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Abstract 
 

Atmospheric convection is a profound topic. Numerous books have been written on the 

consequences of convection. Yet, the picture of convection is still far from complete 

because of its high nonlinearity, multi-scale coupling and complex interactions with other 

systems. The theme of my dissertation is to investigate three aspects of atmospheric 

convection on three different planets. This dissertation is multi-disciplinary and includes 

scientific topics like photochemistry, dynamics and radiation, and methodologies like 

information retrieval, theoretical calculation and dynamic modeling. 

 

Chapter 1 and 2 study Titan. It focuses on how to infer the strength of convection from the 

vertical distribution of chemical species. In a photochemical model, convection is 

parameterized as eddy diffusion and the strength of convection is proportional to eddy 

diffusivity. We developed an inversion method to retrieve the vertical profile of eddy 

diffusivity directly from the Cassini observations and found out a stable layer in the 

atmosphere which may give rise to the detached haze layer on Titan. In addition, new 

observation from Cassini/CIRS limb sounding came a few month later. C3H6 was detected 

for the first time in the stratosphere. Our new photochemical model with the updated eddy 

diffusion profile successfully explained the observed vertical distribution of C3H6. Chapter 

2 explains the modeling result and does a systematic study on all C3-hydrocarbons. 
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Chapter 3 studies Saturn. It investigates the role of convection on regulating Saturn’s 

giant storms. Six giant storms, called Great White Spots, have erupted on Saturn since 1876 

at intervals of about 30 years. The most recent one occurred on Dec. 5th, 2010 at 

planetographic latitude 37.7oN. It produced intense lightning, created enormous cloud 

disturbances and wrapped around the planet in 6 months. We proposed the water-loading 

mechanism to explain the periodicity. Moist convection is suppressed for decades due to 

the larger molecular weight of water in a hydrogen-helium atmosphere. We show that this 

mechanism requires the deep water vapor mixing ratio to be greater than 1.0%, which 

implies Saturn’s O/H to be at least 10 times the solar value.  

 

Chapter 4 studies Jupiter. It proposes an inversion strategy for the upcoming Juno 

microwave observation based on the modeling results and the theoretical arguments 

developed in Chapter 3. We extend the Juno/MWR’s functionality by retrieving both the 

deep water mixing ratio and a few dynamic parameters representing subcloud meteorology. 

This proposition will contribute substantially to achieving the Juno/MWR objectives and 

shed light on the functioning of convection on planets with deep atmospheres. 
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1.1 Abstract 

Recent measurements from the limb-view soundings of Cassini/CIRS and the stellar 

occultations from Cassini/UVIS revealed the complete vertical profiles of minor species 

(e.g. C2H2 and C2H4) from 100 to 1000 km in the atmosphere of Titan. In this study, we 

developed an inversion technique to retrieve the eddy diffusion profile using as a tracer 

species. The retrieved eddy profile features a low eddy diffusion zone near the altitude of 

the detached haze layer (∼550 km), which could be a consequence of stabilization through 

aerosol heating. Photochemical modeling results using the retrieved eddy profile are in 

better agreement with the Cassini measurements than previous models. The 

underestimation of C2H4 in the stratosphere has been a long-standing problem in planetary 

photochemical modeling, and the new eddy diffusion profile does not solve this problem. 

In order to match the observations, we suggest a new expression for the rate coefficient of 

the key reaction, H+ C2H4 +M → C2H5 +M . The new reaction rate coefficient is 

estimated to be ∼10 times lower than that used by Moses et al. (2005b)’s model, and should 

be validated in the laboratory and tested against the hydrocarbon chemistry of giant planets. 

Key words: Titan photochemistry, Eddy diffusion profile, Chemical kinetics 
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1.2 Introduction 

In one-dimensional photochemical models, the vertical transport of a species is often 

parameterized as a diffusion process. The diffusion coefficient, referred to as 𝐾𝑧𝑧 or eddy 

diffusivity, incorporates various scales of turbulent processes arising from nonlinear wave 

breaking and instabilities. Many empirical studies have estimated this parameter from the 

amplitude of gravity waves  (Strobel, 1974).  Lindzen (1981) first theoretically concluded 

that the eddy diffusivity was proportional to the inverse square root of background 

atmospheric density and his finding served as a basis for the estimation of eddy diffusion 

in early photochemical models (Yung et al., 1984). The macroscopic eddy mixing resulting 

from dynamical instabilities is much more difficult to characterize. Two primary sources 

of these instabilities are convective instability and shear instability. The stability parameter 

is the Richardson number: 

 
𝑅𝑖 =

𝑁2

(
𝜕𝑈
𝜕𝑧
)2 + (

𝜕𝑉
𝜕𝑧
)2
 ,  

(1.1) 

where 𝑁2  is the square of the Brunt-Väisälä frequency; 𝑈, 𝑉  are the mean zonal and 

meridional winds respectively. The atmosphere is subject to convective instability if Ri is 

negative and is subject to mechanically driven turbulent flow if Ri is positive but less than 

0.25 (Taylor, 1931). Detailed calculation of eddy diffusivities relies on sophisticated 

dynamical models, such as the large-eddy simulation (LES) model, and high-order closure 

formulations of turbulent kinetic energy (TKE), which have been elaborated in boundary 

layer meteorology (Stull, 1988; Wyngaard, 1992). More practical ways to estimate the eddy 

diffusivity are based on observations. For example, oceanographers usually inject non-
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reactive tracers into the ocean and observe their evolution. Fitting the spreading of the 

tracer to a diffusive equation measures the eddy diffusivity. 

 

In photochemical modeling of planetary atmospheres, such experiments are difficult to 

implement and high-resolution dynamical modeling coupled with chemical sources and 

sinks has not yet matured. Instead, modelers adopt the eddy diffusivity required to fit the 

measured abundance of a species whose vertical structure is controlled primarily by 

transport. This empirical approach not only facilitates the modeling of vertical transport 

but sheds light on unknown dynamical processes as well. For instance, Allen et al. (1981) 

found that a sudden decrease of eddy diffusivity at 92 km in Earth’s mesosphere was 

required to produce the atomic oxygen peak. This hypothesis was later confirmed and 

explained by the theory of breakdown of gravity waves (Lindzen, 1981). 

 

A significant number of photochemical models has been developed to investigate the 

distribution of hydrocarbons in Titan’s atmosphere (Krasnopolsky, 2009; Krasnopolsky, 

2010; Lara et al., 1996; Lavvas et al., 2008a; Lavvas et al., 2008b; Wilson and Atreya, 

2004; Yung, 1987; Yung et al., 1984). It has been accepted wisdom that the eddy diffusivity 

increases monotonically from the stratosphere to the thermosphere. Though this argument 

is rooted in the monotonic growth of the amplitude of gravity waves, it ignores the eddy 

mixing resulting from convective and shear instabilities, which depend on local properties 

whose strength is not guaranteed to behave monotonically with respect to altitude. In fact, 

Titan’s atmosphere exhibits strong thermal variations and wind shear. At several altitudes, 
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the temperature lapse rate exceeds the adiabatic lapse rate (Fulchignoni et al., 2005). 

Therefore, it is entirely possible that the eddy diffusivity could reach a maximum 

(minimum) in the interior when the lapse rate is largest (smallest) or when the wind shear 

is strongest (weakest). 

 

In this work, we explore the possibility of a non-monotonic eddy diffusion profile. We 

develop an inversion technique that uses C2H2 as the tracer species for inverting the 

required eddy diffusion profile that agrees with the latest Cassini/CIRS, Cassini/UVIS and 

Cassini/INMS observations. We also discuss the revision of the rate coefficients for the 

chemistry of hydrocarbons given the retrieved eddy diffusion profile. 

 

In section 1.3, we describe the strategy for choosing an appropriate tracer species. In 

section 1.4, we provide the inversion techniques and compare the modeling result using 

the retrieved eddy profile with the observations. In section 1.5, we analyze the chemical 

pathways and propose updates for hydrocarbon chemistry. In the section 1.6, we discuss 

the role of escape and heterogeneous reactions that might affect our retrieval. We also 

discuss a possible mechanism that gives rise to the retrieved eddy profile. 
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1.3 Choice of tracer species 

In the chemical modeling literature of Titan’s atmosphere, the choice of tracer species 

progresses with the available observations. When Voyager (Coustenis et al., 1989) and 

ground-based millimeter observations (Tanguy et al., 1990) first detected HCN, its 

abundance was used to constrain the eddy diffusivity in the lower atmosphere (Lara et al., 

1996; Toublanc et al., 1995), for HCN was thought to possess low reactivity with other 

species. After the arrival of Cassini spacecraft in 2005, subsequent measurements provided 

new constraints on the eddy diffusion profile. (Lavvas et al., 2008a; Lavvas et al., 2008b) 

constructed the first comprehensive photochemical model based on Cassini measurements. 

In their model, the eddy diffusion profile was adjusted to fit the abundance of C2H6 

(Vinatier et al., 2007) and 40Ar (Waite Jr et al., 2005). In addition, Yelle et al. (2008a) 

suggested an asymptotic expression for the eddy diffusion profile based on the 

thermospheric profile of 40Ar, CH4 (above 1000 km) and the stratospheric abundance of 

C2H6 (100 ∼ 300 km). This eddy diffusion profile was then widely used in recent chemical 

models (Hörst et al., 2008; Krasnopolsky, 2009; Vuitton et al., 2008). However, the 

asymptotic expression relies on a free parameter 𝛾, which is 0.9 in Yelle et al. (2008a) but 

2.0 in the model of Krasnopolsky (2009, appendix), and the modeling results produced by 

different choices of 𝛾 were inconsistent with the observations for some important species 

(e.g., C2H2 in the model of Krasnopolsky, 2009; C4H2 in Vuitton et al., 2008). The 

discrepancies are likely caused by the unconstrained eddy diffusion profile in the 

mesosphere of Titan (500 ∼ 1000 km). Changes in the altitude of the fall-off region in the 

asymptotic expression, determined by 𝛾, could have a large impact on the modeling of 

hydrocarbons. 
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Recently, more constraints have been placed on the abundance of hydrocarbons in the 

mesosphere of Titan (500 ∼ 1000 km) from Cassini/UVIS stellar occultations (Kammer 

et al., 2011; Koskinen et al., 2011). In combination with the updated version of 

Cassini/CIRS limb observation (Vinatier et al., 2010a), the complete profiles of C2H2, 

C2H4, C6H6, HCN, HC3N are revealed for the first time. 

 

Hydrocarbons in Titan’s atmosphere react under extremely low pressures that are hard to 

reproduce in the laboratory. Aside from the eddy diffusivity, the major uncertainties of the 

photochemical modeling arise from the estimation of the reaction rate coefficient. We 

define a metric for a species that measures the sensitivity of its abundance to the 

uncertainties in reaction rate coefficients by: 

 𝑠 =∑∑(
Δ𝑥𝑖
𝑥𝑖
)
𝑗

2
𝑁𝑣

𝑖=1

𝑁𝑟

𝑗=1

, 
(1.2) 

where 𝑁𝑟 is the total number of reactions; 𝑁𝑣 is the total number of vertical levels, and 

(
𝛥𝑥𝑖

𝑥𝑖
)
𝑗
 denotes the fractional change of the abundance for the species, 𝑥, at vertical level 𝑖 

when the rate coefficient of reaction 𝑗 is doubled. The summation of the square of the 

fractional change (𝑆) over every altitude and reaction gives the sensitivity to reaction rate 

coefficients. 
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Figure 1.1 shows the sensitivity for hydrocarbons. CH4 is the least sensitive to the 

uncertainties in reaction rate coefficients because of the dominant effect of vertical 

transport. The mixing ratio of CH4 remains constant up to the homopause where eddy 

diffusivity equals the molecular diffusivity. The eddy diffusivity is, therefore, fixed at the 

homopause but remains unconstrained below. A second species must be chosen to infer the 

eddy diffusivity below the homopause. Most previous works use C2H6 as an auxiliary 

species to constrain the eddy diffusivity in the stratosphere. But we find that C2H2 is a 

better mixing tracer than C2H6. 
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Figure 1.1 Summation of the square of fractional changes over 82 levels and 297 reactions 

for 18 species when the rate coefficient for each reaction is doubled. See equation (1.2) for 

the definition of sensitivity. For clarity, radicals are not shown in the figure because their 

abundances are not affected by transport due to their short chemical lifetimes. The total 

sensitivity is divided into three parts: red part is the contribution from 50 km to 500 km; 

magenta, from 500 km to 1000 km; yellow, above 1000 km. 

 

First, unlike the spectral features of C2H6, those of C2H2 do not overlap with those of CH4 

in the Far-Ultraviolet (FUV) region. Observations from FUV stellar occultations and CIRS 

limb-view revealed a complete profile in the vertical. This profile exhibits a relatively 

constant mixing ratio below 500 km and a rapid pick-up above 500 km, indicating a 

transition from a transport dominated regime to a regime where the chemical production 
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and vertical transport are of comparable strength. The strength of eddy diffusion in such a 

regime can be measured through the strength of chemical reactions. 

 

Second, the chemistry of C2H2 is well understood. Figure 1.2 shows the production and 

loss rates for C2H2. The major formation and loss pathways for C2H2 are photolytic 

reactions, which are more certain than the three body reaction (such as 2CH3 +M →

C2H6 +M) that is responsible for the formation of C2H6. The abundance of C2H2 exhibits 

less sensitivity to the uncertainties of rate coefficients than do the abundances of other 

hydrocarbons, excepting only CH4 (see Figure 1.1).  
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Figure 1.2 Production and loss rates of C2H2. Black lines show the total production (loss) 

rate for C2H2. Other colored lines show the contribution from each reaction labeled in the 

figure. 

 

Third, C2H2 is the parent species that drives the whole reaction chain in the stratosphere 

via photosensitized dissociation of C2H2 (Yung et al., 1984). Successfully simulating the 

abundance of C2H2 is of paramount importance for modeling the related species (e.g. C4H2) 

(Lavvas et al., 2008b). 
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1.4 Retrieval method and results 

We use the one-dimensional Caltech/JPL photochemical model (Liang et al., 2007; Yung, 

1987; Yung et al., 1984; Zhang et al., 2010) for modeling Titan’s atmospheric chemistry. 

We updated the model with the new set of chemical reactions from (Moses et al., 2005a). 

The background atmospheric density profile is constructed from Cassini observations. The 

thermospheric density profile uses the measurements from Cassini/INMS (Westlake et al., 

2011a) during the T40 flyby, which is in the best agreement with the density profile inferred 

from Cassini/UVIS EUV occultations (Kammer et al., 2013). The stratospheric density 

profile uses the measurements from Cassini/HASI (Fulchignoni et al., 2005). The 

mesospheric density profile is then extrapolated from the thermospheric density profile, 

assuming constant temperature, until it connects to the stratospheric profile. CH4 is not 

allowed to escape from the top of the atmosphere in the nominal model. We will discuss 

the case of escape in section 1.6. To speed the model up and reduce the complexity, only 

neutral hydrocarbons and nitriles are included in the present model since the ion reactions 

at the top of the atmosphere can have only a minor effect on the abundance of C2H2, and 

these effects do not influence the lower atmosphere where the retrieval of the eddy 

diffusion profile is performed. The optical properties of the aerosols (Michelangeli et al., 

1989) are incorporated in our radiative model; in practice the most important impact of 

these rather dark aerosols is the extinction of UV radiation lower in the atmosphere. The 

particle size and density as a function of altitude are taken from Titan’s microphysical 

model by (Lavvas et al., 2010). The aerosol density profile is scaled so that the line-of-

sight aerosol optical depth above 400 km matches the UVIS measurements (Kammer et 

al., 2011; Kammer et al., 2013; Koskinen et al., 2011) at 190 nm. For the other UV to 
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visible wavelengths, we assume the cross section (𝜎) behaves as a power law function of 

the wavelength (𝜆), 𝜎 ∝ 𝜆𝑛. In the current model, we assume that the extinction cross 

section is independent of wavelength, i.e. 𝑛 = 0. We also tested various power laws, where 

the power 𝑛 ranges from -4 (Rayleigh limit) to 0 (flat distribution) and found that the 

inclusion of aerosol shielding has a profound impact on the photochemistry in the lower 

atmosphere of Titan, but different choices of power laws do not significantly change the 

results. The initial eddy diffusion profile is the same as the one used in Liang et al. (2007) 

below 800 km. Above 800 km, the eddy diffusivities are set to 1 × 108 cm2 s-1 so as to 

match the observed distribution of CH4. We call this model the nominal model. Figure 1.3 

shows the density profile and compares the model results for with the observed profiles. 

 

Figure 1.3 Density and CH4 profile. Left panel: density profiles replotted from Westlake et 

al. (2011a). The data points are reduced by a factor of five for clarity. T40 flyby is marked 

in thick black line. Right panel: the nominal model result (red dashed line) along with the 

observed CH4 profile from 21 flybys. The T40 flyby is also marked in thick black line. 



P a g e  | 27 

 

 

We use the Levenberg-Marquardt algorithm (Moré, 1978), a standard non-linear least 

square optimization method, to retrieve the eddy diffusion profile. The cost function is the 

square of the difference between the model and the observations: 

 𝐽 =∣∣ (𝑥𝑛(𝛽) − 𝑥𝑜𝑏𝑠
𝑛 )𝑇𝑆𝑜𝑏𝑠(𝑥

𝑛(𝛽) − 𝑥𝑜𝑏𝑠
𝑛 ) ∣∣ , (1.3) 

where 𝑥 is the log abundance; 𝛽 is the eddy diffusion profile mapped by five sampling 

levels equally spaced between 130 and 1000 km. Eddy diffusivities at higher or lower 

levels are set equal to the boundary values. The mapping function is defined as: 

 

 
𝛽(𝑧) =

2𝑌(𝑧𝑖)𝐾∞
𝑌(𝑧𝑖) + 𝐾∞

 , 
(1.4) 

where 𝑌(𝑧𝑖) is a cubic spline function that fits the five sampling levels; 𝐾∞ is the upper 

bound of the eddy diffusivity which is set to 1 × 108 cm2 s-1. For altitudes lower than 500 

km, 𝑥𝑜𝑏𝑠
𝑛  is the mean value of seven non-polar measurements from Cassini/CIRS limb view 

(Vinatier et al., 2010a); for altitudes above 500 km and below 1000 km, 𝑥𝑜𝑏𝑠
𝑛  is the mean 

value of five Cassini/UVIS stellar occultation measurements (Kammer et al., 2011); 𝑆𝑜𝑏𝑠 

is the observational error covariant matrix. For simplicity, off-diagonal elements are 

neglected and we give equal weights to both the average and the errors. The vector 𝑥𝑛(𝛽) 

models the concentration based on eddy diffusion profile 𝛽. 
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Figure 1.4 Eddy diffusion profile. The eddy diffusion profile retrieved from the abundance 

of C2H2 (red line) is plotted along with the molecular diffusion coefficients for CH4 (black 

line) and the initial guess of the eddy diffusion profile (blue dotted line from Liang et al. 

(2007)). Eddy diffusion profiles used in previous modelings are compared in the figure. 

  



P a g e  | 29 

 

We start from the nominal model and adjust the eddy diffusivity at sampled levels 

according to the Levenberg-Marquardt algorithm so as to minimize the cost function. The 

retrieved eddy diffusion profile is shown in Figure 1.4 (red solid line) along with profiles 

used in previous modeling and the molecular diffusivity of CH4. The eddy diffusivity is 

small in the lower stratosphere but increases sharply by three orders of magnitude from 

200 to 300 km, reaching a prominent maximum of eddy diffusivity (∼ 4 × 107 cm2 s-1) at 

around 300 km. This value is approximately the same as that which Yelle et al. (2008a) 

uses for the asymptotic expression. From 300 to 600 km the eddy diffusivity decreases with 

altitude and creates a local minimum (∼ 5 × 106 cm2 s-1) at around 600 km, implying a 

stable layer in Titan’s mesosphere. The difference between the maximum value at 300 km 

and the minimum value at 600 km is about an order of magnitude, which makes it a robust 

feature. The decrease of eddy diffusivity is consistent with the rapid pick-up of the mixing 

ratio of C2H2. Above this local minimum, the eddy diffusivity increases again with altitude 

and reaches the boundary value of 1 × 108 cm2 s-1 at the homopause. 

 

Solid red lines in Figure 1.5, Figure 1.6 and Figure 1.7 show the model result using the 

retrieved eddy diffusion profile. The mixing ratio of C2H2 remains constant at ∼ 3 × 10−6 

from 100 to 500 km and rapidly increases by two orders of magnitude from 500 km to 1000 

km. Most photochemical models using a monotonic eddy diffusion profile fail to capture 

this feature. They usually underestimate the abundance of C2H2 in the mesosphere (e.g. 

Figure 4 in Lavvas et al., 2008b; Figure 7 in Krasnopolsky, 2009). The non-monotonic 

eddy diffusion profile constrained by FUV stellar occultation provides the best fit to the 

observations. 
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Figure 1.5 The mixing ratios of H2 and C2-hydrocarbons. Red dashed line is the result of 

the nominal model; red solid line is the result using our retrieved eddy diffusion profile; 

blue line is the result of using the retrieved eddy diffusion profile and with the revised rate 

coefficients for R113. The observations are plotted along with the model results. Black 

dots in the H2 are the observations from INMS (Cui et al., 2008). The error bars indicate a 

factor of two (generally the spreading of density profiles). Black dots in the upper 

atmosphere are from FUV stellar occultation (Kammer et al., 2013). Black dots in the lower 

atmosphere are from CIRS limb view (Vinatier et al., 2010a). Magenta points at about 1000 

km are from INMS (Magee et al., 2009). 
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Figure 1.6 Same as Figure 1.5 for higher hydrocarbons. 

 

Figure 1.7 Same as Figure 1.5 for HCN and HC3N. 
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The mixing profile of C2H4 does not change much when the new eddy diffusion profile is 

applied since C2H4 is highly reactive in Titan’s atmosphere and its chemical timescale (∼

107 s at 100 km) is short compared to the eddy diffusion timescale (∼ 109 s at 100 km). 

