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ABSTRACT 

Three astrophysical problems relating to the intense magnetic 

fields associated with neutron stars (i.e. io12 gauss) and white 

dwarfs (i.e. io8 gauss) are studied. 

(1) The radiation rate for non-relativistic bremsstrahlung in 1012 

gauss is computed by both quantum-mechanical and classical methods. 

The main features of this emissivity are a '1 ... dependence (magnetic 

field in the z-direction) characteristic of a one-dimensional momentum 

space, a larger flux perpendicular to ~ than parallel to it, and a 

net left-handed polarization in the flux parallel to 1t . 
(2) The electron energy levels and orbits for hydrogen in io12 

gauss are calculated with variational techniques. The ground atate 

binding energy is found to be 200 ev. The other levels divide into 

a set of tightly bound states (.binding energies 100 to 200 ev) and a 

double-set of hydrogen-like levels (0 to 13 ev). The overall electron 

density of the atom is elongated along the magnetic field direction. 

The thermal ionization fraction of a neutral hydrogen plasma is 

computed using an appropriately modified Saha equation, and is found 

to be 90%. Finally, high Z atoms are investigated via the Thomas-

,Fermi approximation with the result that the definitive equation is 

:x. " = ;t ''i.. x.11,_ 

giving an atomic radius of 

R =-
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(3) Cyclotron emission and absorption in a magnetic field of 108 

gauss is studied as a possible mechanism for the observed degree of 

circular polarization in the optical emission from white dwarfs. A 

few simple models explain some of the quantitative and qualitative 

aspects of the polarization data. 
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Part :C 

NON-RELATIVISTIC ELECTRON BREMSSTRAHLUNG 

IN AN INTENSE MAGNETIC FIELD 
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Chapter 1 

INTRODUCTION 

Since the discovery (Hewish et aJ.. 1968) of pulsars in 1967 and 

the subsequent hypothesis that they are rotating neutron stars (Gold 

1968), considerable attention has been paid to the nature of physical 

processes in such an environment, primarily in the hope of explaining 

the pulsar phenomenon. With neutron star models suggesting densities 

as high as 1015 gm/cm3 (Cameron 1970), and magnetic fields as high as 

1012 gauss (Gunn and Ostriker 1969), we expect some marked differences 

from the usual earth or stellar regimes. 

In a magnetic field electrons are characterized by a principal 

quantum number 'n', which relates directly to the electron's radius 

of gyration about a magnetic field line. A "magnetic transition" 

(Canuto et al. 1969) occurs when such an electron changes its •n• 

either by itself (i.e. spontaneous radiation n.- n.'-t~, ll.' .:: n. which 

is the discrete analog of synchrotron radiation), or by colliding 

with a nucleus (i.e. coulomb de-excitation). 

n ~ (Z ,A) ~ ' """- +- (Z.A) ~i 

If however, the electron's principal quantum number is the same before 

and after a coulomb interaction with a nucleus, it is a continuwn 
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process s ometimes referred to as "electron bremsstrahlungn (Canuto et 

al. 1969 ) . 

At high magnetic fields on the order of 1012 gauss, this brems-

strahlung process is characterized by the al.most one-dimensional 

motion of the electrons. For non-relativistic energies the gyroradius 

is less t han 1 A. This streaming property suggested this process as a 

possible mechanism for producing the observed pulsar radio emission. 

Chiu and Canuto (1969) calculated the emissivity using the free-

particle Green ' s function and got 

l ( p, v..> , S) ~ (1. I ) 

The spectral index of -2 matched the available data but the .oMl.. ~ e 

term was a problem as it meant no emissivity along the magnetic field 

as observed. Furthermore, bremsstrahlung alone couldn't account for 

the high intensity observed (brightness temperature -1024 °K). 

Coherent amplification was also needed. 

This meant that the absorption coefficient IIDlSt be negative for 

the bremsstrahlung process. Simon and Strange (1969) derived a 

necessary condition for such a negative absorption coefficient (see 

Appendix l) , namely 

ct. I 
d.p 

< 0 (r .2.) 
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s 
Clearly t he 1....,? result does not satisfy this condition and brems-

strahlung appears ruled out as a suitable ampli.tiable process. 

Chiu anq. Canuto (1970) however, made two corrections. An error 

was pointed out in the derivation of' (1.2) and it was revised to 

( 1.3) 

Furthemore they realized that the use of' the free-particle Green's 

function limited their emissivity to high quantum numbers only, not 

the low 'n' one-dimensional region of interest. 

I have therefore calculated the emissivity of a n=O (ground 

state) electron interacting with a nucleus via the bremsstrahlung 

process. The result is derived by two methods, one quantum-mechanical., 

the other classical. 
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Chapter 2 

QUANTUM-MECHANICAL CALCULATION 

2.1 An Electron in 1012 Gauss 

Non-relativistic electrons (kinetic energies on the order of 1 

kev.) in a homogeneous magnetic field of about io12 gauss are 

considered~ The electron state is characterized (Sokolov and Ternov 

1968) by a principal quantum number 1n 1 (n 0,1,2,J,4 •••• ), a radial 

quantum number 1s 1 (s 0,1,2,3,4 •••• ), and a moment'Wll variable 1p I 
z 

~ 

along the direction of the magnetic field ):\ (taken to be in the 

positive z-direction). 

The electron's wave .t'unction is the solution to the Dirac equation 

and in cylindrical coordinates (r,.;,z) is given by 

e e 

L 

where .{:. n.. - S 

-i:f 
C e 

2 

.:;. 
·c T '" ~ e 

I (e) 
n -1 , s 

I""· s ( ') 

In-•. s (') 

In., s < ~) 

l2 .\) 

(2.2) 
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and 

1 (P) is a generalized Laguerre function, and the coefficients C ... 
!'l. 1 s ' r-

describe the spin and polarization state of the electron. 

The t otal energy 1E' of the electron is 

(neglecting the anomalous magnetic moment of the electron). For 

f4-- ~ 1012 gauss, the n~l level is about 10 kev above the ground 

state n=O l evel. 

The primary feature of such a ground state electron is its one-

dimensional behaviour. The electron is essentially constrained to 

travel in a straight line parallel to the magnetic field. This is 

evident f r om the form of the n::O Laguerre function. 

s -Yi S.r.; 
~ 

I (e) 
(.-1) e ~ = 

o,s rs! 
(2. 'i) 

Then 
2. - c: s 

yo5rz. 
e ~ 

5~ 
( "2 . 5 ) 

This space probability function peaks at e,., s, i.e. r ~ o Thus the 

degenerate quantum number 1 s 1 designates the center of the particle's 

trajectory. For a magnetic field of 1012 gauss, the "spacing' between 
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the possible trajectories is very small (~ - 3•10-lO cm.). For small 
1. 

's 1 the half-width of \ 'f \ is of similar magnitude. 

For n=O the electron can be thought of as spiralling about the 

trajectory center. The 11radius11 of the orbit is simply 'R. =fa • 

Thus for l ow 'n' we still have a very constrained motion as the 

electron i s confined to a tube, parallel to the magnetic field and 

having a diameter less than 1 .A. 

Because of this constraint we expect accelerations perpendicular 

to the magnetic field to be severely dampened. For such an electron 

interacting with a nucleus, the primary radiation producing 

acceleration is the push-pull along the trajectory, rather than the 

perpendicular deflection as in the case of ordinary bremsstrahhmg. 
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2.2 Basic Formulation 

An n=O electron interacting with the coulomb field of a stationary 

nucleus is considered. Bremsstrahlung is a second order process, 

thereby necessitating an intermediate state. n•O for the initial and 

final states, but this need not be the case for the intermediate one. 

There can be a virtual. transition to and from a higher principal 

quantum nwnber. This is a :manifestation of the acceleration 

perpendicular to the magnetic field that takes place despite the one-

dimensional nature of the electron•s motion. 

The transition probability rate is given (Heitler 1954) by Fermi's 

Golden Rule 

(1 .1>) 

where in the case of bremsstrahlung 

+ (2 .'l} 
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The r adiation term Hh (derived in detail in Appendix 2) is given 

by 

H ,, , = -e ~ l'\ip1-'>~Sh j~ 
( ;uo) 

where; is the photon polarization vector, and~ is 

•<, ~ ~ ( p;. tu.. .... &-~.) l. . .[<c,c: • c,' c,) l. ....... -(< c; .c;c,) r ... J 
t2 .\\) 

The argument of the Laguerre functions is 

x =: ---... ~ 

where K is the photon propagation vector(taken to be in the YZ 

plane), and e is the angle ~ makes with the magnetic field it . 
The coulomb term V is 

i-. 
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2 'Z e.,_ 
b tr.-£') )( 

L 

.... 

j [ (c. c, '. c, c; ) C,, ~) I··-· /~l . (c,c; • c.c~) \, \<l 1 •.. " l~] K.i,-;»•t 
0 

where 

For pulsar radio emission (w,., 108 sec-l) in a field ef "'1012 

gauss, the argument X. is very small. For small X- ( Sokolov and 

Ternov 1968) 

In , ( X) 
,f\. 

