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ABSTRACT

This investigation was undertaken in an attempt to determine
the behavior of high purity aluminum when sﬁbjected to fatigue stressing
in rotary bending at various elevated tempe'ratures, and also to study the
effects on fatigue life when the material was given intermittent periods of
rest, Two types of rest periods were given; 1) room temperature
resting from fatigue cycling at elevated temperature, and 2) resting at
higher temperature after stressing at ambient temperature, Because of
the limited time available and the desire to apply statistical methods of
analysis, testing was restricted to only a single stress level for each
phase of the experiment,

Up to the highest temperature tested (600°F), results for con-
tinuous stress cycling indicate a gradual reduction in fatigue life with
temperature. Rest periods at room temperature contributed only negli-
gible changes in fatigue life, but all tests with rest periods at elevated
temperature disclosed a sizable increase. The increase in fatigue life
was a maximum when resting was carried out at temperatures in tﬁe
neighborhood of the recrystallization temperature, In addition, it is

«curious to note, that in the continuous cycling tests, scattef of results

was a sharp minimum at recrystallization temperature.
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I, INTRODUCTION

Relatively little work has been done in regard to fatigue endurance
" as influenced by rest periods. 'Perhaps the most notable contributor has

. been Freudenthal, In reference 1, Freudenthal shows that intermittent
rest periods at elevated temperature below recrystallization temperature
increased the fatigue life of SAE 4340 and SAE 1045 steel specimens,
while they reduced the fatigue life of copper specimens, It was also re-
ported, but not conf_ifmed, that other workers had shown that for alumi-
num a decrease in fatigue life would be the result of periods of rest.

In reference 2, Cazaud cites the work of Moore and Putnam to
show that momentary cessation of fatigue stressing has no beneficial
effect on fatigue strength as long as the applied stress is less than the
elastic limit, Apparently, if the stresses exceed the elastic limit, a
slight increase in fatigue strength may be observed. He also cites others
to show that in soft iron and carbon steels, improvement in life may be
expected due to periods of rest; the effect being greater for longer rest
periods and also greater at higher temperatures of rest,

In the course of a continuing research program at the
Guggenheim Aeronautical Laboratory; Valluri, from tests on commer-
cially pure aluminum, proposes the existence of a critical temperature
at which the fatigue life in torsional cycling becomes a minimum com-
pared to life at temperatures in the near vicinity, In reference 3, he
reports the effect of this critical temperature on internal friction at
various stress levels as quite substantial; and also that an appreciable
change in internal friction was noticed during periods of rest following

periods of fatigue stressing, Presumably, this change in internal
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friction occurs by a -proc;ess 6f relaxation of shear stress across grain
boundaries and slipk bands; and it is suggested that on a microscopic
‘ scale this manifests itself in polygonization followed by the growth of
sub-grains during periods of rest, Valluri surmises that this redistri-
bution of internal stresses uiay provide an increase in fatigue life,

Valluri’s results were based on relatively few specimens; and
thus ’ the program of this investigation was designed toward a statistical
verification of the above ideas. The investigation is concerned with fati-
gue stressing in rotary bending of standard R, R, Moore specimens of
99,996 percent aluminum, Temperatures selected for testing were;
room temperature, 150°F, 300°F (approximate recrystallization tem-

perature), 450°F, and 600°F,
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II. '‘DESCRIPTION OF SPECI[VIENS AND TEST EQUIPMENT

1. Test Material and Specirhens.

The test stock was obtained in the form of one-half inch diameter
rolled rods, 12 feet long., The material was 99,996 percent aluminum
with ,001 percent silicon and ,003 percent zinc, There was evidence of
considerable amounts of prior coldwork in the material, No heat treat-
ment was given the specimens before testing; and gince the test
temperatures higher than 300°F are above the normal recrystallization
temi)erature for pure aluminum, there is reason to believe that somé re-
crystallization may have taken place during the process of testing a
specimen, Since the material was exiremely ductile and the chosen
stress levels relatively high, it was considered desirable to run a ten-
sile test on the materials The yield point at two-tenths percent offset
was determined to be 6,750 psi. Ultimate strength was 9,800 psi,

