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And when T beheld my devil, 1 found him serious,
thorough, progound, solemn: At was the Spirnit of Gravity
— through him all things are rudned.

One does not RiLL by anger but by Laughter.

Come, Let us RILL the Spinit of Gravity!

— Friedrich Nietzsche, 1885
Thus Spake Zarathustra
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ABSTRACT

The P-N method is developed to describe the transport of neutrinos
in collapsing stellar cores, and the multigroup flux limited diffusion
and equilibrium diffusion approximations are obtained from it. An
effective Lagrangian for weak neutral and charged current neutrino
interactions which is applicable to low energy neutrino processes is
derived. The neutrino source functions which enter into the P-N equa-
tions are given a many body theory formulation in terms of weak current-
current correlation functions. Within this framework, we deal, in turn,
with the scattering reactions vA + vA, vA - vA¥, N » N (both for non~-
degenerate and degenerate nucleons), ve + ve, and vv - vv, and the pro-

enepv, e A o A(Z-t-l)vE,

e’

duction and absorption reactions e p = nY,,

ee” 2 vV, and 7p£ = vV. These equations are then applied to the various
phases of neutrino flow during iron core collapse: the transparent stage
to the onset of trapping; the approach of electron neutrinos to beta-
equilibrium; the evolution of the muon neutrino and antineutrino distri-
bution functions towards the Fermi-Dirac form; the conditions under
which v vV radiative energy loss exceeds the ¥, loss; comparison of the

P-1 and flux limited diffusion methods of spatial transport in a static

pre-bounce core.
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1. SUPERNOVAE AND NEUTRINOS: INTRODUCTION

1.1 INTRODUCTION

The transformation of a white dwarf to a neutron star liberates
about one hundred million electron volts of its gravitational potential
energy per baryon and most of its electron lepton number. Electron
neutrinos transport the lepton number. Neutrinos and antineutrinos
of all types carry the bulk of the energy away.

If the energy released in the collapse of the hot iron/nickel
white dwarf core of a massive star at the endpoint of its evolution
can couple with an efficiency of one percent or so to the overlying
mantle, the mantle and envelope of the star may be ejected, with the
result a Type II supernova explosion. Neutrinos deposit energy and
momentum in the mantle. Does this deposition cause or contribute to
ejection? The theoretical answer depends upon the input physics.

The idea of a supernova representing the catastrophic
transition of the interior stellar state has been around since Baade
and Zwicky's (1934) connection of supernovae to neutron star
formation. Yet, no believable and workable supernova model has been™
constructed to date.

This is due in large part to the complex interweaving of the
hydrodynamics of implosion and explosion with neutrino radiative
transfer in regimes of matter at the limit of theoretical knowledge.
The equation of state governs the collapse rate, strength of

generated shock waves, and elemental abundances. The abundances



determine the rate of neutrino loss and matter heating; this, in turn,
governs the thermodynamic conditions upon which the equation of state
depends. Historically workers have used the simplest approximations
to treat neutrino transport and the equation of state; when these
were found inadequate, the next simplestwere tried. The hope was for
a definitive answer: yes, supernovae occur via the implosion/explosion
mechanism, or, no, they do not. Instead, the results are quite
sensitive to changes in the input physics; the answer remains maybe.
In recent years, an all out effort has been launched by many groups to
unravel the physics of collapse.

This effort was spurred on in part by the dramatic expansion
in our knowledge of the interactions of neutrinos with matter that has
occurred in the last few years: a new weak force mediated by the
exchange of a neutral massive spin one boson was discovered; the
existence of a new flavor of neutrino was inferred. A qualitative
change in the theoretical picture of core collapse results from the
inclusion of these new effects.

Neutrino transport, with special attention paid to the neutral
current processes which neutrinos participate in, is the subject of

this thesis.

1.2 SUPERNOVA OBSERVATIONS
Supernova (SN) stars suddenly flare to a photon luminosity a
billion times that of the sun, and are ten thousand times brighter than

novae. At least six SN were observed in historical times, those in



the years 385 A.D., 1006, 1054 (the Crab), 1181, 1572 (Tycho's SN),

and 1604 (Kepler's SN)(Clark and Stephenson 1977); in addition, Cas A
apparently exploded in the seventeenth century, but was not observed.
The debris from these explosions are seen as extended radio sources;
approximately one hundred such SN remnants are known in our Galaxy.

In 1885, the first extragalactic SN was observed, in Andromeda; it was
not until the twenties of this century when Andromeda was recognized

as an island universe distinct from our own that the tremendous optical
energy released in supernovae became known. By now, n 400
extragalacfic SN have been seen.

Observers have obtained the optical spectra and light curve
(luminosity as a function of time) of many of these events (see, for
example, Kirshner et al. 1973), on the basis of which SN have been
classed into two types, I and II. The light curves of both types
rise steeply to maximum brightness, then quickly fall, with the peak
lasting about twenty days; the subsequent decline in Type I is almost
exponential, that in Type II has a slowly falling plateau, then a
precipitous drop, although not all Type II's look the same. From the
spectrum, information on the expansion velocity, temperature, and
radius of the photosphere, as well as on elemental abundances can be
obtained. Type II have hydrogen, and heavier elements have been
identified; Kirshner and Kwan (1975) have estimated the mass of the
expanding envelope to be from two to five solar masses with an
abundance distribution compatible with solar system values for three

particular SN which occurred in 1969, 1970, and 1973. The expansion



kinetic energy is ~ 0.1 to 0.5 MeV per baryon, so with the Kirshner-
50 51 :
Kwan estimate, a kinetic energy between v 5x10 to 5x10 ergs is

obtained; the time integrated optical energy output is less,

5‘3x1049 ergs.

Type I's have little or no hydrogen, larger expansion kinetic
energies per baryon and light energy output than Type II's; the spectrum
is difficult to analyze, and the composition is only poorly kndwn.

The type of galaxy in which the SN types are predominantly
found (I in elliptical, II in spiral), the spatial distribution
within galaxies (II in spiral arms), and the SN birth rates (estimated
by Tammann (1974) to be one every 20 + 10 years in our Galaxy) all
contribute to our knowledge of supernovae. A fairly clear picture of
Type II SN emerges: they involve young massive stars of Population I.
For Type I supernovae, the picture is fuzzier.

The first pulsar was observed in 1967. A few years later, the
Crab pulsar was identified (Comella et al. 1969). It has been
estimated that there are perhaps half a million pulsars in our
Galaxy (see Green 1977). With Gold's (1968) identification of pulsars
with rotating, magnetized neutron stars, and this figure, it is clear
that gravitational collapse is a relatively common phenomenon; we
know of no other way a neutron star can form.

The Crab Nebula has been called the Rosetta Stone for the
field of supernova physics. It was a supernova, by the testimony of
ancient Chinese records, and it is an expanding number of filaments

and cloud of gas, 1lit up by the energy supplied by a central neutron



star; it radiates in all wavelength bands. If the expansion is

extrapolated back in time it agrees with the Chinese date; the pulsar
slowdown lifetime is aiso consistent with this date. This object,
and the Vela pulsar with its associated ten thousand year old
supernova remnant, provide the most compelling observational evidence

for.the core implosion/mantle or envelope explosion hypothesis.

1.3 BEFORE AND AFTER COLLAPSE

Stars with masses between about eight and fifty solar masses
evolve an onion skin configuration: an iron/nickel white dwarf core
supported by relativistic electron degeneracy pressure forms in the
center with a mass near the Chandrasekhar limit of 1.4 Mb ; it is
surrounded in succession by layers of (primarily) silicon, oxygen,
neon, carbon, helium, and hydrogen. Near the boundary between one
layer and the next, a shell burns the thermonuclear fuel of the
outer layer into its ashes, the composition of the inmner layer; in
particular, the core slowly grows in mass as the silicon burning
shell accretes matter onto it. The stellar envelope has a red giant
structure of radius between 1013 and lO14 cm, although this, and the
amount of hydrogen left in the outer layers, are sensitive to the
rate of mass loss from the star in its earlier evolutionary phases.
Stars of fifteen and twenty-five solar masses have, for the first time,
been numerically evolved from the main sequence to this
presupernova configuration (Weaver et al. 1977).

The core collapses; most of the mantle (the silicon to carbon

layers) and all of the envelope cannot respond dynamically to the



rapid collapse and remain essentially stationary, in hydrostatic
equilibrium. Let there be a strong shock wave: while passing through
the mantle, this shock can trigger the explosive ignition of some
unburned fuel, for example, burning silicon to iron peak elements.
The mantle and envelope are dispersed into interstellar space,
enriching it in heavy elements, causing chemical evolution of the
galaxy. The modern theory of nucleosynthesis rests upon

supernovae as the primary site. To explain the observed elemental
abundances, it seems necessary to lock up most of the core matter in
a collapsed remnant; otherwise, too many neutron rich nuclei would be
predicted to exist (Weaver et al. 1977). This is further evidence
for the implode/explode scenario.

When the shock emerges at the surface of the envelope, a
fraction of a day after the core collapse, the light curve begins its
rapid rise; the observed features of Type II light curves can be
explained by this mechanism alone, provided the shock energy is in the
neighborhood of 1051 ergs (Falk and Arnmett 1977, Chevalier 1976);
Type I's may need, in addition, another energy source, such as the
decay of radioactive nuclei (Colgate and McKee 1969), to obtain the
exponential decay (Lasher 1975).

Supernovae are thought to be the source of cosmic rays and
perhaps their accelerators. The shock plays an important role in the
energy balance of the interstellar medium. Star formation can
apparently be triggered by the incidence of the shock on a molecular

cloud. A supernova that exploded near the birth date of the solar



system, perhaps even triggering the collapse of the protosolar
nebula, has been suggested to explain some of the isotopic anomalies
found in meteorites.

And, of course, neutron stars and maybe black holes are the
collapsed remnants of these explosions.

There is one missing ingredient in this grand design which
places the supernova phenomenon at the apex of much of astrophysical

theory: the cause.

1.4 TINSTABILITY INITIATORS AND EXPLOSION MECHANISMS

Burbidge et al. (1957), BZFH, were the first to suggest a
mechanism by which the core would become unstable after all its
thermonuclear energy was spent: at high temperature, iron peak
elements photodisintegrate into alpha particles and neutrons; at an
even higher temperature, alpha particles break down into nucleons.
Fowler and Hoyle (1964), FH, amplified and extended the BZFH ideas
by proposing a specific presupernova model, emphasizing the
importance of neutrino emission for the collapse of massive cores,
suggesting another instability mechanism for very massive stars (with
carbon/oxygen cores more ﬁassive than v 30 M@), that resulting from
the neutrino—antineufrino energy loss due to the annihilation of
electrons and positrons, and specifying a mechanism for mantle
ejection, namely, the thermonuclear burning of unburned oxygen in the
mantle as it falls in and heats up.

Cameron (1958) proposed another mechanism for the onset of

instability: degenerate electrons are captured by nuclei, thereby



robbing the core of its pressure support against its self gravity;
the core becomes progressively more neutron rich, it neutronizes.

For massive iron cores (> 2 Mb), photodecomposition initiates
the phase of rapid collapse; for less massive cores, such as the ones
with mass near the Chandrasekhar limit which arise from evolutionary
calculations (Arnett 1977a, Weaver et al. 1977), collapse is
initiated by electron capture which lowers the Chandrasekhar mass
below the core mass.

Colgate and White (1966), CW, constructed the first numerical
hydrodynamical model of the implosion/explosion phenomenon. Three
important ingredients were added to SN theory: a core opaque to
neutrinos in the late stages of collapse, a shock wave formed as a
result of matter accreting onto a small inner core, and the deposition
of energy by neutrinos in the mantle and its subsequent rapid expansion
which generates another shock wave. Their neutrino transport was no
transport at all: energy was deposited in the last mean free path.

Arnett (1966, 1967) improved on the neutrino physics, using
the equilibrium diffusion approximation (EDA) with neutrinos flowing
down the temperature gradient, and emphasized the importance of muon
neutrinos as carriers of the bulk of the energy from the collapsing
core.

Ivanova et al. (1967) suggested energy deposition can trigger
the thermonuclear burning of mantle oxygen and thus tied together
the FH and CW mechanisms. The shock formed when the core halted,

the bounce shock wave, propagated through their mantle and envelope;



this suggested another possible explosion mechanism, but was found to
be not of sufficient intensity to produce a supernova.

Wilson (1971) used general relativistic equations of motion
to describe the hydrodynamics and the Boltzmann transport equation to
treat the flow of both electron and muon neutrinos. One model
exploded; the neutrinos acted only as a slight damper to the now
predominant bounce shock wave. This third explosion mechanism seems
now to be the most important (Wilson 1977, Bruenn 1975, van Riper 1977).

When low energy neutrinos are elastically scattered by nuclei,
they transfer momentum but very little energy; this suggests a
fourth mechanism for mantle blowoff, by neutrino momentum deposition
(as opposed to the CW energy deposition mechanism). This process
requires neutral current interactions, and with their discovery, a
new era of work on iron core collapse was initiated, led off by
Wilson (1974), who used his 1971 code with the inclusibn of neutrino-
nucleus scattering to find explosions were sensitive to the value of

the neutral current coupling chosen.

1.5 PHASES OF THE NEUTRINO FLOW

It has subsequently been found that explosions are also
sensitive to variations in other imputs to the collapse codes, such
as in the equation of state, in the neutrino processes and in the
method used for their transport. Two methods of transport are now
used in coupled radiation-hydrodynamic codes: flux limited diffusion
(Wilson et al. 1975, Wilson 1976, 1977, Bruenn 1975, A:nett 1977)

and the equilibrium diffusion approximation where flows down
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neutrino chemical potential gradients as well as down temperature
gradients are now allowed (Mazurek 1975, 1976, Sato 1975). ©Not all
neutrino processes are included in these works, and those that are
are often not treated correctly.

We approach neutrino transport using the underlying structure
imposed by the P-N equations of transfer (derived in Chapter 3) and
show how the two approximations mentioned above follow from it. The
Pauli exclusion principle, which limits the states into which the
neutrinos can be produced or scattered, causes considerable
complications: nonlinearities appear in the neutrino source functions.

In Chapter 2, we review the present experimental and
theoretical status of the weak interactions and obtain an effective
Lagrangian suitable for the description of the low energy processes
in which neutrinos participate during gravitational collapse.

We formulate a many body treatment of neutrino interactions
in matter using dynamical correlation functions of the currents which
enter into this Lagrangian, then proceed to deal with the many
neutrino scattering, production, and absorption mechanisms of
importance in supernovae within this framework (Chapters 4 and 5).

The P-N equations with all the source functions included are
thus set up. It is applicable to any white dwarf to neutron star or
black hole transformation, not just those associated with iron core
collapse. For example, other arenas include mass transfer onto a
white dwarf in a binary system which sends 1ts mass over the

Chandrasekhar limit, the Finzi and Wolf (1967) mechanism of slow
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electron capture on white dwarfs decreasing the Chandrasekhar mass
below the star's mass, and the collapse of degenerate carbon cores
once (and if) these pass through the flashing phase (Chechetkin

et al. 1976). Only the the}modynamic history differs from that of
iron core collapse, not the neutrino physics.

In Chapter 6, the nature of the neutrino flow at each phase
in iron core collapse is discussed in the light of numerical
simulations. Initially, the core is transparent to neutrinos. The
uncertainty in electrqn capture rates on heavy nuclei and in
elemental aBundances, especially of free protons, reflects itself in
the evolution of the central regions of the core in thermodynamic
phase spacé. We find, however, that the trajectory iﬁ the density-
temperature plane converges to a common one almost independently of
compression rate, equation of state uncertainties, and initial
conditions. The density at which neutrinos are trapped (i.e.,
neutrino occupation numbers are no longer small compared with unity)
is obtained. At a higher density, which we determine, these
trapped electron neutrinos attain an equilibrium distribution.

The core at this stage consists of three fairly well
determined zones: a core-mantle composed of iron peak elements which
is adjacent to the silicon burning shell; interior to this, a
neutronization shell consisting of alphas, heavy nuclel, free neutrons
and some free protons, which is suffering photodecomposition and
copious electron capture; an inner: core composed primarily of free

neutrons with some heavy nuclei, alphas and free protons. Whether
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the protons are locked into heavy nuclei or are free is the crux of
the equation of state uncertainty. Definitive statements about
neutrino distributions must await the resolution of this problem.
The neutrino luminosity is dominated by neutrinos emitted in the
neutronization shell; whether or not momentum deposition can push
off the mantle depends on the flow from this region.

The equation of state uncertainty makes it difficult to
determine the density at which the inner core, which collapses
homologously (Arnmett 1977), halts, accretes matter onto it, and
generates a bounce shock wave: it may be at subnuclear densities
(Wilson 1977, Arnett 1977) or at supranuclear densities, as in the
pre-neutral current collapses.

When the core temperature is sufficiently high, the hot
neutron star can lose more energy in muon neutrinos than in electron
neutrinos. Conditions under which this can happen are obtained in

Chapter 6, and approximations are proposed to treat their flow.

The neutrino transport method used must bridge the regime
of diffusive flow of a degenerate Fermi gas in the inner core to
the regime of free streaming in the core-mantle. We explore this
transition by comparing numerical solutions of the P-1 and flux
limited diffusion equations in an idealized test case, a core
frozen in structure just prior to bounce. The resulting electron
neutrino luminosity is not sufficiently great to cause a supernova
explosion: the fourth blowoff mechanism, neutrino momentum

deposition, cannot work in the configuration chosen.
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As the central density rises, first the electron neutrinos,
then the muon neutrinos and antineutrinos, and finally the electron
antineutrinos attain equilibrium with the matter in the inner core
and collapse with it, escaping on diffusion timescales which are

long compared with the dynamical time.
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2. THE WEAK INTERACTION TAILORED FOR
ASTROPHYSICAL NEUTRINO PROCESSES

The field of neutrino astrophysics has undergone a small
revolution within the last few years, an offshoot of the more
momentous revolution in high energy physics. There, experiments
probing distances much smaller than the nucleon size have displayed
the reality of quarks inside the proton and have uncovered new
quarks, leptons, and interactions. It was the discovery of the
weak neutral current interaction which precipitated the recent flurry

of activity in neutrino astrophysics.

2.1 EXPERIMENTS WITH NEUTRINO BEAMS

Experimentalists have presently at their disposal neutrino
beams in four different energy regimes. Electron antineutrinos
from nuclear reactors have the lowest energy, v 1 to 5 MeV, with a
flux ~ 2 x 1013 ;e - cm—zs_l (Avignone 1970). It was with such a
reactor, at Savannah River in 1955, that Reines and Cowan first
observed a neutrino-—inducedreaction,Ue + p > e+ + n. Recently,
Gurr, Reines, and Sobel (1976) have reported the observation of
v 6 events attributed to the reaction Ge +e > ;e + e~. This
scattering reaction implies a direct coupling occurs between electron
neutrinos and eleectrons; this is written symbolically as (;eve)(ée),
or (Gee)(éve), in the current-current notation with the spacetime
properties suppressed (Clayton 1968).

The Cern neutrino beam consists of vu's and vﬁ's arising

from the decay of mesons produced from protons accelerated in the
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Cern proton synchrotron; the mean energy is ™~ 1.5 GeV (Blietschau
et al. 1977). It is with this beam that the first reported neutral
current inclusive reaction, Vu + A ~> Vu + X, occurred (Hasert et al.
1973). Here, A is a heavy nucleus and X is anything. This inclusive
reaction implies a coupling (Guvu)(ﬁu) and/or (T)u\)u )(dd), where u
and d are the up and down quarks, respectively. There are no
strangeness changing neutral current interactions (Guvu)(gd), as is
evidenced, for example, by the fact that the decay rate for the
reaction K > wTu™ is at least 4 x 1077 below the rate for the
charged current strangeness changing reaction K+ > u+vu (Trippe

et al. 1976). There is no evidence for the coupling (;uvu)(gs),
although it is predicted by theory.

Shortly after the Cern discovery, two groups, HPWF
(Benvenuti et al. 1974) and CITF (Barish et al. 1975), confirmed the
existence of neutrino-induced inclusive reactions in which no meson
is seen in the final state. At FNAL, there are .a number of neutrino
beams the experimentalist can choose from. The most intense one
v lO5 vu cm—2 s‘l, time averaged) has a mean energy of Vv 15 GeV,
and its distribution extends to ™~ 300 GeV. Unfortunately vu and
;u are unseparated in this beam, and only ~ 1.5 x 10° vy a2 gt
have energy > 70 GeV. Another type, the dichromatic beam, allows
selection of vu or ;U’ and has the lower energy neutrinos cut out,
at the expense of a decreased intensity. There are two energy
peaks: the first, centered v 50 GeV, with average intensity

4Y 103 vu cm—2 s—l,arises from m decay; the second, centered ~ 150 GeV,
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with average intensity ~ 100 Vu cm_2 s ~,arises from K decay
(Barish 1978). There are now similar high energy neutrino beams at
Cern. Inclusive experiments continue to provide the best neutral
current data.

Another neutrino beam, at Brookhaven (BNL), with mean energy
v 1 GeV, has been used to see elastic neutrino-nucleon scattering:
vu +p > vu + p (Lee et al. 1976, Cline et al. 1976 a,b),

Gu +p > ;u + p (Cline et al. 1976 a,b). Exclusive single pion
production by neutrino scattering, v+ p > v+ p + 7°, v+ n + w+
has been observed (S.J. Barish et al. 1974). Reactions with more
pions in the final state, as well as the inclusive reaction

v+ A->v+ 7+ X have also been observed (Hasert et al. 1975).

The leptonic reactions Gu + e > ;u + e (Hasert et al. 1973,
Blietschau et al. 1976, Faissner et al. 1976) and vu + e > VU + e
(Faissner et al. 1976) have been seen at Cern. Although only a
few events have been recorded, the demonstration of existence is
important: not only is there a (Geve)(ée) coupling, but there is also
a (Guvu)(ée) coupling, a pure neutral current effect.

No low energy neutral current neutrino-hadron experiments
that have been successful have been reported, although, for example,
an upper limit has been obtained for the reaction ;e +d > Ge +n <+ p
using reactor neutrinos (Gurr et al. 1974). Neutrino beams of
intermediate energy can be created using the LAMPF meson factory. In
particular, ve's from u+ decay, with mean energy ~ 30 MeV and

intensity ~ 108 Vo c:m_-2 s—l,are being produced (Donnelly et al. 1974,
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1975); this beam is being used to study Vo + e > vy + e, the only
purely leptonic scattering reaction involving electrons and |
neutrinos not yet observed. Some nuclear experiments have been
suggested: the inelastic scattering reaction v + A » v + A*, where
A* is an excited state of nucleus A, can, perhaps, be seen in these
beams (Donnelly et al. 1974, 1975).

This exhausts the energy ranges of neutrino beams under

's at

man's control: 2 MeV ;e's in nuclear reactors, 20 MeV ve's, v
meson factories, 2 GeV vu, Gu at Cern, BNL, Serpukhov, and 20-200 GeV
vu, Gu at the highest energy accelerators, FNAL and now Cern.

Natural sources of neutrinos exist in the cosmos. The most
familiar source is (presumably) the sun; ve's are produced by the
p+p~>d+ e+ + Vg reaction with mean energy ~ 0.2 MeV, and flux at
earth v 6 x 1010 Vv cm_2 s_l (Bahcall and Ulrich 1976). As is well
known, the higher energy (v 7 MeV) solar neutrinos arising primarily
from 8B decay (predicted flux v 5 x 106 cm_2 s—l) do not give the
theoretically expected counting rate for the reaction
Vo + 37Cl > e + 37Ar which occurs in Davis's solar neutrino detector,
100,000 gallons of the cleaning fluid tetrachlorethylene (C2C14)
(Bahcall and Davis 1976). Gravitational collapse of the cores of
massive stars is heralded by a burst of electron neutrinos from
neutronization with a mean energy 10-20 MeV, and an intensity at

ol 5 10 4 o (c:m_2 s—l), where d is the distance from the earth
to the imploding star in kiloparsecs; the burst lasts for ~ 1 second.