The profile of C2H4 can be largely explained by local chemical equilibrium and is 

insensitive to eddy diffusion. The stratospheric mixing ratio of C2H4 is about 10−8 while 

the observation from Cassini/CIRS gives a mixing ratio of 10−7, 10 times bigger than the 

model. 

 

For the saturated hydrocarbons, we overestimate the thermospheric abundance for C2H6 

and underestimate that of C3H8 by about five times. The disagreement with the INMS 

results was first noticed by Lavvas et al. (2008b), yet the possible reasons for the 

discrepancy are still unknown. Other hydrocarbons are either short-lived species (CH3C2H, 

C6H6) which are not affected by modifying the eddy diffusion profile or are derived from 

C2H2 photolysis (C4H2). Their abundances agree with the observations as long as the 

abundance of C2H2 is in good agreement. 

 

In the next section, we explore a revised three-body reaction rate that helps to solve the 

problem of C2H4 as well as a discussion on thermospheric abundance for saturated 

hydrocarbons. 
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1.5 Revised chemistry 

The underestimation of C2H4 in the stratosphere has long been reported in previous 

modeling (Lavvas et al., 2008b; Lebonnois et al., 2001; Wilson and Atreya, 2004). In 

addition, it marred not only several photochemical models of Titan but also the 

photochemical models for giant planets (Moses et al. (2005a), Figure 14 for Jupiter, Figure 

31 for Saturn and Figure 32 for Neptune; Moses and Greathouse (2005), Figure 6). Only 

Lara et al. (1996)’s model could produce the right amount of ethylene in the stratosphere 

by artificially imposing an upward flux of C2H4 from the ground. 

 

Lavvas et al. (2008b) suggested that enhancement of ethylene was caused by the 

downwelling branch of Hadley circulation. Two major problems could be raised with this 

scenario. First, Cassini/CIRS observations (Vinatier et al., 2010a) show that the latitudinal 

concentration gradient of a species is weak outside the polar vortex (∼ 45∘N). Yet, inside 

the polar vortex, where the dynamical mixing is prohibited by a steep horizontal potential 

vorticity gradient (Teanby et al., 2008), the concentration is enhanced by a factor of five to 

10. Therefore, the enhancement of C2H4 through Hadley circulation would probably be 

confined in the polar region and would not affect the tropics and mid-latitudes. Second, the 

mixing ratio of C2H4 exhibits a clear decrease with altitude, which could not be explained 

by the Hadley cell if the production zone of were only in the mesosphere. Therefore, the 

negative mixing gradient of C2H4 in lower latitudes disproves the downwelling scenario 

and calls for an additional source in the stratosphere. This source can be either the 

horizontal advection from the winter pole towards the equator (Crespin et al., 2008) or a 

stronger three-body recombination in the stratosphere. Since the problem is universal in 
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the photochemical modeling of the outer solar system, we suggest that it occurs because of 

the underestimation of reaction rate coefficients for three-body reactions. 

 

Figure 1.8 Production and loss rates of C2H4. Black lines show the total production (loss) 

rate for C2H4. Other colored lines show the contribution from each reaction labeled in the 

figure. 

 

Figure 1.8 shows reaction rate profiles of important reactions for the production and loss 

of C2H4. These reactions account for over 80% of the total production and loss of C2H4. In 

the thermosphere and mesosphere (> 500 km), C2H4 forms mainly through the insertion of 

the CH radical into CH4: 

 CH + CH4 → C2H4 + H . (R164) 
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Below 500 km, where CH4 photolysis is self-shielded, photolysis back from higher 

hydrocarbons (1,3-C4H6, C4H8) and radical-radical combination (CH3) gradually take over 

the production of C2H4.The most prominent reactions are: 

 C4H6 → C2H4 + C2H2 , 

C4H8 → 2C2H4 , 

2C2H3 → C2H4 + C2H2 . 

(R64) 

(R71) 

(R251) 

A large portion of C2H4 loss is owing to photodissociation into C2H2 through the reaction: 

 C2H4 → C2H2 + H2/2H . (R13,R14) 

In the upper stratosphere, where the atmospheric density is relatively high and photons are 

scarce, loss due to the three-body reaction: 

 H + C2H4 +M → C2H5 +M , (R113) 

becomes more efficient and accounts for more than 80% of the total loss rate around 200 

km. In short, C2H4, formed by the photolytic products of CH4 and higher hydrocarbons 

equilibrates its abundance through photodissociation in the mesosphere and through 

combination with atomic H in the stratosphere. 

  



P a g e  | 36 

 

 

Figure 1.9 Fractional change of C2H4. Color shows the fractional change of C2H4 when 

each reaction rate coefficient is doubled. The abscissa is the reaction number in the 

model. Any reaction with a reaction number larger than 120 is not important and is 

omitted for clarity. The first 120 reactions are listed in Table 1.1.  

 

We perform a linear sensitivity study to identify the key reactions that control the 

abundance of C2H4 in the stratosphere. Figure 1.9 shows the fractional change of C2H4 

when each reaction rate coefficient is doubled. It shows that the abundances of C2H4 in the 

lower atmosphere are most sensitive to two three-body reactions: 
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 H + C2H2 +M → C2H3 +M , 

H + C2H4 +M → C2H5 +M . 

(R109) 

(R113) 

R109 is important because it offers a source for one of the major production pathway 

(R251) for C2H4. The combination of R109 and R251 produces a positive feedback to 

convert C2H2 to C2H4 through C2H3. The three-body reaction, R113, is the major sink for 

C2H4 in the stratosphere. We find that the reaction rate coefficient used in (Moses et al., 

2005a) model does not agree with the laboratory measurement at higher temperatures 

(Figure 1.10). We propose a new expression for the reaction rate coefficient for R113 to 

match the observations at all measured temperatures. 

 
{
     𝑘0 = 5.4 × 10

−25 𝑇−1.46 𝑒−1300/𝑇

𝑘∞ = 1.8 × 10−13 𝑇0.7 𝑒−600/𝑇
 

(1.5) 

where 𝑘0  is the low-pressure limiting rate constant in units of cm6 s-1; 𝑘∞  is the high-

pressure limiting rate constant in units of cm3 s-1. The new expression predicts a lower 

reaction rate coefficient (∼ 10 times) at Titans temperature. 



P a g e  | 38 

 

 

Figure 1.10 Rate coefficients for the reaction H + C2H4 + M → C2H5 + M. Colored dots 

with error bars are the laboratory measurements from Lightfoot and Pilling (1987). 

Temperatures are indicated by the color: red (604 K), yellow (511 K), green (400 K), blue 

(285 K), black (170 K). Dashed lines are the reaction rate coefficients used in (Moses et 

al., 2005a); solid lines are the new reaction rate coefficients, see equation (1.5). No 

laboratory measurements are available for temperatures on Titan (~170 K) and in the 

pressure range of the stratosphere (~0.1 hPa). 

 

The model mixing ratios for two alkanes, C2H6 and C3H8, in the thermosphere are higher 

and lower, respectively, than the observations (see Figure 1.5 and Figure 1.6). Owing to 

the large variability of the thermospheric composition (see the spread of density profiles 

from different flybys in Figure 1.3), a single in situ measurement might not be 

representative of the average condition. If we ignore the natural variability and assume that 

the INMS results do manifest the average condition, the discrepancy could arise either from 
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the lack of ion reactions in the current model or from the uncertainties in the three-body 

reactions’ rate coefficients. 

 

Ion reactions do not affect the key species, C2H2, based on which we retrieve the eddy 

diffusivity. Thus, we tested the possible influence of three body reactions only. In this 

region the formation of these alkanes is primarily through three-body reactions: 

 2CH3 +M → C2H6 +M , 

CH3 + C2H5 +M → C3H8 +M . 

(R109) 

(R113) 

The region where these reactions take place on Titan is around 800 km or 8 nbar and the 

temperature is 170 K. There are no direct laboratory measurements for the rate coefficients 

of the above reactions in this pressure and temperature regime. Vuitton et al. (2012a) 

proposed several updates for the reaction rate coefficients based on transition state theory. 

We carried out a sensitivity test using the reaction rate coefficients in Vuitton et al. 

(2012a)’s run C. We found that the modified rate coefficient for R206 and R212 

overproduced the abundance for C3H8. We performed another test trying to match the 

thermospheric abundance for C3H8. We found that the rate coefficient of R212 should 

increase by a factor of 100. We were unable to match the thermosphere abundance of C2H6 

by simply increasing or decreasing the reaction rate of R206. We should point out these 

adjustments for three body reactions have minor effects on the abundance of C2H2. 

Therefore, they do not affect our results for the retrieval of the eddy diffusion profile. 
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For comparison, we plot the model result using modified chemistry (equation (1.5), R113) 

against the nominal model (blue lines versus red lines in Figure 1.5, Figure 1.6, Figure 1.7). 

The new model agrees better with the observations of the stratospheric abundance of C2H4. 

 

Figure 1.11 Mixing ratio of CH4 (top axis) and 40Ar (bottom axis) from the non-escaping 

model (solid lines) and escaping model (dashed lines). In the non-escaping model, the 

eddy diffusivity at the CH4 homopause equals 1 × 108 cm2 s-1. Observations of 40Ar are 

represented by black dots with error bars (Yelle et al., 2008a) . Observations of CH4 are 

from T40 flyby (Westlake et al., 2011a). 
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1.6 Discussion and conclusion 

CH4 escape: In the current model, CH4 does not escape from the top of the atmosphere 

because is CH4 too heavy to escape through normal processes and no direct evidence of 

the escape has been found. But escape is crucial to match the abundance of 40Ar and CH4 

simultaneously (Yelle et al., 2008a). It is, therefore, included in many recent photochemical 

models, e.g. (Lavvas et al., 2008b). To study this impact, we created a model that allows 

CH4 to escape at the rate of 1.0 × 109 cm-2 s-1. Given the escape flux, we perform the same 

procedure to retrieve the eddy diffusion profile. Comparisons of CH4 and 40Ar mixing 

ratios derived from Cassini/INMS are shown in Figure 1.11. As described in Yelle et al. 

(2008a), applying escaping flux has the same effect as large eddy diffusivity. The CH4-

escape model requires a low eddy diffusivity of 1.5 × 107 cm2 s-1, similar to Yelle et al. 

(2008a)’s result. It fits equally well to CH4 as the non-escaping case but better fits the 40Ar 

profile. Again, we should point out that whether CH4 escapes or not does not affect our 

retrieval result, for the major feature of the eddy diffusion profile is located below the 

homopause. 

 

Heterogeneous reactions: The aerosols in the atmosphere of Titan have two important 

effects on the chemistry other than the UV shielding: (1) recombination of H atoms on the 

surface of aerosols, and (2) heterogeneous removal of C2H2, thereby converting it from gas 

to aerosols. 
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The most important impact of aerosols on H atoms is the catalytic recombination of the 

atoms to form H2. The probability of recombination was measured by Sekine et al. (2008a). 

Using their values and the surface area of aerosols on Titan from Lavvas et al. (2008b), we 

investigated the effect of the removal of H atoms on Titan via this process. The results 

showed that effect of H recombination on aerosols is small, in agreement with 

Krasnopolsky (2009). Some of the extremely cases reported by Sekine et al. (2008c) used 

aerosol profiles that are unrealistic compared to Lavvas et al. (2010). 

 

Our nominal model does not include the heterogeneous reactions converting C2H2 to 

aerosols. However, we investigated a heterogeneous loss for C2H2 as prescribed in Liang 

et al. (2007). The results showed that the loss due to heterogeneous reactions is much less 

than the total chemical loss, as mentioned in Lavvas et al. (2008b). Therefore, the exclusion 

of heterogeneous reactions does not affect the retrieval result. 

 

Possible dynamical interpretation: In this work, we retrieved the eddy diffusion profile 

based on the vertical distribution of C2H2. The location of the low eddy diffusion zone 

featured by the new eddy diffusion profile coincides with the altitude of the detached haze 

layer. We speculate about a possible dynamical interpretation of the eddy diffusion profile 

based on the effect of aerosol heating. Liang et al. (2007) first observed tholins, which are 

probably the intermediates in the formation of aerosols at 1000 km from UVIS. These 

particles, if produced by ion reaction at the top of the atmosphere, could be transported 

downward quickly and grow slowly when the eddy diffusivity is large. However, as the 
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particle density increases, they absorb enough solar heat to create a local temperature 

inversion. Liang et al. (2007) estimated a heating rate of aerosols which results in a 

temperature inversion of about 20 K. The temperature inversion layer stabilizes the 

atmosphere, creating a low eddy diffusion zone under it, and slows the downward transport 

of aerosols. The aerosols are retained in this layer and particles could grow more rapidly 

through fractal aggregation , absorbing more heat as a result. This kind of positive feedback 

mechanism predicts that the vertical mixing intensity would decrease in the inversion layer 

(at about 500 km), which is manifested by a decrease in the eddy diffusivity. This growth 

of fractal aerosol permitted by a slow vertical transport in a stable layer might explain the 

existence of the detached haze layer observed by Cassini/UVIS. A rigorous study of such 

a mechanism requires a coupled modeling of radiative processes, aerosol microphysics, 

chemical kinetics and dynamics, which is deferred to later work. 

 

Conclusion: This work uses the latest Cassini observation to investigate the non-

monotonically increasing eddy diffusion profile. The modeling results are generally in 

better agreement with observations than those of previous models. Chemical kinetics is 

examined and modified so as to match the observations of in the stratosphere. The new 

expression of the reaction rates agrees better with the laboratory measurements at all high 

temperatures and pressures. This might help to solve a similar problem for the 

photochemical modeling of C2H4 on giant planets. 

  



P a g e  | 44 

 

1.7 Appendix 

Table 1.1 Photochemical reaction list, see Moses et al. (2005a) for reaction rate 

coefficients and references. 

 

continued on next page 
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Table 1.1 – continued from previous page 

 

 continued on next page 
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Table 1.1 – continued from previous page 
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2.1 Abstract 

Motivated by the recent detection of propene (C3H6) in the atmosphere of Titan, we use a 

one-dimensional Titan photochemical model with an updated eddy diffusion profile to 

systematically study the vertical profiles of the stable species in the C3-hydrocarbon family. 

We find that the stratospheric volume mixing ratio of propene (C3H6) peaks at 150 km with 

a value of 5 × 10−9 , which is in good agreement with recent observations by the 

Composite Infrared Spectrometer (CIRS) on the Cassini spacecraft (Nixon et al., 2013). 

Another important species that is currently missing from the hydrocarbon family in Titan’s 

stratosphere is allene (CH2CCH2), an isomer of methylacetylene (CH3C2H). We predict 

that its mixing ratio in the stratosphere is about 10−9 , which is on the margin of the 

detection limit. CH2CCH2 and CH3C2H equilibrate at a constant ratio in the stratosphere 

by hydrogen-exchanging reactions. By precisely measuring the ratio of CH2CCH2 to 

CH3C2H, the abundance of atomic hydrogen in the atmosphere can be inferred. No direct 

yield for the production of cyclopropane (c-C3H6) is available. From the discharge 

experiments of Navarro-González and Ramírez (1997), the abundance of cyclopropane is 

estimated to be 100 times less than that of C3H6. 

Subject keywords: Titan stratosphere, Allene, Hydrocarbon, Photochemical model 
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2.2 Introduction 

Titan’s atmosphere is laden with hundreds of interacting hydrocarbon species, which group 

in families according to the number of carbon atoms in their hydrocarbon chains (i.e. C1-, 

C2-, C3-hydrocarbon, etc). Many simple hydrocarbon molecules (C1- and C2-hydrocarbons) 

have been found by spectroscopic and mass spectrometric measurements in Titan’s 

atmosphere (Coustenis et al., 2007; Coustenis et al., 2003; Magee et al., 2009; Vuitton et 

al., 2007). They have also been the subject of extensive investigations in previous 

photochemical models (Hebrard et al., 2013; Krasnopolsky, 2009; Lavvas et al., 2008a; 

Vuitton et al., 2012b; Wilson and Atreya, 2004; Wilson and Atreya, 2009; Yung et al., 

1984). Recently, analysis of Cassini/CIRS limb-viewing observations (Nixon et al., 2013) 

identified a peak in the infrared spectrum of Titan’s stratosphere at 912.5 cm-1, which is 

attributed to the 𝜈19 band of propene (C3H6). By comparing the relative emission strengths 

of propene and propane (C3H8), the stratospheric vertical profile of C3H6 is retrieved. This 

observation provides a new constraint for the photochemical modeling of Titan’s 

atmosphere and fills a gap in the C3-hydrocarbon family. As Nixon et al. (2013) pointed 

out, even though the five C3 molecules, the two isomers of C3H4 (allene and 

methylacetylene), the two isomers of C3H6 (propene and cyclopropane), and propane are 

part of the interwoven net of hydrocarbon species in the atmosphere of Titan, allene 

(CH2CCH2) and cyclopropane (c-C3H6) are yet to be detected. Roe et al. (2011) tentatively 

identified several of the 𝜈10  sub-bands of allene amongst the strong emission lines of 

ethane’s 𝜈12  band using TEXES (Texas Echelon Cross Echelle Spectrograph) at 

NASA/IRTF. However, due to the large uncertainties in the laboratory spectra of allene, 
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measuring its abundance in Titan’s atmosphere by comparing laboratory and observed 

spectra is difficult.  

 

In this letter, we use the Caltech/JPL photochemical model with a recently updated eddy 

diffusion profile (Li et al., 2014) to explain the observed vertical distribution of propene. 

We also perform a systematic study of C3-hydrocarbon chemistry focusing on CH3C2H 

(methylacetylene), CH2CCH2 (allene), C3H6 (propene), and c-C3H6 (cyclopropane). Our 

photochemical model gives improved results that, for the first time, fit the abundances of 

all observable hydrocarbons, which is a significant advance over previous work (Hebrard 

et al., 2013; Krasnopolsky, 2014; Lavvas et al., 2008b; Vuitton et al., 2012b; Wilson and 

Atreya, 2004; Yung et al., 1984).  

 

In section 2.3, we describe the photochemical model and compare the modeling results for 

C1- and C2-hydrocarbons to the observations. In section 2.4, we examine the vertical profile 

of C3H6 and its production/loss pathways. In section 2.5, we discuss how the relative 

abundance of two isomers, CH2CCH2 and CH3C2H, is a strong tracer of atomic H in the 

atmosphere. In section 2.6, we estimate the abundance of c-C3H6, another missing C3-

hydrocarbon. In section 2.7, we state our conclusions. 
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2.3 Photochemical model and C2-hydrocarbons 

The Caltech/JPL one-dimensional photochemical model for Titan solves the mass 

continuity equation from 50 to 1500 km in altitude: 

 
𝜕𝑛𝑖
𝜕𝑡

+
𝜕𝜓𝑖
𝜕𝑧

= 𝑃𝑖 − 𝐿𝑖  , (2.1) 

where 𝑛𝑖 , 𝑃𝑖 , and 𝐿𝑖  are the number density and chemical production and loss rates of 

species i, respectively. 𝜓𝑖 is the vertical flux of species i calculated from the equation: 

 𝜓𝑖 = −
𝜕𝑛𝑖
𝜕𝑧

(𝐷𝑖 + 𝐾𝑧𝑧) − 𝑛𝑖 (
𝐷𝑖
𝐻𝑖
+
𝐾𝑧𝑧
𝐻𝑎
) − 𝑛𝑖

𝜕𝑇

𝜕𝑧

(1 + 𝛼𝑖)𝐷𝑖 + 𝐾𝑧𝑧
𝑇

 , 
(2.2) 

where 𝐷𝑖  and 𝐻𝑖  are the molecular diffusion coefficient and scale height of species i, 

respectively; 𝐻𝑎 is the atmospheric scale height; 𝛼𝑖 is the thermal diffusion coefficient of 

species i, T is the temperature, and 𝐾𝑧𝑧 is the eddy diffusion coefficient. The Kzz vertical 

profile is similar to that of (Li et al., 2014) but simplified using a log-linear interpolation 

of four nodal levels at 𝑧1 = 120 km, 𝑧2 = 300 km, 𝑧3 = 500 km, 𝑧4 = 1000 km: 

 

Log 𝐾𝑧𝑧(𝑧)

=

{
 
 
 
 

 
 
 
 

Log(3 × 103), 𝑧 < 𝑧1

Log(3 × 103)
𝑧2 − 𝑧

𝑧2 − 𝑧1
+ Log(2 × 107)

𝑧 − 𝑧1
𝑧2 − 𝑧1

, 𝑧1 ≤ 𝑧 ≤ 𝑧2

Log(2 × 107)
𝑧3 − 𝑧

𝑧3 − 𝑧2
+ Log(2 × 106)

𝑧 − 𝑧2
𝑧3 − 𝑧2

, 𝑧2 ≤ 𝑧 ≤ 𝑧3

Log(2 × 106)
𝑧4 − 𝑧

𝑧4 − 𝑧3
+ Log(4 × 108)

𝑧 − 𝑧3
𝑧4 − 𝑧3

, 𝑧3 ≤ 𝑧 ≤ 𝑧4

Log(4 × 108), 𝑧 ≥ 𝑧4

 . 
(2.3) 

We include aerosols in our model for the absorption of UV radiation. As described in (Li 

et al., 2014), they are treated as pure absorbers with a flat extinction cross section 
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independent of wavelength. The particle size and density as a function of altitude are taken 

from (Lavvas et al., 2011). Their cross sections are scaled so that the line-of-sight aerosol 

optical depth matches the Cassini/UVIS measurements (Koskinen et al., 2011) at 400-600 

km (~10-2). The thermosphere density profile uses the measurements from Cassini/INMS 

(Westlake et al., 2011b) during the T40 flyby. The stratospheric density profile is 

interpolated from Cassini/HASI (Fulchignoni et al., 2005). The mesospheric density profile 

is extrapolated from the thermospheric density profile assuming constant temperature until 

it connects to the stratospheric profile. The chemical reactions are taken from (Moses et 

al., 2005b) with adjusted reaction rates for H + C2H4
M
→ C2H5 as recommended by (Li et 

al., 2014). CH4 does not escape from the top of the atmosphere because applying an 

escaping flux to CH4 has the same effect as applying a larger eddy diffusivity (Yelle et al., 

2008b). We incline to the second approach because it fits the 40Ar profile better, see Figure 

11 in (Li et al., 2014). We refer the reader to (Li et al., 2014) for more details regarding the 

model.  

