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ABSTRACT

Geodetic measurements of surface deformation have been used for several decades
to study how the Earth’s surface responds to a wide range of geophysical processes.
Geodetic time series acquired over a finite spatial extent can be used to quantify the
time dependence of surface strain for a wide range of spatial and temporal scales. In
this thesis, we present a new method for automatically decomposing geodetic time
series into temporal components corresponding to different geophysical processes.
This method relies on constructing an overcomplete temporal dictionary of reference
functions such that any geodetic signal can be described by a linear combination
of the functions in the dictionary. By solving a linear least squares problem with
sparsity-inducing regularization, we can limit the total number of dictionary ele-
ments needed to reconstruct a signal. In Chapter 2, we present the development of
this method in the context of transient detection, where we define transient defor-
mation as nonperiodic, nonsecular accumulation of strain in the crust. The sparsity
regularization term automatically localizes the dominant timescales and onset times
of any transient signals. We apply this method to Global Positioning System (GPS)
data for a slow slip event in the Cascadia subduction zone while incorporating a
spatial weighting scheme that filters for spatially coherent signals. In Chapter 3,
we use a combination of unique space geodetic measurements and seismic obser-
vations to study the 2014 collapse of Bárðarbunga Caldera in Iceland associated
with a major eruption event. The eruption sequence, which involved deflation of a
magma chamber underneath the caldera and emplacement of a dike leading to lava
flow, resulted in rapid subsidence of the glacier surface overlying the caldera and
wide-scale ground deformation encompassing the rift zone associated with the dike
emplacement. We present a model of the collapse that suggests that the majority of
the observed subsidence occurs aseismically via a deflating sill-like magma cham-
ber. In Chapter 4, we extend upon the transient detection framework presented in
Chapter 2 to study complex surface deformation over groundwater basins near Los
Angeles, California. We develop a distributed time series analysis framework based
on the sparse estimation techniques of Chapter 2 and apply it to an 18-year inter-
ferometric synthetic aperture radar (InSAR) time series covering the Los Angeles
area. We compare long- and short-term ground deformation signals to hydraulic
head data frommonitoring wells to understand themechanical link between pressure
variations in subsurface aquifers and observed ground deformation.
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C h a p t e r 1

INTRODUCTION

Measurements of surface deformation on the Earth have long been used to study the
behavior of various geophysical processes, such as motion of tectonic plates, creep-
ing on major fault systems, magmatic activity, and hydrological activity. Initially,
these measurements were limited to measurements of changing surface elevations
through leveling and tiltmeters at discrete points, which have been successfully used
to assess fault slip over major subduction zones and measure uplift over inflating
magma chambers. With the advent of the Global Positioning System (GPS), which
allows GPS receivers to measure their position in three components to high pre-
cision, scientists have been able to study the behavior of geophysical processes in
much greater detail. Extensive GPS networks consisting of hundreds of stations
have been deployed all over the globe. Most GPS stations are operated in contin-
uous mode, i.e. position measurements are recorded on a daily or subdaily basis.
This sampling mode provides a way to investigate the spatial and temporal evolution
of surface deformation, which can be used to constrain time-varying mechanical
models and monitor changes in surface strain for natural hazard assessment. In
the early 1990s, repeat pass satellite interferometric synthetic aperture radar (In-
SAR) was introduced. SAR instruments transmit microwaves towards the Earth’s
surface, measuring the distance between the satellite and the surface. SAR images
acquired at different times from the same observation point can be combined using
interferometry to obtain high-resolution maps of surface displacement called inter-
ferograms. Combining the temporal continuity of GPS observations with the spatial
continuity of InSAR observations has greatly enhanced our ability to monitor the
Earth’s surface in great detail.

One class of deformation signals that have been of interest to the geodetic community
are transient signals, which are signals that can be defined as non-periodic, non-
secular accumulation of strain in the crust. These signals can be caused by a wide
range of geophysical processes, including slow slip events, migration of magma,
groundwater flow, etc. Consequently, transients can have a wide range of timescales
and spatial extents that are a priori unknown. Such signals can often be quite subtle
and embedded in geodetic data with other confounding signals, such as secular plate
motion or periodic variations caused by solid earth tides. With the large volume
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of geodetic data available from GPS networks and interferograms collected over
long time spans, it is imperative that detection of transient signals be automated
and reliable. Automatic detection of transients can be useful for detecting the onset
of a slow slip earthquake in subduction zones, ground deformation due to pre-
eruptive magma flow in volcanoes, or localized creep events on strike slip faults.
Such detection procedures can also be used in a retrospective manner to study the
behavior of previous transient events by acting as a spatiotemporal filter for geodetic
data to reduce the effect of observation noise and non-transient signals.

In addition to transient signals, geodetic data frequently record phenomena that are
often assumed to be steady-state, such as secular plate motion or seasonal effects,
but these signals can often be time varying due to changes in mechanical properties
or their driving forces. Thus, studies that aim to quantify the magnitudes and spatial
characteristics of these processes can be corrupted by inaccurate assumptions about
the steadiness/stationarity of the signals. Importantly, detecting transient signals
and quantifying the behavior of non-steady signals are not mutually exclusive. A
time series modeling framework that has the flexibility to detect and model signals
of any duration and temporal pattern while providing a level of robustness to limit
the effect of observation noise will be invaluable to the geodetic and natural hazard
community.

In Chapter 2, we present a new method for automatically detecting transient de-
formation signals in geodetic time series. The method is based on compressed
sensing, a recent technique in signal processing that allows for the reconstruction of
sparse signals using potentially underdetermined linear systems. By constructing
an overcomplete, non-orthogonal design matrix (dictionary) of displacement func-
tions in time that resemble transient signals of various timescales, we can apply a
sparsity-promoting regularization to limit the total number of dictionary elements
needed to reconstruct transients. We also present an equivalent Bayesian inference
approach to sample the full model space for each dictionary element while quan-
tifying uncertainties for the transient signal reconstruction. The detection method
localizes the dominant timescales and onset times and enhances the interpretability
of transients. We incorporate a spatial weighting scheme that self-adjusts to the
local network density and filters for spatially coherent signals. To demonstrate this
approach, we apply the spatial weighting to slow slip events in the Cascadia region
to automatically characterize their propagation and displacement characteristics.

In Chapter 3, we demonstrate how a combination of unique space geodetic mea-
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surements and seismic observations can be used to study and constrain physical
models of an active volcanic event. We describe a model for the caldera collapse at
at Bárðarbunga stratovolcano which lies beneath the Vatnajökull ice cap in Iceland.
The collapsing caldera was characterized by rapid 50 cm/day subsidence of the
overlying glacier surface. Associated with this collapse was the initiation of a plate
boundary rifting episode extending tens of kilometers northwards of the caldera.
The close spatiotemporal association of the collapsing caldera, anomalous seismic-
ity along the caldera rim, and the active rifting provided us with an unprecedented
opportunity to understand the mechanics of a caldera collapse in a basaltic system.
We present a model of the collapse process consistent with the available geodetic
and seismic observations that suggests that the bulk of the observed subsidence oc-
curs aseismically via a deflating sill-like magma chamber. Deflation of the chamber
results in anomalous seismic events generated by a rapidly closing crack or rupture
on curved, inward-dipping ring faults at depths shallower than the magma chamber.
This model differs from prior interpretations of the seismic events that suggested
that deformation of a very shallow magma chamber generates seismic events on
deeper, outward-dipping ring faults. The model we present is more consistent with
the modern geodetic observations and provides a simplified framework to explain
the past and present anomalous seismic events.

In Chapter 4, we investigate complex surface deformation within the Los Angeles
and Santa Ana coastal basins due to groundwater pumping/recharge and subsequent
aquifer compaction/expansion. We extend upon the technique presented in Chapter
2 and apply it to an 18-year InSAR time series consisting of 881 interferograms.
This large dataset required the development of a distributed time series analysis
framework able to utilize the power of high performance cluster computing. With
this framework, we are able to decompose both InSAR and GPS time series into
long- and short-term signals, allowing us to study distinct processes occurringwithin
the groundwater system underneath the basins. We find that short-term, seasonal
oscillations of ground elevations due to the annual cycle of groundwater pumping
and recharge are unsteady and time varying due to changes in groundwater pumping
practices by major water districts. We also quantify long-term signals over broad
areas within the basin, including subsidence due to slowly declining groundwater
levels and a transient uplift event due to a short period of heavy rainfall. Comparison
of the decomposed geodetic data with hydraulic head data frommajor water districts
allows for a detailed investigation of the relationship between aquifer pressures and
ground deformation. Specifically, wefind evidence to suggest that different segments
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of the groundwater system are responsible for different temporal components in the
observed ground deformation. These results demonstrate the potential for geodetic
analysis to be an important tool for groundwatermanagement tomaintain sustainable
pumping practices.
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C h a p t e r 2

DETECTING TRANSIENT SIGNALS IN GEODETIC TIME
SERIES USING SPARSE ESTIMATION TECHNIQUES

1. Riel, B., Simons, M., Agram, P. & Zhan, Z. Detecting transient signals in
geodetic time series using sparse estimation techniques. Journal of Geophysi-
cal Research: Solid Earth 119. doi:10.1002/2014JB011077 (2014).

2.1 Introduction
We define transient deformation signals as non-periodic, non-secular accumulation
of strain in the crust. Over seismically active regions, transients are often the sur-
face manifestations of slow slip events that are difficult to measure directly with
traditional seismological instruments [e.g., 1–5]. In volcanically active regions,
transients frequently correspond to periods of ground deformation caused by under-
lying magmatic activity [e.g., 6–9]. Previously studied transient events vary widely
inmagnitude, ranging from spatially coherent surfacemotions of several centimeters
to more subtle motions of only a few millimeters. These signals have also varied
widely in duration from year-long signals in subduction zone areas [e.g., 10] to very
short episodes lasting only a few days [e.g., 1]. Despite the highly non-uniform
properties associated with transients, their detection has relied on their combined
temporal and spatial coherency, i.e. they are defined by a measurable temporal
evolution and systematic spatial structures [e.g., 11].

Detection of transient events with unknown magnitudes and durations requires pre-
cise measurements of surface displacements over sufficiently large regions. Over
the past two decades, the availability of such measurements for monitoring crustal
deformation has rapidly increased. Large-scale continuously-operating GPS net-
works, such as the Plate Boundary Observatory (PBO) network in the western
United States (http://pboweb.unavco.org), are used to derive station positions
with typical daily repeatabilities of 2-3 mm for horizontal positions and 7-8 mm
for vertical positions [12]. In addition to regional coverage, many GPS networks
are also very dense, with 1100 permanent GPS stations for PBO, 1200 for Japan’s
GEONET network ([13]), over 200 for Taiwan ([14, 15]), over 200 for New Zealand
([16]), etc. Geodesy based on repeat imagery (e.g., InSAR) naturally provides spa-
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tially dense observations of surface motion but typically suffers from poor temporal
sampling. However, the advent of long-timespan InSAR time series, new methods
for analyzing the temporal evolution of signals contained in interferograms, and
future InSAR missions with approximately weekly repeat times will enable large-
scale, high-resolution studies of crustal deformation with sufficiently high temporal
resolution to capture many transient processes [17–19].

Each geodetic data type has its own unique set of error characteristics which compli-
cate transient detection. GPS time series typically contain Gaussian white noise plus
time-correlated random walk components which can resemble transient signals [20,
21]. GPS networks exhibit spatially-correlated common mode errors which must
be estimated and removed as part of any analysis [22]. Many of these errors can be
mitigated by analyzing an ensemble of datasets. For a given GPS network density,
time-correlated signals in GPS data that are evident only at individual stations can
be classified as either colored noise or more local processes. Similarly for InSAR
time series, phase delays induced by heterogeneous propagation velocities in the
atmosphere can be modeled out or mitigated by ensemble averaging of line-of-sight
velocities or other time series techniques [e.g., 18, 23–25]. In addition to noise char-
acteristics, the presence of other confounding signals, such as secular and seasonal
effects, can complicate detection of transients. When data volume is large, properly
handling sources of errors and non-transient signals makes manual inspection of the
data infeasible and requires a sufficiently automated detection algorithm.

We propose a new method for estimating the time and duration of anomalous tran-
sient signals in geodetic time series by employing sparse estimation techniques.
This method makes use of a dictionary of non-orthogonal time evolution functions
that resemble temporally correlated transient events. Estimating the coefficients
of the dictionary allows for the reconstruction of transient signals of varying du-
rations and start times. The flexibility of the dictionary also allows for inclusion
of known signals, such as seasonal, secular, co-seismic/instruments offsets, post-
seismic deformation, etc. The non-orthogonality of the dictionary requires regular-
ization during least squares estimation of the dictionary coefficients. We employ a
sparsity-promoting regularization approach to compactly reconstruct the underlying
transient signal. Additionally, we introduce a Bayesian sampling scheme for the
estimation problem to rigorously assess the uncertainties associated with coupling a
non-orthogonal, overcomplete dictionary with sparsity-promoting techniques. The
final reconstruction inherently includes information about the dominant timescales
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Figure 2.1: Uniform integrated B-splines (Bi-splines) of various timescales used as
candidate temporal displacement functions. The characteristic timescales for the
Bi-splines are determined by dividing the time span into uniformly spaced intervals.
The filled circles denote the interval spacings for each Bi-spline and differ by factors
of two.

and likely start times of any transient signals. When time series are available from
multiple locations within a certain region, we can exploit the expected spatial co-
herency of transient signals with a straightforward spatial weighting scheme that
encourages selection of dictionary elements that are common to stations within a
given length-scale. Application of this method to both synthetic and real GPS time
series from the Cascadia region demonstrates the successful recovery of signals
of different timescales and magnitudes while providing a direct estimate of the
long-term tectonic signal.

2.2 Transient Detection
Here, we assume no a priori information about the underlying physical mechanisms
responsible for a given transient signal. This assumption prevents us from imposing
time functions corresponding to a specific physical description. Instead, we use
a flexible approach that parameterizes time-dependent deformation with an over-
complete set, or dictionary, of functions that describe the full suite of behaviors we
would expect to be present in a given time series. This dictionary can in princi-
ple include sinusoidal functions to model seasonal signals, linear terms for secular
velocities, heaviside functions for co-seismic offsets, etc. For transient signals of
unknown initiation times and durations, we populate the dictionary with 3rd-order
time-integrated B-splines, hereafter referred to as Bi-splines, which exhibit one-
sided behavior of a particular timescale (Figure 2.1) [18]. By dividing the time
span of a time series into uniformly spaced intervals, we can generate a series of
Bi-splines centered at the endpoints of the intervals with durations proportional
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to the interval durations. In this work, a dyadic spacing scheme (i.e., Bi-splines
of duration T/4, T/8, T/16, etc., for a given timespan T) is used to populate the
dictionary. A similar approach is used in wavelet analysis to efficiently cover the
frequency spectrum of a signal [e.g., 26]. At this stage, modeling time-dependent
deformation for time series data, d, is reduced to estimating the coefficients, m, of
the dictionary elements in G, while imposing a linear relation between the model
parameters and data, Gm = d (here, boldface indicates matrix or vector quantities).

Regularized Least Squares
Due to the non-orthogonality of the Bi-splines in G, any estimate of m derived using
ordinary least squaresmethodswill be particularly sensitive to the data noise andwill
exhibit large variances for the estimated parameters. Regularization techniques aim
to reduce this sensitivity by jointly minimizing a measure of the residual ‖Gm−d‖22 ,
where ‖ · ‖2 denotes the Euclidean or `2-norm, and a regularizing function that
incorporates a priori information about the solution. Typically, regularized least
squares optimization minimizes the unconstrained cost function, ϕ (m):

ϕ (m) = ‖Gm − d‖22 + λF (m) , (2.1)

where λ > 0 controls the degree of regularization and F (m) is the regularizing
function. The above formulation can be modified to incorporate uncertainties on
the observed data in d. Traditional zeroth-order Tikhonov regularization, where
F (m) = ‖m‖22 , minimizes the size or energy of the solution m. For a mixed
dictionary of Bi-splines and steady-state functions, such as seasonal and secular
terms, we generally only penalize the Bi-splines and allow the steady signals to
compensate for the rest of the displacement provided by the data. Thus, in Equation
2.1, F (m) → F

(
mBi

)
, where mBi

⊆ m denotes the Bi-spline coefficients. For
brevity in the following discussion, we assume m = mBi . In a Bayesian framework,
Tikhonov regularization implies an uncorrelated zero-mean Gaussian prior for the
coefficients of the Bi-splines and uniform priors for everything else.

However, transient events are not well described by Gaussian statistics; rather,
transients are sparse and irregular in nature. To promote sparsity, we would like to
use F (m) = ‖m‖0, where ‖ · ‖0 denotes the counting pseudo-norm and measures
the number of non-zero elements in m [27, 28]. Since this formulation results in
an intractable combinatorial problem, it is common to use an approximation with
F (m) = ‖m‖1, where ‖ · ‖1 is the `1-norm or the sum of the absolute values of m,
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leading to a convex cost function ([28–30]):

ϕ (m)`1 = ‖Gm − d‖22 + λ‖m‖1. (2.2)

Using `1-norm regularization, the solution still maintains sparsity, i.e. many com-
ponents of m are very close to zero and the remaining components can still effec-
tively describe the data. Furthermore, a convex cost function results in a solution
that is guaranteed to be globally optimal [31]. We cast the sparse regularization
problem as a quadratic program and solve for m using the CVXOPT software
(http://abel.ee.ucla.edu/cvxopt/index.html).

Sparsity-promoting regularization with the `1-norm has been effectively used for
recovering isolated spikes in seismic data ([32]), detecting sharp discontinuities in
tomography studies ([33]), and estimating compact distributions of fault slip for large
earthquakes ([34]). In the context of transient detection, this method automatically
determines the Bi-splines which best model the deformation while zeroing out the
others. The advantage of enforcing a sparse set of Bi-splines is that we automatically
place higher importance to Bi-splines that have nearly the same timescales and onset
times as any transient signals present in the data and heavily penalize those that do
not significantly improve our data fit. Steady signals, such as those from seasonal and
secular processes, are also required to be consistent with a sparse set of Bi-splines.
This requirement is beneficial for ensuring that any estimated steady signals do not
overly accommodate the observed displacement which can lead to false positives in
transient signal detection (Section 2.5).

The effectiveness of the `1-norm for recovering sparse solutions can be enhanced
by adaptive re-weighting techniques. In Candés et al. [35], an iterative re-weighting
algorithm was introduced where each coefficient, mi, is assigned a different penalty
parameter, λi, which is inversely proportional to |mi | at the current iteration. By ini-
tializing the algorithm with uniform values for λi, each successive iteration causes
larger coefficients to be penalized less heavily than smaller coefficients, leading
to a solution that enhances the most dominant Bi-splines. Candés et al. [35]
demonstrated that re-weighting brings the `1-norm closer to the `0-pseudo-norm
by increasing the strength of the regularizing function F (m) near the origin. Theo-
retically, one could choose from a multitude of functional forms relating λi to |mi |,
e.g., λi ∝ |mi |

−1, λi ∝ m−2
i , λi ∝ log

(
|mi |

−1
)
, etc. Larger negative powers for

mi will increase the strength of the sparsity constraint and bring the `1-norm very
close to the `0-norm. In practice, we have found that using the stronger re-weighting
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functions favors selection of short-timescale Bi-splines while the logarithmic func-
tions favor longer-timescales. Thus, selecting the appropriate re-weighting function
can depend on the expected timescales of the transient signals in a data set. Typ-
ically, for all re-weighting functions, 5-10 re-weighting iterations are required for
convergence.

Posterior Uncertainties
In ordinary least squares problems where all variables are assumed to be Gaussian
(unregularized or Tikhonov regularization), analytic relations exist to estimatemodel
and predicted data uncertainties [36]. While the `1-norm regularization prevents us
from directly using those relations, we can interpret the minimization of the cost
function in Equation 2.2 as choosing the optimum subset of the elements of G that
minimize the data misfit as well as the number of elements used for the solution and
determining the coefficients of those elements. Thus, for a given solution vector m,
we can construct a compact dictionary G̃ populated with the elements corresponding
to the largest coefficient absolute values in m. We can construct a diagonal prior
covariance matrix, Cm, where the values along the diagonal correspond to the
squared coefficients in m. Then, for a given data covariance matrix Cd , we can
apply the standard least squares formulation to obtain a solution m̃:

m̃ =
(
G̃ᵀC−1

d G̃ + C−1
m

)−1
G̃ᵀC−1

d d. (2.3)

Various stopping criteria can be applied for determining the number of elements to
include in G̃. Here, we apply a variance reduction criterion where we first remove
the estimated steady-state signals from the data and iteratively remove modeled
transient displacements corresponding to the largest values of m from the data until
the variance reduction reaches a prescribed threshold. This approach is similar to
matching pursuit methods that iteratively search through non-orthogonal bases and
add those to the dictionary that are most correlated with the data residual at each
iteration [e.g., 26]. In our case, the “best basis” is determined in one step through
the convex optimization and is less susceptible to high data noise or initial errors in
basis selection [30].

Using knowledge about uncertainties for the observed data in Cd , the posterior
model covariance matrix can be computed as:

C̃m =
(
G̃ᵀC−1

d G̃ + C−1
m

)−1
. (2.4)

Since the resultant compact dictionary G̃ is in most cases composed of non-
orthogonal elements and will be ill-posed, we can expect some large off-diagonal
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components in C̃m. The probability density function of the predicted data is then a
multivariate Gaussian distribution with a mean of G̃m̃ and a covariance matrix, C̃d ,
given by:

C̃d = G̃C̃mG̃ᵀ . (2.5)

We note that while this approach is useful for assessing the uncertainties of the
coefficients of G̃ and the predicted data, it does not address the uncertainties asso-
ciated with the subsetting of G to form G̃. Furthermore, this approach relies on the
assumption that the model parameters are normally distributed, which is contrary
to our assumption of transients as temporally sparse.

Bayesian Sampling
As was previously mentioned, the commonly implemented form of Tikhonov regu-
larization is equivalent to enforcing a Gaussian prior on the elements of m. Analo-
gously, sparsity-promoting regularization in its most basic form can be achieved by
enforcing a Laplace prior for m, which has the form p(mi) ∝ exp{−λ |mi |} [29]. We
can see this result by considering Bayes’ theorem, P (m|d) ∝ P (d|m) P (m), where
P (m|d) is the posterior distribution of our model coefficients (i.e., the distribution
of values for m that explain the data), P (d|m) is the data likelihood, and P (m) is
the prior distribution of the coefficients. By maximizing exp

{
−ϕ (m)`1

}
, it can be

shown that the regularized least squares solution is equivalent to maximizing the
posterior distribution with a Gaussian misfit between the data and model prediction
and a Laplace prior on the model coefficients.

Laplace priors are characterized by high probabilities near the origin with long-tails
to allow for an increased likelihood of arbitrarily large values relative to a Gaussian
prior. The penalty term λ acts as a scale factor that controls the width of the
distribution and the probability that the elements of m will be sparse. Since there is
no convenient conjugate relation between a Gaussian likelihood and Laplace prior,
we cannot derive a closed-form solution for the posterior distribution p(m). Instead,
we employ aGibbs sampler to draw samples from the posterior distribution [37]. The
Gibbs sampler explores the posterior distribution of each variable in the model using
distributions conditional on the current values for all other variables. Following the
approach of Park & Casella [38], we group the coefficient amplitudes, mi, as a
single variable and the coefficient precisions, τi, as another group of variables.
The conditional distributions relating the coefficient amplitudes and precisions are
obtained by expressing the Laplace prior as a scale mixture of normals with an



12

exponential mixing density:

λ

2
e−λmi =

∫ ∞

0

1
√

2πτi
e−m2

i /(2τi ) λ
2

2
e−λ

2τi/2dτi . (2.6)

The posterior distribution can now be expressed as a product of a Gaussian data
likelihood, Gaussian priors for the dictionary coefficients, and exponential hyper-
priors for the coefficient precisions. This hierarchical representation where each τi
is treated as a hyperparameter is analogous to the re-weighting scheme described
in Section 2.2. The conditional distributions in this hierarchy are straightforward to
sample from with block updates of m and (τ2

1 , . . . , τ
2
P).