Davis's Vi detector can observe such an event if it is within
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" 5 kpc (Bahcall 1977). In fact, in 1972, Davis had a high run;
perhaps his detector registered a supernova; or perhaps it was just
a statistical fluctuation. A large number of ;e, vu, Gu are also
emitted, arising from thermal processes. Landé€ and collaborators
(Landé et al. 1974, Frati et al. 1975) have Cerenkov counters
located in the Homestake gold mine, where Davis's detector is, and
in two other places, with which they can register cosmic Ge by thé
reaction Ge +p*n+ e+ occurring in water; the minimum detectable
neutrino energy, 15 MeV, is rather too high to see many thermally
produced Ge's from collapse. Much attention has been given recently
to very high energy neutrinos which arise from cosmic ray collisions
in space and in our atmosphere (Margolis et al. 1977). Perhaps
" 150 high energy atmospheric Vu events have been recorded to date
(Reines 1977); for example, an experiment run from 1964-1967 utilized
scintillation counters in a gold mine in South Africa to record 39
v-produced mesons (Reines et al. 1971). Detectors with large
volumes of ocean as the target have been proposed to further study
these neutrinos (Dumand 1976). At the other extreme, the background
neutrino radiation, a relic of the big bang, has mean energy
v 1/2 millivolt, and intensity ~ 1.3x1011v cm"2 s—'l st:er-1 for each
kind in the standard big bang model. If neutrinos are massive, or
form a degenerate Fermi sea (Weinberg 1962), these numbers no longer
hold. The upper limit on the mass of Vg is v 30 ev (Efremenko 1976),
and on the mass of vu is v .65 MeV. Cosmological arguments can be used

to further restrict the neutrino masses to be at most ~ 50 ev, or
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at least 2 GeV (Cowsik and McLelland 1972, Lee and Weinberg 1977).

2.2 GAUGE THEORIES

The history of physics may be understood, ideally, as the
attempt to integrate more and more natural phenomena into a unified
viewpoint. The recent attempts to unify weak and electromagnetic
phenomena led to two theoretical predictions, the existence of
neutral current interactions and of anew flavor of quark; both have
been confirmed by experiments performed after the predictions were
made.

The Weinberg-Salam model (Weinberg 1967, Salam 1968) is a
Yang-Mills theory (Yang and Mills 1954, Gell-Mann and Glashow 1961)
based on the internal symmetry group SU(Z)WeakQQU(l): the |
Lagrangian density is invariant under the unitary transformations of
this group at each point in space, i.e., under gauge transformations
of the second kind. If the ground state (vacuum) is not invariant
under this group, the gauge symmetry is termed spontaneously broken.
The gauge group has four generators, three components of weak (as

weak
, and one weak

opposed to strong) isospin arising from SU(2)
hypercharge operator arising from U(l). To each generator, there is
associated a massless spin one meson, a gauge vector boson. The
electric charge, a linear combination of the third component of weak
isospin and weak hypercharge, generates a one-dimensional subgroup
of the gauge group, under which the vacuum is invariant. The gauge

vector boson of this group is the photon, which is massless. There

is a three-dimensional subgroup of the gauge group under which the
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vacuum is not invariant; the vector mesons associated with the

three generators of this group can obtain a mass, by a mechanism
first expounded by Higgs (1964). One assumes the existence of a
doublet (under SU(2) rotations) of complex scalar particles

(four real fields) with a specific form of self-coupling. This self-
interaction ensures that in the state of lowest energy, the scalar
field has a nonvanishing expectation value. Each massless vector
boson which is to become massive absorbs (eats) one of the four

real fields to make its longitudinal component. After the magic of
the Higgs mechanism has been performed by the model-building theorist,
three real scalar fields have disappeared, uniting with three massless
vectors to form three massive vectors: the W+, W bosons, carriers

of the charged current force, and the Z0 boson, carrier of the
neutral current force. In addition, one real scalar field is left,

a Higgson, which couples to fermions, to the massive géuge bosons,
and to itself. The fermions originally included in the theory were
leptons; the extension to hadrons was undertaken by Weinberg (1972).
It is the weak fermion-fermion interaction which is of primary
concern to us, as the other particles are too heavy to be produced

in astrophysical environments. Indeed, the mass of the W, mw, is

> 30 GeV according to experiment (Barish 1978), and according to

the Weinberg-Salam (W.S.) -theory is N 70 GeV; the mass. of the Zo’ m_,
is theoretically even heavier than the W. A The Higgson mass is
estimated to be greater than a few GeV (Weinberg 1976). If there is

more than one Higgs doublet in the theory, this lower bound on the
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Higgson mass may no longer hold. It is remarkable that this theory
may predict a nonzero cosmological constant; the cesmological
constant can be viewed as a measure of the stress-energy of the
vacuum kZel'dovich 1967), and this stress-energy enters into
Einstein's equations. A number of other gauge models have been
proposed, based upon the Yang-Mills Lagrangian, and utilizing the
Higgs mechanism to generate the large mass difference between the
photon and the weak vector mesons.

The fermion-vector boson interaction is described by the

Lagrangian
L=g I2°wT + g 35T 4 7 2 4+ e I M . (2.1)

Here, the electromagnetic current is the conventional one

Jem

§ S Teve - My u + 2/3 uy u - 1/3 dYud - 1/3 sY,8

+ 2/3 cyuc (2.2)

as is the charged current

JCC

g = véYu(l—NS)e + vuYu(l—YS)u + uYu(l—Ys)(cosec d + sing s)

+ CYu(l—YS)(—d‘Sinec + s cosec) (2,3

The gamma matrix notation is that of Bjorken and Drell (1964) and
Abers and Lee (1973). In this notation, 1/2(1 —YS) projects out
left-handed helicity. The lepton fields are e, u, ve, \)u and the
quark fields are u, d, 8, c. There is an implicit sum over quark
color indices in these currents. The Cabibbo angle,ec, is = 13°

(Roos 1974). The coupling constants g and § are related to the Fermi
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5_ =2

coupling constant, GF =1.01 x 10~ mp s by
°r  _ g% _ 2’ (2.4)

vV 2 m £ m -

w Z

The coupling constant e is the usual electric charge, and Au is the
photon field.
In the limit in which only u and d quarks are important, the

hadronic pieces of these currents involve only

the isoscalar vector current:

S = .
J° = 1/3 7.5
i / oy,q (2.5)

the isovector vector current:

i i §
Ju = qYut q g 1= 1,2,3 (2.6)

the isoscalar axial vector current:

JSu = 1/3 97,159 (2.7)

the isovector axial vector current:
e Gy yetle , 1=1,2,3 (2.8)
5“ u's5 ’ s&s
Here, q is a column vector consisting of 2 Dirac spinor fields:
_/u
a = (q)

Under the symmetry group of isotopic spin, q transforms as a
doublet. The matrices t— are given by T1/2, with 1= the Pauli

spin matrices. We further define

TE = gl 5 g g7 (2.9)
" u o
+

= s for3 s (2.10)

51 su - 1 Iy
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In this notation, neglécting the strange and charm degrees of

freedom,
em _ i .8 V3 (2.11)
u, hadron B 2 Ju % Ju
CcC - v+ V+
s Bademg cosec (Ju - JSu) (2.12)
The neutral current can be parametrized by
NC = -
Ju = aeveyu(l - ys)ve + oV uYu(l -YS)\)u
i eYu(CVe - CAeYS) &+ uYu(cvu— CA.uYS)u
+ uyu(th - CAuYS)u + dYu(ch - cAdYS)d
+ SYu(ch - CASY5)S + CY“(CVb - CACYS)C (2.13)

This neutral current is not general: assumptions have already been
made. It is assumed that the current is a linear combination of
vector and axial vector pieces, which is true of all gauge models,
and the neutrino couples in a purely left-handed manner. The

hadronic piece of this current may be written in terms of

SU(2)Strong currents (when s and ¢ are not involved) as
NC _ S V3 S V3
L, hadron = Vo 7y toy1 Ty " Cao 5y ~ a1 Jsy (2014)

The values for the various coefficients in the W.S. theory, which
depend only upon one parameter, the Weinberg angle ew, are listed in
Table 1, together with a figure showing the range of sin26W allowed

by the experiments (Figure 1).

2.3 THE CURRENT-CURRENT LIMIT

In astrophysical applications and in experiments performed
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to date, the momenta transferred in the reactions are much léss than
the masses of the intermediate bosons. The W and Z propagators

are proportional to delta functions of position and time in this
limit, and the fermion-fermion interaction, which is mediated by W
and Z exchange, reduces to the current-current form. An appropriate

weak interaction effective Lagrangian is, for charged currents

Lo = - £ 39 Jgg (2.15)
/é‘ H
and for neutral currents
G NC .u
L = = — I 7 (2.16)

There may be many neutral intermediate bosons, hence many neutral
currents; the effective lLagrangian is then the sum over many terms
of the form 2.16.

We now decompose the effective neutral current Lagrangian
into its component parts, such as (Guvu)(ée), then we blind ourselves
to the path we have taken from gauge theories, and unravel the
properties of the effective interaction from experiments alone.
Notable in this effort are the experimentalists themselves and Sakurai
and collaborators (Hung and Sakurai 1977 a,b, Sakurai 1976).

Consider first the spacetime structure of the neutral current:
does it involve scalar (S), pseudoscalar (P), and tensor (T), or the
more familiar vector (V) and axial vector (A)? Pure S and P have been
ruled out (Barish 1978); a linear combination of S, P, and T is still

possible.
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Before dealing with each of the current-current terms which
can affect astrophysics, we first treat some of the possibilities
that have been suggested which modify the neutral current Lagrangian.

A new heavy charged lepton, the tau, has apparently been
discovered (Perl et al. 1977). It is too massive to play a role in
astrophysics. Presumably, however, it has its own neutrino, vT. The
limit on the mass of the tau neutrino is at the moment rather poor,
600 MeV. If the v is massless, or of small mass, and couples as
(GTvT)(aq), and (GTvT)(Ee) in a fashion similar to v, then it plays
essentially the same astrophysical role as vu's do, as we shall see.
The more 1ight neutrinos there are, the greater the astrophysical
implications. If there is an interaction by which left-handed
neutrinos are channeled into right-handed ones, then the evolution
of right-handed neutrinos in a collapsing stellar core would
have to be followed in time. Do electron neutrinos develop an
amplitude to be vu as they propagate? Such neutrino oscillations have
been proposed by Pontecorvo (1967) to explain the low solar neutrino
counting rate. Reactor Ge's have been used to search for oscillations;

no evidence has yet been found (Sobel 1976).

2.4 (ee)(qq), (aa)(qq), (ee)(uu), (ee)(ee)

Recent experiments on atomic systems (Lewis et al. 1977, Baird
et al. 1977) and in nuclei (Barnes et al. 1978) give results below those
predicted on the basisvof W.S. theory. The theoretical calculations
upon which those predictions were based have recently become clouded

in uncertainty. Some theorists have seen the apparent smallness of
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parity violation as evidence for another neutral weak boson, Zé. The
sum of the two current-current Lagrangiansg, one from Zo exchange and
one from Zé exchange, can be arranged to give no parity violation in
atoms and nuclei, and yet agree with W.S.-like models as far as the
neutrino interaction with matter is concerned. If there are two or
more neutral currents, then the parity violation measurements will shed
no light on the neutrino-nucleon and neutrino-electron couplings; with
one neutral current only, such information is obtained.
2.5 (Vv (ee), (Guvu)(ée)

The electron-type neutrinos interact with electrons via the
exchange of both charged and neutral intermediate wvector bosons. The

charged current Lagrangian

= - & ;e(x)yu(l—YS)e(x) E(x)yu(l—YS)ve(X)

V2
is amenable to a Fierz transformation which brings the interaction to
the form of the neutral piece. The (;eve)(ée) effective interaction

Lagrangian is then

- .G = - . oM -
L = re veyu(l ys)ve . ey (CVe CAeYS)e (2.17)
The coefficients CVe’ CAe are related to the neutral coefficients
Cye? éAe (see equation 2.13) by
CVe = .y, + 1 (2.18)
c = q_C +1 (2.19)
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Muon neutrinos, and perhaps tau neutrinos, exchange only the neutral
intermediate vector boson with the electron. No fierzing is
necessary. The interaction is again given by 2.17, with the

replacements Ve = W C =2 G C - CAU’ with

> “Ve Vu? “Ae

CVU = au cVe = CVe =] (2.20)

CAu = uu Cpo = CAe -1 (2.21)

The second equality holds if muon-electron universality is assumed.

C and C

Eventually CVe’ CAe’ W’

A may be determined entirely
by experiment; at the moment, the uncertainties are so great that we
must resort to a model to evaluate these coefficients, which are given
in Table 1 for the W.S. model. The data from the Ge +e 5 Je + e,

Ju +e - Jﬁ + e, vu +e > vu +e experiments are analyzed in

Figure 1 in terms of the allowed range of the one paramenter upon
which these theories depend. Cross sections for these and other
reactions going by the Gv) (ee) coupling are given in Table 2.

In the late stages of stellar evolution, when the stellar core
is burning carbon or heawier nuclei, the heat energy generated by
nuclear reactions and gravitational contraction is radiated away
primarily in the form of neutrino antineutrino pairs. The dominant
energy loss mechanisms are due to the (v )(ee) coupling: the pair
annihilation neutrino process (e+e_-+ vv ), the plasmon-neutrino process
(Ypﬂ + vv) and the photoneutrino process (sz +e+re+v+v).

Knowledge of the energy loss rates per unit volume is sufficient to

calculate the effects of neutrino emission on stellar evolution; these
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were given in the charged current only case (CVe = CAe =1,

CAu = cAu = 0) by Beaudet, Petrosian, and Salpeter (1967). The
addition of neutral currents changes the emission rates by less than
a factor of two in the W.S. model, for sinzeW n .3 (Dicus 1972).
When the core of the star collapses, it becomes opaque to
neutrinos. An equilibrium distribution of neutrinos can build up.
In that case, differential production rates are required. These are
calculated in Chapter 5 for the processes e+e_ + vv and Ypﬂ > .
Differential scattering rates are also needed for the scattering of
neutrinos of all types by electrons; this is dealt with in Chapter 4.
2.6 (VP IOV, (Vv IOV
The scattering of neutrinos by neutrinos can become important

in supernova cores once the density of neutrinos can build up to near

equilibrium values. The Lagrangian for Vo + Vi, T W £ L7 and

G 2 = _ e
-;;% a veyu(l Ys)ve vy (l—ys)ve , (2.22)

and for v + v =>v +v s, v v »>v +v , v +v »>+v +v
u e u e

etc. is

= o sl
N veyu(l—ys)ve vuy (1—y5)\)u (2.23)

S

In the W.S. model, a, = au = 1, Cross sections for the astrophysically
important reactions dependent on the (Vv) (v) coupling are given in

Table 2.
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2.7 (w) (), (w) (pp)

The hadronic parts of the three currents 2.2, 2.3, and 2.13
are expressed in terms of quark fields. In astrophysical processes
under consideration here, we excite no nucleon resonances; the
hadronic currents can be written in terms of nucleon fields. The
matrix elements of the chiral currents 2.5 - 2.8 between nucleon states
are given in terms of form factors

A
<p o IJ (O)Ipor> <——l—2 '(gvoyu—ic 4 £ u (2.24)

)
JIEIET HA 2mn VO

; A
<p'0'T'IJZl (0) |poty= <——L——l—>u' ic . 5+ £.)u (2.25)

P (By1 Y10 2m_ V1
£
S (x'|x) - A0
] ] ] J O _
(pro'r’] 5 ¢ ) |por)= . u' (gy0Y, T q,)Ygu (2.26)

<p'G'T'IJZ§ (0)lp0T> <—J——J~> Al ZAl q)Y.u (2.27)
V2E2E" L
The use of these currents, which involve only u and d quarks, ignores
the ss virtual pair content of the proton sea. The initial nucleon
state is |p0T3> , with p the momentum (E is the energy), O the spin
projection on the z-axis, and T the third component of isospinj;
Ip'G'T'> is the final nucleon state. The nucleon states are
normalized to unity. The initial and final nucleon Dirac spinors,

u, u', are normalized by

u (po)Y" u(po) = 2pM (2.28)
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Momentum wave functions are box-normalized to a volume > Which is
not explicitly written. The nucleon mass is m,q=7p- p' is the
four-momentum transfer, and the form factors are all functions of q2.
Isoinvariance is assumed and possible second-class current effects
have been ignored. Linear combinations of the vector form factors
give the usual electromagnetic form factors.

When the four-momentum transfers are much less than the
nucleon mass, the q2 = 0 limit can be taken in the form factors.
Then, only the 8vo° 8v1> 8ag’ 8a1 terms survive. By the conserved

vector current hypothesis, we have

By (@°=0) = gy (¢®=0) =1 (2.29)

The axial terms, and 8pp> are obtained experimentally and

81

estimated theoretically respectively. The isovector axial vector form

factor, which we hereafter call 8ps is

= gy (@0 =0) =1.25 (2.30)

The isoscalar axial vector form factor is estimated by Adler (1975)

to be

3
gAO (0) o '-5— gA ~ 0.75 (2.31)

In most neutral current theories, c vanishes, so the value of

AO

gAO(O) is not required.

In this 1limit, the effective neutral current Lagrangian for

the (vv)(qq) interaction can be expressed in terms of an effective
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hadronic current

_ - N u
L=- v Y (l—YS)\)e Jhad, NC (2.32)

.y
/zoe
which is, in turn, expressible in terms of the composite proton and

neutron fields, p(x) and n(x):

W Mo - = 0
Thad, nc = PY (Cyp=CapYs)P + 2 Y7 (Cy =Cy Ys)

N Y (Cvo yits) = Y Y5 (Cpg*Cy ) | N (2.33)

Here, the nucleon field, an isodoublet, is
= (P
¥ = (3)

The proton has its third component of isospin, t3, positive which is
the particle physics convention. The coefficients have the q2 =0
form factors absorbed into them. How close are we to determining
them from experiment alone? Hung and Sakurai (1977b), using the
available semileptonic neutral current data, determine two possible

solutions for the set of four parameters C

v0? CVl’ CAO, CAl ; within

each solution set, the range allowed for each of the parameters is
still rather large. One solution gives values close to those
predicted by the W.S. model, with sinze v 0.3; the W.S. coefficients
are given in Table 1.

.If universality is assumed, the (;uvu)(ﬁN) and (GTVT)(ﬁN)

couplings are exactly the same as the (Geve)(ﬁN) coupling.
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The charged current Lagrangian is the usual

L =__G_

ey _ H
oy coseC e Yu(l ys) Vo Jhad, ce + h.c. (2.34)

with h.c. denoting the Hermitian conjugate, and

H - u -
Shad, cc = PY @ = gyyodn = ¥ -gyde, N (2.35)

2.8 ALLOWED NUCLEAR TRANSITIONS

There is a formula for the squared transition amplitude which
we will apply again and again in calculating charged and neutral
current (CC and NC respectively) rates. It is often adequate for our
purposes to consider the nucleons as moving nonrelativistically (even
for nucleons in the interior of a nucleus); terms of order v/c are

neglected; the nucleon currents reduce to

Jgad, NC N (o) (Cyp + Cypty) M) (2.36a)
s = - N (x) (C,n + Cyity) oF N(x) ,i=1,2,3 (2.36b)
had, wc a0 T “a1t3 ,1=1,2, .

T - N £, N (2.37a)
had, cc 2F Ly, BAX ;

1 + i ,

Yad, cc = —g,N' (x) t, o7 N(x) , i=1,2,3 (2.37b)

where t+ =t o ity 3 oi are the Pauli spin matrices, and N(x) now
denotes the isodoublet of 2-component Pauli spinor fields ( i)

The amplitude for a nuclear state |iJiMi> of angular
momentumJi , and z-component of angular momentum, Mi , consisting of

Ai nucleons to emit a neutrino-antineutrino pair of momenta q and q'
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respectively and go into a final nuclear state [fJHﬂE> is given by
= s v ' i
Tey = (£33 5 V(@) (e [T|13M)
where T is the T-matrix, defined in terms of the S-matrix by

(blslay = 6, - 21 65 -E) (b|T|a) (2.38)

A}

where a is the initial state with energy Ea , and b is the final state
with energy Eb . The amplitude for the transition to lowest order in

the weak coupling constant is

(@)Y, (1-1)v(e") o
= 7—21 u/—z 5 ? f (Eagne| oo |13, ) aPxe™t (9797 * %
VLv
u(q)Y (1Y )v(q")
= 203 (p,p,-q-q") 2 LT (r|gh (0)]1)  (2.39)

V2 V2v2v'!

Here, v is the neutrino energy, u(q) is its spinor, v' is the

antineutrino's energy and v(q') is its spinor.
We next take the modulus squared of Tfi and sum over both the
nuclear and neutrino spins; since the neutrinos are left-handed, they

have only one helicity, and the sum over spins is implied. The sum

over neutrino and antineutrino spinors is easily performed, using

D @@ = d 5 D @@ - 4 (2.40)

with the result

2
2 3 e G _ i _
:E: leil = (2m) S(gi gi 9 3 ) 8vv' T ﬂYu(l YS)d Yv(l Y5)
neutrino
spins

-

- (g]3M o) 1) (1]3°To) |£) (2.41)



34

The trace over gamma matrices is readily performed; we use this

result often:

Tr v (1= )4y (1-7,) = 8(q q' +tq,q'-q"q'g, wlasa))  (2.42a)

Here,

e (q',q9) = ¢ ¢ qf (2.42b)
vu 2 vuaB : :

where EvuaB is the completely antisymmetric 4-tensor, with €0123 = L,
The (+---) metric is used.
Now, we turn to the evaluation of the hadronic current matrix

elements in the nonrelativistic limit:

A
(£]3%0) |1) = (5| Z(cvo+ch g, By o B (2.43a)

{el3@ 1) = -(le(cAo 1t g Byl (2.43b)

The sum is over the A nucleons in the nucleus, with r, the position
of each nucleon taken relative to the nuclear center of mass, and
k = ;7P < -(q + q'). These matrix elements are sometimes called the

t3) and ~{C . + €, £5) 0

form factors for the operators (C A0 a1 B3

VO

respectively. The positions r, are effectively restricted to lie

within the nuclear radius, R, a distance of v 6.5 fm for 209Bi, the

heaviest stable nucleus. For momentum transfers |k| §,Rfl
n (30 MeV for Bi), we may expect that a multipole expansion of the

phase ei 1~<.Ea will be useful. The first term in this expansion

gives the allowed transitions. Higher order terms in k are forbidden
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transitions; at the same time as these are treated, the relativistic
terms which were neglected in the current must also be included.
For allowed transitions, the spin-summed-matrix-element-
squared reduces to
2 3 .(3) 2 2
Ez:leil = (27)7 ¢ (p;~Ps~9-9") G {IMFI (1+4-4")

spin
2 1 A A
o L s IR q-q')} (2.44)

where q denotes the unit vector in the direction of the neutrinos

momentum. The allowed Fermi matrix element is

g 2
Fermi: M|~ = (23, +1 {(Cyy +Cyy t))5

Z | £3 | E(Cvo t;a)) .{iJiMi>|2 (2.45a)

i f

and the allowed Gamow-Teller matrix element is

2
Gamow-Teller: ‘MGT| = (23, + 1) <(CAO Caq 3)0>f1

A
2 (2.45b)
= > K Lv\:(CAo+ Al ga)) (a)l i)
MiM a=1

The formula 2.44 is the one we wished to derive. It holds for vu

as well as Vo and, if we replace ¢ by -q in the momentum conserving
delta function, it holds for neutrino-nucleus and antineutrino-
nucleus scattering. Low energy cross sections for neutrino scattering

by nucleons, bound and free, are given in Table 2.
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For charged current processes, a formula very similar to 2.44

can be derived for B-decay:

2 3 2
ccC: Z|Tfi| = (2m3 ¢ )(gi—gf—ge—g) G” F(Z,,E)
spins

A

.{[M%|2(1+Ve Pe'a) + |MéT[2(l —‘%-Veﬁe-&)} - (2.46)

where the momentum, energy, and speed of the electron are P.s E ;
e’ Te

and Ve respectively, and ¢ is the antineutrino's momentum. The matrix

elements are

A
. -3 2 (a).,\2
Fermi: |Mpl? = 23, + 1) (£)2 = D¢l D e8]y (2.47a)
M.M a=1
i°f
R . 2 - 2 2
Gamow-Teller: IM&T' (2Ji + 1) gA.<gt+>fi
A
2
=21 25 e® @ 1))2 5 (2.47b)
M,M a=1

if

The function F(Zi,Ee) is the usual Coulomb factor which describes tﬁe
distortion of the outgoing electron wave due to Coulomb interactions
with the nucleus (Konopinski 1966). The derivation of 2.46 does not
follow that of 2.44: a Coulomb wave of the electron replaces the
free wave of the neutrino. The same formula may be applied to free
electron capture, except, of course, the momentum conserving delta

function must be modified to treat the new kinematics, and t,» t_

+

for B+ -decay, Z » -Zin F, t+ > t_ .