 

Figure 2.1 compares the vertical distributions of CH4, C2H2, C2H4, and C2H6 with the recent 

observations from Cassini/CIRS (Vinatier et al., 2010b), Cassni/UVIS (Kammer et al., 

2013; Koskinen et al., 2011), and Cassini/INMS (Magee et al., 2009). The observations 

show a near-constant mixing ratio for C2H2 and C2H6 in the stratosphere, above which the 

mixing ratios increase gradually until reaching their peak values near 1000 km. C2H4 is an 

exception to this rule. In some flybys, its mixing ratio significantly decreases with altitude. 

Our model does not reproduce this feature. This is probably due to two-dimensional effects, 

such as horizontal advection, because mean upwelling or subsidence is not included in the 
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one-dimensional model. However, our model profiles of CH4 and C2-hydrocarbons can 

match the mean measurements between flybys satisfactorily and serve as the basis for our 

study of C3-hydrocarbons. 

 

Figure 2.1 The mixing ratios of CH4 and the C2-hydrocarbons C2H2, C2H4, and C2H6. Our 

model results are shown in red. The observations are plotted for comparison. Dark gray 

lines: CH4 from the T40 Cassini flyby (Westlake et al., 2011b); blue lines: CH4 from 

Cassini/UVIS stellar occultations (Koskinen et al., 2011). For the other species, the points 

in the upper atmosphere (500 – 1000 km) are from Cassini/UVIS stellar occultations 

(Kammer et al., 2013), while those in the lower atmosphere are from Cassini/CIRS limb 

views (Vinatier et al., 2010b). The magenta points at ~1050 km are from Cassini/INMS 

(Magee et al., 2009). 
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2.4 Propene (C3H6) vertical distribution 

The mixing ratios of the C3-hydrocarbons C3H6, CH2CCH2, CH3C2H, and C3H8 are shown 

in Figure 2.2. The observed stratospheric mixing ratio of C3H6 peaks at 200 km with a 

value of 5 × 10−9. Our model reproduces a similar peak value and the peaked structure at 

150 km. The modeled mixing ratio of C3H6 at 1000 km is two times less than the observed 

value from Cassini/INMS. Two possible reasons might explain this discrepancy. First, the 

thermosphere of Titan exhibits large natural variability as observed by multiple Cassini 

flybys, e.g. Figure 2 of Westlake et al. (2011b). The photochemical model tends to 

represent a mean atmospheric condition that might deviate from individual local 

measurements as the Cassini/INMS. The abundances of C3-hydrocarbons in our model 

more or less deviate from the Cassini/INMS measurements within a factor of two. This 

magnitude agrees with the spreading of thermospheric density profile among different 

flybys. Second, our current photochemical does not include the radiative association 

reaction (H + C3H5 → C3H6) which may contribute to half of the production of C3H6 at 

1000 km (Hebrard et al., 2013). We estimate the effect by doubling the reaction rate of the 

key reaction identified in the next paragraph and the result matches the Cassini/INMS 

better. 
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Figure 2.2 Same as Figure 2.1, but for C3-hydrocarbons. Blue bar in CH2CCH2 panel 

indicates the upper limit by (Coustenis et al., 2003); Magenta points with arrows in 

CH2CCH2 panel indicate the upper limit by (Nixon et al., 2010). Dashed red line in C3H6 

panel shows the profile when the reaction rate of (CH + C2H6 → C3H6 + H) is doubled. 
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Reactions rates and errors involving the C3-hydrocarbons have been studied extensively 

(Hebrard et al., 2013; Loison et al., 2015). However, a systematic analysis of formation/loss 

pathways for them are limited because of the formidable amount of reactions involved. In 

this work, we use a greedy algorithm traversing the complete reaction list to find out a 

subset of reactions that contribute to over 90% of the total formation and loss of a certain 

species over all altitudes. Reactions with larger rates are preferred to be added in the subset 

than ones with smaller rates. Figure 2.3 shows the production and loss pathways of C3H6 

produced by this algorithm. In the upper atmosphere (> 600 km), the production of C3H6 

is dominated by the insertion of CH radicals into C2H6 : 

 CH + C2H6 → C3H6 + H , (2.4) 

where the CH radicals are produced by the photodissociation of CH4. By contrast, 

Hebrard et al. (2013) includes the radiative association reaction 

 H + C3H5 → C3H6 , (2.5) 

which consists of 61.8% of the production of C3H6 at 1000 km and reaction (2.4) 

contributes 36.7%. Currently we do not have this reaction in our photochemical model. 

However we estimate its effect by doubling the reaction rate of (2.4). As a result, the 

abundance of C3H6 increases by a factor of two and matches the Cassini/INMS 

observations. In the intermediate altitudes (300 km ~ 600 km), where the CH radicals are 

rare and where the pressure is too low to drive termolecular combination, photodissociation 

of C3H8 is the dominant process in the production of C3H6: 

 C3H8 + hν → C3H6 + H2 . (2.6) 
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Figure 2.3 Production (left) and loss rates (right) of C3H6 due to reactions listed in the 

figure. The sum of the reactions accounts for more than 90% of the total production and 

loss rates at each altitude. The total production and loss rates are given by the black lines. 

 

In the stratosphere (< 300 km) where the pressure is high, the three-body reaction 

 CH3 + C2H3 +M → C3H6 +M , (2.7) 

becomes the dominant production pathway of C3H6 and creates the local peak in the mixing 

ratio as shown in Figure 2.2. Though the production of C3H6 peaks at 200 km, our model 

produces the abundance peak 50 km lower than the production peak. This is probably due 

to eddy mixing effects because the value of eddy diffusivity at 200km is 2 × 106 cm2/s, 

the chemical loss time scale for C3H6 at 200 km is 2 × 107s and the expected dynamic 
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mixing length is 𝛿 = √2 × 106 × 2 × 107 cm ≈ 60 km. CH3 in reaction (2.7) comes from 

the photosensitized dissociation of CH4 in the stratosphere (Yung et al., 1984) by: 

 

C2H2 + hν → C2H + H , 

C2H + CH4 → CH3 + C2H2 . 

(2.8) 

(2.9) 

C2H3 in Reaction (2.7) comes from the three-body reaction: 

 H + C2H2 +M → C2H3 +M . (2.10) 

Therefore, the abundance of C3H6 in the stratosphere is directly related to the abundance 

of C2H2. Other models fail to produce the abundance of C3H6 because they underestimate 

the stratospheric abundance of C2H2 (Hebrard et al., 2013; Krasnopolsky, 2010; Vuitton et 

al., 2012b; Wilson and Atreya, 2004; Wilson and Atreya, 2009).  C3H6 is destroyed mainly 

through photolysis:  

 C3H6 + hν → α(C3H5 + H) + 𝛽(C2H3 + CH3) , (2.11) 

where 𝛼 ≈ 0.6, 𝛽 ≈ 0.4 are the branching ratios of the photolysis reaction. C3H6 can also 

be destroyed by reacting with an H atom: 

 H + C3H6 +M → C3H7 +M . (2.12) 

The rate of this three-body reaction increases with atmospheric density and becomes 

greater than the photo-dissociation reaction rate below 300 km (as shown in Figure 2.2). 
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2.5 Allene (CH2CCH2) to methylacetylene (CH3C2H) ratio as a 

probe of H atom abundance 

Allene (CH2CCH2, or propadiene) and methylacetylene (CH3C2H, or propyne) are 

isomers. Goulay et al. (2009) reported the following branching ratios 

 

CH + C2H4 → CH2CCH2 + H   (70%) 

                      → CH3C2H + H     (30%) . 

(2.13) 

(2.14) 

The enthalpy difference between CH3C2H and CH2CCH2 is ~1 kcal/mol (Rogers and 

Mclafferty, 1995). Because it takes very little energy to convert between CH3CH2 and 

CH2CCH2, their production and loss rates are expected to be comparable. Using the same 

algorithm as in section 2.3, their major formation and destruction pathways are calculated 

and presented in Figure 2.4. In the upper atmosphere, CH3C2H and CH2CCH2 originate 

from C2H4 and C3H5 through: 

 

CH + C2H4 → CH3C2H/CH2CCH2 , 

H + C3H5 → CH3C2H/CH2CCH2 + H2 , 

CH3 + C3H5 → CH3C2H/CH2CCH2 + CH4 . 

(2.15) 

(2.16) 

(2.17) 

Reaction (2.15) terminates near 600 km due to CH4 self-shielding below 600 km reducing 

the production rate of CH radicals. Reactions (2.16) and (2.17) persist throughout the entire 

atmosphere because H atoms and CH3 are replenished in the lower atmosphere by 

photosensitized dissociation of CH4. Reactions (2.16) and (2.17) both lead to the same 

production rate for CH3C2H and CH2CCH2, so to explain the non-detection of CH2CCH2 

Yung et al. (1984) proposed an exchange reaction: 
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 H + CH2CCH2 → CH3C2H + H , (2.18) 

which is exothermic by ~1.6 kcal mol-1. As a result of this exchange reaction, the 

abundance of CH2CCH2 is significantly less than that of CH3C2H and their relative 

abundance equilibrates at a constant ratio as a function of the abundance of H atoms. Figure 

2.5 shows the correlation between the mixing ratios of CH2CCH2 and CH3C2H at several 

altitudes, as labeled on the correlation curve. From 50 km to 800 km, the mixing ratio of 

CH2CCH2 is equal to 0.2 times that of CH3C2H, other than at 150 km to 350 km where the 

abundance of CH2CCH2 increases. The equilibration is a highly sensitive function of the H 

concentration in the atmosphere, as demonstrated by cracking reactions that can reverse 

the process of organic synthesis, e.g. Yung et al. (1984). We performed four experiments 

of the hydrogenation process (Sekine et al., 2008b; Sekine et al., 2008d) with different 

accommodation coefficients (0, 0.001, 0.01, and 0.1) of H atoms on aerosol particles. As 

shown in Figure 2.5, the concentration of H atoms in the atmosphere can be inferred from 

the CH2CCH2 to CH3C2H ratio, as larger concentrations of H result in lower concentrations 

of CH2CCH2. 
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Figure 2.4 Production and loss rates of CH3C2H and CH2CCH2 due to reactions listed in 

the figure. The sum of the reactions accounts for more than 90% of the total production 

and loss rates at each altitude. The total production and loss rates are given by the black 

lines. 

 

Roe et al. (2011) discussed the challenges of measuring allene in the atmosphere of Titan 

using extremely high resolution ground-based spectra near 845 cm-1 to separate allene lines 

from ethane lines (this possibility was demonstrated in the upper panel of Figure 12 of 

(Coustenis et al., 2003)). An upper limit of ~10-9 was found, which is an order of magnitude 

less than that of CH3C2H. Nixon et al. (2010) obtained 3σ-upper limits for allene of 0.3x10-
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9 at 100 km and 1.6x10-9 at 200 km using Cassini/CIRS. Our model predicts an allene 

mixing ratio of ~10-9 at 200 km, which increases to ~2x10-9 at 400 km. These values are 

consistent with the previous studies and could be confirmed by further measurements given 

better laboratory spectra. Precise measurements of allene will offer a unique opportunity 

to probe a very sensitive but hitherto unobserved part of the atmospheric chemistry of 

Titan.  

 

Figure 2.5 Correlation between CH3C2H and CH2CCH2 with accommodation coefficients 

of 0 (red), 0.001 (blue), 0.01 (green), and 0.1 (yellow) for H on aerosol particles. The 

numbers labeling the points indicate the altitude in Titan’s atmosphere in km.  
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2.6 Estimated abundance of cyclopropane (c-C3H6) 

Figure 1 of Nixon et al. (2013) raises the possibility of c-C3H6, which is an isomer of 

propene. This molecule has not been detected in the atmosphere of Titan. Reaction (2.4) 

primarily produces C3H6, while the branch producing the isomer c-C3H6 is considered to 

be exceedingly slow (Galland et al., 2003). No published yield for c-C3H6 is available, 

though we can estimate a yield ~ 1% relative to C3H6 or C3H8 from the discharge 

experiments of Navarro-González and Ramírez (1997). Thus, we would estimate c-C3H6 

concentrations in the atmosphere of Titan to be a hundred times less than those of C3H6. 

 

2.7 Conclusions 

Our model reproduced the abundances of C2-hydrocarbons and the newly observed C3H6 

in the atmosphere of Titan. The model also shows that CH2CCH2 is in equilibrium with its 

isomer CH3C2H by a constant ratio, which is a strong function of the abundance of H atom 

in the atmosphere. The abundance of CH2CCH2 is close to the detection limit. It is possible 

that further analysis of Cassini/CIRS limb-view observations combined with better 

laboratory constraints on the spectra of CH2CCH2 will lead to its detection, which would 

fill another gap in the C3-hydrocarbon family. The observed mixing ratio of CH3C2H is 10-

8, while our calculated mixing ratio for CH2CCH2 in the stratosphere is about 10-9. 

Confirmation or rejection of this value requires improved laboratory spectral data. Finally, 

c-C3H6 is not likely to be observed due to its low abundance (~10-11). 

  



P a g e  | 64 

 

Chapter 3 Moist convection in hydrogen 

atmospheres and the frequency of 

Saturn’s giant storms 

 

Cheng Li and Andrew P. Ingersoll 

Division of Geological and Planetary Science, California Institute of Technology, Pasadena, CA, 91125 

 

 

 

 

 

 

 

 

 

 

Published in modified form in Nature Geosicence, 8, 398-403, 2015  



P a g e  | 65 

 

3.1 Abstract 

A giant planet-encircling storm occurred on Saturn on Dec. 5th, 2010 at planetographic 

latitude 37.7oN. It produced intense lightning, created enormous cloud disturbances and 

wrapped around the planet in six months. Six such storms, called Great White Spots, have 

erupted since 1876. They have alternated between mid-latitudes and the equator at intervals 

ranging from 20 to 30 years. The reason for the intermittent explosion is hitherto unclear 

and there are no similar storms on brother Jupiter. Here we describe the water-loading 

mechanism, which could suppress moist convection for decades due to the larger molecular 

weight of water in a hydrogen-helium atmosphere. We show that this mechanism requires 

the deep water vapor mixing ratio to be greater than 1.0%, which implies O/H at least 10 

times the solar value. Observations imply that Saturn’s atmosphere is more enriched in 

water than Jupiter, which could explain why Saturn has such storms and Jupiter does not. 

We further use a two-dimensional axisymmetric dynamic model and a top-cooling 

convective adjustment scheme to connect our theory to observation. We show that for a 

deep water vapor mixing ratio of 1.1%, the ammonia vapor is depleted down to 6 bars, the 

tropospheric warming is  ~6 K, and the interval between two consecutive storms at one 

latitude is ~70 years. These values are consistent with observations. 
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3.2 Introduction  

Saturn’s giant storms occurred 6 times in the past 140  years (Sanchez-Lavega, 1994). They 

are like thunderstorms on Earth (Sanchez-Lavega and Battaner, 1987), except that the 

storm itself is about the size of Earth. The Cassini spacecraft has arrived at a privileged 

time to capture the most recent outburst, returning fruitful close observations. Features in 

common with terrestrial thunderstorms include the observed cloud disturbance (Sanchez-

Lavega et al., 2011; Sayanagi et al., 2013), lightning discharges (Fischer et al., 2011) and 

tropospheric warming (Achterberg et al., 2014). What makes the storm more mysterious is 

the observed depletion of ammonia vapor in the wake of the storm down to several bars 

(Janssen et al., 2013; Laraia et al., 2013). One might think that an upward transport of 

ammonia vapor during moist convection would saturate the atmosphere, but apparently it 

does not. Such post-storm ammonia depletion was also detected in Saturn’s southern 

hemisphere lightning storms (Dyudina et al., 2007), which are much smaller in size. 

 

Moist convection on giant planets differs from that on Earth in three major respects. First, 

the density of moist air on giant planets is greater than that of dry air. Second, convection 

in a giant planet atmosphere is controlled by cooling at the top rather than by heating at the 

bottom. Third, the radiative time scale is on the order of decades. The molecular weight 

loading of relatively dense condensates will hinder the upward motion of moist parcels and 

reduce the intensity of convection, which is verified both by a one-dimensional diagnostic 

calculation (Stoker, 1986) and by a three-dimensional plume model (Hueso and Sanchez-

Lavega, 2004). For a sufficiently large mixing ratio of condensates, Guillot (1995) 

proposed a steady state solution for the heat transfer in giant planet atmospheres in which 
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the gradient of mean molecular weight leads to a stable super-adiabatic temperature profile. 

However, whether the atmosphere could reach such a steady state highly depends on the 

poorly constrained optical opacities near the cloud bottom, and the regular outburst of giant 

storms in Saturn’s atmosphere suggest that this steady state is probably not obtained (see 

section 3.7.8 for further discussion of this topic). Sugiyama et al. (2011) and Sugiyama et 

al. (2014) find a quasi-periodic behavior of convection on Jupiter due to the destabilization 

of a stable layer by the re-evaporation of condensates. Here we investigate a new 

mechanism, which would give rise to cyclic explosions of giant storms on the time scale 

of decades without the re-evaporation of condensates.  

 

In our model, there are three phases to the cycle of a giant storm. The first phase, described 

in section 3.3, is inhibition of convection by the water loading effect and its eventual 

release. We describe the thermodynamic properties of Saturn’s atmosphere and identify 

the same critical water mixing ratio as Guillot (1995) that would lead to convective 

inhibition. The second phase is the rapid adjustment to geostrophic balance following the 

convective event, and is described in section 3.4. There we develop a two-dimensional 

axisymmetric numerical model to test our theory against observations of ammonia 

depletion after the storm. The third phase is the slow cooling of the atmosphere (section 

3.5) for which we use a moist convective adjustment scheme to calculate the time interval 

between storms. Because the first two phases take place over 30 hours and the third phase 

takes place over 70 years, treating them in a single numerical model is impractical and is 

beyond the scope of this chapter. Section 3.6 concludes and section 3.7 gives a thorough 
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discussion on the numerical method, sensitivity tests, radiative heat transfer near the cloud 

base and isobaric mixing across temperature discontinuity. 
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3.3 Convective inhibition  

As temperature is inversely proportional to the density of a dry air parcel, virtual 

temperature (𝑇𝑣) has been used as a convenient variable that is inversely proportional to 

the density of a moist air parcel.  𝑇𝑣 is defined as 

 𝑇𝑣 = 𝑇
1 + 𝜂

1 + 𝜖𝜂
 , (3.1) 

where 𝜂 is the mole mixing ratio of water (number of water molecules to the number of 

molecules of hydrogen-helium mixture) and 𝜖 is the mass ratio of the condensate to the dry 

air.  Consequently, the ideal gas law for the moist air can be written as 𝑃 = 𝜌𝑅𝑑𝑇𝑣, where 

𝑅𝑑 is the gas constant for dry air. For Saturn’s atmosphere, 𝜖 = 18/2.2 = 8.1 . Since the 

factor (1 + 𝜂)/(1 + 𝜖𝜂) is less than one, a moist parcel on Saturn is heavier than a dry 

parcel with the same temperature, which is opposite to the situation on Earth. 
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Figure 3.1 Virtual temperature of moist adiabats. The solid curves show the virtual 

temperature versus pressure for moist adiabatic profiles. The temperature in K at 1 bar level 

for each moist adiabat is indicated above the line. Dashed/dotted lines show the contours 

of mixing ratio below/above 1.0% . Mixing ratios are labeled in units of %. The water 

mixing ratio on a moist adiabatic profile is indicated by the dashed line when it is less than 

1.0% and is indicated by the dotted line when it is larger than 1.0%. 

 

We first assume that the temperature profile of Saturn’s troposphere follows a moist 

adiabat, based on the fact that convection usually brings the temperature profile close to 

the moist adiabat in Earth’s tropics. The amount of water vapor (𝜂) is controlled by the 

saturation vapor pressure 𝑒(𝑇)  through the ideal gas form of the Clausius-Clapeyron 

relation: 
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𝑑𝑒

𝑑𝑇
=

𝑒𝐿

𝑅𝑤𝑇2
, 𝜂 =

𝑒

𝑝 − 𝑒
 . (3.2, 3.3) 

We calculate the virtual temperature profiles of several moist adiabats in Figure 3.1. These 

curves show that the virtual temperature reaches a maximum value when the water mixing 

ratio in the parcel equals 1.0% (note that the mixing ratio lines increase to the left when the 

water mixing ratio is larger than 1.0%). Below this critical mixing ratio, the temperature 

dominates the density, i.e. virtual temperature increases with temperature; above, the 

exponential growth of the moisture’s mass overwhelms the temperature, causing virtual 

temperature to decrease as temperature increases. This critical mixing ratio (𝜂𝑐) can be 

obtained analytically by maximizing equation (3.1) holding 𝑝 = constant and using the 

constraints from equations (3.2, 3.3): 

 
𝜂𝑐 =

1

(𝜖 − 1)
𝐿

𝑅𝑣𝑇𝑏
− 𝜖

≈ 1.0% . 
(3.4) 

We have chosen 𝑇𝑏 ≈ 330 𝐾, which is the approximate temperature at the cloud base. 

When η > ηc , there may be two moist adiabats, a warm one and a cold one, differing by 

an amount ΔT, that have the same 𝑇𝑣 (density) at cloud base.  



P a g e  | 72 

 

 

Figure 3.2 Thermodynamic diagram for Saturn’s atmosphere. The dashed and solid 

horizontal green lines are the bottoms of ammonia and water cloud, respectively. The solid 

red line shows the warm adiabat; the part above the solid green line is the moist adiabat; 

the part below the solid green line is the dry adiabat. The dashed red line shows the cold 

adiabat that has the same virtual temperature at the cloud base as the warm one. The cyan 

lines show the contours of constant virtual temperature. The magenta lines show the 

contours of constant mixing ratio with 1.1% marked by a solid line. 