::: R.~ 
•I Y\. • 

(-n.-n.') ~ 
£2 .15) 

There.f'ore in the formulae for O< , ~ , and O<z, to first order we need 
lC ~ 

only consider transitions that give rise to 1
00 

terms. For~ and °''.l 
this means a 0~1 or a l-t() transition. For ~z there is only the o ~o 

transition. 
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The six resulting transition terms are 

H 
...,~, 

: -e zrrh.c 
--

!<; 

Ho~ o -= - e 

H "' - e 
. ~o 

-
b < - s - • .... s · > f,(c c · ... c c • ) I ( p) I ( p) K ( Q( ~·'i ) d." j I t i 't .. o s ' • s' " o ' ... ' ' 

-
v 

0-PO 

~ ( s _ s,) j ( c ~ c2.' ~ c .. c .. · ) t. s (~) l 
0

, ... ( ~) K Q < ce. f(·'~} d.~ 
0 

-
v "" 

l - "10 

\(1-s-s'))(c2(-i" c,c~)l,, s\~l lo ,s.(('.) \<ol-<('2.)d.( 
L 

0 

(:t .17) 

The above six terms indicate that four sequences are contributing. 

Using a (n,s)schemata, they are 

(o,i:.) lo , s) 
v 
~ (o, s) 

l o , S) 
v 

- > to, s) 
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H V 
(o,s) r (t,s) -+(o, s-1) 

~ 

sfo 

(z.tt) 
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2.3 The Coulomb Integrals 

The equations (2.17) contain three integrals where the integrand 

is a product of two Laguerre functions and a Bessel function. Using 

equation (2.4) and the fact that 

~ 

= l-•) 

the required i tegrals are 

j 
O-» I 

1 
'-'> () 

(z. . ~o) 

These forms can be evaluated using the integral relation 

(Gradshteyn and Ryzhik 1965) 



0 

Putting 

gives 

0 
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IC e 

..,... = 0 

_, 
a(. 

(2 .'25) 

Re \'" > \ ~e v \ - l 

(?.n) 

The Whittaker function W can be written as an infinite serieso 
~,.,o 

(z . '18) 



0 
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..... 
where '¥ (.'f\...-.) "- - c + ~ ~ 

k=• 

1 n' being a natural number and 1C1 being Euler 1 s number .5772157 • 
.. 

The argument~ is very small for the regime being considered 

here. Conservation of energy gives 

(1. .3o) 

i.e. 

for forward scattering. This combined with equation (2.14) gives 

-10 
~ lo 

. 8 -1 12 
for E ... 1 kev, w,., 10 sec , and t::4 -10 gauss. 

(2 . "32) 

Therefore, using only the kaO term in the series expansion (2.28), 

equation (2.27) becomes 

The integrals (2.20), (2.21), and (2.24) now reduce to 
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1 o -> t 
' "" .... --- _,,~ 

(2 . ~5) 

0 ..... 0 

j 
.~ .. (2 .:%) 

Finally, the coulomb terms in (2.17) are simply 

v (.2 . '37) 

0-'> I L 

v 
'Ze~ ~ls-$') [ i 't'(•> _ -+-><..sT••- '--~~))(c.,c;i" c't c~) ::'-

o -~ o L 
\_t .'1&) 

Ze r. b (,-~-s') ( c .. <-: ~ c,. c..: ) (~ · Vi) v = - --
•~o L s 
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2.4 The Coefficients C~ 

The coefficients C are given by (SokolQv and Ternov 1968) 
t'-

c, K+k.., 0 

Cl.. 0 
IC 1-k. ("2 . -. .. ) 

-:: ) 1 K(.\(+lo(a\ 
D .... \) 

c \c :s I -· ~ 

c,. J"'"- - k"! 

where 

\( = t / 
i'..c ('2 .'tl} 

" = 
'"'oy (1 .'f 2. ) .. 1'. 

k5 f Y-
1°\ (l .~"S) 

D ,: l and D = O corresponds to the case where the electron• s spin . ... 
is parallel to the magnetic field. D "O and D = 1 is the anti-parallel 

' .... 
case. It i s evident from equations (2.1) and (2.40) that a n=O ground 

state electron must have anti-parallel spin. 

The appropriate spin summations indicated by equations (2.7), 

(2.16), and (2.17) are 
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--- (2.-.s) 
Wl.• c. 

for the f r equency and energy region being considered. Also 

..... 
c ... 

( V
0 

... , \-\,.., .. ) 
""-•C 

tr 

~ ( "•->o \40_.C>) K - ~ c~-.1\ 
c;~o "'oC 

o F where p and p are the electron's ini'tiaJ. and final. momentl.Dll. 
z z 

respectivel y. 
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2 .5 The Energy Denominators 

There are four possible energy denominators in equation (2.7) 

depending on whether the intennediate state is n•O or nal and whether 

the photon is emitted before or after the coulomb interaction V • vc.. 

For n=O 

where is a resul. t of manentum conservation in \-\ • o~a 

Similarly, for n=O 

~ .'io) 

For n .. l, t he results are simply 

where wo i s the gyro- frequency ( .... 1019 sec-l in 1012 gauss). 
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2.6 The Matrix Element 

Combining equationa (2.7), (2.16), {2.37), (2.38), (2.39) and 

(2.4.5) through (2.51) gives the matrix element for the O~ electron 

bremsstrahlung, namely 

::! e 

1;..~,,~ .. 

Rather than consider arbitrary photon angle and polarization, it 

is simpler and instructive to deal with propagation parallel and 

perpendicular to the magnetic field, and the two modes of propagation 

associated with each of these direction in a plasma. 

For propagation along the magnetic field direction, there is 

(Bekefi 196.5) an ordinary mode characterized by lei't;-banded circular 

polarization, and an extraordinary mode with right-handed polarization. 

For perpendicular propagation both modes are linearly polarized. The 

ord:i.nary wave•s polarization vector is· parallel to the magnetic field, 

whereas the extraordinary wave•s vector is perpendicular to the 

magnetic field. The four polarization vectors are 
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-;; ( 0 \ ez o) ::. Y'-" ( I i. a) 
"'f°Z. I I 

~(X\e = o) ,.,~(•,-i..,o) 

; ( O \ ~ z ~) = ( e,o, 1) 

e (X \ e "'~?.) : (•, o, 0 ) 

The resulting four matrix elements are 

\<(o\e•o) 
- ''a. 

=~I/~ SL 
L ,,J \'(. 11'\oC 

I 

JS 

l< ( x \ e = o) 
I I 

~ )~ ... 
"""'1c. 

~c. 

(1. .... 'i) 
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2.7 Radiation Rates 

The density of final states ~., is given by 

" where ~ i s the usual photon number density, i.e. 

The electron number density however, is not the usual three-

dimensional form as in ordinary bremsstrahlung. The momentum p z 

a.long the magnetic field has discrete values £or finite L. 

( - = 0 *"' "'°~ -· } ... :J , • ~- 5'1) 

L"" = -

The differential radiation rate (i.e. emissivity) is given by 
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d.I 
(~ . 4.o) 

Therefore, combining equations (2.6), (2.54), (2.59), and (2.60) 

gives the f our radiation rates 

ell la\ ~ .. o) ~ 

d..wd....Q'& 

ell (.x. \e ... o) ~ 

dAH dQ~ 

cl! \_O\Q"'~) ~ ---
d.~d.~~ 

"-~ lx\~·~) ~ 
dt.,uJ.~ 

z~~ .. 
2"2."" .. (. 

JL 

~ 

7.. e. 
c.. 

:r. ., L 
~.,. "'· (. 

l. t <.-> -
I()~ 

"' f-z.. c. 

~ ~ I..> 

~ 
S-1'\ f ~ u.>._ 

(? ... ') 

Recalling that the trajectory center is essentially J5i =tr and 

moreover simply represents the impact parameter for the bremsstrahlung 

process, the e"'o emissivities can be written in the form 
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where 
z ~e"' 

A=----
2n1 ..... .,c. "3L 

This result differs f'ran that of ordinary bremsstrahlung (i.e. 

non-magnetic) as derived in classical electrodynamics (Jackson 1965), 
a 

by a factor of ~u 'l'his is the damping factor one expects for 
\A)' 

scattering by a bound oscillator whose resonant frequency is the 

gyro-frequency (Hei tler 1954). Thus a magnetic field of about 10
12 

22 8 gauss reduces the forward emission by a factor of ,,.10 for Ul ... 10 

-1 sec • 

Using t he approximation 

yields the result 

(2 .'-S) 

which is, not surprisingly, independent of the magnetic field. For 

8 -1 12 9 E -1 kev, w .. 10 sec , ~ --10 gauss, and fr - 1 a, it is a factor of 

-10
6 

larger than the 9 c. o emissivities. 
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2 .8 Summations Over The Radial Quantum. Number 1 s' 

The r adiation rates given in equations (2.61) are for a single 

electron-i on interaction and for a particular quantum number 's 1 • If 

the electr on is traversing a region where the ion density is w" , an 

appropriate summation over 1 s 1 must be made. The net radiation rate 

is then 

where 

since 

The four pertinent summations are 

• 
s 

~ --\ ' ) 
'.($ .m:i 

2 

(~ · '-') 
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Approximating these summations by integrations gives 

s __ 

f ~5 
$ . 
""""" 

2. 5..,-.,.; 

~{Ji: -rs~,) ~ j 0-s ~)'"els 
s.,...._ 

The net radiation rates are therefore given by 

3 
~ .. c. 

l~!a] 

s __ 

!. . --

(~.7o) 
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Since tr~~ 

(:a .7'4) 

i.e. the f amiliar bremsstrahlung logarithmic factor (Jackson 1965). 