2 . 2
+>fi is a minor variant of the usual <1>fi ,
which is often used in B-decay, literature (Konopinski 1966); neutral

The notation <t

current matrix elements are then expressible in this notation.
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The selection rules for CC and NC allowed nuclear reactions

are identical:

Fermi: AT =0, Am = no, AT =0 (2.48a)
Gamow-Teller: AT =0, #1, no 0 -~ 0, Ar = no, AT = 0, +1 (2.48b)

Here, 7 is parity and T is total isospin.

The CC formula, 2.46, is used in the calculatiqp of -
e +p 2 n+'ve , and of the capture of electrons by heavy nuclei,
e'+AZ -+ ve+A(Z—1), and its inverse, neutrino absorption

ve+AZ » e~+2(z+1) (Chapter 5).

It can be seen immediately that the operator in the NC Fermi
matrix element is CVdB + CVl T3 , where B is the baryon number
operator, and T3 is the third component of total isospin; the state

Li> , with Zi protons, and Ni neutrons, is an eigenstate of both, and

therefore

2 Zi = Ni 2
<(CVO + CVl t3)>fi = CVOAi + CVl — \) Bz (2.49)

which is zéro if £ and i are not equal. If CVO is not zero, the
cross-section for elastie neutrino-nucleus secattering, v + A = v + A,
is proportional to A2, a result first noted by Freedman (1974). We
treat this reaction in detail in Chapter 4, along with inelastic

PR

%
neutrino-nucléus scattering, v + A > v + A, and neutrino—-nucleon
scattering v + N - v + N.

Here, we illustrate the use of 2.44 in calculating the emission

rate for neutrino de-excitation of a nuclear state, Ai - Af +v+v.
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The rate of transition is given by Fermi's Golden Rule:

3
d7p 3 3
1 £ &g d q' z :
Tes = 773, +1/ 3 2n 8(E -Ev-v') ITes

(Zﬂ) (Zﬂ) (27) spins
3
d Pe d3 3
- L 4 on 5(r,~v-v'-E,) 2 6P -
/(2n)3 (2my3 (2m)3 ’ ' 25797¢"2p)

- 67 <(CA0 Al 3)°>2 %a’a')

Only the Gamow-Teller matrix element contributes, since the Fermi
matrix element vanishes. We integrate over Pg » ggtting rid of the
momentum consérving delta function, which leaves us with an energy
conserving delta function. We neglect the recoil energy imparted to
the daughfer nucleus by the decay; in so doing, we make an error

Ly in/Mf (where in =M is the Q-value of the reaction) which is

17Mg
negligible for heavy nuclei. The remaining integrations are

straightforward, yielding

G2

2
Tgy = g Qf ((Cpo*Cay E5)0)5; (2.30)

By multiplying by in, summing over all possible final states for a
given initial state, and then summing over all thermally populated
initial stafes weighted by their number densities, we arrive at an
energy loss rate per unit volume due to nuclear de-excitation by

v pairs. This process can play a role, but apparently never a
dominant one, in the cooling of stars. It has an interesting
history. Shortly after Feynman and Gell-Mann proposed their weak

interaction theory, Bludman (1958) suggested an alternate theory with
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neutral currents included. On the basis of this, Pontecorvo (1963)
suggested the possible astrophysical importance of the nuclear
de-excitation process, and a number of authors did some calculations
to show it had little effect (Baier and Khriplovichll964, Sakashita
and- Nishida 1964). 1In 1974, Bahcall, Trieman, and Zee rediscovered
this process, derived equation 2.50, and applied it to solar and white
dwarf cooling. A higher temperature and density study of this
process again concluded it never dominates stellar energy loss
(Crawford et al. 1976).

Another pre-Weinberg-Salam mention of neutral current effects
in astrophysics is more interesting. Bahcall and Frautschi (1964)
footnote a remark made by Fowler and Hoyle at a 1963 Caltech seminar
in which the importance of neutrino-nucleon scattering for

supernovae was pointed out. We amplify this remark in the following

chapters.
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3. TRANSPORT THEORY: THE P-N METHOD FOR NEUTRINOS

Neutrinos produced in the collapsing cores of supernova stars
display a rich variety of transport phenomena, reflecting the interplay
of the many timescales associated with the event. A snapshot of the
core prior to the first hydrodynamical bounce shows three distinct
regions: in the center, which is comprised of hot quasi-free nucleons,
the neutrinos form a degenerate Fermi gas collapsing with the matter;
in the mantle and envelope, the neutrinos are almost freely streaming;
in between, there is a transition regime, which encompasses the
neutronizing shell, where the neutrino flow is neither in the diffusion
nor in the streaming limit. This latter region is crucial for the
determination of the effect of neutrinos on the dynamics of a
supernova explosion. What scheme can be used to bridge these various

regimes?

3.1 THE BOLTZMANN TRANSPORT EQUATION

The Boltzmann transport equation (BTE) provides an adequate
starting point. The neutrino distribution function (which we here-
after denote by the symbol df), n(g,x), is the mean occupation number
of the state of momentum q in the neighborhood of the spacetime point .
X = (XQ); the BTE describes the temporal and spatial evolution of the
df, as well as its momentum space evolution. Since one cannot
simultaneously specify position and momentum, how can the df be

defined? One strategy is to coarse grain phase space ((x,q) - space)

into cells of volume h3 (h = Planck's constant); the df is then the
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cell occupation number, a well-defined quantum mechanical quantity
(Osborn and Yip 1966). One can go a long way towards deriving the BTE
in this formulation. In any case, if the spatial inhomogeneities of

n are of long wavelength compared with the typical de Broglie
wavelength, the BTE approach to transport seems to be valid (Osborn
and Yip 1966, de Boer and van Weert 1976). This is certainly true for
neutrinos in stellar situationms.

The neutrinos are produced in accelerating and gravitating
matter, and undergo Doppler shifts and ray bending. The neutrinos,
when free, follow null geodesics in spacetime, and are restricted to
lie on the massless hypersurface q2 = 0, which defines fhe neutrino
energy v as a function of the 3-momentum q, and the metric tensor gaB'

The BTE takes the form (Ehlers 1971, Lindquist 1966)

. .
. F;g *c® 2 = i) (3.1)
0x Z)q-1

where Greek indices run from O to 3, Latin indices from 1 to 3, the

r% are the Christoffel symbols of the second kind derived from the

By
metric, and the (x) and q dependences of n and 4 are implicit. The
combination v4 , where 4 is the source function, a nonlinear operator
on the space of df's, is a scalar under arbitrary coordinate
transformations, as is n itself. The BTE transforms covariantly, even
though it doesn't look manifestly covariant. Any three momentum
space variables could have been chosen to parametrize the maésless
hypersurface; we choose the energy and two angles to specify the

neutrino direction, rather than the three momentum space components,

below.
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3.2 THE SOURCE FUNCTION

The form of 4 may often be specified ih terms of the transition
operator T. Hereafter, we take the further factor of (2n)36(3)(gb—ga)
out of the T-matrix in the defining equation (2.38); the T-matrix is
then a Lorentz invariant. If we consider the scattering of neutrinos
by fermions of type j, as in vn, vp, and ve scattering, and the

scattering is solely 2-body with the particles of type j uncorrelated,
then, by Fermi's Golden Rule

R S oy 5

(27) o (2m) gl

AIG@n;360) [1]1v(@ 510 | £, (o) (1-£, (p'5"))

+(1-n(a"Nn(@) = (V@330 [T[v(a")33(p'aN) |2
+ £,(p"0") (1€, (p0))n(a") (1-n(a) (3.2)

Here, fj(po) is the invariant single particle df for particles of

type j, with momentum p and z-component of spin 6/2. The relativistic
invariance of the combination V4 can be made manifest. We first
absorb a factor YV'EE' idinto the T-matrix elements, which results in

Lorentz invariant quantities by making the momentum space wave functions

Lorentz invariant; we then make the compensating change in the momentum

3 3
space volume elements d3p *'d3p/E, d3p' -~ d7p'/E', d3q' > d7q"'/v'
which are all invariant. By d3q/v we understand that volume element
we obtain by transformation from a local Lorentz frame; it then

includes a Jacobian term v-g dqldqquB/v , where -g 1is the
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square root of the negative of the determinant of the metric tensor.
The first term on the right hand side of 3.2, proportional to

n(q), gives scattering "out of the beam,"

and the second term,
proportional to (1-n(q)) gives scattering "into the beam." All
distribution functions are evaluated at the same spacetime point: the
collision occurs at a single point.

The smallness of the weak coupling constant, GF’ allows us to
consider only the lowest order term of the transition operator, which
is just the phenomenological current-current Hamiltonian for the
scattering of neutrinos described in Chapter 2. There are certain
situations when it is inadequate to consider the nucleons and electrons
as independent particles due to their interactions with the medium
in which tﬁey reside. The source function then involves the auto-
correlation of the matter currents in the ensemble representing the
local stellar state, a formalism which is developed in Appendix 3, and
used extensively in Chapters 4 and 5. Matter here and hereafter is
meant to refer to everything but neutrinos; it includes electronms,
positrons, nucleons, nuclei and photons. As long as neutrinos are

themselves uncorrelated with matter, the scattering source function can

be written

1
5 [0l == 9= R(g>q"In(a) A-n(g")
(2m)

3
+ | S92 R@a)n(e") (nla) (3.3)
(2u)°

where R(q>q') is the scattering kernel, the sum over all of the
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individual scattering kernels Rj(q+q') for each process; vv'R(g>q"')
is an invariant. For matter moving with the flow 4-velocity U, the
scattering kernels depend upon the variables (q-U), (q'-U), and
(q°q'), as well as on the local thermodynamic parameters of the
medium, the temperature, density, and chemical potentials for each
of the species. In the local rest frame of matter, tﬁis dependence

', and the angular variable q°q' ,

reduces to the energies v, Vv
where ﬁ is a unit vector in the direction of the incoming neutrino's
momentum.

The emission and absorption of neutrinos, going by the

couplings (Gee)(ﬁp) and (Eve)(ﬁn), contribute to the source function

the term

AB[n] = - T _(¢)n(q) + Tp(q)(l—n(Q)) (3.4)

where Pp is the production rate for a neutrino of momentum q and Pa
is the absorption rate. In the local rest frame, these rates depend
upon the neutrino's energy v only, and upon the thermodynamic variables
defining the state of matter. Processes which give terms of this form
are, for example, e +p 2 n+\)e , e_+AZ Zz A(Z—1)+\)e , and nte +p - n+n+ve.
Neutrinos can also be produced by thermal processes in v
pairs, through the interactions (wv)(ee) , (vv)(nn) , and (w) (pp) .
Until muons are produced, which happens rather late in the collapse,

these mechanisms are the only sources of vu,vu and VoV s there

is no 4, term for these types of neutrinos. The source function is

B
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3
spmal = + ﬁ’? R (4,4") (1-n(a)) (1-2(q")

3
- ] 55 R (@,a")n@ie") (3.5)
(2m)
where n is the df for the antiparticle to the particle the evolution
of whose df, n, we are following. The production kernel, Rp(q,q'),
is the rate at which a neutrino of momentum g and an antineutrino of
momentum g' are produced; the absorption kernel, Ra(q,q'), is the rate
for the inverse process, vv annihilation into matter.
The scattering of neutrinos by neutrinos must be treated in
a manner different from the scattering of neutrinos by matter. The
source function for this process, Avv’ is given in Appendix 1

(equation Al.l); it is a quartic polynomial in the df.

3.3 DETAILED BALANCE AND EQUILIBRIUM
Certain very general relations hold between the kernels in
Asc and.éth which can be determined explicitly from the definitions or

through the principle of detailed balance. Thus

R(g'+q) = e P D =(@Tg(q.qr) (3.6)

and therefore ASC vanishes for a Fermi-Dirac (FD) distribution at
the matter temperature kBT = B-l with an arbitrary chemical potential

Uv-

_ (es((q-U) - “v) & 1)-1 (3.7)

The function Ath vanishes when both neutrinos and antineutrinos

have a FD df with chemical potentials of opposite sign:
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_ (3.8)
My "9
when equilibrium is attained; thus the thermal production and
absorption kernels satisfy
¥ - °U + "U
Ra(il"}') = @ B((q-U) (q >)Rp((~l’g') (3.9)
If the beta source, AB , attains equilibrium (i.e., 3.4
vanishes), the resulting df is
Fa -1
=|— : 3.10
nEQ (F + l) ( )

If the matter is in nuclear statistical equilibrium, so that the
chemical potentials of all the heavy nuclei are related to the proton
and neutron chemical potentials, then even though Fp includes electron

captures on heavies as well as on free nucleons, the relation
Fa(q) = EB((q'U) -(Up'Hle-Un)) I-p(q) (3.11)

holds; then 3.10 is a FD df (3.7) with

U = p_H@ = (3.12)

the condition for neutrino beta-equilibrium. We append the adjective
neutrino to beta-equilibrium to distinguish it from the beta-
equilibrium in neutron stars in which the neutrino concentration is

zero. If ve's were in beta-equilibrium, their chemical potential

would satisfy the relation

— = + — = — —
uve Mo et = My =0, — U (3.13)
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Certainly 3.12 may be satisfied and 3.13 may not be in which case
3.8 is also not satisfied: there can be partial equilibrium. The
chemical potentials include the rest mass energy here.

The source function 6v vanishes for an arbitrary FD df.

v
The matter is always in local thermodynamic equilibrium (LTE):
the collapse timescale, the neutrino production, absorption, and
scattering timescales are all very long compared with the time it takes
matter to relax to equilibrium if it is in a nonequilibrium state. The
relaxation is due to Coulombic particle-particle and electromagnetic
particle-photon interactions. Strong and electromagnetic nuclear
reactions occur on such short timescales that nuclear statistical
equilibrium holds; all nuclear concentrations are functions of three
thermodynamic variables: the number density of baryons, Py the
temperature, T, and Ye’ the number of protons, bound and free, in the

medium per baryon. The matter equation of state is specified by the

internal energy of matter per baryon (including rest mass energy),e ,

and the pressure of matter, p ; both are functions only of pB, T,

and Y .
e

3.4 SPHERICAL COLLAPSE

The evolution of matter in the core is given by the transport
equations for four conserved quantities: the baryon number (for pB),
the lepton number (for Ye), the energy (for e, and indirectly, T),
and the momentum (for the mean baryon velocity v). These equations
are coupled to the BTE for each type of neutrino and antineutrino.

The natural reference frame within which to work is the one
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in which matter is locally at rest; the use of these comoving
coordinates leads to simplifications in the form of 4.

We assume the collapse is spherically symmetric. In real
supernovae, rotation and magnetic fields may play an important role
(Fowler and Hoyle 1964, Le Blanc and Wilson 1970, Meier et al. 1976).
The df is then n = n(v,u,b,t), a function only of the neutrino energy
v, the time t, the cosine of the angle that the neutrino's momentum
makes withithe radial direction, p = a'ér , and the radial coordinate
b which is the baryon number enclosed within a radius r at time t.

In this baryon number variable, material derivatives reduce to partial

derivatives:

A (9—-) +v lﬁ—-) - {2 (3.14)
at at ) . \ ot . (at )b -

where the subscript b means at constant b, and the velocity is related

to the radius

r = r(b,t) (3.15)
by
vl ) = QE%%LEL)b (3.16)

The transport equations for the conserved quantities are:

2
baryon number: 4arp oE = 1 (3.17a)
B b/,

oY d3
lepton number: p, —= =S 5 - s=) (3.17b)
B 3t (2“)3 ¥ Ve
b



energy: ‘Eﬁi + LI 3
By: Py 1 \%¢ Ploe o

b b-
d3
= - ~——ﬂ§ v (A [n]+4- [n]+4 [nl+s- [n] (3.17¢)
v v v v
(2m) e e u u
G
A v 2 |op Ty
momentum: pm(at)b + 47r B (Bb)t + rz o
_d_?’_q_
= - qe@ [8 +bs 48 +s-] A (3.17d)

s~ T Y Ve TREST:

where P is the mass density and m = m(b,t) is the mass enclosed
within the '"radius" b. If composition were not changing in time, and
rest mass energy were not transformed to thermal energy, then m would
be time independent, and m, would serve as an adequate radial
coordinate; it is not an adequate radial coordinate. General
relativistic effects have not been included in these equations; they
are apparently unimportant until the latest stage of collapse, the post
bounce stages (Arnett 1977).

The df's obey the BTE, valid to first order in v/c, given by

Castor (1972)

Ds[n] + Dv[n] = 4[n] (3.18a)

We have separated out two terms on the right hand side, ig which
takes the same form if the matter is static or moving and DV which

occurs only if matter is in motion:

- T (3.18b)
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1l 9py0n
p ot’ oy

1 3p

D, [n] = (L)) WEL + 2

3v 2 v
(?+ hl-;v—— (3.18¢)

As Castor points out, this equation can be derived using the simple

metric

2 .

ds2 = dt2 — <——§%~—-> - rz(de2 + sinze d¢2) (3.19)
brr PR

and equation 3.1. If we begin with the transport equation in the

inertial frame where coordinates are (tI , Ty B, ¢)

2
on (l_(uI) ) on v

— 4+ cy,. — + ¢ = — 4 (3.20)
atI I or ¥ BUI vI

where 4 is the source function in the local rest frame and VI and

vH are the neutrino energy and radial momentum in the inertial frame,

the frame of the fixed stars, then transform to comoving coordinates

using
dt =Y (dtI - vdr) (3.21a)
_._._f“; = Y (dr - vdtp) (3.21b)
byr fg
v = YvI a - VuI) (3.21c)
o =V
o= (3.214d)
l—va
¥ = (L gty P (3.21e)
2 3V
then we obtain 3.18 when terms of order (v/c)” and CEE are
b

neglected. When the gravitational effects on radiation become
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important, there is no global inertial frame from which we can derive

these equations by transformation; we must use 3.1 directly.

Lindquist (1966) gives the necessary modification of 3.18.

What is the meaning of the Dv term? Consider the case in which

reduces to —(a/a)v 9/3v3

the radius scales as r(b,t) = r(b,0)a(t) ; Dv

if n is py and b independent, the transfer equation reduces to

o _ A D
= o Y an+4 , (3.22)

appropriate to an homogeneous medium which is expanding or contracting;
In the

this is also the transfer equation for a Friedmann cosmology.

absence of sources and sinks, or when sources balance sinks, 4 = 0
As the

and n(v,t) = n(va(t)/a(0), t = 0) solves the equation.

spatial volume contracts, the momentum space volume expands in such a
If the

way that the product, the phase space volume, remains constant.

neutrinos are completely coupled to matter, then as the core contracts,

the neutrino energies scale upward, and the neutrino Fermi energy

rises: this is the behaviour of the neutrino gas when the diffusion

time from the core becomes long compared with the collapse time

(Ia/él) of the core, i.e., after trapping has occurred.
What methods exist to solve the BTE as it stands? Neutron

transport, in nuclear reactors and in our atmosphere, and photon

transport, in stellar atmospheres for example, have both had many

techniques applied to them, many of which have also been applied to

neutrino transfer. Tubbs (1978) has used the Monte Carlo method to
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consider the approach of ve's to equilibrium in an infinite
homogeneous medium consisting of free nucleons and electrons; Ye is
allowed to evolve, but the values of T and p are frozen. No transport
has yet been included. Yueh and Buchler (1977a,b) have attacked the
problem using the discrete ordinate (or S-N) method: one finite
differences the BTE in the angular variable p as well as in the
variables v, b,and t; there are (N+1) - angles in the S-N method,

often chosen to be zeros of the Legendre polynomial P angular

N+1 3
integrals appearing in 4 are performed using a Gauss-Legendre
quadrature scheme. For plane geometries and simple sources, the S-N
method is closely related to the P-(N-1) method; in spherical geometry
and for complicated sources, this is not so. Yueh and Buchler (1977b),
who have nob, T or Ye evolution, give results when the vy df has

built up to steady state for N = 2, 4. Lichtenstadt et al. (1977)
have tried an S-8 scheme, but have not included time derivatives in
the BTE. Wilson (1971, 1974) has modelled the BTE and the
hydrodynamic equations with all of the general relativistic effects
included. His 1971 work demonstrated that with charged currents only
it was difficult to generate a supernova from spherically symmetric
collapses; the neutrino physics and equation of state included most

of the charged current processes, but not always correctly, and the
equation of state was somewhat crude. The numerical modelling was
undoubtedly the most sophisticated yet, even if the input physics

was not as refined. His 1974 work was the first attempt to include

neutral current effects. Along with changes in the input physics,
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Wilson has changed his numerical method of solving the BTE; he now
uses flux limited diffusion (see below). The P-N or spherical
harmonic method can also be applied to treat the flow of neutrinos.

The diffusion approximation, both multigroup (energy-dependent) and

gray (energy-independent), follow from it.

