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C h a p t e r  3  

Experimental Methods and Analysis 

1. Equipment 

The fundamental basis of quantitative adsorption analysis is the measurement of 

excess adsorption isotherms. Each isotherm comprises a series of excess adsorption uptake 

values, measured stepwise at increasing pressures and a constant temperature. At high 

pressure, the excess adsorption becomes non-monotonic as a function of pressure, after 

reaching an excess adsorption maximum. A desorption isotherm may be measured in reverse, 

by starting with a preloaded adsorbent at high pressures and reducing the pressure stepwise. 

Observed hysteresis between pairs of adsorption and desorption isotherms yields valuable 

information about the adsorptive system, often indicating the presence of capillary 

condensation in mesopores. 

In this thesis, excess adsorption isotherms were measured by the volumetric method 

also known as the Sieverts’ method using a custom Sieverts apparatus designed and tested for 

accuracy up to 10 MPa (Figure 1).1 The Sieverts apparatus comprises a number of rigid, 

stainless steel, and leak-proof compartments, each interconnected with controllable on-off 

valves (either hand-turned or pneumatic). The volume of each compartment is known with 

high precision (+ 0.01 mL). For standard adsorption measurements, only two of the 

compartments are of interest: the manifold and the reactor. The manifold is equipped with a 

midrange (3000 PSI) MKS Baratron (Model 833) pressure transducer for high-pressure 

measurements and an MKS Baratron (Model 120AA) for low-pressure measurements of 

higher resolution. The temperature of the gas in the manifold was measured with platinum 
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resistance thermometers. The temperature of the reactor was monitored with K-type 

thermocouples. In a preparatory step the adsorbent sample of interest was weighed and sealed 

within the reactor, which seals by the tightening of a conflat flange with a copper gasket. 

Additional nickel filter gaskets with a 0.5-micron mesh size prevented the adsorbent from 

escaping from the reactor. After sealing the reactor, each sample was degassed at ~520 K 

under a vacuum of less than 10-3 Pa prior to testing. The Sieverts apparatus is equipped with a 

molecular drag pump capable of achieving a vacuum of 10-4 Pa and vacuum pressures were 

verified using a digital cold cathode pressure sensor (I-MAG, Series 423). To obtain low 

temperature isotherms, the reactor was submerged in a circulated chiller bath or cryogenic bath 

with temperature fluctuations no larger than + 0.1 K. High temperature isotherms were 

obtained by encasing the reactor in a copper heat conductor wrapped with insulating fiberglass 

heating tape. Using a proportional integral derivative (PID) controller, the reactor temperature 

was maintained with fluctuations no larger than + 0.4 K. Prior to measurements, the entire 

Sieverts was purged multiple times with the gas of interested to eliminate any impurity 

residues. On each sample, multiple adsorption/desorption isotherms were taken to ensure 

complete reversibility and identical measurements were found to be reproducible to within 1% 

error. 
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Figure 1. Sieverts Apparatus 

2. Methodology 

For each isotherm data point, a predetermined pressure of research-grade gas was 

introduced into and cached in the manifold. Upon reaching equilibrium, the temperature and 

pressure of this gas were measured with high precision and the gas density was determined 

from REFPROP data tables2. Given that the manifold volume is known, the moles of gas in 

the manifold were thus determined. Next, a valve was opened to allow the gas to occupy both 

the manifold and reactor volumes. The reactor housed the porous sample of known mass. 

Upon opening the valve, the gas was allowed to occupy a volume given by the sum of the 
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manifold and reactor volumes minus the volume of the sample. The volume of the sample 

was given by the product of the sample mass and the sample skeletal density (obtained by 

helium pycnometry). Once equilibrium was reestablished, pressure and temperature 

measurements were taken and a final gas-phase density determined for the step. The moles of 

gas left in the gas phase were thus calculated. Any quantity of gas introduced into the manifold, 

but no longer contributing to the gas-phase pressure was considered to be in the adsorbed 

phase. The sample within the reactor was held at a constant temperature over the course of a 

successive set of pressure measurements, resulting in an excess adsorption isotherm. Upon 

completion of an isotherm, the temperature was adjusted for the next isotherm, in order to 

measure a multitude of isotherms over a wide temperature range. 