The usual quantum-mechanical expression for tr . is 
""-

tr . - (::i .?5) 

_, 
- \O e""' 

)'/¥ 

which implies 

The choice of Cr depends on screening conditions etc. Possible .._,. 
values are Z: (no screening) to ""'l 1l (atomic screening). In neutron 

star atmospheres, for example, the latter case would seem more 

appropriate considering their high density (.-vl gm/cm3). 

12 8 -1 For E - 1 kev, ~ --10 gauss, and w-10 sec 

11 
.... ,o 
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i.e. both cases lead to high values of S • 
"" .... 

Withholding a factor 

the radiation rates can be tabulated as follows: 

I < d.r ( X\~ rTK)\ 
B ct... d..Q 2 

'/ 

- l. 
,., I 0 

-7 

.., 
_, 10 
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2.9 Some Polarization Aspects 

Two circularly polarized components propagate in the 9=0 

direction. The question arises as to what the net polarization is. 

For sufficiently low densities their indices of refraction are 

essentially the same and the degree of polarization f is simply 

1 - T 
0 x 

\ = (2 .77) 

From equations (2. 73) 

Therefore ka 
\ ~------

2. -t-( s..._..._.,._) - -Ln. '2.. 
(2 .78) 

i.e. s ~ 

'"""'>' - l 0 9' ~ 
::::: • 7 '2. 

5 ..,,.,,,_ ~ I o 
3 

°?o -=,, f ..,, " 
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Chapter 3 

CLASSICAL CALCULATION 

The equation of motion of an electron moving in a coulomb field 

and a magnetic field is 

Consider a dimensionless vector t£ , related to the electron's 

position vector k. , as given by 

(3 .2.) 

_, 
where -tr is perpendicular to the electron 1 s trajectory along the 

z-axis, and is equal in magnitude to the impact parameter{,. • t and 

e- are 1ntini tesimal.s related to the higher order terme of ~ • 

A dimensionless time variable '?: is also defined. 

Putting Ci and 't: in the equation of motion gives 

:...; Z e-a ~ 
~ - (3.'t) 
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where 

Now, f ortr-1 A,l{_-109 cm/sec, and~ ... 1012 gauss, 

Ze1. - ~ ~c. ~ (3.s) .., \C) 

b--v
0

2-

el:r~ 
"' lO 2. >'> 1 ( 3.b} 

'""'c..v«> 

Let ~ = 
2e~ 

(,. ..r "1. 
(3 'l) 

...__ 0 

and 
_, 

e.tr~ E ~ 

mc.u; (l. 9) 

Then equation (3.4) becomes 

-> a. ::: 

Substituti ng for <t with equation (3.2) and comparing like orders 

gives 
:;. (o) 

<1.-z. = 0 

:;,. ( ,, (•) 

<l.. z. 
<l..z. 

a..~ 
(:5 .Io) 

.:.. C.1 
a J.. 0 

.... -'> 

~(1) ~ e ,._ " b 
a..l. 

E; ~3 tr-
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Q. 
)L =J \+ -z:::' 
.\.r 

Now 

(3. \1) 

and (o) vt c: ~ -= 
t,.-

Therefore 

(3.1"3) 

Thus the parallel acceleration is a lower order effect than the 

perpendicular acceleration. 

The energy radiated in the collision is given by (Jackson 1965) 

*::c I --

Combining equations (3.12), (3.13), (3.14), 3.7), and (3.8) gives 

= 0- ·~) 
\T 

d.w d..Q.. 
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d..w ci..U. 
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3 
p 

(3 .lb) 

The radiation rates are obtained by simply dividing these results by 

the effective collision time ("' L~). 

cl-X:----l <tt ... ~) .. 
d.u..>d.h. 

3 
l' 

I 

v- {> 

These emissivities correlate with the quantum-mechanical results 

given in equation (2.61) since 

and 

2. 

i.e. ( -2 'f'( l) - ~cs 11 ) - 2. l-.-. c;; ~~ J 1 
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Chapter 4 

CONCLUSIONS AND DISCUSSION 

The non-relativistic bremsstrahlung radiation rate of an electron 

interacting with ions in an intense magnetic field exhibits : 

(1) a YPx. dependence due to the essentiaJ.ly one-dimensional 

momentum space, 
~ 

(2) a o/2 attenuation in the e=-o direction relative to the non-
wc. 

magnetic bremsstrahlung due to the "binding" effect of the 

magnetic field, 

(3) a e~'J{ emissivity larger than the &-=-o emissivity for the 

same reason as ( 2), 

(4) a net left-handed circular polarization in the e-=- o direction 

due to the differing mode emissivities, 

(5) a momentum dependence (i .e Yrx ) that satisfies the condition 

for coherent amplification (i.e ~ (±)< o). 
j)r r 
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Appendix 1 

AMPLIFICATION CONDITION 

Aside from positive factors, the absorption coefficient for one

di.mensional electron bremsstrahlung is (Chiu and Canuto 1970) 

-- c Cw, e) J [fC,.•) - fer>] W(r.r'> ¥ 
-dO 

((w e> > o • 
(A. 1-1) 

where-W{,o,r') is the transition probability rate,.~r', and f<:r) is the 

one-dimensional electron mcrnentum distribution. 

Using the approximation 

(A.l.2.} 

gives 

00 

ol.,., - - c (l>!>, &) f ( ~ 1 Ar' )-w-cr. r'> cLj> -- ,. 

Sintte j( ~-> -= o , partially integrating this expression gives 

-
o.!~ ~ C ( v!>, ~ 1 / fCrl .:! ( -w-Cr,t'> lt..r1) ct~ -- (A. ' . 't) 
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Since f( p) > o , a necessary condition for al"-> to be negative is 

(A t.".i) 

Simon and Strange (1969) ma.de the mistake of putting 

lAp I - -M.u 
c. 

(i.e. momentum conservation) rather than the energy conserving result 

(2.31) 

Thus the amplif'ication condition is (Chiu and Canuto 1970) 
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Appendix 2 

THE RADIATION TERM 

.... -
~ - e (~ 2.1) 

where (A2 .~) 

';J = dirac matrices 

-'> 
e = photon polarization vector 

Because of the axial symetry of the external magnetic field, let 

the photon's propagation vector ll be parallel to the YZ plane. 

Then 
(1'~. 3) 

and 
(A 2.. ~) 

where (A., 'P, z ) are the electron's cylindrical coordinates. 

The electron's wave function is of the £orm 

e. I c 1' . .It-) 

.. [C 

There!ore 



_, --

-38-

Applying the integral relations (Sokolov and Ternov 1968) 

0 

-j ~-~· (2Jxe) I~·.~· le, In.s-(e) cle = I .... ~.(X) Ts.s'(x.) 
0 

where 

and 

and as given in equation (2.1) 

yields the result 

(A:z. .s) 
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where ,X is the argument of the Laguerre functions. 
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Part JI 

ATOMS IN AN INTENSE MAGNETIC FIELD 
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Chapter 5 

INTRODUCTION 

In part :t: of this thesis, consideration was given to electron 
. 12 

bremsstrahlung in an intense magnetic field of "'10 gauss. In part :a: 

electrons bound in atoms are studied to see what effect such a strong 

magnetic field has on 

{a) t he electron energy levels and orbits of hydrogen, 

(b) t he ionization fraction of a hydrogen plasma, and 

(c) t he size and electron distribution of high Z atoms. 

Topics {a) and (c) have been investigated independently by other 

workers. Cohen et al. (1970) have looked at the binding energies of 

low Z atoms by making a Hartree calculation. Canuto and Kelly have 

computed the hydrogen energy levels via perturbation theory and 

nwnerical methods. Kadomstev (1970) looked at high Z atoms in the 

Thomas-Fermi approximation. 

These studies, along with my own, represent a preliminary effort 

to see what role atomic physics might play in a neutron star 

atmosphere . Investigations have since expanded to include many 

related aspects of neutron star matter such as electrical conductivity, 

bulk magnetic moment, etc. 

In the following chapter, hydrogen is dealt with from four 

viewpoints: 
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(1) A "Bohr" picture. 

A nice place to start is with a simple Bohr hydrogen model, 

namely an electron in a circular orbit about a proton. To this 
_,. 

situation i s added a magnetic field ~ perpendicular to the orbital 

plane. Modifications are made to the equations of motion and new 

quantized orbit radii .flt and energy levels ~ are obtained. It 

becomes immediately apparent from these results that E-t~o (i.e. no 

bound states) for M~ 4x109 gauss. Thus, in order to get a bound state 

when lH 4"109 gauss, the electron motion :must be along lf , not 

perpendicular to it. This is the 11 one-dimensional" aspect al.so 

discovered in part :i:.. in regard to electron motion in such magnetic 

fields. 

( 2) The "one-dimensional." hydrogen atom. 

The need for one-dimensional motion, as indicated by the "Bohr" 

picture, is immediately applied by considering a model where the 

electron i s constrained to oscillate back and forth on a magnetic 

field line. This means solving the Schroedinger equation for a potent-

ial like 

(5.1) 

It is easier to make use of solutions already available, namely those 

for 2 
-e V (z) = IZf (5. 2) 



and VCz) 
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2. 
-e 

= 
\Z\ +tr (S-.3) 

The latter potential, sometimes referred to as the truncated coulanb 

potential, is a reasonable approximation of (.5.1) and therefore is 

used to obtain the energy levels of the model. 

