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Abstract

Random matrix theory has seen rapid development in recent years. In particular, researchers

have developed many non-asymptotic matrix concentration inequalities that parallel power-

ful scalar concentration inequalities. In this thesis, we focus on three topics: 1) estimating

sparse covariance matrix using matrix concentration inequalities, 2) constructing the matrix

ϕ-entropy to derive matrix concentration inequalities, 3) developing scalable algorithms to

solve the phase recovery problem of ptychography based on low-rank matrix factorization.

Estimation of covariance matrix is an important subject. In the setting of high dimen-

sional statistics, the number of samples can be small in comparison to the dimension of

the problem, thus estimating the complete covariance matrix is unfeasible. By assuming

that the covariance matrix satisfies some sparsity assumptions, prior work has proved that

it is feasible to estimate the sparse covariance matrix of Gaussian distribution using the

masked sample covariance estimator. In this thesis, we use a new approach and apply non-

asymptotic matrix concentration inequalities to obtain tight sample bounds for estimating

the sparse covariance matrix of subgaussian distributions.

The entropy method is a powerful approach in developing scalar concentration inequali-

ties. The key ingredient is the subadditivity property that scalar entropy function exhibits.

In this thesis, we construct a new concept of matrix ϕ-entropy and prove that matrix ϕ-

entropy also satisfies a subadditivity property similar to the scalar form. We apply this new

concept of matrix ϕ-entropy to derive non-asymptotic matrix concentration inequalities.

Ptychography is a computational imaging technique which transforms low-resolution

intensity-only images into a high-resolution complex recovery of the signal. Conventional

algorithms are based on alternating projection, which lacks theoretical guarantees for their

performance. In this thesis, we construct two new algorithms. The first algorithm relies on

a convex formulation of the ptychography problem and on low-rank matrix recovery. This

algorithm improves traditional approaches’ performance but has high computational cost.
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The second algorithm achieves near-linear runtime and memory complexity by factorizing

the objective matrix into its low-rank components and approximates the first algorithm’s

imaging quality.
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Chapter 1

Introduction and History

In this thesis, we study multiples aspects of modern random matrix theory. The matrix

Laplace transform method is a recent and versatile approach to develop easy-to-use

matrix concentration inequalities. In Chapter 3, we apply this method to analyze

the masked sample covariance estimator, which estimates a sparse covariance matrix

using a small number of samples. In Chapter 4, we define a concept of matrix entropy

for finite-dimensional random matrices. We establish that the matrix entropy also

exhibits an appealing subadditivity property and obtain several matrix concentration

results. Recent works formulate the problem of phase retrieval as a convex low-rank

matrix completion problem. In Chapter 5, we consider the specific phase retrieval

problem of ptychography and propose two algorithms. The first algorithm is convex,

achieves better signal recovery than existing iterative methods, but scales poorly when

the problem size increases. The second algorithm is scalable. It takes a non-convex

approach and the performance approximates the recovery quality of the first convex

algorithm.

Our work builds upon a rich set of matrix concentration inequalities that are

developed in recent decades. And we dedicate Chapter 2 of this thesis to a com-

plete treatment. Matrix concentration inequalities depend upon two related fields,

the random matrix theory and the field of developing scalar concentration results. We

summarize these two areas in this introductory chapter. In Section 1.1, we cover both

the asymptotic and nonasymptotic approaches of studying random matrices. Section

1.2 illustrates various methods of deriving scalar concentration inequalities. In partic-

ular, we demonstrate the method of obtaining classical concentration inequalities via

the scalar Laplace transform method, which is the inspiration of the matrix Laplace



2

transform method as explained in Chapter 2. In addition, we summarize the powerful

scalar entropy method. The scalar entropy method stimulates us to develop a similar

entropy method for random matrices in Chapter 4.

1.1 Random Matrix Theory

A random matrix is a random variable taking values in the matrix algebra. Random

matrix theory is a diverse field of research that studies random matrices, in particular

their spectral properties, under various distributions. The main topics include charac-

terizing random matrices’ empirical eigenvalue or singular value distribution, deriving

the expected values of the extreme eigenvalues of a Hermitian random matrix, bound-

ing the expected spectral norm of a random matrix, etc.

In this section, we review the two approaches of studying random matrices: the

asymptotic approach and the non-asymptotic approach. The asymptotic approach

(Section 1.1.1) arose in the 1920s and is also called the classical random matrix the-

ory. The nonasymptotic approach (Section 1.1.2) emerged in recent years as new

applications in information science posed a new set of random matrix problems. As a

result, the techniques of these two approaches are very different.

1.1.1 Asymptotic Approach

In the asymptotic approach, we consider normalized structured random matrices

whose entries follow a certain distribution. As we increase the dimension of the ma-

trix to infinity, the empirical distribution of the eigenvalues of the normalized random

matrix often converges to a certain continuous distribution. The goal of the asymp-

totic approach is to quantify the properties of the limiting spectral distribution in

both the global and the local regimes. We delineate the development of this field

of research and summarize the main topics and directions of work in both the global

regime (Section 1.1.1.1) and the local regime (Section 1.1.1.2). We also mention briefly

the framework of free probability (Section 1.1.1.3) to study random matrices. We rec-

ommend the books of Anderson et. al. [2] and Tao [217] for a good coverage of this

field.
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1.1.1.1 Studying the Limiting Distribution in the Global Regime

Random matrices arise in different application scenarios and researchers aggregate

them into various matrix ensembles with specific structures and study their limiting

spectral properties. In 1928, a random matrix model appeared in Jon Wishart’s

work [246] where he studied the distribution of the sample covariance matrix for a

large multi-variate normal sample. Following Wishart’s work, researchers refer to the

Gaussian sample covariance matrix as the Wishart matrix ensemble. The Wishart

distribution of a d × d Gaussian sample covariance matrix is characterized by two

parameters: a d× d scale matrix Σ that is the true covariance matrix of the samples’

Gaussian distribution xi ∼ N(0,Σ); the degree of freedom n that corresponds to the

number of samples X = (x1, . . . ,xn) ∈ Rd×n that generate the sample covariance

matrix. Thus, the distribution of the sample covariance matrix

Mn =
1

n
XXT

is denoted as Mn ∼ Wd(Σ, n). The Wishart matrix generalizes the scalar chi-square

distribution to the matrix setting. Wishart matrix plays an important role in studying

multivariate statistics. We study the empirical spectral distribution of Mn normalized

by the the matrix dimension as follows:

µ 1
d
Mn

:=
1

d

∑n

i=1
δλi(Mn/d),

where δy is the Dirac delta function at y ∈ R and {λi} are the eigenvalues. The

Marchenko–Pastur law [142] characterizes the limiting eigenvalue distribution of Gaus-

sian sample covariance matrix as we maintain the ratio of the dimension and sample

size y = d/n ∈ (0, 1] constant and take the value of n to infinity. In the case of Σ = I,

we have

µ 1
d
Mn
→ 1

2πxy
·
√

(b− x)(x− a) · 1x∈[a,b] a.s., as y = d/n and n→ +∞,

where a = (1−√y)2 and b = (1+
√
y)2 mark the boundaries of the limiting distribution.

The value of y measures the sampling ratio and the Marchenko–Pastur law tells that
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when the number of samples is very large, such that y is very close to 0, the limiting

distribution is very close to a Dirac delta function at 1. This is consistent with the

intuition that when we have sufficient samples, the sample covariance matrix is close

to the real covariance matrix I in this case.

Then, in 1955, Eugene Wigner [245] constructed large symmetric random matrices

to model the behavior of atomic nuclei. Wigner’s work motivated a line of research

regarding the asymptotic behaviors of large Hermitian matrices with i.i.d. entries, or

as we call them today, the Wigner matrices. A d×dWigner matrix can be represented

as Wd = (ξij) where the entries {ξij} are complex and satisfy the Hermitian condition

ξij = ξ∗ji, and the upper-triangle entries {ξij}i>j are i.i.d. complex random variables.

The corresponding normalized empirical spectral distribution is

µ 1√
d
Wd

:=
1

n
·
∑d

i=1
δλi(Wd/

√
d).

Special cases of the Wigner matrix include the Gaussian matrix ensembles, which

include the Gaussian Unitary Ensemble (GUE), the Gaussian Orthogonal Ensemble

(GOE), and the Gaussian Symplectic Ensemble (GSE), whose distributions are invari-

ant under unitary, orthogonal, and symplectic conjugation respectively. In Wigner’s

work, he considered the special case when the the upper-triangle entries are inde-

pendent and follow the standard Gaussian distribution. He proved that the limiting

spectral distribution of 1√
d
Wd is the semicircle law. The semicircle law [245] states

that as we increase the dimension to infinity, the empirical spectral distribution of
1√
d
Wd converges in probability to the semicircle distribution:

µ 1√
d
Wd
→ 1

2π

√
4− |x|2 · 1x∈[−2,2] dx in probability., as d→ +∞. (1.1.1)

After Wigner’s work, various authors consider more general cases of Hermitian

matrices and attempt to establish conditions for stronger convergence. The intuition

is to go beyond specific structure assumptions associated with each random matrix

ensemble and establish the limiting distribution of a large group of matrices sharing

the same symmetry structure. This intuition is called the universality principle [62]. In

[4], Arnold established that when the upper-triangular entries are independent, mean-
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zero, and have unit variance, a sufficient condition for the limiting spectral distribution

to converge almost surely to the semicircle law (1.1.1) is that the entries have finite

fourth moment. It turns out that the almost-sure convergence still holds without the

finite fourth moment assumption. See the details in Bai and Silverstein’s monograph

[6, Chapter 2].

Bai and Yin [7] also made a connection between the sample covariance matrix and

the semicircle law. They assume that the matrix X ∈ Cd×n have i.i.d. entries with

mean zero, unit variance, and finite fourth-moment. Take the limit of n → ∞ and

d/n → 0. Then the empirical spectral distribution of the following centered sample

covariance matrix

Bd =
1√
nd

(XX ′ − I)

converges to the semicircle law (1.1.1) almost surely.

Going beyong Hermitian random matrices, we have an important conjecture, the

circular law. This conjecture posits that when the entries of an n× n random matrix

An are i.i.d., centered, and have unit variance, the empirical spectral distribution

of 1√
n
An converges to the uniform distribution on the complex unit disk both in

probability and almost surely. Many authors contribute to proving this conjecture,

including Zhou & Pan [171] and Götze & Tikhomirov [83]. Tao and Vu fully establish

the circular law in their work [221].

1.1.1.2 Studying the Limiting Distribution in the Local Regime

In the asymptotic approach, studying the spectral properties in the local regime is

also very important and bears many fruitful results. Research in the local regime is

divided into two categories. The first category looks at the bulk statistics and studies

the statistical properties such as the joint distributions of the eigenvalues that lie

between the extreme eigenvalues. The focus is the k-point correlation function

ρ
(n)
k (x1, . . . , xk) where k ≤ n and x1 < x2 < · · ·xk

for an n × n matrix. The k-point correlation function is the limiting probability

density for the event that there is an eigenvalue in each of the disjoint intervals

[x1, x1 + ε], . . . , [xk, xk + ε] as ε → 0. Integrating various functions against the k-
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point correlation function leads to quantities such as the eigenvalue gap, etc.

One central theme in this line of work is to establish the Wigner–Dyson–Mehta

universality conjecture [67], which posits that when appropriated normalized, the k-

point correlation functions of the eigenvalues of an n × n Wigner matrix in the bulk

converges to the k-point correlation function of the Dyson sine process when we take

the limit n → +∞. An early result is given by Ginibre [79] for the Gaussian Uni-

tary Ensemble (GUE), in which the matrix entries are independent, standard normal

variables. The distribution of a GUE matrix is invariant under conjugation of uni-

tary matrices. Ginibre obtained explicit expressions for the joint distributions and the

spacing between the eigenvalues for GUE matrices. Then in 2001, Johansson [107]

proved the conjecture for a more general glass of Wigner matrix, called the Johansson

ensemble, which is a linear interpolation between an arbitrary Wigner matrix and a

GUE matrix. In recent years, we see important breakthroughs which establish the

conjecture for a larger class of matrix ensemble. Erdos et.al. [68] prove the univer-

sality conjecture for all Wigner matrices whose entries distribute according to certain

smoothness and decay conditions. In the work of Tao & Vu [218], the authors es-

tablish the conjecture based on certain moments assumption and conditions on the

support of the distribution of the matrix entries. Combining their methods together,

the authors [69] jointly validate the conjecture for all Wigner matrices whose entries

exhibit sub-exponential distributions. Tao and Vu [219] further establish the conjec-

ture under a stronger sense of convergence. Going beyond Hermitian matrices, Tao

and Vu [220] prove that the bulk statistics of non-Hermitian matrices with indepen-

dent entries whose distribution satisfies certain conditions also exhibit the asymptotic

behavior of the conjecture.

The second category studies the edge, or the extreme eigenvalues of the limiting

spectral distribution, which has a different asymptotic behavior compared with the

bulk. The Bai–Yin law [5] describes the following limiting behavior of the extreme

singular values for an N × n matrix whose entries are i.i.d. with zero mean, unit

variance, and finite fourth moment:

smin(A) ∼
√
N −

√
n and smax(A) ∼

√
N +

√
n almost surely, (1.1.2)
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as N →∞ and n/N converges to a constant. Another important result is the Tracy–

Widom distributions [228, 229] which characterize the distribution of the normalized

largest eigenvalue of the Wigner matrices. Tracy–Widom distributions consist of three

types, which correspond to the Gaussian Orthogonal, Unitary, and Symplectic Ensem-

bles respectively. The universality principle also exhibits in the random matrices’ edge

behavior. For example, El Karoui [116] extended this result to the Wishart distribu-

tion and provided the sufficient conditions for the largest eigenvalue of a nonsingular

Gaussian sample covariance matrix to converge to the Tracy–Widom distribution.

Onatski [165] extends El Karoui’s result to the singular Wishart distribution. We also

mention a recent work by Bao et. al. [9] along this direction.

1.1.1.3 Free Probability

A new theoretical framework to study random matrices asymptotically is the free

probability developed by Volculescu. Instead of the traditional probability space, free

probability is based upon a possibly noncommutative algebra endowed with a linear

expectation functional. Voiculescu [241] showed that when the dimension goes to

infinity, the behaviors of random matrices converge to those of free random variables.

In addition, Voiculescu established that free random variables also have a central limit

theorem where the limiting distribution is Wigner’s semicircle law (1.1.1). Voiculescu

defined the concept of free entropy [243] in free probability and demonstrated the

connections between the free entropy and the asymptotic behavior of large random

matrices. He also explained the applications of free entropy in solving problems related

to von Neumann algebras. Speicher’s book chapter [203], Hiai and Petz’s book [95],

and Voiculescu’s book [242] provide a good reference for this field.

1.1.2 Non-asymptotic Results

This thesis focuses on the concentration inequalities of finite dimensional structured

random matrices and this field belongs to the second nonasymptotic approach of

studying random matrices. Unlike in the asymptotic approach, where the normal-

ized empirical spectral distribution converges when the matrix’s dimension is taken to

infinity, the spectral distribution of finite size random matrices is far from convergent

and usually depends on the specific structures of the random matrices. Thus, the
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goal of the nonasymptotic approach is to derive approximate characterizations of the

spectral distribution of finite-size random matrices.

The first set of problems is to derive nonasymptotic versions of the asymptotic

results for random matrix ensembles. Due to the accommodating properties of the

Gaussian distribution, such results appeared first for random matrices with Gaussian

entries. For example, Gordon’s theorem [59] is the following nonasymptotic version of

the Bai-Yin law (1.1.2) that bounds the extreme singular values of an N ×n (N > n)

matrix A with independent entries that follow the standard normal distribution:

√
N −

√
n ≤ E smin(A) ≤ E smax(A) ≤

√
N +

√
n. (1.1.3)

Szarek [208] characterized the deviation of the interior singular values from their ‘typ-

ical locations’ for square matrices with independent Gaussian entries, which can be

considered as a nonasymptotic version of the semicircle law. Going beyond the Gaus-

sian distribution, an important result due to Latala [121] extends the upper bound

in (1.1.3) and controls the expected maximum singular value of a random matrix A

whose entries aij are independent and have zero mean:

E smax(A) ≤ C
[
max
i

(∑
j
E a2

ij

)1/2
+ max

j

(∑
i
E a2

ij

)1/2
+
(∑

i,j
E a4

ij

)1/4
]
, (1.1.4)

where C is a universal constant. Seginer derived similar results in his work [200]. Other

authors including Szarek [209], Litval et. al. [135], and Rudelson & Vershynin [194,

195] characterize the least singular values of random matrices. We point out that

Vershynin’s chapter [239] is a good source for reference.

Another set of problems in the nonasymptotic approach is to derive matrix concentration-

of-measure results, which include the large deviation probability bounds and matrix

moment bounds, for random matrix functions. The former provides upper bounds on

the probability that a random matrix X of finite dimension deviates from its mean

EX by a certain threshold t:

P {‖X − EX‖ ≥ t} .

These probabilistic upper bounds usually depend on the ambient dimension of the
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random matrix and other parameters related to the distribution. The latter provides

upper bounds on the matrix moments as measured by the Shatten p-norm:

E ‖X‖pp for all p ∈ Z+,

where ‖X‖p =
(∑

i s
p
i (X)

)1/p and {si(X)} are the singular values of X. These two

problems are very related and usually an improved result in one implies potential

refinement in the other. This set of problems parallels the scalar concentration results

that we introduce in Section 1.2.1. In this section, we summarize related applications.

In Chapter 2, we provide an in-depth discussion on the history and main results of

matrix concentration inequalities.

The interest in deriving nonasymptotic concentration inequalities for random ma-

trix functions stems from many modern applications that require characterizations

of the spectrum of finite-size random matrices. One related field of application is

compressed sensing [65], which leverages the sparsity heuristic to recover high di-

mensional signals that can be sparsely represented in a certain basis from a set of

under-determined linear measurements. A sufficient condition for successful recov-

ery of the sparse signal is that the sampling matrix satisfies the restricted isometry

property (RIP) [43]. RIP requires that any submatrix of the sampling matrix roughly

preserves the spectral norm when the submatrix multiplies with an arbitrary vector.

Constructions of deterministic sampling matrices that satisfy RIP are difficult while

Candes et al [43] show that certain classes of random matrices exhibit RIP with very

high probability. Rauhut’s chapter [185] shows that matrix concentration inequalities

such as the non-commutative Khintchine’s inequality play an important role in estab-

lishing the RIP properties of random matrices. The non-commutative Khintchine’s

inequality extends from classical scalar Khintchine’s inequality and controls high-order

matrix moments for a sum of deterministic matrices, instead of scalars, modulated by

independent Rademacher or Gaussian random variables with second-order matrix vari-

ance. Finding the best streamlined derivation and obtaining the tightest upper bound

is an active research topic and we review its development in Chapter 2. Another

related field of application is high dimensional data analytics. As the size of data

matrices increases, operations such as a full singular value decomposition become ex-
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orbitantly expensive. Based on the spectral properties of random matrices, various

authors including Halko et al. [91] have developed approximate randomized algorithms

that reduces computational complexity by dimensionality reduction.

Scalar concentration inequalities is a well-developed field. Although matrices are

non-commutative, researchers have drawn inspirations from the methodologies of de-

veloping scalar concentration inequalities and have successfully developed some matrix

counterparts. In the next section, we illustrate concepts and methods from scalar con-

centration inequalities that are relevant in the scope of the thesis.

1.2 Scalar Concentration Inequalities

In probability theory, the law of large numbers dictates that the average of n inde-

pendent and identically distributed random variables converges asympotically to the

mean, in probability (the weak law) or almost surely (the strong law), as the number

of summands n goes to infinity. In applications, we often encounter problems that

require non-asympototic characterizations on the deviation of the average of a finite

sum from its mean. Concentration inequalities provide such answers. Classical large

deviation inequalities, such as Hoeffding’s inequality, estimate the following deviation

probability for a sum of i.i.d. random variables {Xi}

P
{∣∣∣∣ 1n ·∑n

i=1
Xi − EXi

∣∣∣∣ ≥ t} , t ≥ 0. (1.2.1)

The deviation probabilities decay rapidly as the value of t increases and exhibit a

high concentration of measure around the expectation. Besides sums of independent

random variables, the concentration-of-measure phenomenon also extends to more

general scalar functions of independent random variables and developing new tools for

deriving new concentration results is an active field of research.

Another set of concentration inequalities are moment bounds of random functions.

The goal is to bound the following Lp norm of a random function. For example, for a

sum of i.i.d. random variables in this case we want to control

∥∥∥∑n

i=1
Xi

∥∥∥ =
(
E
∣∣∣∑n

i=1
Xi

∣∣∣p)1/p
(1.2.2)
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from above and below. The methods of characterizing scalar large deviation probabili-

ties and moment bounds are often the foundations based on which researchers develop

matrix concentration results.

In this section, we review the scalar concentration inequalities and the relevant

methods. First, we summarize the development of various approaches to study the

scalar concentration of measure phenomenon in Section 1.2.1. Next, we illustrate the

main ideas behind the derivation of classical concentration inequalities via the Laplace

transform method in Section 1.2.2 and the entropy method in Section 1.2.3. The ma-

trix Laplace transform method is the matrix equivalent of the scalar Laplace transform

method, which is the key to multiple matrix concentration inequalities. In particular,

coupled with a deep concavity result called Lieb’s theorem, the matrix Laplace trans-

form method leads to multiple matrix versions of classical concentration inequalities,

which we exhibit in Chapter 2. The scalar entropy method is the inspiration for our

work in constructing the matrix ϕ-entropy in Chapter 4.

1.2.1 Scalar Concentration of Measure Phenomenon

As Talagrand described in his paper [214], the concentration of measure is the phe-

nomenon that with high probability, regular functions of multiple independent vari-

ables are very close to the mean. As described in [125], concentration of measure

phenomenon exists in classical probability, geometric analysis, and functional analy-

sis. The book [30] provides a comprehensive coverage for this field of research. We

illustrate the historical development and the main methods of this field, many of which

serve as foundations for developing matrix concentration inequalities. We start with

the classical concentration inequalities for sums of independent random variables in

Section 1.2.1.1. Next, we review modern approaches of deriving concentration inequal-

ities. These approaches start with the geometric isoperimetric property, which leads

to concentration inequalities for the Gaussian distribution in Section 1.2.1.2. Then in

Section 1.2.1.3, we exhibit Talagrand’s inequality, which is an important development

to generalize Gaussian concentration results to other product distribution. Informa-

tion inequalities are useful tools to derive concentration inequalities. The entropy

method (Section 1.2.1.4) and the transportation cost method (Section 1.2.1.5) are

two major approaches based on information inequalities. Finally, we review a recent
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approach based on Stein’s method in Section 1.2.1.6.

1.2.1.1 Classical Concentration Inequalities

In classical probability we have multiple concentration inequalities for a sum of inde-

pendent random variables. Classical moment bounds include the Khintchine inequality

[118, 134, 170], which controls the Lp norm of a Rademacher sum in both directions:

Ap

(∑n

i=1
a2
i

)1/2
≤
(
E
∣∣∣∑n

i=1
aiεi

∣∣∣p)1/p
≤ Bp

(∑n

i=1
a2
i

)1/2
, (1.2.3)

where a1, . . . , an ∈ R are deterministic and {εi} are i.i.d. Rademacher random vari-

ables. The optimal constants Ap, Bp depend on the value of p. When 0 < p ≤ 2,

Bp = 1 and when 2 ≤ p < ∞, Ap = 1. Szarek [207] established that A1 = 1/
√

2.

Young [247] obtained the optimal Bp for p ≥ 3. Haagerup [88] established the values

of Ap, Bp for the remaining cases.

Another moment bound is the Rosenthal’s inequality [191], which controls the Lp

norm of a sum independent mean-zero random variables. Suppose {Xi} are indepen-

dent and mean-zero, then the Rosenthal inequality says

E
∣∣∣∑n

i=1
Xi

∣∣∣p ≤ Cp ·max

(∑n

i=1
E |Xi|p ,

(∑n

i=1
EX2

i

)p/2)
. (1.2.4)

Many researchers [175, 75, 160, 105, 106] work to obtain the optimal constant Cp.

Later, Burkholder et. al. [38, 39] generalized the Rosenthal’s inequality to the mar-

tingales and the result is called the Burkholder–Davis–Gundy inequality.

Classical large deviation inequalities control the large derivation probability of the

sum from the mean value and they are developed by various authors including Bennet

[15], Bernstein [16], Hoeffding [96] etc. One example is the Hoeffding’s inequality,

which assumes that X1, . . . , Xn ∈ R are independent random variables and each Xi

is bounded by the interval [ai, bi] almost surely. The Hoeffding’s inequality describes

the probability of the deviation of the sum Z = X1 + · · · + Xn from the expectation

as

P {|Z − EZ| ≥ t} ≤ 2 exp

(
− 2t2∑n

i=1(bi − ai)2

)
.

This group of concentration results rely on a common procedure. The first step is the
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Laplace transform method, which controls the deviation probability with the moment

generating function of the sum. The second step is to decouple the random variables

from the moment generating function of the sum using their independence. Convenient

as it is, the decoupling step also prevents the Laplace transform method to derive

concentration inequalities for more general functions of random variables because a

linear decoupling does not always exist. However, the following line of research that

started from the geometric isoperimetric properties provides an alternative route and

produces an abundant set of scalar concentration inequalities.

1.2.1.2 Geometric Isoperimetry and Gaussian Concentration Inequalities

Intuitively, the isoperimetric property says that in a high-dimension real space, the

Euclidean ball has the smallest surface among all compact sets with the same volume.

This idea, attributed to Levy [129] and Schmidt [198], leads to an important con-

centration of measure result on high-dimensional real unit spheres. Assume that the

n-dimensional unit ball Sn is endowed with a uniform measure µ with total measure

µ(Sn) = 1. Suppose D ∈ Sn covers more than half of the surface of Sn, that is,

µ(D) ≥ 1/2. Expand D outwards from its boundary by a distance of t to arrive at

the fattened set

Dt = {y ∈ Sn : ∃x ∈ D s.t. ‖x− y‖ ≤ t}.

Then Levy and Schmidt show that the measure of the complement of Dt decays very

rapidly as we increase t:

1− µ(Dt) ≤ e−nt
2/2. (1.2.5)

Intuitively this result says that fattening D by a distance t quickly absorbs the re-

maining measure on the unit sphere. It also implies that the majority of measure

concentrates around the boundary of any half sphere. Milman applied this result

extensively in his proof of the Dvoretsky theorem [157]. Later, Gromov [85] defined

observable diameter, which provides a visual description of the concentration of mea-

sure phenomenon. Levy [130] considered continuous functions on high dimensional

spheres and proved that the functions concentrate around the median value of the

function on the sphere.
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A key step of generalizing the geometric approach is to consider Lipschitz functions

taking variables from abstract metric spaces. One of the early isoperimetric results on

the real space is established for the Gaussian distribution by Borell [25] and Tsirelson

et. al. [237]. Assume that x := (X1, . . . , Xn) is a vector of independent standard

normal random variables and the function f : Rn 7→ R is Lipschitz continuous with

Lipschitz constant L. Then Borell and Tsirelson establish that the value of f(x)

concentrates around the mean and the Lipschitz constant controls the Gaussian-type

deviation probability:

P {|f(x)− E f(x)| > t} ≤ 2 exp

(
− t2

2L2

)
, for all t > 0.

1.2.1.3 Talagrand’s Inequality and Empirical Process

The next development occurred to generalize the concentration results for Gaussian

distributions to other product distributions. Talagrand made important contributions

in this direction and the paper [214] summarizes the new methods that Talagrand

developed to study concentration of measure phenomenon on product spaces. One

important result, called Talagrand’s inequality, appeared in [210] and was later refined

and extended in [212]. It considers a product space Ω = Ω1×· · ·×Ωn associated with

a product probability P = µ1 ⊗ · · · ⊗ µn and says that for any nonempty measurable

subset A ⊂ Ω, the convex distance dc(x,A) between any point x ∈ Ω and the set A is

related by the reciprocal of the probability of the set A:

∫
Ω

edc(x,A)2/4 dP(x) ≤ 1

P {A}
. (1.2.6)

Talagrand’s inequality essentially extends the isoperimetric intuition of (1.2.5) to the

product measure P because it implies a similar rapid probability decay of the comple-

ment of the fattened set:

1− P {At} ≤
1

P {A}
e−t

2/4,

where At is the fattened set defined as At = {x ∈ Ω : dc(x,A) ≤ t}. Talagrand’s

inequality also leads to the following concentration result for convex Lipschitz functions
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on product real space. Suppose f is a convex Lipschitz function with Lipschitz constant

equal to 1 and P = µ1 ⊗ · · · ⊗ µn is a product of probability measures on [0, 1]. The

median of f in the measure P is M . Then

P {f ≥M + t} ≤ 2e−t
2/4. (1.2.7)

As a special case, based on (1.2.7) Talagrand proved the scalar Khintchine’s inequality

in [210]. We mentioned that Maurey [156] provided an alternative proof of Talagrand’s

inequality (1.2.6).

Talagrand also developed a method to control the tail probability of a supremum

of Gaussian processes in [211]. He isolated the main contribution of the tail proba-

bility to a finite number of points and controlled the deviations of these points using

Gaussian concentration results. An important application of this method relates to

a problem in the empirical processes which was previously studied by Keifer [119],

Massart [151], etc. Suppose X1, . . . , Xn are independently samples from the same

probability distribution on R and F is a countable set of real functions. The goal

of studying the suprema of the empirical processes is to quantify the large deviation

probability of the following quantity

Z = sup
f∈F

∣∣∣∑n

i=1
f(Xi)− nE f(X1)

∣∣∣ . (1.2.8)

This quantity characterizes the worst speed of convergence to the expectation E f(X1)

among all the functions in the set F . Bounding the large deviation probability of

(1.2.8) describes the nonasymptotic behavior of (1.2.8) that evolves with the sample

size n, which is an important question in the nonasymptotic theory of model selection

[154] in statistics. Talagrand’s approach [213] provided an improved upper bound

for the deviation probability when the function set F satisfies certain conditions and

motivated researchers to use concentration of measure inequalities to study model

selection nonasymptotically. As pointed out by Talagrand [213], these conditions are

unwieldy and that the ideal goal is to derive results based on easier conditions such
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as an upper bound on the supremum of the variance in the function set F :

σ2(F) = sup
f∈F

(E(f − E f))2. (1.2.9)

Talagrand later provided a result in his work [214] and provided a Bennett-type bound

for the deviation inequality of Z based on the variance supremum σ2(F). Noticing

the power of concentration inequalities to study many application problems, many

researchers develop other methods for developing general-purpose and easy-to-use

concentration inequalities. A particularly fruitful approach is to take advantage of

information inequalities which we illustrate in the next two sections.

1.2.1.4 The Entropy Method

The connection between concentration results with information inequalities started

to appear in the works of Marton [150], Dembo [63], Ledoux [123], and Bobkov &

Ledoux [24]. Generally speaking, we can classify their results into two classes. The

first class such as the work of Ledoux and Bobkov & Ledoux is the entropy method

and focuses on deriving concentration results with functional inequalities such as the

logarithmic-Sobolev inequality. These inequalities provide tools and methods to over-

come the limit of the Laplace transform method when the function does not admit

linear decoupling. Ledoux’s book [125] is a good reference for this method and in

Section 1.2.3, we review the main arguments of the entropy method. The second

class such as Marton’s work depends on another type of functional inequality, the

transportation cost inequality, which is the subject of the next section.

L. Gross [86] introduced the logarithmic-Sobolev inequality to study Markov semi-

groups and he established that a Markov semigroup is hypercontractive if and only if

the corresponding invariant measure of the semigroup satisfies a logarithmic-Sobolev

inequality. The logarithmic-Sobolev inequality controls the entropy of a function under

a probabilistic distribution with a Dirichelet form, which relates to the derivative of the

function. A related inequality is the Poincaré inequality, which controls the variance

of the function by its derivative. In [123], Ledoux developed an inductive method to

tensorize one-dimensional logarithmic-Sobolev inequality to a product measure. The

tensorization property is essentially the subadditivity property of the entropy func-
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tional. Ledoux obtained a slightly different version of Talagrand’s Gaussian-type con-

centration result (1.2.7) for convex Lipschitz functions, where the median is replaced

by the function’s mean value. In the same paper, Ledoux also provided a simplified

proof to for the deviation probability of the maxima of empirical processes established

by Talagrand [214].

After Ledoux’s work, Massart noticed that the constants in Talagrand’s and Ledoux’s

deviation probabilities for the maixima of empirical processes were not clearly derived.

Specifically, when reduced to the one-dimensional case, their deviation probabilities

do not recover the best constants. With this discovery in mind, Massart worked to

obtain the missing constants in his work [152], although still not optimal. Massart also

adopted the argument using the logarithmic-Sobolev inequality. Massart’s approach

reframed the proof of the tensorization property of the logarithmic-Sobolev inequality

that exists in Ledoux’s work [123] using a probabilistic approach based on the vari-

ational characterizations of the entropy functional. This streamlined presentation is

easier to adapt for different applications and Massart is credited with refining the en-

tropy method such that it becomes widely adopted. Based on Massart’s version of the

entropy method., Boucheron et. al. [28] derived multiple concentration inequalities

considered as exponential versions of the Efron–Stein inequality, which controls the

variance of general functions. In their work, the authors also demonstrate that these

results apply to graph theory and other statistical estimation problems.

Another important implication of the entropy method relates to the previously

mentioned subject of empirical processes. The optimal deviation probability for the

suprema of empirical processes is provided by Bousquet in [31] based on Massart’s

refinement of the entropy method. We exhibit Bousquet’s deviation probability [31,

Theorem 2.3] for the suprema (1.2.8) with n i.i.d. samples:

P {Z − EZ ≥ t} ≤ exp (−vh(t/v)) ,

where v = n · σ2(F) + 2EZ is a function of the variance suprema (1.2.9) and h(x) =

(1 + x) log(1 + x)− x.

An significant extension of the entropy method occurs in the work of Latała &

Oleszkiewicz [122]. The authors discovered that the subadditivity property is not
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unique to the Shannon entropy generated from the logarithmic function. They ex-

tended the concept of entropy to a large class of ϕ-entropy functional and constructed

the correspondingly ϕ-Sobolev inequality. Specifically, a subclass of power functions

also generates a set of ϕ-Sobolev inequalities that are tensorizable in a product space.

The authors interpreted these ϕ-Sobolev inequalities as interpolations between the

logarithmic-Sobolev and the Poincaré inequalities. In addition, the authors also estab-

lished the corresponding deviation probabilities for probability measures that satisfy

the ϕ-Sobolev inequalities.

Based on the tensorization property of the generalized ϕ-entropy, Boucheron et. al

[26] derived multiple moment bounds for functions of independent random variables.

In particularly, their method recovers classical Rosenthal and Khintchine-type moment

bounds for sums of independent random variables. The authors also established the

moment bounds of the suprema of empirical processes that complement the results of

Bousquet.

Finally, we mentioned Maurer’s work [155] which provides a slightly different for-

mulation of the entropy method based on thermodynamics. Among the results, Maurer

derived a tighter version of the bounded difference inequality and presented several

directions of extending his method.

1.2.1.5 Transportation Cost Method

A different approach is the transportation cost method, for which Talagrand [216],

Marton [146, 150, 147], Dembo [63], Bobkov & Götze [23] are major contributors.

This method accommodates nonproduct measures especially for Markov chains. We

briefly described the development of the transportation cost method in this section.

The starting point of the transportation cost method is the Pinsker’s inequal-

ity [176], which controls the total variation distance between two measures with their

relative entropy. Based on the Pinsker’s inequality, Marton [146] developed an el-

egant argument to produce isoperimetric results similar to (1.2.5). Expanding this

technique to study contracting Markov chains in [150] and [147], Marton produced a

refined argument for the transportation cost method, which relies on bounding two

types of measure distances, the L1 Wasserstein and L2 Wasserstein distances, by the

relative entropy. The L2 Wasserstein distance has the convenient property that it is
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dimensional free and tensorizes to Euclidean product spaces, which suits the require-

ment for developing concentration results for functions of multiple random variables.

Later, Dembo [63] applied Marton’s argument and reproduced Talagrand’s concen-

tration results in [214]. Other recent works include [148], where Marton extended

this method to study strong mixing Markov chains. In [149] Marton studied concen-

tration inequalities with the transportation cost method when a logarithmic-Sobolev

inequality cannot be easily proved.

We mention that Gozlan & Léonard’s survey [84] is a good source for reference.

Ledoux’s lecture notes [126] provides an in-depth discussion about the connection

between the transport cost method and the logarithmic-Sobolev inequality. Finally,

Villani’s book [240] also contains insightful studies on the transportation cost method.

1.2.1.6 Stein’s Method

Another recent approach of deriving concentration inequalities for scalar random vari-

ables is Chatterjee’s method of exchangeable pairs [51]. The idea has roots in the

classical Stein’s method [205, 10] which was developed by Charles Stein and his stu-

dent Louis Chen and is originally conceived to measure the difference between two

probability distributions and prove the convergence to standard distributions such as

Gaussian and Poisson. Chatterjee [51] constructed the method of exchangeable pairs

based on the Poisson approximation framework of the Stein’s method.

The key of Chatterjee’s exchangeable pairs method is to construct an efficient ex-

changeable pair that contains two random variables that are very ‘close’ to each other.

A good exchangeable pair admits a locally randomized characterization of the vari-

ance and relates the moment generating function or moment bounds with the variance

characterization. This method leads to many fruitful concentration results. Chatterjee

demonstrated the exchangeable pair constructed from a sum of independent random

variables and established variants of multiple classical concentration results such as

the Hoeffding’s inequality [51, Theorem 3.3] and the Bernstein’s inequality [51, The-

orem 3.13]. He also derived a exchangeable pair version of Burkholder–Davis–Gundy

moment bounds [51, Theorem 3.14]. The exchangeable pairs method also applied to

multiple application settings such as the Curie–Weiss model [51, Section 3.3] of fer-

romagnetic interactions, Spearman’s footrule [51, Section 3.7], and the Sherrington–
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Kirkpatrick model [51, Section 3.10] of spin glasses.

Chatterjee [51, Chapter 4] also designed a general approach to construct exchange-

able pairs based on the Poisson equation and a Markov chain coupling method. This

construction leads to Gaussian-type concentration inequalities [51, Theorem 4.3] for

functions of weakly dependent random variables. The dependence relationship is char-

acterized by the Dobrushin’s independence matrix. This concentration result improves

earlier results such as that of Stroock & Zegarlinksi [206] who used the logarithmic-

Sobolev inequalities to produce concentration inequalities from the Dobrushin mixing

condition but their results did not come with explicit constants. Chatterjee also exem-

plify this general approach with applications in graph theory [51, Section 4.4], study

concentrations on the Haar measure [51, Section 4.5], and make connections with free

probability [51, Section 4.6].

The exchangeable pairs method shares many technical details with the entropy

method and the transportation cost method. For example, some of the variance

characterizations in the exchangeable pair method share common intuitions with the

variance quantities defined in [27, 26]. Exploring this connection to gain a better

understanding of the exchangeable pair method is an ongoing area of research. For

example, in [127] Ledoux et. al. explore the connections between Stein’s method, the

logarithmic-Sobolev inequality, and the transportation cost inequalities.

Inspired by Chatterjee’s work, the authors of [138] and [173] extended the method

of exchangeable pairs to random matrices. In Chapter 2, we will discuss the technical

ingredients and intuition of the matrix version of the exchangeable pairs method, which

are very similar to the original argument of Chatterjee’s for scalar random variables.

The matrix concentration results developed in this thesis are strongly tied to the

approach of developing classical concentration inequalities via the scalar Laplace trans-

form method and the scalar entropy method. So in the following two sections, we focus

our attention and summarize the major technical ingredients of these two methods.

1.2.2 Classical Concentration Inequalities via the Laplace Transform

Method

The derivation of classical concentration inequalities, such as the Hoeffding’s inequal-

ity, contains two major steps. The first step (Section 1.2.2.1) is the Laplace transform
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method, which controls the deviation probability with the moment generating func-

tion of the independent sum. The second step (Section 1.2.2.2) decouples the moment

generating function of the sum and bounds the individual moment generating func-

tion. In the following, we instantiate this method by proving the scalar Hoeffding’s

inequality.

1.2.2.1 Scalar Laplace Transform Method

The Laplace transform method, also called the Cramer–Chernoff method [154], con-

verts the problem of bounding the large deviation probability of a sum of independent

random variables into a problem of controlling the moment generating function of each

random variable. Assume that θ > 0 and a scalar random variable Z, then Markov’s

inequality bounds the upper deviation probability of Z with the moment generating

function

P {Z − EZ ≥ t} = P
{

eθ(Z−EZ) ≥ eθt
}
≤ e−θt · E eθ(Z−EZ).

The inequality does not depend on the specific value of θ, which behaves as a tuning

parameter for the probability bound. We can obtain the best upper bound by taking

the infimum over all positive θ:

P {Z − EZ ≥ t} ≤ inf
θ>0

{
e−θt · E eθ(Z−EZ)

}
. (1.2.10)

Equation (1.2.10) is the essence of the Laplace transform method. Note that the

moment generating function E eθ(Z−EZ) is also the Laplace transform of Z−EZ, thus

giving the name of this method.