 

The thermodynamic diagram for Saturn’s atmosphere is plotted in Figure 3.2. Assume that 

the deep water mixing ratio is supercritical as in equation (3.4) and the troposphere is 

cooling by radiation from a warm moist adiabat (the solid red line) to the cold moist adiabat 

(dashed red line) that has the same 𝑇𝑣  at cloud base as the warm adiabat. When the 

tropospheric temperature is between these two adiabats, its 𝑇𝑣 is greater, meaning that its 

density is less. This low density layer floating above the dense deep atmosphere establishes 
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a stable stratification at cloud base, which inhibits convection and decouples the interior 

from the troposphere (temperature below the cloud base remain fixed). Convection from 

below is suppressed as long as the stable stratification exists, allowing convective available 

potential energy (CAPE) to accumulate. If radiative heat transfer is smaller than the cooling 

at the top, this stable layer will persist as the tropospheric temperature decreases due to loss 

of heat at the top, (see section 3.7.8 for a discussion of the situation when this assumption 

fails). As the troposphere cools, the density just above cloud base first decreases due to the 

unloading of high-mass molecules by precipitation, creating a stable interface with the fluid 

just below cloud base. The cooling is slow because the radiating temperature is low and 

the heat capacity of the atmospheric column is high. The stable stratification disappears 

when the 𝑇𝑣 above cloud base is the same as that below it (the tropospheric adiabat 

approaches the dashed red line).  Mixing across the temperature discontinuity hastens this 

process by a small amount (see section 3.7.2). When the convective inhibition vanishes, 

the warm moist parcel rises from the deep interior, releasing the stored CAPE. The parcel 

is accelerated by the buoyancy difference between the warm adiabat and the cold adiabat, 

releasing latent heat as it condenses. Finally, the surrounding atmosphere is warmed back 

to the same temperature as the warm adiabat by compensating subsidence, and the cycle 

repeats. Radiative cooling and convective heating force the system to oscillate between 

these two adiabats (the solid and dashed red lines).  

 

If the water mixing ratio is 1.1%, a crude estimate of the cooling time from the warm 

adiabat to the cold one is (radiative cooling flux is taken to be 4.5 W/m2 (Orton and 

Ingersoll, 1980)):  
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𝑡 ≈

𝑐𝑝Δ𝑝Δ𝑇

𝐹𝑙𝑢𝑥 × 𝑔
≈
(1.3 × 104) × (20 × 105) × (5)

(5) × (365 × 86400) × (10)

≈ 70 years . 

(3.5) 

 A more sophisticated and precise calculation of the cooling time is provided in section 3.5.  

To get the cyclic behavior, the deep water vapor mixing ratio has to be greater than 1.0%, 

which is 10 times solar, given a solar O/H ratio (Asplund et al., 2009) of 4.90 × 10−4. This 

enrichment factor is consistent with that for carbon (Fletcher et al., 2009b; Fletcher et al., 

2012) and phosphorus (Fletcher et al., 2009a) on Saturn. The Galileo probe (Niemann et 

al., 1996) demonstrates that the heavier elements (C, N, P) in Jupiter are enriched by 2 ∼ 

5 times with respect to their solar values. If the water on Jupiter is also 2 ∼ 5 times solar, 

it is not enough to trigger the water-loading mechanism. That is probably the reason why 

we have observed the giant storms on Saturn but not on Jupiter. 
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3.4 Geostrophic adjustment 

After the warm parcel rises from the deep interior, it gains kinetic energy and overshoots 

into the stratosphere. The warm convective tower is not stable and will rebound back to a 

geostrophically balanced state in which the outward pressure gradient force is balanced by 

the Coriolis force associated with an azimuthal flow. Here we develop a two-dimensional 

axisymmetric numerical model to investigate the large scale geostrophic adjustment 

process. The model solves the primitive equations in radius and log-pressure coordinates. 

This is a valid approximation because the horizontal scale of the phenomenon is ~5000 km 

(Figure 3.3 and Figure 3.4), which is much greater than the vertical scale. The background 

atmospheric temperature profile (�̅�) is the cold adiabat, because it is on the margin to start 

convection. We assume that the cold adiabat connects to the Voyager temperature profile 

(Lindal et al., 1985) at 1 bar. The initial temperature distribution (𝑇) is a Gaussian in radius 

with maximum temperature equal to the warm adiabat (𝑇𝑤).  

 𝑇(𝑟, 𝑧) = �̅�(𝑧) + [𝑇𝑤(𝑧) − �̅�(𝑧)]exp (−𝑟
2/𝑟0

2) , (3.6) 

where 𝑟, 𝑧 are radial and vertical coordinates; 𝑟0 defines the width of the rising plume. The 

atmosphere is initially at rest. During the adjustment, water and ammonia are removed 

from the system when they condense, and the release of latent heat is added to the 

thermodynamic equation. Other details of the model are described in section 3.7.3. The 

temperature of the warm adiabat 𝑇𝑤(𝑧) is a function of the deep water mixing ratio 𝜂. 

Different choices of 𝜂 and 𝑟0 do not change the qualitative manner of the results, as long 

as the deep water vapor mixing ratio is above 1%. We will describe the results using the 
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parameters that match the observations best, 𝜂 = 1.1% and 𝑟0 = 200 km, and leave the 

discussion of other parameters in section 3.7.4. 

 

Figure 3.3 shows the equilibrated azimuthal wind and temperature anomalies. The 

azimuthal wind displays a 5000 km wide anticyclonic structure with maximum speed of 

75 m/s near the tropopause. These values are consistent with the observed cloud 

morphology and wind speed in the storm’s head (Sayanagi et al., 2013). As a result of the 

convective heating, the tropospheric temperature has been warmed by 6 K and the warming 

decreases with the radial distance. The lateral temperature gradient balances the 

anticyclonic vortex through the thermal wind relation. The lower stratospheric temperature 

decreases by 6 K around 100 mbar as observed from the Cassini/CIRS spectroscopy 

(Achterberg et al., 2014; Fletcher et al., 2011), which reflects the adiabatic upward motion 

in the lower stratosphere.  
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Figure 3.3 Residual azimuthal wind and temperature anomaly after geostrophic adjustment. 

Wind (dashed contours) is measured in m/s. Negative wind speed denotes clockwise 

(anticyclonic) flow in the northern hemisphere. Temperature anomaly (colored contours) 

is defined as 𝑇(𝑟, 𝑧) − �̅�(𝑧). x-axis is the radial distance; y-axis is the pressure. 
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The geostrophic adjustment process and evolution of ammonia vapor are displayed in 

Figure 3.4 at six time steps. The adjustment process encompasses three major stages: First 

(Figure 3.4 a, b), the unbalanced pressure gradient force causes the warm convective tower 

to expand outward, which is compensated by upward motion in the tower (solid gray 

contours). The ammonia vapor has been advected to the cold upper troposphere and 

precipitates out. Second (Figure 3.4 c, d), the circulation in the vertical/radial plane reverses 

and advects ammonia vapor from the upper troposphere to the deep troposphere along a 

dry adiabat (dashed gray contours). Because some ammonia has been precipitated in the 

first stage, the dry adiabatic warming during the reverse circulation creates low ammonia 

relative humidity. Third (Figure 3.4 e,f), the circulation oscillates between the positive 

(outward) and the negative (inward) phase in the subsequent time and reaches a steady state 

with depleted ammonia vapor. The averaged mixing ratio of ammonia and water over the 

width of the anticyclone are plotted in Figure 3.5 b, which shows that ammonia vapor is 

depleted down to 6 bars.  
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Figure 3.4 Time evolution of ammonia vapor mixing ratio and the streamfunction. Time is 

indicated at the bottom right corner increasing from panel (a) to panel (f). Colored contours 

show the mole mixing of ammonia vapor labeled by the exponent in base 10. Gray contours 

are the radial-vertical mass streamfunctions; solid ones represent clockwise circulation and 

are drawn from 1012 kg/s to 7×1012 kg/s at intervals of 2×1012 kg/s; dashed ones represent 

counterclockwise circulation and are drawn from -7×1012 kg/s to -10×1012 kg/s at intervals 

of 2×1012 kg/s. 
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3.5 Radiative cooling 

In this section, we investigate a convective adjustment scheme that describes the cooling 

phase of the atmosphere due to thermal radiation at the top. The time interval between two 

giant storms is estimated to be ~70 years, and we have chosen the deep water vapor mixing 

ratio η to be consistent with this estimate. The detailed numerical method to calculate these 

profiles are provided in section 3.7.6. We give an overview in the paragraphs below. 

 

After geostrophic adjustment, the atmosphere is unsaturated and stable with respect to 

convection. As cooling proceeds, the atmosphere separates into four layers, numbered 1 to 

4 from top to bottom. Layer 1 follows a saturated moist adiabat. Radiative heat loss from 

the top of the atmosphere drives convection in layer 1 and causes it to cool. Layer 2 follows 

an unsaturated dry adiabat, and the constituents there are well mixed. Because both layers 

are convecting, temperature and mixing ratios are continuous at the boundary between 

layers 1 and 2. Cooling of layer 1 and re-evaporation of precipitation from layer 1 drive 

convection in layer 2. Layer 3 is the stable primordial layer, which is undisturbed since the 

time of the geostrophic adjustment that followed the last giant storm. The existence of layer 

2 ensures that no precipitation falls into layer 3. The boundary between layers 2 and 3 is 

called the interface; it moves downward as the cooling proceeds. Temperature and mixing 

ratios could be discontinuous at the interface if the mass loading effect ensures the interface 

to be stable. Layer 4 is the deep interior, which is assumed to follow a dry adiabat with 

fixed temperature and fixed mixing ratios for all constituents.  
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In our calculation, the interface between layers 2 and 3 moves down through successive 

grid boxes as a two-step process. The entrainment step moves the interface down by one 

grid box, whose contents become part of layers 1 and 2. Their profiles adjust to conserve 

column integrated enthalpy and moisture. After the entrainment step, the interface is stable 

and the slow cooling step begins. The cooling step is driven by radiation from the top. 

Column integrated enthalpy is reduced, but moisture is conserved. The cooling time is 

calculated from the energy loss by radiation assuming a constant flux of 4.5 W m-2 (Orton 

and Ingersoll, 1980). The cooling step ends when the interface is neutrally stable and 

convection is about to begin. This initiates the entrainment step on the next grid box, and 

the cycle repeats. Eventually the interface reaches the deep interior and the parcel rising 

from the deep interior initiates another giant storm.  

 

Figure 3.5 shows a snapshot during the cooling process that is close to initiating another 

giant storm. It might seem counterintuitive that the vertical potential temperature profile 

evolves to lower values than the cold adiabat. This occurs because the troposphere is 

cooling from the top down, with an initial profile that is unsaturated and stable. When the 

initial state from which the atmosphere starts to cool is unsaturated, the top cooling process 

will redistribute the water vapor in layers 1-3 and saturate the atmosphere. Thus, the 

amount of water in layers 1-3 after the geostrophic adjustment determines the temperature 

profile below which the atmosphere is fully saturated. If this minimum temperature profile 

is higher than the cold adiabat (i.e., if the atmosphere becomes saturated before it reaches 

the cold adiabat), then our analysis in section 3.3 applies. Otherwise, the temperature 



P a g e  | 82 

 

profile cools beyond the cold adiabat (Figure 3.5 a) before the interface becomes unstable, 

because the amount of water in layers 1-3 is less than the cold adiabat. 
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3.6 Conclusion 

Moist convection on Earth are categorized into two types (Emanuel et al., 1994). Quasi-

equilibrium convection acts continuously and is in quasi-equilibrium with its environment. 

Triggered convection emphasizes the large amount of CAPE that accumulates when the 

atmosphere is stable for a small amplitude disturbance but unstable for a sufficiently large 

one (i.e. when it is conditionally unstable) (Charney and Eliassen, 1964). Both quasi-

equilibrium and triggered types of convection exist on Saturn. The former applies to the 

long time radiative cooling and the latter applies when the convective inhibition layer is 

broken. Many features of Saturn’s giant storms still remain unexplained. First, most of the 

storms have occurred in the northern hemisphere during northern summer, although it 

might be a statistical fluke (see section 3.7.7). Second, they have occurred at the extrema 

of the zonal jets. Third, each one stayed confined within its own jet and didn't spread into 

the oppositely-directed neighboring jets. This is just a partial list. In this work, we show 

that convection on Saturn would be episodic instead of continuous if the deep water mixing 

ratio were greater than 1.0%. The best estimation is 1.1%.  
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Figure 3.5 Evolution of Saturn’s atmospheric temperature and minor constituents. Shaded 

regions represent one cooling step from right (the profile after the preceding entrainment 

step ) to left (the profile before the next entrainment step). (a) Two dotted lines: the cold 

and warm moist adiabats as those in Figure 3.2. Thick solid red line: the virtual potential 

temperature profile after the geostrophic adjustment. Blue, red and black triangles:  the 

bottom of layers 1, 2 and 3. (b) Mole mixing ratio of ammonia (green) and water (blue) 

vapor. (c) Evolution of ammonia (green), water (blue) cloud base and the interface (red).  
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3.7 Appendix 

3.7.1 Method to solve the primitive equations  

The primitive equation is provided in section 3.7.3. The numerical method used to solve 

the primitive equations is the finite volume method (LeVeque, 2007). Spatial fluxes are 

reconstructed by the third order ENO (essential non-oscillatory) scheme (Shu and Osher, 

1989) with Riemann solver being Roe’s linearization method (Roe, 1997). 

Hyperviscosity is not required. The discretized equations march forward in time by the 

Strong Stability Preserving third order Runge-Kutta scheme (Shu, 1988). Therefore, the 

numerical solution is third order accurate both in space and time. The standard resolution 

is 128 × 128, corresponding to 78 km in the horizontal and 3.1 km in the vertical. We 

have performed a series of resolution dependent tests. The results agree qualitatively and 

the quantitative differences are summarized in Table 3.1. 

Table 3.1 Resolution dependent test for solving the axi-symmetric primitive equation 

Resolution Azimuthal wind 

(m/s) 

Min T (K) Max T (K) 

64x64 56.8 -6.6 7.3 

128x128 81.1 -6.5 8.1 

256x128 83.6 -8.1 8.4 

 

 

3.7.2 Isobaric mixing across temperature discontinuity at the cloud bottom 

In section 3.3 we discussed convective inhibition due to the mass loading effect: As the 

troposphere cools, the density just above cloud base first decreases due to the unloading of 
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high-mass molecules by precipitation, creating a stable interface with the fluid just below 

cloud base. Further cooling reverses this trend, and the stable layer disappears. The 

question arises, would mixing across the interface hasten the disappearance, thereby 

destroying the convective inhibition? Because linear mixing between two points on a 

convex saturation curve produces an over-saturated parcel, the conserved quantities of the 

mixing process are the total mass and the moist enthalpy (Emanuel, 1994) defined by 

 ℎ = 𝐶𝑝𝑇 + 𝐿𝑣𝜂
∗(𝑇)𝜖 , (3.7) 

where 𝜂∗(𝑇) is the saturation water mixing ratio at temperature 𝑇 . We let 𝑓 and 1 − 𝑓 be 

the fractions of upper- and lower-layer fluid in the final mixture, respectively. Since f is 

unknown, we consider the full range from 𝑓 = 0 to 𝑓 = 1. The temperature of the mixture 

(𝑇𝑚) is solved by the equation 

 𝑓[𝐶𝑝𝑇1 + 𝐿𝑣𝜂
∗(𝑇1)𝜖] + (1 − 𝑓)[𝐶𝑝𝑇2 + 𝐿𝑣𝜂

∗(𝑇2)𝜖]

= 𝐶𝑝𝑇𝑚 + 𝐿𝑣𝜂
∗(𝑇𝑚)𝜖 , 

(3.8) 

where 𝑇1 is the temperature above the interface; 𝑇2 is the temperature below the interface; 

𝑇𝑚 is the temperature of the mixture. As described in section 3.3, the density variable that 

determines the stability is the virtual temperature. Let the subscript ( )𝑣 stand for virtual 

temperature. If 𝑇𝑚𝑣 > 𝑇2𝑣, the mixture is stable with respect to the air beneath it. If 𝑇𝑚𝑣 <

𝑇1𝑣, the mixture is stable with respect to the air above it. Therefore, the mixture is totally 

stable if 

 𝑇1𝑣 > 𝑇𝑚𝑣 > 𝑇2𝑣 . (3.9) 
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We have considered the mass loading of extra liquid water in the mixture. The temperature 

T2 below the interface does not change, but 𝑇1 varies from the warm adiabat (332 K) to the 

cold adiabat (325 K). We display the value of 𝑇𝑚𝑣 − 𝑇1𝑣 and 𝑇𝑚𝑣 − 𝑇2𝑣 in Figure 3.6. 

At the start of the radiative cooling phase, we find that the mixture is always less dense 

than the fluid below the interface and more dense than the fluid above it, meaning that the 

interface is stable. However, near the end of the cooling phase the mixture is less dense 

than the fluid above, and the interface is unstable. Depending on the value of f, which is 

unknown, this could hasten the onset of convection and decrease the time between giant 

storms by up to 25%. Given the other uncertainties, such as the water vapor mixing ratio 

at depth, the 25% decrease has no significant effect on the model results. 
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Figure 3.6 Mixing diagram across the temperature discontinuity at the cloud base. X-axis 

is the temperature above the cloud base (𝑇1) and y-axis is the fraction of the parcel coming 

from the top (𝑓). The lower and upper limits of the temperature axis are chosen to be the 

temperature of the cold and the warm adiabats at the cloud base. The solid curves show 

𝑇𝑚𝑣 − 𝑇2𝑣 , which is always positive. The colored contours show 𝑇𝑚𝑣 − 𝑇1𝑣 , which is 

positive (red) to the left and negative (blue) to the right. The mixture is stable (unstable) 

with respect to the atmosphere above cloud base in the blue (red) zones, respectively. 
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3.7.3 Details about the numerical model 

The axisymmetric primitive equations in log-pressure coordinates are: 

 𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑟
+ 𝑤

𝜕𝑢

𝜕𝑧
−
𝑣2

𝑟
− 𝑓𝑣 = −

𝜕𝜙

𝜕𝑟
+ 𝐾𝑥𝑥∇

2u , 
(3.10) 

 𝜕𝑣

𝜕𝑡
+ 𝑢

𝜕𝑣

𝜕𝑟
+ 𝑤

𝜕𝑣

𝜕𝑧
+
𝑢𝑣

𝑟
+ 𝑓𝑢 = 𝐾𝑦𝑦∇

2𝑣 , 
(3.11) 

 𝜕𝜃

𝜕𝑡
+ 𝑢

𝜕𝜃

𝜕𝑟
+ 𝑤

𝜕𝜃

𝜕𝑧
= 𝜃

∑ 𝐿𝑖𝜖𝑖𝑖 �̇�𝑖

𝐶𝑝𝑇
 ,  (3.12) 

 𝜕𝜂𝑖
𝜕𝑡

+ 𝑢
𝜕𝜂𝑖
𝜕𝑟

+ 𝑤
𝜕𝜂𝑖
𝜕𝑧

= −�̇�𝑖 , 
(3.13) 

 
�̇�𝑖 =

𝜕

𝜕𝑡
[𝜂𝑖 −𝑚𝑖𝑛(𝜂𝑖 ,   𝜂𝑖

∗)] , 
(3.14) 

 𝜕𝜙

𝜕𝑧
=
𝑅𝑇𝑣
𝐻0

= 𝑔
𝑇

𝑇0

1 + ∑ 𝜂𝑖𝑖

1 + ∑ 𝜖𝑖𝜂𝑖𝑖
 , 

(3.15) 

 

𝑇 = 𝜃 (
𝑝

𝑝0
)

𝑅𝑑
𝐶𝑝
= 𝜃 exp(−

𝑔𝑧

𝐶𝑝𝑇0
) , 

(3.16) 

 1

𝑟

𝜕

𝜕𝑟
(𝑟𝑢) +

𝜕𝑤

𝜕𝑧
−
𝑧

𝐻0
= 0 , 

(3.17) 

 𝜕𝜓

𝜕𝑧
= −𝜌0𝑟𝑢 exp (−

𝑧

𝐻0
) ,
𝜕𝜓

𝜕𝑟
= 𝜌0𝑟𝑤 exp (−

𝑧

𝐻0
) , 

               (3.18) 

where 𝑢, 𝑣, 𝑤 are radial, azimuthal and vertical winds. 𝜃, 𝑇, 𝑇𝑣 are potential temperature, 

temperature and virtual temperature. 𝜓  is the mass streamfunction; 𝜌0 = 1 kg/

m3.𝐿𝑖 , 𝜖𝑖, 𝜂𝑖 , 𝜂𝑖
∗, �̇�𝑖  are microphysical variables. They represent the latent heat, molecular 

mass ratio to dry air, mole mixing ratio, saturation mixing ratio and condensation rate for 
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condensable species i (i = NH3, H2O), respectively. 𝑅𝑑 , 𝐶𝑝 are the gas constant and specific 

heat capacity for dry air. 𝑇0, 𝐻0 = 𝑅𝑑𝑇0/𝑔 are the temperature and density scale height at 

𝑝0 = 1 bar. 𝑟, 𝑧 are the radial distance and log-pressure coordinate: 𝑧 = 𝐻0 ln
𝑝0

𝑝
. 𝜙, 𝑔 are 

the geopotential height and gravity. Eddy viscosity 𝐾𝑥𝑥, 𝐾𝑦𝑦 are included in the momentum 

equations to damp out the energy. Since their values are unknown, we choose a small 

enough value (𝐾𝑥𝑥/Δ𝑥
2 = 𝐾𝑦𝑦/Δ𝑦

2 = 3 × 10−3) to both maintain numerical stability and 

damp out the energy. Any value larger than the current one will result in a decrease of the 

azimuthal wind and the cooling time. Boundary conditions are applied such that pressure 

gradient vanishes (𝜙 = 0) at the lower boundary and the vertical velocity vanishes (𝑤 =

0) at the upper boundary due to the strong stratification of the stratosphere (Achterberg and 

Ingersoll, 1989). We have moved the lower (upper) boundary low (high) enough to 

minimize the effects of boundary conditions. Currently, the lower boundary is 30 bars and 

the upper boundary is 10 mbar. The positions of lower and upper boundary have negligible 

effects on the result when the lower boundary is placed deeper than 25 bars and the upper 

boundary higher than 50 mbar. The largest radial distance in the model is 107 m and two 

energy absorbing layers are placed at the top and right part of the domain. 

