrum at n+p = 0; they agree with the data at low pump photon ratio. At

large pump photon ratio, the cavity bath starts to heat up, which increases the mechanical

quadrature variances. The dashed curves are the predictions including the cavity heating

effect extracted from the experiment (dashed line in Fig. 7.6a). With the heating effect, the

minimum quadrature variance is achieved at n+p/n
−
p = 0.43 with 〈∆X̂2

1 〉 = 0.56 ± 0.02x2
zp,

2.5 ± 0.2 dB below the zero-point level.

7.2 BAE measurement of mechanical squeezing

While inferring the level of squeezing from the cavity output spectrum is convenient, it

would be preferable to have amore direct method that does not rely on assumptions about the

mechanical dynamics. This can be achieved in our system without needing to introduce an

additional cavity resonance: we continue to use the cavity density of states near resonances

to generate mechanical squeezing, but now use the density of states away from resonances to

make an independent, backaction-evading measurement of a single mechanical quadrature.

In this way, our single cavity effectively plays the role of two: it both generates squeezing,

and permits an independent detection of the squeezing.

To directly detect the mechanical quadratures, in addition to the squeezing pumps, we

introduce another pair of weak balanced probes (purple arrows in Fig. 7.7) at ωc ∓ ωm − ∆

with phase equal to ±φ relative to the squeezing pumps (red and blue arrows in Fig. 7.7)

to perform a backaction evading (BAE) measurement of the mechanical quadrature X̂φ. In

order to ensure no interference between the sidebands of the squeezing pumps and the BAE

probes, we detune the BAE sidebands from the cavity resonance by∆ = 2π×160kHz � Γeff.

The power of the BAE probes are set about 10 dB weaker than the power of the squeezing

pumps to avoid extra heating. In the experiment, the motional sideband spectrum of the

BAE probes is measured (upper left inset in Fig. 7.7), from which we can extract the

mechanical quadrature variance and linewidth. By sweeping the probe phase φ, we can

perform tomography of the mechanical quantum state.
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Figure 7.7: Pump schematic of the BAE measurement of mechanical squeezed state. The
red and blue arrows represent the squeezing drives for the reservoir engineering technique.
The two purple arrows represent the balanced drive for the BAE measurement. The upper
left inset is the schematic of the BAE sideband noise spectrum. The upper right inset is the
schematic of dissipativemechanical squeezing. The gray circle represents the initial thermal
state in phase space. The engineered reservoir generates phase dependent dissipation that
relaxes the mechanics into a squeezed state, which is represented by the blue ellipse. The
gray dashed circle represents the zero-point level. The purple dashed arrow indicates the
measured quadrature from the BAE measurement.

7.2.1 Calibrations

In this experiment, the detuning of the BAE sideband ∆ = 2π × 160kHz is comparable

to the cavity linewidth, to precisely balance the BAE tones and correctly interpret the BAE

noise spectrum, an independent calibrations of the enhanced electromechanical coupling

rate G± and the normalized sideband power are necessary.

7.2.2 Calibration of the enhanced electromechanical couplings

We follow the same procedures in section 1.1.2 to calibrate the enhanced electrome-

chanical couplings for the BAE measurement. To calibrate the enhanced electromechanical

coupling G−, we drive the system with a single red detuned tone at ωc − ωm − ∆ with

transmitted power P− (Fig. 7.8a), and measure the driven response to extract the enhanced

electromechanical coupling G− (red circles in Fig. 7.8c) at various P−. From the linear

fit (red line in Fig. 7.8c), we obtain the calibration aBAE
− = (7.85 ± 0.06) × 1017. To cali-

brate the enhanced electromechanical coupling G+, a constant red detuned tone is applied
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Figure 7.8: Calibrations of the backaction evading measurement. (a) Pump configuration
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the enhanced electromechanical coupling (G+) calibration. (c) Calibrations of the enhanced
electromechanical couplings G±, the inserts are the transmission spectrums corresponding
to the solid circles. (d) Calibration of the normalized motional sideband power.

at ωc − ωm to broaden the mechanical linewidth. Then we drive the system with a blue

detuned tone at ωc + ωm − ∆ with transmitted pump power P+, and measure the driven

response to extract the enhanced electromechanical coupling G+ (blue circles in Fig. 7.8c)

at various P+. The linear fit (blue line in Fig. 7.8c) gives aBAE
+ = (3.24 ± 0.03) × 1018. The

resulting calibrations a± enable us to precisely balance the BAE probes, i.e., G− = G+.