3.5 THE P-N EQUATIONS
The df is expanded in Legendre polynominals in the angular

variable u = a°er , where e is the ynit vector in the radial

direction:
a(v,u,b,t) = ;%(b,v,t) Py (1) (22 + 1) (3.23a)
=0 :
e
nﬂ(ba\)’t) = —2_/ P/e(]-—l) n(\)aU:b9t) le (3-23b)
o

We further expand the source functions, the scattering, production,

and absorption kernels in Legendre polynominals:

4[n] = Z(z@m Py (1) s [n (3.24a)
£=0

R = D (2041) B(3-d") R, (vv) (3.24b)

Rp(q,q') = Z(Zﬁﬂ) Pz(ci-é') Rpﬁ(\),v') (3.24¢)

R (4:4") = Z(zﬁﬂ) Pp(d+a") R_p(v,v") (3.244d)
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Each of the kernels' moments satisfies the same detailed balance
relations as do the kernels themselves, 3.6 and 3.9. The equation
describing the evolution of the moment n, has coupled to it a
countable infinity of other moments through the nonlinear terms in the

scattering and thermal production terms. These equations, derived

in Appendix 1, are:
on .
0 ) 2 o 3
L=0s |2 L B, B
0 [at toedte, w ¥ “1] + [3p Vv o

+<§Y +é) (Zn +y 2=q )] = 30 (3.25a)
T 0 v o2

-Fa(v) n, (v) + Fp (v)(l—no(v)) (3.25b)

(0) _ y .
A = —FS(\)) n, ) +/ no(v ) RO(\) V)

\)1

+ Z (22+1) ny (\J)'/ n/@(\)')(Rz (\)—*\)')—R/e ")) (3.25¢)
£=0 '

5 = T ) Ay ) —,[' Roo(sv') iy (1)

+ Z (ze+1)£’n£(v)ﬁ£(v')(sz(v,v')-Raﬁw,v')) (3.25d)
£=0

RO

o (see Appendix 1, equation Al.25 for

ve+ve -> ve+we) (3.25e)
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1 [ 4v | 30 2 2 (v, 0p
+[§(r +p)vavnl+5(r+p> 1

v, 0\[(2, 8 8 -,
+(—r—+p>(5vav n3+5n3)] = 4 (3.26a)

v
R N O I O DL (3.26b)
AB Pa Vv Fp Vv 1 =
ééi) = "I‘S(\))nl(\)) +/ Rl(\)' - \))nl(\)')
\)!

* E (£+l){n£(V)[)"n£+l(V " (R£+l(\)—>\)' )~R£+l(v '>v))
£=0

i

+ nt_,_l(v)‘/" nA@(\)')(Rﬂ(v+v')—R£(v'+v))} (3.26c)
Vv

(1) - Ty v
5eh ——I‘th(v)nl(\)) i/'Rpl(v,v )nl "

v

£ ) {nz(vl/\)';lz_}_l(v')(Rp,z_l_l(\),v')
20

- Ra,£+1(\)’\")) + n/@_*_l(v)‘/\; I_1-11(\)')(RPK(\),\)')

- Raz(\),\,'))} (3.264)

A(l) =0 (3.26e)
vV
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+

n
192, (D) 2 3
P [at G (S4TTey 55 e

- (£+2) %-n£+l)

34 2 ) c

¢ YRR (cbrr PB 35 “p-1 (£-1) P nﬂ—l)] .
Le-1 5

+[{(26—1)(2£+1) 5y -2 T @2 mpp)

1 o B
+ (2p-1) (2p+43) (2e(e+1)-1)v 55 n£+ £(p+1) nﬂ)

(1) (£+2) 3 v, 5
+ & &ny, + @) e

(2p+1) (22+3) ¥
—%\)—g—;n; = 50 (3.27a)
v
s = L)+ T (W)n, () (3.27b)
8 2V pre ) Bpky .
Aéf) = (see Appendix 1, equation Al.14) : (3.27¢)
Agi) = (see Appendix 1, equation Al.16) (3.274d)
5B = o (3.27e)
Vv

We have let

Fs(v) =/' RO(\)—W') = r—l (3.28)

S

Vv

r<)=f R (v,v') = 1.0 (3.29)

th*Y g~ Tth :
\)l

denote the scattering and thermal production rates respectively. The

notation
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ff(v )-/ﬂ (") d" £(v") (3.30)

2w (he

is the neutrino phase space integral of an arbitrary function f(v ).
The speed of light, ¢, has been included in the left-hand side of
equations 3.25a,3.26a, and 3.27a, and the dimension is inverse time;
if 1 and c are left out of the right hand side, we can always reinsert
enough powers of them to obtain this dimension; we usually leave them
out.

The P-N approximation generally refers to the truncation of
this infinite heirarchy of equations at £=N, with the specification
of np £ > N+1, being obtained by ansatz. The usual prescription is
to assume nK = 0 for £ > N+1. Whereas the invariance properties of the
BTE allow simple transformation from one frame to another, this
invariance does not survive the truncation process; the P-1
approximation in the local rest frame of matter is not the P-1
approximation in the inertial frame, but rather the df contains all 6f
the higher moments.

The notation [ ]S in equations 3.25a,3.26a, and 3.27a
means that the term in the square brackets arises from DS; it couples

n, to the immediately higher and lower moments n£+l, Ny q- The

D term, | ]v , couples n, to n,

- +2 and n£—2' If the timescale

no/ﬁo is of the order of a diffusion timescale which is slower or
comparable to the hydrodynamical timescale given by (5/p)—1, then

the times in [ ]v become as important as those in [ ]S , and
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must be included.
The absorption rate which appears in the £ > 1 equation is
modified by the addition of the production term. This modified

absorption coefficient,

o = T +T (3.31)

which appears when FD statistics are operating, is analogous to the
modified absorption coefficient, F; = Pa - I' , which appears in
photon transport, when Bose-Einstein statistics are operative. The
latter modification is due to stimulated emission; the former has been
termed forced absorption by Imshenik and Nadezhin (1971, 1973). An
occupied neutrino state inhibits emission into that state; if the
forward (outgoing) directions are more occupied than the backward
(incoming) ones, the net emission will be backward peaked. This
inhibited emission tends to relax anisotropies in the df towards zero
on a timescale Fp_l by only allowing emission in directions
complementary to the anisotropies.

In the absence of neutrino degeneracy, when the df n<<1
only the terms linear in n survive in Aéﬁ) ; the quadratic terms are

an expression of the blocking of phase space due to the buildup of

neutrino occupation number. In the thermal source function moments,

(0)

survives, and
th 2

if we again assume neutrino nondegeneracy, only 4

(v); with the inclusion of neutrino degeneracy terms,

2)
Bk

it is given by Fth

there appear linear terms in np and ﬁﬁ in , which compete at the

same level with neutrino-antineutrino annihilation into matter.
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The scattering is termed conservative if the energy of the

outgoing neutrino is exactly the energy of the incoming neutrino:
Rz(v+v') = 2n8(v-v') Az(v) (3.32)

If the scattering is conservative, which is a good approximation in

the reactions Vv+A > v+tA and viN - v#N , where A is a heavy nucleus

and N is a free nucleon, then the quadratic terms in Asi all cancel.
Further, if we note that
WFS(V)
AO(\)) = T 5 (3.33).
v

we see immediately that

(0 = 0 H (3.34)

sc, cons

i.e., there is no energy redistribution in conservative scattering.

The higher source function moments are

A,(v)
¢9) _ 4 |
Asc, cons Fs(v) 1 - AO(V) ) HK(V) (3.35)

In the f=1 case, we define the transport rate and lifetime due to

conservative scattering by

!
Ter, cons = Te @73 ) Al
SO
(1) -
Asc, cons Ftr,cons ) nl(v) (3.37)
The calculation of A, , and hence T , depends on the detailed
4 tr,cons
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angular distribution of the conservative scattering reaction. The
quadratic terms also cancel in Asc,cons itself and thus do not appear
in the BTE.

When the scattering is nonconservative, 3.32 is not true,
generally v'#v, and the nonlinear terms must be included in Aéf) 3
this is the complication which arises in ve scattering.

There are two approximations we propose to deal with neutrino-
neutrino scattering. The first is that given by 3.25e, 3.26e, and
3.27e. This approximation can follow the effect of véi—ve * ve4-ve
in the early stages of neutronization, before the df is near
equilibrium. It is exact in a homogeneous medium, when the df is
angle independent. When nearer to equilibrium, we may take the
formulae derived for vy + e > Ty + e, replace the electron df by the
L df, and make other modifications to be detailed in the next
chapter to obtain a more tractable source function for this reaction.

The second technique can be applied to vu + Wy ¥ vu + Vo and other

neutrino-neutrino reactions.

3.6 INITIAL AND BOUNDARY CONDITIONS
Initial conditions (IC) and boundary conditions (BC) must be
specified in the BTE and P-N equations. The former are straight-

forward: we usually assume there are no neutrinos to begin with
Q(v,u,b,t) =0 IC BTE (3.38)

Qz(v,b,t) =0 IC P-N (3.39)

There are two types of volumes in which the transport equations
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are solved. The first is a spherical shell which has an outer radius
R0 and an inner radius Ri; the second is a sphere (Ri = 0). Actually,
the inner and outer radii may move; it is the baryon number enclosed
within radius Ri’ Bi’ and the baryon number enclosed within radius

RO’ BO’ which define the shell. The incoming neutrino df must be

specified at the outer radius
n(v,u,BO,t) = Foyr (vspst) p<©O (3.40)

and the outgoing neutrino df must be specified at the inner radius
n(v,u,Bi,t) = FIN (vou,t) u»0 (3.41)

unless Ri = Bi = 0, in which case n must be finite which implies n is
isotropic at the center.

If we solve the BTE for a shell configuration, we will find
that there is a stream of neutrinos flowing in the backward (inward)
direction through the inner radius, some of which will be scattered
forward, reentering the sheli: the specification of the BC at b = Bi
is impossible to decouple from the transport problem for the region
b < Bi' If the inner radius is sufficiently interior, so that there
are many optical depths above it, it may be a good approximation to
assume that the diffusion approximation holds for b < Bi; a plausible
FIN can then be given, a FD df with temperature and neutrino chemical
potential fixed; if the radiation acts to significantly change the
state of matter in the shell, by heating and/or neutronization, then
F_.. would change in response, resulting in a boundary value problem

IN

which is probably not well posed. If FIN is isotropic, and given by
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3.7, we term this a luminous surface BC.
At the outer boundary, one also has to worry about backscatter
into the shell. In practice, we choose the outer radius so that the
optical depth of the overhead matter, r > RO , 1s small compared with

unity and take
F =0 . (3.42)

Given FIN and FOUT , these BC can be immediately applied to the
S-N method: the df on the boundaries is specified at each of the
appropriate discrete angles.

It is generally impossible to satiéfy 3.40 and 3.41 at each
angle in the P-N method. Rather, certain integrals of these BC are
required to hold. If we deal with odd order P-N, then (N+1)/2 BC are
needed, which are usually taken to be the Marshak BC

0
du Pp(u) [n(v,u,B ,t) ~F 1 =0 £=1,3,..,8 (3.43a)
[1 L 0 OUT

i
./0‘ du Pp(w) [m(v,n,B,,t) - F ] =0 £ =1,3,..,N (3.43b)

The P-N method for N even is less accurate than for N odd, and we do
not discuss its BC here. See Pomraning (1973) for a more complete

discussion of boundary conditions.

3.7 FROM DIFFUSION TO STREAMING: SAMPLE DISTRIBUTIONS
The P-N equations are capable of describing diffusion on the
one hand (n£<<nO for all £#0) and free streaming on the other

(nz =1, for all £). As an illustration of this transition, suppose
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the df were elliptical:

_ alwpel, byt)
n(v,u,b,t) = T A W (3.44a)

= 1 - n(p=0)
lefams (3.44b)

Q
I

We can then express all higher moments in terms of the first two by

solving the difference equation

0 _ 1 L2441 N
241 a(nl/no) S XX |

n s £ >/l (3.45a)

£-1
and the transcendental equation which expresses o as a function of
nl/no

n
1 1 I4+a) _ :
7w G-eg) ()= 1 ket

A plot of a, which runs from O to 1, along with a plot of
nz/nO and n3/nO , against nl/nO is given in Figure 2.

Another angular distribution, one in which the neutrinos are
confined to a forward cone and are isotropic within that cone

2 no(b,v,t)

n(V,Usb’t) = ___]_—_Tu—c—_' X(Uc,l) (U) (3.46)

can be used to illustrate the forward peaking of the df as one moves
away from an emitting surface. If each element of a spherical surface
of radius Rc radiates isotropically, and all inward radiation is
completely absorbed, then the radiant df at r = R, will be 3.46 with
M, T 0. If the emission is time independent and there is no further

emission, absorption, or scattering in the region r > Rc then the df
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at radius r is given by 3.46 with

RC 2
hc(r) =1 -|— 3 (3.47a)

P
the cone angle, arccos (uc), which is 90° at RC has shrunk to 30° at

2Rc and ~ 6° at lORC . The moments obey

(fﬁz) 2 ny(R, V)

no(r,\)) =\ m:m— (3.47b)
I+u (x) :
nl(r,v) = —~—%“-— no(r,v) (3.48a)
. u, (T+u)
nz(r,v) == no(r,v) (3.48b)
2
(r,v) = e T b ( 3.48
na(r,v) = — 5 n, r,v) (3.48c)

All higher moments rapidly build up to the streaming limit as r
becomes large relative to Rc' One can use 3.48 to express all higher

moments in terms of ng and n, as in the elliptical case.

The two angular distributions show us that whenever n,

becomes comparable to n,, then the higher moments are not negligible.

0°
3.8 THE P-1 EQUATIONS

To adequately treat the streaming 1imit, must we use the P-N
equations for N large? The matter evolution equations 3.17 involve

(0) jna s

integrals of 4 only, and thus integrals of the first two
moment equations only. It is primarily the effects of neutrinos on the
hydrodynamics and thermodynamics of matter which are of concern in the
supernova problem; this suggests we use the P-1 method. Since the

£ =0 and £ = 1 equations, 3.25 and 3.26, include n, and n, on the
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(0) (1)

transport side and all higher moments in 4 and 4 , some
truncation scheme must be adopted to decouple them from the higher
moment equations. We introduce the Eddington factors, f for the

second moment and f3 for the third moment, which are functions of

0y, 0y, b, t and v

- 3 1
n, = 3 (f 3) g (3.49a)
ny 5 (f3 5) no (3.49b)
The most obvious choice is to set
B, = 0, £ = = (3.50a)
2 ? 3 - '
M, = 0, B, = 2 : (3.50b)
3 ? 3 5 e ‘

the resulting equations 3.25, 3.26, 3.50 form an approximation which,
following Falk and Arnett (1977), we call the time dependent Eddington
approximation (TDEA). The TDEA will not reproduce the streaming limit:
in the absence of sources, the BTE is a hyperbolic equation with group
speed c; in the absence of sources, the TDEA is a hyperbolic equation

with speed ¢/v3 . The Eddington factors, f and f both go to one as

3’

the streaming limit is approached. Some scheme for f and f3 which
interpolates between 1/3 and 1, and 3/5 and 1 respectively, such as
that given by the elliptic distribution 3.45, is necessary to reproduce
both the diffusion and streaming limits.

Higher moments than n, and n, enter into the source functions

0 1
(0) (1)

4 and 4 through the nonconservative scattering and thermal
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production processes. In the diffusion limit, the terms involving

n, and perhaps n

0 completely swamp the terms involving n,, 0

1 3 e

In the streaming limit, all moments are equal, but then n, is small

compared with unity (the neutrinos are not degenerate), and none of

© g D

the quadratic terms in 4
sc sc

is important. The same

argument holds for by - We retain moments up to and including the
second in Asc and Sen -
The Marshak BC 3.43, with 3.42 become simply

1 _ ' "
Ghy =ty = D b = B, (3.51)

i D

1

unless Bi is zero, in which case

n, (b =0) =0 if Bi =0 (3.53)

If a luminous surface interior BC is wvalid, then FI is isotropic; and

N

3.52 becomes

n, + an = FIN b = Bi (3.54)

Since nl<<nO in order for the diffusion limit to hold at the interior

boundary, we may consider another interior BC

n, = FIN b = Bi {3:55)

When the optical depth of the shell is much greater than the ratio of
exterior to interior radius, RO/Ri , solutions with 3.54 and 3.55 are

the same.
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It is more conventional to write the moment equations in terms

of the energy density of neutrinos per unit energy,

3
IV = —5  amy (3.56a)
27 (hc)
the momentum flux per unit energy,
v3 .
H(v) = ¢ — 307 o (3.56b)
27" (he)

the radial neutrino pressure per unit energy,

3
kKW = % En, +30 (= £1(v)) (3.56¢)
27" (he)
and the radial pressure flux per unit energy,
. 2 3
N(v) = ¢ —> (£ n, +=n,) (= £, H(v)) (3.56d)
3 "3 5 1 3
27" (fic)

If we multiply 3.25a and 3.26a by v3/2n2(ﬁb)3 , then we obtain
Castor's (1972) equations 31 and 32, except that our sources are more
complicated; Arnett (1977) sets f3 = 0 rather than = 3/5 to obtain
his £ = 1 equation (5), but since he then uses the diffusion
approximation, it doesn't matter.

We denote the integrals of J, H, K and N by the same symbols

except that we add the subscript v and further define

By = -2 = L vn (3.57a)
pB pB vV



68

(3.57b)

(3.57¢)

where u, is the neutrino energy per baryon, Yv is the neutrino number

per baryon, and Fv is the number flux. These energy integrated

quantities satisfy the gray equations

¥
3 v 9 .2 - (0)
o sz—-+ 4 5 (r Fv) = ~/; V)

Py

u
3%y 3 (1 5,2 _ v (0)
D + K (p )4—4n 5 (r Hv) (3Kv Jv)r ‘[: v4

H K 3K -J .
13w 2 3w vV vV _ 2 (3v,p _ (1)
c ot % St PB b o r 3 (cr + p) H\) I \)A

which are inputs into the equations of motion 3.17. Thus, the

(electron) lepton number per baryon

Y =Y 4+Y - Y-
L e Vv v
e e e

and the lepton number flux

satisfy the conservation law equation

Y

0L
e 9 2
3T +4n5§r FL

|
o

(3.58a)

(3.58b)

(3.58¢)

(3.59a)

(3:59)

(3.59c¢)
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which is just 3.17b. Notice that Ye is related to the electron and

positron concentrations per baryon, Ye_ and Ye+ s by

Ye = Ye... = Ye+ (3.60)

It is unfortunate that this confusing notation has arisen.
The P-1 equations are finite differenced in Appendix 4 and the
results are given in Chapter 6. We solve 3.25 a,b,c, 3.26 a,b,c with

]

3.17b,c but not 3.17d (no dynamics) for ve s.

3.9 THE P-0 APPROXIMATION

Consider the P-0 approximation: n, is zero, 3.25 has no

1
spatial derivatives and there is no transport; the neutrino df just
builds up toward its equilibrium value. These equations:are

appropriate for an infinite homogeneous medium and are solved in

Chapter 6.

3.10 DIFFUSION (MGDA, FLD, CA AND EDA)
From the P-1 equation, we obtain the multigroup or energy
dependent diffusion approximation (MGDA) by (a) setting f = 1/3,
f3 = 3/5, (b) neglecting anl/at and all terms in square bracket
[ ]v in 3.26a, and (c) assuming all scatterings are conservative
(1)

and there are no thermal sources in 4 . With all this, 3.26a

reduces to Fick's law of diffusion

- 1 2 9
ngo= - 3eT. 4 °8 3% n, (3.61a)
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HW = - D) Chr’py 25 3() (3.61b)

where the full transport lifetime ¢ , the transport mean free

Ex

path Atr , and the diffusion coefficient D, which all depend on

energys,and position and time through the thermodynamic parameters, are

o 1 B

Tep — Whged T I T P v oons ¥ Ty * Tp (3.62)
. L .2

D = 3 C Tep (3.63)

The imposition of 3.32 upon neutrino electron scattering is clearly
incorrect; however, neutrino scattering by nuclei and nucleons or
neutrino absorption always dominates the opacity, at least with
Weinberg-Salam model parameters, which suggests such an approximation
may not be too bad. The further approximation of taking A1 in 3.36
zero is often made (Arnett 1977).

The MGDA consists of Fick's law substituted into 3.25a. 1In
practice, approximate descriptions are ﬁsed for,é(o) (Arnett 1977,

sc,ve>va
Wilson et al. 1975).and also for §ég) when it is included (Wilson
et al. 1975).
The MGDA is a parabolic equation for constant D. The streaming

limit cannot be obtained from it. To alleviate this, the diffusion

coefficient is modified
D = D¢ (3.643)

where ¢ is called a flux limiter. Arnett (1977) and Wilson et al.

(1975) use
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I
) 1-D(1/n )(4ﬂr2p g—) n (3.64b)
0 B 3b” "0 :

When ¢ is unity (Atr<<hv), the usual diffusion approximation is

' n -1
obtained. Here, h is the neutrino scale height, h = Il_.ﬁ_g | .

Vv \V] no or

e o 7 -—

At low optical depth (Atr>>hv), Fick's law becomes n; = mn, or

H(v) = ¢J(v), which reproduces the streaming limit. How accurate is
flux-limited diffusion (FLD) in the intermediate region (Atr th) ?
Wilson et al. (1975) state that it results in at most a 10% error in
temperature when compared with exact transport equation solutions;
Yueh and Buchler (1977b) indicate it fares. well in comparison with their
S-2 and S-4 results. The test configurations in both cases are
somewhat idealized. FLD has become one of two standard methods to
transport neutrinos in coupled radiation-hydrodynamic codes (Arnett
1977, Wilson et al. 1975, Bruenn 1975).

The other standard method of transport, the conduction
approximation (CA), is cruder than the MGDA and is derived from it.
The isotropic component sf the df, Ny is assumed given by a FD df,

3.7, which we call n Then, Fick's law becomes

FD"

2 v oT v
1 -D(V) nen (l-nFD) 4ar Py (;z-ab + 55 ) (3.65)

=1
]

where

(3.66)

=
I

=

w

is the neutrino degeneracy parameter. The integral of 3.65, when
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multiplied by the appropriate powers of energy, yield the constitutive

equations
apY apY
. Vv 2 93
Fy = (Dl 3T )4” °B b T (Do 3 )‘”’r P 35 My
2 3 apX
= - DprBY T 4or PE 36 T 03 4oy P 35 M (3.67a)
dpu on
- _ \ 2 3T _ ) 2 v
B, = (Dz 5T )‘”‘r °B 3 <D1 an, )4” °B 35
= ={D 4 1) 4 2, My
= = | Dyhppu T} ﬂr Py ab (DlBkBTpBYv) 4rr PR35 (3.67b)
where
L L
v FD FD s
D, = , k=0,1,2 (3.67¢)
/kn (1-n_)
v FD FD

are essentially Rosseland mean diffusion coefficients, closely related
to the coefficients introduced by Imshenik and Nadezhin (1971, 1973)
and elaborated upon by Bludman and van Riper (1977). Neutrinos flow
down temperature and chemical potential gradients. For conservative
scattering only, D(v) mv-z and Dk can be expressed in terms of Fermi

functions

w _k
F, (n) = f‘.x_n dx (3.68)
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1;
DO = D(v=T) pE—— (3.69a)
(1+e™™) 2F, (n)
Fa
Dl = D(v=T) BTZ' (3.69b)
Ty
D2 = D(T) TN (3.69¢c)
3
Notice that, for a FD df,
3
(kT)
Py T = g F,(n ) (3.70)
By T L
B Yv kT F3/F2 (3.71)

The constitutive equations 3.67 are then plugged into 3.58 to yield
two diffusion equations for the two diffusing quantities, the
temperature and the neutrino chemical potential. The right hand

sides of 3.58a and b, the source terms, are in general nonzero.