 

3.7.4 Sensitivity tests for the choices of 𝜂 𝑎𝑛𝑑 𝑟0 

Figure 3.7 has nine panels showing the equilibrated temperature and azimuthal wind for a 

3 × 3 combination with 𝜂 being 1.0%, 1.1%, 1.2% and 𝑟0 being 100 km, 200 km, 300 km. 

Here η is the deep water vapor mixing ratio and r0 is the Gaussian radius of the initial 

disturbance. Larger water mixing ratio results in large temperature difference between the 
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warm and cold adiabat, thereby larger wind speed and tropospheric warming. Different 

values of 𝑟0 do not change the overall structure of the wind and the warming because those 

variables are largely related to the deformation radius of the atmosphere and are insensitive 

to the initial conditions such as 𝑟0. 

 

Figure 3.7 Residual azimuthal wind and temperature anomalies for different 

combinations of parameters. The parameters are indicated at the bottom of each panel. 

The contours and colors are the same as in Figure 3.3. 
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3.7.5 More details about the top cooling scheme 

The four layer structures described in section 3.5 are fully determined by conservation of 

column integrated enthalpy and moisture. For example, if we start from the marginally 

stable state at Year = 2.0 (left boundary of the shaded region, Figure 3.8), any further 

cooling will result in unstable stratification at the interface. The interface will migrate 

downward and entrain the air in the topmost grid box of layer 3. Since the entrainment and 

convective adjustment time scale is small (~ several days) compared to the radiative 

cooling time scale (~ several years), column integrated enthalpy and moisture should be 

conserved before and after the entrainment. The convectively adjusted temperature and 

mixing ratio profiles in layers 1 and 2 are calculated by conservation of column integrated 

enthalpy and moisture (equations (3.25) and (3.26) in section 3.7.6), which give the right 

boundary of the shaded region in Year 2.7. The virtual potential temperature above the 

interface is larger than the virtual potential temperature below it (panel (a), right boundary 

of the shaded region), meaning that the interface is stable. The next cooling step removes 

this stable stratification and results in a marginally stable interface (left boundary of the 

shaded region). The radiated energy in this cooling step is calculated by the enthalpy 

difference before and after the cooling step and converted into time by a prescribed cooling 

flux (equation (3.27)). During this cooling step, the top of layer 2 changes its pressure while 

maintaining conservation of total moisture (equation (3.24)). After the temperature profile 

reaches the left boundary of the shaded region, the next cycle repeats (from Year = 2.7 to 

Year = 3.4). These alternating steps continue until Year = 74.0. At that point there is not 

enough mass left in layer 3 to support another entrainment step, so layer 3 disappears. Then 

a warm parcel can rise from the deep interior (layer 4) and initiate another giant storm. The 
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time scale for this final entrainment step is small, so Year = 74.0 can be considered the 

final stage before the next giant storm.  
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Figure 3.8 A series of cooling steps. Panel (a) and panel (c) represent the same quantities 

as in Fig. 5. Panel (b) is the potential temperature defined as 𝜃 = 𝑇(𝑝0/𝑝)
𝑅/𝐶𝑝. 𝑝0 = 1 bar, 

is the reference pressure. Two dotted lines represent the cold and warm moist adiabat as 

those in Fig. 2. The thick solid red line is the potential temperature profile after the 

geostrophic adjustment. The shaded region shows one cooling step, from right to left. The 

right boundary (dashed line) shows the profile after the preceding entrainment step. The 
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left boundary (solid line) shows the profile just before the next entrainment step. Only 

stable interfaces are shown in this figure. 

 

3.7.6 Numerical method of calculating the top cooling scheme 

In section 3.5, we presented our scheme for calculating the multi-decadal cooling phase, 

where the troposphere loses heat from the top. An interface develops between the 

convecting layers above and the undisturbed layers below. We described the interface 

moving down through our numerical grid as a two-step process. Step 1 (entrainment step) 

occurs when the interface is neutrally stable and moves down a level, entraining all the 

fluid in the grid box below. Step 2 (cooling step) occurs over a period of time and involves 

lowering the temperature of the fluid above until the interface is neutral again. Here we 

describe this process in greater detail.  

 

The numerical results calculated by the above scheme at every other grid box are displayed 

as a time series in Figure 3.8. At each time, the left panel (a) shows virtual potential 

temperature, whose vertical gradient determines whether the column is stable or unstable 

to convection. The middle panel (b) shows potential temperature, which gives the 

contribution of temperature alone to the stability of the column. The right panel (c) gives 

the mixing ratios of water (blue) and ammonia (green). Temperature itself, which falls off 

monotonically with altitude at all times, is not shown. The primordial profile, following 

geostrophic adjustment after the last giant storm, is shown as a heavy solid line in the figure 

for Year = 0.3. This profile becomes a remnant as the interface moves downward and the 

primordial layer shrinks. The warm and cold moist adiabats—the solid and dashed red lines 
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in Figure 3.2 of the main chapter—are shown as dotted lines in Figure 3.8. There are three 

characteristic features of the potential temperature profile in panel (b). Above the 1 bar 

level, the profile is close to the warm adiabat. Between 1 bar and 6 bars, the profile follows 

a transition from the warm adiabat to the cold adiabat. In pressure levels deeper than 6 bars, 

potential temperature decreases with depth and contributes to the stability of the column, 

but then it overshoots and creates a potential temperature minimum at the cloud base. 

However, this negative potential temperature lapse rate is stable because it is compensated 

by the increase of the mean molecular weight to deep pressure levels. Therefore, the lapse 

rate of virtual potential temperature in panel (a) is still positive, and the profile is stable. 

 

The lower boundaries of layers 1, 2, and 3 described in the main text are shown as blue, 

red, and black triangles, respectively. The four layer structure described in the section of 

radiative cooling phase in the manuscript is best represented at Year = 2.0. Layer 1 is 

directly subject to radiative cooling at the top. It experiences condensation of ammonia and 

water. Its temperature profile is moist adiabat and the mixing ratio of the constituent is 

either the saturated value or a constant. Layer 1 is supported by the dry convecting layer 2 

below it. Layer 2 has two roles. First, because it is unsaturated, any precipitation in layer 1 

will re-evaporate in layer 2. Layer 2 serves as reservoir that holds the extra moisture in 

layer 1. Column integrated moisture in layers 1 and 2 is conserved. Second, the lower 

boundary of layer 2 (the interface) separates the convective layers (layers 1 and 2) from the 

non-convective layers (layer 3) by a jump in temperature and mixing ratios. In the 

numerical model, the jump is a discontinuity, but in the figure it appears as a steep gradient. 

Below Layer 2 is layer 3 where the atmosphere is stably stratified and does not convect to 
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mix the minor constituents. Since layer 3 is not disturbed by convection, its temperature 

and mixing ratio profiles are set by the previous geostrophic adjustment. Layer 3 transits 

into layer 4 at about 20 bars. Layer 4 is the deep interior, which is a dry adiabat with the 

minor constituents well mixed. It is somewhat arbitrary to define the precise level of the 

boundary between layer 3 and layer 4 because the temperature and mixing ratios are 

continuously changing.  

 

As stated in the main chapter, the vertical potential temperature profile (shaded region in 

Figure 3.8 after year 9 evolves to lower values than the cold adiabat (left dotted line in 

Figure 3.8a) around year 9, as shown in Figure 3.8. However the interface (red triangle) 

remains stable relative to the cold adiabat. This is because the troposphere is cooling from 

the top down, with an initial profile that is unsaturated and stable (thick solid line in step 

#1 of Figure 3.8). After year 9, the profile is to the left of the cold adiabat in the upper 

troposphere, but it crosses to the right in the dry adiabatic layer (between the blue and red 

triangles), making the interface stable.  

 

Here we present the actual numerical implementation of the above scheme. Suppose the 

atmospheric column is divided into n discrete cells centered at pressure, 𝑝𝑖, 𝑖 = 0…𝑛 − 1, 

from top to bottom. The profile of temperature and mixing ratios are 𝑇𝑖, 𝜂𝑖
𝑎, 𝜂𝑖

𝑤  where w 

represents “water” and a represents “ammonia”. These variables are cell averaged 

quantities from 𝑝𝑖−1/2 to 𝑝𝑖+1/2  over the width of the remaining anticyclone after the 

geostrophic adjustment (section 3.4). The boundary values between cells are calculated by 
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linear interpolation. We define 𝜖𝑤 and 𝜖𝑎 as the molecular weights of water and ammonia 

relative to that of the H2-He mixture. Then the corresponding mass mixing ratios are: 

 
𝑟𝑎 =

𝜂𝑎𝜖𝑎

1 + 𝜂𝑎𝜖𝑎 + 𝜂𝑤𝜖𝑤
, 𝑟𝑤 =

𝜂𝑤𝜖𝑤

1 + 𝜂𝑎𝜖𝑎 + 𝜂𝑤𝜖𝑤
 , 

(3.19) 

Mass per unit area of each cell is: 

 
𝑚𝑖 =

𝑝𝑖+1/2 − 𝑝𝑖−1/2

𝑔
 . 

(3.20) 

Column integrated moisture per unit area above the cell k is: 

 

𝑄𝑘
𝑎 =∑𝑟𝑖

𝑎𝑚𝑖 

𝑘

𝑖=0

, 𝑄𝑘
𝑤 =∑𝑟𝑖

𝑤𝑚𝑖 

𝑘

𝑖=0

 . 
(3.21) 

Column integrated enthalpy per unit area above the cell k is: 

 

𝐻𝑘 =∑𝐶𝑝𝑇𝑖𝑚𝑖

𝑘

𝑖=0

 . 
(3.22) 

If the bottom of layer 2 is located at the bottom of cell k: 𝑝 = 𝑝𝑘+1/2, then all quantities 

above that level are determined by 𝑇𝑘, 𝜂𝑘
𝑎 , 𝜂𝑘

𝑤, at pressure 𝑝𝑘. This is because layer 2 is 

dry adiabatic with constant mixing ratios and layer 1 is moist adiabatic with saturation 

mixing ratios. One simply follows the dry adiabat up to cloud base—the lifting 

condensation level for each gas—and then follows the moist adiabat from that point on. 

This gives 𝑇𝑖, 𝜂𝑖
𝑎, 𝜂𝑖

𝑤, 𝑖 = 0…𝑘, so one can calculate 𝐻𝑘 , 𝑄𝑘
𝑎, 𝑄𝑘

𝑤.  
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Let the initial profile of temperature and mixing ratios to be 𝑇𝑖
0, 𝜂𝑖

𝑎,0, 𝜂𝑖
𝑤,0, 𝑖 = 0…𝑛 − 1. 

We proceed from one entrainment step to the next, during which time the interface moves 

down from pressure 𝑝𝑘−1/2 to pressure 𝑝𝑘+1/2. We assume the preceding entrainment step 

ended with a stable interface at pressure 𝑝𝑘+1/2, as indicated by the dashed line in Fig. S3. 

In other words, the virtual temperature above the interface was greater than that below the 

interface: 

 
𝑇𝑘+1/2

1 + 𝜂𝑘+1/2
𝑎 + 𝜂𝑘+1/2

𝑤

1 + 𝜖𝑎𝜂𝑘+1/2
𝑎 + 𝜖𝑤𝜂𝑘+1/2

𝑤 ≥ 𝑇𝑘+1/2
0

1 + 𝜂𝑘+1/2
𝑎,0 + 𝜂𝑘+1/2

𝑤,0

1 + 𝜖𝑎𝜂𝑘+1/2
𝑎,0 + 𝜖𝑤𝜂𝑘+1/2

𝑤,0 . 
(3.23) 

The cycle begins with the slow cooling step, which reduces 𝐻𝑘 and 𝑇𝑖, with 𝜂𝑖
𝑎, 𝜂𝑖

𝑤, 𝑖 =

0…𝑘 adjusted to maintain the dry/moist adiabat and conserve the total moisture per unit 

area: 

 𝑄𝑘
𝑎 = 𝑄𝑘

𝑎,0, 𝑄𝑘
𝑤 = 𝑄𝑘

𝑤,0 . (3.24) 

where 𝑄𝑘
𝑎,0, 𝑄𝑘

𝑤,0
 are the initial column-integrated moisture per unit area. When equation 

(3.23) becomes an equality, as indicated by the thin solid line in Figure 3.8, the cooling 

step ends and the next entrainment step begins. The proper temperature and moistures at 

cell k: 𝑇𝑘, 𝜂𝑘
𝑎 , 𝜂𝑘

𝑤, when the cooling step ends, are solved using Newton’s iteration method 

to satisfy equations (3.23) and (3.24). After we solved for these quantities, we can go for 

the vertical profiles of  𝑇𝑖, 𝜂𝑖
𝑎 , 𝜂𝑖

𝑤 , 𝑖 = 0…𝑘 by following a dry adiabat and then moist 

adiabat. The column-integrated enthalpy per unit area is bookkept as 𝐻𝑘
+ using equation 

(3.22).  
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The entrainment process moves the interface down to pressure 𝑝𝑘+3/2. The new column-

integrated enthalpy and column-integrated moisture per unit area are 

 𝐻𝑘+1 = 𝐻𝑘
+ + 𝐶𝑝𝑇𝑘+1

0 𝑚𝑘+1 , (3.25) 

 𝑄𝑘+1
𝑎 = 𝑄𝑘

𝑎,0 + 𝑟𝑘+1
𝑎,0𝑚𝑘+1, 𝑄𝑘+1

𝑤 = 𝑄𝑘
𝑤,0 + 𝑟𝑘+1

𝑤,0𝑚𝑘+1 ,  (3.26) 

where 𝑟𝑘+1
𝑎,0 , 𝑟𝑘+1

𝑤,0
 are the initial mass ratios. One then solves, iteratively, for the new values 

of 𝑇𝑘+1, 𝜂𝑘+1
𝑎 , 𝜂𝑘+1

𝑤  that give the values on the left sides of equations (3.25) and (3.26). 

The interface is now at pressure 𝑝𝑘+3/2 . The elapsed time Δ𝜏𝑘  during this cycle is 

computed from the decrease in 𝐻𝑘  needed to drive the inequality in equation (3.23) to 

equality, i.e.: 

 
Δ𝜏𝑘 =

Δ𝐻𝑘
𝐹𝑙𝑢𝑥

=
𝐻𝑘 − 𝐻𝑘

+

𝐹𝑙𝑢𝑥
, 𝐹𝑙𝑢𝑥 = 4.5 W/m2 . 

(3.27) 

If the virtual temperature above this new interface is smaller than the virtual temperature 

below it, the interface is unstable. Then the interface moves one cell further down and the 

entrainment step repeats until a stable interface is found or the interface reaches the deep 

interior.  

 

3.7.7 Discussion about the six occurrences of giant storms in the northern hemisphere 

We feel that the occurrence in the northern summer could be a statistical fluke complicated 

by the difficulty of using discrete statistics on hard-to-define phenomena in a turbulent 

fluid. (Sanchez-Lavega, 1994) defines a Great White Spot as "a kind of rarely-observed 

disturbance that rapidly grows and expands zonally from a single outburst site, and whose 
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visual appearance is that of a complex pattern of bright white clouds confined to a large 

latitude band that breaks with the usual banded telescopic aspect of the planet." From 2004 

to 2010, Cassini observed lightning storms near the center of the westward jet at 35o in the 

southern hemisphere, but not at any other latitude. The season was southern summer in 

2004 and early autumn in 2010, so not all activity is in the northern hemisphere. The 1876 

storm had the shortest lifetime of 26 days, and until the 2010-2011 storm, the 1903 storm 

had the longest lifetime of 150 days. The lifetime of the 2010-2011 storm was ~200 days. 

The fact that we are dealing with real phenomena in a turbulent fluid adds uncertainty to 

statistical inferences. Even if we were dealing with six coin flips, the probability of their 

all coming out the same is 1/32. Since one of the great storms was at a latitude of 2 ± 3°N, 

the number of coins should probably be reduced to five, for which the probability of their 

all falling in one hemisphere is 1/16. What seems more likely to us is a preference for the 

sunlit hemisphere, with a statistical fluke favoring the north. A preference for the sunlit 

hemisphere and for the extrema of the zonal jets might have a physical basis, but we leave 

that for another paper. 

 

3.7.8 Discussion about radiative heat transfer near the cloud base 

Guillot et al. (1994) points out that the giant planets might not be fully convective—that at 

some levels the radiative opacity is small enough that the internal heat flux could be carried 

by radiation. For Saturn, they show that a radiative zone could develop in the layer from 

300 K < T < 450 K, which spans cloud base according to our Figure 3.2. Then the cooling 

shown in Figure 3.5 and Figure 3.8 might not occur, and the atmosphere above cloud base 

might reach a steady state, with 4.5 W m-2 coming in at the bottom and 4.5 W m-2 going 
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out at the top. The interface at cloud base, stabilized by the molecular weight gradient, 

would never cool enough to initiate a giant storm. In this situation, one should remember 

that atmospheric temperature profile has CAPE, which means it has the potential to convect 

when the stable interface is broken by an other mechanism such as the re-evaporation of 

condensates from above (Sugiyama et al., 2014).  

 

However, the existence of a radiative zone is uncertain. It vanishes if water clouds are 

present around this level, as shown in Figure 6 of Guillot. If it vanishes, then giant storms 

can occur. If radiation delivers more than zero but less than the 4.5 W m-2 needed to 

maintain steady state, then the layers above will still cool but at a slower rate. This 

lengthens the interval between giant storms, but it does not prevent them. Despite the 

uncertainty, we shall assume that the time between giant storms is set by the time it takes 

the atmosphere to cool from the warm adiabat to the cold one, as illustrated in Figure 3.2. 
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4.1 Abstract 

The Juno Microwave Radiometer (MWR) is designed to measure the thermal emission 

from Jupiter’s atmosphere from the cloud tops at about 1 bar pressure to as deep as 

hundreds of bars pressure, with unprecedented accuracy (0.1% in the relative limb 

darkening measurement) and spatial resolution (100 km footprints near the equator). 

Unlike infrared spectroscopy, microwave observations of giant planetary atmospheres are 

difficult to interpret due to the breadth of the weighting functions and the absence of 

spectral features. The observed radiance is an intricate consequence of thermodynamic and 

dynamic processes. To sort out these processes, we first review the thermodynamic model 

for the atmosphere laden with multiple condensable species and with variable heat 

capacity. We generalize the expression of moist adiabatic lapse rate and clarify the 

assumptions used in various formulas in the literature. Second, we develop two scalar 

variables that parameterize dynamic alteration of the atmosphere from an equilibrium 

condensation model. Finally, we make use of the state-of-the-art retrieval method – 

Markov Chain Monte Carlo – to determine the joint probability distribution of all 

parameters of interest. This approach fully calibrates error, assesses covariance between 

parameters, and explores the widest possible types of atmospheric conditions in contrast to 

traditional trial-and-error method. We apply this method to simulated Juno/MWR 

observations. We show that the water abundance is constrained to +3.1/-1.5 times solar for 

a normal situation (close to a moist adiabat) and is constrained to an upper limit for an 

extreme situation (close to a dry adiabat). 

 



P a g e  | 105 

 

4.2 Introduction 

Water is the key to a giant planet’s volatile and heavy element history because H, He, and 

O are the three most abundant elements, and a significant fraction of a giant planet’s total 

mass resides in its gaseous envelopes (Helled and Lunine, 2014). Water is also the key to 

a giant planet’s meteorology, which we observe at the cloud level because it provides an 

additional heat source to drive jets, vortices and thunderstorms when it condenses at low 

pressure (Li et al., 2006; Showman, 2007).  

 

Figure 4.1 A compilation of Jupiter’s water abundance inferred by various methods. The 

methods are indicated in the figure and the references are explained in the main text. Water 

abundance is measured in enrichment factor with respect to solar (Asplund et al., 2009). 
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Many attempts have been made to determine Jupiter’s water abundance using 

spectroscopy, disequilibrium chemical species, dynamics and lightning. Their methods and 

preferred values for the water abundances are summarized in Figure 4.1. To be specific, 1) 

The overall O/H ratio derived by spectroscopy near 5 𝜇𝑚 (Bjoraker et al., 2015; Giles et 

al., 2015; Roos-Serote et al., 2004) and visible images (Banfield et al., 1998) is compatible 

with one or more times solar (Asplund et al., 2009), though the results are inconclusive and 

display large spatial variance. 2) Studies of disequilibrium chemical species (CO, PH3, 

etc.), which trace back to Prinn and Barshay (1977) and were further developed by Visscher 

et al. (2010) and Wang et al. (2015) prefer a 2 – 5 times solar abundance of water.  3) The 

size of vortices and the spacing of jets are partially governed by the radius of deformation 

𝐿𝑑~(𝑅Δ𝜃/𝑓
2)1/2 for the observed weather layer (Barcilon and Gierasch, 1970; Ingersoll 

and Cuong, 1981); where 𝑅 ≈ 3.7 × 103  J/ kg-1 K-1 is the gas constant for Jupiter’s 

atmosphere; 𝑓 = 1.75 × 10−4  s-1 is the planetary vorticity and Δ𝜃  is the potential 

temperature difference between the weather layer and the deep atmosphere. Numerical 

simulation of Jupiter’s Great Red Spot favors Ld to be 1000 − 2000 km (Dowling and 

Ingersoll, 1989), which translates into Δ𝜃 ≈ 8 − 33 K. The range is consistent with a three 

to five times solar abundance of water. 4) The collision of comet Shoemaker-Levy 9 with 

Jupiter created ripples propagating at the speed of 450 m/s (Hammel et al., 1995). The 

observed ripples can either propagate in the stratosphere (Walterscheid et al., 2000) or are 

caused by trapped gravity waves in a stable layer produced by moist convection in the 

troposphere (Ingersoll et al., 1994). If they do originate in the troposphere, the water 

abundance is estimated to be five times solar (Ingersoll and Kanamori, 1995). Note that the 

solar abundance of O/H has been updated and the value used in Ingersoll and Kanamori 
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(1995) is about a half of what we use in this chapter (Asplund et al., 2009). 5) The absence 

of giant cyclic storms like those on Saturn suggests an upper limit of 10 times solar 

abundance for water (Li and Ingersoll, 2015). 6) Spatially resolved brightness distribution 

of lightning in Voyager and Galileo images infers that the depth of lightning is beyond 5 

bars (Dyudina et al., 2007), consistent with a water abundance enriched over its solar value.  