7.2.3 Thermal calibration

After obtaining the calibrations of the enhanced electromechanical couplings, a thermal

calibration is used to covert themeasured BAE sideband power to themechanical quadrature

variance. Similar to the thermal calibration in section 1.1.3, we drive the system with a

single red detuned tone atω− = ωc−ωm−∆with sufficiently small pump power such that the

electromechanical damping effect is negligible (Γ−opt =
4G2
−

κ � Γm). We then measure the

noise power of the up-converted motional sideband Pm, over a range of calibrated cryostat

temperature T (Fig. 7.8d). The resulting normalized sideband power is given by

(
κ2 + 4∆2

κ̄2

)
Pm

P−
= bBAE−

(
2
κ̄

)2 kBT
~ωm

, (7.8)

where P− is the transmitted power of the red detuned tone, κ is the cavity linewidth, κ̄

is the average value of the cavity linewidth over the respective temperatures and b− =
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Figure 7.9: Example of the BAE noise spectrum. The red line is a background fit with a
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G[ωc−∆]ωc

G[ω−]ω−
g2

0
λ[ω−] is the thermal calibration. The linear fit in Fig. 7.8d gives bBAE− =

(2.77 ± 0.04) × 105 (rad/s)2.

Similar to the measurement of the squeezing output spectrum, we spend an equal

time interleaving measurement to measure the pumped and unpumped noise spectrum.

After subtracting the unpumped noise spectrum to remove the noise floor, the output noise

spectrum of the BAE measurement is given by

∆S̄BAE
meas [ω] = S̄BAE

meas [ω] − S̄0 [ω] = S̄c [ω] + S̄BAE [ω] , (7.9)

the first term S̄c [ω] is the noise spectrum of the cavity resonance due to the non-zero cavity

occupation. The second term S̄BAE [ω] is the noise spectrum of the BAE sideband, which

is given by

S̄BAE [ω] = G [ωc − ∆] κR~ωc
4g2

0
κ

np
κ

κ2 + 4∆2

SXφ [ω]
x2

zp
, (7.10)

where SXφ [ω] is the mechanical quadrature spectrum. Because the BAE sideband is

detuned from the cavity resonance with detuning comparable to the cavity linewidth, over

the bandwidth of the BAE measurement, the cavity noise appears as a frequency dependent

noise background. An example of the spectrum is given by Fig. 7.9, a quadratic polynomial

is employed to fit the cavity noise background, as shown by the red curve in Fig. 7.9. The

BAE sideband spectrum S̄BAE [ω] is given by subtracting the noise spectrum from the fitted

cavity noise background. The noise power of the BAE sideband is given by integrating Eq.
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(7.10), which gives

PBAE
m = G [ωc] κR~ωcnp

4g2
0

κ2 + 4∆2

〈
X2
φ

〉
x2

zp
. (7.11)

With the thermal calibtration factor bBAE− , we can convert the normalized BAE sideband

power to the quadrature variance〈
X2
φ

〉
x2

zp
=

1
bBAE−

(
4∆2 + κ2

4

)
PBAE

m

P−
. (7.12)

7.2.4 Experimental results

Fig. 7.10a is the mechanical quadrature variance as a function of the probe phase φ.

We first perform the BAE measurement to a quantum squeezed state obtained with total

pump photon number ntotp = 1.85× 105 and pump photon ratio n+p/n
−
p = 0.41 (the optimum

squeezing point in Fig. 7.6c). The blue curve is the quadrature variance extracted from

the output noise spectra (the yellow dots in Fig. 7.5). The blue circles are the quadratures

variances obtained from the BAE measurement with probe photon number np = 1.1 × 104.