(3) Variational Calculation #1. 

An improvement on (2) is the use of 

2 -e 
V(z) =j i J.It z + s 

(s.'t) 

instead of the truncated coulomb potential approximation. This is done 

by using the technique of variational calculus. The trial wave function 

adopted for this canputa.tion is 

(5'.S-\ 

i.e. an appropriate hydrogenic form. 

(4) Variati onal Calculation #2. 

Finally, a still further improvement on (2) and (3) is the use of 

a three-dimensional potential and wave function. 

2 
- e 

V<.1t,z) =-j 2 2 
.1l tZ 

( 

- f s )"'2( °'sJ'lz 
e e - e 

I _r,;-s . 

(5 .4>) 

(S. 7) 
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(S.8) 

(s-") 

The trial. wave function now canbines the radial part of the free 

electron wave function in a magnetic .field with a Gaussian envelope. 

These four progressively better model computations give a 

quantitative and qualitative picture of hydrogen in a magnetic field 

of ,.,1012 gauss - the electron oscillating back and forth in a 

cylindrical. shell, the two sets of energy levels, and a ground state 

binding energy ot~200 ev. 

With this information in hand, a plasma of such hydrogen is 

c.onsidered, as it might e:xist in a neutron star atmosphere. The Saha 

equation is modified to allow for 11 one-dimensional." statistics, the 

11new4' energy levels, and the "higher" ionization potential. The 

ionization fraction is then obtained for a temperature of ..,106 ° K. 

Finally, multi-electron atoms are investigated briefl.y using the 

Thomas-Fermi approximation. 
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Chapter 6 

HYDROGEN 

6.1 A 11 Bohr11 Picture 

A simple model for a hydrogen atom in a homogeneous magnetic field 

is the "Bohr" picture suggested by Canuto and Kelly, namely an electron 

orbiting a stationary proton with the plane of the orbit perpendicular 

to the magnetic field direction. No kinetic energy along the magnetic 

field is allowed. 

The equations governing this motion are (Canuto and Kelly) 

~. 
c 

E 
e~ 

fl 

These equations give discrete radius and energy values. 

(1... '2) 
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where Q.
0 
is the "ordinary" Bohr radius and 

w.,. eit 
c - (' .3) 

m.c 

as before. 

In the limit of zero magnetic field, the expressions for Jt.t and 

Et. reduce to the expected classical. Bohr results • 

The same classical. results can al.so be obtained by letting the 

proton charge get very large. For a nucleus of charge Ze the equations 

( 6. 2) need be modified only slightly to give 

-z) 

(c.. .s) 

For large Z 



E -t 
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Z
i. 2. 

- e (b_b) 

i.e. the expected classical Bohr results for a eydrogenic atom with 

a nucleus having a charge i.e. 

~ 

Both these limits (i.e. small "M , large Z) simply elevate the 

Coulomb potential to complete dominance thereby bringing back the 

fa.mi.liar Bohr atom results. Of more interest here is the region of 

large ){ • For large M 

(b.'1) 

These limits are the usual. parameters of a free electron in a magnetic 

field, the electron having no motion along the field. From section 2.1 

It is evident from all these limiting cases that positive as well 

as negative energy states are possible. Above a certain magnetic field 
c. 

E '> o denoting an unbound state. This critical magnetic field 'M- is 
~ . ~ 

easily obtained frCID. the condition Et "'o and equations ( 6. 2) • 

c. 
~ 

t 
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Thus above '\::\- 4~109 gauss, this 11 Bohr11 picture doesn't give bound 

states. For stronger magnetic fields the magnetic kinetic energy is 

simply larger than the coulanb binding energy (see Fig. 1). Therefore, 

in order to get a bound state when ~-1012 gauss, the motion of the 

electron mu.st be mostly al.ong the magnetic field direction. This 

immediately suggests the "n=O" ground state electron discussed in part 

-:r:. The coulomb field could force such an electron to oscillate back 

and forth al.ong a magnetic field line. It is just such a model that is 

discussed in the next three sections. 
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6.2 Truncated Coulomb Potential 

Another simplistic picture is that of an electron constrained to 

oscillate back and forth on a magnetic :field line near a stationary 

proton. A quick estimate of the resultant energy levels is obtained 

by using the truncated coulClllb potential 

VC-z.) = 
~ 

-e 
lz\ +-tr 

with a suitable choice for.(,--. The Schroedinger equation for the 

system is 

e~ 't',. 

\zl • lr 
• (1.. \\) 

and has been solved for -tr« a.
0 

(Haines and Roberts 1969). 

E == 
"\\. ~ 

[· t,.. ("-/1r)r ground state --0 
2-. ... : 

't ts-, ___ 
NCl.. 

odd parity 
(fo. l'l.) 

E : - h~ 
K N 11 21 3 •••• 

" l1WtQ1Nz .. 'Z. 

' - even parity 
N -t.._. ca.•/ tr) 
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A reas onable choice f'or -tr can be arrived at by considering the 

radial part of the n=O electron wave function. 

(0 . 13) 

The root mean square radial distance is 

0 

(b .1'f) 

i.e. let ( ... Is} 

The quantW'll number 1s 1 is now non-degenerate and adds 11structure" to 

the energy levels of hydrogen. 

JC 
't 

I -

12 For "K-10 gauss ¥Cl.=~ 213 

and E •. o ~ -392 ev 
12 

Thus, for~-10 gauss this model gives a ground state binding 
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energy of almost 400 ev. Figure 2 shows the variation of E...,0 with 

magnetic field strength, and Table 1 lists the energy levels for 

»..-1012 gauss. For such a magnetic field, there is a set of strongly 

bound states (binding energies in the range 200 to 4oo ev), and a 

double set of states with binding energies in the usual hydrogen 

range l t o 10 ev. 

A difficulty here is the restriction inherent in the use of 

equations (6.12), namely 

.\r~ « Q.o (1> .1a\ 

i.e. 

ff << 0.0 (1t.1,) 

.. 
This impli es )t ~ lo 'l-~ {c..10\ 

12 and for~,.., 10 gauss ~ « l S" (6.. ?.•l 

Thus these results relate only to an electron that is close to the 

nucleus. The electron density of such a hydrogen atom is elongated 

along the magnetic field axis. The electron "shells1i are now cylinders 

of length ...... a.
0

, radius-J~ , and thickness-Ji • One can immediately 

picture a multi-electron atom with the electrons stacked in the 

various cylindrical shells. 

Considering further the levels enumerated in Table 1, transitions 

between such atomic levels would produce -100 ev photons (i.e.A.-100 

1). It remains to be seen in chapter 1 whether any unionized hydrogen 

. dl u 6· can exist in the suppose y 10 gauss and 10 K atmosphere of a 

neutron st ar. The high binding energy indicated here is only one new 
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aspect of three or four that enter into the computation of the 

ionization fraction. 

Thus the one-dimensional truncated coulomb potential of Haines and 

Roberts gives a basic picture of the hydrogen atom in -1012 gauss. It 

remains to improve the computation by using a proper coulomb potential 

and a suitable three-dimensional wave function (the radial function 

so far has been essentially a delta function, thereby constraining 

the electron to a magnetic field line). 
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6.3 Variational Calculation #1 

A better estimate of the energy levels can be obtained by using 

(i) the one-dimensional coulomb potential 

VCzl ~ (". 'l1-) 

(ii) a suitable trial wave function, and (iii) variational calculus. 

As a trial function, a suggested form is that of the ordinary hydrogen 

ground state wave function. 

i.e. 

A is then the variational. parameter. 

The results, of course, depend on •s•. Putting in the necessary 

subscripts gives 

J l2:) 
~ 

From equation (6.15) 

s """t 
7 (C. .l!>) 
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The Schroedinger equation for the system is then 

From variational calculus (Mathews and Walker 1965), the lowest eigen-

value is given by the absolute minimum of the functional 

-. \( [J~ (z~ = I --
Substituting for f (z) gives 

s 

~1 (A.s) 
l..n Q.. 

2 

-
- e1 f[fscz:)]

2 

dz 

j~ -•.J ""s ... ~ 

(ID.l'l) 

(b . ~g) 

The remaining integral. can be evaJ.uated using the relation 

(Gradshteyn and Ryzhik 1965) 

-J 
(Y- 1) ~ 

2. -14-
(x + "'-1 ) e. cbc. -= 

v-'12 

~ rtv)(~') (Hy-•/
2 

(u.,,._1 -N_,,.-~ ('4f'-•1 
0 

(fo 21) 

For vs~ this reduces to 
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.0 
i - ~ _..,-,c I 

•!. 

(x -t..._~) e d:x = 

0 

(b .30) 

Therefore 

(4> .31) 

Since A
5 

is expected to be on the order of 1, and keeping the 

condition \r~ << a.0 , the argument of the Bessel functions can be 

considered small. The approximations 

can be used giving 

Since 
1 

e.~ : l3. & ev 
2~ 

2x<c I 

.2x<< I 

(E. .:\3) 

(4t .3't) 

(c. . 32) 
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.The condition for the absolute minimum o£ this .f'unctional. is 

~\([Is t~i\ 
-= 0 ('- .'3b) 

"I; As 

i.e A.s + 2 tn ( As«L~s) ~ 2 -= 0 (1o ::n) 

Once this is solved munerically for As, E
5 
is given by 

The results are tabulated in Table 2 for)( ... 1012 gauss. 

