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And when 1 behe,td my devil , 1 fiound him -0eJt.,[olL6, 
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ABSTRACT 

The P-N method is developed to describe the transport of neutrinos 

in collapsing stellar cores, and the multigroup flux limited diffusion 

and equilibrium diffusion approximations are obtained from it. An 

effective Lagrangian for weak neutral and charged current neutrino 

interactions which is applicable to low energy neutrino processes is 

derived. The neutrino source functions which enter into the P-N equa-

tions are given a many body theory formulation in terms of weak current-

current correlation functions. Within this framework, we deal, in turn, 

with the scattering reactions vA + vA, vA + vA*, vN + vN (both for non-

degenerate and degenerate nucleons), ve + ve, and vv + vv, and the pro-

duction and absorption reactions e-p +! n v , 
e 

+ e n +! pv, 
e 

- A A( ) e Z +! Z-1 v e' 

+ -e e +! vv, and Yp.e +::! vv. These equations are then applied to the various 

phases of neutrino flow during iron core collapse: the transparent stage 

to the onset of trapping; the approach of electron neutrinos to beta-

equilibrium; the evolution of the muon neutrino and antineutrino distri-

bution functions towards the Fermi-Dirac form; the conditions under 

which v v radiative energy loss exceeds the v loss; comparison of the 
µ µ e 

P-1 and flux limited diffusion methods of spatial transport in a static 

pre-bounce core. 
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1. SUPERNOVAE AND NEUTRINOS: INTRODUCTION 

1.1 INTRODUCTION 

The transformation of a white dwarf to a neutron star liberates 

about one hundred million electron volts of its gravitational potential 

energy per baryon and most of its electron lepton number. Electron 

neutrinos transport the lepton number. Neutrinos and antineutrinos 

of all types carry the bulk of the energy' away . 

If the energy released in the collapse of the hot iron/nickel 

white dwarf core of a massive star at the endpoint of its evolution 

can couple with an efficiency of one percent or so to the overlying 

mantle, the mantle and envelope of the star may be ejected, with the 

result a Type II supernova explosion. Neutrinos deposit energy and 

momentum in the mantle. Does this d~position cause or contribute to 

ejection? The theoretical answer depends upon the input physics. 

The idea of a supernova representing the catastrophic 

transition of the interior stellar state has been around since Baade 

and Zwicky's (1934) connection of supernovae to neutron star 

formation. Yet, no believable and workable supernova model has · heeti­

constructed to date. 

This is due in large part to the complex interweaving of the 

hydrodynamics of implosion and explosion with neutrino radiative 

transfer in regimes of matter at the limit of theoretical knowledge. 

The equation of state governs the collapse rate, strength of 

generated shock waves, and elemental abundances. The abundances 
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determine the rate of neutrino loss and matter heating; this, in turn, 

governs the thermodynamic conditions upon which the equation of state 

depends. Historically workers have used the simplest approximations 

to treat neutrino transport and the equation of state; when these 

were found inadequate, the next simplestwere tried. The hope was for 

a definitive answer: yes, supernovae occur via the implosion/explosion 

mechanism, or, no, they do not. Instead, the results are quite 

sensitive to changes in the input physics; the answer remains maybe. 

In recent years, an all out effort has been launched by many groups to 

unravel the physics of collapse. 

This effort was spurred on in part by the dramatic expansion 

in our knowledge of the interactions of neutrinos with matter that has 

occurred in the last few years: a new weak force mediated by the 

exchange of a neutral massive spin one boson was discovered; the 

existence of a new flavor of neutrino was inferred. A qualitative 

change in the theoretical picture of core collapse results from the 

inclusion of these new effects. 

Neutrino transport, with special attention paid to the neutral 

current processes which neutrinos participate in, is the subject of 

this thesis. 

1.2 SUPERNOVA OBSERVATIONS 

Supernova (SN) stars suddenly flare to a photon luminosity a 

billion times that of the sun, and are ten thousand times brighter than 

novae. At least six SN were observed in historical times, those in 
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the years 385 A.D., 1006, 1054 (the Crab), 1181, 1572 (Tycho's SN), 

and 1604 (Kepler's SN)(Clark and Stephenson 1977); in addition, Cas A 

apparently exploded in the seventeenth centur;y, but was not observed . 

The debris from these explosions are seen as extended radio sources; 

approximately one hundred such SN remnants are known in our Galaxy. 

In 1885, the first extragalactic SN was observed, in Andromeda; it was 

not until the twenties of this century when Andromeda was recognized 

as an island universe distinct from our own that the tremendous optical 

energy released in supernovae became known . By now, ~ 400 

extragalactic SN have been seen. 

Observers have obtained the optical spectra and light curve 

(luminosity as a function of time) of many of these events (see, for 

example, Kirshner et al. 1973), on the basis of which SN have been 

classed into two types, I and II. The light curves of both types 

rise steeply to maximum brightness, then quickly fall, with the peak 

lasting about twenty days; the subsequent decline in Type I is almost 

exponential, that in Type II has a slowly falling plateau, then a 

precipitous drop, although not all Type II's look the same. From the 

spectrum, information on the expansion velocity, temperature, and 

radius of the photosphere, as well as on elemental abundances can be 

obtained. Type II have hydrogen, and heavier elements have been 

identified; Kirshner and Kwan (1975) have estimated the mass of the 

expanding envelope to be from two to five solar masses with an 

abundance distribution compatible with solar system values for three 

particular SN which occurred in 1969, 1970, and 1973. The expansion 
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kinetic energy is ~ 0.1 to 0.5 MeV per baryon, so with the Kirshner­

Kwan estimate, a kinetic energy between ~ 5xlo
50 

to 5xl0
51 

ergs is 

obtained; the time integrated optical energy output is less, 

49 ;s 3xl0 ergs. 

Type I's have little or no hydrogen, larger expansion kinetic 

energies per baryon and light energy output than Type II's; the spectrum 

is difficult to analyze, and the composition is only poorly known. 

The type of galaxy in which the SN types are predominantly 

found (I in elliptical, II in spiral), the spatial distribution 

within galaxies (II in spiral arms), and the SN birth rates (estimated 

by Tammann (1974) to be one every 20 ± 10 years in our Galaxy) all 

contribute to our knowledge of supernovae. A fairly clear picture of 

Type II SN emerges: they involve young massive stars of Population I. 

For Type I supernovae, the picture is fuzzier. 

The first pulsar was observed in 1967. A few years later, the 

Crab pulsar was identified (Comella et al. 1969) . It has been 

estimated that there are perhaps half a million pulsars in our 

Galaxy (see Green 1977). With Gold's (1968) identification of pulsars 

with rotating, magnetized neutron stars, and this figure, it is clear 

that gravitational collapse is a relatively common phenomenon; we 

know of no other way a neutron star can form. 

The Crab Nebula has been called the Rosetta Stone for the 

field of supernova physics. It was a supernova, by the testimony of 

ancient Chinese records, and it is an expanding number of filaments 

and cloud of gas, lit up by the energy supplied by a central neutron 
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star; it radiates in all wavelength bands. If the expansion is 

extrapolated back in time it agrees with the Chinese date; the pulsar 

slowdown lifetime is also consistent with this date . This object, 

and the Vela pulsar with its associated ten thousand year old 

supernova remnant, provide the most compelling observational evidence 

for the core implosion/mantle or envelope explosion hypothesis. 

1.3 BEFORE AND AFTER COLLAPSE 

Stars with masses between about eight and fifty solar masses 

evolve an onion skin configuration: an iron/nickel white dwarf core 

supported by relativistic electron degeneracy pressure forms in the 

center with a mass near the Chandrasekhar limit of 1.4 M
9 

; it is 

surrounded in succession by layers of (primarily) silicon, oxygen, 

neon, carbon, helium, and hydrogen . Near the boundary between one 

layer and the next, a shell burns the thermonuclear fuel of the 

outer layer into its ashes, the composition of the inner layer; in 

particular, the core slowly grows in mass as the silicon burning 

shell accretes matter onto it. The stellar envelope has a red giant 

. 13 14 structure of radius between 10 and 10 cm, although this, and the 

amount of hydrogen left in the outer layers, are sensitive to the 

rate of mass loss from the star in its earlier evolutionary phases. 

Stars of fifteen and twenty-five solar masses have, for the first time, 

been numerically evolved from the main sequence to this 

presupernova configuration (Weaver et al . 1977) . 

The core collapses; most of the mantle (the silicon to carbon 

layers) and all of the envelope cannot respond dynamically to the 
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rapid collapse and remain essentially stationary, in hydrostatic 

equilibrium. Let there be a strong shock wave: while passing through 

the mantle, this shock can trigger the explosive ignition of some 

unburned fuel, for example, burning silicon to iron peak elements. 

The mantle and envelope are dispersed into interstellar space, 

enriching it in heavy elements, causing chemical evolution of the 

galaxy. The modern theory of nucleosynthesis rests upon 

supernovae as the primary site. To explain the observed elemental 

abundances, it seems necessary to lock up most of the core matter in 

a collapsed remnant; otherwise, too many neutron rich nuclei would be 

predicted to exist (Weaver et al. 1977). This is further evidence 

for the implode/explode scenario. 

When the shock emerges at the surface of the envelope, a 

fraction of a day after the core collapse, the light curve begins its 

rapid rise; the observed features of Type II light curves can be 

explained by this mechanism alone, provided the shock energy is in the 

51 neighborhood of 10 ergs (Falk and Arnett 1977, Chevalier 1976); 

Type I's may need, in addition, another energy source, such as the 

decay of radioactive nuclei (Colgate and McKee 1969), to obtain the 

exponential decay (Lasher 1975). 

Supernovae are thought to be the source of cosmic rays and 

perhaps their accelerators. The shock plays an important role in the 

energy balance of the interstellar medium. Star formation can 

apparently be triggered by the incidence of the shock on a molecular 

cloud. A supernova that exploded near the birth date of the solar 
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system, perhaps even triggering the collapse of the protosolar 

nebula, has been suggested to explain some of the isotopic anomalies 

found in meteorites. 

And, of course, neutron stars and maybe black holes are the 

collapsed remnants of these explosions. 
' 

There is one missing ingredient in this grand design which 

places the supernova phenomenon at the apex of much of astrophysical 

theory: the cause. 

1.4 INSTABILITY INITIATORS AND EXPLOSION MECHANISMS 

Burbidge et al. (1957), B
2

FH, were the first to suggest a 

mechanism by which the core would become unstable after all its 

thermonuclear energy was spent: at high temperature, iron peak 

elements photodisintegrate into alpha particles and neutrons; at an 

even higher temperature, alpha particles break down into nucleons. 

Fowler and Hoyle (1964), FH, amplified and extended the B
2

FH ideas 

by proposing a specifi°c presupernova model, emphasizing the 

importance of neutrino emission for the collapse of massive cores, 

suggesting another instability mechanism for very massive stars (with 

carbon/oxygen cores more massive than~ 30 M
0
), that resulting from 

the neutrino-antineutrino energy loss due to the annihilation of 

electrons and positrons, and specifying a mechanism for mantle 

ejection, namely, the thermonuclear burning of unburned oxygen in the 

mantle as it falls in and heats up. 

Cameron (1958) proposed another mechanism for the onset of 

instability: degenerate electrons are captured by nuclei, thereby 
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robbing the core of its pressure support against its self gravity; 

the core becomes progressively more neutron rich, it neutronizes. 

For massive iron cores (2:. 2 ~), photodecomposition initiates 

the phase of rapid collapse; for less massive cores, such as the ones 

with mass near the Chandrasekhar limit which arise from evolutionary 

calculations (Arnett 1977a , Weaver et al. 1977), collapse is 

initiated by electron capture which lowers the Chandrasekhar mass 

below the core mass . 

Colgate and White (1966), CW, constructed the first numerical 

hydrodynamical model of the implosion/explosion phenomenon. Three 

important ingredients were added to SN theory: a core opaque to 

neutrinos in the late stages of collapse, a shock wave formed as a 

result of matter accreting onto a small inner core, and the deposition 

of energy by neutrinos in the mantle and its subsequent rapid expansion 

which generates another shock wave. Their neutrino transport was no 

transport at all: energy was deposited in the last mean free path. 

Arnett (1966, 1967) improved on the neutrino physics, using 

the equilibrium diffusion approximation (EDA) with neutrinos flowing 

down the temperature gradient, and emphasized the importance of muon 

neutrinos as carriers of the bulk of the energy from the collapsing 

core. 

Ivanova et al. (1967) suggested energy deposition can trigger 

the thermonuclear burning of mantle oxygen and thus tied together 

the FR and CW mechanisms. The shock formed when the core halted, 

the bounce shock wave, propagated through their mantle and envelope; 
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this suggested another possible explosion mechanism, but was found to 

be not of sufficient intensity to produce a supernova. 

Wilson (1971) used general relativistic equations of motion 

to describe the hydrodynamics and the Boltzmann transport equation to 

treat the flow of both electron and muon neutrinos. One model 

exploded; the neutrinos acted only as a slight damper to the now 

predominant bounce shock wave. This third explosion mechanism seems 

now to be the most important (Wilson 1977, Bruenn 1975, van Riper 1977) . 

When low energy neutrinos are elastically scattered by nuclei, 

they transfer momentum but very little energy; this suggests a 

fourth mechanism for mantle blowoff, by neutrino momentum deposition 

(as opposed to the CW energy deposition mechanism). This process 

requires neutral current interactions, and with their discovery, a 

new era of work on iron core collapse was initiated, led off by 

Wilson (1974), who used his 1971 code with the inclusion of neutrino­

nucleus scattering to find explosions were sensitive to the value of 

the neutral current coupling chosen. 

1.5 PHASES OF THE NEUTRINO FLOW 

It has sub~equently been found that explosions are also 

sensitive to variations in other imputs to the collapse codes, such 

as in the equation of state, in the neutrino processes and in the 

method used for their transport. Two methods of transport are now 

used in coupled radiation-hydrodynamic codes: flux limited diffusion 

(Wilson et al. 1975, Wilson 1976, 1977, Bruenn 1975, Arnett 1977) 

and the equilibrium diffusion approximation where flows down 
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neutrino chemical potential gradients as well as down temperature 

gradients are now allowed (Mazurek 1975, 1976, Sato 1975) . Not all 

neutrino processes are included in these works, and those that are 

are often not treated correctly . 

We approach neutrino transport using t he underlying structure 

imposed by the P-N equations of transfer (derived in Chapter 3) and 

show how the two approximations mentioned above follow from it. The 

Pauli exclusion principle , which limits the states into which the 

neutrinos can be produced or scattered, causes considerable 

complications: nonlinearities appear in the neutrino source functions . 

In Chapter 2, we review the present experimental and 

theoretical status of the weak interactions and obtain an effective 

Lagrangian suitable for the description of the low energy processes 

in which neutrinos participate during gravitational collapse. 

We formulate a many body treatment of neutrino interactions 

in matter using dynamical correlation functions of the currents which 

enter into this Lagrangian, then proceed to deal with the many 

neutrino scattering, production, and absorption mechanisms of 

importance in supernovae within this framework (Chapters 4 and 5). 

The P-N equations with all the source functions included are 

thus set up . It i s applicable to any white dwarf to neutron star or 

black hole transformation, not just those associated with iron core 

collapse. For example , other arenas include mass transfer onto a 

white dwarf in a binary system which sends its mass over the 

Chandrasekhar limit , the Finzi and Wolf (1967) mechanism of slow 
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electron cap.tmre on white dwarfs decreasing the Chandrasekhar mass 

below the star's mass, and the collapse of degenerate carbon cores 

once (and if) these pass through the flashing phase (Chechetkin 

et al. 1976). Only the thermodynamic history differs from that of 

iron core collapse, not the neutrino physics . 

In Chapter 6, the nature of the neutrino flow at each phase 

in iron core collapse is discussed in the light of numerical 

simulations. Initially, the core is transparent to neutrinos. The 

l.lllcertainty in electron capture rates o~ heavy nuclei and in 
; 

elemental abundances, especially of free protons, reflects itself in 

the evolution of the central regions of the core in thermodynamic 

phase space. We find, however, that the trajectory in the density-

temperature plane converges to a common one almost independently of 

compression rate, equation of state uncertainties, and initial 

conditions. The density at which neutrinos are trapped (i.e., 

neutrino occupation numbers are no longer small compared with unity) 

is obtained. At a higher density, which we determine, these 

trapped electron neutrinos attain an equilibrium distribution. 

The core at this stage consists of three fairly well 

determined zones: a core-mantle composed of iron peak elements which 

is adjacent to the silicon burning shell; interior to this, a 

neutronization shell consisting of alphas, heavy nuclei, free neutrons 

and some free protons, which is suffering photodecomposition and 

copious electron capture; an inner core composed primarily of free 

neutrons with some heavy nuclei, alphas and free protons.. Whether 
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the protons are locked into heavy nuclei or are free is the cnux of 

the equation of state uncertainty. Definitive statements about 

neutrino distributions must await the resolution of this problem. 

The neutrino luminosity is dominated by neutrinos emitted in the 

neutronization shell; whether or not momentum deposition can push 

off the mantle depends on the flow from this region. 

The equation of state uncertainty makes it difficult to 

determine the density at which the inner core, which collapses 

homologously (Arnett 1977), halts, accretes matter onto it, and 

generates a bounce shock wave: it may be at subnuclear densities 

(Wilson 1977, Arnett 1977) or at supranuclear densities, as in the 

pre-neutral current collapses. 

When the core temperature is sufficiently high, the hot 

neutron star can lose more energy in muon neutrinos than in electron 

neutrinos. Conditions under which this can happen are obtained in 

Chapter 6, and approximations are proposed to treat their flow. 

The neutrino transport method used must bridge the regime 

of diffusive flow of a degenerate Fermi gas in the inner core to 

the regime of free streaming in the core-mantle. We explore this 

transition by comparing numerical solutions of the P-1 and flux 

limited diffusion equations in an idealized test case, a core 

frozen in structure just prior to bounce. The resulting electron 

neutrino luminosity is not sufficiently great to cause a supernova 

explosion: the fourth blowoff mechanism, neutrino momentum 

deposition, cannot work in the configuration chosen. 
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As the central density rises, first the electron neutrinos, 

then the muon neutrinos and antineutrinos, and finally the electron 

antineutrinos attain equilibrium with the matter in the inner core 

and collapse with it, escaping on diffusion timescales which are 

long compared with the dynamical time. 
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2. THE WEAK INTERACTION TAILORED FOR 
ASTROPHYSICAL NEUTRINO PROCESSES 

The field of neutrino astrophysics has undergone a small 

revolution within the last few years, an offshoot of the more 

momentous revolution in high energy physics. There, experiments 

probing distances much smaller than the nucleon size have displayed 

the reality of quarks inside the proton and have uncovered new 

quarks, leptons, and interactions. It was the discovery of the 

weak neutral current interaction which precipitated the recent flurry 

of activity in neutrino astrophysics. 

2.1 EXPERIMENTS WITH NEUTRINO BEAMS 

Experimentalists have presently at their disposal neutrino 

beams in four different energy regimes. Electron antineutrinos 

from nuclear reactors have the lowest energy, ~ 1 to 5 MeV, with a 

flux~ 2 x 1013 ~ - cm-2s-l (Avignone 1970). It was with such a 
e 

reactor, at Savannah River in 1955, that Reines and Cowan first 

observed a neutrino-induced reaction, v + p + e+ + n. Recently, 
e 

Gurr, Reines, and Sobel (1976) have reported the observation of 

~ 6 events attributed to the reaction v + e- + v + e • This 
e e 

scattering reaction implies a direct coupling occurs between electron 

neutrinos and electrons; this is written symbolically as (v v )(ee), e e 

or (v e)(ev ), in the current-current notation with the spacetime 
e e 

properties suppressed (Clayton 1968). 

The Cern neutrino beam consists of v 's and v· 's arising 
µ µ 

from the decay of mesons produced from protons accelerated in the 
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Cern proton synchrotron; the mean energy is ~ 1.5 GeV (Blietschau 

et al. 1977). It is with this beam that the first reported neutral 

current inclusive reaction, vµ + A + vµ + X, occurred (Hasert et al. 

1973). Here, A is a heavy nucleus and Xis anything . This inclusive 

reaction implies a coupling (v v )(uu) and/or (v v )(dd), where u µ µ µ µ 

and d are the up and down quarks, respectively. There are no 

strangeness changing neutral current interactions (vµvµ)(sd), as is 

evidenced, for example, by the fact that the decay rate for the 

reaction K + µ+µ- is at least 4 x 10-9 below the rate for the 
s 

h d h ' ' K+ + (T ' c arge current strangeness c ang1ng reaction + µ vµ rippe 

et al. 1976). There is no evidence for the coupling (vµvµ)(ss), 

although it is predicted by theory . 

Shortly after the Cern discovery, two groups, HPWF 

(Benvenuti et al . 1974) and CITF (Barish et al. 1975),confirmed the 

existence of neutrino-induced inclusive reactions in which no mesoµ 

is seen in the final state. At FNAL, there are a number of neutrino 

beams the experimentalist can choose from. The most intense one 

5 -2 -1 
(~ 10 v cm s , time averaged) has a mean energy of ~ 15 GeV, 

µ 

and its distribution extends to ~ 300 GeV. Unfortunately v and µ 

3 -2 -1 v are unseparated in this beam, and only~ 1.5 x 10 v cm s 
µ µ 

have energy > 70 GeV. Another type, the dichromatic beam, allows 

-
selection of vµ or vµ, and has the lower energy neutrinos cut out, 

at the expense of a decreased intensity . There are two energy 

peaks: the first, centered~ 50 GeV, with average intensity 

3 -2 -1 
~ 10 v cm s ,arises from TI decay; the second, centered ~ 150 GeV , 

µ 



16 

-2 -1 . with average intensity~ 100 v cm s ,arises from K decay 
µ 

(Barish 1978). There are now similar high energy neutrino beams at 

Cern. Inclusive experiments continue to provide the best neutral 

current data. 

Another neutrino beam, at Brookhaven (BNL), with mean energy 

~ 1 GeV, has been used to see elastic neutrino-nucleon scattering: 

v + p -+ v + p (Lee et al. 1976, Cline et al. 1976 a,b), 
µ µ 

v + p -+ v + p (Cline et al. 1976 a, b) . Exclusive single pion 
µ µ 

production by neutrino scattering, v + p -+ v + p + 1To, v + n + 1T+ 

has been observed (S . J. Barish et al. 1974). Reactions with more 

pions in the final state, as well as the inclusive reaction 

v +A-+ v + 1T + X have also been observed (Hasert et al . 1975). 

The leptonic reactions v + e -+ v + e (Hasert et al. 1973, 
µ µ 

Blietschau et al. 1976, Faissner et al. 1976) and v + e -+ v + e 
µ µ 

(Faissner et al . 1976) have been seen at Cern. Although only a 

few events have been recorded, the demonstration of existence is 

important: not only is there a (v v )(ee) coupling, but there is also 
e e 

a (v v )(ee) coupling, a pure neutral current effect. 
µ µ 

No low energy neutral current neutrino-hadron experiments 

that have been successful have been reported, although, for example, 

an upper limit has been obtained for the reaction v + d -+ v + n + p 
e e 

using reactor neutrinos (Gurr et al. 1974). Neutrino beams of 

intermediate energy can be created using the LAMPF meson factory. In 

particular, 

intensity ~ 

+ v 's from µ decay, with mean energy~ 30 MeV and 
e 

io8 v cm-2 s-l are being produced (Donnelly et al. 1974, 
e 



1975); this beam is being used to study v + e + v + e, the only 
e e 

purely leptonic scattering reaction involving electrons and 

neutrinos not yet observed. Some nuclear experiments have been 

* suggested: the inelastic scattering reaction v +A+ v +A , where 

* A is an excited state of nucleus A, can, perhaps, be seen in these 
I 

beams (Donnelly et al. 1974, 1975). 

This exhausts the energy ranges of neutrino beams under 

man's control: 2 MeV v 'sin nuclear reactors, 20 MeV v 's, v 's at 
e e µ 

meson factories, 2 GeV v , v at Cern, BNL, Serpukhov, and 20-200 GeV 
JJ JJ 

v , v at the highest energy accelerators, FNAL and now Cern. 
JJ JJ 

Natural sources of neutrinos exist in the cosmos. The most 

familiar source is (presumably) the sun; Ve 's are produced by the 

p + p + d + e+ + v reaction with mean energy 'V 0.2 MeV, and flux at e 

earth 6 x 1010 -2 -1 (Bahcall and Ulrich 1976). As is well 'V v cm s 

known, the higher energy (rv 7 MeV) solar neutrinos arising primarily 

8 6 -2 -1 from B decay (predicted flux rv 5 x 10 cm s ) do not give the 

theoretically expected counting rate for the reaction 

v + 37c1 + e- + 37Ar which occurs in Davis's solar neutrino detector, 
e 

100,000 gallons of the cleaning fluid tetrachlorethylene (c2c14) 

(Bahcall and Davis 1976). Gravitational collapse of the cores of 

massive stars is heralded by a burst of electron neutrinos from 

neutronization with a mean energy 10-20 MeV, and an intensity at 

13 -2 -2 -1 earth rv 10 d (cm s ), where dis the distance from the earth 

to the imploding star in kiloparsecs; the burst lasts for rv 1 second. 

Davis's v detector can observe such an event if it is within e 
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~ 5 kpc (Bahcall 1977). In fact, in 1972, Davis had a high run ; 

perhaps his detector registered a supernova; or perhaps it was just 

a statistical fluctuation. A large number of v , v , v are also 
e µ µ 

emitted, arising from thermal processes. Land~ and collaborators 

(Lande et al. 1974, Frati et al. 1975) have Cerenkov counters 

located in the Homestake gold mine , where Davis's detector is, and 

in two other places, with which they can register cosmic v by the 
e 

reaction v + p + n + e+ occurring in water; the minimum detectable 
e 

neutrino energy, 15 MeV, is rather too high to see many thermally 

produced v 's from collapse. Much attention has been given recently 
e 

to very high energy neutrinos which arise from cosmic ray collisions 

in space and in our atmosphere (Margolis et al. 1977). Perhaps 

~ 150 high energy atmospheric vµ events have been recorded to date 

(Reines 1977); for example, an experiment run from 1964-1967 utilized 

scintillation counters in a gold mine in South Africa to record 39 

v- produced mesons (Reines et al. 1971). Detectors with large 

volumes of ocean as the target have been proposed to further study 

these neutrinos (Dumand 1976). At the other extreme , the background 

neutrino radiation, a relic of the big bang, has mean energy 

11 -2 -1 -1 
~ 1/2 millivolt, and intensity ~ l.3xl0 v cm s ster for each 

kind in the standard big bang model. If neutrinos are massive, or 

form a degenerate Fermi sea (Weinberg 1962), these numbers no longer 

hold. The upper limit on the mass of v is~ 30 ev (Efremenkol976), 
e 

and on the mass of v is~ .65 MeV. Cosmological arguments can be used 
µ 

to further restrict the neutrino masses to be at most ~ 50 ev, or 
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at least 2 GeV (Cowsik and McLelland 1972, Lee and Weinberg 1977). 

2.2 GAUGE THEORIES 

The history of physics may be understood, ideally, as the 

attempt to integrate more and more natural phenomena into a unified 

viewpoint. The recent attempts to unify weak and electromagnetic 

phenomena led to two theoretical predictions, the existence of 

neutral current interactions and of anew flavor of quark; both have 

been confirmed by experiments performed after the predictions were 

made. 