Standard R, R, Moore test specimens were machined in accord-
ance with the specifications of reference 4, page 30, with D = 0,30 inches
and R = 9,875 inches, The specimens were polished with 240 Emery
paper followed by 600 grit Wetordry Tri-M-Ite paper with lard oil, Care
was taken to ensure that final scratches were substantially along the axis
of the specimen, This procedure provided an average surface finish of
TH " referring to the surface roughness in microinches. A pro-
filometer, type Q, model 1, manufactured by Physicists Research
Company, was used in determining the roughness, Levigated alumina
powder.was tried for final polishing,but microscopic examination revealed

this to be unsatisfactory,



Zb. Fatigue Testing Machinéé.

The tests wére conducted on eight rotary bending machines of
the R, R, Moore type, manufactured by the O. S, Peters Company,

Fig. 1 is a photograph of one of the machines, The machines were ar-
ranged in two nests of four each as shown by Fig, 2,

All machines were designed for a nominal speedof 10,000 rpm,
but had beén previously modified to accommodate a speed control reo-
stat.- With the speed control feature the machines could be slowed to
2,000 rpm. Initially, the testing was conducted at the design speed; but
it soon became apparent that a speed reduction was necessary,

Because of the high plasticity of the material tested, failure of
the specimen seldom occurred as a clean break, but more as a relatively
slow sagging. The eccentricity resulting from this bending deflection was
sufficient to cause the bearing housings to gyrate wildly before the cut-
off switch became actuated, In one instance an upper furnace coil was
torn loose by the specimen, and in several cases the flexible coupling
between the motor and bearing housings was broken, This trouble was
completely eliminated for the rest of the tests by operating the machines
at 5,000 rpm,

The specimens were loaded by applying weights to a counter-

weighted tray, the nominal outer fiber stress being calculated as follows:

With 2 minimum diameter, D, of 0,30 inches, and level arm, L. = 4.0
inches, this formula gives: S = 775W psi,, where W is the applied load

in pounds,



3>. Furnaces,

Fige. 3is a design drawing of the furnaces used with the
‘ R. R, Moore machines, Fige 4 is a photograph showing furnaces, in
the open and closed positions, mounted on the machines,

The furnaces used in the first part of the tests were as designed
by James and Stalk (refs, 5 and 6, respectively), Due to sagging of the
upper element and subsequent shorting out, the furnaces were incapable
of maintaining either of the two highest test temperatures for any appreci-
able length of time, This was unacceptable, since in addition to steady
temperature the nature of the testing required the elements to sustain
considerable thermal shock arising from rapid heating and cooling,

Tophet A wire of 15 - gage was selected for redesign of the coils,
with the idea of self support in mind., Lengths of approximately 48 inches
were used in each furnace half, The coils were friction wound on a
three-quarter inch circular rod and then pressed into an oval shaped
spring, They were then hand shaped to conform to the furnace contour,
and the ends threaded through diameters of the terminal bolts and silver
soldered, As shown by Fig, 5 the new coils presented almost a solid wall
of heating surface around the specimen,

Sensing of the furnace temperature was accomplished with a
chromel-alumel thermocouple inserted through the upper furnace half,
The thermocouple wires (22 gage) were contained in a two hole ceramic
insulator which was held in a brass tube by a set screw, This tube was
attached to a bracket at the top of the furnace by a spring and nut arrange-
ment as shown in Fig. 3. This combination permitted adjustment of the

position of the thermocouple relative to the specimen by simply turning

the nut,



4>. Furnace Control Units,

Circuitry fo? one machine and furnace is schematically shown by
Fig. 6. When a specimen fails the motor is stopped by the inboard bear-
ing housing falling onto a cut-off switch, This switch was also utilized
to stop the power supply to the furnace,

| Furnace temperatures were controllable by pyrometers into
which the furn#ce thermocouple voltages were impressed, Only six of
the machines were fitted with furnaces, Of the six pyrometers, two were
SYM-PLY~-TROL!s, manufactured by Assembly Products, Inc,.; and
four were the Series J Gardsman, made by West Instrument Corporation,
The ranges of the pyrometers were from zero to 800°F and since the
furnace thermocouple actually read air temperature in the furnace it was
necessary to install a shunt resistance in each pyrometer to change the
scale factor of its indicator dial.