1.2.2.2 Linear Decoupling of the Moment Generating Function

The moment generating function decouples naturally for a sum of independent random

variables Z = X1 + · · ·+Xn where {Xi} are independent:

E eθ(Z−EZ) =

n∏
i=1

E eθ(Xi−EXi). (1.2.11)
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Thus, we can instead control the deviation probability with the individual moment

generating function E eθ(Xi−EXi) by directing breaking down the independent sum on

the right-hand side of (1.2.10)

P {Z − EZ ≥ t} ≤ inf
θ>0

{
e−θt ·

n∏
i=1

E eθ(Xi−EXi)

}
. (1.2.12)

This step of linear decoupling is the key to deriving concentration results for a sum of

independent random variables such as Hoeffding’s inequality, Bernstein’s inequality,

etc. The remaining step is to control the individual moment generating function

E eθ(Xi−EXi) based on either the boundedness conditions of Xi or assumptions on the

moments of Xi, substitute these upper bounds on the moment generating functions

back into (1.2.12), and find the infimum over the parameter θ. In the case of the scalar

Hoeffding’s inequality, the associated assumption is that the random variables {Xi}

are bounded:

Xi ∈ [ai, bi] almost surely for all i.

This boundedness assumption leads to the following bound of the individual moment

generating function

E eθ(Xi−EXi) ≤ exp

(
θ2(bi − ai)2

8

)
. (1.2.13)

Substituting (1.2.13) into the right-hand side of (1.2.12) gives us a probability devia-

tion bound that depends on the non-negative parameter θ only:

P {Z − EZ ≥ t} ≤ inf
θ>0

exp

(
−θt+

θ2
∑n

i=1(bi − ai)2

8

)
.

Optimize and choose θ = 4t∑n
i=1(bi−ai)2 . We arrive at the upper deviation probability

of the Hoeffding’s inequality:

P {Z − EZ ≥ t} ≤ exp

(
− 2t2∑n

i=1(bi − ai)2

)
.

Applying the same argument to −(Z − EZ) gets the lower deviation.
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1.2.3 The Entropy Method

In this section, we summarize the main ideas of the scalar entropy method based on the

logarithmic-Sobolev inequality. As we mention before, the entropy method overcomes

the limit of the Laplace transform method and leads to concentration inequalities for

general functions of independent random variables. In Section 1.2.3.1, we first review

the definition of entropy for a scalar random variables and an argument by Herbst

that bounds the deviation probability of a random variable in terms of entropy. Then

in Section 1.2.3.2, we derive the concentration inequality for product distributions

that satisfy the logarithmic-Sobolev inequality. In Section 1.2.3.3, we demonstrate

that a modified logarithmic-Sobolev inequality based on the subadditivity property

of entropy leads to a Gaussian-type deviation probability for certain functions of in-

dependent random variables. Finally, we exhibit the generalization of the entropy to

ϕ-entropy and related concentration results in Section 1.2.3.4.

1.2.3.1 Scalar Entropy, Deviation Probability Bound, and Herbst’s Argu-

ment

For each nonnegative, real random variable Z, the entropy functional is defined as

H(Z) := E(Z logZ)− (EZ) log(EZ). (1.2.14)

The entropy method contains two steps. The first step is to control the deviation

probability with the entropy of the random variable’s moment generating function.

Suppose Y = Y (x) is a function that depends on a random vector x = (X1, . . . , Xn) ∈

Rn and EY = 0. Just as in the Laplace transform method, we can use Markov’s

inequality and control the deviation probabilities of Y with the cumulant logE eθY

such that for all t > 0,

P {Y ≥ t} ≤ inf
θ>0

exp
(
−θt+ logE eθY

)
, (1.2.15)

P {Y ≤ −t} ≤ inf
θ<0

exp
(
θt+ logE eθY

)
. (1.2.16)



24

Herbst [60] derived the following important relation that expresses the cumulant gen-

erating function of Y as in terms of the entropy of eθY :

logE eθY = θ

∫ θ

0

H(eβY )

E eβY
· dβ

β2
. (1.2.17)

The major steps of the entropy method are deriving tight estimates for the entropy

functional H(eβY ) usually in relation to the moment generating function E eβY , sub-

stituting the estimates into (1.2.17) and then into (3.3.12), and finally choosing the

optimal tuning parameter θ to obtain probabilistic deviation inequalities of Y .

1.2.3.2 Gaussian Concentration From the Logarithmic-Sobolev Inequali-

ties

There are two approaches to control the entropy function H(eβY ) with the moment

generating function. The first approach is to apply the logarithmic-Sobolev inequalities

for certain joint probability distributions. A probability distribution µ in Rn satisfies

the logarithmc-Sobolev inequality [86] if x is a random vector distributed as µ and

all continuously differentiable functions f : Rn 7→ R with the integrability condition

E
[
f(x)2 log f(x)

]
<∞ satisfy the following inequality:

E(f(x)2 log f(x)2)− E f(x)2 logE f(x)2 ≤ c · E(‖∇f(x)‖2), (1.2.18)

where c is a positive constant. The left-hand side of inequality (1.2.18) can be ex-

pressed in terms of the entropy:

H
(
f2(x)

)
≤ c · E ‖∇f(x)‖2 . (1.2.19)

If the distribution of the random vector x satisfies the logarithmic-Sobolev inequality

with constant c and Y (x) is Lipschitz continuous with constant L, then substitute

f(x) = eθY (x)/2 into the right-hand side of (1.2.19) such that

E ‖∇f(x)‖2 =
θ2

4
· E
[
‖∇Y ‖2 · eθY

]
≤ L2θ2

4
· E eθY .
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And we obtain the following bound that controls the entropy of eθY (x) by the moment

generating function of Y (x):

H
(
eθY
)
≤ cL2θ2

4
· E eθY .

Substitute this result into (1.2.17) and we control the cumulant

logE eθY ≤ cL2θ2

4
.

Then substitute into (3.3.12), set θ = 2t/cL2, and we arrive at the desired devation

bound:

P {Y ≥ t} ≤ e−
t2

cL2 .

The remaining question is to determine the set of distributions in Rn that satisfy the

logarithmic-Sobolev inequality and quantify the corresponding constant c. Proving

whether a multivariate distribution satisfies the logarithmic-Sobolev inequality is chal-

lenging. A sufficient condition is that the distribution exhibits the hypercontractivity

property. Distributions that are known to satisfy the logarithmic-Sobolev inequality

include the multivariate Gaussian distribution, whose logarithmic-Sobolev constant is

c = 2, and the symmetric Bernoulli distribution. For an in-depth distribution of the

logarithmic-Sobolev inequality, one can refer to the lecture notes of Ledoux [125] and

Guionnet and Zegarlinski [87].

1.2.3.3 Bounded Differences Inequality fromModified Logarithmic-Sobolev

Inequalities

To overcome the difficulty of establishing the logarithmic-Sobolev inequality for an

arbitrary product distribution, another approach takes a divide-and-conquer method

by taking advantage of the subadditivity property of the entropy functional and con-

structs a modified logarithmic-Sobolev inequality. This approach depends on two du-

ality characterizations of the entropy functional with a supremum and infimum, which

we exhibit in Section 1.2.3.3.1. We demonstrate that the supremum representation

leads to the subadditivity property of entropy in Section 1.2.3.3.2, while the infimum

representation bounds the conditional entropy and leads to a modified logarithmic-
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Sobolev inequality in Section 1.2.3.3.3. Finally, we illustrate how the modified-Sobolev

inequality leads to Gaussian-type deviation probabilities of Boucheron et. al. [26] in

Section 1.2.3.3.4.

1.2.3.3.1 Two Duality Representations The first characterization is due to the

convexity of the entropy functional and approximates H(Z) from below with a set of

linear functions of Z, each of which is characterized by a non-negative random variable

U :

H(Z) = sup
U>0

{
E[(logU − logEU)(Z − U)] +H(U)

}
. (1.2.20)

The second characterization approximates the entropy of Z from above with the infi-

mum of functions that depend on both Z and another positive random variable U :

H(Z) = inf
U>0

E
[
Z(logZ − logU)− (Z − U)

]
. (1.2.21)

The supremum of (1.2.20) and the infimum of (1.2.21) are both attained when U = Z.

1.2.3.3.2 The Supremum Representation Establishes the Subadditivity

Property of Entropy As we assume previously, Z = eθY (X1,...,Xn) is a function

of independent random variables X1, . . . , Xn. The conditional entropy functional is

defined with a conditional expectation instead:

Hi(Z) := Ei(Z logZ)− (Ei Z) · log(Ei Z),

where Ei = E(·|X1, . . . , Xi−1, Xi+1, . . . , Xn) denotes the expectation taken with re-

spect to Xi, while keeping all other Xj(j 6= i) fixed. The first duality relation (1.2.20)

leads to the subadditivity propert of the entropy, which is the following result that

controls the total entropy H(Z) by a sum of the individual conditional entropies:

H(Z) ≤
∑n

i=1
E[Hi(Z)]. (1.2.22)

Controlling the total entropyH(Z) for distributions that do not satisfy the logarithmic-

Sobolev inequality (1.2.18) is difficult. The expectation is that one might be able to

control the conditional entropy Hi(Z) based on the properties of marginal distribu-
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tion for each Xi. The first step of establishing (1.2.22) is to apply the duality relation

to obtain the following Jensen-type inequality, which captures the convexity of the

entropy functional:

H(E1 Z) = sup
U>0
{E[(logU − logEU)(E1 Z − U)] +H(U)}

≤ E1 sup
U>0
{E[(logU − logEU)(Z − U)] +H(U)}

= E1H(Z). (1.2.23)

The first and third relations are both the duality relation (1.2.20). The second relation

is because taking the supremum over a linear function is convex.

The second step is to use the convexity property (1.2.23) of entropy to break down

the total entropy. The argument is iterative and the following steps of extracting the

first conditional entropy in the sum of (1.2.22) contain the main ideas:

H(Z) = E[ϕ(Z)− ϕ(E1 Z) + ϕ(E1 Z)− ϕ(EZ)]

= E[E1 ϕ(Z)− ϕ(E1 Z)] + E[ϕ(E1 Z)− ϕ(EE1 Z)]

= EH1(Z) +H(E1 Z)

≤ EH1(Z) + E1H(Z),

where the last relation is due to the convexity property (1.2.23). Apply the same

argument repeatedly to establish the subadditivity inequality:

H(Z) ≤ EH1(Z) + E1H(Z)

≤ EH1(Z) + EH2(Z) + E2H(Z)

≤ · · ·

≤
∑n

i=1
E[Hi(Z)].

1.2.3.3.3 The Infimum Representation Establishes a Modified Logarithmic-

Sobolev Inequality With the integration representation (1.2.17) of the cumulant

and the subadditivity property (1.2.22), we can use the upper bounds on the condi-

tional entropy Hi(Z) to obtain concentration inequalities for functions of independent
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random variables from a larger set of distributions. One common approach is to con-

trol each of the conditional entropies on the right-hand side of (1.2.22) by applying

the second duality representation (1.2.21) conditionally, such that

Hi(Z) ≤ Ei
[
Z(logZ − logZ(i))− (Z − Z(i))

]
, (1.2.24)

where

Z(i) := eθY
(i)

and Y (i) = Y (X1, . . . , X
′
i, . . . , Xn),

and X ′i is an independent copy of Xi. Intuitively, Y (i) as previously defined is a local

perturbation of Y by swapping one of the random variable Xi with an independent

copy X ′i.

Conditioned on (X1, . . . , Xi−1, Xi+1, . . . , Xn), the joint distribution of (Z,Z(i)) is

the same as that of (Z(i), Z), so we can apply the following symmetry argument to

(1.2.24):

Hi(Z) =
1

2
·
[
Ei
[
Z(logZ − logZ(i))− (Z − Z(i))

]
+ Ei

[
Z(i)(logZ(i) − logZ)− (Z(i) − Z)

]]
=

1

2
Ei
[
(Z − Z(i)) · (ψ(Z)− ψ(Z(i))

]
, (1.2.25)

where ψ(x) = 1 + log x. We substitute (1.2.25) into the right-hand side of the sub-

additivity inequality (1.2.22) and obtain the following modified logarithmic-Sobolev

inequality:

H(Z) ≤ 1

2

∑n

i=1
E
[
(Z − Z(i))(ψ(Z)− ψ(Z(i))

]
. (1.2.26)

1.2.3.3.4 Boucheron’s Gaussian-Type Concentration Inequalities The in-

equality (1.2.26) allows us to use second order statistics that characterize local-variations

of Y to control its entropy. We introduce the approach of Boucheron et. al. [28, 29]
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which depends on a variant of (1.2.26) that we derive in the following steps:

H(Z) ≤ 1

2

∑n

i=1

[
E
[
(Z − Z(i))+(ψ(Z)− ψ(Z(i))

]
+ E

[
(Z − Z(i))−(ψ(Z)− ψ(Z(i))

]]
=

1

2

∑n

i=1

[
E
[
(Z − Z(i))+(ψ(Z)− ψ(Z(i))

]
+ E

[
(Z(i) − Z)−(ψ(Z(i))− ψ(Z)

]]
=
∑n

i=1
E
[
(Z − Z(i))+(ψ(Z)− ψ(Z(i))

]
, (1.2.27)

where X+ = max{0, X} and X− = min{0, X} are the positive and negative parts

of X respectively. In the first relation, we break down the summand into two parts

depending on the sign of (Z − Z(i)). The second relation relies on the fact that the

joint distribution of (Z,Z(i)) is the same as that of (Z(i), Z) such that we can swap Z

with Z(i) inside the second expectation. We combine the two expectations in the last

relation by identifying (Z(i) − Z)− with −(Z − Z(i))+.

Boucheron et. al. also define the following two non-negative random variables which

are functions of x = (X1, . . . , Xn) and characterize the up-side and down-side second-

order local variations of the random variable Y :

V+(x) = E
[∑n

i=1
(Y − Y (i))2 · 1Y≥Y (i)

∣∣x] , (1.2.28)

V−(x) = E
[∑n

i=1
(Y − Y (i))2 · 1Y <Y (i)

∣∣x] . (1.2.29)

The random variables V+ and V− can be interpreted as one-sided conditional variance.

The first V+ implicitly controls the upper deviation probability via the conditional

entropy while V− controls the lower deviation because (1.2.27) leads to

H(eθY ) ≤ θ2 E
[
V+ · eθY

]
, when θ > 0, (1.2.30)

H(eθY ) ≤ θ2 E
[
V− · eθY

]
, when θ < 0. (1.2.31)

If we can bound V+ and V− by constants C+ and C− uniformly, we control the entropy

by substituting (1.2.30) and (1.2.31) into the subadditivity inequality(1.2.22):

H
(
eθY
)
≤ C+θ

2 · E(eθY ) when θ > 0, (1.2.32)

H
(
eθY
)
≤ C−θ2 · E(eθY ) when θ < 0. (1.2.33)
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The final step is to substitute (1.2.32) and (1.2.33) into (1.2.17) and then (3.3.12) to

arrive at the concentration bounds:

P {Y > t} ≤ e−t
2/4C+ and P {Y < −t} ≤ e−t

2/4C− for all t > 0.

In their paper, Boucheron et. al. also show that one can obtain more refined concen-

tration bounds by correspondingly tightening the upper bound on V+ and V−.

1.2.3.4 Φ-Entropy and Moment Bounds

It turns out that in addition to the logarithmic entropy (1.2.14), the supremum rep-

resentation (1.2.20) and the subadditivity property (1.2.22) exist for a larger set of

entropy functionals. Let ϕ : R+ 7→ R be a convex function. The ϕ-entropy func-

tional [122], which is a general class of entropy, is defined as

Hϕ(Z) := Eϕ(Z)− ϕ(EZ),

while with the conditional ϕ-entropy is defined as

Hϕ,i := Ei ϕ(Z)− ϕ(Ei Z)

for a product probability distribution. The subadditivity property of the ϕ-entropy is

the following inequality:

Hϕ(Z) ≤
∑n

i=1
E[Hϕ,i(Z)].

The logarithmic entropy (1.2.14) is a special case with ϕ : t 7→ t log t. Researchers

including Latała & Oleszkiewicz [122], Chafaï [47, 48], and Boucheron et al. [26] es-

tablished the conditions that the function ϕ shall satisfy such that the ϕ-entropy

functional is subadditive and as a result extended the scalar entropy method. In par-

ticular, the power functions ϕ : t 7→ tp with p ∈ [1, 2] belong to this function class.

Based on the power functions, Latała & Oleszkiewiczï [122] delineate the set of dis-

tributions that satisfy a new set of ϕ-Sobolev inequality, which interpolates between

the logarithmic-Sobolev inequality that controls the entropy of a function and the
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Poincaré inequality that controls the variance of a function. The authors also estab-

lished that the subadditivity of the ϕ-entropy functional leads to the tensorization of

the ϕ-Sobolev inequalities to product measure and the ϕ-Sobolev inequalities produce

probabilities tail bounds between Gaussian-type and exponential decay.

The ϕ-entropy functional with the corresponding ϕ-Sobolev inequality expands the

set of concentration inequalities obtained via the entropy method. In particular, the

power functions ϕ : t 7→ tp with p ∈ [1, 2] lead to polynomial concentration inequalities

that control the moment growth of functions of independent random variables. For

example, Boucheron et. al. [26] proved that if there exists a constant C such that

controls the two variation quantities V+ ≤ C and V− ≤ C almost surely, then the

following moment inequality holds for Y :

(
EY q

)1/q ≤ 21/q ·

√
qC

e−
√

e
. (1.2.34)

This result says that higher-order moments of the random variable Y can be controlled

by second-order statistics.
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Chapter 2

Context and Impact

In this chapter, we first summarize the field of matrix concentration inequalities in

Section 2.1. We focus on the development of the theories. In particular, we exhibit

two important approaches of deriving concentration inequalities for random matrices.

The first approach is based on the powerful Lieb’s Theorem and parallels the scalar

argument of developing classical concentration inequalities. The second approach is

the method of exchangeable pairs. Our goal is to provide the theoretical background

based on which the major results of the thesis develop.

Next, we illustrate the first two main results of the thesis in Section 2.2, the analysis

of the masked sample covariance estimator and the work on deriving matrix concen-

tration inequalities with matrix ϕ-entropy that appear in Chapter 3 and Chapter 4

respectively.

2.1 Matrix Concentration Inequalities

We begin this section by discussing the fruitful development of matrix concentration

inequalities in the recent decades in Section 2.1.1. Afterwards, we recap the major

technical ingredients for the matrix Laplace transform method in Section 2.1.2 and

the matrix exchangeable pairs method in Section 2.1.3.

2.1.1 History of Matrix Concentration Inequalities

As we mentioned in Chapter 1, there are two major types of problems in studying the

concentration inequalities of matrix functions. The first is deriving large deviation
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probabilities that control the fluctuations of a random matrix around its mean

P {‖X − EX‖ ≥ t} ,

where the deviation is measured in the matrix spectral norm. The second type of

problem is deriving upper bounds for the matrix moments

E ‖X‖pp for p ∈ Z+.

Then the Shatten p-norm [99] for a d× d matrix A is defined as

‖A‖p :=
∥∥∥∑n

i=1
spi (A)

∥∥∥1/p
,

where s1(A) ≥ · · · ≥ sd(A) ≥ 0 are the singular values of A. These two problems are

dual approaches to obtain matrix concentration results because integrating the large

deviation probabilities leads to matrix moment bounds, while matrix moment bounds

also controls the large deviation probabilities via the Markov inequality.

Matrix concentration inequalities lie in the setting of developing non-commutative

concentration inequalities. We first identify the different classes of non-commutativity

in Section 2.1.1.1. Next, we review the line of research that develops non-commutative

moment bounds in Section 2.1.1.2. We summarize the development of non-commutative

large deviation inequalities in Section refsection:noncommutative-prob. We mention

some other related results in 2.1.1.4. Finally, we lay out the notations for this Chapter

in Section 2.1.1.5.

2.1.1.1 Classification of Non-Commutative Situations

As Junge & Zeng [110] mentioned, random matrices are semi-commutative, in the

sense that random matrices retain randomness from classical probability, which is

commutative. This semi-commutativity lies between the commutative scalar algebra

and a full non-commutative algebra space.

There are two types of full non-commutative algebra space. The first type, called

tracial non-commutativity [178], is defined on a semi-finite von Neumann algebraM

with a normal faithful semi-finite trace τ which is a function fromM to the complex
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set C and is invariant under cyclic permutation. As a result, there is a unit element

∞ ∈M such that τ(1) = 1 and for any two elements x, y ∈ M, τ(xy) = τ(yx). The

von NeumannM algebra together with the trace τ generates a non-commutative Lp

space. The Lp norm is defined as

‖x‖p =
(
τ(|x|p)

)1/p
, for any x ∈ Lp(M, τ).

One can observe that this tracial category contains the semi-commutative case of

random matrices. The non-commutative matrix algebra Rd×d together with the nor-

malized matrix trace t̄r, which is the division of the sum of the matrix diagonal entries

and the matrix dimension, generates the Lp space for d× d matrices.

A second type of full non-commutativity is non-tracial [110], such that a non-

commutative Lp space is associated with a von Neumann algebra equipped with a

faithful normal state. In this setting, there does not exist a trace function with the

cyclical invariant property. The non-tracial setting of non-commutativity is more gen-

eral than the tracial non-commutativity, such that any non-tracial non-commutative

moment bound also holds in the tracial setting.

2.1.1.2 Non-Commutative Moment Inequalities

Before the appearance of matrix Laplace transform bounds, researchers focused on de-

riving noncommutative moment inequalities. We review the non-commutative Khint-

chine inequality in 2.1.1.2.1 and the Burkholder/Rosenthal inequality in 2.1.1.2.2.

2.1.1.2.1 Non-Commutative Khintchine Inequality Deriving non-commutative

moment inequalities starts with the classical Khintchine inequality (1.2.3), which as

we recall bounds the moments of a Rademacher sum or Gaussian sum. Most re-

search considers the tracial setting of non-commutative Khintchine inequality, which

translates into bounding the Lp norm of a matrix Rademacher or Gaussian sum

∥∥∥∑n

i=1
εiXi

∥∥∥
Lp

=

(
E
∥∥∥∑n

i=1
εiXi

∥∥∥p
p

)1/p

(2.1.1)

in the non-commutative matrix algebra, where {εi} is a Rademacher or Gaussian series

and without loss of generality, {Xi} is a sequence of deterministic self-adjoint matrices
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of the same dimension. As in the scalar setting, the behavior of (2.1.1) varies with

different values of p.

Tomczak–Jaegermann’s work [227] was a first attempt to generalize the Khint-

chine inequality to the noncommutative matrix scenario. In her paper, she considers

bounding (2.1.1) when {εi} is a Rademacher series using the following term:

(∑n

i=1
‖Xi‖22p

)1/2
(2.1.2)

for p ∈ [1,∞). She established that there exists constants Cp, C ′p such that

∥∥∥∑n

i=1
εiXi

∥∥∥
Lp
≤ Cp

(∑n

i=1
‖Xi‖2p

)1/2
, for p ≥ 2,∥∥∥∑n

i=1
εiXi

∥∥∥
Lp
≥ C ′p

(∑n

i=1
‖Xi‖2p

)1/2
, for 1 ≤ p ≤ 2.

After Tomczak–Jaegermann, Lust–Piquard [136] and Lust–Piquard & Piser [137] made

an important improvement and established a qualitatively sharper version of noncom-

mutative Khintchine’s inequality for the regime 1 ≤ p < ∞. They demonstrate that

if 2 ≤ p ≤ ∞

C1(p) ·
∥∥∥∥(∑n

i=1
X2
i

)1/2
∥∥∥∥
p

≤
∥∥∥∑n

i=1
εiXi

∥∥∥
Lp
≤ C2(p) ·

∥∥∥∥(∑n

i=1
X2
i

)1/2
∥∥∥∥
p

, (2.1.3)

where C1(p), C2(p) are functions of p. When 1 ≤ p ≤ 2, the non-commutative Khint-

chine inequality takes another form:

C ′1(p) · inf
Xi=Ai+Bi

{∥∥∥∥(∑i
A∗iAi

)1/2
∥∥∥∥
p

+

∥∥∥∥(∑i
B∗iBi

)1/2
∥∥∥∥
p

}
≤
∥∥∥∑n

i=1
εiXi

∥∥∥
Lp

(2.1.4)

≤ C ′2(p) · inf
Xi=Ai+Bi

{∥∥∥∥(∑i
A∗iAi

)1/2
∥∥∥∥
p

+

∥∥∥∥(∑i
B∗iBi

)1/2
∥∥∥∥
p

}
.

(2.1.5)

Lust–Piquard and Pisier showed that the same bounds hold for a matrix Gaussian sum.

When p ≥ 2, the lower bound is given with C1(p) = 1 and when p ≤ 2, the upper bound

is give with C ′2(p) = 1. Proving other side of these two inequalities and obtaining the

optimal constants are more difficult. Lust–Piquard and Pisier [137] established that

when q →∞, C2(p) = O(
√
q). Buchholz [34] demonstrated that when p > 2 is an even
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integer, the optimal value for C2(p) is the same as in the scalar Khintchine inequality.

The case 1 < q < 2 is proved using a duality argument and Haagerup & Musat [89]

established the optimal constant C ′1(p) =
√

2 for p = 1. A recent work by Pisier &

Ricard [177] established the non-commutative Khintchine inequalities in the Lp space

for all 0 < p < 1. Their result takes the form of (2.1.5). The works of Lust–Piquard

and other authors rely heavily on noncommutative probability, and thus the study of

non-commutative Khintchine inequality not only benefits the random matrix theory

but also advances other fields such as non-commutative algebra.

We mention that using the noncommutative Khintchine inequality directly in ap-

plications can be cumbersome and requires delicate matrix norm estimation. Rudel-

son [193] translates the noncommutative Khintchine inequality into a moment bound

for a Radamacher sum of rank-1 matrices {xix∗i }, which is easier to use in application.

We illustrate the following version that appears in [230]:

(
E
∥∥∥∑n

i=1
εixix

∗
i

∥∥∥p)1/p
≤ C√p ·max

i
‖xi‖ ‖X‖ , p ≥ 2 log n, (2.1.6)

where {εi} is a sequence of Rademacher random variables and {xi} form the columns

of the matrix X.

2.1.1.2.2 Non-Commutative Inequality for Martingales Besides the non-

commutative Khintchine inequality, researchers have extended other classical moment

inequalities to the non-commutative algebra, for example, the Rosenthal inequality

(1.2.4) for the Lp norm of the sum of independent mean-zero random variables and

its martingale counterpart, the Burkholder–Gundy inequality. We summarize the

development in this direction.

Pisier & Xu [178] established the Burkholder–Gundy inequality for non-commutative

martingales in the tracial setting, which implies a non-commutative version of the

Rosenthal inequality. They show that the Burkholder–Gundy inequality also exhibits

two different forms for p ≥ 2 and 1 < p ≤ 2. The order of constants in the tracial

setting are characterized in [183]. Junge & Xu [110] extended the non-commutative

Burkholder–Gundy/Rosenthal inequality to the non-tracial setting. Junge & Xu [111]

and Nandrianantoanina [184] determined the the optimal order of constants.
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2.1.1.3 Non-Commutative Large Deviation Inequalities

The recent development of large deviation inequalities in the matrix algebra has

emerged as a user-friendly approach to study matrix concentration inequalities. Spe-

cialized to the semi-commutative matrix algebra, we summarize the development of

an approach using matrix Laplace transform method and Lieb’s theorem in Sec-

tion 2.1.1.3.1 and the method of exchangeable pair in Section 2.1.1.3.2. Finally, we

mention several recent results that extend the matrix large deviation inequalities to

the full non-commutative setting in Section 2.1.1.3.3.

2.1.1.3.1 Matrix Laplace Transform Method and Lieb’s Theorem In de-

veloping matrix large deviation probabilities, researchers constantly draw inspirations

from existing methods for developing scalar concentration results. One important ap-

proach stems from the scalar Laplace transform method that we present in Chapter 1

and eventually crystalizes as the matrix Laplace transform method. The scalar argu-

ment of deriving classical concentration inequalities based on the Laplace transform

method and linear decoupling of the moment generating function is especially suited

to control deviation probabilities for sums of independent random variables. In order

to develop a matrix version of this argument such that one can control the deviation

probabilities of sums of independent random matrices, we need two ingredients. The

first ingredient is to construct a matrix version of the Laplace transform bounds, which

control the deviation probability of a random matrix. The second ingredient is an ap-

propriate decoupling method, such that the matrix moment generating function of a

sum matrix can be controlled by the moment generating function of the summands.

The second ingredient will be more involved than the corresponding step for scalar

random variables due to the noncommutative property of matrices.

The development of the first ingredient goes back to Ahlswede and Winter [1].

Their paper contains the first appearances of what would later be called the matrix

moment generating function. The authors developed the following argument, called

the Bernstein trick, which bounds the following comparison probability of two Hermi-

tian random matrix Y and B

P {Y � B} ≤ E tr exp(TY T ∗ − TBT ∗), (2.1.7)
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where T is a matrix of compatible dimension such that T ∗T < 0. The bound (2.1.7)

contains the spirit of the scalar Laplace transform method and based on (2.1.7), the

authors developed a deviation probability bound for a sum of independent random

matrices, where they relied on the following Golden–Thompson inequality to decouple

the matrix moment generating function of the sum matrix:

tr(eA+B) ≤ tr(eA eB), (2.1.8)

where A and B are Hermitian matrices of the same dimension. However, the authors

mentioned that this approach of decoupling is not optimal and they presented several

conjectures for improved decoupling.

After the work of Ahlswede and Winter, Oliveira [164] refined the matrix Laplace

bounds. Oliveira’s version, which we display in Proposition 2.1.2, has become the

standard interface connecting the matrix large deviation probabilities with the matrix

moment generating functions, based on which later results of matrix large deviation

probability start to flourish. In addition, his work provided a simpler proof of Rudel-

son’s Khintchine lemma. Other authors apply the approach of Ahlswede and Winter

to obtain multiple matrix concentration inequalities. For example, Christofides and

Markström [57] derive a Hoeffding-type inequality for a sum of bounded independent

random matrices.

A major breakthrough appears in the work of Tropp [231, 233]. Working with the

matrix cumulant functions instead, Tropp developed an improved decoupling argu-

ment based on a deep theorem due to Lieb [131], which we exhibit as Theorem 2.1.3

in Section 2.1.2.3, and produced a plethora of large deviation probabilities for sums of

independent random matrices that are easily applicable to different application sce-

narios. These results include matrix Hoeffding inequality, matrix Bernstein inequal-

ity, matrix Chernoff inequality, etc., and they are direct matrix extensions from their

classical scalar counterparts. These matrix deviation probabilities are considerably

sharper than previous results.

In addition to concentration results for independent matrix sums, Tropp’s decou-

pling approach also applies to weakly dependent sequences such as matrix martingales.

He obtained a matrix version of the Azuma’s inequality, which leads to a bounded dif-
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ference inequality for matrix function of independent random variables. In a separate

paper [231], Tropp established the matrix Freedman’s inequality, which is a Bernstein-

type bound for matrix martingales.

In Tropp’s concentration results, the deviation probability bounds depend directly

on the ambient dimension of the random matrices. Authors include Hsu et. al. [103]

and Minsker [158] derive improved concentration probabilities that are tighter for

degenerate matrix distributions that concentration in a low-dimensional subspace. For

a complete coverage of the method of deriving matrix concentration inequalities based

on the matrix Laplace transform method and the Lieb’s theorem, we refer readers to

Tropp’s monograph [235]. We also provide a detailed discussion in Section 2.1.2

2.1.1.3.2 Method of Exchangeable Pairs Another approach of deriving ma-

trix concentration inequalities extends from the method of exchangeable pairs [51] for

developing scalar concentration inequalities that we mentioned in Chapter 1. It turns

out that this approach is not limited to scalar random variables. The paper of Mackey

et. al. [138] developed the matrix version of the exchangeable pairs method. The ma-

trix exchangeable pairs method also depends on the matrix Laplace transform bounds

to relate the large deviation probabilities to the matrix moment generating function,

but the exchangeable pairs provide a different approach to control the matrix moment

generating function compared with that of [233]. The major results in [138] include

matrix large deviation probabilities such as matrix Hoeffding, matrix Bernstein, etc.

In addition, the authors establish a matrix version of Burkholder–Davis–Gundy in-

equality [37] which leads to a very simple proof of the non-commutative Khintchine

inequality. Another result is the matrix Rosenthal inequality that controls the mo-

ments of a sum of random matrices with second order bounds of the individual matrix.

Tropp’s recent manuscript [234] isolates this matrix moment bound in a streamlined

presentation.

In [173], Paulin et. al. extended the concept of matrix Stein pair to the Kernel

Stein pair. The authors show that it is feasible to extend the method of Markov chain

decoupling, due to Chatterjee [51], to generate Kernel Stein pairs for a larger set of

random matrices. They establish multiple matrix moment bounds that are matrix

versions of classical Efron–Stein inequalities. Their results also include an improved
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version of the bounded difference inequality for random matrices. We discuss the

technical details of the method of exchangeable pairs in Section 2.1.3.

2.1.1.3.3 Large Deviation Inequalities in the Full Non-Commutative Set-

ting Matrix large deviation inequalities can also be extended to the full non-commutative

setting. Junge and Zeng [115] extended the Bernstein, Bennett inequalities for a sum

of independent random variables to the tracial non-commutative setting. Similar to

the random matrix case, their proof also relies on the Laplace transform method ap-

plied to the non-commutative setting. The authors pointed out that Lieb’s theorem

only applies to the random matrix case which has commutative randomness, and in-

stead the authors depended on the Golden–Thompson inequality (2.1.8) generalized

to the tracial non-commutative setting to develop the non-commutative counterparts

of Bernstein, Bennett inequalities. In [114], Junge and Zeng obtained a martingale

version of non-commutative Bernstein inequality. In addition, they also derived a

non-commutative Poincaré inequality and a non-commutative transportation cost in-

equality. These new results extended their scalar counterparts to the tracial non-

commutative setting. Sadeghi and Sal Moslehian [196] also developed Azuma-type in-

equalities for tracial non-commutative martingales, which implies a non-commutative

Hoeffding’s inequality and a non-commutative McDiarmid inequality. Their approach

also relies on the Golden–Thompson inequality.

2.1.1.4 Other Results

We also mention that Tropp’s recent manuscript [236] contains an improvement of the

Khintchine inequality for random matrices. For a Hermitian Gaussian matrix sum

X =
∑n

i=1 γiHi where {γi} are independent standard normal variables, the author

goes beyond the matrix variance and develops a matrix alignment parameter wq(X)

which measures the degree of commutativity for a series of deterministic matrices:

wq(X) := max
Q1,Q2,Q3

∥∥∥∣∣∑n

i,j=1
HiQ1HjQ2HiQ3Hj

∣∣∥∥∥
q
, q ≥ 1,

where Q1,Q2,Q3 are unitary matrices. The idea is that the higher the degree of

commutativity in the matrix series, the more similar the matrix Gaussian sum behaves
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to their scalar counterparts. The second-order matrix Khintchine inequality developed

in [236] controls the high-order matrix moments of the Hermitian Gaussian matrix sum

X with both the traditional matrix variance and the matrix alignment parameter:

(
E ‖X‖2p2p

)1/(2p)
≤ C1 · p1/4 · σ2p(X) + C2

√
p · w2p(X), p ≥ 3, (2.1.9)

where

σq(X) =

∥∥∥∥(∑n

i=1
H2
i

)1/2
∥∥∥∥
q

is the Shatten q-norm of the matrix variance of X. The author demonstrated that

this new Khintchine’s inequality is never a significantly worse bound than the matrix

Khintchine inequality in [138] and is sharper for more commutative matrix series, such

as the GOE matrices.

In the remainder of this section, we restrict our attention to matrix non-commutativity

and provide detailed summaries for both the method based on Lieb’s Theorem (Sec-

tion 2.1.2) and the method of exchangeable pairs (Section 2.1.3) within the relevant

scope of the thesis.

2.1.1.5 General Notations

We lay out the notations in this chapter. Capitalized bold letters such as X denote

matrices. The set Hd is the linear space of self-adjoint d× d matrices. The maximum

and minimum eigenvalues ofX are denoted as λmax(X) and λmin(X). The normalized

trace of X ∈ Hd is

t̄r(X) =
1

d
·
∑d

i=1
xii.

Curly inequalities such as <,4 denote matrix comparisons in the positive-semidefinite

order. Finally, we point out that any scalar function f : R 7→ R can generate a

standard matrix function f : Hd 7→ Hd for any dimension d by operating on the

spectrum of the self-adjoint matrix.

2.1.2 Matrix Concentration Inequalities via Lieb’s Theorem

In this section, we summarize the method of deriving concentration inequalities based

on the Lieb’s theorem. Similar to the scalar Laplace transform method, there are
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two major steps to derive large deviation probability bounds for sums of independent

random matrices using this method. The first step is bounding the large deviation

probability with the matrix moment generating function, as we describe in Section

2.1.2.2. The second step is to decouple the matrix moment generating function of the

sum matrix into the individual moment generating functions, which can be controlled

more easily with assumptions on the individual matrix. The second step differs from

the scalar approach as it depends on a deep concavity result, Lieb’s theorem. We

explain the details in Section 2.1.2.3. Next, Section 2.1.2.4 presents a master proba-

bility tail bound for sums of independent random matrices by combining the matrix

probability bound and the decoupling step. Finally, in Section 2.1.2.5, we summarize

the major concentration inequalities obtained via this approach. To start with, we

review the definition of the matrix moment generating function and matrix cumulant

in Section 2.1.2.1.

2.1.2.1 Matrix Moment Generating Function

The following restates the definition of the matrix moment generating function and

the matrix cumulant [233, 138]. In comparison to their scalar counterparts, we have

an additional trace function that aggregates the diagonals of the matrix exponential.

Definition 2.1.1 (Matrix Moment Generating Function and Matrix Cumulant). Let X be

a self-adjoint random matrix. The normalized trace moment generating function of X is

defined as

m(θ) := mX(θ) := E t̄reθX for θ ∈ R. (2.1.10)

The matrix cumulant function is

c(θ) := cX(θ) := logE t̄reθX , for θ ∈ R. (2.1.11)

2.1.2.2 Matrix Laplace Bound

The following proposition appears in [138, Proposition 3.3] and it encapsulates the

essence of the matrix Laplace transform method, which provides a variational upper

bound on the large deviation probability of random matrices using the matrix moment

generating function.
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Proposition 2.1.2. Let X be a self-adjoint random matrix in Hd. For all t ∈ R,

P {λmax(X) ≥ t} ≤ d · inf
θ>0

e−θt ·mX(θ), (2.1.12)

P {λmin(X) ≤ t} ≤ d · inf
θ<0

e−θt ·mX(θ). (2.1.13)

Proposition 2.1.2 translates the problem of estimating the deviation probabilities

of a random matrix into that of bounding its matrix moment generating function,

which opens up many new approaches of bounding large deviation probabilities. Due

to its importance, we provide a complete proof of the proposition.

Proof. The main step of the proof is also the application of the Markov inequality to control

the probability tail bound, which appears in the following first inequality. Compared with

the scalar Laplace transform method, the proof of Proposition 2.1.2 relies on some additional

matrix algebra. In the second equality of the following derivation, standard functions operate

on the eigenvalues of self-adjoint matrices, thus the exponent of the maximum eigenvalue

is equal to the maximum eigenvalue of the exponent. In the last relation, we bound the

maximum eigenvalue of a positive matrix with its trace.

P {λmax(X) ≥ t} = P
{

eλmax(θX) ≥ eθt
}
≤ e−θt · E eλmax(θX)

= e−θt · Eλmax(eθX) ≤ e−θt · E tr eθX = d · e−θt ·mX(θ). (2.1.14)

Taking the infimum over θ in the last relation of (2.1.14) establishes (2.1.12). The same

argument establishes the lower deviation.

2.1.2.3 Lieb’s Theorem and the Subadditivity of Matrix Cumulant Gen-

erating Function

Unlike in the scalar case where the moment generating function of sums of independent

random variables decouples naturally, the noncommutativity of matrices poses signif-

icant challenges to decouple the moment generating function. Ahlswede & Winter [1]

achieved decoupling using the Golden–Thompson inequality (2.1.8). Tropp [233] took

a different approach based on the following concavity theorem due to Lieb [131].
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Theorem 2.1.3 ( Lieb’s Theorem). Suppose H ∈ Hd is a fixed deterministic self-adjoint

matrix. The function

A 7→ t̄r exp(H + logA)

is a concave map on the set Hd+ of d× d positive-definite matrices.

Lieb established this result in the context of solving the Wigner–Yanase–Dyson

conjecture. Tropp [232] provided an alternative proof based on the joint convexity

property of the quantum relative entropy. With the help of Jensen’s inequality, Lieb’s

theorem translates into the following inequality:

E t̄r exp(H + X) ≤ t̄r exp(H + logE eX), (2.1.15)

where H is a deterministic self-adjoint matrix and X is self-adjoint and random.