The Weinberg-Salam model (Weinberg 1967, Salam 1968) is a 

Yang-Mills theory (Yang and Mills 1954, Gell-Mann and Glashow 1961) 

~~~ based on the internal symmetry group SU(2) 'C/U(l): the 

Lagrangian density is invariant under the unitary transformations of 

this group at each point in space, i.e., under gauge transformations 

of the second kind. If the ground state (vacuum) is not invariant 

under this group, the gauge symmetry is termed spontaneously broken. 

The gauge group has four generators, three components of weak (as 

weak opposed to strong) isospin arising from SU(2) , and one weak 

hypercharge operator arising from U(l). To each generator, there is 

associated a massless spin one meson, a gauge vector boson. The 

electric charge, a linear combination of the third component of weak 

isospin and weak hypercharge, generates a one-dimensional subgroup 

of the gauge group, under which the vacuum is invariant. The gauge 

vector boson of this group is the photon, which is massless. There 

is a three-dimensional subgroup of the gauge group under which the 
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vacuum is not invariant ; the vector mesons associated with the 

three generators of this group can obtain a mass, by a mechanism 

first expounded by Higgs (1964) . One assumes the existence of a 

doublet (under SU(2) rotations) of complex scalar part i cles 

(four real fields) with a specific form of self-coupling . This self-

interaction ensures that in the state of lowest energy, the scalar 

field has a nonvanishing expectation value . Each massless vector 

boson which is to become massive absorbs (eats) one of the four 

real fields to make its longitudinal component. After the magic of 

the Higgs mechanism has been performed by the model-building theorist , 

three real scalar fields have disappeared, uniting with three massless 

vectors to form three massive vectors: the W+, w- bosons, carriers 

of the charged current force, and the Z boson, carrier of the 
0 

neutral current force . In addition, one real scalar field is left, 

a Higgson, which couples to fermions, to the massive gauge bosons, 

and to itself . The fermions originally included in the theory were 

leptons; the extension to hadrons was undertaken by Weinberg (1972) . 

It is the weak fermion- fermion interaction which is of primary 

concern to us, as the other particles are too heavy to be produced 

in astrophysical environments . Indeed, the mass of the W, m , is 
w 

;:, 30 GeV according to experiment (Barish 1978) , and according io 

the Weinberg-Salam (W . S.) ,theory is '\, 70 GeV; the mass·. of the z
0

, mz, 

is theoretically even heavier than the W • . The Higgson mass is 

estimated to be greater than a few GeV (Weinberg 1976). If there is 

more than one Higgs doublet in the theory, this lower bound on the 
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Higgson mass may no longer hold. It is remarkable that this theory 

may predict a nonzero cosmological constant; the coBmological 

constant can be viewed as a measure of the stress-energy of the 

vacuum (zel'dovich 1967), and this stress-energy enters into 

Einstein's equations. A numb;er of other gauge models have been 

proposed, based upon the Yang-Mills Lagrangian, and utilizing the 

Higgs mechanism to generate the large mass difference between the 

photon and the weak vector mesons. 

The fermion-vector boson interaction is described by the 

Lagrangian 

• (2.1) 

Here, the electromagnetic current is the conventional one 

] em 
= -ey e - µyµµ µ µ 

+ 213 cy c 
µ 

+ 213 uy u - 1/3 <ly d - 1/3 sy s 
µ µ µ 

(2.2) 

as is the charged current 

1cc = 
µ v Y (l-Y

5
)e + ~ Y (l-:Y

5
)µ + uY (l-Y 5) (case d + sine s) 

eµ µµ µ c c 

(2. 3) 

The gamma matrix notation is that of Bjorken and Drell (1964) and 

Abers and Lee (1973). 

left-handed helicity. 

In this notation, 1/2(1 -y5) projects out 

The lepton fields are e, µ, v , v and the e µ 

quark fields are u, d, s, c. There is an implicit sum over quark 

color indices in these currents. The Cabibbo angle, e , is ru 13° 
c 

(Roos 1974). The coupling constants g and g are related to the Fermi 
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coupling constant, GF 1.01 x 10-S -2 by = m p 

GF 2 z-2 (2.4) = 
g 

= 
g 

n.- 2 2 m mz w 

The coupling constant e is the usual electric charge, and A is the 
µ 

photon field. 

In the limit in which only u and d quarks are important, the 

hadronic pieces of these currents involve only 

the isoscalar vector current: 

1/3 qy q 
µ 

the isovector vector current: 

= - i 
qy t q 

µ ' i = 1,2,3 

the isoscalar axtal vector current: 

the isovector axial vector current: 

(2.5) 

(2 . 6) 

(2. 7) 

(2.8) 

Here, q is a column vector consisting of 2 Dirac spinor fields: 

q = (~) 

Under the synnnetry group of isotopic spin, q transforma as a 

doublet. 
. i i 

The matrices t 1 are given by T /2, with T the Pauli 

spin matrices. We further define 

JV± JVl ± i JV2 (2.9) 
µ µ µ 

v± JVl ± i JV2 (2.10) JSµ = 5µ 5µ 
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In this notation, neglecting the strange and charm degrees of 

freedom, 

Jem 
11, hadron = 

f C 
µ, hadron = cose (JV+ 

c )1 

The neutral current can be parametrized by 

= a v y (1 - y
5
)v + a v y (1 -y

5
)v eeµ e µ µµ µ 

+ ey µ ( c Ve - c Ae y 5) e + il y µ ( c Vµ - c Aµ y 5) 11 

+ uy)l(cvu - CAuy5)u + dy)l(cVd - CAdy5)d 

+ sy)l(cvs - CAsyS)s + cy)l(cvc - CAcy5)c 

(2.11) 

(2 .12) 

(2.13) 

This neutral current is not general: asstnnptions have already been 

made. It is assumed that the current is a linear combination of 

vector and axial vector pieces, which is true of all gauge models, 

and the neutrino couples in a purely left-handed manner. The 

hadronic piece of this current may be written in terms of 

SU(2) strong currents (when s and c are not involved) as 

]NC 
µ, hadron = JS JV3 _ c JS JV3 (2 •14) 

cVo µ + cVl µ Ao 5µ - c Al 5µ 

The values for the various coefficients in the W.S. theory, which 

depend only upon one parameter, the Weinberg angle ew, are listed in 

Table 1, together with a figure showing the range of sin2eW allowed 

by the experiments (Figure 1). 

2.3 THE CURRENT-CURR.ENT LIMIT 

In astrophysical applications and in experiments performed 
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to date, the momenta transferred in the reactions are much less than 

the masses of the intermediate bosons . The Wand Z propagators 

are proportional to delta functions of position and time in this 

limit, and the fermion-fermion interaction, which is mediated by W 

and Z exchange, reduces to the current-current form. An appropriate 

weak interaction effective Lagrangian is, for charged currents 

Lee 
G 

1cc 1µt = - rz µ cc (2.15) 

and for neutral currents 

LNC 
G ]NC Jµ = 

2/2 µ NC (2.16) 

There may be many neutral intermediate bosons, hence many neutral 

currents; the effective Lagrangian is then the sum over many terms 

of the form 2.16. 

We now decompose the effective neutral current Lagrangian 

into its component parts, such as (~ v )(ee), then we blind ourselves 
µ µ 

to the path we have taken from gauge theories, and unravel the 

properties of the effective interaction from experiments alone. 

Notable in this effort are the experimentalists themselves and Sakurai 

and collaborators (Hung and Sakurai 1977 a,b, Sakurai 1976). 

Consider first the spacetime structure of the neutral current: 

does it involve scalar (S), pseudoscalar (P), and tensor (T), or the 

more familiar vector (V) and axial vector (A)? Pure S and P have been 

ruled out (Barish 1978); a linear combination of S, P, and Tis still 

possible. 
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Before dealing with each of the current-current terms which 

can affect astrophysics, we first treat some of the possibilities 

that have been suggested which modify the neutral current Lagrangian. 

A new heavy charged lepton, the tau, has apparently been 

discovered (Perl et al. 1977). It is too massive to play a role in 

astrophysics. Presumably, however, it has its own neutrino, v • The 
T 

limit on the mass of the tau neutrino is at the moment rather poor, 

600 MeV. If the v is massless, or of small mass, and couples as 
T 

(v v )(qq), and (v v )(ee) in a fashion similar to v, then it plays 
T T T T ]J 

essentially the same astrophysical role as v 's do, as we shall see. 
]J 

The more light neutrinos there are, the greater the astrophysical 

implications. If there is an interaction by which left-handed 

neutrinos are channeled into right-handed ones, then the evolution 

of right-handed neutrinos in a collapsing stellar core would 

have to be followed in time . Do electron neutrinos develop an 

amplitude to be v as they propagate? Such neutrino oscillations have 
]J 

been proposed by Pontecorvo (1967) to explain the low solar neutrino 

counting rate. Reactor v 's have been used to search for oscillations; 
e 

no evidence has yet been found (Sobel 1976). 

2.4 (ee)(qq), (qq)(qq), (ee)(µµ), (ee)(ee) 

Recent experiments on atomic systems (Lewis et al. 1977, Baird 

et al. 1977) and in nuclei (Barnes et al. 1978) give results below those 

predicted on the basis of W.S. theory. The theoretical calculations 

upon which those predictions were based have recently become clouded 

in uncertainty. Some theorists have seen the apparent smallness of 
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parity violation as evidence for another neutral weak boson, Z'. The 
0 

sum of the two current-current Lagrangian~, one from Z
0 

exchange and 

one from Z' exchange, can be arranged to give no parity violation in 
0 

atoms and nuclei, and yet agree with W.S.-like models as far as the 

neutrino interaction with matter is concerned. If there are two or 

more neutral currents, then the parity violation measurements will shed 

no light on the neutrino-nucleon and neutrino-electron couplings; with 

one neutral current only, such information is obtained. 

2. s <'V v > (ee) , <'V v )(ee) 
e e µ µ 

The electron-type neutrinos interact with electrons via the' 

exchange of both charged and neutral intermediate vector bosons. The 

charged current Lagrangian 

L = cc 
G ---

12 
v (x)y (l-Y5 )e(x) e(x)y (l-Y

5
)v (x) 

e µ µ e 

is amenable to a Fierz transformation which brings the interaction to 

the form of the neutral piece. The (~ v )(ee) effective interactiqn 
e e 

Lagrangian is then 

L G - - µ ) 
= - - v y (l-y5)v ~ ey (CV - cAeYs e l2 eµ e e 

(2.17) 

The coefficients CVe' CAe are related to the neutral coefficients 

eve' cAe (see equation 2.13) by 

CAe = 

a.cv +l e e 

a. CA + l e e 

(2.18) 

(2.19) 
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Muon neutrinos, and perhaps tau neutrinos, exchange only the neutral 

intermediate vector boson with the electron . No fierzing is 

necessary. The interaction is again given by 2.17, with the 

c -1 Ve (2.20) 

(2.21) 

The second equality holds if muon-electron universality is assumed. 

Eventually CVe' CAe' CVµ' and CAµ may be determined entirely 

by experiment; at the moment, the uncertainties are so great that we 

must resort to a model to evaluate these coefficients, which are given 

in Table 1 for the W.S. model. The data from the ;e + e + ve + e , 

+v +e,v +e +v +e µ µ µ experiments are analyzed in 

Figure 1 in terms of the allowed range of the one paramenter upon 

which these theories depend. Cross sections for these and other 

reactions going by the (w) (ee) coupling are given in Table 2. 

In the late stages of stellar evolution, when the stellar core 

is burning carbon or heavier nuclei, the heat energy generated by 

nuclear reactions and gravitational contraction is radiated away 

primarily in the form of neutrino antineutrino pairs. The dominant 

energy loss mechanisms are due to the (v-v) (ee) coupling: the pair 

annihilation neutrino process (e+e- + v;), the plasmon-neutrino process 

(ypl + vv) and the photoneutrino process (ypl + e + e + v + v). 

Knowledge of the energy loss rates per unit volume is sufficient to 

calculate the effects of neutrino emission on stellar evolution; these 
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were given in the charged current only case (CVe = CAe = 1, 

CAµ = CAµ = O) by Beaudet, Petrosian, and Salpeter (1967). The 

addition of neutral currents changes the emission rates by less than 

a factor of two in the W.S. model, for sin
2e ~ .3 (Dicus 1972). 

w 

When the core of the star collapses, it becomes opaque to 

neutrinos. An equilibrium distribution of neutrinos can build up. 

In that case, differential production rates are required. These are 

calculated in Chapter 5 for the processes e+e- + vv and ypl + vv. 

Differential scattering rates are also needed for the scattering of 

neutrinos of all types by electrons; this is dealt with in Chapter 4. 

2. 6 c\i v ) cv v ) , cv v ) cv v ) e e e e µ µ e e 

The scattering of neutrinos by neutrinos can become important 

in supernova cores once the density of neutrinos can build up to near 

equilibrium values. 

v + v + v + v is e e e e 

L G - --
2/2 

The Lagrangian for v + v + v + v and 
e e e e 

2 
a 

e 
v y (1 - y ) v • v yµ (1-y )v 
eµ 5 e e 5 e 

(2.22) 

-
and for v + v + v + v v +v +v +v v +v +v +v 

µ e µ e µ e µ e e e µ µ 

etc. is 

L __Q_ a a v y (l-y
5
)v v yµ (l-y

5
)v 12 eµ eµ e µ µ 

(2.23) 

In the W.S. model, a =a = 1. Cross sections for the astrophysically 
e µ 

important reactions dependent on the (vv)(vv) coupling are given in 

Table 2. 
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2.1 (vv)(nn), (vv)(pp) 

The hadronic parts of the three currents 2.2, 2.3, and 2.13 

are expressed in terms of quark fields. In astrophysical processes 

under consideration here, we excite no nucleon resonances; the 

hadronic currents can be written in terms of nucleon fields. The 

matrix elements of the chiral currents 2.5 - 2.8 between nucleon states 

are given in terms of form factors 

(p'cr'T' IJ8 
(0) !Pa•)= <•' h) u' (g oY -icr ~ f )u 

µ 12E2E' V µ µA. 2mn VO 
(2.24) 

(2.25) 

(p 'a' T' I J8 
(O) I pa•)= ('' h) u' 

5
µ hE2E' 

(2.26) 

(2.27) 

The use of these currents, which involve only u and d quarks, ignores 

the ss virtual pair content of the proton sea. The initial nucleon 

state is lpcr•
3
), with p the momentum (Eis the energy), o the spin 

projection on the z-axis, and T the third component of isospin; 

lp'cr'T~ is the final nucleon state. The nucleon states are 

normalized to unity. The initial and final nucleon Dirac spinors, 

u, u', are normalized by 

~ (po)Yµ u(po) (2.28) 
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Momentum wave functions are box-normalized to a volume n , which is 

not explicitly written. The nucleon mass is mn' q = p - p 1 is the 

four-momentum transfer, and the form factors are all functions of q2 • 

Isoinvariance is assumed and possible second-class current effects 

have been ignored. Linear combinations of the vector form factors 

give the usual electromagnetic form factors . 

When the four-momentum transfers are much less than the 

2 nucleon mass, the q = 0 limit can be taken in the form factors. 

Then, only the gVO' gVl' gAO' gAl terms survive. By the conserved 

vector current hypothesis, we have 

(2.29) 

The axial terms, gAl and gAO' are obtained experimentally and 

estimated theoretically respectively. The isovector axial vector form 

factor, which we hereafter call gA' is 

= 2 
gAl (q = O) ~ 1.25 (2.30) 

The isoscalar axial vector form factor is estimated by Adler (1975) 

to be 

0.75 (2.31) 

In most neutral current theories, cAO vanishes, so the value of 

gA0 (0) is not required. 

In this limit, the effective neutral current Lagrangian for 

the (vv)(qq) interaction can be expressed in terms of an effective 
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hadronic current 

G -L = - - v Y (l-Y5)v 12 e µ e 
µ 

Jha.d, NC (2.32) 

which is, in turn, expressible in terms of the composite proton and 

neutron fields, p(x) and n(x): 

µ 
Jhad, NC 

- µ µ 
pY (CVp-CApYS)p + n Y (CVn-CAnYS) n 

N [ r"ccvo-K:v1 t 3) - r"r 5 (cAO-K:Al t 3)] N (2.33) 

Here, the nucleon field, an isodoublet, is 

N = (~) 

The proton has its third component of isospin, t3' positive which is 

the particle physics convention. The coefficients have the 2 = 0 q 

form factors absorbed into them. How close are we to determining 

them from experiment alone? Hung and Sakurai (1977b), using the 

available semileptonic neutral current data, determine two possible 

solutions for the set of four parameters CVO' CVl' CAO CAl ; within 
' 

each solution set, the range allowed for each of the parameters is 

still rather large. One solution gives values close to those 

predicted by the W.S . model, with . 26 sin 'U 0.3; the W . S. coefficients 

are given in Table 1 . 

If universality is assumed, the (v v )(NN) and (v v )(NN) 
µ µ T T 

couplings are exactly the same as the (v v )(NN) coupling. 
e e 
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The charged current Lagrangian is the usual 

L = - ___£__ 
12 

with h.c. denoting the Hermitian conjugate, and 

3hµ d = p yµ(l - gAyS)n 
a. ' cc 

2.8 ALLOWED NUCLEAR TRANSITIONS 

(2.34) 

(2.35) 

There is a formula for the squared transition amplitude which 

we will apply again and again in calculating charged and neutral 

current (CC and NC respectively) rates. It is often adequate for our 

purposes to consider the nucleons as moving nonrelativistically (even 

for nucleons in the interior of a nucleus); terms of order v/c are 

neglected; the nucleon currents reduce to 

0 Nt (x) <cvo + cV1t 3) N(x) (2.36a) 3ha.d NC ' 

i t 
(CAO + CAlt3) 

i N(x) ,i=l,2,3 (2.36b) Jha.d NC - N (x) (J 

' 

0 Nt (x) t+ N(x) (2.37a) 3ha.d cc 
' 

i 
3
ha.d' cc = ' i=l,2,3 (2.37b) 

where t = t + it + x y 
i cr are the Pauli spin matrices, and N(x) now 

denotes the isodoublet of 2-component Pauli ~pinor fields ( ~ ) 

The amplitude for a nuclear state I iJ .M. ) of angular 
1 1 

momentum Ji, and z-component of angular momentum, Mi , consisting of 

Ai nucleons to emit a neutrino-antineutrino pair of momenta q and q' 
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respectively and go into a final nuclear state I fJfMf) is given by 

where T is the T-matrix, defined in terms of the S-matrix by 

(2.38) 

where a is the initial state with energy E , and b is the final state 
a 

with ~nergy Eb • The amplitude for the transition to lowest order in 

the weak coupling constant is 

(2 , )31'(3)( ') = n u p -p -q-q 
-i -f - -

G 

12 

u(q)Y (1-Y 
5
)v(q') 

µ (flJ~c(O) Ii) 
v'2v2v' 

Here, vis the neutrino energy, u(q) is its spinor, v' is the 

antineutrino's energy and v(q') is its spinor. 

(2.39) 

We next take the modulus squared of Tf i and sum over both the 

nuclear and neutrino spins; since the neutrinos are left-handed, th~Y 

have only one helicity, and the sum over spins is implied. The sum 

over neutrino and antineutrino spinors is easily performed, using 

Lu(q)u(q) ri , L v(q)v(q) = ri 

with the result 

I; ITfi,2 
neutrino 

spins 

3 G2 
(2n) o(p.-p.-q-q') ~8 I Tr iYµ(l-Y5)ri'Y\)(l-Y5) 

_l. _l. - - \)\) 

(2.40) 

( 2. 41) 
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The trace over gatmna matrices is readily performed; we use this 

result often: 

8 ( q q' +q q '-q. q 'g . +i E: ( q ' q) ) 
µ v v µ µv vµ ' 

(2.42a) 

Here, 

(2 . 42b) 

where E:vµaB is the completely antisymmetric 4-tensor, with £ 0123 = 1 . 

The (+---) metric is used. 

Now, we turn to the evaluation of the hadronic current matrix 

elements in the nonrelativistic limit : 

A 

(fjJ
0

(o) Ii)= (fl L<cv0+cv1 t 3 (a)) ei ~·~ali) (2, 43a) 

a=l 

A 

(fjJ(O)ji) = -(flL<cA
0

+cA1 t/a»q<a)ei ~·Eaji) (2 . 43b) 

a=l 

The sum is over the A nucleons in the nucleus, with Ea the position 

of each nucleon taken relative to the nuclear center of mass, and 

k = p.-p = -(q + q'). These matrix elements are sometimes called the 
- -1 -f - -

form factors for the operators (CVO + CVl t 3) and -(CAO + CAl t 3) q 

respectively. The positions r are effectively restricted to lie 
-a 

within the nuclear radius, R, a distance of ~ 6.5 fm for 209Bi, the 

heaviest stable nucleus . For momentum transfers l~I ;s R-l 

~ (30 MeV for Bi), we may expect that a multipole expansion of the 

i k•r 
phase e - -a will be useful . The first term in this expansion 

gives the allowed transitions . Higher order terms in k are forbidden 
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transitions; at the same time as these are treated, the relativistic 

terms which were neglected in the current must also be included. 

For allowed transitions, the spin-summed-matrix-element-

squared reduces to 

spin 

I 1
2 1 A A } + M (1 - - q•q') . GT 3 (2.44) 

where q denotes the unit vector in the direction of the neutrinos 

momentum. The allowed Fermi matrix element is 

Fermi: (2J . + 1) 
]. 

and the allowed Gamow-Teller matrix element is 

Gamow-Teller : IMGTl
2 = (2Ji + 1) (<cAO + CAl t 3)z)~i 

A 

= L l(fl L: (CAO+ cAl t;a))z(a) li)l
2 

MiMf a=l 

(2 . 45b) 

The formula 2.44 is the one we wished to derive . It holds for v 
µ 

as well as ve' and, if we replace g by -9 in the momentum conserving 

delta function, it holds for neutrino- nucleus and antineutrino-

nucleus scattering . Low energy cross sections for neutrino scattering 

by nucleons, bound and free , are given in Table 2. 
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For charged current processes, a formula very similar to 2.44 

can be derived for S-decay: 

CC: 

(2.49) 

where the momentum, energy, and speed of the electron are p E 
-e' e' 

and Ve respectively, and 9 is the antineutrino's momentum. The matrix 

elements are 

Gamow-Teller: IMGTl
2

=(2Ji+1) g~<qt+)~i 
A 

= L l(fl L: Q(a) tia)li)l 2 g~ 
MiMf a=l 

(2.47a) 

(2.47b) 

The function F(Z.,E) is the usual Coulomb factor which describes the 
l. e 

distortion of the outgoing electron wave due to Coulomb interaction~ 

with the nucleus (Konopinski 1966). The derivation of 2 . 46 does not 

follow that of 2 . 44: a Coulomb wave of the electron replaces the 

free wave of the neutrino. The same formula may be applied to free 

electron capture, except, of course, the momentum conserving delta 

function must be modified to treat the new kinematics, and t++ t_ ; 

+ for S -decay, Z + -z in F , t+ + t_ . 

The notation (t+)~i is a minor variant of the usual (1)~i , 

which is often used in S-decaY, literature (Konopinski 1966); neutral 

current matrix elements are then expressible in this notation. 
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The selection rules for CC and NC allowed nuclear reactions 

are identical: 

Fermi : f:,,J O, /1n = no, f:,,T = 0 

Gamow-Teller : f:,,J = 0, ±1, no 0 -+ 0 , Mr no, f:,,T = 0, ±1 

Here, n is parity and T is total isospin . 

The CC formula, 2.46, is used in the calculation of 

e-+p t n+v , and of the capture of electrons by heavy nuclei, 
e 

e-+AZ-+ v +A(Z-1), and its inverse, neutrino absorption 
e 

v +AZ-+ e-+A(Z+l) (Chapter S). 
e 

(2.48a) 

(2.48b) 

It can be seen immediately that the operator in the NC Fermi 

matrix element is CVOB + CVl T3 , where B is the baryon number 

operator, and T
3 

is the third component of total isospin; the state 

Ii) , with Zi protons, and Ni neutrons, is an eigenstate of both, and 

the ref ore 

(2.49) 

which is zero if f and i are not equal. If CVO is not zero, the 

cross-section for elastic neutrino-nucleus scattering, v +A--+ v +k, 

is proportional to A2 , a result first noted by Freedman (1974). We 

treat this reaction in detail in Chapter 4, along with inelastic 

neutrino-nucleus * scattering, v + A -+ v + A , and neutrino-nucleon 

scattering v + N -+ v + N. 

Here, we illustrate the use of 2.44 in calculating the emission 

rate for neutrino de-excitation of a nuclear state, Ai -+ Af + v + v • 
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The rate of transition is given by Fermi's Golden Rule: 

3 
1 J d pf d3 d3 I L: 

rf. = 2J 1 q _ _.q~3 21f o (E. -Ef-v-v ') I Tf1· 12 
1 1·+ (2'"")3 (2'"")3 ( ) 1 " " 2TI spins 

Only the Gamow-Teller matrix element contributes, since the Fermi 

matrix element vanishes. We integrate over ef , getting rid of the 

momentum conserving delta function, which leaves us with an energy 

conserving delta function. We neglect the recoil energy imparted to 

the daughter nucleus by the decay; in so doing, we make an error 

~ Qfi/Mf (where Qfi = Mi-Mf is the Q-value of the reaction) which is 

negligible for heavy nuclei. The remaining integrations are 

straightforward~ yielding 

(2.50) 

By multiplying by Qfi' summing over all possible final states for a 

given initial state, and then summing over all thermally populated 

initial states weighted by their number densities, we arrive at ap 

energy loss rate per unit volume due to nuclear de-excitation by 

vv pairs. This process can play a role, but apparently never a 

dominant one, in the cooling of stars. It has an interesting 

history. Shortly after Feynman and Gell-Mann proposed their weak 

interaction theory, Bludman (1958) suggested an alternate theory with 
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neutral currents included. On the basis of this, Pontecorvo (1963) 

suggested the possible astrophysical importance of the nuclear 

de-excitation process, and a number of authors did some calculations 

to show it had little effect (Baier and Khriplovich 1964, Sakashita 

and Nishida 1964). In 1974, Bahcall, Trieman, and Zee rediscovered 

this process, derived equation 2 . 50, and applied it to solar and white 

dwarf cooling. A higher temperature and density study of this 

process again concluded it never dominates stellar energy loss 

(Crawford et al. 1976). 

Another pre-Weinberg-Salam mention of neutral current effects 

in astrophysics is more interesting. Bahcall and Frautschi (1964) 

footnote a remark made by Fowler and Hoyle at a 1963 Caltech seminar 

in which the importance of neutrino-nucleon scattering for 

supernovae was pointed out. We amplify this remark in the followin& 

chapters. 
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3. TRANSPORT THEORY: THE P-N METHOD FOR NEUTRINOS 

Neutrinos produced in the collapsing cores of supernova stars 

display a rich variety of transport phenomena, reflecting the interplay 

of the many timescales associated with the event. A snapshot of the 

core prior to the first hydrodynamical bounce shows three distinct 

regions: in the center, which is comprised of hot quasi-free nucleons, 

the neutrinos form a degenerate Fermi gas collapsing with the matter; 

in the mantle and envelope, the neutrinos are almost freely streaming; 

in between, there is a transition regime, which encompasses the 

neutronizing shell, where the neutrino flow is neither in the diffusion 

nor in the streaming limit. This latter region is crucial for the 

determination of the effect of neutrinos on the dynamics of a 

supernova explosion. What scheme can be used to bridge these various 

regimes? 

3.1 THE BOLTZMANN TRANSPORT EQUATION 

The Boltzmann transport equation (BTE) provides an adequate 

starting point. The neutrino distribution function (which we here-

after denote by the symbol df), n(q,x), is the mean occupation number 

of the state of momentum 2 in the neighborhood of the spacetime point . 

x = (xa); the BTE describes the temporal and spatial evolution of the 

df, as well as its momentum space evolution. Since one cannot 

simultaneously specify position and momentum, how can the df be 

defined? One strategy is to coarse grain phase space ((x,q) - space) 

3 into cells of volume h (h =Planck's constant); the df is then the 
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cell occupation number , a well-defined quantum mechanical quantity 

(Osborn and Yip 1966) . One can go a long way towards deriving the BTE 

in this formulation . In any case, if the spatial inhomogeneities of 

n are of long wavelength compared with the typical de Broglie 

wavelength, the BTE approach to transport seems to be valid (Osborn 

and Yip 1966, de Boer and van Weert 1976) . This is certainly true for 

neutrinos in stellar situations. 

The neutrinos are produced in accelerating and gravitating 

matter , and undergo Doppler shifts and ray bending. The neutrinos , 

when free , follow null geodesics in spacetime, and are restricted to 

2 lie on the massless hypersurface q = 0, which defines the neutrino 

energy v as a function of the 3-momentum q, and the metric tensor gas · 

The BTE takes the form (Ehlers 1971 , Lindquist 1966) 

- ri a s an 
aS q q i = 

Clq 
v6 [n] (3 .1) 

where Greek indices run from 0 to 3, Latin indices from 1 to 3, the 

ra are the Christoffel symbols of the second kind derived from the 
Sy 

metric, and the (x) and ~ dependences of n and ~ are implicit. The 

combination v~ , where ~ is the source function, a nonlinear operator 

on the space of df's , is a scalar under arbitrary coordinate 

transformations, as is n itself. The BTE transforms covariantly, even 

though it doesn ' t look manifestly covariant . Any three momentum 

space variables could have been chosen to parametrize the massless 

hypersurface; we choose the energy and two angles to specify the 

neutrino direction, rather than the three momentum space components, 

below. 
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3.2 THE SOURCE FUNCTION 

The form of ~ may often be specified in terms of the transition 

operator T. Hereafter, we take the further factor of (2~) 3 o( 3)(pb-pa) 

out of the T-matrix in the defining equation (2 . 38); the T-matrix is 

then a Lorentz invariant. If we consider the scattering of neutrinos 

by fermions of type j, as in vn, vp, and ve scattering, and the 

scattering is solely 2-body with the particles of type j uncorrelated, 

then, by Fermi's Golden Rule 

~ .. [n] = 
VJ+VJ 

• {l(v(q');j(p'o')jTjv(q);j(po>)l
2 

f.(po)(l-f.(p'o')) 
J J 

-(1-n(q'))n(q) - l(v(q);j(po)jTjv(q');j(p'o'>)i 2 

• f.(p'o')(l-f .(po))n(q')(l-n(q))} 
J J 

Here, f.(po) is the invariant single particle df for particles of 
J 

(3.2) 

type j, with momentum p and z-component of spin o/2. The relativistic 

invariance of the combination v~ can be made manifest. We first 

absorb a factor lvv'EE' into the T-matrix elements, which results in 

Lorentz invariant quantities by making the momentum space wave functions 

Lorentz invariant; we then make the compensating change in the momentum 

space volume elements d3p + d3p/E, d3p 1 + d3p 1 /E', d3q 1 + d 3q 1 /v' 

which are all invariant. By d3q/v we understand that volume element 

we obtain by transformation from a local Lorentz frame; it then 

includes a Jacobian term 1 2 3 r-g dq dq dq /v , where r-g is the 
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square root of the negative of the determinant of the metric tensor. 

The first term on the right hand side of 3.2, proportional to 

n(q),gives scattering "out of the beam," and the second term, 

proportional to (1-n(q)) gives scattering "into the beam." All 

distribution functions are evaluated at the same spacetime point: the 

collision occurs at a single point . 

The smallness of the weak coupling constant, GF, allows us to 

consider only the lowest order term of the transition operator, which 

is just the phenomenological current-current Hamiltonian for the 

scattering of neutrinos described in Chapter 2. There are certain 

situations when it is inadequate to consider the nucleons and electrons 

as independent particles due to their interactions with the medium 

in which they reside. The source function then involves the auto-

correlation of the matter currents in the ensemble representing the 

local stellar state, a formalism which is developed in Appendix 3, and 

used extensively in Chapters 4 and 5 . Matter here and hereafter is 

meant to refer to everything but neutrinos; it includes electrons, 

positrons, nucleons, nuclei and photons. As long as neutrinos are 

themselves uncorrelated with matter, the scattering source function can 

be written 

J.> [n] 
SC f d3 ' 

= - q 
3 

R ( q+q ' ) n ( q) ( 1-n ( q ' ) ) 
(27f) - -

J d3 I 

+ E.___!L__
3 

R(q'+q)n(q')(l-n(q)) 
(211) .. 

whe re R(q ->-q') is the scattering kernel, the sum over all of the 

(3 . 3) 
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individual scattering kernels R.(q+q') for each process; vv'R(q+q') 
J 

is an invariant. For matter moving with the flow 4-velocity U, the 

scattering kernels depend upon the variables (q•U), (q'•U), and 

(q•q'), as well as on the local thermodynamic parameters of the 

medium, the temperature, density, and chemical potentials for each 

of the species. In the local rest frame of matter, this dependence 

reduces to the energies v, v', and the angular variable q•q' , 

where q is a unit vector in the direction of the incoming neutrino's 

momentum. 

The emission and absorption of neutrinos, going by the 

couplings (v e)(np) and (ev )(pn), contribute to the source function e e 

the term 

-OQ[n] = - r (q)n(q) + r (q)(l-n(q)) 
µ a P 

(3.4) 

where r is the production rate for a neutrino of momentum q and r 
p a 

is the absorption rate. In the local rest frame, these rates depend 

upon the neutrino's energy v only, and upon the thermodynamic variables 

defining the state of matter. Processes which give terms of this form 

are, for example, e-+p t n+v 
e 

- A A , e + Z t (Z-l)+v 
e 

and n+e-+p + n+n+v . 
e 

Neutrinos can also be produced by thermal processes in vv 

pairs, through the interactions (vv)(ee) , (vv)(nn) , and (vv)(pp). 

Until muons are produced, which happens rather late in the collapse, 

these mechanisms are the only sources of v ,v and v ,v ; there 
µ µ T T 

is no -0
8 

term for these types of neutrinos. The source function is 



= f d3 I + q 
(27T) 3 
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R (q,q')(l-n(q))(l-n(q')) 
p 

f d3' 
- q 

3 
R (q,q')n(q)n(q') 

( 27T) a 
(3.5) 

where n is the df for the antiparticle to the particle the evolution 

of whose df, n, we are following. The production kernel, R (q,q'), 
p 

is the rate at which a neutrino of momentt.m1 g and an antineutrino of 

momentum g' are produced; the absorption kernel, R (q,q'), is the rate 
a 

for the inverse process, vv annihilation into matter. 

The scattering of neutrinos by neutrinos must be treated in 

a manner different from the scattering of neutrinos by matter. Th~ 

source function for this process, ¢ , is given in Appendix 1 
vv 

(equation Al.!); it is a quartic polynomial in the df. 

3.3 DETAILED BALANCE AND EQUILIBRIUM 

Certain very general relations hold between the kernels in 

¢ sc and¢ th which can be determined explicitly from the definitipns or 

through the principle of detailed balance . Thus 

R(q'+q) = e-B((q•U)-(q'•U))R(q+q') 

and therefore ¢ vanishes for a Fermi-Dirac (FD) distribution at 
SC 

(3 .6) 

-1 
the matter temperature kBT = B with an arbitrary chemical potential 

µ : 
v 

n = (3. 7) 

The function ¢th vanishes when both neutrinos and antineutrinos 

have a FD df with chemical potentials of opposite sign: 
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when equilibrium is attained; thus the thermal production and 

absorption kernels satisfy 

e-B((q·U) + (q'·U))R (q,q') 
p - -

If the beta source, ~B , attains equilibrium (i.e., 3.4 

vanishes), the resulting df is 

(3.8) 

(3.9) 

(3.10) 

If the matter is in nuclear statistical equilibrium, so that the 

chemical potentials of all the heavy nuclei are related to the proton 

and neutron chemical potentials, then even though fp includes electron 

captures on heavies as well as on free nucleons, the relation 

r (q) 
a 

B((q•U) -(µ +µ -µ )) r ( ) 
e p e n p q (3.11) 

holds; then 3.10 is a FD df (3.7) with 

(3.12) 

the condition for neutrino beta-equilibrium. We append the adjective 

neutrino to beta-equilibrium to distinguish it from the beta-

equilibrium in neutron stars in which the neutrino concentration is 

zero. If v 's were in beta-equilibrium, their chemical potential e 

would satisfy the relation 

µ­
v 

e 
(3.13) 
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Certainly 3.12 may be satisfied and 3.13 may not be in which case 

3.8 is also not satisfied : there can be partial equilibrium. The 

chemical potentials include the rest mass energy here. 

The source function~ vanishes for an arbitrary FD df. vv 

The matter is always in local thermodynamic equilibrium (LTE): 

the collapse timescale, the neutrino production, absorption, and 

scattering timescales are all very long compared with the time it takes 

matter to relax to equilibrium if it is in a nonequilibrium state. The 

relaxation is due to Coulombic particle-particle and electromagnetic 

particle-photon interactions. Strong and electromagnetic nuclear 

reactions occur on such short timescales that nuclear statistical 

equilibrium holds; all nuclear concentrations are functions of three 

thermodynamic variables: the number density of baryons, PB' the 

temperature, T, and Y , the number of protons, bound and free, in the 
e 

medium per baryon. The matter equation of state is specified by the 

internal energy of matter per baryon (including rest mass energy),E ~ 

and the pressure of matter, p ; both are functions only of PB' T, 

and Y 
e 

3.4 SPHERICAL COLLAPSE 

The evolution of matter in the core is given by the transport 

equations for four conserved quantities: the baryon number (for~) , 

the lepton number (for Y ), the energy (for E, and indirectly, T), 
e 

and the momentum (for the mean baryon velocity y). These equations 

are coupled to the BTE for each type of neutrino and antineutrino . 

The natural reference frame within which to work is the one 
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in which matter is locally at rest; the use of these comoving 

coordinates leads to simplifications in the form of ,6. 

We assume the collapse is spherically symmetric. In real 

supernovae, rotation and magnetic fields may play an important role 

(Fowler and Hoyle 1964, Le Blanc and Wilson 1970, Meier et al. 1976) . 

The df is then n = n(v,µ,b,t), a function only of the neutrino energy 

v, the time t, the cosine of the angle that the neutrino's momentum 

makes with the radial direction, µ = q•er , and the radial coordinate 

b which is the baryon number enclosed within a radius r at time t. 

In this baryon number variable, material derivatives reduce to partial 

derivatives: 

(3 . 14) 

where the subscript b means at constant b, and the velocity is relat~d 

to the radius 

by 

r = r(b,t) 

v(b, t) ()r(b,t)) 
()t b 

The transport equations for the conserved quantities are: 

baryon number: 

aY ) 
lepton number: PB ate b 

1 

- ,6- ) 
v e 

(3.15) 

(3 .16) 

(3.17a) 

(3.17b) 
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G~ 
+-- p 

2 m 
r 

f 
d3 

- q q ·e [-6 H- +-6 +-6- J 
( 2 ) 3 - r v v v v 

TI e e µ µ 

(3.17c) 

(3 . 17d) 

where pm is the mass density and ~ = m(b , t) is the mass enclosed 

within the "radius" b . If composition were not changing in time, and 

rest mass energy were not transformed to thermal energy , then~ would 

be time independent, and ~ would serve as an adequate radial 

coordinate ; it is not an adequate radial coordinate . General 

relativistic effects have not been included in these equations ; they 

are apparently unimportant until the latest stage of collapse , the post 

bounce stages (Arnett 1977) . 

The df's obey the BTE , val i d to first order in v/c, given by 

Castor (19 72) 

V [n ] + V [n] 
s v 

-6 [ n] (3 . 18a) 

We have separated out two terms on the right hand side , V which 
s 

takes the same form if the matter is static or moving and V which 
v 

occurs onl y if matter i s in motion : 

V [n] 
s 

an 2 an (1-µ
2

) an - + cµ 4nr p - + c ---
at B Clb r aµ 

(3 . 18b) 
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V [n] = 
v 

(l- 2)( (3v +!~)an+ [c3v + .!_~) 2 
JJ JJ r p at aµ r p at JJ -~J an 

\) -av (3 .18c) 

As Castor points out, this equation can be derived using the simple 

metric 

2 
dt - (3.19) 

and equation 3.1. If we begin with the transport equation in the 

inertial frame where coordinates are (t
1 

, r, 8, ~) 

(3. 20) 

where ~ is the source function in the local rest frame and v
1 

and 

v
1

µ are the neutrino energy and radial momentum in the inertial frame, 

the frame of the fixed stars, then transform to comoving coordinates 

using 

dt = Y (dt
1 

- vdr) (3.2la) 

(3.2lb) 

\) Yvl (1 - Vµ ) 
I 

(3. 21c) 

µI-v 
(3.2ld) ]J l-vµ 1 

y (l _ v2)-l/2 (3. 2le) 

then we obtain 3.18 
2 av 

when terms of order (v/c) and (-t) 
a b 

are 

neglected. When the gravitational effects on radiation become 
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important, there is no global inertial frame from which we can derive 

these equations by transformation; we must use 3 . 1 directly . 

Lindquist (1966) gives the necessary modification of 3.18. 

What is the meaning of the V term? Consider the case in which 
v 

the radius scales as r(b,t) r(b,O)a(t) V reduces to -c:i; a) v 'd/'dv ; 
v 

if n is µ and b independent, the transfer equation reduces to 

'dn 
'dt 

a 
a 

'J n +I.> (3 . 22) 

appropriate to an homogeneous medium which is expanding or contracting; 

this is also the transf~r equation for ~ Friedmann cosmology. In the 

absence of sources and sinks, or when sources balance sinks, I.> = 0 

and n(v,t) = n(va(t)/a(O), t = 0) solves the equation. As the 

spatial volume contracts, the momentum space volume expands in such a 

way that the product , the phase space volume, remains constant. If the 

neutrinos are completely coupled to matter , then as the core contracts, 

the neutrino energies scale upward, and the neutrino Fermi energy 

rises: this is the behaviour of the neutrino gas when the diffusion 

time from the core becomes long compared with the collapse time 

(ja/~j) of the core, i.e., after trapping has occurred . 

What methods exist to solve the BTE as it stands? Neutron 

transport , in nuclear reactors and in our atmosphere, and photon 

transport, in stellar atmospheres for example, have both had many 

techniques applied to them, many of which have also been applied to 

neutrino transfer . Tubbs (1978) has used the Monte Carlo method to 
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consider the approach of v 's to equilibrium in an infinite 
e 

homogeneous medium consisting of free nucleons and electrons; Y is 
e 

allowed to evolve , but the values of T and p are frozen . No transport 

has yet been included . Yueh and Buchler (1977a,b) have attacked the 

problem using the discrete ordinate (or S-N) method : one finite 

differences the BTE in the angular variab le µ as well as in the 

variables v, b,and t ; there are (N+l) - angles in the S-N method , 

often chosen to be zeros of the Legendre polynomial PN+l ; angular 

integrals appearing in ~ are performed using a Gauss-Legendre 

quadrature scheme. For plane geometries and simple sources, the S-N 

method is closely related to the P-(N- 1) method ; in spherical geometry 

and for complicated sources, this is not so . Yueh and Buchler (1977p), 

who have no p, T or Y evolution , give results when the v df has 
e e 

built up to steady state for N = 2 , 4 . Lichtenstadt et al . (1977) 

have tried an S-8 scheme , but have not included time derivatives in 

the BTE. Wilson (1971 , 1974) has modelled the BTE and the 

hydrodynamic equations with all of the general relativistic effects 

included . His 1971 work demonstrated that with charged currents only 

it was difficult to generate a supernova from spherically symmetric 

collapses ; the neutrino physics a nd equation of state included most 

of the charged current processes , but not always correctly, and the 

equation of state was somewhat crude . The numerical modelling was 

undoubtedly the most sophistica t ed yet , even i f the input physics 

was not as refined . His 1974 work was the first attempt to include 

neutral current effects. Along with changes i n the i nput physics , 
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Wilson has changed his numerical method of solving the BTE; he now 

uses flux limited diffusion (see below) . The P-N or spherical 

harmonic method can also be applied to treat the flow of neutrinos. 

The diffusion approximation, both multigroup (energy-dependent) and 

gray (energy-independent) , follow from it. 

3.5 THE P-N EQUATIONS 

The df is expanded in Legendre polynominals in the angular 

variable µ q •e ' where e is the unit vector in the radial 
-r -r 

direction : 

n(v,µ,b,t) 

i I 1 pl ( µ ) n ( \) • )J • b • t ) dµ 

-1 

(3 . 23a) 

(3.23b) 

We further expand the source functions, the scattering, production, 

and absorption kernels in Legendre polynominals: 

00 

.6 [ n] L (2l+l) P.e_(µ) .6(l) [n] (3 .24a) 

l=O 

R(q-+q') (3 .24b) 

(3. 24c) 

(3. 24d) 