There are several advantages that favor a Bayesian samplingmethod over regularized
least-squares. For one, optimization-based approaches for non-Gaussian priors do
not permit us to readily compute uncertainties associated with our estimate for m.
While we could apply least squares theory using a sparse subset of G that best
explain the data (see Section 2.2), we would still require the assumption that the
model parameters are normally distributed. We also do not obtain much information
about the full solution space, which is necessary if different families of solutions
exist with nearly the same predictive power as the optimal solution. For example,
consider the inherent trade-off between a single Bi-spline to model a transient signal
and two shorter-timescale Bi-splines located at the same time. While selecting the
single Bi-spline would be the sparser solution, we can imagine a situation where the
combination of the two shorter Bi-splines provided a better fit to the data. In this
case, the single, longer timescale Bi-spline would trade off with the shorter ones
where the strength of the trade-off would be dependent on the value of the penalty λ.
Bayesian sampling allows for sampling from the full solution space where models
are produced in numbers proportional to their probability given the data [e.g., 36,
37].

Selecting the Penalty Parameter
The parameter λ in the Laplace prior controls the relative strengths of the steady-
state terms and the Bi-spline coefficients. Larger values of λ will minimize the
contributions of the Bi-splines, leading to a smoother solution. Smaller values of
λ will distribute more weight across the Bi-splines, leading to a rougher solution.
Thus, the amplitude of the steady-state signals is also sensitive to the value of λ
and may vary as λ changes. For sparse regularization optimization problems, we
use K-fold cross-validation to select the optimal values for λ where K depends on
the number of data points available for partitioning into training and testing subsets.
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Due to the sparsity-enforcing regularization, we can directly quantify the effective
data resolution of G (i.e., the shortest-duration resolvable signal) as the duration of
the shortest timescale Bi-spline included in G. A single Bi-spline is only able to
predict four independent observations spaced Tk/2 time units apart, where Tk is the
effective timescale of the k-th Bi-spline. For daily observations, we first partition
the data into S random subsets where S is the number of days spanned by the time
series divided by the number of observations predictable by G. Within each subset,
we further divide the data into K random partitions where one of the partitions is
used to compute the data misfit for the proposed model m trained by the other K − 1
partitions. We then average over S · K cross-validation experiments to obtain the
average data misfit for the current value of the penalty parameter, λ.

Since cross-validation would be computationally expensive for a high number of
Gibbs sampling runs, alternative methods are required. A variety of model class
selection methods are available that allow for estimation of the evidence of a model
class, where a model class is defined by the value of λ [39, 40]. The evidence
measures the average data fit for a model class and the amount of information
the model class extracts from the data, i.e. some metric of distance between the
posterior and prior distributions [39]. Unfortunately, model class selection is highly
influenced by the choice of the prior distribution, which could lead to significant
biases for values of λ that maximize the evidence [40]. Here, we sample for λ by
assigning it a diffuse hyperprior, allowing for a wide range of possible widths for the
corresponding Laplace priors [38]. We consider a gamma hyperprior on λ2 such
that the prior density is relatively flat up to λ ≈ 103 and then decreases steeply to
penalize very large values.

2.3 Synthetic Example
To test the temporal transient detection capabilities of the proposed method, we
generated a 20-year synthetic daily GPS time series consisting of seasonal, secular,
and transient deformation. The seasonal signals are a linear combination of an-
nual and semi-annual sinusoids. A transient signal is constructed using arctangent
functions of three different amplitudes, timescales, and centroids to simulate slow
deformation events with various properties (Figure 2.2). We add white noise plus
colored noise using a power law model to mimic errors commonly found in geodetic
data [21]. Robust detection of transients is traditionally difficult when the amplitude
of the temporally correlated colored noise is on the same order as the signal of
interest (as is the case for the weakest synthetic transient). In practice, this problem
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Figure 2.2: Individual model components input into the synthetic GPS time series.
The seasonal signals are constructed using annual and semi-annual periods while
the transients are formed using arctangent functions of various amplitudes and
durations. Additionally, white and colored noise are added to the model to simulate
measurement noise typically found in geodetic time series.

can be mitigated by exploiting coherency within a geodetic network, but we will
demonstrate that successful detection is still possible with a single time-series.

We construct G using a dictionary of reference functions that include simple si-
nusoidal and linear functions to capture seasonal and secular terms, respectively.
Additionally, the dictionary includes Bi-splines with effective timescales of 0.3, 0.6,
1.3, 2.7, 5.7, and 13.3 years (chosen by dividing the 20-year time period into 128,
64, 32, 16, 8, and 4 uniformly spaced intervals, respectively). The coefficients of the
dictionary terms are estimated using two different methods: least squares optimiza-
tion with sparsity-inducing regularization on the Bi-spline coefficients and Gibbs
sampling of the posterior distribution. As described earlier, we prescribe Gaus-
sian priors on the seasonal and secular terms and Laplace priors on the Bi-splines,
although the sampler is initialized with random variates from a wide Gaussian dis-
tribution for all coefficients. For this example, we run the Gibbs sampler for 105

samples, which is far more than required for convergence but allows the posterior
means to evolve to within < 1% of their final values (Figure 2.3).

After cross-validation of 14 independent data subsets, the average optimal penalty
parameter was λ = 0.66, which agreed fairly well with the mean of the posterior
distribution of λ constructed with the Gibbs sampler (Figure 2.4). Prescribing
λ = 0.66 results in a reconstructed transient signal that is rougher than the input
transient (Figure 2.5a). This behavior is primarily due to the temporally-correlated
colored noise causing several false detections throughout the time series. The
random walk characteristics of the noise resemble small transient events that are
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Figure 2.3: Convergence test of the Gibbs sampler for coefficients corresponding to
several Bi-splines. The mean of the samples drawn from the posterior distribution
for each Bi-spline is monitored for increasing number of samples. The means are
normalized by the mean computed using 2e5 samples. After O(7e4) samples, the
means are within 0.2% of their final values.

Figure 2.4: K-fold cross-validation results for selection of the penalty parameter, λ,
for the synthetic time series. Fourteen separate cross-validation experiments were
performed for fourteen independent subsets of the time series. The solid blue line
shows the mean testing error for all experiments while the shaded region denotes the
standard deviation. The vertical black dashed line marks the mean λ as determined
by the Gibbs sampler which shows relatively good agreement with the optimal λ
obtained from the cross-validation (red circle).
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Figure 2.5: Reconstructed time series for the synthetic data with the simultaneously
estimated seasonal and secular signal removed. (a) Full transient signal for models
corresponding to different values of the penalty parameter λ. The black circles
show the input data after removing the true secular and seasonal signals. Lower
values of λ correspond to rougher models. The model for λ = 10 and the point
estimate derived from the Gibbs samples for the same λ are able to nearly exactly
reproduce the input signal. (b) The high frequency component of the reconstructed
transient signal compared with the input colored noise. The λ = 0.66model (chosen
through cross-validation) is able to capture nearly all of the temporally correlated
noise structure while higher penalties result in smoothing over the higher frequency
variations.

indistinguishable from true transients (for data from a single station). Colored
noise also has the effect of biasing the estimate of the long-term secular rate as
demonstrated by the under- and over-estimation of the secular rate for the models
constructed with λ = 0.01 and λ = 0.66, respectively. Low values of λ allow
selection of more Bi-splines from the dictionary to fit the the smaller signals.
By plotting the reconstructed high-frequency signal against the input colored noise
(Figure 2.5b), we observe that enforcing λ = 0.66 allows us to reconstruct a majority
of the structure of the input noise. The combined dictionary plus sparsity-inducing
regularization approach thus acts as a smoothingmethodwhere λ controls the degree
of smoothness of the reconstructed signal. Selecting a much higher value of λ = 10
still allows us to reconstruct the largest signals of the input noise while smoothing
over the higher-frequency variations.

Without spatial information, it is impossible to distinguish between colored noise
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and true transient signals for tuning λ to recover the correct secular rate. Data from
multiple stations must be used to determine whether a temporally coherent signal
persists over a finite region (Section 2.4). In a separate cross-validation experiment
performed on synthetic data with white noise only resulted in optimal values of
λ ≈ 10, which successfully isolates the transient signals. Since the focus of this
paper is on transient detection, we proceed with the model resulting from λ = 10
to smooth over the noise signals, but we emphasize that in general applications, the
issue of colored noise must not be neglected.

The reconstructed time series with λ = 10 successfully models all three input
transient signals (Figure 2.5a). A nearly identical model is achieved by deriving
a point estimate from the means of the posterior distribution constructed from the
Gibbs sampler with the same value for λ. Even with this higher value of λ, both
the optimization and Bayesian solutions are corrupted by a relatively long-duration
randomwalk process that started around year 4.5. The duration of this colored noise
was of sufficient length to be modeled by one of the Bi-splines in the dictionary.
Increasing the penalty parameter further would smooth over this noise signal at the
cost of losing recovery of the smallest transient signal at year 10.

Coefficient Scalograms
The limited data resolution (as opposed to model resolution) of the dictionary G
will limit the precision of our estimates for transient durations. One can also
expect significant covariances between dictionary elements that may have different
timescales but share common centroid times. Viewing the estimated Bi-spline
coefficients in a scalogram-type fashion reveals the effectiveness of the different
estimators in limiting the intra-dictionary covariances (Figure 2.6). For comparative
purposes, we also show the scalogram for a model using a traditional zeroth-order
Tikhonov regularization scheme. The Tikhonov estimator locates the onset times
of the largest transient signal relatively well but tends to spread the energy across
the timescales, much the same way that a wavelet transform would spread the
energy across wavelet scales. In fact, previous methods using wavelet transforms to
pick onset times of transients in GPS data have presented scalograms that suggest
permanent deformation across all temporal scales [e.g., 5]. The advantage of the
sparse estimation techniques is a much stronger localization of energy to very few
scales and times, as seen on the bottom two plots in Figure 2.6. The majority of
each input transient signal can be recovered by just two distinct Bi-splines, allowing
for more precise estimates of the transient start times and durations. We reiterate



18

Figure 2.6: Synthetic scalograms showing the amplitudes of the Bi-splines estimated
using three different methods: (a) Tikhonov (`2-norm) regularization; (b) Sparse
(`1-norm) regularization with λ = 10; and (c) posterior distribution means derived
from the Gibbs samples. Each row of the scalograms correspond to Bi-splines of a
given timescale. Tikhonov regularization results in non-zero amplitudes for nearly
all Bi-splines and tends to spread energy across timescales. The sparsity-promoting
regularization methods zero-out nearly all of the Bi-splines, leaving only those that
describe transients in the data. The estimated secular rates for the Tihkhonov, sparse
regularization, and Gibbs solutions are 12.0, 9.7, and 8.6 mm/yr, respectively (for
an input secular rate of 10 mm/yr).

that these estimates have been obtained almost completely automatically, with some
minor supervision for selection of the penalty parameter (i.e., choosing the correct
data subset size for cross-validation such that the optimal estimate of λ does not
change significantly for slightly different subset sizes).

Covariances Between Dictionary Elements
Estimating the uncertainties of the Bi-spline coefficients is straightforward since
samples have been drawn from the posterior distribution via the Gibbs sampler.
Furthermore, we can directly investigate trade-offs between different parameters
and gain insight into the nature of sparse transient detection with a non-orthogonal
dictionary. For example, the longer duration transient centered around the 16 year
mark can be described well by both a 2.67-year and a 1.29-year Bi-spline, leading
to large standard deviations for both coefficients accompanied by a strong trade-off
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Figure 2.7: Two-dimensional histograms of samples drawn from posterior distribu-
tions for different pairs of Bi-splines. (a)When twoBi-splines have nearly coincident
time centroids and are both able to reconstruct a transient signal, their joint poste-
rior exhibits a strong negative covariance. (b) For adjacent Bi-splines of the same
timescale where the centroid of the true signal lies between the centroids of the
Bi-splines, their amplitudes will co-vary in a positive manner. (c) Long-timescale
Bi-splines and the secular rate will exhibit covariances similar to case (a). Note the
sharp corner in the joint distribution due to the `1-norm penalty. (d) Two Bi-splines
located in a time window where no transient signals occur will have samples located
very close to the origin with a structure resembling the prior (bi-variate Laplace
distribution).

(Figure 2.7a). The longer duration Bi-spline more closely matches the duration of
the input transient but is slightly time-shifted from the true centroid time, whereas
the 1.29-year Bi-spline is more closely aligned with the centroid time but under-
represents the signal duration. The negative slope in the covariance plot is a direct
result of the Laplace prior placed on mi, which tries to drive the coefficients closer to
zero. In the case when two coefficients have nearly equal probability in matching the
data, many samples will be drawn from the model space where both coefficients are
non-zero. However, this behavior is entirely dependent on the value of the penalty
parameter λ. Higher values of λ would draw more samples for the more probable
coefficient and less for the less probable coefficient (see Section 2.5).

We can observe a similar trade-off between a long-timescale Bi-spline with a time
centroid of t = 0 and the secular rate, implying that long-timescale Bi-splines are
nearly as effective in modeling long-term, steady displacement signals (Figure 2.7c).
Trade-offs between Bi-splines adjacent in time with identical durations also show
large standard deviations but with slightly weaker trade-offs (Figure 2.7b). In this
case, we can infer that the centroid of the true signal is most likely between the two
and has a time duration of ≈ (3/2)Tk . At the other extreme, when two Bi-splines are
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centered in a periodwhen no transient signal occurs, nearly all of the samples lie very
close to the origin (Figure 2.7d), replicating the expected probability distributions
of two sparse parameters [41]. Another feature evident in many coefficient posterior
distributions is the sharp corner seen in Figure 2.7c which is a consequence of the
`1-norm strongly penalizing coefficients of the wrong sign [38]. Thus, a simple
viewing of the posterior samples can provide a strong indication of the most likely
sign of displacement of a detected transient signal.

Data Subsampling
As discussed previously, when geodetic time series have very high temporal sam-
pling rates, the limited data resolution of G requires a certain level of data sub-
sampling to obtain reliable estimates of the penalty λ during cross-validation. On
the other hand, for studies where time series are expected to have poorer tempo-
ral sampling, we can estimate the minimum amount of data required to detect a
transient signal of a given duration since a Bi-spline of duration Tk is expected
to predict four observations spaced T k/2 time units apart. While daily GPS so-
lutions provide adequate sampling rates for capturing many transient processes,
other geodetic time series, such as InSAR, provide observations that are typically
sparser in time. If the duration of a transient process is appreciably shorter than the
time interval between observations, there is a risk of severely mis-estimating the
timescale of the signal or not detecting the signal at all. To investigate the effect
of sampling rate on transient detection, we repeated the least squares optimization
with sparsity-promoting regularization on the synthetic time series with increasing
data decimation factors. We varied λ for each decimation factor in order to keep the
results consistent. Remarkably, the three input transient events were successfully
recovered up to a decimation factor of 256 (Figure 2.8a). For this highly ill-posed
case where the number of candidate features (252 Bi-splines) is significantly greater
than the number of data points (29 points), sparse regularization was able to recover
a stable solution. Reconstruction of the input transients becomes less accurate with
increasing time intervals between observations, but even for the smallest signal, only
2-3 data points are required to register a positive detection, in agreement with the
expected data resolution of the Bi-splines (Figure 2.8b).

Decimation also reduces the influence of higher-frequency time correlated noise
by effectively low-pass filtering the data before estimation of m. We can observe
this effect from the increasing smoothness of the reconstructed signal for larger
decimation factors. This result suggests that a data cascading approach could be
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Figure 2.8: Transient signal recovery using subsampled data with increasing sub-
sampling factors. The limited data resolution of the smallest timescale Bi-splines
requires 3-4 observations to resolve a transient signal. In the case of the small-
est synthetic transient around year 10, the temporal spacing of ∆t = 256 days is
too large to resolve the short-timescale duration, and the reconstructed signal is
smoothed (bottom panel). However, this result still demonstrates that a positive
detection is still possible with temporally coarse time series.

beneficial in recovering the strongest signals. For cascading, we would estimate
the Bi-spline coefficients using only a subset of the data and use those results as
an a priori estimate of the coefficients for use with a larger subset of data [42].
The a priori estimate could then be integrated with the re-weighting approach in
Section 2.2 to impose smaller penalties on Bi-splines that have larger values in
the initial estimate. Subsequent estimates of m using more data would enhance
the stronger signals and reduce the overall effect of high-frequency colored noise.
This approach would be useful for combining coincident geodetic time series with
different temporal sampling rates and noise characteristics, e.g., InSAR and GPS.
Transient detection would first be performed with an InSAR time series. Feeding
this initial result into a detection procedure with the GPS data would then enhance
the transient signals that are consistent between the two data types.

2.4 Spatial Sparsity Weighting
Much of the ambiguity over the correct choice of λ and the influence of local
noise can be mitigated by using data from multiple surrounding stations. By the
adopted definition of what constitutes a transient signal, displacements should be
coherent over a finite region and would lead to common non-zero Bi-splines over
multiple stations. Thus, the re-weighting scheme discussed in Section 2.2 can be
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performed in a spatial sense where the coefficient-dependent penalties are enforced
to be consistent over stations within a certain length-scale. Using this approach, the
spatial re-weighting is initialized by performing a single iteration of theminimization
of Equation 2.2 independently for each GPS station. After this iteration, candidate
coefficient-dependent penalty parameters λi are computed for each station based
on that station’s current initial estimate for m. To enforce spatial consistency for n

stations, we select λi = f
(
λ1

i , . . . , λ
n
i ,w

1, . . . ,wn
)
, where f () is a weighted median

and w j are the weights assigned to each station. The weights are re-computed at
every k-th station using the spatial weighting function:

w j = exp *
,
−

d( j, k)

L j
0

+
-
, (2.7)

where d( j, k) is the distance between station j and k and L j
0 is a prescribed cor-

relation length for the j-th station. To account for variable station densities within
GPS networks, we choose L j

0 to be the average distance from station j to the nearest
three or four stations, allowing us to detect spatially correlated transients with length
scales proportional to the resolving power of a given network.

Since the spatial sparsity weighting method relies on spatial consistencies of scalo-
grams for neighboring stations, we must ensure that the Bi-spline decomposition of
transient signals is translation-invariant. Translation-invariance states that a time
shift of the input signal (the data) will only result in an equivalent time shift of the
selected Bi-splines without modification of the amplitudes [26]. In wavelet analysis,
wavelet transforms that are not translation-invariant can result in vastly different de-
compositions for small time shifts in the data. For `1-regularized least squares prob-
lems, we can achieve translation-invariance by constructing a translation-invariant
dictionary G. A given dictionary G is translation-invariant if for any temporal func-
tion gi (t) ∈ G and t0 ∈ ∆t ∗ [0, N − 1], where N is the number of data points and ∆t

is the time duration between observations, then gi[t − t0] ∈ G [26]. In other words,
we construct G such that every observation epoch in the time series is associated
with a Bi-spline of all valid temporal scales, which would result in a G matrix with
N rows and N log2 N columns if a dyadic scale approach is used for the Bi-splines.
Due to the large number of parameters associated with translation-invariant dictio-
naries, we generally only enforce translation-invariance when applying the spatial
sparsity weighting to time series that potentially contain rapidly propagating tran-
sients, such as in Cascadia. In practice, we have found that longer-duration transients
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can be effectively isolated using the spatial sparsity weighting with the standard G
construction, i.e. 4 Bi-splines of duration T/4, 8 Bi-splines of duration T/8, etc.

Example: SCEC Validation Exercises
Since 2009, the Southern California Earthquake Center (SCEC) community has
coordinated transient detection validation workshops where participants are able
to test their detection methods on several synthetic time series resembling data
from southern California GPS stations [43]. The data are generated by the Fakenet
package which simulates transient processes of varying complexity while including
additional signals from seasonal and secular processes, random and common mode
noise, and data gaps [44]. Four phases of testing from 2009 to 2012 were performed
with transient sources ranging from slow slip events with strike-slip and thrust
motions to small- and large-scale aquifer inflations. We apply the spatial sparsity
weighting approach to a 10-year synthetic dataset from Phase 3 (set D) which
contains signals from a simulated thrust event on the Santa Monica fault. As before,
we populate a global temporal dictionary with Bi-splines of timescales of ≈ 0.16,
0.32, 0.65, 1.33, 2.86, and 6.67 years, as well as functions for seasonal and secular
processes. The correlation lengths L j

0 are computed for each station using the
average distance to the nearest three stations, resulting in strong resolution power
over the Los Angeles basin and weaker resolution near the California-Mexico border
and islands (Figure 2.9).

After about twenty iterations of the spatial sparsity weighting, the thrust event
is strongly localized to the stations nearest to the Santa Monica fault with good
agreement with the true signal (Figure 2.10). While there are a few errant non-zero
signals for stations outside of the deforming zone, their spatial characteristics suggest
these signals are primarily from local noise processes that are not removed in the
weighting. Overall, the weighting greatly improves the spatial consistency of the
modeled transient signal. The reconstructed transient time series corresponding to
time scales of approximately fourmonths show that most time-correlated signals that
are not persistent over multiple stations are smoothed over in the spatially-weighted
solution, thus isolating the signal due to the thrust event (Figure 2.11).

2.5 Slow Slip Events in Cascadia
Continuous GPS measurements above the Cascadia subduction zone have revealed
episodic slow slip events located deep on the plate interface that are accompanied by
subduction-related tremor signals [1, 5]. These slow slip events exhibit a fairly per-
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Figure 2.9: Computed scale length (correlation length) of the GPS network used in
the SCEC Phase III validation exercise. Scale length is computed using the average
distance from each station to the nearest three stations.

Figure 2.10: Reconstructed transient signal (red arrows) corresponding to simulated
thrust event (blue arrows). Most of the signal is isolated close to the fault patches,
although a few stations outside of the basin region show extraneous transients. The
large east error at station DSHS is due to a large time-correlated noise signal.
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Figure 2.11: Reconstructed north component transient time series for SCEC Phase
III Set D stations near the Santa Monica fault. The data (dots) have the estimated
secular and seasonal signals removed to match the reconstructed signal (bold line).
Dashed black lines show the true ground signal for each station. Without spatial
weighting (left), the transient signal is corrupted by time-correlated colored noise.
With spatial weighting (right), the signal from the thrust event is isolated.

sistent quasi-periodicity in this region (≈ 14 months) and inform our understanding
of the fault physics and frictional properties through the slow slip location, ampli-
tude, and timing. However, the periodicity and amount of slip for each transient
event are both spatially and temporally variable and a priori unknown. Inference of
these slow slip properties can be obtained with precise measurements of the surface
deformation field over time.