The minimum quadrature variance is achieved at φ = 0◦ with 〈∆X̂2
φ〉 = 0.34 ± 0.07x2

zp,

4.7±0.9 dB below the zero-point level, which is lower than the quadrature variance inferred

from the output spectrum, implying that there is additional dynamics at play (beyond the

ideal electromechanical interaction). Then we perform the BAEmeasurement to a squeezed

state obtained with smaller pump photon number (nthtp = 1.35× 104 and n+p/n
+
p = 0.5). The

red curve is the quadrature variance extracted from the output noise spectra and the red

circles are the result of the BAE measurement with np = 1.4 × 103. In this case, the results

from the BAE measurement agree with the results obtained from the output spectra, which

implies that the additional squeezing mechanism depend on the power of the intracavity

fields.

The enhanced squeezing observed in theBAEmeasurement suggests an additional power

dependent squeezingmechanism beyond the dissipativemechanism from electromechanical

interaction; an obvious candidate is direct parametric driving of the mechanics. The

presence of such driving is further corroborated by our observation of a phase dependence of
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Figure 7.10: (a) Mechanical quadrature variance as a function of probe phase. The red
(blue) circles are the quadrature variances of the weakly (strong) squeezed state as measured
using the BAE technique. The solid curves are the quadrature variances inferred from the
corresponding output spectra assuming no mechanical parametric drive. The dashed curves
are the predictions of an electromechanical model including the mechanical parametric
effect. The insets are the mechanical quadrature spectra of the strong squeezed state with
phase φ at −70◦ (red), −50◦ (green), −20◦ (yellow), 0◦ (blue). The gray Lorentzian in the
lower inset represents the spectrum with quadrature variance equal to half of the zero-point
fluctuation (the 3 dB limit). (b) Mechanical quadrature linewidth as a function of probe
phase. The red (blue) circles are the measured mechanical quadrature linewidth of the
weakly (strong) squeezed state. The solid lines are the theoretical predictions from the ideal
electromechanical model. The dashed curves are the fit with the electromechanical model
including the mechanical parametric interaction.
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the quadrature linewidth in the BAEmeasurement (Fig. 7.10b). Similar induced mechanical

parametric driving has been observed in other BAE measurements; they can arise via a

number of mechanisms, including thermal effects as well as higher nonlinearities [94, 93].

To understand the effects of this mechanical parametric driving, we phenomenologically

add the parametric interaction to our otherwise ideal electromechanical model:

Ĥpara = ~λ
(
e−iψ b̂2 + eiψ b̂†2

)
, (7.13)

where λ is the amplitude of the parametric interaction and ψ is the relative phase between

the parametric drive and the squeezing pumps. Incorporating the parametric interaction

into the ideal electromechanical Hamiltonian (3.19), the susceptibility matrix Eq. (3.28)

becomes

(
χ [ω]

)−1
≡

*.........
,

χ−1
c [ω + ∆] 0 −iG− −iG+

0 χ−1
c [ω − ∆] iG∗+ iG∗−

−iG∗− −iG+ χ−1
m [ω + δ] i2λeiψ

iG∗+ iG− −i2λe−iψ χ−1
m [ω − δ]

+/////////
-

. (7.14)

The solutions of the quantum Langevin equations are given by Eq. (3.29). With the

solution of the phonon annihilation and creation operators, the mechanical quadrature

X̂φ = b̂eiφ + b̂†e−iφ can be written as

X̂φ [ω] =Dφ,1 [ω]
√
κâin [ω] + Dφ,2 [ω]

√
κâ†in [ω]

+ Dφ,3 [ω]
√
Γm b̂in [ω] + Dφ,4 [ω]

√
Γm b̂†in [ω] , (7.15)

where Dφ, j [ω] =
(
χ [ω]

)
3, j eiφ +

(
χ [ω]

)
4, j e−iφ. The quadrature spectrum is given by

S̄Xφ [ω] =
1
2

∫
dω′

2π
〈{

X̂φ
[
ω′

]
, X̂φ [ω]

}〉
=

{���Dφ,1 [ω]���
2
+

���Dφ,2 [ω]���
2}
Γm

(
nthc +

1
2

)
+

{���Dφ,3 [ω]���
2
+

���Dφ,4 [ω]���
2}
κ

(
nthm +

1
2

)
,

(7.16)
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which is a function of the enhanced electromechanical couplings (G−, G+), the detunings

(δ, ∆), the thermal occupations (nthm, nthc ), the amplitude and phase of the mechanical para-

metric drive (λ, ψ). The mechanical quadrature linewidth is given by fitting the predicted

mechanical quadrature spectrum with a Lorentzian curve.