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Each of the kernels' moments satisfies the same detailed balance 

relations as do the kernels themselves, 3.6 and 3.9 . The equation 

describing the evolution of the moment nl has coupled to it a 

countable infinity of other moments through the nonlinear terms in the 

scattering and thermal production terms . These equations, derived 

in Appendix 1, are: 

l=O: a 
ab 

s 

-6 ( 0) 

- rs ( v) n
0 

( v ) + J n 0 ( v ' ) R0 ( v' +v) 

\) ' 
00 

+ 2: (2t+l) 

l=O 
nl ( v 1 nl ( v ' ) ( Rl ( v-+v ' ) - Rl ( v '-+v) ) 

\) I 

rt h ( v) ( 1-1\J ( v) ) -/, R o ( v 'v ' ) .;-o ( v ' ) 
\)I p 

(3 .25a) 

(3 . 25b) 

(3 . 25c) 

+ t (2[+1).!,, n.f_ (v) n.e_ (v ' ) (Rpl (v, v ')-Rat (v , v ')) (3 , 2Sd) 

l=O 

-6 (O) (see Appendix 1 , equation Al. 25 for 
\)\) 

v +v -+ v +v ) e e e e (3 . 25e) 
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+ [.!. ( 4v + 3p ) v _a_ n + l ( 3v + £.) 
5 . r P av 1 5 r p nl 

(3 . 26a) 

(3 . 26b) 

(1) !. .6
8

c -r
8

(v)n1(v) + v' R1(v'-+ v)n1Cv') 

+ t (l+l) {n,e (vi.£ ,nl+l ( v ') (Rl+l (v+v' )-Rl+l (v ';.v)) 

.f.=O 

(3.26c) 

00 

+ L c.e.+1) {n.e_(v) r ni.+l(v ' )(R .f.+l(v,v') J\l , p , 
.f.=O v 

- Ra,.f.+l(v , v ' )) + n.f.+l(v fv, n,e_(v')(Rpiv , v ' ) 

- Ra.e_Cv , v'))} (3 . 26d) 

(3 . 26e) 
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[{ .e. (l-1) d 
+ (U-1)(2.l+l) (v ~ nl-2 - (,t-Z) nl-2) 

+ 1 ((2l(l+l)-l)v 1_ n + l(l+l) n
0

) (2,t-1)(2,t+3) d\) l ~ 

+ Jl+l) (£+2) ( a ( 3) ) } (3v ~) 
(2,e_+l) cu+3) \) a; n.e.+2 + l+ nl+2 r +; 

- ~ v ~\! n,J = -6 (l) (3.27a) 

v 

-6(,e_) (r (v) + r (v))nu(v) S . a p ~ 
(3 .27b) 

,o(l) (see Appendix 1, equation Al.14) 
SC 

(3.27c) 

-6~~) (see Appendix 1, equation Al.16) (3.27d) 

-6 (l) ~ 0 (3.27e) 
\)\) 

We have let 

r ( v) =/, R0 ( v-+v') -1 
s TS 

(3.28) 
\) 

r th(v) =~. R (v v' ) = -1 
pO ' T th (3. 29) 

denote the scattering and thermal production rates respectively. The 

notation 
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f(v') (3.30) 

is the neutrino phase space integral of an arbitrary function f(v ) . 

The speed of light, c, has been included in the left-hand side of 

equations 3.25a,3.26a, and 3.27a, and the dimension is inverse time; 

if il and care left out of the right hand side, we can always reinsert 

enough powers of them to obtain this dimension; we usually leave them 

out. 

The P-N approximation generally refers to the truncation of 

this infinite heirarchy of equations at l=N, with the specification 

of nl, l ~N+l, being obtained by ansatz. The usual prescription is 

to assume nl = 0 for l ~ N+l. Whereas the invariance propertiea of the 

BTE allow simple transformation from one frame to another, this 

invariance does not survive the truncation process; the P-1 

approximation in the local rest frame of matter is not the P-1 

approximation in the inertial frame, but r ather the df contains all of 

the higher moments. 

The notation ]s in equations 3.25a,3.26a, and 3.27a 

means that the term in the square brackets arises from V ; it couples 
s 

nl to the innnediately higher and lower moments nl+l, nl-l" The 

Vv term, ]v , couples nl to nl+Z and nl_2 . If the timescale 

n0 /~0 is of the order of a diffusion timescale which is slower or 

• -1 
comparable to the hydrodynamical timescale given by (p/p) , then 

the times in [ ]v become as important as those in [ ] , and 
s 
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must be included. 

The absorption rate which appears in the l ~ 1 equation is 

modified by the addition of the production term. This modified 

absorption coefficient, 

r' 
a 

(3.31) 

which appears when FD statistics are operating, is analogous to the 

modified absorption coefficient, r' 
a r - r , which appears in 

a p 

photon transport, when Bose-Einstein statistics are operative. The 

latter modification is due to stimulated emission; the former has been 

termed forced absorption by Imshenik and Nadezhin (1971, 1973). An 

occupied neutrino state inhibits emission into that state; if the 

forward (outgoing) directions are more occupied than the backward 

(incoming) ones, the net emission will be backward peaked. This 

inhibited emission tends to relax anisotropies in the df towards zero 

-1 
on a timescale r by only allowing emission in directions 

p 

complementary to the anisotropies. 

In the absence of neutrino degeneracy, when the df n<<l , 

only the terms linear inn survive in ~(l) · the quadratic terms are 
SC ' 

an expression of the blocking of phase space due to the buildup of 

neutrino occupation number. In the thermal source function moments, 

i
• f . . d 1 (O) we again assume neutrino non egeneracy, on y ~th survives, and 

it is given by r 1 (v); with the inclusion of neutrino degeneracy terms, 
t1 

there appear linear terms in nl and nl in ~~~) , which compete at the 

same level with neutrino-antineutrino annihilation into matter. 
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The scattering is termed conservative if the energy of the 

outgoing neutrino is exactly the energy of the incoming neutrino: 

(3.32) 

If the scattering is conservative, which is a good approximation in 

the reactions v+A + v+A and v+N + v+N , where A is a heavy nucleus 

and N is a free nucleon, then the quadratic terms in -O~~) all cancel. 

Further, if we note that 

= 

we see immediately that 

-0(0) 
sc, cons 

7Tf (v) 
s 

2 
v 

(3.33) 

0 (3.34) 

i.e., there is no energy redistribution in conservative scattering. 

The higher source function moments are 

-0 (l) 
sc, cons 

(3.35) 

In the l=l case, we define the transport rate and lifetime due to 

conservative scattering by 

r tr, cons 

so 

-0 ( 1) 
sc, cons 

= 

= 

-r s 

-r (v) n
1

(v) 
tr,cons 

(3.36) 

(3. 37) 

The calculation of Al , and hence rtr,cons , depends on the detailed 
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angular distribution of the conservative scattering reaction . The 

quadratic terms also cancel in -0 itself and thus do not appear sc,cons 

in the BTE. 

When the scattering is nonconservative, 3.32 is not true, 

generally v'#v, and the nonlinear terms must be included in -O(l) 
SC 

this is the complication which arises in ve scattering . 

There are two approximations we propose to deal with neutrino-

neutrino scattering. The first is that given by 3 . 25e, 3.26e, and 

3. 27e. This approximation can follow the effect of v + v -+ v + v e e e e 

in the early stages of neutronization, before the df is near 

equilibrium. It is exact in a homogeneous medium, when the df is 

angle independent . When nearer to equilibrium, we may take the 

formulae derived for ve + e -+ ve + e, replace the electron df by the 

ve df, and make other modifications to be detailed in the next 

chapter to obtain a more tractable source function for this reaction. 

The second technique can be applied to v + v -+ v + v and other 
µ e µ e 

neutrino-neutrino reactions . 

3.6 INITIAL AND BOUNDARY CONDITIONS 

Initial conditions (IC) and boundary conditions (BC) must be 

specified in the BTE and P-N equations . The former are straight-

forward: we usually assume there are no neutrinos to begin with 

n(v,µ,b,t) 0 IC BTE (J. 38) 

nl(v,b,t) = 0 IC P-N (3.39) 

There are two types of volumes in which the transport equations 
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are solved. The first is a spherical shell which has an outer radius 

R0 and an inner radius Ri; the second is a sphere (Ri = O). Actually , 

the inner and outer radii may move; it is the baryon number enclosed 

within radius R., B., and the baryon number enclosed within radius 
1 1 

Ra• B0 , which define the shell . The incoming neutrino df must be 

specified at the outer radius 

FOUT (v,µ,t) µ < 0 (3 . 40) 

and the outgoing neutrino df must be specified at the inner radius 

n(v,µ,B . ,t) 
1 

= FIN (v,µ,t) µ > 0 (3.41) 

unless R. = B = 0, in which case n must be finite which implies n is 
1 i 

isotropic at the center. 

If we solve the BTE for a shell configuration, we will find 

that there is a stream of neutrinos flowing in the backward (inward) 

direction through the inner radius, some of which will be scattered 

forward, reentering the shell: the specification of the BC at b = B. 
1 

is impossible to decouple from the transport problem for the region 

b < B .• If the inner radius is sufficiently interior, so that there 
1 

are many optical depths above it , it may be a good approximation to 

assume that the diffusion approximation holds for b < B. ; a plausible 
1 

FIN can then be given , a FD df with temperature and neutrino chemical 

potential fixed; if the radiation a cts to significantly change the 

state of matter in the shell, by heating and/or neutronization , then 

FIN would change in response, resulting in a boundary value problem 

which is probably not well posed . If FIN is isotropic, and given by 
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3.7, we term this a luminous surface BC. 

At the outer boundary, one also has to worry about backscatter 

into the shell. In practice, we choose the outer radius so that the 

optical depth of the overhead matter, r > R0 , is small compared with 

unity and take 

FOUT = O . (3.42) 

Given FIN and FOUT , these BC can be immediately applied to the 

S-N method: the df on the boundaries is specified at each of the 

appropriate discrete angles. 

It is generally impossible to satisfy 3.40 and 3.41 at each 

angle in the P-N method. Rather, certain integrals of these BC are 

required to hold. If we deal with odd order P-N, then (N+l)/2 BC are 

needed, which are usually taken to be the Marshak BC 

[~µ Pl(µ) [n(v, µ,B
0

, t) FOUT] = 0 l 1,3, .. ,N (3 .43a) 
1 

[ldµ Pl(µ) [n(v,µ,B.,t) - FIN] 0 l 1,3, . .,N (3.43b) 
. 0 1 

The P-N method for N even is less accurate than for N odd, and we do 

not discuss its BC here. See Pomraning (1973) for a more complete 

discussion of boundary conditions. 

3.7 FROM DIFFUSION TO STREAMING: SAMPLE DISTRIBUTIONS 

The P-N equations are capable of describing diffusion on the 

one hand (n.e<<n
0 

for all l#O) and free streaming on the other 

As an illustration of this transition, suppose 



the df were elliptical: 

n(v,µ,b,t) 
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= n ( v, µ=O , b , t) 
1- a(v,b,t)µ 

a = 1 - n(µ=O) 
n(µ=l) 

(3 . 44a) 

(3.44b) 

We can then express all higher moments in terms of the first two by 

solving the difference equation 

1 2.t+l 
.t+l , f~l {3 . 45a) 

and the transcendental equation which expresses a as a function of 

1 
2a 

nl ( l+ ) (1 - a - ) ln __S! = 
n 1-a 

1 (3 . 45b) 
0 

A plot of a, which runs from 0 to 1 , along with a plot of 

against n1/n0 is given in Figure 2 . 

Another angular distribution , one in which the neutrinos are 

confined to a forward cone and are isotropic within that cone 

n(v,µ,b,t) 
2 no(b,v,t) 

1-µ 
c 

(3 . 46) 

can be used to illustrate the forward peaking of the df as one moves 

away from an emitting surface. If each element of a spherical surface 

of radius R radiates isotropically, and all inward radiation is 
c 

completely absorbed, then the radiant df at r = R will be 3 . 46 with 
c 

µ = 0 . If the emission is time independent and there is no further 
c 

emission , absorption , or scattering in the region r > R then t he df 
c 
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at radius r is given by 3.46 with 

Pc ( r) :J 1 -( :c ) 2 (3.47a) 

the cone angle, arccos (µ),which is 90° at R has shrunk to 30° at 
c c 

2R and "' 6° at lOR c c The moments obey 

no(r,v) =(Rrc)2 
n

0 
(R v) 

c, 
l+µ (r) 

c 

n
1 
(r, v) = 

l+µ (r) 
c 
2 

µ (l+µ ) 
c c 

2 

5µ 2-1 (l+µ ) 
c c 
4 2 no(r,v) 

All higher moments rapidly build up to the streaming limit as r 

(3.47b) 

(3 .48a) 

(3.48b) 

(3.48c) 

becomes large relative to R . One can use 3.48 to express all hig4er 
c 

moments in terms of n0 and n1 as in the elliptical case. 

The two angular distributions show us that whenever n1 

becomes comparable to n0 , then the higher moments are not negligible. 

3.8 THE P-1 EQUATIONS 

To adequately treat the streaming limit, must we use the P-N 

equations for N large? The matter evolution equations 3.17 involve 

integrals of ~(O) and ~(l) only, and thus integrals of the first two 

moment equations only. It is primarily the effects of neutrinos on the 

hydrodynamics and thermodynamics of matter which are of concern in the 

supernova problem; this suggests we use the P-1 method. Since the 

i = 0 and i = 1 equations, 3.25 and 3.26, include n2 and n
3 

on the 
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transport side and all higher moments in -O(O) and -O(l) , some 

truncation scheme must be adopted to decouple them from the higher 

moment equations . We introduce the Eddington factors , f for the 

second moment and f
3 

for the third moment, which are functions of 

no , nl, b, t and v 

The most obvious choice is 

n2 = 

n3 

1 (f 
2 

5 (f - 1.) n 
2 3 5 0 

to set 

0 , f 1 
3 

0, f3 
3 
5 

(3 . 49a) 

(3 . 49b) 

(3 . 50a) 

(3 . 50b) 

the resulting equations 3 . 25, 3 . 26 , 3.50 form an approximation which, 

following Falk and Arnett (1977) , we call the time dependent Eddington 

approximation (TDEA) . The TDEA will not reproduce the streami ng limit; 

in the absence of sources, the BTE is a hyperbolic equation with group 

speed c ; in the absence of sources, the TDEA is a hyperbolic equation 

with speed c//3 . The Eddington factors, f and £3 , both go to one as 

the streaming limit is approached . Some scheme for f and f
3 

which 

interpolates between 1/3 and 1, and 3/5 and 1 respectively, such as 

that given by the elliptic distribution 3 . 45, is necessary to reproduce 

both the diffusion and streaming limits . 

Higher moments than n
0 

and n1 enter into the source functions 

-O (O) and -0 (l) through the nonconse r vative scattering and thermal 
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production processes. In the diffusion limit, the terms involving 

n0 and perhaps n1 completely swamp the terms involving n
2

, n
3

, . . 

In the streaming limit, all moments are equal , but then n
0 

is small 

compared with unity (the neutrinos are not degenerate) , and none of 

th d t . t . ( 0) d ( 1) . . e qua ra ic erms in -O an -O is important. 
SC SC 

The same 

argument holds for -Oth • We retain moments up to and including the 

second in -0 and -0 h • 
SC t 

The Marshak BC 3 . 43 , with 3 . 42 become simply 

0 

unless B. is zero, in which case 
i 

O) 0 

b 

b 

if B. 
i 

B. 
i 

0 

(3 . 51) 

(3 . 52) 

(3 . 53) 

If a luminous surface interior BC is valid, then FIN is isotrop i c ; and 

3.52 becomes 

b B. 
i 

(3 . 54) 

Since n
1
<<n

0 
in order for the diffusion limit to hold at the interior 

boundary , we may consider another interior BC 

b = B. 
i 

(3 . 55) 

Wh e n the optica l dep t h of the she ll l s much grea ter than the ratio of 

e xter ior to inter io r r ad i us , R
0

/Ri , solutions with 3.54 and 3 . 55 are 

the s ame . 
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It is more conventional to write the moment equations in terms 

of the energy density of neutrinos per unit energy, 

J ( v) = (3. 56a) 

the momentum flux per unit energy, 

H( v) (3 . 56b) 

the radial neutrino pressure per unit energy, 

K( v) (= fJ(v)) (3.56c) 

and the radial pressure flux per unit energy, 

N ( v) = (= f
3 

H(v)) (3 .56d) 

If we multiply 3.25a and 3.26a by v 3/2n 2(1fc) 3 , then we obtain 

Castor's (1972) equations 31 and 32, except that our sources are more 

complicated; Arnett (1977) sets f
3 

= 0 rather than = 3/5 to obtain 

his l = 1 equation (5), but since he then uses the diffusion 

approximation, it doesn't matter. 

We denote the integrals of J, H, Kand N by the same symbols 

except that we add the subscript v and further define 

u 
\) 11 - vn 

PB v 0 
(3.57a) 
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(3 . 57b) 

F = J dv H (v) = l n c 
v . v vl 

(3.57c) 

where u is the neutrino energy per baryon , Y is the neutrino number 
\) \) 

per baryon , and F is the ntnnber flux. These energy integrated 
\) 

quantities satisfy the gray equations 

p 
B 

= Iv -6 (O) 

(3K -J ) v = f v-6 ( 0) 
. v vr v 

3K -J 
\) \) 

r 
2 (3v + p ) H = - 3 er p v 

1 v-6 (1) 

which are inputs into the equations of motion 3 . 17. Thus, the 

(electron) lepton number per baryon 

and the lepton number flux 

y + y 

F 

e v 
e 

\) 
e 

F­v 
e 

satisfy the conservation law equat ion 

Clt 
() 2 

+ 4n ah r F1 
e 

Y­v 
e 

0 

(3 . 58a) 

(3.58b) 

(3 . 58c) 

(3 . 59a) 

(3 . 59b) 

(3. 59c) 



which is just 3.17b. Notice that Y is related to the electron and 
e 

positron concentrations per baryon, Y _ and Y + , by 
e e 

y 
e 

= 

It is unfortunate that this confusing notation has arisen. 

(3.60) 

The P-1 equations are finite differenced in Appendix 4 and the 

results are given in Chapter 6. We solve 3.25 a ,b , c, 3.26 a,b,c with 

3. 17b , c but not 3 . 17d (no dynamics) for v ' s . 
e 

3.9 THE P-0 APPROXIHATION 

Consider the P-0 approximation : n1 is zero, 3 . 25 has no 

spatial derivatives and there is no transport; the neutrino df just 

builds up toward its equilibrium value . These equations ~ are 

appropriate for an infinite homogeneous medium and are solved in 

Chapter 6. 

3 . 10 DIFFUSION (MGDA , FLD , CA AND EDA) 

From the P-1 equation, we obtain the multigroup or energy 

dependent diffusion approximation (MGDA) by (a) setting f = 1/3, 

f
3 

3/5, (b) neglecting on1/at and all terms in square bracket 

]v in 3 . 26a, and (c) assuming all scatterings are conservative 

and there are no thermal sources in -O(l). With all this, 3 . 26a 

reduces to Fick ' s law of diffusion 

= (3.6la) 
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H( v) (3.6lb) 

where the full transport lifetime T , the transport mean free 
tr 

path A , and the diffusion coefficient D, which all depend on tr 

energy,and position and time through the thermodynamic parameters, are 

-1 (CA )-l r + r + T = r tr rP tr tr tr,cons a (3. 62) 

D 1 2 
= C Ttr 3 

(3. 63) 

The imposition of 3.32 upon neutrino electron scattering is clearly 

incorrect; however, neutrino scattering by nuclei and nucleons or 

neutrino absorption always dominates the opacity, at least with 

Weinberg-Salam model parameters, which suggests such an approximation 

may not be too bad. The further approximation of taking A1 in 3.36 

zero is often made (Arnett 1977). 

The MGDA consists of Fick's law substituted into 3.25a. In 

practice, approximate descriptions are used for .6 (O) (Arnett 1977, 
s c , ve-+v<:> 

Wilson et al. 1975) ,and also for ;,S~~) when it is included (Wilson 

et al. 1975). 

The MGDA is a parabolic equation for constant D. The streaming 

limit cannot be obtained from it. To alleviate this, the diffusion 

coefficient is modified 

-
D D<jl (3. 64a) 

where <P is called a flux limiter . Arnett (1977) and Wilson et al. 

(1975) use 
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(3 . 64b) 

When~ is unity (At <<h ), the usual diffusion approximation is 
r v 

n -1 
b . d h h i -- 1-1 _a o I o taine . Here , is t e neutrino sea e height , h \) \) no ar 

At low optical depth (A >>h ), Fick ' s law becomes n
1 

= n
0 

or tr v 

H(v) = cJ(v), which reproduces the streaming limit. How accurate is 

flux-limited diffusion (FLD) in the intermediate region (A ~h ) ? tr v 

Wilson et al. (1975) state that it results in at most a 10% error in 

temperature when compared with exact transport equation solutions; 

Yueh and Buchler (1977b) indicate it fares well in comparison with their 

S-2 and S-4 results. The test configurations in both cases are 

somewhat idealized. FLD has become one of two standard methods to 

transport neutrinos in coupled radiation-hydrodynamic codes (Arnett 

1977, Wilson et al. 1975, Bruenn 1975). 

The other standard method of transport, the conduction 

approximation (CA), is cruder than the MGDA and is derived from it. 

The isotropic component of the df, n0 , is assumed given by a FD df, 

3.7, which we call nFD . Then, Fick's law becomes 

(3. 65) 

where 

n = P S (3. 66) 
\) \) 

is the neutrino degeneracy parameter. 'The integral of 3.65, when 
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multiplied by the appropriate powers of energy, yield the constitutive 

equations 

F 
\) 

H 
\) 

where 

= 

(3.67a) 

ap. u ) 2 an \) \) 

-a~- 4Tir PB ~ 
TJ\) I 

(3.67b) 

' k 0,1,2 (3.67c) 

are essentially Rosseland mean diffusion coefficients, closely related 

to the coefficients introduced by Imshenik and Nadezhin (1971, 1973) 

and elaborated upon by Bludman and van Riper (1977). Neutrinos flow 

down temperature and chemical potential gradients. For conservative 

-2 scattering only, D(v) ~v and Dk can be expressed in terms of Fermi 

functions 

J oo k 
~-- dx 

X-ll 
0 ~! +l 

(3.68) 
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1 
DO D(v=T) (3. 69a) 

(l+e-nv)2F
1 

(n) 

Dl D( v=T) 
FO 

(3.69b) 3F2 

D2 D(T) 
Fl 

(3. 69c) 2F
3 

Notice that, for a FD df, 

PB y 
\) 

u 
\) 

(kT) 3 
F2(n) (3. 70) 

2TI 2 (he) 3 

(3.71) 

The constitutive equations 3.67 are then plugged into 3.58 to yield 

two diffusion equations for the two diffusing quantities, the 

temperature and the neutrino chemical potential . The right hand 

sides of 3.58a and b, the source terms, are in general nonzero. 

If the sources are zero , then the CA reduces to the equilibrium 

diffusion approximation (EDA); the chemical potentials of the neutrinos 

are given by their equilibrium values, 3.12 for v , 3.13 for ~ 
e e 

and 0 for v , v • It is this EDA for v , ~ which Imshenik and 
µ µ e e 

Nadezhin develop. It was used extensively with µ = 0 in early work 
\) 

on the neutrino energy deposition supernova model(Arnett (1966, 1967), 

Schwartz (1967), and much Russian work detailed in Zel'dovich and 

Novikov (1971)). Mazurek (1975, 1976) and Sato (1975) have used the 

EDA with µ I 0 in their supernova codes in the post neutral current 
\) 

era. 
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In the EDA, the concept of neutrino photosphere enters, the 

spherical surface which is ~2/3 of a Rosseland mean free path from the 

stellar surface. The Rosseland optical depth is 

(b t) ·= (Bs TOP ,R . , ~ c db 
3D

2
(b,t) 

4 
2 

1rr PB 

(3. 72) 

where B is the baryon number of the star . There are actually two 
s 

other Rosseland means, corresponding to the choice of D
0 

or D
1 

rather 

than D2 . The energy dependent optical depth is more illuminating : 

r (v,b,t) tr -· 
c 

db 
2 

41rr PB 
(3. 73) 

Assuming there are no composition changes, the b that is 1 optical 

depth for a 5 MeV v is at depth 4 for a 10 MeV v and at depth 25 

for a 25 MeV v The position of the neutrino photosphere is 

energy dependent. Indeed, neutrino photosphere is a misleading 

concept due to the extreme energy dependence of the neutrino 

opacities. 

In this bewildering array of approximations, at what level can 

we say we have adequately treated neutrino transport? To couple 

radiative to hydrodynamical flows is an expensive and tricky 

enterprise. When the EDA works, we want to use it. If the EDA and 

the CA fail and yet FLD works, we want to use it. The historical 

progression in neutrino transport was _to assume the simplest 
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approximations worked until proven otherwise, then to adopt the next 

simplest. This direction proceeds from the end of this chapter back 

to the beginning. We need to justify the approximations. In rather 

idealized situations, the S-N and Monte Carlo methods have been used 

to answer some of these questions . The P-1 method is more general than 

the diffusion approximations; it is the ground from which they spring . 

It too can answer these questions, with a wide variety of sources, 

upon which we now turn our attention. 
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4. SCATTERING SOURCES 

Neutrinos scatter from nucleons, bound and free, from 

electrons, from themselves, and from 'their antineutrinos. We deal 

with each in turn. In all concrete numerical results, the Weinberg­

Salam model with sin
2 ew = 0.3 is used. 

4.1 COHERENT NUCLEAR SCATTERING: v+A + v+A 

The elastic scattering of neutrinos by heavy nuclei dominates 

transport in both the neutronization and mantle regions by giving 

the greatest contribution to the transport mean free path. The recent 

regeneration of interest in the neutrino-induced supernova model was 

a consequence of Freedman's (1974) observation that the cross-

section for this process goes as the square of the mass number of the 

nucleus if the hadronic neutral current has an isoscalar vector 

component (see Table 2). This alters in a qualitative manner the 

supernova model from that determined with only charged current 

processes included. 

Fermi's Golden Rule for the scattering kernel (see 3.2, 3.3) 

can be combined with the spin-summed-matrix-element for allowed 

nuclear transitions, 2.44, to yield 

R(vA+v,AJ;g+g ') 

(4.1) 
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The distribution function for the initial state of the nucleus is 

if the final state particle is a boson, -1 if it is a fermion. For 

complex nuclei, in the density-temperature regimes of interest, the 

df's are Maxwell-Boltzmann; 8fff can be neglected in comparison with 

unity. The temperature, density, and composition dependences, and 

through them, the spacetime dependences, of R(vA+vA) are not 

explicitly indicated in 4.1. The incoming neutrino energy is v , 

the outgoing energy is v' , and c=q•q' is the cosine of the angle 

between the initial and final neutrino momenta. Since the matrix 

elements depend upon the structure of the nuclear state, we treat the 

set of resonant excited states of the nucleus with spin angular 

momentum J. and mass M. as an independent particle with partition 
l. l. 

function g. = 2J.+l. 
l. l. 

Nuclear recoil energies are of order v 2/~ , where~ is the 

nucleon mass and A is the baryon number of the nucleus: a 20 MeV 

56 4 neutrino imparts ~ 8 keV to an Fe nucleus, ~ 110 keV to a He 

nucleus. The final energy of the neutrino is then almost equal to its 

initial energy, thus allowing the conservative approximation (3.32) to 

be used, so (4.1) reduces to 

R(vA+vA; q+q') (4,2) 

where we have inserted (2.49) into this expression, defining the weak 

charge of the nucleus to be 
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(4. 3) 

and have defined the ratio of Gamow-Teller to Fermi matrix elements 

(4.4) 

The concentration of nuclei of type i is ni. , which is related to Yi , 

the number per baryon by 

(4.5) 

The source (3. 3) . is then 

(4.6) 

where n
0 

and n
1 

are the first two moments of the df n(v,µ) , and the 

scattering rate (3.28) is 

s-l (4.7) 

The numerical evaluation is trivial if we remember c2 /n = 1.63 x l0-44 

-2 2 MeV cm ; in this way, we do not have to reinsert any h's, only the 

occasional c. Notice that r8 (v) = nicrc where a is the lab frame 

cross section for the process given in Table 2. By the density 
. 11 

p (p
11 

= p/10 ) we mean the baryon density multiplied by the atomic 

mass unit m 
u 

3 (g/cm ) 
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where NA is Avogadro's number; this is not the mass density . It is 

the transport inverse lifetime 

2/3+10/9 fGT 
= rS(vA) (l+fGT) 

2 

1 . 77 PllYiA~ (M~V) ( 
5fGT) l+--

3 
-1 

s 

which is of more interest than the scattering inverse lifetime in 

(4 . 8) 

conservative reactions . Since the neutrinos transfer no energy to the 

medium in each scatter , ~(O) = 0 since the scattering kernel (4.2) 

is linear inc, ~(l) = 0 for all l ~ 2 . 

Usually, QW is taken to be CVOA and fGT is taken to be zero . 

H 1 h · h · · ? For 56Ni" , 4He ow arge are t e errors in sue an approximation. 

56 54 
and all other N=Z nuclei , QW is indeed CVOA ; for Fe and Fe , a 

rather abundant species (Weaver et al . 1977) in slightly neutron rich 

media, (QW/0 . 3A)
2 

is 1.1 and 1 . 05 respectively : the approximation 

can lead to a 5 to 10% error . 

What of fGT ? The Gamow-Teller matrix element vanishes for any 

spin zero state. Even-even nuclei are the most abundant in nuclear 

statistical equilibrium (NSE) and their ground states have zero spin . 

The first few excited states of such nuclei are vibrational or 

rotational, with spins 2, 4, 6 . . . . A spin two state with excita-

tion energy EX above the ground state has a population 5 exp ( -EX~) 

relative to the ground state's population . Consider 56Fe and 56Ni 

with first excited states at . 89 and 2 . 7 MeV r espectively. At 



Bo 

temperatures characteristic of the neutronizing shell, 1.5 MeV, the 

populations relative to the ground state are 2.8 and 0.83 

respectively : the excited states cannot be neglected . The 

relationship between B-decay matrix elements and ft-values 

<
t )2 + 2 ( t \2 = 10 (3.8 - log10 ft) 
+ gA cr +I (4.9) 

together with the relation between (crt3 )
2 

and (crt+)2 obtained from 

the Wigner-Eckhart theorem by assuming isoinvariance (equation 4.14b 

belo~) allows us to estimate fGT ; immediately we can see fGT is zero 

for self conjugate nuclei such as the abundant 56Ni and ~8si for all 

excited states, whether of zero isospin or not, for models with CAO = O, 

such as W.S. Even for superallowed ft values, ~ 103 · 5, fGT is less than 

1% for heavy iron peak nuclei. After the iron-helium phase transition, 

for a neutron rich medium, light nuclei that are unstable in the 

5 laboratory, such as He, appear in NSE mixtures (Epstein and Arnett 

1975). A simple shell model picture of 
5

He as a 4He core and a 

neutron in a p312 orbital yields (<cAO+cA1t 3)cr)
2 = 20/3 C~n , and 

fGT = 0.9 with (QW/0.3A)
2 = (1.28). Similarly, for 3H , the matrix 

element is 3 C~n, so £GT ~1 , and (QW/0 . 3A) 2 ~1.49. Bernabeu 

(1975) first analyzed corrections of this nature and came to the 

same conclusion . The corrections for the light elements are not 

negligible. However, models show that the helium-like zone in the 

neutronizing region is rather narrow, and for this reason such a 

correction can be ignored. 

The total transport rate is the sum over all levels in a nucleus, 
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and then over all nuclei, labelled by (Z,N). If we neglect fGT' the 

sum over all levels can be performed : the result is (4.8) with Y. 
l. 

now interpreted as the number of nuclei with proton and neutron 

* 4.2 INELASTIC NEUTRINO-NUCLEUS SCATTERING v+A + v+A 

There is another opacity source associated with neutrino-

nucleus collisions, namely that due to inelastic scattering v+A. + 
l. 

v+Af , where the final nuclear state f of mass Mf is not the same as 

the initial nuclear state i of mass M. . We apply 4.1, again neglect 
l. 

nuclear recoil, and obtain the analogue of 4.2: 

(4.10) 

with one important difference: the scattering is nonconservative; the 

incident neutrino loses an amount of energy Q = Mf-Mi . The source 

functions look formidable 

.6(0)(vA.+vAf) 
SC 1 

(4.11) 

.6(l)(vA.+vAf) 
SC 1 

( 4 .12) 
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but are the simplest of those for nonconservative scattering; by 

comparing with 3.25c and 3.26c the origin of each of the terms is 

apparent. Neutrinos of energy v+Q can be downscattered by energy Q 

"into the beam" of energy v , and those of energy v may be down-

scattered by Q ''out of the beam." The scattering rate is 

n. 
1 7T 

(4.13) 

where 8 is the Heaviside unit function; v must exceed threshold in 

order for the reaction to proceed. 

lab cross section given in Table 2. 

Again this is n.ccr where a is the 
1 

The total scattering rate is 

obtained by summing over all possible final states in the nucleus that 

are connected to the initial state by the selection rules (2.48b) 

appropriate to Gamow-Teller transitions, then summing over all possible 

initial states, which includes thermally populated excited states. 

The matrix element which enters is the same as that for 

~~ 
nuclear de-excitation A ~ A+v+v , although the Q dependence is quite 

different. Now, however, 20 MeV neutrinos can excite the nucleus to 

very high energies, much higher than are thermally populated, and the 

* subsequent decay of the resonant state A can be by particle emission 

as well as by photo-de-excitation. At higher energies still, neutrinos 

can induce spallation of the nucleus. 

It is rather difficult to calculate the matrix elements to 

such highly excited states s.lnce their nuclear structure is usually 

not known. We are helped in this hy a number of effects. The initial 

state is thermally populated, thus low lying. The energy dependence 



of rs tends to weight low lying final levels most heavily. The matrix 

elements of the one body operators, S and S , the total intrinsic 
-p -n 

spins of the protons and neutrons respectively, which enters into 

4.13, are small between a low lying initial state and a highly 

excited final state whose structure is quite different. Within the 

shell model, we can see that these transitions will be dominated by 

those final states in which a nucleon flips its spin, but maintains 

the same orbital angular momentum as the initial state (j=l+l/2 + 

j=l-1/2). The superallowed transitions between isospin analogue 

states that often dominate S-decay do not occur in inelastic neutrino 

nucleus scattering, since the analogue of the initial state is 

itself, for the parent and the daughter are the same; thus, it is 

fGT which is affected. Even-even nuclei are the most abundant, and 

their first few excited states are of even spin. The threshold for 

the excitation of the first Ml resonance can be rather high, the first 

level with isospin 1 is perhaps at 8.14 MeV above the ground state 

in 56Ni. The log ft for the electron capture between the 56Ni ground 

56 + state and the Co 1 state at 1.72 MeV is 4.4. If we assume the 

state at 8.14 MeV is l+ and the analogue of the 56co state (following 

Fowler and Fuller 1978), and use the relations 

T.+l-T3 . 
]. ]. 

T.+T
3

.+2 
]. ]. 

(T.-T3 .)(T.-T3 .+l) 
]. ]. ]. ]. 

T.+l 
1. 

T. 
]. 

(4.14a) 

(4.14b) 
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T.+T3 . 
1 1 

T.-T3 .-l 
1 1 

(4.14c) 

which hold among members of an isomultiplet, and (4.9), we obtain 

(at3)
2 = .08 for the transition. The ratio of the cross section for 

exciting this level to the elastic scattering cross section is 

-5 -4 2.4 x 10 for 10 MeV neutrinos, 3.2 x 10 for 25 MeV neutrinos. The 

range of normal allowed ft's, ~ 10
4 

- 10
5

·
7

, and hence of (at3)
2 

shows 

us that this is the typical result. Inelastic scattering is tiny as 

an opacity source when compared with elastic scattering. This is true 

for individual transitions; but there are so many 1+ levels in the 

nucleus, there is even a giant magnetic dipole resonance, that perhaps 

when we sum over all these levels we get a large result. The strengths 

are limited by a sum rule for the Gamow-Teller matrix elements: 

A A 

L (ccAO+cAl t3)a)ii = 2J ~+l (i IL (cA0+cAl t;)aa •) (CAO+cAl t~)~b Ii) 
f 1 a=l ~ 

= 2J:+l ~(iMl(cAp~P+CAn~n) 2 
liM) (4.15) 

We may obtain an upper limit to the magnitude of inelastic scattering 

by having the sum rule saturated at zero excitation energy: 

(4.16) 

If we are dealing with very high excitation energy, say 30 MeV, and 

all of the sum rule strength is below 10 MeV, this may not be such a 

bad approximation. I 56N. n 1, the giant Ml resonance is estimated to 

be at ~ 12.4 MeV by Fowler (1978) based on a comparison with 56co 

states; the ground state GT sum rule strength, estimated at 48/7 in 

section 5.3, is all put at 12.4 MeV. For 10 MeV neutrinos, the 



85 

giant Ml would not be excited; for 25 MeV neutrinos, the ratio of 

inelastic to elastic scattering for the ground state changes from 

3.2 x 10-4 to 1.4 x 10-2 , and the sum rule expression (4.16) 

predicts 5 x 10-2 is an upper limit, a factor of 3 . 6 too high; by 

40 MeV, it is only two too high. Some authors (Wilson 1977, 

Mazurek 1977) have neutronizing regions extending to electron chemical 

potentials of 40 MeV, and neutrinos are produced with ~ 5/6 of this 

energy on the average, suggesting this approximation will work there. 

At high enough neutrino energy, forbidden transitions begin to be 

less suppressed, which would cause some modification of this 

prescription if heavies survived till very late in the collapse when 

the neutrino chemical potential can rise to~ 100 MeV. Then, however, 

the neutrinos are in equilibrium and only the total transport lifetime 

is important. Again using the shell model this sum rule gives zero 

40 for a doubly closed magic nucleus such as Ca. There is no coherent 

addition of amplitudes in this matrix element; the result is of order 

unity, giving a value for the scattering rate which still pales in 

comparison with the elastic scattering value. 

The inelastic scattering of neutrinos by nuclei can heat up the 

mantle region, something that the elastic scattering process cannot do; 

* however, neutrino-electron scattering dominates over vA+vA as an 

energy deposition mechanism; the latter is ~ 50% of the former for 

20 MeV electron neutrinos passing through matter characterized by a 

10 MeV electron chemical potential (p ~ 1.4 x 10
10 

g/cc , 

characteristic of the mantle) ; for muon neutrinos, the ratio may rise 
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to greater than unity due to the smaller v -e scattering opacity. 
jJ 

4.3 FINITE NUCLEAR SIZE EFFECTS 

When the wavelength of the neutrino approaches the r adius of 

the nucleus upon which it is incident , the neutrino no longer "sees" 

a point nucleus of some total weak charge QW . The phase contr ibution 

from each of the nucleons to the scattering amplitude cease to be 

approximately the same; coherence breaks down . For iron , the radius 

is about l . lAl/3 fm ~ (47 MeV)-l ; for helium , it is even smaller, 

~ (113 MeV)-l . The correction is small for the neutrino energies 

typical of the neutronization and mantle regions. If heavy neutron 

rich nuclei can survive in the inner core, then its effect must be 

included , for there the neutrino energies rise to~ 100 MeV .and 

higher. This elastic scattering, when present, determines the 

diffusion coefficient, and if the cross section is lowered, the 

diffusion time decreases. 

The Fermi and Gamow-Teller matrix elements, 2 . 45 , become 

(<cvo+cv1t 3)exp (i~·E))~ 1 and (<cA0+cA1t 3)q exp(i~ · :))~i respectively , 

where k = 9-9' is the momentum transfer to the nucleus . For the 

v+A~v+A process in particular , 

(4 .17) 

where the neutron form factor of the state i is defined by 

F .(k) = (ijp (k)ji) ni n -
(4.18) 

where p (k) is the Fourier transform of the neutron density operator . 
n 
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At zero momentum transfer, p (k=O) is the neutron number operator, 
n -

F . (0) = N. , and 2.49 is recovered . The proton form factor is ni 1 

similarly defined; it has been measured by elastic electron 

scattering , and is given in a reasonable approximat i on (Freedman 

1974) by 
2 

= z - b.k .e 1 
1 

(4 . 19) 

2 
where b. = r./6 and r . is the root mean square nuclear radius. If we 

1 1 1 

assume the neutrons have the same density distribution in the nualeus 

as the protons, and we know this is not always true, then F . ~ F . 
ni pi 

and (4 . 17) can be evaluated. If recoil is still neglected, and for 

heavy nuclei even at high neutrino energy this is a good approximation, 

and fGT is also neglected, then the modification of the scattering and 

transport rates is 

-y 2 
rs(finite nuclear size) = rs(point nucleus , 4 . 7)[e -(l-y)]2/y (4 . 20a) 

-y I 3 r (finite nuclear size) =rt (point nucleus , 4.8)[Y-2+(Y+2)e ]6 Y 
tr r 

where 

2 
Y = Bb.v 

1 
= 4 . lxlO-S A2/J ( v )

2 

1 MeV , for r . 
1 

(4 . 20b) 

A
2/3 

ro ' ro = 1.1 

This agrees with the result given by Yueh and Buchler (1977b) apart 

from a factor of Y (their y) in their AivA) . That the finite nuclear 

size effect plays an important role at high energy can be seen in 

Figure 5 which plots the ratio of the transport lifetimes calculated 

using 4.20b and 4 . 8 with fGT=O . 
2 2 

Because k = 2v (1-c) favors forward 
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directions, the transport rate is decreased more than the scattering 

rate by this effect. 

4.4 ION-ION CORRELATION EFFECTS 

If the neutrino wavelength is greater than the internucleus 

spacing, we may expect phase interference to manifest itself in the 

scattering amplitude. At high temperatures, the phases coming from 

different nuclei are random: the total scattering rate depends upon 

the number of scattering centers, not on the square of the number. 

At low temperature, nuclear motions become correlated due to 

electrostatic repulsion: in the extreme, as in the mantle of a cold 

neutron star, a Coulomb lattice forms. 

Just as the scattering of neutrons from a medium, whether it 

be a gas, a liquid, or a solid, probes the density-density correlation 

function, so the scattering of neutrinos probes the weak current-

current correlation function. We develop this formalism in Appendix 3. 

For nonrelativistic nucleons, when electron-nucleon correlations can 

be ignored, and nuclear polarization is unimportant, and both conditions 

are valid in the supernova core, the scattering kernel for neutrinos 

by nucleons, bound and free, is 

R(g~ ') (4.21) 

where the current-current correlation functions for nucleons are given 

by 

J 4 i(k·x) 
SJoJo(k) = d x e (4.22) 
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e 
i(k •x) 

(4.23) 

where the hadronic current components Jhad,NC , ~had,NC are given 

by 2.36a and 2.36b respectively. The expectation,( ), denotes 

an average over the local thermodynamic ensemble of the medium. The 

currents are evolved in time by the full matter Hamiltonian (with 

strong and electromagnetic, but no weak, forces). The 4-momentum 

transfer to the medium is k = (w,~) = q-q' • 

When we. take the ensemble to be I i)(il , where Ii) is a 

nuclear state, the current-current correlation functions reduce to 

strength functions for the neutral current operators, which are similar 

to the well-known beta strength functions (see equations A3.28 - A3.30 

and the discussion therein). The sum rule (4.15) is then just the 

zeroth moment of SJ•J 

1 dw 
SUM RULE: Q Sl•l (k,w) 2n (equation 4.15) for small lkl (4.24) 

where Q is an arbitrary box normalization volume kept in for dimensional 

purposes. For small k, the sum rule for SJ 0 J 0 is trivial; for larger 

~ , not only are finite nuclear size effects included, since (4.17) is 

this correlation function evaluated at w=O (apart from an Q), butalso 

forbidden transitions to excited states are included for wfO • These 

latter effects are tiny. 

At finite temperature in an infinite medium, these correlation 

functions contain information not only on the matrix elements between 

the reson;int states of individual nuclei , but also on the correlations 
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among nuclei. If the nuclei are close together, how can we isolate 

the nucleons bound in one nucleus from those in another? Of course 

we cannot: the medium acts on the nucleus altering its properties, for 

example, its surface energy; fermion exchange terms may become 

important. If the nuclei are sufficiently far apart, we may hope to 

make a fairly clean separation between internal nucleus properties 

and external nucleus-nucleus properties; it is as if point nuclei 

are interacting only electromagnetically with each other (except 

that nuclear reactions must be included). The correlation functions 

are often separated into two parts, the self part which contains the 

internal excitation information, and the distinct part which contains 

nucleus-nucleus information as van Hove first did in 1954. If large 

correlated clusters of nucleons (heavy neutron-rich nuclei) can 

survive till rather late in the collapse, at high densities, then 

this separation may break down. We asswne the separation works, so 

for small kR, where R is the nuclear radius, 

SJoJo(~,w) "'~(CV N.+cv Z.)(Cv N.+Cv Z.) (p.(kw)p.(x=O)) L.J n1 p1 nJ PJ l J 
ij 

(4.25) 

where the sum is over all nuclear species i whose density operator 

is p.(x) , with Fourier transform in space and time, p.(kw) ; the free 
1 l 

neutron and proton are included in this sum . Partial dynamic liquid 

structure factors in multicomponent plasmas are defined by 

where lip. 
l 

D 
sij (kw) 

1 (!!.r. (kui) lip. (x=O)) 
1. J ;n:n.-

1 J 

, and n. 
l 

(4.26) 
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From the earlier discussion, it is apparent that the Gamow-Teller 

terms, which enter into SJ•J , are negligible compared with the Fermi 

terms for heavy nuclei, and can be neglected for light nuclei. They 