At equilibrium the chemical potential of the gas phase (μg) and the adsorbed phase (μa)  

are equal 

!! = !!                                                                                                               (1) 

By taking the total differential of both sides of Equation 1: 

−!!!" + !!!" = −!!!" + !!!"                                                                    (2) 

!"
!" =

!!!!!
!!!!!

                                                                                                         (3) 

Thus the derivative of pressure with respect to temperature is related to the change in entropy 

(upon adsorption) divided by the change in volume (upon adsorption). At constant coverage, 

the difference between the entropy of the adsorbed phase (Sa) and the entropy of the gas 

phase (Sg) is the isosteric entropy of adsorption (ΔSads) and is given by Equation 4. 

∆!!"# = !! − !!                                                                                                  (4) 
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∆!!"# = !! − !! !"
!"                                                                                        (5)                        

The isosteric entropy of adsorption is in turn related to isosteric enthalpy of adsorption (ΔHads) 

by Equation 6 

∆!!"#
! = ∆!!"#                                                                                                     (6) 

At constant coverage, the difference between the adsorbed and gas-phase enthalpies is thus 

given by Equation 7 

∆!!"# = ! !! − !! !"
!"                                                                                      (7) 

This is the Clapeyron equation, and is fundamental to the calculation of the isosteric enthalpy 

of adsorption. A number of simplifying assumptions may be made in dealing with the 

Clapeyron equation. The two most common are as follows: 

1. That the volume of the gas phase is significantly larger than that of the adsorbed phase 

such that the overall change in volume is well approximated as the gas-phase volume. 

2. That the gas follows the ideal gas law. 

Together these assumptions transform the Clapeyron equation into Equation 8 

∆!!"# !! = − !!!
!

!"
!" !!

                                                                                (8) 

This may in turn be rearranged into the Van’t Hoff form: 

∆!!"# !! = ! !"#!!
! !

! !!
                                                                                  (9) 

By plotting ln(P) vs (1/T), a Van’t Hoff plot is formed. The slope of the Van’t Hoff plot 

multiplied by R gives the isosteric heat. In common practice, adsorption measurements directly 

determine excess adsorption (ne), not absolute adsorption (na). It is thus common to hold 

excess adsorption, not absolute adsorption, constant in Equation 9. This results in an isoexcess 
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enthalpy of adsorption that approximates the isosteric enthalpy of adsorption, but only at 

low gas densities. The previously mentioned assumptions fail when applied broadly to gas data. 

Thus we must consider alternatives to these oversimplifying assumptions.  

First, the ideal gas assumption may be avoided by inserting values from gas data tables 

directly into the Clapeyron equation. This is the course of action followed in this thesis. Using 

gas data tables enables thermodynamic calculations outside of the ideal gas regime. Second, the 

simplified Clausius-Clapeyron equation assumes that the adsorbed phase has virtually zero 

volume and that the net difference between the molar volume of the gas phase and the 

adsorbed phase equals the molar volume of the gas phase. In reality, the adsorbed phase has a 

finite molar volume that approaches that of the liquid phase of the adsorbed species. Thus the 

assumption of a zero molar volume adsorbed phase may be replaced with one of two options. 

Either the adsorbed-phase molar volume is assumed to be equal to that of the liquid phase 

molar volume, or, fit functions are used to approximate the adsorbed-phase molar volume.  

In applying the Clapeyron equation, it is necessary to take the derivative of pressure 

with respect to temperature at constant coverage conditions. Where absolute adsorption is 

held constant, this determines the isosteric enthalpy of adsorption and where the excess 

adsorption is held constant, this determines the isoexcess enthalpy of adsorption. In practice, 

however, neither absolute nor excess adsorption is an experimentally tunable variable. The 

uptake quantity is never directly selected, rather the pressure is roughly selected. Thus 

obtaining data points at constant coverage conditions is not simple. In some cases, with 

sufficient data, constant coverage conditions across a number of temperatures may be 

achieved for select data points by pure coincidence. This can be thought of as “analysis 

without fitting”. Fortuitously positioned data points, however, are sparse and unreliable.  
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In general it is necessary to establish an interpolation function to interpolate between 

the measured data points. Interpolation functions of a variety of forms have been employed in 

literature. The simplest entails linear interpolation between data points.  