If the sources are zero, then the CA reduces to the equilibrium
diffusion approximation (EDA); the chemical potentials of the neutrinos
are given by their equilibrium values, 3.12 for Vo 3.13 for ;e .

and 0 for v , ;u' It is this EDA for Vg ;e which Imshenik and
Nadezhin develop. It was used extensively with M, = 0 in early work
on the neutrino energy deposition supernova model (Arnett (1966, 1967),
Schwartz (1967), and much Russian work detailed in Zel'dovich and
"Novikov (1971)). Mazurek (1975, 1976) and Sato (1975) have used the
EDA with H, # 0 in their supernova codes in the post neutral current

era.
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In the EDA, the concept of neutrino photosphere enters, the

spherical surface which is n2/3 of a Rosseland mean free path from the

stellar surface. The Rosseland optical depth is

B

T (b,t) s c db

OP’R 4 3D, (b,t) , 2 Lasda)
2 brr P

where BS is the baryon number of the star. There are actually two
other Rosseland means, corresponding to the choice of D0 or Dl rather

than D2 .- The energy dependent optical depth is more illuminating:

B, T. (v,b,t) '
5 o i A G
TOP(v,b,t) = _/1; P . (3.73)‘
4 pB

Assuming theré are no composition changes, the b that is 1 optical
depth for a 5 MeV v is at depth 4 for a 10 MeV v and at depth 25
for a 25 MeV v . The.position of the neutrino photosphere is
energy dependent. Indeed, neutrino photosphere is a misleading
concept due to the extreme energy dependence of the neutrino
dpacities.

In this bewildering array of approximations, at what level can
we say we have adequately treated neutrino transport? To couple
radiative to hydrodynamical flows is an expensive and tricky
enterprise. When the EDA works, we want to use it. If the EDA and
the CA fail and yet FLD works, we want to use it. The historical

~progression in neutrino transport was to assume the simplest
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approximations worked until proven otherwise, then to adopt the next
simplest. This direction proceeds from the end of this chapter back

to the beginning. We need to justify the approximations. In rather
idealized situations, the S-N and Monte Carlo methods-have been used

to answer some of these questions. The P—i method is more general than
the diffusion approximations; it is the ground from which they spring.
It too can answer these questions, with a wide variety of sources,

upon which we now turn our attention.
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4. SCATTERING SOURCES

Neutrinos scatter from nucleons, bound and free, from
electrons, from themselves, and from their antineutrinos. We deal
with each in turn. In all concrete numerical results, the Weinberg-

Salam model with sin2 ew = 0.3 is used.

4.1 COHERENT NUCLEAR SCATTERING: v+A - v+A

The elastic scattering of neutrinos by heavy nuclei dominates
transport in both the neutronization and mantle regions by giving
the greatest contribution to the transport mean free path. The recent
regeneration of interest in the neutrino-induced supernova model was
a consequence of Freedman's (1974) observation that the cross-
section for this process goes as the square of the mass number of the
nucleus if the hadronic neutral current has an isoscalar vector
component (see Table 2). This alters in a qualitative manner the
supernova model from that determined with only charged current
processes included.

Fermi's Golden Rule for the scattering kernel (see 3.2, 3.3)
can be combined with the spin-summed-matrix-element for allowed
nuclear transitions, 2.44, to yield
d3p. 3

d’p
i £ 1
3 fi(gi)[ 5 (1405 (p)) 2m8 (B! £,

R(VA»VA5q>q") = f
(21036(3) (Ef+9."'131'3) G; By ° {(1+c)<(cV0+CVlt3)>2

+ (1- % c) <(CA0+CAlt3)g>2} (4.1)
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The distribution function for the initial state of the nucleus is
fi(pi) , that for the final state is ff(pf). The parameter bs is 1
if the final state particle is a boson, -1 if it is a fermion. For
complex nuclei, in the density-temperature regimes of interest, the
df's are Maxwell-Boltzmann; fof can be neglected in comparison with
unity. The temperature, density, and composition dependences, and
through them, the spaéetime dependences, of R(vA+vA) are not
explicitly indicated in 4.1. The incoming neutrino energy is v ,
the outgoing energy is v' , and c=ﬁ-ﬁ' is the cosine of the angle
between the initial and final neutrino momenta. Since the matrix
elements depend upon thebstructure of the nuclear state, we treat the
set of resonant excited states of the nucleus with spin angular
momentum Ji and mass Mi as an independent particle with partition
function By 2Ji+l.

Nuclear recoil energies are of order \)2/AmN , where My is the
nucleon mass and A is the baryon number of the nucleus: a 20 MeV
neutrino imparts v 8 keV to an 56Fe nucleus, v 110 keV to a 4He
nucleus. The final energy of the neutrino is then almost equal to its

initial energy, thus allowing the conservative approximation (3.32) to

be used, so (4.1) reduces to
R(VA>VA; g>q') = 2m8(v-v') ¢%n [ (1+c) Q2 + (1~ 1-c)f Q2] (4.2)
* S i W 3 GT™W &

where we have inserted (2.49) into this expression, defining the weak

charge of the nucleus to be
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- - Z-N
%™ S T 8 27 Gyt T S ( 2 ) (4.5)
and have defined the ratio of Gamow-Teller to Fermi matrix elements

o a2
£ - Cppslaits) o) | 5 )
GT I :

QW
The concentration of nuclei of type i is n,o, which is related to Yi y

the number per bafyon by
¥, ‘ (4.5)

The source (3.3) is then

, | 1-£o,/3
[n] = = Tg(W) n(v,u) + T (W y(OV) + 55—

unl(v)) (4.6)
GT

4
S€,VvA

where n, and.h1 are the first two moments of the df n(v,u) , and the

scattering rate (3.28) is

)
- 2
rs(v) =n, — Q (1+fGT)v
2 o\
B ' 2 v W : -1
=200 Pyglohy (1 MeV) (0.3A1> Gita) & (47)

The numerical evaluation is trivial if we remember G2/n =1.63 x 10_44

MeV cmz ; in this way, we do not have to reinsert any h's, only the
occasional c¢. Notice that PS(Q) = n,oc where ¢ is the>1ab frame
cross section for the process given in Table 2. .By the density

p (pli = p/lOll)we mean the baryon density multiplied by the atomic
‘mass unit m |

=mpp = (o ¢ 1 cm3)/NA (g/cm3)

u B

©
1
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where NA is Avogadro's number; this is not the mass density. It is

the transport inverse lifetime

2/3+10/9 fGT
(1+f

T = PS(vA)

er val™) -

2 2
5¢
2 v QW GT -1
1.77 pq1¥484 (MeV) (O.3Ai) . <l+ '3—) S (4.8)

which is of more interest than the scattering inverse lifetime in

conservative reactions. Since the neutrinos transfer no energy to the

© _,

medium in each scatter, 4 = ; since the scattering kernel (4.2)

is linear in c, A(K) = 0 for all £ > 2.

Usually, Qw is taken to be A and fGT is taken to be zero.

How large are the errors in such an approximation? For 56Ni 5 4He

e g . 56 54
Qw is indeed CVOA ; for Fe and Fe , a

Cvo

and all other N=Z nuclei,
rather abundant species (Weaver et al. 1977) in slightly neutron rich
media, (QW/O.BA)2 is 1.1 and 1.05 respectively : the approximation

can lead to a 5 to 107 error.

What of fGT ? The Gamow-Teller matrix element vanishes for any
spin zero state. Even-even nuclei are the most abundant in nuclear
statistical equilibrium (NSE) and their ground states have zero spin.
The first few excited states of such nuclei are vibrational or
rotational, with spins 2, 4, 6 . . . . A spin two state with excita-
tion energy EX above the ground state has a population 5 exp (—EXB)

56

relative to the ground state's population. Consider 56Fe and Ni

with first excited states at .89 and 2.7 MeV respectively. At
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temperatures characteristic of the neutronizing shell, 1.5 MeV, the
populations relative to the ground state are 2.8 and 0.83
respectively : the excited states cannot be neglected. The

relationship between B-decay matrix elements and ft-values
2 _ (3.8 - log., ft)
<t > + gA <ct 10¢ 10 (4.9)

together with the relation between <ot3>2 and <ot+>2 obtained from
the Wigner-Eckhart theorem by assuming isoinvariance (equation 4.14b
below) allows us to estimate fop 3 ilmmediately we can see fop 1s zero
for self conjugate nuclei such as the abundant 56Ni and 2‘8Si for all

excited states, whether of zero isospin or not, for models with C = 0,

such as W.S. Even for superallowed ft values, ~ 103'5,fGT is less than

AO

1% for heavy iron peak nuclei. After the iron-helium phase transition,
for a neutron rich medium, light nuclei that are unstable in the
laboratory, such as 5He, appear in NSE mixtures (Epstein and Arnett
1975). A simple shell model picture of 5He as a 4He core and a
neutron in a p orbital yields <(C 5 i A o )0>2 = 20/3 C2 and
3/2 A0 "A173 An °

fGT = 0.9 with (QW/O.BA)2 = (1.28). Similarly, for 3H , the matrix

. 2 ~ 2 s
element is 3 Cy, » SO fGT ~]1 , and (QW/O.3A) 1.49. Bernabeu
(1975) first analyzed corrections of this nature and came to the
same conclusion. The corrections for the light elements are not
negligible. However, models show that the helium-like zone in the
neutronizing region is rather narrow, and for this reason such a

correction can be ignored.

The total transport rate is the sum over all levels in a nucleus,
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and then over all nuclei, labelled by (Z,N). If we neglect f_, _, the

GT
sum over all levels can be performed : the result is (4.8) with Yi

now interpreted as the number of nuclei with proton and neutron

numbers (Zi’Ni) per baryon.

4,2 INELASTIC NEUTRINO-NUCLEUS SCATTERING v+A - V+A*

There is another opacity source associated with neutrino-
nucleus collisions, namely that due to inelastic scattering \)+-A:.L ->
\)+Af , where the final nuclear state f of mass Mf is not the same as

the initial nuclear state i of mass Mi . We apply 4.1, again neglect

nuclear recoil, and obtain the analogue of 4.2:

2 1 2
. 1y = Oy ! _ L
R(vAi+vAf,g+g ) 2%8(v-Q-v") niG (1 3 c) <(CAO+CA1t3)g>fi (4.10)

with one important difference: the scattering is nonconservative; the
incident neutrino loses an amount of energy Q = Mf—Mi . The source

functions look formidable
Aég)(vAi+vAf) = T (Wng (V) + T(2Q)ng (wH) + T (W)ny (WIng (v-0)
~r (v+2Q)n, (W) n (V) = %-Ps(v)nl(v)nl(v-Q)

+-% I (v20)n, (V)ng (V) (4.11)

Fs(v)
9

Aéi)(vAi+vAf) = - Ps(v)nl(v) - %-Ps(v+2Q)nl(v+Q) - no(v)nl(v—Q)
+ 3 Tg(vH2Q) ) (WIng (vH) + Tg(WIn (WIng (v-0)

- Tg(vr2Q)n; (g () = 5 Tg(Wn, (Wn, (v-Q)

+ 2 T (vF20)ny (V)n; (vHQ) (4.12)
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but are the simplest of those for nonconservative scattering; by
comparing with 3.25c¢ and 3.26c the origin of each of the terms is
apparent. Neutrinos of energy v+Q can be downscattered by energy Q
"into the beam" of energy v , and those of energy v may be down-
scattered by Q "out of the beam." The scattering rate is
G2 2 2

Fs(v) = My <(CAO+CAlt3)g>fi (v-Q) " 8(v-Q) (4.13)
where 6 is the Heaviside unit function; v must exceed threshold in
order for the reaction to proceed. Again this is n,co where ¢ is the
lab cross section givéh in Table 2. The total scattering rate is
obtained by summing over all possible final states in the nucleus that
are connected to the initial state by the selection rules (2.48b)
appropriate to Gamow-Teller transitions, then summing over all possible
initial states, which includes thermally populated excited states.

The matrix element which enters is the same aé that for
nuclear de-excitation A* > A+vty although the Q dependence is quite
different. ©Now, however, 20 MeV neutrinos can excite the nucleus to
very high energies, much higher than are thermally populated, and the
subsequent decay of the resonant state A* can be by particle emission
as well as by photo-de-excitation. At higher energies still, neutrinos
can induce spallation of the nucleus.

It is rather difficult to calculate the matrix elements to
such highly excited states since their nuclear structure is usually
not known. We are helped in this by a number of effects. The initial

state is thermally populated, thus low lying. The energy dependence
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of FS tends to weight low lying final levels most heavily. The matrix
elements of the one body operators, §p and §n’ the total intrinsic
spins of the protons and neutrons respectively, which enters into
4,13, are small between a low lying initial state and a highly
excited final state whose structure is quite different. Within the
shell model, we can see that these transitions will be dominated by
those final states in which a nucleon flips its spin, but maintains
the same orbital angular momentum as the initial state (f=£+1/2 ~
{=£-1/2). The superallowed transitions between isospin analogue
states that often dominate B-decay do not occur in inelastic neutrino
nucleus scattering, since the analogue of the initial state is

itself, for the parent and the daughter are the same; thus, it is

fGT which is affected. Even-even nuclei are the most abundant, and
their first few excited states are of even spin. The threshold for
the excitation of the first M1 resonance can be rather high, the first
level with isospin 1 is perhaps at 8.14 MeV above the ground state

in 56Ni. The log ft for the electron capture between the 56Ni ground

state and the 56Co l+ state at 1.72 MeV is 4.4. If we assume the

56

state at 8.14 MeV is 1+ and the analogue of the Co state (following

Fowler and Fuller 1978), and use the relations

2
ot T.+1-T
< 3>fi . | 31 _
<0t >2 = E;IT;?I? . Tf = Ti+l (4.14a)
+/£i *
Tgi
= , T. =T, (4.14b)

(Ti—TBi)(Ti—T3i+l)
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]
= T -7 -1 5 T. =T, -1 (4.14¢)
i34

which hold among members of an isomultiplet, and (4.9), we obtain
<ot3>2 = .08 for the transition. The ratio of the cross section for
exciting this level to the elastic scattering cross section is

2.4 x 10—5 for 10 MeV neutrinos, 3.2 x 10-4 for 25 MeV neutrinos. The

range of normal allowed ft's, 104 - 105'7, and hence of <0t3>2 shows
us that this is the typical result. Inelastic scattering is tiny as

an opacity source when compared with elastic scattering. This is true
for individual transitions; but there are so many I+ levels in the

nucleus, there is even a giant magnetic dipole resonance, that perhaps

when we sum over all thése levels we get a large result. The strengths

are limited by a sum rule for the Gamow-Teller matrix elements:

A
b
Z<(CAO Al 3)°>f1 i +1 o IZ(CAO RIVENL ‘;(CAO Al 3)" £V
£ ~
2J1+l ;<1M!(CAP§P+CAn§n)2 '1M> (4.15)

We may obtain an upper limit to the magnitude of inelastic scattering

by having the sum rule saturated at zero excitation energy:

rg(v) < ng GT ( Z(ml(c S #Cpn S " |1M> <(CAO+CAl 3)0> ) (4.16)

If we are dealing with very high excitation energy, say 30 MeV, and

all of the sum rule strength is below 10 MeV, this may not be such a
bad approximation. In 56Ni, the giant Ml resonance is estimated to

be at v 12.4 MeV by Fowler (1978) based on a comparison with 56Co

states; the ground state GT sum rule strength, estimated at 48/7 in

section 5.3, is all put at 12.4 MeV. For 10 MeV neutrinos, the
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giant Ml would not be excited; for 25 MeV neutrinos, the ratio of
inelastic to elastic scattering for the ground state changes from

8 to L x 10_2 , and the sum rule expression (4.16)

3:2 % 107
predicts 5 x 10-2 is an upper limit, a factor of 3.6 too high; by

40 MeV, it is only two too high. Some authors (Wilsomn 1977,

Mazurek 1977) have neutronizing regions extending to electron chemical
potentials of 40 MeV, and neutrinos are produced with ~ 5/6 of this
energy on the average, suggesting this approximation will work there.
At high enough neutrino energy, forbidden transitions begin to be

less suppressed, which would cause some modification of this
prescription if heavies survived till very late in the collapse when
the neutrino chemical potential can rise to ~ 100 MeV. Then, however,
the neutrinos are in equilibrium and only the total transport lifetime
is important. Again using the shell model this sum rule gives zero
for a doubly closed magic nucleus such as 40Ca. There is no coherent
addition of amplitudes in this matrix element; the result is of order

unity, giving a value for the scattering rate which still pales in
comparison with the elastic scattering value.

The inelastic scattering of neutrinos by nuclei can heat up the
mantle region, something that the elastic scattering process cannot do;
however, neutrino-electron scattering dominates over vA»vA* as an
energy deposition mechanism; the latter is g 50% of the former for
20 MeV electron neutrinos passing through matter characterized by a
10 MeV electron chemical potential (p N1k x 1010 gles ,

characteristic of the mantle) ; for muon neutrinos, the ratio may rise
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to greater than unity due to the smaller vu—e scattering opacity.

4.3 FINITE NUCLEAR SIZE EFFECTS

When the wavelength of the neutrino approaches the radius of
the nucleus upon which it is incident, the neutrino no longer '"sees"
a point nucleus of some total weak charge Qw . The phase contribution
from each of the nucleons to the scattering amplitude cease to be
approximately the same; coherence breaks down. For iron, the radius
is about l.lAl/3 fm v (47 MeV)—l ; for helium, it is even smaller,
~ (113 MeV)—l . The correction is small for the neutrino energies
typical of the neutronization and mantle regions. If heavy neutron
rich nuclei can survive in the inner core, then its effect must be
included, for there the neutrino energies rise to v 100 .MeV.and
higher. This elastic scattering, when present, determines the
diffusion coefficient, and if the cross section is lowered, the
diffusion time decreases.

The Fermi and Gamow-Teller matrix elements, 2.45, become
<(CVO+CVlt3)exp (ig-g)>§1 and <(CAO+CAlt3)g eXP(iK'E)>§i respectively,
where k = g—g' is the momentum transfer to the nucleus. For the

v+A>v+A process in particular,
{(C#Cy ) exp(iker)) 2, = ¢, F () + ¢, F . (1] (4.17)
VO "v1i“3 ii Vn ni'~ Vp "pi ‘-~
where the neutron form factor of the state i is defined by

() = (ilo_(0)]1) (4.18)

where pn(k) is the Fourier transform of the neutron density operator.
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At zero momentum transfer, pn(g=0) is the neutron number operator,
Fni(O) = Ni , and 2.49 is recovered. The proton form factor is
similarly defined; it has been measured by elastic electron
scattering, and is given in a reasonable approximation (Freedman

1974) by

2
2, _ . -b.k
Fpi(k ) = Zie i (4.19)

where bi = ri/6 and ri is the root mean square nuclear radius. If we
assume the neutrons have the same density distribution in the nucleus
aé the protons, and we know this is not always true, then Fni = Fpi 5
and (4.17) can be evaluated. If recoil is still neglected, and for
heavy nuclei even at high neutrino energy this is a good approximation,

and fGT is also neglected, then the modification of the scattering and

transport rates is

PS(finite nuclear size) = Fs(point nucleus,4.7)[e—Y—(l-—Y)]Z/Y2 (4.20a)

= 3
Ftr(finite nuclear size) = Ftr(point nucleus,4.8) [Y-2+(Y+2)e Y]ﬁ/Y
(4.20b)

where

2
_ 2 -5 2/3 v _ 2/3 _
Y = 8biv = 4.1x10 ~ A (i—ﬁgv) , for r, =15 A s By = lsl

This agrees with the result given by Yueh and Buchler (1977b) apart

ivA) . That the finite nuclear

from a factor of Y (their y) in their A
size effect plays an important role at high energy can be seen in

Figure 5 which plots the ratio of the transport lifetimes calculated

using 4.20b and 4.8 with fGT=O. Because k2 = 2v2(l—c) favors forward
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directions, the transport rate is decreased more than the scattering

rate by this effect.

4.4 TON-ION CORRELATION EFFECTS

If the neutrino wavelength is greater than the internucleus
spacing, we may expect phase interference to manifest itself in the
scattering amplitude. At high temperatures, the phases coming from
different nuclei are random: the total scattering rate depends upon
the number of scattering centers, not on the square of the number.

At low temperature, nuclear motions become correlated due to
electrostatic repulsion: in the extreme, as in the mantle of a cold
neutron star, a Coulomb lattice forms.

Just as the scattering of neutrons from a medium, whether it
be a gas, a liquid, or a solid, probes the density-density correlation
function, so the scattering of neutrinos probes the weak current-
current correlation function. We develbp this formalism in Appendix 3.
For nonrelativistic nucleons, when electron-nucleon correlations can
be ignored, and nuclear polarization is unimportant, and both conditions
are valid in the supernova core, the scattering kernel for neutrinos

by nucleons, bound and free, is
Rlga') = GA014e) 8. oo ll,t) + G (k& 38, Ly (4.21)
71 Ak o e .

where the current-current correlation functions for nucleons are given

by

S 1o 70 (1) =fd"x el(kex) <Jaad’NC(x) J;Lad’NC(O)> (4.22)
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_ 4 i(kex)
B 3e g0 _[d x e had, nc® :]had,Nc(O» W)
where the hadronic current components Jzad NC Jhad NC 2re given
by 2.36a and 2.36b respectively. The expectation,< >, denotes

an average over the local thermodynamic ensemble of the medium. The
currents are evolved in time by the full matter Hamiltonian (with
strong and electromagnetic, but no weak, forces). The 4-momentum
transfer to the medium is k = (w,k) = q-q' .

When we, take the ensemble to be ii><i| , where |i> is a
nuclear state, the current-current correlation functions reduce to
strength functions for the neutral current operators, which are similar
to the well-known beta strength functions (see equations A3.28 - A3.30
and the discussion therein). The sum rule (4.15) is then just the

zeroth ment of S
eroth mo 33,

SUM RULE: Q_/ﬂSJ.J (E,w) %%—= (equation 4.15) for small Ikl (4.24)

~

where @ is an arbitrary box normalization volume kept in for dimensional
purposes. For small k, the sum rule for SJOJO is trivial; for larger
k , not only are finite nuclear size effects included, since (4.17) is
this correlation function evaluated at w=0 (apart from an ), butalso
forbidden transitions to excited states are included for w#0 . These
latter effects are tiny.

At finite temperature in an infinite medium, these correlation
functions contain information not only on the matrix elements between

the resonant states of individual nuclei, but also on the correlations
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among nuclei. If the nuclei are close together, how can we isolate
the nucleons bound in one nucleus from those in another? Of course
we cannot: the medium acts on the nucleus altering its properties, for
example, its surface energy; fermion exchange terms may become
important. If the nuclei are sufficiently far apart, we may hope to
make a fairly clean separation between internal nucleus properties
and external nucleus-nucleus properties; it is as if point nuclei
are interacting only electromagnetically with each other (except

that nuclear reactions must be included). The correlation functions
are often separated into two parts, the self part which contains the
internal excitation information, and the distinct part which contains
nucleus-nucleus information as van Hove first did in 1954. If large
correlated élusters of nucleons (heavy neutron-rich nuclei) can
survive till rather late in the collapse, at high densities, then

this separation may break down. We assume the separation works, so
for small kR, where R is the nuclear radius,

SJoJo(E,w) = 2{:(CVnNi+CVpZi)(CVan+CVij) <pi(km)pj(x=0)> (4.25)

1]

where the sum is over all nuclear species i whose density operator

is pi(x) , with Fourier transform in space and time, pi(km) ; the free
neutron and proton are included in this sum. Partial dynamic liquid

structure factors in multicomponent plasmas are defined by

S?j(kw) - 1 <Api(km) Apj(x=0)> (4.26)

n.n,
L

where Api =Py - <pi> , and n, = <pi> :
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From the earlier discussion, it is apparent that the Gamow-Teller

terms, which enter into SJ_J , are negligible compared with the Fermi

terms for heavy nuclei, a;d~can be neglected for light nuclei. They
cannot be neglected for neutrons and protons as we shall see.

Nuclei interact through their electric charges. In the mantle
region, where, to a good approximation, only iron peak elements are
present, the charges differ by small amounts, and each species behaves

approximately the same; ng = SD is independent of species i and j.