cannot be neglected for neutrons and protons as we shall see. 

Nuclei interact through their electric charges . In the mantle 

region, where, to a good approximation, only iron peak elements are 

present, the charges differ by small amounts, and each species behaves 

approximately the same; S~ . =SD is independent of species i and j. 
1J 

The scattering kernel is then 

2 D '"' 2 R(q+q') ~ G (l+c) S (kw)pB ~ (QWi Yi) (4 . 27) 
1 

For small k, the neglect of recoil is a valid approximation, and 

(4.28) 

where the static liquid structure factor is related to its dynamic 

counterpart by 

SS (k) = JsD (kw) dw 
- 27T 

(4.29) 

In other words, we saturate the "sum rule" (4.29) at zero energy 

transfer; the scattering is conservative , and (4.28) in (4.27) reduces 

to (4 . 2) if SS is unity, the case if the nuclei are uncorrelated. 

Flowers and Itoh (1974) pointed out that the supernova core is 

thermodynamically similar to a liquid metal; the nuclei are like ions. 

Itoh (1975) then showed that the Coulomb correlation among the ions 

drastically modifies the elastic scattering of low energy ( ~3 MeV) 
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neutrinos. To support this contention, he took the Debye-Huckel 

formula for the structure factor 

SS (k) "' (4.30) 

and calculated an effective neutrino scattering cross section, that is, 

a rs , and found a large difference between it and the uncorrelated 

version. The Coulomb liquid is characterized by the dimensionless 

parameter 

z2 
0.1 1/3 

A 

introduced by Brush et al. (1966) and the ion sphere radius, 

a = ( 
4 )-1/3 
3 lfni ,..., 16 fro 

(4.31) 

(4. 32) 

where the charge and mass number of the nuclei are Z and A , p11 and 

11 3 10 
T are the de S1't and te erat r i'n uni'ts of 10 g/cm and 10 K. 

10 n y mp u e 

If the plasma is multicomponent rather than one component, more 

parameters are necessary to characterize the medium (Hansen et al. 1977). 

The electrons play a negligible role in static Coulomb interactions 

due to their extreme degeneracy (Hansen 1973). 

The Debye-Huckel law breaks down as a good approximation for 

large momentum transfers. In the iron-nickel mantle, at pll = 2 and 

T10 = 2.4 , r "' 10 and a "' 50 fm, and Itoh's results cannot be used 

above a neutrino energy of 3 MeV. J. P. Hansen (1973) presents Monte 

Carlo results for the liquid structure factor of the classical one 
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component plasma at r = 10 ; Figure 4 is constructed from his table 

and the Debye-Huckel law (4.30) is compared with it. The Fourier 

transform of the static liquid structure factor is directly related 

to the pair distribution function, g(:), which gives the probability 

that there is a particle at position : given that there is one at 

position 0 Coulomb repulsion results in g(r) being almost zero 

for distances less than the ion sphere radius, overshooting slightly 

at the ion sphere radius, and then settling down to unity. At higher 

r , the oscillations become greater. This is reflected in SS(k) 

the peak at ka ~ 5 sharpens and shoots up to a higher maximum and the 

oscillations continue out to ka ~ 15 before the function settles down 

to one. At r ~ 155, the Coulomb liquid becomes a Coulomb lattice 

(Pollack and Hansen 1973), and SS is nonzero only in the neighborhood 

of reciprocal lattice vectors. 

To obtain the transport lifetime at energy v , we must 

integrate (4.27) from k = 0 to k = 2v , which we do numerically. The 

comparison of the uncorrelated transport lifetime with this correlated 

lifetime is given as a function of energy in Figure 5, along with the 

form factor deviation at high energy. At 10 MeV, with wavelength 

20 fm, the difference is 25%, dropping to ~ 2% at 15 MeV. 

Notice the local maximum at 7 MeV; if the differential cross 

section were isotropic, instead of proportional to l+c , no such 

maximum would exist; the local maximum in the rs curve is in a slightly 

different position. At the same density and temperature, for a 

helium plasma, r ~ 0.13 , a ~ 20 fm and the Debye-Huckel approximation 
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is not too bad (Hansen et al. 1977); at 10 MeV, the wavelength is 

equal to the ion sphere radius, and the uncorrelated transport rate 

is 20% too high; at 15 MeV, it is 10% too high. 

4.5 vN~vN 

In the inner core, the matter is hot and dense and consists 

primarily of quasifree neutrons and protons. In the neutronization 

region, where the alpha concentration is high, there are many 

quasifree neutrons, but rather few protons. In the mantle there are 

almost no free nucleons; they are almost all locked up in heavy 

nuclei. The scattering of neutrinos by nucleons is a dominant 

opacity source in the interior. 

In a sense, we have already discussed this process for 

nondegenerate nucleons; if we reread the neutrino-nucleus elastic 

scattering section, starting with equation (4.2) , passing through 

to equation (4.8), with the values 

(4.33) 

(4.34) 

substituted , we are then reading about neutrino-nucleon (N=n) and 

neutrino-proton (N=p) scattering. 

Most authors (Tubbs and Schramm 1975, Lamb and Pethick 1976, 

Yueh and Buchler 1976, 1977b, Bludman and van Riper 1977) have taken 

CAn to be 1/2 in the W.S . model rather than gA/2 , thereby coming to 

the erroneous conclusion that vn~vn is isotropic (i.e., c-independent 
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in equation (4.2)). By doing so, they make a 42% error in the 

scattering rate (4.7) and a 47% error in the transport rate (4 . 8) . 

More generally, vN scattering is described in terms of the 

density-density and spin-spin correlation functions by the kernel 

4.21. A complete many body calculation of these correlation 

functions would include , for example, the processes v+N+N+v+N+N and 

v+zero sound+ v+zero sound as well as vN+vN . However, the latter 

process dominates in the absence of nucleon clustering into nuclei . 

It may be calculated within the framework of the independent 

quasiparticle approximation (see section A2.2 in Appendix 2). When 

recoil is neglected, so the scattering is conservative, we obtain 

the scattering and transport rates 

{

41.9 

34.8 

=143 . 3 

38 . 5 

pll SS (O)Y } nn n 

s 2 
pll S (O)Y v pp p 

pll SS (O)Y v
2 

nn n 

SS (O)Y v 2 
pll pp p 

-1 
s 

-1 
s 

-1 s 

-1 s 

in terms of the static liquid structure factor at zero momentum 

transfer 

( 4 . 35) 

(4.36) 

( 4. 37) 

Here, nN is the neutron (N=n) or proton (N=p) concentration, and nN 

is the nucleon degeneracy parameter, the chemical potential divided by 

the temperature. The nucleon is assumed not to change its energy in 

the collision; it must be scattered from an occupied state to an 
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unoccupied state at the same energy; therefore, the rates for a 

nondegenerate gas of nucleons (4.7 and 4.8) are modified by the 

s 
factor SNN(O) which is the probability for finding a particle-hole 

pair at the same energy . 

In order to obtain 4.35 and 4 . 36 , we have assumed that the 

dynamic liquid structure factor is proportional to a delta function 

at w=O ; i.e., the scattering is conservative . In Appendix 2, 

section A2.2, we show that , for nondegenerate nonrelativistic 

particles, it is, in fact , a Gaussian in w with mean value k
2

/2m and 

standard deviation lk
8

T/m k , where k is the momentum transfer to 

the medium (equation A2 . 12b). Both factors must be small compared 

with the incident neutrino energy in order for the conservative 

approximation to work . Otherwise, vN scattering would have to be 

dealt with as a nonconservative process. In zero temperature nu~i~~r 

matter, neutrinos must deposit energy in order to raise nucleons 

above the Fermi sea; the structure factor (Figure 6) does not look like 

a delta function , and the scattering kernels (Figure 8) have outgoing 

neutrino energies spread over a relatively broad range below the 

incident neutrino energy . 

Sawyer (1975) has used the fluctuation equation of state 

(Goodstein 1975) appropriate to classical systems 

where the isothermal compress i bility is 

aln nN 
ap 

(4 . 38) 

(4 . 39) 
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and p is the pressure, to treat the modification of the scattering 

due to strong nucleon-nucleon interactions, using cold nuclear matter 

equations of state. He only deals with the modification of the 

Fermi term, neglecting the Gamow-Teller, which dominates the Fermi 

part by a factor of~ 4.7. In regions where the equation of state 

is softer than that of a free nucleon gas, vN scattering is relatively 

enhanced; in regimes where the equation of state hardens due to the 

short-range repulsive forces, vN scattering is decreased relative to 

the free Fermi gas value. 

When the neutrino wavelength is small compared with the 

internucleon spacing, the independent quasiparticle approximation will 

become the appropriate mode of description; 4.38 is then just 4.37. 

At normal nuclear matter density, this corresponds to neutrino 

energies in excess of 55 MeV, which is small compared with typ:j,.cq:J. 

neutrino Fermi energies at that density. In the high energy, high 

temperature regime, 4.35, 4.36 can be used. 

Suppose we adopt a simple effective mass formula for the energy 

E within the independent quasiparticle framework (A2.ll, A2.14); we 
p 

then obtain at low temperature 

* mN (kT) 
"'----

2 
pF(N) 

where pF(N) is the Fermi momentum of the nucleon, related to the 

density by 

(4.40) 

(4.41) 
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and is the effective mass at the Fermi surf ace 

(4.42) 

As the temperature goes to zero, S~(O) goes to zero, and the 

conservative approximation breaks down. We must resort to the zero 

temperature nonconservative scattering results : the l=O moment of the 

scattering kernel is given by equation A2.13 and is plotted in Figure 8 

for vn scattering at the density 5xlo13 g/cc and the neutron ntnnber per 

baryon Y = 0 . 9 for a few incident neutrino energies. A more complete 
n 

discussion is given in Appendix 2 . 

We would like to use the conservative scattering approximation 

whenever possible. When the scattering rate 4.35 (or 4~36) with 4.40 

is smaller than the zero temperature scattering rate A2.13c, we may 

expect that it fails; it breaks down when 

kBT 
v > - (4.43) 
~ v 

F 

where vF is the velocity at the Fermi surface. The neutrino chemical 

potential typically exceeds this bound at high densities; recoil effects 

cannot be neglected, and the zero temperature formula A2.13c is more 

suitable . 

If we compare either of these formulae for vN scattering in 

degenerate Fermi liquids wi th the nondegenerate scattering rate , it is 

evident that degenerac y inhibits scattering. Brown (1977) has suggested 

that neutrinos may fl<ish out of th t> core when nucleons go degenerate, 
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due to this relative decrease of the scattering rate, and therefore, 

in the diffusion time. However, just as the nondegenerate scattering 

rate 4.35 increases with increasing density, so does the degenerate 
I 

rate A2.13c. In fact, when the neutrinos are quite degenerate , the 

diffusion coefficients Dk of equation 3 . 67c all become equal to D(µv)' 

independent of k, where µ is the neutrino chemical potential. The 
v 

diffusion constant does not then depend upon the particular power law 

dependence of the scattering rate, whether it be 2 as in 4 . 35 or 3 as 

in A2 .13c, except in its relation to the transport lifetime evaluated 

at the neutrino chemical potential . The diffusion constant in both 

-5/3 cases falls as p • It does not suddenly decrease as the neutron 

degeneracy line is crossed, although it may fall by a factor of ~ 2 

due to the different Y /Y dependence of the nondegenerate and v n 

degenerate diffusion constants (the former is ~ (Y /Y )l/3 times the 
n v 

latter). At these high neutrino energies, the neutrino absorption 

process can dominate the opacity; this process too is relatively 

suppressed when nucleons become degenerate; it is very small when the 

number of neutrons greatly exceeds the number of protons. 

Suppose neutrinos are also extremely degenerate. The nonlinear 

terms in 3.26c lower the effective transport rate below r ' due to s 

final state blocking. This effect supports Brown' s conjecture . 

We define the baryon degeneracy parameter , nB , by 

(2m kBT)J/Z 

PB = 2n2 Fl/2 CnB) 

If Yn were one, nB and nn would be identical . The line nB 0 

(4 . 44) 



100 

corresponds to a transition line from nondegeneracy to degeneracy: 

nucleons are semi-degenerate. Beyond nB = 10 the nucleons are quite 

degenerate . The relevant curves are displayed in Figure 9 , where we 

have also included Arnett's (1977) central zone t r ajectory to show 

a typical thermodynamic history of the core . 

4.6 ve ~ ve 

Neutrino-electron scattering is a decidedly nonconservative 

process: when the neutrinos are nondegenerate, and their energy is 

high compared with the electron Fermi energy , they lose an average 

of one half of their energy i n each collision with a degenerate 

electron gas (Tubbs and Schrannn 1975); when their energy is much lower 

than the electron Fermi energy, we can show that the mean energy 

transferred to the plasma by the neutrino is exactly one-third of 

its incident energy . Neither the conservative approximation nor the 

Fokker-Planck approximation (as Wilson 1974 once used) will adequately 

reproduce its effects . Not only are integrations over the outgoing 

neutrino energy introduced in the moment equations which are linear 

in the neutrino distribution function , but the onset of neutrino 

degeneracy introduces a further complication : the moment equations have 

a quadratic nonlinearity in the source terms (as in equations 3.25c, 

3.26c, and 3.27c). 

In Appendix 2, in section A2 . l , we evaluate the current­

current correlation function of an electron plasma in the independent 

quasiparticle approximation , and use it in section A2.3 to obtain the 

fir s t three moments of the neutr i no-el ect r on s cattering ker nels ; for 
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ve+e , for extremely relativistic electrons, 

(4.45) 

where 
3 Joo v ds <s <P -

f3(v')2 (es-n+l) (l+en-s-Sw) l Sv max (O, --Bw) · 

v' -) 
v 

(4.46) 

and the dimensionless functions <Pl are polynomials in s/Sv and rational 

functions of v'/v , and are given by equations A2.22 and A2.23 for 

l=O, 1, 2. The kernel Yl is given by the same expression 4.46 except 

<Pl is replaced by ~l which are defined by equation A2.25. The neutrino 

energy transfer to the plasma is w=v-v' , and S is the inverse 

temperature in energy units. The two exponential terms in the 

denominator arise from the electron df for the initial electron and 

the hole df (= 1-f ) for the final electron. The Fermi energy of the 
e 

electron is n/S . Generally, the evaluation of 4 . 46 requires a 

numerical integration over s . 

Examples of the l=O spectra for three different incident 

neutrino energies are given in Figure 10 for conditions characteristic 

of the neutronizing shell; there, we see the neutrinos dominantly 

downscatter in energy when they collide with an electron gas; the 

width of the spectrum near the peak is fairly broad. However, even 

at n=l4 , the value of the electron degeneracy parameter chosen for 

this figure, there is a significant amount of upscattering (i.e., the 

final neutrino energy exceeds the incident neutrino energy). 

Upscnttering is related to downscaltering by equation 1.6. As the 
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temperature is lowered to zero, the upscattering decreases to zero; 

as the temperature is raised, the amount of upscattering increases as 

we show in Figure 11. 

The higher l moments have a more complicated form than the 

l=O one; they can be negative as well as positive. A typical example 

of the relation between the first three moments is given in Figure 12 

for an incident neutrino energy of 25 MeV. The scattering is never 

strongly anisotropic; the l=O moment is usually significantly greater 

than the higher ones. When the energy transfer to the plasma is 

small, the neutrinos are somewhat forward peaked; when it is large, 

the scattering is backward peaked . We expect this behavior in 

neutrino scattering off individual electrons and, regardless of 

incident neutrino energy, this is the general trend. 

These scattering kernels are applicable to a wide variety of 

processes, necessitating change in the neutral current constants only : 

v +e- + v +e- CAe + -c in 4.45 (4.47a) e e Ae 

v +e + v +e eve + CVµ CAe + CAµ in 4.45 (4.47b) µ µ 

v +e + v +e c + CVµ ' 
c + -c in 4.45 (4 . 47c) µ µ Ve Ae Aµ 

The changes in 4.47a, with the further change n + -n in 4.46, give 

the kernels for v +e+ + v +e+ , but due to the relative paucity of 
e e 

positrons in these supernova cores , this process can be ignored. 

The inverse scattering lifetime, r
8 

, defined by equation 3.28, 

is useful as an indicator of the relative importance of ve scattering. 

To obtain it requires a further numerical integration, this time over 
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the final neutrino energy. In certain limiting cases, for very low or 

very high energy neutrinos (relative to the electron Fermi energy) 

analytic formulae can be obtained (equations A2.27a, b). With 

charged current constants (CVe = CAe = 1) , these formulae were first 

derived by Bahcall (1964) and elaborated upon by Hansen (1966). 

Tubbs and Schramm (1975) extended them to include neutral currents, 

and also gave some numerical values of rs for two neutrino energies. 

Apart from our work, a number of other authors have 

investigated the effects of v e scattering and have independently 
e 

obtained some of these scattering moments; Yueh and Buchler (1977b) 

obtained the l=O and l=l moments (our ~ , equation A2.25a,b does 
0 

not agree with theirs; one of their (v')'s should be av); Tubbs (1978) 

has obtained the l=O moments for his Monte Carlo code . 

Within the inner core, where the nucleons are free, the 

neutrino distribution function is essentially isotropic and Fermi-

Dirac. There is a small outward flowing neutrino current proportional 

to the gradient of the isotropic part of the df ; the proportionality 

constant is the diffusion constant; the diffusion constant at high 

neutrino energies is dominated by the absorption v +n + e- +p , and at e 

low neutrino energies by either emission e- +p + v +n or conservative 
e 

scattering v+n + v+n depending upon the relative magnitudes of Y and 
p 

Y . In the mantle and envelope, the elastic scattering of neutrinos 
n 

by nuclei dominates the opacity. Neutrino-electron scattering never 

dominates (although it competes with vn + vn when neutrons are 

degenerate, as can be seen by comparing A2.27a with A2 . 13c). Graphs 
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of the rates for the various processes interior to the neutronizing 

shell (Figure 13) and in the mantle (Figure 14) emphasize this point. 

What, then , is the role of ve scattering? It can redistribute 

the neutrino energy spectrum, in particular downscattering high energy 

neutrinos to low energy, accelerating the rate of approach to a 

Fermi-Dirac distribution; conservative processes serve to confine 

neutrinos in the core, but do not redistribute energy. This 

downscattering of neutrinos dumps energy into the plasma, thereby 

heating it; this is the second role which ve scattering plays, as 

an energy deposition mechanism. It also results in momentum 

deposition, but in small amounts compared with conservative scattering 

(Figure 14). 

We discuss these roles in more detail in Chapter 6, both for 

electron and muon neutrinos. There we find, for example, the reaction 

v e ~ v e is the thermalizer of the v production spectrum. In 
µ µ µ 

Figures 13 and 14 , the shapes of the scattering rates for the other 

types of neutrinos are similar to those for v e , but are lower: 
e 

v e is lower by a factor varying between 1 at low energy and 0.46 at 
e 

high energy; v e varies between 0 . 18 and 0.11 of the v e curve; 
µ e 

v e is within 0.18 and 0.16. These ranges are independent of the 
µ 

particular density and temperature. This is in contrast to the rates 

for the scattering of the other types of neutrinos by nuclei and 

nucleons: at energies low compared with the nucleon mass the scattering 

rates for v N , v N , v N are the same as for v N • e µ µ e 

With the discovery of neutral currents, ve scattering was 
! 
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unseated by coherent neutrino-nucleus scattering as the dominant 

opacity source in the mantle and envelope. The picture of a supernova 

model changed from neutrino energy deposition (Colgate and White 1966) 

to neutrino momentum deposition. In the energy deposition model, ve 

scattering was to be the mechanism by which the gravitational energy 

from core collapse could be dumped in the mantle, heating it, 

causing a rapid expansion, shock wave generation and outward 

propagation, perhaps triggering the thermonuclear detonation of 

unburned nuclear fuel such as oxygen (Fowler and Hoyle 1964) , and 

ultimately leading to matter expulsion, a supernova. Wilson (1971), 

and, more recently, Chechetkin et al. (1976) have shown that within 

the charged current framework, the opacity due to ve scattering alone 

is not sufficient to generate a supernova by the above mechanisms. 

Both of these works overestimated the heating effects by not including 

the scattering "into the beam" terms in 3.25c. Neutrino-electron 

scattering dominates as a mantle heating mechanism over absorption on 

nuclei v+A + e- +A (Bahcall and Frautschi 1964), and, as we have seen, 

'/; 
over v+A + v+A . 

4.7 vv + vv 

It is remarkable that such an exotic process can ever become 

an important mechanism. The neutrino concentration in the core builds 

up to a level similar to the electron concentration when neutrino-beta 

equili'brium is reached. Further, the cross section for the scattering 

of neutrinos by neutrinos is similar to that for ve scattering, as is 

shown in Table 2 and in Flowers and Sutherland (1976). The rate of 
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vv scattering is then of the same magnitude as the rate of ve scattering; 

vv scattering accelerates even more the approach of the neutrino 

distribution to Fermi-Dirac. 

The source function for this process has a quartic 

nonlinearity which is difficult to deal with generally. In section 

Al.2 of Appendix 1, we derive the zeroth moment of the v v 7 v v 
e e e e 

source in the limit that the neutrino distribution function is 

isotropic (n
1

<<n
0
). This expression, Al.25, is exact in an infinite 

homogeneous medium. The numerical implementation is complicated when 

an energy bin averaging technique such as that described in Appendix 4 

is used; this can be alleviated by adopting the usual technique of 

finite differencing in energy space. 

There is another easier approximation which we can use to deal 

with neutrino-neutrino scattering, one in which we exploit the 

similarity to ve scattering. We assume, as far as quantities 

integrated over neutrino energy are concerned, that the nonequilibrium 

v df is approximately a FD df, 3.7, with the value of n adjusted to 
v 

agree with the nonequilibrium neutrino number per baryon (3.57b): 

detailed differences between the true df and its FD approximation, 

n , such as a low energy deficiency in the nonequilibrium df, will be 

washed out by the energy integration. This approximation is 

undoubtedly poor in the mantle where the neutrinos are approaching 

free streaming, but there the neutrino concentration is so low that 

this reaction is unimportant. 

In the ve scattering kernels, we make the following changes: 
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[ .is r eplaced by e 
~ 

n 
' 

and 

c -+ 
2 c -+ 

2 
by 1/4 \) \) -+ \) \) a ae ; multiply in 4.45 (4.48a) e e e e Ve e Ae 

\) \) -+ c -+ 
2 c -+ 

2 
\) \) a -a in 4 . 45 (4.48b) e e e e Ve e Ae e 

\) \) -+ \) \) : c -+ a a c -+ a a in 4.45 (4.48c) 
jJ e p e Ve e µ Ae e µ 

\) \) -+ \) \) c -+ a a c -+ -a a in 4.45 (4.48d) 
jJ e JJ e Ve e JJ Ae e .l.1 

and simila rly, we can give prescriptions for the other possible 

reactions ; however, those in 4.48 will dominate. By the time we have 

to worry about \) '\) 
jJ jJ 

which are produced in neutrino-antineutrino 

pair processes, the electron neutrinos will already be in equilibrium; 

in that case, 4.48c and 4.48d will be excellent approximations to 

describe the thermalization of the v and v production spectra due to 
jJ jJ 

these neutrino-neutrino processes, as we shall see in Chapter 6 . 

In order to be consistent, in 4.48a, we should include only 

n
0 

terms in the source (which implies ~(l)~O) since we have assumed 

-approximate isotropy by substituting n for no ; in practice, this is 

no obstacle, for it is these t e rms which dominate thermalization of 

the spectrum. 

Using this prescription to relate vv sca ttering to ve 

scattering , any approximation scheme used to treat the relaxation of 

neutrinos to . equilibrium due to v e scattering , such as 'that used by 
e 

Arnett (1977), can be immediately adapted to treat relaxation due to 

neutrino self-scattering. 
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5. PRODUCTION AND ABSORPTION 

The capture of electrons by protons and heavier nuclei 

dominates neutrino production in the early stages of collapse. It is 

this reaction, together with the photodisintegration of nuclei, which 

initiates the dynamical instability . The electron neutrinos 

produced in neutronization carry away most of the lepton number of 

the core and much of the gravitational energy released in the collapse. 

The production lifetime for this process, along with lifetimes for 

related processes, is calculated in the first four sections. Later 

in the core's collapse, vv pairs created in leptonic and semileptonic 

processes become important transporters of energy and momentum; we 

deal with a variety of such processes in subsequent sections. 

5.1 

This electron capture process in stellar interiors has received 

extensive treatment in the literature (see Freedman et al., 1977 for 

references). Here, we derive the production rate using the 

correlation function formalism appropriate to charged current reactions 

as given in section A3.5 of Appendix 3. The incoming electron's 

energy is so high , and the charge on the proton so low that the 

electron's Coulomb wave function is essentially a plane wave: the 

Coulomb factor is unity. Electrons are effectively uncorrelated with 

nucleons. The production rate for a neutrino of energy v is A3.34, 

d3 

r Pe 
r . (v) = 3 p ~ (2n) 

(5 .1) 
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where k = p - q w = E - v 
- -e - ' e 

, v is the electron's 
e 

speed, and f is its distribution function. The correlation functions 
e 

are defined in a manner similar to A3 . 10b. 

This expression is quite general : it describes electron 

capture on heavy nuclei and the modified URCA process as well as 

e- + p -+ n + v 
e 

Within the independent quasiparticle approximation 

of section A2 . 2 in Appendix 2, the correlation functions for nucleons 

reduce to 

where 

n SD (kw) 
p np 

3gA2 n SD (kw) 
P np 

(5.2a) 

(5. 2b) 

is a dynamic liquid structure factor for this proton to neutron 

transition; it is related to ((ptn)(kw)(ntp)(O)) rather than 

being given by equation 4 . 26 which is zero for uncorrelated nucleons . 

The integral over w 

factor. 

of SD (kw) is 
np 

S8 
(k) 

np 
a static structure 

We assume here that the nuc leon energies are just the kinetic 

energies, and nucleon recoil can be neglected . The production rate is 

then 
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= 167.2 p11Yp SS (O) ( v+Q ) 2 f (v+Q)v np 1 MeV e e 
s-l (5.3a) 

where Q m -m "' 1. 3 MeV , and n p 

(i -
2 t2 m e 

v 2 e (v+Q) 
(5.3b) 

This expression is valid at lower densities, when the electrons are 

nonrelativistic, as well as at the high densities of interest here. 

This reaction has a threshold; only those electrons with energy 

greater than Q can react to produce neutrinos, as is evident from the 

argument of f in 5.3a 
e 

The static np structure factor at zero 

momentum transfer is a thermodynamic quantity, just as the nn and pp 

static structure factors were: 

S5 
(O) 

np 

3 n -n 
d P

3 
f (E )(1-f (E ) ) = ___ n_~P __ 

(2n) p P n n n (e$(µn-µp)_l) 
p 

(5.3c) 

In the nondegenerate regime, this structure factor is one, and our 

result agrees with that given by Tubbs and Schrannn (1975) and Yueh 

and Buchler (1976). 

Yueh and Buchler (1976) calculated the production rate at a 

variety of neutrino energies, temperatures, and densities without 

neglecting recoil and compared it with 5.3. The production lifetime 

is reduced to a two-fold integration which they evaluate numerically. 
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In the density-temperature regime of importance in the early stages of 

collapse, when nucleons are nondegenerate, 5.3 with s!bo) = 1 is 

valid to within ~ 10%. We also get equation 5.3 by applying the 

formula 2.46 in Chapter 2 to Fermi's Golden Rule. 

If we had only free nucleons, the lifetime to produce 30 MeV 

· 10
11 I 3 

· d · · d h b i neutrinos at ~ g cm is measure in microsecon s; t e rea sorpt on 

lifetime is similarly short. Neutrino beta-equilibrium would be 

rapidly attained, in times much shorter than the dynamical time, which 

is many milliseconds. However, not until the late stages of collapse 

is the free proton abundance per baryon, Y 
p 

-1 large (of order 10 ) ; 

at 1012 g/cc it is perhaps 10-3. The neutronization rate is clearly 

quite sensitive to the value of the function Y (Y ,p,T), which is 
P e 

determined from nuclear statistical equilibrium calculations. At 

present, Y is not very well determined in supernova core material. 
p 

The absorption lifetime is similarly derived using either the 

current-current correlation function formulation or Fermi's Golden 

Rule and equation 2.46. With the neglect of recoil, the result is 

where 

r (v) 
a 

s = 167.2 plly S (0) n pn ( 
+g \2 

1 vMeV/ 

n -n 
SS ( O) = ___ n_-~P __ _ 

pn n (1-e-S(µn-µP)) 
n 

(1-f (v+Q))v 
e e 

-1 
s (5.4a) 

(5.4b) 
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which is related to r by the detailed balance condition 3.11. p 

In order to calculate the neutronization rate, 3.17b, and 

the rate of heat loss from the medium to the neutrinos, 3.17c, we 

must evaluate certain integrals over the neutrino energy involving the 

production and absorption rates and the neutrino df. Generally, 

these must be evaluated numerically, since the neutrino df is neither 

zero nor Fermi-Dirac. 

If the neutrino df is FD, or approximately so, and we can 

neglect the mass difference of the neutron and proton and the electron 

mass (a good approximation due to the high electron chemical 

potential), the neutronization rate can be given in terms of Fermi 

functions, 3.68: 

-(Y ) -e e p 

enP(Y -Y )(1-exp(n +n -n -n )) n p n v p e 

(5. Sa) 

(5.5b) 

Here, T is the temperature in energy units; when T is measured in MeV, 

-1 
the numerical factor in square brackets is .181 s per baryon. The 

energy loss rate per baryon is related to 5.Sa by 

(5.5c) 
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The n + - 00 limit gives the case when neutrino phase space v . . 
is unfilled. The ratio of q to Y is the mean energy at which the 

e 

neutrinos are produced, which , for an extremely degenerate Fermi 

gas of electrons is 5µ /6 : since the cross section rises as the 
e 

square of the energy , it favors capture from high energy electrons, 

and the average energy of the neutrinos is ~ 11% higher than the 

average internal energy of the electrons. 

When equilibrium is attained, the chemical potentials of the 

reactants and products balance, and the neutronization and energy loss 

rates given by 5.5 vanish . 

Production and absorption rates are compared with other 

processes in Figure 13. For the conditions chosen, the value of Y 
p 

is probably too high; more protons may be locked into heavy nuclei, 

although this is still quite uncertain. This figure, however, 

emphasizes an important point . At high energy , neutrino absorption 

by neutrons dominates neutrino scattering by neutrons ; at low energy, 

the degeneracy cuts down the absorption rate, and vn + vn dominates 

over absorption . However, it is not r which enters into the 
a 

transport rate, but rather r' 
a 

electron capture rate, r 
p 

r + r a p 
and at low energies, the 

can dominate over vn scattering. 

Whether it does or not depends upon the number of free protons 

compared with the number of free neutrons; under the conditions given 

in Figure 13, it does . At very small energy, it always will since 

the rate of production of zero energy neutrinos is nonzero due to the 

Q of the reaction . 
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Therefore, with just charged currents, there was still 

neutrino trapping in the inner core; the addition of neutral current 

reactions served to extend the trapping region to beyond the 

neutronizing shell, as well as changing the interplay of neutrinos 

and the mantle. 

When nucleons go degenerate, and the number of neutrons differs 

significantly from the number of protons, the static np structure 

factor (5.3c), which goes as exp(-S(µ -µ)),becomes very small and 
n p 

the reaction rate for e- + p + n +v becomes negligible. Corrections 
e 

to the independent particle approximation calculation of this rate 

must be included. The independent pair approximation (de Shalit and 

Feshbach 1974) adds in dynamical (as opposed to statistical) two 

body correlations in nuclear matter, which give rise to the modified 

URCA reactions: n+e- + p + n+n+v 
e 

n+n + n+e - + p+V (Bahcall and 
e 

Wolf 1965). These reactions will serve to maintain neutrino beta-

equilibrium in the early stages of cooling of the neutron star which 

may result from core collapse. Dynamical two body correlations in 

nuclear matter also give rise to the bremsstrahlung process 

N+N + N+N+v+v (Flowers, Sutherland, and Bond 1975) which takes over 

as the main vv pair creation mechanism from the plasmon neutrino 

process (section 5.7) once the hot neutron star has cooled sufficiently. 

At even higher densities, perhaps twice that of normal 

nuclear matter, the (charged) pion field may have a nonzero expectation 

value in the ground state of nuclear matter: a pion condensate may 

form (Migdal 1978, and references therein). The mediation of the 
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reaction e-p + nv by the pion condensate, which we loosely write 
e 

in the form e-+n + n+ve+(TI-) , greatly enhances its rate (Maxwell 

et al . , 1977; Kiguchi, 1977). If the condensate exists, this 

reaction dominates the cooling of neutron stars (at least after the 

initial electron neutrinos from neutronization have been lost). 

Otherwise, the modified URCA and nucleon bremsstrahlung processes 

dominate (until nuclear matter goes superfluid) . 

5.2 e+ + n t v + p 
e 

The calculation of the production and absorption rates for 

this reaction is similar to that for e-p t nv , with the results 
e 

r 
p 

r 
a 

!PB 

\PB 

G2 

TI 

G2 

TI 

( 2 
gv + 3g!)) 

2 21 (gv + 3gA) 

2 - s e (v-Q) Y (v-Q) f (v-Q)S (O) n e pn 

2 - s . 
e(v-Q) Y ( v-Q) (1-f (v-Q))S (O) 

p e np 

where the positron's df is f , which is approximately a Maxwell­
e 

Boltzmann in supernova cores, for there, n > 10 , and n + = -n 
e - e e 

Using this approximation , the protonization rate due to 

positron capture is 

(6+3t+t 2/2) [Y _Y - 2Y-Y ] 
e n v p 

and the energy loss rate is 

(Y ) + 
e e n 

2 3 
ST il_~Jt/5+3t /20+t /60) 

2 (l+t /2+t / 12) 

(5 .6a) 

(S.6b) 

(5 . 7a) 

(5.7b) 
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where t = Q/T , Y_ is the abundance of positrons per baryon. When 
e 

energies are measured in MeV, the term in curly brackets is 

numerically 167.2 pll 
-1 

s Since the mean v energy is only 
e 

about ST, and therefore of thermal rather than Fermi energy 

magnitude, terms of order t cannot be neglected as they were in 

electron capture. 

This reaction competes with the v v production processes 
e e 

as a v producer. It has the advantage of being unaffected by 
e 

v degeneracy which occurs well before v equilibrium. 
e e 

5.3 e- + (N,Z) -+ v + (N+l, Z-1) 
e 

The capture of electrons by heavy nuclei, part of the URCA 

process, is difficult to deal with in these supernova cores, as one 

constantly presses up against the boundaries of known nuclear 

physics, and is forced to pass beyond, making educated guesses for 

ft-values,for spins and parities of levels, and even for level 

energies. 

The inverse production lifetime , calculated either using 

the correlation function formalism appropriate to charged current 

processes (section A3.5 of Appendix 3) or, more simply, equation 2,46 

is quite similar in form to that obtained for e-p -+ nv 
e 

(equation 5.3, with S (0) = 1) 
np 

r (e-+A. -+ v +Af 
p 1 e 

• v F(Z.,v+Qf.) e(v+Qf . ) e 1 1 1 
(5.8) 
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where Qfi = Mf - Mi is the mass difference between the final (f) and 

initial (i) nuclear states whose spins have already been summed over, 

F is the Coulomb factor, and the Fermi and Gamow-Teller matrix 

elements for allowed transitions are defined by equation 2.47. To 

evaluate 5.8 for given f and i necessitates knowledge of the matrix 

elements, which are related to the ft-values by 4 . 9 ; usually, 

experimental knowledge is unavailable and theoretical knowledge is 

sketchy for the same reasons that plagued us in the evaluation of 

* inelastic vA + vA matrix elements. Indeed , the problems are quite 

similar, and this discussion follows that of section 4.2. 

Assuming we know the ft-values, we must sum over all possiple 

final states accessible by an allowed transition to the initial state. 

The high electron Fermi energy implies that the capture may occur into 

very highly excited states of the daughter nucleus ; thus , we must 

know the masses and number of these allowed states in regions where the 

nuclear level density is extremely high , as well as at low excitation 

energy where the level density is low and t he nuclear structure is at 

least partially known . 

We must sum over all of the thermally populated levels of each 

nuclear species , weighted by the Boltzmann factor , then sum over all 

nuclear species , weighted , of course, by the i r abundances , which are 

determined by nuclear statistical equilibrium calculations as 

functions of p , T and Y 
e 

This is a formidable task indeed . Nonetheless , a number of 

workers have attempted to calculate integrated rates . Fowler and 
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and Hoyle (1964) discussed the capture rates on a number of iron group 

nuclei. Hansen (1966) and later Mazurek et al. (1974) calculated 

rates for a broad range of nuclei near the valley of beta stability, 

using simple choices of ft-values and energy level spacings . Taking 

these rates, Epstein and Arnett (1975) calcul ated the neutronization 

rate (Y ) and the mean energy loss to neutr inos for matter in NSE 
e 

and fit the result to a four spec i es model , consisting of one typical 

heavy (dubbed iron), one typ i cal light (dubbed alpha), and the free 

neutron and proton . These. results , and extrapolations of them , have 

often been used in collapse calculations (Arnett 1977 , Wilson 1977, 

Epstein , Norgaard and Bond 1978) . Unfortunately , only ground state 

partition functions were used in the calculation of NSE, which grossly 

underestimates the number of heavy nuclei present at high temperature, 

since excited states are then plentifully populated . In the very 

early stages of collapse , just afte r core silicon burning, Y falls 
e 

less than 0 . 44 , the lower boundary of the Epstein and Arnett 

calculations (Weaver , Zimmerman and Wo osley 1977, Arnett 1977) . 

Collapse occurs entirely in the ext r apolated regime in a neutron rich 

medium. Further , these rates break down when the neutrino phase 

space builds enough to suppress production into already occupied states . 

NSE calculations valid over a wider region o f t hermodynamic phase 

space (p, T, Y space) a r e clearly necessary , both to obtain 
e 

neutroniza tion rates on heavies and to give the equation of state (EOS) 

whose knowledge is crucial for the dynamics . This problem is now 

receiving much attention (Engelbrecht , Fowler , and Woosley 1978, 



119 

Lattimer and Ravenhall 1977). 

Recently, Fowler, Fuller,and Newman (1977) have recalculated 

the rates for important iron group nuclei, giving also differential 

production rates, i.e., r 's, using detailed nuclear level structures . 
p 

Others have attacked the problem using the gross theory of beta 

decay (Takahashi and Yamada 1969, Takahashi 1971), which is a 

prescription for obtaining the beta strength functions (see section 

A3.5 of Appendix 3) in a Fermi gas independent particle model of the 

nucleus, a method which its practitioners hope will be a reasonable 

approximation for very neutron rich nuclei for which detailed nuclear 

information is lacking. 

When does electron capture on free protons dominate electron 

capture on heavies, so knowledge of Y (Y ,p,T) is sufficient to obtain 
p e 

the neutronization rates? As in the section on inelastic neutrino-

1 · k 56N· 1 nuc1 eus scattering, we ta e 1 as our concrete examp e. For the 

single level transition e- + 56Ni (g.s., O+) + ve + 56co (1.72 MeV, l+), 

the ft value is measured (log 'ft = 4.4). If we neglect the mass 

difference (Qfi = 0.4 MeV) and set the Coulomb factor equal to one 

which should be true at high energy, then 

56 56 + r (e-+ Ni+ v + Co(l.72MeV,l )) 
e 

r (e-p + nv ) 
p e 

56 (ft) 
Y ( Ni ( g. s . )) n 

y (ft) 
p 

" 7 . 8xlo-4(Y(S6N;~g.s.))56) 

where (ft) is the ft-value of the neutron, 103 · 04 . In order for 
n 
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this single level electron capture on 56Ni to win out over e-p , the 

mass fraction of 
56

Ni in its ground state must be greater than the 

free proton mass fraction by ~ 1300. 

When does Y 
p 

-3 exceed 10 ? Early in the collapse, it is lower 

than this value, and e-A exceeds e-p ; late in the collapse, Y is 
p 

greater than 10-3 , and e-p dominates . With the present EOS 

uncertainty, the transition point cannot be pinned down. 

At high electron Fermi energy, we may saturate the sum rule 

at zero energy as we did in the inelastic scattering case, producing 

an upper bound on the electron capture rate of a nucleus in state i: 

r . (v) < n. G
2 

f (v)v
2 

\gv
2 

(T.(T.+l)-T3 .(T3 .-l)) 
p,1 ~ 1 TI e 1 1 1 1 

+ g~ (il~q"t: . qbt~li)l (5.9) 

where we have explicitly evaluated the Fermi sum in terms of the total 

isospin Ti and the third component of isospin T3i of the state i. We 

have assumed the energy is sufficiently high that the Coulomb factor is 

one; otherwise, F(Z.,v) can be inserted into this equation. 
1 

When we evaluate the sum rules for 56Ni, we obtain zero for 

the Fermi sum rule for all T = 0 states, and these are all the low 

lying ones which will be thermally populated . The ground state of 

56Ni is approximated by its shell model configuration of eight f 712 

protons and eight f 712 neutrons ; only the transitions of f 712 neutrons 

are then included, yielding a Gamow-Teller sum rule of 8(12/7), a 
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result which assumes perfect overlap between the neutron and proton 

shell model states, leading to overestimation, but neglects collective 

effects, which acts to balance this overestimation. The GT sum rule 

* for v+A ~ v+A is just one-half of this (if CAO= O), and has already 

been used. The Gamow-Teller sum rule evaluation is more difficult 

for the excited states of 
56

Ni ; we make the crude approximation that 

all states have 8(12/7) for this value, in order to make numerical 

estimates. Then, adapting 5.5b , we obtain an integrated capture rate 

56N· 1 f 1 06 105 -l y 1011 I per i per e ectron o ~ . x s at p = g cc. 
e 

When we use the techniques of Fowler, Fuller, and Newman (1977) for 

ft-value assignment to obtain our sum rule, we find the approximation 

5.9 gives values within~ 40% of theirs at µ = 24 MeV (pY <:: 1011 g/cc). 
e e 

If we use the above upper bound on 56N. h 56N. 
i capture, t e l mass 