To test the temporal transient detection capabilities of our proposed method, we
use daily GPS solutions for the east component of station ALBH located within
the Pacific Northwest Geodetic Array (PANGA). The data cover the timespan from
2005 to mid-2012 and were processed by the Scripps Orbit and Permanent Array
Center (SOPAC) with regional filtering applied to remove common mode errors
[12]. Known offsets due to hardware changes were removed before analysis. For
this work, we examine the east component of the data since the surface deformation
in this area occurs primarily in an east-west fashion. Manual inspection of the time
series reveals at least six distinct slow slip events. As in the synthetic example,
the dictionary G consists of seasonal, secular, and transient displacement functions.
We uniformly subdivide the 7.5-year time series into 256, 128, 64, 32, 16, 8, and
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Figure 2.12: K-fold cross-validation results for selection of the penalty parameter λ
for the east-component ALBH time series. Cross-validation was performed on three
independent, equally-sized subsets. The blue line shows the mean testing error and
the shaded region denotes the standard deviation.

4 intervals to construct Bi-splines of timescales of ≈ 3, 6, 12, 25, 52, 113, and 263
weeks, respectively. Slow slip events typically have recorded durations of 3 weeks
[1]. Both the regularized least squares approach and the Gibbs sampler are used
to estimate the dictionary coefficients, where the latter is used to construct the full
posterior distribution. Cross-validation was performed to select the optimal penalty
parameter λ (Figure 2.12). The increased number of transient events recorded in
the ALBH time series favored a smaller penalty parameter than the synthetic data.

As was seen with the synthetic time series case, a challenge for transient detection
is correctly estimating the contribution from seasonal and secular processes. Our
estimates of these steady processes ultimately govern the magnitude of the detected
transient events and their overall interpretation in terms of onset times and durations.
Using our approach, removal of the estimated seasonal and secular displacements
results in a modeled transient evolution with distinct, step-like motions correspond-
ing to the slow-slip events (Figure 2.13a). By comparing the structure of these
transients with those presented in previous studies ([e.g., 5]), we can observe a
distinctly different interpretation of the relative contributions from the secular rate
and transient events. Here, removal of the estimated secular rate results in slow
slip events that are modeled as displacement phenomena that occur in an otherwise
quiescent field. Other studies have presented the transient time series in a more
sawtooth-like fashion in which the station moves slowly eastward in the inter-event
period (superposed on the long-term plate rate) before moving rapidly westward. In
our framework, such an interpretation would require a positive, longer duration Bi-
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Figure 2.13: Transient detection results for the east-component ALBH time series.
(a) GPS data with estimated seasonal and secular signals removed (black circles)
and estimated transient signal from a reduced dictionary corresponding to a 99%
variance reduction (red line). Shaded area denotes 5-σ uncertainties on predicted
displacement using the method in Section 2.2. (b) Posterior data covariance matrix
of the time series fit scaled to unity. (c) Scalogram for all Bi-spline coefficients.
Comparison with the time series shows the direct correspondence between the slow
slip events and the non-zero 3- and 7-week Bi-splines. No strong long-term transient
signals are present.

spline before each event, followed by a short duration, negative Bi-spline to model
the actual event. This model would be unfavorable due to the sparse regularization
which penalizes the total number of non-zero Bi-splines. The optimal model is the
onewith themost compact representation, whichwe can confirm from the scalogram
of the Bi-spline coefficients (Figure 2.13c). In other words, the sparsity-promoting
regularization allows us to automatically estimate the inter-event secular rate rather
than an average rate that mixes the contributions from the secular rate and transient
processes.

Here, all of the slow slip events are modeled either by 3- or 7-week Bi-splines,
although increasing the penalty λ would start to over-smooth the data by select-
ing longer 14-week Bi-splines. The posterior data covariance, obtained using the
procedure outlined in Section 2.2, shows stronger covariances between modeled
displacements in the inter-event period, which is a consequence of the finite support
of the Bi-splines (Figure 2.13b). Similarly, the striping in the off-diagonal terms
during the inter-event period is also due to the construction of the temporal dictio-
nary since the modeled value at one observation epoch will covary with the other
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Figure 2.14: Evolution of the posterior covariance with penalty λ between two
centroid-coincident Bi-splines corresponding to the January 2007 slow slip event.
Solid and dashed lines mark lines of constant posterior density in the following
manner: black dashed→ 0.03, white dashed→ 0.2, black solid→ 0.2, white solid
→ 0.95. For small λ, the joint distribution is diffuse with larger amplitude samples
drawn for the shorter timescale Bi-spline. As λ increases, the distribution shrinks
and moves along the vertical axis. Eventually, the distribution transitions to larger
values for the longer timescale Bi-spline and small values for the shorter timescale
Bi-spline. For the largest λ, the samples are tightly clustered around the origin.

observations depending on the Bi-spline coefficients.

Dictionary Covariances
For all slow-slip events, there are strong covariances between Bi-splines that have
time-coincident centroids, and the strongest covariances are between 3-week and
7-week Bi-splines. As with the synthetic data, the strength of the covariance is
primarily determined by the value of λ which moves the areas of high posterior
probability along a fairly defined trajectory. The covariance behavior between 3-
week and 7-week Bi-splines with time centroids corresponding to a slow-slip event
in January 2007 shows that for low values of λ, the joint posterior distribution
is fairly diffuse and exhibits large variances with the probability peaking over the
shorter-timescale Bi-spline (Figure 2.14). However, we can still observe a tail in
the joint distribution that points towards a non-zero value for the longer-timescale
Bi-spline. Increasing λ is equivalent to shrinking the prior densities for all Bi-
splines, causing the joint distribution to move along the vertical axis defined by
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Figure 2.15: Map of select GPS stations from the PANGA network used in the
spatial sparsity weighting.

small values for the longer-timescale Bi-spline and decreasing values for the shorter-
timescale Bi-spline. Once λ exceeds a certain value, the high-probability areas of the
joint distribution transition towards the longer-timescale Bi-spline via the dominant
covariance direction. Eventually, for high enough λ, the posterior distribution is
forced to be identical to the prior distribution with a peak at the origin which
indicates that the signal has been completely smoothed over.

Spatial Sparsity Weighting
Aswith the SCEC synthetic dataset, we apply the spatial sparsityweighting approach
in Section 2.4 to station ALBH and 32 nearby GPS stations located within the Casca-
dia region (Figure 2.15). We use raw daily positions from the PANGA network pro-
cessed by theCentralWashingtonUniversityGeodesyLab (http://www.geodesy.cwu.edu/).
To remove commonmode network errors, we use the spatiotemporal filteringmethod
of Dong et al. [22]. We first apply the temporal transient detection method indepen-
dently for each station and displacement component and remove the total modeled
displacements from the data. From the de-trended and demeaned residuals for all
stations, principal component analysis (PCA) is performed to estimate the largest
principal component corresponding to common mode error. The residuals with the
common mode signal removed are then added back to the modeled displacements
to obtain the filtered data.

We divide the detection procedure into two stages: 1) an initial detection phase
where the dictionary is populated with longer timescale Bi-splines (τk > 1 month)
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Figure 2.16: Amplitudes corresponding to 3-month Bi-splines used to fit east com-
ponent time series data from Cascadia GPS stations. Stations are arranged by
increasing latitude, and spatial sparsity weighting was applied to isolate spatially
coherent Bi-splines. The episodic slow slip events are easily visualized, and longer
time scale propagation effects can be seen in two of the events (mid-2009 and
late-2010).

and seasonal and secular processes; 2) an analysis phase where we select only a year
of data encompassing the detected slow slip events and the dictionary is populated
exclusively with Bi-splines (τk > 5 days). Prior to the analysis phase, we remove the
estimated signals from seasonal and secular processes, as well as detected transients
with timescales longer than one year. While the ≈ 1−3 month Bi-splines used in the
detection phase will over-smooth many slow slip events, we still gain information
about the dominant event durations and onset times (Figure 2.16). The detailed
analysis phase can then reveal any subtle propagation behaviors of detected slow
slip events and constrain the spatial extent of the transient surface strain. In cases
where the data size of the time series are relatively small, the detection phase may
be skipped. We utilize it for the Cascadia data because the time scales of the slow
slip events are considerably shorter than the time extent of the data.

For the analysis phase, we focus on three slow slip events: 1) January 2007; 2) mid-
2008; and 3)mid-2009 (Figure 2.17). For all three events, we can can observe several
characteristics common to all events. First, slow slip tends to nucleate on the eastern
Olympic peninsula near the Seattle area. The slow slip front (determined by the GPS
stations’ peak ground velocities) propagates bi-laterally with total ground motion
larger at stations higher than ≈ 47.5◦ N. The southern stations tend to show transient
motion near the cessations of the slow slip events, which may suggest a change in
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Figure 2.17: Transient detection with spatial sparsity weighting for 33 GPS stations
within the Cascadia region. Three separate slow slip events are shown: (left)
January 2007; (middle) mid-2008; and (right) mid-2009. The top panels show the
normalized east-component displacements corresponding to the slow slip events.
The displacement time series are ordered in distance along a 40 km depth contour.
The bottom panels show the transient ground motion during each slow slip event
where the marker color indicates days from the start of the event.

frictional properties or fault geometry around 47◦ N. For the 2007 event, the GPS
stations show distinctly different displacement azimuthswith larger overall velocities
(larger displacements in a shorter time period), which may indicate a different
slipping area in the underlying thrust fault [45]. Additionally, the propagation speed
is significantly faster than either the 2008 or 2009 events. Ground motions for the
2008 and 2009 events initiate at a higher latitude, and the northern stations exhibit
stronger southward motion in the first few days of each event. Similarly, station P418
in the southern section shows strong southward motion in the first 10 days of each
event. Comparison with previous studies estimating static slip for the 2007 and 2008
events (e.g., [45, 46]) reveals that the areas of peak static slip on the underlying fault
are closely located to GPS stations with the first ground motions for each event. This
relationship suggests that the nucleation zones on the fault experience the highest
cumulative slip. For all three events, we can also observe that many of the stations
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cease their north-south motions in the second half of the event and move primarily
in an east-west fashion.

2.6 Discussion
Generally, transient signal reconstructions are remarkably consistent between the
least squares optimization with sparsity-inducing regularization and the Bayesian
sampling approach with a Laplace prior. Moreover, the Bayesian approach does not
explicitly implement re-weighting for enhancing sparsity as mentioned in Section
2.2 and in Candés et al. [35] and can be viewed as solving a single iteration of
the sparsity-regularized least squares problem. Even so, the scalogram comparison
between the two different approaches (Figure 2.6) confirms that Gibbs sampling
can recover the same Bi-splines corresponding to transient signals while zeroing
out the contributions from other Bi-splines. The fact that we use the mean of the
posterior distribution rather than the mode as a point estimate is because we have
assigned a squared-error “loss-function” to the data misfit [36]. In a study by Hans
[47], it was shown that the posterior mode for a Laplace prior can be interpreted
as a limiting case corresponding to a zero-one loss function, which resembles the
`0-norm penalty. However, using the mode does not capture the best point estimate
when the marginal posteriors are skewed, as was observed in Figure 2.7. While the
penalty λ controls the degree of skewness of the marginal posteriors, it is always
optimal to use the mean as a point estimate when a Gaussian data misfit is used.

In Section 2.3, we demonstrated the successful detection ofmultiple transient signals
with a relatively sparse data set. In practical applications, these results suggest that
a minimum of ≈ 3 − 4 data points spanning the transient process would be required
to recover its signal. For daily GPS solutions, we could therefore potentially recover
very rapid processes, provided that the signal-to-noise ratio was high enough and
the dictionary contained Bi-splines with equally short timescales. On the opposite
end of the spectrum, time series with much coarser temporal resolution, such as
an InSAR time series, could still detect transient signals of durations comparable
to the time spacing between data acquisitions. For both of these cases, the penalty
parameter could be chosen using K-fold cross-validation, which was demonstrated
to favor lower penalties to allow for robust reconstruction of very small signals.

When two Bi-splines are centered over the same time epoch and can both fit the
data reasonably well (as in Section 2.5), lower values of the penalty parameter λ
will tend to allow larger amplitudes for the shorter-timescale Bi-spline, allowing the
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reconstructed transient signal to contain higher frequency components. Increasing
λ is equivalent to shrinking the prior probabilities of the Bi-splines, forcing the
solution to favor the longer-timescale Bi-spline and smoothing the reconstructed
signal. For real geodetic time series, this behavior implies that successful detection
of very short-duration transient signals would most likely require a fairly low value
for λ which could be chosen through K-fold cross-validation. The side-effect of
using a small λ is that the reconstructed signal would have a higher probability of
being corrupted by colored noise processes in the data. If the signal of interest is
known to have a longer duration than typical colored noise, then one could safely
choose a higher value of λ to favor longer-timescale Bi-splines. An alternative
approach would be to construct the dictionary such that it included only longer-
timescale Bi-splines, limiting the effective data resolution of the model.

The spatial sparsity weighting discussed in Section 2.4 was effective for minimizing
the effects of local ground motion and colored noise. However, the performance
of the spatial weighting is inherently dependent on the density of the network
and the value of the correlation length used in the distance weighting scheme.
Larger correlation lengths will tend to reconstruct long-wavelength deformation
fields while smaller correlation lengths will reconstruct more local ground motions.
The variable correlation length approach used in this work has the advantage of only
reconstructing signals that are resolvable by the geodetic network and minimizing
false detections of spurious transients due to data noise. Our approach of prescribing
the correlation length, L j

0, to be the average distance from station j to the nearest
three or four stations will be affected by the addition of a new station in the vicinity
of station j. However, the addition of stations can only decrease the correlation
length. From Equation 2.7, the weighting function would decrease in strength at a
given distance, corresponding to an increase in the effective spatial resolution at the
current location. Likewise, station removals would increase the correlation length
and decrease the effective spatial resolution. For both cases, changes in the station
distribution would only affect the spatial reconstructions in the vicinity of the station
addition/removal, and the solutions for the remaining stations in the network will be
unaffected. In terms of solution stability, the weighting scheme is thus stable and
adaptive to changes in network geometry.

The spatial weighting can also be formulated in a Bayesian sense by using the
cascading approach discussed earlier and in Minson et al. [42]. We can write
the posterior distribution of the Bi-spline coefficients for the k-th GPS station as
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p (mk |dk ) ∝ p (dk |mk ) p (mk ). By assuming that the terms in mk are correlated
with the same terms in N surrounding stations, we can setup a joint estimation
problem where M = [m1, . . . ,mN ] and D = [d1, . . . , dN ]. Then, for the k-th station,
where k ≤ N , the joint posterior distribution would be:

p (mk |D) ∝


N∏
j=1, j,k

p
(
d j |m j

)
p
(
m j

) p (dk |M) p (M)

∝



N∏
j=1, j,k

p
(
m j |d j

) p (dk |M) p (M) . (2.8)

The prior distribution p (M) would account for spatial coherency between Bi-spline
amplitudes by incorporating a prior covariance matrix with non-zero off-diagonal
components for the elements in M. As before, the structure of the prior covariance
matrix would depend on some form of distance weighting between stations and
would be re-computed for each k-th station. Then, independent Bayesian sampling
runs performed for each station would be combined to form the product in brackets
in Equation 2.8, and the final posterior distribution p (mk |D) would be sampled by
constructing an appropriate likelihood function p (dk |M).

The reconstructed transient motions and propagation characteristics of the Cascadia
slow slip events agree well with independent studies of tremor space-time propa-
gation [e.g., 48]. The geodetic propagation speeds estimated here fall within the
range of the tremor propagation speeds, and the nucleation zones for tremor activ-
ity correspond well to the first ground motions for each event. Inspection of the
reconstructed transient time series for each station (Figures 2.13 and 2.17) indicate
that the reconstructions do not suffer from significant oversmoothing. The inclu-
sion of short-timescale Bi-splines in the temporal dictionary G permit us to detect
and model very subtle ground motions due to slow slip while the spatial sparsity
weighting prevents us from overfitting local ground motions.

Finally, the construction of the transient detection method as a linear model results
in very efficient time series processing which can be easily scaled for large geodetic
networks. As with any linear model, the efficiency of the linear algebra routines
used for performingmatrix-vector operations will greatly impact the detection speed
and can be enhanced with straightforward parallelization. An alternative to batch
estimation of the coefficients is a recursive approach where estimation is performed
for each data point in a sequential fashion. The `1-norm penalty would be enforced
as a pseudo-measurement with an associated Kalman gain that tracks the `1-norm
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of the current state of coefficients [49]. A recursive approach would require storing
only a single row of the dictionary G into computer memory, limiting the computa-
tional cost of the estimation and allowing an arbitrarily large number of dictionary
elements. Furthermore, the update would be very fast for a single observation and
would provide a real-time transient detection capability.

2.7 Conclusions
We demonstrated successful transient detection for a single geodetic time series by
estimating the coefficients corresponding to a highly overcomplete dictionary (de-
signmatrix) of integral B-splines that resemble transient events of various timescales
and start times. Regularizing the estimation procedure with an `1-norm on the coef-
ficients favors sparse solutions, limiting the number of Bi-splines needed to describe
transient events while still providing a good fit to the data. For GPS networks with
sufficient station density, we can perform the regularization simultaneously across
the whole network with a distance weighting procedure to enhance signals that
are spatially coherent over a given length-scale. The reconstructed time series es-
sentially resemble smoothed versions of the input data but with additional critical
information regarding transient event start times and durations. The temporal reso-
lution of the detection method is only limited by the signal-to-noise ratio of the data
and the smallest timescale Bi-splines included in the dictionary. The spatial reso-
lution is then limited by the density of the geodetic network. Detection sensitivity
is controlled by the penalty parameter on the `1-norm, which can be robustly and
automatically chosen with cross-validation. We also presented a Gibbs sampling
approach to construct the full posterior distribution of each element in the dictionary
which, in addition to stand-alone point estimates of the coefficients via the posterior
means, provides quantifiable uncertainties on the coefficients and valuable insight
into trade-offs between dictionary elements. In the absence of a priori knowledge
about transient event start times, durations, and physical sources, this method auto-
matically and efficiently determines the most dominant signals in a time series in a
compact and interpretable manner.
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C h a p t e r 3

THE COLLAPSE OF BÁRÐARBUNGA CALDERA, ICELAND

1. Riel, B., Milillo, P., Simons, M., Lundgren, P., Kanamori, H. & Samsonov, S.
The Collapse of Bárðarbunga Caldera, Iceland. Geophysical Journal Interna-
tional 202. doi:10.1093/gji/ggv157 (2015).

3.1 Introduction
On August 16, 2014, a swarm of earthquakes was detected underneath Bárðarbunga
caldera in Iceland, a stratovolcano located within the Eastern Volcanic Zone (EVZ)
and completely covered by the Vatnajökull ice cap [1]. These earthquakes signaled
the onset of subsurfacemagmamovement. Asmagma propagated out of the confines
of the caldera, earthquake activity tracked its motions, revealing the emplacement
of a large dike along a northeast oriented fissure swarm of the Bárðarbunga volcanic
system, consistent with a plate boundary rifting event [2, 3]. The dike intrusion
triggered an effusive eruption 40 km away from the caldera at the surface of the
Holuhraun lava field north of Vatnajökull beginning on Aug. 29, 2014. Prior to the
surface eruption, geodetic observations revealed that the ice over the caldera was
subsiding rapidly, with measured rates of approximately 50 cm/day (Fig. 3.1). The
rapid subsidence was accompanied by moderate earthquakes (Mw > 5) with epicen-
ters concentrated along the caldera rim (Fig. 3.2). Nearly all of these earthquakes
exhibited anomalous behavior with large deviations from traditional double-couple
sources (i.e., motion confined to a shear fault plane) [4]. These earthquakes appear
to be the manifestations of simultaneous vertical compression and outward horizon-
tal expansion. Such motion is commonly interpreted as a compensated linear vector
dipole (CLVD) [5]. The close spatiotemporal association of the caldera collapse,
anomalous seismicity, and large-scale rifting provides a unique opportunity to study
the mechanics of a caldera collapse in a basaltic system. The large subsidence within
the caldera rim, which has never been previously observed at Bárðarbunga, provides
critical constraints on the collapse sequence within the caldera.

Since the start of the eruption, a suite of synthetic aperture radar (SAR) images over
northwest Vatnajökull and adjacent regions has been acquired by the international
constellation of radar satellites. With these images, we can use interferometric
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Figure 3.1: Map of northwestern Vatnajökull, Iceland with the locations of known
calderas/volcanos indicated by barbed lines: As - Askja, Bá - Bárðarbunga, Gr -
Grímsvötn, H - Herðubreið, Kv - Kverkfjöll, Tu - Tungnafellsjökull. Colored fringes
represent contours of the line-of-sight (LOS) component of ground motion at 15
cm per color cycle. Areas of high interferometric phase noise have been masked
out. The interferogram over the ice was formed from COSMO-SkyMED (CSK)
images acquired from Sep. 12-13, 2014 while the 24-day interval interferogram
over the ground was formed from RADARSAT-2 (RS2) images acquired on Aug. 8
and Sep. 1, 2014. A clear bullseye pattern over the Bárðarbunga caldera indicates
subsidence of the glacier surface. The RS2 interferogram shows the effects of
the rifting associated with spreading of the ground away from the active dike.
Black arrow indicates the satellite-to-ground direction for both the CSK and RS2
interferograms. White dots indicate earthquakes that occurred between August 15,
2014 and February 1, 2015, as recorded by the SIL network in Iceland. Lower-left
inset shows the location of the study area in Iceland with respect to the glaciers
and active volcanic zones (dark grey shading). Upper-left inset shows surface
rupture near the Herðubreið volcano (denoted by white box) observed in the RS2
interferogram.
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SAR (InSAR) to measure surface deformation between two successive SAR images
along a line-of-sight (LOS) direction (e.g., Simons & Rosen 2007). We use images
acquired by the COSMO-SkyMed (CSK) constellation, which consists of four X-
band radar satellites operated by the Italian Space Agency (ASI), to image ground
deformation within the vicinity of the Bárðarbunga caldera (Fig. 3.1). One-day
separation between CSK images over the collapsing ice-covered caldera permits the
formation of high-resolution interferograms with good coherence, providing snap-
shots of daily subsidence of the overlying ice. We complement the CSK data with
24- and 48-day-interval InSAR observations from RADARSAT-2 (RS2), a C-band
satellite operated by the Canadian Space Agency, to measure ground deformation in
ice-free regions north of Vatnajökull. This deformation primarily results from em-
placement of an intrusive dike, producing 1.5 m of surface ground motion very close
to the dike and measurable deformation as far as 60 km away from the surface trace.
Near Herðubreið volcano northeast of Askja, a cluster of earthquakes is associated
with left-lateral fault motion where discrete centimeter-scale surface rupture can
be observed. The left-lateral motion agrees with the previously inferred bookshelf
faulting for that area and implies that dike emplacement enhanced the background
stress field in the Askja rift segment [2, 6]. In the ice-free areas adjacent to and
west of Bárðarbunga caldera, inspection of the LOS displacements in the RS2 data
reveals several centimeters of motion consistent with a deflating magma chamber
beneath the caldera.

