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ABSTRACT

Part I:

A TMO11 microwave cavity was used to measure the radially
averaged electron density E; and the electron-neutral collision
frequency L in d.c. glow discharge positive columns of pure rare
gases and their binary mixtures. Electric field E was measured by
measuring the floating potential across pairs of probes in the plasma.
The pure gases studied were He, Ne and Ar at pressures of 1-8 torr and
discharge currents I of 5-20 mA. The calculated values of the elec-

tron drift velocity v in He and Ne are substantially lower than the

d
Bradbury and Nielson drift tube values, indicating substantial ioniza-
tion via metastables in the range of p and I investigated.

Discharges in He-Ar and He-Ne mixtures at p = 2-5 torr and I = 15 mA
exhibit time and space dependent values of Eé, L. and E due to the
effect of cataphoresis. The results indicate that the Shair and Remer
model is a reasonable description of the phenomenon of cataphoresis in

these mixtures where the impurity (Ar or Ne) content is in the range

of 2-20%.

Part II:

By employing a positive column flow reactor with low residence
times (< 100 msec) in d.c. diécharges with low currents (< 5 mA), it is
possible to convert up to 5% of the feed methane into ethane, ethylene
and hydrogen with negligible formation of solid and liquid products

The percent methane in the argon or helium feed Co affects the



-

product distribution, with good selectivity for CO > 5%. Average
steady-state electron densities in the discharge were simultaneously
measured by perturbation of the resonance of a TMOlO microwave cavity.
A pulsed d.c. discharge enabled the residence time to be effectively
reduced even further. The pulsed discharge experiments were conducted
at 3-9 torr with pulse durations v 1 msec and pulse intervals of 20-50
msec. Pulse current was measured as a function of time with a current
probe. The TMOlO cavity was used to obtain transient electron den-
sities in the discharge, which varied between lO9 and 10lo electrons/
cm3.

The kinetic results are consistent with a free radical

mechanism with electron-impact dissociation as the initiating step.

Derived values of the integrated cross-section for CH4+-e = >CH34-H-+e

and CH4+e —B—>CH2+H2+e are in the range 3.6 -15.5 X lO_llcm?’sec_l,

and that for C2H4-+e —I€>C2H2-+H2-+e is v 9 X lO_lOcm3sec_1. o and

B fall with Co in the range 4.0 -=12.6%, indicating a shift of the
electron energy distribution function fe(e) to lower values of € .
Calculations are presented for the case of H2 dissociation to illus-
trate the strong effect of the tail end of fe(e) on the rate of

chemical reaction.
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PROLEGOMENA

It is now being realized that the plasma state is the rule
rather than an exception in the physical universe. Plasma may be
defined broadly as an ionized gas that conducts electricity and has
approximately equal numbers of positive and negative charged particles.
In this thesis, we deal with systems with low degrees of ionization
3 10_6 to 10_8, which are typical values in low pressure (Vv 1-10 torr)
glow discharges. Such systems exhibit extreme departures from the
Maxwell-Boltzmann equilibrium condition. Neutral particle and ion mean
energies remain at values close to that corresponding to the ambient
temperature (v 300°K) , although the light electrons attain very high
"temperatures" (Vv lO4 OK). This property distinguishes non-equilibrium
plasmas from the equilibrium plasmas, e.g., arcs and induction torches,
where neutral temperatures are typically 103—104 °k. Laboratory glow
discharges have values of E/N , the electric field divided by the
neutral particle density in the range of 1.0 to 750 X 10—17V—cm2,
depending on pressure and gas composition. Among the applications of
interest to a chemical engineer are cataphoretic separators for obtain-
ing extremely pure gases (impurity levels less than 1 in 108), and
reactors for conducting irreversible chemical reactions. Part I of the
thesis is about non-reacting systems, with measurements in pure rare
gases and their binary mixtures. In gas mixtures, it is necessary to
consider the effect of cataphoresis, wherein the component with the

lowest ionization potential is preferentially ionized and drifts toward

the cathode, thus establishing concentration gradients in space and time.
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The focus of the work, however, is on Part II, which deals with
the possibility of using a non-equilibrium plasma to conduct hydrocar-
bon reactions. An attempt is made, using plasma kinetic theory, to
relate the experimentally observed kinetics to the microscopic processes
taking place in the discharge. Future work could proceed along two
directions. One is the development of commercially feasible processes
to utilize plasmas in general, and non-equilibrium plasmas in particular.
The other direction is towards establishing greater contact with more
fundamental work, e.g., low-energy beam measurements of electron-impact
dissociation cross-sections. The results of the present exploratory
investigation indicate that both these approaches are likely to be

extremely productive.



PART 1

EXPERIMENTAL TESTS ON THE POSITIVE COLUMN

IN PURE RARE GASES AND THEIR BINARY MIXTURES
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1. INTRODUCTION

1.1 The Glow Discharge in Pure Gases and Mixtures

A typical d.c. glow discharge is shown in Fig. 1. The cathode
glow is a thin layer separated from the cathode by the Aston dark
space. The cathode glow is bounded on the other side by the Crookes
dark space, following which is another luminous region called the
negative glow. The Faraday's dark space leads to a region which is

sometimes striated. This is the positive column. The color and

intensity of the glow depend on the nature and the pressure of the gas.
The electrical characteristics of a glow discharge are shown in
Fig. 2. The lowest value of applied potential difference Vs at
which a discharge is established is called the sparking potential or
the static breakdown potential. Once the glow discharge is stabilized,
the voltage across it is the maintenance potential. This is usually
lower than the breakdown potential, but becomes higher at low values
of pressure p , or inter-electrode distance d . Paschen's law

expresses the results of breakdown studies by the relationship
Vs = f(pd) (1)

Another instructive electrical characteristic is the voltage-current
curve for a discharge (Fig. 3). In the region AB, the gap potential
remains fairly comnstant. As the current increases, the voltage falls
and stabilizes at Vg < VS . This is the region CD of the normal glow
discharge. At higher values of the current, we have the abnormal

glow, and finally the arc discharge region FG.
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Fig. 1. Typical view of a d.c. glow discharge at p = 1-10 torr
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Irving Langmuir was the first to recognize that the positive
column of a glow discharge is a fourth state of matter, to which he
bestowed the name 'plasma'". Now it is customary to classify glow dis-
charge phenomena under the general category of '"Non-Equilibrium Plasmas'
where the molecules are at temperatures close to the ambient, although
the electron temperature may be very much higher. Llewellyn-Jones(Z)
gives a good introductory account in his monograph on the subject.