fraction must only be greater than the proton mass fraction by ~ 15 in 

order for electron capture on 56Ni to dominate over the capture on 

protons. This compares with the previous value of ~ 1300 obtained 

using only one low-lying state, emphasizing the importance of the 

inclusion of all the sum rule strength . 

At high density and temperature, for nuclei far off the 

valley of beta stability, the prescription 5.9 requires only sum 

rule estimation, surely an easier task than beta strength estimation . 

At even higher density, when the momentum transfer to the 

nucleus approaches the inverse of the nuclear radius , forbidden 

transitions can no longer be neglected, and the electron capture rate 

finally approaches the number of protons in the nucleus times the 
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free proton capture rate. In the latest phases of collapse, when 

the electron Fermi energy is ~ 100 MeV, we are either in, or nearing, 

this region; the transition between use of 5.9 and use of 5.3 (with 

Y the total proton abundance, both bound and free) has yet to be 
p 

worked out. It is not even known whether such neutron rich nuclei 

will be present at this stage of collapse. 

We may apply 5.5c, with obvious modifications, to obtain the 

energy loss rate to neutrinos. When Q values can be neglected, the 

mean energy at which the neutrinos are produced is again 5µ /6. 
e 

5.4 v + (N,Z) + e- + (N-1,Z+l) 
e 

Neutrino absorption by heavy nuclei, the inverse of the 

electron capture reaction, has a differential rate 

which satisfies the detailed balance relation 3.11 . However, the 

(5.10) 

highly excited states of the daughter nucleus for electron capture 

are rarely thermally populated, and serve as parent nuclear states for 

neutrino absorption only enough to ensure that the neutrino beta-

equilibritnn condition, 3.12, is indeed the appropriate equilibrium 

even when heavy nuclei are present ; this would not be so if the matter 

were not in NSE. 

To obtain absorption rates on those nuclear states which are 
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abundantly present, the same procedures in matrix element evaluations 

as were used in the inverse process must be followed. Bahcall and 

Frautschi (1964) used a Fermi gas model of the nucleus to evaluate 

absorption rates, yielding results they estimate to be valid at high 

neutrino energies (> 15 MeV). The sum rule saturation at zero energy 

can also be used as an approximation . In any case, this absorption 

process on heavies is small compared with ve scattering and so plays 

little role in energy deposition; it plays an even smaller role in 

momenttnn deposition . 

5.5 vv PRODUCTION AND STELLAR EVOLUTION 

The loss of energy from matter by the emission of vv paira 

is naturally and generally expressed in the language of the weak 

current-current correlation functions which depend upon the 4-momentum 

transfer to the medium, (w , k) . The scattering of neutrinos by 

matter probes the spacelike domain of these functions, w~k , as we 

saw in Chapter 4 . The production of vv pairs probes the timelike 

domain, w~k ; in addition , w is negative, for the med i um loses the 

energy required to create the vv pai r . The timelike region with w 

positive, so the medium gains energy, describes the inverse reaction , 

vv annihilation . The various domains in wk space are displayed in 

Figure 3 . 

Once a star has developed a carbon/oxygen cor e , the energy 

loss in vv pairs exceeds the ener gy loss in photons; from this stage 

onward , the neutrino losses exert a controlling influence on the 
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evolution of the stellar core. The core can only be temporarily 

supported against gravitational contraction by means of temperature, 

and therefore pressure, gradients set up by the heat energy released 

in thermonuclear reactions. 

The way in which this occurs for stars more massive than 

perhaps 8 ~ (this number is quite uncertain) illustrates how 

neutrino losses determine the structure of presupernova stars. 

Arnett (1972a,b, 1974a,b, 1977a) numerically evolves helium cores 

through the various advanced burning states, and finds over a wide mass 

range that the iron/nickel cores converge to approximately the 

Chandrasekhar limit of ~ 1.4 ~ , with the basic onionskin structure 

of the ashes · from earlier burning stages layered on top of it. Both 

results, core convergence and the onionskin model itself, depend in 

an essential way not only on the existence of neutrino losses, but 

also on their detailed density and temperature dependence. 

Energy can be produced in the core of the star by either nuclear 

burning or gravitational contraction. If the star is burning fuel at 

its center, the energy generated can be transported by either neutrinos , 

in which case it moves at the speed of light, almost completely 

decoupled from the stellar matter through which it passes, or by 

convection: once the central temperature is beyond~ 40 Kev, photon 

diffusion and electron conduction become inefficient energy transporters 

(Arnett 1974). Convection, by itself, cannot release energy from 

the star: it only mixes it over the convective region. Neutrinos take 

the energy away. 
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If the nuclear energy generation at the center exceeds the 

neutrino energy losses, the energy imbalance causes the central 

temperature to rise . Once the temperature gradient becomes 

superadiabatic in a region, convection sets in over that region. 

The convective core will grow until the nuclear source balances 

the neutrino sink when averaged over the core. The composition is 

uniform throughout the convective core and the core is smaller for 

more advanced burning stages; the result is the onionskin model of 

massive stellar cores: iron and nickel, the ashes of silicon burning 

are surrounded by a layer of silicon, then a shell of oxygen and neon, 

a shell of carbon and oxygen, a layer of helium and finally of 

hydrogen. 

With no neutrino losses, our presupernova models would have 

quite different interior structures (Ikeuchi et al. 1971). 

Stars with carbon/oxygen cores more massive than ~ 2 Me cool 

by e+e- + vv ; stars with C/O cores less massive than~ 1.44 Me cool 

by Ypf + vv ; cores with masses in between these two limits cool 

sometimes by the pair annihilation process, sometimes by the plasmon 

neutrino process, with the latter tending to dominate at higher 

densities. + If the C/O core mass exceeds ~ 30 M
8

, the e e + vv 

losses result in a dynamical instability, the core collapses, 

undergoes a hydrodynamic bounce, ignites remaining nuclear fuel, and 

seems most often to lead to no remnant, although lower mass cores 

undel'.'going this instability c;in leave black hole remnants. The result 

is the pair instability supernova, first proposed by Fowler and 
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Hoyle (1964), numerically modelled by Rakavy and Shaviv (1967) and Fraley 

(1968) and summarized in Barkat's (1975) review of neutrino processes 

in stellar evolution. 

In all these cases, the neutrinos are freely streaming from 

the star and enter into the stellar evolution equations only as a local 

energy sink. The energy loss rate in vv pairs (emissivity in 

-1 -1 
erg g s ), Q, is the required quantity, and this can be expressed 

in terms of the current-current correlation functions (using the 

formalism of section A3.3 of Appendix 3): 

(5, lla) 

J
oo W 

1 wdw k2dk 2 2 2 
= - -I-- (r (k -w)k + r (k -w) (3w -2k )) 

p 27T 2 1 ' 2 ' 
0 0 Z7T 

(5 . llb) 

Here, 8 is the Heaviside unit function, the k2 in 5.lla is the square 

of the four-momentum, and p is the density. The k
2 

in equation 5 . llb 

is the square of the three-momentum . The scalars r 1 and r 2 introduced 

in Appendix 3, equation A3.23, completely characterize the energy loss 

rates; the differential vv production spectra probe, in addition, a 

third scalar, a term which arises from VA interference; two more 

scalars are generally needed to describe the full current-current 

correlation function, which are not probed by either neutrino scattering 

or vv production and absorption. 

This simple expression (the hard part is the full evaluation 

of r
1 

and r
2

) includes all vv production processes . Those which have 

been treated in the literature and found to be of importance are the 
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three BPS processes, e+e- + vv , Ypl e + e vv (the photoneutrino 

process), Ypl + vv (Beaudet, Petrosian, and Salpeter 1967), electron-

- A A -nucleus bremsstrahlung, e + Z + e- + Z + vv (Gandelman and Pinaev 

1960, Festa and Ruderman 1969, Cazzola et al . 1971) , and the related 

e-p + e-pvv and en+ e-nvv in neutron star interiors (Flowers 1973). 

Further, the purely neutral current reactions n+n + n+n+vv 

n+p + n+p+vv (Flowers, Sutherland, and Bond 1975) have been found to 

A "'~ A be of importance in neutron star cooling; Z + Z + vv has already 

been discussed in Chapter 2. The other vv processes mentioned also 

have neutral current corrections: the corrections to the BPS 

processes in certain regimes have been given by Dicus (1972), and 

the first of the bremsstrahlung processes has been treated with 

neutral currents by Dicus et al . (1976). 

Over the years, many other vv production processes have been 

considered and found to be unimportant relative to the above ones: 

- - -+ e- + e- + vv , yy + vv , YY + Yvv , 

Ye + Ye vv , and synchrotion radiation, e- + e- + vv in the presence 

of a magnetic field (see Kuchowicz 1972 for references). 

5 . 6 + e e- + vv 

The important new complication which arises in dense collapsing 

stellar cores is the high neutrino opacity which causes the neutrinos 

to be trapped and the neutr i no phase space to fill up to equilibrium 

levels, which results in a reduction in the neutrino emissivity. 

Finally, at high density , it is the equilibrium diffusion 
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approximation which describes the flow of these neutrinos, with the 

emissivity serving only to maintain the Fermi-Dirac form of the 

zeroth moment of the distribution function. The physics required 

to treat the vv production processes in the regime intermediate 

between free streaming and equilibrium diffusion is given here, first 

for the pair annihilation mechanism , then for the plasmon neutrino 

mechanism (section 5.7). 

The pair annihilation process is the only vv production 

mechanism which can be described in the independent particle 

approximation of Appendix 2. The derivation of the moments of the 

production kernels for e+e- ~ vv follows closely the derivation of 

the moments of the ve ~ ve scattering kernels, a result to be 

expected since the former is a crossed reaction of the latter. When 

the temperature is sufficiently high that the positrons, as well as 

the electrons, are extremely relativistic, as in iron core collapse, 

th the l moment of the production kernel , obtained in section A2.4 of 

Appendix 2, is 

(5 .12) 

where 

(5.13) 

with n the electron's degeneracy parameter, v the neutrino's energy, 

v' the antineutuino's energy, and ~ 0 is given in detail by equations 
p-e 
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A2.35, A2.36, A2.37, and A2.38 for 1- = O, 1, 2. An equation similar 

to 5.13 holds for Ypf , with another function, ¢pf , replacing ~pf • 

The integration, which must in general be performed numerically, is 

over ~ , the electron energy divided by kT ; the range of integration 

is finite here, in contrast to the semi-infinite range encountered in 

ve scattering. Except for this difference , the form of equations 

5 . 12 and 5 . 13 is the same as that of 4.45 and 4 . 46 . We use Gauss-

Legendre instead of Gauss-Laguerre integration to evaluate these 

integrals. The f = 0 moment of the production kernel is displayed for 

various neutrino energies as a function of the antineutrino energy 

in Figure 15 for a particular choice of pY (4xl0
12 

g/cc) and 
e 

temperature (1.2 x lo
11

K). This figure is for v v production rather 
]J ]J 

than veve production: CVlJ and CAJl should replace CVe and Ck in 5 . 12. 

- + -The vv absorption process, vv ~ e e also requires the 

evaluation of a kernel, which is related to the production kernel 5.12 

by the detailed balance condition 3.9 , i . e ., 

( ') = -B(v+v ' ) R ( ') Raf v,v e pf v,v (5.14) 

To obtain the v absorption opacity from this requires knowledge of the 

v distribution function, which i s , in general , a nonequilibriurn one. 

The production rate for a neutrino of energy v when the 

antineutrinos are nondegenerate is related to the f = 0 moment of the 

kernel by an integral over the antineutrino phase space (equation 3.29): 

2 
v J (v ' ) dv ' r .th (v) = RpO (v, \)I) 2n2 (5 . 15a) 
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The production rate for an antineutrino of energy v' (when the 

neutrinos are nondegenerate) is 

v 
r:th (v') 

2 

J v dv 
RpO (v,v') 2TI2 (5.15b) 

These two spectra are unequal as we can see from Figure 16: the 

difference is a result of VA interference and arises in a similar 

manner to the inequality of ve and ve scattering rates . 

The total energy loss rate to v v pairs is related to these e e 

r's by 

1 
Jv r~h (v) 

2 
fv' 

(v 1
)

2dv' . v dv 1 
r~h(v') Q --+- (5.16) 

p 2TI 2 p 2TI 2 

which is another way to write equation 5.11. In the e.r. limit, Q 

and the vv production rate (i.e., Y , or equivalently Y-) are 
v v 

]J ]J 

given by very simple formulae, A2.43 and A2.41 respectively. In the 

limit in which the electrons are quite degenerate, as they are in the 

iron core collapses, and thus the positrons are nondegenerate, 

analytic expressions can be given. We find the mean energy which the 
,.­

vv pair is created with (for nondegenerate neutrinos) is 4µ /5 + 4 kT 
e 

the neutrinos and antineutrinos are created with energies similar to 

the magnitude of the electron Fermi energy rather than with the 

thermal energy. This is simply because the electrons which annihilate 

are from near the top of the Fermi sea . 

The emissivity per unit neutrino energy is obtained from r~ 
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by multiplying it by v3/2n
2 

which shifts the peak from that indicated 

in Figure 16 toward higher energies , nearer the Fermi energy of the 

electron . When these v and v spectra are multiplied instead by 

v
2

/2n
2 

, which gives the number of v ' s and v's c r eated per unit 

energy, the area under each resulting curve is the same : the number of 

neutrinos produced must, of course, equal the number of antineutrinos 

produced . 

+ -When the core collapse is hot, e e ~ vv dominates over 

Ypl ~ vv . The line of demarcation between the region of pair 

dominance and the reg i on of plasmon dominance (defined as the set of 

points a t which the energy loss rates are approximately equal) is 

different for v v production and v v production : both are shown in 
e e µ µ 

the temperature-electron density (pY) pl ane , the former in Figur e 17, 
e 

the latter in Figure 18 . The pl asmon neutr ino 

is very sensitive to the value of the Weinberg 

rate for v v creation 
µ µ 

angle (sin
2 ew = 0 . 3 

is used here as elsewhere) , and as the Weinberg angle drops towards 

sin2 ew "' 0 . 25 , this l ine moves to the ( r eader ' s) right . 

Also plotted in Fi gure 18 is Arnett's (1977) central 

trajectory in this phase plane . In his model , the plasmon rate 

dominates v v production in the early stages of collapse , but both 
e e 
+ -processes , e e and Ypl , play a role in vµvµ production. As the 

pressure due to nucleons rises, and the trajectory follows p ~ T3/ 2 

(see Chapter 6) , the core passes fully i n to the e+e- region of 

dominance. Throughout most of the collapse , the diffusion of 

electron neutrinos from neutronization dominates energy transport, and 
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thermally produced neutrino pairs don't compete until quite a bit 

later in the collapse. 

Wilson's (1977) recent central trajectories a r e colder than 

Arnett's, remaining within the region of plasmon pr ocess dominance, 

at least as far as the evolution has been reported . Wilson's two 

bounces are also shown in Figures 17 and 18 . We now turn to the 

plasmon process. 

5 . 7 ypl + vv 

The plasmon neutrino process occurs when plasma waves, a 

cooperative phenomenon between the electromagnetic potential field and 

the electron field (and the nuclear field) damp into vv.pairs . 

Usually they dissipate into electron-hole pairs (are absorbed by an 

electron in the medium and thus are Landau damped) or they dissipate 

into e+e- pairs (if the temperature is high enough) . This dissipative 

decay couples through the electric charge , the energy is trapped by 

electromagnetic processes , and the diffusion of this dissipative 

energy takes a long time . Occasionally , wi th a branching ratio related 

to the weak coupling constant and the thermodynamic parameters of the 

medium the dissipation i s through vv pairs , which , i n collapsing iron 

cores , can also be trapped , but ener gy in this form flows from the 

medium much faster than by rad i ative or conductive transport . Iron 

cores whose trajectories pass to the right of the demarca tion line 

in Figures 17 and 18 cool by th i s mechanism , a t least un til the nucleon 

bremsstrahlung process N+N + N+N+v+v takes over . Of course, charged 

current mechanisms are also cooling the collapsing core , and throughout 
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most of the collapse, do so more efficiently. 

The plasma waves are created by thermal fluctuations of the 

electric current acting cooperatively with thermal f luctuations of 

the electromagnetic field. Fluctuations dissipate. One mode of 

dissipation, via vv pairs, comes about through the relation of 

fluctuations in the weak current-current correlation function to 

dissipation : the former has the energy transfer to the medium, w, 

positive, and vv pairs can be annihilated to create such a 

fluctuation; the latter has w negative, and a collective plasma 

excitation, a plasmon, can decay into a vv pair. This provides an 

illustration of the famous fluctuation-dissipation theorem. 

Adams, Ruderman, and Woo (1963; hereafter ARW) were the first 

to point out the existence of the plasmon neutrino process: they 

wrote the interacting electromagnetic four potential in terms of the 

quantized plasma waves (instead of photons), then calculated the rate 

at which this quantum breaks up into a virtual electron-hole pair 

which annihilates to create a vv pai r . Their rate, when account is 

taken of a correction to their work given by Zaidi (1965) and of 

neutral current corrections (Dicus 1972) , is the same as we obtain 

below using the more general current-current correlation function 

formalism . Flowers (1973) uses electromagnetic potential 

autocorrelations to obtain the plasma neutrino rate; his formulation 

follows from ours. 

All of these authors obtain expressions for integrated energy 

loss rates . Here, we focus on the spectra of the neutrinos created 
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and the modifications necessary when Fermi statistics become 

important, as we did in the e+e- + vv section . 

ARW have shown that the r
5 

portion of the weak current 

contributes little to the plasmon neutrino rate . If the vector 

part of the weak current is the only important one, then the weak 

current-current correlation function is approximately given in terms 

of the electron's electromagnetic current-current correlation 

function (in the timelike w ~ k regime): 

c2 
Ve 

"' -2 S Ja JS (wk) 
e em em 

( 5 .17) 

where the electromagnetic current is given by equation 2.2. In the 

W.S . theory, with sin
2 ew = 0.25 exactly, CVµ (which replaces eve 

in 5.17) vanishes; then, the reaction rate for ypl + vµvµ would have 

to be obtained from the axial electron weak current. We do not pursue 

this term here. 

An isotropic plasma , which , neglecting magnetic field effects, 

is the case for collapsing iron cores , has its electromagnetic 

current-current correlation function completely determined by two 

functions, the longitudinal and transverse dielectric permittivities. 

Tiie fluctuation-dissipation theorem, a combination of A3.16 and A3.13 , 

gives 

(5 . 18) 

where x" is the absorptive response function (A3 .15), the Fourier 
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transform in space and time of one-half of the connnutator of the 

electromagnetic current, a S 
[Jem(x) , Jem(0)]/2. The Planck distribution, 

which multiplies x" , 

fpo (w) = 
.{.. esw -1 

1 
(5.19) 

will turn out to be the distribution function for the plasmon. 

Following Sitenko (1967) and Martin (1968), we may write the 

absorptive response function in terms of the complex dielectric 

permittivity .tensor, the complex conductivity tensor, the complex 

electric susceptibility tensor, or the complex magnetic permittivity 

tensor: they are all related to each other. For isotropic plasmas, 

the dielectric permittivity tensor is 

where £,e_ and £t are the longitudinal and transverse dielectric 

constants, and the absorptive response function for the spatial current 

is 

2 lk.k . Im £0 ( k.k.j ( 2 k2)2 ) - w 2-.J_ .{.. --2:._J_ w -
(kw) - 4~ 2 2 + 0ij - 2 2 2 2 Im £t 

k I £ ,e I k I w E: t-k I 
(5.20) 

The charge density-charge density dissipation is obtained from 

5.20 by the application of current conservation: 



136 

(5.21) 

and similarly, the remaining response functions are 

x" Xji 
kj 

X~i Jj Ji = 
P em P e.m w em em e.m em 

wki Im E,e_ 

4TI lt:,e. 12 
(5.22) 

All terms depending upon charge density fluctuations, namely 5.21 and 

5.22, only involve the longitudinal dielectric permittivity. The 

fluctuations transverse to the direction of wave propagation, k , only 

involve the transverse current. When the Coulomb gauge (V·~ = O) is 

chosen for the electromagnetic potential, the vector potential couples 

only to the transverse current: the resulting collective mode obeys 

the dispersion relation of the photon, w=k, at high frequency and 

short wavelength. · The decay of this photon-like transverse mode turns 

out to dominate the vv energy loss. Our results, however, which only 

depend upon current-current correlation functions are gauge invariant. 

The longitudinal term is a charge density fluctuation: it is 

the self consistent scalar Coulomb field which oscillates driving the 

osciJlntions of the individual ch a rged pa r tic les , which in turn a re 

the source of the field . 

The expressions 5 . 20 , 5.21, and 5 . 22 are quite general . 
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Whenever the longitudinal and transverse photon propagators, 

2 -1 
(k El (w,k)) and (w2 ( k) k2)-l h Et w - , ave poles, the poles 

dominate the behavior of the dielectric constants. The dispersion 

relations for longitudinal and transverse plasma waves arise from the 

solution to the pole position equations: 

longitudinal: w = wl(k) (5.23) 

transverse: w 0 (5. 24) 

Generally, the functions wl and wt have both real and imaginary parts, 

the latter giving the negative of the damping rate (Yl = - Im wl(k), 

yt = - Im wt(k)) . Hereafter, wl(k) denotes Re wl(k) and wt denotes 

Re w.t(k) . When damping is sma 11 (w l » Y l) , we have 

(5.25a) 

(5 . 25b) 

A similar set of relations define wt and Yt , except the right hand 

side of 5.25a is k2 instead of zero . The damping times, Y~l and Yll 

include Landau damping (called Cerenkov absorption by Tsytovich 1961) 

and pair production. Tsytovich (1961) calculates the dielectric 

permittivities in the random phase approximation for a quantum 

electron plasma with a fixed positively charged background (the ionic 

plasma frequency is small compared with the electron plasma frequency), 



and from these obtains wl , Yl and wt , Yt . 

The expressions Tsytovich gives for El and Et must in general 

be evaluated numerically . In the e.r. , e.d. limit, when terms of 

order w/µ and k/µ can be neglected, simple results are obtained 
e e 

(ARW and Beaudet et al. 1967): 

El = 1 -(~ r (1 + l k2) 
5 2 

w 
(5.26a) 

Et = 1 - (~) 2 (1 + .!. k2) 
5 2 

w 
(5.26b) 

from which the dispersion relations 

2 

(1 + ) 2 w 
/i+l2k2/sw2 

wl = _E_ 
2 p 

(5 .27a) 

2 
w2+k2 

(1 + 
4k

2
/Sw

2 

) E l+ 
p 

wt 2 
(l+k2/w2)2 

p 

(5. 27b) 

follow. Here, the plasma frequency (for electron and positron 

oscillations) is given by 

(5.27c) 

where n is the degeneracy factor of the electron . In the e.d . limit, 

a Sommerfeld expansion yields the approximate relation (which is 

adequate for our purposes) 
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(5 .28) 

10 Thus, w exceeds 1 MeV when pY ? 4.2xl0 g/cc , and exceeds p e 
-1 B = kT when n i s in excess of ~ 18 ; lines of constant n are lines 

of constant Bw 
p 

In the neighborhood of the plasma wave resonances 

w = ±wl(or ±wt) , the terms appearing in the absorptive response 

functions are of the clas sical Lorentz form with width 2Yl (or 2yt) , 

and these approach delta functions in the limit of infinite resonance 

lifetime: 

Im El 
2 

wl yl 
2 a 2 2 2 

' El l aw (w El) (w-w l (k)) + yl 

( 5 . 29a) 

2 

yl-+ 0 
wl 

1T o(w-w.e_) a 2 
aw (w El) 

(5.29b) 

Im Et 1 yt 

lw
2
Et-k

2
1
2 2 a 2 2 + y2 

w.t ~ (w Et) (w-wt) t 

(5. 30a) 

1 
Y;t -+ 0 1T o(w-w;t) 2 2 

wt a(w Et)/aw 
(5.30b) 

Here, we have focused only on the w > 0 part. The w < 0 part is the 

same except that the Lorentzian and delta function argmnents are 

We now put 5.29b and 5.30b into the absorptive response 

functions, relate these to the current-current correlation function 



140 

by 5.18 and 5.17, then use A3.20 to obtain the production kernels 

R~t) (q,q') + R~l) (q,q') (5. 31) 

as the sum of two terms, one due to the decay of transverse plasmons, 

the other due to the decay of longi tudina l plasmons : 

R~j)(q,q') 2Tr a< I w 1-w .) 
J 

Here, 

= 2 (1 _ (v+v ' ck)
2
(v'+vc)) <l>t(v,v',c) 

j 

k
2 

2 
<l>l(v,v',c) = ~ (l+c)-l-3c+2(v+v ' c)(v ' +vc)/k 

w 

l,t (5.32) 

(5.33a) 

(5.33b) 

If we follow the path of ARW and quantize the plasmons, we 

also obtain 5.32 . 

The presence of the delta function in these kernels implies 

that for given v and v' , there is a unique k . satisfying 
J 

(J.) . (k.) 
J J 

v+v I j (5 . 34) 

and therefore the angle between the outgo i ng neutrino and antineutrino 

(whose cosine is c) is uniquely determined: 
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c. = (k: 
J J 

If k . is not within the kinematically allowed range , 
J 

(5.35) 

lkml ~ kj ~ lw l , where km= v-v' , then no decay is possible . For 

the transverse plasmons, only the lower bound imposes a constraint on 

the allowed values of v and v ' . For longitudinal plasmons, both 

lower and upper bounds ac t to severely restrict the possible neutrino 

and antineutrino energies created i n the decay; fo r example , k . ~ lwl 
J 

implies v+v' ~ 18/5 wp • The relevant regimes in wkm space or 

equiva lently vv ' space a r e shown in Figure 19. If we reinterpret k 
m 

to be k, then this figure gives the dispersion relation curves (5 . 27); 

the transverse dispersion relation (5 . 27b) differs little from the 

often quoted w 
2 = w2 + k2 

p 
(to with i n 'U 5%) . 

The restrictions on v and v ' are expressed by means of 

characteristic functions for the kinematically allowed regions : 

(5. 36a) 

(5.36b) 

where 8 is the Heaviside unit function . 

The delta func t ion makes the evaluation of production moments 

(3 . 24c) strai ghtforward : 

R (.t) ( v ' v I) 
pL [

G2C2 w4J 
2 2 Ve p 

1T 2 2 
41T e 

(5 . 37a) 



R(.t) (v,v') 
pL [

G2C2 w 4] 
2 2 Ve p 

1T 2 2 
41T e 

5 
l2vv' 
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(5.37b) 

where PL is the Legendre polynomial of degree L. If all energies 

are measured in MeV, then the term in square brackets is 

2 4 -1 -1 
numerically 0.7 CV w (s MeV ) which sets the scale. To obtain 

e p 

the v v rate, CV is replaced by CVµ µ µ e 

In Figure 20, the L = 0 moments are plotted against the 

antineutrino's energy v' for various neutrino energies vat the 

12 
conditions T10 = 6.24 and pYe = 3.8xl0 g/cc (wp = 4.5 MeV) possibly 

characteristic of a first bounce. The transverse moments are zero 

up to some critical value at which they peak and then fall off 

almost exponentially; the falloff rate is steeper for lower 

temperatures and less steep for higher ones. The longitudinal 

kernels are quite spiked, centering about v' = w -v which reflects the 
p 

extreme constraints imposed on the allowed range of v and v' values. 

These moments are more difficult to deal with numerically than the 

more gently rising and falling e+e_ moments (c.f. Figure 15). They 

are adequately treated using bin averaging, provided the energy bin 

sizes are sufficiently narrow: clearly, bins of width 5 MeV will not 

do (as they can in the e+e_ case); rather 0.5 MeV bins are preferable. 

It is therefore difficult to deal with both plasmon and pair 

production at the same time. 

The absorption kernels are obtained from those for production 
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by using 5.14. 

The integral of the production moments over the antineutrino's 

phase space ((v 1
)

2
dv'/2TI 2) gives the rate to create a neutrino of 

energy v per unit phase space . These integrals mus t in general be done 

' 
numerically. Transverse and longitudinal spectra are given in 

Figure 21 for the conditions of Figure 20 . The transverse rate clearly 

dominates over the longitudinal rate . Multiplication of these rates 

by v2/2TI yields the number of v 's created per unit time per unit 
µ 

energy : this quantity peaks at ~ 2 MeV and has a much shallower falloff . 

Since vector current dominance has been assumed, no VA 

interference appears, and the v and v spectra are identical; the 

moments 5.37 are invariant under the interchange of v and v'. 

The plasmon neutrino spectrum is of low energy relative to the 

pair annihilation spectrum,as can be seen in Figure 22 taken at the 

same temperature as in Figure 20 , but at the less dense pY = 
e 

12 l.13xl0 g/cc (w ~ 3 MeV) , and again in Figure 16 under the much 
p 

hotter conditions T10 = 12 , w ~ 4 . 3 MeV . 
p 

The line of demarcation 

between plasmon and pair dominance is drawn in Figure 18 for equal 

energy loss rates; the line for equal v production rates is to the 
µ 

left of the equal energy line due to the very different mean neutrino 

energies. Further, the energy dependence of the opacities (~ v2) 

implies that the v 's and v 's produced by annihilating positrons are 
µ µ 

more easily trapped than those produced by decaying plasmons. 
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6. THE EVOLUTION OF THE NEUTRINO DISTRIBUTION FUNCTIONS 

In this chapter, we present our detailed numerical results on 

the behavior of neutrinos in the various stages of gravitational 

collapse. The first section focuses on the early evolution of the 

core, when it is still transparent to neutrinos, by following the 

trajectory of the star in pTY space to the onset of trapping, which e 

occurs at a density p;tJrap• We then solve the P-0 equations for the 

evolution of the v distribution function to equilibrium at a density 
e 

above P:tftap to elucidate the roles of the various neutrino processes 

involved (section two). In section three, the effects of diffusive 

transport on the approach to equilibrium are considered in a simple 

model; tlwn dynamics is included. At a higher density than p :tftap , 

which we call p (v ), the neutrino distribution function is, to a goo6 
eq e 

approximation, Fermi-Dirac. From this stage on, the equilibrium 

diffusion approximation in the core is satisfactory; this is the 

subject of section four . This (probably) takes us through the first 

hydrodynamical bounce and the large v flux associated with that event . 
e 

When do v 's and v 's produced by thermal processes approach an 
jJ jJ 

equilibrium distribution? When does the flow of energy in these v v 
jJ jJ 

pairs compete with the flow due to the neutronization v 's? These 
e 

questions are the subject of section six, in which we also address the 

role of v 'sin the transport. At some density, max(p (v ), 
e eq e 

Peq(vJJ), Peq(vJJ).,peq(ve)), all of the neutrino types are in 

equilibrium . The core of the star then evolves in one of two directions: 

towards a black hole or towards a neutron star. A brief synopsis is 
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given of these latest stages of evolution in section seven . Finally, 

detailed nLUnerical solutions are given for the P-1 equations and the 

flux-limited diffusion equations for Arnett's (1977) pre-bounce core 

and mantle structure, which we take as static ; t hese two methods of 

spatial transport are tested in a configuration which bridges the 

diffusive flow in the core to the free s t reaming in the mantle . 

6.1 THE TRANSPARENT PHASE 

This section is based on Epstein, Norgaard , and Bond (1978), 

which we hereafter call ENB. ENB follow the thermodynamic evolution 

of the central zones of the star up to the point of neutrino trapping . 

When the core of a star with mass 2: 8 M
9 

passes out of silicon 

burning, its central temperature is ~ 4xl09K and its density is between 

8 10 
~ 10 g/cc (appropriate to higher mass star s) and ~ 10 g/cc 

(appropriate to lower mass stars) . The evolution through core silicon 

burning, especially for lower mass cores (which experience a 

hydrodynamic core silicon flash) , is not well understood (Arnett 1977a) ; 

once past it, however, the iron/nickel core evolves hydrostatically, 

and the mantle and core evolution are coupled ; later, the core falls 

away from the mantle when dynamical collapse ensues . 

To follow the evolution of the cen t er of t he star without 

doing a full hydrodynamical calculation , we assume the central density, 

p , varies with time according to c 

/24nGp 
c (6 . 1) 
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and parametrize the factor xe00 (pc) , which gives the deviation of 

the central density's evolution timescale from the instantaneous 

freefall time (24nGp )-l/ 2 , by 
c 

(6.2) 

where x0 , 8 , and Po are three parameters which we are free to vary. 

Equation 6.1 is easily integrated to yield pc(t), which becomes 

-1/2 
infinite after 446po xo/(-8) seconds. 

To calibrate x0 and S , ENB compared the solution of 6.1 with 

the detailed hydrodynamical calculations of core collapse of Arnett 

(1977), Wilson (1976), and van Riper (1978). We find S = -1 fits 

12 rather well up to~ 10 g/cc. Arnett's central trajectory (see 

Figure 10) is fit by x
0 

= 137 using his starting density 

9 p
0 

= 3.7xl0 g/cc ; the transition from hydrostatic evolution towards 

freefall (but always far from it) is manifested by the behavior of 

11 
Xeoo which drops from its starting value of 137 to 26 at 10 g/cc and 

to 8 at 1012 g/cc. 

In our detailed calculations, we allowed x0 to vary from 15 to 

225, 8 10 
Po to vary from 10 to 10 g/cc, and have tested 8 = -1/2 as well 

as S = -1; we further varied the other initial conditions, the starting 

temperature and Y 
e 

Typically, it takes about one second to pass from 

109 to 10
12 

g/cc, with the last order of magnitude in density (1011 to 

10
12

) traversed in < 10 ms. 

The center of the star responds to this imposed rate of 

compression by heating up, r;_idiating neutrinos and losing lepton number. 
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This thermodynamic reaction to the compression action and its 

consequences is the focus of ENB . We solve the energy equation, 3 .17c, 

and the neutronization equation, 3 . 17b . 

The assumption of neutrino transparency simplifies the 

detailed form of the neutrino source functions , which appear on the 

right hand side of 3. 17c and 3.17b; equations similar to 5.5b , 5.5c, 

5.7a, 5.7b are needed (with the Q-values included) for the reactions 

e-+p + n+v , e-+AZ + A(Z-l)+v , and e+ +n + p+v ; we take these 
e e e 

from Epstein and Arnett (1975)(EA) which is discussed in section 5.3 

of Chapter 5 . 

ENB also include thermal vv loss rates (sections 5.6 and 5.7) 

in 3.17c; these are obtained from BPS (Beaudet et al. 1967) with 

modifications to include neutral currents: their e+e_ rate is 

multiplied by (c
2 +c2 

)/2 + (c
2 

+c
2 

)/2 Ve Ae Vµ Aµ for both v v and v v 
e e µ µ 

production (.73+.13 here with sin
2 ew 0.3); their photoneutrino rate, 

which is negligible compared with these other two mechanisms here, 

should be multiplied by the same (e+e_) factor; their plasmon neutrino 

rate is multiplied by (C~e~µ)' 1.21 plus .01 here. In these early 

phases,v 's from electron capture dominate the energy loss by typically 
e 

five orders of magnitude in the ENB runs. 

We also need the internal energy of matter per baryon and the 

matter pressure in order to solve 3. 17c : 

(6.3) 

(6.4) 
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The internal energies and pressures obtained from the independent 

particle model are £
1 

, p
1 

(ideal gas equation of state (EOS) for 

nuclei), £ , p (ideal gas EOS for electrons and positrons) and e e 

£nuc , the nuclear binding energy per baryon. Here, nucleons are 

nondegenerate, and thus 

3/2 Y1 kT ( 6. Sa) 

P = Y1 kT 
I 

Y
1

(p,T,Y) = ""Y.(p,T,Y) 
e ~ J e 

J 

(6.Sb) 

(6.Sc) 

where Y1 is the total number of nuclear particles per baryon, with the 

sum in 6.Sc over all nuclear species j. The electron energy is the 

familiar relativistic Fermi gas formula (3.71 if the subscript e 

replaces the subscript v), and Pe= EePB/3. If B. is the (positive) 
J 

binding energy per nucleon of the species j, A. its atomic number, and 
J 

g.(T) its partition function, then 
J 

Enuc 
alng. 

=-l:B.A.Y.-L: aaJ 
. J J J . 
J J 

Y. - (m -m )Y 
J n p e 

Generally, the partition function term is very small and can be 

ignored. 

(6. 6) 

The potential energy between particles gives rise to interaction 

corrections to the internal energy and pressure obtained from the 

independent particle model. In the early stages of evolution, strong 

nuclear forces between nuclei are unimportant; they cannot be neglected 

in the post bounce environment, however, and cause changes in Enuc . 



149 

The Coulomb interaction between ions (nuclei) has, as we saw in 

section 4.4 of Chapter 4, an effect on the elastic scattering of low 

energy neutrinos off nuclei. Ion-ion correlation also affects the 

EOS; in fact, ECou1. is related to the integral of the product of the 

interparticle Coulomb potential and the radial pair distribution 

function, whose Fourier transform is, in turn, related to the static 

liquid structure factors (4.29) . Hansen et al. (1977) fit their 

Monte Carlo calculations for a multicomponent plasma to the form 

( 6. 7 a) 

(6.7b) 

where A
1 

= -0.90, B
1 

= 0.70, A2 = 0.27, and B2 = 1.32. Here, r. is 
J 

defined by 4.31 for the species j. This formula gives the Debye-

Huckel limit in the r < 1 regime and the ion-sphere result in the high 

r limit (indeed, in our ntnnerical results we used the latter limit). 

Notice that A1 is negative, and generally ECou1. and Pcoul. are also 

negative; at pll = 2 , T10 = 2 , p1 + Pcou1. is actually negative for 

iron, but positive for helium: the plasma Coulomb interaction desires 

highly charged nuclei which it can keep further apart, acting 

oppositely to nuclear photodisintegration effects. However, throughout 

the ENB run regimes, both ion and Coulomb pressures are swamped by the 

electron pressure (less than 1%), the former due primarily to the 

continued presence of so many heavy nuclei: in the ENB runs, the 
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evolution with and without Coulomb effects is essentially the same. 

The interaction of the nucleus with the plasma modifies the 

binding energy. A simple example of this is again the electrostatic 

effects which give rise to equation 6.7; in the Wigner-Seitz 

approximation, a modified binding energy (which follows from Baym, 

Bethe, and Pethick 1971, Mackie 1976) 

B '. B + 9 
J = j 10 A. 

J 

2 (i y )4/3 
e 3 7T PB e 

reproduces the ion-sphere limit of 6.7 for the electrostatic energy; 

however, the NSE equations which balance chemical potentials contain 

this modified binding energy, which results in nuclear abundances 

somewhat different than those of the independent particle approximation. 

In the ENB regime, the effect is negligible, and the central 

trajectories are virtually identical to those runs without this 

modification included. It is, however, a portent of things to come at 

higher density when these binding energy corrections will grow, both 

this Coulomb term which rises as the density rises, and the nuclear 

surface energy term, which is affected by strong interactions with the 

free nucleons in the plasma (Pethick 1978, Lattimer and Ravenhall 

1978). 

Figures 23 and 24, taken from ENB, present the pT and pY 
e 

trajectories for x
0 

= 75 and 224 , a range of starting densities, and 

9 one starting temperature (4xl0 K). The pT histories of the central 

zones converge towards a conunon trajectory which passes through 

10 11 
~ 2xl0 K at ~ 2.5xl0 g/cc, independently of the compression rate 



151 

and initial density; Arnett's central trajectory (see Figure 9) and 

our x0 = 15 trajectories also fall very close to this convergent one. 

Why do the pT histories converge? An electron is captured 

from somewhere within the Fermi sea, leaving a hole. The Fermi sea 

then settles, lowering slightly the Fermi level, and liberating some 

zero point energy; when the Q-values of the capture reactions can be 

neglected, and the electrons are extremely degenerate, the release is 

µ /6; the other 5µ /6 is taken away by the neutrino. The liberated 
e e 

internal energy can be spent in heating up the electrons and ions (in 

the early stages of the trajectories) or in photodisintegrating nuclei; 

the latter is a refrigerating reaction, initially not very important, 

but as the temperature rises due to heating, this cooling mechanism 

gets larger. In addition to this energy from electron capture, there 

is the PdV work continually supplied by the compression. The latter 

dominates at high density. The convergence is due to a conspiracy 

between the heating and photodissociation (as measured by a heat 

capacity which rises with temperature) and the energy sources. 

If the starting temperature is too hot (for example, 

8xl09 K, which is much hotter than we expect when coming out of 

silicon burning), substantial photodissociation occurs early, the 

above balance condition cannot be met, and one does not have convergence 

to a common trajectory when the starting density is 108 g/cc and 

75 ; the starting densities of 10
9 

and 10
10 

g/cc do converge to 

the common one. 

The pY trajectories show no tendency to converge: if the 
e 
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compression rate is rapid, little neutronization can occur and the 

Y values remain high (Y > 0.4); a slower compression rate gives the e e ...... 

medium time to neutronize, and relatively few electrons may be left 

by the time the neutrinos are trapped and the rapid neutronization 

phase is arrested (Ye ;s 0 . 15) . The Ye curves pass quickly outside 

of the Y = 0.44 boundary of the EA results into regions where 
e 

extrapolations are necessary, both to determine proton and heavy 

nucleus abundances (from NSE) and to determine electron capture rates 

for heavy nuclei. ENB tried many extrapolations, usually requiring 

the EA parameters to linearly approach constant values beyond the 

known regime: high, medium, and low constants (which control such 

things as the heavy binding energy and capture rate) were tried. 

Hopefully, our probe of parameter space beyond Y = 0.44 will cover 
e 

the ranges found in careful treatments of the capture rates for 

neutron rich nuclei and the NSE mixtures in neutron rich media. 

Abundances depend upon the partition functions of heavy 

nuclei: EA assumed only ground state partition functions in their NSE 

calculations, which compares with the value 172 for 56Fe at 2xlo
1° K 

given by Fowler et al. (1978) (FEW), suggesting a large error. 

However, the abundances depend upon a weak power of the partition 

function (Ya~ exp(-(2/ZH)lng) , where ZH is the mean heavy charge). 

At the above conditions, if the partition function of the typical 

heavy is similar to that for 56Fe, the abundance differences between 

g = 1 and the more realistic g = 172 are less than 18% for Y , Y , 
p n 

Y1 , Yo. , and Y
8

. At lower temperatures, the effe~t ir; ev1~n Rmall c~r. 