A ballast resistance was incorporated in each circuit so that
power to the furnace would not be completely interrupted when the tem-
perature reached that selected on the pyrometer, The advantages of this
were to lessen the magnitude of the temperature fluctuations in the
furnace, and to reduce the working of the coils due to rapid temperature
changes. The resistances chosen allowed about 20 percent reduction in
power to the furnace when the system was coasting.

Powerstats were used in the circuits so that current inputs to the
furnaces could be widely varied to establish a large range of steady
temperatures. As explained in part IIl, the controlling features of the
pyrometeré and‘ballast resistances were used only for the continuous
cycling phase of thé tests; whereas the powerstats were used exclusively

to control the furnace temperature where rapid heating was required,
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III. PROCEDURE

Operation of the furnaces and R+ R. Moore machines for con-
tinuous stress cycling a specimen consisted simply of preheating the
specimen in the machine to the desired temperature and applying the
load, The proper powerstat and pyrometer settings would then main-
tain the test temperature without further attendance until failure
occurred, In giving rest periods to the specimens a more rapid heating
technique was desirable, and the testing procedure became more involved,
For the sake of clarity, therefore, discussions of the various procedural

aspects of the investigation are presented separately below,

1, Test Program,. (Rest Periods Defined).,

The basic test program consisted of determining the fatigue life
of the material under continuous cycling at various temperatures, and
also to detect any change in life when subjecting the specimens to periods
of rest,

The temperatures selected for the continuous cycling phase were;
room temperature, 150, 300, 450, and 600°F. A stress level for these
tests was chosen so that failure at room temperature would occur at about
2x106 cycles, The nominal outer fiber stress was 6,040 psi, This same
stress level was used for specimens given periods of rest at room tem~
perature from cycling at 150, 300, and 450°F, The resting times were
given at one-fifth intervals of mean life, as determined from the continu-
ous cycling.tests o

In another phase of the testing the specimens were given rest
periods at 150, 30d, and 450°F after cycling at room temperature, So

that an individual test could be carried to completion within a reasonable
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abmount of time a higher stréés level was used for this phase of the
tests. This stress ‘level was 6,800 psi, Here the rest periods were
_ given at intervals of one-fifth mean life as determined from continuous
cycling under the higher stress at room temperature,

The rest period for resting at room temperature was arbitrarily
defined to be of thirty minutes duration; such period to commence from
the time the specimen during cooling reached a temperature of about
IOOOF. For resting at temperature the periods were of similar duration
with the timing started from the time the specimen reached the desired
temperature. The rest periods so defined were, therefore, exclusive
of the heating and cooling times required,

Static calibrations were done to determine the times necessary.
The calibrations were carried through several cycles of heating and cool-
ing in order to simulate actual testing of the specimens, Cooling was
accomplished with small electric blower fans, As given below, the aver-

age times required were:

Temp.’F. 150 300 450 600

Heating Time 3 5 8 12
to Temp., Min,

Cooling TimeoFrom 2 9 13 15
Temp, to 100" F,, Min,

2, Test Procedure for Continuous Cycling,

As mentioned earlier the technique for continuous cycling was to
start the specimen in the machine, bring it up to temperature, and apply
the load, With the proper pyrometer and powerstat settings the specimen

was automatically maintained at the correct temperature,
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Calibrations to deterrfxine the settings were accomplished by
placing a thermocoﬁpie under the head of a screw at the center of the
Specimen. The output of the thermocouple was measured by a Leeds
and Northrup portable precision potentiometer, The powerstat and
' pyrorheter settings were then adjusted until the desired specimen tem-
perature was attained, Because of space limitations it was not
considered feasible to install slip rings and conduct dynamic calibrations,