This set of states corresponds to the strongly bound set mentioned 

in section 6.2 • These new energy values are somewhat lower than those 

suggested by the truncated coulomb potential. Now the 111tlrogen gro'Wld 

12 state binding energy in -10 gauss is estimated to be about 160 ev. 

The other set of energy levels could be obtained by generating a 

set of even and odd trial f'unctions and perf'orming the variational 

calculation for each of them. This is what Canuto and Kelly did using 

perturbation theory and numerical methods. Their double set of binding 

energies is in the range O to 13 .5 ev and the respective values are a 

bit higher than those in Table 1. 

Thus the use 0£ the truncated coulomb potential in section 6.2 

introduced an error of about a factor of two. It is now necessary to 

see to what extent the variational calculation can be improved. A 

better trial wave .f'unction should give a lower energy value E5 (i.e. 

a higher binding energy). This is indeed found to be the case in the 
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next section. 



-59-

6.4 Variational Calculation #2 

A somewhat cumbersome improvement to the previous calculation is 

the use of a three-dimensional coulomb potential and wave function. 

The coulomb potential. is 

For a trial wave function, a possibility is a combination of a gaussian 

in the z-coordinate and the radial part of the wave function of a free 

electron i n a magnetic field. 

i.e. 

l.,_'to) 

""s is now the variational parameter. V 
5 

( z) can be defined as 

Using the relations 

OD J ]~ .. ~~:,. : fl ,.,,,. [· -+ (j,9,:~ 
., 
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and 
~ (:x:.) '= I - ...... e.___ 

;;;;-

. and considering only the s=-0 case, gives 

v (-z.) 
6 (b ..... ) 

The expectation value of this potential is needed in order to get the 

functional K[{(z~as in equation (6.27). Here 

Therefore 

2 
Let B • "t-z 

Then 

--

(4'.'tS) 

V (z) clz 
0 

(" . 'H.) 

(C. .'f7) 

(4.. 'tl) 



Using the integral relation (Gradshteyn and lcy"zhik 1965) 

0 

and the relation 

gives 

clx -= 
x 

_ ez. oL • ..r;T 
~ 

---
cos !!l! 

2. 

p (-v-, V'+I J t-~ j .!.=2.) 
z 

(C. .'f1} 

The argument of the above hypergeometric function can be changed 

using the transformation (Mathews and Walker 1965) 

rf c) r(c -~ -~) ) P ( a~ l + <i. + fT- c: · I -~ 
, J I 

" ( c -Q.) ,... ( c - l.r) 
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(c.. .53) 
'1 

The usef'Ulness of this form lies in the expectation that «'i is very 

sma.11. From the form of f
0 

(:z), «. is expected to be on the order of~- • 

Then 

- ,...!-a. z.~ 
• 

<< 1 

12 for 't:b...,10 gauss. 

The hypergeometric function can now be expanded to lowest order 
.. 

in e><~. 
z ~ 

F1('/ 3/ ~ . °"Y.) ':::! I+ I/ olo/., 
'f,'1,'t1 g 'f ~ 

('- .S'S) 

F' (I '/ S-/ . -.'~ ) 
z 

= I+-~-~ I i I .., ) lS s ~ 

Then 

Since r <\>-= 3.63 

The required f'unctional K [£czJJ is therefore 
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2 { { z. 'l'f} - e oe
0 

3 ."U - Z. 12 ~'V~) 

Applying t he stationary value condition 
~\< 
-=o gives 
~o 

Then 

"2 
- 3 . ~3 e. 

0( -
0 

-' ,., '/. 

8 "2" ~ ::: 0 
-t 3. I e <l o£• 

For l4"' 1012 gauss 
2 

~o. '}!' 213 • 

Thus 
~ 

1' + ' . l.'1 -r.. - 'I. 8'" : 0 

The sol ution of this quadratic is -X.-z 2.09 • Therefore 

o( = ~ 
0 

Substituting this result in equation (6.58) gives 

(1a .ss) 

(b. 6.0) 

Thus this sanewhat more accurate variational. calculation gives a 

ground state binding energy of about 200 ev for hydrogen in a magnetic 

12 
field of -10 gauss. This is 20% higher than the 16o ev ccnputed in 

the earlier variationaJ. calculation and reflects the better triaJ. wave 

:function. The other strongly bound levels could be computed as well 
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but the computation is rather lengthy. Suffice it to say that the 

ground state binding energy is --200 ev and the other levels are about 

those given in Table 2 multiplied by 1.2 • 

The wave function (6.40) clearly demonstrates the cylindrical 

shell picture. The radial probability density has the form e.-t( s 

giving a root mean square radius otff . The shells overlap to a 

certain extent as shown in Fig. 3 • 
~ 2 

-els Z' 

Finally, the gaussian envelope e pinches off the cylindrical. 

shells. For s=O, o£0-=~ implies a hal£-width of-~•for the electron 
qo ~ 

probability density along the magnetic field direction. In other words, 
_.... 

the scale length for the electron motion along ~ is, not surprisingly, 

the regular Bohr radius ( ... 5.169 cm). Since the radial scale length is 

~C-3•10-lO cm. for%-1012 gauss), the s=O cylindrical shell is 

highly eccentri·c with a length-radius ratio of -17 • Thus the ground 

state hydrogen atom in--1012 gauss looks very much like a cigar. 
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Chapter 7 

IONIZATION FRACTION 

7.1 Statistics 

It has been established in chapter 6 that the hydrogen ground state 

12 binding energy in -10 gauss is about 200 ev • The question then 

arises as to what effect this will have on the ionization fraction of 

a hydrogen plasma in such an environment. Parallel with this consider-

ation is the question ot what statistics are appropriate for such 

12 3 6 0 • conditions (e.g.~-10 gauss,(-1 gm/cm, T-10 K; "typical" 

surface conditions of neutron star models; Chiu and Canuto 1969). 

The energy spacing between the various magnetic quantum levels of 

a free electron in a homogeneous magnetic field of -1012 gauss is 

about 104 ev. For kT« io4 ev essentially all free electrons will be 

in the ground state assuming a pur•ly Boltzmann factor is applicable. 

In particular, for T-106°K, kT-86 ev«l04 ev. 

The Boltzmann approximation is valid if the occupation number -n.(c) 

is much less than the statistical weight 9Ce-} (Crawford 1963). For an 

electron in a magnetic field 

(7.\) 

where V is the volume and~ is the electron kinetic energy. This 
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result is derived from the magnetic statistical weight A (Canuto and 
rr 

Chiu 1968), and the one-dimensional phase space factor 

Assuming a Boltzmann distribution, i.e. 

-Gt -/lE
n(E-) -= jC~l e 

(7.?) 

(7.3) 

the total number N of electrons and their total energy E are given by 

00 -

N.., j n.(1:::) cJ.e: = / ~(E-) e -ot ~~ d. E 

0 0 

i.e. 

N == V?l ]¥ e-~c 
"h ~ 

. (-1.'f) 

E" .., v~ Jf e-°' /;; 

1f"' z 111/P 

Then p ~ !! = ' - (7.5) 
.i E" .l E: 

Since i • \kT for one-<H mensiona.l motion 

(7.J.) 
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as is the case in classical statistical mechanics. 
-« 

Solving now for e. , 

Therefore 

N 
v 

•/ 

:" (, .. ~:-r). 

which is quite similar to the usual three-dimensional. form 

The classical approximation condition is simply 

--e « 1 

since 

i.e. 
N -v 

This reduces to 

(7."7) 

(7.&) 

(7. <\) 

(7. 10) 

(7. \\) 
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"" 12 6 0 thi For ~~10 gauss and T-10 K s means 

N ~< \.&>clO 

v 

For a matter density of -1 gm/cm3, and assuming charge neutrality, 

N 

v 

which certainly satisfies the above condition. 

Another way to show the validity of the classical approximation 

for these conditions is by calculating the Fermi energy and showing 

that it is much less than kT. The total number of electrons at o•K 

is given by • 
~F 

N -=f ~(~)dE: 
0 

E" 

I "vi Jft1 ~ 
0 l'fh. i Je 

'I. 
= V't F (€0) z 

TTh F 

0 "If' 2 h. 'Z (~f ~F : 

,,"" ~ ~ 

For~~ 1024 and ~-1012 gauss, this Femi energy is -10-3 ev which is 
v 6 

certainly much less than kT for T•lO °K. 

This classical approximation is helped by the magnetic phase factor 

1 being sanewhat larger than the 'hct factor used in "ordinary41 

r. hz 
situations. 



12 
For)\"" 10 gauss 

6 For T-10 °K 
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(1.1a) 

The higher statistical weight means a lower Fermi energy and a "more" 

classical statistical at high temperatures. 
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7.2 Ionization Fraction 

The ionization fraction is obtained by slightly modifying the Saha 

equation. Ifd~e is the number of free electrons with z-momenta in the 
0 

interval {p , p -t dp ), and N is the number of unionized ground state 
z z z " 

hydrogen atoms, Boltzmann statistics gives 
• _ __L._ 

2-kT 
3e e clpz 

o WkT 
!JM e 

where ;, i s the ionization potential. 