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The partition function rises rapidly with increasing temperature, and 

later in the collapse the abundances of heavy nuclei may be 

significantly higher than those obtained from the ground state 

partition function. 

Our calculations break down when neutrino trapping occurs . 

The typical time for a neutrino of energy v to diffuse from a 

homogeneous core of radius R is 
c 

T = R /c 
R... c 

(6.8a) 

(6. 8b) 

where TR... is the light travel time across the core and r.vz. is the 

transport rate (3 . 62); r.vz. TR... is the optical depth of the center 

measured from the core's surface . An estimate of the time it takes a 

neutrino to escape from the core is 

( 6. Be) 

If <v) = q/Ye is the mean energy at which neutrinos are produced, then 

a crude criterion for trapping is 

(6.9a) 

where the electron capture and dynamical times are 

y 
e 

t 
ec. . 

y 
(6.9b) 

e 

Pc 
t 

Pc dyn (6.9c) 
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If the neutrinos are created at a rate greater than they can 

diffuse away (tee$ ' uc), the neutrino phase space builds up, 

reducing the number of states available, which lowers the neutronization 

rate below the free escape values ENB used . In the ENB runs, this 

form of trapping does not occur until after the infalling matter's 

velocity (R ) exceeds the neutrino diffusion velocity (R /Tn~ ) and c c .,,,..,c 

the net neutrino velocity is directed radially inward : the neutrinos 

are themselves collapsing, dragged along by the collapsing matter, and 

their phase space builds up . This dynamical trapping occurs when 

'uc >3tdyn; even before this, enough ve's will occupy phase space to 

alter the df, and ENB chose the more conservative criterion 

'uc > tdyn . If the free proton abundance during infall is 

significantly higher than our values derived from EA, such as would 

occur in hotter core collapses, the electron capture rate can exceed 

the diffusion rate before dynamical trapping can occur. 

In ENB, we assume a constant density core of mass 0 . 5 Me to 

compute R , and thus find when trapping occurs : the values are not 
c 

very sensitive to the choice of core mass. In Figures 23 and 24, the 

trajectories become dashed when trapping occurs, unless Y falls less e 

than 0.15 in which case we stopped the evolution. The trapping 

densities 10 3xl011 g/cc, the y values at range from rv 5xl0 to 'V 
e 

trapping can be anywhere from y 'V . 44 to less than . 15: the ran;ge 
e 

depends upon the compression and electron capture rates. The 

integrated neutrino energy loss from this 1/2 Me core in the 

50 51 transparent phase ranges from rv 5xl0 to rv 3 . 5xl0 ergs. What is 
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the effect of these neutrinos on the overlying mantle? 

This depends critically upon the dynamical behavior of the 

mantle. If it is falling inward at supersonic velocities, so the 

inertial term in the equation of motion more than balances the 

pressure gradient, then the neutrino luminosity L = H 
\) 

2 
4nr at 

radius r would have to exceed the Eddington limit obtained by setting 

the inward gravitational acceleration equal to the outward neutrino 

acceleration (Schramm 1976): 

(6.10) 

where (K) is the mean opacity, a functional of the energy flux (3.56b). 

This radiation would have to last for a sufficiently long time to turn 

infall to outflow with velocity in excess of the escape velocity 

calculated at radius r. 

Suppose, however, the mantle is in approximately hydrostatic 

equilibrium: this is certainly true beyond the silicon burning shell. 

The neutrino momentum deposition accelerates a shell of matter outward: 

this does not mean the shell goes out of the hydrostatic balance 

between the matter pressure and the gravitational forces (except the 

heating due to energy deposition causes rapid volume expansion and 

possibly shock wave generation). If the shell expands homologously, 

the hydrostatic balance can be maintained if the electrons are 

relativistic and dominate the pressure, at least until the electrons 
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go nonrelativistic or some other process occurs which upsets the 

hydrostatic balance. The escape velocity required is that for the 

decoupling point, not the initial shell position; the required 

\ 
luminosity may then be a small fraction of the Eddington limit (perhaps 

10 1% for a shell initially at 10 g/cc). 

Even in the most optimistic of circumstances, the 

"transparency" neutrinos do not deposit enough momentum to create a 

supernova event; with the upper end of the neutrino energy range and 

for hydrostatic mantles, ENB find one can come close. 

Diffusion neutrinos from post-trapping carry off more energy 

from the core, but the outer portions of the core (interior to the 

silicon burning shell) are apparently supersonically collapsing 

(Arnett 1977) and thus require an Eddington luminosity for ejection. 

6.2 THE APPROACH TO BETA-EQUILIBRIUM 

What is the form of the v distribution function after trapping, 
e 

and when does it become Fermi-Dirac? This depends critically upon 

the free proton abundances and on the action of nonconservative 

scattering processes. 
11 

We focus here on the density 2.54xl0 g/cc, a 

value beyond the p.t!tap range found in section 6.1 . 

Consider an infinite homogeneous medium consisting of free 

nucleons and electrons (and positrons and photons) which is in strong 

and electromagnetic equilibrium. The weak interaction, initially off, 

is switched on. The system produces neutrinos by the process 

+ n+v , reabsorbs them by v +n + e-+p , and scatters them by 
e e 

v +e + v +e (as well as by v +v + v +v which we do not include) as 
e e e e e e 
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it moves through a series of nonequilibrium intermediate states to 

the final neutrino beta-equilibrium state characterized by the 

balancing of chemical potentials (3.12). The matter is always in 

strong and electromagnetic equilibrium throughout this change of state . 

The other species of neutrinos also eventually achieve equilibrium; 

we deal with those later. Conservative reactions (v +N + v +N) play 
e e 

no role in the transformation, since they do not redistribute neutrinos 

in energy space, and there is no spatial transport in an infinite 

medium. 

The equations describing the evolution of the nonequilibrium 

v distribution function (df) in an infinite medium are the P-0 e 

equations of section 3.9; the system neutronizes (equation 3.17b) and 

heats up due to both electron capture and nonconservative scattering 

(equation 3.17c). We distinguish two cases: the matter plus neutrinos 

undergo an adiabatic transformation to beta-equilibrium (no energy 

transport, the more relevant case) , or an isothermal transformation 

(the medium is in contact with a heat sink which absorbs just enough 

energy to keep the temperature constant). We solve these equations by 

the numerical methods outlined in Appendix 4. Tubbs (1978) used the 

Monte Carlo method to integrate the P-0 equations for an isothermal 

transformation to beta-equilibrium in a free nucleon gas; our 

conclusions and his agree. 

The relevant neutrino rates for this density at the 

temperature 2xlo
1° K and the initial Y of 0.4 are displayed in 

e 

Figure 13. According to this graph, we expect the effect of v e 
e 
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scattering to be small due to the large e-p ~ nv production spectrum. 
e 

This expectation is substantiated by the detailed numerical results 

-5 -4 shown in Figure 25, which gives the df at three times (10 , 10 , 

and 10-3 s) with and without ve ~ ve on. The df at 10-4 s shows the 

neutrinos slightly overproduced at high energy (relative to the final 

equilibrium line); these are subsequently downscattered in collisions 

with electrons, resulting in relatively more neutrinos in the low 

energy bins and relatively fewer in the high energy bins than when 

ve scattering is not included: this nonconservative process accelerates 

the approach to beta-equilibrium. Within a millisecond, the df is FD 

even in the lowest energy bins. At higher densities (or temperatures) 

the transition occurs faster; at lower densities (or temperatures) 

the transition is slower: these expected results are confirmed by 

detailed runs at various densities and temperatures. 

The transformation of Y from its starting value of 0.4 to 
e 

its beta-equilibrium value of .303, and of Y from zero to 0.097 is v 

initially rapid, slowing as equilibrium is approached, as is shown in 

Figure 26; the transition with and without ve scattering is almost 

the same. The temperature as a function of time for the adiabatic 

transformation is also displayed in Figure 26 with and without ve 

scattering: the difference is slight. The adiabatic transformation 

has a slightly higher Y (.306) at equilibrium than the isothermal 
e 

one (.303). 

In NSE at 2xlo1° K, the matter consists of heavy nuclei and 

alphas as well as free nucleons; using the EA prescriptions with the 



ENB extrapolations, we find Y 
p 

~ ~ .57 , where Xa and ~ are 
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-4 
~ l.4xl0 , Y ~ .074, X ~ .36, 

n a 

the fractions of baryons locked in 

alphas and heavy nuclei respectively. Due to this low Y value, 
p 

electron capture on heavies dominates the capture on protons under 

• -1 . 4 -1 
these conditions: Y is~ 4 s for e-p (Y is~ l.lxlO s in the 

e e 
-1 free nucleon gas discussed above), and> 60 s fore-A, with the ,...., 

latter value relatively uncertain; the peak in the e-p production 

spectrum for this low Y condition is off the scale of Figure 13. 
p 

Neutrinos trickle into energy space at a low rate due to this 

production mechanism, are trapped by the conservative scattering 

reactions, and are shaped into a FD df by ve scattering. The 

important role played by nonconservative scattering is made evident 

in Figure 27 which compares the df at equal time with and without 

this process turned on. The equivalent FD df for the v df at 

1.2 ms, displayed in Figure 27b, shows that the conduction 

approximation is not a good one for these conditions. 

As is evident from these two examples, the value of 

Y (Y , p, T) is extremely important in determining the rate of 
p e 

approach to equilibrium. The low Y condition (the lowest cross in 
p 

Figure 23) is app;-irently tlw approp r-i ate om~: th<'-' convergl~n t trn _j ectory 

of ENB passes through this point. At the middle cross, T "' 2. 5xlo
1° K, 

and using g = 134, the 56Ni partition function at this temperature 

according to FEW, we obtain Y ~ .015, Y ~ .16, X ~ .62, and 
p n a 

~ ~ .2: electron capture on free protons likely dominates capture 

on heavies (it does using EA values, but see section 5.3), and 
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Y rv 410 s-l 
e A comparison of Figure 28a and Figure 27 shows how 

this intermediate y accelerates the approach to beta-equilibrium. p 

At the high cross in Figure 23, T "' 3xlOlO K, y 'V 0.1, and the p 

system is similar to a gas of free nucleons; the approach 

equilibritm1 is rapid, in millisecond time scales. 

The lower the Y values, the more important is ve 
p 

to 

scattering in shaping the df to FD and the more necessary are 

differential production rates for electron capture on heavies; the 

trajectories indicate low Y values are indeed likely. 
p 

6.3 THE EFFECTS OF DIFFUSION AND DYNAMICS ON THE ve EVOLUTION 

Neutrinos flow from the point of production. In the 

infinite homogeneous medium discussed in the last section, there is, 

of course, no net transport. Consider instead a finite 

homogeneous sphere, the core of section 6.1; we approximate the 

core itself as one spatial zone, whose transport equation, when 

finite-differenced in space, can be written as 

.6 (O) [n] (6. lla) 

where 

n = no (3/2,v,t) 

is the zeroth moment of the df at the first zone's center. (The 

notation is n(k+l/2, v, t) for zone k; details are given in 

Appendix 4.) The factor e depends upon the value of the df at the 

second spatial zone's center, n(S/2,v,t); for equal mass zones, 
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e 3(1-n(5/2,v,t)/n(3/2,v,t)) (6.llb) 

We replace the diffusion time, 'dinn' by the escape time, 'e6c , 

6.Bc, and thus insert an effective flux limiter in (6.lla). The 

source .O(O)[n] , given by 3.25b,c with only n
0 

included, is also the 

one used in section 6.2. The energy flux at the surface of the core is 

H(v) 
3 v 

= 2n2 n vdi66 (1-n(S/2)/n) (6.12a) 

Here, vdifin = Rc/'e6c is the mean neutrino flow velocity. These 

equations assume there is a uniform fractional drain on the neutrinos 

in the core, with instantaneous transport from the center to the 

surface where they are radiated away. 

In order to integrate 6.11, we must assume some value for the 

df in the second zone: we choose zero, so e 3, and an upper bound 

is provided on transport effects; runs with e = 1 and 1/3 yield 

similar results to e = 3, with the effects of transport slightly less 

pronounced. 

The diffusion time for the pure nucleon gas is shown in 

Figure 13; it is smaller than the millisecond or so required for 

equilibration, and we expect the medium to build to a steady state 

df, which slowly decays toward zero as lepton number and energy leak 

out (although it .heats up due to the µ /6 extra energy). The df 
e 

in the low energy bins is ; not FD; for example, the 0.2-2 MeV bin 

has n = 0.22 at 0.1 ms, which rises to a maximum of 0.29 after a 

millisecond has elapsed, and then falls as lepton number decreases. 
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This bin is fed more by downscatter than by electron capture; both 

compete with the sink , transport at the speed of light . Arnett 

(1976) proposed a scenario in which neutrinos created at high 

energy, where they are trapped, downscatter to stream out the low 

energy window: this does occur, but is no t sufficiently efficient 

to dominate the energy or lepton number t r ansfer due to the small 

phase space available to low ener gy neutrinos. When no ve 

scattering is included, the lowest energy bin is occupied to a lesser 

extent but the core luminosity is only slightly smaller than when 

nonconservative scattering is included; many authors have come to 

the same conclusion (Tubbs 1978, Yueh and Buchler 1977b, 

Lichtenstadt 1977) . 

The neutrinos of high energy ar e in beta-equilibrium; those 

near the neutrino Fermi surface play the dominant role in energy 

transport; the nurober flux per unit energy is almost independent of 

energy, since F ~ v2n Rc/Td and the energy dependence of Td cancels 

2 
the v , leaving n . 

The more realistic NSE composition (of Figure 27) consists 

mostly of heavy nuclei which dominate diffusion through coherent 

scattering; yet the diffusion rate , which looks similar to that given 

in Figure 13, is almost two times larger . The low production rate 

suggests no equilibrium will be achieved; this is confirmed by the 

numerical results (Figure 28b) . 

The dynamical time is similar in magnitude to the diffusion 

11 and production times; at 2.54xl0 g/cc , it is perhaps five times the 
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free fall time, ~ 5 ms. To know what the df looks like after 

trapping but before equilibrium sets in requires density evolution. 

We drive the density by the ENB prescription (6 .1), using x = 0 75 

and 9 g/cc ; we began at 5xl010 g/cc with Y p = 10 = 0.4 and 0 e 

T10 = 1.5 and evolved to 4xl012 g/cc. Throughout most of the 

collapse, electron capture on heavy nuclei dominates the capture on 

protons due to the low Y values obtained from EA: Y does not rise 
p p 

beyond 10-3 until~ 1012 g/cc. Here, we include only electron 

capture on free protons; the neutronization is then much smaller than 

11 that evident from Figure 23, and trapping here (~ 7xl0 g/cc) occurs 

well after trapping there (l.3xl011 g/cc). The df at various 

densities during the collapse is displayed in Figure 29: only 4% of 

the leptons have radiated by 5xl011 g/cc; trapping occurs before 

7xl011 g/cc; by 3xl012 g/cc, neutrino beta-equilibrium has definitely 

set in. 
12 

The number flux peaks at the density 4xl0 g/cc when it 

is 4xl057 v /s; at l.4xlo12 it is only 6% less. 
e 

The trajectory during dynamical collapse is similar to the 

convergent one of ENB except in the initial phases: we start a little 

hotter, relax to the convergent trajectory, then follow it, passing 

10 11 through 2xl0 Kat 2.6xl0 g/cc. 

12 
From this collapse, we find p (v ) ~ 3xl0 g/cc; if the e.q e 

Y values are higher or if electron capture on heavy nuclei is 
p 

included, equilibrium would set in below this density. 

6.4 THE EQUILIBRIUM DIFFUSION APPROXIMATION 

Once p exceeds pe.q(ve), it is natural to use the equilibrium 
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diffusion approximation (EDA) to describe the transport . At prior 

times to this , and at densities in the outer regions of the core less 

than this, the df does not look much like a FD df : thi s suggests the 

conduction approximation is not a good one at these densities and 

temperatures , a conclusion which hinges upon the inability of 

nonconservative scattering to redistribute the high energy neutrinos 

at a sufficiently rapid pace to keep abreast of the diffusive 

depletion in the low energy bins . Ideally, one would couple the EDA 

in the inner core to an energy dependent transport scheme such as 

flux limited diffusion in the outer core. 

To· use the EDA in the interior region , it is necessary to 

know the neutrino diffusion constants (3.67c); generally , these must 

be obtained numerically. A useful limit occurs when the neutrinos 

are extremely degenerate : the number and energy flux follow only the 

neutrino chemical potential gradient 

F 
\) 

H 
\) 

3 
a µv 

=-D --
0 ar 67T2 

If e-p + nv dominates the transport rate, 
+ e 

= c
2

/ (3f'(µ )) 
a v 

(6 . 13a) 

(6 . 13b) 

(6 . 14a) 

where r' is the modified absorption rate (3 . 31 , 5 . 3, 5 . 4) , or if 
a 

vA and vN scattering dominate (4.8, 4 . 36) , 
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(6.14b) 

the diffusion constants are independent of k = 0 , 1,2 and equal to 

the energy dependent diffusion constant (3.63) evaluated at the 

Fermi surface. If vN scattering dominates when nucleons are 

degenerate, 6.14b again holds. If absorption and scattering are 

almost equal, the situation is more complicated: the Rosseland means 

-1 
are of (rtJt,eovi6 + r~) , and diffusion constants for different 

processed do not add. In the 6.14a orb limit, D
1

/D
0 

is one in 

6.13b: it is as if each escaping neutrino carries the neutrino Fermi 

energy. 

These simple results allow us to estimate the mean time for a 

neutrino to random walk ' its way from the core : it is the diffusion 

time for a neutrino at the Fermi surface 

(6.15) 

If Y does not change in time, then µ rises as the one-third 
v v 

power of the density, and the diffusion time from the core rises 

linearly with p . By 1013 g/cc, this time is ~ 100 ms for µ = 50 MeV, 
v 

much longer than the dynamical time. 

If we define the logarithmic gradient of the chemical 

potential by 

aln µ 
v 

aln r 

then 6.13 takes on a form similar to that obtained from the 

(6.16a) 
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approximate diffusion treatment of section 6.3: 

(6.16b) 

(6.16c) 

where ~ is evaluated at the core surface. As the core shrinks, its µ 
-2/3 surface area falls as p : the lepton 

-1 falls as p , the core luminosity falls 

2 number flow rate (4nR F ) 
c v 

-2/3 as p . Neutrinos are 

therefore confined to the inner core at high density. 

Further out in the core, however, neutrinos are still being 

created in a neutronization shell and efficiently transported from it ; 

these v 's dominate the flow after the onset of strong inner core e 

trapping. 

6.5 THE HYDRODYNAMICAL BOUNCE 

The neutrinos are now collapsing with the matter, exertinB the 

pressure of a relativistic gas which just adds to that of the 

electrons. The nucleon thermal pressure becomes important in matter 

heating. The adiabatic collapse will tend to follow a p ~ T312 

trajectory: this phase is already evident in Arnett ' s (1977) pre-

bounce trajectory, even in the pY plane (see Figure 18). The 
e 

-3/2 degeneracy factor of the nucleons, nN ~ YNpT remains approximately 

constant in this adiabatic infall if the abundances do not change 

too much. The nucleons may or may not be degenerate; it depends upon 

the earlier evolution (compare Arnett (1977) and Wilson (1977) in 



Figure 9). 
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-3 The electron degeneracy factor, n ~ pT ,falls in this 
e . 

heating phase. The poorly known hot nuclear matter equation of 

state is needed. 

At a density which depends crucially upon this EOS (van Riper 

1978), the core bounces, and a shock wave propagates outward through 

the star, exerting a force on the infalling matter which may or may 

not cause ejection. The core expands and lowers its density before 

falling in again; the neutrino diffusion time decreases, and a 

neutrino diffusion wave travels through the core, probably at a 

lower speed than the shock wave. The interplay of the neutrinos and 

the shock has yet to be adequately treated (Bruenn et al. 1978). 

Some numerical work indicates the neutrinos at the bounce act to 

soften the effect of the shock, and hinder explosion (Bruenn 1975, 

Wilson 1977); other work suggests neutrinos and the shock may work in 

tandem as a one-two punch to produce a supernova (Bruenn et al. 1977). 

There may be more than one bounce (Wil$on 1977); with each 

bounce, there is a neutrino pulse superimposed upon the steady 

diffusion wave whose intensity is decreasing as the collapse continues; 

if the bounce occurs at very high density (beyond that of normal 

nuclear matter), trapping will be so strong that these diffusion 

pulses will be weak. During bounce, the center's trajectory can 

make wild excursions in the pT (and pY ) plane; the core may then 
e 

settle into a final adiabatic collapse in which core heating 

continues. 
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6.6 THE ROLE OF v , v , and v 
µ µ e 

Prior to the onset of neutronization, vv pairs of both 

electron and muon (and perhaps tau) types dominate the stellar 

luminosity . In the transparent phase, vv pairs created in either the 

plasmon or pair neutrino processes contribute only a small fraction 

to the total luminosity. When do these thermal pairs rival the 

neutronization neutrinos as liberators of the released gravitational 

energy? 

If v v pairs are freely streaming , and Q(v v ) is the 
µ µ µ µ 

energy loss rate per baryon via the plasmon and pair processes, 

then the luminosity of the homogeneous core is 

L 
v v 

µ µ 
Q (v v ) 43 

µ µ 
(6 . 17a) 

If the electron neutrinos are extremely degenerate , then an estimate 

of their luminosity is obtained using 6.16c 

L 

When 

v 
e 

L 
v v 

µ µ 
> L 

v e 

we may expect the radiation of v v pairs to once agai n become 
µ µ 

important. 

(6 . 17b) 

(6.17c) 

To calculate 6 . 17b , the composition is needed to determine 

p we assume a free nucleon ga s with Y frozen at 0.2, Y = 0 . 8, 
v e n 



Y = 0.2; µ is then almost equal to µ , Y is almost one half Y 
p v e v e 

We also assume ~ = 1.0 and take the core mass to be our canonical µ 

one half solar mass. 

The regions when freely streaming v v radiation exceeds 
µ µ 

diffusive v radiation are displayed in Figure 18. The core must be 
e 

quite hot before we need to worry about muon neutrinos; however, these 

demarcation lines are crossed when the core enters into its p ~ T312 

heating stage, as we can see by extrapolating Arnett's T-pY 
e 

trajectory according to this law. 

A mixture in NSE under these conditions likely has fewer free 

protons, but almost as many free neutrons present: µ will be smaller 
v 

than our estimate, and the neutronization/thermal pair boundary will 

be lower (in temperature) in Figure 18 . 

Are the muon neutrinos really freely streaming? They 

experience the same vN and vA scattering as electron neutrinos. Are 

they trapped instead? 

To answer this question, we solve the P-0 equations: there is 

one equation for the v df and one for the v df; each type has the 
µ µ 

nonconservative scattering source 3 . 25c as well as the vv pair 

creation source 3.25d; this latter source couples the evolution of the 

two df's. Special attention must be paid to the numerical methods 

used to integrate these equations due to this coupling, the sharply 

spiked character of the plasmon neutrino kernels, and the five or 

more order of magnitude difference between the production and 

scattering times : these are discussed i n Appendix 4. 
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We begin with the conditions labelled Yp.l in Figures 9 and 

18, l.9xl013 10 p = g/cc, T = 6.24xl0 K, y = 0.2 , µe = 81 MeV . The e 

..e. = 0 moments of the production kernels are shown in Figure 20 

(which are bin averaged before they are put into the finite 

difference equations) and the v and v spectra are displayed in 
µ µ 

Figure 21. 28 -3 -1 The plasmon rate (~ 3.13xl0 erg cm s ) dominates the 

+ - b f f 3 1 h 1 h e e rate y a actor o : we neg ect t e atter ere . We include 

v +v + v +v , v +v + v +v as well as v +e + v +e , v +e + v +e µ e µ e µ e µ e µ µ µ µ 

the v 's are degenerate and in beta-equilibrium and we use the 
e 

prescription of section 4.7 to evaluate the source term for this 

nonconservative scattering process: with a v chemical potential of 
e 

72 MeV (Y = 0.2 , Y = 0.8), this process dominates over v e p n µ 

scattering. In order for the final equilibrium condition 

0 

to hold, we also include the annihilation vµvµ + Ypl" 

The resulting v df at a number of timesteps is illustrated 
µ 

in Figure 30. At early times (O.l ms, 1 ms), the df mainly reflects 

the production spectrum which is peaked near zero energy. As time 

passes, the v v and v e processes upscatter neutrinos from the low µ e µ 

energy bins where they are produced to higher energies, thereby filling 

the tail of the df. By 235 ms it is an excellent approximation to 

assume the neutrinos are in "kinetic equilibrium" characterized by a 

FD df with a negative n which is determined from equation 3.70 
v 

relating n to the calculated Y of the df . The antineutrino spectrum 
v v 



looks quite similar. The two second df shown in this figure has no 

v v turned on and was calculated using a different numerical method µ e 

which has problems in the upper energy bins. 

How does transport affect these results? The light travel 

time across the core is 7.4xl0~5 s : this is the confinement time of 

neutrinos with energy less than 1.3 MeV. The diffusion time (with 

2 vn + vn and vp + vp included) then takes over, rising as v where 

v is the neutrino energy; it is about a millisecond at 5 MeV. The 

bulk of the neutrinos are produced with less energy than this, and 

nonconservative upscattering is not efficient enough to smear out the 

production spectrtnn into an equilibrium one before the neutrinos 

escape . This behavior is what we find in the detailed numerical 

solutions (Figure 30): a very small steady state distribution results 

after~ 1 . 5 ms has elapsed . 

The conditions of Figure 22 (pY 
e 

12 = l.13xl0 g/cc , T10 = 

fall near to Arnett ' s trajectory . The pair neutrinos dominate 

6.24) 

production . The average v energy is ~ 35 MeV : these neutrinos will 
~ 

be trapped and have time to thermalize by nonconservative scattering. 

On the other hand, the plasmon v ' s are of low energy and will almost 
µ 

freely stream. The v transport exceeds this radiation here . 
e 

The extrapolation of Arnett's trajectory passes through our 

+ -v /v v demarcation line at the point labelled e e in Figures 9 and e µ µ 

18 : T10 = 12 , pYe = 4xl0
12 

g/ c c . The plasmon spectrum exceeds the 

pair spect r um on l y at low energ i es (Figur e16); its integrated loss 

rate is much smaller : we neglect it here . Again, the v v scattering 
µ e 
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rate dominates the v e rate (Figure 31). In Figure 32, three stages 
µ 

of the v evolution are shown: by one millisecond, the v df is 
µ µ 

approximately in kinetic equilibrium with ti = -2.8 , and it remains 
v 

a FD df as continued production drives nv towards zero . Notice that 

the 0.75 second histogram has overshot the final n = 0 df: with 
v 

our numerical methods, v v + e+e_ has failed to arrest the growth 
µ µ 

in the neutrino number since it is numerically tiny compared to the 

scattering rates . 

The transport time due to neutrino nucleon scattering 

(Figure 31) is extremely rapid; the corresponding diffusion times 

are quite long, especially at the (high) mean production energy. The 

pair annihilation neutrinos are trapped for a sufficiently long time 

for v v , v e , v v , and v e scattering to shape the production 
µ e µ µ e µ 

spectrum into a FD spectrum, a result confirmed by the numerical runs 

(the histograms are very similar to those in Figure 32). 

The conduction approximation is therefore applicable to pair-

produced neutrinos at least by the point of crossover into the v v µ µ 

region above the demarcation line in Figure 18, and probably well 

before (by Figure 22's conditions). We expect the same will hold true 

for plasmon-produced neutrinos by the time the demarcation line on the 

plasmon dominated side in Figure 18 has been crossed since the 

densities are so high there that even low energy neutrinos will be 

effectively trapped, and higher temperatures give more upscattering; 

no runs have been performed to check this yet. 

Even though the chemical potentials are negative, the flow is 
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still down these, as well as temperature, gradients: the 

constitutive equations 3.67a,b,c still hold for the nt.nnber and 

energy flux. The diffusion coefficients are those appropriate to 

Maxwell-Boltzmann df's; if the energy dependent diffusion coefficient 

has a power law dependence on v , 

D ( v) 'V v -a (6 .18a) 

with a = 2 for nondegenerate nucleons, 3 for degenerate nucleons (and 

low energy neutrinos), then 

D = (k+2-a)! D(T) 
k (k+2)! k 0,1,2 (6.18b) 

These constitutive equations then enter 3.58: 

~t (Y(v )+Y(v )) + 4TI ~b r
2

(F (v )+F (v )) 
o µ µ o vµ vµ 

- + . 
2(Y )(Y ~ + v v +e e- + v v) 

\)µ p µ µ µ µ 
(6.18c) 

~t (u (v )+u (v )) + .! (u (v )+u (v )) ~t (__!_) 
o v µ v µ 3 v µ v µ o PB 

\ 

+ 4TI ~b r
2

(H (v )+H (v )) 
o vµ vµ 

(6.18d) 

. 
where Y and u are given by 3. 70 and 3.71 respectively, and Y and 

\) \) \)µ . 
Q are the free streaming number and energy production rates per baryon 

for these thermal processes (A2.41 and A2.43 for e+e- + vv). The 

constraint 

(6 . 18e) 
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is imposed upon these equations. 

In fact, energies and currents of the electron neutrinos should 

. 
be added into 6 . 18d, and 6.18c is augmented by the Y equation or else 

v 
e 

the temperature would be overdetermined. 

The production described by the right hand side of 6.18c and 

d causes nv to build towards zero . If we continued describing 

evolution by these equations, we would overshoot zero: there is no 

shutoff mechanism on the production side at equilibrium . As nv nears 

zero, the Maxwell-Boltzmann diffusion constants 6.18b no longer hold. 

Once it is zero, we cannot use 6.18 ; rather, we should use the EDA, 

3 . 67b with n = 0 plugged into 3 . 58a and the production side set to 
v 

zero: production balances absorption. For example , when a= 2 , we 

obtain 

[i~~J (6.19) 

from the gray energy equation; the constant coefficient in square 

2 
br~c kets (5/(7n )) is instead n

1
/6n

3 
if the gray muon neutrino number 

transport equation is used, where 

00 

L 
n=l 

(-l)n+l 
k 

n 

The temperature is again overdetermined by these differing equations. 

The solution to this dilemma is to ignore the muon number equation , and 

use in the energy transport equation the constitutive equation for 

the full H summed over all neutrino types; we still need the electron 
v 
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lepton number conservation equation 3.59c to determine µ 
\) 

e 
Muon neutrinos are not freely streaming and the demarcation 

line of Figure 18 does not really reflect the boundary between v 
e 

and v v dominance of the energy flow . The v plus v flux satisfies µ µ µ µ 

H (v +v ) 
\) µ µ 

T3 ClT = -D(T) 
6(hc)3 Clr 

which leads to a core luminosity of 

L 
1 T4 ( !!.. <PT 

'dlnncvµ;T) 6(nc) 
3

pB 
\) \) 3 µ µ 

<PT 
Cllvt T 

- Clbt r 

(6.20) 

3 
1T RcpB) (6.2la) 

(6.2lb) 

The ratio of the power in v v to the power in v (6 . 17b) is then 
µ µ e 

L 

L 

\) \) 
µ µ 

\) 
e 

(6.2lc) 

1T
2/3n 2 

(6.2ld) 
\) 

e 

If we neglect the opacity due to absorption which affects v and not 
e 

2 
v , the ratio of diffusion times ~ n for nondegenerate nucleons; 

µ \) 
e 

equation 6.2ld follows if we also assume <P and <P are equal. This 
T µ 

relation predicts the muon neutrino flow will exceed the v flow only 
e 

after the matter has heated up enough (or lost enough ve's) for n 
ve 

to foll below 1.81 ; at this sta ge , however , the v 's are only 
e 

semidcgener~1te , cind the tempera ture• gradient t erm in the v flux has 
e 
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to be included. 

We conclude that the diffusive flow of v 's dominates that 
e 

of v and v till the very latest collapse phases, when the core is µ µ 

very hot. Two effects modify 6 . 2ld and soften this conclusion. With 

3 electron number frozen and a p ~ T inner structure, ~T and ~µ would 

' d d b 1 ' T3/ 2 h d · · in ee e equa ; since p ~ , t e temperature gra ient is steeper 

than the chemical potential gradient (~T ~ 2~µ , raising the 

boundary to~ 2.57). The absorption rate, r' (µ ) , exceeds 
a v 

r~~<vn;µ) when Y > 0.13 if protons and neutrons are nondegenerate 
..Vt. v p 

and we have a pure nucleon gas. Since we cannot just sum on diffusion 

coefficients for various processes to obtain the total diffusion 

coefficient, we would have to do detailed numerical integrations to 

find this additional enhancement factor : just summing the absorption 

and scattering diffusion times gives an additional enhancement of 

1.6 at Y = 0.2 , Y = 0.8 ; for lower Y values, this factor is 
p n p 

close to one. 

Wilson et al . (1975), using a rather crude form of the source 

function for v and v , find the energy loss in muon neutrinos and 
µ µ 

antineutrinos actually exceeds the loss in electron neutrinos when 

their luminosities are integrated over the entire core collapse time: 

v 's dominate the luminosity first, then as v falls, the v 
e e µ 

luminosity rises . 

The creation of muon pairs is suppressed by their high mass. 

Muon production through v absorption on electrons is suppressed by 
µ 

the degeneracy of the final state v 's. When the temperature is in 
e 
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excess of 20 MeV, muon capture on nucleons begins to play a role in 

maintaining the v df's equilibrium. 
j.1 

If tau neutrinos couple in the same manner as muon neutrinos, 

they too will be in equilibrium at high density, with zero chemical 

potential, and their transport will be by diffusion. 

Of possible observational interest are the electron 

antineutrinos, since these may be seen in Lande's detectors if a 

nearby core collapse occurs (section 2.1). In the neutronization 

dominated phase, there are few of them: not only are the thermal 

production processes slow, but the final electron neutrino states 

are inhibited by their degeneracy; this makes the v evolution the 
e 

most difficult to follow numerically. This phase space blocking 

implies the v 's will be created preferentially with low energy, and . e 

therefore escape even more easily than muon neutrinos. Further, 

+ there are too few positrons around for e n + v p to be a copious 
e 

producer until the core enters its adiabatic heating phase and 

nv drops significantly. The equilibrium chemical potential for ~e's 
e 

is the negative of the electron neutrino chemical potential. The df 

is a Maxwell-Boltzmann; the ~ number goes as exp(-n ) , yet the 
e ve 

mean energy is 3T. At a temperature of 10 MeV, we may expect mQSt 

of these neutrinos to be trapped. Even then, the larger opacity 

and the remaining number of neutronization v 's make it the least 
e 

effective of all the energy transporters . How large the flux is 

depends upon the density-temperature profiles at late stages . 
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6.7 EVOLUTION TO THE FINAL STATE 

There are two paths the collapsing core may take: one is 

towards a black hole, the other to a neutron star. 

If the core undergoes complete collapse to a black hole on 

a dynamical time which is short compared with the diffusion time (the 

likely case), few neutrinos escape. The core is adiabatically 

heating,creating exotic states of matter with nucleons perhaps 

breaking down into their component parts and strange particles being 

produced by weak processes. All species of neutrinos are in 

equilibrium, tied to the matter, and collapse with it beyond the 

horizon: they provide no signature of the final phases of the event. 

If the hot neutron star core is less massive, it can cool to 

a final cold neutron star state. After the bouncing of the core has 

ceased, it may still be dynamical, subject to ringing (Hansen 1966). 

However, it primarily cools to rid itself of the released 

gravitational energy from collapse and loses lepton number by 

radiating its residual neutronization v 's. The equilibrium df's 
e 

are kept up by the thermal processes. The lower opacity likely 

results in v v domination of the energy transport in the earliest 
)J )J 

cooling phases, with v , v domination in later phases due to their 
e e 

higher production rates (when the neutrinos have gone out of 

equilibrium ) • The chemical potential of the v 's at nuclear matter 
e 

density (if Y = Y = 0.1) is ~ 155 MeV which yields a diffusion time 
e p 

or order six seconds for a 1 . 4 M
9 

hot neutron star. It takes this 

long for the neutronization v 's to finally leave. While this loss 
e 
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is going on, other processes than e-p + nv keep the phase space 
e 

filled (modified URCA process, pion-condensate-mediated electron 

capture). 

When all of the neutronization neutrinos have radiated away 

so Y is ~ 0 . 04 to 0.05, its cold neutron star value (Baym, Bethe, e 

and Pethick 1971), and the thermally produced neutrinos no longer 

fill phase space up to µv = 0 , this final state of gravitational 

core collapse becomes the initial state for the usual treatments of . 

neutron star cooling, such as those of Tsuruta (1974) and Tsuruta 

et al. (1972). (See also Brown 1977.) Within an hour or so, the 

temperature has dropped below an MeV. The cooling rate in the final 

approach to a cold neutron star remnant depends upon whether there 

is superfluidity of one or both of the neutron and proton fluids, 

whether a pion condensate forms, and what the magnetic field strength 

6.8 SPATIAL TRANSPORT 

So far, the effects of diffusion from the core have only been 

treated in a one zone model. In this section, the results of the 

numerical solutions to the full nonlinear partial differential equa-

tions of transport are presented . 

The P-1 equations (section 3 . 8), with the Eddington factor 

(3.49a) determined by the elliptic distribution equation (3.45), are 

integrated by the techniques of section A4.4 in Appendix 4; similar 

methods are used to solve the flux limited diffusion (FLD) equations 

(section 3.10, with the flux limiter given by 3.64). We build the 
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neutrino distribution function from zero within an assumed static struc-

ture. 

The v source functions included are those of electron capture e 

on free protons, neutrino absorption on free neutrons, conservative 

scattering by nucleons and nuclei, and nonconservative neutrino-electron 

scattering, with the £ 0 and 1 moments of the scattering kernel in-

eluded. Eighteen energy groups are used; these give a much more detailed 

picture of the v df than in previously published works. The treatment 

of ve scattering given here is a major improvement over the prescriptions 

used in the FLD codes of Arnett (1977), Wilson (1976), and Bruenn (1975). 

Our numerical methods have the great advantage of stability in 

the neighborhood of equilibrium (compare with Yueh and Buchler 1977b, 

Arnett 1977, Wilson 1976): equilibrium diffusion can be accurately 

treated at the same time as free streaming. 

The outer boundary condition used in these calculations was the 

standard Marshak BC, n1 = ncJ2; this BC leads to problems, as we shall 

see. 

We must assume a structure for the collapsing core and mantle. 

The only pre-bounce configuration published in sufficient detail to be 

useful is that of Arnett (1977), which we used to obtain the pTY e 

structure. His extrapolations of the EA fitting formulae give nuclei of 

mass 300 in the inner core; we use the ENB extrapolations (unfortun~tely, 

well beyond their conceivable range of validity) to get a slightly 

different composition profile than Arnett's, with nuclei of maximum mass 

62. The composition profiles used -here and in Arnett (1977) are 
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characterized by relatively low free proton abundances. 

The code has the capability of temperature and Y evolution; 
e 

however, these changes were not allowed in these calculations due to the 

unknown behavior of the composition functions, in particular of 

y (p, T, y ). 
p e 

The three regions mentioned in Chapter 1 are reasonably well de-

fined in this core. 

The inner core, ranging in density from a central value of 

1.5 x 10
13 

g/cc to....., 5 x 1012 g/cc is characterized by high neutron 

abundances (Y - .54 in the center to - .4 on the boundary), most of the n 

protons locked in alphas (Xa-. .3), many locked in heavy nuclei (XH...., .14 

) ( -3) to ,..... .3 , and only a few free Y - .011 to - 10 • The central temper-
P 

ature is 8 MeV, falling to 4 MeV at the boundary. The inner core is 

highly neutronized, with Y - .15 to .2. e 
11 The core-mantle, with density ranging from,.., 2 x 10 to 

6 X 108 
g/cc consists primarily of iron peak nuclei (XH..,,. .7 ), with the 

remaining nucleons in alphas, apart from a few percent of free neutrons, 

and a few parts per million of free protons. The maximum temperature is 

about an MeV, and Y 's range from,...., .4 to near .5. 
e 

In between the inner core and the core-mantle lies a transition 

region, the neutronization shell, where most of the action occurs. It 

is not sharply defined, but ranges in density from,.... 5 x 1012 to 

11 '/ -... 2 x 10 g1 cc. Within these zones, the iron into alpha phase transi-

tion occurs and the bulk of the ncutronization occurs: heavy nuclei are 

the moHt abundant by mass i.n the outer zones, whereas the interior is 
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almost equal parts heavy, alpha, and free neutron; Y drops from - .36 
e 

to,..,, .23 at the neutronization shell/inner core boundary. The free 

-6 -4 proton abundances range from ..., 6 x 10 to ,...., 3 x 10 • By not including 

electron capture on heavies, we do not adequately represent the dominant 

role this neutronization shell plays in neutrino production. 

Figure 33 compares the calculated neutrino df for four zones: 

the central zone, a zone near the inner core/neutronization shell bound-

ary, one near the neutronization shell/core-mantle boundary, and one 

characteristic of the core-mantle . Figure 34 displays the electron 

neutrino luminosity profile at various times. 

The central zone reaches equilibrium in sixty microseconds (see 

Figure 33); the rest of the inner core attains it somewhat later, but 

within a few milliseconds the EDA holds • The neutrino chemical poten-

tials range from 30 to 40 MeV, and the neutrinos are only semidegenerate 

(~,...... 5); the mean neutrino energy is 38 MeV at the center, 24 MeV on the 

boundary; the neutrino abundance per baryon is ,.., .02 over the core. All 

of these numbers would be considerably higher if the classical picture 

of an inner core of free nucleons holds. 

The P-1 and FLD methods agree in the inner core. A manifesta-

tion of this is the common luminosity profile within the first one 

quarter of a solar mass (Figure 34), which is attained in less than a 