Having incorporated the mechanical parametric interation into the model, we can fit

the observed phase-dependent quadrature linewidth with model to quantify the spurious

parametric drive. Using the parameters (G−, G+, δ, ∆, nthm, nthc ) extracted from the corre-

sponding output noise spectrum, the quadrature linewidth can be written as a function of

the probe phase φ, the amplitude λ and phase ψ of the parametric drive, i.e., Γm
(
φ, λ, ψ

)
.

By fitting the observed phase dependent quadrature linewidth data (Fig. 7.10b) with the

function Γm
(
φ, λ, ψ

)
, we can extract λ and ψ.

By assuming the phase of the parametric drive ψ follows the phase of the BAE probe

(i.e. ψ = φ + ψ0, where ψ0 is a constant phase shift), the model captures the observed

phase dependence behavior of the quadrature linewidth, as shown by the dashed curves in

Fig. 7.10b. From the fit, we extract λ = 2π × (121 ± 34)Hz, ψ0 = −121◦ ± 52◦ for the

weakly squeezed state (red dashed curve) and λ = 2π × (1.3 ± 0.3)kHz, ψ0 = −129◦ ± 15◦

for the strong squeezed state (blue dashed curve). Surprisingly, if one instead assumes

that the parametric driving is a result of the main squeezing tones (i.e. take ψ a constant

independent of φ), one cannot capture the observed phase dependence of the quadrature

linewidth. These results suggest that the parametric drive is induced by the BAE probes.

The dashed curves in Fig. 7.10a are the predicted quadrature variance including the

mechanical parametric effect. The model suggests that the combination of the reservoir

engineering with the mechanical parametric drive provide extra squeezing. However, the

model doesn’t fully capture the observed quadrature variance in the BAEmeasurement. The

deviation may be due to the complicated heating effects associated with the underlaying

nonlinearities [94, 93] that cause the spurious mechanical parametric drive. We stress that

our treatment of the spurious mechanical parametric drive is phenomenological; we do

not know the precise microscopic mechanism which causes this driving. Nonetheless, it

allows us to explain both surprising features of the BAEmeasurements (the observed phase-

dependent mechanical quadrature linewidth, and the enhanced squeezing), and provide a
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direction to engineer the parametric drive to increase the squeezing.

In conclusion, we combine reservoir engineering and backaction evading measurement

in a cavity electromechanical system to demonstrate a continuous QND measurement of

mechanical squeezed states. A spurious mechanical parametric effect is observed and

provide additional squeezing. Together with the spurious mechanical parametric drive, the

reservoir engineering technique produce more than 3 dB squeezing below the zero-point

level. The present scheme can be applied to generate and characterize more complicated

quantum states by carefully engineering the nonlinear interaction [111, 112]. The ability to

generate and measure a strong quantum squeezed state of a macroscopic mechanical object

would be useful for ultra-sensitive detection [46], quantum information processing [10], as

well as the fundamental study of quantum decoherence [118, 47].
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Appendix A

Input-output theory

In section 3.5, by making the narrow bandwith approximation and the slow varying en-

velope approximation, the quantum dynamics of a high Q LC circuit couple to transmission

lines can be described by the quantum optics equations of an optical cavity coupled to heat

baths. In this section, the standard input-output formulism in quantum optics [31, 103] is

used to give an alternative derivation of Eqs. (3.96) and (3.97). The input-output formailsm

is a generic theory that can be applied to describe dissipations in various system such as

mechanical mode or electromagnetic mode.

In the input-output formalism, the total Hamiltonian can be separated into the Hamilto-

nian of the system Ĥsys and the Hamiltonian that describe the dissipation Ĥdiss, i.e.