(3)

Brown's text goes into greater detail about the microscopic phenomena
taking place in the discharge. Cobine(4) deals with various electrical
engineering applications, after giving a semi-empirical account of the
basic processes in the plasma. A comprehensive review of pre-1956 work
on the glow discharge is found in the article by Gordon Francis in the
Handbuch der Physik.(s)

Under certain conditions of gas composition, current density and
pressure, alternate dark and bright "striations" are seen in the posi-
tive column. Two types of striations may be recognized--the stationary
or standing variety and the moving striations. Often their motion is
rapid enough for the column to appear uniform to the naked eye.

(6)

Pekarek has attempted to explain the observed behavior from a theo-

retical standpoint.

The positive column of a cylindrical glow discharge between
parallel plates has been a topic of interest ever since its visual
properties were first elucidated. In recent years, there has been a

resurgence of activity in this area with the discovery of new applica-

(7) (8)

tions, as in lasers, cataphoretic tubes, and reactors for con-

(9)

ducting difficult chemical reactions. Other applications of glow
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discharges are in electronic tubes and tthin film deposition by sputter-
ing. Past work has concentrated mainly on the unstriated column in

(5)

pure gases, and a theory is available that predicts the electric
field and electron "temperature" in the positive column of rare gases,
e.g., He, Ne, Ar, to within * 20%, and simple molecular gases, e.g.,

H2, 02, N2 to within * 50%. However, very little systematic and
reliable information is available even today about the properties of
electrons in such discharges, notably the electron density n, the
electron-neutral collision frequency Ven and, on a subtler level,

the electron energy distribution fe(e). In discharges in gas mixtures,
the situation is even more hopeless. The above-mentioned electronic

properties enter intimately into any attempted explanation of spectral

AL cataphoresis,(s)
(12)

data, or chemical reactions in the positive

column. Hence, further development of these applications would
seem to demand a concerted effort to understand the behavior of the

electronic population in pure gases and mixtures, at least to the extent

of being able to develop semi-empirical models.

1.2 Review of Literature

1.2a) Perturbation of microwave cavity resonance by a plasma.
(13-16) 1

The microwave cavity technique s a powerful recent tool for
obtaining the electron density n, and the electron-neutral collision
frequency ven in plasmas. Actual measurements using this technique
are largely confined to the study of microwave discharges and of plasma
decay. In glow discharges, n, is traditionally determined from

(17)

Langmuir probe data and from spectral observations. These data are

difficult to interpret, and the accuracy of the resulting numbers is
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(18)

uncertain. A recent comparison of the probe and microwave tech-

niques in a Ne positive column concluded that the probe method (single
and double) could lead to underestimation of n, o by a factor of as

much as 5 , due to the disturbing effect of the probe on the plasma.
(11)

Prince and Robertson report some microwave cavity determinations

of n, ratios in an argon glow discharge, but give no absolute values.

(10)

Anderson reported the first quantitative microwave cavity measure-

ments in d.c. glow discharges in connection with some Hall effect

(19)

studies of positive columns in He, Ne, Ar. Labuda and Gordon meas-
ured n, in He-Ne discharges as a function of current and tube

diameter, using a TE cavity; but no attempt was made in their work

101
to pick up spatial or temporal variations which might have been induced

(20)

due to cataphoresis. Gheorgiu has used the technique to measure
the "electric susceptibility of an ionized gas'.
The work described in the present thesis represents the first

application of the microwave cavity technique to

a) measurements in d.c. glow discharges in very pure He, Ne

and Ar (Chapter 3)

b) measurements in He-Ar and He-Ne mixtures in the range where

cataphoresis occurs (Chapter 4)

c) measurements in chemically reacting CH4—Ar and CH4—He flows

(Part II).
It is also the first recorded instance of the use of the TMOll mode for

measuring plasma properties.

1.2b) Electric field measurements in the positive column. The

measurement of the longitudinal electric field E , on the other hand,

is fairly straightforward. The earlier workers differentiated the
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voltage across the discharge with respect to the variable distance

(39

between the electrodes. But this was soon given up in favor of
measuring, with a high-impedance voltmeter, the voltage drop across
two identical probes, placed at a known distance of separation in the

(21)

plasma. This method has proved quite reliable and has been used

even very recently.(zz)

The fact that a probe technique leads to good
values of E 1s probably because the disturbing effect of the probes
on this parameter is less than their effect on n, and because radial

gradients(s)

in the longitudinal electric field are weak. In the
present work, electric fields measured by this technique were of great
assistance in corrélating the results.

Part I is organized under four chapters. Chapter 2 dwells on
details of the experimental techniques used, with emphasis on depar-
tures from standard practice. The question of the accuracy of the
measurements is also considered. Chapter 3 describes the measurements
in pure He, Ne and Ar, and discusses the implications of the results
on theories of the positive column. Finally, Chapter 4 deals with
measurements in rare gas mixture