Fram equation (7.1) 

Therefore 

Of course there will be hydrogen atoms in states other than the 

ground state. The total number ~Hof unionized hydrogen atoms is 

Q(T) 

where Q( T) is the partition function. 
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i.e. -( Ei - E,) 

Q(T) ~ !I l 
~T 

= e 
~ 

J 

Therefore 

v~ -~/kT 
N._ ' v~ (2" """ \} e - ; 

N .. Q{T} n-h 

This is the modified Saha equation referred to earlier. V can be 

chosen such that it contains one ionized atom. Then 

N V = o ...... 
where N • is the number density of ionized atoms. w_ and N can also be ... ... .. -

treated as nwnber densities since they occur in a ratio • Therefore 

= 
1/-z. _ ./k\ 

(~n--\c.T) e 
qc-n 

The ionization fraction f is given by 

f : --N-"T-
N" +- N .. • 

The matter density ~ is 

t "" ( Ntt + N .. ..-) ~·\ 

Then N ~ = ll_ 
tt M 

K 

1.e . 

(7_25) 

(7. ,, ) 

( 7.2.7\ 
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Moreover f 
;. 

I- f 

Assuming charge neutrality, i.e. N "'N + e ti 

Finally 

_L_ = 
I - f 

M I 
~-
~ QfT) 

''?. 
~ (211mk\) 
~ h2. 

For T-106 ° K, e-1 gm/cmJ, and fjJ-200 ev, 

!~ 

,_ f 
'fS 

Q(•o'°) 

{7 3o) 

(7.31) 

There remains the problem of estimating the partition function 

Q(106). This is difficult enough in ordinary cases due to the 

broadening of the energy levels by various perturbations (Motz 1970) • 

Some sort of form factor often has to be introduced. 

A primary consideration is the depressionAE of the continuwn due 

to electrostatic effects. A simple estimate of At is (Cox and Gi uli 

1968) 
~ 

- e --
2. )lo 

where A:0 is the average interatomic distance. 

(7. 33) 
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i.e. 
_8 _•/3 

fl..
0 

::: . 7 35" x \ O ~ c.on. 

with f in gm/cm3• 

For e ...., 1 gm/ cm3 this means 

_g 
.ft.

0 
::: • 735 JC: \0 Cl-W\.. 

and AE '!:f " ev . 

Thus the continuum is depressed by about 11 ev. This means that 

essentially all the double set of levels in the O to 10 ev range are 

smeared int.o. the contimrum. Furthermore the ionization potential is 

-11 ev less than the 200 gv computed in section 6.4 • 

Therefore the partition function Q(T) need only include the 

tightly bound set of states. There are about five of these for M--1012 

gauss, since according to (6.21) 

Fi <<IS (1 . "3'1) 

i.e. 

Using 1.2 times the values in Table l and assuming unit statistical 

weight 

6 For T,..10 °K, 

(7. 'fo) 
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Then in (7.32) 

(7.-tt) 

,. e . f ::! • 't3 

The estimated ionization fraction is -93%. Thus the high binding energy 

does su~ceed in keeping some of the hydrogen atoms in the ground state 

despite a temperature. of -106•K, a larger phase space (a factor of qo 

. according to ( 7 .18)), and an 11 ev depression of the contimrum. 

Therefore the atmosphere is highly ionized, but thanks to the 

magnetic field of-vlo12 gauss some unionized hydrogen can exist, and 

its level transitions will add to the ...,100 A emission of the star. 
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Chapter 8 

A 11THOMAS-FERMI MODEL0 

It is possible to extend the considerations of chapters 6 and 7 to 

larger atoms by Hartree caJ.culations (Cohen et aJ.. 1970) and by 

modifying the Thomas...Fermi atomic model. It is the latter approach 

that will be used in this chapter. 

AB has been shown previously, the usual electron phase space factor 

2.'t«e
2
de must be replaced by.i ~ • The electron density per unit 

h3 ~ h 

momentum interYal is then 

cl :t"'- = )( !!J: d"1: • 2' ~ 'ttTJLzcl.JL ll.\) 
n'\\ TT k 

where rt. is now a spherical coordinate. The derivation then proceeds 

as in the usual case (Leighton 1959). 

where \ t/z_ 
f>• = ( -2"" V I 

and V(r) is the electron potential. 

Gauss ' Law gives 

-A..,_ cJ.V -dJt. 
0 

(B .i \ 

(t'. 3 \ 
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Differentiating this equation yields 

Let 

and 

define the dimensionless variables X and x. • Then 

i.e. 

with 

C/~ Vz 
= x. x 

" ~ ~ . This compares with X. =X x for the ordinary case. The boundary 

conditions on X are the same, namely 

X(o) = 1 

(1.") 

(a.'1) 

(8 .8) 

(8.l•) 
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Equation (8 .8) has been solved numerically (Kadomstev 1970). 

The expression for 0(. gives an estimate of the atomic size. The 

atomic radius is 

Since 

For W-1c12 gauss 

'Is 
-~ z 

: 37 )( lO - <-on. 

~I/~ 
(8.l.iil) 

(a. \3) 

Thus a larger magnetic field results in a smaller atom. This is 

~cted since a larger magnetic .f'i eJ.d means closer 11 orbi ts11 • Of 

course the use of spherical symmetry here is vaJ.id only if the number 

of electrons is sufficiently large that the elongation of the electron 

density, mentioned previously in regard to the hydrogen atom, is 

blurred out by electron 11far11 f'rom the nucleus. 

i.e. 

1.e. 
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Putting sroax.- z is assuming one electron per shell on the average. In 

terms of the magnetic f'i.eld * the condition is 

12 Forl6.-10 gauss this means 
"S 'Z i 2.oo 

i.e. (1. '8) 

There.fore, for l4--lo12 
gauss the Thomas-Fermi approach is applicable 

to atoms with Z~ 6. The 11atood.c radius" is given by (8.13), and the atom 

can be pictured as a series of cylindrical shells with the radius of the 

outer shell of the same order of magnitude as its length. The spherical 

nature of the atom is aJ.so enhanced by the large overlap of the outer 

shells. 

(8 . ~o) 

z. 
i.e. the space probability density 't's((l has a very broad peak ate ::s 

for large 1 s 1 • 

Finally, the electron density is given by 
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Given the numerical. solution to (8.8), this electron density 

could be plotted explici t..ly for particular Z, lt combinations. 

(1. ~If) 
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Chapter 9 

CONCLUSIONS AND DISCUSSION 

For hydrogen atoms in intense magnetic fields: 

(1) The 11Bohr11 picture does not aJ.low bound states for)h4,,.109 gauss. 

(2) The truncated coulomb potential 

v ; 
s 

with {,- - jS+I 
~ - g 

gives a set of strongly bO\llld states (E0~ -392 ev, E,• -299 ev, etc. for 

~-1012 gauss) and a double set of "hydrogen-like" states (Ee-10 ev). 

(3) A variational calculation using 

- e. t. 
v<t. = J i • a 1 

"~ T 

v~ - A,,•x\ 

f (zl=-(~) e a.. 
.. °'• 

gives lower binding energies for the strongly bound states (E.;: -160 ev, 

E, ~ -128 ev, etc. ) • 

(4) A further variational calculation using 
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gives a binding energy of-200 ev for the hydrogen ground state when 

~-1012 gauss. 

These results are consistent with those obtained by other workers. 

Cohen et al. (1970) got a hydrogen ground state of- -160 ev for 

K • 2•1012 gauss using a Hartree calculation. They also extended their 

calculation to multi-electron atoms of low z. Canuto and Kelly got 

12 
E~ -190 ev for M flt 21ll0 gauss by numerical methods similar to (4), • 
and with perturbation methods also obtained the double set of hydrogen-

like states. 

The 11Saha" equation for ·thermal ionization in an intense magnetic 

field is 

''z. 
(2"""'~ T) e 

QtT) 

provided. 

and ""'/v <~ • . b "'o" ~JT 

For a 11typical11 neutron star atmosphere (~ ... 1 gm/cm3, T2106•K), f=200 ev 

implies an ionization fraction of perhaps 9<YJ,. The larger free electron 

phase space compensates for the higher ionization potential. 

A 'modified Thanas...Fermi model indicates smaller atomic size for 
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stronger magnetic fields. The atomic dimension is given by 

and the differential equation form is now 

as cam.pared with the non-magnetic version. 

{ 't ."'1) 

Ka.domstev (1970) also derived (9.6) and besides solving it numerically, 

he studied its regions of applicability in sooie detail. 

Therefore, the overall picture of atomic structure in an intense 

magnetic field is one of electrons moving in cylindrical shells (length 

-~ radius~$¥' , thicknessH ) • For hydrogen the elongation in the 

electron density is quite pronounced, but for high Z a degree of 

spherical symmetry returns. 
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Figure 1: The 11Bohr11 Picture 
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Figure 2: Hydrogen Ground State Energy 
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Figure 3: 11 Cylindrical Shells" • 
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Table 1 : Hydrogen binding energies (in units of E~ -13.6 ev) computed 

with the truncated coulomb potentiaJ. for 1:4 = io
12 gauss. 

s ~c;./E" ~s IE .. E2,s/E.-
odd ' even odd even 

0 29 .73 .25 .22 .16 

1 22 .62 .14 .20 .14 

2 19 .53 .08 .19 .13 

3 16 .46 .oo .18 .12 
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Table 2 Hydrogen binding energies (in units of E"r-lJ.6 ev) computed 

in variational calculation Ill for ~ = io12 gauss. 

s 

0 1.99 11.9 

1 1.66 9.40 

2 1.48 8.11 

3 1.36 7.29 

4 1.27 6.69 

5 1.20 6.24 
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Part JJr. 