half a millisecond. 

The mean free path of the neutrinos in the 10-12 MeV bin (group 

five) is 0.76 km in the center and 0.77 km at the boundary of the inner 

core (which has a lower density, but more heavy nuclei for coherent 



scattering to compensate); the center is,..., 32 mean free paths from the 

boundary. The Eddington factors are all one third, and the flux limiter 

is one. The ratio of the first to zeroth moment, n
1
/n

0
, for this energy 

-5 4 13 I group is 3.5 x 10 at 1. X 10 g cc, and is an order of magnitude 

higher near the edge of the inner core. 

From Figure 33, it is evident that the neutrino df's in the 

neutronization shell are not FD at 3.6 ms; they are essentially the same 

at steady state . Transport from interior shells rather than neutrino 

creation and annihilation within the zone dominates the flow. The 

12 I I luminosity peak (at ,..., 10 g cc and 1 2 1'18) moves outward at early times 

as the diffusion wave from inner core neutrino production propagates 

outward. Differences between FLD and P-1 begin to appear: at 

2 x 1011 g/cc, the Eddington factors are 0 .53 in group one, .343 in 

group five; the flux limiters are 0 .25 in one and 1.0001 in five; the 

mean neutrino energy is 10.5 MeV for FLD and 9.7 MeV for P-1. 

The behavior of the P-1 and FLD solutions becomes radically dif-

ferent as we enter the core-mantle and the outer boundary is neared. 

The FLD luminosity approaches a constant value in the outer 

zones. Free streaming is operative, and the power into a zone equals 

the power out. The neutrinos obey H(v) =J(v)c; at the outer boundary, 

they find the Marshak BC must be obeyed, and there is a small downturn 

in luminosity there (Figure 34). 

The P-1 solution is much more sensitive to the choice of BC: as 

the neutrino wave nears the sur face, it experiences the BC there and 

finds it cannot satisfy it except with a luminosity precipitously 
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falling near the surface. The number of neutrinos builds up, the 

luminosity peak becomes broader, and at 3.7 ms, a bulge begins in the 

luminosity at,.., 4 x 1010 g/cc. This bulge builds as time progresses, 

rising toward the surface rather than approaching a steady state con-

stant value. Although this is the solution to the problem posed, it 

is not physically realistic. 

The free streaming nature of the neutrinos near the outer 

boundary suggests a BC of form H = Jc rather than H = Jc/2 is more 

appropriate. Clearly, more numerical experiments with different BC's 

are necessary in order for the P-1 and FLD methods in the core-mantle 

to be meaningfully compared. 

The small effect of the outer BC on the FLD solution suggests 

we can still extract information from this solution. The mean neutrino 

energy at steady state is 9 MeV at 4 x 1010 g/cc, and 7.3 MeV at 

1.5 x 109 g/cc; for the latter condition, all of the flux limiters 

differ from unity, most notably in group one, where ~ = 150; the mean 

free path is 600 km for group 5 at this low density, and neutrinos are 

effectively decoupled from matter. 

Is this neutrino flow likely to create an explosion? The ratio 

of the outward acceleration due to neutrinos to the inward gravitational 

acceleration is just the ratio of the neutrino luminosity to the 

Eddington limit (6.10). At steady state this is 0.018 for the central 

zone, it peaks between 2 and 4 x 10
12 

g/cc at .o42, falls to .007 at 

11 10 9 I 2 x 10 , to .005 at 4 x 10 , and to .002 at 1.5 x 10 g cc. The 

possibility for explosion by neutrino momentum deposition alone is bleak 
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in this particular configuration. 

The inclusion of electron capture on heavy nuclei will increase 

the luminosity £ram the neutronization shell, and probably shift the 

peak closer to the core-mantle region. This will improve the chances 

for explosion, but will the increased luminosity be sufficient? The 

results of Arnett and Wilson suggest it is not . 

The solution to the neutrino transport portion of the supernova 

problem within the context of the modern theory of neutrino interactions 

will rest upon a better treatment of electron capture on neutron-rich 

nuclei and on a resolution to the equation of state dilemma. 
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APPENDIX 1 

THE DERIVATION OF THE P-N METHOD 

Al.l THE P-N APPROXIMATION: DERIVATION 

We begin with the BTE 3.15 

V [n] + V [n] = -O[n] 
s ' v 

where 

and -0 8, -Osc'and -0th are given by 3.5, 3.4 and 3.6 respectively; the 

self scattering term, -0 , applicable to v+v + v+v is: vv 

-0 [n) vv = 
3 

d q4 

(27r) 3 

j (v 3 v 41 TI v1 v2 )1
2 

{ n(q)n(~2 ) (l-n(q3)) (1-n(q4)) 

- n(q 3)n(q4)(1-n(q2))(1-n(q))} 

We adopt the notation 

= l_ fl 
- 2 

-1 

dµ f(µ)g(µ) 

(Al. l) 

(Al. 2) 

to denote the inner product over angles of the two functions f and g. 

The lth moments of the df and source function are then 

(Al.3a) 

(Al.3b) 

Using the two Legendre polynomial identities 
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(2l+l)µ z = (,t+l)P ,t+l + (? ,t-1 

2 dPl 
(1-µ ) -dµ 

it is easy to show that, for l~l 

l(l+l) 
2,t+l (P ,t-1 - p ,t+l) 

< ) _ Cln,e l+l [ 2 a (l+2) J 
P l'V s [n] - at-+ 2l+l 41Tr Pab nl+l + r nl+l 

+ 2i+l [4nr2p ;b n£-1 - (£;1) n£-1] 

(Al.4a) 

(Al.4b) 

(Al.5) 

If l=O, the last term on the right hand side vanishes, and Al.5 also 

holds, even though n_1 is not defined; we take n_1 , n_2 , 

zero. Again using a combination of Al. 4a and Al. 4b, for l ~ 2, 

) (
3v p) { (l+l) (l+2) [ . a J 

(P,e,Vv[n] = -r + p (2l+l) (2l+3) v av nl+2 + (,t+))nl+2 

to be 

l(l-1) [ a ] 1 
+ (2l-l) (2l+l) \) av nl-2 - <l-2)nl-2 + (2l-l) (2l+3) 

• [<U<l+l)-l)v~v nl + l(l+l)n,e]}- ~ v ~v nl (Al .~6) 

which is also valid for l=O and l=l. The transport side of the moment 

equations is given by Al.5 and Al.6, the terms in square brackets with 

subscripts s and v respectively in 3.23a, 3.24a, 3.25a. 

The moments of the source .6 B are 

.6 (l) 
B 

The scattering kernel is, in the local rest frame of matter, a 

(Al. 7a) 

(Al. 7b) 
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function of v,v' and Y=q•q' . The moments of the scattering kernel, 

R(v,v',Y),are 

(Al.8) 

Now Y can be expressed in terms of µ 
A 

q oer = COS e , µI q I•~ 
r 

= cos e' and an azimuthal angle ~by 

(Al. 9) 

The integration over q' in ~ includes an integration over the 
- SC 

differential solid angle dQ , = dµ'd~ . We apply the addition theorem 
9 

for spherical harmonics 

.e 
47f '"" P,e(Y) = 2l+l ~ 

m=-l 
and immediately perform the ~-integration 

in~ 
SC 

to obtain: 
00 

(Al .10) 

(Al.11) 

(Pt•"sc)= - r
8
nl + /, ~ (Zl'+l)Rl,(v',v) (Pl,Pt•) 

• (Pl,.n(v'l) + f, ~(Zl'+l)[Rl,(v,v')-Rl,(v',v)] 
\) .e I 

(P,e,P,e 1n(v>) (P,e"n(v'>) (Al.12) 

In order to evaluate (P,e,P,e, n(v)) , we express the product PlPl' 

in terms of Clebsch-Gordon coefficients: 



(Al.13) 

to get the result in a suitable form: 

(Al.14) 

In the specific cases l=O and l=l , the Clebsch-Gordon coefficients are 

( Ol'OO 110)2 

l'+l 
2l'+l 

l ' 0L,l'+l + 2l 1+1 °1,l'-1 

(Al . 15a) 

(Al.lSb) 

which, when put into Al.14, give ~~~) and ~~!) in equations 3.23c 

and 3. 24c. 

The moments of ~th are taken in the same manner as those of 

~sc , following steps Al . 8 through Al . 14, with the result 

(Al.16) 

In particular, using Al.15 we obtain 3 . 23d and 3 . 25d . 

Al . 2 NEUTRINO-NEUTRINO SCATTERING 

The reaction v +v . ~ v +v may be important as a thermalizer 
e e e e 

of the ve df. Beginning with the effective Lagrangian for the 

(v v )(v v ) coupling, 2 . 22, it is straightforward to calculate the 
e e e e 
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amplitude for the reaction: 

(Al.17) 

The incoming neutrinos are labelled 1 and 2 with energies, momenta, 

and Dirac spinors v1 , v2 , g1 , ~ 2 , u1,and u2 respectively; the 

outgoing neutrinos are labelled 3 and 4 . The second line follows 

from the first by a Fierz transformation. This amplitude is the 

2 
same as that for ve+e + ve+e with eve and CAe replaced by ae 

(See Appendix 2, equation A2.16a,b.) The matrix-element-squared is 

8G2 2 

l(v3v4ITlv1v2)l
2 

= ae (ql.q2)(q3.q4) 
V1VzV3V4 

(Al.18) 

The cross section for this reaction can be easily obtained 

using Lenard's theorem: 

where q3, q4 are null 4-vectors, and e(x) is the Heaviside unit 

function ( 1 if x >0, 0 if x <0). The result is the invariant 

a ( v + v +v +v ) e e e e 
c2 2 = - a s 
7T e 

(Al.19) 

(Al.20) 
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where s is the square of the center of mass energy, 

(Al.21) 

In this calculation, the final phase space has been divided by a 

factor of 2! to account for indistinguishability of the final state 

particles; no additional factor of 1/2! is included in the initial 

state for the cross section, but is included in the rate calculation 

(see below). 

The squared amplitude is obtained for other neutrino 

scattering reactions by the substitutions in Al.18: 

v +v -+ v +v q2 -+ -q4 ' q4 -+ -q2 (Al.22a) 
e e e e 

\} +v v +v 
2 

(Al.22b) -+ a -+ a a e µ e µ e e µ 

- 2 (Al.22c) \} +v -+ \} +v a -+ a a ' q2 -+ -q4 ' q4 -+ -q2 e µ e µ e e µ 

v +v v +v 
2 (AJ,..22d) -+ a -+ a a ' q3 -+ -q3 ' q2 -+ -q2 e e µ µ e e µ 

(and v +v -+ v +v ) 
µ µ e e 

No factors of 2! are required in the calculation of these cross 

sections, which are given in Table 2.2. Our cross sections for the 

reactions v v -+ v v , v v -+ v v differ from those inferred from 
eµ eµ eµ eµ 

Flowers and Sutherland (1976) by a factor of four; our v v -+ v v e e e e 

and veve-+ \le\le cross sections agree with theirs. 

I 

It is very difficult to deal with ~ in the P-N method 
\}\} 

for arbitrary N. It is possible to evaluate ~ if we keep only the 
\}\} 

l=O and l=l moments, but the result is very complicated. Here, we 
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assume the v df 's are dominated by the l=O terms; when the neutrinos 

have built up a high enough concentration that v-h> + v-h> becomes 

important, this assumption will be valid. In Al.l we distinguish 

two terms, .6 IN 
vv 

d OUT d" · · d an .6 , correspon 1ng to scattering into an out 
vv 

of the beam; the former is proportional to 1-n(q), the latter to 

n(q): 

We follow the subsequent derivation for .60UT ; the derivation for 

IN . . .
1 .6 1s s1m1 ar. Hereafter, we identify v1 , ~l with v, g • We 

integrate over q4 in Al.1 to get rid of the momentum-conserving 

delta function: 

3 
d q2 

( 2rr) 
3 

where 

no(i) no(v i) i 1, . . • , 4 

V4 vl-h> 2-v 3 

11 ~1+~2-~ 3 1 1 
2 -tv 2) 1/2 

e: 4 (k -2kv 3 cos 8 3 3 

We transform the cos e
3 

integration into one over e: 4 , which we 
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use to get rid of the remaining delta function, then transform the 

cos e2 integration into one over k : 

.6 OUT 

where the characteristic function is 

= (1 if k is in the indicated range, 0 otherwise).(Al . 23) 

If we define the dimensionless polynomial 

(Al. 24) 

then 

.6vv = 1oodv2 f v 3 { X (0, vl) (v2) Ix (v2 • vl) (v3) g(vl-v2) + X(O,v2) (v 3) 

0 0 

• g(vl+v2-2v3) + X(vl,vl+v2)(v3)g(2v3-vl-v2)}+ X(vl,O)(v2) 

(Al.25) 
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The approximation, then, is to let 

.6 (0) 
\)\) 

.6 
\)\) 

0 

(Al.26a) 

(Al. 26b) 

In .6 
SC 

there is one neutrino .energy integration to perform 

once the v df is known, and there are no constraints on the range of 

integration; in .6 , there are two neutrino energy integrations 
\)\) 

which must be done, and there are restrictions imposed on their ranges. 

Both become summations after a group averaging over energy bins has 

been performed; we do not further discuss this here, as it more 

rightly belongs in the numerical methods section, Appendix 4. 
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APPENDIX 2 

INDEPENDENT PARTICLE PROCESSES 

In this rather technical appendix, we compute in the first 

section the current-current correlation function for a free electron 

gas, and in the second section apply the result to nuclear matter in 

both the nondegenerate and extremely degenerate limits, in particular 

deriving moments of the zero temperature vN scattering kernels. We 

return to ve scattering in section three, where moments of the kernels 

for this process are obtained. In section four, production and 

absorption kernels for e+e- + vv are given, along with integrated 

production rates. 

A2.l v+e + v+e 

The kernel for neutrino electron scattering is given in terms 

of correlation functions by equation A3.10 in Appendix 3, with the 

total current replaced by that of the electron A3.4. The current-

current correlation function for the electron field, when electrons 

and positrons are independent quasiparticles, can be separated into 

four parts: 

(A2.l) 

The first term is used in v+e + v+e- , the second in v+e+ + v+e+ 

the third in e++e- + v+v , and the fourth in v+~ + e++e- The 

(e_e_) part of the correlation function is given (for v scattering) by 
e 



see(kw) = """"'f (p)(l-f (p 1 ))(2n) 4 o( 4)(p+k-p') 1 
a.S L...J e e EE' 

pp' 

+ m 2(c2 -c2 ) a.S} 
e Ve Ae g 

where the summation over momentum means an integration 

L f 
3 

= d p 

p - (2n) 3 

(A2.2) 

(A2. 3) 

To derive the expression, we note that for a noninteracting 

gas of electrons, the spatial Fourier transform of that part of the 

weak current which does not involve positrons is 

Jµ(k,t) =""""at k (t)a ,(t) ~(p-k,q2_ Yµ(C -CA Ys)u(pcr') (A2 .. 4) 
e - · L.J, p- , cr pcr / 2E Ve e /2E 

pcrcr p-k p 

where a ,(t) annihilates an electron of momenttnn p and spin cr' at 
Pcr 

time t; u(pcr') is a Dirac spinor normalized as in equation 2.28. The 

energy of the electron is E 
p 

In order to evaluate See , we need the thermal average 
a.S 

+ f . o. 0 ok . oo 
J J {._ J -l-m 

where 

(A2 . 5) 

(A2.6) 

is the mean occupation number of orbital j , a single particle state; 
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the j means pjcrj , and ojl means a delta function in momentum and spin . 

We then obtain 

i(E.-E 0 )(t-t ' ) ~ 
e J -t- "' 

p l ' p j+k 

(A2 . 7) 

+ (time independent terms which are zero when k=O) 

The time independent k=O parts include (1µ(kt>)(J-v( - kt ' )) , and 

a term like the time dependent one , but with a o.l inserted. These 
J . 

terms when we Fourier transform in t - t' , give a o( 4)(k) contribution; 

no 4-momentwn is transferred to the medium . 

The equilibrium distribution' function f . is independent of 
J 

spin crj , and the spin sums can be performed in A2 . 7, turning it into 

a trace similar to 2 . 42a , 

(A2.8) 

When the traces are evaluated, equation A2 . 2 is obtained . 

One of the virtues of the method of correlation functions is 

' that the f (1-f ) Fermi function term arises naturally as opposed to e e 

being imposed as in the exercise of Fermi's Golden Rule, equation 3 . 2. 

If we change the sign of CA in A2 . 2 , and the df's to those 

of the positron, we obtain the (e+e+) part of the correlation function . 
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If we replace CVe and CAe by one, set me=O, and replace 

f by n , the neutrino df, we obtain the (vv) correlation function. e v 

The ensemble in which the expectation value A2.6 is taken is then a 

nonequilibrium one, which is reflected in the nonequilibrium nature of 

nv If we set CAe= -1 instead, the (vv) correlation function results. 

A2 . 2 v+N -+ v+N 

If we replace CVe , CAe by CVN , CAN , with N = n,p, and 

me by the nucleon mass, ~ , we obtain the current-current correlation 

function for independent nucleons. In the low energy limit, when the 

nucleon velocities are small compared with the velocity of light, 

pa ~ ~ oaO , and the only surviving components of the correlation 

functions are (compare with A3.26, A3.27) 

(A2.9a) 

(A2 .9b) 

where the dynamic liquid structure factor for independent nucleons is 

2 

~ 
,L fN(p) c1-fN(p ')) 21To CEP -EP ,-tui) 

PP' • (2TI)3o(3)(p-p'+k) (A2.10) 

That this formula holds is not contingent upon the noninteraction 

hypothesis; it is derivable within the framework of Hartree-Fock 

theory. Correlations among nucleons are included if they can be 

described by a single particle Hartree-Fock potential, or, for that 

matter, by any other single particle potential; this is the independent-
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particle approximation (deShalit and Feshbach 1974) used in zero 

temperature nuclear matter theory, which can be extended to finite 

temperature (Fetter and Walecka 1971). In infinite nuclear matter, 

the Hartree-Fock states are plane waves labelled by momentum and 

spin, with energy 

2 
Epcr = Tm + U(p) (AZ.11) 

where U(p) is the Fourier transform of the self-consistent potential . 

The nucleon is dressed by its interaction with other nucleons, 

ceasing to be a bare particle, becoming a quasiparticle ; it is these 

which scatter the neutrinos . The analysis leading to A2 .9, AZ.10 

follows the same path. 

For noninteracting, nonrelativistic (n . r . ) nucleons, AZ.10 

can be evaluated exactly: 

(A2.12a) 

where T is the temperature in energy units, m is the nucleon mass, 

µ is the nucleon's chemical potential, and 

t: = m (w-k2/2m) 2 

2k2 

In the nondegenerate limit (n . d . ) , the result is a Gaussian in 

w ' 

D ( 2mnT ) l/Z e -:t: 
SNN(kw) n.d. (A2.12b) 

with mean k2/2m and standard deviation 
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kv rms 

where v is the root mean square velocity of the part icles . The rms 

integral of A2 . 10c over w , the static liquid structure f ac t or , is one . 

To form moments of the scattering kernel obtained using A2 . 10c is very 

difficult, since we must do a k- integr at i on, and there is both a 

k- 2 d k+2 . h . 1 an a term in t e exponent1a . The conservative approximation 

assumes A2 . 10c is reasonably well approximated by a delta function at 

w=O. This will be so if both the mean and the variance are small 

compared with the incident neutrino energy , i . e . , if vis small compared 

with the nucleon mass and v is small compared with the speed of rms 

light . If all of the target particles were at rest , the liquid 

structure factor would be 21T o(w-k2 I 2m) : the dispersion in w space is 

due to the thermal motion of the nucleons . Neutrinos can be 

downscattered and upscattered in energy over a peak of width ~ vv • rms' 

when one integrates over final neutr i no energy , the downscatter ing and 

upscattering almost balance, and the net effect is for the neutrino 

2 to deposit ~ v /m in the medium . Tubbs (1978) has noted that when this 

small energy loss is multiplied by the scatter ing rate , the result is 

about the same a s that obtained when the higher mean energy loss in 

neutrino-electron scattering is multiplied by its smaller scatter ing 

rate . However , the ve process can downscatter high energy neutrinos 

to low ener gies in one step ; the vn pr ocess must go thr ough all 

intermediate energies in many smal l steps , and as the energy lowers, 

the scattering rate lowers as its square . Pr oduction processes fi l l 
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low energies at low rates, high energies at high rates. The speed of 

approach to a Fermi Dirac df is determined by the rate at which high 

energy neutrinos can be funnelled into the unfilled phase space at 

low energies; ve scattering is much more effective at this than vN 

scattering. Everything said here about vN scattering in the 

nondegenerate limit applies equally to vA scattering, except that the 

nucleon mass is replaced by the much greater nuclear mass, and the 

conservative approximation is correspondingly better. 

At zero temperature, in the extremely degenerate (e.d.) 

limit, the dynamic structure factor reduces to 

e.d. 

2 
3wm 

3 B(w) [w Xco )(E) + (µ-E) Xe )(E)] (A2.12c) ,µ-w µ-w,µ 
kpF 

where pF is the Fermi momentum, x is the characteristic function for 

the indicated range, and B(w) is the Heaviside unit function of w 

expressing the fact that the zero temperature medium can transfer no 

energy to the neutrino. When w ~kvF + k
2

/2m , where vF is the 

Fermi velocity, the structure factor, which is plotted in Figure 6, 

vanishes; this region of w-k space is not accessible kinematically 

when only particle-hole pair creation is considered. 

Moments of the zero temperature scattering kernel can be given 

analytically. The qualitative form of these functions differ when in 

different regions of w-k space, where k = v+v' is the maximum 
m m 

possible momentum transferred to the neutrino , corresponding to 

backward scattering. The appropriate domainsin this space reflect 

the two regions of the structure function, and are displayed in 
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Figure 7; indeed, when we reinterpret k to be just k, the structure 
m 

2 function is linear in w interior to the line w = kvF-k /2m, and is 

quadratic exterior to it. Particle-hole pair creation is not 

kinematically allowed in the region to the left of thew = kvF + k2/2m 

line. The four regions in w-k space are defined by 
m 

Region I µ<w qo~ km (A2.13a) 

Region II w::;J1 q < k < o- m- ql 

Region III W'.SJ.! q < k < 1- m- 2PF-ql 

Region IV w'.SJ_J 2PP-ql-:_ k 
m 

where 

q0 Pp ( ll+w/µ -1) 

ql Pp (1- 11-w/µ ) 

The highly oblique v,v' axes are also displayed in this figure. Large 

regions of vv' space are inaccessible to vN scattering at zero 

temperature: given v, there is both a minimum value v ' must exceed 

in order to satisfy the kinematical constraint, and a maximum value 

which it cannot exceed, namely v When the temperature is finite, 

all regions of this space become accessible. 

The l=O moment of the scattering kernel is explicitly 

Region I and II (A2 .13b) 

Region III 
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where 

G(s,t) 

F(s, t) 

Typical vn+vn moments for various incident neutrino energies are 

plotted as a function of the outgoing neutrino energy in Figure 8. 

The density is 5xl013 g/cc, the free neutron to baryon ratio is 0.9; 

the Fermi momentum is then 183 MeV and the Fermi velocity is 0.2 

(which is also the velocity chosen for Figure 7). If neutrino beta-

equilibrium holds (equation 3 . 12), then Yv = 0.03, and the neutrino 
e 

Fermi energy is 74 MeV; these neutrinos dump ~20% of their energy in 

each collision, in contrast with the conservative case. 

To obtain the scattering rate, these expressions must be 

integrated over the final neutrino energy. When the initial neutrino 

energy is small compared with the nucleon Fermi momentum, this is 

particularly easy . The liquid structure factor is approximated by a 

curve rising linearly in w and truncated at w = kvF • From Figure 6, 

we can see that this is a good approximation as long as k<<2pF , and 

therefore v+v'<<2pF. Then, we integrate over v ' along a constant v 

line between thew= kvF line and thew= 0 line (see Figure 7), with 



the result 

r (v) 
s 
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(A2 . 13c) 

which is quite similar to the conservative approximation value 4.35 

except for the v/pF suppression factor . 

Nucleon interaction effects may be crudely taken into account 

by assuming A2.ll is described by 

E 
pcr 

+ constant (A2 . 14) 

where is a mean approximate effective mass, which depends upon 

temperature, density and YN • It also depends upon momentum; however, 

for symmetric nuclear matter (Y = Y ) at zero temperature and at 
n p 

normal nuclear density (p = 2.82xl014g/cc,pF/tl = 1.36 fm-l = 268 MeV/c), 
_ 1~ 

~ = 0.7 ~over an energy range from 10 to 70 MeV, a value determined 

empirically from the confrontation of optical model predictions with 

experiment (Jeukenne et al. 1976). At any other density, and for 

Y and Y not equal , one must resort to theoretical predictions of 
n p 

-,~ 
~ ; these are not available over a wide density and composition range. 

At low densities, it is one . The temperature dependent effective mass 

would replace m in equation A2.12 for the structure factor, and a 

zero temperature effective mass would replace m in A2 . 12c for the zero 

temperature structure factor, and in A2.13b for the scattering kernel . 

The mass does not appear in the low energy approximation to the 

scattering lifetime, A2.13c, however it should be multiplied by 
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·'· ·'· 2 1· (m;;/n\;) , where ~ is the effective mass in the neighbourhood of the 

Fermi surface, defined by equation 4 . 42. These two effective masses 

are apparently not equal: the Fermi surface value, n\; , is slightly 

-'~ higher than the mean value, mN , perhaps~~ instead of ~o.7~ at 

normal nuclear density (Jeukenne et al. 1975 and references therein). 

A2.3 NEUTRINO-ELECTRON SCATTERING KERNELS 

In order to evaluate the kernels, given by A3.10 when A2.3 

is substituted, we need 

to obtain 

R(q-+q') 

where 

y ( q-+q I) 

y(q-+q I) y(-q'-+ -q) 

m2(q·q') 
e 

2(q' · p q·p' - q'·p' q•p) (A2.15) 

(A2.16a) 

(A2 . 16b) 

(A2.16c) 

(A2.16d) 

We assume electrons are extremely relativistic; then YM can be 

neglected relative to Y and Y Integrals of YM over q' are less than 

1% of the equivalent integral of y and Y (Tubbs and Schramm 1975). 

Using energy-momentum conservation to relate p'•q' = p•q , and 

integrating over the momentum p2 we obtain 
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2""'"" vEl A A 2 
y = 2G ~f(E1)(1-f(E1+w))2n o(E1+w-E2) ~ (l-p

1
•q) 

P1 2 

where w = v-v' . We next integrate over the electron solid angle to get 

rid of the delta function of energy . To do so, we let µ = q · k = cos 8 , 

µ' =cos e ' = p •k then 
1 

pl•q =cos e' cos e +sin 8' sine cos¢' 

The integral over ¢' is straightforward. Theµ' integration becomes 

an integration over E2 = lp 1+~1 with the result 

G2 v Joo 2 
y =TI v'k dE f(E) (1-f(E+w)) E Q(µo,µ) x(E) 

0 
(A2 .17) 

where xis the characteristic function for the set [k-w/2,oo): it is 

zero unless E is within that range. We have let 

I W 
JJo k 

Q(µ',µ) 

2 2 
(k -w ) 

2Ek 

The next step is to expand Qin v, v', k, and E: 

2 2 ( L: L:(;)n pnm(x) ~)2m 
n=O m=O 

The P are polynominals in x v'/v 
nm 

3 2 
p20(x) = 2 (l+x) 

1 
p21 = - 2 

pl2 = 0 

3 2 
= 2 (l+x) (1-x) 

= .!. (1+3x) 
2 

(A2.18) 

(A2.19) 
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Poo 
l (l-x2) 2 
8 
1 2 

Po1 = - (l-3x ) 
4 

P02 
3 
8 

This is as far as we take the kernel y which is used in the BTE; 

notice that the relation A2.15 can be used to get Y from A2.17 and 

A2.19. 

Moments of the scattering kernel are defined by equation 3.24b. 

The integration over c = q•q' transforms to an integration over k, 

which is constrained by 

JwJ ~ k < rru.n (v+v' , 2E +w) (A2.20) 

and results in the further condition on E E ~ - w. 
th The l moment 

of y is 

dE f(E)(l-f(E+w))cpl(E,v,v') (A2.21) 

where 

¢l(E,v,v') 

~ T(2E+w,v+v') ~k 

JwJ 

cpl< 8(v'-E) +cpl> 8(E-v') (A2.22) 

where 8 is the Heaviside unit function, ~ 
't' l< has the upper limit of 

k integration 2E+w , $l> has it v+v' These functions can be 

reduced to a more usable form after much tedious algebra. Rather 

miraculously, many cancellations occur; for example, the functions cp 

are polynomials in E. We find 
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2 
¢0> x

3 
[2E

2
+(4-3x)E + 

6~ - 3x+2] for E ~ v' (A2 . 23a) 

3 E
2 

E [5 + E + 2] for E<v ' (A2 . 23b) 

(l+x
2

) 1 3[ 2( 8 2 ~ x2+ 2. x3) 
2x ¢0> - 2x • x E 2+2x-5x) + E(4+x - 5 5 

18 4 + 2. x3 8 2 
- x+2] - 35 x 5 - 5 x (A2 . 23c) 

¢1<= 
(l+x2) 

¢0< 
1 3[24 4 6 3 1 2 2 - - . E 35 E + - E (3-x) + S E (37-26x+x ) 2x 2x 5 

(A2.23d) 

3 2 (3+10x
2

+3x
4

) 3 3 2 2 4 4 3 
¢2>= 2x (l+x ) ¢1> - 8x2 ¢0> + 8x2 • x [E (7 x - 5 x +4x+2) 

9 5 + 32 4 2 3 12 2 2x
6 

9 5 
+ E ( - 35 X }5 X - S X - S X +5x+4) + ~ - 35 X 

+ l x 4 + l x3 - ~ x2 +x+2] 
7 5 5 

(A2 . 23e) 

3 2 (3+10x
2
+3x 

4
) 3 c- 3 [16 c- 6 48 5 

¢ - - (l+x )¢1<- ¢ + - • c. ? c. + - E (2-x) 
2<- 2x 

8
x2 O< 8x2 7 

+ 16E4 (..!2. - ~ x + l x 2) + !!._ E3 y(57-36x+3x2) 
7 35 7 5 

E
2 2 

2 3 4 
+ ~ (169 - 50x+x ) + Ey (13-x) + 2y ] 

where we have let 

E = E/v 

·Y 1-x 

x v ' /v 

We also obtain 

2G2 
Y 0 ( v-+v ' ) - -

-<-- 3n 
3 J oo 

(v~)2 
max(O ,-w) 

dE f(E)(l-f(E+w)) ~,t(E , v,v') 

(A2.23f) 

(A2.24) 
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where </> .e. also splits into v'<E and v ' >E parts : 

3 2 
2 

<Po> x [2£ - EX +~ , for E > v' (A2.25a) 5 

<Po< 
3 [l £2 2 , for E < v ' (A2.25b) £ - X£ + 2x ] 5 

- (l+x2) 1 3 2 8 2 14 2 + ]_ x3) <1>1> 2x <Po> - 2x • x [£ (2+2x - - x ) + £(-x- - x 5 5 5 

11 4 + ~ x3 + l x2] (A2.25c) - 35 x 5 5 

</>l< 
(1 +x2) 

<Po< 
1 3 [~ 4 + &. 3 

(l-3x) 1 2 2 - - . £ £ + - £ (l-26x+37x ) 2x 2x 35 £ 5 5 

+ £yx(7x-l) + 2y2x2] (A2 . 25d) 

<l>z> 
3(1+x2) 

</>l> 
(3+10x2+3x 4) + -3- 3 [£2(~ x4 4 3 

2x 8x2 <Po> • x - - x +4x+2) 
8x2 7 5 

£ (-11 x5 +44 4 - 42 3 - 196 2 - 35x) + 35 x x x 

x
2 

4 - 16 3 + 30 2 + 56 x + 7)] (A2.25e) + 35 (3x x x 

3(l+x2) (3+10x2 + 4 
+ _ 3_. £3 [1:&. £ 6 + ~ £5 <l>z< </>l< 

3x ) - (l-2x) 
2x 

8x2 <Pa< 8x2 7 7 

+ 16 4 2 4 3 2 
35 £ (15-78x+75x ) + S £ y (3-36x+57x ) 

2 2 
2 3 4 2 + £J.._ (l-50x+l69x ) + £Y (13x-l) + 2y x ] (A2.25f) 

5 

The functions </>.e_ are continuous but not continuously 

differentiable at £=x (E=v ' ) . 

Yueh and Buchler (197 7b) have derived similar expressions for 

the .f.=O and .f.=l moments; our results agree with theirs except for 

-<Po ours satisfies continuity at £=x; theirs does not . 

-The functions ~ ~ ~ are monotone increasing in E 
't'Q> ' 't'Q < ' 't'Q< 



and positive for v' 

in its range E > v' 

E: 
' 

provide upper 

is used as a bound 

expression for the 
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< \) ,· ~ 'f'O> is positive and is monotone increasing 

Each of the functions, when extended to all 

bounds on ct> 0 ' ct>o ; in particular, when cpO> 

on ¢> 0 ' ct>O> as a bound on ¢>
0

, we obtain a usable 

kernels: 

"1 + (6~2 -3x +2) °'o], Y ( v-+v ' ) ~ ' 3n 
v 'T 

(1-e-Bw) 

v' ~ v (A2. 26a) 

Y(v+v ') v'T 12(!)2 
tiF - _Ix tiF L \) 2 v 1 + ~2 '"o]' v'~v (A2.26b) 

(1-e-Bw) 

where T is the temperature in energy units, and 

(A2.26c) 

is the difference of Fermi functions defined in equation 3.68. This 

is a good approximation when v'<<µ 
e 

We can, for example, make 

a Sommerfeld expansion of the Fermi function, then integrate over v' 

retaining only the lowest order terms in n and \) /µ to get e e 

3 

' 

G2 2 2 r ( v) 
\) 

(A2 . 27a) =-- n [(eve +cAc) + (CVe-CAe) ] v<<µe s lOn ' e µe 

which agrees with the extreme degenerate low energy limit for the 

scattering lifetime given by Tubbs and Schramm (1975). Similarly, 

by using Lenard's theorem we obtain 

which holds in the extreme degenerate case, with v>>µ , and also 
e 
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in the nondegenerate case for all neutrino energies. Here, u is 
e 

the electron energy per baryon. 

Generally, we must evaluate the kernels by numerically 

integrating over the electron energies; we adopt a Gauss-Laguerre 

integration procedure for this task. Due to the nature of the overlap 

of the Fermi functions in equation A2.21 for small w (the integration 

is sharply peaked near the Fermi surface), numerical integrations are 

facilitated by the use of the property 

f(E)(l-f(E+w)) f(E) - f (E+w) 

1-e-Bw 
(A2.28) 

We also make use of equation (3.6) to calculate the v'>;v kernel 

given the v ~ v' kernel. Further, to obtain scattering rates, 

r (v) , we must numerically integrate over v' . The limiting cases 
s 

are only of limited utility, but serve as a useful check of the 

numerical integrations. 

A2.4 PRODUCTION AND ABSORPTION KERNELS: e+e- + vv 

In the independent quasiparticle approximation, vanishes 

for timelike k : the reaction e + evv cannot proceed. 

dynamical correlations are included, with the electron gas modified 

by collision with themselves, with nuclei, or with photons, then this 

part of the correlation function develops a nonzero timelike k part, 

and the emission of vv pairs can proceed, as in the processes 

Ypl + vv , e + ypl + e+v+v e+e + e+e+v+v 
A A -and e+ Z + e+ Z+v+v 

Of these, the plasma neutrino process is the most important in 

supernova cores. In nuclear matter, the process N+N + N+N+v+v 
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dominates among the thermal mechanisms . 

Still, within the independent quasiparticle approximation, 

there is a thermal emission process which can proceed, namely the 

e+e-
pair annihilation process: SaS is nonzero for w > k ; indeed, it is 

zero for w<k. The modifications required of A2.2 are: 

1-f (p') ~ f(p') ; p' ~ -p ' in the delta function (A2.29) 

f(p) ~ 1 - f(p) p ~ -p in the delta function (A2 . 30) 

Here, f is the df of the positron. The vv production kernel in the 

extreme relativistic limit is then 

Rp(q,q') 
2 

(q,q') 2 - (q,q') = (CVe+CAe) y + (CV -CA ) y p e e p (A2.31) 

2G 2 ~ f(pl) 
(p •q)(p ·q') 

Yp(q,q') f(p2) 
1 2 

v v'E
1

E
2 P1P2 

• (2n) 4o( 4) (pl+p2+k) (A2 . 32) 

(A2.33) 

where k = -(q+q ' ). 

The subsequent derivation is very similar to that undertaken for 

the scattering reaction. There is one important difference: 

I = 
(-w) (w2-k2) 

µo - k- - 2Ek 

is of opposite sign to A2.18. The characteristic function X in A2 . 17 

then becomes x ((I w 1-k) 12 , (I w I +k) 12 ) (E) : the integration over E is no 

longer semi-infinite . The expression for E2Q is the same as A2.19, 
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but the polynomials are s lightly different: 

+ - n 
P (e e - ~ vv ; x) = ( - 1) P (ve ~ v e 

nm nm -x) 

Again we take moments as in equation A3 . 24c . 

The constraint on k is , instead of A2 . 20 , now 

max ( I v-v ') ' I 2E+w I ) ~ k ~ I w I 

which then imposes the condition on E: 0 ~ E ~ lwl • Finally , we get 

f (E)f( lwl-E) dE ¢pl(E,v,v') (A2.34) 

plus the equivalent relation for ypl in terms of ¢pl , where 

and similarly for ¢pl The three ranges for E arise from which value 

holds for the lower range of k-int egration: lwl - 2E for L, v - v' for M, 

and 2E+w for H. It can be shown that 

¢u (~ . ~i -¢1< (- E 
- ~ ' ) ' v' < v (A2 . 36) 

v ' v v 

(~ . ~) = -¢ (- E ~·) ' v' < v (A2.37) ¢Mf_ v ' v l> v 

which relates the e+e- functions to those for neutrino-electron 

scattering . The same relations are true for the barred functions, 

¢11 etc. , with the same limitation, v' < v . After much algebra , we 

can show 
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(A2. 38a) 

2 2 2 2 1 3 2 
F0 = E 2z (1-x+x ) -E z (l-2x+3x ) + 5 z (l-3x+6x ) 

(A2.38b) 

3 4 c
0 

= -2Eyz + yz 

(A2.38c) 

1 2 3 2 1 4 2 - 5 E z (Sx -14x+8) + 5 EZ (9x -14x+7) 

5 
~S (18x

2
-27x+ll) 

2 
z 

</>Hl (x,E) 5 
(A2.38d) 

1 
</J 2<(-X,-E) + ~-? 

8x~ 

2 2 4 
(3F

2 
- 6(l+x )F

1 
+ (3+2x +3x )F

0
) (A2.38c) 

F = 
2 

5 E
2 

2 
z 35 (lOx -22x+l0) 

(A2 .38f) 

where 

z = l+x 

and E, x, y are as above. These formulae hold only for v'<v , i.e., 

x<l. To obtain v>v' , we use the symmetry 

~ .p 0 (v',v) = Y (v v') .{ pl , (A2.39) 

Again, it is necessary to numerically integrate over the electron 
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energy; because the range of integration is finite, we use Gauss-

Legendre integration. To obtain r (e+e- ~ vv · v) we need to do 
p ' ' 

a further numerical integration. Once we have obtained the 

production kernels, we need only apply equation 3 . 9 to get the 

absorption kernels. 

When the neutrinos are nondegenerate, a number of quantities 

can be obtained by the use of Lenard's formula , Al.19, on A2.31 . 

Thus , the lifetime of a positron of energy E to annihilate on some 

plasma electron to produce a v v pair is 
e e 

1 

Te+(E) 

-1 
s 

where the electron energy per baryon , u 
e 

u 
e 

E 

(A2.40) 

is in MeV (it is 0 . 75µ Y 
e e 

for an extremely degenerate gas). As usual, the Weinberg model is 

adopted, with sin
2

8W = 0.3 . The rate to produce v v pairs is then 
µ µ 

~ 18% of the rate to produce v v pairs . The rate per baryon to 
e e 

produce v v pairs, when A2.40 is integrated over the positron 
e e 

distribution, is 

v v ) 
e e 

1 
(A2.41) 

where u + is the average positron energy per baryon , which, for a 
e 

degenerat e electron gas, is 
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ue+ 3TY + e (A2.42a) 

y + 
2T3 

-n -4 T3 e-ne (A2.42b) 2 3 
e e 4 . 38xl0 e 

p B n (he) pll 

where T is the energy in MeV . The number of positrons in the medium , 

and therefore the rate of pair annihilation is a sensitive function of 

the electron degeneracy parameter ne . 

The energy loss per baryon is 

T 

T +(U +) e e 
(A2 . 43) 

For degenerate electrons , these Fermi integrals can be evaluated , 

yielding the mean energy which the v v pair carries off , namely 
e e 

4µ /S + 4T 
e 

it is electrons near the Fermi surface which annihilate , 

giving the neutrinos a considerable fraction of the Fermi energy. 
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APPENDIX 3 

CORRELATION FUNCTIONS 

The use of correlation functions to describe the scattering of 

a probe from a medium is well known . When the energy transfer to the 

medium is small compared with the energy of the probe, a static 

(equal time) correlation function suffices . This is a valid 

approximation for X-ray scattering by solids , liquids, and gases if 

the atomic states remain unchanged, and an expression in terms of the 

static liquid structure factor (SLSF) was first given by Zernike and 

Prins (1927) . If the energy transfers cease to be negligible, the 

dynamic liquid structure factor (DLSF) is the appropriate generalization 

of the SLSF; ·van Hove (1954a, 1954b) introduced these functions and 

used them in the analysis of slow neutron scattering from ferromagnetic 

crystals. Both of these factors are related to Fourier transforms of 

the autocorrelation of the density of scattering sites, p(~), namely 

to (p(~,t)p(~=O)) and <p(~)p(~O)) for the DLSF and the SLSF 

respectively. The expectation values are taken in the thermodynamic 

ensemble of the medium . From the SLSF , we obtain the radial or pair 

distribution function, which together with the interparticle potential 

allows the determination of the equation of sta te (Goodstein 1975) . 

That it , and its dynamic counterpart , carry so much information sugge~ts, 

and it is the case , that it is quite difficult to calculate. 

The autocorrelations of the electromagnetic 4-currents are 

related to the complex dielectric constants. At low frequency, the 
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Coulomb screening of charges is described; at high frequency, 

plasma oscillations are described. These correlation functions have 

been used by Martin (1968) to give a general treatment of energy loss 

by a fast charged particle through a medium . Martin further points 

out that the space-space part of the electromagnetic currents can be 

used to treat Cerenkov radiation by moving particles. 

The charge density autocorrelation is also used in the theory 

of inelastic electron scattering by a nucleus : the nucleus is the 

medium, a zero temperature system of fermions (Fetter and Walecka 

1971). 

When neutrinos scatter from a medium, weak current-current 

correlation functions provide an appropriate framework within which 

to work; the emission and absorption of neutrino-antineutrino pairs 

then follows automatically . 

A3. l DERIVATION OF THE SCATTERING KERNEL 

Suppose a neutrino of momentum qµ = (v,g) scatters once from 

a medium initially in the state i with energy E . , thereby going to 
1 

µI 
a final neutrino momentum q = (v', g'). We wish to obtain the 

scattering rate for the inclusive reaction v+i ~ v+X, where X is 

anything; we are not interested in the final state of the matter. 

The transition rate for this process is given by Fermi's Golden Rule, 

and first order perturbation theory is valid: 

Rate (v(q)+i ~ v(q')+X) L 2rro(v+Ei-v'-Ef) . 
f 
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• (v(q);ilfd
3

x _Q : .l (x)Jµ(x): lf;v'(q')). 
12 µ -

(A3.l) 

where the sum is over all possible final states of the medium after 

scattering. The neutrino current is 

.l (x) 
]J 

(A3.2) 

and there is one for each type of neutrino, .l=e,µ,T .. , , and the 

matter current is 

+ J]J 
ha.d,NC (A3. 3) 

where Jµ 
ha.d,NC is given by equation 2.33, and for our purposes the 

nonrelativistic limit 2.36 suffices, and 

(A3.4) 

where .l is again e, µ, or T depending upon which type of neutrino we 

are interested in. Both .l and JJ.1 are self adjoint. 
]J 

The trick is now to turn the energy conserving delta function 

into a time integral. If we assume the neutrinos and the matter from 

which they scatter are uncorrelated, then the neutrino part of the 

matrix element ean be evaluated and separated from the matter part: 
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Rate (v(q)+i + v(q ' )+X) 

~ <· 1 iHt ]J -iHt I )< I ~ 1 · ) • L- 1 e :J (:~) : e f ,f :J (~') : 1 (A3 . 5) 
f 

In this expression, we have let kJJ = (w , ~) = (v-v ' ,g-g') denote the 

4-momenturn transfer to the medium . The dots indicate normal 

ordering of whatever is between them , and it is implicit in what 

follows . The Hamiltonian H is the full matter Hamiltonian , including 

strong and electromagnetic forces, but not weak forces; it also 

includes the particle rest masses. We let JJJ(xt) denote the current 

in the Heisenberg representation , that is , evolved according to 

-iHt e The sunrrnation over f can now be performed : it gives the 

identity. The neutrino spinor terms can be turned into a trace with 

the result given by equation 2 . 42 . Thus , A3.5 becomes 

Rate (v(q)+i + v(q')+X) (q q 1 + qVq].11 
- q' •q g + ic (q q ' )) . ]J V V]J ]JV , 

(A3 . 6) 

We adopt the notation for Fourier transforms 

jJJ(k , t) = J a3x 
- i k • x J]J(~ , t) e (A3 . 7a) 

JJJ(k , w) := J dt 
iwt jJJ (~ , t) e (A3 . 7b) 
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The matter is described by a statistical ensemble; each of the possible 

initial states has some probability, some weight, in this ensemble 

which is characterized by a density matrix p for a zero temperature 

system, p is microcanonical, consisting of one state only, the ground 

state. Matter in stars is in local thermodynamic equilibrium 

characterized by a local grand canonical ensemble with a density 

matrix 

p exp ( B (fJ + "' µ • N. -H)) L.J J J 
j 

(A3.8) 

where ~ is the thermodynamic potential, µj is the chemical potential 

of species j and N. is its number operator . The trace of an operator 
J 

A with respect to p is its ensemble average 

TrpA (A3 . 9) 

If we thermally average the rate expression A. 36 over states i, we 

finally obtain 

R(q+q') 

(A3.10) 

As it stands , this formula includes all scattering processes except 

neutrino-neutrino scattering . Only in the case where positrons are 

involved do we have to worry nhout the norma l or de r ing implicit in 

the current-current correla tion function (CCCF) , v- 1(Jµ(~w)Jv(-k,O)) 
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here, V is the box normalizing volt.nne . For translationally invariant 

media, this CCCF is (Jµ(k,w)Jv(~=O,t=O)). (When one is dealing with 

individual nuclei, this relation does not hold; it does hold in 

stellar situations.) The CCCF is manifestly a tensor i n 

translationally invariant media; it is a tensor under Lorentz 

transformations in arbitr ary media . 

Can the neutrinos be statistically independent of the matter 

in which they are created and in which they propagate if indeed they 

are confined , downscattered in energy, and reabsorbed? The mean 

free paths do indeed become short as the density rises, but even at 

nuclear matter densities, 50 MeV neutrinos still have mean free 

paths measured in meters . Matter is in LTE. We may envision the 

star divided into cells; each cell is i n thermodynamic equilibrium 

described by a grand canonical ensemble; the parameters temperature, 

chemical potential, and volume vary from cell to cell. Through each 

cell, whose size is characterized by mean baryon number, not volume, 

which therefore shrinks with increasing density, the neutrinos pass 

almost unper turbed . It is only because there are so many cells and 

so many neutrinos that the phenomena of trapping occurs . Neutrinos 

are indeed statistically independent. Dependences on the cell, 

labelled by the position vector at i ts center , and on time, have been 

suppressed in the previous and the following equations. 

A3.2 THE RESPONSE FUNCTION 

We now turn to some general relations among correlation 

functions, using Martin ' s notation with a few minor changes . Suppose 
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A and B are two arbitrary operators, not necessarily self adjoint. 

Define the AB correlation function : 

(A(t)B(t')) . (A3.ll) 