The scattering kernel is then
2 D 2
R(q>q") = G2(l+e) SP(kwpy D (@2, ¥.) (4.27)
B ry Wi i
For small k, the neglect of recoil is a valid approximation, and
D S
S7 (kw) = 278 (w)S™ (k) _ (4.28)

where the static liquid structure factor is related to its dynamic

counterpart by
sy = st(gw) & (4.29)

In other words, we saturate the "sum rule" (4.29) at zero energy
transfer; the scattering is conservative, and (4.28) in (4.27) reduces
to (4.2) if SS is unity, the case if the nuclei are uncorrelated.
Flowers and Itoh (1974) pointed out that the supernova core is
thermodynamically similar to a liquid metal; the nuclei are like ionms.
Itoh (1975) then showed that the Coulomb correlation among the ions

drastically modifies the elastic scattering of low energy ( "3 MeV)
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neutrinos. To support this contention, he took the Debye-Huckel
formula for the structure factor
2
k—a2
k az+3P

Sk = (4.30)

N

and calculated an effective neutrino scattering cross section, that is,

a PS , and found a large difference between it and the uncorrelated

version. The Coulomb liquid is characterized by the dimensionless

parameter
1£3
r = :i;z ~ 0.1 Zi/s pél (4.31)
A 10
introduced by Brush et al. (1966) and the ion sphere radius,
-1/3 1/3
= {4 ~ 16 A
a = <3 ﬂni) 16 173 fm (4.32)
P1t

where the charge and mass number of the nuclei are Z and A , P11 and
10 X

TlO are the density and temperature in units of lOll g/cm3 and 10
If the plasma is multicomponent rather than one component, more
parameters are necessary to characterize the medium (Hansen et al. 1977).
The electrons play a negligible role in static Coulomb interactions
due to their extreme degeneracy (Hansen 1973).

The Debye-Huckel law breaks down as a good approximation for
large momentum transfers. 1In the iron-nickel mantle, at P11 = 2 and
T1n =2.4 , T =10 and a = 50 fm, and Itoh's results cannot be used

above a neutrino energy of 3 MeV. J. P. Hansen (1973) presents Monte

Carlo results for the liquid structure factor of the classical one
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component plasma at I' = 10 ; Figure 4 is constructed from his table
and the Debye-Huckel law (4.30) is compared with it. The Fourier
transform of the static liquid structure factor is directly related
to the pair distribution function, g(r), which gives the probability
that there is a particle at position r given that there is one at
position Q . Coulomb repulsion results in g(r) being almost zero

for distances less than the ion sphere radius, overshooting slightly
at the ion sphere radius, and then settling down to unity. At higher
I' , the oscillations become greater. This is reflected in Ss(k) :
the peak at ka ~ 5 sharpens and shoots up to a higher maximum and the
oscillations continue out to ka ~ 15 before the function settles down
to one. At I' v 155, the Coulomb liquid becomes a Coulomb lattice
(Pollack and Hansen 1973), and SS is nonzero only in the neighborhood
of reciprocal lattice vectors.

To obtain the transport lifetime at energy v , we must
integrate (4.27) from k = 0 to k = 2v , which we do numerically. The
comparison of the uncorrelated transport lifetime with this correlated
lifetime is given as a function of energy in Figure 5, along with the
form factor deviation at high energy. At 10 MeV, with wavelength
20 fm, the difference is 25%, dropping to N 27 at 15 MeV.

Notice the local maximum at 7 MeV; if the differential cross
section were isotropic, instead of proportional to l4+c , no such
maximum would exist; the local maximum in the PS curve is in a slightly
different position. At the same density and temperature, for a

helium plasma, ' v 0.13 , a v 20 fm and the Debye-Huckel approximation
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is not too bad (Hansen et al. 1977); at 10 MeV, the wavelength is
equal to the ion sphere radius, and the uncorrelated transport rate

is 20%Z too high; at 15 MeV, it is 10% too high.

4.5 VvN>vN

In the inner core, the matter is hot and dense and consists
primarily of quasifree neutrons and protons. In the neutronization
region, where the alpha concentration is high, there are many
quasifree neutrons, but rather few protons. In the mantle there are
almost no free nucleons; they are almost all locked up in heavy
nuclei. The scattering of neutrinos by nucleons is a dominant
opacity source in the interior.

In a sense, we have already discussed this process for
nondegenerate nucleons; if we reread the neutrino-nucleus elastic
scattering section, starting with equation (4.2), passing through

to equation (4.8), with the values

Q, = Cyy (4.33)

2 g B
By = 3cAN/cVN (4.34)

substituted, we are then reading about neutrino-nucleon (N=n) and
neutrino-proton (N=p) scattering.

Most authors (Tubbs and Schramm 1975, Lamb and Pethick 1976,
Yueh and Buchler 1976, 1977b, Bludman and van Riper 1977) have taken
C to be 1/2 in the W.S. model rather than gA/Z , thereby coming to

An

the erroneous conclusion that vn»>vn is isotropic (i.e., c-independent
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in equation (4.2)). By doing so, they make a 42% error in the
scattering rate (4.7) and a 47% error in the transport rate (4.8).
More generally, VN scattering is described in terms of the
density—density and spin-spin correlation functions by the kernel
4.21. A complete many body calculation of these correlation
functions would include, for example, the processes VH+N+N->v+N+N and
v+zero sound - v+zero sound as well as vN+vN. However, the latter
process dominates in the absence of nucleon clustering into nuclei.
It may be calculated within the framework of the independent
quasiparticle approximation (see section A2.2 in Appendix 2). When
recoil is neglected, so the scattering is conservative, we obtain

the scattering and transport rates

41.9 p (O)Y e
2 2.2 .2 S 11
. =n_— v (C +3C, ) S__(0) = _ (4.35)
S N 7w VN AN NN 34.8 o (O)Y VZ s 1
ll
43.3 p (O)Y v2 g1
S I L T R S s
tr 3 N7 VN AN NN 38.5 pll (O)Y V2 S—l (4.36)
in terms of the static liquid structure factor at zero momentum
transfer
S o4n ng
S(® = ——L Eg(E) A-£g(E)) = —m— (4.37)
(2n) N
Here, nyg is the neutron (N=n) or proton (N=p) concentration, and Ny

is the nucleon degeneracy parameter, the chemical potential divided by
the temperature. The nucleon is assumed not to change its energy in

the collision; it must be scattered from an occupied state to an
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unoccupied state at the same energy; therefore, the rates for a
nondegenerate gas of nucleons (4.7 and 4.8) are modified by the
factor S;N(O) which is the probability for finding a particle-hole
pair at the same energy.

In order to obtain 4.35 and 4.36, we have assumed that the
dynamic liquid structure factor is proportional to a delta function
at w=0 ; i.e., the scattering is conservative. 1In Appendix 2,
section A2.2, we show that, for nondegenerate nonrelativistic
particles, it is, in fact, a Gaussian in w with mean value k2/2m and
standard deviation /E;T7H-k , where k is the momentum transfer to
the medium (equation A2.12b). Both factors must be small compared
with the incident neutrino energy in order for the conservative
approximation to work. Otherwise, VN scattering would have to be
dealt with as a nonconservative process. In zero temperature nuclear
matter, neutrinos must deposit energy in order to raise nucleons
above the Fermi sea; the structure factor (Figure 6) does not look like
a delta function, and the scattering kernels (Figure 8) have outgoing
neutrino energies spread over a relatively broad range below the
incident neutrino energy.

Sawyer (1975) has used the fluctuation equation of state

(Goodstein 1975) appropriate to classical systems
S5 (0) = p(k,T) K (4.38)
- 7NN B T °

where the isothermal compressibility is

34n nyg
KT =] —'——a'p—'—‘ (4.39)
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and p is the pressure, to treat the modification of the scattering
due to strong nucleon-nucleon interactions, using cold nuclear matter
equations of state. He only deals with the modification of the
Fermi term, neglecting the Gamow-Teller, which dominates the Fermi
part by a factor of v 4.7, 1In regions where the equation of state
is softer than that of a free nucleon gas, VN scattering is relatively
enhanced; in regimes where the equation of state hardens due to the
short-range repulsive forces, VN scattering is decreased relative to
the free Fermi gas value.

When the neutrino wavelength is small compared with the
internucleon spacing, the independent quasiparticle approximation wili
become the appropriate mode of description; 4.38 is then just 4.37.
At normal nuclear matter density, this corresponds to neutrino
energies in excess of 55 MeV, which is small compared with typical
neutrino Fermi energies at that density. In the high energy, high
temperature regime, 4.35, 4.36 can be used.

Suppose we adopt a simple effective mass formula for the energy
Ep within the independent quasiparticle framework (A2.11, A2.14); we

then obtain at low temperature

%
g ) m (kT)
SNN(O) Rl S (4.40)

pp(N)
where pF(N) is the Fermi momentum of the nucleon, related to the

density by

/3

p(N) = (31r2nN)1 - 111(p13YN)1/3 MeV (4.41)
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%
and mN is the effective mass at the Fermi surface

dE

1 P
L _|{_P (4.42)
m; pap p=pF(N)

As the temperature goes to zero, S;N(O) goes to zero, and the
conservative approximation breaks down. We must resort to the zero
temperature nonconservative scattering results: the £=0 moment of the
scattering kernel is given by equation A2.13 and is plotted in Figure 8
for vn scattering at the density 5xlO13 g/cc and the neutron number per
baryon Yn = 0.9 for a few incident neutrino energies. A more complete
discussion is given in Appendix 2.

We would like to use the conservative scattering approximation
whenever possible. When the scattering rate 4.35 (or 4.36) with 4.40

is smaller than the zero temperature scattering rate A2.13c, we may

expect that it fails; it breaks down when

kT

v — (4.43)

v

=i

where Ve is the velocity at the Fermi surface. The neutrino chemical
potential typically exceeds this bound at high densities; recoil effects
cannot be neglected, and the zero temperature formula A2.13c is more
suitable.

If we compare either of these formulae for VN scattering in
degenerate Fermi liquids with the nondegenerate scattering rate, it is

evident that degeneracy inhibits scattering. Brown (1977) has suggested

that neutrinos may [lash out of the core when nucleons go degenerate,
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due to this relative decrease of the scattering rate, and therefore,
in the diffusion time. However, just as the nondegenerate scattering
rate 4.35 increases with increasing density, so does the degenerate

\
rate A2113c. In fact, when the neutrinos are quite degenerate, the
diffusion coefficients Dk of equation 3.67c all become equal to D(uv),
independent of k, where uv is the neutrino chemical potential. The
diffusion constant does not then depend upon the particular power law
dependence of the scattering rate, whether it be 2 as in 4.35 or 3 as
in A2.13c, except in its relation to the transport lifetime evaluated
at the neutrino chemical potential. The diffusion constant in both
cases falls as p"S/3 . It does not suddenly decrease as the neutron
degeneracy line is croséed, although it may fall by a factor of v 2
due to the different Yv/Yn dependence of the nondegenerate and

/3

degenerate diffusion constants (the former is ~v (Yn/Y\))l times the
latter). At these high neutrino energies, the neutrino absorption
process can dominate the opacity; this process too is relatively
suppressed when nucleons become degenerate; it is very small when the
number of neutrons greatly exceeds the number of prqtons.

Suppose neutrinos are also extremely degenerate. The nonlinear

terms in 3.26c lower the effective transport rate below Ps , due to

final state blocking. This effect supports Brown's conjecture.

We define the baryon degeneracy parameter, ng s by

. (2m kBT)B/2

p}3 = "—zﬂ—z-—— F1/2 (nB) (4.44)

If Yn were one, ng and n, would be identical. The line ng = 0
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corresponds to a transition line from nondegeneracy to degeneracy:
nucleons are semi-degenerate. Beyond ng = 10 the nucleons are quite

degenerate. The relevant curves are displayed in Figure 9, where we

have also included Arnett's (1977) central zone trajectory to show

a typical thermodynamic history of the core.

4.6 ve > ve

Neutrino-electron scattering is a decidedly nonconservative
process: when the neutrinos are nondegenerate, and their energy is
high compared with the electron Fermi energy, they lose an average
of one half of their energy in each collision with a degenerate
electron gas (Tubbs and Schramm 1975); when their energy is much lower
than the electron Fermi energy, we can show that the mean energy
transferred to the plasma by the neutrino is exactly one-third of
its incident energy. Neither the conservative approximation nor the
Fokker-Planck approximation (as Wilson 1974 once used) will adequately
reproduce its effects. Not only are integrations over the outgoing
neutrino energy introduced in the moment equations which are linear
in the neutrino distribution function, but the onset of neutrino
degeneracy introduces a further complication: the moment equations have
a quadratic nonlinearity in the source terms (as in equations 3.25c,
3.26c¢c, and 3.27c¢).

In Appendix 2, in section A2.1, we evaluate the current-
current correlation function of an electron plasma in the independent
quasiparticle approximation, and use it in section A2.3 to obtain the

first three moments of the neutrino-electron scattering kernels; for
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the reaction ve+e > ve+e s for extremely relativistic electrons,

] . 2 1 2 -
Rz(\)—w ) = (cVe+cAe) Yz(\)—w ) + (cVe—CAe) YE(\H\)') (4.45)
where o
262 V3 [ dg E ;'
Y Pty = 2. X e ey d,(Z— > —) (4.46)
£ 3m B(V')Z max(o,-&u)(eg n+l) (l+en g Bw) 'e— Bv V

and the dimensionless functions ¢£ are polynomials in £/Bv and rational
functions of v'/v , and are given by equations A2.22 and A2.23 for
£=0, 1, 2. The kernel VK is given by the same expression 4.46 except
¢£ is replaced by EZ which are defined by equation A2.25. The neutrino
energy transfer to the plasma is w=v-v' , and B is the inverse
temperature in energy units. The two exponential terms in the
denominator arise from the electron df for the initial electron and
the hole df (= l—fe) for the final electron. The Fermi energy of the
electron is n/B . Generally, the evaluation of 4.46 requires a
numerical integration over g

Examples of the £=0 spectra for three different incident
neutrino energies are given in Figure 10 for conditions characteristic
of the neutronizing shell; there, we see the neutrinos dominantly
downscatter in energy when they collide with an electron gas; the
width of the spectrum near the peak is fairly broad. However, even
at n=14 , the value of the electron degeneracy parameter chosen for
this figure, there is a significant amount of upscattering (i.e., the
final neutrino energy exceeds the incident neutrino energy).

Upscattering is related to downscattering by equation 3.6. As the
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temperature is lowered to zero, the upscattering decreases to zero;
as the temperature is raised, the amount of upscattering increases as
we show in Figure 11.

The higher £ moments have a more complicated form than the
£=0 one; they can be negative as well as positive. A typical example
of the relation between the first three moments is given in Figure 12
for an incident neutrino energy of 25 MeV. The scattering is never
strongly anisotropic; the £=0 moment is usually significantly greater
than the higher ones. When the energy transfer to the plasma is
small, the neutrinos are somewhat forward peaked; when it is large,
the scattering is backward peaked. We expect this behavior in
neutrino scattering off individual electrons and, regardless of
incident neutrino energy, this is the general trend.

These scattering kernels are applicable to a wide variety of

processes, necessitating change in the neutral current constants only:

ve+e‘ - ve+e' - CAe > —CAe in 4.45 (4.47a)
vu+e > vu+e s CVe > CVu , CAé > CAu in 4.45 (4.47b)
vu+e -> vu+e 2 CVe > CVu . CAe -> —CAu in 4.45 (4.47¢c)

The changes in 4.47a, with the further change n + -n in 4.46, give
the kernels for \)e+e+ > ve+e+ , but due to the relative paucity of
positrons in these supernova cores, this process can be ignored.

The inverse scattering lifetime, FS , defined by equation 3.28,
is useful as an indicator of the relative importance of ve scattering.

To obtain it requires a further numerical integration, this time over
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the final neutrino energy. 1In certain limiting cases, for very low or
very high energy neutrinos (relative to the electron Fermi energy)
analytic formulae can be obtained (equations A2.27a, b). With

charged current constants (CVe =C.. =1)

™ , these formulae were first

derived by Bahcall (1964) and elaborated upon by Hansen (1966).
Tubbs and Schramm (1975) extended them to include neutral currents,

and also gave some numerical values of T'_ for two neutrino energies.

S

Apart from our work, a number of other authors have
investigated the effects of Ve scattering and have independently
obtained some of these scattering moments; Yueh and Buchler (1977b)
obtained the 4£=0 and 4£=1 moments (our Eo , equation A2.25a,b does
not agree with theirs; one of their (v')'s should be a v); Tubbs (1978)
has obtained the £=0 moments for his Monte Carlo code.

Within the inner core, where the nucleons are free, the
neutrino distribution function is essentially isotropic and Fermi-
Dirac. There is a small outward flowing neutrino current proportional
to the gradient of the isotropic part of the df ; the proportionality
constant is the diffusion constant; the diffusion constant at high
neutrino energies is dominated by the absorption ve+n »> e~ +p , and at
low neutrino energies by either emission e~ +p > ve+n or comnservative
scattering v+n - vin depending upon the relative magnitudes of Yp and
Yn' In the mantle and envelope, the elastic scattering of neutrinos
by nuclei dominates the opacity. Neutrino-electron scattering never

dominates (although it competes with vn + vn when neutrons are

degenerate, as can be seen by comparing A2.27a with A2.13c¢c). Graphs
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of the rates for the various processes interior to the neutronizing
shell (Figure 13) and in the mantle (Figure 14) emphasize this point.

What, then, is the role of ve scattering? It can redistribute
the neutrino energy spectrum, in particular downscattering high energy
neutrinos to low energy, accelerating the rate of approach to a
Fermi-Dirac distribution; conservative processes serve to confine
neutrinos in the core, but do not redistribute energy. This
downscattering of neutrinos dumps energy into the plasma, thereby
heating it; this is the second role which ve scattering plays, as
an energy deposition mechanism. It also results in momentum
deposition, but in small amounts compared with conservative scattering
(Figure 14).

~ We discuss these roles in more detail in Chapter 6, both for
electron and muon neutrinos. There we find, for example, the reaction
vu e > vu e is the thermalizer of the vu production spectrum. In
Figures 13 and 14, the shapes of the scattering rates for the other
types of neutrinos are similar to those for Ve s but are lower:
Gee is lower by a factor varying between 1 at low energy and 0.46 at
high energy; vu e varies between 0.18 and 0.11 of the v, e curve;
;u e is within 0.18 and 0.16. These ranges are independent of the
particular density and temperature. This is in contrast to the rates
for the scattering of the other types of neutrinos by nuclei and
nucleons: at energies low compared with the nucleon mass the scattering

rates for GQN . qu 5 GUN are the same as for veN .

With the discovery of neutral currents, ve scattering was
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unseated by coherent neutrino-nucleus scattering as the dominant
opacity source in the mantle and envelope. The picture of a supernova
model changed from neutrino energy deposition (Colgate and White 1966)
to neutrino momentum deposition. In the energy deposition model, ve
scattering was to be the mechanism by which the gravitational energy
from core collapse could be dumped in the mantle, heating it,

causing a rapid expansion, shock wave generation and outward
propagation, perhaps triggering the thermonuclear detonation of
unburned nuclear fuel such as oxygen (Fowler and Hoyle 1964), and
ultimately leading to matter expulsion, a supernova. Wilson (1971),
and, more recently, Chechetkin et al. (1976) have shown that within
the charged current framework, the opacity due to ve scattering alone
is not sufficient to generate a supernova by the above mechanisms.
Both of these works overestimated the heating effects by not including
the scattering "into the beam" terms in 3.25¢. Neutrino-electron
scattering dominates as a mantle heating mechanism over absorption on
nuclei v+A -~ e~ +A (Bahcall and Frautschi 1964), and, as we have seen,

%
over v+A - v+A .

4,7 wv > vy

It is remarkable that such an exotic process can ever become
an important mechanism. The ﬁeutrino concentration in the core builds
up to a level similar to the electron concentration when neutrino-beta
equilibrium is reached. Further, the cross section for the scattering
of neutrinos by neutrinos is similar to that for ve scattering, as is

shown in Table 2 and in Flowers and Sutherland (1976). The rate of



106

Vv scattering is then of the same magnitude as the rate of ve scattering;
Vv scattering accelerates even more the approach of the neutrino
distribution to Fermi-Dirac.

The source function for this process has a quartic
nonlinearity which is difficult to deal with generally. 1In section
Al.2 of Appendix 1, we derive the zeroth moment of the U, T U,
source in the limit that the neutrino distribution function is
isotropic (nl<<n0). This expression, Al.25, is exact in an infinite
homogeneous medium. The numerical implementation is complicated when
an energy bin averaging technique such as that described in Appendix 4
is used; this can be alleviated by adopting the usual technique of
finite differencing in energy space.

There is another easier approximation which we can use to deal
with neutrino-neutrino scattering, one in which we exploit the
similarity to ve scattering. We assume, as far as quantities
integrated over neutrino energy are concerned, that thé nonequilibrium
v df is approximately é FD df, 3.7, with the value of n, adjusted to
agree with the nonequilibrium neutrino number per baryon (3.57b):
detailed differences between the true df and its FD approximation,
fi , such as a low energy deficiency in the nonequilibrium df, will be
washed out by the energy integration. This approximation is
undoubtedly poor in the mantle where the neutrinos are approaching
free streaming, but there the neutrino concentration is so low that
this reaction is unimportant.

In the ve scattering kernels, we make the following changes:
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fe is replaced by n , and

2 2
YN, T RN, CVe o, CAe > a_;multiply by 1/%4 in 4.45 (4.48a)
SV +Vv : G +a’ , € +-a®  in 4.45 (4.48b
ee ee Ve e °’ Ae e W : )
Vuve > vpve 4 CVe > aeau = CAe -> aeau in 4.45 (4.48¢c)
vuve - vuve s CVe - aeau . CAe - —aeau in 4.45 (4.484)

and similarly, we can give prescriptions for the other possible
reactions; however, those in 4.48 will dominate. By the time we have
to worry about Vv ,v  which are produced in neutrino-antineutrino
pair processes, the electron neutrinos will already be in equilibrium;
in that case, 4.48c and 4.48d will be excellent approximations to
describe the thermalization of the vu and ;u production spectra due to
these neutrino-neutrino processes, as we shall see in Chapter 6.

In order to be consistent, in 4.48a, we should include only

(1

n, terms in the source (which implies 4 ~0) since we have assumed

0
approximate isotropy by substituting n for ny in practice, this is
no obstacle, for it is these terms which dominate thermalization of
the spectrum.

Using this prescription to relate vv scattering to ve
scattering, any approximation scheme used to treat the relaxation of
neutrinos to equilibrium due to v e scattering, such as that used by

Arnett (1977), can be immediately adapted to treat relaxation due to

neutrino self-scattering.
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5. PRODUCTION AND ABSORPTION

The capture of electrons by protons and heavier nuclei
dominates neutrino production in the early stages of collapse. It is
this reaction, together with the photodisintegration of nuclei, which
initiates the dynamical instability. The electron neutrinos
produced in neutronization carry away most of the lepton number of
the core and much of the gravitational energy released in the collapse.
The production lifetime for this process, along with lifetimes for
related processes, is calculated in the first four sections. Later
in the core's collépse, vV pairs created in leptonic and semileptonic
processes become important transporters of energy and momentum; we

deal with a variety of such processes in subsequent sections.