CYCLOTRON RADIATION IN AN 

INTENSE MAGNETIC FIELD 
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Chapter 10 

INTRODUCTION 

Parts :t: and :0: of this thesis dealt with the environment of a 

neutron star, particular attention being paid to the theoretically 

possible magnetic field of-1012 gauss. In part::ura different kind of 

star is considered, namely a white dwarf. 

In 1970 circular polarization was discovered in the optical 

continuum radiation frCID. the white dwarf GI"WT70°8247 (Kemp et al. 1970} 

Subsequently a degree of circular polarization has been observed in 

the optical radiation from three other white dwarfs and some twenty 

other stars as well (Landstreet and Angel 1971). 

The degree of circular polarization of Gl95-19 exhibits a 

sinusoidal variation with time, oscillating between O and .5 per cent 

with a period of about 32 hours in the blue-green (Angel and Land.street 

1971). The period is the same for other wave-lengths but the phase is 

not. Moreover the mean level shifts from the ,.., • 25% in the blue-green 

to ~ .5% in the UV and ,..,. • 75% in the red. 

The higher percentages in the UV and red regions also appear in 

the spectrum of G99-37 (Land.street and Angel 1971). Grw+-70°8247 

however, does quite the opposite as its degree of circular polarization 

drops off in the UV and red regions, having reached a peak at -4500 A 

(Kemp 1970). 

If one believes that the circular polarization arises from some 
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differential cyclotron mechanism, one concludes that there must be 

regions where the cyclotron frequency is in the optical range. 

i.e. 

implying 

8 A magnetic field of-10 gauss is consistent with the consideration 

12 
w~ereby a field of -10 gauss is suggested for a neutron star. Start-

ll ing with ,.,100 gauss and a radius of -10 cm., conservation of 

magnetic flux leads to -108 gauss for a radius of -108 cm.( typical 

white dwarf), and -1012 gauss for a radius of ,.,106 cm. (typical neutron 

star). 

Some speculative attempts have been made to explain the various 

features of the circular polarization data. Kemp (1970) has suggested 

that the emission mechanism is an intermediate one somewhere between 

gray-body magnetoemission and super-quantized hydrogen emission (i.e. 

hy'drogen with a Landau-like level structure as discussed in part :a: ) • 

The periodic variation with time is probably a manifestion of the 

star's rotation, with the magnetic axis of the active region at an 

angle to the axis of rotation of the star. The different phases for 

different wave-lengths perhaps indicate more than one active region. 

It is just such white cbrarf 11spots11 that will be c011Bidered here. 

In the following sections the circular polarization characteristics 

of some simple models are c.a.lcul.ated: 
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(1) a "thin" hemisphere with a radial. magnetic field, viewed along 

its axis, assuming no absorption; 

(2) a 11 thin" hemisphere with a dipole-like magnetic field, viewed 

along its axis, assuming no absorption; 

(3) a "thin" fiat sheet on a star 1s surface, viewed at various angles, 

assuming that the polarized component is ..,..1% of the total flux at 

the particular wave-length being considered; 

(4) a layered atmosphere, viewed normal to the surface, assuming 

collisional absorption, and simple variation of temperature and 

magnetic field. 
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Chapter 11 

THIN SHELL CYCLOTRON RADIATION 

11.1 General Formulation 

For a completely polarized monochromatic wave propagating in the 

positive z-direction, the Stokes parameters are (Bekefi 1966) 

'2. ?.. 
F -= Eox... ~ t°"! 

E""~ 2. 
Q. =' - E ())C_ .,:! 

(u -') 

U= ~ ~0~ E°:l c..oc:. b 

v-= 2. E0~ E"0 ':! Stn:. ~ 

.. 
where the wave 1s E vector is de.fined by 

The degree of polarization r is then given by 
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(tl 3) 

F 

For circularly polarized waves, E {t) and E (t) mu.st be equal in x y 

magnitude and 90 ° out of phase. 

i.e 

and 

Then Q=U.: 0 

and 
F1t + F'-
F « ... I -F (tt.'J) 

Cl* R L. 

where f is the degree of circular polarization and f and F are the 

fl.uxes of the right-hand and left-hand circularly polarized waves 

respectively. 

If two incoherent beams are added, their Stokes parameters are 
~ 

additive. Therefore the radiation emitted in a direction t. by a thin 

shell with surface S will have a net degree of circular polarization 

given by 

Iv d~.1. 
== s 

f F ~~.L 
s 

(u."I\ 
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where (11 .ct) 

in spherical polar coordinates, and Yl. is the unit normal outward to 

the surface. 

The coefficient(w of spontaneous emission for the cyclotron 

emission of an electron is (Bekefi 1966) 

(u .to) 

where 

:-'> 
with the magnetic field~ along the positive z-direction and the 

-:"'> 
photon propagation vector \,( in the x-z plane (see Figure 1). 

lw (w,"',e) is the differential r ate at which energy is emitted in 
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the direction 9 as defined in Figure l, per 'W'ri.t solid angle, per 

unit frequency interval dw , by an electron with a velocity in the 

interval ( v, V-+dv) • The emission coefficient jw is obtained by 

integrating (w over the velocity distributionfC"'. 

(u .12.) 

In the expression for1_wlw,v,Q), 'm' categorizes the particular 

cyclotron harmonics. 

W= 

where 

For a particular 1m1 , 1w reduces to 

(u.M) 

In the non-relativistic region (i.e. ttt{J« J. ) , the total radiation 

of a harmonic is 

Then t 

~(fr) >> 1 (u. •II) 

~ 
Thus, to order JJ , only the first harmonic need be considered. 
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The non-relativistic condition also means 1x 1 is small, thereby 

allowing the approximations 

r (;,c > -

' 
(tu'l) 

and 
T,' (x.) ~ 

Therefore, the non-relativistic form of (w is 

-~ C.OS 9 ( CA~~ -/911 ) 

A 

-~ '-

~ ..&,,. e (c.os E>-/J., l 

(h.tt) 

The vector in the above 1"" expression has been retained because 

its direction and phase are those of the photon's electric vector E 
(i.e the polarization information for the process). Thus the photon's 

~ 
electric vector E is, aside from constants, given by 

E ~ (3.J. ( - c..os&(c,o,9 -/111 ) , -~ , o;"'e (co~e-(l11 )) 
( .... ,) 

In order to obtain the Stokes parameters of this wave, E must be 
'."ob 

resolved along directions perpendicular to the propagation vector \c: • 

The easiest choices A " k U) _{t\ 
are e'l and e~j( defining E.1 and ~ respective1y. 

C" <•' ( 
10;: ..., - <.oS 9 -(J11 ) /j J.. 

.I. 

i.e. 
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(n. ~o) 

Therefore, for equations (11.1) we have 

CJ'· ac) 

i.e. 

(!1. ·u.) 

The degree of circular polarization of the cyclotron emission of an 

ensemble of electrons is then 

<tcP> 

where the brackets indicate a summation over the ensemble. 

The type of ensemble that will be considered in detail is a thin 

shell of electrons in which P~ is constant throughout and \A,): o (i.e. 

no net drift) • < ,
1
,1 > can also be neglected since it is JllllCh less than 1 

for the non-relativistic case. Then 

2. ( c.oS S) 
(u . ~'() 

' + c.os• e 
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where c.os e =-

For such an emitting surface 

(o .-a c.) 
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11.2 Hemispherical Shell and a Radial. Magnetic Field 

A simple example of a magnetic shell is a hand.sphere with a 

radiaJ.ly symmetric magnetic field (see Figure 2). Then 

..;> 

l. ::. ( o, c., .i) 

Using equation (ll.2b) gives 

11{ hr 

1. f d.& f ,,. c..os~e 41i" 9 

( ,,_,. > • 0 
(u.u) = 1r'/.: 2~ 

1 ~&rd.~ (, .. c..o$ •e) s."' e c.os& 

0 0 

i.e. < r"") = 'o~ 

Thus the cyclotron radiation endtted by such a thin shell of electrons 

has a degree of circular polarization of about 90%. 
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11.3 Hemispherical Shell and a Dipole-like Magnetic Field 

Suppose a dipole magnetic field is mapped onto a hemisphere as 

shown in Figure 3. Then 

(11.'2.'t) 

with the dipole axis along the positive z-axis. Without loss of 

generality the line of sight t can be put in the x-z plane at an 

angle ® to the z-axis. 

i.e. -'> 
{. : ( St" @ , 0. Co~ ~ ) (!1.~o) 

The® so case is straightforward as in section 11.2 • 

"1t'~ 2tr 

-zj cl8 f c1.• 
0 0 

(11.~t) 

0 0 

Let 

Then 
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Thus t he cyclotron radiation emitted parallel to the dipole axis 

by a hemispherical. shell with a dipole-like magnetic field config

uration has a 3.3% degree of circular polarization. For ®Fo, (/·') 

will be different of course, as would be the case for off-axis 

viewing of the shell in the previous section. The computation is 

complicated by some of the radiation having to traverse the shell. 