 

In contrast to all indirect inferences, the only in situ measurement of the water abundance 

comes from the Galileo Probe, which detected 2 – 5 times enrichment of CH4, NH3, and 

H2S with respect to the solar, but the amount of water was severely subsolar (Niemann et 

al., 1996; Wong et al., 2004). The most plausible explanation that reconciles the Galileo 

probe result and other evidence is that the Galileo probe entered the “Sahara Desert” of 

Jupiter, which is identified by a 5-µm hot spot. Dynamic dry downdrafts dominate this 

region and deplete water from a globally average value (Showman and Ingersoll, 1998). 

The assumption has been further tested using a three dimensional numerical model 

(Showman and Dowling, 2000) with prescribed wave forcing showing that atmospheric 

dynamics could create a trough in the material surface, such that air flowing through the 

hot spots undergoes a temporary increase in pressure by a factor of 2. Though this 

deflection of material surface toward a high pressure is still too small to explain the Galileo 

probe results, it shows that the thermodynamics and dynamics of Jupiter’s atmosphere have 

a complicated interaction and should not be considered separately. 

 

The Juno spacecraft, which will arrive and orbit Jupiter in late 2016, will open a new 

frontier in the field. The Juno Microwave Radiometer (MWR) will measure the limb 



P a g e  | 108 

 

darkening of Jupiter’s atmosphere at six wavelengths and multiple limb angles. Limb 

darkening – defined as the relative change of brightness temperature at a limb angle with 

respect to the nadir one – is a relative measurement, so it is an order of magnitude more 

accurate (~0.1%) than the absolute brightness temperature measurements. Unfortunately, 

the major absorber in the Juno/MWR wavelengths is ammonia, and water has its effect in 

the limb darkening spectra through the change of lapse rate when it condensed. Four 

scenarios for water are studied in Figure 4.2. The one, in which water does not release 

latent heat but has opacity, has a smaller signal than the opposite one, in which water 

releases latent heat but does not have opacity. If the atmospheric vertical structure were 

moist adiabat, the Juno/MWR would be able to retrieve the deep water abundance (Janssen 

et al., 2005). The strategy of the Juno/MWR team begins with this idealized setup. 
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Figure 4.2 Water’s signal in the Juno/MWR spectra. The vertical axis (Jacobian) is the 

fractional change of limb darkening when the deep abundances of water (blue line) and 

ammonia (green line) are changed by 1 times solar. Four scenarios are studied: water does 

not have latent heat or opacity (dotted line); water has opacity but no latent heat (dash-

dotted line); water has latent heat but no opacity (dashed line); water has both latent heat 

and opacity (solid line). Red line is the error limit of limb darkening measurements (0.1%). 

  



P a g e  | 110 

 

However, the atmosphere of Jupiter can be very far from an idealized moist adiabat, as 

evidence from the recent 5 𝜇𝑚 observation of Jupiter’s atmosphere (Bjoraker et al., 2015). 

In fact, studies with the Very Large Array (VLA) show depleted ammonia with respect to 

saturation for all four giant planets in the Solar System (de Pater et al., 2001; de Pater and 

Massie, 1985). The same depletion of ammonia is also observed after Saturn’s Giant Storm 

(Janssen et al., 2013; Laraia et al., 2013) and in the smaller storm in Saturn’s southern 

hemisphere (Dyudina et al., 2007). Li and Ingersoll (2015) modeled the dynamic 

desiccation of ammonia after convection using numerical simulation, and they found that 

geostrophic adjustment processes after convection deplete ammonia from saturation. 

Sugiyama et al. (2014) used a two-dimensional cloud-resolving model to show the explicit 

cycles of convective events. In their model, ammonia and water remain unsaturated during 

the quiescent period of the cycle. Since thermodynamics and dynamics are inevitably 

intertwined, and neither of them are understood well enough to give a conclusive picture 

of the atmosphere, a novel thermodynamic model and dynamic parameterization are 

developed to balance the flexibility to model a variety of dynamic processes and the 

accuracy to retrieve the water abundance from the limb darkening spectra.  

 

Section 4.3 describes the new thermodynamic model applied to the atmosphere laden with 

multiple condensable species and with variable heat capacity. The assumptions used in 

deriving the moist adiabatic lapse rate are clarified. Section 4.4 describes two dynamic 

parameterizations that are used in the retrievals. Section 4.5 describes the retrieval method 

and results on synthetic Juno/MWR observations. Sections 4.6 concludes and discusses the 

potential application of this method to ground based observations. 
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4.3 Thermodynamic model 

The ground work of Jupiter’s thermodynamic model was laid by Weidenschilling and 

Lewis (1973) and Atreya (1987). Their expression for the moist adiabatic lapse rate is used 

in numerous papers from then on. Because Juno/MWR measures limb darkening in the 

precision of parts per thousand, the traditional Jovian thermodynamics – assuming constant 

heat capacity and small mixing ratios of condensates – needs to be updated according to 

the requirement of the new instrument. Here we develop a new thermodynamic model that 

accounts for the temperature dependence of heat capacity and latent heat in a physically 

consistent way. This model generalizes the thermodynamics in the presence of multiple 

condensable species and chemical reactions. It can handle any ratio of condensable vapor 

to dry gas – from zero to infinity – and can be coupled to dynamic parameterization as 

described in section 4.3. 

 

4.3.1 Generalized moist adiabatic model 

The derivation of generalized moist adiabat model largely follows chapter 4 in Emanuel 

(1994) but extends to ideal gas with varying heat capacity as a function of temperature and 

multiple condensable species. It calculates the temperature and moisture of an air parcel 

when it is displaced reversibly and adiabatically. We assume that an air parcel is an ideal 

mixture of dry air, vapors and clouds (condensed liquid and solid), and each gaseous 

component satisfies ideal gas law 𝑃𝑉 = 𝑛𝑅𝑇. Using the first law of thermodynamics for 

one mole of pure ideal gas: 



P a g e  | 112 

 

 

𝑇d𝑆 = d𝐻 − 𝑉d𝑃 

= d𝐻 − 𝑅𝑇d ln𝑃 

= 𝑐𝑝(𝑇)d𝑇 − 𝑅𝑇d ln 𝑃 . (4.1) 

The entropy at temperature T and pressure P is obtained from integrating equation (4.1): 

 𝑆(𝑇, 𝑃) = ∫𝑐𝑝(𝑇)
𝑑𝑇

𝑇
− 𝑅d ln 𝑃 = 𝑠(𝑇) − 𝑅𝑇 ln 𝑃 . (4.2) 

We have neglected the integration constant, and 𝑠(𝑇)  denotes the result of integral 

∫ 𝑐𝑝(𝑇)
𝑑𝑇

𝑇
. For a gas with constant heat capacity cp, 𝑠(𝑇) = 𝑐𝑝 ln 𝑇 . We will use subscript 

d for the dry component of a gas mixture, subscript v for vapor, subscript c for cloud and 

subscript i for i-th condensable component later on. 

 

The entropy of a condensed component is related to the gaseous component through the 

definition of latent heat: 

 

𝐿(𝑇) = 𝑇 × [𝑆𝑣(𝑇, 𝑃) − 𝑆𝑐(𝑇, 𝑃)] , 

𝑆𝑐(𝑇, 𝑃) = 𝑆𝑣(𝑇, 𝑃) −
𝐿(𝑇)

𝑇
 , 

(4.3) 

where 𝑆𝑣(𝑇, 𝑃) is the molar entropy of saturated vapor. Note that by writing the latent heat 

as 𝐿(𝑇), we neglect the pressure dependence of L, but we account for its temperature 

dependence. The first derivative of latent heat is given by Kirchhoff’s law: 

 
d 𝐿(𝑇)

d 𝑇
= 𝑐𝑝(𝑇) − 𝑐𝑐(𝑇) , (4.4) 
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where 𝑐𝑐(𝑇) is the heat capacity of a condensed phase.  

 

Consider one mole of gas-cloud mixture, in which the molar amount of dry air is xd, the 

molar amounts of i-th vapor and cloud are 𝑥𝑣𝑖 and 𝑥𝑐𝑖 respectively. The total molar amount 

of condensable componet i is conserved during phase change, which is denoted as 𝑥𝑡𝑖 =

𝑥𝑣𝑖 + 𝑥𝑐𝑖  and 𝑥𝑑 + ∑ 𝑥𝑡𝑖𝑖 = 1 . The total entropy is the sum of the entropy of each 

component 

 

𝑆(𝑇, 𝑃) = 𝑥𝑑𝑆𝑑(𝑇, 𝑃) +∑ 𝑥𝑣𝑖𝑆𝑣𝑖(𝑇, 𝑃)
𝑖

+∑ 𝑥𝑐𝑖𝑆𝑐𝑖(𝑇, 𝑃)
𝑖

 

= 𝑥𝑑𝑠𝑑(𝑇) +∑ 𝑥𝑡𝑖𝑠𝑣𝑖(𝑇)
𝑖

− 𝑅 (𝑥𝑑 ln 𝑃𝑑 +∑ 𝑥𝑡𝑖 ln 𝑃𝑣𝑖
𝑖

)

−∑ 𝑥𝑐𝑖
𝐿𝑖(𝑇)

𝑇𝑖
 

= �̅�(𝑇) − 𝑅 (𝑥𝑑 ln 𝑃𝑑 +∑ 𝑥𝑡𝑖 ln 𝑃𝑣𝑖
𝑖

) −∑ 𝑥𝑐𝑖
𝐿𝑖(𝑇)

𝑇𝑖
 , 

(4.5) 

where 𝑃𝑑 and 𝑃𝑣𝑖  are the partial pressures defined by 

 𝑃𝑑 =
𝑥𝑑

𝑥𝑑 + ∑ 𝑥𝑣𝑖𝑖
𝑃, 𝑃𝑣𝑖 =

𝑥𝑣𝑖
𝑥𝑑 + ∑ 𝑥𝑣𝑖𝑖

𝑃 , (4.6) 

and �̅�(𝑇) is defined as 

 

�̅�(𝑇) = ∫(𝑥𝑑𝑐𝑝𝑑(𝑇) +∑ 𝑥𝑡𝑖
𝑖

𝑐𝑝𝑣𝑖(𝑇))
𝑑𝑇

𝑇
 

= 𝑥𝑑𝑠𝑑(𝑇) +∑ 𝑥𝑡𝑖
𝑖

𝑠𝑣𝑖(𝑇) . (4.7) 
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Conventionally, entropy is expressed as potential temperature (𝜃 ), which is defined 

implicitly as: 

 𝑆(𝜃, 𝑃0) = �̅�(𝜃) − 𝑅 (𝑥𝑑 ln 𝑃𝑑
0 +∑ 𝑥𝑡𝑖 ln 𝑃𝑣𝑖

0

𝑖
) . (4.8) 

𝑃0 is the reference pressure at which all condensates evaporate. Let 𝑆(𝑇, 𝑃) = 𝑆(𝜃, 𝑃0) 

gives an implicit expression for potential temperature: 

 �̅�(𝜃) = �̅�(𝑇) + 𝑅 ln (
𝑃𝑑
0

𝑃𝑑
) − 𝑅∑ 𝑥𝑡𝑖 ln

𝑥𝑣𝑖
𝑥𝑡𝑖𝑖

−∑
𝐿𝑖(𝑇)

𝑇
𝑥𝑐𝑖

𝑖
 . (4.9) 

The potential temperature defined in equation (4.9) is known as “liquid water potential 

temperature” in Emanuel (1994) (equation 4.5.15), but generalized for gases with non-

constant heat capacities. It represents the temperature of an air parcel when it is 

adiabatically compressed to a reference pressure 𝑃0 such that all its condensates evaporate. 

We also define the dry potential temperature 𝜃𝑑  by dropping the latent heat term in 

equation (4.9): 

 �̅�(𝜃𝑑) = �̅�(𝑇) + 𝑅 ln (
𝑃𝑑
0

𝑃𝑑
) − 𝑅∑ 𝑥𝑡𝑖 ln

𝑥𝑣𝑖
𝑥𝑡𝑖𝑖
  ,  (4.10) 

to describe the potential temperature of an air parcel with no condensate when it is 

adiabatically compressed to a reference pressure 𝑃0. Note that equation (4.9) and (4.10) 

reduce to the nominally defined potential temperature if no vapor has condensed and if the 

heat capacity is constant, as can be seen by setting 𝑥𝑐𝑖 = 0, 𝑥𝑣𝑖 = 𝑥𝑡𝑖, 𝑠̅(𝑇) = 𝑐𝑝 ln 𝑇 and 

�̅�(𝜃) = 𝑐𝑝 ln 𝜃 
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 𝜃 = 𝜃𝑑 = 𝑇(
𝑃𝑑
0

𝑃𝑑
)

𝑅/𝑐𝑝

= 𝑇 (
𝑃0

𝑃
)

𝑅/𝑐𝑝

 . (4.11) 

In the next paragraphs, we will derive the moist adiabatic lapse rate Γ𝑚 =
ln𝑇

ln𝑃
 by taking the 

derivative of equation (4.9) with respect to ln 𝑃 . Another way to derive Γ𝑚  using the 

differential form of the thermodynamic laws are also provided in the appendix section 

4.7.1. The results are the same. 

 

After taking the derivative of equation (4.9) with respect to d ln 𝑃, The left hand side is 

zero and the right hand side has four terms. The first term is 

d�̅�(𝑇)

d ln 𝑃
= 𝑇

d�̅�(𝑇)

d𝑇

d ln 𝑇

d ln 𝑃
= (𝑥𝑑𝑐𝑝𝑑(𝑇) +∑ 𝑥𝑡𝑖

𝑖
𝑐𝑣𝑖(𝑇))Γ𝑚 . 

(4.12) 

The second term is 

𝑅
d(ln𝑃𝑑

0 − ln𝑃𝑑)

d ln 𝑃
= −𝑅

d ln 𝑃𝑑
d ln𝑃

 . 
(4.13) 

The third term is 

−𝑅∑ 𝑥𝑡𝑖
d(ln 𝑥𝑣𝑖 − ln 𝑥𝑡𝑖  )

d ln 𝑃𝑖
= −𝑅∑ 𝑥𝑡𝑖

d ln 𝑥𝑣𝑖
d ln 𝑃𝑖

 . 
(4.14) 
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The fourth term is 

−∑
d

d ln 𝑃
(
𝐿𝑖(𝑇)

𝑇
𝑥𝑐𝑖)

𝑖
 

= −∑ (
𝑥𝑐𝑖
𝑇

d𝐿𝑖(𝑇)

d ln 𝑃
+
𝐿𝑖(𝑇)

𝑇

d𝑥𝑐𝑖
d ln𝑃

−
𝑥𝑐𝑖𝐿(𝑇)

𝑇
Γ𝑚)

𝑖
 

=∑
𝑥𝑣𝑖𝐿𝑖(𝑇)

𝑇

d ln 𝑥𝑣𝑖
d ln 𝑃𝑖

+∑ 𝑥𝑐𝑖
𝑖

(
𝐿𝑖(𝑇)

𝑇
− (𝑐𝑝𝑣𝑖(𝑇) − 𝑐𝑐𝑖(𝑇)))Γ𝑚 . 

(4.15) 

Note that we have used equation (4.4) and 𝑥𝑡𝑖 = 𝑥𝑣𝑖 + 𝑥𝑐𝑖 to derive equation (4.15). These 

four terms are all expressed in three gradients: Γ𝑚, d ln 𝑃𝑑 /d ln𝑃 and d ln 𝑥𝑣𝑖 /d ln 𝑃. The 

first one is what we want and the last two are unknown. Equation (4.6) is used to derive 

the expression for the last two gradients. First take the logarithm of the second equation of 

(4.6) and then take differentials: 

 
d ln

𝑃𝑣𝑖
𝑃
= d ln 𝑥𝑣𝑖 − d ln (𝑥𝑑 +∑ 𝑥𝑣𝑖

𝑖
) 

= d ln 𝑥𝑣𝑖 −
∑ d𝑥𝑣𝑖𝑖

𝑥𝑑 + ∑ 𝑥𝑣𝑖𝑖
 . 

(4.16) 

For a system with a single condensable component, equation (4.16) is trivial to solve for 

d ln 𝑥𝑣𝑖 in terms of d ln 𝑃𝑣𝑖. But for a system with multiple condensable components, a set 

of equations needs to be solved simultaneously. The way to solve this set of equations is to 

solve for the case of two species first and then generalize the solution for multiple species. 

We provide the detailed procedures in the appendix section 4.7.2 and list the solution 

below: 
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 d ln 𝑥𝑖
d ln 𝑃

=
d ln 𝑃𝑣𝑖
d ln𝑃

− 1 +∑ 𝜂𝑗 (
d ln 𝑃𝑣𝑗
d ln 𝑃

− 1) ,
𝑗

 
(4.17) 

where 𝜂𝑖 = 𝑥𝑣𝑖/𝑥𝑑  is the molar mixing ratio with respect to dry air. Second, the vapor 

pressure is proportional to the molar mixing ratio: 

 d ln 𝑃𝑑
d ln𝑃

=
d ln 𝑃𝑣𝑖
d ln𝑃

−
d ln 𝑥𝑣𝑖
d ln 𝑃

 

= 1 −∑ 𝜂𝑗 (
d ln 𝑃𝑣𝑗
d ln𝑃

− 1) 
𝑗

 . 
(4.18) 

xd vanishes in equation (4.18) because it is a constant. Equation (4.17) and (4.18) can be 

further simplified using the Clausius-Clapeyron relation: 

 
d ln 𝑃𝑣𝑖(𝑇)

d ln 𝑇
=
𝐿𝑖(𝑇)

𝑅𝑇
= 𝛽𝑖(𝑇) . (4.19) 

Because all derivative are expanded, we omit (T) in 𝛽(𝑇) and 𝑐𝑝(𝑇) for clarity. 

 d ln𝑃𝑑
d ln 𝑃

= 1 −∑ 𝜂𝑗(𝛽𝑗Γ𝑚 − 1)
𝑗

 , 

d ln 𝑥𝑖
d ln 𝑃

= 𝛽𝑖Γ𝑚 − 1 +∑ 𝜂𝑗(𝛽𝑗Γ𝑚 − 1)
𝑗

 . 
(4.20) 
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Substitute equation (4.20) into equations (4.12) – (4.15) gives  

d�̅�(𝑇)

d ln 𝑃
= (𝑥𝑑𝑐𝑝𝑑 +∑ 𝑥𝑡𝑖𝑐𝑝𝑣𝑖

𝑖
) Γ𝑚 , 

𝑅
d(ln 𝑃𝑑

0 − ln𝑃𝑑)

d ln𝑃
= −𝑅 (1 +∑ 𝜂𝑗

𝑗
−∑ 𝜂𝑗𝛽𝑗Γ𝑚

𝑗
) , 

−𝑅∑ 𝑥𝑡𝑖

d (ln (
𝑥𝑣𝑖
𝑥𝑡𝑖
))

d ln 𝑃𝑖

= −𝑅∑ 𝑥𝑡𝑖 (𝛽𝑖Γ𝑚 − 1 −∑ 𝜂𝑗
𝑗

+∑ 𝜂𝑗𝛽𝑗Γ𝑚 
𝑗

)
𝑖

 , 

−∑
d

d ln 𝑃
(
𝐿𝑖(𝑇)

𝑇
𝑥𝑐𝑖)

𝑖
= 

𝑅∑ 𝛽𝑖𝑥𝑣𝑖 (𝛽𝑖Γ𝑚 − 1 −∑ 𝜂𝑗
𝑗

+∑ 𝜂𝑗𝛽𝑗Γ𝑚 
𝑗

)
𝑖

+∑ 𝑥𝑐𝑖
𝑖

(𝑅𝛽𝑖 − (𝑐𝑝𝑣𝑖 − 𝑐𝑐𝑖)) Γ𝑚 . (4.21) 

The four equations sum to zeros. Collecting all terms involving Γ𝑚 to the left hand side and 

all other terms to the right hand side results 

 

Γ𝑚 =
1 + ∑ 𝜂𝑖𝛽𝑖𝑖

𝑐�̂�/𝑅 +
∑ 𝜂𝑖𝛽𝑖𝑖

2
+ (∑ 𝜂𝑖𝛽𝑖𝑖 )2

1 + ∑ 𝜂𝑖𝑖

 , 

𝑐�̂� =
𝑐�̅�

𝑥𝑑 + ∑ 𝑥𝑣𝑖𝑖
=
𝑥𝑑𝑐𝑝𝑑 +∑ 𝑥𝑣𝑖𝑐𝑝𝑣𝑖𝑖 + ∑ 𝑥𝑐𝑖𝑐𝑝𝑐𝑖𝑖

𝑥𝑑 + ∑ 𝑥𝑣𝑖𝑖
 . 

(4.22) 

The above expression for reversible moist adiabatic lapse rate is exact under the following 

approximations: 

1) The air parcel can be considered as an ideal mixture and follows ideal gas law. 
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2) The specific volume of condensates is neglected. 

3) The pressure dependence of latent heat is neglected.  