3.2 Geodetic and seismic data
We formed five one-day interferograms from CSK images acquired on August
27-28, September 12-13, September 13-14, September 17-18, and October 19-20
(Fig. 3.2). All interferograms show strong subsidence signals within the caldera
boundary, presumably due to subsidence of the caldera floor. While melting of
the overlying ice at its base could also result in the observed subsidence, there has
been no evidence of anomalous glacial outwash or changes in the ice flow rates
for the central Bárðarbunga caldera [3]. The first two and the last interferogram
show similar, axisymmetric bullseye patterns due to the subsidence of the ice over
the caldera. However, only a day after the Sep. 12-13 interferogram, the Sep.
13-14 interferogram shows a distinctly different deformation pattern with greater
displacement near the northern rim of the caldera. Because ground displacement
in one satellite line-of-sight direction is generally a combination of horizontal and
vertical motion, we use the method of Yun et al. (2006) to estimate the ratio of
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Figure 3.2: (A)-(E) Evolution of subsidence within the caldera observed from five
one-day interval CSK interferograms. Note the similarity in LOS directions for the
interferograms, with the exception of the Sep. 17-18 interferogram. Colored circles
indicate earthquakes that occurred during the time span of the interferogram and are
colored by hours elapsed from the acquisition time of the first image of a given pair.
Earthquakes with Mw > 4.9 are shown with focal mechanisms derived from moment
tensors obtained from the GFZ Potsdam catalog. The location of the transects in
Fig. 3.S2 are indicated in the first panel for the August 27-28 interferogram. (F)
Distribution of all seismicity near the caldera between August 16 to October 21,
2014. The colored focal mechanisms are colored by days elapsed since August 23,
2014. Yellow dots denote the locations of the earthquakes presented in Fig. 3.1. The
black focal mechanisms with vertical tensional axes correspond to selected CLVD
events at Bárðarbunga between 1976-1996 [18].

horizontal to vertical motion on the ice by comparing interferograms with different
viewing geometries (Fig. 3.S1). We estimate that the ratio of horizontal to vertical
motion does not exceed ≈0.3 within the caldera, and any horizontal motion is
diminished close to the center of the subsidence signal. Thus, assuming purely
vertical motion, we can extract profiles across the caldera to estimate instantaneous
subsidence rate for each of the interferograms (Fig. 3.S2). The northward trending
subsidence pattern in the Sep. 13-14 interferogram is clearly associated with a sharp
increase in apparent instantaneous subsidence rate over the background rate: 20 cm
increase in the center of the caldera and 25 cm on the northern edge of the caldera.

Two earthquakes with Mw 4.9 and Mw 5.3 occurred on the north rim of the caldera
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during the time spans of the Sep. 13-14 and Sep. 17-18 interferograms, respectively
(Fig. 3.2). These two earthquakes were part of a persistent sequence of Mw > 5
earthquakes along the rim of the caldera with highly non-double-couple character-
istics, exhibiting dominant vertical compressional axes and horizontal expansions
consistent with CLVDs (Fig. 3.2) [7]. The focal mechanisms for this sequence of
events are consistent between different earthquake catalogs (Table 3.S1). While pre-
vious studies of global CLVD earthquakes in the vicinity of active volcanoes have
shown that such earthquakes tend to have longer-than-average source durations for
their magnitudes, estimates of the magnitudes themselves are weakly dependent on
the complexity of the source time functions [8, 9]. Therefore, the small differences
in moment magnitudes between different catalogs for the current event (Table 3.S1)
suggest that the magnitudes are correct to within approximately 0.1 magnitude unit.

The Mw 4.9 event has a clear CLVD component in the moment tensor while the Mw

5.3 event appears to show more normal fault motion. The location, size, and focal
mechanisms of these events, and the absence of similar events during the time spans
of the Aug. 27-28, Sep. 12-13, and Oct. 19-20 interferograms, suggests that the
asymmetry of the Sep. 13-14 and Sep. 17-18 interferograms is linked to the occur-
rence of the larger earthquakes on the northern rim. A simple relationship between
earthquake size and ground displacement, such as assuming seismic potency is pro-
portional to areally integrated displacements of the ice surface, does not appear to
apply to these events since the potency associated with the earthquake that occurred
during the Sep. 13-14 interval was nearly five times less than the earthquake that
occurred during the Sep. 17-18 interval, yet the estimated volume change within the
caldera as estimated from the integrated displacements is larger for the former (Fig.
3.3D). Therefore, most of the subsidence occurs aseismically while the larger Mw >
5 events may produce localized additional displacements of up to 25 cm along the
caldera rim as measured at the ice surface.

3.3 Source models for rift zone and magma chamber
Experimental and numerical studies of caldera collapse consistently show that the
size, shape, and depth of subsurface magma chambers strongly affect the final
geometry of the collapsed caldera, as well as the rate at which it will form [10–
13]. In order to estimate the depth of a subsurface magma chamber while avoiding
modeling errors due to uncertain ice-rock coupling, we consider LOS displacements
of the subsidence signal from the ice-free areas in interferograms formed from longer
time interval RS2 images (24 and 48 days, Fig. 3.S8). We also include data from
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Figure 3.3: (A) Difference between Sep. 12-13 and Sep. 13-14 interferograms for
isolating the ground deformation associated with a Mw 4.9 earthquake that occurred
on Sep. 14. Also shown are synthetic LOS displacements due to slip along a vertical
ring fault (B) and a closing crack (C). For the ring fault (thick black line), the fault
is placed at a depth of 2 km with a width of 1 km and approximately 3 meters of
normal motion. The closing crack is simulated using the model of Fialko, et al.
(2001) at a depth of 2 km, a radius of 1 km, and a volume change of 0.003 km3. (D)
Seismic potency for the northern and southern halves of the caldera compared with
estimated volume change rate (dV/dt) within the caldera inferred from the one-day
interferograms. The thick blue and red lines correspond to the cumulative potency
of the northern and southern regions, respectively, of the caldera. To calculate
seismic potency, we divide the seismic moment by a shear modulus of 24 GPa. Thin
vertical lines mark the occurrence of earthquakes greater than Mw 4.9. The shaded
brown boxes show the time spans of each one-day interferogram and the estimated
volume change during that time span (right ordinate). The volume change for each
interferogram was computed by integrating the projected vertical displacements
within the caldera boundary.
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continuous Global Positioning System (GPS) stations located north of Vatnajökull
[3]. As part of the analysis, we remove ground displacements due to the rift zone
by estimating an elastic model for tensile opening along the dike interface using
a collection of RS2 and CSK interferograms and the GPS data (see Materials and
Methods, Fig. 3.S4). While the geodetic data alone cannot resolve opening of the
dike under the ice, the robust components of the model include approximately 5
meters of opening in the upper 5 km of the resolvable dike segment (equivalent to
200-300 years of cumulative plate motion) and peak geodetic potency occurring
at a shallower depth (≈ 2 km) than the peak earthquake density, which occurs at
around 6 km depth (Sigmundsson et al. 2014; Fig. 3.S6). These results agree with
estimates of the dike geometry from other studies (e.g., Gudmundsson et al. 2014;
Sigmundsson et al. 2014).

After removal of the rift zone signal, we model the chamber as a collapsing hor-
izontal circular crack in an elastic half-space [14](Materials and Methods). The
parameterization of the chamber parameters is such that there are strong trade-
offs between the chamber depth, radius, and excess pressure (difference between
the magma chamber and lithostatic pressures). However, we are able to resolve
a consistent depth-to-radius ratio of approximately 3.6 (Fig. 3.S7). By adjusting
the excess pressure, we can explain the geodetic observations equally well with
a shallow, small chamber or a deep, larger chamber. Therefore, determining the
“true” depth of the magma chamber would require other independent observations,
i.e. re-located seismicity of earthquakes occurring within and around the caldera
or an upper bound on the allowable values for excess pressure. Nevertheless, the
ability of our model to fit the displacements at distances greater than three times
the chamber radius validates the assumption of a symmetric source with a uniform
pressure difference since no obvious asymmetries appear in the residuals. Steady
deflation of the chamber is thus the primary contributor to subsidence observations
both on and off the ice. While we cannot rule out the possibility of additional deeper
magma chambers (depth > 10 km), our lack of reliable ground measurements over
the caldera limits our ability to resolve multiple chambers.

3.4 Discussion
One of the most interesting aspects of the collapse sequence has been the occurrence
of the moderate earthquakes along the caldera rim with large CLVD components
in their focal mechanisms. Assuming that the background subsidence rate is nearly
constant between Sep. 12-14, we can isolate the ground deformation associated with
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one of the earthquakes (Mw 4.9 on Sep. 13) by forming a residual interferogram of
the difference between the Sep. 12-13 and Sep. 13-14 CSK interferograms since only
the Sep. 13-14 image spanned the time of the earthquake (Fig. 3.3A). The highly
localized deformation due to the earthquake indicates that the source is most likely
shallow. For earthquakes with vertical CLVD focal mechanisms in the vicinity of
volcanoes, the two most likely physical processes are rupture on curved ring faults
or opening/closing of a crack under tension/compression [9, 15]. Static simulations
for both processes require source depths of approximately 2 km to roughly match the
InSAR observations (Fig. 3.3B-C). For reference, a Mw 4.9 event with an effective
shear modulus of 5 GPa (typical for shallow depths in volcanic systems within
an extensional regime [16]) has a seismic potency of approximately 0.004 km3.
However, the simulated ring fault rupture requires a much larger potency (≈0.01
km3), which implies a very low effective shear modulus (≈1 GPa) consistent with
very weak materials such as water-saturated basaltic tuff. While the closing crack
provides a more realistic measure of potency (equivalent volume change of about
0.003 km3), the synthetic ground deformation lacks the asymmetry observed in
the residual interferogram. Therefore, for both cases, it is likely that the ground
deformation is a combination of seismic deformation (due to ring faulting or a closing
crack) and aseismic slip on the ring fault. The inconsistency between earthquake
size and ground deformation (Fig. 3.3D) suggests that the amount of aseismic slip
per event is highly variable.

Based on the seismic evidence and the inversion results for the chamber geometry, we
propose a model for the sequence of the caldera collapse and dike emplacement (Fig.
3.4). The initial seismic activity on the southern edge of the caldera and subsequent
propagation of an oblique dike caused depressurization of amagma chamber that can
be approximated as a horizontal circular sill. Magmamigrated out of the chamber to
the short, oblique dike and eventuallymigrated to the larger, regional-scale dike. The
underpressure in the magma chamber resulted in subsidence of the caldera surface
and overlying ice. Stress concentrations in the vicinity of the deflating magma
chamber led to the initiation of Mw > 5 seismic events located along the caldera
rim. The large CLVD components in the earthquake focal mechanisms indicate a
seismic process characterized either by downward vertical motions and horizontal
expansions or rupture on a curved fault. The former process has been observed in
mine collapses where rapid closing of a horizontally-oriented underground cavity
(the mine) leads to CLVD components in the seismic moment tensor [17]. A mine
collapse mechanism could imply failure of brittle support structures within the
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Figure 3.4: A conceptual model for the mechanics of the collapsing caldera. Magma
migration out of the chamber into the dike system causes depressurization of the
chamber. The deflating chamber results in subsidence of a coherent block above
the chamber, as well as subsidence of the overlying ice. Sustained depressuriza-
tion of the chamber leads to failure of internal support structures (causing seismic
events marked by inward vertical motion and outward horizontal expansion) or rup-
turing of curved, inward-dipping ring faults. Cross-sections of focal mechanisms
representative of these events are shown on the edge of the chamber.

partially molten magma chamber due to large compressive stresses, which would
require a larger (and thus deeper) magma chamber since the earthquake clusters
on the northern and southern rim of the caldera are separated by approximately
8-10 km. Alternatively, the deflating chamber could impart large shear stresses on
existing ring faults, leading to seismogenic slip on limited portions of a ring fault.
Static stress changes associated with both mechanisms could then trigger larger
aseismic slip on the ring fault with slip most likely confined to shallower depths.

Earthquakes with significant non-double-couple components in their focal mecha-
nisms have occurred at Bárðarbunga in the decades prior to the current event (Table
3.S2) [18–20]. However, the polarities of the focal mechanisms for the current
Bárðarbunga eruption are opposite to those observed for the earlier earthquakes,
i.e. vertical compressional axes for the former and tensional axes for the latter (Fig.
3.2F). One interpretation of these earlier events suggested that their faulting mecha-
nisms are primarily due to rupture on outward dipping ring faults which are activated
by inflation of a very shallow magma chamber [18]. However, this interpretation
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is highly non-unique, since a deflating magma chamber below the ring faults could
also produce similar focal mechanisms [21]. Our inversion results for the magma
chamber predict a chamber radius smaller than the caldera radius for chamber depths
less than 15 km (Figs. 3.S7,3.S8), which implies inward dipping ring faults. The
dip of the ring faults controls the rupture arc-length necessary to create the CLVD
focal mechanisms. As an example, ruptures with arc-lengths of 180◦ would require
faults with dips shallower than 70◦ [21]. For this geometry, the earlier events can
be explained by inflation of the magma chamber, leading to reverse motion on those
ring faults.

In addition to mine collapses and ring fault rupture, earthquakes with large CLVD
components like the ones observed on the rim of the Bárðarbunga caldera have
been observed for tensile failure due to high fluid pressure [22] and magma in-
jection in water-saturated environments [23]. An earthquake with a strong CLVD
component was observed near Tori Shima, Japan in 1984. Since the earthquake
was tsunamigenic, the preferred explanation was horizontal injection of magma into
water-saturated sediment with a volumetric component resulting from the explosive
magma-water interaction [23]. A global search for earthquakes prior to 2013 with
vertical-CLVDmechanisms revealed ≈100 vertical-CLVD earthquakes located near
active volcanoes over the past century [8]. Thus, the close temporal and spatial asso-
ciation of the current Bárðarbunga anomalous events with the active fissuring lends
credibility to a collapse mechanism driven by a drop in magma pressure. A sud-
den vertical collapse with no volume change would be characterized by downward
vertical and outward horizontal motions.

Our model of caldera collapse due to magma withdrawal has been proposed for
volcanic systems in Iceland neighboring Bárðarbunga. North of the EVZ is the
Northern Volcanic Zone (NVZ), consisting of five en echelon volcanic systems
aligned with the boundary of the North American and European plates [24]. Within
the NVZ, the Krafla caldera system was the site of a major rifting event between
1975-1984. Eruptive activity initiated with inflation of the central caldera, which
then underwent rapid deflation, leading to lateral basaltic magma injection into a
northward trending fissure swarm. A shallow magma chamber at approximately 3
km depth has been inferred at Krafla via inversions of geodetic observations [25].
Seismic tremor amplitude associated with dike emplacement was correlated with
subsidence at the caldera [24], suggesting a mechanistic link between chamber pres-
sure and stress on the dike. Numerical models support the hypothesis that magma
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pressure, dike overpressure, and background tectonic stresses are the primary factors
controlling dike propagation [26]. Recent studies of the current dike emplacement at
Bárðarbunga also predict a feedback mechanismwhere dike-induced stresses trigger
seismicity at the caldera itself [2]. Kinematically, however, the two volcanic systems
are quite different since the maximum subsidence for Krafla (2 m) was substantially
smaller than that of Bárðarbunga (about 60 m). Additionally, the Krafla episode
experienced periodic inflation/deflation over 10 years whereas Bárðarbunga has thus
far only experienced rapid deflation and over a much shorter time period.

On a global scale, there have only been a fewobserved eruptive events and subsequent
caldera collapses in basaltic systems, although none with volume changes as large as
Bárðarbunga. The 1968 caldera collapse at Isla Fernandina in the Galápagos Islands
occurred on a single shield volcano, and aerial observations indicated that the caldera
floor collapsed 300 m as a 3 km wide coherent block with motion confined to an
elliptical boundary fault formed from a prior collapse event [27–29]. In 2000, the
Miyakejima stratovolcano in the Izu-Bonin volcanic chain experienced 12 days of
increased seismicity due to magma intrusion at its northwest flanks, which was then
followed by a minor phreatic eruption and formation of a collapsed caldera 1.6 km
in diameter [30, 31]. Tiltmeters stationed around the summit indicated intermittent
abrupt uplift events superposed on the longer-term subsidence. The uplift events
were accompanied by very long period (VLP) seismic events detectable over a wide
area [30, 32]. Similar observations were collected for the 2007 Piton de la Fournaise
caldera collapse during its largest historical eruption [33]. ForMiyakejima, all of the
VLP events exhibited large CLVD components for their focal mechanisms, which
was explained to be slip on both inward- and outward-dipping faults [8, 31]. 60
km south of the Isla Fernandina caldera, an inflation event occurred at the Sierra
Negra caldera which was followed a few years later by a Mw 5.5 CLVD earthquake
with a vertical tensional axis [8, 34], consistent with the interpretation of the older
Bárðarbunga events being caused by inflation of a central magma chamber.

3.5 Conclusions
While the unique geodetic observations of ground deformationwithin and around the
Bárðarbunga caldera during its collapse were the first of its kind for the caldera, there
are still large uncertainties regarding the mechanics of the collapse process. The
difficulties associated with the unknown interaction between the overlying glacier
and the bedrock limits the spatial extent of usable data for estimating the geometry of
the underlying magma chamber and active ring fault systems. We have shown that a
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majority of the ice-free ground deformation can be attributed to steady deflation of a
horizontal circular sill. However, the physical process driving the anomalous Mw >
5 earthquakes along the caldera rim is still uncertain. The geodetic signature of one
of these events, as measured by the differences in successive one-day interferograms
over the ice, suggests a shallow seismic source caused by rupture on a ring fault or a
rapidly closing crack. Since the amount of ground deformation expected for either
seismic mechanism is significantly less than the observed deformation, we believe
that the total ground deformation is caused by a combination of seismic processes
and aseismic slip on ring faults. However, if the shear modulus in the vicinity of
the caldera were much lower than expected (perhaps due to the presence of water-
saturated basaltic tuff), then the predicted deformation for the seismic component
would be much larger. In that case, the earthquakes can be explained entirely by
rupture on dipping ring faults.
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3.6 Supplementary: Materials and Methods
Elastic model for dike opening in the active rift zone
We estimate a model of tensile opening for a dike embedded in an elastic halfspace
to account for ground displacements due to the active rift zone. The dike trace is
defined by the earthquake locations in the SIL catalog (Fig. 3.1). We use six longer-
term RS2 and CSK interferograms with time spans ranging from 24 to 48 days
(Fig. 3.S4). In order to account for the different timespans of the interferograms,
we divide the InSAR observations into four temporal subdomains spanning Aug.
16 to Sep. 20, 2014 (since we expect minimal ground deformation prior to Aug.
16) and solve for the distribution of tensile opening for each subdomain. The
predicted LOS displacements in the interferograms are then linear combinations of
the predicted displacements from one or more subdomains [35]. For interferograms
with acquisition times falling within the span of a subdomain, we linearly extrapolate
the predicted displacements associatedwith the nearest subdomain. Additionally, we
use horizontal GPS displacements fromSigmundsson et al. (2014) as additional data
for the first three temporal subdomains. We use the predicted ground displacements
to form residual interferograms and GPS displacements for estimating the magma
chamber geometry (Fig. 3.S8).

Source modeling for magma chamber beneath the Bárðarbunga caldera
To estimate the geometry of a magma chamber beneath the Bárðarbunga caldera
while avoiding modeling errors due to uncertain ice-rock coupling, we consider
LOS displacements from the ice-free areas adjacent to the caldera from longer-term
RS2 interferograms. We use two RS2 interferograms (after removal of any signal
due to the rift zone) with two different viewing angles (ascending and descending)
to improve resolution of the chamber location. We also include horizontal displace-
ments fromGPS stations VONC and HNIF (also after removing the estimated signal
from the rift zone). We model the chamber as a collapsing horizontal circular crack
in an elastic half-space [14] while employing an adaptive Metropolis algorithm to
sample the posterior probability density function for the chamber parameters [36].
We use the centroid of the subsidence pattern in the Aug. 27-28 and Sep. 12-13
CSK interferograms to define strong priors for the horizontal location of the cham-
ber and sample for depth, radius, and difference between the magma pressure and
lithostatic pressure. Since the amplitudes of the subsidence signals in the RS2 in-
terferograms are substantially different, we assign independent pressure differences
for each interferogram. We also sample for the coefficients of a bilinear ramp for
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Figure 3.S1: Ascending and descending one-day CSK interferograms with time
spans of Sep. 13-14 and Sep. 17-18, respectively. The two viewing geometries
allow for separation of LOS displacements into vertical and horizontal components
using the method of Yun et al. (2006), assuming that the two interferograms are
measuring roughly the same ground deformation. While the two interferograms
appear to measure similar levels of ice subsidence, the earthquake perturbations are
more pronounced for the Sep. 13-14 interferogram (see Fig. 3.2). Nevertheless, the
ratio of horizontal to vertical displacements does not exceed ≈0.3 within the caldera.

each interferogram to account for long-wavelength deformation. To maintain con-
sistency between the ice-free interferograms and the CSK interferograms over the
ice, we include one-day LOS displacements over the caldera from the Sep. 12-13
CSK interferogram to compare against the modeled vertical displacements over the
caldera. While we assign those data low weights during the inversion due to the un-
certain ice-rock coupling, their inclusion helps to constrain the pressure differences,
which in turn provides better constraints for the chamber geometry. Finally, we
acknowledge that there is likely some contribution to the observed ground displace-
ment due to slip on caldera ring faults. However, the lack of reliable observations
over the ice, as well as the rapid decay of deformation associated with fault slip
with distance away from the caldera, does not allow for reliable estimations of fault
geometry and/or slip. Therefore, we assume that most of the ground deformation
on the ice-free areas is due to subsidence caused by the deflating magma chamber.



54

0 5 10 15 20
West-East distance (km)

100

80

60

40

20

0

V
e
rt

ic
a
l 
d
is

p
la

ce
m

e
n
t 

(c
m

)

A A'

0 2 4 6 8 10 12 14
South-North distance (km)

100

80

60

40

20

0

B B'

06/27/13 - 06/26/13
08/28/14 - 08/27/14
09/13/14 - 09/12/14
09/14/14 - 09/13/14
09/18/14 - 09/17/14
10/20/14 - 10/19/14

06/27/13 - 06/26/13
08/28/14 - 08/27/14
09/13/14 - 09/12/14
09/14/14 - 09/13/14
09/18/14 - 09/17/14
10/20/14 - 10/19/14

Figure 3.S2: Profiles of projected vertical subsidence observed in the five one-day
CSK interferograms. Profile locations are shown in Fig. 3.2. Vertical displacements
were computed by dividing the line-of-sight range changes by the cosine of the
incidence angle for each interferogram. Solid lines are constructed from interfer-
ogram data with good coherence while the dashed lines interpolate through areas
of low coherence. The gold line shows transects extracted from a 2013 one-day
interferogram (Fig. 3.S3), confirming that the current subsidence is directly related
to the ongoing magmatic activity.
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Figure 3.S3: One day interferogram of Bárðarbunga caldera and surrounding ice-
covered regions formed from CSK images acquired on June 26, 2013 and June
27, 2013. No significant subsidence over the caldera is observed, although LOS
displacements due to ice flow out of the east side of the caldera are consistent with
the 2014 interferograms.
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Figure 3.S4: Time spans of interferograms used for estimating the distribution of
tensile opening along the dike interface. All interferogram time spans are referenced
to Aug. 16, 2014, indicated by the vertical dashed line. The yellow lines correspond
to RS2 interferograms while the red lines correspond to CSK interferograms. The
orbital directions of the images used for the interferograms are indicated as either
ascending (ASC) or descending (DESC). The alternating gray and white columns
correspond to the temporal subdomains used in the inversion.

Figure 3.S5: Estimated distribution of opening along the dike interface for the time
span corresponding to the RS2 interferogram in Fig. 3.1. The synthetic interfer-
ogram (see Fig. 3.S6) is shown above the fault, and the white dots correspond to
earthquakes located along the dike using the SIL network.