The inequality (2.1.15) leads to the following decoupling lemma by Tropp [233,

Lemma 3.4], which achieves a sharper decoupling of the moment generating function

of an independent sum using the matrix cumulant function compared with using the

Golden–Thompson inequality.

Lemma 2.1.4. Consider a finite sequence {Xk} of independent, random, self-adjoint ma-

trices of the same dimension. Then the matrix mgr of the matrix sum decouples as follows

E t̄r exp
(∑

k
θXk

)
≤ t̄r exp

(∑
k

logE eθXk

)
for θ ∈ R. (2.1.16)

2.1.2.4 Probability Bounds for Sums of Independent Random Matrices

Substituting (2.1.16) of the subadditivity lemma into the matrix Laplace bound,

Proposition 2.1.2, we arrive at the following theorem, which is the master proba-

bility bounds in [233, Theorem 3.6]. This theorem controls the matrix large deviation

probabilities with the matrix moment generating functions of the individual matrices

{Xk} and becomes the standard interface for various scenarios of sums of independent

random matrices.

Theorem 2.1.5. Suppose {Xk} is a finite sequence of independent, random matrices in Hd.



45

Then for all t ∈ R,

P
{
λmax

(∑
k
Xk

)
≥ t
}
≤ d · inf

θ>0
e−θt · t̄r exp

(∑
k

logE eθXk

)
, (2.1.17)

P
{
λmin

(∑
k
Xk

)
≥ t
}
≤ d · inf

θ<0
e−θt · t̄r exp

(∑
k

logE eθXk

)
. (2.1.18)

2.1.2.5 Matrix Concentration Inequalities via Lieb’s Theorem

In this section, we summarize the major matrix concentration inequalities obtained

based on Lieb’s theorem. The first set of results contains the large deviation probabili-

ties for a sum of independent self-adjoint random matrices under various assumptions.

In Section 2.1.2.5.1, we display the deviation probabilities for matrix Gaussian and

Rademacher Series. Section 2.1.2.5.2 contains the case where the random matrices

are bounded and is a matrix version of Hoeffding’s inequality. In addition to the

boundedness assumptions of the random matrices, one can also use the matrix vari-

ance to deliver more refined concentration probabilities, such as the matrix Bernstein

inequality [233, Theorem 6.1 and Theorem 6.2]. For a sum of positive-semidefinite

random matrices, one can derive a matrix version of the Chernoff bound [233, The-

orem 1.1]. These concentration results are direct matrix extensions of corresponding

scalar concentration inequalities and they all depend on the master probability bounds

of Theorem 2.1.5. The difference is the argument to control the individual matrix cu-

mulant which depends on the varied assumptions of the matrix distribution. We refer

to the original paper [233] for the complete proofs.

The second set of results [233, 231] relaxes the independence requirement for

the random matrices in the sum and instead considers matrix martingales. Sec-

tion 2.1.2.5.3, we first display the matrix Azuma inequality for an adapted sequence

of random matrices. The matrix Azuma inequality leads to the matrix version of

bounded differences inequality, which we display in Section 2.1.2.5.3 as well.

2.1.2.5.1 Matrix Gaussian and Rademacher Series We first present the fol-

lowing large deviation probability for matrix Gaussian and Rademacher Series [233,

Theorem 1.2]. This result juxtaposes with the noncommutative Khintchine’s inequal-

ity that bounds the matrix moments of Gaussian and Rademacher series.



46

Theorem 2.1.6. Suppose Ak is a finite sequence of fixed self-adjoint matrices in Hd. Let

{γk} be a finite sequence of independent standard normal variables. Denote the variance

parameter

σ2 :=
∥∥∥∑

k
A2
k

∥∥∥ .
Then for all t ≥ 0,

P
{
λmax

(∑
k
γkAk

)
≥ t
}
≤ d · e−t2/2σ2

. (2.1.19)

The same probability bound holds if {γk} is a series of independent Rademacher random

variables.

Proof Sketch of Theorem 2.1.6. The main technical piece to establish the deviation bound (2.1.19)

is to bound the individual matrix cumulant and apply the master probability bounds, The-

orem 2.1.5. The good structure of the standard normal and the Rademacher distributions

ensures the following cumulant bound:

logE eγkAk 4 θ2A2
k/2. (2.1.20)

Substitute (2.1.20) into (2.1.17) and choose the optimal θ = t/σ2 to arrive at (2.1.19).

P
{
λmax

(∑
k
γkAk

)}
≤ d · eθt · t̄r exp

(
θ2

2
·
∑

k
A2
k

)
≤ d · e−θt · exp(θ2σ2/2)

= d · e−t2/2σ2
.

2.1.2.5.2 Matrix Hoeffding Inequality We display a matrix Hoeffding inequal-

ity [233, Theorem 1.3] as follows, which clearly resembles the scalar Hoeffding’s in-

equality that we demonstrate in Chapter 1.

Theorem 2.1.7 (Matrix Hoeffding Inequality). Suppose {Yk} is a finite sequence of inde-

pendent, random matrices in Hd. Let {Ak} ⊂ Hd be a sequence of fixed self-adjoint matrices.

Assume that each random matrix satisfies

EYk = 0 and Y 2
k 4 A2

k almost surely. (2.1.21)
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Then for all t ≥ 0,

P
{
λmax

(∑
k
Yk

)
≥ t
}
≤ d · e−t2/8σ2

where σ2 :=
∥∥∥∑

k
A2
k

∥∥∥ .
2.1.2.5.3 Matrix Azuma and Bounded Differences Inequality The follow-

ing matrix Azuma inequality [233, Theorem 7.1] extends the matrix Hoeffding’s in-

equality, Theorem 2.1.7, to a sum of matrices that are not necessarily independent.

Specifically, the matrix Azuma inequality considers an adapted sequence of random

matrices {Xk}. In this adapted sequence, each matrix Xk is measurable to the prob-

ability space (Ω,Fk,P), which is a subspace of (Ω,F ,P). In addition, the sequence of

signal algebras {Fk} forms a filtration such that

F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ F∞ ⊂ F ,

where F0 = {∅,Ω} is the trivial sigma algebra. We follow the presentation of [233]

and abbreviate the conditional expectation with respect to one signal algebra in the

filtration as Ek[·] := E[·|Fk].

Theorem 2.1.8 (Matrix Azuma Inequality). Suppose {Xk} is a finite adapted sequence of

self-adjoint matrices in Hd and {Ak} is a fixed sequence of self-adjoint matrices in Hd. They

satisfy

Ek−1 Xk = 0 and X2
k 4 A2

k almost surely. (2.1.22)

Denote the variance parameter

σ2 :=
∥∥∥∑

k
A2
k

∥∥∥ .
Then for all t ≥ 0,

P
{
λmax

(∑
k
Xk

)
≥ t
}
≤ d · e−t2/8σ2

.

The key to establishing the matrix Azuma inequality is to derive a new version

of the subadditivity lemma, Lemma 2.1.4, by replacing the total expectation in the

proof with the conditional expectations {Ek}, which leads to a modified version of

the master probability bounds, Theorem 2.1.5. The matrix Bernstein’s inequality

Theorem [233, Theorem 6.1] can also be extended to an adapted sequence in a similar

fashion. The resulting concentration inequality is called matrix Freedman’s inequality,
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first proposed by Oliveira [163] and later refined by Tropp [231].

An important application of the matrix Azuma inequality is the following ma-

trix version of bounded differences inequality [233, Corollary 7.5], which controls the

deviation probability of a general matrix function that depends on a sequence of in-

dependent random variables.

Theorem 2.1.9 (Matrix Bounded Differences Inequality). Suppose {Zk : k = 1, 2, ..., n}

is sequence of independent random variables. Let H be a function that maps {Zk} to a

self-adjoint matrix of dimension d. Suppose {Ak} is a sequence of fixed self-adjoint matrices

that satisfy the following boundedness condition

(H(z1, . . . , zk, . . . , zn)−H(z1, . . . , z
′
k, . . . , zn))2 4 A2

k,

where zi and z′i range over all possible values of Zi for all index i. Denote the variance

parameter

σ2 :=
∥∥∥∑

k
A2
k

∥∥∥ .
Then for all t ≥ 0,

P {λmax(H(z)− EH(z)) ≥ t} ≤ d · e−t2/8σ2
,

where z = (Z1, . . . , ZN ).

2.1.2.6 Extension

There are several directions of continuing work that follow the mains steps of this

method based on Lieb’s theorem, that is, the matrix Laplace bounds (Proposition 2.1.2)

and decoupling using the subadditivity lemma (Lemma 2.1.4). The key is to modify

the matrix Laplace bounds and we briefly summarize the main intuition in this section.

The first direction is to derive the large deviation probabilities of the interior spec-

trum in addition to those for the extreme eigenvalues of a sum of independent random

matrices. In [80], Gittens and Tropp applied the Courant–Fisher theorem, which ex-

presses the interior eigenvalues of a self-adjoint matrix as the maximum eigenvalue of

the matrix projected into an appropriate subspace. In the first step, they modified the

Laplace probability bounds and controlled the deviation probabilities of the interior
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eigenvalues of a random matrix X ∈ Hd using the following variational bound [80,

Theorem 3.1]:

P {λk(X) ≥ t} ≤ inf
θ>0

min
V ∈Vd

d−k−1

{
e−θt · E tr eθV

∗XV
}

for all t ≥ 0,

where Vdk = {V ∈ Cd×k : V V ∗ = I} is the collection of orthonormal bases for the

k-dimensional subspaces of Cd.

In the second step, the authors proceed to establish a different subadditivity lemma

that relies on an extension of Lieb’s theorem. With these two modifications, the au-

thors deliver Chernoff and Bernstein-type deviation inequalities for the interior eigen-

values. They apply these results to application problems such as column sampling

and covariance matrix estimation.

Another direction is to derive more refined deviation probabilities for random

matrices and capture the situation when the distribution concentrates in a lower-

dimensional subspace. This line of work started with the paper of Hsu et al [103],

and in a later work [158] Minsker modified the arguments and provided an improved

version of the matrix Bernstein’s inequality. Tropp streamlined the ideas and extended

the proofs to other matrix concentration inequalities in the monograph [235]. Take

the example of the matrix Bernstein’s inequality. The idea of Minsker’s approach is to

use the spectrum structure of the variance parameter Σ =
∑

k EX2
k that controls the

deviation probabilities to improve the dimensional dependency. Instead of depending

on the ambient dimension d of the random matrix, Minster’s version of the matrix

Bernstein’s inequality depends on the following quantity, which is named by Tropp as

the intrinsic dimension of the matrix variance [235, Definition 7.1.1]

intdim(Σ) =
tr Σ

‖Σ‖
.

The intrinsic dimension can be much smaller than the ambient dimension when the

trailing eigenvalues of the variance matrix Σ decays very rapidly. This improved

dimensional dependency tightens the deviation probabilities for many cases of random

matrices.

The key ingredient to the improved deviation probabilities is to generalize the
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Laplace transform bounds of a self-adjoint matrix X to the following bound [235,

Proposition 7.4.1]

P {λmax(X) ≥ t} ≤ 1

ψ(t)
· E trψ(X) for all t ≥ 0,

where the function ψ : R 7→ R+ is nonnegative and nondecreasing on the internal

[0,∞). In the proof of the improved versions of matrix Chernoff or matrix Bernstein

inequalities, the function ψ is set to be the exponential function, as in the origi-

nal Laplace transform bounds, augmented with a linear function. So the later step

of decoupling the matrix moment generating function proceeds with some technical

modifications.

2.1.3 Method of Exchangeable Pairs

In this section, we summarize the framework of the method of exchangeable pairs

and the associated concentration inequalities. First, in Section 2.1.3.1, we review the

main concepts and definitions related to the method of exchangeable pairs and provide

their intuition. In Section 2.1.3.2, we instantiate the definitions in Section 2.1.3.1 by

constructing a matrix Stein pair from a sum of independent random matrices. This

construction is the key connection to applications with a sum of independent random

matrices. Next, in Section 2.1.3.3 we illustrate how to control the matrix moment

generating function and Section 2.1.3.4 presents the main theorem that derives large

deviation probabilities from properties of a matrix Stein pair. We illustrate the major

concentration inequalities obtained with the method of exchangeable pairs in Section

2.1.3.5. Finally, we summarize the extension of the method of exchangeable pairs to

more general applications in Section 2.1.3.6.

2.1.3.1 Matrix Stein Pairs

In this section, we review the definitions of exchangeable pairs, matrix Stein pairs,

and the conditional variance as appeared in [138, Section 2]. These concepts are the

backbones for the method of exchangeable pairs. We also provide the intuition of

using the exchangeable method to derive concentration inequalities at the end.

Definition 2.1.10 (Exchangeable Pair). Let Z and Z ′ be random variables taking values
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in a Polish space Z. We call (Z,Z ′) an exchangeable pair if it has the same distribution as

(Z ′, Z).

One constructs a matrix Stein pair based on the exchangeable pair (Z,Z ′) by

applying a matrix-valued function. The exchangeable pair (Z,Z ′) captures the full

scope of randomness that generates the Stein pair. We impose a regularity assumption

that E ‖X‖2 <∞.

Definition 2.1.11 (Matrix Stein Pair). Suppose (Z,Z) is an exchangeable pair of random

variables taking values in a Polish space Z. Let Φ : Z 7→ Hd be a measurable function.

Define the random Hermitian matrices

X := Φ(Z) and X ′ := Φ(Z ′).

We call (X,X ′) a matrix Stein pair if it satisfies the linear reproducing property, that is,

there exists a constant α ∈ (0, 1] for which

E[X −X ′|Z] = αX almost surely. (2.1.23)

The constant α is called the scale factor of the pair.

As stated in [138], a matrix Stein pair (X,X ′) is also exchangeable. In addition,

the linear reproducing property (2.1.23) implies that the matrix X is centered:

EX =
1

α
· E
[
E[X −X ′|Z]

]
=

1

α
· (EX −X ′) = 0.

The linear reproducing property implicitly captures the difference between X and X ′.

The larger the scale factor α is, the more different the two matrices are. When X and

X ′ are completely independent, we have α = 1. Taking advantage of the structure

of X, we can construct the matrix X ′ that differs from X slightly, thus reducing the

value of α.

For a matrix Stein pair, we associate a random matrix called the conditional vari-

ance. The conditional variance is a second-order characterization on the difference of

the two matrices in the Stein pair.
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Definition 2.1.12 (Conditional Variance). Suppose that (X,X ′) is a matrix Stein pair,

constructed from an exchangeable pair (Z,Z). The conditional variance is the random matrix

∆X := ∆X(Z) :=
1

2α
E[(X −X ′)2|Z], (2.1.24)

where α is the scale factor of the pair.

The conditional variance is a random perturbation of the variance, because the

expectation of the conditional variance is equal to the matrix variance: E[∆X ] =

EX2. It plays an important part in establishing concentration inequalities for random

matrices. A uniform bound for the conditional variance also controls the matrix

variance uniformly, which facilitates deriving concentration bounds such as the large

deviation probabilities. The smaller the uniform bound for the conditional variance is,

the better the resulting deviation probabilities will be. Thus, the goal of the method of

exchangeable pairs is to explore the structure of the random matrix X and construct

an appropriate matrix Stein pair. We want the Stein pair to have these properties:

the corresponding conditional variance ∆X is easy to calculate, and in addition the

conditional variance is a small random perturbation of the matrix variance such that

the uniform bound for ∆X is as close to the variance of X as possible. The existence

of a matrix Stein pair for an application scenario is a prerequisite for applying the

method of exchangeable pairs to derive concentration inequalities.

2.1.3.2 Constructing Exchangeable Pairs from Sums of Independent Ran-

dom Matrices

In this section, we demonstrate a Stein pair from a sum of independent self-adjoint

random matrices. This construction is the key to applying the method of exchangeable

pairs to obtain concentration inequalities for sums of independent random matrices,

as we demonstrate in the proof of the Hoeffding’s inequality in Section 2.1.3.5.1. This

construction appears in [235, Section 2.4] and is the matrix extension of the scalar

exchangeable pairs that Chatterjee [51] created for a scalar independent sum.

Suppose

X = Y1 + · · ·+ Yn and Z = (Y1, . . . ,Yn),
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where {Y1, . . .Yn} are independent self-adjoint random matrices of the same dimension

and EYi = 0 for all index i. Suppose I is a random index drawn uniformly from

{1, . . . , n}. We construct Z ′ by replacing YI with an independent copy Y ′I such that

Z ′ := (Y1, . . . ,YI−1,Y
′
I ,YI+1, . . . ,Yn).

Correspondingly, we augment X with

X ′ := Y1 + · · ·+ YI−1 + Y ′I + YI+1 + · · ·+ Yn

to arrive at the Stein pair (X,X ′). We can see that X ′ is a very local perturbation

of X as X ′ is constructed by choosing uniformly one summand YI and swap it with

an independent realization Y ′I . The closeness between X and X ′ also manifests itself

by the small value of the corresponding scale factor α:

E[X −X ′|Z] =
1

n
X.

The conditional variance for the Stein pair (X,X ′) is

∆X =
1

2

∑n

i=1
(Y 2

i + EY 2
i ).

2.1.3.3 Control Matrix Moment Generating Function with Method of Ex-

changeable Pairs

In this section, we demonstrate the connection between the matrix Stein pair and

the matrix moment generating function with Lemma 2.1.14. The latter is the input

to the matrix Laplace bound that controls large deviation probabilities for random

matrices. The following technical lemma [138, Lemma 2.4] contains the key intuition

of the exchangeable pair method.

Lemma 2.1.13. Suppose that (X,X ′) ∈ Hd×Hd is a matrix Stein pair with scale factor α.

Let F : Hd 7→ Hd be a measurable function that satisfies the regularity condition

E
∥∥(X −X ′) · F (X)

∥∥ ≤ ∞. (2.1.25)
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Then

E[X · F (X)] =
1

2α
E[(X −X ′)(F (X)− F (X ′))]. (2.1.26)

The goal of of Lemma 2.1.13 is to take advantage of the structure of the matrix X

to provide an alternative approach of bounding quantities that can be represented in

the form of E[X · F (X)]. As Lemma 2.1.14 shows, quantities of such format include

the derivative of the moment generating function. When the structure of the random

matrix X leads to a good matrix Stein pair such that X and X ′ only deviates locally

from each other, the hope is that F (X) is very similar to F (X ′) as well and as a result

the right-hand side of (2.1.26) is relatively easier to control. In many applications,

we can relate the right-hand side of (2.1.26) with the conditional variance ∆X of the

matrix Stein pair, which as we mentioned earlier, is a random perturbation of the

matrix variance.

Lemma 2.1.14 substantiates this intuition and controls the derivative of the matrix

moment generating function with the conditional variance. The bounds in Lemma

2.1.14 lead to Theorem 2.1.15, which produces matrix large deviation probabilities

based on the property of the conditional variance. Finally, we show that Theorem

2.1.15 applies to the matrix Stein pair in Section 2.1.3.2 and produces an improved

version of matrix Hoeffding’s inequality as in Theorem 2.1.16.

Lemma 2.1.14. Suppose that (X,X ′) ∈ Hd × Hd is a matrix Stein pair, and assume

that X is almost surely bounded in norm. Recall the trace moment generating function

m(θ) := E t̄reθX . Then

m′(θ) ≤ θ · E t̄r
[
∆X · eθX

]
when θ ≥ 0 (2.1.27)

m′(θ) ≥ θ · E t̄r
[
∆X · eθX

]
when θ ≤ 0, (2.1.28)

where ∆X is the conditional variance.

Once we obtain the uniform upper bounds for the conditional variance ∆X , we

control the derivative of the matrix moment generating function with Lemma 2.1.14,

which in turn bounds the matrix moment generating function itself.
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2.1.3.4 Probability Bounds for Matrix Stein Pairs

We present the following theorem that produces large deviation probabilities for a

random matrix based on the boundedness property of the conditional variance of the

matrix Stein pair. This theorem appears in [138, Theorem 4.1] and is the matrix

extension of Chatterjee’s deviation probability bound for scalar random variables [50,

51].

Theorem 2.1.15. Consider a matrix Stein pair (X,X ′) of d × d self-adjoint matrices.

Suppose there exist nonnegative constants c, v for which the conditional variance of the pair

satisfies

∆X 4 c ·X + v · I almost surely. (2.1.29)

Then for all t ≥ 0,

P {λmin(X) ≤ −t} ≤ d · exp

(
− t

2

2v

)
,

P {λmax(X) ≥ t} ≤ d · exp

(
−t2

2v + 2ct

)
.

Theorem 2.1.15 derives from Lemma 2.1.14 and the proof consists of three steps.

First, combine the bounds in Lemma 2.1.14 with the assumption on the conditional

variance (2.1.29) to arrive at two differential inequalities of the moment generating

function. Second, integrate the differential inequalities which bound the moment

generating function. Finally, substitute into the matrix Laplace bound to arrive at

the deviation probabilities.

2.1.3.5 Matrix Concentration Inequalities via the Method of Exchange-

able Pairs

In this section, we summarize the major concentration inequalities obtained by the

method of exchangeable pairs. Based on the matrix Stein pair in Section 2.1.3.2,

the authors of [138] obtained an improved version of matrix Hoeffding’s inequality

(Section 2.1.3.5.1), a version of matrix Bernstein’s inequality [138, Corollary 5.2], and

non-commutative Khintchine’s inequality (Section 2.1.17).

Inspired by the work of Chatterjee [50], the authors of [138] also construct a appro-
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priate matrix Stein pair for a random combinatorial sum of deterministic matrices and

establish a Bernstein-type deviation inequality for the distribution of the combinato-

rial sum. As an application, they obtain deviation probabilities for a sum of matrices

sampled without replacement from a set of deterministic matrices. The authors also

produce a version of matrix bounded difference inequality for random matrices that

satisfy a self-producing property.

2.1.3.5.1 Matrix Hoeffding’s Inequality The method of exchangeable pairs

produces the following Hoeffding’s inequality [138, Corollary 4.2], which improves

over that of Theorem 2.1.7 with a smaller constant and a more refined version of the

variance parameter σ2.

Theorem 2.1.16 (Matrix Hoeffding Inequality). Under the same assumptions of Theo-

rem 2.1.7, we have

P
{
λmax

(∑
k
Yk

)
≥ t
}
≤ d · e−t2/2σ2

, for all t ≥ 0,

where the variance parameter is

σ2 :=
1

2
·
∥∥∥∑

k
(A2

k + EY 2
k )
∥∥∥ .

The following proof concludes a complete picture of deriving concentration inequal-

ities with the method of exchangeable pairs.

Proof. We use the construction of the matrix Stein pair for a sum of random matrices in

Section 2.1.3.2. The conditional variance satisfies

∆X =
1

2

∑
k
(Y 2

k + EY 2
k ) 4 σ2I,

where the last relation is due to the assumption that Y 2
k 4 A2

k. Finally, we choose c = 0,

v = σ2 and apply Theorem 2.1.15 to arrive at the Hoeffding’s bound.

2.1.3.5.2 Non-Commutative Matrix Moment Inequalities The method of

exchangeable pairs also leads to non-commutative moment inequalities for random

matrices [138, Section 7]. Specifically, Theorem 2.1.17 restates [138, Theorem 7.1] and
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is the matrix Burkholder–Davis–Gundy (BDG) inequality that controls the matrix

moments with the moments of the conditional variance of the Stein pair.

Theorem 2.1.17 (Matrix BDG Inequality). Let p = 1 or p ≥ 1.5. Suppose that (X,X ′)

is a matrix Stein pair where E ‖X‖2p2p <∞. Then

(
E ‖X‖2p2p

)1/(2p) ≤√2p− 1 ·
(
E ‖∆X‖pp

)1/(2p)
,

where ‖X‖p = (tr |X|p)1/p is the matrix Shatten norm.

The following theorem [138, Corollary 7.3] is a corollary of Theorem 2.1.17 and

contains a version of non-commutative Khintchine’s inequality. It is a result of apply-

ing Theorem 2.1.17 to the matrix Stein pair for a sum of independent random matrices

presented in Section 2.1.3.2.

Theorem 2.1.18 (Non-commutative Khintchine’s Inequality). Suppose that p = 1 or p ≥

1.5. Suppose the independent Hermitian matrices (Yk)k≥1 and the deterministic sequence

(Ak)k≥1 satisfy the same assumptions as those of matrix Hoeffding’s inequality, that is

EYk = 0 and Y 2
k 4 A2

k almost surely for each index k.

Then (
E
∥∥∥∑

k
Yk

∥∥∥2p

2p

)1/(2p)

≤
√
p− 0.5 ·

∥∥∥∥(∑k
(A2

k + EY 2
k )
)1/2

∥∥∥∥
2p

.

In particular, when (εk)k≥1 is an independent sequence of Rademacher random variables,

(
E
∥∥∥∑

k
εkAk

∥∥∥2p

2p

)1/(2p)

≤
√

2p− 1 ·
∥∥∥∥(∑k

A2
k

)1/2
∥∥∥∥

2p

.

2.1.3.6 Extension

The authors of [173] extend the method of exchangeable pairs in order to develop

concentration results for general matrix functions. The main idea is to extend the

concept of the matrix Stein pair in Definition 2.1.11 to a more generalized definition

of Kernel Stein pair. Following the notational setups of Definition 2.1.11, the definition

for the Kernel Stein pair (X,X ′) modifies the linear reproducing property (2.1.23)
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with a kernel producing property [173, Definition 7.2]:

E[K(Z,Z ′)|Z] = X,

where (Z,Z ′) is the exchangeable pair that generates the Kernel Stein pair (X,X ′)

and K is a anti-symmetric matrix kernel function such that K(z, z′) = −K(z′, z).

In additional to the conditional variance (Definition 2.1.12), the authors augmented

the variance characterization with a new concept of kernel conditional variance [173,

Definition 8.5],

V K =
1

2
E[K(Z,Z ′)2|Z],

which together with the conditional variance bounds the matrix variance of X in the

positive-semidefinite order. Other key lemmas such as Lemma 2.1.13 are extended

by taking into account the kernel reproducing property and the main arguments to

establish concentration results follow similar steps as we described in previous sections.

The Kernel Stein pair accommodates a broader set of applications for which a

matrix Stein pair with a linear reproducing property might not exist. An important

approach of constructing a kernel matrix from a random matrix is via Markov chain

coupling, which as explained by the authors of [173] is originally developed for the

scalar exchangeable methods of Chatterjee [51]. The coupling speed of the implicit

Markov chain corresponding to the Kernel Stein pair implies the size of the kernel

conditional variance. Using the Markov chain coupling method, the authors derived

multiple Efron–Stein type concentration inequalities that control the matrix moments.

In addition, they obtain a more generalized version of bounded difference inequality

for dependent random matrices whose dependency property is characterized by a Do-

brushin interdependence matrix.

2.2 Overview of Main Results of the Thesis

In this section, we summarize the main results of the thesis. In Section 2.2.1, we

provide the context and the contributions of our work in the analysis of the masked

covariance estimator [53]. In Section 2.2.2, we exhibit the connection between the

random matrix entropy that we propose with the existing entropy concepts, illustrate
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the main contributions of our work as published in [54], and discuss implications and

recent development.

2.2.1 Analysis of the Masked Sample Covariance Estimator via the

Matrix Laplace Transform Method

In Chapter 3, we apply the matrix Laplace transform method to study the masked

sample covariance estimator. In Section 2.2.1.1, we briefly review the important prob-

lem of covariance matrix estimation. Then in Section 2.2.1.2, we introduce the masked

sample covariance estimator, provide its intuition, and connect with a conjecture by

Levina and Vershynin that was the starting point of our work. Finally, we summarize

our contributions in Section 2.2.1.3.

2.2.1.1 Covariance Matrix Estimation

Covariance matrix estimation from independent samples of a distribution is a funda-

mental problem. It arises in theoretical statistical problems such as regression anal-

ysis [76] and principal component analysis [109]. An accurate covariance matrix is

also key to an array of applications, such as the study of genetic correlation in bio-

statistics [94] and the capital asset pricing model [70] in modern portfolio management

theory.

In the setting of classical statistics, the number of samples exceeds the number of

variables and the sample covariance matrix is the standard estimator [108, 159, 145]. In

the context of high dimensional statistics, the dimension of the covariance matrix can

be much larger than the number of samples and it is necessary to leverage additional

assumptions to estimate the covariance structure. As summarized by Rothman et.

al. [192], the study of high-dimensional covariance matrix estimation can be divided

into two categories. The first category includes works by Bickel & Levina [19, 20],

Furer & Bengtsson [77] and the random variables exhibit a natural ordering or dis-

tance. Examples include time series data, spatial data, etc. In the second category,

the random variables do not have a natural ordering. Examples include data that

exhibit a graph structure. The methods developed in this category are invariant to

variable permutation and a common approach is to apply sparsity regularization. See

El Karoui [117], Bickel & Levina [21].
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2.2.1.2 Masked Sample Covariance Estimator

In Chapter 3, we restrict our attention to the estimation of a high-dimensional covari-

ance matrix Σ ∈ Rp×p where a natural ordering among the random variables does not

exist. We assume a deterministic mask matrix M that contains sparsity information

is available. Based on the independent samples x1, . . . ,xn and the mask matrix X,

the masked sample covariance estimator is

M � Σ̂ =
1

n
·
∑n

k=1
M � (xkx

∗
k). (2.2.1)

We point out that the masked sample covariance estimator is a sum of independent

random matrices. We study the required number of samples n(ε) that ensures the

the discrepancy as measured in matrix spectral norm between the masked sample

covariance and the masked covariance estimator

∥∥∥M � Σ̂n −M �Σ
∥∥∥

is less than ε with high probability. The symbol � denotes the componentwise

Hadamard product. The mask matrix M acts as a filter and we can reduce the

influence of entries that either we cannot estimate reliably or we do not want to esti-

mate due to certain a priori assumptions by setting the corresponding entries in M

to zero. Intuitively, the required number of samples n increases with the problem’s

dimension p. We want to study the dependency of n on p and whether it is feasible

to estimate the masked covariance matrix M �Σ accurately when n� p.

The masked sample covariance estimator was introduced by Levina and Vershynin

[128]. They demonstrated that when the distribution is Gaussian, it is feasible to esti-

mate the masked covariance matrix in the n� p case because the required number of

samples grows logarithmically as the dimension p increases. Levina and Vershynin hy-

pothesized that such results can extend to more general distributions with appropriate

moment growth. The challenge is that their argument relies on successfully decoupling

a second-order Gaussian chaos by applying the rotational invariance property that is

unique to the Gaussian distributions.

The goal of Chapter 3 is to validate the hypothesis of Levina and Vershynin. We
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develop a completely different approach based on the Laplace transform method. The

probability tail bounds of Theorem 2.1.5 applies directly to the masked covariance

estimator as it is a sum of independent random matrices. Our rationale for this

new approach is that bounding the moment generating function is a more general

problem than decoupling a second-order chaos, such that we do not need to rely on

the individual structure of the distribution and we can incorporate the moment growth

properties more easily into the argument. Indeed, the main challenge in our proof is to

derive a tight upper bound of the moment generating function of the individual matrix

M � xkx
∗
k in the masked sample covariance matrix (2.2.1). Our argument takes a

truncation approach and the key is a detailed bound for the second-order moments of

the summand.

2.2.1.3 Contributions

Our first contribution is the following theorem, where we improve upon Levina and

Vershynin’s result in the Gaussian setting by obtaining a tighter upper bound of the

estimation error. Our theorem also implies a tighter lower bound of the required

number of samples for a specified level of estimation accuracy.

Theorem 2.2.1 (Masked Covariance Estimation for Gaussian Distributions). Fix a p × p

symmetric mask matrix M . Suppose that x is a Gaussian random vector in Rp with mean

zero. The expected estimation error satisfies

E
∥∥∥M � Σ̂n −M �Σ

∥∥∥ ≤ 8

(‖M‖21→2 · log(6p)

n

)1/2

+
‖M‖ · log2(6np)

n

 ‖Σ‖ .
We argue that our result is near optimal. Second, we validate Levina and Ver-

shynin’s hypothesis by showing that estimating the masked sample covariance matrix

in the n� p setting is feasible for the more general class of subgaussian distributions,

as summarized in the following theorem

Theorem 2.2.2 (Masked Covariance Estimation for Subgaussian Distribution). Fix a p×p

symmetric mask matrix M . Suppose that x is a subgaussian random vector in Rp with mean
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zero. Then the expected estimation error satisfies:

E
∥∥∥M � Σ̂n −M �Σ

∥∥∥ ≤ [16κ2ν2 ‖M‖21→2 log(2ep)

n

]1/2

+
4κ2 ‖M‖ log2(2enp)

n
,

where κ and ν are constants depend on the distribution of x.

Finally, compared with the previous covering argument of Vershynin and Lev-

ina [128], our new approach via the matrix Laplace transform method is more trans-

parent and involves fewer technical complexities.

Our analysis of the masked sample covariance estimator is based on the assumption

that a mask matrix M exists. This assumption decouples the problem of estimating a

sparse covariance matrix into two parts. The first part is to obtain mask matrix that is

consistent with the sparsity structure of the covariance matrix, such that the masked

covariance matrix captures the major content of the original covariance matrix. Our

work focuses on the second part of measuring the deviation of the masked sample

covariance matrix from the masked covariance matrix. One can obtain a reliable

mask matrix when the covariance matrix exhibits structures that translate directly

into an informative mask matrix. For example, in the case of time-series data, the

corresponding covariance matrix has significant values along the diagonal while entries

far from the diagonal tend to have insignificant magnitude. In a general situation,

estimating a good mask matrix can be difficult and our work does not provide guidance

on overcoming this challenge.

2.2.2 Subadditivity of Matrix ϕ-Entropy and Matrix Concentration

Inequalities

In Chapter 4, our goal is to construct an approach for random matrices that is similar

to the scalar entropy method. We define entropy functionals on finite-dimensional

random matrices, establish the subadditivity properties of entropy functionals, and

prove several matrix concentration inequalities.

In Section 2.2.2.1, we first go over our thought process of defining the matrix

entropy. Then in Section 2.2.2.2, we illustrate the connections between the matrix

entropy and matrix concentration results, and explain how to obtain matrix concen-
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tration inequalities via the subadditivity property of the matrix entropy. Then in

Section 2.2.2.3, we exhibit the more general concept of matrix ϕ-entropy and display

our matrix concentration results in Section 2.2.2.4. We also show a generalized sub-

additivity property of the matrix entropy in the ∗-algebra setting in Section 2.2.2.5.

Finally, we provide a thorough discussion of our work in Section 2.2.2.6.

2.2.2.1 Matrix Entropy

The first step is to construct an entropy for random matrices that captures the ran-

domness of the matrix entries. The von Neumann quantum entropy provides guidance

for us to define entropies for random matrices. The quantum entropy is defined on

density matrices that characterize quantum systems. A density matrix ρ ∈ Hd is de-

terministic, positive semidefinite, and satisfies the unit trace condition tr ρ = 1. The

positive-semidefiniteness of the density matrix and the unit trace condition impliy that

the eigenvalues of a density matrix are non-negative and sum up to 1, which forms a

probability distribution. The eigenvectors specifies the quantum states that a system

can have and the corresponding eigenvalues are the probability that the system is in

each state. Thus, a rank-1 density matrix corresponds to a pure-state system and

higher-rank density matrices characterize mixed-state systems. The von Neumann

quantum entropy S(ρ) measures the uncertainty of a quantum system as specified by

the density matrix, and is defined as

S(ρ) := − tr(ρ log ρ).

Denote the eigenvalues of ρ as {λk}nk=1. Then the von Neumann entropy can be

equivalently represented as

S(ρ) = −
∑n

k=1
λk log λk,

which is the Shannon entropy on the discrete probability distribution of the eigenval-

ues.

In practice, we find the following trace-normalized negative entropy, which is a
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convex function on the density matrix ρ, to be more convenient:

Ŝ(ρ) = t̄r(ρ log ρ) =
1

d
· tr(ρ log ρ).

One can generalize the negative von Neumann entropy to any deterministic positive-

semidefinite matrix P ∈ Hd with a normalization by t̄r(P ):

Ŝ(P ) := t̄r(P logP )− t̄r(P ) · log t̄r(P ). (2.2.2)

We interprete (2.2.2) as the entropy encoded by the eigen structure of a deterministic

matrix. We also note that the normalized trace behaves like an expectation over the

eigenvalues and the function x 7→ x log x is convex. So by Jensen’s inequality,

t̄r(P logP ) ≥ t̄r(P ) log t̄r(P ) (2.2.3)

and Ŝ(P ) equals the gap between the left-hand side and right-hand side of (2.2.3).

When we define entropy for a positive-semidefinite random matrix Z, we want

to capture the randomness due to the distribution of the matrix entries only, instead

of the matrix structure. We start with the logarithmic function and the following

definition becomes our natural choice

H(Z) := E t̄r(Z logZ)− t̄r(EZ logEZ). (2.2.4)

The function X 7→ t̄r(X logX) is convex. So

E t̄r(Z logZ) ≥ t̄r(EZ logEZ)

and H(Z) as defined in (2.2.4) is non-negative and measures the function gap due to

the randomness of the matrix entries only.

Similar to the scalar entropy, we can also define a conditional matrix entropy for

a product probability distribution. Suppose Z is a function of x = (X1, . . . ,Xn)

where the Xi’s are independent. We denote x−i = (X1, . . . , Xi−1, Xi+1, . . . , Xn) and
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abbreviate Ei = E(·|x−i). Then the conditional matrix entropy is

H(Z|x−i) := Ei t̄r(Z logZ)− t̄r(EiZ logEiZ). (2.2.5)

2.2.2.2 Subadditivity Property and Matrix Concentration

In order to derive matrix concentration inequalities for a self-adjoint matrix Y ∈ Hd

from our matrix entropy (2.2.4), we need several ingredients. The argument is very

similar to the steps of establishing the subadditivity property of the scalar entropy.

Section 2.2.2.2.1 provides a matrix Laplace bound based on the matrix cumulant and

exhibits a matrix Herbst argument. We compare them with their scalar counterparts

which appear in Section 1.2.3.1. Then we exhibit a supremum representation of the

matrix entropy and the resulting subadditivity property in Section 2.2.2.2.2. They are

matrix generalizations of the scalar results that appear in Section 1.2.3.3.

2.2.2.2.1 Matrix Laplace Bound and Matrix Herbst Argument The first

step is the matrix Laplace transform method, which connects the matrix large devia-

tion probability with the matrix trace cumulant logE t̄r eθY with the following bound:

P {λmax(Y ) ≥ t} ≤ inf
θ>0

d · exp
(
−θt+ logE t̄r eθY

)
. (2.2.6)

Second, we use the matrix version of the Herbst argument to bound the matrix trace

cumulant with an integral function of the matrix entropy.

logE t̄r eθY = θ ·
∫ θ

0

H(eβY )

E t̄r eβY
· dβ

β2
. (2.2.7)

Note the resemblance between (2.2.7) and the orignal Herbst argument (1.2.17) in the

scalar entropy method.

2.2.2.2.2 Supremum Representation of the Matrix Entropy and the Sub-

additivity Property The next step is to derive bounds for the entropy H(eβY ) in

(2.2.7). As in the scalar entropy method, one approach is to develop matrix versions of

logarithmic-Sobolev inequality for certain distributions to control the entropy directly.

Alternatively, we can develop the subadditivity property of the matrix entropy, which
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has led to a modified logarithmic-Sobolev inequality in the scalar case. In our work,

we take the second approach.

The key step of establishing the subadditivity property of the matrix ϕ-entropy is

the following supremum characterization that resembles the supremum representation

of the scalar entropy (1.2.20):

H(Z) = sup
T<0

E t̄r
[
(log(T )− log(ET ))(Z − T ) +H(T )

]
. (2.2.8)

As in the scalar case, the supremum representation of the matrix entropy is also due

to the convexity of the matrix entropy. The proof of (2.2.8) relies on some convexity

arguments in the operator theory and follow similar steps in the proof of the subad-

ditivity property of the scalar ϕ-entropies in Boucheron et al. [26].

The subadditivity property of the matrix entropy has a similar structure to the

scalar version. We show that the matrix entropy functional as defined in (2.2.4)

exhibits the subadditivity property

H(Z) ≤
∑n

i=1
E
[
H(Z|x−i)

]
, (2.2.9)

where H(Z|x−i) is the conditional matrix entropy (2.2.5).

2.2.2.2.3 Infimum Representation of the Matrix Entropy and Matrix Con-

centration Inequalities The derivation of a modified logarithmic-Sobolev inequal-

ity depends on the following infimum representation of the matrix entropy:

H(Z) = inf
T<0

E t̄r[Z(logZ − logT )− (Z − T )], (2.2.10)

which is clearly the matrix counterpart of the infimum representation (1.2.21) of the

scalar entropy. Apply (2.2.10) to the conditional matrix entropies on the right-hand

side of (2.2.9) to obtain the modified logarithimic-Sobolev inequality:

H(Z) ≤ 1

2

∑n

k=1
E t̄r

[
(Z −Z ′i)(ψ(Z)− ψ(Z ′i)

]
, (2.2.11)
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where ψ(x) = 1 + log x and

Z ′i = Z(X1, . . . , Xi−1, X
′
i, Xi+1, . . . , Xn),

with X ′i an independent copy of Xi. We see that (2.2.11) is the matrix version of the

scalar modified logarithmic-Sobolev inequality (1.2.26).