The specimen temperature oscillated around the desired temper-
ature because of power fluctuations inherent in the pyrometer control
system, At all test temperatures this variation averaged only about
I o/0. Times to attain and stabilize at the various temperatures were
determined during calibration, These times were of course lessened if
the bearings and furnace had been previously heated, From a cold start
the time to stabilize at 600°F was about one hour, times to other te.st
temperatures being less,

Because of looseness in the pyrometer setting controls. and the
effect of furnace thermocouple position on the specimen temperature,

new calibrations were made when either of these had been changed.,

3. Test Procedure for Applying Rest Periods.

The heating technique described above was unacceptable in giving
rest periods, since a more rapid means of bringing the specimen up to
temperature was desired, Toward this end the pyrometers were used
simply as indicators of the furnace temperatures., This was done by
setting the pyrometer selector beyond the range of the expected furnace
temperature so that the current to the furnace would never be inter-

rupted., Excessive power was then introduced to the furnace by adjusting
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the powerstat until the specimén reached the desired temperature, This
temperature was thén maintained by gradually reducing the power input
_ until a stable setting was reached, Graphs of pyrometer readings versus
time were constructed; and for repeatabiiity, the technique was simply
to reproduce the same furnace temperatures with timeq

| This procedure not only gave considerably decreased warm-up
times but also had the advantage that closer control of specimen temper-
ature was possible, It also reduces some of the doubt as to the validity
of static calibrations; since with the machines running, practically identi-
cal furnace temperatures were obtained with the same power input versus
time sequence,

Some variation was noticed if excessive oil was introduced into
the bearings or if air drafts from neighboring machines were present,
The drafts were largely eliminated by installing deflectors; and the
other effects, including changes in room temperature, were readily
compensated for by adjusting the power input to give the appropriate fur-
nace temperature as required by the pyrometer reading versus time
graph,

To avoid unneceséary vibrations once a test was begun, the ma-
chines were never stopped unless trouble developed. The load was
simply removed or applied at the proper times, and the rest periods
given until failure occurred, Transient vibrations during starting were
best controlled by constraining the counterweights on the bearing hous-
ings and stafting the machines at their nominal speed of 10,000 rpm.

- The speed was then adjusted to 5,000 rpm. All specimens that develop-

ed a visible transient vibration were discarded,
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4.‘ Calibration for Spanwise Témperature Distribution,

To determine.the spanwise temperature distributions three
thérmocoupl_es were placed at various stations along the specimen, Each
thermocouple was positioned under a screw head; one at the center, one
three-eights of an inch from the center, and another on the opposite side
at five-eights of an inch from the center, Several furnaces were inves-
tigated in this respect, and the following average percentage variations

from the temperature at the center were obtained:

Temp. °F. 3/8" Station 5/8" Station
150 2.0°%/o 3.5 %/o
300  4s °/o 7.0 %°/o
450 6.5 /o 9,0 °/o
600 8.0 °/o 11.5 °/o

As before, the calibration was done statically; and it is assumed
that the distributions during operation would be similar, The results
" indicate a sizable temperature gradient along the span of the specimen,
but since almost all specimens failed very near the center this is not

considered to be of primary importance,
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IV. RESULTS AND DISCUSSION

The results of the fatigue tests are contained in Tables I
through XIII. These tables give, for the different test phases, the
number of cycles which the individual specimens sustained before fail-

ure, The computed values of the standard deviations and the means, N

and log N, have been entered on the tables. A compilation of these values
is given by Table XIV, After having been statistically evaluated, the data
are presented in the form of frequency distributions (histograms) of log N
by Figs. 7, 9, 11, and 12. For comparison, the Normal or Gaussian
distribution is superimposed on each histogram,