This electron capture process in stellar interiors has received
extensive treatment in the literature (see Freedman et al., 1977 for
references). Here, we derive the production rate using the
correlation function formalism appropriate to charged current reactions
as given in section A3.5 of Appendix 3. The incoming electron's
energy is so high, and the charge on the proton so low that the
electron's Coulomb wave function is essentially a plane wave: the
Coulomb factor is unity. Electrons are effectively uncorrelated with

nucleons. The production rate for a neutrino of energy v is A3.34,

d’p 1
Fp(v) ilﬂ(znTB fe(pe) G2[(1+vec)SJ0JO+(kw)+(l—-§Véc)S

sopt ()1, (5.1)
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where k =p -q ,w=E -v ,c=p°q , v, is the electron's
speed, and fe is its distribution function. The correlation functions
are defined in a manner similar to A3.10b.

This expression is quite general: it describes electron
capture on heavy nuclei and the modified URCA process as well as
e~ +p > ﬁ + v, - Within the independent quasiparticle approximation

of section A2.2 in Appendix 2, the correlation functions for nucleons

reduce to

2

55050t = 8, », S, (o) , (5.2a)

2 D
. = .2b
SJ'QT BgA np Snp (kw) | (5.2b)

where
5 24 d3p
n S (kw) = ———Jf( )
p np (211’) p P (2.")

. (1-f (p )) 218 (B +m_-E_-m_+u) (2m) 6(3)(p +e-p ) (5.2¢)

is a dynamic liquid structure factor for this proton to neutron
transition; it is related to <(p+n)(kw)(n+p)(0)> , rather than
being given by equation 4.26 which is zero for uncorrelated nucleons.
The integral over w of Sgp(kw) is Sip(k) , a static structure
factor.

We assume here that the nucleon energies are just the kinetic
energies, and nucleon recoil can be neglected. The production rate is

then
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2
G 2 2
T = (g + 3gn So (0 (W) £ (v,
= 167.2 py,¥_ s? NONG = )2 £_(WQ)v, & . (5.3a)
where Q = mn—mp = 1.3 MeV , and
_ _—e (5.3b)
¢ (v'-l-Q)2

This expression is valid at lower densities, when the electrons are
nonrelativistic, as well as at the high densities of interest here.
This reaction has a threshold; only those electrons with energy
greater than Q can react to produce neutrinos, as is evident from the
argu;ent of fe in 5.3a . The static np structure factor at zero

momentum transfer is a thermodynamic quantity, just as the nn and PP

static structure factors were:

S 1 nn—np
S (0 =— |[2 ——B— £ (E )(1-£_(E )) = (5.3¢c)
p f (213 P p(eB(“n"”P)—l)

In the nondegenerate regime, this structure factor is one, and our
result agrees with that given by Tubbs and Schramm (1975) and Yueh
and Buchler (1976).

Yueh and Buchler (1976) calculated the production rate at a
variety of neutrino energies, temperatures, and densities without
neglecting recoil and compared it with 5.3. The production lifetime

is reduced to a two-fold integration which they evaluate numerically.
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In the density-temperature regime of importance in the early stages of
collapse, when nucleons are nondegenerate, 5.3 with SiéO) =1 is

valid to within v~ 10%. We also get equation 5.3 by applying the
formula 2.46 in Chapter 2 to Fermi's Golden Rule.

If we had only free nucleons, the lifetime to produce 30 MeV
neutrinos at v 1Ollg/cm3 is measured in microseconds; the reabsorption
lifetime is similarly short. Neutrino beta-equilibrium would be
rapidly attained, in times much shorter than the dynamical time, which
is many milliseconds. However, not until the late stages of collapse
is the free proton abundance per baryon, Yp , large (of order lO—l) 3
at 1012 g/cc it is perhaps 10_3. The neutronization rate is clearly
quite sensitive to the value of the function Yp(Ye,p,T), which is
determined from nuclear statistical equilibrium calculations. At
present, Yp is not very well determined in supernova core material.

The absorption lifetime is similarly derived using either the‘
current-current correlation function formulation or Fermi's Golden

Rule and equation 2.46. With the neglect of recoil, the result is

2
I () =n _ﬂG._ (gf] + 3g§)(v+Q)2(l—fe(v+Q))ve SISm(O)
= 167.2 p..Y S5 (0) (¥ ? (1-f (vH))) = (5.4a)
= 107220175 “pn 1 MeV g iy B e
where
S "n " B(ug=Hp) oS
S° (0) = = n~Mp’g> (o 5.4b
pn( ) nn(l_e_B(UH‘Up)) v np( ) ( )




112

which is related to Pp by the detailed balance condition 3.11.

In order to calculate the neutronization rate, 3.17b, and
the rate of heat loss from the medium to the neutrinos, 3.17c, we
must evaluate certain integrals over the neutrino energy involving the
production and absorption rates and the neutrino df. Generally,
these must be evaluated numerically, since the neutrino df is neither
zero nor Fermi-Dirac.

If the neutrino df is FD, or approximately so, and we can
neglect the mass difference of the neutron and proton and the electron
mass (a good approximation due to the high electron chemical
potential), the neutronization rate can be given in terms of Fermi
functions, 3.68:

n

P — o - =
4 ) G2 (g2 ' 5 2) e (Yn YP)(l exp(nn+ﬂv i, ne))
e’e™p 2m °°V Ea

(l_e_ (ne-n\))) (eﬂn__eﬂp)

5
i
° ;_2— (FA(ﬂe)‘F4(ﬂv)) (5.53.)
—— 2 2 F
G 2 2\ T 4
Ty, = & {PB';— (gy + BgA)} 5"YPYE fg‘(ne) (5.5b)

Here, T is the temperature in energy units; when T is measured in MeV,
-1
the numerical factor in square brackets is .181 s per baryon. The

energy loss rate per baryon is related to 5.5a by

z _ (Y ) - Fs(ne) = F5(n\))
e’p e’e™p ~ F,(n) - F,(ny)

(5.5¢)
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The n, - — o limit gives the case when neutrino phase space
is unfilled. The ratio of é to ie is the mean energy at which the
neutrinos are produced, which, for an extremely degenerate Fermi
gas of electromns is Sue/6 ¢ since the cross section rises as the
square of the energy, it favors capture from high energy electrons,
and the average energy of the neutrinos is ~ 11% higher than the
average internal energy of the electromns.

When equilibrium is attained, the chemical potentials of the
reactants and products balance, and the neutronization and energy loss
rates given by 5.5 vanish.

Production and absorption rates are compared with other
processes in Figure 13. For the conditions chosen, the value of Yp
is probably too high; more protons may be locked into heavy nuclei,
although this is still quite uncertain. This figure, however,
emphasizes an important point. At high energy, neutrino absorption
by neutrons dominates neutrino scattering by neutrons; at low energy,
the degeneracy cuts down the absorption rate, and vn - vn dominates
over absorption. However, it is not Fa which enters into the
trgnsport rate, but rather F; = Pa + Fp , and at low energies, the
electron capture rate, Fp , can dominate over Vn scattering.
Whether it does or not depends upon the number of free protons
compared with the number of free neutrons; under the conditions given
in Figure 13, it does. At very small energy, it always will since
the rate of production of zero energy neutrinos is nonzero due to the

Q of the reaction.
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Therefore, with just charged currents, there was still
neutrino trapping in the inner core; the addition of neutral current
reactions served to extend the trapping region to beyond the
neutronizing shell, as well as changing the interplay of neutrinos
and the mantle.

When nucleons go degenerate, and the number of neutrons differs
significantly from the number of protons, the static np structure
factor (5.3c), which goes as exp(48(un—up)), becomes very small and
the reaction rate for e~ + p >+ n +ve becomes negligible. Corrections
to the independent particle approximation calculation of this rate
must be included. The independent pair approximation (de Shalit and
Feshbach 1974) adds in dynamical (as opposed to statistical) two
body correlations in nuclear matter, which give rise to the modified
URCA reactions: nte™ +p ~> n+n+\)e , nin - n+e”4-p+5e (Bahcall and
Wolf 1965). These reactions will serve to maintain neutrino beta-
equilibrium in the early stages of cooling of the neutron star which
may result from core collapse. Dynamical two body correlations in
nuclear matter also give rise to the bremsstrahlung process
N+N - N+N+v+v (Flowers, Sutherland, and Bond 1975) which takes over
as the main vv pair creation mechanism from the plasmon neutrino
process (section 5.7) once the hot neutron star has cooled sufficiently.

At even higher densities, perhaps twice that of normal
nuclear matter, the (charged) pion field may have a nonzero expectation
value in the ground state of nuclear matter: a pion condensate may

form (Migdal 1978, and references therein). The mediation of the
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reaction e7p > nve by the pion condensate, which we loosely write
in the form e ™tn > n+ve+<ﬁ‘> , greatly enhances its rate (Maxwell
et al., 1977; Kiguchi, 1977). If the condensate exists, this
reaction dominates the cooling of neutron stars (at least after the
initial electron neutrinos from neutronization have been lost).
Otherwise, the modified URCA and nucleon bremsstrahlung processes
dominate (until nuclear matter goes superfluid).

52 e+ &+ 2 Ge + p

The calculation of the production and absorption rates for

this reaction is similar to that for e™p Z LA with the results

2

r- ‘OB g2+ Sgi)l ¥, (0% (v-0)S0 (0) 8(v-Q) (5.6a)
‘ G2 | 2 2 2 < 8

I o=ieg o (gv + 3gA) Yp(v—Q) (1-fe(v—Q))Snp(0) 8(v-Q) (5.6b)

where the positron's df is fe , which is approximately a Maxwell-
Boltzmann in supernova cores, for there, n, > 10 , and N+ = -, -

Using this approximation, the protonization rate due to

positron capture is

: [ ¢ 2 2.1 2 2
)ty = log T (o) + 329 [T (643et?/D [y, - 2%¥ ] (5.7a)

and the energy loss rate is

. (1+3t/5+3t2/20+t3/60)
(14t /24+t2/12)

(@) +, = (?e)e+n 5 (5.7b)
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where t = Q/T , Yé is the abundance of positrons per baryon. When
energies are measured in MeV, the term in curly brackets is
numerically 167.2 P11 s—l . Since the mean ;e energy is only
about 5T, and therefore of thermal rather than Fermi energy
magnitude, terms of order t cannot be neglected as they were in
electron capture.

This reaction competes with the vese production processes
as a ;e producer. It has the advantage of being unaffected by

% degeneracy which occurs well before Ge equilibrium.

5.3 e + (N,Z) » Ve + (N+1, Z-1)

The capture of electrons by heavy nuclei, part‘of the URCA
process, is difficult to deal with in these supernova cores, as one
constantly presses up against the boundaries of known nuclear
physics, and is forced to pass beyond, making educated guesses for
. ft-values, for spins and parities of levels, and even for level
energies.

The inverse production lifetime, calculated either using
the correlation function formalism appropriate to charged current
processes (section A3.5 of Appendix 3) or, more simply, equation 2,46

is quite similar in form to that obtained for e™p - nv,

(equation 5.3, with Snp(O) 1)

¢ 2 2, x2  Bs
T(e7HAy > VoHA 5 V) = my o= (W0 )" £ (vHRe) (e _De*8,(0t_)e)

© vy F(Zi,v4Qp) 8(viQg,) (5.8)
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where in = Mf - Mi is the mass difference between the final (f) and
initial (i) nuclear states whose spins have already been summed over,

F is the Coulomb factor, and the Fermi and Gamow-Teller matrix

elements for allowed transitions are defined by equation 2.47. To
evaluate 5.8 for given f and i necessitates knowledge of the matrix
elements, which are related to the ft-values by 4.9; usually,
experimental knowledge is unavailable and theoretical knowledge is
sketchy for the same reasons that plagued us in the evaluation of
inelastic vA ~ vA* matrix elements. Indeed, the problems are quite
similar, and this discussion follows that of section 4f2.

Assuming we know the ft-values, we must sum over all possible
final states accessible by an allowed transition to the initial state.
The high electron Fermi energy implies that the capture may occur into
very highlybexcited states of the daughter nucleus; tﬁus, we must
know the masses and number of these allowed states in regions where the
nuclear level density is extremely high, as well as at low excitation
energy where the level density is iow and the nuclear structure is at
least partially known.

We must sum over all of the thermally populated levels of each
nuclear species, weighted by the Boltzmann factor, then sum over all
nuclear species, weighted, of course, by their abundances, which are
determined by nuclear statistical equilibrium calculations as
functions of p, T and Ye A

This is a formidable task indeed. Nonetheless, a number of

workers have attempted to calculate integrated rates. TFowler and
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and Hoyle (1964) discussed the capture rates on a number of iron group
nuclei. Hansen (1966) and later Mazurek et al. (1974) calculated
rates for a broad range of nuclei near the valley of beta stability,
using simple choices of ft-values and energy level spacings. Taking
these rates, Epstein and Arnett (1975) calculated the neutronization
rate (ie) and the mean energy loss to neutrinos for matter in NSE

and fit the result to a four species model, consisting of one typical
heavy (dubbed iron), one typical light (dubbed alpha), and the free
neutron and proton. These results, and extrapolations of them, have
often been used in collapse calculations (Arnett 1977, Wilson 1977,
Epstein, Norgaard and Bond 1978). Unfortunately, only ground state
partition functions were used in the calculation of NSE, which grossly
underestimates the number of heavy nuclei present at high temperature,
since excited states are then plentifﬁlly populated. In the very
early stages of collapse, just after core silicon burning, Ye falls
less than 0.44, the lower boundary of the Epstein and Arnett
calculations (Weaver, Zimmerman and Woosley 1977, Armett 1977).
Collapse occurs entirely in the extrapolated regime in a neutron rich
medium. Further, these rates break down when the neutrino phase

space builds enough to suppress production into already occupied states.
NSE calculations valid over a wider region of thermodynamic phase
space (p, T, Ye space) are clearly necessary, both to obtain
neutronization rates on heavies and to give the equation of state (EOS)
whose knowledge is crucial for the dynamics. This problem is now

receiving much attention (Engelbrecht, Fowler, and Woosley 1978,
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Lattimer and Ravenhall 1977).

Recently, Fowler, Fuller, and Newman (1977) have recalculated
the rates for important iron group nuclei, giving also differential
production rates, i.e., Pp's, using detailed nuclear level structures.
Others have attacked the problem using the gross theory of beta
decay (Takahashi and Yamada 1969, Takahashi 1971), which is a
prescription for obtaining the beta strength functions (see section
A3.5 of Appendix 3) in a Fermi gas independent particle model of the
nucleus, a method which its practitioners hope will be a reasonable
approximation for very neutron rich nuclei for which detailed nuclear
information is lacking.

When does electron capture on free protons dominate electron
capture on heavies, so knowledge of Yp(Ye,p,T) is sufficient to obtain
the neutronization rates? As in the section on inelastic neutrino-
nucleus scattering, we take 56Ni as our concrete example. For the

bco (1.72 Mev, 11,

single level transition e + 56Ni (g.s., 0+) » 2, + .
the ft value is measured (log ft = 4.4). If we neglect the mass

difference (in = 0.4 MeV) and set the Coulomb factor equal to one

which should be true at high energy, then

56__. 56 +
Ni -~ ve+ Co(1l.72MeV,1 )) _ Y(56Ni(g.s.)) (ft)n

I' (e p > nv Y £t
p(p ne) . (ft)

I (e +
P

]

56
7.8x10”4(Y( N;(g-s-))56>
P

where (ft)n is the ft-value of the neutron, 103'04 . In order for
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this single level electron capture on 56Ni to win out over e"p , the
mass fraction of 56Ni in its ground state must be greater than the
free proton mass fraction by ~ 1300.

When does Yp exceed 10_3? Early in the collapse, it is lower
than this value, and e A exceeds e p ; late in the collapse, Yp is
greater than 10_'3 , and e p dominates. With the present EOS
uncertainty, the transition point cannot be pinned down.

At high electron Fermi energy, we may saturate the sum rule
at zero energy as we did in the inelastic scattering case, producing

an upper bound on the electron capture rate of a nucleus in state i:

G2 2 2
Fp’i(v) Lny ;—-fe(v)v ‘gv (Ti(Ti+l)—T31(T3i—l))
2 s b by, 5.9
TN <1lz;gati ~ g i) -
a,

where we have explicitly evaluated the Fermi sum in terms of the total

isospin Ti and the third component of isospin T3i of the state i. We

have assumed the energy is sufficiently high that the Coulomb factor is
one; otherwise, F(Zi,v) can be inserted into this equation.
When we evaluate the sum rules for 56Ni, we obtain zero for
the Fermi sum rule for all T = 0 states, and these are all the low
lying ones which will be thermally populated. The ground state of
6Ni is approximated by its shell model configuration of eight f

7/2

protons and eight f7/2 neutrons; only the transitions of f neutrons

1]12

are then included, yielding a Gamow-Teller sum rule of 8(12/7), a
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result which assumes perfect overlap between the neutron and proton
shell model states, leading to overestimation, but neglects collective
effects, which acts to balance this overestimation. The GT sum rule
for v+A - v+A* is just one-half of this (ifCAO = 0), and has already
been used. The Gamow-Teller sum rule evaluation is more difficult
for the excited states of 56Ni; we make the crude approximation that
all states have 8(12/7) for this value, in order to make numerical
estimates. Then, adapting 5.5b, we obtain an integrated capture rate
per 56Ni per electron of ~ 1.06 x 10° s-1 at pY_ = lO1l gl/ce.
When we use the techniques of Fowler, Fuller, and Newman (1977) for
ft-value assignment to obtain our sum rule, we find the approximation
5.9 gives values within v 407 of theirs at Mg = 24 MeV (pYe = 1011g/cc).
If we use the above upper bound on 56Ni capture, the 56Ni mass
fraction must only be greater than the proton mass fraction by v 15 in
order for electron capture on 56Ni to dominate over the capture on
protons. This compares with the previous value of ~ 1300 obtained
using only one low-lying state, emphasizing the importance of the
inclusion of all the sum rule strength.
At high density and temperature, for nuclei far off the
valley of beta stability, the prescription 5.9 requires only sum
rule estimation, surely an easier task than beta strength estimation.
At even higher density, when the momentum transfer to the
nucleus approaches the inverse of the nuclear radius, forbidden
transitions can no longer be neglected, and the electron capture rate

finally approaches the number of protons in the nucleus times the



122

free proton capture rate. In the latest phases of collapse, when
,

the electron Fermi energy is ~ 100 MeV, we are either in, or nearing,
this region; the transition between use of 5.9 and use of 5.3 (with
Yp the total proton abundance, both bound and free) has yet to be
worked out. It is not even known whether such neutron ricﬁ nuclei
will be present at this stage of collapse.

We may apply 5.5c¢, with obvious modifications, to obtain the
energy loss rate to neutrinos. When Q values can be neglected, the

mean energy at which the neutrinos are produced is again Sue/6.

5.4 ve * (N,Z) > e + (N-1,Z+1)
Neutrino absorption by heavy nuclei, the inverse of the

electron capture reaction, has a differential rate

2
R 2 2, \2 2 2
T (vgthy > eTHA5V) = ny 1= (vHQp ) T (v (ByCey )y e85 Oty )5 g)

o F(Zi,v+in) 6(v+in) (5.10)

which satisfies the detailed balance relation 3.11. However, the
highly excited states of the daughter nucleus for electron capture

are rarely thermally populated, and serve as parent nuclear states for
neutrino absorption only enough to ensure that the neutrino beta-
equilibrium condition, 3.12, is indeed the appropriate equilibrium
even when heavy nuclei are present; this would not be so if the matter
were not in NSE.

To obtain absorption rates on those nuclear states which are



123

abundantly present, the same procedures in matrix element evaluations
as were used in the inverse process must be followed. Bahcall and
Frautschi (1964) used a Fermi gas model of the nucleus to evaluate
absorption rates, yielding results they estimate to be valid at high
neutrino energies (> 15 MeV). The sum rule saturation at zero energy
can also be used as an approximation. In any case, this absorption
process on heavies is small compared with ve scattering and so plays
little role in energy deposition; it plays an even smaller role in

momentum deposition.

5.5 vv PRODUCTION AND STELLAR EVOLUTION

The loss of energy from matter by the emission of vV pairs
is naturally and generally expressed in the language of the weak
current—-current correlation functions which depend upon the 4-momentum
transfer to the medium, (N’E) . The scattering of neutrinos by
matter probes the spacelike domain of these functions, wgk, as we
saw in Chapter 4. The production of vv pairs probes the timelike
domain, w3k ; in addition, w is negative, for the medium loses the
energy required to create the Vv pair. The timelike region with w
positive, so the medium gains energy, describes the inverse reaction,
vv annihilation. The various domains in wk space are displayed in
Figure 3.

Once a star has developed a carbon/oxygen core, the energy
loss in vv pairs exceeds the energy loss in photons; from this stage

onward, the neutrino losses exert a controlling influence on the
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evolution of the stellar core. The core can only be temporarily
supported against gravitational contraction by means of temperature,
and therefore pressure, grédients set up by the heat energy released
in thermonuclear reactions.

Tﬁe way in which this occurs for stars more massive than
perhaps 8 Mé (this number is quite uncertain) illustrates how
neutriﬁo losses determine the structure of presupernova stars.

Arnett (1972a,b, 1974a,b, 1977a) numerically evolves helium cores
through the various advanced burning states, and finds over a wide mass
range that the iron/nickel cores converge to approximately the
Chandrasekhar limit of ~ 1.4 Mb , with the basic onionskin structure
of tﬁe ashes from earlier burning stages léyered on top of it. Both
results, core convergence and the onionskin model itself, depend in °
-an essentiél way not only on the existence of neutrino losses, but

also on their detailed density and temperature dependence.

Energy can be produced in the core of the star by either nuclear
burning or gravitational contraction. If the star is burning fuel at
its éenter, the energy generated can be transported by either neutrinos,
in which case it moves at the speed of light, almost completely
decoupled from the stellar matter through which it passes, or by
convection: once the central temperature is beyond Vv 40 KeV, photon
diffusion and electron conduction become inefficient energy transporters
(Arnett 1974). Convection, by itself, cannot release energy from
the star: it only mixes it over the convective region. Neutrinos take

the energy away.
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If the nuclear energy generation at the center exceeds the
neutrino energy losses, the energy imbalance causes the central
temperature to rise. Once the temperature gradient becomes
superadiabatic in a region, convection sets in over that region.
The convective core will grow until the nuclear source balances
the neutrino sink when averaged over the core. The composition is
uniform throughout the convective core and the core is smaller for
more advanced burning stages; the result is the onionskin model of
massive stellar cores: iron and nickel, the ashes of silicon burning
are surrounded by a layer of silicon, then a shell of oxygen and neon,
a shell of carbon and oxygen, a layer of helium and finally of
hydrogen.

With no neutrino losses, our presupernova models would have
quite different interior structures (Ikeuchi et al. 1971).