If the implicit expression of potential temperature in equation (4.9) is used instead of 

equation (4.22), the second approximation can be relaxed because the Clausius-Clapeyron 

relation is not used in deriving equation (4.9). By assuming a single condensable 

component and constant heat capacity, equation (4.22) reduces to the moist adiabatic lapse 

rate derived by Emanuel (1994) (equation 4.7.5) after rearrangement of terms. By further 

assuming small concentration of condensable species, equation (4.22) reduces to that 

derived by Weidenschilling and Lewis (1973). Furthermore, equation (4.22) reduces to the 

Clausius-Clapeyron relation for a single component steam atmosphere (𝜂 → ∞):  

 
d ln𝑇

d ln 𝑃
= lim

𝜂→∞

𝑅

�̂�𝑝

𝜂𝐿(𝑇)
𝑅𝑇

𝜂𝐿2(𝑇)

�̂�𝑝𝑅𝑇
2

=
𝑅𝑇

𝐿
 . (4.23) 

 

4.3.2 NH3 solution 

The amount of gas dissolved in a solution is described by two limit laws: Henry’s law and 

Raoult’s law. Henry’s law states that for a sufficiently dilute solution, the partial pressure 

of the solute (P) is proportional to the molar concentration of the solute (c). The 

proportionality constant is Henry’s law constant (𝑘𝐻). In mathematical form: 

Henry’s law: lim
𝑐→0

𝑃(𝑐, 𝑇) → 𝑐𝑘𝐻(𝑇) (4.24) 

On the other hand, Raoult’s law states that, under the condition of ideal solution, the partial 

pressure of each component in the solution is equal to the vapor pressure of this pure 
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component (P*) multiplied by the molar mixing ratio in the solution. For non-ideal solution, 

such as the NH3-H2O system, Raoult’s law applies to the limiting case when the solute 

(ammonia) is in large excess. That is to say: 

Raoult’s law: lim
𝑐→1

𝑃(𝑐, 𝑇) → 𝑐𝑃∗(𝑇) (4.25) 

Various empirical functions have been developed to calculate the partial vapor pressures 

of ammonia and water as a function of temperature and ammonia concentration in the 

liquid: Weidenschilling and Lewis (1973) used a fifth-order polynomial and Atreya and 

Romani (1985) used a spline interpolation of twenty coefficients. We find that it is 

unnecessary to use a complicated expression because Henry’s law adequately describes 

how ammonia dissolves into water for a wide range of possible compositions of Jupiter's 

atmosphere. So we design a simple empirical function that only depends on one parameter, 

Henry’s law coefficient 𝑘𝐻(𝑇). The formula is: 

 𝑃(𝑐, 𝑇) = (
𝑃∗(𝑇) − 𝑘𝐻(𝑇)

2
× cos(𝜋(1 − 𝑐)) +

𝑃∗(𝑇) + 𝑘𝐻(𝑇)

2
) 𝑐 . (4.26) 

It is easy to verify that the function asymptotically converges to Henry’s law at the low end 

of the concentration and converges to Raoult’s law at the high end with a continuous 

derivative: 

 

𝑃(0, 𝑇) = 0, 𝑃(1, 𝑇) = 𝑃∗(𝑇) , 

𝜕𝑐𝑃(𝑐, 𝑇)|𝑐=0 = 𝑘𝐻(𝑇), 𝜕𝑐𝑃(𝑐, 𝑇)|𝑐=1 = 𝑃
∗(𝑇) . 

(4.27) 

Figure 4.3 shows the excellent agreement between the partial pressures calculated by 

formula (4.26) and the laboratory measurements. If both water and ammonia have five 
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times solar abundance – 4.7 × 10−3 and 6.5 × 10−4 in molar mixing ratio respectively – 

Jupiter’s water cloud forms at around 7 bars at 300 K. Partial pressure of ammonia near 

the water cloud bottom is 𝑃(𝑐, 𝑇) = 6.5 × 10−4 × 7 × 105 = 455 pa . Using equation 

(4.26) to solve for c at 𝑇 = 300 K gives 𝑐 = 4.5 × 10−3. The molar amount of ammonia 

dissolved in the water cloud is proportional to the total amount of liquid in the cloud, which 

is highly unknown. But the maximum molar amount of dissolved NH3 in the liquid in one 

mole of gas, by assuming all water condenses as liquid at the cloud bottom, is about 4.5 ×

10−3 × 4.7 × 10−3mol = 1.8 × 10−5 mol, which is about 3% of the total amount of NH3 

vapor. Moreover, the “fresh” cloud model developed by Wong et al. (2015) predicts orders 

of magnitude fewer cloud particles than the maximum amount of possible cloud calculated 

by the equilibrium condensation model. Because of the large uncertainty on the amount of 

cloud and the small value of possible dissolved ammonia, incorporating the solution 

chemistry will improve neither the temperature profile nor the vertical distribution of NH3. 

Thus, the solution chemistry described in this section is not included in the nominal 

thermodynamic model, but will be provided as an option for future investigation. 
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Figure 4.3 Partial pressure of ammonia and water over aqueous ammonia solution at 300 

K. The dashed line going from bottom left to top right is the partial pressure of ammonia 

over the saturation vapor pressure of pure ammonia. The dashed line going from top left 

to bottom right is that of water. Two green lines indicate the Henry’s law limit (bottom) 

and Raoult’s law limit (top). The Henry’s law constant is 105. Blacks dots are laboratory 

measurements (Perman, 1903) 
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4.3.3 NH4SH cloud 

The chemical reaction that forms the solid NH4SH cloud is: 

 NH3(g) + H2S(g) == NH4SH(s) , (4.28) 

where “g” stands for gas phase and “s” stands for solid phase. It forms when the product 

of the partial pressure of NH3 and H2S exceeds an equilibrium constant (K), which is given 

in Lewis (1969) by: 

 ln 𝐾 = 14.82 −
4705

𝑇
 . (4.29) 

This reaction is predicted by the chemical equilibrium model and was confirmed in the 

laboratory experiment (Magnusson, 1907). Yet, whether this cloud layer exists on Jupiter 

is still controversial. Another form of cloud that might condense is (NH4)2S (personal 

communication with Sushil Atreya and Maarten Roos). The details of this reaction and 

how it removes H2S gas were described in Weidenschilling and Lewis (1973), and will not 

be repeated here. Instead, we emphasize that including the condensation of the NH4SH 

cloud will reduce the amount of NH3 gas by 12%, so this reaction must be taken into 

account for the accurate modeling of the thermodynamic process. Adding this reaction into 

our previous entropy formulation is straightforward. Similar to equation (4.3), we wrote 

the entropy of NH4SH solid as: 

 𝑆NH4SH(𝑇, 𝑃) = 𝑆NH3(𝑇, 𝑃) + 𝑆H2S(𝑇, 𝑃) −
𝐿NH4SH(𝑇)

𝑇
 . (4.30) 

The entropy of the NH4SH cloud is: 
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𝑥NH4SH (𝑆NH3(𝑇, 𝑃) + 𝑆H2S(𝑇, 𝑃) −
𝐿NH4SH(𝑇)

𝑇
) 

= 𝑥NH4SH𝑆NH3(𝑇, 𝑃) + 𝑥NH4SH𝑆H2S(𝑇, 𝑃) − 𝑥NH4SH
𝐿NH4SH(𝑇)

𝑇
 . 

(4.31) 

Define 𝑥𝑡NH3 = 𝑥𝑣NH3 + 𝑥𝑐NH3 + 𝑥NH4SH and 𝑥𝑡H2S = 𝑥𝑣H2S
+ 𝑥𝑐H2𝑆 + 𝑥NH4SH as the total 

molar mixing ratio of NH3 and H2S. Equation (4.5) bears the same expression after 

combining the first two terms into the first summation and the third term in the second 

summation. Therefore, the expression for entropy, equation (4.9), is correct when the 

NH4SH cloud is added in as the latent heat term. 

 

4.3.4 Numerical method and model verification 

There are two ways to calculate the moist adiabatic profile. One way is to integrate equation 

(4.22) vertically, while keeping track of the condensed species. This method is faster to 

calculate, but its accuracy depends on the vertical resolution, especially on the ability to 

locate the cloud bottom. Large numerical errors will be introduced if the cloud bottom is 

off by one grid point. In order to calculate the moist adiabatic profile accurately, one has 

to insert numerical grids to represent the cloud bottom adaptively. Another drawback of 

this method is that it fails to calculate the triple point equilibrium correctly. At the triple 

point of one substance, the temperature gradient is zero. The liquid phase coexists with the 

solid phase to keep a constant temperature and partial pressure. This process is not 

accounted for in equation (4.22).  

 



P a g e  | 125 

 

Those drawbacks are avoided by using an alternative approach, which is to solve equation 

(4.9) directly for a constant 𝜃 , including the constraints from condensation of clouds. 

Because equation (4.9) is nonlinear, an iterative method shall be used. At a specified 

pressure, the iteration starts from an initial guess of temperature. Then the saturation vapor 

pressure of a condensable species is calculated. If it is smaller than the partial vapor 

pressure, the species condenses either to a liquid or to a solid depending on the temperature. 

The condensing process is done sequentially for all condensable species to reach an 

equilibrium state. This process has to be repeated several times because condensation of 

one species will change the partial pressure of the others. After that, the entropy is 

computed for the equilibrium state. If the entropy is not the same as the required entropy, 

another iteration begins with an updated temperature calculated by the secant method. The 

iteration usually converges in a few tens of steps.  

 

Special consideration needs to be applied at the triple point, because the above method only 

applies to a pure liquid phase or solid phase. In the fusion process, entropy takes a finite 

jump between those two states although temperature maintains. If the required entropy is 

in the middle of the above two situations, the iteration will stop at the correct temperature 

but the partitioning of liquid and solid is not right. A practical and elegant way to handle 

the triple point equilibrium is to calculate two equilibrium states at 𝑇1 = 𝑇𝑡𝑟 + Δ𝑇 and 

𝑇2 = 𝑇𝑡𝑟 − Δ𝑇, representing a pure liquid phase and a pure solid phase. 𝑇𝑡𝑟 is the triple 

point temperature and Δ𝑇 = 10−4 is a very small number. Because entropy is a linear 

function of mixing ratio during fusion, the equilibrium state at the triple point is given by 

a linear interpolation between the liquid state and the solid state: 
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 𝑥 =
𝑠2 − 𝑠0
𝑠2 − 𝑠1

𝑥1 +
𝑠0 − 𝑠1
𝑠2 − 𝑠1

𝑥2 , (4.32) 

where x is the molar mixing ratio; s1 and s2 are the entropies at two states; s0 is the required 

entropy. 

 

Since potential temperature is explicitly conserved, all calculated thermodynamic 

quantities are precise to machine precision. Moreover, the later method opens up a simple 

and flexible way to calculate the secondary alteration of the atmosphere by dynamics or 

microphysics. For example, it would be straightforward to calculate the temperature 

profile, given a prescribed distribution of potential temperature. Due to the benefits above, 

we use the second method in our thermodynamic model.  

 

We test the correctness of our model by comparing the adiabatic lapse rate against the 

analytical solution of temperature gradient derived in equation (4.22). The gases included 

in the nominal Jovian atmosphere are H2, He, CH4, NH3, H2S and H2O. Their solar 

abundances, standard enrichment factors and heat capacities are listed in Table 4.1. The 

heat capacity of hydrogen depends upon the ratio of ortho-hydrogen to para-hydrogen, and 

upon the rate at which they equilibrate (Conrath and Gierasch, 1984; Massie and Hunten, 

1982). For a simple and benchmark calculation, we assume that the ortho- to para- ratio is 

fixed at 3:1 (normal hydrogen) and the heat capacities for other species are constant. The 

condensed phases are NH3(l), NH3(s), H2O(l), H2O(s), NH4SH(s), where “l” stands for 

liquid phase. NH3(l) only exists in the form of liquid solution when solution chemistry is 
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enabled. The formula for calculating saturation vapor pressures and the associated latent 

heats are provided in Table 4.2. The adiabatic temperature profile is generated to match a 

target temperature at the one-bar level. Currently, it is chosen to be 166 K (Seiff et al., 

1998). Figure 4.4 (a) shows the vertical profiles of NH3, H2O and H2S. H2O, NH4SH and 

NH3 cloud layers form at 7.6 bar, 2.4 bar and 0.83 bar, respectively. A small but visible 

kink near water mixing ratio equals 10-3 is due to triple point equilibrium. The increase of 

temperature due to freezing is recognized as a horizontal segment in the dry potential 

temperature profile in Figure 4.4 (b). Figure 4.4 (c) compares the numerical adiabatic lapse 

rate and its analytical value calculated by equation (4.22). They match exactly except for 

two places: one is at the triple point of water and the other is at the NH4SH cloud base. The 

analytic solution converges to the numerical solution at the wings near the triple point. 

Because the formation of NH4SH cloud does not satisfy the Clausius-Clapeyron relation 

the analytic solution cannot be applied to NH4SH condensation. For the expression of lapse 

rate including NH4SH cloud, readers are referred to Atreya and Romani (1985). 

Table 4.1 Standard Jovian atmosphere. 

Molecule 

Solar 

abundance 

(relative to H2) 

Enrichment factor 

(relative to solar) 

Heat capacity 

(J mol-1 K-1) 

H2 1. 1. 21.8-28.9 

He 0.1941 0.808 20.79 

CH4 6.04×10-4 3.92 35.76 

NH3 1.52×10-4 5.00 35.70 

H2S 2.96×10-5 3.01 34.22 
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H2O 1.10×10-3 5.00 33.50 

 

Table 4.2 Saturation vapor pressure and latent heat. The unit of 𝑃NH3 or 𝑃H2S in the last 

expression is bar, otherwise it is dyn/cm2. The value of latent heat is evaluated at triple 

point. The latent heat at an arbitrary temperature is calculated using equation (4.4). 

Condensation Saturation vapor pressure (ln dyn/cm2): 

Latent heat 

(J mol-1 ) 

H2O(g) == H2O(s) 

ln 𝑃H2O = −
5631.12

𝑇
− 8.3636 

+ 8.2312 ln 𝑇 − 3.8614

× 10−2 𝑇 

+ 2.7749 × 10−5 𝑇2 

51.01 

H2O(g) == H2O(l) 

ln 𝑃H2O = −
2313.0

𝑇
− 164.03 

+38.054 ln 𝑇 − 1.3844

× 10−1 𝑇 

+7.4465 × 10−5 𝑇2 

45.01 

NH3(g) == NH3(s) 
ln 𝑃NH3 = −

4122.0

𝑇
+ 41.679

− 1.8163 ln 𝑇 

31.20 

NH3(g) == NH3(l) 

ln 𝑃NH3 = −
4409.4

𝑇
+ 76.864 

−8.4598 ln 𝑇 + 5.5103

× 10−3 𝑇 

+6.8046 × 10−6 𝑇2 

23.50 

NH3(g) + H2S(g) == 

NH3SH(s) 
ln 𝑃NH3 + ln𝑃H2S = 14.82 −

4705

𝑇
 

93.12 
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Figure 4.4 Standard Jovian troposphere. Panel (a): vertical distribution of NH3 (green), H2S 

(magenta) and H2O (blue); their enrichment factors are 5, 3 and 5 respectively. Panel (b): 

temperature (dashed line, top axis) and dry potential temperature (solid line, bottom axis) 

profiles. The dry potential temperature is referenced at 1000 bar and is defined in equation 

(4.11). Panel (c): numerical and analytical adiabatic lapse rate. Blue dashed line is an 

approximation of adiabatic lapse rate by finite difference using the temperature profile in 

panel (b). Red solid line is the analytical solution in equation (4.22). 
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4.4 Dynamic parameterization 

The Juno/MWR measures brightness temperature at six wavelengths and multiple limb 

angles. We cannot expect to extract more than six pieces of information from the spectra, 

and we will probably extract fewer than six. Moreover, the opacity in these wavelengths is 

dominated by ammonia absorption, and that of water is ten times smaller. As a result, the 

signal of water in the microwave spectrum resides in the change of lapse rate when water 

condenses. Studying the possible dynamic effect on shaping the temperature and 

distribution of ammonia is indispensable for correctly interpreting the Juno/MWR 

observations. This section discusses two scalar parameters that reflect the dynamic 

alteration of the atmosphere. We will demonstrate that these two parameters cover a wide 

range of atmospheric conditions including the Galileo Probe site, moist adiabat and dry 

adiabat. 

 

4.4.1 Stretch parameter 

The stretch parameter (S) is motivated by observations from the Galileo probe, by the 

numerical experiment that shows a downward deflection of material surfaces (vertical 

stretching of the air column) in Showman and Dowling (2000), and by an analytical wave 

saturation model by Friedson (2005). We simplify the dynamic distortion of the material 

surface to a scalar “stretch parameter” (S), so that the final pressure of the material surface 

(𝑝2) is S times its original pressure (𝑝1) : 𝑝2 = 𝑆 × 𝑝1. During the vertical stretch of the 

column, air parcels conserve their potential temperature and moisture contents. The stretch 

parameter effectively reduces the relative humidity of the atmosphere while maintaining 

the magnitude of stratification. We find that the vertical abundances of NH3, H2S and H2O 
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measured in situ by the Galileo Probe are consistent with 𝑆 = 4 (shown in Figure 4.5). 

Moreover, statically stable layers predicted by equilibrium condensation are preserved but 

displaced to higher pressures. In our stretched model, three stable layers occur at ~1.5 bars, 

~7 bars and ~17 bars, which match the locations of stable layers at 0.5-1.7 bars, 3-8.5 bars 

and 14-20 bars derived by Magalhaes et al. (2002) from the T-sensor data of the Galileo 

probe. Because the value S = 1 gives an unaltered saturated moist adiabat, and S = 4 gives 

the observed mixing ratios of NH3, H2S, and H2O from the Galileo, by varying S, one can 

model any profile in between.  

 

Figure 4.5 Galileo probe results fitted by stretch parameter S = 4. Green lines represent 

NH3 mixing ratio; blue lines represent H2O mixing ratio and magenta lines represent H2S 

mixing ratio. Dashed lines show the equilibrium condensation model with five times solar 

abundance for both NH3 and H2O. They do not match the Galileo probe results (Wong et 

al., 2004), which are the data points with error bars. The uppermost NH3 point is simply an 

upper bound. Solid lines show the same amount of enrichment but with S = 4.  
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We constructed several typical atmospheric profiles and performed pencil beam radiative 

transfer calculations using the molecular opacity in Juno Atmosphere Model and Radiative 

Transfer (JAMRT) code to identify parameter sensitivity. Figure 4.6 illustrates the sensitive 

channels for NH3, H2O and stretch parameter. The signal of the stretch parameter is largest 

in small wavelength channels (< 8 cm) and vanishes at wavelengths longer than 40 cm. 

This is because the effect of vertical stretching subsides in the subcloud layer, where the 

mixing ratio and potential temperature is constant. The signal of water is weak but 

noticeable at wavelengths from 8 cm to 40 cm when 𝑆 = 1. However, the signal of water 

disappears when 𝑆 > 2 (not shown). As a result, retrieving the stretch parameter helps to 

identify the place where the dynamic alteration is the least (𝑆 ≈ 1) and is therefore suitable 

for the retrieval of deep water abundance. The signal of ammonia dominates all spectra 

because it is the major absorber. Since both stretching and water have little effect on the 

wavelength longer than 40 cm, the long wavelength channel can be used to determine the 

deep abundance of ammonia. 
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Figure 4.6 Sensitive channels for NH3, H2O, and stretch parameter. Lines in the figure show 

synthetic Juno/MWR measurements and they are grouped in three colors. Red curves 

represent varying the stretch parameter while keeping H2O and NH3 constant. Blue curves 

represent varying the H2O abundance while keeping NH3 and stretch constant. Green 

curves represent varying the NH3 abundance while keeping H2O and stretch constant. 

Black triangles at the bottom mark the wavelengths of Juno/MWR. The sensitive channels 

for each parameter are indicated in the figure. 

 

4.4.2 Mixing parameter 

Another possible parameter is the mixing parameter (M), which linearly scales the potential 

temperature profile 𝜃𝑠(𝑝) from a stretched moist adiabat to a dry adiabat according to the 

expression: 

 𝜃(𝑝) = 𝑀𝜃0 + (1 −𝑀)𝜃𝑠(𝑝), 0 ≤ 𝑀 ≤ 1, (4.33) 
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where 𝜃0 is the potential temperature in the subcloud layer, representing a dry adiabat, and 

𝜃𝑠(𝑝) is the potential temperature profile of a stretched moist adiabat. After the temperature 

profile 𝜃(𝑝) is constructed. The mixing ratios of NH3 and H2O in the result profile are 

equal to those in the stretched moist adiabat. The purpose of designing this mixing 

parameter is to investigate the effect of temperature only while keeping the same moisture 

as the stretched moist adiabat. Therefore we can have another variable to change that 

complements the stretch parameter, as illustrated in Figure 4.7. 

 

Given a reference temperature and pressure (𝑇𝑟 , 𝑃𝑟)  at the top of troposphere, the 

temperature profile of the whole troposphere is bounded by two end members in the 

formula, with 𝑀 = 0 being a moist adiabat and 𝑀 = 1 being a dry adiabat. Though a 

saturated atmosphere with a dry adiabatic lapse rate would be unstable and unrealistic, it 

defines the upper limit of the brightness temperature for a saturated atmosphere because 

temperature is given at the top. An unsaturated atmosphere with a dry adiabatic lapse rate 

can be stable and is possible to exist. The mixing parameter explores such possibilities. 

 

In the presence of both stretch and mixing, we first apply the stretch parameter to create a 

stretched and unsaturated atmosphere 𝜃𝑠(𝑝). Then, we apply equation (4.33) to scale the 

potential temperature profile (M). The former process represents the vertical displacement 

of an air parcel caused by atmospheric waves and the latter process represents the possible 

reduction of temperature gradient by mixing. Figure 4.7 shows the nadir brightness 

temperature residuals relative to a brightness temperature distribution obtained from a 

reversible moist adiabatic atmosphere. Being relatively orthogonal to the effect of 
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stretching, the effect of mixing increases with wavelength because the temperature 

difference between the moist and dry adiabat is largest in the subcloud layer if the 

temperature is given at the top.  