Assuming the data to be logarithmic - normal (ref, 7); continuous
frequency distributions of log N, derived from results of the uninterrupt-
ed tests at room temperature for S = 6,040 psi, and S = 6,800 psi, have
been used to draw a statistically interpretable S - log N diagram for the
material, The diagram is shown in Fig, 8. Data.of incidental tests at
various other stress levels have been indicated on the diagram by points,
Under the same assumption of the data being logarithmic - normal, the
Temperature - log N diagram in Fig. 10 was constructed,

In fatigue testing, one can probably never accumulate enough
data, In the time available for this work an average of 18 specimens
was tested in each phase, in the hope that at least the trends might be
adequately uncovered, As far as possible all specimens of one series
were tested with the same machine and furnace, When this was not done,
the results were scrutinized for any variations between machines, On
the basis of the results obtained, no deviations were detected,

Data of the continuous cycling tests show; that for rotary bending,
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fatigue life does not attain a rhinimurn within the range of test temper-
atures used., As given belové, the average number of cycles to failure at

the various temperatures were:

Temp.’F.  Room 150 300 450 600

Nx10"0 Cycles. 2.537 .868 414 173 .14

The continuous cycling results also indicate a minimum of scatter at
the recrystallization temperature, On the basis of the number of speci-
mens tested here, however; any correlation is not conclusive, and it is
recommended that additional tests be conducted to substantiate this trend,
Recrystallization also seemed to have a bearing on fatigue life
where rest periods were given, For specimen.s rested at 300°F, the
data show an average fatigue life of 1 .041::106 cycles compared to
.663x106 cycles under continuous stress cycling at room temperature
(an increase of 57 percnet). When rest periods at 150°F were given, the
mean life was .919x106 cycles, an increase of 39 percent, For resting at
450°F, .826x106 cycles was the mean life, showing an increase of
25 percent,
Rest periods at room temperature after siressing at elevated
temperature seemed to provide no beneficial effect, except when stress
cycling was done at 150°F. The mean lives obtained are as shown in

the following table,

Temp.°F, 150 300 450
Nx10° (Continuous cycling) .868 414 173
— Rested at
Nx10~ (room temperature) 1.013 .408 .175

The change in life at 150°F is an increase of 16,7 percent; while at the
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other temperatures, the_ch;.nges are negligible. Without further studies
it cannot be safely inferred that recrystallization has any bearing here;
_ that is, while an increase in life was obtained for stressing at a temper-
ature less than recrystallization no changes were uncovered at recrystal-
 lization temperature and above,

Fig. 13 is a photograph of several specimens showing the
chargcteristic types of failures obtained, Failure in shear was evidenced
almost universally at each test temperature, The figure shows that at
300°F and higher, considerable surface damage was sustained before
the resultant deformation was sufficient to stop the testing machine, The
extent of this surface damage seems to be increasingly greater at the
higher temperatures, A correlation with the temperature of recrystal-

lization is, therefore, again illustrated,
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V. CONCLUSIONS AND RECOMMENDATIONS

From the results obtained in this investigation, the following
 conclusions are made:

1. For continuous stress cycling in rotary bending the material
did not exhibit a minimum in fatigue life within the range of test temper-
atures used,

2, Room temperature resting after stressing at 150°F in-
creased the fatigue life about 17 percent, whereas no appreciable increase
01; decrease in life was obtained by resting at room temperature from
stressing at 300 or 450°F,

34 With rest periods given at 150°F the rﬁean fatigue life was
increased 39 percent over the mean life under continuous cy.cling at room
temperature, When rest periods were given at 300°F the increase was
57 percent, and for 450°F the increase was 25 percent. Maximum bene-
fit was thus achieved by resting the specimens near the recrystallization
temperature,

4, The temperature of recrystallization also seemed to be
related to the amount of scatter in the results, As measured by the
standard deviations in cycles, the scatter for continuous cycling was de-
finitely a minimum at recrystallization temperature,