While simple, this approach fails to accurately capture the adsorption behavior, leading 

to scatter and errors. In this thesis research I employ a superposition of Langmuir isotherms as 

the fitting function of choice. Specifically, starting from the definition of excess adsorption 

(ne): 

!! = !! − !!!(!,!)                                                                                          (10) 

I fit the absolute adsorption (na) and the volume of the adsorption layer (Va) with 

superpositions of Langmuir isotherms with appropriate prefactors: 

!!(!,!) = !!"# !! !!!
!!!!!!                                                                           (11) 

!!(!,!) = !!"# !! !!!
!!!!!!                                                                            (12) 

where ai is the respective weight of the ith isotherm ∝!! = 1 , P is the pressure, and Ki is an 

equilibrium constant given by an Arrhenius-type equation such that: 

!! = !!
! !

!!!
!"                                                                                                          (13) 

where Ai is a prefactor and Ei is an energy of the ith isotherm. Altogether the fit function 

becomes: 

!!(!,!) = !! − !!"#!(!,!) !! !!!
!!!!!!                                                   (14) 

One particular advantage of this fitting procedure is that the absolute adsorption is 

easily accessible. It is one of the quantities that is directly fitted and given by Equation 11.  
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Absolute adsorption is a more fundamental quantity than excess adsorption, and its 

determination is critical for in-depth analysis of the adsorption physics. 

In addition to producing high quality fits, the dual-Langmuir fitting method used in 

this thesis gives physically realistic fitting parameters. In particular the nmax and vmax parameters 

have been found to be in reasonable agreement with independently determined physical data 

(See Chapter 9). The nmax parameter gives the maximum possible absolute adsorption as 

determined by fits. This is directly comparable to an estimate of the maximum possible 

adsorption as obtained by multiplying the measured micropore volume by the liquid density of 

the adsorptive species2. Here we assume that the entirety of the micropores is filled with 

adsorbate at a density equal to the liquid density (upon maximal adsorption). Furthermore, the 

vmax parameter indicates the maximum possible volume of the adsorbed phase, which may be 

directly compared to the measured micropore volume of the adsorbent. 

While the isosteric enthalpy of adsorption (ΔHads) is a popularly cited proxy metric of 

binding site energy, a more fundamental metric exists in the adsorbed-phase molar enthalpy 

(Ha) given by Equation 15. The isosteric enthalpy of adsorption is the difference between the 

adsorbed-phase and gas-phase (Hg) molar enthalpies and thus retains a dependence on gas-

phase properties.  

!! = !! + Δ!!"#                                                                                               (15)  

For nonideal gas conditions, this dependence can obscure interesting phenomenon occurring 

strictly within the adsorbed phase. The gas-phase enthalpy is obtained from reference tables2. 

The adsorbed-phase enthalpy gives critical insight into the nature of the adsorbent-adsorbate 
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binding-site energy. Moreover, the constant pressure molar heat capacity of the adsorbed 

phase (CP) follows directly from the adsorbed-phase enthalpy (Equation 16): 

!! = !!!
!" !

                                                                                                           (16) 

The adsorbed-phase molar heat capacities provide critical qualitative insight into the adsorbed-

phase layer. For a monatomic gas like krypton, comparison to theoretical estimates of the heat 

capacity provides further means to peer into the underpinnings of the adsorbed-phase 

thermodynamics. Furthermore, the isosteric entropy of adsorption (ΔSads) is directly accessible 

from the isosteric enthalpy of adsorption: 

Δ!!"# = !!!"#
!                                                                                                       (17)                                                            

By adding the isosteric entropy of adsorption to the gas-phase molar entropy (from 

REFPROP2), we obtain the adsorbed-phase molar entropy (Sa). 

!! = !! + ∆!!"#                                                                                                  (18) 
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