Based on (2.2.11), we derive a large deviation probability for matrix functions that

are invariant under signed permutation and have bounded difference. We exhibit this

result in Section 2.2.2.4. We summarize the main steps to derive matrix concentration

inequalities using the matrix entropy. They are very similar to main steps of the scalar

entropy method. First, set Z = eθY and control the sum on the right-hand side of

the modified logarithmic-Sobolev inequality (2.2.11). Second, substitute the entropy

bound into the matrix Herbst inequality (2.2.7) to arrive at an upper bound on the

matrix trace cumulant. Finally, substitute into the matrix Laplace bound (2.2.6), and

minimize over the parameter θ to arrive at the matrix deviation probability.

2.2.2.3 Matrix ϕ-Entropy

As in the scalar entropy method, we want to go beyond the logarithmic entropy and

explore all convex functions with which we can define an entropy functional that

exhibits the subadditivity property. The matrix ϕ-entropy functional we define for a

positive-semidefinite random matrix Z is

Hϕ(Z) := E t̄rϕ(Z)− t̄rϕ(EZ),

and the corresponding conditional matrix ϕ-entropy for a product probability distri-

bution is

Hϕ(Z|x−i) := Ei t̄rϕ(Z)− t̄rϕ(EiZ).

The subadditivity property of the matrix ϕ-entropy is

Hϕ(Z) ≤
∑n

i=1
E
[
Hϕ(Z|x−i)

]
. (2.2.12)
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In order for the subadditivity property to hold for the matrix ϕ-entropy, the function

ϕ : R+ 7→ R needs to satisfy certain conditions. In Chapter 4, we delineate the

sufficient conditions that the function ϕ should satisfy to ensure the subadditivity of

the corresponding matrix ϕ-entropy. We call this group of functions the Φ function

class. And we verify these conditions for the functions ϕ : x 7→ x log x and ϕ : x 7→ xp

where p ∈ [1, 2], the first of which generates the matrix entropy (2.2.4).

Based on applying the subadditivity property (2.2.12) of the matrix ϕ-entropy to

the power function ϕ : x 7→ xp with p ∈ [1, 2], we obtain a matrix moment bound

for matrix functions that are invariant under signed permutation and have bounded

difference. We exhibit this result in Section 2.2.2.4.

2.2.2.4 Concentration Inequalities from the Subadditivity Properties of

Matrix Entropy

With the subadditivity property of the matrix ϕ-entropy, we obtain several matrix

concentration inequalities for random matrices that are invariant under sign permu-

tations. We have explained the main steps of deriving probabilistic concentration

results in Section section:supreumum-subadditivity for the ϕ-entropy with the choice

of ϕ(x) = x log x. The result is the following version of the bounded difference in-

equalities.

Theorem 2.2.3 (Bounded Differences). Let x := (X1, . . . , Xn) be a vector of independent

random variables, and let x′ := (X ′1, . . . , X
′
n) be an independent copy of x. Consider the

following self-adjoint random matrices in Rd

Y := Y (X1, . . . , Xi, . . . , Xn) and

Y ′i := Y (X1, . . . , X
′
i, . . . , Xn) for i = 1, . . . , n.

Assume that Y is invariant under signed permutation and that ‖Y ‖ is bounded almost surely.

Define the variance measure

VY := sup
∥∥∥E [∑n

i=1
(Y − Y ′i )2

∣∣∣x]∥∥∥ ,
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where the supremum occurs over all possible values of x. For each t ≥ 0,

P {λmax(Y − EY ) ≥ t} ≤ d · e−t2/(2VY ), and

P {λmin(Y − EY ) ≤ −t} ≤ d · e−t2/(2VY ).

Similar to the case of the scalar entropy method (Section 1.2.3.4), the power func-

tion ϕ(x) = xp for p ∈ [1, 2] leads to matrix moment bounds. We exhibit our matrix

moment bound in the following theorem. Again, we require that the distribution of

the random matrices are invariant under sign permutations.

Theorem 2.2.4 (Matrix Moment Bound). Fix a number q ∈ {2, 3, 4, . . . }. Let x :=

(X1, . . . , Xn) be a vector of independent random variables, and let x′ := (X ′1, . . . , X
′
n) be

an independent copy of x. Consider the following self-adjoint positive-semidefinite random

matrices in Rd

Y := Y (X1, . . . , Xi, . . . , Xn) and

Y ′i := Y (X1, . . . , X
′
i, . . . , Xn) for i = 1, . . . , n.

Assume that Y is invariance under signed permutation and E(‖Y ‖q) < ∞. Suppose that

there is a constant c ≥ 0 with the property

VY := E
[∑n

i=1
(Y − Y ′i )2

∣∣∣x] 4 cY .

Then the random matrix Y satisfies the moment inequality

[
E t̄r(Y q)

]1/q ≤ E t̄rY +
q − 1

2
· c. (2.2.13)

Compare our matrix moment inequality (2.2.13) with Boucheron’s result (1.2.34).

2.2.2.5 Generalized Subadditivity Properties

Another result of our work in Chapter 4 is that we further establish the generalized

subadditivity properties of the matrix ϕ-entropy defined on the ∗-algebra, which is the

tracial full non-commutativity. A ∗-subalgebra A is a subspace of self-adjoint matrices

with fixed dimension which contains the matrix identity and is close under matrix
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multiplication and conjugation. As explained by Carlen [45], orthogonal projection

onto a ∗-subalgebra resembles taking conditional expectation in probability theory. We

use functions in the same Φ function class to define a generalized concept of ϕ-entropy

conditional on a ∗-subalgebra:

Hϕ(A |A) := t̄r[ϕ(A)− ϕ(EAA)] for A ∈ Hd+,

where EA : Hd 7→ A is the projection onto the ∗-subalgebra A.

Two ∗-subalgebras A1, A2 commute when the result of sequentially projecting a

matrix onto one and the other does not depend on the ordering:

(EA1 EA2)M = (EA2 EA1)M for all M ∈ Hd.

The ϕ-entropy can be defined on commuting ∗-subalgebras. For example, when we

have two commuting ∗-subalgebras, the corresponding ϕ-entropy is

Hϕ(A |A1,A2) := t̄r[ϕ(A)− ϕ(EA1 EA2 A)] for A ∈ Hd+.

A series of commuting ∗-subalgebras {A1, . . . ,An} corresponds to the conditional ex-

pectations that appear in the subadditivity property of the matrix ϕ-entropy and we

establish the following subadditivity property of the matrix ϕ-entropy:

Hϕ(A |A1, . . . ,An) ≤
∑n

i=1
Hϕ(A |Ai) for A ∈ Hd+. (2.2.14)

The argument is very similar to the steps of establishing the subadditivity property

of the ϕ-entropy in the usual expectation setting.

2.2.2.6 Discussions

In this section, we discuss the impacts of our work. We first evaluate our concentration

results in Section 2.2.2.6.1. Then we summarize related works in Section 2.2.2.6.3.

2.2.2.6.1 Evaluating Our Results We first comment on the concentration in-

equalities obtained in our work. Our results, Theorems 2.2.3 and 2.2.4, are matrix
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extensions to the scalar concentration results in [26]. However, the requirement that

the random matrices are invariant under sign permutation limits them from being ap-

plied widely. The most comparable result is Theorem 2.1.9, which contains bounded

differences inequalities without assumptions on the matrix distribution. The main

challenge of extending our results to more general situations arises when we bound

the conditional entropy on the right-hand side of the modified logarithmic-Sobolev in-

equality (2.2.11). The sign permutation invariance assumption allows us to eliminate

a tricky term when we control the conditional entropy.

Next, we evaluate our results in the framework of a potential matrix version of the

entropy method. As we demonstrated in Section 1.2.3, in the scalar entropy method,

we can either use a logarithmic-Sobolev inequality or the subadditivity property of

the scalar entropy to bound the entropy of the random variable’s moment generating

function. In our work, we define the matrix ϕ-entropy and establish the correspond-

ing subadditivity property. However, we fall short of establishing matrix versions of

concentration results such as logarithmic-Sobolev inequalities or Poincaré inequalities,

whose scalar counterparts have played an important role in establishing scalar concen-

tration results for various applications. We acknowledge that Hansen independently

developed similar subadditivity results in his work [92] .

2.2.2.6.2 Comparison with Other Methods of Deriving Matrix Concentra-

tion Inequalities As we summarized in Section 1.2.1.4, the scalar entropy method

connects information theoretic inequalities and is a powerful approach to produce

scalar concentration inequalities for general functions of independent random vari-

ables. This approach does not depend on the specific structure of the function of

random variables. In the matrix setting, we do not have many general approaches of

deriving concentration inequalities. For example, the Lieb’s Theorem applies to sums

of random matrices by decoupling their matrix moment generating functions, but is

limited beyond this class of structured random matrices. The method of exchangeable

pairs produces new concentration inequalities but at the moment it is not clear what

class of matrices from which one can create an appropriate exchangeable pair.

Our goal of developing a matrix version of the entropy method is to find a general

approach of deriving matrix concentration inequalities that does not depend on the
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specific structure of random matrices in interest. Similarly, the matrix entropy method

relies on some information inequalities in the matrix setting. However, in the matrix

case, we do not have a well-established version of the entropy theory. So, by defining

the matrix ϕ-entropy, we are laying out some first steps for an entropy theory of

random matrices. We also develop matrix information inequalities that are required for

the derivation of the subadditivity property of the matrix ϕ-entropy and the associated

concentration inequalities. In addition, we show the subadditivity property also holds

in the tracial non-commutative ∗-algebra setting. Due to the non-commutativity of

matrices, the tools for developing matrix concentration inequalities are quite limited.

Our work relies on advanced results from the operator theory, which will potentially

lead to new techniques for random matrices.

Besides deriving concentration inequalities, the entropy method has connections

with other fields as well. For example, the scalar entropy method has deep connections

with results from Markov semigroups. Previously we discuss the Kernel Stein pairs

method where the authors applied matrix coupling to construct Kernel Stein pairs.

A complete matrix entropy theory will potentially lead a detailed understanding of

the connections. The definition of matrix entropy draws inspirations from the von

Neumann entropy. In return, a thorough study of matrix entropy might lead to new

results in quantum information theory as well. We discuss these connections based on

the research after our work is published in the next section.

2.2.2.6.3 Related Work After our work is published, various authors continue

to explore and study the properties of the matrix ϕ-entropy. In [179], Pitrik and

Virosztek show that the a scalar function satisfies the conditions to generate a matrix

ϕ-entropy if and only if the corresponding matrix f-Bregman divergence from this

scalar function is jointly convex, thus establishing the equivalence of the matrix ϕ-

entropy with the joint convexity of the Bregman divergence. The authors establish

an improved inequality for the Tsallis entropy of a tripartite state which generalizes

the strong subadditivity property of the von Neumann entropy. In [93], Hansen and

Zhang provide alternative and transparent characterizations of the matrix ϕ-entropy.

In [248], Zhang show that a larger class of power functions satisfy the conditions for

the Φ function class. The recent works [55, 56] establish important results based on
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the matrix ϕ-entropy. We detail their contributions next.

2.2.2.6.3.1 New Characterization of Matrix Φ-Entropy, Matrix Poincaré

and Sobolev Inequalities, and the Holevo Quantity The work of Cheng and

Hsieh [55] extends significantly our results on the matrix ϕ-entropy. First, Cheng and

Hsieh provide an augmented characterization of the matrix ϕ-entropy and show that

the matrix ϕ-entropy satisfies all known equivalent characterizations for the scalar ϕ-

entropy. The authors pointed out that the additional characterizations for the matrix

ϕ-entropy are useful in many instances and they establish clear connections with other

related topics, as exemplified in [179] mentioned earlier.

Second, based on the subadditivity property (2.2.12) of the matrix ϕ-entropy

proved in our work, Cheng and Hsieh extend a important set of classical concen-

tration inequalities to the matrix setting. The first result is a new proof of the ma-

trix Efron–Stein inequality which controls the trace variance of a matrix function

Z := L(X) := L(X1, . . . ,Xn) of independent random variables {X1, . . . ,Xn} defines

as

Var(Z) := t̄r
[
E(Z − EZ)2

]
(2.2.15)

with the expected local perturbation of Z:

Var(Z) ≤
∑n

i=1
t̄rE

[
(Z −Z ′i)

2
+

]
, (2.2.16)

where Z ′i := L(X1, . . . ,Xi−1,X
′
i,Xi+1, . . . ,Xn) differs from Z with an independent

instantiation X ′i of Xi. The right-hand side of (2.2.16) captures the conditional vari-

ance of the function L(X) denoted as E(Z):

E(Z) := E(L(X)) :=
∑n

i=1
t̄rE

[
(Z −Z ′i)

2
+

]
=

1

2

∑n

i=1
t̄rE

[
(Z −Z ′i)

2
]
. (2.2.17)

Note that E(Z) resembles the quantities (1.2.30) and (1.2.31) that appear in the scalar

entropy method (Section 1.2.3.3.4).

Matrix Efron–Stein inequality first appeared in [173], which produced a more gen-

eral version based on the matrix exchangeable pairs method. The constant of (2.2.16)
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in the special case of [55] has a better constant. The overlapped result implies the

theoretical connections between the matrix exchangeable pairs method and the matrix

entropy method. Based on (2.2.16), the authors establish matrix versions of the classi-

cal Poincaré inequality and the classical ϕ-Sobolev inequality, which are fundamental

results behind the classical entropy method for scalar random variables.. The matrix

Poincaré inequality bounds the trace variance of the matrix function L(X) that is

separately convex by the expected norm of the Fréchet derivatives taken with respect

to individual random matrices {Xi}:

Var(L(X)) ≤
∑n

i=1
E
[
‖DXiL[X]‖22

]
. (2.2.18)

The matrix ϕ-Sobolev inequality of [55] controls the matrix ϕ-entropy of a non-

negative matrix value function F : Rn 7→ Hd+ taking n independent random variables

(X1, . . . , Xn) as input variables when ϕ is a power function. The exact form of the

matrix ϕ-Sobolev inequality depends on the distribution of {Xi}. When {Xi} are in-

dependent Bernoulli taking the values of 0 and 1 with equal probability, the following

ϕ-Sobolev holds for all p ∈ (1, 2)

Hϕ(F p) ≤ (2− p)E(F ) · d1−2/p + t̄rE[F 2] · (1− d1−2/p), (2.2.19)

with ϕ : x 7→ x2/p and E(F ) is the conditional variation (2.2.17). When {Xi} are

independent standard Gaussian random variables, the ϕ-Sobolev inequality takes a

different form:

Hϕ(F p) ≤ (2− p)
∑n

i=1
E
[
‖DXiF (X)‖22

]
· d1−2/p + t̄rE[F 2] · (1− d1−2/p), (2.2.20)

with p ∈ (1, 2) and ϕ : x 7→ x2/p. The authors show that the ϕ-Sobolev inequalities

(2.2.19) and (2.2.20) lead to the logarithmic-Sobolev inequalities for both distributions,

which control the matrix entropy, that is the matrix ϕ-entropy with ϕ : x 7→ x log x.

The logarithmic-Sobolev inequality for symmetric Bernoulli random variables is

H(F 2) ≤ 2E(F ) + log(d) · t̄rE
[
F 2
]
.
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The logarithmic-Sobolev inequality for independent Gaussian random variables is

H(F 2) ≤ 2
∑n

i=1
E
[
‖DXiF (X)‖22

]
+ log(d) · t̄rE

[
F 2
]
.

These inequalities are very important in constructing a potential complete framework

of the entropy method for random matrices.

In the last contribution, the authors of [55] show an interesting connection of

the matrix ϕ-entropy to the quantum information theory. The demonstrate that the

matrix ϕ-entropy conincides with the Holevo quantity. They prove an upper bound

of the Holevo quantity for quantum ensembles with Markov evolution. The Holevo

quantity [97] is an important quantity in quantum information theory as it measures

the quantity of information that a quantum communication channel can transmit.

The authors of [55] point out that their upper bound for the Holevo quantity is a

stronger form of the strong data processing inequality [180, 181], which is key in

classical information theory.

2.2.2.6.3.2 Exponential Decay of Matrix Φ-Entropies on Markov Semi-

group and Applications Based on the matrix ϕ-entropy and the associated matrix

functional inequalities, matrix Poincaré and ϕ-Sobolev inequalities, developed in [55],

Cheng et. al. [56] extend the study of the Markov semigroup to the matrix setting.

Considering the matrix function F : Ω 7→ Cd×d, the authors use a Markov semigroup

evolves the matrix function F according to

PtF (x) =

∫
y∈Ω

Tt(x, dy)� F (y),

where the evolution of the matrix dynamical system is governed by a completely

positive map Tt(x,dy) : Cd×d 7→ Cd×d such that
∫
y
∫

Ω Tt(x,dy) is unital.

In the scalar setting, under proper conditions the variance and ϕ-entropy decreases

exponentially under the influence of a Markov semigroup [47]. The authors of [56] also

establish the necessary and sufficient conditions for the exponential decay of matrix

trace variance and matrix ϕ-entropy under Markov semigroup. The arguments of [56]

to establish such results parallel those in the scalar setting. The first component is
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the infinitesimal generator for a Markov semigroup {Pt}t≥0:

L(F ) := lim
t→0+

1

t
· (PtF − F ), (2.2.21)

which characterizes the infinitesimal ‘gradient’ due to the Markov semigroup. The set

of matrix-valued functions F such that the above limit (2.2.21) exists is called the

Dirichelet domain D(L) of L. The second component is the following carré du champ

operator Γ : D(L)×D(L) 7→ D(L):

Γ(F ,F ) :=
1

2
·
(
L(F 2)− FL(F )− L(F )F

)
.

The carré du champ operator has a symmetric and bilinear extension:

Γ(F ,G) = Γ(G,F ) :=
1

2
·
(
Γ(F + G,F + G)− Γ(F ,F )− Γ(G,G)

)
,

which reduces to the following simple form when the two matrix functions F and G

commute:

Γ(F ,G) =
1

2
·
(
L(FG)− FL(G)−GL(F )

)
.

The third component is the invariant measure for the semigroup {Pt}t≥0∫
PtF (x)µ(dx) =

∫
F (x)µ(dx), for all t ∈ R+.

The fourth component is a symmetric bilinear Dirichlet form, which integrates the

carré du champ operator Γ with respect to the invariant measure µ:

E(F ,G) :=

∫
Γ(F ,G)dµ.

The authors prove that the necessary and sufficient condition for the matrix ϕ-

entropy to decay exponentially under the Markov semigroup {Pt}t≥0

Hϕ(PtF ) ≤ e−t/C ·Hϕ(F ), for all t ≥ 0
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is that the Markov triple (Ω,Γ, µ) satisfies the following ϕ-Sobolev inequality

Hϕ(F ) ≤ −C trEµ
[
ϕ′(F )L(F )

]
,

with a positive constant C. As a corollary, the authors establish that the necessary

and sufficient condition for the trace variance (2.2.15) to decay exponentially

Var(PtF ) ≤ e−2t/C ·Var(F )

is that the Markov triple (Ω,Γ, µ) satisfies the following spectral gap inequality with

a constant C > 0 for all matrix functions F :

Var(F ) ≤ C tr[E(F )].

The authors of [56] also show that the exponential decay of the matrix ϕ-entropy

under the Markov semigroup has immediate implications in quantum information

theory. In particular, since the matrix ϕ-entropy coincides with the Holevo quantity,

the authors show that the Holevo quantity of a quantum ensemble decays exponentially

through a Markov dynamical evoluation that does not depend on the history. In

addition, based on the subadditivity property (2.2.12) of the matrix ϕ-entropy, the

authors characterize the convergence rate of a Markov jump process defined on the

Boolean hypercude. A final result in the paper studies random walks on the quantum

random graph and bounds the mixing time of the quantum ensembles.
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Chapter 3

The Masked Sample Covariance
Estimator: An Analysis via the
Matrix Laplace Transform Method

Preface

This chapter is adopted from the technical report [53]. Another version where we

analyze the masked sample covariance estimator using matrix moment concentration

inequalities is published as [52] in the journal of Information and Inference. They are

collaboratively produced by the candidate, the candidate’s advisor Joel A. Tropp, and

Alex Gittens, who was a senior graduate student at the time of the work.

3.1 Introduction

In this section, we provide an overview of masked covariance estimation and its rela-

tionship with classical covariance estimation. In Section 3.1.6, we present a simplified

result for the behavior of the masked sample covariance estimator applied to a Gaus-

sian distribution, and we offer a concrete comparison with the results of Levina and

Vershynin [128, Thm. 2.1]. More detailed results appear in Section 3.3.

3.1.1 Classical Covariance Estimation

Consider a random vector

x = (X1, X2, . . . , Xp)
∗ ∈ Rp.
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Let x1, . . .xn be independent random vectors that follow the same distribution as x.

For simplicity, we assume that the distribution is known to have zero mean: Ex = 0.

The covariance matrix Σ is a p× p matrix that tabulates the second-order statistics

of the distribution:

Σ := E(xx∗), (3.1.1)

where ∗ denotes the transpose operation. The classical estimator for the covariance

matrix is the sample covariance matrix, which is obtained from (3.1.1) by the plug-in

principle:

Σ̂n :=
1

n

∑n

i=1
xix

∗
i . (3.1.2)

The sample covariance matrix is an unbiased estimator of the covariance matrix.

Given a tolerance ε ∈ (0, 1), we can study how many samples n are typically

required to provide an estimate with relative error ε in the spectral norm:

E
∥∥Σ̂n −Σ

∥∥ ≤ ε ‖Σ‖ . (3.1.3)

This type of spectral-norm error bound is quite powerful. It limits the magnitude of

the estimation error for each entry of the covariance matrix; it provides information

about the variance of each marginal of the distribution of x; it even controls the error

in estimating the eigenvalues of the covariance using the eigenvalues of the sample

covariance.

Unfortunately, an error bound of the form (3.1.3) demands a lot of samples. Sup-

pose that the covariance matrix has full rank. Then the number of samples must be

at least as large as the number of variables to obtain a nontrivial guarantee. Indeed,

when n < p, the sample covariance does not even have full rank, so the spectral norm

error is bounded away from zero!

Typical positive results on covariance estimation state that we can obtain an ac-

curate estimate for the covariance matrix when the number of samples is proportional

to the number of variables, provided that the distribution decays fast enough. For

example, assuming that x follows a normal distribution,
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n ≥ C ε−2p =⇒
∥∥Σ̂n −Σ

∥∥ ≤ ε ‖Σ‖ with high probability. (3.1.4)

We use the analyst’s convention that C denotes an absolute constant whose value

may change from appearance to appearance. See [239, Thm. 57 et seq.] for details of

obtaining the bound (3.1.4). The work of Srivastava and Vershynin [204] contains the

most recent news on the classical covariance estimation problem.

3.1.2 Motivation for Masked Covariance Estimation

In the regime n � p, where we have very few samples, we can never hope to achieve

the estimate (3.1.3). So we must lower our standards. The following example provides

some insight on how to proceed.

Example 3.1.1 (Simultaneous Variance Estimation). Let us how many realizations of a Gaus-

sian random vector we need to accurately estimate the variance of each component.

First, suppose that Z is a zero-mean normal variable with variance v. Given independent

copies Z1, . . . , Zn of the random variable Z, we can compute the sample variance

v̂ :=
1

n

∑n

i=1
Z2
i .

The estimator v̂ is unbiased, and it follows a chi-square distribution, so the probability of

error satisfies

P {|v̂ − v| ≥ tv} ≤ 2 e−nt
2/4 for t ≥ 0. (3.1.5)

For a clean proof of this inequality, see [11, Lect. 1].

Next, suppose that the random vector x follows a zero-mean normal distribution with

arbitrary covariance Σ, and write σij for the (i, j) entry of this matrix. When we use the

sample covariance to estimate each of the p diagonal entries of Σ, the bound (3.1.5) implies

that

P
{

maxi |(Σ̂n −Σ)ii| ≥ (maxi σii) · t
}
≤ 2p e−nt

2/4.
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We conclude that

n ≥ C ε−2 log p =⇒ maxi |(Σ̂n −Σ)ii| ≤ εmaxi σii with high probability. (3.1.6)

Since maxi σii ≤ ‖Σ‖, the error obtained in (3.1.6) is smaller than the spectral-norm error

in (3.1.4).

When the covariance Σ = I, it can be shown that at least log p samples are required to

achieve the bound (3.1.6).

Example 3.1.1 suggests an intriguing possibility. Although we need at least p sam-

ples to estimate the entire covariance matrix, roughly log p samples suffice to estimate

the diagonal. It turns out that this phenomenon is generic: If we estimate only a

small portion of the covariance matrix, then we can reduce the number of samples

dramatically. This observation is widely applicable because there are many problems

where we do not need to know all of the second-order statistics.

Partitioning Variables Suppose that we divide the stock market into disjoint sectors, and

we would like to study the interactions among the monthly returns for stocks within

each sector. The list of returns for all the stocks can be treated as a random vector.

We block the covariance matrix of this random vector to conform with the market

sectors, and we estimate only the entries in the diagonal blocks.

Spatial or Temporal Localization A simple random model for grayscale images treats

the intensity of each pixel as a random variable. Nearby pixels tend to be bright or

dark together, while distant pixels are usually uncorrelated. Thus, we might limit our

attention to the interactions between a pixel and the pixels directly adjacent to it.

This model suggests that we estimate the entries of the covariance that lie within a

(generalized) band about the diagonal.

Graph Structures Consider a stochastic model for the spread of an epidemic through a

social network. At each time instant, we label an individual with a random variable

that measures how sick he is. Since transmission only occurs along links in the network,

neighbors are likely to be sick or well together. As a result, we might want to focus

on estimating the covariance for individuals separated by one degree. In this case, the
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adjacency matrix of the graph determines which pairs to estimate.

3.1.3 The Mask Matrix

We can treat all the examples from Section 3.1.2 using a formalism that was introduced

by Levina and Vershynin [128]. Let M be a fixed p × p symmetric matrix with real

entries, which we call the mask matrix. The basic idea is to construct a mask that

guides our attention to specific parts of the covariance matrix.

In the simplest case, the mask has 0–1 values that indicate which entries of the

covariance we must attend to. The presence of a unit entrymij = 1 tells us to estimate

the interaction between the ith and jth variable; a zero entry mij = 0 means that

we abdicate from making any estimate of this interaction. In Example 3.1.1, we are

only interested in the diagonal entries of the covariance, so we are using the mask

Mdiag = I. Here are some other basic examples:

Mgroup :=



1 1

1 1

1 1

1 1

1


; Mband :=



1 1

1 1 1

1 1 1

1 1 1

1 1


; Mgraph :=



1 1 1

1 1

1 1 1

1 1

1 1 1


.

The matrix Mgroup corresponds to the case where we partition variables into three

subgroups, and we make estimates only within subgroups. Masks such as Mband arise

from banded covariance estimation, which occurs for spatially localized random fields.

The mask Mgraph might occur when the variables exhibit a graphical dependency

structure.

In more complicated situations, we can allow the mask to take arbitrary nonneg-

ative values and then interpret the magnitude of each entry as a requirement on the

precision of the estimate. When mij is large, we must study the interaction between

the ith and jth variable carefully. When mij is small, we are less vigilant about how

well we estimate the (i, j) entry of the covariance matrix. An example of a mask with
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general entries is the Kac matrix

MKac :=



1 ϕ ϕ2 ϕ3 ϕ4

ϕ 1 ϕ ϕ2 ϕ3

ϕ2 ϕ 1 ϕ ϕ2

ϕ3 ϕ2 ϕ 1 ϕ

ϕ4 ϕ3 ϕ2 ϕ 1


where ϕ ∈ (0, 1).

The mask MKac tapers the covariances exponentially depending on the distance |i− j|

between the variables. This type of example might be relevant for the study of spatially

localized processes.

Most of the regularization techniques for sparse covariance estimation studied in

the literature, such as [21, 77, 40], can be described using mask matrices. The initial

works focus on specific cases, such as banded masks and tapered masks, whereas

we have followed Levina and Vershynin [128] by allowing an arbitrary symmetric

matrix M . We refer to the papers cited in this paragraph for further background and

references.

Remark 3.1.2. Let us emphasize that the entries of the mask can take both positive and

negative values, but it is harder to find a clear interpretation of a mask that has negative

entries.

3.1.4 The Masked Sample Covariance Estimator

Suppose that we have specified a symmetric p × p mask M with real entries. The

masked covariance and the masked sample covariance estimator are the two matrices

M �Σ and M � Σ̂n,

where the symbol � denotes the componentwise (i.e., Schur or Hadamard) product.

The goal of this work is to study the error incurred when we estimate the masked

covariance matrix using the masked sample covariance:

∥∥M � Σ̂n −M �Σ
∥∥. (3.1.7)
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As noted by Levina and Vershynin [128, Sec. 1], control on the error (3.1.7) also

delivers information about how well we estimate the full covariance because

∥∥M � Σ̂n −Σ
∥∥ ≤ ∥∥M � Σ̂n −M �Σ

∥∥ +
∥∥M �Σ−Σ

∥∥. (3.1.8)

The first term in (3.1.8) reflects the variance of the estimator about its mean value,

while the second term represents the bias in the estimate owing to the presence of

the mask. It is important to select a mask M that simultaneously controls both the

variance and the bias. Understanding the variance term requires an excursion into

random matrix theory, and it comprises the main subject of this work. Studying the

bias term involves only a deterministic analysis, which should be undertaken with a

specific application in mind.

When the error (3.1.7) is small, the masked sample covariance yields accurate

estimates for each component of the covariance where the corresponding entry of M is

large, as well as the variance of some specially chosen marginals. When the error (3.1.8)

is also small, the masked sample covariance provides additional information about the

variance of all marginals of the distribution of x, as well as estimates for the eigenvalues

of the covariance.

3.1.5 The Complexity of a Mask

The number of samples we need to control (3.1.7) depends on “how much” of the

covariance matrix we are attempting to estimate. We quantify the complexity of the

mask using two separate metrics. First, define the square of the maximum column

norm of the mask matrix:

‖M‖21→2 := maxj

(∑
i
m2
ij

)
.

Roughly, the parenthesis reflects the number of interactions we want to estimate that

involve the variable j, and the maximum computes a bound over all p variables. The

second metric is the spectral norm ‖M‖ of the mask matrix, which provides a more

global view of the complexity of the interactions that we estimate.

Some examples may illuminate how these metrics reflect the properties of the mask.
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First, suppose that we estimate the entire covariance matrix, so the mask is the matrix

of ones:

M = matrix of ones =⇒ ‖M‖21→2 = p and ‖M‖ = p.

We will see that the value p here corresponds with the factor p in the sample complexity

bound (3.1.4). Next, consider the mask that arises in banded covariance estimation:

M = 0–1 matrix, bandwidth B =⇒ ‖M‖21→2 ≤ B and ‖M‖ ≤ B

because there are at most B ones in each row and column. When B � p, the banded

mask is much less complex than the matrix of ones, and estimation is commensurately

easier. Third, assuming the mask is a Kac matrix, we have

M = Kac matrix, parameter ϕ =⇒ ‖M‖21→2 ≤
1

1− ϕ2
and ‖M‖ ≤ 1

1− ϕ
.

For a fixed value of ϕ, neither quantity depends on the total number of variables, so

covariance estimation with this mask should require very few samples.

Remark 3.1.3. In each example above, the two metrics take very similar values, but this

coincidence does not always occur. Although the spectral norm dominates the maximum

column norm, the square of the maximum column norm can be substantially larger or sub-

stantially smaller than the spectral norm. We have omitted examples to support this point

because they do not seem to arise naturally in the setting of masked covariance estimation.

3.1.6 Masked Covariance Estimation for Gaussian Distributions

This paper develops a bound for the estimation error (3.1.7) when the random vector

x follows a subgaussian distribution with zero mean. For illustrative purposes, this

section focuses on the simpler case where the random vector has a normal distribution.

The general results appear in Section 3.3.

Theorem 3.1.4 (Masked Covariance Estimation for Gaussian Distributions). Fix a p × p

symmetric mask matrix M . Suppose that x is a Gaussian random vector in Rp with mean

zero. Define the covariance matrix Σ and the sample covariance matrix Σ̂n as in (3.1.1)
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and (3.1.2). Then the expected estimation error satisfies

E
∥∥M � Σ̂n −M �Σ

∥∥ ≤ 8

(‖M‖21→2 log(6p)

n

)1/2

+
‖M‖ log2(6np)

n

 ‖Σ‖ . (3.1.9)

Theorem 3.1.4 is a simplified version of Corollary 3.3.3. The reader is encouraged

to examine the full result, which includes several substantial refinements.

Remark 3.1.5. In the actual practice of covariance estimation, we center each sample em-

pirically by subtracting the sample mean x̄ = n−1
∑n

i=1 xi. The sample covariance (3.1.2)

is computed using the centered samples x̃i = xi− x̄ instead of the original samples xi. The

theory in this paper can be extended to cover the masked covariance estimator formed with

centered samples; see [128, Rem. 4] for the details of the argument.

3.1.6.1 Sample Complexity Bound

Theorem 3.1.4 allows us to develop conditions on the number n of samples that we

need to control the estimation error with high probability. Markov’s inequality can

be used to convert (3.1.9) into an error bound that holds in probability. For example,

with probability at least 99%,

∥∥M � Σ̂n −M �Σ
∥∥ ≤ C

(‖M‖21→2 log p

n

)1/2

+
‖M‖ log2(np)

n

 ‖Σ‖ . (3.1.10)

For stronger exponential error bounds, we refer to Corollary 3.3.3. To obtain the

sample complexity, assume that n ≤ p, and let ε ∈ (0, 1). Then (3.1.10) yields the

statement

n ≥ C
[
ε−2 ‖M‖21→2 log p+ ε−1 ‖M‖ log2 p

]
=⇒

∥∥M � Σ̂n −M �Σ
∥∥ ≤ ε ‖Σ‖

(3.1.11)

with probability at least 99%.

3.1.6.2 Is This Sample Complexity Bound Optimal?

Levina and Vershynin show that the sample complexity of masked covariance estima-

tion must exhibit a logarithmic dependence on the number p of variables [128, Rem. 3].
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They also argue that there should be a linear dependence on the maximum number of

interactions that involve a single variable [128, Eqn. (1.4) et seq.]; this term appears

in (3.1.11) in the guise of ‖M‖21→2. As a consequence of these observations, it seems

plausible that the first summand in the sample bound (3.1.11) has the optimal form.

On the other hand, we believe that the factor log2 p in the second summand could

probably be reduced to log p.

The discussion in Example 3.1.1 suggests that it may be possible to improve the

dependence of the sample complexity bound (3.1.11) on the spectral norm ‖Σ‖ of the

covariance. Indeed, we have obtained a refinement of this type. See Corollary 3.3.3

for details.

3.1.6.3 Application Example

Consider the banded covariance estimation problem, with the mask

M = 0–1 matrix with bandwidth B.

See the matrix Mband displayed on page 82 for an instance with B = 3 and p = 5.

The sample complexity bound (3.1.11) and the norm calculations from Section 3.1.5

demonstrate that

n ≥ C
[
ε−2B log p+ ε−1B log2 p

]
(3.1.12)

is sufficient to provide a relative estimation error ε in spectral norm with 99% probabil-

ity. For comparison, recall the sufficient condition (3.1.4) that the sample complexity

for estimating the entire covariance with relative error ε satisfies

n ≥ C ε−2p.

When the bandwidth is much smaller than the number of variables (B � p), the

masked covariance estimator outperforms the classical covariance estimator. On the

other hand, when the bandwidth is comparable with the number of variables, the

analysis of the masked covariance estimator gives a sample complexity bound (3.1.12)

that is worse by a polylogarithmic factor.

We remark that, when ε is constant, the second summand in (3.1.12) always dom-
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inates the first as p → ∞. On the other hand, the first summand is larger when

ε ≤ log−1 p. In other words, the excess logarithm in the second term of (3.1.12) does

not have an impact on the sample complexity when we are seeking highly accurate

covariance estimates.

3.1.6.4 Comparison with Bounds of Levina and Vershynin

Theorem 3.1.4 should be compared with the main result of Levina and Vershynin [128,

Thm. 2.1], which states that

E
∥∥M � Σ̂n −M �Σ

∥∥ ≤ C

[
‖M‖1→2 log5/2 p√

n
+
‖M‖ log3 p

n

]
‖Σ‖ .

The associated sample complexity bound is

n ≥ C
[
ε−2 ‖M‖21→2 log5 p+ ε−1 ‖M‖ log3 p

]
. (3.1.13)

Our sample complexity bound (3.1.11) has exactly the same structure as (3.1.13), but

we have managed to remove a moderate number of logarithms.

We do not feel that chopping down logs is an interesting pursuit per se. Instead,

the value of this work stems from the fact that we have applied an argument that

is completely different from previous work on masked covariance estimation. Our

approach provides some qualitative refinements over Levina and Vershynin’s bound in

the Gaussian setting (Corollary 3.3.3), and it also extends to the general subgaussian

distributions (Theorem 3.3.2).

3.1.6.5 Proof Techniques

The argument in this paper is based on a recent set of ideas, collectively known as the

matrix Laplace transform method. This approach can be regarded as a generalization

of the classical technique, attributed to Bernstein, that develops probability inequal-

ities for a random variable in terms of bounds for its cumulant generating function.

Tropp [233], building on work of Ahlswede and Winter [1], demonstrates that the

scalar approach admits a tight analogy in the matrix setting. See Section 3.2.4 for an

overview of this technique.
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The matrix Laplace transform method is particularly well suited for studying sums

of independent random matrices. To apply these techniques, we express the error as

a sum of i.i.d. random matrices, each with zero mean:

M � Σ̂n −M �Σ =
1

n

∑n

i=1
M � (xix

∗
i − Exx∗).

The main challenge is to study the matrix cumulant generating function of each sum-

mand:

logE exp (θM � (xix
∗
i − Exx∗)) for θ > 0. (3.1.14)

The key technical result of this paper is a semidefinite upper bound for the matrix

cgf (3.1.14). This estimate requires a number of substantial new ideas, including a

symmetrization argument, a careful analysis of the variance of the random matrix in

the exponent of (3.1.14), and a delicate truncation bound.

3.1.7 Organization of the paper

The rest of the paper is organized as follows. Section 3.2 introduces our notation and

some preliminaries. Section 3.3 presents the main result for zero-mean subgaussian

distributions, together with its proof and the proof of Theorem 3.1.4. In Section 3.4,

we deal with the technical challenge of estimating the matrix cumulant generating

function (3.1.14).

3.2 Preliminaries

This section sets out the background material we require for the proof. The argument

depends on a very recent set of ideas, collectively known as the matrix Laplace trans-

form method. We introduce the main results from this theory in Section 3.2.4, and

we provide references to the primary sources. The rest of the material here is more or

less standard. Section 3.2.1 states our notational conventions, Section 3.2.2 describes

some basic properties of the Schur product, and Section 3.2.3 includes key facts about

subgaussian random variables.
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3.2.1 Notation and Conventions

In this paper, we work exclusively with real numbers. Plain italic letters always refer

to scalars. Bold italic lowercase letters, such as a, refer to column vectors. Bold italic

uppercase letters, such as A, denote matrices. All matrices in this work are square;

the dimensions are determined by context. We write 0 for the zero matrix and I for

the identity matrix. The matrix unit Eij has a unit entry in the (i, j) position and

zeros elsewhere.

The symbol ∗ denotes the transpose operation on vectors and matrices. We use

the term self-adjoint to refer to a matrix that satisfies A = A∗ to avoid confusion

between symmetric matrices and symmetric random variables. Curly inequalities refer

to the positive-semidefinite partial ordering on self-adjoint matrices: A 4 B if and

only if B −A is positive semidefinite.

The function diag(·) maps a vector a to a matrix whose diagonal entries correspond

with the entries of a. We write tr(·) for the trace of a matrix. The symbol � denotes

the componentwise (i.e., Schur or Hadamard) product of two matrices.

We write ‖·‖ for both the `2 vector norm and the associated operator norm, which

is usually called the spectral norm. The norm ‖·‖∞ returns the absolute maximum

entry of a vector. For clarity, we use a separate notation ‖·‖max for the absolute

maximum entry of a matrix. The maximum column norm ‖·‖1→2 is defined as

‖A‖1→2 := maxj

(∑
i
|aij |2

)1/2
.

The notation reflects the fact that this is the natural norm for linear maps from `1

into `2.

We reserve the symbol ε for a Rademacher random variable, which takes the two

values ±1 with equal probability. We also assume that all random variables are suffi-

ciently regular that we are justified in computing expectations, interchanging limits,

and so forth.

3.2.2 Facts about the Schur Product

The proof depends on some basic properties of Schur products. The first result is a

simple but useful algebraic identity. For each square matrix A and each conforming
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vector x,

A� xx∗ = diag(x)A diag(x). (3.2.1)

The second result states that the Schur product with a positive-semidefinite matrix is

order preserving. That is, for a fixed positive-semidefinite matrix A,

B1 4 B2 implies A�B1 4 A�B2. (3.2.2)

This property follows from Schur’s theorem [98, Thm. 7.5.3], which demonstrates that

the Schur product of two positive-semidefinite matrices remains positive semidefinite.