Stars with carbon/oxygen cores more massive than v 2 M@ cool
by e+e_ + Vv ; stars with C/O cores less massive than ~ 1.44 M9 cool
by Ypﬂ > Vv ; cores with masses in between these two limits cool
sometimes by the pair annihilation process, sometimes by the plasmon
neutrino process, with the latter tending to dominate at higher
densities. If the C/O core mass exceeds v 30 MO’ the e+e— > Vv
losses result in a dynamical instability, the core collapses,
undergoes a hydrodynamic bounce, ignites remaining nuclear fuel, and
seems most often to lead to no remnant, although lower mass cores

undergoing this instability can leave black hole remnants. The result

is the pair instability supernova, first proposed by Fowler and
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Hoyle (1964), numerically modelled by Rakavy and Shaviv (1967) and Fraley
(1968) and summarized in Barkat's (1975) review of neutrino processes
in stellar evolution.
In all these cases, the neutrinos are freely streaming from
the star and enter into the stellar evolution equations only as a local
energy sink. The energy loss rate in vv pairs (emissivity in -
erg g_l s_l), Q, is the required quantity, and this can be expressed
in terms of the current-current correlation functions (using the

formalism of section A3.3 of Appendix 3):

&
é -1 2k SJdJ3(+g,+m)(kakB—kzgaB)(—w)e(kz)e(-w) (5.11a)
°J @
- %j o | E8E (r) Gem0)? + 1, (k,-0) (07-2k%)) (5.11b)
2w
0 0

Here, 6 is the Heaviside unit function, the kz in 5.11a is the square
of the four-momentum, and p is the density. The kz in equation 5.11b .
is the square of the three-momentum. The scalars Ty and r, introduced
in Appendix 3, equation A3.23, completely characterize the energy loss
rates; the differential v production spectra probe, in addition, a
third scalar, a term which arises from VA interference; two more
scalars are generally needed to describe the full current-current
correlation function, which are not probed by either neutrino scattering
or vv production and absorption.

This simple expression (the hard part is the full evaluation
of r, and r2) includes all v production processes. Those which have

1

been treated in the literature and found to be of importance are the
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three BPS processes, e+e_ > Vv 5 Ypﬂ e > e v (the photoneutrino
process), Ypﬁ + vV (Beaudet, Petrosian, and Salpeter 1967), electron-
nucleus bremsstrahlung, e—-+AZ > e~ + AZ-+vG (Gandelman and Pinaev
1960, Festa and Ruderman 1969, Cazzola et al. 1971), and the related
e p > e‘va and e'n -+ e nvv in neutron star interiors (Flowers 1973).
Further, the purely neutral current reactions n+n - n4ntvv ,
n+p - nt+p+vv (Flowers, Sutherland, and Bond 1975) have been found to
be of importance in neutron star cooling; AZ* - AZ + vv has already
been discussed in Chapter 2. The other vv processes mentioned also
have neutral current corrections: the corrections to the BPS
processes in certain regimes have been given by Dicus (1972), and
the first of the bremsstrahlung processes has been treated with
neutral currents by Dicus et al. (1976).

Over the years, many other Vv production processes have been
considered and found to be unimportant relative to the above ones:

A

Y+ 82 582 10T, e e remtem W, YY VY, YY > YW,

Ye -+ Ye vv , and synchrotion radiation, e~ =+ e~ 4+ vv in the presence

of a magnetic field (see Kuchowicz 1972 for references).

5.6 e+é‘ > Vv

The important new complication which arises in dense collapsing
stellar cores is the high neutrino opacity which causes the neutrinos
to be trapped and the neutrino phase space to fill up to equilibrium
levels, which results in a reduction in the neutrino emissivity.

Finally, at high density, it 1s the equilibrium dif fusion
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approximation which describes the flow of these neutrinos, with the
emissivity serving only to maintain the Fermi-Dirac form of the
zeroth moment of the distribution function. The physics required

to treat the vv production processes in the regime intermediate
between free streaming and equilibrium diffusion is given here, first
for the pair annihilation mechanism, then for the plasmon neutrino
mechanism (section 5.7).

The pair annihilation process is the only v production
mechanism which can be described in the independent particle
approximation of Appendix 2. The derivation of the moments of the
production kernels for e+e_ + vv follows closely the derivation of
the moments of the ve -+ ve scattering kernels, a result to be
expected since the former is a crossed reaction of the latter. When
the temperature is sufficiently high that the positrons, as well as
the electrons, are extremely relativistic, as in iron core collapse,
the Kth moment of the production kernel, obtained in section A2.4 of

Appendix 2, is

£y = 2 U o 2 3 '
Rpﬂ(v,v ) = (Cve+CAe) .sz(v,v ) + (CVe CAe) Ypﬂ(v,v ) (5.12)
where
2 3 Blwl 6 _p,(E,v,v') d&
o 267 v pl*>> "
sz(v,v ) = TS 5 kT (5:13)

") (e57M41) (exp (B|w|-E-n)+1)

with n the electron's degeneracy parameter, v the neutrino's energy,

v' the antineutwino's energy, and ¢p£ is given in detail by equations
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A2.35, A2.36, A2.37, and A2.38 for £ = 0, 1, 2. An equation similar
to 5.13 holds for ?pﬂ , with another function, ng , replacing ¢p£ .
The integration, which must in general be performed numerically, is
over £ , the electron energy divided by kT; the range of integration
is finite here, in contrast to the semi-infinite range encountered in
ve scattering. Except for this difference, the form of equations
5.12 and 5.13 is the same as that of 4.45 and 4.46. We use Gauss-
Legendre instead of Gauss-Laguerre integration to evaluate these
integrals. The £ = 0 moment of the production kernel is displayed for
various neutrino energies as a function of the antineutrino energy

in Figure 15 for a particular choice of pYe (4x1012 g/cc) and
temperature (1.2 x 101 K). This figure is for VU;U production rather

and CA should replace C

Wi Ve

an v ro ion:
tha VeV P duct G Ao

and C in 5.12.
Vu ,
e . - e ,
The vv absorption process, vv > e e , also requires the

evaluation of a kernel, which is related to the production kermel 5.12

by the detailed balance condition 3.9, i.e.,

—-B(vtv")

Raﬂ(v,v') = e sz(v,v') (5.14)

To obtain the Vv absorption opacity from this requires knowledge of the
v distribution function, which is, in general, a nonequilibrium one.
The production rate for a neutrino of energy v when the
antineutrinos are nondegenerate is related to the £ = 0 moment of the
kernel by an integral over the antineutrino phase space (equation 3.29):

v (v')zdv'
F/th, (v) = prO (v,v"h) T (5.15a)
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The production rate for an antineutrino of energy v' (when the

neutrinos are nondegenerate) is

s 2
F/th\) (v') = pro (v,v") ‘z’ﬂ% (5.15b)

These two spectra are unequal as we can see from Figure 16: the
difference is a result of VA interference and arises in a similar
manner to the inequality of ve and ve scattering rates.

The total energy loss rate to Ve;e pairs is related to these
I''s by
vzdv 2dV'

1 v 2 .V, (")
=5 v Pth (v) ;;E—-+~p ~/1) Fth(v ) ~—;;§~—— (5.16)

Do
[

which is another way to write equation 5.11. 1In the e.r. limit, Q

°

and the vv production rate (i.e., Yv , or equivalently ?G ) are

given by very simple formulae, A2.43uand A2.41 respectivel;. In the
limit in which the electrons are quite degenerate, as they are in the
iron core collapses, and thus the positrons are nondegenerate,
analytic expressions can be given. We find the mean energy which the
vv pair is created with (for nondegenerate neutrinos) is 4ue/5 + 4/kT $
the neutrinos and antineutrinos are created with energies similar to
the magnitude of the electron Fermi energy rather than with the
thermal energy. This is simply because the electrons which annihilate

are from near the top of the Fermi sea.

The emissivity per unit neutrino energy is obtained from Pih
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by multiplying it by v3/2n2 which shifts the peak from that indicated
in Figure 16 toward higher energies, nearer the Fermi energy of the
electron. When these v and v spectra are multiplied instead by

v2/2n2 , which gives the number of v's and v's created per unit
energy, the area under each resulting curve is the same: the number of
neutrinos produced must, of course, equal the number of antineutrinos
produced.

When the core collapse is hot, e+e— + vv dominates over
sz + vy . The line of demarcation between the region of pair
dominance and the region of plasmon dominance (defined as the set of
points at.which the energy loss rates are approximately equal) is
different for veGe production and quu production: both are shown in
the temperature-electron density (pYe) plane, the former in Figure 17,
the latter in Figure 18. The plasmon neutrino rate for quu creation
is very sensitive to the value of the Weinberg angle (sin2 ew = 0.3
is used here as elsewhere), and as the Weinberg angle drops towards
sin2 ew = 0.25 , this line moves to the (reader's) right.

Also plotted in Figure 18 is Arnett's (1977) central
trajectory in this phase plane. In his model, the plasmon rate
dominates vese production in the early stages of collapse, but both
processes, e+e_ and sz , play a role in quu production. As the
pressure due to nucleons rises, and the trajectory follows p ~ T3/2
(see Chapter 6), the core passes fully into the e+e_ region of

dominance. Throughout most of the collapse, the diffusion of

electron neutrinos from neutronization dominates energy transport, and
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thermally produced neutrino pairs don't compete until quite a bit
later in the collapse.

Wilson's (1977) recent central trajectories are colder than
Arnett's, remaining within the region of plasmon process dominance,
at least as far as the evolution has been reported. Wilson's two
bounces are also shown in Figures 17 and 18. We now turn to the

plasmon process.

S Ypﬂ > vy

The plasmon neutrino process occurs when plasma waves, a
cooperative phenomenon between the electromagnetic potential field and
the electron field (and the nuclear field) damp into vG,pairs.
Usually they dissipate into electron-hole pairs (are absorbed by an
electron in the medium and thus are Landau damped) or they dissipate
into e+e' pairs (if the temperature is high enough). This dissipative
decay couples through the electric charge, the energy is trapped by
electromagnetic processes, and the diffusion of this dissipative
energy takes a long time. Occasionally, with a branching ratio related
to tﬁe weak coupling constant and the thermodynamic parameters of the
medium the dissipation is through vy pairs, which, in collapsing iron
cores, can also be trapped, but energy in this form flows from the
medium much faster than by radiative or conductive transport. Iron
cores whose trajectories pass to the right of the demarcation line
in Figures 17 and 18 cool by this mechanism, at least until the nucleon
bremsstrahlung process N+N - N+N+v+v takes over. Of course, charged

current mechanisms are also cooling the collapsing core, and throughout
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most of the collapse, do so more efficiently.

The plasma waves are created by thermal fluctuations of the
electric current acting cooperatively with thermal fluctuations of
the electromagnetic field. Fluctuations dissipate. One mode of
dissipation, via v pairs, comes about through the relation of
fluctuations in the weak current-current correlation function to
dissipation: the former has the energy transfer to the medium, w,
positive, and v pairs can be annihilated to create such a
fluctuation; the latter has w negative, and a collective plasma
excitation, a plasmon, can decay into a Vv pair. This provides an
illustration of the famous fluctuation-dissipation theorem.

Adams, Ruderman, and Woo (1963; hereafter ARW) were the first
to point out the existence of the plasmon neutrino process: they
wrote the interacting electromagnetic four potential in terms of the
quantized plasma waves (instead of photons), then calculated the rate
at which this quantum breaks up into a virtual electron-hole pair
which annihilates to create a vv pair. Their rate, when account is
taken of a correction to their work given by Zaidi (1965) and of
neutral current corrections (Dicus 1972), is the same as we obtain
below using the more general current-current correlation function
formalism. Flowers (1973) uses electromagnetic potential
autocorrelations to obtain the plasma neutrino rate; his formulation
follows from ours.

All of these authors obtain expressions for integrated energy

loss rates. Here, we focus on the spectra of the neutrinos created
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and the modifications necessary when Fermi statistics become
important, és we did in the e+e- + Vv section.

ARW have shown that the Y5 portion of the weak current
contributes little to the plasmon neutrino rate. If the vector
part of the weak current is the only important one, then the weak
current-current correlation function is approximately given in terms
of the electron's electromagnetic current-current correlation
function (in the timelike w > k regime):

CZ

S jag8 (k) = —i’% s (wk) (5.17)

o 1B
JemJem»

where the electromagnetic current is given by equation 2.2. 1In the

W.S. theory, with sin2 6. = 0.25 exactly, C (which replaces C

W Vu Ve

in 5.17) vanishes; then, the reaction rate for sz +'vu3u would have
to be obtained from the axial electron weak current. We do not pursue
this term here.

An isotropic plasma, which, neglecting magnetic field effects,
is the case for collapsing iron cores, has its electromagnetic
current-current correlation function completely determined by two
functions, the longitudinal and transverse dielectric permittivities.

The fluctuation-dissipation theorem, a combination of A3.16 and A3.13,

gives

S B (kw) = 2f (~w) x" (k,-w) (5.18)
ngJ L pL ngng

where y'" is the absorptive response function (A3.15), the Fourier
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transform in space and time of one-half of the commutator of the
electromagnetic current, [sz(x) ” sz(O)]/2. The Planck distribution,

which multiplies " ,

1

fpﬂ (w) = ;}E;i:;

(5.19)

will turn out to be the distribution function for the plasmon.
Following Sitenko (1967) and Martin (1968), we may write the
absorptive response function in terms of the complex dielectric
permittivity tensor, the complex conductivity tensor, the complex
electric susceptibility tensor, or the complex magnetic permittivity
tensor: they are all related to each other. For isotropic plasmas,
the dielectric permittivity tensor is
k.k, k.k,
egy = cguk) ~=L + e (k) (ai, - —Ll)

k2 i k2

where €p and ey are the longitudinal and transverse dielectric

constants, and the absorptive response function for the spatial current

is
" w2 kik' Im €p kikj (w2_k2)2

Xl g3 k) =gy T Y (‘Sij ~=gti g gz B G0
em k leﬂl k |m ek |

The charge density-charge density dissipation is obtained from

5.20 by the application of current conservation:
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X” - k'k 1" (kw)
ComPom (K9 = =5~ XJi 5i
em em
2 Im e
K 2
=T 5 (5.21)
Iezl
and similarly, the remaining response functions are
Xn { = Xu_ . E X"i :]
1
Pom Jem  “Tem Pem © em'em
iIme
_ wk £
=7 (5.22)

2
!€£|

All terms depending upon charge density fluctuations, namely 5.21 and
5.22, only involve the longitudinal dielectric permittivity. The
fluctuations transverse to the directionvof wave propagation, k , only
involve the transverse current. When the Coulomb gauge (Vv-A = 0) is
chosen for the electromagnetic potential, the vector potential couples
only to the transverse current: the resulting collective mode obeys )
the dispersion relation of the photon, w=k, at high frequency and
short wavelength.. The decay of this photon-like transverse mode turns
out to dominate the vv energy loss. Our results, however, which only
depend upon current-current correlation functions are gauge invariant.

The longitudinal term is a charge density fluctuation: it is
the self consistent scalar Coulomb field which oscillates driving the
oscillations of the individual charged particles, which in turn are
the source of the field.

The expressions 5.20, 5.21, and 5.22 are quite general.
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Whenever the longitudinal and transverse photon propagators,

(k2 €p (uo,k))_l and (w2 €4 (mk)—kz)_l , have poles, the poles
dominate the behavior of the dielectric constants. The dispersion
relations for longitudinal and transverse plasma waves arise from the

solution to the pole position equations:

]

longitudinal: w wz(k) , where Eﬁ(w£<k)’k) =0 (5.23)

il

transverse: w

wt(k) , Wwhere miet(wt(k),k)-k2 =0 (5.24)

Generally, the functions wp and W have both real and imaginary parts,
the latter giving the negative of the damping rate (Y2 = - 1Im wz(k),
Ye E - Im wt(k)). Hereafter, wz(k) denotes Re wz(k) and Wy denotes

Re mt(k). When damping is small (wK >> YK)’ we have

Re wﬂz eplup k) = 0 (5.25a)

Im (wzeﬂ)
Y = R (5.25b)
— Re(w'e,)
dw £ _
w—mz(k)

A similar set of relations define W and Yt , except the right hand

-1 -1
t and YK 5

side of 5.25a is k2 instead of zero. The damping times, Y
include Landau damping (called Cerenkov absorption by Tsytovich 1961)
and pair production. Tsytovich (1961) calculates the dielectric
permittivities in the random phase approximation for a quantum

electron plasma with a fixed positively charged background (the ionic

plasma frequency is small compared with the electron plasma frequency),
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and from these obtains Wp s YZ and We s Yi ;

The expressions Tsytovich gives for €p and €4 must in general
be evaluated numerically. In the e.r. , e.d. limit, when terms of
order w/ue and k/ue can be neglected, simple results are obtained

(ARW and Beaudet et al. 1967):

w 2 2
€£=l—(52> (1 +%%> (5.26a)
w
2
w 2
€t=l-(—w—P-> (1 +~_}7%> (5.26b)
w

from which the dispersion relations

2
w
W2 = 2 (1 + \/l+12k2/5m12) ) (5.27a)

L

) L 5 f5m :

w/t=—P2— I | SR, . (5.27b)
(l+k2/w12))2

follow. Here, the plasma frequency (for electron .and positron

oscillations) is given by

| 2
o = (Se (F (n) + Fl(—n))>l/2 (5.27¢)

3w

where n is the degeneracy factor of the electron. In the e.d. limit,
a Sommerfeld expansion yields the approximate relation (which is

adequate for our purposes)
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u
w o = Yl+ﬂ2/3n2 (5.28)

p 18

Thus, mp exceeds 1 MeV when pYe > 4.2x10lO g/cc , and exceeds
B—l = kT when n is in excess of ~ 18 ; lines of constant n are lines
of constant Bwpl.

In the neighborhood of the plasma wave resonances
w = th(or iwt) , the terms appearing in the absorptive response
functions are of the classical Lorentz form with width ZYZ (or ZYI) 5
and these approach delta functions in the limit of infinite resonance
lifetime: |

2

Im e w Y
. L. L (5.29a)

29 2 2 2
IEKI 5o (w EK) (N-wz(k)) + YZ

2
———— UJ/@
Yﬂ -+ 0 . G(w—wﬂ) (5.29b)
% w E’e)
il L s (5.30a)
! 2 212 2 9 2 2 2 :
w €t—k I we 56—(w Et) (w—wt) + Yt
D > l
Yy 0 T é(w—wt) (5.30b)

wi B(wzet)/aw

Here, we have focused only on the w > 0 part. The w < 0 part is the
same except that the Lorentzian and delta function arguments are
w + wp (or w + wt).

We now put 5.29b and 5.30b into the absorptive response

functions, relate these to the current-current correlation function
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by 5.18 and 5.17, then use A3.20 to obtain the production kernels
x £
R (2,0 = RD (q,0) + &Y (a,a") (5.31)

as the sum of two terms, one due to the decay of transverse plasmons,

" the other due to the decay of longitudinal plasmons:

G2C2
(J) T - Ve 4 _ 2 2m s _
Rp (q,9") 4ne2 fpz(lw|)w (ej 1) ¢j E:—a;z:;- (]ml wj) .,
ow j
j =4,k (5.32)
Here,
b (v,v',c) = 2(1 - (V+V'C)(V'+VC)> (5.33a)
t 2
k
K2 2
¢£(v,v',c) = —5-(l+c)—l—3c+2(v+v'c)(v'+vc)/k (5.33b)
w

If we follow the path of ARW and quantize the plasmons, we
also obtain 5.32.
The presence of the delta function in these kermels implies

that for given v and v' , there is a unique kj satisfying
w () = v . d=i LSy

and therefore the angle between the outgoing neutrino and antineutrino

(whose cosine is ¢) is uniquely determined:
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By = (k§ - o -(v')z)/Zvv' (5.35)

1§ kj is not within the kinematically allowed range,
Ikm| < kj < le , where km = v-v' , then no decay is possible. For
the transverse plasmons, only the lower bound imposes a constraint on
the allowed values of v and v' . For longitudinal plasmons, both
lower and upper bounds act to severely restrict the possible neutrino
and antineutrino energies created in the decay; for example, kj < lwl
implies v+v' < v8/5 wp . The relevant regimes in wkm space or
equivalently vv' space are shown in Figure 19. If we reinterpret km
to be k, then this figure gives the dispersion relation curves (5.27);
the transverse dispérsion relation (5.27b) differs little from the
often quoted wz = wi + k2 (to within ~ 5%).

The restrictions on v and v' are expressed by means of

characteristic functions for the kinematically allowed regions:

Xg = 00vtv" = w, (k) (5.36a)

Xp = g(v+tv' - wﬂ(km)) 8(v8/5 wp—v—v') (5.36b)

where 6 is the Heaviside unit function.
The delta function makes the evaluation of production moments

(3.24c) straightforward:

2.2 4
) 2 | & Syt
R oy = By | il B
pL 4n2e2

9 Xp ¢t(v,v',ct)

259y 2 \3
1%
(1 d 5 m?- )

fpﬂ(v+v') PL(CI) (5.37a)
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GZC2 w4
R(f) (v,v") = 2n2 —-%§§R
P 4br”e

6
5 W . ,
. EE;;T‘(’;' Xp ¢£(v,v ’CK) fpz(v+v ) PL(CZ) (5.37b)

where PL is the Legendre polynomial of degree L. If all energies

are measured in MeV, then the term in square brackets is

2 4 -1

numerically 0.7 CVe wp (s Mev_l) which sets the scale. To obtain

the v v rate, C is replaced b .
uou > Ve P yCVu

In Figure 20, the L = 0 moments are plotted against the

antineutrino's energy y' for various neutrino energies y at the

conditions T,, = 6.24 and pYe = 3.8x1012 g/cc (wp = 4.5 MeV) possibly

10
characteristic of a first bounce. The transverse moments are zero

up to some critical value at which they peak and then fall off

almost exponentially; the falloff rate is steeper for lower
temperatures and less steep for higher ones. The longitudinal

kernels are quite spiked, centering about v' = mp—v which reflects the
extreme constraints imposed on the allowed range of vy and v' values.
These moments are more difficult to deal with numerically than the
more gently rising and falling e+e" moments (c.f. Figure 15). They
are adequately treated using bin averaging, provided the energy bin
sizes are sufficiently narrow: clearly, bins of width 5 MeV will not
do (as they can in the e+e' case); rather 0.5 MeV bins are preferable.
It is therefore difficult to deal with both plasmon and pair

production at the same time.

The absorption kernels are obtained from those for production
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by using 5.14.

The integral of the production moments over the antineutrino's
phase space ((v')zdv'/2ﬂ2) gives the rate to create a neutrino of
energy vV per unit phase space. These integrals must in general be done
numerically. Transverse and longitudinal spectra are given in

'Figure 21 for the conditions of Figure 20. The transverse rate clearly
dominates over the longitudinal rate. Multiplication of these rates

by v2/2w yields the number of vu's created per unit time per unit
energy: this quantity peaks at v 2 MeV and has a much shallower falloff.

Since vector current dominance has been assumed, no VA
interference appears, and the v and v spectra are identical; the
moments 5.37 are invariant under the interchange of v and v'.

The plasmon neutrino spectrum is of low energy relative to the
pair annihilation spectrum,as can be seen in Figure 22 taken at the
same temperature as in Figure 20, but at the less dense pYe =

2

1.13x101 g/ce (mp ~ 3 MeV), and again in Figure 16 under the much

hotter conditions TlO =12 , wp ~ 4,3 MeV. The line of demarcation
between plasmon and pair dominance is drawn in Figure 18 for equal
energy loss rates; the line for equal vu pfoduction rates is to the
left of the equal energy line due to the very different mean neutrino
energieé. Further, the energy dependence of the opacities (v v2)

implies that the v 's and v 's produced by annihilating positrons are
¥ u

more easily trapped than those produced by decaying plasmons.
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6. THE EVOLUTION OF THE NEUTRINO DISTRIBUTION FUNCTIONS

In this chapter, we present our detailed numerical results on
the behavior of neutrinos in the various stages of gravitatiomal
collapse. The first section focuses on the early evolution of the
core, when it is still transparent to neutrinos, by following the
trajectory of the star in pTYe space to the onset of trapping, which
occurs at a density pihap' We then solve the P-0 equations for the
evolution of the % distribution function to equilibrium at a density
above pi&ap to elucidate the roles of the various neutripo processes
involved (section two). 1In section three, the effects of diffusive
transﬁort on the approach to equilibrium are conside