 

Physically, the mixing process also complements the stretch process because mixing 

changes the magnitude of stratification but not the location of the stratified layer, while 

stretching alters the latter instead of the former. M and S separate two major factors 

contributing to how Jupiter’s atmosphere is stratified.  
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Figure 4.7 Residual nadir brightness temperature (TB) distribution. Blue dashed lines show 

the residual TB distribution of several stretched atmospheres (S = 1.3, 2, 2.8 and 4 from 

bottom to top). Red dashed lines show several mixed atmospheres (M = 0.25, 0.5, 0.75 and 

1) from bottom to top. The black solid line indicates the atmosphere with S = 4 and M = 1. 

Numbers at the top axis are the nadir brightness temperature of a reversible moist adiabat. 
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4.5 Retrieval method and results 

In order to receive signals from great depths, the Juno/MWR must sample a portion of the 

spectrum where the absorption coefficients are weak and the spectral features are nearly 

absent. Therefore, the retrieved parameters from the spectra are usually highly correlated. 

The prevailing method of fitting the microwave spectra is still done by forward modeling 

and trial-and-error. Here we use the Markov Chain Monte Carlo (MCMC) method 

(Goodman and Weare, 2010) to fit the spectra. The MCMC method is adept at overcoming 

local extrema and obtaining a global extremum. In addition, it computes the complete joint 

probability distribution between parameters, and can be displayed graphically. The 

application of the MCMC method to retrieval problems in astrophysics has been 

successfully implemented and tested in the literature, including a detailed comparison of 

the strengths and weakness against a more traditional Levenberg-Marquardt method (Line 

et al., 2013). However, the application of the MCMC method toward inverting the 

microwave spectra has not yet been studied. This novel approach explores a new field in 

microwave spectrometry.  

 

We model the synthetic observation by 

 𝑇�̃�(𝜆𝑖, 𝜃𝑗) = 𝑇𝐵(𝜆𝑖, 𝜃𝑗)(1 + 𝜖(𝜆𝑖)) + 𝛾(𝜆𝑖, 𝜃𝑗) , (4.34) 

where 𝑇�̃�(𝜆𝑖, 𝜃𝑗) is the synthetic observation of brightness temperature at wavelength 𝜆𝑖 

and limb angle 𝜃𝑗 , with 𝑇𝐵(𝜆𝑖, 𝜃𝑗) being the true brightness temperature. Two types of 

noise terms, 𝜖(𝜆𝑖) and (𝜆𝑖, 𝜃𝑗) , represent the fractional error in brightness temperature and 

the absolute error in limb darkening, respectively. They have zero means and are 
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independent. Their standard deviations are 3% and 0.5 K respectively (Janssen et al., 2005). 

The covariance matrix is 

 Σ(𝑖; 𝑗, 𝑖′; 𝑗′) =  𝑇𝐵(𝜆𝑖, 𝜃𝑗)𝑇𝐵(𝜆𝑖′ , 𝜃𝑗′)Var(𝜖)𝛿𝑖𝑖′ + Var(𝛾)𝛿𝑖𝑖′𝛿𝑗𝑗′  , (4.35) 

where 𝛿𝑖𝑗 is the Kronecker delta, and Var stands for variance. The state vector is composed 

of five parameters: X is the deep ammonia mixing ratio, Y is the deep water mixing ratio 

(both are ratios to solar abundance), S is the stretch parameter and M is the mixing 

parameter, Θ is the temperature at the one-bar level, which can be estimated from ground 

based observations. Assuming 𝜖 and 𝛾 have Gaussian statistics, the log probability of an 

observation is: 

 ln 𝑃(𝑇�̃� | 𝑋, 𝑌, 𝑆,𝑀, Θ) ∝ −
1

2
(𝑇�̃� − 𝑇𝐵)

𝑇
Σ−1(𝑇�̃� − 𝑇𝐵) −

1

2
ln|Σ| . (4.36) 

Using Bayes’ theorem, the log probability of parameters given an observation is: 

 

ln 𝑃(𝑋, 𝑌, 𝑆,𝑀, Θ| 𝑇�̃�) ∝ ln𝑃(𝑇�̃� | 𝑋, 𝑌, 𝑆,𝑀, Θ) 

+ ln𝑃(𝑋) + ln 𝑃(𝑌) + ln 𝑃(𝑆) + ln 𝑃(𝑀) 

+ ln𝑃(Θ) . 

(4.37) 

The last five terms are the prior probabilities of the five parameters. The MCMC algorithm 

randomly draws (𝑋, 𝑌, 𝑆,𝑀, Θ) from possible combinations in parameter space and adds 

the new state to the Markov chain – a sequence of states that are generated – if the 

probability calculated by equation (4.36) is greater than the previous one, otherwise the 

new state will be added to the Markov chain contingent on a number known as the 

acceptance ratio. The final statistics is obtained by gathering all states in the chain. The 

number density of the states in the parameter space is propotional to the posterior 

probability.  
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In the current stage, we test the retrieval result on a pencil beam radiation model, though 

the real beam pattern has a finite width and may observe spatially inhomogeneous 

atmospheres. First, we study a normal situation with moderate stretch and mixing. Five 

limb angles starting from the nadir and separated by 15o are considered. The deep ammonia 

(X) and water (Y) abundances are set to be 5 times solar; the stretch parameter (S) is 2; the 

mixing parameter (M) is 0.5. Temperature at one bar level (Θ) is 166 K (Seiff et al., 1998). 

Synthetic spectrum is generated according to equation (4.34). Prior probabilities for (X, Y, 

S and M) are chosen to be uniformly distributed within 0 ≤ 𝑋 ≤ 10, 0 ≤ 𝑌 ≤ 20, 1 ≤ 𝑆 ≤

5 and 0 ≤ 𝑀 ≤ 1.  The prior probability for Θ is a Gaussian distribution with a mean of 

166 K and a standard deviation of 1 K. The algorithm uses 24 Markov chains with 20,000 

states in each chain to explore the entire parameter space. We will express the fitted result 

and uncertainties in the symbol 𝐴−𝛿
+𝜎, where 𝐴 − 𝛿, 𝐴, and 𝐴 + 𝜎 represent the 16th, 50th and 

84th percentile of the samples in the marginal distribution.  

 

Figure 4.8 shows the joint distribution between all pairs of parameters and the marginal 

distribution of each parameter. It is not surprising to see that the ammonia abundance 

(4.96−0.09
+0.19) and the stretch parameter (2.03−0.11

+0.17) are well constrained, as ammonia is the 

major absorber. Their marginal posterior distributions are almost symmetric about the 

mean value. The water abundance is reasonably constrained to 4.55−1.55
+3.11 times solar, given 

that the true value is 5. The mixing parameter (0.48−0.29
+0.24) is poorly constrained and has a 

large correlation with the water abundance. This is because adding water reduces the lapse 

rate, and mixing with a dry adiabat increases it. Thus high water and high mixing ratio 
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produce nearly the same brightness temperature as low water and low mixing ratio. The 

correlation between water and mixing is skewed. Water abundance is slightly biased 

toward low values when mixing is small (< 0.7) and largely biased toward high values 

when mixing is large (> 0.7). Another important result from this study is that Θ is 

independent of X, Y, S and M, which is equivalent to saying 

 𝑃(Θ, 𝑋, 𝑌, 𝑆,𝑀) = 𝑃(Θ) × 𝑃(𝑋, 𝑌, 𝑆,𝑀) . (4.38) 

This is because the limb darkening depends more on the relative humidity of ammonia and 

changes in the lapse rate but less on the absolute temperature. The independence of Θ and 

other parameters allows a large tolerance on the error in estimating the temperature of the 

moist adiabat at 1 bar level, i.e. the posterior distributions of (X, Y, S and M) will be the 

same for any reasonable value of Θ. 

 

Second, we study an extreme situation where the temperature profile is a dry adiabat (𝑀 =

1). Other parameters remain the same. Because of the independency, we don’t retrieve the 

value of Θ in this study. The posterior distributions are displayed in Figure 4.9. Like the 

normal case, the ammonia abundance (4.75−0.07
+0.16) and the stretch parameter (1.85−0.08

+0.10) are 

adequately retrieved but the water abundance is severely biased toward low values 

(1.49−1.02
+2.61). The distribution of the mixing parameter (0.79−0.43

+0.16) peaks at 𝑀 = 1 and has 

a long tail toward 𝑀 = 0. On the other hand, even for the extreme situation, it is possible 

to put an upper limit on the water abundance (high values of water would be unlikely) and 

the mixing parameter indicates whether we are in such an extreme situation. 
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Figure 4.8 Joint and marginal probability distribution of parameters. Each panel with 

shaded contours shows the joint distribution (covariance) of two parameters in the state 

vector. The contours show the number density of samplings. The panels in the diagonal 

show the normalized marginal distribution of a single parameter. The blue lines show the 

true values of the parameters used to generate the synthetic data. 
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Figure 4.9 Similar to Figure 4.8, but for an extreme situation (dry adiabat 𝑀 = 1).  
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4.6 Conclusion 

In this chapter, we reviewed the calculation of moist adiabatic lapse rate and various 

assumptions involved in deriving the expression. We pointed out a general expression that 

holds for multiple condensable species, varying heat capacity and arbitrary number of 

mixtures. We discussed the importance of aqueous ammonia solution and the formation of 

NH4SH cloud. We found that less than 3% of ammonia gas will dissolve in water cloud 

and it is very likely that the number will be orders of magnitude lower (Wang et al., 2015). 

Therefore ammonia solution is not important for the calculation of temperature profile and 

the distribution of ammonia gas. On the contrary, the NH4SH cloud will reduce the amount 

of ammonia gas by 12%, which is significant for an accurate thermodynamic modeling of 

Jupiter’s atmosphere.  

 

We introduced two dynamic parameters that alter the atmosphere from the equilibrium 

condensation model. The stretch parameter (S) describes the vertical displacement of an air 

parcel. We found that the distribution of NH3, H2S and H2O measured by the Galileo Probe 

can all be fitted by S = 4. The mixing parameter (M) scales the atmospheric temperature 

profile from a dry adiabat to a moist adiabat. Their effects are complementary because the 

former alters the location of a stratified layer and the latter alters the magnitude of the 

stratification. Given the polar orbits of Juno, it is then possible to extract the dynamic 

information from the spectrum and construct a latitudinal profile of dynamic parameters. 

This approach extends the Juno/MWR’s functionality: from retrieving the deep water 

abundance to retrieving the latitudinally varying dynamic effects. These observational 
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constraints are crucial for understanding subcloud dynamics that we have never seen 

before. 

 

We investigated the application of the Markov Chain Monte Carlo (MCMC) method to the 

inversion of microwave spectra. Five variables are included in the retrieval: the deep 

ammonia mixing ratio (X), the deep water mixing ratio (Y), stretch parameter (S), mixing 

parameter (M) and temperature at 1 bar level (Θ). The posterior joint distribution shows 

that Θ is independent of X, Y, S and M. Errors in estimation of Θ will not affect the results 

of other parameters. Ammonia abundance and the stretch parameter can be well determined 

from the spectra. For a normal situation (close to moist adiabat), water abundance is 

constrained to the accuracy of +3.1/-1.5 times solar. For an extreme situation (close to dry 

adiabat), water abundance is constrained to an upper limit. 
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4.7 Appendix 

4.7.1 Derive moist adiabatic lapse rate using differential forms of thermodynamic laws 

We use the differential form of thermodynamic equation to derive the equation (4.22). 

For simplicity, the symbols used in this derivation has small differences compared to the 

main section. We will use subscript d for dry gas, i for condensable species and c for 

clouds. Their molar concentrations are xd, xi and xc respectively. Pd is the pressure of dry 

gas. ei and Li is the saturation vapor pressure and latent heat for i-th species. From the 

first law of thermodynamics: 

 

0 = 𝑇d𝑠 = 𝑐�̅�d𝑇 − 𝑉d𝑃 +∑ 𝐿𝑖d𝑥𝑖
𝑖

 . 

𝑐�̅� = 𝑥𝑑𝑐𝑝𝑑 +∑ 𝑥𝑖𝑐𝑝𝑖
𝑖

+∑ 𝑥𝑐𝑐𝑝𝑐
𝑐

 . 

(4.39) 

𝑐�̅� is the average heat capacity (can be temperature dependence) defined as: 

 𝑐�̅� = 𝑥𝑑𝑐𝑝𝑑 +∑ 𝑥𝑖𝑐𝑝𝑖
𝑖

+∑ 𝑥𝑐𝑐𝑝𝑐
𝑐

 . (4.40) 

From the ideal gas law: 

 𝑃𝑉 = (𝑥𝑑 +∑ 𝑥𝑖
𝑖
) 𝑅𝑇. (4.41) 

Solve for V and substitute into equation (4.39) gives: 

 0 = 𝑐�̅�d𝑇 − (𝑥𝑑 +∑ 𝑥𝑖
𝑖
)𝑅𝑇d ln 𝑃 +∑ 𝐿𝑖d𝑥𝑖

𝑖
 . (4.42) 

Vapor pressure is proportional to molar concentration: 
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𝑒𝑖
𝑃𝑑
=
𝑥𝑖
𝑥𝑑
= 𝜂𝑖  . (4.43) 

𝜂𝑖 is the mixing ratio of the i-th species with respect to dry air. Take the logarithm and 

calculate differentials, then uses Clausius-Clapeyron relation 
d ln𝑒𝑖

d ln𝑇
=

𝐿𝑖

𝑅𝑇
= 𝛽𝑖 gives: 

 
𝑑𝜂𝑖
𝜂𝑖

= 𝛽𝑖d ln 𝑇 − d ln𝑃𝑑  . (4.44) 

Total pressure is equal to sum of all vapor pressures: 

 𝑃 = 𝑃𝑑 +∑ 𝑒𝑖
𝑖
= 𝑃𝑑 (1 +∑

𝑒𝑖
𝑃𝑑𝑖
) = 𝑃𝑑 (1 +∑ 𝜂𝑖

𝑖
) . (4.45) 

Take logarithm and calculate differentials: 

 

d ln 𝑃 = d ln 𝑃𝑑 + d ln (1 +∑ 𝜂𝑖
𝑖
) 

= d ln 𝑃𝑑 +
∑ d𝜂𝑖𝑖

1 + ∑ 𝜂𝑖𝑖
 

= d ln 𝑃𝑑 +
∑ 𝜂𝑖(𝛽𝑖d ln𝑇 − d ln 𝑃𝑑)𝑖

1 + ∑ 𝜂𝑖𝑖
 

=
1

1 + ∑ 𝜂𝑖𝑖
d ln𝑃𝑑 +

∑ 𝜂𝑖𝛽𝑖𝑖

1 + ∑ 𝜂𝑖𝑖
d ln 𝑇 . 

(4.46) 

Solve for d ln𝑃𝑑: 

 d ln 𝑃𝑑 = (1 +∑ 𝜂𝑖
𝑖
) d ln 𝑃 −∑ 𝜂𝑖𝛽𝑖

𝑖
d ln 𝑇 . (4.47) 

Use this expression to simplify equation (4.44): 
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𝑑𝜂𝑖
𝜂𝑖

= (𝛽𝑖 +∑ 𝜂𝑗𝛽𝑗
𝑗

)d ln𝑇 − (1 +∑ 𝜂𝑗
𝑗

)d ln𝑃 . (4.48) 

To avoid confusion, we have changed the summation index to j. Now we have every 

pieces and go back to equation (4.42). 

0 = 𝑐�̅�d𝑇 − (𝑥𝑑 +∑ 𝑥𝑖
𝑖
) 𝑅𝑇d ln 𝑃 +∑ 𝐿𝑖d𝑥𝑖

𝑖
 , 

0 =
𝑐�̅�

𝑅𝑥𝑑
d ln 𝑇 − (1 +∑ 𝜂𝑗

𝑗
)d ln 𝑃 +∑ 𝛽𝑖d𝜂𝑖

𝑖
 , 

0 =
𝑐�̅�

𝑅𝑥𝑑
d ln 𝑇 − (1 +∑ 𝜂𝑗

𝑗
)d ln 𝑃

+∑ 𝛽𝑖𝜂𝑖 ((𝛽𝑖 +∑ 𝜂𝑗𝛽𝑗
𝑗

)d ln 𝑇 − (1 +∑ 𝜂𝑗
𝑗

)d ln𝑃)
𝑖

 , 

(
𝑐�̅�

𝑅𝑥𝑑
+∑ 𝛽𝑖

2𝜂𝑖
𝑖

+ (∑ 𝜂𝑖𝛽𝑖
𝑖

)
2

)d ln𝑇 = (1 +∑ 𝜂𝑖
𝑖
) (1 +∑ 𝛽𝑖𝜂𝑖

𝑖
) d ln 𝑃 . 

(4.49) 

In deriving the above equation, we first divide every term by xd,, then use equation (4.48). 

Finally, the lapse rate is: 

 

d ln 𝑇

d ln𝑃
= (1 +∑ 𝜂𝑖

𝑖
)

(1 + ∑ 𝛽𝑖𝜂𝑖𝑖 )

(
𝑐�̅�
𝑅𝑥𝑑

+ ∑ 𝛽𝑖
2𝜂𝑖𝑖 + (∑ 𝜂𝑖𝛽𝑖𝑖 )2)

 

=
1 + ∑ 𝜂𝑖𝛽𝑖𝑖

𝑐�̂�/𝑅 +
∑ 𝜂𝑖𝛽𝑖𝑖

2
+ (∑ 𝜂𝑖𝛽𝑖𝑖 )2

1 + ∑ 𝜂𝑖𝑖

 . 

(4.50) 

𝑐�̂� is defined in equation (4.22). 
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4.7.2 Procedures to solve for 𝑑 𝑙𝑛 𝑥𝑖 /𝑑 𝑙𝑛 𝑃 

Start from the partial pressure for i-th vapor 

 

𝑃𝑣𝑖 = 𝑃
𝑥𝑣𝑖

𝑥𝑑 + ∑ 𝑥𝑣𝑖𝑖
 , 

ln 𝑃𝑣𝑖 = ln𝑃 + ln 𝑥𝑣𝑖 − ln (𝑥𝑑 +∑ 𝑥𝑣𝑖
𝑖

) , 

d ln 𝑃𝑣𝑖 = d ln𝑃 +
d𝑥𝑣𝑖
𝑥𝑣𝑖

−
∑ d𝑥𝑖𝑖

𝑥𝑑 + ∑ 𝑥𝑣𝑖𝑖
 . 

(4.51) 

Equation (4.51) is a system of n equations (n is the total number of vapors): 

 

{
 
 
 
 

 
 
 
 d ln𝑃𝑣1 = d ln 𝑃 +

d𝑥𝑣1
𝑥𝑣1

−
d𝑥𝑣1 + d𝑥𝑣2 +⋯+ d𝑥𝑣𝑛
𝑥𝑑 + 𝑥1 + 𝑥2 +⋯+ 𝑥𝑣𝑛  

d ln 𝑃𝑣2 = d ln 𝑃 +
d𝑥𝑣2
𝑥𝑣2

−
d𝑥𝑣1 + d𝑥𝑣2 +⋯+ d𝑥𝑣𝑛
𝑥𝑑 + 𝑥1 + 𝑥2 +⋯+ 𝑥𝑣𝑛  …

…

d ln 𝑃𝑣𝑛 = d ln 𝑃 +
d𝑥𝑣𝑛
𝑥𝑣𝑛

−
d𝑥𝑣1 + d𝑥𝑣2 +⋯+ d𝑥𝑣𝑛
𝑥𝑑 + 𝑥1 + 𝑥2 +⋯+ 𝑥𝑣𝑛  

 . 

(4.52) 

We need to solve d𝑥1, d𝑥2, … , d𝑥𝑛 from equations (4.52). The solution is easy to obtain 

for 𝑛 = 2, which is: 

 {
d ln 𝑥1 = d ln 𝑃𝑣1/𝑃 + 𝑥1d ln 𝑃𝑣1/𝑃 + 𝑥2d ln 𝑃𝑣2/𝑃

d ln 𝑥1 = d ln 𝑃𝑣2/𝑃 + 𝑥1d ln 𝑃𝑣1/𝑃 + 𝑥2d ln 𝑃𝑣2/𝑃
 . (4.53) 

Then we generalize (4.53) to n equations: 

 d ln 𝑥𝑖 = d ln𝑃𝑣𝑖 − d ln 𝑃 +∑ 𝜂𝑗 (d ln 𝑃𝑣𝑗 − d ln 𝑃) 
𝑗

 . (4.54) 

We verify this result by back substitution into the i-th equation in equations (4.52). 

d ln 𝑃𝑣𝑖 − d ln𝑃 will cancel immediately and the rest is to verify whether 

 ∑ 𝜂𝑗 (d ln𝑃𝑣𝑗 − d ln𝑃) 
𝑗

==
∑ d𝑥𝑖𝑖

𝑥𝑑 + ∑ 𝑥𝑣𝑖𝑖
 . (4.55) 

Divided by xd, the right hand side becomes: 
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∑ d𝑥𝑖𝑖

𝑥𝑑 + ∑ 𝑥𝑣𝑖𝑖
=

∑ d𝜂𝑖𝑖

1 + ∑ 𝜂𝑖𝑖
 . (4.56) 

Divided by Pd, the left hand side becomes: 

 

∑ 𝜂𝑖 (d ln
𝑃𝑣𝑖
𝑃
) 

𝑖
=∑ 𝜂𝑖 (d ln

𝜂𝑖
1 + ∑ 𝜂𝑗𝑗

) 
𝑖

 

=∑ 𝜂𝑖

(

  
 

d𝜂𝑖(1 + ∑ 𝜂𝑗𝑗 ) − 𝜂𝑖 ∑ d𝜂𝑗𝑗

(1 + ∑ 𝜂𝑗𝑗 )
2

𝜂𝑖
1 + ∑ 𝜂𝑗𝑗

)

  
 
 

𝑖
 

=
∑ d𝜂𝑖 + ∑ d𝜂𝑖𝑖 ∑ 𝜂𝑗𝑗 − ∑ 𝜂𝑖𝑖 ∑ d𝜂𝑗𝑗𝑖

1 + ∑ 𝜂𝑗𝑗
 

=
∑ d𝜂𝑖𝑖

1 + ∑ 𝜂𝑖𝑖
 

(4.57) 

Therefore, we proved that equation (4.55) is correct. 
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