3.2.3 Subgaussian Random Variables

There are several different ways to formalize the concept of a random variable that

decays faster than a Gaussian random variable [239]. For the purposes of this paper,

the following definition is most convenient.

Definition 3.2.1 (Subgaussian random variable). A random variable X is subgaussian if

there exists a positive constant K such that

P {|X| > t} ≤ 2 e−t
2/K2

for all t ≥ 0.

The subgaussian coefficient κ(X) is defined to be the infimal K for which this inequality

holds.

We can bound all the moments of a subgaussian random variable X in terms of

its subgaussian coefficient:

E |X|q =

∫ ∞
0

qtq−1 P {|X| > t} dt ≤
∫ ∞

0
qtq−1 · 2 e−t

2/κ(X)2 dt = 2κ(X)q Γ(q/2 + 1).

In particular, the raw fourth moment of X satisfies

E |X|4 ≤ 4κ(X)4. (3.2.3)
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3.2.4 The Matrix Laplace Transform Method

In classical probability, the Laplace transform method is a powerful tool for obtaining

tail bounds for a sum of independent random variables. In their influential paper [1],

Ahlswede and Winter describe a generalization of the Laplace transform method that

applies to a sum of independent random matrices. Subsequent papers by Oliveira [163,

164], by Tropp [233, 231], and by Hsu et al. [103] all contain substantial refinements

and extensions of the original idea. Altogether, these tools are easy to use, remarkably

effective, and widely applicable.

In analogy with the scalar case, we study large deviations using a matrix version

of the moment generating function (mgf) and the cumulant generating function (cgf).

Let Z be a self-adjoint random matrix. Using the matrix exponential, we define the

matrix mgf and matrix cgf, respectively, to be

MZ(θ) := E eθZ and ΞZ(θ) := logE eθZ for θ ∈ R.

Note that these expectations may not exist for all values of θ. The matrix cgf can

be interpreted as an exponential mean, an average that emphasizes large deviations of

the spectrum with the same sign as the parameter θ.

The matrix mgf contains valuable information about the behavior of the maximum

eigenvalue of a symmetric random matrix. The following result is a matrix analog of

the classical approach to large deviations, which is attributed to Bernstein.

Proposition 3.2.2 (Matrix Laplace transform bound). Let Z be a random, self-adjoint

matrix. For each t ∈ R,

P {λmax(Z) ≥ t} ≤ inf
θ>0

{
e−θt · E tr eθZ

}
. (3.2.4)

In this form, Proposition 4.7.4 is due to Oliveira [164, Sec. 3], but the main idea goes

back to the paper [1] of Ahlswede and Winter. See [233, Prop. 3.1] for a succinct

proof.

In our application, the random matrix Z can be expressed as a sum of i.i.d. zero-

mean random, self-adjoint matrices. The argument relies on a symmetrization proce-

dure, which introduces additional randomness into the series.
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Proposition 3.2.3 (Symmetrization bound). Consider a sequence {Y1, . . . ,Yn} of inde-

pendent, random, self-adjoint matrices. For each θ ∈ R,

E tr exp
(∑n

i=1
θ(Yi − EYi)

)
≤ E tr exp

(∑n

i=1
2θεiYi

)
,

where {εi} are independent Rademacher random variables that are also independent from

{Yi}.

The proof of Proposition 3.2.3 is essentially identical with the proof of Lemma 7.6

in [233], so we omit the argument.

The matrix Laplace transform method derives its power from a deep technical

result that allows us to bound the mgf of a sum of independent random matrices in

terms of the cgfs of the summands. We state a simplified version of this fact that suits

our needs.

Proposition 3.2.4 (Subadditivity of cgfs). Let Y be a random, self-adjoint matrix. Con-

sider a finite sequence {Y1, . . . ,Yn} of independent copies of Y . For each θ ∈ R,

E tr exp
(∑n

i=1
θYi

)
≤ tr exp

(
n logE eθY

)
.

Proposition 3.2.4 is due to Tropp [233, Lem. 3.4]. The main ingredient in the proof is

a celebrated concavity theorem established by Lieb [131, Thm. 6].

We use these techniques to develop a matrix Bernstein inequality that is adapted

for partial covariance estimation. The final ingredient in our argument is a matrix

mgf bound that parallels the classical mgf bound underlying Bernstein’s inequality.

Proposition 3.2.5 (Bernstein matrix mgf bound). Let Y be a random, self-adjoint matrix

that satisfies

EY = 0 and λmax(Y ) ≤ R almost surely.

When θ ∈ (0, R−1),

E eθY 4 I +
θ2

2(1− θR)
· E(Y 2).

Proposition 3.2.5 follows immediately from [233, Lem. 6.7] and the classical inequality

eθR − θR− 1

R2
≤ θ2

2(1− θR)
valid for θ ∈ (0, R−1).
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We can verify this bound by comparing derivatives. The constants in this inequality

can be improved, but we have chosen the version here to streamline other aspects of

the argument.

3.3 Masked Covariance Estimation for a Subgaussian Dis-

tribution

In this section, we state and prove our main error estimates for masked covariance es-

timation. Section 3.3.1 defines two concentration parameters that measure the spread

of the distribution. We present the main theorem for subgaussian distributions in Sec-

tion 3.3.2, and we specialize to Gaussian distributions in Section 3.3.3. Section 3.3.4

shows how to derive the result for Gaussian matrices from the main theorem. Finally,

we establish the main result in Section 3.3.5.

3.3.1 Concentration Parameters

The effectiveness of the masked sample covariance estimator depends on the concentra-

tion properties of the distribution of x. Let us introduce two quantities that measure

different facets of the variation of the random vector.

The subgaussian coefficient κ(x) of the distribution is defined to be the maximum

subgaussian coefficient of a single component of the vector:

κ(x) := maxi κ(Xi). (3.3.1)

In other words, we assume that each component of the distribution exhibit subgaussian

decay with variance controlled by κ(x)2.

We do not need every marginal of the distribution to be subgaussian with controlled

variance, but we do require some information on the spread of the distribution in other

directions. Define the uniform fourth moment ν(x) by the formula

ν(x) := sup
‖u‖=1

(E |u∗x|4)1/4. (3.3.2)

The uniform fourth moment measures how much the worst marginal varies.
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Note that both κ(x) and ν(x) have the same homogeneity as the random vector

x. (This property is sometimes expressed by saying that the quantities have the same

dimension, the same units, or the same scaling.) As a consequence, κ2(x) and ν2(x)

have the same homogeneity as the covariance matrix Σ.

In the sequel, we abbreviate κ := κ(x) and ν := ν(x) whenever the distribution

of the random vector x is clear.

Remark 3.3.1. For Gaussian distributions, the uniform fourth moment ν always dominates

the subgaussian coefficient κ. In the worst case, ν can be much larger than κ. Indeed,

suppose that X is a standard normal random variable, and consider the random vector

x = (X,X, . . . ,X)∗ ∈ Rp. Although the subgaussian coefficient κ(x) =
√

2, the directional

fourth moment ν(x) = 121/4√p.

For other kinds of distributions, the subgaussian coefficient κ may be substantially larger

than the uniform fourth moment ν. Examples of this phenomenon already emerge in the

univariate case.

3.3.2 Main Result for Masked Covariance Estimation

The following theorem provides detailed information about the expectation and tail

behavior of the error in the masked sample covariance estimator for a zero-mean

subgaussian distribution.

Theorem 3.3.2 (Masked Covariance Estimation for Subgaussian Distributions). Fix a p×p

symmetric mask matrix M . Suppose that x is a subgaussian random vector in Rp with mean

zero. Define the covariance matrix Σ and the sample covariance matrix Σ̂n as in (3.1.1)

and (3.1.2). Then the expected estimation error satisfies

E
∥∥M � Σ̂n −M �Σ

∥∥ ≤ [16κ2ν2 ‖M‖21→2 log(2ep)

n

]1/2

+
4κ2 ‖M‖ log2(2enp)

n
. (3.3.3)

Furthermore, for each t > 0, the estimation error satisfies the tail bound

P
{∥∥M � Σ̂n −M �Σ

∥∥ ≥ t} ≤ 2ep · exp

(
−nt2/2

8κ2ν2 ‖M‖21→2 + 4κ2 ‖M‖ log(4np) · t

)
.

(3.3.4)

The subgaussian coefficient κ and the uniform fourth moment ν are defined in (3.3.1) and
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(3.3.2).

The proof of Theorem 3.3.2 appears in Section 3.3.5. We can extend this result to

the case where we center the observations using the sample mean before computing

the sample covariance; the argument is identical with the one described by Levina and

Vershynin [128, Rem. 4] for the Gaussian case.

3.3.2.1 Interpretation and Consequences

Let us take a moment to discuss Theorem 3.3.2. First, we note that the error in the

masked sample covariance estimator can be expressed as

M � Σ̂n −M �Σ =
1

n

∑n

i=1
M � (xix

∗
i − Exx∗), (3.3.5)

using the definitions (3.1.1) and (3.1.2) of the covariance and sample covariance. For

each i, the parenthesis in (3.3.5) has subexponential tails because the random vector

xi is subgaussian. Therefore, the formula (3.3.5) expresses the error as an average of

subexponential random variables.

Consequently, we expect the estimation error to obey a probability inequality just

like (3.3.4). For moderate values of t, the error (3.3.4) exhibits subgaussian decay,

an intimation of the normal profile that emerges when the number of samples tends

to infinity. For large values of t, the error has subexponential decay, owing to the

heavier tails of the summands in (3.3.5). Likewise, the two terms in the expected

error bound (3.3.3) correspond with the two regimes in the tail bound. The first term

reflects the subgaussian decay, while the second term comes from the subexponential

decay.

The scale for subgaussian decay is controlled by a measure of the variance σ2 of

each summand:

σ2 = 8κ2ν2 ‖M‖21→2 .

We see that moderate deviations depend on the local properties of the mask, as en-

capsulated in ‖M‖21→2. The appearance of the subgaussian coefficient κ in σ2 reflects

the variance of each component of the random vector. The presence of the uniform

fourth moment ν shows that there is also a role for the spread of the random vector
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in every direction.

The scale for subexponential decay is controlled by a second quantity,

R = 4κ2 ‖M‖ log(4np).

Large deviations reflect more global properties of the mask owing to the presence of

‖M‖. The subgaussian coefficient κ arises here because the tails of the distribution

drive the tails of the error. Note that the large-deviation behavior only depends on

the individual components of the random vector being subgaussian; we attribute this

fact to the basis-dependent nature of the Schur product. The logarithmic factor in R

emerges from a truncation argument, and we believe it is parasitic.

We can obtain a sample complexity bound directly from the probability inequal-

ity (3.3.4) in Theorem 3.3.2. Assume that n ≤ p and that ε ∈ (0, 1). Then

n ≥ C · κ
2

ν2

[
‖M‖21→2 log p

ε2
+
‖M‖ log2 p

ε

]
=⇒

∥∥M � Σ̂n −M �Σ
∥∥ ≤ εν2 (3.3.6)

with high probability. The square ν2 of the uniform fourth moment has the same

homogeneity as the covariance matrix, so (3.3.6) is a type of relative error bound.

As before, the first summand reflects the subgaussian part of the tail, while the sec-

ond summand comes from the subexponential part. A novel feature of the sample

bound (3.3.6) is the presence of the ratio κ2/ν2, which is a dimensionless measure of

the shape of the distribution. This ratio can be very large or very small, so it should

be assessed within the scope of a particular application.

3.3.3 Specialization to Gaussian Distributions

It is natural to apply Theorem 3.3.2 to study the performance of masked covariance

estimation for a zero-mean Gaussian random vector. In this case, the covariance

matrix determines the distribution completely, so we can obtain a more transparent

statement that does not involve the concentration parameters κ and ν.

Corollary 3.3.3 (Masked Covariance Estimation for Gaussian Distributions). Fix a p× p

symmetric mask matrix M . Suppose that x is a Gaussian random vector in Rp with mean

zero. Define the covariance matrix Σ and the sample covariance matrix Σ̂n as in (3.1.1)
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and (3.1.2). Then the expected estimation error satisfies

E
∥∥M � Σ̂n −M �Σ

∥∥ ≤
√

56 ‖Σ‖max ‖Σ‖ ‖M‖
2
1→2 log(6p)

n
+

8 ‖Σ‖max ‖M‖ log2(6np)

n
.

Furthermore, for each t > 0, the estimation error satisfies the tail bound

P
{∥∥M � Σ̂n −M �Σ

∥∥ ≥ t}
≤ 6p · exp

(
−nt2

56 ‖Σ‖max ‖Σ‖ ‖M‖
2
1→2 + 16 ‖Σ‖max ‖M‖ log(4np) · t

)
.

The proof of Corollary 3.3.3 appears below in Section 3.3.4. Theorem 3.1.4 of the

Introduction follows quickly from this result when we apply the inequality ‖Σ‖max ≤

‖Σ‖ and complete some numerical estimates.

It is fruitful to compare Corollary 3.3.3 directly with earlier work on masked co-

variance estimation for a Gaussian distribution. Assume that n ≤ p and ε ∈ (0, 1).

Then Corollary 3.3.3 delivers a sample complexity bound of the form

n ≥ C ·
‖Σ‖max

‖Σ‖

[
‖M‖21→2 log p

ε2
+
‖M‖ log2 p

ε

]
=⇒

∥∥M � Σ̂n −M �Σ
∥∥ ≤ ε ‖Σ‖

(3.3.7)

with high probability. The bound (3.3.7) is similar with the results of Levina and

Vershynin [128], stated in (3.1.13), but two improvements are worth mentioning.

First, recall that the sample complexity bound (3.1.6) we present in Example 3.1.1

depends on the absolute maximum entry of the covariance matrix, rather than its

spectral norm. A similar refinement appears in the bound (3.3.7) on account of the

ratio of the two norms. This ratio never exceeds one, and it can be as small as p−1

for particular choices of the covariance matrix. We interpret this term as saying that

covariance estimation is easier when the variables are highly correlated with each

other. This represents a new phenomenon that previous authors have not identified.

The second improvement over (3.1.13), which has less conceptual significance, is

the reduction of the number of logarithmic factors.
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3.3.4 Proof of Corollary 3.3.3 from Theorem 3.3.2

The result for Gaussian distributions is a direct consequence of the main theorem

because the covariance matrix Σ of a zero-mean Gaussian vector x characterizes the

distribution completely. As a consequence, we just need to estimate the concentration

parameters κ(x) and ν(x) in terms of Σ.

First, we compute the subgaussian coefficient κ(x). Observe that the ith compo-

nent Xi of the vector x is a Gaussian random variable with variance σii, where σii

denotes the ith diagonal entry of Σ. The usual Gaussian tail bound demonstrates

that

P {|Xi| > t} ≤ 2 e−t
2/2σii .

According to Definition 3.2.1, the subgaussian coefficient κ(Xi)
2 ≤ 2σii, and so the

subgaussian coefficient of the vector satisfies

κ(x)2 ≤ maxi 2σii = 2 ‖Σ‖max .

The latter equality holds because the absolute maximum entry of a positive-definite

matrix occurs on its diagonal.

Next, we compute the uniform fourth moment ν(x). Fix a unit vector u. The

distribution of the marginal u∗x is Gaussian with mean zero. To compute the variance

σ2
u of the marginal, we write x = Σ1/2g, where g is a standard Gaussian vector. Then

σ2
u = E |u∗x|2 = E |u∗(Σ1/2g)|2 = u∗Σ1/2(E gg∗)Σ1/2u = u∗Σu ≤ ‖Σ‖ .

The fourth moment of a Gaussian variable equals three times its squared variance, so

E |u∗x|4 = 3σ4
u ≤ 3 ‖Σ‖2 .

We conclude that the uniform fourth moment satisfies

ν(x) = sup
‖u‖=1

(E |u∗x|4)1/4 ≤ 31/4 ‖Σ‖1/2 .

To complete the argument, substitute the estimates for κ(x) and ν(x) into Theo-
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rem 3.3.2 and make some numerical estimates.

3.3.5 Proof of Theorem 3.3.2

The argument follows the same lines as the classical Laplace transform technique. For

clarity, we break the presentation into discrete steps.

3.3.5.1 The Matrix Laplace Transform Method

We begin with the proof of the probability inequality (3.3.4). First, split the tail

bound for the spectral norm into two pieces:

P
{∥∥M � Σ̂n −M �Σ

∥∥ ≥ t}
≤ P

{
λmax(M � Σ̂n −M �Σ) ≥ t

}
+ P

{
λmax(M �Σ−M � Σ̂n) ≥ t

}
. (3.3.8)

This inequality depends on the fact ‖A‖ = max{λmax(A), λmax(−A)}, valid for each

self-adjoint matrix A, and an invocation of the union bound. We develop an estimate

for the first term on the right-hand side of (3.3.8); an essentially identical argument

applies to the second term.

The matrix Laplace transform bound, Proposition 4.7.4, allows us to control the

first term on the right-hand side of (3.3.8) in terms of a matrix mgf.

P
{
λmax(M � Σ̂n −M �Σ) ≥ t

}
= P

{
λmax

(
n(M � Σ̂n −M �Σ)

)
≥ nt

}
≤ inf

θ>0

{
e−θnt · E tr exp

(
θn(M � Σ̂n −M �Σ)

)}
.

(3.3.9)

In the first line of (3.3.9), we have rescaled both sides of the event and applied the

positive homogeneity of the maximum eigenvalue. Let us introduce notation for the

trace of the matrix mgf:

E(θ) := E tr exp
(
θn(M � Σ̂n −M �Σ)

)
. (3.3.10)

Our main task is to obtain a suitable bound for E(θ).
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3.3.5.2 Symmetrizing the Random Sum

The random matrix appearing in (3.3.10) admits a natural expression as a sum of

centered, independent random matrices. To see why, substitute the definitions (3.1.1)

and (3.1.2) of the population covariance matrix Σ and the sample covariance matrix

Σ̂n to obtain

E(θ) = E tr exp
(∑n

i=1
θ
(
M � xix

∗
i − EM � xix

∗
i

))
.

The samples x1, . . . ,xn are statistically independent, so the summands are indepen-

dent, centered random matrices. Therefore, we may apply the symmetrization lemma,

Proposition 3.2.3, to reach

E(θ) ≤ E tr exp
(∑n

i=1
2θεi(M � xix

∗
i )
)
, (3.3.11)

where {εi} is a sequence of independent Rademacher random variables that is also

independent from the sequence {xi} of samples. The benefit of the estimate (3.3.11)

is that each Schur product involves a rank-one matrix, which greatly simplifies our

computations.

3.3.5.3 Matrix cgf Bound for the Matrix mgf

The summands on the right-hand side of (3.3.11) are i.i.d., so we can apply Proposi-

tion 3.2.4 on the subadditivity of matrix cgfs to see that

E(θ) ≤ tr exp(n · logE exp(2θεM � xx∗)). (3.3.12)

The chief technical contribution of this paper consists in the following matrix cgf

bound:

logE exp(2θεM � xx∗) 4
θ2σ2

2(1− θR)
· I +

1

n
· I when θ ∈ (0, R−1), (3.3.13)

where

σ2 := 8κ2ν2 ‖M‖21→2 and R := 4κ2 ‖M‖ log(4np). (3.3.14)
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The concentration parameters κ and ν that characterize x are defined as in (3.3.1)

and (3.3.2). The calculation underlying (3.3.13) requires several pages and some sub-

stantial new ideas. We encapsulate the details in Lemma 3.4.1, which is the subject

of Section 3.4.

The trace exponential is monotone with respect to the semidefinite order [174,

Prop. 1], so we can substitute the cgf bound (3.3.13) into our estimate (3.3.12) for

E(θ). Thus,

E(θ) ≤ tr exp

(
θ2σ2n

2(1− θR)
· I + I

)
= ep · exp

(
θ2σ2n

2(1− θR)

)
. (3.3.15)

The second relation depends on the fact that the identity matrix has dimension p.

The inequality (3.3.15) is just what we need to establish the probability inequality

and the expectation bound that constitute the conclusions of Theorem 3.3.2.

3.3.5.4 Probability Bound for the Estimation Error

We are now prepared to complete our bound for the tail probability, initiated in (3.3.8).

Substitute the estimate (3.3.15) for the matrix mgf into the Laplace transform bound (3.3.9)

to discover that

P
{
λmax

(
M � Σ̂n −M �Σ

)
≥ t
}
≤ ep · inf

θ>0
exp

(
−θnt+

θ2σ2n

2(1− θR)

)
.

Select the classical value for the parameter: θ = t/(σ2 + Rt). This choice yields an

upper bound for the first term on the right-hand side of (3.3.8):

P
{
λmax

(
M � Σ̂n −M �Σ

)
≥ t
}
≤ ep · exp

(
−nt2

2(σ2 +Rt)

)
. (3.3.16)

The second term on the right-hand side of (3.3.8) admits the same upper bound:

P
{
λmax

(
M �Σ−M � Σ̂n

)
≥ t
}
≤ ep · exp

(
−nt2

2(σ2 +Rt)

)
. (3.3.17)

The proof of (3.3.17) is essentially identical with the proof of (3.3.16), so we omit the

details.

Finally, recall the definition (3.3.14) for the quantities σ2 and R. Then introduce
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the relations (3.3.16) and (3.3.17) into the probability inequality (3.3.8) to establish

the tail bound (3.3.4) stated in Theorem 3.3.2.

3.3.5.5 Bound for the Expected Estimation Error

Although it is possible to control the expected error by integrating the tail bound (3.3.4),

we obtain somewhat better results through a direct application of the estimate (3.3.15)

for the matrix mgf E(θ).

The argument is based on the following inequality, of independent interest, which

provides a way to bound the expected spectral norm of a matrix in terms of its mgf.

Let Z be a random, self-adjoint matrix, and fix a positive number θ. We have the

following chain of relations:

E ‖Z‖ ≤ θ−1 logE eθ‖Z‖

= θ−1 logE emax{λmax(θZ), λmax(−θZ)}

= θ−1 logEmax
{
λmax(eθZ), λmax(e−θZ)

}
≤ θ−1 log

(
E tr eθZ + E tr e−θZ

)
. (3.3.18)

For the first inequality, multiply and divide by θ; then invoke Jensen’s inequality to

bound the expectation by an exponential mean. The second relation expresses the

spectral norm of a symmetric matrix in terms of eigenvalues. In the third line, we pull

the maximum through the exponential and then apply the spectral mapping theorem

to draw out the eigenvalue maps. Finally, replace the maximum by a sum, and bound

the maximum eigenvalue of the matrix exponential, which is positive definite, by the

trace.

We intend to apply (3.3.18) to the random matrix

Z = n(M � Σ̂n −M �Σ).

According to the definition (3.3.10) of the function E(θ), the trace of the mgf of the

matrix Z coincides with E(θ). Therefore, when the parameter θ ∈ (0, R−1), our upper
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bound (3.3.15) for E(θ) demonstrates that

E tr eθZ = E(θ) ≤ ep · exp

(
θ2σ2n

2(1− θR)

)
. (3.3.19)

The argument underlying the bound (3.3.15) for the trace mgf of Z also applies to

−Z, whereby

E tr e−θZ ≤ ep · exp

(
θ2σ2n

2(1− θR)

)
. (3.3.20)

Introduce (3.3.19) and (3.3.20) into the norm bound (3.3.18) to reach

n · E
∥∥M � Σ̂n −M �Σ

∥∥ ≤ θ−1

(
log(2ep) +

θ2σ2n

2(1− θR)

)
.

Minimize the right-hand side over admissible values of θ, ideally with a computer

algebra system. This computation yields

n · E
∥∥M � Σ̂n −M �Σ

∥∥ ≤√2σ2n log(2ep) +R log(2ep).

Divide through by n and recall the definition (3.3.14) of the quantities σ2 and R.

Combine the two logarithms in the second term to complete the proof of the expected

error bound (3.3.3) from Theorem 3.3.2.

3.4 The Matrix cgf of a Schur Product

In this section, we work out the details of the matrix cgf bound (3.3.13) that stands

at the center of Theorem 3.3.2. The following lemma contains a complete statement

of the result.

Lemma 3.4.1 (Matrix cgf Bound for a Schur Product). Fix a self-adjoint matrix M . Let

x = (X1, . . . , Xp)
∗ be a random vector, and let ε be a Rademacher variable, independent

from x. For each positive integer n,

logE exp(2θεM � xx∗) 4
θ2σ2

2(1− θR)
· I +

1

n
· I when θ ∈ (0, R−1),

where

σ2 := 8κ2ν2 ‖M‖21→2 and R := 4κ2 ‖M‖ log(4np).
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The concentration parameters κ and ν associated with x are defined as in (3.3.1) and (3.3.2).

To prove Lemma 3.4.1, we would like to invoke the Bernstein mgf bound, Proposi-

tion 3.2.5, but several obstacles stand in the way. First, estimating the variance of the

random matrix 2εM � xx∗ involves a surprisingly delicate calculation. Second, this

random matrix is typically unbounded, which requires us to develop a new type of

truncation argument. We address ourselves to these tasks in the next two subsections.

3.4.1 Computing the Variance

The Bernstein mgf bound demands that we compute the variance of the random matrix

2εM �xx∗. The following lemma contains this estimate. Our key insight is that the

monotonicity (3.2.2) of the Schur product allows us to replace one factor in the product

by a scalar matrix. This act of diagonalization simplifies the estimate tremendously

because we erase the off-diagonal entries when we take the Schur product with an

identity matrix.

Lemma 3.4.2 (Semidefinite variance bound). Under the assumptions of Lemma 3.4.1, it

holds that

E(2εM � xx∗)2 4 8κ2ν2 ‖M‖21→2 · I.

Proof. First, we treat the leading constant and the Rademacher random variable.

E(2εM � xx∗)2 = 4E(M � xx∗)2. (3.4.1)

The expectation with respect to x is not so easy to handle. To begin, we perform

some algebraic manipulations to consolidate the remaining randomness. The Schur product

identity (3.2.1) implies that

(M � xx∗)2 = (diag(x)M diag(x))2

= diag(x)(M diag(x)2M) diag(x) = (M diag(x)2M)� xx∗.

Rewrite the diagonal matrix as a linear combination of matrix units: diag(x)2 =
∑

iX
2
i Eii.
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The bilinearity of the Schur product now yields

(M � xx∗)2 =
[
M
(∑

i
X2
i Eii

)
M
]
� xx∗ =

∑
i
(MEiiM)� (X2

i xx
∗).

Take the expectation of this expression to reach

E(M � xx∗)2 =
∑

i
(MEiiM)� [E(X2

i xx
∗)]. (3.4.2)

Next, we invoke the monotonicity (3.2.2) of the Schur product to make a diagonal esti-

mate for each summand in (3.4.2):

(MEiiM)� [E(X2
i xx

∗)] 4 λmax(E(X2
i xx

∗)) · (MEiiM)� I.

The Rayleigh–Ritz variational formula [17, Cor. III.1.2] allows us to write the maximum

eigenvalue as a supremum. Thus,

λmax(E(X2
i xx

∗)) = sup
‖u‖=1

u∗ [E(X2
i xx

∗)]u = sup
‖u‖=1

E
[
X2
i |u∗x|

2]
≤ sup
‖u‖=1

(EX4
i )1/2 (E |u∗x|4)1/2 ≤ 2κ(Xi)

2 sup
‖u‖=1

(E |u∗x|4)1/2 ≤ 2κ2ν2.

The first inequality is Cauchy–Schwarz. For the second inequality, we apply (3.2.3) to bound

the fourth moment of Xi in terms of the subgaussian coefficient. The final inequality follows

from the definitions (3.3.1) and (3.3.2) of the concentration parameters. Combine the last

two displays to obtain

(MEiiM)� [E(X2
i xx

∗)] 4 2κ2ν2 · (MEiiM)� I. (3.4.3)

To complete our bound for the variance, we introduce (3.4.3) into (3.4.2), which delivers

E(M � xx∗)2 4 2κ2ν2 ·M2 � I.

The remaining matrix is diagonal, so we can control it using only its maximum entry:

E(M � xx∗)2 4 2κ2ν2 maxi(M
2)ii · I = 2κ2ν2 ‖M‖21→2 · I.
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The second relation follows from the fact that the diagonal entries of M2 list the squared

norms of the columns of M , and ‖M‖1→2 computes the maximum column norm of M .

Substitute the latter expression into (3.4.1) to conclude.

3.4.2 Proof of Lemma 3.4.1

This subsection contains the main steps in the proof of Lemma 3.4.1. We begin by

explaining the motivation behind our approach.

We would like to invoke the Bernstein matrix mgf inequality, Proposition 3.2.5, to

control the mgf of 2εM � xx∗. This proposition requires the maximum eigenvalue

of the random matrix to satisfy an almost sure bound. Using the Schur product

identity (3.2.1), we can develop a simple estimate for the maximum eigenvalue:

λmax(2εM � xx∗) ≤ 2 ‖diag(x)M diag(x)‖ ≤ 2 ‖M‖ ‖diag(x)‖2 = 2 ‖M‖ ‖x‖2∞ . (3.4.4)

Unfortunately, the random variable ‖x‖∞ is typically unbounded, which suggests that

we cannot apply the Bernstein approach directly.

To tackle this problem, we develop a truncation argument in Section 3.4.2.1, which

splits the distribution of the random matrix 2εM � xx∗ into two pieces, depending

on the size of ‖x‖∞. This technique allows us to apply the Bernstein estimate to

the bounded part of the random matrix (Section 3.4.2.2). To handle the unbounded

part, we use the inequality (3.4.4) to develop a coarse tail estimate that we can inte-

grate directly (Section 3.4.2.3). Section 3.4.2.4 combines these results to complete the

argument.

3.4.2.1 The Truncation Argument

As we have explained, we intend to decompose the random matrix 2εM �xx∗ based

on the magnitude of the random variable ‖x‖∞. To that end, define the event

A := {‖x‖2∞ ≤ B}, (3.4.5)

where we determine a suitable truncation level B later.
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Now, let us split the matrix mgf into expectations over A and Ac:

E exp(2θεM � xx∗) = E [exp(2θεM � xx∗)1A] + E [exp(2θεM � xx∗)1Ac ]

4 E exp((2θεM � xx∗)1A) + E [exp(2θεM � xx∗)1Ac ] . (3.4.6)

The first identity follows because the two indicators form a partition of unity. In the

second line, notice that the first term can only increase in the semidefinite order when

we draw the indicator 1A into the exponential.

3.4.2.2 Bernstein Estimate for the Bounded Part of the Random Matrix

We can interpret the first term on the right-hand side of (3.4.6) as the mgf of a random

matrix whose maximum eigenvalue is bounded; this matrix mgf admits a Bernstein-

type estimate.

We must verify that the truncated matrix (2εM�xx∗)1A satisfies the hypotheses

of Proposition 3.2.5. First, note that

E[(2εM � xx∗)1A] = 0

because the Rademacher variable ε is independent from x and hence from A. Sec-

ond, continuing the calculation (3.4.4), we determine that the maximum eigenvalue is

bounded.

λmax((2εM � xx∗)1A) ≤ 2 ‖M‖ ‖x‖2∞ · 1A ≤ 2B ‖M‖ . (3.4.7)

The second inequality in (3.4.7) relies on the definition (3.4.5) of the truncation event.

Third, we apply Lemma 3.4.2 to obtain a semidefinite bound for the variance.

E[(2εM � xx∗)1A]2 4 E[(2εM � xx∗)2] 4 8ν2κ2 ‖M‖1→2 · I. (3.4.8)

Of course, discarding the indicator in (3.4.8) only increases the semidefinite order.

In view of (3.4.7) and (3.4.8), we define a variance parameter and a uniform bound

parameter

σ2 := 8κ2ν2 ‖M‖21→2 and R := 2B ‖M‖ . (3.4.9)
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Finally, we apply Proposition 3.2.5 and the variance estimate (3.4.8) to achieve

E exp((2θεM � xx∗)1A) 4 I +
θ2σ2

2(1− θR)
· I. (3.4.10)

The relation (3.4.10) is valid for all θ ∈ (0, R−1).

3.4.2.3 Controlling the Unbounded Part of the Random Matrix

We treat the second term on the right-hand side of (3.4.6) by making a rough bound

that we can integrate directly. First, observe that

exp(2θεM � xx∗) 4 exp(2θ · λmax(M � xx∗)) · I 4 exp(2θ ‖M‖ ‖x‖2∞) · I.

We have applied the semidefinite relation eA 4 eλmax(A) · I, valid for each self-adjoint

matrix A, followed by the eigenvalue bound (3.4.4). Multiply both sides by the indi-

cator 1Ac , and take the expectation to reach

E[exp(2θεM � xx∗)1Ac ] 4 E[exp(2θ ‖M‖ ‖x‖2∞)1Ac ] · I

=: E[eαW1Ac ] · I. (3.4.11)

In the expression (3.4.11), we have abbreviated

α := 2θ ‖M‖ and W := ‖x‖2∞ . (3.4.12)

We apply classical techniques to bound the remaining expectation.

Observe that we can control the tail probability of W using the subgaussian coef-

ficient κ. Indeed,

P {W > w} = P
{

maxi |Xi|2 > w
}

≤
∑p

i=1
P
{
|Xi|2 > w

}
≤
∑p

i=1
2 e−w/κ(Xi)

2 ≤ 2p e−w/κ
2
. (3.4.13)

The second relation is the union bound. The third follows from Definition 3.2.1 of the

subgaussian coefficient κ(X) of a random variable X, while the last depends on the

definition (3.3.1) of the subgaussian coefficient κ of the random vector x.
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Next, we invoke a standard integration-by-parts argument [22, Eqn. (21.10)] to

study the expectation in (3.4.11). Since Ac = {W > B},

E[eαW1Ac ] = eαB · P {W > B}+ α

∫ ∞
B

eαw · P {W > w} dw

≤ eαB · 2p e−B/κ
2

+ α

∫ ∞
B

eαw · 2p e−w/κ
2

dw

= 2p

[
1 +

α

1/κ2 − α

]
e−(1/κ2−α)B. (3.4.14)

We have used the tail bound (3.4.13) twice to obtain the inequality in the second line.

The third line follows when we evaluate the definite integral under the assumption

that α < 1/κ2.

To continue the bound on the right-hand side of (3.4.14), we need to make a careful

estimate. Owing to definition (3.4.12) of α, the condition

θ ≤ 1

4κ2 ‖M‖
=⇒ α ≤ 1

2κ2
. (3.4.15)

Assume that θ satisfies the hypothesis of (3.4.15). Now, observe that the right-hand

side of the inequality (3.4.14) is an increasing function of α. Therefore, we may increase

α to 1/2κ2 on the right-hand side of (3.4.14) and then set the truncation level

B = 2κ2 log(4np) (3.4.16)

to obtain the bound

E[eαW1Ac ] ≤ 4p e−B/2κ
2

=
1

n
.

Introduce this expression into (3.4.11) to conclude that

E[exp(2θεM � xx∗)1Ac ] 4
1

n
· I. (3.4.17)

Finally, we verify that the truncation level B forces the parameter θ to satisfy the

hypothesis of (3.4.15). Recall the definition (3.4.9) of the bound parameter and the
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definition (3.4.16) of the truncation level to see that

R = 2B ‖M‖ = 4κ2 ‖M‖ log(4np).

We have already assumed that θ < R−1. It follows that

θ <
1

R
=

1

log(4np)
· 1

4κ2 ‖M‖
≤ 1

4κ2 ‖M‖
.

This observation completes the tail estimate.

3.4.2.4 Combining the Results

We have obtained estimates for the two terms in our truncation bound (3.4.6). Intro-

duce (3.4.10) and (3.4.17) into (3.4.6) to reach

E exp(2θεM � xx∗) 4 I +
θ2σ2

2(1− θR)
· I +

1

n
· I,

where σ2 and R are defined in (3.4.9). We have also assumed that θ ∈ (0, R−1). The

logarithm is operator monotone [18, Exer. 4.2.5], so

logE exp(2θεM � xx∗) 4 log

[
I +

θ2σ2

2(1−R)
· I +

1

n
· I
]
.

To complete the proof of Lemma 3.4.1, we invoke the semidefinite relation log(I+A) 4

A, which holds for each positive semidefinite matrix A.
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Chapter 4

Subadditivity of Matrix ϕ-Entropy
and Concentration of Random
Matrices

Preface

This chapter is adapted from the work [54] which appears in the Electronic Journal of

Probability, coauthored by the candidate and the candidate’s advisor, Joel A. Tropp.

4.1 Introduction and Related Work

Entropy and related functions quantify the uncertainty inherent in a probability dis-

tribution. Measures of entropy have the property that the total entropy of a “product”

is bounded by the sum of the entropies of the “factors.” This fundamental fact is called

subadditivity of entropy, or sometimes tensorization, and it drives many applications

of entropy. The survey [132] contains a discussion of subadditivity in statistical me-

chanics, and the monograph [182] describes examples in information theory. In this

work, we focus on the role of subadditivity of entropy in probability.

4.1.1 Subadditivity and Concentration

A concentration inequality states that a random variable is unlikely to exhibit a sig-

nificant deviation from its mean value. The current intuition holds that a random

variable concentrates whenever it depends smoothly on many independent random

variables [215]. Ledoux [123, 125] and Bobkov & Ledoux [24] initiated a line of re-

search that uses methods based on entropy to derive concentration inequalities. A
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few of the many authors who have contributed include Massart [152, 153], Rio [189],

Bousquet [31], and Boucheron et al. [28, 29]. See the book [30] for a comprehensive

treatment of this theory and its bibliography.

Let us summarize the ideas that lead from entropy to concentration. In this setting,

we define the entropy functional for each nonnegative, real random variable Z:

H(Z) := E(Z logZ)− (EZ) log(EZ). (4.1.1)

Heuristically, H(Z) quantifies our uncertainty about the precise value of Z. We typ-

ically consider the situation where Z = eθY for a zero-mean random variable Y . In

this case, we have the identity

logE eθY = θ

∫ θ

0

H(eβY )

E eβY
· dβ

β2
. (4.1.2)

Through Markov’s inequality, bounds on the left-hand side imply that Y takes a

large value with exponentially small probability. Therefore, we might hope to invoke

inequalities for the entropy functional H to analyze the fluctuations of Y .

Indeed, the entropy functional exhibits a subadditivity property that allows us

to implement this program. Suppose that Z is a function of mutually independent

random variables X1, . . . , Xn. We can define conditional entropy functionals

Hi(Z) := Ei(Z logZ)− (Ei Z) log(Ei Z),

where Ei denotes the expectation with respect to Xi, holding Xj fixed for j 6= i. The

conditional entropy Hi reflects the uncertainty about Z that is attributable to our

lack of knowledge about Xi. Subadditivity is the nontrivial result that

H(Z) ≤
∑n

i=1
E[Hi(Z)]. (4.1.3)

In other words, our uncertainty about Z does not exceed the total (average) uncer-

tainty due to each Xi individually. Combining the identity (4.1.2) and the subad-

ditivity property (4.1.3) with bounds for the conditional entropy, we can establish

exponential concentration inequalities for functions of independent random variables.
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The idea of considering alternative forms of entropy can be traced at least as

far as the work of Rényi [188], Bregman [33], and Csiszár [58]. In the early 2000s,

researchers [122, 47, 26, 48] recognized that generalized entropy functionals can ex-

hibit subadditivity properties similar with those of the entropy functional (4.1.1). Let

ϕ : R+ → R be a convex function. The ϕ-entropy functional is defined for each

nonnegative random variable Z by the formula

Hϕ(Z) := Eϕ(Z)− ϕ(EZ).

The functional (4.1.1) derives from the choice ϕ : t 7→ t log t. Under stringent con-

ditions on ϕ, it can be shown that the ϕ-entropy functional satisfies a subadditivity

property analogous with (4.1.3). In particular, the function ϕ : t 7→ tp yields a sub-

additive ϕ-entropy when 1 ≤ p ≤ 2, a fact that leads to polynomial concentration

inequalities [26].

4.1.2 Subadditivity of Matrix Entropies

The purpose of this paper is to explore the subadditivity properties of entropy func-

tionals defined on matrix-valued random variables. Let ϕ : R+ → R be a convex

function. For a positive-semidefinite (psd) random matrix Z, we can consider the

matrix ϕ-entropy functional

Hϕ(Z) := E t̄rϕ(Z)− t̄rϕ(EZ),

where ϕ refers to a standard matrix function and t̄r denotes the normalized trace. See

Section 4.2.1 for definitions. It may be helpful to note some alternative presentations

of the matrix ϕ-entropy. First, the expression has the same structure as the scalar

entropy (4.1.1) because

Hϕ(Z) = EΦ(Z)− Φ(EZ) where Φ := t̄rϕ is convex.

Second, we can decompose the matrix entropy as

Hϕ(Z) =
[
E t̄rϕ(Z)− ϕ(E t̄rZ)

]
+
[
ϕ(t̄rEZ)− t̄rϕ(EZ)

]
.
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In other words, the matrix entropy quantifies the total loss in two different averaging

operations on the matrix.