56

D

Figure 3.S6: Synthetic ground deformation for the elastic model of tensile opening
along the dike interface. (A) RS2 interferogram from Fig. 3.1 and GPS displace-
ments with 90% confidence error ellipses used in inversion. (B) Synthetic ground
displacements from the estimated model. The modeled LOS displacements in-
clude a bilinear ramp to account for orbital errors and long-wavelength deformation.
Ellipses represent 90% confidence posterior uncertainties in the modeled GPS dis-
placements. (C) Residual interferogram and GPS displacements after subtracting
the synthetic ground displacements. Larger residuals near the surface trace north of
Vatnajökull may indicate potential asymmetries due to dike dip not captured in our
vertical dike model. (D) Cumulative geodetic potency from the dike model in Fig.
3.S5 for Aug. 16 - Sep. 20 vs. a histogram of the depth distribution of earthquakes
located along the dike.
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Figure 3.S7: (A) Samples for magma chamber depth and radius obtained from
an adaptive Metropolis algorithm. Red and blue circles correspond to samples
where the prior distribution for the chamber depth has a maximum at 3 and 6 km,
respectively. The black dashed lines indicate lines of constant depth-to-radius ratio,
h. (B) Samples for magma chamber pressure (in units of the shear modulus µ) and
radius.

Table 3.S1: Comparison of select earthquakes from the GFZ Potsdam and Global
CMT (GCMT) catalogs. Focal mechanisms and moment magnitudes are shown
for the earthquakes from each catalog. We compute seismic moment as M0 =

1/
√

2
(∑

i j Mi j
)1/2

. Both the mechanisms and moment magnitudes are consistent
between the catalogs.

Date of event GFZ GCMT
Focal mechanism Mw Focal mechanism Mw

08/26/2014 01:26 5.43 5.48

08/27/2014 02:50 5.37 5.45

08/28/2014 08:13 5.51 5.56

09/01/2014 11:41 5.53 5.60

09/03/2014 03:09 5.47 5.56

09/07/2014 07:07 5.57 5.65

09/15/2014 08:05 5.54 5.58

09/25/2014 05:00 5.18 5.25

09/29/2014 13:43 5.63 5.64

10/07/2014 10:22 5.57 5.63
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Figure 3.S8: Modeling of the source magma chamber using geodetic measurements
on ice-free areas. The chamber is modeled as a horizontal circular sill at depth. (A)
Unwrapped RS2 interferogram formed from images acquired in an ascending orbit
on Aug. 1, 2014 and Sep. 18, 2014, and GPS displacements with 90% confidence
error ellipses for VONC and HNIF after removing the estimated signal from the rift
zone; (B) unwrapped RS2 interferogram from images acquired in a descending orbit
on Aug. 27, 2014 and Sep. 20, 2014; (C) modeled GPS displacements and LOS
displacements for the ascending interferogram for a chamber at a depth of 8 km and
a radius of 2.3 km (location and size indicated by red dashed circle) or a depth of 4
km and radius of 1.1 km (blue dashed circle); (D) modeled LOS displacements for
the descending interferogram; (E) residual between (A) and (C); and (F) residual
between (B) and (D). The estimated volume changes were 0.43 km3 and 0.14 km3

for the ascending and descending interferograms, respectively.
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Figure 3.S9: Seismicity rates for earthquakes occurring within the dike (top) and
caldera (bottom). The number of earthquakes are binned in latitude and time
where 1-day intervals are used for the time bins. The count is saturated at 15
earthquakes/day for visualization clarity. Bins with less than two earthquakes are
colored white. High seismicity rates within the dike for the first 10 days are
associated with the initial dike emplacement. While seismicity along the dike has
decreased with time, seismicity along the northern rim of the caldera has increased.
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Table 3.S2: Focal mechanisms and moment magnitudes for CLVD events occurring
near Bárðarbunga from 1976-1996. The focal mechanisms were formed using
the moment tensor elements estimated by Nettles & Ekström (1998). These prior
events exhibit opposite polarities from the current events (vertical tensional vs.
compressional axes).

Date of event Focal mechanism Mw

07/27/1976 5.4

12/28/1977 5.4

06/22/1979 5.2

08/12/1980 5.4

02/03/1989 5.1

09/15/1990 5.6

09/26/1992 5.6

06/22/1993 5.4

05/05/1994 5.4

09/29/1996 5.6
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C h a p t e r 4

QUANTIFYING GROUND DEFORMATION IN THE LOS
ANGELES AND SANTA ANA COASTAL BASINS DUE TO

GROUNDWATER PUMPING

4.1 Introduction
In regions over and adjacent to active aquifer systems, ground deformation can occur
as a result of pumping of groundwater, long-term drought effects, heavy rainfall, and
artificial recharge of the aquifers [1, 2]. Ground deformation is a response to changes
in pore pressure in the aquifers, which changes the effective stress on the aquifer
system’s granular matrix and causes contraction or expansion of the aquifers. From
a natural hazard perspective, land subsidence following groundwater withdrawal and
compaction of aquifer systems is of particular interest when the subsidence is long-
term, leading to increased strain on infrastructure and potential formation of earth
fissures and surface faults [2]. Long-term subsidence can occur as a result of a slow
decline in groundwater levels or permanent compaction due to effective stress levels
exceeding preconsolidation stress levels [3]. More generally, ground deformation
due to extraction of fluids in subsurface reservoirs can be described by short-
term, elastic responses and long-term, inelastic compression or poroelastic rebound
processes [1, 2]. Many municipal water districts closely monitor hydraulic head
data to track pore pressures in order to maintain sustainable pumping practices and
prevent effective stress levels within aquifers from exceeding their preconsolidation
levels.

Many studies have shown measurements of ground deformation to be complemen-
tary to hydraulic head data for groundwater monitoring. Continuous monitoring of
ground elevations at discrete points can be achieved through leveling and Global
Positioning System (GPS) data. Additionally, GPS data provides measurements of
horizontal motions, which can be useful for quantifying and modeling aquifer prop-
erties [2, 4]. Recently, interferometric synthetic aperture radar (InSAR) has proven
to be a very useful remote sensing technique for acquiring spatially dense ground
deformation measurements for deformation driven by hydrologic and geothermal
fluid processes. Studies have used a small collection of interferograms to quan-
tify seasonal deformation caused by the annual cycle of groundwater pumping and
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recharge, as well as longer term subsidence from accumulated overdraft of aquifers
[4, 5]. Another class of InSAR techniques uses “stacks” of many co-registered
interferograms collected over a finite time period to construct a full time series of
ground deformation. These techniques have been used to measure the evolution of
land subsidence in the Santa Clara Valley in California [6], subsidence and uplift in
Phoenix, Arizona [7], seasonal uplift and subsidence in the Los Angeles area [8, 9],
etc.

Ground deformation within and around the Los Angeles area has been measured
for several decades using GPS data from the Southern California Integrated GPS
Network (SCIGN) and InSAR data. Historically, the primary driver for acquiring
geodetic data was to quantify the rate of tectonic contraction across the region and
the rate of elastic loading on potentially seismogenic faults such as those involved in
the 1987Whittier Narrows and 1994 Northridge earthquakes [8]. However, many of
the geodetic signals used to study these fault systems are contaminated or completely
obscured by non-tectonic processes such as groundwater pumping and oil extraction
[4]. Several geodetic studies have thus aimed to quantify the total contribution of
non-tectonic sources of deformation for the Los Angeles area.

Bawden et al. [4] used a series of interferograms from 1997 - 1999 to observe several
anthropogenic deformation processes in the basins surrounding the Los Angeles
area, including seasonal uplift and subsidence due to groundwater pumping in the
Santa Ana Coastal Basin which is the primary source of groundwater for Orange
County. The larger magnitude of the subsidence signal as compared to the uplift
(60 mm for the former, 50 mm for the latter) implied a net subsidence signal in
the basin thought to be due to inelastic compaction of lower permeability aquitards
within the aquifer system. Watson et al. [8], Lanari et al. [9], and Zhang et al. [10]
extended on the analysis by Bawden et al. [4] by including more interferograms
over a longer time span. In particular, Lanari et al. [9] applied the small baseline
subset (SBAS) algorithm [11] to produce a time series model from 1995 - 2002.
Cross-correlation of the spatially varying time series with a reference sinusoid was
performed to compute a time shift for each ground point. This time shift map
revealed sharp boundaries for the region of the basin responding to the annual
groundwater pumping and recharging, and heterogeneous time shifts within the
basin also suggested lateral variability in hydraulic conductivity. The spatially
dense measurements of ground deformation provided by InSAR time series can
therefore elucidate subtle characteristics of time-dependent ground deformation
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within the basin due to changes in aquifer pressure caused by anthropogenic and
natural processes. In these studies, seasonal oscillations were generally quantified
in an average sense under the assumption that the oscillations were purely sinusoidal
with a period of 1 year.

In this study, we first explore the geologic and hydrologic setting of the coastal
basins in the Los Angeles area. Following a brief discussion on how groundwater
level changes drive ground deformation in Section 4.2, we examine the time history
of groundwater levels for the main aquifer systems in Section 4.3 using hydraulic
head data from the Water Replenishment District (WRD) in Los Angeles and the
Orange County Water District (OCWD). We show head time series that exhibit
highly complex time histories with time-varying seasonal variations and various
longer-term trends related to background groundwater levels. We then perform an
initial comparison between groundwater levels and surface deformation using GPS
data. We demonstrate how deformation signals with short-term variations are driven
by short-term variations in the principal aquifer while long-term deformation signals
appear to be driven by long-term variations in the deep aquifer.

In Section 4.4, we perform an InSAR time series analysis on an expanded data set
that includes interferograms from 1992 to 2011 to investigate the spatial variations
in short-term, seasonal ground deformation. By using the assumption that seasonal
ground motions can be represented by a linear combination of sinusoids, we can
compare the timing and amplitude of peak seasonal deformation of ground points
within the basin to study the effects of aquifer geometry and groundwater pumping
practices on the ground response. This method of time series analysis is similar
to the ones used in Bawden et al. [4] and Watson et al. [8]. However, since both
hydraulic head and ground deformation time series show non-sinusoidal seasonal
variations, in Section 4.5 we develop a new method for InSAR time series analysis
that automatically decomposes the time series into generic long- and short-term
signals. We compare the decomposed InSAR time series to all available monitoring
wells to better understand the relationship between deformation signals of different
durations and different segments of the groundwater system. Finally, in Section 4.6,
we discuss how these results are related to groundwater management with regards
to sustainable pumping practices, and we relate several of our InSAR observations
to physical processes based on groundwater dynamics.
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Figure 4.1: Location and tectonic setting of the Los Angeles Central andWest Coast
Basins and the Santa Ana Coastal Basin. The thick gold lines represent major faults
in the area, including the Newport-Inglewood Fault (NIF), the Whittier Fault (WF),
the Palos Verdes Fault (PVF), and the Hollywood Fault (HF). The thin black lines
indicate county boundaries, and the thick blue line corresponds to the Santa Ana
River. The dashed red line indicates the barrier between the forebay and confined
areas of the groundwater system modified from estimates by the WRD and OCWD.
The inset shows the location of the study area along the California coast.

4.2 Background
Hydrology and Structure of the Los Angeles Basins
The Los Angeles area consists of several basins containing groundwater systems,
including the Los Angeles Central andWest Coast Basins and the Santa Ana Coastal
Basin in Orange County (Figure 4.1). The Los Angeles Central Basin (hereafter re-
ferred to as the Central Basin) is separated from theWest Coast Basin by the northern
portion of the Newport-Inglewood Fault Zone (NIF), which acts locally as a barrier
for fluid flow between the two basins. In this study, we focus on ground deformation
within the Central and Santa Ana Coastal Basins since changes in groundwater lev-
els are greater for those two basins. Both of these basins have groundwater systems
with similar structural characteristics. These systems are lens-shaped (i.e., thicker
in the central areas and thinner in the margins) and consist of freshwater-bearing
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deposits with varying degrees of permeabilities [12]. The relative abundance of clay
is the primary driver for determining the flow of groundwater through these systems.
Clays generally have permeabilities that are much lower than those of sands and can
restrict the flow of water in a given direction. The basins can thus be divided into
forebay and confined areas. The forebay area occupies about 38 percent of the Santa
Ana Coastal Basin and occupies the eastern region that meets the Santa Ana Moun-
tains (Figure 4.1). Here, the shallower aquifers are known to be unconfined, i.e.
vertical movement of water is not restricted by laterally extensive clay layers [13].
Groundwater recharge occurs mainly in the forebay area. The confined area (also
known as pressure area) is considerably larger and extends from the western edge of
the forebay area to the Pacific Ocean [12]. Here, there are laterally continuous thick
layers of silt and clay that restrict vertical flow of groundwater, causing aquifers to be
under confining pressure. While the actual groundwater system consists of several
contiguous aquifer units, clay interbeds, and confining aquitards, the OCWD has
developed a simplified model consisting of shallow, middle (principal), and deep
aquifer layers (Figure 4.B1) [13]. The shallow aquifer generally spans depths of up
to 200 feet for most of the basin, and is only unconfined in the forebay region. The
principal aquifer, which supports over 90 percent of the basin pumping in Orange
Country, is generally greater than 1000 feet thick for much of the basin and is semi-
confined in the forebay. The semi-confined state allows recharge water to migrate
downward into the principal aquifer. The deep aquifer, which is limited in pro-
duction capability due to its depth and the presence of amber colored groundwater
(which requires extra treatment to remove colors and odors from the water), defines
water-storing units up to 2000 feet in depth in the center of the Santa Ana Coastal
Basin. Since most of the groundwater production draws water from the principal
aquifer, the observed ground deformation is presumed to be caused by pressure
variations in the principal aquifer. Next, we will explore the physical relationships
governing how pressure variations in aquifers can lead to ground deformation.

Groundwater Flow Theory and Aquifer Compaction
The relationship between ground deformation and aquifer pressure for confined
aquifers can be explained using groundwater flow theory based on the Principle of
Effective Stress [14]. Effective stress can be expressed as

σ′i j = σi j − δi j p, (4.1)

where σ′i j and σi j are components of the effective and total stress tensors, respec-
tively, p is the pore-fluid pressure, and δi j is the Kronecker delta. Since groundwater



69

is a Newtonian fluid, the off-diagonal terms of the stress tensors corresponding to
shear stress are equal for σ′i j and σi j [2]. For aquifer layers that are nearly horizontal
and are laterally extensive with respect to their thicknesses, changes in pore-fluid
pressure gradients will be primarily in the vertical (ẑ) direction. Therefore, assum-
ing resulting strains are primarily in the zz component, we can simplify Equation
4.1 to

σ′zz = σzz − p. (4.2)

By assuming that changes in the total/overburden stress are negligible for our study
period, changes in effective stress can then be simply expressed as

∆σ′zz = −∆p. (4.3)

We can relate pore-fluid pressure to hydraulic head, or water level, by knowing that
hydraulic head is the sum of the pressure head and elevation head [15]:

h =
p
ρwg
+ hz, (4.4)

where h is the total hydraulic head, ρw is the density of water, g is the gravitational
acceleration constant, and hz is the elevation head referenced to a given datum. We
can then write Equation 4.3 as

∆σ′zz = −ρwg∆h. (4.5)

In order to relate pore-fluid pressure changes to ground deformation, we use the
definition for one-dimensional skeletal compressibility, α, as the ratio of vertical
strain to vertical effective stress:

α =
−∆b/b
∆σ′zz

, (4.6)

where the ∆b is the change in thickness of a control volume with initial thickness b

[2]. This equation thus relates the compaction and expansion of sediments to changes
in effective stress; integrated compaction over the entire depth of the aquifer system
is equivalent to what we measure as land subsidence [16]. The skeletal specific
storage, Ss = ρwgα, can be used to combine Equations 4.5 and 4.6 as

Ssb = Sk =
∆b
∆h

, (4.7)

where Sk is the skeletal storage coefficient. Consolidation experiments on typical
sediments have shown that specific storage for a given material can behave very
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differently depending on whether the effective stress is above or below the pre-
consolidation stress (i.e., the previous maximum effective stress). This boundary
essentially separates the regimes of elastic and inelastic deformation depending on
the head level. To account for these two regimes, two separate skeletal specific
storages are used:

Sk =




Ske for σ′zz < σ′zz(pre)

Skv for σ′zz ≥ σ
′
zz(pre),

(4.8)

where Ske and Skv are the elastic and inelastic, or virgin, skeletal specific storage co-
efficients. In the inelastic regime when head drops below the preconsolidation level,
irreversible loss of water storage occurs, and in the case where this state persists,
the skeletal specific storage is expected to vary proportionally to the logarithm of
the effective stress [2]. From a water management perspective, the preconsolidation
level is used to define sustainable pumping rates in order for aquifer deformation to
remain elastic.

4.3 Groundwater Level and Ground Deformation Time History
Monitoring Groundwater Levels with Hydraulic Head Time Series
Since the primary driver of ground deformation within the coastal basins is changes
in aquifer pressure (Section 4.2), we gather data from several multi-port monitoring
wells located within the coastal basins that measure hydraulic head levels at various
aquifer depths. Here, we use twelve monitoring wells operated by WRD and thirty
wells operated by OCWD (Figure 4.2). For both sets of wells, the depths of the
sample ports allow us to determine hydraulic head levels for distinct aquifer units.
For confined aquifers, the hydraulic head level corresponds to the piezometric (or
potentiometric) surface which coincides with the hydrostatic pressure level of the
water in the aquifer [1]. This surface is above the upper surface of the given
aquifer layer and varies as water is added or removed to the system. For unconfined
aquifers, the hydraulic head corresponds directly with the elevation of the water
table. Groundwater levels as measured by hydraulic head time series for OCWD
well station SAR-9 (located in the middle of the Santa Ana Coastal Basin over the
confined aquifers) show large annual oscillations, particularly at the depth of the
principal aquifer (Figure 4.3). These oscillations are caused by the annual cycle
of groundwater recharge (artificial and natural) and withdrawal. From the early
1990s to the mid-2000s, groundwater levels typically peaked around March after
the rainy season and are at their lowest towards the end of the summer during the
heaviest periods of groundwater pumping. This time period also corresponds to
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Figure 4.2: Distribution of GPS and well data used in this study. The white circles
correspond to WRD wells used in this study while the white diamonds correspond
to OCWD wells. The black triangles show the GPS coverage in this area.
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Figure 4.3: Hydraulic head time series for OCWD well SAR-9 for selected ports
in the shallow, principal, and deep aquifers. The dots represent the raw head data
while the solid lines are interpolated data using smoothing splines. The green bars
represent the average rainfall in the Orange County area in 3-month intervals from
2000 to 2013. The light gray area indicates the time span for available rainfall data.
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the largest annual fluctuations in groundwater levels due to water storage programs
that encouraged increased groundwater pumping during the summer months when
demand for imported water is higher [13]. In Orange County, this program, referred
to as Short-Term Seasonal Shift (STSS), stopped after 2008, which is reflected in
the lower amplitude oscillations in the hydraulic head time series. Superimposed
over the annual water level fluctuations are longer-term variations. Generally, we
can observe a decrease in overall water levels, which started in 1970 after the basin
was essentially refilled after replenishment from Colorado River water [13]. We
can also observe two transient increases in groundwater levels in 2005 and in 2012,
both of which followed periods of heavy rainfall.

Groundwater Diffusion and Varying Response Times
Since groundwater is pumped and recharged at discrete points within the Central
and Santa Ana Coastal Basins, we expect spatial variations in hydraulic head due to
groundwater flow in response to pressure gradients. Differences in permeabilities
between sandy aquifer units and clay interbeds and aquitards can cause time delays
in hydraulic head levels from one aquifer unit to another, as well as intra-aquifer
delays. Additionally, changes in aquifer thickness can affect groundwater flow.

Three-dimensional flow of ground water in porous media can be described by the
differential equation for a control volume [17, 18]:

∂vx

∂x
+
∂vy

∂y
+
∂vz

∂z
= −Sk

∂h
∂t
+Q(t, x, y, z), (4.9)

where vx , vy, and vz are the rectangular components of the instantaneous bulk fluid
velocity in the control volume, and Q(t, x, y, z) is a source term that can vary in time
and in space. We can relate the fluid velocity to hydraulic head using Darcy’s Law:

Vx = −K
∂h
∂x

Vy = −K
∂h
∂y
, (4.10)

where Vx and Vy represent instantaneous averages of vx and vy, respectively, over
the thickness of the aquifer, and the hydraulic conductivity, K , is assumed to vary in
the x and y directions such that K = K (x, y). We can integrate Equation 4.9 in the
vertical z dimension for an aquifer of thickness b = b(x, y), and for the purpose of
this discussion, wewill assume one-dimensional flow such that K = K (x), b = b(x),
and flow in the y-direction is constant [19]. We then obtain the following general
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diffusion equation in one dimension for variable aquifer thickness and hydraulic
conductivity:

K
∂b
∂x

∂h
∂x
+ b

∂K
∂x

∂h
∂x
+ bK

∂2h
∂x2 = Ssb

∂h
∂t
−Q(t, x). (4.11)

In the special case of flow through an aquifer with constant thickness and conduc-
tivity, Equation 4.11 can be written as [20]:

K
∂2h
∂x2 = Ss

∂h
∂t
−Q(t, x). (4.12)

For the following discussion, let us assume a point source, Q(t, x) = Q(t)δ(x −

x0), and assume Q(t) is periodic to represent groundwater recharge and pumping.
Therefore, for a time varying source with a temporal frequency ω, Q(t) = cosωt,
the solution to Equation 4.12 will have the approximate form ([21])

h(x, t) ≈ e−
√

2ω |x−x0 | cos
(√

2ω |x − x0 | ± ωt
)
. (4.13)

In the above equation, there is a frequency dependent attenuation term that would
damp out the diffusion of the hydraulic head at higher source frequencies. In
other words, head variations due to a point source perturbation in water pressure
(such as a production well) would decay more rapidly away from the source for a
faster withdrawal/pumping cycle. The ωt factor in the periodic term in the above
equation controls the diffusion speed, or hydraulic response time, of the pressure
perturbation. For larger ω, we would expect a shorter response time. By solving
for the homogeneous solution to Equation 4.12, we can also estimate the material-
dependent response time for confined aquifers as [22]:

T∗ = SS L2
c/K, (4.14)

where T∗ is the response time and Lc is a characteristic length for a specific aquifer
unit. Thus, aquifers with higher hydraulic conductivity and/or smaller thicknesses
would experience lower response times.

To assess timing differences in the vertical dimension, we use the SAR-9 hydraulic
head data to estimate the amplitude and time to peak signal for the annual oscillations
in head. Since the head data contain both seasonal variations and long-term trends,
we model the time series as a linear combination of sinusoids with annual and semi-
annual periods for the seasonal signal and third-order integrated B-splines (hereafter
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referred to as Bi-splines; see Hetland et al. [23]) for the transient, long-term trends:

h(t) =
2∑

i=1

[
ai cos

2π
Ti

t + bi sin
2π
Ti

t
]

+

32∑
j=1

c j Bi
(
t − t j

)
, (4.15)

whereT1 = 0.5 years andT2 = 1 year, and Bi (t−t j ) represent the Bi-splines centered
at time t j [23]. Here, we partition the data time span into 32 evenly spaced knot
times t j so that the Bi-splines each have an effective duration of 2 ∗ (t j − t j−1). We
estimate the coefficients ai, bi, and c j simultaneously using regularized least squares
for the cost function

J (m) = argmin
m

‖h −Gm‖22 +mTCm
−1m, (4.16)

where h is the time series data, G is the temporal design matrix containing the
sinusoids and Bi-splines along the columns, m is the vector of coefficients of the
elements in G, and Cm is a prior covariance matrix for regularization. For this
analysis, we set Cm to be the identity matrix with an appropriate scaling coefficient.
After estimating m for each well, we can compute the amplitude and phase delay
for each seasonal component as

Ai =

√
a2

i + b2
i (4.17)

φi = tan−1
(

bi

ai

)
, (4.18)

where Ai is the amplitude and φi is the phase delay, or time to peak signal. We
repeat this procedure for the time series at each port depth to estimate the time
to reach peak head levels for the seasonal signal between 1996 and 2006 (when
the seasonal oscillations were most regular during the STSS program) and for the
transient increase starting in 2004-2005 caused by heavy rainfall (Figure 4.4).