Ĥtot = Ĥsys + Ĥdiss. (A.1)

In this case, the system is a high Q electrical resonator or optical cavity, which is described

by the Hamiltonian

Ĥsys = ~ωc â†â. (A.2)

The dissipation is described by a bath that consists of a continuum spectrum of electromag-

netic modes which are linearly coupled to the system, i.e.,

Ĥdiss = Ĥbath + Ĥint, (A.3)

where Ĥbath is the Hamiltonian of the bath continuum and Ĥint is the interaction between
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the system and the bath, which are given by

Ĥbath =

∫
dk~ω (k) Â† (k, t) Â (k, t) , (A.4)

Ĥint = −i~
∫

dk
[

f (k) â† (k, t) Â (k, t) − h.c.
]
, (A.5)

where f (k) is the linear coupling between mode k and the system. The equation of motions

of the cavity field and the bath continuummodes are given by the corresponding Heisenberg

equations

dâ (t)
dt

= −iωc â (t) −
∫

dk Â (k, t) f (k) , (A.6)

d Â (k, t)
dt

= −iω (k) Â (k, t) + f ∗ (k) â (t) . (A.7)

The solution of the external field Â (k, t) is given by integrating Eq. (A.7). If we integrate

from the initial time t0 to t, we obtain

Â (k, t) = Â (k, t0) e−iω(k)(t−t0) +

∫ t

t0

dτâ (τ) f ∗ (k) e−iω(k)(t−τ) . (A.8)

We can also integrate backward from the final time t f to t, and then we obtain

Â (k, t) = Â
(
k, t f

)
e−iω(k)(t−t f ) −

∫ t f

t
dτâ (τ) f ∗ (k) e−iω(k)(t−τ) . (A.9)

Substituting Eq. (A.8) and Eq. (A.9) into the last term of Eq. (A.6), we obtain

∫
dk Â (k, t) f (k) =

∫
dk f (k) Â (k, t0) e−iω(k)(t−t0)

+

∫ t

t0

dτ
∫ ∞

0

dω
2π

J [ω] e−iω(t−τ) â (τ) , (A.10)∫
dk Â (k, t) f (k) =

∫
dk f (k) Â

(
k, t f

)
e−iω(k)(t−t f )

−

∫ t f

t
dτ

∫ ∞

0

dω
2π

J [ω] e−iω(t−τ) â (τ) , (A.11)
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where the kernal J [ω] is defined by

J [ω] = 2π
�����
dk
dω

�����

2
| f (ω) |2 . (A.12)

If the response of the bath is much faster than the change of the envelope ã (t) of the

cavity field (i.e. slow varying envelope approximation and â (t) = ã (t) e−iωct), then we can

rewrite the integral

∫ t

t0

dτ
∫

dω
2π

J [ω] e−iω(t−τ) â (τ) = â (t)
∫ t

t0

dτ
∫ ∞

0

dω
2π

J [ω] e−i(ω−ωc )(t−τ)

' â (t)
∫ t

t0

dτ
∫ ∞

−ωc

dω
2π

J [ω + ωc] e−iω(t−τ) . (A.13)

Because the cavity only response around its resonance frequency, we can extend the integral

from −ωc to −∞without introducing large error. If we further assume the kernal is constant

within the bandwidth we concern, we can approximate it by a constant

J [ω] = 2π
�����
dk
dω

�����

2
| f (ωc) |2 = κ. (A.14)

Then the integral becomes

∫ t

t0

dτ
∫ ∞

−∞

dω
2π

J [ω + ωc] e−iω(t−τ) =
κ

2
â (t) . (A.15)

The approximations in the derivation above are the Born-Markovian approximation, which

is equivalent to assuming the bath is memoryless. If we define

d̂in (t) = −
1
√

2π

∫
dω Â [ω, t0] e−iω(t−t0), (A.16)

d̂out (t) = −
1
√

2π

∫
dω Â [ω, t0] e−iω(t−t f ), (A.17)

then Eq. (A.6) can be written as

dâ (t)
dt
+

(
iωc +

κ

2

)
â (t) =

√
κd̂in (t) , (A.18)
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or
dâ (t)

dt
+

(
iωc −

κ

2

)
â (t) =

√
κd̂out (t) . (A.19)

The difference of Eq. (A.18) and Eq. (A.19) gives the boundary condition

d̂out (t) = d̂in (t) −
√
κâ (t) . (A.20)

The input field and the output field satisfy the commutation relations

[
d̂in (t) , d̂†in

(
t′
)]
= δ

(
t − t′

)
,

[
d̂out (t) , d̂†out

(
t′
)]
= δ

(
t − t′

)
,

with the other commutators equal to zero. If we assume the system and the bath are

independent and non-interacting at the initial time t0, and the bath is at thermal equilibrium

at t0, and then the bath operator satisfies

〈
Â (ω, t0)