This work contains two main contributions:

1. We develop conditions on ϕ which ensure that the matrix ϕ-entropy is subadditive.

2. We verify these conditions for the functions ϕ : t 7→ t log t and ϕ : t 7→ tp where

p ∈ [1, 2].

The arguments parallel the analysis of scalar ϕ-entropies in Boucheron et al. [26], but

the technical difficulties are more formidable in the matrix setting.

There are several areas that may benefit from this investigation.

Random matrix theory In the scalar setting, subadditivity of ϕ-entropy leads to powerful

concentration inequalities. The subadditivity of matrix ϕ-entropy allows us to adapt

these arguments to obtain some concentration inequalities for random matrices.

Convex analysis We derive subadditivity of the matrix ϕ-entropy functional Hϕ from its

convexity properties; see Lemma 4.4.1 et seq. These results may be useful in other

contexts. For example, the convexity of scalar ϕ-entropy plays a role in machine

learning [187, Sec. 2.5 et seq.].

Operator theory To prove that specific examples of matrix ϕ-entropy are subadditive, we

rely on sophisticated methods from operator theory. In return, the results here may

be relevant for problems in operator theory.

Quantum theory In quantum statistical mechanics and quantum information theory, en-

tropies are defined for positive-definite matrices. Subadditivity of the quantum relative

entropy function plays an important role in these fields, and this same result is closely

connected with subadditivity of the matrix entropy Hϕ where ϕ : t 7→ t log t. As such,

subadditivity of other matrix ϕ-entropies may be relevant for quantum theory.

4.2 Main Results

In this section, we lay out detailed definitions and statements of our main results on

subadditivity of matrix ϕ-entropy and its application to prove concentration inequal-
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ities for random matrices.

4.2.1 Notation and Background

Let us instate some notation. The set R+ contains the nonnegative real numbers,

and R++ consists of all positive real numbers. We write Md for the complex Banach

space of d× d complex matrices, equipped with the usual `2 operator norm ‖·‖. The

normalized trace is the function

t̄rB :=
1

d

∑d

j=1
bjj for B ∈Md.

The theory can be developed using the standard trace, but additional complications

arise.

The set Hd refers to the real-linear subspace of d × d Hermitian matrices in Md.

For a matrix A ∈ Hd, we write λmin(A) and λmax(A) for the algebraic minimum

and maximum eigenvalues. For each interval I ⊂ R, we define the set of Hermitian

matrices whose eigenvalues fall in that interval:

Hd(I) := {A ∈ Hd : [λmin(A), λmax(A)] ⊂ I}.

We also introduce the set Hd+ of d× d positive-semidefinite matrices and the set Hd++

of d× d positive-definite matrices. Curly inequalities refer to the positive-semidefinite

order. For example, A 4 B means that B −A is positive semidefinite.

Next, let us explain how to extend scalar functions to matrices. Recall that each

Hermitian matrix A ∈ Hd has a spectral resolution

A =
∑d

i=1
λiPi, (4.2.1)

where λ1, . . . , λd are the eigenvalues of A. The matrices P1, . . . ,Pd are orthogonal

projectors that satisfy the orthogonality relations

PiPj = δijPj and
∑d

i=1
Pi = I,

where δij is the Kronecker delta and I is the identity matrix. One obtains a standard
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matrix function by applying a scalar function to the spectrum of a Hermitian matrix.

Definition 4.2.1 (Standard Matrix Function). Let f : I 7→ R be a function on an interval

I of the real line. Suppose that A ∈ Hd(I) has the spectral decomposition (4.2.1). Then

f(A) :=
∑d

i=1
f(λi)Pi.

We use lowercase Roman and Greek letters to refer to standard matrix functions.

When we apply a familiar real-valued function to an Hermitian matrix, we are referring

to the associated standard matrix function. Bold capital letters such as Y ,Z denote

general matrix functions that are not necessarily standard.

4.2.2 Subadditivity of Matrix Entropies

In this section, we provide an overview of the theory of matrix ϕ-entropies. At a high

level, our approach has a strong parallel with the work of Boucheron et al. [26]. Nev-

ertheless, there are interesting differences between the scalar and the matrix setting.

4.2.2.1 The Class of Matrix Entropies

First, we carve out a class of standard matrix functions that we can use to construct

matrix entropies with the same subadditivity properties as their scalar counterparts.

Definition 4.2.2 (Φd Function Class). Let d be a natural number. The class Φd contains

each function ϕ : R+ → R that is either affine or else satisfies the following three conditions.

1. ϕ is convex and continuous at zero.

2. ϕ has two continuous derivatives on R++.

3. Define ψ(t) = ϕ′(t) for t ∈ R++. The derivative Dψ of the standard matrix function

ψ : Hd++ → Hd is an invertible linear operator on Hd++, and the map A 7→ [Dψ(A)]−1

is concave with respect to the semidefinite order on operators.

The technical definitions that support requirement (3) appear in Section 4.3. For now,

we just remark that the scalar equivalent of (3) is the statement that t 7→ [ϕ′′(t)]−1 is

concave on R++.
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The class Φ1 coincides with the Φ function class considered in [26]. It can be shown

that Φd+1 ⊆ Φd for each natural number d, so it is appropriate to introduce the class

of matrix entropies:

Φ∞ :=
⋂∞

d=1
Φd.

This class consists of scalar functions that satisfy the conditions of Definition 4.2.2

for an arbitrary choice of dimension d. Note that Φ∞ is a convex cone: it contains all

positive multiples and all finite sums of its elements.

In contrast to the scalar setting, it is quite hard to determine what functions are

contained in Φ∞. The main technical achievement of this paper is to demonstrate

that the standard entropy and certain power functions belong to the matrix entropy

class.

Theorem 4.2.3 (Elements of the Matrix Entropy Class). The following functions are mem-

bers of the Φ∞ class.

1. The standard entropy t 7→ t log t.

2. The power function t 7→ tp for each p ∈ [1, 2].

The proof of Theorem 4.2.3 appears in Section 4.6. The statement about classical

entropy can be obtained from standard results in matrix theory after some argument,

but the result for power functions demands new effort. In fact, the claim about the

classical entropy follows from the result for power functions because of the represen-

tation t log t = limp↓1(tp − t)/(p− 1).

See the independent work [92, Sec. 4] for closely related material. Very recently,

Hansen and Zhang have developed an elegant characterization of the matrix entropy

class [93].

4.2.2.2 Matrix ϕ-Entropy

For each function in the matrix entropy class, we can introduce a generalized entropy

functional that measures the amount of fluctuation in a random matrix.

Definition 4.2.4 (Matrix ϕ-Entropy). Let ϕ ∈ Φ∞. Consider a random matrix Z taking

values in Hd+, and assume that E ‖Z‖ < ∞ and E ‖ϕ(Z)‖ < ∞. The matrix ϕ-entropy
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functional Hϕ is

Hϕ(Z) := E t̄rϕ(Z)− t̄rϕ(EZ). (4.2.2)

Similarly, the conditional matrix ϕ-entropy functional is

Hϕ(Z | F) := E
[

t̄rϕ(Z) | F
]
− t̄rϕ

(
E[Z | F ]

)
,

where F is a subalgebra of the master sigma algebra.

For each convex function ϕ, the trace function t̄rϕ : Hd+ → R is also convex [46,

Sec. 2.2]. Therefore, Jensen’s inequality implies that the matrix ϕ-entropy is nonneg-

ative:

Hϕ(Z) ≥ 0.

For concreteness, here are some basic examples of matrix ϕ-entropy functionals.

Hϕ(Z) = t̄r
[
E(Z logZ)− (EZ) log(EZ)

]
when ϕ(t) = t log t.

Hϕ(Z) = t̄r
[
E(Zp)− (EZ)p

]
when ϕ(t) = tp for p ∈ [1, 2].

Hϕ(Z) = 0 when ϕ is affine.

4.2.2.3 Subadditivity of Matrix ϕ-Entropy

The key fact about matrix ϕ-entropies is that they satisfy a subadditivity property.

Let x := (X1, . . . , Xn) denote a vector of independent random variables taking values

in a Polish space, and write x−i for the random vector obtained by deleting the ith

entry of x.

x−i := (X1, . . . , Xi−1, Xi+1, . . . , Xn).

Consider a positive-semidefinite random matrix Z that can be expressed as a measur-

able function of the random vector x.

Z := Z(X1, . . . , Xn) ∈ Hd+.

We instate the integrability conditions E ‖Z‖ <∞ and E ‖ϕ(Z)‖ <∞.

Theorem 4.2.5 (Subadditivity of Matrix ϕ-Entropy). Fix a function ϕ ∈ Φ∞. Under the
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prevailing assumptions,

Hϕ(Z) ≤
∑n

i=1
E [Hϕ(Z |x−i)] . (4.2.3)

Typically, we apply Theorem 4.2.5 by way of a corollary. Let X ′1, . . . , X ′n denote

independent copies of X1, . . . , Xn, and form the random matrix

Z ′i := Z(X1, . . . , Xi−1, X
′
i, Xi+1, . . . , Xn) ∈ Hd+.

Then Z ′i and Z are independent and identically distributed, conditional on the sigma

algebra generated by x−i. In particular, these two random matrices are exchangeable

counterparts.

Corollary 4.2.6 (Entropy Bounds via Exchangeability). Fix a function ϕ ∈ Φ∞, and write

ψ = ϕ′. With the prevailing notation,

Hϕ(Z) ≤ 1

2

∑n

i=1
E t̄r

[
(Z −Z ′i)(ψ(Z)− ψ(Z ′i))

]
.

Theorem 4.2.5 and Corollary 4.2.6 are matrix counterparts of the foundational

results from Boucheron et al. [26, Sec. 3], which establish that scalar ϕ-entropies

satisfy a similar subadditivity property. We devote Section 4.4 to the proof of these

results.

4.2.3 Some Matrix Concentration Inequalities

Using Corollary 4.2.6, we can derive concentration inequalities for random matrices.

In contrast to some previous approaches to matrix concentration, we need to place

some significant restrictions on the type of random matrices we consider.

Definition 4.2.7 (Invariance under Signed Permutation). A random matrix Y ∈ Hd is

invariant under signed permutation if we have the equality of distribution

Y ∼ Π∗Y Π for each signed permutation Π.

A signed permutation Π ∈ Md is a matrix with the properties that (i) each row and each

column contains exactly one nonzero entry and (ii) the nonzero entries only take values +1

and −1.
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In particular, consider a random matrix that is invariant under orthogonal conju-

gation:

Y ∼ U∗Y U for each orthogonal matrix U .

A matrix that satisfies this condition always verifies the requirement of Definition 4.2.7.

Many classical ensembles, such as the GOE, satisfy this orthogonal invariance condi-

tion. Similar remarks apply to random matrices that are invariant under unitary

conjugation.

4.2.3.1 A Bounded Difference Inequality

Let us present an exponential tail bound for a random matrix whose distribution is

invariant under signed permutation.

Theorem 4.2.8 (Bounded Differences). Let x := (X1, . . . , Xn) be a vector of independent

random variables, and let x′ := (X ′1, . . . , X
′
n) be an independent copy of x. Consider random

matrices

Y := Y (X1, . . . , Xi, . . . , Xn) ∈ Hd and

Y ′i := Y (X1, . . . , X
′
i, . . . , Xn) ∈ Hd for i = 1, . . . , n.

Assume that Y is invariant under signed permutation and that ‖Y ‖ is bounded almost surely.

Introduce the variance measure

VY := sup
∥∥∥E [∑n

i=1
(Y − Y ′i )2

∣∣∣x]∥∥∥ , (4.2.4)

where the supremum occurs over all possible values of x. For each t ≥ 0,

P {λmax(Y − EY ) ≥ t} ≤ d · e−t2/(2VY ), and

P {λmin(Y − EY ) ≤ −t} ≤ d · e−t2/(2VY ).

Theorem 4.2.8 follows from Corollary 4.2.6 with the choice ϕ(t) = t log t. See Sec-

tion 4.7 for the proof. This result can be viewed as a type of matrix bounded differ-

ence inequality. Closely related inequalities already appear in the literature; see [233,

Cor. 7.5], [138, Cor. 11.1], and [172, Cor. 4.1]. In fact, Theorem 4.2.8 is dominated
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by [172, Cor. 4.1], which is not restricted to random matrices that are invariant under

signed permutation.

4.2.3.2 Example: Sample covariance matrices

It may be helpful to sketch a short example that indicates the scope of Theorem 4.2.8.

Consider a random vector of the form

w := (ε1W1, ε2W2, . . . , εpWp)
∗,

where (Wk) is an exchangeable family of random variables and (εk) is a sequence of

independent Rademacher random variables. We also require that the random vector

is bounded: ‖w‖2 ≤ B.

Let w1, . . . ,wn be iid copies of w, and consider the sample covariance matrix

Y :=
1

n

∑n

i=1
wiw

∗
i .

Our assumptions on w ensure that Y is invariant under signed permutation and that

‖Y ‖ is bounded. Note that EY = cI for a positive number c. It is also easy to

check that the variance measure (4.2.4) satisfies VY ≤ 2B2/n. An application of

Theorem 4.2.8 delivers

P {‖Y − cI‖ ≥ t} ≤ 2d · e−nt2/(4B2).

The bound is informative when c2 > t2 > 4B2 log(2d)/n. In other words, the number

n of samples should satisfy n > 4B2 log(2d)/c2. Modulo constants, this estimate

cannot be improved when w has the uniform distribution on {±e1, . . . ,±ep}, the set

of signed standard basis vectors.

The main result of Rudelson’s paper [193] is a concentration bound for sample co-

variance matrices based on the noncommutative Khintchine inequality [136]. Rudelson

allows any bounded random vector w with a scalar covariance matrix, and he achieves

the same result derived here.
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4.2.3.3 Matrix Moment Bounds

We can also establish moment inequalities for a random matrix whose distribution is

invariant under signed permutation.

Theorem 4.2.9 (Matrix Moment Bound). Fix a number q ∈ {2, 3, 4, . . . }. Let x :=

(X1, . . . , Xn) be a vector of independent random variables, and let x′ := (X ′1, . . . , X
′
n) be

an independent copy of x. Consider positive-semidefinite random matrices

Y := Y (X1, . . . , Xi, . . . , Xn) ∈ Hd+ and

Y ′i := Y (X1, . . . , X
′
i, . . . , Xn) ∈ Hd+ for i = 1, . . . , n.

Assume that Y is invariant under signed permutation and that E(‖Y ‖q) <∞. Suppose that

there is a constant c ≥ 0 with the property

VY := E
[∑n

i=1
(Y − Y ′i )2

∣∣∣x] 4 cY . (4.2.5)

Then the random matrix Y satisfies the moment inequality

[E t̄r(Y q)]1/q ≤ E t̄rY +
q − 1

2
· c.

Theorem 4.2.9 follows from Corollary 4.2.6 with the choice ϕ(t) = tq/(q−1). See

Section 4.8 for the proof. This result can be regarded as a matrix extension of a

moment inequality for real random variables [26, Cor. 1]. The paper [172] contains

similar moment inequalities for random matrices that need not satisfy the condition

of signed permutation invariance. See also [110, 112, 113].

4.2.4 Generalized Subadditivity of Matrix ϕ-Entropy

Theorem 4.2.5 is the shadow of a more sophisticated subadditivity property. We out-

line the simplest form of this more general result. See the lecture notes of Carlen [46]

for more background on the topics in this section.

We work in the ∗-algebra Md of d × d complex matrices, equipped with the con-

jugate transpose operation ∗ and the normalized trace inner product 〈A, B〉 :=

t̄r(A∗B). We say that a subspace A ⊂ Md is a ∗-subalgebra when A contains the
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identity matrix, A is closed under matrix multiplication, and A is closed under con-

jugate transposition. In other terms, I ∈ A and AB ∈ A and A∗ ∈ A whenever

A,B ∈ A.

In this setting, there is an elegant notion of conditional expectation. The or-

thogonal projector EA : Md → A onto the ∗-subalgebra A is called the conditional

expectation with respect to the ∗-subalgebra. For ∗-subalgebras A and B, we say that

the conditional expectations EA and EB commute when

(EA EB)(M) = (EB EA)(M) for every M ∈Md.

This construction generalizes the concept of independence in a probability space.

We can define the matrix ϕ-entropy conditional on a ∗-subalgebra A:

Hϕ(A |A) := t̄r[ϕ(A)− ϕ(EAA)] for A ∈ Hd+.

Note that t̄r(EAA) = t̄rA for each matrix A in Hd+, so we do not need to include a

conditional expectation in the leading term. Let A1, . . . ,An be ∗-subalgebras whose

conditional expectations commute. Then we can extend the definition of the matrix

ϕ-entropy to read

Hϕ(A |A1, . . . ,An) := t̄r[ϕ(A)− ϕ(EA1 · · ·EAn A)] for A ∈ Hd+.

Because of commutativity, the order of the conditional expectations has no effect on

the calculation. It turns out that matrix ϕ-entropy admits the following subadditivity

property.

Theorem 4.2.10 (Subaddivity of Matrix ϕ-Entropy II). Fix a function ϕ ∈ Φ∞. Let

A1, . . . ,An be ∗-subalgebras of Md whose conditional expectations commute. Then

Hϕ(A |A1, . . . ,An) ≤
∑n

i=1
Hϕ(A |Ai) for A ∈ Hd+. (4.2.6)

We omit the proof of this result. The argument involves considerations similar with

Theorem 4.2.5, but it requires an extra dose of operator theory. The work in this

paper already addresses the more challenging aspects of the proof. Note that the case
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ϕ : t 7→ t log t is essentially a consequence of the classical results in [133].

Theorem 4.2.10 can be seen as a formal extension of the subadditivity of matrix

ϕ-entropy expressed in Theorem 4.2.5. To see why, let Ω := Ω1×· · ·×Ωn be a product

probability space. The space L2(Ω;Md) of random matrices is a ∗-algebra with the

normalized trace functional E t̄r. For each i = 1, . . . , n, we can form a ∗-subalgebra

Ai consisting of the random matrices that do not depend on the ith factor Ωi of the

product. The conditional expectation EAi simply integrates out the ith random vari-

able. By independence, the family of conditional expectations EA1 , . . . ,EAn commutes.

Using this dictionary, compare the statement of Theorem 4.2.10 with Theorem 4.2.5.

4.3 Operators and Functions acting on Matrices

This work involves a substantial amount of operator theory. This section contains a

short treatment of the basic facts. See [17, 18] for a more complete introduction.

4.3.1 Linear Operators on Matrices

Let Cd be the complex Hilbert space of dimension d, equipped with the standard inner

product 〈a, b〉 := a∗b. We usually identifyMd with B(Cd), the complex Banach space

of linear operators acting on Cd, equipped with the `2 operator norm ‖·‖.

We can also endow Md with the normalized trace inner product 〈A, B〉 :=

t̄r(A∗B) to form a Hilbert space. As a Hilbert space, Md is isometrically isomor-

phic with Cd2 . Let B(Md) denote the complex Banach space of linear operators that

map the Hilbert space Md into itself, equipped with the induced operator norm. The

Banach space B(Md) is isometrically isomorphic with the Banach space Md2 .

As a consequence of this construction, every concept from matrix analysis has

an immediate analog for linear operators on matrices. An operator T ∈ B(Md) is

self-adjoint when

〈A, T(B)〉 = 〈T(A), B〉 for all A,B ∈ B(Md).

A self-adjoint operator T ∈ B(Md) is positive semidefinite when

〈A, T(A)〉 ≥ 0 for all A ∈Md.
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For self-adjoint operators S,T ∈ B(Md), the notation S 4 T means that T − S is

positive semidefinite.

Each self-adjoint matrix operator T ∈ B(Md) has a spectral resolution of the form

T =
∑d2

i=1
λiPi, (4.3.1)

where λ1, . . . , λd2 are the eigenvalues of T and the spectral projectors P1, . . . ,Pd2 are

positive-semidefinite operators that satisfy

PiPj = δijPj and
∑d2

i=1
Pi = I,

where δij is the Kronecker delta and I is the identity operator. As in the matrix case,

a self-adjoint operator with nonnegative eigenvalues is the same thing as a positive-

semidefinite operator.

We can extend a scalar function f : I → R on an interval I of the real line to

obtain a standard operator function. Indeed, if T has the spectral resolution (4.3.1)

and the eigenvalues of T fall in the interval I, we define

f(T) :=
∑d2

i=1
f(λi)Pi.

This definition, of course, parallels the definition for matrices.

4.3.2 Monotonicity and Convexity

Let X and Y be sets of self-adjoint operators, such as Hd(I) or the set of self-adjoint

operators in B(Md). We can introduce notions of monotonicity and convexity for a

general function Ψ : X → Y using the semidefinite order on the spaces of operators.

Definition 4.3.1 (Monotone Operator-Valued Function). The function Ψ : X → Y is

monotone when

S 4 T =⇒ Ψ(S) 4 Ψ(T) for all S,T ∈ X.

Definition 4.3.2 (Convex Operator-Valued Function). The function Ψ : X → Y is convex
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when X is a convex set and

Ψ(αS + ᾱT) 4 α ·Ψ(S) + ᾱ ·Ψ(T) for all α ∈ [0, 1] and all S,T ∈ X.

We have written ᾱ := 1− α. The function Ψ is concave when −Ψ is convex.

The convexity of an operator-valued function Ψ is equivalent with a Jensen-type rela-

tion:

Ψ(EX) 4 EΨ(X) (4.3.2)

whenever X is an integrable random operator taking values in X.

In particular, we can apply these definitions to standard matrix and operator

functions. Let I be an interval of the real line. We say that the function f : I → R is

operator monotone when the lifted map f : Hd(I)→ Hd is monotone for each natural

number d. Likewise, the function f : I → R is operator convex when the lifted map

f : Hd(I)→ Hd is convex for each natural number d.

Although scalar monotonicity and convexity are quite common, they are much

rarer in the matrix setting [17, Chap. 4]. For present purposes, we note that the

power functions t 7→ tp with p ∈ [0, 1] are operator monotone and operator concave.

The power functions t 7→ tp with p ∈ [1, 2] and the standard entropy t 7→ t log t are all

operator convex.

4.3.3 The Derivative of a Vector-Valued Function

The definition of the Φ∞ function class involves a requirement that a certain standard

matrix function is differentiable. For completeness, we include the background needed

to interpret this condition.

Definition 4.3.3 (Derivative of a Vector-Valued Function). Let X and Y be Banach spaces,

and let U be an open subset of X. A function F : U → Y is differentiable at a point A ∈ U

if there exists a bounded linear operator T : X → Y for which

lim
B→0

‖F (A + B)− F (A)− T(B)‖Y
‖B‖X

= 0.

When F is differentiable at A, the operator T is called the derivative of F at A, and we



128

define DF (A) := T.

The derivative and the directional derivative have the following relationship:

d

ds
F (A + sB)

∣∣∣
s=0

= DF (A)(B). (4.3.3)

In Section 4.6.2, we present an explicit formula for the derivative of a standard matrix

function.

4.4 Subadditivity of Matrix ϕ-Entropy

In this section, we establish Theorem 4.2.5, which states that the matrix ϕ-entropy is

subadditive for every function in the Φ∞ class. This result depends on a variational

representation for the matrix ϕ-entropy that appears in Section 4.4.1. We use the

variational formula to derive a Jensen-type inequality in Section 4.4.2. The proof of

Theorem 4.2.5 appears in Section 4.4.3.

4.4.1 Representation of Matrix ϕ-Entropy as a Supremum

The fundamental fact behind the subadditivity theorem is a representation of the

matrix ϕ-entropy as a supremum of affine functions.

Lemma 4.4.1 (Supremum Representation for Entropy). Fix a function ϕ ∈ Φ∞, and intro-

duce the scalar derivative ψ = ϕ′. Suppose that Z is a random positive-semidefinite matrix

for which ‖Z‖ and ‖ϕ(Z)‖ are integrable. Then

Hϕ(Z) = sup
T

E t̄r
[
(ψ(T )− ψ(ET ))(Z − T ) + ϕ(T )− ϕ(ET )

]
. (4.4.1)

The range of the supremum contains each random positive-definite matrix T for which ‖T ‖

and ‖ϕ(T )‖ are integrable. In particular, the matrix ϕ-entropy Hϕ can be written in the

dual form

Hϕ(Z) = sup
T

E t̄r
[
Υ1(T ) ·Z + Υ2(T )

]
, (4.4.2)

where Υi : Hd+ → Hd for i = 1, 2.

This result implies that Hϕ is a convex function on the space of random positive-

semidefinite matrices. The dual representation of Hϕ is well suited for establishing a
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form of Jensen’s inequality, Lemma 4.4.3, which is the main ingredient in the proof of

the subadditivity property, Theorem 4.2.5.

It may be valuable to see some particular instances of the dual representation of

the matrix ϕ-entropy:

Hϕ(Z) = sup
T

E t̄r
[
(logT − log(ET )) ·Z

]
when ϕ(t) = t log t.

Hϕ(Z) = sup
T

E t̄r
[
p(T p−1 − (ET )p−1) ·Z − (p− 1)(T p − (ET )p)

]
when ϕ(t) = tp for p ∈ [1, 2].

The first formula is the matrix version of a well-known variational principle for the

classical entropy, cf. [26, p. 525]. In the matrix setting, this result can be derived from

the joint convexity of quantum relative entropy [133].

4.4.1.1 The Convexity Lemma

To establish the variational formula, we require a convexity result for a quadratic form

connected with the function ϕ.

Lemma 4.4.2. Fix a function ϕ ∈ Φ∞, and let ψ = ϕ′. Suppose that Y is a random matrix

taking values in Hd+, and let K be a random matrix taking values in Md. Assume that ‖Y ‖

and ‖K‖ are integrable. Then

E 〈K, Dψ(Y )(K)〉 ≥ 〈(EK), Dψ(EY )(EK)〉 .

Proof. The proof hinges on a basic convexity property of quadratic forms. Define a map

that takes a matrix A in Hd and a positive-definite operator T on Md to a nonnegative

number:

Q : (A,T) 7→
〈
A, T−1(A)

〉
.

We assert that the function Q is convex. Indeed, the same result is well known when A and

T are replaced by a vector and a positive-definite matrix [18, Exer. 1.5.1], and the extension

is immediate from the isometric isomorphism between operators and matrices.

Recall that the Φ∞ class requires A 7→ [Dψ(A)]−1 to be a concave map on Hd++. With
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these observations at hand, we can make the following calculation:

E 〈K, Dψ(Y )(K)〉 = E
〈
K, ([Dψ(Y )]−1)−1(K)

〉
≥
〈
(EK), (E[Dψ(Y )]−1)−1(EK)

〉
≥
〈
(EK), ([Dψ(EY )]−1)−1(EK)

〉
= 〈(EK), Dψ(EY )(EK)〉 .

We obtain the second relation when we apply Jensen’s inequality to the convex function

Q. The third relation depends on the semidefinite Jensen inequality (4.3.2) for the concave

function A 7→ [Dψ(A)]−1, coupled with the fact [17, Prop. V.1.6] that the operator inverse

reverses the semidefinite order.

4.4.1.2 Proof of Lemma 4.4.1

The argument parallels the proof of [26, Lem. 1]. We begin with some reductions.

The case where ϕ is an affine function is immediate, so we may require the derivative

ψ = ϕ′ to be non-constant. By approximation, we may also assume that the random

matrix Z is strictly positive definite.

[Indeed, since ϕ is continuous on R+, the Dominated Convergence Theorem im-

plies that the matrix ϕ-entropy Hϕ is continuous on the set containing each positive-

semidefinite random matrix Y where ‖Y ‖ and ‖ϕ(Y )‖ are integrable. Therefore,

we can approximate a positive-semidefinite random matrix Z by a sequence {Yn} of

positive-definite random matrices where Yn → Z and be confident that Hϕ(Yn) →

Hϕ(Z).]

When T = Z, the argument of the supremum in (4.4.1) equals Hϕ(Z). Therefore,

our burden is to verify the inequality

Hϕ(Z) ≥ E t̄r
[
(ψ(T )− ψ(ET ))(Z − T ) + Eϕ(T )− ϕ(ET )

]
(4.4.3)

for each random positive-definite matrix T that satisfies the same integrability re-

quirements as Z. For simplicity, we assume that the eigenvalues of both Z and T

are bounded and bounded away from zero. See Appendix 4.9 for the extension to the

general case.
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We use an interpolation argument to establish (4.4.3). Define the family of random

matrices

Ts := (1− s) ·Z + s · T for s ∈ [0, 1].

Introduce the real-valued function

F (s) := E t̄r
[
(ψ(Ts)− ψ(ETs)) · (Z − Ts)

]
+Hϕ(Ts).

Observe that F (0) = Hϕ(Z), while F (1) coincides with the right-hand side of (4.4.3).

Therefore, to establish (4.4.3), it suffices to show that the function F (s) is weakly

decreasing on the interval [0, 1].

We intend to prove that F ′(s) ≤ 0 for s ∈ [0, 1]. Since Z − Ts = −s · (T −Z), we

can rewrite the function F in the form

F (s) = −s · E t̄r
[
(ψ(Ts)− ψ(ETs)) · (T −Z)

]
+ E t̄r

[
ϕ(Ts)− ϕ(ETs))

]
. (4.4.4)

We differentiate the function F to obtain

F ′(s) = −s · E t̄r
[
Dψ(Ts)(T −Z) · (T −Z)

]
+ s · t̄r

[
Dψ(ETs)(E(T −Z)) · (E(T −Z))

]
− E t̄r

[
(ψ(Ts)− ψ(ETs)) · (T −Z)

]
+ E t̄r

[
(ψ(Ts)− ψ(ETs)) · (T −Z)

]
. (4.4.5)

To handle the first term in (4.4.4), we applied the product rule, the rule (4.3.3) for

directional derivatives, and the expression dTs/ds = T − Z. We used the identity

D trϕ(A) = ψ(A) to differentiate the second term. We also relied on the Dominated

Convergence Theorem to pass derivatives through expectations, which is justified be-

cause ϕ and ψ are continuously differentiable on Hd++ and the eigenvalues of the

random matrices are bounded and bounded away from zero. Now, the last two terms

in (4.4.5) cancel, and we can rewrite the first two terms using the trace inner product:

F ′(s) = s ·
[
〈(E(T −Z)), Dψ(ETs)(E(T −Z))〉 − E 〈(T −Z), Dψ(Ts)(T −Z)〉

]
.

Invoke Lemma 4.4.2 to conclude that F ′(s) ≤ 0 for s ∈ [0, 1].
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4.4.2 A Conditional Jensen Inequality

The variational inequality in Lemma 4.4.1 leads directly to a Jensen inequality for the

matrix ϕ-entropy.

Lemma 4.4.3 (Conditional Jensen Inequality). Fix a function ϕ ∈ Φ∞. Suppose that

(X1, X2) is a pair of independent random variables taking values in a Polish space, and let

Z = Z(X1, X2) be a random positive-semidefinite matrix for which ‖Z‖ and ‖ϕ(Z)‖ are

integrable. Then

Hϕ (E1 Z) ≤ E1Hϕ (Z |X1) ,

where E1 is the expectation with respect to the first variable X1.

Proof. Let E2 denote the expectation with respect to the second variable X2. The result is

a simple consequence of the dual representation (4.10.2) of the matrix ϕ-entropy:

Hϕ (E1 Z) = sup
T

E2 t̄r
[
Υ1

(
T (X2)

)
· (E1 Z) + Υ2

(
T (X2)

)]
. (4.4.6)

We have written T (X2) to emphasize that this matrix depends only on the randomness in

X2. To control (4.4.6), we apply Fubini’s theorem to interchange the order of E1 and E2,

and then we exploit the convexity of the supremum to draw out the expectation E1.

Hϕ (E1 Z) = sup
T

E1 E2 t̄r [Υ1(T (X2)) ·Z + Υ2(T (X2))]

≤ E1 sup
T

E2 t̄r [Υ1(T (X2)) ·Z + Υ2(T (X2)]

= E1 sup
T

E
[

t̄r[Υ1(T (X2)) ·Z + Υ2(T (X2)] |X1

]
= E1Hϕ(Z |X1).

The last relation is the duality formula (4.10.2), applied conditionally.

4.4.3 Proof of Theorem 4.2.5

We are now prepared to establish the main result on subadditivity of matrix ϕ-entropy.

This theorem is a direct consequence of the conditional Jensen inequality, Lemma 4.4.3.

In this argument, we write Ei for the expectation with respect to the variableXi. Using

the notation from Section 4.2.2.3, we see that Ei = E[ · |x−i].
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First, separate the matrix ϕ-entropy into two parts by adding and subtracting

terms:

Hϕ(Z) = E t̄r [ϕ(Z)− ϕ(E1 Z) + ϕ(E1 Z)− ϕ(EZ)].

= E
[
E1 t̄r [ϕ(Z)− ϕ(E1 Z)]

]
+ E t̄r [ϕ(E1 Z)− ϕ(EE1 Z)]. (4.4.7)

We can rewrite this expression as

Hϕ(Z) = EHϕ(Z |x−1) +Hϕ(E1 Z)

≤ EHϕ(Z |x−1) + E1Hϕ(Z |X1). (4.4.8)

The inequality follows from Lemma 4.4.3 because Z = Z(X1,x−1) where X1 and x−1

are independent random variables.

The first term on the right-hand side of (4.4.8) coincides with the first summand

on the right-hand side of the subadditivity inequality (4.2.3). We must argue that

the remaining summands are contained in the second term on the right-hand side

of (4.4.8). Repeating the argument in the previous paragraph, conditioning on X1,

we obtain

Hϕ(Z |X1) ≤ E
[
Hϕ(Z |x−2) |X1] + E2Hϕ(Z |X1, X2).

Substituting this expression into (4.4.8), we obtain

Hϕ(Z) ≤
∑2

i=1
EHϕ(Z |x−i) + E1 E2Hϕ(Z |X1, X2).

Continuing in this fashion, we arrive at the subadditivity inequality (4.2.3):

Hϕ(Z) ≤
∑n

i=1
EHϕ(Z |x−i).

This completes the proof of Theorem 4.2.5.
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4.5 Entropy Bounds via Exchangeability

In this section, we derive Corollary 4.2.6, which uses exchangeable pairs to bound the

conditional entropies that appear in Theorem 4.2.5. This result follows from another

variational representation of the matrix ϕ-entropy.

4.5.1 Representation of the Matrix ϕ-Entropy as an Infimum

In this section, we present another formula for the matrix ϕ-entropy.

Lemma 4.5.1 (Infimum Representation for Entropy). Fix a function ϕ ∈ Φ∞, and let

ψ = ϕ′. Assume that Z is a random positive-semidefinite matrix where ‖Z‖ and ‖ϕ(Z)‖

are integrable. Then

Hϕ(Z) = inf
A∈Hd

+

E t̄r [ϕ(Z)− ϕ(A)− (Z −A) · ψ(A)] . (4.5.1)

Let Z ′ be an independent copy of Z. Then

Hϕ(Z) ≤ 1

2
· E t̄r

[
(Z −Z ′)(ψ(Z)− ψ(Z ′))

]
. (4.5.2)

We require a familiar trace inequality [46, Thm. 2.11]. This bound simply restates

the fact that a convex function lies above its tangents.

Proposition 4.5.2 (Klein’s Inequality). Let f : I → R be a differentiable convex function

on an interval I of the real line. Then

t̄r
[
f(B)− f(A)− (B −A) · f ′(A)] ≥ 0 for all A,B ∈ Hd(I).

With Klein’s inequality at hand, the variational inequality follows quickly.

Proof of Lemma 4.5.1. Every function ϕ ∈ Φ∞ is convex and differentiable, so Proposi-

tion 4.5.2 with B = EZ implies that

t̄r [−ϕ(EZ)] ≤ t̄r [−ϕ(A)− (EZ −A) · ψ(A)]

for each fixed matrix A ∈ Hd+. Substitute this bound into the definition (4.2.2) of the matrix
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ϕ-entropy, and draw the expectation out of the trace to reach

Hϕ(Z) ≤ E t̄r [ϕ(Z)− ϕ(A)− (Z −A) · ψ(A)]. (4.5.3)

The inequality (4.5.3) becomes an equality when A = EZ, which establishes the variational

representation (4.5.1).

The symmetrized bound (4.5.2) follows from an exchangeability argument. Select A =

Z ′ in the expression (4.5.3), and apply the fact that Eϕ(Z) = Eϕ(Z ′) to obtain

Hϕ(Z) ≤ −E t̄r [(Z −Z ′) · ψ(Z ′)]. (4.5.4)

Since Z and Z ′ are exchangeable, we can also bound the matrix ϕ-entropy as

Hϕ(Z) ≤ −E t̄r [(Z ′ −Z) · ψ(Z)]. (4.5.5)

Take the average of the two bounds (4.5.4) and (4.5.5) to reach the desired inequality

(4.5.2).

In the scalar case, stronger bounds are available. For a function ϕ ∈ Φ1,

ϕ(b)− ϕ(a)− (b− a)ϕ′(a) ≤ (b− a)(ϕ′(b)− ϕ′(a)) for all a, b ≥ 0.

See [48, Lem. 4.2] for details.

4.5.2 Proof of Corollary 4.2.6

Lemma 4.5.1 leads to a succinct proof of Corollary 4.2.6. We continue to use the

notation from Section 4.2.2.3. Apply the inequality (4.5.2) conditionally to control

the conditional matrix ϕ-entropy:

Hϕ(Z |x−i) ≤
1

2
· E t̄r

[
(Z −Z ′i)(ψ(Z)− ψ(Z ′i)) |x−i

]
(4.5.6)



136

because Z ′i and Z are conditionally iid, given x−i. Take the expectation on both sides

of (4.5.6), and invoke the tower property of conditional expectation:

EHϕ(Z |x−i) ≤
1

2
· E t̄r

[
(Z −Z ′i)(ψ(Z)− ψ(Z ′i))

]
. (4.5.7)

To complete the proof, substitute (4.5.7) into the right-hand side of the bound (4.2.3)

from the subadditivity result, Theorem 4.2.5.

4.6 Members of the Φ∞ function class

In this section, we demonstrate that the classical entropy and certain power functions

belong to the Φ∞ function class. The main challenge is to verify that A 7→ [Dψ(A)]−1

is a concave operator-valued map. We establish this result for the classical entropy

in Section 4.6.4 and for the power function in Section 4.6.5. See the independent

work [92, Sec. 4] for closely related results.

4.6.1 Tensor Product Operators

First, we explain the tensor product construction of an operator. The tensor product

will allow us to represent the derivative of a standard matrix function compactly.

Definition 4.6.1 (Tensor Product). Let A,B ∈ Hd. The operator A ⊗ B ∈ B(Md) is

defined by the relation

(A⊗B)(M) = AMB for each M ∈Md. (4.6.1)

The operator A⊗B is self-adjoint because we assume the factors are Hermitian matrices.

Suppose that A,B ∈ Hd are Hermitian matrices with spectral resolutions

A =
∑d

i=1
λiPi and B =

∑d

j=1
µjQj . (4.6.2)

Then the tensor product A⊗B has the spectral resolution

A⊗B =
∑d

i,j=1
λiµjPi ⊗Qj .
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In particular, the tensor product of two positive-definite matrices is a positive-definite

operator.

4.6.2 The Derivative of a Standard Matrix Function

Next, we present some classical results on the derivative of a standard matrix function.

See [17, Sec. V.3] for further details.

Definition 4.6.2 (Divided Difference). Let f : I → R be a continuously differentiable

function on an interval I of the real line. The first divided difference is the map f [1] : R2 → R

defined by

f [1](λ, µ) :=

 f ′(λ), λ = µ,

f(λ)−f(µ)
λ−µ , λ 6= µ.

We also require the Hermite representation of the divided difference:

f [1](λ, µ) =

∫ 1

0
f ′(τλ+ τ̄µ) dτ, (4.6.3)

where we have written τ̄ := 1− τ .

The following result gives an explicit expression for the derivative of a standard

matrix function in terms of a divided difference.

Proposition 4.6.3 (Daleckĭı–Krĕın Formula). Let f : I → R be a continuously differentiable

function of an interval I of the real line. Suppose that A ∈ Hd(I) is a diagonal matrix with

A = diag(a1, . . . , ad). The derivative Df(A) ∈ B(Md), and

Df(A)(H) = f [1](A)�H for H ∈Md,

where � denotes the Schur (i.e., componentwise) product and f [1](A) refers to the matrix of

divided differences: [
f [1](A)

]
ij

= f [1](ai, aj) for i, j = 1, . . . , d.
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4.6.3 Operator Means

Our approach also relies on the concept of an operator mean. The following definition

is due to Kubo & Ando [120].

Definition 4.6.4 (Operator Mean). Let f : R++ → R++ be an operator concave function

that satisfies f(1) = 1. Fix a natural number d. Let S and T be positive-definite operators

in B(Md). We define the mean of the operators:

Mf (S,T) := T1/2 · f(T−1/2ST−1/2) · T1/2 ∈ B(Md).

When S and T commute, the formula simplifies to

Mf (S,T) = T · f(ST−1).