For both the annual and transient peak signals, we observe that water levels in the
principal aquifer reach peak levels earlier than both the shallow and deep aquifers.
The peak-to-peak seasonal increases in water levels are much higher in the principal
aquifer, which is expected since 90% of groundwater pumping is from the principal
aquifer. The aquitards cause noticeable delays in the timing of the peak signals (due
to low permeabilities for clay) while also reducing the peak-to-peak amplitudes. The
depth of the earliest time of peak signal generally varies from well to well, although
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Figure 4.4: Depth profile of amplitude and phase delay of SAR-9 hydraulic head
data. The blue lines correspond to the average seasonal oscillations while the red
lines correspond to the uplift signal initiating in 2004/2005 due to a period of heavy
rainfall. The horizontal shaded areas centered on the blue and red lines indicate
the uncertainties associated with those values. The vertical shaded areas represent
the depths corresponding to the three aquifer layers as estimated by the OCWD
three-layer model, and the brown hatched regions indicate the approximate range of
depths of the aquitards separating the aquifer layers.

the earliest times occur primarily in the principal aquifer. Spatial differences in
the depths of the earliest peak times most likely represent spatial heterogeneity in
conductivity due to the uneven distribution of aquifers and clay layers (Figure 4.B1).

The depth-dependent timing for the annual and transient signals are noticeably
different. It appears to take longer for hydraulic head levels to equilibrate for the
2005 increase than for the annual cycle. These observations are consistent with the
solution to the 1-D diffusion equation in Equation 4.13. The transient increase in
groundwater levels for the 2005 heavy rainfall period has an effective period of ~4
years while the seasonal cycle of recharge and pumping has a period of ~1 year.
The former has a slower diffusion speed but lower attenuation of head amplitudes
within the aquifer whereas the latter has a higher diffusion speed but much more
rapid attenuation of amplitude with depth. We conclude that the timing differences
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Figure 4.5: Time to peak seasonal signal for hydraulic head data from well ports
located in the principal aquifer. Wells in the center of the basin reach their peak
signals earlier in the year compared to wells in the margins of the basin. Inset shows
timing of wells along the transect indicated by the A-A’ line.

between these two processes is entirely due to variations in source behavior rather
than any structural or material changes within the principal aquifer.

Since true groundwater flow is described by a three-dimensional diffusion process,
we investigate timing differences in the horizontal direction by estimating the average
time of peak annual recharge for all wells in the principal aquifer using the same
modeling procedure in Equation 4.15. We can observe a clear propagation of time
to peak signal from the center of the basin to the margins (Figure 4.5). The principal
aquifer generally reaches peak groundwater levels between February and March in
the central region of the basin while the margins peak between March and April.
There is a steep gradient in timing in the forebay area of the Santa Ana Coastal
Basin, which could represent a rapid change in hydraulic conductivity or thickness
of the principal aquifer, which would act as an impedance to groundwater flow.
Comparison of the propagation speeds of groundwater in the vertical and horizontal
directions for the annual cycle reveals that propagation speeds are approximately one
order of magnitude slower in the vertical direction than the horizontal direction (~30
m/day vs. ~300 m/day, respectively). This discrepancy is consistent with the general
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observation that vertical conductivity is much lower than horizontal conductivity
due to bedding laminae and the potential presence of laterally continuous clay beds
within the main aquifer units that impede vertical groundwater flow.

Ground Deformation History
From Equation 4.7, we know that ground deformation over a confined aquifer is
approximately proportional to changes in hydraulic head under certain simplifying
assumptions, mainly that aquifer or aquitard compression and expansion is elastic
for effective stress levels less than the previous maximum effective stress. The
proportionality constant in the elastic relationship is the skeletal storage coefficient,
Sk . However, ground deformation can also be affected by inelastic compaction
of clays in aquitards and interbeds. In this case, ground deformation will not be
correlated with hydraulic head and is expected to vary exponentially with time
[6]. The exponential relationship is derived from the theory of hydrodynamic
consolidation and is used to describe the delayed response of fine-grained materials
after effective stress levels have surpassed previous maximum levels.

Our approach is to start with the hypothesis that all deformation within the basin is
elastic. For short-term signals driven by the annual cycle of groundwater pumping
and recharge, this assumption is most likely to be true since typical production levels
are a minor fraction of the storage capacity for the aquifer units in the basins [13].
Additionally, the common driving mechanism for inelastic deformation associated
with compressible materials typically occurs over a long time span, although rapid,
substantial stress increases can also lead to rapid inelastic deformation. In order
to test the hypothesis of purely elastic deformation, we must compare short-term
deformation signals with short-term variations in hydraulic head and long-term
deformation signals with long-term variations in hydraulic head. As we discussed
in Section 4.1, the deformation we observe on the ground surface is a result of the
integrated compaction of aquifers and aquitards along the entire depth of the aquifer
system. However, we also know that there is a time delay for a pressure perturbation
to diffuse throughout an aquifer (e.g., Figure 4.4). This time delay is dependent on
hydraulic conductivity along the diffusion path and the rate of pressure change at the
pressure source (e.g., groundwater pumping rate). Therefore, different segments of
the aquifers will be compacting/expanding at different times. By comparing ground
deformation time series with hydraulic head time series at various depths, we can
estimate the effective depth at which aquifer deformation is most correlated with
ground deformation. In the ideal case, this depth would approximate the depth of a
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hypothetical pressure source.

We examine vertical displacement data from the GPS station SACY, which is part
of the SCIGN and is located about 1.4 km away from the SAR-9 well (Figure 4.2).
We decompose both the GPS vertical displacements and the SAR-9 head time series
into long- and short-term (seasonal) signals using a modified form of Equation 4.15.
Instead of using sinusoids to model the seasonal signals, we use a linear combination
of third-order B-splines (different than the integrated B-splines used for transient
signals) to allow for seasonal signals with time-varying amplitudes and phase delays.
We assign the temporal support of the B-splines such that the seasonal signal each
year is described by a linear combination of B-splines spaced 0.2 years apart. With
this approach, we could reconstruct seasonal signals with wide variations from year
to year. In this study, we construct Cm in Equation 4.16 such that Bi-splines are
independent while B-splines are correlated with other B-splines that share the same
centroid time within a year (e.g., B-splines centered in March are correlated with
other B-splines centered in March). We assign the correlation strength for the B-
splines to be exponentially decaying in time with a decay time of two years. The
decay time was experimentally chosen in order to maintain the flexibility of the
B-splines to model time-varying seasonal signals while still enforcing a level of
coherency from year to year.

After decomposing the SACY vertical displacements and the SAR-9 hydraulic head
time series at multiple port depths into long- and short-term components, we com-
pute the Pearson correlation coefficients between each head time series and the
GPS time series. We fit the correlation coefficient depth profiles with third-order
polynomials in order to reduce the noise of the coefficient estimation and estimate
the depth of maximum correlation between hydraulic head and ground deformation.
We can use Equation 4.7 to estimate an Sk for each component to obtain scaled
head time series. We note that these estimates of Sk will not reflect the true storage
coefficient for a particular aquifer unit since ground deformation is caused by the
vertically integrated response of the entire aquifer system.

For both the long- and short-term components, the vertical ground displacement
data is well matched by hydraulic head variations at a given depth (Figure 4.6).
The transition from regular groundwater fluctuations (caused by the annual cycle
of recharge and pumping) to unsteady oscillations between 2008 and 2012 (caused
by cessation of the STSS program) can be observed in the short-term GPS signal.
Additionally, the long-term decrease in water levels and two heavy rainfall periods
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Figure 4.6: Cross correlation analysis between SAR-9 head data and SACY GPS
data. The upper plots correspond to short-term, seasonal signals for both data sets
while the lower plots correspond to long-term signals. We iterate over the time series
at each port depth, compute the Pearson correlation coefficient between well and
GPS data, and estimate the storage coefficient (scaling parameter) to best match the
well and GPS data. The right plots show the Pearson correlation coefficient between
the time series at each port depth and the SACY GPS time series. The dashed black
line corresponds to a third-order polynomial fit to the correlation coefficients, and
the red start indicated the location of maximum correlation. For the left plots, SACY
data are shown with blue dots and the scaled well data for the depth of maximum
correlation are shown solid red lines. The red shaded area represents the uncertainty
in the scaling of the well data.

are manifested as vertical subsidence and transient uplift, respectively. We find that
the seasonal ground deformation is best correlatedwith hydraulic head variations at a
depth of about 450 m, which is the depth of the aquitard separating the principal and
deep aquifers. Interestingly, the depth of best correlation for the long-term ground
deformation is deeper (~580 m), and the estimated Sk for the deeper well is nearly
twice the value of Sk for the shallower well (5.4 mm/m vs. 3 mm/m, respectively).
The larger value of Sk is expected since the dynamic range of hydraulic head
variations in the deep aquifer is lower than the principal aquifer. Overall, for both
the long- and short-term signals, the GPS and scaled head time series are in very
good agreement which suggests that at this location, the ground deformation is
purely elastic and recoverable and no significant inelastic effects are present. In
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the next section, we perform a similar comparison of hydraulic head to ground
deformation using an 18-year InSAR time series. The spatially dense observations
provided by InSAR allows us to assess the time-dependent ground deformation at
every well location, which is an advantage over the sparse GPS network over the
coastal basins.

4.4 Central and Santa Ana Basin InSAR Time Series
We use 165 SAR acquisitions from the European Space Agency ERS (European
Remote Sensing) and Envisat satellites spanning from 1992 - 2011 to form 881
interferograms. The maximum perpendicular baseline (spatial separation between
orbits) is 480 m, which is small for C-band SAR instruments. The temporal repeat
times range from 35 to 210 days, although after 1995, the repeat times are generally
35 or 70 days which is sufficient to model most deformation signals observed in
the GPS data. We use a coherence threshold of 0.4 to mask poorly resolved areas
(such as over water) and any areas with unwrapping errors. Interferometric phase
contributions due to topography are removed using a digital elevation model (DEM)
produced by the Shuttle Radar Topography Mission (SRTM) with approximately 30
m spacing. We estimate and remove phase delays due to atmospheric effects using
global atmospheric reanalysis data from the European Center for Medium-Range
Weather Forecasts (ECMWF) [24]. We also remove long-wavelength signals due to
orbital errors by estimating a two-dimensional linear ramp for each interferogram.
Finally, we reference the time series to a 400 m × 400 mwindow co-located with the
SCIGN GPS station SNHS which is located in an area of high coherence showing
stable ground motion unaffected by groundwater pumping (Figure 4.2).

Seasonal Amplitude and Phase Maps
We first reconstruct the InSAR time series using the same time parameterization
approach as Equation 4.15 where we assume the ground deformation can be de-
scribed as a superposition of sinusoidal seasonal and transient effects and estimate
the sinusoidal and Bi-spline coefficients independently for each pixel [23]. We limit
our initial analysis of the InSAR time series to interferograms prior to 2008 to reduce
the effect of the cessation of the STSS program on the time series reconstruction. In
Sec. 4.A and 4.5, we will describe our method for performing a fully spatiotemporal
time series analysis for the full time series to account for non-steady seasonal and
transient deformation. At this point, our primary goal is to examine the characteris-
tics of the steady seasonal deformation prior to 2008, and our experiments show that
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Figure 4.7: Maps of seasonal peak-to-peak amplitude and phase delay. The dashed
black lines show the location of the transects used for the bottom plots. For the lower
transect plots, blue lines correspond to the phase delay while the dashed red lines
correspond to the peak-to-peak amplitude. The red circle in the map of seasonal
phase delay shows the location of a discontinuity in amplitude and phase within the
basin. The arrow indicates the satellite-to-ground line-of-sight (LOS) direction.

a pixel-by-pixel approach is suitable for estimating the coefficients of the sinusoidal
components. We can then generate maps of seasonal amplitude and phase using
Equation 4.17 for each pixel.

Maps of the estimated amplitude and phase for the annual (1 year period) sea-
sonal signal between 1992-2008 show that most of the seasonal deformation is
concentrated within the Los Angeles and Santa Ana coastal basins in the region
corresponding to the confined aquifer (Figure 4.7). The maximum peak-to-peak
amplitude is 5 cm in the southern end of the Santa Ana Coastal Basin, which agrees
with the results obtained by Watson et al. [8] and Lanari et al. [9]. We can also ob-
serve a smaller pair of high-amplitude regions closer to Long Beach with amplitudes
of 3 cm. The seasonal amplitude decreases rapidly outside of the confined aquifers,
particularly in the western edge of the basin bounded by the Newport-Inglewood
Fault (NIF) where the fault is an effective barrier to across-fault fluid flow. This
effect can also be observed in the map of the seasonal phase where the ground east
of the NIF has a peak signal in March whereas the ground west of the NIF has a peak
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signal in July. The seasonal amplitude decreases rapidly to the north towards Los
Angeles, although the seasonal phase map still shows a coherent boundary which
may delineate the effective northern boundary of the confined aquifers.

In general, the seasonal amplitude appears to be inversely correlated with the sea-
sonal phase, i.e. higher amplitude areas peak earlier in the year, which suggests that
groundwater dynamics in the basin follow a standard diffusion process. The central
areas of the basin experience the highest amplitudes and earliest peak times, and
we observe delays as one approaches the margins of the basin. From Section 4.3,
we observed a similar delay in hydraulic head from the well data, suggesting that
the main driver of the delay in ground deformation from the central region of the
basin to the margins is the time delay necessary for aquifer pressures to equilibrate
in the horizontal direction. Furthermore, in the northwest area of the basin where
aquifer thicknesses are relatively constant, we can observe an exponential decline in
seasonal amplitude and linear variation in seasonal phase away from an amplitude
peak (A-A’ transect in Figure 4.7), which agrees with the diffusion solution for
periodic head variations in Equation 4.13. We also observe a sharp discontinuity in
both the seasonal amplitude and phase maps on the eastern edge of the basin where
the Santa Ana River enters the forebay region indicating some form of impediment
to groundwater flow. Here, the peak amplitude occurs in March on the west side
of the discontinuity and in May on the east side. While no known faults exist in
this area, this area corresponds to the approximate boundary between the forebay
and confined zones. Comparison of the seasonal phase map to the thickness of
the principal aquifer (using the aquifer model developed by OCWD) shows that
the phase discontinuity is also roughly coincident with a rapid change in depth of
the principal aquifer in the OCWD model (Figure 4.8). In Section 4.6, we explore
dynamic models investigating the impact of a rapid change in aquifer thickness on
groundwater flow.

Groundwater Pumping and Seasonal Ground Deformation
We expect that groundwater pumping practices would have a strong impact on the
amplitude of seasonal ground deformation, particularly during the STSS pumping
program. Hydraulic head in a confined aquifer near a production well will experi-
ence a drawdown during periods of groundwater pumping [1, 25]. To explore the
impact of pumping on head levels, we use groundwater production time series for
250 OCWD production wells that measure total groundwater pumping on a monthly
basis. We create a 50×50 uniform grid where the dimension of each grid cell is
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Figure 4.8: Map of seasonal phase delay (left) with contour lines corresponding to
the depth of the bottom of the principal aquifer. The dashed blue line corresponds
to the approximate boundary between the forebay and confined areas as defined by
OCWD. The right plot shows the transects (C - C’) for the seasonal phase (solid
blue) and aquifer depth (dashed black).

Figure 4.9: Maps of seasonal peak-to-peak LOS amplitude (left) and seasonal
groundwater pumping (right). The locations with the highest seasonal pumping
correspond to the locations of the highest seasonal ground deformation within the
pressure area. The red outline encompasses the seasonal ground deformation as
observed in the InSARmap of seasonal phase delay. The dashed white line indicates
the approximate boundary between the forebay and confined areas.

approximately 0.6×0.6 km and compute the amplitude of total seasonal groundwater
pumping in each grid cell. We can clearly observe an association between the high
ground deformation areas and areas with high seasonal groundwater production
(Figure 4.9). The pair of high-amplitude ground deformation regions near Long
Beach directly correspond to two regions of concentrated groundwater pumping.
Additionally, the amplitude of seasonal groundwater pumping is positively corre-
lated with the amplitude of seasonal ground deformation. However, not all areas of
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high groundwater pumping are co-located with high ground deformation, particu-
larly in the forebay regions. In those regions, the shallow aquifers are unconfined,
and the principal aquifer is only semi-confined [13]. Therefore, large fluctuations
in groundwater levels will only result in minimal ground deformation.

4.5 Simultaneous Time Varying Seasonal and Long-Term Ground Deforma-
tion Using InSAR Time Series Analysis

In order to study the full complexity of ground deformation in the Central and
Santa Ana Coastal Basins, including the time-varying seasonal deformation and
long-term subsidence, we now decompose the full InSAR time series from 1992-
2011 into seasonal and transient components using a new method for geodetic time
series analysis that extends on the sparse regularization methods of Chapter 2 by
incorporating spatial coherency into the time series reconstruction (Section 4.A).
This method estimates the coefficients of a temporal dictionary for every pixel
simultaneously, resulting in a very large regularized least squares problem that uses
data from all interferograms. The regularization function for the model parameters
is a combination of a sparsity-inducing `1-norm (to enhance interpretability of the
time series model) and an `2-norm (for parameters that may be correlated in space
or time). We adapt a distributed convex optimization algorithm, the alternating
direction method of multipliers (ADMM), to solve this problem in parallel using
hundreds of CPU processors. This algorithm allows us to solve a least squares
problem with several million parameters in only a few minutes; the end result is a
self-consistent time series model that can be decomposed into long- and short-term
signals of various timescales.

Prior to the time series decomposition, we limit the area of analysis to the coastal
basins and downsample the pixels to a spacing of approximately 200 meters in order
to reduce the computational load. We then populate the temporal dictionary with
third-order B-splines with timescales of 0.2 years to model the seasonal ground
oscillations caused by the annual cycle of groundwater pumping and recharge.
Similar to the decomposition of the SACY GPS data in Section 4.3, we include
coherency between B-splines that share the same centroid time within a year (in
addition to the spatial coherency). We also include Bi-splines in the temporal
dictionary to model long-term, transient signals.

To validate the estimated InSAR time series model, we compare the decomposed
long- and short-term signals with long- and short-term signals measured by three
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GPS stations within the Santa Ana Coastal Basin. We use the method of Riel et al.
[26] to perform the time series decomposition for the GPS time series independently
from the InSAR time series. As with the InSAR data, we use B-splines for seasonal
signals and Bi-splines for long-term signals with a sparsity-promoting regularization
scheme to limit the total number of Bi-splines needed for reconstruction of the
GPS data. We then project the three-component GPS time series onto the radar
LOS direction. The long- and short-term signals from the two data sets are in
very good agreement, even during time periods where we have a gap in temporal
coverage of SAR acquisitions (Figure 4.10). As expected from the SAR-9 head time
series, the short-term, seasonal ground deformation is relatively steady from 1996 to
2000, followed by a slight decrease in amplitude of oscillations from 2000 to 2007.
After 2007-2008, the seasonal signal changes its temporal pattern significantly as a
result of the cessation of water storage programs that encouraged regular, increased
groundwater pumping during the summer months, which is also measured by the
GPS stations. The long-term signal once again shows long-term subsidence which
is interrupted by a 2-year uplift period associated with heavy rainfall between 2004-
2005. In the following sections, we use the spatial continuity of our InSAR time
series model to examine the spatial behavior of the unsteady seasonal signals, as
well as the long-term subsidence and rainfall-induced uplift.

Short-Term Basin Deformation
We isolate the short-term basin deformation using theB-spline coefficients estimated
from the InSAR time series analysis and compare the March to September ground
deformation for three different years: 2004, 2008, and 2009 (Figure 4.11). For
2004, the March to September basin subsidence is in good agreement with the
seasonal amplitude map in Figure 4.7, which is expected since the STSS program
is still active during this time period. Peak subsidence is greater than 40 mm in
the southeast zone of the Santa Ana Coastal Basin. However, in 2008, we observe
a significant reduction in ground deformation throughout the whole basin. Peak
subsidence only reaches 10-15 mm primarily in areas closer to the coast and in the
center of the basin. In 2009, the spatial pattern changes again, with peak subsidence
now reaching about 30 mm in a concentrated zone in the southern edge of the basin
close to the main source of groundwater pumping. For both 2008 and 2009, we see
that most of the seasonal ground deformation closer to Long Beach in the western
half of the basin disappears, and most of the deformation in the forebay region is
minimized as well.
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Figure 4.10: InSAR time series reconstruction compared with three GPS stations
(LBC1, BLSA, SACY) located in the basin. The GPS data are projected onto the
radar LOS direction. Both the InSAR and GPS time series have been decomposed
into short-term, seasonal signals (A) and long-term, transient signals (C). GPS data
are shown with blue dots, and InSAR data are shown with solid red lines. The
shaded red regions in (A) and (B) represent the uncertainties in the reconstructed
InSAR time series. Note the increase in uncertainty during time periods with no
SAR acquisitions. Thin vertical black lines correspond to the SAR acquisition times.
(B) and (D) show the residuals between the GPS and InSAR data in (A) and (C),
respectively. The locations of the GPS stations are shown in (E).
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Figure 4.11: Maps ofMarch to September LOS deformation for three different years:
(A) 2004; (B) 2008; and (C) 2009. The 2004 ground deformation is consistent with
the maps of seasonal amplitudes, whereas the 2008 and 2009 maps show starkly
different spatial patterns and amplitudes due to cessation of the STSS program.

Long-Term Basin Deformation
By examining the spatial distribution of the Bi-spline coefficients as estimated by
the ADMM time series analysis, we can determine the onset times and durations of
the dominant long-term, transient signals in our time series. The sparsity-promoting
regularization forces most of the coefficients to be zero except for those associated
with several longer-term deformation signals observed primarily within the coastal
basins (Figure 4.B2). Firstly, we detect a ~2.5-year subsidence signal starting in
2007 that is contained within the region of the basin defined by the phase delay of
the seasonal deformation. From the comparison between GPS and hydraulic head
data in Section 4.3, it is likely that a large fraction of this observed subsidence is
due to an overall reduction in groundwater levels in the principal and deep aquifers.
The subsidence was preceded by a 2-3 year uplift signal in the southeastern portion
of the Santa Ana Coastal Basin starting in late 2004, which we observed in the data
for GPS station SACY and is due to a period of heavy rainfall during the winter of
2004 - 2005 (Figure 4.3). This period of heavy rainfall has also been associated with
transient uplift due to recharging aquifers in the nearby San Gabriel Valley [27].