The following recommendations for further test programs are
made:

l. A similar investigation to this should be conducted at in-
termediate temperatures to substantiate the effects of recrystallization,
In this respect, metallographic studies should be made at various times

during the testing to determine if recrystallization was actually occurring



16
'aﬁd to what extent, Several témperatures near recrystallization
should be investigafedI so that the effects of stress history and temper-
‘ ature on the phenomenon of recrystallization might be more fully
understood,

2. A project in itself would be a more thorough statistical
investigation of variations in scatter at different temperatures, with
perhaps 50 or 60 specimens being run at each temperature.,

3. Extensions to similar tests at different levels of stress,
and to the effects of rest periods of various durations are obviously de-
sirable,

4. Investigations of this nature should be carried out on the
more commonly used commercial aluminum alloys to see if a similar
behavior could be predicted,

Towards further improvement in the furnaces used in this inves=-
tigation it is recommended that:

1, Stainless steel reflectors be installed between the heating

coils and the furnace walls o

2. The terminals be enlarged so that the junctions to the coils
would not become over heated. .
For the test arrangement in general it is suggested that the indi-
vidual fatigue machines be isolated from one another to eliminate any

carry over of vibrations,
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TABLE I

S5-N Data, Room temperature,

Specimen Applied S N
Number Load Stress No. of Cycles log N
1b x10-3
1 10,5 7,930 192 5,283
2 10.2 7,700 330 5,619
3 10,0 7,550 363 5.560
4 9.5 7,170 619 5.792
5 9.0 6,800 985 5.993
6 8.5 6,420 1,120 6,049
7 8.0 6,040 1,511 6.179
8 7.8 5,890 1,746 6.242
9 7.7 5,810 4,014 6,604
10 7.5 5,660 3,950 6.597
11 7.0 5,280 6,958 6.842
12 6.0 4,530 18,675% T.271
13 5.0 3,775 47,437% 7.676 |
14 2,0 1,510 54,069% 7.733

* Removed before failure,
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TABLE II

Number of cycles to failure. S = 6,040 psi,
Continuous cycling at T = Room.

Specimen N Specimen N
Number No. of Cycles log N Number No. of Cycles log N
x10=3 x10-3
1 1,150 6.061 12 2,795 6.446
2 1,208 6.082 13 2,894 6.461
3 1,334 6.125 14 2,989 6.476
4 1,403 6,147 15 3,058 6,485
5 1,504 5.177 16 3,059 6.486
6 1,511 6.179 17 3,186 6.503
7 1,552 6.191 18 3,406 6.532
8 1,631 6,212 19 3,657 6.563
9 1,714 6.234 20 3,666 6.564
10 1,844 6.266 21 4,021 6.604
11 1,940 6.288 22 6,291 6.799

N =2,537,000

log N = 6.358;

cycles; © =1,220,000 cycles,

o =0.198
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TABLE III
Numbér of cycies to failure, S = 6,0040 psi.
Continuous cycling at T = 150" F,
Specimen N Specimen N
Number No. of Cycles log N Number No. of Cycles log N
x1073 x10~

1 259 5.413 17 836 5,922
2 357 5.553 18 855 5.932
3 370 5.568 19 862 5.936
4 505 5,703 20 870 5,940
5 507 5.705 21 912 5.960
6 569 5,755 22 942 5.974
7 602 5,780 23 1,000 6.000
8 603 5.780 24 1,096 6.040
9 651 5.814 25 1,122 6,050
10 ‘ 660 5.820 26 1,172 6.069
11 663 5.822 27 1,217 6.085
12 687 5.837 28 1,237 6.092
13 754 5.877 29 1,280 6.107
14 777 5.890 30 1,382 6.141
15 798 5,902 31 1,633 6.213
16 809 5.908 32 1,807 6,257

N = 868,000 cycles;

log N = 5.901;

o =0.186

O = 352,000 cycles.,
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TABLE IV

Number of cycles to failure. S = 6,0040 pSi.
Continuous cycling at T = 300°F.