〉
= 0, (A.21)〈

Â (ω, t0) Â
(
ω′, t0

)〉
= 0, (A.22)〈

Â† (ω, t0) Â†
(
ω′, t0

)〉
= 0, (A.23)〈

Â† (ω, t0) Â
(
ω′, t0

)〉
= nth [ω] δ

[
ω + ω′

]
, (A.24)

where 〈· · · 〉 represents ensemble average. Together with Eq. (A.16), the statistics of the

input field is

〈
d̂in (t)

〉
= 0, (A.25)〈

d̂in (t) d̂in
(
t′
)〉
= 0, (A.26)〈

d̂†in (t) d̂†in
(
t′
)〉
= 0, (A.27)
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d̂†in (t) d̂in

(
t′
)〉
=

1
2π

∫ ∞

−∞

dω
∫ ∞

−∞

dω′eiω(t−t0)e−iω(t ′−t0)
〈

Â† (ω, t0) Â (ω, t0)
〉

(A.28)

=
1

2π

∫ ∞

−∞

dωeiω(t−t ′)nth [ω] (A.29)

= nth [ωc] δ
(
t − t′

)
, (A.30)

where we assume that we are focus on a small bandwidth about ωc, and therefore nth [ω] '

nth [ωc].

Intrnal and external losses

Up to this point, the only loss in the system is due to the dissipation to the transmission

line. In reality, there are channels other than the transmission lines can generate additional

losses and fluctuations to the system, for example, radiative loss, resistive loss and dielectric

loss can induce extra losses and fluctuations to the resonator. To take all these effects into

account, we lump all of these channels together and associate them with a heat bath with

internal loss κI = κ−κL−κR. Then the quantum dynamics of the RLC resonator is governed

by the same equation (A.18) with

√
κd̂in (t) =

√
κI d̂I,in (t) +

√
κL d̂L,in (t) +

√
κRd̂R,in (t) . (A.31)

The input-output relation of the field in the transmission lines is

d̂σ,out(t) = d̂σ,in(t) −
√
κσ â(t), (A.32)

where σ = L, R. In general, the temperature of different channels can be different

〈
d̂†σ,in (t) d̂σ,in

(
t′
)〉
= nthσ [ωc] δ

(
t − t′

)
, (A.33)

with thermal occupation nthσ [ω] = 1/
(
exp ~ωc

kBTσ
− 1

)
.
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Appendix B

Beyond the rotating wave approximation

Discussion in chapter 4 focuses on the electromechanical system in good cavity limit,

i.e., κ/ωm � 1. Therefore, the off-resonance interactions described by ĤCR (cf. Eq. (4.20))

have been omitted. This appendix discusses the procedures the include the effects of off-

resonance terms. These effects can become important if the sideband parameter κ/ωm 3 1

and possibly alter the lineshape of the noise spectrums.

The quantum Langevin equations (4.16) and (4.17) in the frequency space are

[
κ

2
− i (ω + ∆)

]
d̂ [ω] −

√
κd̂in [ω] =i

(
G−ĉ [ω] + G+ĉ† [ω]

)
+ i

(
G+ĉ [ω −Ω] + G−ĉ† [ω +Ω]

)
, (B.1)

[
Γm

2
− i (ω + δ)

]
ĉ [ω] −

√
Γm ĉin [ω] =i

(
G−d̂ [ω] + G+d̂† [ω]

)
+ i

(
G+d̂ [ω +Ω] + G−d̂† [ω +Ω]

)
, (B.2)

where Ω = 2 (ωm + δ). The off resonance terms couple the fields at ω to the sideband at

ω +Ω. If we define the vectors

D̂CR [ω] =
(
. . . D̂ [ω − 2Ω] , D̂ [ω −Ω] , D̂ [ω] , D̂ [ω +Ω] , D̂ [ω + 2Ω] . . .

)
, (B.3)

D̂CR,in [ω] =
(
. . . D̂in [ω − 2Ω] , D̂in [ω −Ω] , D̂in [ω] , D̂in [ω +Ω] , D̂in [ω + 2Ω] . . .

)
,

(B.4)
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and the diagonal matrix

LCR = diag (. . . L, L, L, L, L . . .) . (B.5)

The quantum Langevin equations can be written in the matrix form

(
χCR [ω]

)−1 D̂CR [ω] = LCR · D̂CR,in [ω] , (B.6)

with the susceptibility matrix

(
χCR [ω]

)−1
=

*............
,

. . .
. . .