Profiles of the deformation patterns for the three main long-term events (1995 -
2004 subsidence, 2004 - 2007 uplift, and 2007 - 2010 subsidence) suggest that the
two subsidence periods are connected and act as a single subsidence process that is
distinct from the uplift period due to heavy rainfall (Figure 4.12). The subsidence
is strongest in the center of the basin and is roughly coincident with the area of high
seasonal deformation. Additionally, we observe that the subsidence rate increased
by a factor of 2 after 2007. The strongest subsidence signal actually occurs within
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Figure 4.12: (A)-(C) show maps of subsidence and uplift rates for the time periods
1995 - 2004 (A), 2007 - 2010 (B), and 2004 - 2007 (C). The labels in (A) indicate
the subsidence signature in Long Beach (LB) due to the Wilmington oil Field, uplift
in the Sante Fe Springs Oil Field (SF), and subsidence in Pomona Basin (PM) due
to groundwater pumping. The transect profile is shown by the black dashed line, M
- M’. (D) The solid green line corresponds to the transect for the 1995 - 2004 time
period, and dashed blue line corresponds to 2007 - 2010, and the red dashed line
corresponds to 2004 - 2007. The transect data show very consistent deformation
rate profiles for the two time periods associated with subsidence, whereas the uplift
profile has a distinctly different profile.

two narrow regions of the southeastern basin with length scales of approximately
3 - 5 km. In these regions, subsidence exceeded 100 mm between 1995 and 2004
and reached 80 mm between 2007 and 2010. The rest of the subsidence is broadly
distributed throughout the rest of the basin. During the uplift event, which was
caused by heavy rainfall between 2004 and 2005, most of the uplift is concentrated
on the eastern margin of the basin where we observe ~30 mm of uplift. This area of
the basin is where the Santa Ana River flows into basin and is close to the main point
of entry for artificial recharging operations. This area is also coincident with the
forebay area of the basin which is a mix of confined (principal) and semi-confined
(shallow) aquifers [13]. The concentration of uplift in this region supports recharge
in the shallow and principal aquifers due to heavy rainfall.

We can also observe long-term signals from 1995 to 2004 not associated with
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groundwater activities in the coastal basins, such as uplift in the Sante Fe Springs
Oil Field and subsidence in the Wilmington Oil Field in Long Beach. For the
latter, episodic subsidence has been observed due to historically high oil production
despite modern re-pressurization efforts [28]. For the former, the uplift mechanism
is unclear since extraction rates have generally been higher than injection rates
which would usually lead to net subsidence [4]. We can also observe subsidence in
the Pomona Basin due to groundwater pumping. We do not observe large tectonic
signals from fault slip due to the high subsidence rates in the basin. The NIF is
perhaps the best observed fault system in this data set due to high interferometric
correlation, and it is estimated to have a slip rate of approximately 1 mm/yr which
is likely to be obscured by the groundwater-driven subsidence in the basin [4, 10].

Themodeled transient time series for pointswithin the narrow, high-subsidence areas
exhibit muchmore rapid subsidence than representative points in other regions of the
basin (Figure 4.13). For the eastern high-subsidence zone (represented as point (i) in
Figure 4.13), the subsidence accelerates after 2007 at a higher rate than the western
high-subsidence zone (point (iii)), which can also be observed in Figure 4.12. By
comparing the spatial pattern and location of these high-subsidence areas to the
seasonal amplitudes and time to peak seasonal signal, it is clear that the subsidence
process for these areas is distinct from the normal hydrological cycle of groundwater
recharge, pumping, and steady decline. In fact, the seasonal time series for points
within and adjacent to the high-subsidence areas are nearly identical (Figure 4.13C).
We had previously observed that the long-term ground deformation for the GPS
station SACY can be fully explained by long-term changes in groundwater levels in
the principal and deep aquifers (Figure 4.6). Unfortunately, SACY and other OCWD
wells lie just outside the high-subsidence regions, preventing us from determining
whether rapid decline of water levels is responsible for the large ground deformation
there. However, the small spatial wavelength of these features suggests that the
subsidence mechanism is not directly related to water and could be due to long-term,
inelastic compaction of aquitards or laterally compact clay lenses in the aquifers.

The long-term subsidence signals for both 1995 - 2004 and 2007 - 2010 and the
seasonal ground deformation amplitude show relatively consistent spatial patterns
characterized by peak ground deformation in the southeast area of the basin near
Irvine and Santa Ana and larger deformation in the center of the basin as compared
to the margins. By scaling the seasonal amplitude map by a factor of -4 (to allow
the seasonal amplitudes to best match the subsidence values from 1995 - 2004), we
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Figure 4.13: (A) Close-up maps of long-term LOS displacement from 1995 - 2004,
seasonal phase delay, and seasonal peak-to-peak amplitude. The white diamonds
in the subsidence map correspond to large-scale OCWD production wells. The
yellow squares show the locations of the time series in (B) and (C). (B) shows the
time series for the long-term displacements while (C) shows the time series for the
short-term, seasonal displacements.

can create a map of residual subsidence to isolate the differences between the long-
and short-term signals (Figure 4.14). The residual subsidence along the margins of
the basin show that the spatial extent of long-term ground subsidence is larger than
the extent of seasonal ground oscillation. Additionally, the two zones of positive
residuals co-located with the zones of peak seasonal groundwater pumping also
show that the subsidence signal is primarily driven by a longer spatial wavelength
decline in groundwater levels and is not directly responding to yearly pumping
variations. Of the two narrow zones of high-subsidence, only the larger zone is
noticeable in the residuals, suggesting that the smaller subsidence zone may be
related to long-term pumping trends. The persistence of the larger high-subsidence
zone in the residuals supports the idea that this feature is caused by long-term,
inelastic compaction of clay lenses since this localized area does not correspond to
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Figure 4.14: Comparison between long-term LOS subsidence from 1995 - 2004 (A)
and residual subsidence after removing a synthetic subsidence signal corresponding
to the scaled seasonal displacement (B).

any large-scale production wells.

Ground Deformation vs. Hydraulic Head for the Santa Ana Coastal Basin
In Section 4.3, we compared hydraulic head time series from OCWD well SAR-9
with vertical ground deformation time series fromGPS station SACY and found that
short-term, seasonal ground deformation was most correlated with short-term head
variations near the aquitard layer separating the principal and deep aquifers. On the
other hand, long-term ground deformation was most correlated with long-term head
variations in the deep aquifer. We expand on that analysis by comparing InSAR-
derived ground deformation to the OCWD wells within the deforming areas of the
coastal basins (we exclude theWRDwells in this analysis because the data only span
back to the year 2000). For eachwell location, we iterate over the hydraulic head time
series for each port depth and compute the correlation coefficient with the InSAR-
derived ground deformation. We then use a third-order polynomial to estimate the
depth of maximum correlation for both seasonal and long-term deformation and
estimate Sk using the well port closest to the maximum correlation depth.

For both seasonal and long-term signals, the depths of the well ports most correlated
with ground deformation are deeper in the center of the basin than in the margins,
which roughly follows the geometry of the principal aquifer (Figure 4.15). For
seasonal signals, the depth of best correlation is generally at or shallower than
the depth of the aquitard separating the principal and deep aquifers, similar to the
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Figure 4.15: Depth ofmaximum correlation between hydraulic head data and InSAR
displacement are denoted with colored circles for OCWD wells for seasonal signals
(A) and long-term signals (B). The background color in the basin corresponds to
the depth of the bottom of the principal aquifer. (C)-(F) show the InSAR time series
(blue) and scaled head for the well port with maximum correlation (red) for select
wells in the basin.
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SACY and SAR-9 comparison. However, the depth of best correlation for the long-
term signals is systematically deeper than the aquitard, particularly in the center
of the basin. These depths occur primarily within the deep aquifer, and the long-
term hydraulic head time series require larger values of Sk to match the ground
deformation. We note that since monitoring wells do not fully penetrate the entire
aquifer system, the true depth of best correlation for the long-term signals may be
deeper than the ones shown here. Both seasonal and long-term ground deformation
are matched very well with the scaled head data, which supports the hypothesis that
the observed ground deformation within the coastal basins can be fully attributed
to an elastic response to changing groundwater levels (with the exception of the
narrow, high-subsidence zones discussed in the previous section).

4.6 Discussion
InSAR and Groundwater Management
The total level of seasonal groundwater pumping by OCWD is well correlated with
seasonal changes in hydraulic head in the principal aquifer. As a consequence, the
areas with the highest levels of seasonal groundwater pumping directly correspond
to the areas with the highest amplitude of seasonal ground deformation (Figure 4.9).
We also observed that after the cessation of the STSS program in 2008, the spatial
pattern of ground deformation during the summer months changed drastically. To
compare the overall relationship between groundwater pumping and basin defor-
mation, we use the long- and short-term InSAR results to construct time series of
spatially integrated basin deformation. Similarly, we use the OCWD production
wells to construct a time series of total groundwater production, and we decompose
the production time series into long- and short-term signals using the same method
we used for the SAR-9 time series.

As expected, the seasonal basin deformation is out of phase with the seasonal
groundwater production by about 4-5 months (Figure 4.16). The basin surface
reaches peak levels around March after several months of low groundwater produc-
tion and heavier rainfall. Peak groundwater production then occurs in July/August,
although production is generally high between May to September during the STSS
program. Peak production is then followed by maximum ground subsidence around
September. The cessation of the STSS program meant that production levels are
more evenly distributed throughout the year. The long-term subsidence signals are
relatively consistent with the long-term variation in groundwater production. From
1995 to 2002, a steady increase in production corresponded to steady subsidence
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Figure 4.16: Time series of total volumetric basin deformation vs. total OCWD
groundwater production for seasonal signals (A) and long-term signals (B). The
volumetric basin deformation was computed by summing the product of pixel area
and displacement at each pixel. The dashed red lines correspond to a model of
the production time series consisting of annual and semiannual sinusoids for (A)
and Bi-splines for (B). In (B), the data are not shown for visual clarity, and the red
shaded area indicates the 1-sigma scatter of the data.

within the basin. The basin uplift initiating in 2005 is a net response to heavy
rainfall (Figure 4.3) and decreased production, both of which led to historically
high water levels and basins at near-full levels [13]. The increased basin subsidence
rate following the uplift appears to be caused by an increase in production rate
starting in late 2005. Therefore, we conclude that the majority of both the long-
and short-term ground deformation are elastic responses to changes in head levels
caused by changes in total groundwater production and recharge. The consistency
between deformation and head levels, and the lack of evidence of any large-scale in-
elastic compaction, requires that storage coefficients remain constant in time, which
means that stress levels within the aquifer and aquitards have remained above their
preconsolidation levels since the 1990s.
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Estimating Depth-Dependent Storage Coefficients
Estimation of storage coefficients for the multi-aquifer systems in the Central and
Santa Ana Coastal Basins is complicated by the fact that ground deformation is the
integrated compaction with depth of all aquifer and aquitard layers. For many of
the monitoring wells in the groundwater basins, the ports do not span all of the
main aquifer layers (shallow, principal, and deep), so we cannot fully assess the
contribution of each layer to the observed ground deformation. Nevertheless, we
can compare ground deformation at specific points to wells with ports that span all
layers, such as the GPS station SACY and the OCWD well SAR-9. For a vertical
profile of the multi-aquifer system discretized onto a uniform grid, we can express
the ground deformation at the surface as:

∆d =
5∑

i=1
Ssi

Ni∑
j=1
∆h j∆z, (4.19)

where Ssi is the specific storage coefficient for the i-th layer which consists of Ni

elements of uniform thickness ∆z , and h j is the hydraulic head for the j-th element
in layer i. Here, we assume five total layers (three aquifer layers and two aquitards)
with depths specified by the OCWD aquifer model. Since monitoring wells only
coarsely sample the aquifer layers, at each observation epoch we interpolate the
hydraulic head to a regular depth grid before computing

∑
j ∆h j for each layer. We

can then estimate the specific storage for all layers using linear least squares. We
constrain the estimated specific storage values to be above a small negative value to
enforce positivity while allowing for errors due to the depth interpolation scheme.

For the seasonal ground deformation, compaction of the aquitard separating the
principle and deep aquifers provides the dominant contribution to ground deforma-
tion due to the high estimated specific storage (Figure 4.17). We can use Equation
4.7 to convert the specific storage values to storage coefficients by multiplying by
the thicknesses of the corresponding layers, and we find that the storage coefficient
for the aquitard is ~2 mm/m, similar to the value we estimated in Section 4.3 for
the SAR-9 head time series best correlated with the SACY GPS displacements. For
the long-term ground deformation, the estimated storage coefficient for the deep
aquifer is ~8 mm/m, which is slightly higher than the value we estimated in our
previous analysis. The higher value here is required to compensate for the small
negative values for specific storage in the top three layers, which are non-physical
but necessary for numerical stability. The very small values for storage coefficients
we estimate for the shallowest layers are most likely due to the limited resolving
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Figure 4.17: Estimation of storage coefficients for each aquifer and aquitard layer
using vertical ground displacements from GPS station SACY and hydraulic head
from OCWD well SAR-9. GPS data are shown in blue dots while the model
(summation of hydraulic head in each layer scaled by a storage coefficient) is shown
in red for short-term (A) and long-term (B) variations. (C) and (D) show the
estimated storage coefficients in green and specific storage in magenta for short- and
long-term signals, respectively.

power of surface deformation measurements. Hydraulic head variations have the
lowest amplitudes in the shallower layers (Figure 4.4), resulting in an overall lower
contribution to surface deformation. The constrained least squares procedure we
utilize here will thus tend to encourage small specific storage values for those layers.

Both short- and long-term signals require a high specific storage for the aquitard
separating the principal and deep aquifers which is consistent with a higher concen-
tration of clay. For the long-term signal, a higher specific storage was estimated for
the deep aquifer, resulting in a significantly larger storage coefficient due to the large
thickness of the deep aquifer. However, the larger storage is most likely not a result
of any physical change in storage coefficient between the two signals. Instead, the
higher value is a consequence of a larger contribution of compaction of the deep
aquifer to the observed ground displacement due to the lower temporal frequency of
the diffusion process. From Equation 4.13, a lower temporal frequency will result
in a lower attenuation of amplitude for a given periodic pressure perturbation and a
slower diffusion speed. Thus, the long-term signal causes a greater overall change in
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pore pressure for the deep aquifer than the short-term signal which attenuates more
quickly. The relatively large specific storage required for the deep aquifer implies a
higher bulk clay content as compared to the sand-dominant principal aquifer.

For comparing ground deformation to hydraulic head throughout the groundwater
basins, we used an alternative approach of estimating a specific depth for each well
that resulted in the highest correlation between deformation and head. We found that
the short-term, seasonal ground deformation was most correlated with wells that
were located close to or above the aquitard between the principal and deep aquifers.
The high similarity between short-term head time series in the principal aquifer
(Figure 4.6) and fast diffusion speeds (Figure 4.4) indicate that seasonal ground
deformation can probably be explained as a combination of bulk deformation of the
principal aquifer and compaction of the adjacent aquitard. We also found that a large
area of the long-term subsidence signal was most correlated with wells located in
the deep aquifer, which supports our conclusion that the lower temporal frequency
of the long-term pressure perturbation causes greater pressure changes in the deep
aquifer. Therefore, we can interpret the long-term decline in head level in the deep
aquifer as a delayed response to long-term variations in groundwater levels, which
are driven by a combination of long-term variations in groundwater production and
isolated periods of heavy rainfall. The time delay is due to the lower permeability
of the aquitard separating the two aquifers.

The narrow, high-subsidence regions shown in Figures 4.12 and 4.14 may corre-
spond to inelastic compaction of laterally finite clay lenses in one of the aquifer
layers, particularly the larger of the two subsidence regions. The high amplitude
of subsidence may also indicate that these clay lenses are substantially thicker than
other compressible clay units within the aquifers. This region does not correspond
to any large-scale production wells, so the higher subsidence rate is most likely not
caused by pumping activity since the 1990s. Instead, we are most likely observing
a combination of inelastic compaction starting several decades earlier and elastic
subsidence due to long-term groundwater decline. While we do not have well data
directly over those regions to perform a cross-correlation analysis between hydraulic
head and ground deformation, we did observe that the spatial signature of those re-
gions does not appear in the map of seasonal amplitude of ground deformation.
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Aquifer and Fault Structure from InSAR Seasonal Deformation
The annual cycle of groundwater pumping and recharge, which was relatively con-
stant from the early 1990s to 2008 due to the Short Term Seasonal Shift (STSS)
program, resulted in regular ground deformation which oscillated in tandem with
groundwater levels. In particular, we found that the short-term, annual ground os-
cillations were most correlated with fluctuations in hydraulic head in the principal
aquifer. The areas with the highest seasonal amplitudes in ground deformation were
co-located with the areas of highest seasonal groundwater pumping. Additionally,
we found that the amplitude of ground deformation was positively correlated with
the total amount of groundwater pumping during the summer months, as well as the
level of hydraulic head drawdown as a result of the pumping.

Both the seasonal amplitude and phase maps suggest groundwater dynamics that
follow a standard diffusion process where groundwater flows towards the zones of
high pumping, leading to a drawdown in hydraulic head. However, we also observed
sharp discontinuities in the seasonal phase due to the NIF and also within the basin
away from any known fault systems (Figure 4.7). For the discontinuity within the
basin, the seasonal phase changed from mid-March on the west side to late-April
on the east side with an amplitude decrease of about 4 cm. From Equation 4.7, we
know that a rapid change in ground deformation can be caused by either a rapid
change in hydraulic head, aquifer/aquitard thickness, or hydraulic diffusivity. We
observed that the thickness of the principal aquifer changed relatively rapidly in
the location of the phase/amplitude discontinuity, which could mean that aquifer
thickness controls the diffusion of hydraulic head throughout the aquifer. While the
effectiveness of faults as barriers to groundwater flow is known, the effect of aquifer
geometry on groundwater flow is still relatively uncertain.

To investigate the effects of faults and aquifer thickness on observed ground dis-
placement, we perform a series of numerical experiments based on the groundwater
flow diffusion equation (Equation 4.11). We perform numerical simulations for
three different scenarios: 1) constant hydraulic conductivity and aquifer thickness;
2) constant hydraulic conductivity and a step decrease in aquifer thickness; and 3) a
narrow zone of low hydraulic conductivity and constant aquifer thickness. The last
scenario is representative of a narrow fault zone characterized by low permeability
fault gouge. Equation 4.11 can be discretized using finite differences (central dif-
ference in space and forward difference in time) to obtain an explicit Euler update
scheme to integrate the hydraulic head forward in time. We construct the x-domain
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Figure 4.18: (A)-(C): model setup for one-dimensional diffusion simulation with
a periodic pressure source placed in the center of the domain. The three different
models are: (A) constant hydraulic conductivity and aquifer thickness; (B) constant
hydraulic conductivity and a step decrease in aquifer thickness; and (C) narrow
fault zone of low hydraulic conductivity and constant aquifer thickness. (F) shows
the specific values for thickness and hydraulic conductivity for the three different
scenarios. The amplitude and phase of the simulated hydraulic head in response
to the periodic pressure source are shown in (D) and (E), respectively. The colors
corresponding to the different models are: (A) blue, (B) dashed blue, and (C) red.

to span from -40 to 40 km and choose a spatial resolution and time step in order to
maintain solution stability. We place a sinusoidal source in the middle of the domain
with a period of 1 year to simulate groundwater pumping and artificial recharge and
set the head boundary conditions at the edges of the domain to be 0. We run the
simulation for each scenario for several years and compute the amplitude and phase
of the head response for each point in the domain.

The simulation results show that discontinuities in the amplitude and phase of the
hydraulic head are most likely due to the presence of a fault rather than any rapid
change in aquifer thickness (Figure 4.18). Both the fault and rapid decrease in
aquifer thickness cause an amplification of the amplitude of the head on the side
closer to the source. However, the fault causes a step decrease in the amplitude (as
observed in the InSAR results) while the thickness change maintains a continuous
amplitude profile. Furthermore, only the fault causes a step increase in the phase.
In general, in our experiments, we found that changes in aquifer thickness had only
a small effect on the diffusion results.

Therefore, we believe that the discontinuity observed in the InSAR seasonal ampli-
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tude and phase is caused by the presence of an unmapped fault. The nearest fault
system is the Peralta Hills Fault, a reverse fault system located 10 km north of Santa
Ana, California and about 5 km away from the observed discontinuity [29, 30]. The
main fault is north-dipping with the last rupture possibly occurring in the Holocene,
and its surface trace follows the curved boundary between the Santa Ana Coastal
Basin and the adjacent Santa AnaMountains. However, the extent of the fault system
from the Peralta Hills into the alluvial plains is uncertain and not well mapped at
depth. The discontinuity that we observe in our InSAR results could thus correspond
to a blind branch of the Peralta Hills Fault with no observable surface trace. The
discontinuity is also roughly coincident with the Anaheim Nose, an anticline with
a north-west strike parallel to the Peralta Hills Fault [31]. However, the anticline is
a broad feature with a crest between 5000 - 10000 feet below the ground surface.
Therefore, it is unlikely to affect groundwater flow in any observable manner.

4.7 Conclusions
We investigated the spatiotemporal ground deformation of the Los Angeles Central
and Santa Ana Coastal Basins using a combination of GPS and C-band InSAR time
series. We introduced a new method for decomposing both time series into long-
and short-term signals in a spatially consistent manner using a distributed algorithm
designed to solve large scale, regularized least squares problems very efficiently.
This particular data set provided a unique opportunity to apply the time series
analysismethod on datawith both time-varying seasonal signals and subtle transients
caused by unknown geophysical processes. The resultant time series decomposition
allowed us to isolate the short-term ground deformation caused by annual variations
in hydraulic head due to groundwater production practices that emphasized pumping
during the summer months. The 18-year timespan of the InSAR data and the
improved time series analysis resulted in spatially continuous maps of seasonal
amplitude and phase of ground deformation with improved spatial resolution over
previous studies. In particular, we were able to detect fine-scale features in the
seasonal deformation including spatially varying pore pressure diffusion effects and
groundwater flow obstruction due to a potential unmapped fault. The reconstructed
long-term signals revealed subsidence over a wide area within the basins, as well as
a 2-3 year uplift signal starting in 2004-2005 caused by a period of heavy rainfall.
By comparing the time series results with hydraulic head data provided by WRD
and OCWD, we were able to determine that ground deformation within the basins
can be almost completely explained as an elastic response to head variations caused
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by groundwater production practices. Furthermore, we found that head variations in
different parts of the aquifer system were responsible for the different timescales of
ground deformation. Groundwater production is heavilymonitored by agencies such
as WRD and OCWD through a vast collection of monitoring well data. However,
our results, in combination with previous InSAR studies over groundwater basins,
show that analysis of InSAR time series data can be a useful tool for assessing the
sustainability of pumping practices, and the continuing availability of data from new
InSAR missions can be exploited by the hydrology community to aid groundwater
monitoring over this area.

4.A Appendix A: Spatiotemporal InSAR Time Series Analysis
Discussion about the need for extracting the spatiotemporal variability of defor-
mation, and why we can’t use methods like PCA/ICA for complex deformation
processes.

In Riel et al. [26], a newmethod for detecting transient signals in geodetic time series
was proposed that modeled time series as a linear combination of displacement
functions chosen from a dictionary (matrix) of functions that resemble secular,
seasonal, and transient signals. The displacement functions for transient signalswere
third-order time-integrated B-splines (Bi-splines) which exhibit one-sided behavior
of a particular timescale. For reconstruction of transient signals of unknown onset
times and durations, a highly overcomplete, non-orthogonal collection of Bi-splines
of various timescales are used to populate the dictionary. Then, transient detection
becomes a least squares minimization of a joint cost function that consists of a data
misfit term and a sparsity-inducing regularization term to limit the total number of
dictionary elements needed to reconstruct the original time series [26, 32, 33]. For a
geodetic time series d ∈ RM×1 and a dictionary G ∈ RM×P consisting of P elements,
the resulting cost function would be:

ϕ (m) = ‖Gm − d‖22 + λ‖m‖1, (4.20)

where m is the vector of coefficients for each element in G and the `1-norm regular-
ization term (scaled by the parameter λ) minimizes the number of non-zero values in
m. Enforcing a sparse set of dictionary elements is critical for proper decomposition
of any time series into its relevant timescales and enhancing interpretability of the
non-zero elements in m.