Specimen - : N

Number No,. of Cycles log N
x10~3

1 268 5.428
2 301 5,479
3 306 5,486
4 337 5.528
| 5 352 5,547
6 353 5.548
7 416 5.619
8 433 5,636
9 435 5,638
10 468 5.670
11 478 5.679
12 485 5.686
13 494 5.694
14 497 5,696
15 584 5,766

N = 414,000 cycles; O = 87,300 cycles.

log N = 5,607;

O =0.095



Number of cycles to failure. S
Continuous cycling at T =

22

 TABLE V

4

6,040 psi.
5 o]

Specimen

N : Specimen N

Number  No. of Cycles logN Number  No. of Cycles log N

| x10-3 x10=3
1 98 4.991 10 187 5,272
2 99 4,996 11 197 5.294
3 118 5,072 12 204 5,310
4 128 5.107 13 205 5.312
5 147 5.167 14 205 5,312
6 152 5,182 15 207 5.316
7 157 5.196 16 215 5.332
8 167 5.223 17 222 5.346
9 176 5,246 18 224 5.350

N = 173,000 cycles;

log N = 5.224;

O =0,113

o = 40,400 cycles,
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TABLE VI

Number of cycles to failure. S = 66040 psi.
Continuous cycling at T = 600 F,

Specimen N
Number No. of Cycles log N
x107
1 39 4.591
2 54 4.732
3 90 4,954
4 90 4.954
5 94 4,973
6 96 4,982
7 101 5.004
8 133 5,124
9 159 5,201
10 161 5,207
11 166 5,220
12 189 5.276

N = 114,000 cycles;

log N = 5,018;

o =0,196

O = 45,000 cycles,
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TABLE VII

Number of cycles tg failure. S = 6,040 psi,
Stressed at T = 150 F, Rested at T = Room.

Specimen N

Number No, of Cycles log N
x10%3

1 526 5,721
2 569 5.755
3 605 5,782
4 889 5.949
5 952 5.979
6 1,029 6.012
7 1,035 6.015
8 1,083 6.035
9 1,086 6.036
10 1,136 6.055
11 1,157 6,063
12 1,230 6.090
13 1,271 6.104
14 1,291 6.111
15 1,343 6.128

N=1,013,000 cycles; O = 254,000 cycles,
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‘TABLE VIII

Number of cycles tg failure. S = 6,040 psi.
Stressed at T = 300 ' F. Rested at T = Room.

Specimen - N
Number No. of Cycles log N
x10-3

1 148 5.170
2 244 5.387
3 266 5.425
4 275 5.439
5 322 5,508
6 322 5,508
7 345 5,538
8 348 5,542
9 377 5,576
10 401 5,603
11 557 5,764
12 558 5.747
13 563 5,751
14 590 5.771
15 804 5.905

N = 408,000 cycles; O = 166,000 cycles.

log N = 5,574; O = 0,181
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 TABLE IX

Number of cycles tg failure, S = 6,040 psi.
Stressed at T = 450 F, Rested at T = Room,

Specimen - N
Number No. of C_%cles log N
x10
1 112 5.049
2 118 5,072 .
3 135 5.130
4 138 5,140
5 142 5.152
6 147 5.167
7 149 5.173
8 173 5,238
9 173 5.238
10 196 5,292
11 203 5.307
12 208 5,318
13 - 237 5.375
14 244 5.387
15 255 5,407

N =175,000 éycles; O = 44,800 cycles,

log N =5,230; O =0,111
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TABLE X

Number of cycles to failure. S = 6,800 psi,
Continuous cycling at T = Room.