It is simpl er to just deal with a thin planar disk. 
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11.4 A "Thin" Sheet 

If we look at a flat layer of electrons emitting cyclotron 

radiation as pictured in Figure 4, the degree of circular polarization 

is simply 

c 
I+ LO~·@ 

Suppose this smaJ.l active region is on the surface of a star with 

coordinates as defined in Figure 4. Then 

since 

St"• S•" !.., c.os el) J , 

t "" ( s ... f , o, c..o~ r) 

and 

Then 



where 
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A ::::: S\f\ 0(. 5,,, f 
'8 ~ cos• c.o~ f 

Thus, as the star rotates, the degree of circular polarization 

varies. If A is smal.l, the variation with time is essentially 

sinusoidal. 

i.e. 

This degree of circular polarization is diluted by the unpolarized 

background radiation at the same frequemcy. Let the polarized flux be 

{ % of the total flux at the cyclotron frequency. This percentage 

reflects the relative area of the active region and the various 

processes contributing flux. So 

(u ... o) 

It is interesting to take a semi-quantitative look at this model 

using actual white dwarf data. The data of Gl95-19 in the UV indicate 

(Angel and Land.street 1971) 
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(\l.'4t) 

An estimate is now needed for 1l • If the 11spot11 covers 10% of the 

star's disk, and if the cyclotron mechanism is a 10% component of the 

flux, then 1-1%. Applying this guess to equations (11.A.f\) gives 

~~-~s 
1+S 

The latter equation is easily solved. 

i.e 
B ~ :z.7 

Then A~ -t'JS << l 

Therefore 

s.." - s '" f ~. \35 

c..os aL '°~ f "' .2'1 

i.e. 
0 

c( "3' 7't 

1 -:::! 
go 

(u.'4 '5) 

(tt.'f4f) 

(.i I - ~'$') 

Thus an active region, whose cyclotron radiation is _. 1% of the 
0 

toW flux at that .frequency, oriented at an angle of 74 , and 
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0 
viewed at an angle of 8 , (angles relative to the star 1s axis of 

rotation), can account for the degree of circular polarization of 

Gl95-19 in the UV. 

Of course this approach is hopelessly simplistic, as it ignores 

temperature and magnetic field gradients, absorption, thermal equil-

ibrium, a thick atmosphere, etc. etc. These factors will get SOllle 

attention in the next section.Nevertheless, the above approach does 

provide some insight into the problem, particularly the sinusoidal 

variation and the percentage factor ( • 
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11.5 An 11Atmosphere11 

It is evident from the simple calculations made in previous 
~ 

sections that an electron shell of constantl1\\ can produce a 

significant degree of circular polarization in its cyclotron emission. 

Unfortunately, if the shell is isothermal. and in thermal equilibrium, 

no net pol arization can arise. However, if there are temperature and 

magnetic field gradients such that the emission and absorption take 

place at different temperatures, a net polarization can occur. 

This possibility can be investigated by considering a section of 

atmosphere, the usual plasma relations for cyclotron emission and 

absorption, and radiative transfer under equilibrium conditions. 

The absorption coefficient OI left-handed circularly polarized 

waves (i.e. ordinary waves) is given by the relation (Bekefi 1966) 

where w,. is the plasma frequency, I.Ve is the cyclotron frequency, and 

-v is the collision frequency. 

i.e 

and 
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As an estimate of the relative magnitude of these trequencies we 

can substitute "typical" conditions like (Motz 1970) 

IS - '3 
I 0 c."" 

't 
10 °\( (11.<tS) 

•S -1 w -= to sec:. .,, we. 

Then 2 1-<f 

""r ~ 3.x 10 

{11.'f,) 

and 2. z 
""t-

<C: ~ 

The collision frequency can be estimated from the usual. breJllB-

strahlung result (Bekef'i 1966) 

where G is the Gaunt factor given by 

The result for the above condi.tions and Z=l is 

u 
y ~ 10 

se.c. -l 

(11.so) 

(u.s-1) 

(~ · 5"2) 

(!•.-S3) 



and 
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-6 
4.S"xto 

Thus the ordinary wave absorption is very low. 

In contrast, the extraordinary wave undergoes resonance absorption. 

Its absorption coefficient is 

For 2 214 
"-' ~ 3xto r 

" ,,... ~ 10 

~ w.l. 3 
D{w =' ~ : lo '-- t 

~ c..,,.. 

, 
Thus in the region where u.>-w, the extraordinary wave is absorbed 

very strongly (see Figure 5). Such a l~r then acts as a polarizer. 

As a simple model to illustrate this polarizing mechanism, 

consider a layer of electrons with parameters "",;'.Ne. varying in the 

manner shown in Figure 6. Furthennore, let us asswue Maxwellian 

velocity distributions and no incident r.adiation on the layer. 

The radiation that emerges normal to the layer's surface is given 

by the solution to the equation of radiative transfer. For normal 

propagation and no incident radiation this solution is simply 

I 
~ 
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where 

(!_l.51) 

and S and ol are the source .function and absorption coefficient 

respectivel y. For the case of a Ma.xlrellian velocity distribution the 

source function S'° is the Planck function t'.t_,°'" 
i.e. 

ff. e. -1 

which is the usual Rayleigh-Jeans approximation. 

Therefore 

1-c. T(t) (J . . .. 0) 

0 

This integral must be evaluated for both polarizations, with 

.z 
L f o1:; d-z ~ . = 

0 

(u .c.•' 
z 

9Z 
~ "' I ol:, dz 

0 

A reasonable approximation is to treat oc. 
L 

essential.J.y constant as w 
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and small over the entire region. Then 

... '- Qt.•~) ~~ "::! ct 4 
~ 

and 

'- L L (ll. C.3) ""l'.:o ~ d. ..... 

For this model 

Therefore 

f 
L L 

-y- --... % L. 
I• ._/Cf ( 2~ -t) C ot'U .(:z 

0 

T9 a.Z!- (e"P(z-~L)-.J (u . lo~) 

e. (.i - ..,~ l.) 

~ 

For I the resonance region "" -"-'c.. is virtually an infinite w 

absorber. Moreover, outside this region 

Therefore 
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(au.'1) 

where l* i s defined by 

\U -= ~. e~r ( z '[_ - ' ) 

and (u. b'l) 

Finally 

= 

Figure 7 s hows the variation of {r'/.., with frequency w for 

and 

" L ~ 'o ,_ 

since white dwarf atmospheres general.ly have a depth from 1% to 10% 

of the star•s radius (Motz 1970). 

The decrease of r with increasing U.t is similar to the behaviour 

derived by Kemp (1970) in his gr ay-body magnetoemisaion theory (i.e. 
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). The outer nedge11 of the atmosphere could supposedly 

provide a low frequency cutoff for the polarizing mechanism as both 

absorption coefficients drop to zero. Finally, the degree of circular 

polarization from the whole star brings back the need for the factor 

17_ representing the ratio of the spot 1 s flux to that of the whole 

disk. 
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Chapter 12 

CONCLUSIONS AND DISCUSSION 

Simple models of cyclotron active regions on the surface of white 

dwarfs can account for some of the qualitative and quantitative aspects 

observed in the degree of circular polarization of their optical 

emission. A spot with a magnetic field oblique to the star• s 

rotational axis can give a sinusoidal dependence. A spot with a 

temperature and magnetic field gradient can give a wave-leng\h 

dependence. A series of spots can account for the phase differences 

at different wave-lengths. 

Some sort of combination of the models presented in sections 11.2 

through 11 .5 might be the answer, though the complexities of oblique 

propagation, non-layering, etc. would make a thorough investigation 

very arduous. An obvious improvement would be the use of a theoretical 

white dwarf atmosphere model. 

other mechanisms are of course possible. Kemp (1970) suggests a 

magnetic breakdown in hydrogen resulting in a series of Landau-like 

levels as has been suggested for hydrogen in-1012 gauss. 108 gauss is 

a rather difficult intermediate case unfortunately. Moreover, there 

still remains the problem of different time phases of these supposed 

Landau harmonics. 

There is also the question of linear polarization. It has been 
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observed in the white chiarf optical emission and is an order of 

magnitude amaller (Kemp 1970). Linear polarization usually suggests 
~ 

a transverse )b component. Sections ll.2 to ll.4 could be extended 

to look at linear polarization effects. 

As a final note, circular polarization has been observed in 

Jupiter's decimetric emission (Komesaroff et al. 1970). "Thin" shell 

synchrotron radiation has been favoured as the source mechanism, 

thereby predicting a surf ace polar field strength of between 22 and 

100 gauss. 

Thus these polarization and magnetic effects cover a lot of 

territory :- ten orders of magnitude in magnetic field strength, 

radiation via bremsstrahlung, hydrogen transitions, cyclotron and 

synchrotron mechanisms, and astronomical. entities such as neutron 

stars, white dwarfs, and planets. This thesis has described some of 

my efforts in this vast subject area. 
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Figure l: Cyclotron Radiation 
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Figure 2: Hemispherical Shell and a Radial Magnetic Field 
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Figure 3: Hemispherical Shell and a Dipole-like Magnetic Field 
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Figure 4: A Thin Spot on a Star•s Surface 
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Figure 5: Cyclotron Absorption Coefficients 
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Figure 6: An Atmospheric Layer 
A 

F~ 
F ... 

w 

"" I 

·~ 
T ....u 

" 
Ne 

l '°le w~ N~/. 
e 

"% - - - - - - - - -wc'°W 
L T" "-! ~ w 

v 

i: e. woe r-1..e 



-122-

Figure 7: Circular Polarization vs. Frequency 
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