A few examples may be helpful. The function f(s) = (1 + s)/2 represents the usual

arithmetic mean, the function f(s) = s1/2 gives the geometric mean, and the func-

tion f(s) = 2s/(1 + s) yields the harmonic mean. Operator means have a concavity

property, which was established in the paper [120].

Proposition 4.6.5 (Operator Means are Concave). Let f : R++ → R++ be an operator

monotone function with f(1) = 1. Fix a natural number d. Suppose that S1, S2,T1,T2 are

positive-definite operators in B(Md). Then

α ·Mf (S1,T1) + ᾱ ·Mf (S2,T2) 4 Mf (αS1 + ᾱS2, αT1 + ᾱT2)

for α ∈ [0, 1] and ᾱ = 1− α.

4.6.4 Entropy

In this section, we demonstrate that the standard entropy function is a member of the

Φ∞ function class.

Theorem 4.6.6. The function ϕ : t 7→ t log t− t is a member of the Φ∞ class.

This result immediately implies Theorem 4.2.3(1), which states that t 7→ t log t belongs

to Φ∞. Indeed, the matrix entropy class contains all affine functions and all finite sums

of its elements.
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Theorem 4.6.6 follows easily from (deep) classical results because the variational

representation of the standard entropy from Lemma 4.4.1 is equivalent with the joint

convexity of quantum relative entropy [133]. Instead of pursuing this idea, we present

an argument that parallels the approach we use to study the power function. Some

of the calculations below also appear in [131, Proof of Cor. 2.1], albeit in compressed

form.

Proof. Fix a positive integer d. We plan to show that the function ϕ : t 7→ t log t − t is

a member of the class Φd. Evidently, ϕ is continuous and convex on R+, and it has two

continuous derivatives on R++. It remains to verify the concavity condition for the second

derivative.

Write ψ(t) = ϕ′(t) = log t, and let A ∈ Hd++. Without loss of generality, we may choose

a basis where A = diag(a1, . . . , ad). The Daleckĭı–Krĕın formula, Proposition 4.6.3, tells us

Dψ(A)(H) = ψ[1](A)�H =
[
ψ[1](ai, aj) · hij

]
ij
.

As an operator, the derivative acts by Schur multiplication. This formula also makes it clear

that the inverse of this operator acts by Schur multiplication:

[Dψ(A)]−1(H) =

[
1

ψ[1](ai, aj)
· hij

]
ij

.

Using the Hermite representation (4.6.3) of the first divided difference of t 7→ et, we find

1

ψ[1](µ, λ)
=

λ− µ
log λ− logµ

=

∫ 1

0
eτ log λ+τ̄ logµ dτ =

∫ 1

0
λτµτ̄ dτ.

The latter calculation assumes that µ 6= λ; it extends to the case µ = λ because both sides

of the identity are continuous. As a consequence,

[Dψ(A)]−1(H) =

∫ 1

0

[
aτi hija

τ̄
j

]
ij

dτ =

∫ 1

0
AτHAτ̄ dτ =

∫ 1

0
(Aτ ⊗Aτ̄ )(H) dτ.

We discover the expression

[Dψ(A)]−1 =

∫ 1

0
Aτ ⊗Aτ̄ dτ. (4.6.4)
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This formula is correct for every positive-definite matrix.

For each τ ∈ [0, 1], consider the operator monotone function f : t 7→ tτ defined on R+.

Since f(1) = 1, we can construct the operator mean Mf associated with the function f .

Note that A⊗ I and I⊗A are commuting positive operators. Thus,

Mf (A⊗ I, I⊗A) = (I⊗A) · f((A⊗ I)(I⊗A)−1) = Aτ ⊗Aτ̄ .

The map A 7→ (A⊗ I, I⊗A) is linear, so Proposition 4.6.5 guarantees that A 7→ Aτ ⊗Aτ̄

is concave for each τ ∈ [0, 1]. This result is usually called the Lieb Concavity Theorem [17,

Thm. IX.6.1]. Combine this fact with the integral representation (4.6.4) to reach the con-

clusion that A 7→ [Dψ(A)]−1 is a concave map on the cone Hd++ of positive-definite matri-

ces.

4.6.5 Power Functions

In this section, we prove that certain power functions belong to the Φ∞ function class.

Theorem 4.6.7. For each p ∈ [0, 1], the function ϕ : t 7→ tp+1/(p + 1) is a member of the

Φ∞ class.

This result immediately implies Theorem 4.2.3(2), which states that t 7→ tp+1 belongs

to the class Φ∞. Indeed, the matrix entropy class contains all positive multiples of its

elements.

The proof of Theorem 4.6.7 follows the same path as Theorem 4.6.6, but it is some-

what more involved. First, we derive an expression for the function A 7→ [Dψ(A)]−1

where ψ = ϕ′.

Lemma 4.6.8. Fix p ∈ (0, 1], and let ψ(t) = tp for t ≥ 0. For each matrix A ∈ Hd+,

[Dψ(A)]−1 =
1

p

∫ 1

0
(τ ·Ap ⊗ I + τ̄ · I⊗Ap)(1−p)/p dτ, (4.6.5)

where τ̄ := 1− τ .

Proof. As before, we may assume without loss of generality that the matrixA = diag(a1, . . . , ad).



141

Using the Daleckĭı–Krĕın formula, Proposition 4.6.3, we see that

[Dψ(A)]−1(H) =

[
1

ψ[1](ai, aj)
· hij

]
.

The Hermite representation (4.6.3) of the first divided difference of t 7→ t1/p gives

1

ψ[1](µ, λ)
=

µ− λ
µp − λp

=
1

p

∫ 1

0
(τ · λp + τ̄ · µp)(1−p)/p dτ =: g(λ, µ).

We use continuity to verify that the latter calculation remains valid when µ = λ. Using this

function g, we can identify a compact representation of the operator:

[Dψ(A)]−1(H) =
∑

ij
g(ai, aj)hijEij =

[∑
ij
g(ai, aj)(Eii ⊗Ejj)

]
(H),

where we write Eij for the matrix with a one in the (i, j) position and zeros elsewhere. It

remains to verify that the bracket coincides with the expression (4.6.5). Indeed,

∑
ij
g(ai, aj)(Eii ⊗Ejj) =

1

p

∫ 1

0

∑
ij

(τ · api + τ̄ · apj )
(1−p)/p (Eii ⊗Ejj) dτ

=
1

p

∫ 1

0

[∑
ij

(τ · api + τ̄ · apj )(Eii ⊗Ejj)

](1−p)/p
dτ

=
1

p

∫ 1

0
(τ ·Ap ⊗ I + τ̄ · I⊗Ap)(1−p)/p dτ.

The second relation follows from the definition of the standard operator function associated

with t 7→ t(1−p)/p. To confirm that the third line equals the second, expand the matrices

A =
∑

i aiEii and I =
∑

j Ejj and invoke the bilinearity of the tensor product.

Proof of Theorem 4.6.7. We are now prepared to prove that certain power functions belong

to the Φ∞ function class. Fix an exponent p ∈ [0, 1], and let d be a fixed positive integer.

We intend to show that the function ϕ(t) = tp+1/(p + 1) belongs to the Φd class. When

p = 0, the function ϕ is affine, so we may assume that p > 0. It is clear that ϕ is continuous

and convex on R+, and ϕ has two continuous derivatives on R++. It remains to verify that

the second derivative has the required concavity property.

Let ψ(t) = ϕ′(t) = tp for t ≥ 0, and consider a matrix A ∈ Hd++. Lemma 4.6.8
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demonstrates that

[Dψ(A)]−1 =
1

p

∫ 1

0
(τ ·Ap ⊗ I + τ̄ · I⊗Ap)(1/p)(1−p) dτ, (4.6.6)

where we maintain the usage τ̄ := 1−τ . For each τ ∈ [0, 1], the scalar function a 7→ τa+ τ̄ is

operator monotone because it is affine and increasing. On account of the result [3, Cor. 4.3],

the function

f : a 7→ (τ · ap + τ̄)1/p

is also operator monotone. A short calculation shows that f(1) = 1. Therefore, we can

use f to construct an operator mean Mf . Since A ⊗ I and I ⊗A are commuting positive

operators, we have

Mf (A⊗ I, I⊗A) = (I⊗A) · f((A⊗ I)(I⊗A)−1) = (τ ·Ap ⊗ I + τ̄ · I⊗Ap
)1/p

.

The map A 7→ (A⊗ I, I⊗A) is linear, so Proposition 4.6.5 ensures that

A 7→ (τ ·Ap ⊗ I + τ̄ · I⊗Ap)1/p (4.6.7)

is a concave map.

We are now prepared to check that (4.6.6) defines a concave operator. Let S,T be

arbitrary positive-definite matrices, and choose α ∈ [0, 1]. Suppose that Z is the random

matrix that takes value S with probability α and value T with probability 1− α. For each

τ ∈ [0, 1], we compute

E
[
(τ ·Zp ⊗ I + τ̄ · I⊗Zp)1/p

]1−p
4
[
E (τ ·Zp ⊗ I + τ̄ · I⊗Zp)1/p

]1−p
4
[(
τ · (EZ)p ⊗ I + τ̄ · I⊗ (EZ)p

)1/p]1−p
.

The first relation holds because t 7→ t1−p is operator concave [17, Thm. V.1.9 and Thm. V.2.5].

To obtain the second relation, we apply the concavity property of the map (4.6.7), followed

by the fact that t 7→ t1−p is operator monotone [17, Thm. V.1.9]. This calculation establishes

the claim that

A 7→
(
τ ·Ap ⊗ I + τ̄ · I⊗Ap

)(1−p)/p
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is concave on Hd++ for each τ ∈ [0, 1]. In view of the integral representation (4.6.6), we may

conclude that A 7→ [Dψ(A)]−1 is concave on the cone Hd++ of positive-definite matrices.

4.7 A Bounded Difference Inequality for Random Matri-

ces

In this section, we prove Theorem 4.2.8, a bounded difference inequality for a random

matrix whose distribution is invariant under signed permutation. We begin with some

preliminaries that support the proof, and we establish the main result in Section 4.7.2.

4.7.1 Preliminaries

First, we describe how to compute the expectation of a function of a random matrix

whose distribution is invariant under signed permutation. See Definition 4.2.7 for a

reminder of what this requirement means.

Lemma 4.7.1. Let f : I → R be a function on an interval I of the real line. Assume that

X ∈ Hd(I) is a random matrix whose distribution is invariant under signed permutation.

Then

E f(X) = t̄r[E f(X)] · I.

Proof. Let Π ∈ Hd be an arbitrary signed permutation matrix. Observe that

E f(X) = E f(Π∗XΠ) = Π∗[E f(X)]Π. (4.7.1)

The first relation holds because the distribution of X is invariant under conjugation by Π.

The second relation follows from the definition of a standard matrix function and the fact

that Π is unitary. We may average (4.7.1) over Π drawn from the uniform distribution on

the set of signed permutation matrices. A direct calculation shows that the resulting matrix

is diagonal, and its diagonal entries are identically equal to t̄r[E f(X)].

We also require a trace inequality that is related to the mean value theorem. This

result specializes [138, Lem. 3.4].
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Proposition 4.7.2 (Mean Value Trace Inequality). Let f : I → R be a function on an

interval I of the real line whose derivative f ′ is convex. For all A,B ∈ Hd(I),

t̄r[(A−B)(f(A)− f(B))] ≤ 1

2
t̄r[(A−B)2 · (f ′(A) + f ′(B))].

4.7.2 Proof of Theorem 4.2.8

The argument proceeds in three steps. First, we present some elements of the matrix

Laplace transform method. Second, we use the subaddivity of matrix ϕ-entropy to

deduce a differential inequality for the trace moment generating function of the random

matrix. Finally, we explain how to integrate the differential inequality to obtain the

concentration result.

4.7.2.1 The Matrix Laplace Transform Method

We begin with a matrix extension of the moment generating function (mgf), which

has played a major role in recent work on matrix concentration.

Definition 4.7.3 (Trace Mgf). Let Y be a random Hermitian matrix. The normalized trace

moment generating function of Y is defined as

m(θ) := mY (θ) := E t̄r eθY for θ ∈ R.

The expectation need not exist for all values of θ.

The following proposition explains how the trace mgf can be used to study the

maximum eigenvalue of a random Hermitian matrix [231, Prop. 3.1].

Proposition 4.7.4 (Matrix Laplace Transform Method). Let Y ∈ Hd be a random matrix

with normalized trace mgf m(θ) := t̄r eθY . For each t ∈ R,

P {λmax(Y ) ≥ t} ≤ d · inf
θ>0

e−θt+logm(θ).

4.7.2.2 A Differential Inequality for the Trace Mgf

Suppose that Y ∈ Hd is a random Hermitian matrix that depends on a random vector

x := (X1, . . . , Xn). We require the distribution of Y to be invariant under signed
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permutations, and we insist that ‖Y ‖ is bounded. Without loss of generality, assume

that Y has zero mean. Throughout the argument, we let the notation of Section 4.2.2.3

and Theorem 4.2.8 prevail.

Let us explain how to use the subadditivity of matrix ϕ-entropy to derive a differ-

ential inequality for the trace mgf. Consider the function ϕ(t) = t log t, which belongs

to the Φ∞ class because of Theorem 4.2.3(1). Introduce the random positive-definite

matrix Z := eθY , where θ > 0. We write out an expression for the matrix ϕ-entropy

of Z:

Hϕ(Z) = E t̄r[ϕ(Z)− ϕ(EZ)]

= E t̄r
[
(θY )eθY − eθY logE eθY

]
= θ · E t̄r

[
Y eθY

]
− (E t̄r eθY ) log(E t̄r eθY )

= θm′(θ)−m(θ) logm(θ). (4.7.2)

In the third line, we have applied Lemma 4.7.1 to the logarithm in the second term,

relying on the fact that Y is invariant under signed permutations. To reach the last

line, we recognize that m′(θ) = E t̄r(Y eθY ). We have used the boundedness of ‖Y ‖

to justify this derivative calculation.

Corollary 4.2.6 provides an upper bound for the matrix ϕ-entropy. Define the

derivative ψ(t) = ϕ′(t) = 1 + log t. Then

Hϕ(Z) ≤ 1

2

∑n

i=1
E t̄r

[
(Z −Z ′i)(ψ(Z)− ψ(Z ′i)

]
=
θ

2

∑n

i=1
E t̄r

[
(eθY − eθY

′
i )(Y − Y ′i )

]
.

Consider the function f : t 7→ eθt. Its derivative f ′ : t 7→ θeθt is convex because θ > 0,

so Proposition 4.7.2 delivers the bound

Hϕ(Z) ≤ θ2

4

∑n

i=1
E t̄r

[
(eθY + eθY

′
i )(Y − Y ′i )2

]
=
θ2

2

∑n

i=1
E t̄r

[
eθY (Y − Y ′i )2

]
=
θ2

2

∑n

i=1
E t̄r

[
eθY · E[(Y − Y ′i )2 |x]

]
.
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The second relation follows from the fact that Y and Y ′i are exchangeable, conditional

on x−i. The last line is just the tower property of conditional expectation, combined

with the observation that Y is a function of x. To continue, we simplify the expression

and make some additional bounds.

Hϕ(Z) ≤ θ2

2
E t̄r

[
eθY ·

∑n

i=1
E[(Y − Y ′i )2 |x]

]
≤ θ2

2
(E t̄r eθY )

∥∥∥∑n

i=1
E[(Y − Y ′i )2 |x]

∥∥∥
≤ θ2VY

2
·m(θ). (4.7.3)

The second relation follows from a standard trace inequality and the observation that

eθY is positive definite. Last, we identify the variance measure VY defined in (4.2.4)

and the trace mgf m(θ).

Combine the expression (4.7.2) with the inequality (4.7.3) to arrive at the estimate

θm′(θ)−m(θ) logm(θ) ≤ θ2VY
2
·m(θ) for θ > 0. (4.7.4)

We can use this differential inequality to obtain bounds on the trace mgf m(θ).

4.7.2.3 Solving the Differential Inequality

Rearrange the differential inequality (4.7.4) to obtain

d

dθ

[
logm(θ)

θ

]
=
m′(θ)

θm(θ)
− logm(θ)

θ2
≤ VY

2
. (4.7.5)

The l’Hôpital rule allows us to calculate the value of θ−1 logm(θ) at zero. Since

m(0) = 1,

lim
θ→0

logm(θ)

θ
= lim

θ→0

m′(θ)

m(θ)
= lim

θ→0

E t̄r(Y eθY )

E t̄r eθY
= E t̄rY = 0.

This is where we use the hypothesis that Y has mean zero. Now, we integrate (4.7.5)

from zero to some positive value θ to find that the trace mgf satisfies

logm(θ)

θ
≤ θVY

2
when θ > 0. (4.7.6)
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The approach in this section is usually referred to as the Herbst argument [124].

4.7.2.4 The Laplace Transform Argument

We are now prepared to finish the argument. Combine the matrix Laplace transform

method, Proposition 4.7.4, with the trace mgf bound (4.7.6) to reach

P {λmax(Y ) ≥ t} ≤ d · inf
θ>0

e−θt+logm(θ) ≤ d · inf
θ>0

e−θt+θ
2VY /2 = d · e−t2/(2VY ). (4.7.7)

To obtain the result for the minimum eigenvalue, we note that

P {λmin(Y ) ≤ −t} = P {λmax(−Y ) ≥ t} ≤ d · e−t2/(2VY ).

The inequality follows when we apply (4.7.7) to the random matrix −Y . This com-

pletes the proof of Theorem 4.2.8.

4.8 Moment Inequalities for RandomMatrices with Bounded

Differences

In this section, we prove Theorem 4.2.9, which gives information about the moments

of a random matrix that satisfies a kind of self-bounding property.

Proof of Theorem 4.2.9. Fix a number q ∈ {2, 3, 4, . . . }. Suppose that Y ∈ Hd+ is a random

positive-semidefinite matrix that depends on a random vector x := (X1, . . . , Xn). We re-

quire the distribution of Y to be invariant under signed permutations, and we assume that

E(‖Y ‖q) <∞. The notation of Section 4.2.2.3 and Theorem 4.2.9 remains in force.

Let us explain how the subadditivity of matrix ϕ-entropy leads to a bound on the qth

trace moment of Y . Consider the power function ϕ(t) = tq/(q−1). Theorem 4.6.7 ensures

that ϕ ∈ Φ∞ because q/(q − 1) ∈ (1, 2]. Introduce the random positive-semidefinite matrix

Z := Y q−1. Then

Hϕ(Z) = E t̄r
[
ϕ(Z)− ϕ(EZ)

]
= E t̄r(Y q)− t̄r

[
(E(Y q−1))q/(q−1)

]
= E t̄r(Y q)−

[
E t̄r(Y q−1)

]q/(q−1)
. (4.8.1)
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The transition to the last line requires Lemma 4.7.1.

Corollary 4.2.6 provides an upper bound for the matrix ϕ-entropy. Define the derivative

ψ(t) = ϕ′(t) = (q/(q − 1)) · t1/(q−1). We have

Hϕ(Z) ≤ 1

2

∑n

i=1
E t̄r

[
(Z −Z ′i)(ψ(Z)− ψ(Z ′i))

]
=

q

2(q − 1)

∑n

i=1
E t̄r

[(
Y q−1 − (Y ′i )q−1

)
(Y − Y ′i )

]
.

The function f : t 7→ tq−1 has the derivative f ′ : t 7→ (q − 1)tq−2, which is convex because

q ∈ {2, 3, 4, . . . }. Therefore, the mean value trace inequality, Proposition 4.7.2, delivers the

bound

Hϕ(Z) ≤ q

4

∑n

i=1
E t̄r

[(
Y q−2 + (Y ′i )q−2

)
(Y − Y ′i )2

]
=
q

2

∑n

i=1
E t̄r

[
Y q−2(Y − Y ′i )2

]
=
q

2

∑n

i=1
E t̄r

[
Y q−2 E[(Y − Y ′i )2 |x]

]
.

The second identity holds because Y and Y ′i are exchangeable, conditional on x−i. The last

line follows from the tower property of conditional expectation. We simplify this expression

as follows.

Hϕ(Z) ≤ q

2
E t̄r

[
Y q−2 ·

∑n

i=1
E[(Y − Y ′i )2 |x]

]
≤ q

2
E t̄r

[
Y q−2 · cY

]
=
cq

2
E t̄r(Y q−1). (4.8.2)

The second inequality derives from the hypothesis (4.2.5) that VY 4 cY . Note that this

bound requires the fact that Y q−2 is positive semidefinite.

Combine the expression (4.8.1) for the matrix ϕ-entropy with the upper bound (4.8.2)

to achieve the estimate

E t̄r(Y q)−
[
E t̄r(Y q−1)

]q/(q−1) ≤ cq

2
E t̄r(Y q−1).
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Rewrite this bound, and invoke the numerical fact 1 + aq ≤ (1 + a)q to obtain

E t̄r(Y q) ≤
[
E t̄r(Y q−1)

]q/(q−1)

(
1 +

cq/2[
E t̄r(Y q−1)

]1/q−1

)

≤
[
E t̄r(Y q−1)

]q/(q−1)

(
1 +

c/2[
E t̄r(Y q−1)

]1/q−1

)q
.

Extract the qth root from both sides to reach

[
E t̄r(Y q)

]1/q ≤ [E t̄r(Y q−1)
]1/(q−1)

+
c

2
.

We have compared the qth trace moment of Y with the (q−1)th trace moment. Proceeding

by iteration, we arrive at

[
E t̄r(Y q)

]1/q ≤ E t̄rY +
q − 1

2
· c.

This observation completes the proof of Theorem 4.2.9.

4.9 Lemma 4.4.1, The General Case

In this appendix, we explain how to prove Lemma 4.4.1 in full generality. The argu-

ment calls for a simple but powerful result, known as the generalized Klein inequal-

ity [174, Prop. 3], which allows us to lift a large class of scalar inequalities to matrices.

Proposition 4.9.1 (Generalized Klein Inequality). For each k = 1, . . . , n, suppose that

fk : I1 → R and gk : I2 → R are functions on intervals I1 and I2 of the real line. Suppose

that ∑n

k=1
fk(a) gk(b) ≥ 0 for all a ∈ I1 and b ∈ I2.

Then, for each natural number d,

∑n

k=1
t̄r[fk(A) gk(B)] ≥ 0 for all A ∈ Hd(I1) and B ∈ Hd(I2).

Proof of Lemma 4.4.1, General Case. We retain the notation from Lemma 4.4.1. In partic-

ular, we assume that Z is a random positive-definite matrix for which ‖Z‖ and ‖ϕ(Z)‖ are

both integrable. We also assume that T is a random positive-definite matrix with ‖T ‖ and
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‖ϕ(T )‖ integrable.

For n ∈ N, define the function ln(a) := (a ∨ 1/n) ∧ n, where ∨ denotes the maximum

operator and ∧ denotes the minimum operator. Consider the random matrices Zn := ln(T )

and Tk := lk(T ) for each k, n ∈ N. These matrices have eigenvalues that are bounded and

bounded away from zero, so these entities satisfy the inequality (4.4.3) we have already

established.

Hϕ(Zn) ≥ E t̄r
[
(ψ(Tk)− ψ(ETk))(Zn − Tk) + Eϕ(Tk − ϕ(ETk)

]
.

Rearrange the terms in this inequality to obtain

E t̄r Γ(Zn,Tk) ≥ t̄r
[
− ψ(ETk)(EZn − ETk)− ϕ(ETk) + ϕ(EZn)

]
, (4.9.1)

where we have introduced the function

Γ(A,B) := ϕ(A)− ϕ(B)− (A−B)ψ(B) for A,B ∈ Hd++.

To complete the proof of Lemma 4.4.1, we must develop the bound

E t̄r Γ(Z,T ) ≥ t̄r
[
− ψ(ET )(EZ − ET )− ϕ(ET ) + ϕ(EZ)

]
(4.9.2)

by driving k, n→∞ in (4.9.1).

Let us begin with the right-hand side of (4.9.1). We have the sure limit Zn → Z.

Therefore, the Dominated Convergence Theorem guarantees that EZn → EZ because ‖Z‖

is integrable and ‖Zn‖ ≤ ‖Z‖. Likewise, ETk → ET . The functions ϕ and ψ are continuous,

so the limit of the right-hand side of (4.9.1) satisfies

t̄r
[
− ψ(ETk)(EZn − ETk)− ϕ(ETk) + ϕ(EZn)

]
→ t̄r

[
− ψ(ET )(EZ − ET )− ϕ(ET ) + ϕ(EZ)

]
. (4.9.3)

This expression coincides with the right-hand side of (4.9.2).

Taking the limit of the left-hand side of (4.9.1) is more involved because the function ψ

may grow quickly at zero and infinity. We accomplish our goal in two steps. First, we take
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the limit as n→∞. Afterward, we take the limit as k →∞.

Introduce the nonnegative function

γ(z, t) := ϕ(z)− ϕ(t)− (z − t)ψ(t) for z, t > 0.

Boucheron et al. [26, p. 525] establish that

γ(ln(z), lk(t)) ≤ γ(1, lk(t)) + γ(z, lk(t)) for z, t > 0. (4.9.4)

The generalized Klein inequality, Proposition 4.9.1, can be applied (with due diligence) to

extend (4.9.4) to matrices. In particular,

t̄r Γ(Zn,Tk) = t̄r Γ(ln(Z), lk(T )) ≤ t̄r[Γ(I, lk(T )) + Γ(Z, lk(T ))] = t̄r[Γ(I,Tk) + Γ(Z,Tk)].

Observe that the right-hand side of this inequality is integrable. Indeed, all of the quantities

involving Tk are uniformly bounded because the eigenvalues of Tk fall in the range [k−1, k]

and the functions ϕ and ψ are continuous on this interval. The terms involving Z may not

be bounded, but they are integrable because ‖Z‖ and ‖ϕ(Z)‖ are integrable. We may now

apply the Dominated Convergence Theorem to take the limit:

E t̄r Γ(Zn,Tk)→ E t̄r Γ(Z,Tk) as n→∞, (4.9.5)

where we rely again on the sure limit Zn → Z as n→∞.

Boucheron et al. also establish that

γ(z, lk(t)) ≤ γ(z, 1) + γ(z, t) for z, t > 0.

The generalized Klein inequality, Proposition 4.9.1, ensures that

t̄r Γ(Z,Tk) ≤ t̄r[Γ(Z, I) + Γ(Z,T )].

We may assume that the second term on the right-hand side is integrable or else the desired

inequality (4.9.2) would be vacuous. The first term is integrable because ‖Z‖ and ‖ϕ(Z)‖
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are integrable. Therefore, we may apply the Dominated Convergence Theorem:

E t̄r Γ(Z,Tk)→ E t̄r Γ(Z,T ) as k →∞, (4.9.6)

where we rely again on the sure limit Tk → T as k →∞.

In summary, the limits (4.9.5) and (4.9.6) provide that E t̄r Γ(Zn,Tk)→ E t̄r Γ(Z,T ) as

k, n→∞. In view of the limit (4.9.3), we have completed the proof of (4.9.2).

4.10 Generalized Subadditivity of Matrix ϕ-Entropy

In this section, we establish Theorem 4.2.10, which states the subadditivity of the

generalized matrix ϕ-entropy for every function in the Φ∞ class. The generalized

result depends on the supremum representation of the generalized matrix ϕ-entropy,

which we establish in Section 4.10.1. We use the supremum representation to derive a

generalized Jensen-type inequality in Section 4.10.2 and finally prove Theorem 4.2.10

in Section 4.10.3.

4.10.1 Representation of the Generalized ϕ-Entropy as a Supremum

The following variational representation of the generalized ϕ-entropy is the extension

of Lemma 4.4.1 and is the key behind the generalized subadditivity theorem.

Lemma 4.10.1. Fix a function ϕ ∈ Φ∞, and let ψ = ϕ′. Suppose that Z is a d × d

positive-semidefinite matrix. Then

Hϕ(Z|A) = sup
T∈Hd

+

t̄r
[
(ψ(T )− ψ(EA T )(Z − T ) + ϕ(T )− ϕ(EA T )

]
. (4.10.1)

In particular, the generalized ϕ-entropy Hϕ(Z|A) can be written in the dual form

Hϕ(Z|A) = sup
T∈Hd

+

t̄r
(
Υ1(T ) ·Z + Υ2(T )

)
, (4.10.2)

where Υi : Hd+ → Hd for i = 1, 2.

We proceed to establish Lemma 4.10.1 in the ensuing sections.
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4.10.1.1 Generalized Convexity Lemma

To establish the variational formula, we require the following convexity result, which

is an extentsion of Lemma 4.4.2.

Lemma 4.10.2. Fix a function ϕ ∈ Φ∞, and let ψ = ϕ′. Then

〈K,Dψ(Y )(K)〉 ≥ 〈EAK,Dψ(EA Y )(EAK)〉, for K,Y ∈ Hd+.

The proof of Lemma 4.10.2 depends on the following proposition [46].

Proposition 4.10.3. For any m matrices A1, . . . ,Am ∈ Md, and any ∗-subalgebra A of

Md, there exists a sequence {Ck}k∈N of operators of the form

Ck(A) =
∑Nk

j=1
pk,jUk,jAU∗k,j , (4.10.3)

where Uk,j are unitary, pk,j > 0 and
∑Nk

j=1 pk,j = 1, such that,

EA(Aj) = lim
k→∞

Ck(Aj) for each j = 1, . . . ,m.

Each operator Ck maps a matrix to a convex combination of its unitary conjuga-

tions. Proposition 4.10.3 states that for any number of fixed matrices, one can produce

sequences of matrices from the operators {Ck}k∈N such that each sequence converges

to the conditional expectation of that matrix with respect to the ∗-subalgebra. This

synchronized approximation becomes very useful in proving convexity of multivariate

functions, as we shall see in the following proof Lemma 4.10.2.

Proof of Lemma 4.10.2. First, we verify that the function (K,Y ) 7→ 〈K,Dψ(Y )(K)〉 is in-

variant under unitary conjugation. Suppose Y has the spectral decomposition Y = UΛU∗,

then for any unitary V ,

〈
V KV ∗,Dψ(V Y V ∗)(V KV ∗)

〉
=
〈
V KV ∗,V U

[
ψ[1](Λ)� (U∗V ∗V KV ∗V U)

]
U∗V ∗

〉
=
〈
V KV ∗,V U

[
ψ[1](Λ)� (U∗KU)

]
U∗V ∗

〉
=
〈
K,U

[
ψ[1](Λ)� (U∗KU)

]
U∗
〉

=
〈
K,Dψ(Y )(K)

〉
. (4.10.4)
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The first relation is the Daleckĭı–Krĕın Formula, Proposition 4.6.3, and we recall ψ[1] is the

first divided difference of ψ. As V is unitary, the second relation follows by equating V ∗V

to I. The third relation is because the normalized trace inner product is invariant under

unitary conjugation. We apply the Daleckĭı–Krĕın Formula again in the fourth relation.

Proposition 4.10.3 allows us to approximate EAK and EA Y simultaneously with a

sequence of operators {Ck}k∈N that map each matrix into a convex combination of its unitary

conjugations.

EAK = lim
k→∞

Ck(K) and EA Y = lim
k→∞

Ck(Y ).

Recall that we already establish the convexity of the function (K,Y ) 7→ 〈K,Dψ(Y )(K)〉

by Lemma 4.4.2, we

〈
Ck(K),Dψ(Ck(Y ))(Ck(K))

〉
≤
∑Nk

j=1
pk,j ·

〈
Ukj,KU∗kj,,Dψ(Ukj,Y U∗kj,)(Ukj,KU∗kj,)

〉
=
∑Nk

j=1

〈
K,Dψ(Y )(K)

〉
, (4.10.5)

where the second equation is due to (4.10.4).

Next, take k to infinity on the left-hand side of (4.10.5) and we established the desired

inequality:

〈EAK,Dψ(EA Y )(EAK)〉 ≤ 〈K,Dψ(Y )(K)〉.

4.10.1.2 Proof of Lemma 4.10.1

The argument parallels the proof of Lemma 4.4.1. Since Z is deterministic, there is

no regularity issues and the argument is much simpler. The case when ϕ is a positive

affine function is trivial. Thus, we prove the case when ϕ is not affine. When we

substitute T = Z into the argument of the supremum in (4.4.1), the right-hand side

equalsHϕ(Z|A) and attains the supremum. Thus, we just need to verify the inequality

Hϕ(Z|A) ≥ t̄r
[
(ψ(T )− ψ(EA T ))(Z − T ) + ϕ(T )− ϕ(EA T )

]
,

for any matrix T ∈ Hd+.

We use an interpolation argument. For any T ∈ Hd+, we define the family of
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positive-semidefinite matrices

Ts := (1− s) ·Z + s · T for s ∈ [0, 1],

which interpolates between Z and T . We then define a real-valued function F (s):

F (s) := t̄r
[
(ψ(Ts)− ψ(EA Ts)) · (Z − Ts)

]
+ t̄r[ϕ(Ts)− ϕ(EA Ts)]. (4.10.6)

Following the same arguments as in the proof of Theorem 4.2.5, we differentiate the

function F to obtain:

F ′(s) = −s · t̄r
[
Dψ(Ts)(T −Z) · (T −Z)

]
+ s · t̄r

[
Dψ(EA Ts)(EA(T −Z)) · (EA(T −Z))

]
− t̄r

[
(ψ(Ts)− ψ(EA Ts)) · (T −Z)

]
+ t̄r

[
(ψ(Ts)− ψ(EA Ts)) · (T −Z)

]
. (4.10.7)

The last two terms of (4.10.7) cancel, and we can rewrite the first two terms using the

trace inner product:

F ′(s) = s ·
[
〈EA(Z − T ),Dψ(EA Ts)(EA(Z − T ))〉 − 〈(Z − T ),Dψ(Ts)(Z − T )〉

]
.

Invoke Lemma 4.10.2 and we conclude that F ′(s) ≤ 0 for s ∈ [0, 1].

4.10.2 Generalized Conditional Jensen Inequality

The supremum representation in Lemma 4.10.1 leads directly to the following Jensen

inequality, which is an extension of our previous Lemma 4.4.3.

Lemma 4.10.4. Fix a function ϕ ∈ Φ∞. Suppose A1 and A2 are two commuting ∗-

subalgebra in Md. Then, for any matrix Z ∈ Hd+

Hϕ

(
EA1 Z|A2

)
≤ Hϕ(Z|A2).

Proof. Lemma 4.10.1 allows us to represent the generalized ϕ-entropy as a supremum:

Hϕ(EA1 Z|A2) = sup
T∈Hd

+

t̄r
(
Υ1(T ) · EA1 Z + Υ2(T )

)
.
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Notice that the supremum is achieved when T = EA1 Z ∈ A1, thus instead of taking the

supremum of Hd+, we can take the supremum over a smaller set A1 ∩Hd+:

Hϕ

(
EA1 Z|A2

)
= sup

T∈A1∩Hd
+

t̄r
(
Υ1(T ) · EA1 Z + Υ2(T )

)
.

This representation is preferable as we can make the following calculations:

Hϕ

(
EA1 Z|A2

)
= sup

T∈A1∩Hd
+

t̄rEA1

(
Υ1(T ) ·Z + Υ2(T )

)
= sup

T∈A1∩Hd
+

t̄r
(
Υ1(T ) ·Z + Υ2(T )

)
≤ sup

T∈Hd
+

t̄r
(
Υ1(T ) ·Z + Υ2(T )

)
= Hϕ(Z|A2).

When T is an element of A1, both Υ1(T ) and Υ2(T ) are in A1 and the property (4.10.1)

leads to the first relation. The second relation is because t̄r(EAA) = t̄rA for each matrix

A in Hd+. The third relation is the supremum potentially increases we enlarge the range of

the supermen. We apply Lemma 4.10.1 in the last relation to conclude the proof.

4.10.3 Proof of Theorem 4.2.10

We are ready to established the subadditivity of the generalized ϕ-entropy, which is

a direct consequence of the generalized conditional Jensen inequality, Lemma 4.10.4.

The argument again parallels the proof of Theorem 4.2.5. In this argument, we write

E to abbreviate the expectation EA1,...,An taken over all the ∗-subalgebras.

First, we separate the ϕ-entropy into two parts by adding and subtracting terms:

Hϕ(Z|A1, . . . ,An) = t̄r
[
ϕ(Z)− ϕ(EA1 Z) + ϕ(EA1 Z)− ϕ(EZ)

]
= t̄r

[
ϕ(Z)− ϕ(EA1 Z)

]
+ t̄r

[
ϕ(EA1 Z)− ϕ(EZ)

]
. (4.10.8)

Identify the first term of (4.10.8) as the entropy Hϕ(Z|A1). Because the ∗-subalgebras

{A1, . . . ,An} commute, we can rewrite the total expectation

EZ = EA2,...,An

(
EA1 Z

)
.
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As a result, we identify the second term in (4.10.8) as the entropyHϕ(EA1 Z|A2, . . . ,An).

Thus

Hϕ(Z|A1, . . . ,An) = Hϕ(Z|A1) +Hϕ(EA1 Z|A2, . . . ,An).

Apply the generalized conditional Jensen inequality, and we have

Hϕ(Z|A1, . . . ,An) ≤ Hϕ(Z|A1) +Hϕ(Z|A2, . . . ,An). (4.10.9)

The first term on the right-hand side of (4.10.9) coincides with the first summand on

the right-hand side of the subadditivity inequality (4.2.6). We argue that the second

term on the right-hand side of (4.10.9) contains the remaining summands. Repeat the

previous argument inductively to the term Hϕ(Z|A2, . . . ,An), we obtain

Hϕ(Z|A1, . . . ,An) ≤ Hϕ(Z|A1) +Hϕ(Z|A2) +Hϕ(Z|A3, . . . ,An).

Continuing in this fashion, we arrive at the generalized subadditivity inequality (4.2.6):

Hϕ(Z|A1, . . . ,An) ≤
∑n

i=1
Hϕ(Z|Ai).
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Chapter 5

Solving Ptychography with a Convex
Relaxation

Preface

This chapter is adapted from the work [100] that appears in the New Journal of

Physics. This project is a collaboration between the candidate and Roarke Horstmeyer.

Other authors include Brendan Ames, who was a postdoctoral researcher at Caltech

during the project, a fellow graduate student Xiaoze Ou, the candidate’s advisor Joel

A. Tropp, and Horstmeyer’s advisor Changhuei Yang.

The first novelty of this work consists of the application of a recent convex formu-

lation of the phase retrieval problem to the setting of ptychography and the implemen-

tation of positive-semidefinite (PSD) programming algorithms to solve the problem.

Simulation results provide concrete evidence that our convex implementation, the Con-

vex Lifted Ptychography (CLP) solver, achieves better recovery results compared with

the existing state-of-the-art algorithms that are based on alternating projection (AP).

However, the computational complexity of PSD algorithms scales poorly when the

size of the problem increases, rendering the complex implementation uncompetitive

compared with (AP) algorithms. The second novelty of our work is a more efficient

algorithm, called Low-Rank Ptychography (LRP), which is a trade-off between the

superior performance of the convex implementation CLP and the computational effi-

ciency of AP algorithms. The LRP algorithm is non-convex and based on low-rank

matrix factorization and avoids the expensive eigenvalue decomposition that is re-

quired at each iterative step of the CLP solver. The computational complexity is

scalable to large problems. Simulations establish that the LRP algorithm performs
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better than AP algorithms and it also approximates the performance of the CLP

solver. We also implement our new algorithms on real experiment data to compare

their performances with the AP algorithms.

From the mathematical and algorithmic perspectives, some open problems include:

first, quantifying the exact performance guarantee of the CLP solver; second, estab-

lishing the convergence conditions for the non-convex approach of solving SPD based

on low-rank matrix factorization. Theoretical analysis of the convex solver for the

phase retrieval problem in the literature relies on many randomization assumptions,

such as constructing the sampling matrix from certain random distributions. Our

implementation is deterministic and highly structured, which poses analytical chal-

lenges and does not fit into existing performance analysis. Deriving a theoretical

performance guarantee will aide a better understanding of the CLP solver. The LRP

algorithm relies on a low-rank matrix factorization approach to solve PSD programs,

which exhibits good convergence in practice but the exact convergence conditions are

not formulated. It is an ongoing topic that interests many researchers.

From the application perspective, there are many directions to explore using our

efficient LRP solver. One example is to apply the LRP solver to other type of test

objects. In our project, we work with two-dimensional signals. It is plausible that one

can extend the current formulation to conduct ptychography on three-dimensional

objects, which allows extraction of more enriched information.

5.1 Introduction

Over the past two decades, ptychography [161, 162] has surpassed all other imaging

techniques in its ability to produce high-resolution, wide field-of-view measurements

of microscopic and nanoscopic phenomena. Whether in the X-ray regime at third-

generation synchrotron sources [190, 222, 64, 201], in the electron microscope for

atomic scale phenomena [104], or in the optical regime for biological specimens [141],

ptychography has shown an unparalleled ability to acquire hundreds of megapixels of

sample information near the diffraction limit. The standard ptychography principle

is simple: a series of diffraction patterns are recorded from a sample as it is scanned

through a focused beam. These intensity-only measurements are then computationally
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converted into a reconstruction of the complex sample (i.e., its amplitude and phase),

which contains more pixels than a single recorded diffraction pattern.