Specimen N Specimen N
Number  No, of Cycles log N Number  No. of Cycles log N
x10-3 x10~
1 381 5.581 12 646 5.810
2 399 5,601 13 676 5.830
3 403 5.605 14 714 5.854
4 '404 5.606 15 780 5.892
5 437 5,640 16 788 5,897
6 446 5.649 17 877 5.943
7 481 5.682 18 927 5.967
8 491 5.691 19 943 5.975
9 577 5,761 20 970 5.987
10 613 5.787 21 985 5.993
11 619 5,792 22 1,025 6.011

F: 663,000 cycles;

log N = 5,798;

O = 214,000 cycles,

g =0,144
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| TABLE XI

Number of cycles to failure., S = 6,800 pgi.
Stressed at T = Room. Restedat T = 150" F,

Specimen N
Number No, of C_%cles log N
x10
1 486 5.687
2 549 5.740
3 597 5.823
4 665 5.823
5 745 5.872
6 749 5.874
7 758 5.880
8 854 5,931
9 974 5.989
10 977 5.990
11 999 6.000
12 1,129 6.053
13 1,303 6.115
14 1,416 6.151
15 1,580 6.199

N = 919,000 cycles; O = 313,000 cycles.,

log N =5,939; O = 0,146 A
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TABLE XII

Number of cycles to failure. S = 6,800 psi.
Stressed at T = Room, Rested at T = 300°F.

Specimen - N

Number No. of Cycles log N
x10-3

1 345 5.538
2 464 5,667
3 467 5,669
4 476 5.678
5 770 5.886
6 896 5.952
7 962 5.983
8 1,026 6.011
9 1,050 6.021
10 1,064 6.027
11 1,111 6.046
12 1,179 6.072
13 1,405 6.148
14 1,785 6,252
15 1,821 6.260
16 1,836 6.264

—

N=1,041,000 cycles; O =472,000 cycles,

log N=5.967; o =0,219
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TABLE XIII

Number.of cycles to failure. S = 6,800 PSie
Stressed at T = Room. Rested at T = 450°F,

Specimen - N
Number No. of C_%cles log N
x10

1 436 5,639

2 448 5.651

3 450 5,653

4 463 5.666

5 484 5.685

6 633 5.801

7 ’ 636 5.803

8 651 5.814

9 695 5,842

10 733 5.866
11 872 5.940
12 910 5.959
13 954 5.980
14 984 5.993
15 1,048 6,020
16 1,192 6.076
17 2,447 6.389

N = 826,000 cycles; O = 465,000 cycles,

log N =5,869; O =0,189
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TABLE XIV

Compilation of standard deviations and means,

Stress No, of I\I_;clo_f’ O'NXIO-6 logN o N
History - Spec, Cycles g
Continuous Cycling 22 2,537 1.220 6.358 0,198
T=72°F., S=6,040 psi.
Coﬁtoinuous Cycling 32 0.868 0,352 5,901 0,186
T=150"F,, S=6,040 psi,
Contnmous Cycling 15 0.414 0.087 5,607 0,095
T=300 F., S=6,040 psi,
Contlnuous Cycling 18 0,173 0,040 54224 0,113
T=600°F,, S=6,040 psi.
Continuous Cycling 12 0,114 0,045 5,018 0,196
-600 F., S~6 040 psln
Stressed at T= 150 F. 15 1,013 0,254 5.989 0,128
Rested at T=72° F,
S=6,040 psi,
Stressed at T= 300 ¥, 15 0.408 0.166 5,574 0,181
Rested at T=72 F
S5=6,040 psi.
Stressed at T= 450 F, 15 0,175 0.045 5.230 04,111
Rested at T=72°F,
S=6,040 psi,
Continuous Cycling 22 0,663 0.214 5.798 0,144
T=72"F,, 5=6,800 psi,
Stressed at T= 72 F. 15 0.919 0.313 5.939 0,146
Rested at T=150°F, .
S=6,800 psi,
Stressed at T=72F, 16 1,041 0,472 5,967 0.219
Rested at T=300 F
S=6, 800 psi,
Stressed at T= 72 F. 17 0.826 - 0,465 5.869 0,189

Rested at T=450° F.
S=6,800 psi.



Fig. 1 R. R. Moore fatigue testing machine. (Note
counterweights)

Fig. 2 General view of furnace control equipment and
machines. (Note fans for cooling specimens).
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R. R. Moore machines with furnaces installed.
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Fig. 13 Test specimens showing typical failures.