That SAB is a function only of t-t 1 is an assumption, called the 

stationary property. In fact, since the ensemble is slowly evolving 

in time on the dynamical or neutronization timescale as the core 

collapses, this property does not hold. However, this function 

approaches the uncorrelated value (A(t))(BCt')) for time differences 

of order the electromagnetic or strong relaxation time, which is tiny 

compared with the collapse time . The Fourier transform in t - t' of 

SAB satisfies 

* SAB(w) SB t A·'r(w) (A3.12) 

SBA(w) e 
B(w-t.µ) 

SAB(-w) (A3 .13) 

where 

t.µ - L: µ . t.n. 
J J 

(A3 .14a) 

j 

[N. ,A] t.n .A 
J J 

(A3.14b) 

and in the latter imposed relation, the t.n . are assumed to be integers, 
J 

a relation which is true for currents . The absorptive response 

function 
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X~B(t-t ' ) = t ([A(t),B(t')J) (A3 . 15) 

is related to the AB correlation function by 

x" (w) = l s (w) (1-e - B(w+f:Iµ)) 
AB 2 AB (A3.16) 

from which follows the fluct uation dissipation theorem , with SAB or at 

least its synnnetric part giving the fluctuations , and x~ describing 

the dissipation . 

If Bt = A, then , from A3 . 12 , the AB correlation function is 

real . This is true, for example , i f A p (-~) 

where p(k) is the Fourier transform of a density . 

We define another important correlation function, the time 

ordered product 

(TA(t)B(t ' >) 

The Lehmann representation for this function is simply 

00 

= f ~ 
2'Tfi 

-oo 

[
s AB (w') 

w-w ' +iE 

SBA (w ') ] 

w+w'-iE 

(A3 . l7) 

(A3 . 18) 

where E is a positive infinites simal . Then in the important special 

case of real correlation functions , 

(A3 . 19) 

where Im denotes the imaginary part. 
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If the time-ordered product can be developed into a 

diagrammatic expansion, then SAAt would follow ; this is a standard 

procedure at zero temperature ; it is more difficult to execute at 

finite temperature, but , formally at least, the procedures have been 

worked out (Fetter and Walecka 1971) . 

A3 . 3 THERMAL vv PRODUCTION KERNELS 

For the scattering kernel , A3.10 , there is a constraint on 

ka; it is a spacelike vector (k2<0) . When we enter into the 

timelike domain , what , if anything, does A3 . 10 represent? If w<O , 

then production is described, and if w>O , then absorption is 

represented. Thus 

Rp(q,q') = A3.10 -(q+q ' )µ (A3 . 20) 

A3 . 10 (A3.21) 

The regions in w-k space are indicated in Figure 3 . When we calculate 

moments of these kernels , we are integrating over a range of k values 

for fixed w ; for scattering , the range is from lwl to v+v' 

and for production and absorption it is from lv-v' I to lwl · 

A3.4 STRUCTURE FUNCTIONS 

The cur r ent-current correlation function is a tensor of rank 

two; two 4-vectors are specified : the momentum transfer ka , and the 

mean 4-velocity of the medium (Ua) = (1,0 , 0,0). We may expand 

s
1

a
1
s (k) in terms of 6 tensors of rank two built from k and U: 
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(A3 . 22) 

Each of then. is a function of k and U. They are scalars under Lorentz 
1 

transformations, therefore the n. are functions only of the combinations 
1 

k
2 

, k•U , and the thermodynamic variables of the medium. If we define 

w=k•U , then 

n. 
1 

2 
n . (w,k ,µ . ,T) 

1 J 
(A3.24) 

Time reversal invariance implies n
6 

vanishes. The scattering of 

neutrinos by the medium, or the production and absorption of \J\J pairs , 

gives information only on the scalars n1 , n
2 

, and n 3 : 

v scattering: R(q-+q I) G2 

- G2 v scattering: R(q-+q') 

\)\) production : Rp(q,q') 
2 1 G [n

1 
(l+c)+3n2(1- 3 c)-2(v-v')n3 (1-c))(A3.25c) 

\)\) absorption: Ra(q,q') = 
2 1 

G [n
1 

(1 +c)+3n
2 

(1- 3 c)+2(v-v ')n
3 

(1-c) )(A3. 25d) 

The n
3 

term arises from V-A interference; through it, neutrinos 

and antineutrinos have different scattering kernels; through it, the 

v energy spectrum produced in thermal vv production differs from the 
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v energy spectrum. There is an energy scale associated with ~3 . 

For nucleon processes, the energy scale is set by the nucleon mass, 

~ • If we are interested only in processes satisfying v,v ' <<~ , 

then this term can be neglected . Further, n
4 

, n
5 

and n
6 

can 

also be neglected in this limit ; then, for nuclear processes 

(A3.26) 

(A3.27) 

in the low energy limit. Notice the similarity between A3.25a, 

A3.25b with the n
3 

term neglected and the angular dependences in 

equation 4 .1. 

If the ensemble is microcanonical,appropriate for a set of 

energy levels of a nucleus with the same spin Ji and energy Ei , 

then 

Z-N 2 
--• 27To(w) (CVOA + CVl -2-) as k+O 

i ~·!:)2 
e fi 

(A3.28) 

(A3.29) 

(A3.30) 

These particular CCCF, A3.29 and A3.30 , are sometimes called strength 
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functions in nuclear physics . Knowledge of them gives all the 

information necessary to calculate both elastic and inelastic 

neutrino scattering. 

At very high energies , in the same ensemble , the function 

n3 ceases to be negligible; n
1 

, n2 , and ~3 are then related to 

the neutrino structure functions defined to treat deep inelastic 

neutrino experiments (Ellis and Jaffe 1973) . At Fermilab energies, 

the neutrino wavelength is ver y short, a few millifermis, and the 

CCCF's tell of the quark content of the nucleon; the parton model is 

applicable . Even at Cern PS neutrino energies , the wavelength is 

measured in tenths of fermis; the internal structure of the nucleon 

is still that which is measured . At LAMPF energies, the neutrino 

sees the nucleon as a unit, an "elementary" particle, but the nucleµs 

in which it is housed is composite . At reactor neutrino energies, 

the nucleus itself is seen as a unit with some total weak charge; 

the scattering is coherent . Passing to even larger wavelengths, we 

have neutrinos Bragg scattering off crystals . The structure functions 

n
1 

, n
2 

, and ~3 contain all this information . 

A3.5 CHARGED CURRENT CORRELATION FUNCTIONS 

The electron capture reaction, and its inverse , neutrino 

absorption, must be treat ed differently since the leptonic current 

involves electrons . If we use the Lagrangian 2 . 34 , and follow through 

an analysis similar to the one which led to A3.10 , we obtain the 

production rate for v 's by electron capture (and by e+ emission) in 
e 

the form 
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(A3.31) 

Here, ~ is the momentum of the neutrino, v is its energy, ijJ e is the 

electron field, Jhad,cc is the hadronic current, 2 .35 or 2.37, and 

( - t J 3 i q•x -ivt- µ 
ipe~had ,cc)(-g,-v)= d ~ dt e -e ijJe(xt)Jhad,cc(xt)Yµ (A3 . 32) 

Generally, the electrons are correlated with the nucleons by Coulomb 

interactions, both by static screening and by the modification of 

free waves to Coulomb wave funct ions: the latter effect is included 

in the Coulomb factor F ( Z, E ) in 2 . 46. In the high energy limit , 
e 

these correlations cease to be important; this is especially true for 

electron captures on low Z nuclei; then , we obtain 

2 2 
G cos 8 

c 
E v 

e 

If we neglect possible nuclear polarizations due to magnetic fields, 

a very small effect even for strong fields, we can again make an 

expansion of the form A3.23, and neglect terms of order vi~ , to 

obtain: 

f d3p 2 2 r (q) = f (p) c cos e 
p . ( 2n) 3 e c 

1 
• [SJ 

1
t (k , w)(l+c)+s1 •1t(k,w)(l- 3 c)] 

0 0 
(A3.34) 
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where c = q•pe and k = (w ,k) p-q. The absorption rate is 

similarly (where now k = q-p) 

r (q) 
a 

3 

f d P
3 

(1-f (p)) G2cos 2 e 
(2n) e c 

(A3.35) 

If we were to use an ensemble of the form A3.28 appropriate 

to a stationary nucleus, then the Coulomb correlations could be put in 

by inserting the Coulomb factor F(Z,E ) into the formulae for r and 
e p 

ra , A3 . 34 and A3.35 . In this case, s1610 
and SJ.J are proportional 

to the beta strength functions defined in, for example, Itoh et al. 

(1977) . 

A3.6 DETAILED BALANCE RELATIONS 

The formula A3.13 can be used to derive in a general manner 

the detailed balance relations among scattering, production, and 

absorption coefficients. Since the weak neutral matter current 

commutes with the number operators for all the species of particles 

in the medium, ~µ = 0, 

'1. . (-k) 
l 

r::. e_Sw Jz.. (k) 
l l 

E =l if i=l , 2, -1 if i=3 
i 

and we obtain the relations 3 . 6 and 3.9 of Chapter 3 . 

(A3.36) 

(A3.37) 

The charged hadronic current satisfies the commutation relations 
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-Jhad ,cc (A3 . 38a) 

(A3 . 38b) 

and the elect ron field satifies 

- 1jJ 
e 

(A3 . 38c) 

where N and N are the neutron and proton operator, and N is the 
n p e 

number of electrons minus the number of positrons . These relations 

imply L'iµ 

in A3 . 31 

gets for r 
a 

JJP + µe - µn for the operator ~e Jhad ,CC which arises 

if we combine A3 . 31 and the similar expression that one 

we get 3 . 11, which is the detailed balance relation 

between production and absorption. Notice that the neutron and proton 

number operators are for the total number of nucleons , bound and free, 

and so then are µ and µ 
n p 

by the nuclear statistical equilibrium 

assumption , these reduce to the chemical potentials of the free neutrons 

and protons . 
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APPENDIX 4 NUMERICAL METHODS 

In this appendix, we detail some of the numerical techniques 

used to solve the differential equations set up in Chapter 3. 

A4.l METHODS OF INTEGRATION AND INVERSION 

To obtain the electron-positron equation of state, we need 

the degeneracy factor, n , given p , T, Y • For n > 7, we use the 
e 

first Sommerfeld correction to evaluate the Fermi integrals (3.68); 

for n in the range -5 < n < 7 , we use Gauss-Laguerre integration to 

evaluate Fk and a Newton-Raphson method to invert it. 

We use the Epstein and Arnett (1975) fitting formulae to 

obtain the nuclear part of the equation of state, except for the free 

nuclear gas (which is trivial) . 

We invert the matter energy per baryon, s (p,T,Y ), which is 
m e 

directly determined by the integration of 3.17c, to obtain the 

temperature, T(s ,p,Y ) , by a Newton-Raphson method. m e 

The equations describing the transparent phase are solved by 

the fourth order Runge-Kutta technique . 

The energy integrations necessary to evaluate moments of the 

ve scattering kernels and of the e+e- ~ vv production kernels are 

evaluated using Gauss-Laguerre and Gauss-Legendre numerical 

integrations respectively. 

A4 . 2 ENERGY BIN AVERAGING 

The P-0 equation (6.lla) expresses the time evolution of the 

neutrino distribution function , n(v,t) , which is a function of time 
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and neutrino energy; in order to numerically integrate these 

equations, both variables must be discretized. We assume the df 

is approximately a step function in energy space, 

n(v,t) (A4.l) 

which assumes the constant value n(j,t) in the j-th energy group, 

[vj,vj+l)' (whose characteristic function is X). 

We multiply the P-0 equation by v 2 
, insert A4.l, then 

integrate over group j; when, for example, e pt n v and 
e 

v e ~ v e are included, we obtain (with 8 = 0 in 6.lla) 
e e 

dn(j, t) 
dt -r ~ (j)n(j, t) + r P (j) - (L,<1-n(j ', t)) R(j + j ')) n(j, t) (A4.2) 

( 

(t.v3)., J ) 
+ L n ( j ' , t) 

3 
J R (j ' ~ j ) ( 1-n ( j , t) ) 

•I (.6\! ) . 
J J 

Here, the bin average of the production rate is 

r (.) p J -

where 

3 J\)j+l 2 
3 \) dv r (v) 

(t.v ) . P 
J \)j 

3 
(t.v ) . 

J 

The bin average of the scattering rate is defined in a similar 

manner: 

(A4. 3a) 

(A4. 3b) 
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3 J\)j+l 2 J\)j '+l 
R(j ~ j') -

3 
v dv 

(!w). v v 
j j j I 

2 
(v') dv' R

0
(v ~ v') (A4.3c) 

This way of averaging was used to ensure no neutrino number 

is lost in neutrino-electron collisions . We evaluate the integrals 

A4.3a and c numerically, using a simple two point trapezoidal rule. 

This was tested by comparison with Simpson rule evaluations; further, 

the scattering rate , which is the sum over j' of A4 . 3c, agrees in the 

low and high energy limits with analytic formulae (A2.27). The bin 

average of the thermal production kernels are also defined by A4.3c; 

integrated energy loss rates calculated by this method agree with 

the BPS rates, provided the energy bin size is not too big. 

We store the matrix R(j,j ') in a grid in the variables n and 

T; to include l = O, 1, and 2 moments of the scattering kernel for the 

wide range of n and T values necessary in the spatial runs takes us 

to the limit of the storage capacity of CDC 7600 small core memory. 

When we do a table lookup , a thr ee point linear bivariate interpolation 

is per formed. 

When the neutrino-neutrino scattering source function Al.25 is 

put through the prescription given to obtain A4 . 2, problems arise for 

the reasons mentioned in Appendix 1 . 

Mos t authors finite difference 6.lla in energy space: the 

energy v would be taken at a discrete number of points and the source 

func:t i ons would be eva luated at those points . Although the group 

<1ve rag i ng t ec hnique is more el e gan t, the a pproximations necessa ry to 
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evaluate the integrals may not make it more accurate than finite 

differencing; it is certainly no less accurate; accuracy comes from 

the inclusion of more energy groups. Eighteen were used in v 
e 

evolution (see Figure 29); twenty-five were used in v v runs, 
µ µ 

spaced as in Figures 30 and 32. 

A4.3 THE HOMOGENEOUS CODE 

The Y , E , and ~(j,t) equations (one for each j) form a 
e m 

system of coupled nonlinear ordinary differential equations (ODE's). 

There are many standard methods for solving ODE's which we 

have tried: fourth order Runge-Kutta, Milne's predictor-corrector 

method, and a number of iteration schemes. These methods conserve 

lepton number exactly, and all work as long as the timestep size does 

not get too large. 

The size of the step is determined by the energy bin in which 

the largest changes in the df occur. At the beginning of the runs, 

these are determined by the production or absorption times. Neutrino 

rates typically go as the square of the energy: the characteristic 

evolution times for the highest (125-150 MeV) bin is ten thousand 

times shorter than the lowest bin's evolution time (.2-2 MeV): we 

clearly must increase the timestep size to well beyond the 

characteristic high energy time in order to do significant evolution. 

A small deviation from equilibrium (say, in the direction of 

production) amplifies, for in the next step, an overbalancing 

absorption occurs. The oscillations grow, then begin to downscatter 

into lower energy bins, wreaking havoc there. 



This timestep size problem becomes especially acute when the 

production time is many orders of magnitude greater than the absorption 

or scattering times, when Y values are low or a thermal vv 
p 

production mechanism is operating . 

We rewrite the source function , the right hand side of A4 . 2, 

in the form 

dn(j,t) = 
dt -a . n(j,t) + p . 

J J 
(A4.4) 

where p. is the effective production rate in energy group j (including 
J 

scattering into the beam), 

3 

+ 'ER(j' 
(/::,.V ) • I 

pj r (") + j) n(j ') p J 3 
j I (t:,.v ) . 

J 

(A4 . Sa) 

and 

a . p. + r C) +LRC + j')(l-n(j')) 
J J a J J 

j I 

(A4.Sb) 

is the effective modified absorption rate ; both are functionals of the 

matter energy, Y , and the distribution function. 
e 

If a and p are practically time independent between time t 

and t + ot , A4.4 can be integrated exactly to yield a first prediction 

for the df : 

n (O) (j, t+ot) 

(O) 

= pj 
(O) 

a. 
J 

+exp (-a~O)ot)[n(j,t) 
J 

(O) 
p. 

- ..::....J_ ) 
(0) 

a . 
J 

However, lepton number is evolving, with predicted value at t+ot 

(A4.6) 



Y(O) (t+ot) 
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3 (!:>, \) ) • 
ye (t) + ot I: 2 J 

. 61f J . 

(A4. 7) 

A similar prediction holds for £(O) and therefore the temperature 
m 

The first prediction, A4 . 6, will overshoot (if, for example, 

Y is decreasing) or undershoot the exact solution due to time 
e 

dependence of the effective production and absorption coefficients. 

n ( 0 ) ' y ( 0 ) ' T ( 0) to We make a second prediction by first using 
e 

obtain p(l), a(l) , and from these obtain n(l) , Y(l) , and T(l) , 
e 

This second prediction tends to act in the opposite direction: n(l) 

tends to undershoot if n(O) overshoots. 

From these two predictions, we form a corrector: 

n(j,t+ot) _ nc(j,t+ot) q n(O) + (1-q)n(l) 

y (t+ot) 
e 

q y(O) + (l-q) y(l) 
e e 

(A4.8) 

(A4.9) 

where q is a parameter we are free to vary. We choose q to conserve 

lepton number. 

The functionals a and p depend upon changes in the 

thermodynamic variables, which, once the extremely rapid phase of 

neutronization occurs, change slowly (see Figure 26). They also 

depend upon the distribution function, but only in an integral 

(summation) sense, and are not very sensitive to changes in any one 

group's value. 

We peg the timestep size to changes in p and a; we must still 
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choose it short in the rapid evolution phases, but can let it grow 

near equilibrium which the df approaches smoothly; the numerical 

solutions do not deviate from equilibrium once it is attained. 

A si.imilar technique is used to solve the P-0 equations for 

v v pairs: there, we have required Y 
µ µ Vµ 

as the q constraint 

condition. Comparisons with a forward differencing iterative method 

show similar results (Figure 30). As we mentioned in section 6.6, 

the df tends to overshoot the µ = 0 equilibrium. 

A4 . 4 THE SPATIAL CODE 

The spatial code is similar to the homogeneous code 

multiplied by the number of spatial zones, except that nearest 

neighbor zones are coupled. 

We finite difference the P-1 equations (section 3.8) in space, 

following the techniques and notation of Falk and Arnett (1977). We 

split the range of the baryon number coordinate, b, into zones 

labelled by an integer k which runs from zero to some maximum k 
m 

The thermodynamic variables (temperature, density, energy, pressure, 

Y , and other compositions) and the even moments of the df are 
e 

defined at the zone centers, labelled by k + 1/2 . Odd moments of 

the df and the dynamical variables (radius, velocity, total baryon 

number interior to zone k) are defined on zone boundaries. 

If a quantity such as the density p is defined at the zone 

centers, its value on the zone boundaries is approximated by 

(p(k+l/2)L\m(k+l/2) + p(k-l/2)L\m(k-l/2)) 
- 2L\m(k) (A4.10) 
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where ~m(k+l/2) = M(k+l) - M(k) is the difference in baryon number 

between the (k+l)-st zone and the k-th zone: it is the baryon number 

enclosed within zone k. Here, we adopt the symbol of mass for 

baryon number given in units of Avagadro's number . The mass difference 

~m(k) - (~m(k+l/2) + ~m(k-1/2))/2 (A4.ll) 

is defined in such a w~y that (1)k = 1. 

Values defined on the zone boundaries such as the radius R 

are approximated at the zone centers by 

(~m(k+l)R(k+l) + ~m(k)R(k)) 
2~m(k+l/2) 

(A4.12) 

The P-1 equations (3.25 and 3.26) with the dynamics neglected 

become 

an(k+l/2) + cp(k+l/2) (A(k+l)j(k+l) _ A(k)j(k)) 
ot ~m(k+l/2) 

aj(k) 
at 

-a(k+l/2)n(k+l/2) + p(k+l/2) 

cA(k){p)(k) [n(k+l/2)(2/3 + f(k+l/2)) 
+ 3~m(k) 

- n(k-1/2)(2/3 + f(k-1/2))] + i(k) (Cf-l/3)n)(k) 

-Y(k)j(k) + µ(k) 

(A4.13) 

(A4.14) 

where n and j are the i = 0 and l = 1 moments of the df respectively, 

2 
f is the Eddington factor (3.49a), and A is the area (4nR) . The 
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effective modified absorption coefficient, a, consists of those terms 

in 3.25b,c which multiply n(v) ; the effective production coefficient, 

p , consists of those terms which do not; we include the l = 1 terms 

which arise from nonconservative scattering in p, but not the l = 2 

terms, as they enter into a. In a similar manner, the effective 

transport coefficient, Y , consists of the terms multiplying j in 

3.26b,c ; the rest of the terms make up µ , the effective momenttnn 

production coefficient, which arises from scattering into the beam. 

In all of these coefficients, the appropriate averages, A4.10 and 

A4.12, must be included where necessary. 

In our first treatment of these equations, we finite 

differenced A4.14 in time, took the j on the right hand side (RHS) 

at the later time (backward differenced), inserted this equation into 

A4.13, with then on the RHS at the earlier time (forward differenced). 

The result is a system of linear equations of form 

A(k+l/2)n(k+3/2,t+ot) + 8(k+l/2)n(k+l/2,t+ot) + C(k+l/2)n(k-l/2,t+ot) 

V(k+l/2) (A4.15) 

which can be written as a matrix equation: the matrix is then 

tridiagonal and can be inverted to yield the df at time t+ot in terms 

of the coefficients A, 8, C, and V which depend upon the df at time 

t. Actually, our technique included many iterations; the coefficients 

then depended upon the df and the thermodynamic parameters at prior 

iterations. 
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Another method is to take n on the RHS of A4.13 at forward 

times: the equations are twice backward differenced, but lepton 

number is no longer conserved. 

We adopted a method similar to that used in the homogeneous 

code: A4.14 is integrated over a time interval, yielding j(k,t+T) 

in terms of an (unknown) integral over n, which we evaluate by 

assuming a linear variation in n(k+l/2,t) between its values at t 

and t+ot The flux, j, is inserted into A4.13, and the resulting 

expression is integrated over time. A tridiagonal equation, A4.15, 

results with A, 8, C, V complicated functions of past time values 

and exponentials of act and Yet. 

Special attention must be given to boundary conditions; for 

example, C = 0 for the inner zone k = 1, A = 0 for the outer zone 

k = k m 
The Marshak BC (3.51) expresses j(k ) as a linear m 

combination of j(k -1) and n(k -1/2). m m 

In practice, we do not solve A4.15, but rather A4 .15 multiplied 

by (6v
4) ./8TI 2 , which yields the energy density. 

J 

The flux limited diffusion equations are simpler: A4.14 has 

f = 1/3, and no aj/at and µ terms; a flux limiter now divides Y 

Again A4.15 is obtained, with different coefficients than in the 

P-1 method . 

The neutronization and energy equations are solved by forward 

dQfferencing. At each timestep, the effective absorption, production, 

and transport coefficients must be obtained, and exponentials taken 

of these. 
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This code has been tested on a simple problem: a delta function 

source at the center of a homogeneous sphere; the BC are Marshak; the 

code reproduces accurately the long time behavior,which can be obtained 

analytically. Further, the code reproduces the homogeneous code 

results when all transport is shut off . 
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TABLE 1 

The coefficients needed to specify the neutral current 

interaction, and their values in the Weinberg-Salam theory. 

(Section 2.2) 
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TABLE 1 

COEFFICIENTS W.S. VALUESt 

a 1 
e 

a (=a ) 1 
µ e 

eve (=a CV +l) 1/2 + 2x 
e e 

CAe (=a cA +1) 1/2 
e e 

CVµ (=a cV ) -1/2 + 2x 
µ e 

CAµ (=a CA ) -1/2 
µ e 

cvn -1/2 

CAn -g /2 A 

CVp 1/2 - 2x 

CAp gA/2 

cvo (=aecVO) - x 

CVl (=aecVl) 1 - 2x 

CAO (=aecAOgAO) 0 

CAl (=aec Al gA) gA 

-i- • 2 
x = sin 8W 
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TABLE 2 

Cross sections for many of the processes important in 

gravitational collapse. (Sections 2 . 5 , 2 . 6 , 2 . 8 , Al . 2) 



COUPLING PROCESS 

(vv) (NN) V,e_+Ai + V,e_+Ai (l=e,µ) 

\) ,e_+Ai + \) ,e_+Ai 

v,e_+Ai + V,e_+Af 

\) ,e_+Ai + \) ,e_+Af 

V,e_+N + v,e_+N 

- -
V,e_+N + V,e_+N 

Ai + Af+v,e.+v,e. 

(\iv) (ee) vl+e- + vl+e- (l=e,µ) 

- + - + v,e.+e + vl+e 

vl+e- + vl+e -

\) +e+ + \) +e+ 
l l 

+ - -e + e + vl+vl (l=e, µ) 

- + -v,e.+v,e. + e +e 

TABLE 2 

GROSS SECTIONX 

c2 2 < 2 2 
a = ""lT" [(CVnNi+cVpZi) + (CAO+cAlt3)~)ii]v 

c 2 2 2 
a=-;- (v-Qif) (<cAO+CAlt3)q)fi ' Qif=Mf-Mi 

G2 2 2 2 
a = -;- \) (CvN+3CAN) ' 

N=n,p 

G2 5 2 
rfi = 60TI3 Qfi (<cAO+cAlt3)q)fi ' Qfi=Mi-Mf 

c
2 1 2 1 2 · /8-

0 = -;- 8 4 [ (CVl+cAl) + 3 (CVl-CAl) J, s»me 

c 2 1 2 1 2 /S: 
0 = 7T 8 4 [ (Cvl-CAl) + 3 (Cv,e.+CAl) ] ' s»me 

G2 1 2 2 /S»m . a = 3TI 8 4 (CVl+cAl) ' e 

G2 2 2 IS»m a = 37T s (Cv,e.+CAl) ' e 

I\) 
CJ] 
CJ] 



TA
BL

E 
2 

(c
o

n
ti

n
u

ed
) 

C
O

U
PL

IN
G

 

(v
v
)(

v
v
) 

PR
O

C
ES

S 

v 
+

v 
-+

 
v 

+
v 

e 
e 

e 
e 

v 
+

v 
-+

 
v 

+v
 

e 
e 

e 
e 

v 
+

v 
-+

 
v 

+
v 

µ 
e 

µ 
e 

v 
+

v 
-+

 
v 

+
v 

µ 
e 

µ 
e 

I v 
+

v 
-+

 
v 

+
v 
l 

e 
e 

µ 
µ 

-
-

v 
+

v 
-+

 
v 

+
v 

µ 
µ 

e 
e 

CR
O

SS
 
S
E
C
T
I
O
N~
 

G
2 

2 
0 

=
 -

a 
s 

TI
 

e 

G
2 

2 
0

=
2

-
a
 

s 
3

T
I 

e 

G
2 

0
=

2
-
a
a
 

s 
TI

 
e 

].l
 

G
2 

0
=

2
-
a
a
 

s 
3

T
I 

e 
l1

 

G
2 

0
=

2
-
a
a
 

s 
3

T
I 

e 
µ 

r
-
~
~
~
~
~
~
~
~
~
~
~
-
-
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~

-
-
-
.... ~

~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~

J
 

2 
* 

Q_
_ 

=
 l

.6
3

x
l0

-44
(M

eV
)-

2 
TI

 

2 
cm

 
IS

 =
 c

e
n

te
r 

o
f 

m
as

s 
en

er
g

y
 

(v
v
)(

N
N

) 
c
ro

ss
 s

ec
ti

o
n

s 
a
re

 
la

b
 

fr
am

e 

f\
) 

CJ
l 

0
\ 



257 

FIGURE 1 

The experimental situation in neutral current interactions 

is exemplified by the errors in sin
2 aw if the experiment s are 

analyzed within the framework of the Weinberg-Salam model. The 

experimental values in inclusive deep inelastic neutrino 

scattering have sharpened somewhat s i nce this figure,taken from 

Cline and Fry (i977) , was made. "Reproduced, with permission, from 

Annual Review of Nuclear Science, Volume 27. (9 1977 by Annual 

Reviews Inc . " (Section 2 . 2) 
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FIGURE 2 

The ratio of the l = 2 and 3 moments of the df to the 

l = 0 moment is given as a function of the ratio of the first to 

zeroth moment for an elliptic distribution (equation 3.44). The 

function a , defined by equation 3 . 45b, is also plotted. This 

function is used to obtain the Eddington factor (3.49a) in the 

P-1 method. (Section 3. 7) 
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FIGURE 3 

An illustration of the processes which the current-current 

correlation function describes in various domains of w-k space. 

Moments of the scattering kernel, which are functions of the 

incoming neutrino energy , v, and the outgoing neutrino energy , v' , 

are obtained by integrations with respect to k over the dashed line. 

Similar k-integrations must be performed to obtain moments of the 

production and absorption kernels, but in the timelike negative and 

positive cones respectively.(Sections A3.3 and 5.5) 
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FIGURE 4 

The static liquid structure factor vs. ka for a r = 10 

Coulomb plasma (Hansen 1973) (solid line). The dashed line is the 

Debye-Huckel static liquid structure factor . (Section 4.4) 
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FIGURE 5 

The ratio of the transport rate with finite nuclear size 

corrections (labelled FNS) and ion-ion correlation effects 

(labelled IIC) to the transport rate with none of these corrections, 

for an iron-nickel plasma with r = 10 ; the FNS curve is independent 

of r. (Sections 4.3 and 4.4) 
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FIGURE 6 

The zero temperature dynamic liquid structure factor of 

nuclear matter in the independent quasiparticle approximation as a 

function of w for fixed k ; for illustration purposes we have chosen 

k = 0.2 Pp • (Section 4 . 5 and A2 . 2) 
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FIGURE 7 

The appropriate regions for \!N scattering at zero 

temperature in the w = \!-\!
1 against k = \!+\!

1 plane. The regions 
m 

I to IV are defined by A2.13. The\!, \!
1 axes are also shown. The 

region w < 0 , and the region between the w axis and the line 

2 w = k /2m + kvF are not kinematically allowed. (Section 4.5 and 

A2.2) 
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FIGURE 8 

The differential scattering rate for neutrinos by neutrons 

13 in a zero temperature degenerate gas at p = 5xl0 g/cc, Y = 0.9 
n 

is plotted against final neutrino energy, v', for 3 incident 

neutrino energies, 10, 50, and 100 MeV. The neutron Fermi energy 

is 17.9 MeV, and the Fermi momentum is 183.3 MeV.(Section 4.5 and 

A2.2) 
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FIGURE 9 

The density-temperature region of interest. The dashed 

line is the typical evolution of the central zone of a collapsing 

star in a hydrodynamic code (Arnett 1977). The points Wl and W2 

are Wilson's (1977) two recorded hydrodynamic bounces. The nuclear 

degeneracy lines are nB = O, 5, and 10 (if Yn = 1, these are nn 

14 lines). The arrow denotes normal nuclear density, 2.8xl0 g/cc. 

The points labelled ep,Y £' e+e- are the conditions under which 
p ' 

we focus on the evolution of v 's with source electron capture on 
e 

free protons and the evolution of v 's and v 's with source 
µ µ 

Yp£ + vv and e+e- + vv respectively (Chapter 6). (Sections 4.5, 

6.1, 6.2, 6.5, 6.6) 
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FIGURE 10 

For three incident neutrino energies, v = 10 MeV, 25 MeV 

and 50 MeV, the l 0 moment of the v e + v e scattering kernel is 
e e 

plotted against the outgoing neutrino energy. The temperature is 

2x10
1° K, the electron degeneracy parameter is 14, and p11Ye = 1. 

The electron chemical potential is indicated by the arrow. 

Upward pointing arrows under the curves denote the incident 

energies.(Section 4.6) 
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FIGURE 11 

The l = 0 moments of the v e ~ v e kernels at incident 
e e 

energy 25 MeV are given for two different temperatures, 2xlo
1° K 

10 and 3xl0 K, with the same chemical potential which is shown by a 

downward pointing arrow. Considerably more upscattering (v' > v) 

is allowed by the higher temperature kernel. (Section 4. 6) 
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FIGURE 12 

The first three moments, l = 0, 1, 2, of the v e + v e 
e e 

scattering kernel at p11Ye = 1, T10 = 2 for an incident neutrino 

energy of 25 MeV.(Section 4.6) 



280 

800 

......... 
I 600 
> Q) . 

~ 

I (I) 

.......... 
400 

(\J 

~ 
N 

0 ......... - 200 ~ 
.......... 
......... -~ 100 

t 
~ 0 .......... 

er.~ 
20 30 40 

-100 v' ( MeV) 

-200 

FIGURE 12 



281 

FIGURE 13 

Graph of the transport rate against energy at 

p = 2.54xl0
11 

g/cc, T = 2xlo1° K, Y = 0.4, Y = 0.6, Y = 0 .4. e n p 

It is the scattering rate which is plotted for the electrons. At 

this temperature and density, we would actually have a mixed 

composition, consisting of alphas, neutrons, and protons, and some 

heavy nuclei. In order for va + va to dominate vn + vn , it is 

necessary that the mass fraction in alphas be 6 times greater than 

the mass fraction in neutrons; in order for v+A + v+A to dominate, 

the mass fraction in heavies (A ~ 56) would have to be ~ 44% of that 

in free neutrons. Those curves would look very similar to the vn 

2 
curve<~ v ). Also displayed are the production (e-p + nv ) and 

e 

absorption (v n + e-p) rates, as well as their sum, r' . The total 
e a 

transport rate rtr is the sum over all the individual rates. The 

inverse diffusion time for neutrinos to escape a one-half solar mass 

-1 
core at this density (radius = 98 km) is 'dlnn : R/c is the 

light travel time across the core. (Sections 4.6, 5.1, 6.2, and 

6. 3) 
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FIGURE 14 

A comparison of the v e + v e scattering rate with the 
e e 

neutrino nucleus transport rate at typical mantle conditions: 

p = 10
10 

g/cc , T10 = 1, Ye = 0 . 46 , ne = 10 ; the mantle is 

assumed to be composed only of A = 56 nuclei . (Section 4 . 6) 
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FIGURE 15 

The l = 0 moments of the production kernels for 

e+e- + v v are plotted against the v 's energy v' for 4 values of 
µ µ µ 

the v 's energy, 9, 40, 80, and 120 MeV. The conditions are 
µ 

T = l.2xl011 K (= 10.34 MeV), n = 7 . 5 , pY = 4.05xl0
12

. 
e e 

(Sections 5.6 and 6.6) 
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FIGURE 16 

The v (v ) production rates for e+e- + v v are plotted 
JJ JJ JJ JJ 

against neutrino (antineutrino) energy for the conditions of 

Figure 15. A comparison with the total plasmon neutrino process 

production rate is also given (2.4xlo29 erg cm- 3 s-l are 

radiated by Ypl + vJ.lvJ.l , compared with 4.3xlo32 erg cm-3 s-l 

for e+e- + v v ). (Sections 5 . 6, 5.7, and 6.6) 
JJ JJ 
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FIGURE 17 

A graph in the temperature -pY plane displaying the region 
e 

in which e+e- + v v dominates the energy loss (to the left of the 
e e 

speckled line), and the region in which Y 0 + v v dominates the p.{_ e e 

energy loss (to the right) among the thermal vv emission 

mechanisms. Arnett's (1977) trajectory (dashed line) and the 

position of Wilson's (1977) first two hydrodynamical bounces 

(Wl and W2) are also shown. The constant n lines (O, 5, 10, 20, 40) 

are also displayed; these are also lines of constant Sw with 
p 

values 0.1, 0.296, 0.566, 1.118, and 2.229 respectively, where 

w is the plasma frequency. (Sections 5.6, 5.7) 
p 

I 
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FIGURE 18 

This graph is similar to Figure 17, but the demarcation is 

between e+e- + vµvµ and Ypl + vµvµ (the former dominates the energy 

loss to the left of the speckled line, the latter to the right). 

We evolve the v df under the conditions labelled ep in sections 6.2 
e 

and 6.3. We evolve the v and v df's under the conditions 
µ µ 

labelled e+e- and Ypl in section 6.6. The dashed line is Arnett's 

(1977) trajectory, and the thin solid line is a pY ~ T312 
e 

trajectory which passes through the point labelled by an open circle. 

The points Wl and W2 are Wilson's (1977) bounce conditions. In the 

shaded region, the freely streaming energy loss rate for thermal 

vv emission processes exceeds the diffusion rate of degenerate 

electron neutrinos from a 1/2 Ha homogeneous core whose free proton 

and neutron abundances are frozen at 0.2 and 0.8 respectively. 

(Sections 5.6, 5.7, and 6.6) 
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FIGURE 19 

The dispersion relations for longitudinal (wl(k)) and 

transverse (w+(k)) plasmons in wk space. When k = k = v-v' 
;!.. m , 

these curves give the boundary between the region in vv' space 

where neutrinos and antineutrinos can be produced. Transverse 

plasmons create neutrinos of energy v and antineutrinos of energy 

v' in the cross hatched region. Longitudinal plasmons create 

vv's only in the shaded region. (Section 5.7) 
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FIGURE 20 

The l = 0 moments of the transverse (:bi) and longitudinal 

(long) plasmon neutrino process production kernels for various 

v energies (1 . 5, 4.0, and 
).J 

temperature is 6.24xlOlO K 

(Section 5. 7) 

8 . 0 MeV) against v energy. The 
).J 

12 
, n = 15 , and PY = 3.8xl0 g/cc. 

e e 
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FIGURE 21 

A comparison of the transverse and longitudinal plasmon 

neutrino process spectra for the conditions given in Figure 20. 

(Sections 5.7 and 6.6) 
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FIGURE 22 

A comparison of the plasmon (longitudinal plus transverse) 

neutrino process v production rate compared with the pair v 
. µ . µ 

production rate at n = 10, T
10 6. 24 ' µ e 

pY = l . 13xlo
12 

g/cc . Choosing a defi nite Y 
e e 

5 3 . 8 Me V, and 

0 . 25 , so 

12 
p = 4.52xl0 , and for illustration purposes, Y = 0 . 8 , Y = 0 . 2 

n p 

(therefore neglecting the a's present) , the diffusion time for a 

1/2 M
0 

core at this density is also plotted. The ener gy radiated 

in plasmon neutrinos is · 3 . 5xlo27 and in pair neutrinos is 

29 -3 -1 
3 . 2xl0 erg cm s The energy radiated due to the decay of 

25 -3 -1 
longitudinal plasmons alone is 2 . 5xl0 erg cm s ; the spectrum 

for this process is also shown. (Sections 5 . 7 and 6 . 6) 
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FIGURE 23 

The pT and pY trajectories of ENB for the starting 
e 

densities of 108 , 109 , and 1010 g/cc, the starting temperature of 

9 4x10 K, the initial Ye of 0 . 5, for x
0 

= 75 . The lines become 

dashed after trapping has occurred (see section 6.1 for discussion) . 

The squares and triangles indicate the ENB estimate of when a core 

of mass 0.7 and 0 . 3 ~respectively would become dynamically 

decoupled from the. regions above i t . The three crosses indicate 

the thermodynamic conditions under which the approach to beta-

equilibrium i s calculated in section 6 . 2. 
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FIGURE 24 

The same as Figure 23 except that x
0 

224 . 
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FIGURE 25 

The evolution of the v df in a gas of free nucleons plus 
e 

electrons at the density 2.54xl0
11 

g/cc; the initial temperature 

and Y are 2xlo
1° Kand 0.4 respectively. The three times indicated 

e 
-5 -4 -3 are 10 , 10 , and 10 s. The graph (b) has v e scattering 

e 

turned on; (a) does not. The equilibrium FD df is also shown, 

and its chemical potential, µ , is indicated. (Section 6.2) 
\) 
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FIGURE 26 

The time dependence of Y , Y , and T during the 
e v 

transformation to beta-equilibrium for the conditions of Figure 25. 

(Section 6 . 2) 
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FIGURE 27 

Figure (a) shows the approach to equilibrium with 

e-p + nv only included, under the condition T = 2xlo1° K, 
e 

11 
p = 2 . 54xl0 g/cc, Y 

e 
-4 0 . 4. The starting Y and Y are l . 43xl0 

P n 
-4 and . 0744, the final values are .89 xl0 , .0750; the final Y = .3873, 

e 

Y .0127. The times are .1094 ms (dot) , 1.27 ms (dash) , v 

12 . 4 ms (solid) . Even after 1.9 s, equilibrium is still not attained 

in the lowest energy bins . 

Figure (b) is the same as figure (a), but with v +e 7 v +e 
e e 

also turned on. The times are 0.1004 ms (dot) , 1.17 ms (dash) , 

and 14.6 ms (solid). The light dashed continuous line is the 

equivalent equilibrium Fermi-Dirac df at the time 1.17 ms (n 
v 

the conduction approximation does not work here. By 60 ms, 

1 . 5): 

equilibrium is reached ; the chemical potential , µv , is also shown . 

(Section 6.2) 
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FIGURE 28 

The curve (a) shows the approach to equilibrium under the 

10 hotter initial temperature 2.SxlO K at the same density and 

Y as in Figure 27. The times are .1 ms (dotted line), .7647 ms 
e 

(dashed line), and 19.9 ms (solid line); the continuous curve gives 

the equilibrium df, with Y = 0.3609, Y = .039. The starting Y 
e v p 

and Y are .015 and .16, the final ones are .005863 and .1791 
n 

respectively. (Section 6.2) 

The curve (b) shows the effect of diffusive transport from 

a homogeneous sphere of mass 0.5 M8 and radius 98 km on the approach 

to equilibrium for the conditions of Figure 27. The matter heats up: 

the temperature at 60 ms is 2.476xlo1° K (which incidentally causes 

the proton -4 abundance to increase to 7 .9xl0 rather than decrease 

with neutronization). The meditnn has lost .128 leptons per baryon 

to diffusion at this stage, has a Y of .2707, which is still 
e 

-3 depleting, and a Y of l.69x10 , which is also depleting; the 
v 

continuous curve is the equilibrium curve if the neutrinos were in 

beta-equilibrium at 60 ms and the solid histogram is the calculated 

df at this time. The df at 10 ms is similar to this one. The df 

at .1081 ms (dot) and 1.004 ms (dash) is also shown. The light solid 

curve is the energy flux of neutrinos from the homogeneous sphere; 

the axis is to the right. (Section 6.3) 
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FIGURE 29 

This graph shows the effect of dynamics as well as diffusion 

on the approach to equilibrium, when e-p ~ nv and v e ~ v e are 
e e e 

included. The df's are given at the following densities, 

10 7xl0 g/cc, 1.36 MeV, 0.3998, temperatures, Y 's and Y 's: 
e p 

-5 11 5 2.34xl0 (dot-dash); 10 , 1.45 , 0.3994, 3.7xl0- (dot); 

3x1011 , 

-3 3.9xl0 

-4 1.79, 0.3948, l.43x10 (dashed), and at this stage only 

leptons per baryon have been lost, the remaining 

1.3x10-3 leptons are trapped ve's ; 8.3xl011 , 2.35, .3668, 

-4 6 . 3x10 (solid), a point at which we would say trapping has 
I 
I 

occurred; :if electron captures on heavy nuclei (which dominates 

throughout most of this collapse) were included, the trapping 

densi.tywouldbe earlier; 4.lxl012 , 4.42, 0.26, 4.7xl0-3 , 

Y = .0326, and here we certainly have a Fermi-Dirac df except for 
v 

the very small depression in the 0.2 - 2 MeV bin, as is evidenced by 

the continuous curve which is a FD df with n = 7.4 . (Section 6.3) 
v 
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FIGURE 30 

13 The v df evolution for the conditions p = l.9xl0 g/cc, 
J.l 

y 
e 

. 10 = 0.2, T = 6.24xl0 K, n 
e 15, µe = 80 . 7 MeV, nv = 

e 
13. 37' 

J.l\) 
e 

= 71.9 MeV (for a free nucleon gas with Y 
n 

= 0.8, y 
p 

= 0.2). 

The processes included are Ypl + 

and \) \) + \) \) (which dominates v e with this neutrino chemical 
J.l e J.l e J.l 

potential). The times are .102 ms, .96 ms, 20 ms, 105 ms 

(Y = y_ -6 235 ms (Y -6 Only 41% of the 4.4lxl0 ) = 9 . 74xl0 ). 
\) \) \) 

neutrinos are within v ~ 12.5 MeV once thermalization is attained. 

The equivalent neutrino chemical potentials are obtained from the 

Y computed for the curve. When diffusion is turned on, almost all 
\) 

of the neutrinos escape, and a steady state distribution results 

after 1.5 ms (the dotted histogram). 

similar. (Section 6.6) 

The v evolution is quite 
J.l 
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FIGURE 31 

This graph presents a comparison of the scattering of muon 

neutrinos by electron neutrinos and electrons under the conditions 

T10 = 12, µe = 77.6 MeV, ne = 7.5, l\, = 58.3 , nv = 5.64 at 

p = 2.7xlo13 g/cc, Y = 0.15; to getµ , a pure nucleon gas in 
e v 

beta-equilibrium was assumed. Transport times for vn + vn (Y = .85) n 

and vp + vp (Y = 0.15) are also shown, along with the very steeply 
p 

-1 ' 
falling diffusion rate, Td)_fin , from a 1/2 M0 core at this density; 

Tl is the light crossing time of the core. The conditions of this 

figure are the same as those of Figure 16, where the thermal 

production process spectra are shown. (Section 6.6) 
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FIGURE 32 

The evolution of the v df under the thermodynamic 
µ 

conditions given in Figure 31, when the pair annihilation process is 

the v v producer, and v v and v e scattering (as well as the 
µ µ µ e µ 

similar v processes) are included. The equivalent neutrino 
µ 

degeneracy parameter, Tl , and the corresponding equilibrium FD df are 
v 

shown, along with the calculated v histograms at the three times 
µ 

-5 -5 -3 indicated; the values of Y are l.45xl0 , 5.4xl0 ; and .924xl0 . 
v 

(Section 6.6) 
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FIGURE 33 

The £ = 0 moment of the v distribution function as calculated e 

by the P-1 method at 3.677 ms (solid histograms) and by the FLD method 

(dotted histograms) at 3.605 ms for various zones in the core: K = 1, 

p = 1.52 X 10
13 

g/cc, T = 7. 74 MeV, Y = 0.17, Y = .01127, Y = .539, e p n 
12 -5 = 10, 2.25 x 10 ' 2 . 81, . 298, 8.35 x 10 ' .0999, 8 . 309; 11 =4 . 75;K v 

K = 13, 2.14 X 1011
, 1.52, .39, 5.44 X 10-

6
, . 0411, 7.154 ; K = 15, 

. 10 2.4 x 10-6 , 3.98 x 10 ' 1.153, o.426, .0249, .8097. The continuous 

solid curves are the FD df's if the zone is in beta-equilibrium. The 

central zone P-1 and FLD histograms are indistinguishable. (Section 

6.8) 
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FIGURE 34 

The electron neutrino luminosity is plotted against the radial 

coordinate of mass enclosed within radius r, mr' for various times. The 

solid curves are the P-1 lt.nninosity profiles, the dotted and dashed are 

the FLD profiles. The positions of various densities (in g/cc) within 

the core are shown by arrows. The light travel time across the core 

is 1.3 ms. The glitch at 1/4 11:v is a composition effect. (Section 6.8) 
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