A recently introduced imaging procedure, termed Fourier ptychography (FP),

uses a similar principle to create gigapixel optical images with a conventional mi-

croscope [249]. The only required hardware modification is an LED array, which

illuminates a stationary sample from different directions as the microscope captures

a sequence of images. As in standard ptychography, FP must also recover the sam-

ple’s phase as it merges together the captured image sequence into a high-resolution

output. Standard and Fourier ptychographic data are connected via a linear transfor-

mation [102], which allows both setups to use nearly identical image reconstruction

algorithms.

Standard and Fourier ptychography both avoid the need for a large, well-corrected

lens to image at the diffraction-limit. Instead, they shift the majority of resolution-

limiting factors into the computational realm. Unfortunately, an accurate and reliable

solver does not yet exist. As a coherent diffractive imaging technique [49], ptychogra-

phy must reconstruct the phase of the scattered field from measured intensities, which

is an ill-posed problem. To date, most ptychography algorithms solve the phase re-

trieval problem by applying known constraints in an iterative manner. We categorize

this class of algorithm as an “alternating projection" (AP) strategy. The simplest ex-

ample of an AP strategy is the Gerchburg-Saxton (i.e., error reduction) algorithm [78].

Our AP category also includes the iterative projection and gradient search techniques

reviewed by Fienup [74] and Marchesini [143], which map to analogous procedures in

ptychography [81]. All AP strategies, including several related variants [66, 223, 244],

often converge to incorrect local minima or can stagnate [73]. Few guarantees ex-

ist regarding convergence, let alone convergence to a reasonable solution. Despite

these shortcomings, many authors have pushed beyond the basic algorithms [71] to

account for unknown system parameters [140, 139], improve outcomes by careful ini-

tialization [144], perform multiplexed acquisition [225], and attempt three-dimensional

imaging [82, 226].

In this article, we formulate a convex program for the ptychography problem,

which allows us to use efficient computational methods to obtain a reliable image

reconstruction. Convex optimization has recently matured into a powerful compu-



161

tational tool that now solves a variety of challenging problems [32]. However, many

sub-disciplines of imaging, especially those involving phase retrieval, have been slow

to reap its transformative benefits. Several prior works [12, 72, 8, 202, 42] have con-

nected convex optimization with abstract phase retrieval problems, but this is the first

work that applies convex optimization to the quickly growing field of high-resolution

ptychography.

While it is possible in some experiments to improve reconstruction performance

using prior sample knowledge or an appropriate heuristic, we consider here the general

case of unaided recovery, which is especially relevant in biological imaging. Under these

circumstances, we will show that our convex optimization approach to ptychographic

reconstruction has many advantages over AP. Our formulation has no local minima, so

we can always obtain a solution with minimum cost. The methodology is significantly

more noise-tolerant than AP, and the results are more reproducible. There are also

opportunities to establish theoretical guarantees using machinery from convex analysis.

Furthermore, there are many efficient algorithms for our convex formulation of the

ptychography problem. To obtain solutions at scale, we apply a factorization method

due to Burer and Monteiro [35, 36]. This method avoids the limitations of earlier con-

vex algorithms for abstract phase retrieval, whose storage and complexity scale cubi-

cally in the number of reconstructed pixels [42]. Moreover, recent results establish that

this factorization technique converges globally under certain conditions [61], offering

a promising theoretical guarantee. The end result is a new, noise-tolerant algorithm

for ptychographic reconstruction that is efficient enough to process the multi-gigapixel

images that future applications will demand.

Here is an outline for the chapter. First, we develop a linear algebraic framework

to illustrate the ptychographic image formation process. Second, we manipulate this

framework to pose its sample recovery problem as a convex program. This initial

algorithm, termed “convex lifted ptychography" (CLP), supports a-priori knowledge

of noise statistics to significantly increase the accuracy of image reconstruction in the

presence of noise. Third, we build upon research in low-rank semidefinite program-

ming [35, 36] to develop a second non-convex algorithm, called “low-rank ptychogra-

phy" (LRP), which improves on the computational profile of CLP. Finally, we explore

the performance of LRP in both simulation and experiment to demonstrate how it
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Figure 5.1.1: Diagram of the Fourier ptychography setup (top), where we use an LED
array to illuminate a sample from different directions and acquire an image set b (bottom).
This chapter introduces a convex phase retrieval algorithm to transform this image set into a
high-resolution complex sample estimate ψ. Included image set and reconstructed resolution
target are experimental results.
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may be of great use in reducing the image capture time of Fourier ptychography.

5.2 Fundamentals

In this section, we outline the data capture process of Fourier ptychography (FP, see

figure 5.1.1). At the end of this section, we discuss how a simple exchange of variables

yields a nearly equivalent mathematical description of “standard" (i.e., diffraction

imaging-based) ptychography data, which our proposed algorithm may also process.

Since this exchange is straightforward, we choose to focus our attention on the FP

problem for the majority of the manuscript. We encourage the interested reader to

re-derive our algorithm for the standard ptychography arrangement. In addition,

while the following analysis considers a two-dimensional experimental geometry for

simplicity, extension to three dimensions is direct.

We assume that a distant plane L(x′) contains q different quasi-monochromatic

optical sources (central wavelength λ) evenly distributed along x′ with a spacing r. We

assume each optical source acts as an effective point emitter that illuminates a sample

ψ(x) at a plane S(x) a large distance l away from L(x′). Under this assumption, the

jth source illuminates the sample with a spatially coherent plane wave at angle θj =

tan−1 (jr/l), where −q/2 ≤ j ≤ q/2. Additionally assuming the sample ψ(x) is thin,

we may express the optical field exiting the thin sample as the product,

s(x, j) = ψ(x)eikxpj , (5.2.1)

where the wavenumber k = 2π/λ and pj = sin θj describes the off-axis angle of the jth

optical source. The jth illuminated sample field s(x, j) then enters an imaging system

with a low numerical aperture (NA). Neglecting scaling factors and a quadratic phase

factor for simplicity, Fourier optics gives the field at the imaging system pupil plane,

A(x′), as F [s(x, j)] = ψ̂(x′ − pj). Here, F represents the Fourier transform between

conjugate variables x and x′, ψ̂ is the Fourier transform of ψ, and we have applied the

Fourier shift property. The shifted spectrum field ψ̂(x′−pj) is then modulated by the

imaging system’s aperture function a(x′), which acts as a low-pass filter. It is now

useful to consider the spectrum ψ̂ discretized into n pixels with a maximum spatial
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frequency k. We denote the bandpass cutoff of the aperture function a as k·m/n, where

m is an integer less than n. The modulation of ψ̂ by a results in a field characterized

by m discrete samples, which propagates to the camera imaging plane and is critically

sampled by an m-pixel digital detector. This forms a reduced-resolution image, g:

g(x, j) =
∣∣∣F [a(x′)ψ̂(x′ − pj)

]∣∣∣2 . (5.2.2)

g(x, j) is an (m × q) Fourier ptychography data matrix. Its jth column contains a

low-resolution image of the sample intensity while it is under illumination from the

jth optical source.

The goal of Fourier ptychographic post-processing is to reconstruct a high-resolution

(n-pixel) complex spectrum ψ̂(x′), from the multiple low-resolution (m-pixel) intensity

measurements contained within the data matrix g. Once ψ̂ is found, an inverse-Fourier

transform will yield the desired complex sample reconstruction, ψ. As noted above,

most current ptychography setups solve this inverse problem using alternating projec-

tions (AP): after initializing a complex sample estimate, ψ0, iterative constraints help

force ψ0 to obey all known physical conditions. First, its amplitude is forced to obey

the measured intensity set from the detector plane (i.e., the values in g). Second, its

spectrum ψ̂0 is forced to lie within a known support in the plane that is Fourier con-

jugate to the detector. Different projection operators and update rules are available,

but are closely related [74, 143, 81]. While these projection strategies are known to

converge when each constraint set is convex, the intensity constraint applied at the

detector plane is not convex [13], leading to erroneous solutions [197] and possible

stagnation [73].

The Fourier ptychography setup in figure 5.1.1 may be converted into a standard

ptychography experiment by interchanging the sample plane S and the aperture plane

A. This results in a standard ptychographic data matrix taking the form of equa-

tion 5.2.2 but now with a sample spectrum described in real space as ψ, which is

filtered by the Fourier transform of the aperture function, â. This corresponds to

illuminating a thin sample ψ (centered at position p) with an illumination probe field,

â. These two simple functional transformations lead to a linear relationship between

standard and Fourier ptychographic data [102]. To apply the algorithmic tools out-
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lined next to standard ptychography, simply adhere to the following protocol wherever

either variable appears: 1) replace the sample spectrum ψ̂ with the sample function

ψ, and 2) replace the aperture function a with the shape of the focused probe field

that illuminates the sample, â, in standard ptychography setups.

5.3 Results: Convex Lifted Ptychography (CLP)

5.3.1 The CLP solver

We begin the process of solving equation 5.2.2 as a convex program by expressing it in

matrix form. First, we represent the unknown sample spectrum ψ̂ as an (n×1) vector.

Again, n is the known sample resolution before it is reduced by the finite bandpass of

the lens aperture. Second, the jth detected image becomes an (m×1) vector gj , where

again m is the number of pixels in each low-resolution image. The ratio n/m defines

the ptychographic resolution improvement factor. It is equivalent to the largest angle

of incidence from an off-axis optical source, divided by the acceptance angle of the

imaging lens. Third, we express each lens aperture function a(x + pj) as an (n × 1)

discrete aperture vector aj , which modulates the unknown sample spectrum ψ̂.

To rewrite equation 5.2.2 as a matrix product, we define {Aj}qj=1 to be the sequence

of (m×n) rectangular matrices that contain a deterministic aperture function aj along

a diagonal. For an aberration-free rectangular aperture, each matrix Aj has a diagonal

of ones originating at (0, p′j) and terminating at (m, p′j + m − 1), where p′j is now a

discretized version of our shift variable pj . Finally, we introduce an m ×m discrete

Fourier transform matrix F(m) to express the transformation of the low-pass filtered

sample spectrum through our fixed imaging system for each low-resolution image gj :

gj =
∣∣∣F(m)Ajψ̂

∣∣∣2 , 1 ≤ j ≤ q. (5.3.1)

Ptychography acquires a series of q images, {gj}qj=1. We combine this image set

into a single vector by “stacking" all images in equation 5.3.1:

b =
∣∣∣FAψ̂

∣∣∣2 =
∣∣∣Dψ̂∣∣∣2 . (5.3.2)
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Figure 5.3.1: A set of images captured by Fourier ptychography stack together into a long
data vector, b. Each associated matrix transform is similarly stacked and combined to form
our final measurement matrix, D = FA. Here, we show stacking of just two images for
simplicity. Typically, over 200 images are stacked.

Here, b is {g} expressed as a (q ·m × 1) stacked image vector (see figure 5.3.1). In

addition, we define D = FA, where F is a (q · m × q · m) block diagonal matrix

containing q copies of the low-resolution DFT matrices F(m) in its diagonal blocks,

and A has size (q ·m× n) and is formed by vertically stacking each aperture matrix

Aj :

F =


F(m) · · · 0
...

. . .
...

0 · · · F(m)

 , A =


A1

...

Aq

 . (5.3.3)

We denote the transpose of the ith row of D as di, which is a column vector. The

set {di} forms our measurement vectors. The measured intensity in the ith pixel is

the square of the inner product between di and the spectrum ψ̂: bi = |
〈
di, ψ̂

〉
|2.

Next, we “lift” the solution ψ̂ out of the quadratic relationship in equation 5.3.2. As

suggested in [8], we may instead express it in the space of (n×n) positive-semidefinite

matrices:

bi = tr
(
ψ̂∗did

∗
i ψ̂
)

= tr
(
did

∗
i ψ̂ψ̂

∗
)

= tr (DiX) , (5.3.4)

where Di = did
∗
i is a rank-1 measurement matrix constructed from the ith measure-

ment vector di, X = ψ̂ψ̂∗ is an (n×n) rank-1 outer product, and 1 ≤ i ≤ q ·m. Equa-

tion 5.3.4 states that our quadratic image measurements {bi}q·mi=1 are linear transforms

of ψ̂ in a higher dimensional space. We may combine these q ·m linear transforms into

a single linear operator A to summarize the relationship between the stacked image
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vector b and the matrix X as, A(X) = b.

One can now pose the phase retrieval problem in ptychography as a rank mini-

mization procedure:

minimize rank(X)

subject to A(X) = b,

X � 0,

(5.3.5)

where X � 0 denotes X is positive-semidefinite. This rank minimization problem is

not convex and is a computational challenge. Instead, adapting ideas from [72], we

form a convex relaxation of equation 5.3.5 by replacing the rank of matrix X with its

trace. This creates a convex semidefinite program:

minimize tr(X)

subject to A(X) = b,

X � 0.

(5.3.6)

Several recent results establish that the relaxation in equation 5.3.6 is equivalent to

equation 5.3.5 under certain conditions on the operator A [186, 44]. Although not

necessarily equivalent in general, this relaxation consistently offers us highly accu-

rate experimental performance. To account for the presence of noise, we may reform

equation 5.3.6 such that the measured intensities in b are no longer strictly enforced

constraints, but instead appear in the objective function:

minimize α tr(X) +
1

2
‖A(X)− b‖

subject to X � 0.

(5.3.7)

Here, α is a scalar regularization variable that directly trades off goodness for com-

plexity of fit. Its optimal value depends upon the assumed noise level. Equation 5.3.7

forms our final convex problem to recover a resolution-improved complex sample ψ

from a set of obliquely illuminated images in b. Many standard tools are available

to solve this semidefinite program (see Appendix A). Its solution defines our Convex

Lifted Ptychography (CLP) approach.

In practice, CLP returns a low-rank matrix X, with a rapidly decaying spectrum,
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Figure 5.3.2: Simulation of the CLP algorithm. (a) An n = 36 × 36 pixel complex sample
(simulated) consisting of absorptive microspheres modulated with an independent quadratic
phase envelope. (b) Sequence of low-resolution simulated intensity measurements (m = 12×
12 pixels each), serving as algorithm input. (c)-(d) Example CLP and AP reconstructions,
where CLP is successful but AP converges to an incorrect local minimum. Here we use q = 82

images to achieve a resolution gain of 3 along each spatial dimension and simultaneously
acquire phase.

as the optimal solution of equation 5.3.7. The trace term in the CLP objective func-

tion is primarily responsible for enforcing the low-rank structure of X. While this

trace term also appears like an alternative method to minimize the unknown signal

energy, we caution that a fair interpretation must consider its effect in a lifted (n×n)

solution space. We obtain our final complex image estimate ψ by first performing a

singular value decomposition of X. Given low-noise imaging conditions and spatially

coherent illumination, we set ψ to the Fourier transform of the largest resulting sin-

gular vector. Viewed as an autocorrelation matrix, we may also find useful statistical

measurements within the remaining smaller singular vectors of X. We note that one

may also identify X as the discrete mutual intensity matrix of a partially coherent

optical field: X =
〈
ψ̂ψ̂∗

〉
, where 〈〉 denotes an ensemble average [169]. Under this

interpretation, equation 5.3.7 becomes an alternative solver for the stationary mixed

states of a ptychography setup [224].

Without any further modification, three points distinguish equation 5.3.7 from

existing AP-based ptychography solvers. First, the convex solver has a larger search
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space. If AP is used to iteratively update an n-pixel estimate, equation 5.3.7 must

solve for an n×n positive-semidefinite matrix. Second, this boost in the solution space

dimension guarantees the convex program may find its global optimum with tractable

computation. This allows CLP to avoid AP’s frequent convergence to local minima

(i.e., failure to approach the true image). Unlike prior solvers for the ptychography

problem, no local minima exist in the CLP approach. However, CLP cannot yet claim

a single global minimum, since it is not necessarily a strictly convex program. Finally,

equation 5.3.7 implicitly considers the presence of noise by offering a parameter (α)

to tune with an assumed noise level. AP-based solvers lack this parameter and can be

easily led into incorrect local minima by even low noise levels, which we demonstrate

next.

5.3.2 CLP simulations and noise performance

We simulate Fourier ptychography following the setup in figure 5.1.1. We capture

multiple two-dimensional images in (x, y) from a three-dimensional optical geometry.

The simulated FP setup contains a detector with m = 122 pixels that are each 4 µm

wide, a 0.1 numerical aperture (NA) lens at plane A(x′, y′) (6◦ collection angle, unity

magnification), and an array of spatially coherent optical sources at plane L(x′, y′)

(632 nm center wavelength, 10 nm spectral bandwidth). The array is designed to offer

an illumination NA of 0.2 (θmax = 11.5◦ maximum illumination angle). Together, the

lens and illumination NAs define the reconstructed resolution of our complex sample

as n = 362 pixels, increasing the pixel count of one raw image by a factor n/m = 9.

Figure 5.3.2(b) shows example simulated raw images from a sample of absorptive

microspheres modulated by a quadratic phase envelope. Within each raw image, the

set of microspheres is not clearly resolved. Here, we simulate the capture of q = 82 low

resolution images, each uniquely illuminated from one of q = 82 optical sources in the

square array. We then input this image set into both the standard AP algorithm (i.e.,

the PIE strategy) [71], as well as CLP in equation 5.3.7, to recover a high resolution

(36 × 36 pixel) complex sample. Here, we select the PIE strategy as our comparison

benchmark for two reasons. First, it is one of the most widely used ptychography

algorithms. Second, similar to CLP, its structure implicitly assumes a Gaussian noise

model [81]. Even in the noiseless case, 5 iterations of nonlinear AP introduces unpre-
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Figure 5.3.3: Reconstruction MSE versus signal to noise ratio (SNR) of CLP and AP (log
scale, dB). Each curve represents reconstruction with a different number of captured images,
q, corresponding to a different percentage of spectrum overlap (ol, noted in legend). Each
point is an average over 5 independent algorithm runs with unique additive noise. Also
included is the average performance of our LRP algorithm over the same 3 spectrum overlap
settings (see Section 4).

dictable artifacts to both the recovered amplitude and phase (figure 5.3.2(d)), while

CLP offers near perfect recovery (figure 5.3.2(c)). A constant phase offset is subtracted

from both reconstructions for fair comparison, and we selected α = .001.

Next, we quantify AP and CLP performance. We repeat the reconstructions in

figure 5.3.2, again setting α = .001 in equation 5.3.7 while varying two relevant pa-

rameters: the number of captured images q, and their signal-to-noise ratio (SNR). We

define the SNR as SNR = 10 log10(
〈
|ψ|2

〉
/
〈
|N2|

〉
), where

〈
|ψ|2

〉
is the mean sample

intensity and
〈
|N2|

〉
is the mean intensity of uniform Gaussian noise added to each

simulated raw image. To account for the unknown constant phase offset in all phase re-

trieval reconstructions, we follow [140] and define our reconstruction mean-squared er-

ror as MSE =
∑

x |ψ(x)− ρs(x)|2 /
∑

x |ψ(x)|2, where ρ =
∑

x ψ(x)s∗(x)/
∑

x |s(x)|2

is a constant phase factor shifting our reconstructed phase to optimally match the

known phase of the ground truth sample.

Figure 5.3.3 plots MSE as a function of SNR for this large set of CLP and AP re-

constructions. Each of the algorithms’ 3 independent curves simulates reconstruction
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using a different number of captured images, q. We summarize q by defining a Fourier

spectrum overlap percentage: ol = 1− (n−m)/qm. Each of the 6 points within one

curve simulates a different level of additive measurement noise. Each point is an aver-

age over 5 independent trials. Since AP tends not to converge in the presence of noise,

we represent each AP trial with the reconstruction that offers the lowest MSE across

all iteration steps (up to 20 iterations). All CLP reconstructions improve linearly as

SNR increases, while AP performance fluctuates unpredictably. For both algorithms,

performance improves with increased spectrum overlap ol, and reconstruction fidelity

quickly deteriorates and then effectively fails when ol drops below ∼60%.

5.4 Results: Factorization for Low-Rank Ptychography

(LRP)

Posing the inverse problem of ptychography as a semidefinite program (equation 5.3.7)

is a good first step towards a more tractable solver. However, the constraint that X

remain positive-semidefinite is computationally demanding: each iteration typically

requires a full eigenvalue decomposition of X. As the size of X scales with n2, pro-

cessable image sizes are limited to an order of 104 pixels on current desktop machines.

This scaling limit does not prevent large-scale CLP processing of ptychography data.

It is common practice to segment each detected image into as few as 103 pixels, process

each segment separately, and then “tile” the resulting reconstructions back together

into a final full-resolution solution [249]. CLP may also parallelize its computation

with this strategy.

5.4.1 The LRP solver

While such tiling parallelization offers significant speedup, a simple observation helps

avoid the poor scaling of CLP altogether: the desired solution of the ptychography

problem in equation 5.3.5 is low-rank. Instead of solving for an n × n matrix X, it

is thus natural to adopt a low-rank ansatz and factorize the matrix X as X = RRT ,

where our decision variable R is now an n× r rectangular matrix containing complex

entries, with r < n [35, 36]. Inserting this factorization into our optimization problem

in equation 5.3.6 and writing the constraints in terms of the measurement matrix
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Di = did
T
i creates the non-convex program,

minimize tr(RRT )

subject to tr(DiRRT ) = bi for all i.
(5.4.1)

Besides removing the positive semidefinite constraint in equation 5.3.6, the factored

form of equation 5.4.1 presents two more key adjustments to our original convex

formulation. First, using the relationship tr(RRT ) = ‖R‖2F , where F denotes a

Frobenius norm, it is direct to rewrite the objective function and each constraint in

equation 5.4.1 with just one n × r decision matrix, R. Now instead of storing an

n × n matrix like CLP, LRP must only store an n × r matrix. Since most practical

applications of ptychography require coherent optics, the desired solution rank r will

typically be close to 1, thus significantly relaxing storage requirements (i.e., coherent

light satisfies X = ψ̂ψ̂∗, so we expect R as a column vector and RRT a rank-1 outer

product). Fixing r at a small value, LRP memory usage now scales linearly instead

of quadratically with the number of reconstructed pixels, n.

Second, the feasible set of equation 5.4.1 is no longer convex. We thus must shift

our solution strategy away from a simple semidefinite program. Prior work in [35, 36]

suggests that an efficient and practically successful method of solving equation 5.4.1

is to minimize the following augmented Lagrangian function:

L(R,y, σ) = tr(RRT )−
∑

i
yi ·
(
tr(DiRRT )− bi

)
+
σ

2
·
∑

i

(
tr(DiRRT )− bi

)2
, (5.4.2)

where R ∈ Cn×r is the unknown decision variable and the two variables y ∈ Rq·m and

σ ∈ R+ are new parameters to help guide our algorithm to its final reconstruction.

The first term in equation 5.4.2 is the objective function from equation 5.4.1, indirectly

encouraging a low-rank factorized product. This tracks our original assumption of a

rank-1 solution within a “lifted" solution space. The second term contains the known

equality constraints in equation 5.4.1 (i.e., the measured intensities), each assigned a

weight yi. The third term is a penalized fitting error that we abbreviate with label

v. It is weighted by one penalty parameter σ, mimicking the role of a Lagrangian

multiplier.

With an appropriate fixed selection of yi’s and σ, the minimization of L(R,y, σ)
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with respect to R identifies our desired optimum of equation 5.4.1. Specifically, if

a local minimum of L is identified each iteration (which is nearly always the case

in practice), then the minimization sequence accumulation point is a guaranteed so-

lution [36]. As an unconstrained function, the minimum of L is quickly found via

standard tools (e.g., a quasi-Newton approach such as the LBFGS algorithm [199]),

as previously demonstrated across a wide range of applications and experiments [35].

The goal of our low-rank ptychography (LRP) algorithm thus reduces to the follow-

ing task: determine a suitable set of (yi, σ) such that we may minimize equation 5.4.2

with respect to R, which leads to our desired solution. We use the iterative algorithm

suggested in [35] to sequentially minimize L with respect to Rk at iteration k, and then

update a new parameter set (yk+1, σk+1) at iteration k + 1. We update parameters

(yk+1, σk+1) to ensure their associated term’s contribution to the summation forming

L is relatively small. This suggests Rk+1 is proceeding to a more feasible solution.

The relative permissible size of the second and third terms in L are controlled by two

important parameters, η < 1 and γ > 1: if the third term v sufficiently decreases such

that vk+1 ≤ ηvk, then we hold its multiplier σ fixed and update the equality con-

straint multipliers, yi. Otherwise, we increase σ by a factor γ such that σk+1 = γσk.

A detailed discussion of these algorithmic steps is in [35, 36].

We initialize the LRP algorithm with an estimate of the unknown high-resolution

complex sample function ψ0, contained within a low-rank matrix R0. We terminate

the algorithm either if it reaches a sufficient number of iterations, or if the minimizer

fulfills some convergence criterion. We form R0 using a spectral method, which can

help increase solver accuracy and decrease computation time [41]. Specifically, we

select the r columns of R0 as the leading r eigenvectors of D∗diag[b]D, where D

is the measurement matrix in equation 5.3.2. While this spectral approach works

quite well in practice, a random initialization of R0 also often produces an accurate

reconstruction.

5.4.2 LRP simulations and noise performance

Following the same procedure used to simulate the CLP algorithm, we test the MSE

performance of the LRP algorithm as a function of SNR in figure 5.4.1. We again

add different amounts of uncorrelated Gaussian noise to each simulated raw image
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Figure 5.4.1: Simulation of the LRP and AP algorithms using the same parameters as for
figures 5.3.2–5.3.3, but now with a different “red blood cell" sample. (a) Using 82 simulated
intensity measurements as input (SNR=19, 122 pixels each), both algorithms successfully
recover each cell’s phase, but AP is less accurate. (b) MSE versus SNR plot with varying
amounts of noise added to the same data set. The MSE for LRP is ∼5-10 dB lower than
for AP across all noise levels and aperture overlap settings (each point from 5 independent
trials).

set and compare the LRP reconstruction with ground truth. This simulated sample

is the experimentally obtained amplitude and phase of a human blood smear. It is

qualitatively similar to the sample used in figure 5.3.2. Unlike with the simulations in

figures 5.3.2–5.3.3, the AP algorithm no longer malfunctions at lower spectrum overlap

percentages (i.e., lower values of ol). Despite this apparent success, the MSE of the

LRP minimizer is still ∼5-10 dB better than the MSE of the AP minimizer, across all

levels of SNR. This reduced LRP reconstruction error follows without any parameter

optimization or explicit noise modeling.

In these simulations, we somewhat arbitrarily fix η and γ at 0.5 and 1.5, respec-

tively, and set the desired rank of the solution, r, to 1. In practice, these free variables

offer significant freedom to tune the response of LRP to noise. For example, similar

to the noise parameter α in equation 5.3.7, the multiplier σ (controlled via γ) in equa-

tion 5.4.2 helps trade off complexity for goodness of fit by re-weighting the quadratic

fitting error term.

In addition to reducing required memory, the LRP algorithm also improves upon

the computational cost of CLP. For an n-pixel sample reconstruction, the per it-

eration cost of the CLP algorithm is currently O(n3), using big-O notation. The
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Figure 5.4.2: Experimental reconstruction of a USAF target, where the number of resolved
pixels is increased by a factor of 25. We test two different ptychography algorithms: (a) AP
and (b) LRP. Here we only show reconstructed intensity. LRP avoids artifacts (e.g., boxed
in green) commonly encountered in the AP approach. Cited variances are measured in blue
boxes (top). (c) Same cropped region of one low-resolution raw image, for comparison.

positive-semidefinite constraint in equation 5.3.7, which requires a full eigenvalue de-

composition, defines this behavior limit. The per-iteration cost of the LRP algorithm,

on the other hand, is O(n log n). This large per-iteration cost reduction is the primary

source of LRP speedup. For example, LRP required ∼21 seconds to complete an av-

erage simulation of the example in figure 5.3.2, while CLP required ∼170 minutes and

AP required 1 second on the same desktop machine.

5.5 Results: Experiment

We experimentally verify how LRP improves the accuracy and noise stability of pty-

chographic reconstruction using a Fourier ptychographic (FP) microscope. Our ex-

perimental procedure closely follows the protocol in [249]. While we demonstrate at

optical wavelengths, it is straightforward to acquire a Fourier ptychographic data set

in an X-ray or electron microscope (e.g., with a tilting source [90]). Alternatively, two

trivial changes within equation 5.4.1 directly prepares standard ptychographic data

for LRP processing (see end of section 2). Given its removal of local minima and

improved treatment of noise, we expect our strategy will benefit both experimental
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arrangements.

In this section, we first quantitatively verify that LRP accurately measures high

resolution and sample phase. Compared with AP reconstructions, our LRP algorithm

generates fewer undesirable artifacts in experiment. Second, we will compare the AP

and LRP reconstructions of a biological sample, which establishes the improved noise

stability of our new algorithm.

5.5.1 Quantitative performance

Our FP microscope consists of a 15×15 array of surface-mounted LEDs (model SMD

3528, center wavelength λ=632 nm, 4 mm LED pitch, 150 µm active area diameter),

which serve as our quasi-coherent optical sources. The array is placed l=80 mm be-

neath the sample plane, and each LED has an approximate 20 nm spectral bandwidth.

Prior work establishes that the impact of non-ideal source coherence is gradual [102].

While negligible in these experiments, we may eventually account for source statistics

in the multi-rank structure of the LRP optimizer R.

To quantitatively verify resolution improvement, we turn on each of the 15 × 15

LEDs beneath a U.S. Air Force (USAF) resolution calibration target. A 2X Olym-

pus microscope objective (apochromatic Plan APO 0.08 NA) transfers each resulting

optical field to a CCD detector (Kodak KAI-29050, 5.5 µm pixels), creating 225 low

resolution images. Using this 0.08 NA microscope objective (5◦ collection angle) and

a 0.35 illumination NA (θmax = 20◦ illumination angle), our FP microscope offers a

total complex field resolution gain of n/m = 25. Each image spectrum overlaps by

ol ≈ 70% in area with each neighboring image spectrum.

For reconstruction, we select n = 25·m and use the same aperture parameters with

AP and LRP to create the high-resolution images in figure 5.4.2. For computational

efficiency, we segment each low-resolution image into 3×3 tiles (n=4802 per tile) and

process the tiles in parallel, as performed in [249]. We determine the optimal number of

AP and LRP algorithm iterations as 6 and 15, respectively, and fixed this for each tile

(and all subsequent reconstructions). We typically initialize LRP with the following

parameters: γ=1.5, η=0.3, y0=10, and σ0=10. We determine the microscope aperture

function with an iterative procedure [168] before each experiment and fix it for each

algorithm trial.
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Figure 5.5.1: Experimental measurement of the quantitative optical phase emerging from
two polystyrene microspheres. Both (a) AP and (b) LRP reconstruct phase maps that
appear qualitatively similar, although the AP phase map flattens at the sphere’s center.
Variances measured in blue boxes. (c) Plot of microsphere thickness from a trace through
the center of the large sphere (dashed line) demonstrates close agreement between LRP and
ground truth (GT).

Both ∼1 megapixel reconstructions achieve their maximum expected resolving

power (Group 9, Element 3: 1.56 µm line pair spacing). This is approximately 5

times sharper than the smallest resolved feature in one raw image (Group 7, Element

2 in Fig 5.4.2(c)). Our new LRP algorithm avoids certain artifacts that are commonly

observed during the nonlinear descent of AP (boxed in green). Both reconstructions

slowly fluctuate in background areas that we expect to be uniformly bright or dark.

These fluctuations are caused in part by experimental noise, an imperfect aperture

function estimate, and possible misalignments in the LED shift values, pj . In a rep-

resentative background area marked by a 402 pixel blue box in figure 5.4.2, AP and

LRP exhibit normalized background amplitude variances of σ2
A = 5.4 × 10−4 and

σ2
L = 5.0 × 10−4, respectively. Accounting for experimental uncertainty in the aper-

ture function a and shifts pj (e.g., following [101, 168]) may reduce this error in both

algorithms.

To verify that our LRP solver reconstructs quantitatively accurate phase, we next

image a monolayer of polystyrene microspheres (index of refraction nm = 1.587) im-

mersed in oil (no = 1.515, both indexes for λ = 632 nm light). To demonstrate the

LRP algorithm easily generalizes to any ptychographic arrangement, we perform this

experiment on a new “high-NA" FP microscope. The high-NA setup uses a larger

0.5 NA microscope objective lens with a 30◦ collection angle (20X Olympus 0.5 NA

UPLFLN). For sample illumination, we now arrange 28 LEDs into 3 concentric rings
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of 8, 8, and 12 evenly spaced light sources (ring radii=16, 32, and 40 mm, respec-

tively). We place this new light source array 40 mm beneath the sample to create a

0.7 illumination NA with a θmax = 45◦ illumination angle. The synthesized numerical

aperture of this new FP microscope, computed as the sum of the illumination NA

and objective lens NA, is NAs = 1.2. With a greater-than-unity synthetic NA, our

reconstructions can offer oil-immersion quality resolution (∼385 nm smallest resolvable

feature spacing [167]), without requiring any immersion medium between the sample

and objective lens.

Using the same data and parameters for AP and LRP input, we obtain the high-

resolution phase reconstructions of two adjacent microspheres in figure 5.5.1 (3 µm

and 6 µm diameters). For this reconstruction, we set m=1602 and n=3202. We have

subtracted a constant phase offset from the LRP solution in (b) to allow for direct

comparison to the AP solution in (a). The two reconstructions appear qualitatively

similar except at the center of the 6 µm sphere, where the AP phase profile unex-

pectedly flattens. We highlight this flattening by selecting phase values along each

marked dashed line to plot the resulting sample thickness in figure 5.5.1(c). Phase

ϕ and sample thickness t are related via t = k∆ϕ(nm − no)−1, where k is the av-

erage wavenumber and ∆ϕ = ϕ − ϕ0 is the reconstructed phase minus a constant

offset. LRP closely matches the optical thickness of a ground-truth sphere (GT, black

curve): the length of the vertical chord connecting the top and bottom arcs of a 6

µm diameter circle. The normalized amplitude variances from a 402-pixel background

area are σ2
A = 9.2× 10−4 and σ2

L = 5.8× 10−4, respectively. This again supports our

observation that the high resolution reconstructions formed by LRP are more accurate

than those formed by AP.

5.5.2 Biological sample reconstruction

Our third imaging example uses the same high-NA FP configuration (collection angle=

30◦, θmax = 45◦) to resolve a biological phenomenon: the infectious spread of malaria

in human blood. The early stages of a Plasmodium falciparum infection in erythrocytes

(i.e., red blood cells) includes the formation of small parasitic “rings". It is challenging

to resolve these parasites under a microscope without using an immersion medium,

even after appropriate staining. Oil-immersion is required for an accurate diagnosis
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Figure 5.5.2: Experimental reconstruction of malaria-infected human red blood cells. (a) Oil
immersion microscope image (1.25 NA) identifies two infected cells of interest (marked with
arrows). (b) Example LRP reconstruction (area of interest in red box). (c) One example raw
image used for AP and LRP algorithm input. (d) AP-reconstructed amplitude and phase
from three different 29-image data sets, using 1 sec (top), 0.25 sec (middle), and 0.1 sec
(bottom) exposure times for all images in each set. Variances measured within blue boxes.
Increased noise within short-exposure images deteriorates reconstruction quality until both
parasites are not resolved. (e) LRP reconstructions using the same three data sets. Both
parasites are clearly resolved in the reconstructed phase for all three exposure levels.
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of infection [166].

We use FP to resolve Plasmodium falciparum-infected cells with a 0.5 NA objec-

tive lens and using no oil in figure 5.5.2. We first prepare an infected blood sample

following the protocol in [238]: we maintain erythrocyte asexual stage cultures of

the P. falciparum strain 3D7 in culture medium, then we smear, fix with methanol,

and apply a Hema 3 stain. An example sample region containing two infected cells,

imaged with a conventional high-NA oil-immersion microscope (NA = 1.25) under

Kohler illumination, is in figure 5.5.2(a).

Next, we capture 28 uniquely illuminated images of these two infected cells using

our high-NA FP microscope. Figure 5.5.2(c) contains an example normally illumi-

nated raw image, which does not clearly resolve the parasite infection. Figure 5.5.2(d)

presents phase retrieval reconstructions using the standard AP algorithm, where we

set m=1202, n=2402, run 6 iterations, and again subtract a constant phase offset.

We include reconstructions from three data sets: images captured with a 1 second

exposure (top), a 0.25 second exposure (middle), and 0.1 second exposure (bottom).

A shorter exposure time implies increased noise within each raw image. While the 1

sec exposure-based AP reconstruction resolves each parasite, blurred cell boundaries

and non-uniform fluctuations in amplitude suggest an inaccurate AP convergence.

However, both parasite infections remain visible within the reconstructed phase. The

parasites become challenging to resolve within the phase from 0.25 sec exposure data,

and are not resolved within the phase from the 0.1 sec exposure data, due to increased

image noise. The normalized background variance of each AP amplitude reconstruc-

tion, from a representative 402-pixel window (marked blue square), is σ2
A = .0020,

.0027, and .0059 for the 1 sec, 0.25 sec, and 0.1 sec exposure reconstructions, respec-

tively.

For comparison, reconstructions using our LRP algorithm are shown in figure 5.5.2(e)

(sharpest solutions after 15 iterations). For each reconstructed amplitude, we set the

desired solution rank to r = 3. We add the 3 modes of the resulting reconstruction in

an intensity basis to create the displayed amplitude images. For each reconstructed

phase, we set the desired solution matrix rank to r = 1 and leave all other parameters

unchanged. For all three exposure levels, the amplitude of the cell boundaries remains

sharper than in the AP images. Both parasite infections are resolvable in either the re-
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constructed amplitude or phase, or both, for all three exposure levels. The normalized

amplitude variances from the same background window are now σ2
L = .0016 (1 sec),

.0022 (0.25 sec), and .0035 (0.1 sec), an average reduction (i.e., improvement) of 26%

with respect to the AP results. While not observed within our previous simulations or

experiments, the AP reconstructions here offer a generally flatter background phase

profile than LRP (i.e., less variation at low spatial frequencies). Without additional

filtering or post-processing, the AP algorithm here might offer superior quantitative

analysis during e.g. tomographic cell reconstruction, where low-order phase variations

must remain accurate. However, it is clear within figure 5.5.2 that LRP better re-

solves the fine structure of each infection, which is critical during malaria diagnosis.

A shorter image exposure time (i.e., up to 10 times shorter) may still enable accurate

infection diagnosis when using LRP, as opposed to the standard AP approach.

5.6 Discussion and Conclusion

Through the relaxation in equation 5.3.6, we first transform the traditionally nonlinear

phase retrieval process for ptychography into a convex program. We may now use well-

established optimization tools to find the ptychography problem’s global minimum.

Then, we suggest a practically efficient algorithm to solve the resulting semidefinite

program with an appropriate factorization. The result is a new ptychographic image

recovery algorithm that is robust to noise. We demonstrate its successful performance

in three unique experiments, concluding with a practical biological imaging scenario:

the identification of malaria infection without using an oil immersion medium and

under short-exposure imaging conditions.

Much future work remains to fully explore the specific benefits of our problem

reformulation. Besides removing local minima from the recovery process, perhaps the

most significant departure from prior phase retrieval solvers is a tunable solution rank,

r. As noted earlier, r connects to statistical features of the ptychographic experiment,

typically arising from the partial coherence of the illuminating field. Coherence ef-

fects are significant at third-generation X-ray synchrotron sources and within electron

microscopes. An appropriately selected r may eventually help LRP measure the par-

tial coherence of such sources, as outlined in [224]. The solution rank may also help
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identify setup vibrations, sample auto-fluorescence, or even 3D sample structure. As

in prior work with low-rank matrix optimization, we may also artificially enlarge our

solution rank to encourage the transfer of experimental noise into its smaller singular

vectors.

Other extensions of LRP include simultaneously solving for unknown aberrations

(i.e., the shape of the probe in standard ptychography), systematic setup errors, and

inserting additional sample priors such as sparsity. These refinements are currently a

critical component of ptychographic recovery in the fields of X-ray and electron mi-

croscopy, and will also improve our optical results. Along with algorithm refinement,

a detailed comparison between LRP and various other recovery methods, especially

under different sources of noise and error, will help identify the experimental condi-

tions under which our strategy is of greatest benefit. What’s more, as a particular

solution to the general problem of phaseless measurement, our findings can also inform

a wide variety of coherent diffractive imaging techniques. Regardless of the specific

experimental application, convex analysis will continue to provide useful theoretical

guarantees regarding phase retrieval algorithm performance, a crucial feature missing

from current nonlinear solvers.

Appendix A. Computational specifics

We performed all processing on a high-end desktop containing two Intel Xeon 2.0 GHz

CPUs and two 3GB GeForce GTX GPUs. Code was written in Matlab with built-in

GPU acceleration. We solved our CLP semidefinite program using the TFOCS code

package [14]. Our LRP algorithm borrows concepts from the LBFGS solver in [199] for

one specific minimization step. LRP’s total recovery time for the 1 megapixel example

in Fig. 5.4.2 was approximately 130 seconds, while AP completed in approximately 15

seconds on the same desktop.
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