. . . 0 0 0 0

0 χ− χ [ω −Ω] χ+ 0 0 0

0 0 χ− χ [ω] χ+ 0 0

0 0 0 χ− χ [ω +Ω] χ+ 0

0 0 0 0 . . .
. . .

. . .

+////////////
-

, (B.7)

with

χ− =

*.........
,

0 0 −iG+ 0

0 0 iG− 0

0 0 0 0

iG− iG+ 0 0

+/////////
-

, (B.8)

and

χ+ =

*.........
,

0 0 0 −iG−

0 0 0 iG+

−iG+ −iG− 0 0

0 0 0 0

+/////////
-

. (B.9)

In order to solve the equations of motion, we truncate the number of sidebands that we

take into account, i.e. we trucate the length of D̂CR [ω] to the nthsideband at frequency

ωm ± nΩ. As the analytic solutions are unwieldy even for first order corrections, we instead

numerically calculate the spectrum at frequencies specified by the data.
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Appendix C

Fabrication recipe of the
superconducting electromechanical
device

This appendix describes the detailed fabrication procedures of the polymer sacrificial

device with S1813 and sputtered aluminum. The device is fabricated in a class 100 clean

room at the Kavli nanoscience institute at Caltech.

1. Bottom layer:

(a) Clean the silicon substrate with nanostripe for 30′ at 80 ◦C.

(b) Remove native silicon oxide by HF for 5′.

(c) Sputter 100 nm aluminum with Ar pressure at 5 mTorr and 700 W.

(d) Dehydration bake at 105 ◦ for 1′.

(e) Coat with HMDS vapor for 10′.

(f) spin coat S1813 with 3000 rpm for 1′.

(g) Remove the resist at the etch of the chip with acetone.

(h) Bake at 90 ◦C for 1′.

(i) Contact exposure with the mask of the bottom layer for 4”.

(j) Develop the photoresist with MF-319 for 1′.

(k) Descum with Branson asher at 1 Torr O2 with 100 W for 2′.
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(l) Hard bake at 100 ◦C for 2′.

(m) Etch the aluminum with transene aluminum etchant-type A for 3′30”.

(n) Second etch with MF-319 for 2′ to remove the aluminum oxide residue.

(o) Remove the photo resist with remover PG for 30′ at 80 ◦C.

2. Sacrificial layer:

(a) Dehydration bake at 105 ◦C for 1′.

(b) Coat with HMDS vapor for 10′.

(c) spin coat S1813 with 3000 rpm for 1′.

(d) Remove the resist at the etch of the chip with acetone.

(e) Bake at 90 ◦C for 1′.

(f) Contact exposure with the mask of the sacrificial layer for 3”.

(g) Postbake at 100 ◦C for 1′.

(h) Second exposure with flood mode for 0.5”.

(i) Develop the photoresist with MF-319 for 5′ without agitation.

(j) Descum with Branson asher at 1 Torr O2 with 100 W for 2′.

(k) bake at 110 ◦C for 1 min to reflow the photoresist

(l) Roughen the surface of the sacrificial layer by RIE with O2 plasma for 20”.

(m) Sputter 100 nm aluminum with Ar pressure at 5 mTorr and 700 W.

3. Top layer:

(a) Dehydration bake at 105 ◦ for 1′.

(b) Coat with HMDS vapor for 10′.

(c) spin coat S1813 with 3000 rpm for 1′.

(d) Remove the resist at the etch of the chip with acetone.

(e) Bake at 90 ◦C for 1′.
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(f) Contact exposure with the mask of the top layer for 4”.

(g) Develop the photoresist with MF-319 for 1′.

(h) Descum with Branson asher at 1 Torr O2 with 100 W for 2′.

(i) Hard bake at 100 ◦C for 2′.

(j) Etch the aluminum with transene aluminum etchant-type A for 3′30”.

(k) Second etch with MF-319 for 2′ to remove the aluminum oxide residue.

(l) Remove the photoresist and the sacrificial layer with remover PG for 30′ at

80 ◦C.

(m) Dry the sample with critical point dryer (CPD).
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