Riel et al. [26] also introduced a spatial weighting scheme for analyzing a network
of GPS stations through an iterative re-weighting approach that ensures that the
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estimated mi for a station i is consistent with m j from its neighboring stations. The
“consistency” is controlled by an exponential distance weighting function between
station i and stations j = 1, . . . , N, j , i in a network of N GPS stations. For
InSAR time series analysis, an identical procedure can be used where each pixel in
an interferogram is a “station”, and spatial weighting functions can be computed for
each pixel and the other pixels in the interferogram. However, for an interferogram
with N pixels, this approach would require the evaluation of N2 weighting functions,
which would be very computationally intensive. An alternative approach would be
to formulate a simultaneous estimation problem where we estimate mi, i = 1, . . . , N

all at once in a large least squares problem. In this approach, the global linear model
for K interferograms, {G}{m} = {d}, would be constructed as:


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, (4.21)

where Gk is the k-th row of the temporal dictionary corresponding to interferogram
k, mi is the coefficient vector corresponding to the i-th pixel, and di

k is the i-th pixel
of interferogram k. The problem size becomes {G} ∈ R(N ·K )×(N ·P), {m} ∈ R(N ·P×1),
and {d} ∈ R(N ·K×1), where {d} is a “flattened” 1-D vector containing the entire
InSAR stack.

Large scale time series analysis using the alternating direction method of mul-
tipliers
Applying the cost function in Equation 4.20 to the linear model in Equation 4.21
would require solving a very large convex optimization problem for a length (N · P)
solution vector {m}. For most modern InSAR time series, this problem cannot
successfully be solved on a single computer. However, very powerful distributed
optimization algorithms have been developed in recent years that take advantage
of rapidly improving cluster computing frameworks to minimize the computational
requirement of any one compute node. One such algorithm is the alternating
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direction method of multipliers (ADMM) described by Boyd et al. [34]. The most
general form of the problem solved by ADMM is

minimize f (m) + g(z)

subject to Am + Bz = c (4.22)

with optimization variables m and z and parameter arrays A, B, and c. Here, the
primary variable we want to solve for, m, has been split into two parts, m and z,
such that the convex functions f and g are separable across the splitting [34]. This
separability is crucial for exploiting large scale parallel computing frameworks. The
constraint function is then used to enforce consistency between m and z. We form
the augmented Lagrangian

Lρ(m, z, y) = f (m) + g(z) + yT (Am + Bz − c) + (ρ/2)‖Am + Bz − c‖22, (4.23)

where y is a dual variable (from dual ascent optimization methods) and ρ > 0 is a
penalty parameter. ADMM performs the following iterations:

mk+1 = argmin
m

Lρ(m, zk, yk ) (4.24)

zk+1 = argmin
z

Lρ(mk+1, z, yk ) (4.25)

yk+1 = yk + ρ(Amk+1 + Bzk+1 − c). (4.26)

For the sparsity-inducing regularization problem in Equation 4.20, f is the misfit
cost function and g is the `1-norm regularization term. In this case, we would
solve Equation 4.22 with A and B set to the identity and negative identity matrices,
respectively, and c set to 0.

The original ADMM formulation takes advantage of the separability of the convex
functions f and g by splitting the optimization problem in one of two ways: 1)
splitting across the data, or 2) splitting across the parameters [34]. The former is
useful for a modest number of parameters and a very large number of training data
while the latter is useful for the reverse situation. In Section 4.A, we will show how
we can combine both splitting approaches in a consistent way to efficiently analyze
InSAR time series. For the current discussion, we will proceed with the second
approach by splitting across the parameters for our linear model {G}{m} = {d}. For
this approach, we partition the variable vector {m} as {m} = (m1, . . . ,mN ) where
the individual mi’s do not need to be the same sizes. Correspondingly, we partition
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{G} = (G1, . . . ,GN ) such that {G}{m} =
∑N

i=1 Gimi. This partitioning allows us to
formulate the separable cost function

minimize ‖
N∑

i=1
Gimi − {d}‖22 + λ

N∑
i=1
‖mi‖1.

The ADMM problem in Equation 4.22 can then be re-formulated as:

minimize ‖zi − {d}‖22 + λ
N∑

i=1
‖mi‖1

subject to Gimi − zi = 0, i = 1, . . . , N, (4.27)

where the variables zi are introduced with the same length as the global data vector
{d}. Each update of Equations 4.24 - 4.26 can be done in parallel where a global
reduction step (i.e., an Allreduce summing operation) is performed prior to the zk+1

update to combine the individual Gimi predictions. Each individual worker would
also need a copy of the InSAR stack contained in the global {d} vector.

Up to this point, the formulation of the ADMM problem has only considered the `1-
norm sparsity-inducing regularization function. However, we still need to enforce
spatial coherency of the m vectors for each pixel as is done for GPS networks. One
straightforward way to achieve this is to augment the regularization function g with
an additional function that penalizes the spatial structure of the estimated {m} vector
through a covariance matrix, S, such that:

gi (mi) = λ‖mi‖1 + β‖Simi‖
2
2,

where β is an additional penalty parameter controlling the strength of the spatial
penalty. This joint `1- and `2-norm regularization function is called the elastic net
problem and has proven to be very useful for a large number of machine learning and
statistics problems [35, 36]. The original elastic net formulation where S = I is used
for selecting sparse groups of predictors whereas the `1-norm-only regularization
tends to select one predictor per group. This group selection is very useful for our
case since we want to choose a sparse set of Bi-splines that are spatially grouped
together. Appropriate construction of S can then enforce spatial coherency beyond
the original elastic net.

In practice, performing ADMM for InSAR time series analysis methods is tractable
due to the sparsity structure of the {G} array where the vast majority of its elements
are zero. We can use powerful sparse linear algebra libraries to efficiently perform
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the parallel ADMM iterations. To maintain tractability, we also wish to construct
the spatial covariance matrix S with a sparse number of non-zero elements. If we
were to apply the spatial weighting function discussed for GPS networks, we would
have a dense (N · P) × (N · P) covariance matrix. Instead, since interferograms
are continuous images of ground deformation, we can use a discrete Laplacian
smoothing operator to construct S such that the spatial distribution of a Bi-spline
of a particular onset time and duration is smooth. Thus, S is very sparse, and we
can enhance the inherent grouping effect of the elastic net with a simple smoothing
operation.

Recursive time series analysis with ADMM

In the previous section, we discussed how we can split the global optimization prob-
lem across parameters in order to use parallel processing computing frameworks.
However, each worker still needs to have a copy of the entire InSAR stack in {d}.
When the number of interferograms becomes large, or when each interferogram
has a large number of pixels, this requirement can be computationally taxing. We
can mitigate this effect by processing the InSAR stack in a sequential or recur-
sive manner, i.e. one interferogram at a time. This sequential approach has been
discussed in applications that aim to estimate sparse signals in a real-time manner
as data are acquired [e.g. 37, 38]. In addition to real-time estimation capabilities,
these applications also require low memory usage in deployment situations where
onboard memory is limited. For our purposes, performing time series analysis on
an interferogram-by-interferogram basis using the ADMM method while splitting
across parameters greatly reduces the computational burden on any one compute
node.

Following the approach outlined by Angelosante et al. [37], we can re-write the
misfit cost function, (‖{G}{m} − {d}‖22 ), as ({m}TRK {m} − 2{m}TrK ) where

RK =

K∑
k

{G}Tk {G}k, rk =

K∑
k

{G}Tk {d}k, (4.28)

and the k subscript indicates the subset of the {G} and {d} arrays corresponding
to interferogram k, and RK ∈ R

(N ·P)×(N ·P) and rK ∈ R
(N ·P)×1. We can then

sequentially update RK and rK for a new interferogram by using

RK+1 = RK + {G}TK+1{G}K+1, rK+1 = rK + {G}TK+1{d}K+1. (4.29)
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For a given InSAR time series of K interferograms, we can recursively build RK

and rK without needing to load the entire time series into memory and distribute
copies of the time series to each worker. Now, the ADMM minimization problem
for the elastic net regularization with partitioning across parameters becomes:

minimize
[
{z}TRK {z} − 2{z}TrK

]
+

N∑
i=1

[
λ‖mi‖1 + β‖Simi‖

2
2

]

subject to {m} − {z} = 0. (4.30)

In the above equation, note that {z} and {m} are both vectors of length (N · P) and
are variables in the global optimization problem. By maintaining linear separability
in the regularization function, the {m}-update using Equation 4.24 can still be
performed in parallel. While the update of {z} using Equation 4.25 is in the global
domain, RK is still very sparse and we can make use of parallel sparse linear algebra
packages to efficiently perform the update. Here, we use the Portable, Extensible
Toolkit for ScientificComputation (PETSc) [39] in conjunctionwith theMultifrontal
Massively Parallel Sparse direct Solver (MUMPS) [40].

Selection of penalty parameters

Equation 4.30 requires selection of two penalty parameters for the `1- and `2-norms,
λ and β, respectively. One possible approach would be K-fold cross validation,
which would involve randomly partitioning the data vector into K subsets. Then,
for a given λ and β, we would solve for {m} using K − 1 subsets for training and use
the last subset to test the out of sample performance of the trained model. We would
then iterate over the K subsets such that each subset is used as the testing set. The
combination of λ, β that gave the lowest testing area over the K folds would then
be the optimal penalty parameters. However, this two-dimensional exploration of
penalty parameters could be quite costly for a large number of data and parameters.
Alternatively, we can reduce the computational cost by using an independent source
of data as a testing set and not have to perform a two-dimensional grid search K

times. In this work, we can use data from GPS stations within the coastal basins
and outlying areas as an independent test of predictive power of our InSAR time
series model. Thus, we perform a single two-dimensional grid search for λ and β

and choose the combination that results in a time series model that best agrees with
the GPS data.
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Discussion on Recursive ADMM for InSAR Time Series Analysis
A high fraction of InSAR time series methods and their applications have relied on a
pixel-by-pixel approach where the time history of each pixel is solved independently
of its neighboring pixels. This approach is simple, easily parallelizable, and has
proven to be useful for a large number of ground deformation studies. However,
these pixel-by-pixel approaches implicitly ignore spatially correlated data errors,
such as those from atmospheric effects which can be coherent over length scales
of tens to hundreds of kilometers [41, 42]. Omission of these errors from the time
series analysis can lead to significant changes in the time series model parameters
and, perhaps more importantly, their uncertainties. The formulation of the ADMM
minimization problem allows us to directly incorporate data covariance matrices
for these spatially correlated data errors. The recursive update in Equation 4.29
would be modified by inserting a covariance matrix between the {G}k and {d}k
multiplications. Accounting for these errors, in conjunction with enforcing spatial
coherency in the elastic net regularization scheme, greatly improves the robustness
of the time series model to data artifacts such as unwrapping errors and partial scene
coverage due to incomplete SAR frames.

Recursive processing of the interferograms is highly suitable for real-time analysis
of InSAR data. The shorter repeat times of modern SAR platforms has lead to an
unprecedented volume of data being collected to monitor ground motion with high
temporal resolution. However, most modern software packages designed for InSAR
time series analysis reprocess the entire time series each time a new interferogram
is acquired. This strategy is not sustainable in terms of computational time and
resources. By maintaining a “state” representative of the current time series model
(encapsulated within the {m} vector), and by keeping the state invariant to any
specific observation epoch, we can efficiently update our time series model by
recursively updating the ADMM arrays (RK and rK ) and rapidly estimating a new
state, {m}. For non-real-time applications, the recursiveness allows for simple
parallelization of interferogram assimilation since each worker can compute their
own RK and rK , and a global reduction operation can combine the arrays before
estimation of the time series model.

While the combination of partitioning across the global parameter vector and recur-
sive updating of the ADMM arrays (Rk and rK ) greatly increases the computational
efficiency of ADMM for InSAR time series analysis, we are still limited by the
requirement that every pixel in an interferogram requires its own set of temporal
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dictionary elements. Analysis of a high spatial resolution InSAR stack with a hun-
dred or more dictionary functions leads to a very large number of parameters and
memory requirements of several tens to over a hundred gigabytes. However, opti-
mized computing frameworks that specialize in distributed storage and distributed
processing, such as Apache Hadoop or Apache Spark, can easily handle such mem-
ory requirements by intelligently loading and caching problem data. Thus, future
work involves migrating our ADMM implementation to an appropriate distributed
processing framework.
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4.B Appendix B: Supplemental Figures

Figure 4.B1: Cross-section of the Santa Ana Coastal Basin aquifers and partitioning
into three-layer model (modified fromWoodside &Westropp [13]). The distribution
of aquifers and interleaving aquitards can be aggregated into a simplified three-layer
model where the aquitards separating the three layers are laterally extensive.
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C h a p t e r 5

CONCLUSIONS

In this thesis, our initial goal was to develop an automated transient detection
algorithm for GPS networks that would detect anomalous signals generated by
any number of geophysical processes. In the early stages of development, several
different methods had been proposed that were based on statistical analysis of
geodetic data, such as covariance descriptor analysis, principal component analysis,
HiddenMarkovmodeling, etc. Thesemethods are non-parameteric in nature and are
intended to be flexible in order to detect any type of transient signal. However, these
methods often make limiting assumptions and can be sensitive to observation noise.
Therefore, a key motivation was to develop a robust detection algorithm that could
utilize our prior knowledge about most transient signals observed in geodetic data,
which is that they are non-repeating, isolated events that often have a characteristic
temporal evolution.

The temporal parameterization approach that we introduced in Chapter 2 made of
use of an overcomplete dictionary of integrated B-splines (Bi-splines) of varying
onset times and durations. We can view this parameterization as a restriction of the
model space of detected transient signals to signals that resemble slow steps in time.
Additionally, the spatial weighting that we introduced in Chapter 2would be a further
restriction of the model space by encouraging spatial coherency between transient
signals. This restriction of themodel space is actually a way to improve robustness in
the detection performance and reduce the sensitivity to observation noise and station-
specific signals. The overcompleteness of the dictionary compensates for the model
space restriction by allowing for a wide range of onset times and durations. The final
key ingredient to our approach was the sparsity-enforcing `1-norm regularization
that minimizes the total number of Bi-splines needed to reconstruct a transient
signal, enhancing the interpretability of our results and improving the performance
of the spatial weighting.

When we first attempted to apply this technique to InSAR time series, we quickly ran
into computational difficulties due to the nature of the spatial weighting scheme and
the number of iterations generally required to achieve convergence in the time series
reconstruction. The simultaneous inversion of the time series of all the interfero-
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gram pixels using the elastic net regularization approach partially overcame these
difficulties by using a single prior covariance matrix to enforce spatial coherency
of Bi-splines used to reconstruct transient signals. However, practical performance
was limited by the serial convex optimization solver used to solve the elastic net
problem and limited computer memory on a single compute node. The distributed
computing capabilities of the alternating direction method of multipliers (ADMM)
discussed in Chapter 4 was crucial for allowing the transient detection framework
we developed to be feasible and fast by harnessing the power of modern high perfor-
mance computing resources. Furthermore, the formulation of the recursive ADMM
approach to InSAR time series analysis was important for handling InSAR time
series with a large number of interferograms, such as the 881 ERS and Envisat
interferograms used for the study of ground deformation in the Los Angeles basin.
This formulation could prove to be very useful for current and future InSAR mis-
sions where the temporal sampling period can be as low as 8 days, resulting in very
large InSAR time series that need to be analyzed in near real-time for natural hazard
monitoring. On a similar note, this formulation can be used for large GPS networks
where covariances between east, north, and up components can be enforced to per-
form three-dimensional daily hazard monitoring over wide regions. For example,
monitoring ground deformation over the Cascadia subduction zone for detection of
slow slip events would require ~450000 model parameters (3000 temporal parame-
ters for ~150 stations), which is well within the computational capabilities of small
cluster computing systems.

Throughout the progression of the development of this transient detection frame-
work, we gradually realized that the problem of transient detection was nothing
more than a subproblem of a robust, generic time series decomposition problem.
Here, decomposition means separating a time series into temporal components cor-
responding to distinct physical phenomena, such as secular plate motion, seasonal
deformation due to earth tides, semi-periodic motion due to hydrologic processes,
transient motion due to a slow slip event, long-term transient displacements due to
magma chamber inflation or groundwater withdrawal, etc. Therefore, an implicit
result of successfully detecting and reconstructing transient signals is a more accu-
rate quantification of the other signals recorded in the geodetic data set. In areas
overlying active plate boundaries, proper detection of transient signals results in a
better estimate for the secular rate. In areas with time-varying seasonal signals,
such as in the coastal basins near Los Angeles, proper characterization of long-term
transient subsidence and uplift allowed us to accurately isolate the motion due to
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the annual cycle of groundwater pumping and recharge.

In the time series analysis framework that we presented in this thesis, much of the
transient detection performance depends on proper construction of the temporal
dictionary and proper selection of regularization parameters. For the former, the
dictionary should include a set of functions sufficient to reconstruct all possible
temporal signals expected for a given time series. Sparsity-inducing regularization
is optimal when a given signal can be reconstructed with a sparse set of functions
from the dictionary. For most applications, an overcomplete dictionary containing
Bi-splines with long- and short-term timescales can adequately describe realistic
transient signals. Short-term Bi-splines should have timescales equal to the most
rapid transients expected in a time series. In situations where a transient is not
well described by a combination of Bi-splines (e.g., a signal with curvatures of
different signs), the reconstruction accuracy may be diminished, but the overall
interpretability of the solution can still be exploited by examining the timescales
and amplitudes of the non-sparse coefficients.

For selection of regularization parameters, in Chapter 2, we presented a Bayesian
formulation of the optimization problem that treats the regularization parameter as
a stochastic hyperparameter following a gamma distribution. Thus, the problem
of time series decomposition and selection of hyperparameters can be performed
simultaneously by using a probabilistic framework. In this way, one can incorporate
more accurate error models for observation noise that could exhibit any arbitrary
covariance structure. One important advantage to this approach is that one can
obtain a full posterior distribution for the coefficients of the temporal dictionary,
allowing for quantification of realistic uncertainties and assessment of the temporal
model prediction power.

In Chapters 3 and 4, we demonstrated how a diverse set of geodetic data is necessary
for investigating the properties of any geophysical process that causes measurable
surface deformation. In the case of the Bárðarbunga caldera collapse, we found
that the suite of InSAR data from the international constellation of satellites com-
plemented with three component GPS data was necessary to constrain a consistent
model of magmawithdrawal, rifting, and subsidence of the ice overlying the caldera.
While spatial diversity of data was obtained by combining GPS data with interfer-
ograms formed from multiple look directions, temporal diversity was obtained
through interferograms with a wide range of repeat times. Specifically, the one-day
repeat interferograms over the ice-covered caldera were invaluable for formulating
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the model of aseismic deformation on ring faults due to a deflating magma chamber.
The longer repeat time interferograms on the ice-free ground adjacent to the caldera
were then used to estimate the magma chamber volume change and the amount of
opening along the emplaced dike. If more interferograms were available, a more
consistent way to utilize temporal diversity would be a time series approach similar
to the study of the Los Angeles coastal basins in Chapter 4.

The model of aseismic deformation on ring faults driven by deflation of a deeper
magma chamber was developed entirely with multi-temporal interferograms and
moment tensor solutions that were publicly available during the eruption sequence
and at the time of writing. A more recent study utilized a larger and more diverse
set of geodetic and seismic data to analyze the interaction between magma chamber
deflation and magma flow within the regional scale dike [1]. Specifically, geo-
barometry, aircraft-based altimetry, high-precision earthquake locations, and GPS
observations directly on the ice-covered caldera were used to determine the geome-
try of the magma chamber, its depth, and the orientation of the ring faults associated
with the piston overlying the chamber. The chamber depth was estimated to be
between 8-12 km for a point pressure source, and subsidence of the ice overlying
the caldera was controlled by slip on an outward-dipping ring fault on the north side
of the caldera and an inward-dipping ring fault on the south side of the caldera. The
large CLVD components for the caldera rim seismic events were hypothesized to be
caused by failure of support structures within the magma reservoir. Therefore, the
model ofmagma chamber deflation, crack collapse within the chamber, and aseismic
slip on ring faults that we presented in Chapter 3 is largely supported by the updated
data and analysis used in Gudmundsson et al. [1]. While the outward-dipping orien-
tation of the northern ring fault differs from what we originally proposed, the main
conclusion that aseismic slip dominates subsidence over the caldera is still valid.

For the study on ground deformation in groundwater basins in the Los Angeles
area, we only used interferograms from one look direction, so spatial diversity was
limited. However, ground subsidence and uplift is primarily in the vertical direction,
so interferograms from one line-of-sight was sufficient for our purposes. The real
strength of the data set was the large number interferograms available to form a
densely sampled time series that we could decompose into long- and short-term
components. Therefore, the temporal diversity of the InSAR data is incorporated
into the reconstruction of the time series. We then demonstrated how the decom-
position into the different temporal components was important for understanding
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the groundwater dynamics of the aquifer system and the influence of groundwater
pumping practices. The discovery that different parts of the aquifer system were
responsible for different components of ground deformation will be important for
aiding water districts in maintaining sustainable pumping practices. Future geodetic
studies over this area should include data from recent InSAR satellites, which have
a wider range of look directions, radar wavelengths, and repeat times, which should
allow for quantification of the full three-dimensional motion of the ground within
all groundwater basins.

Looking forwards, the techniques and applications presented in this thesis are a step
forward towards a modern time series analysis framework that can ingest observa-
tions from any geodetic data source on a day-to-day basis. Throughout this work, we
placed an emphasis on robustness and scalability of the transient detection proce-
dure. These characteristics will be particularly important for ingesting data from the
future international constellation of SAR satellites, which will provide systematic
observations of all deforming regions on Earth with low latency between observa-
tion times. The increased temporal coverage and higher quality of observations will
greatly enhance studies of surface deformation but will pose substantial challenges
with regards to data processing and assimilation.

The methods presented here can be applied to a data set of any size if access to a high
performance computing cluster is available. However, even if resources are limited to
a single compute node, we could still make use of standalone distributed computing
resources such as Apache Hadoop or Apache Spark which are designed to minimize
the memory requirements of computing tasks by caching to disk any data not used
for a given active operation. On the other end of the spectrum, the prevalence of
graphical processing units (GPUs) in high performance computing clusters could be
exploited to dramatically reduce computational costs and/or increase the temporal
model complexity. For the latter case, that would imply that we could have a much
larger temporal dictionary for a larger number of ground points, thus increasing both
the temporal and spatial resolution of a time series model.

Finally, we believe that any practical time series analysis method used to monitor
potentially hazardous anomalous signals should incorporate many different meth-
ods for time series decomposition, such as the previously mentioned statistics-based
models. In addition to providing independent results to cross-validate the techniques
presented in this thesis, these different methods could complement one another and
be used to obtain a more thorough understanding of the spatiotemporal characteris-
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tics of observed geophysical processes. As an example, consider a volcano moni-
toring system that utilizes observations from GPS and InSAR data. ADMM-based
transient detection would be used to track the coefficients of non-zero Bi-splines in a
temporal dictionary. In the event that a spatially coherent set of non-zero Bi-splines
is detected due to movement of magma beneath the ground surface, a decomposition
algorithm such as principal component analysis could be run on the same data to
check if the spatial pattern of the Bi-splines is described by the spatial pattern of one
or more of the largest principal components. Furthermore, ensemble methods can
be used to combine the temporal signal of the largest Bi-splines with the temporal
signal of the largest principal components to obtain a modeled transient signal with
potentially improved prediction performance and greater robustness.

References

1. Gudmundsson, M. T. et al.Gradual Caldera Collapse at Bárdarbunga Volcano,
Iceland, Regulated by Lateral Magma Outflow. Science 353, aaf8988 (2016).


